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Preface

This volume surveys the broad subject of sports and lotto investments. The various
chapters cover many sports, such as soccer, NFL and college football, baseball, basket-
ball, Jai Alai, and lotto markets. We do not discuss casino gambling nor the statistics of
sports; rather, we focus on the financial markets associated with legal betting on sports
and lotto events. All the chapters are newly written academic surveys that we commis-
sioned for this volume. In certain areas, this volume updates to 2008 our earlier edited
volume [Hausch, D. B., V. Lo, and W. T. Ziemba (HLZ), 1994, Efficiency of Racetrack
Betting Markets, Academic Press, San Diego, CA]. That volume became not only a clas-
sic, but a cult item as it helped usher in professional racetrack betting. While small in
comparison with hedge funds, the various syndicates across the world have made about
$10 billion using computerized betting strategies. This volume continues with some of
the basic research behind such investment teams and the academic theory of investment
in sports and lotto markets. HL.Z reprinted older classic papers and complemented them
with new original work. This current volume is entirely composed of newly written
chapters that build on earlier papers. So, in our view, HLZ (which was reprinted in its
entirety with no changes except a new preface as HLZ, 2008, 2nd ed., World Scientific,
Singapore) and this volume are companion books in this field. Other books that discuss
similar topics are Vaughan Williams, L., 2003, The Economics of Gambling, Routledge,
London; Vaughan Williams, L., 2005, Information Efficiency in Financial and Betting
Markets, Cambridge University Press, Cambridge, UK, which are highly recommended;
and our trade books, Ziemba, W. T., and D. B. Hausch, 1984, Beat the Racetrack, Har-
court, Brace and Jovanovich, NewYork; Ziemba, W. T., and D. B. Hausch, 1986, Betting
at the Racetrack, Dr Z Investments, Inc., San Luis Obispo, CA; Ziemba, W. T., and D.
B. Hausch, 1987, Dr Z’s Beat the Racetrack, William Morrow, New York.

The volume is organized into eight parts. Part I discusses the industry side of the
racetrack and other betting markets. Ali and Thalheimer discuss the effects of com-
petition from casinos, lotteries, professional sports, and horse racing and wagering on
racetrack handle. Bacon-Shone and Woods empirically study the factors that influence
both the extent of the public’s wagering and its allocation across the betting pools. One
factor addressed is the partial rebate sometimes available to losers of large wagers.

xix
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Preface

Part 1II studies the bettors and horses in a race. Jullien and Salanié survey the
literature dealing with the empirical estimation of the bettor’s utility function, includ-
ing addressing issues such as representative bettors versus heterogeneous beliefs, and
expected versus nonexpected utility. Lo and Bacon-Shone devise probabilities for
multientry competitions. Edelman empirically studies the running patterns of race
horses, finding distance preferences and establishing pace characteristics somewhat at
odds with established physiological results on optimal running.

Part 111 discusses the well-established favorite-longshot bias in horse racing, which
is the tendency for favorites to be underbet and longshots to be overbet. Ottaviani and
Sgrensen present various theoretical constructs that generate this bias. Snowberg and
Wolfers use massive data sets to empirically estimate the recent favorite-longshot bias
in the U.S., Australia, and other locales. They argue that the anomaly is based more
on perceptions than preferences. That means that bettors overestimate the chances of
low probability events. They also show that extreme favorites no longer have positive
expected value as Ziemba and Hausch found in 1986. This updates the studies surveyed
in Ziemba and Hausch (1986); see also the updated graph in Ziemba’s chapter in Part
IV and Ziemba, W. T., 2004, Behavioral Finance, Racetrack Betting and Options and
Futures Trading, Mathematical Finance Seminar, Stanford University, Palo Alto, CA.
Busche, K., and C. Hall, 1988, An Exception to the Risk Preference Anomaly, Journal
of Business 61, 337-346; Busche, K., 1994, Efficient Market Results in an Asian Setting,
in HLZ; Vaughan Williams, L., and D. Paton, 1998, Why Are Some Favourite-Longshot
Biases Positive and Others Negative? Applied Economics 30, 1505-1510 discuss reverse
biases in Asia and other locales. Sobel and Ryan document a pattern of public betting
that varies by the day of the week. Different levels of casual and serious bettors at
the track on different days of the week can explain this variation and provides a basis
for understanding the favorite-longshot bias. Tompkins, Ziemba, and Hodges show that
there are similar biases in the S&P 500 and FTSE 100 index put and call options.

Part IV discusses weak form market efficiency in racing and various sports events.
Ziemba discusses efficiency in racing and other sports as well as in lotto games. He
describes the place and show betting system that arises because these markets are more
complex than the win market. The original 1981 system, which was popularized in the
trade books by Ziemba and Hausch (1984, 1986, and 1987), still basically produces
profits but needs rebates to do this because, currently, so much of the public’s wagers
do not enter the pools until after the race has started. This is because about 87% of the
typical track’s handle is bet off that track by other bettors and by professional syndi-
cates. Ziemba also discusses cross-track betting, NFL, and NBA games and provides an
introduction to lotteries. The latter topic is discussed in three chapters in Part VIII. Stern
studies point spread and odds betting in U.S. college and professional baseball, basket-
ball, and football and how these two betting concepts are related. He also investigates
whether point spread betting is as efficient in these sports as it is in horse racing. Also, he
shows how to estimate the odds of winning midway during a game based on the current
score and the original odds line. Golec and Tamarkin analyze the market for over/under
bets on NFL and NBA games. Lane and Ziemba discuss pure, no risk arbitrage and risk
arbitrage in team jai alai. Most of their results generalize to other sports betting games



Preface

xxi

such as those covered by betting exchanges like London’s Betfair as discussed in Part
VI as well as some financial market applications. The arbitrage conditions are utility
free and the risk arbitrage investments are based on the Kelly capital growth log utility
criterion.

Part V discusses semi-strong form efficiency where public information is added to
prices. Johnson and Sung provide a comprehensive survey of this subject in various rac-
ing markets. Gramm and Ziemba discuss the application of the breeding theory called
dosage to the U.S. triple crown races, the Kentucky Derby, the Preakness, and the Bel-
mont Stakes. The key idea is that, since the horses have never raced 1Y miles before
the Kentucky Derby or 1Y% miles before the Belmont Stakes, the public does not have
direct evidence of a horse’s speed and stamina for these distances. However, a horse’s
pedigree might provide indirect evidence, particularly if the pedigree includes stallions
whose offspring exhibit consistent levels of speed and stamina. This chapter studies
whether this indirect pedigree evidence can be used to profitably revise the public’s
win odds. And indeed this is the case, with the greatest gains associated with the 1'%
mile Belmont, followed by the 1" mile Kentucky Derby. For the 1% mile Preakness,
however, pedigree offered no gains. Since many horses in the Preakness have raced 1%
miles before the Preakness (including some who ran 1'4 miles in the Derby just two
weeks earlier), the odds established by the public have incorporated direct evidence of
the each horse’s speed and stamina for this distance, making indirect pedigree evidence
of limited incremental value. Gergaud and Deschamps investigate the effectiveness of
the recommended horses from tipsters in Paris.

Part VI presents three chapters related to the recent explosion of interest in bet-
ting exchanges. Haigh and Vaughan Williams discuss index betting for sports and stock
indices. The idea is that the house sets an x and a y for each event where y > x. The
difference y — x is their profit and expenses and reserve for risk. Then those that go long
do it at y and those who go short do it at x. If the number of longs and shorts is about
equal, then the house gets the y — x. But if it is not, then the house bears some risk.
The payoff to longs is the final price z — y and to the shorts it is x — z. This activity
is tax free in the UK, so it is a popular way to bet on index futures. The spread cost is
balanced by the tax savings in regular futures accounts by investors. Snowberg, Wolfers,
and Zitzewitz investigate the prediction ability of internet wagering markets in various
areas including, especially, politics. The contracts available form a fascinating descrip-
tion of modern times from elections, to war, to sports betting, all of which induce good
probabilities that are generally superior to political polls and other estimates. Putting
real money on the line tends to generate good market forecasts. Finally, Smith and
Vaughan Williams provide a comprehensive survey of betting exchanges. In these cases,
person A is betting against person B and the house has no risk and garners its profits
from a small commission on the net winning bets. Betfair in London is the largest such
betting exchange offering wagers on a vast variety of contests from sports to Academy
Awards to politics and other areas around the world. From a beginning in 1999, these
exchanges, especially Betfair, now match millions of bets per week.

Part VII presents two chapters on the efficiency of soccer betting markets. Forrest dis-
cusses British markets and Kossmeier and Weinberger discuss Austrian markets. Soccer
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Preface

is probably the world’s most popular sport, and betting on games with European, Asian,
South American and other punters is huge. These two papers update the reader on this
key topic. Since scores are low, there are various types of exotic wagers as well.

Finally, Part VIII discusses lotteries. (Lotteries, especially Canadian games, are
briefly discussed in the Ziemba chapter in Part IV.) Walker discusses economic issues
facing UK lotto organizations. He studies where the moneys (the sales) come from
based on factors such as jackpot size and rollover policies and where they go and vari-
ous microeconomic analyses that can tilt the situation. His chapter provides an outline to
the statistical, economic, and practical considerations to designing lottery games. Haigh,
also working in the UK, presents a marvelous analysis of the statistics of lotto games.
Finally, Matheson and Grote give a comprehensive survey of their work and that of
others and that from the lottery organizations regarding U.S. lottos. In the U.S., the
payments are usually spread over 20 years and are taxable. So, in comparison to Canada
and the UK, the U.S. prizes are worth about a third as much; see Ziemba, W. T.,
S. L. Brumelle, A. Gautier, and S. L. Schwartz, 1986, Dr Z’s 6/49 Lotto Guidebook,
Dr Z Investments, Inc., San Luis Obispo, CA, for additional calculations as this and
other lotto questions such as growth in carryovers and sales from the optimality some-
times to buy the pot, that is, buy all the numbers and profit from the winners. Hence,
they are not as good a deal despite their popularity in the U.S. Lotteries remain a dream
hope of poor people who yearn for those million dollar or pound payoffs.

Donald B. Hausch, Madison
William T. Ziemba, Vancouver
February 2008
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Chapter 1 « Pari-Mutuel Horse Race Wagering
Abstract

From 1960 through 2002, real dollar wagering on pari-mutuel horse racing (handle)
in North America peaked in 1977, declining 44% through the end of the period.
A number of factors have been identified as contributing to this decline in handle. Most
significant among these are increased competition from casino and state lottery gam-
ing venues. The presence of casino gaming in a racetrack’s market area has been found
to reduce pari-mutuel handle by 31-39%. Competition from casino gaming within the
pari-mutuel industry takes the form of the integration of slot machines at a pari-mutuel
racing facility (racino). Slot machines and video lottery terminals (VLT’s), when placed
under the auspices of a state lottery, have been estimated to reduce the pari-mutuel han-
dle at a racino from 24% to 39%, varying with the number of machines. State lotteries
have resulted in estimated pari-mutuel handle reductions ranging from 10% to 36%.
The presence of professional sports in a racetrack’s market area has also been found to
reduce pari-mutuel wagering, although to a lesser extent than competition from casino
gaming or a state lottery. Finally, within-industry competition from other pari-mutuel
wagering venues has had a negative effect on pari-mutuel wagering.

JEL Classifications: 1.83

Keywords: pari-mutuel horse race wagering, pari-mutuel wagering, horse race wagering, casino,
racing, lottery

1. INTRODUCTION

From 1960 through 2002, real dollar wagering (handle) on horse racing in North
America peaked in 1977 before declining 44% through the end of the period.! A num-
ber of factors have been identified as contributing to the decline in pari-mutuel handle.
Among the major causes of this decline are increased levels of competition from gam-
ing venues such as casinos and state lotteries. There has been tremendous growth in the
gaming industry over the past several decades. Non-pari-mutuel real dollar gaming han-
dle (casino-type gaming, lottery gaming, and charitable gaming) increased 355% from
1982 through 2002.> Competition from professional sports has also contributed to the
decline in pari-mutuel handle. Finally, competition from other pari-mutuel racetracks
has been found to have a negative impact on individual racetrack handle. This study is
an attempt to summarize the findings on how competition both within and outside the
industry have affected horse race wagering. A comprehensive review of the literature is
made to ascertain the effects of such competition.

ITotal horse racing handle obtained from Association of Racing Commissioners, Inc., Pari-mutuel Racing,
A Statistical Summary (annual issues). Adjustment to real dollars using the consumer price index (CPI)
obtained from the U.S. Department of Labor, Bureau of Labor Statistics.

2Christiansen and Sinclair (2001) gaming handle statistics. U.S. Department of Labor, Bureau of Labor
Statistics, CPI statistics.
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The chapter is organized as follows. Section 2 reports results of studies that examined
the effect of competition from casino gaming on the demand for pari-mutuel wagering.
Section 3 reports the results of studies that examined the effect of competition from
state lotteries on the demand for pari-mutuel wagering. Section 4 reports the results of
studies that examined the effect of competition from professional sporting events on the
demand for pari-mutuel wagering. Section 5 reports the results of studies that examined
the effects of live race competition from other racetracks on the demand for wagering
at a subject racetrack. Section 6 reports the results of studies that examined the effect of
competition from simulcast wagering on the demand for wagering at a subject racetrack.
Section 7 presents the summary and conclusions of the chapter.

2. COMPETITION FROM CASINO GAMING

Casino gaming has been found to be a strong substitute for pari-mutuel horse race
wagering. Ali and Thalheimer (1997) examined the demand for pari-mutuel horse race
wagering in the presence of casino gaming. Two demand functions were estimated, one
each for thoroughbred and harness horse racetracks in New Jersey over the period of
1960-1988. Casino gaming was introduced during the study period in Atlantic City,
New Jersey in 1978. Initially, there was one casino, increasing to 12 by 1988, the end
of the sample period. It was estimated that the presence of 12 casino gaming facilities
in Atlantic City had a significant and negative impact on the demand for wagering and
resulted in a 32% decrease in live and total (live plus intrastate simulcast) pari-mutuel
horse race wagering at the New Jersey thoroughbred and harness racetracks.

Another estimate of the relationship between casino gaming and pari-mutuel horse
race wagering is given in Thalheimer and Ali (1995a). Separate straight and exotic
pari-mutuel wagering demand equations were estimated for two New Jersey thorough-
bred racetracks, Atlantic City Race Course and Monmouth Park Racetrack, over the
1960-1990 sample period.® For each racetrack, the impact of casino gaming was found
to be significant and negative. Casino gaming was estimated to have reduced wager-
ing at Atlantic City Race Course and Monmouth Park Racetrack by 31% and 39%,
respectively.*

Thalheimer (1998) examined the relationship of casino gaming and pari-mutuel
horse race wagering when both are located at the same racetrack (racino). The loca-
tion was Mountaineer Racetrack and Resort, a pari-mutuel racetrack in West Virginia.
This was the first racetrack in the United States to offer casino gaming on a signifi-
cant scale to its patrons. In June 1990, a limited number of electronic gaming devices
under the auspices of the State Lottery, referred to as video lottery terminals (VLT’s),
were made available, on an experimental basis, to customers of the racetrack. VLT’s
are a form of slot machine and are perceived as such by the customer. Three wagering

3 A straight and exotic wagering demand model was also estimated for a harness racetrack in Kentucky. Since
Kentucky did not have casino gaming, the results of this model are not discussed further.
“4Evaluated at the non-zero mean of 8.9 casinos, weighted by mean values of exotic and straight handle shares.
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demand models were estimated: one for live handle, one for full-card simulcast handle’
(wagering on simulcasts of races taken from locations outside the state), and one for
VLT handle. Each of the three demand models contained its own-demand variable and
also cross-demand variables from the other two. Data were taken daily over the period of
1990-1991.

VLT’s were found to have a significant and negative impact on pari-mutuel wagering.
At the 1991 average VLT level of 114 machines, wagering on pari-mutuel horse races
was estimated to have been reduced by 24%. On the other hand, total wagering (pari-
mutuel plus VLT) was estimated to have increased 21%. That is, wagering on the 114
VLT’s offset the 24% reduction in pari-mutuel wagering and added an additional 21%
to the handle. Total revenue or takeout (handle less payout to customers), however,
increased only 4% due to a lower takeout on VLT handle relative to the pari-mutuel
handle which it replaced. One conclusion of the paper was that in order to generate
sufficient VLT handle to produce positive net revenue, a minimum number of VLT’s
is required. A second conclusion was that customers who wagered on the VLT’s were
not likely to bet on the horse races being offered while those who wagered on those
pari-mutuel horse races were also likely to bet on the VLT’s.

In an update and expansion of the Thalheimer (1998) study, Thalheimer (2008)
again examined the relationship of casino gaming and pari-mutuel horse race wager-
ing at Mountaineer Racetrack and Resort. Pari-mutuel and VLT data were taken weekly
from fiscal year 1994, when VLT’s were first permitted at racetracks by state law on a
permanent basis, through 2002. Over this period, the number of VLT’s was increased
from 400 to 3,000. On-track live and simulcast pari-mutuel handle were estimated
to have decreased 39% as a result of the increase in the number of VLI’s. As in
the earlier study (Thalheimer, 1998), VLT handle was found to have increased when
the pari-mutuel product was made available. VLT handle increased 22% as a result
of the presence of year-round live horse racing. Since revenue (handle less payout to
customers) was $2.6 billion for the VLT’s in 2002 compared to on-track pari-mutuel
revenue of $39 million, the increase in VLT revenue from the presence of live racing
was far greater than the reduction in pari-mutuel revenue from the increased number
of VLT’s. The number of simulcast races from other racetracks offered to Mountaineer
customers was also found to have a positive effect on VLT handle. As in the earlier study
Thalheimer (1998), there was little or no crossover of VLT customers to the pari-mutuel
wagering product while there was a significant crossover of pari-mutuel customers to the
VLT product.

The studies reviewed so far examined the impact of casino competition on pari-
mutuel wagering under two situations: (1) casinos were permitted in an existing
pari-mutuel wagering market but at locations other than racetracks, and (2) casino gam-
ing, in the form of VLT’s, was permitted at existing pari-mutuel wagering facilities. Not
mentioned above is the effect of competition from pari-mutuel venues on casino gam-
ing demand when both are located in the same market area. In a study of the demand
for casino gaming, Thalheimer and Ali (2003) examined this relationship. The demand

SFull-card simulcasting of races from locations outside West Virginia was introduced in June, 1990.
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for slot machine gaming was estimated for 24 riverboat casinos and three racetrack-slot
machine casinos (racinos) in the states of Illinois, Iowa, and Missouri from 1991 to
1998. One of the demand factors was competition from pari-mutuel horse race wager-
ing venues (live and simulcast locations) measured by the distance-related accessibility
of riverboat/racino customers to these alternative wagering locations. Access to pari-
mutuel wagering venues was found to have a negative but insignificant effect on the
demand for casino slot machine gaming.

3. COMPETITION FROM STATE LOTTERIES

State lottery wagering products have been found to be strong substitutes for pari-mutuel
horse race wagering. Simmons and Sharp (1987) employed an econometric model of
pari-mutuel wagering using 89 of the 100 U.S. thoroughbred race meets in various U.S.
counties for the year 1982. State lotteries were estimated to have resulted in a 36% loss
in pari-mutuel handle.

Vasche (1990) estimated the impact of the introduction of the California State Lot-
tery in 1985 on pari-mutuel horse race wagering. An econometric model of California
pari-mutuel thoroughbred horse race wagering developed with data prior to introduction
of the lottery in 1985 is employed to estimate handle from 1985 to 1990.% Estimated
handle was then compared to actual handle from 1985 to 1990, the period beginning
with the introduction of the lottery. The California State Lottery was estimated to have
reduced pari-mutuel horse race handle by 20-30%.

Thalheimer and Ali (1995c) estimated three pari-mutuel wagering demand models,
one each for two racetracks in southern Ohio: Lebanon Raceway (harness) and River
Downs (thoroughbred); and another for a nearby thoroughbred racetrack in Northern
Kentucky: Turfway Park. The data were annual over the period of 1960—1987. The
Ohio State Lottery was introduced in 1974. The effect of competition from the Lottery
was found to be significant and negative. The payout rate of the Ohio Lottery at the end
of the sample period was 55.2%, resulting in an estimated 27% reduction in pari-mutuel
handle for each of the three racetracks.

In Thalheimer and Ali (1995b), an econometric model of pari-mutuel wagering
demand was estimated for six Kentucky racetracks using daily race meet data from 1986
to 1990. The demand model included the Kentucky State Lottery (introduced April 4,
1989) as one of its determinants. Introduction of the Kentucky State Lottery was found
to have a significant and negative impact on the demand for wagering at each of the race-
tracks whose demands were being estimated. The reduction in pari-mutuel wagering at
these racetracks ranged from 10.3% to 32.6% and averaged 18.4%.”

6The model used is not given in the article.
"The lottery impacts were not reported in the article but were easily computed using the lottery coefficients
and the value of the fully implemented lottery (= 1.0).
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4. COMPETITION FROM PROFESSIONAL SPORTS

Professional sporting events that compete with pari-mutuel horse racing have been
found to have an adverse effect on pari-mutuel horse race wagering. Coate and Ross
(1974) estimated the demand for thoroughbred and harness horse wagering in New
York using daily data from 1970 to 1972. Competition from three professional sports,
basketball (the New York Knickerbockers), hockey (the New York Rangers), and foot-
ball (NFL Monday Night Football), was estimated to have a significant and negative
effect on pari-mutuel harness horse wagering.

Thalheimer and Ali (1992) estimated the demand for wagering at a pari-mutuel har-
ness horse racetrack in Louisville, Kentucky over the period of 1970-1987. There were
two race meets per year over this period. The Louisville Redbirds, a minor league pro-
fessional baseball team, began operations in Louisville in 1982. The presence of the
Redbirds for a given horse race meet was measured as the number of home games over
that meet. There were an average of 19.1 home games per race meet from 1982 for-
ward. The impact of competition from the presence of the professional baseball team
was estimated to have resulted in a 5.3% loss in handle at Louisville Downs.

In another study by Thalheimer and Ali (1995b), one of the pari-mutuel wagering
demand determinants for Turfway Park, a thoroughbred racetrack in northern Kentucky,
was the presence of major league professional sports in nearby Cincinnati, Ohio on a
race day. Over the estimation period, Cincinnati was home to two professional sports
teams, the Cincinnati Redlegs (Reds) baseball team and the Cincinnati Bengals football
team. A professional baseball game, offered on the same day as pari-mutuel wagering
at the racetrack, was found to have a negative but insignificant effect on wagering there.
On the other hand, the presence of a professional football game in Cincinnati was esti-
mated to have a significant and negative (—9.7%) effect on pari-mutuel wagering at the
racetrack on that day.

In Thalheimer and Ali (1995c), one determinant of the demands for wagering at
two racetracks in southern Ohio and for a nearby thoroughbred racetrack in northern
Kentucky was the presence of competition from professional sports in Cincinnati, Ohio.
In this case, sports competition was measured as the weighted total number of days over
a year when home games were available for three professional sports, football, baseball,
and basketball. Attendance at these events was used to derive weights from which the
weighted average number of competing days was computed. The impact of competition
from professional sports on the three racetracks was found to be significant and equal.
An additional 10 days of competition from professional sports in 1987 was estimated to
result in a 4% reduction in handle at the three racetracks.

S. COMPETITION FROM LIVE RACING

Several studies have found that wagering at a pari-mutuel racetrack is reduced when
there is increased competition within the industry from other pari-mutuel racetracks in
the market area. Morgan and Vasche (1979) estimated the demand for wagering for
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three Southern California thoroughbred racetracks conducting four race meets (Santa
Anita, Oak Tree Racing at Santa Anita, Del Mar, and Hollywood Park) using a pooled
time-series cross-section database over the period of 1958—1978. In Morgan and Vasche
(1982) the dataset was updated to include two more years, 1979 and 1980. Both demand
models had identical specifications, the only difference being the two-year update of the
sample in the 1982 study. In each demand model (Morgan and Vasche, 1979, 1982),
the presence of competition from nighttime non-thoroughbred (i.e., quarter horse and
harness) racing was found to be significant and to result in reduction in pari-mutuel
wagering at the Southern California thoroughbred racetracks. Another competition vari-
able, the combined number of harness and quarter horse racing days, was not found
to be statistically significant. Morgan and Vasche (1979) state that, in addition to the
two non-thoroughbred competition variables included in their models (i.e., day to night
harness and quarter horse racing and combined number of harness and quarter horse
days), “a number of alternative variable specifications to reflect horse racing competi-
tion were considered, such as number of thoroughbred days which face overlaps with
other day and night racing in Southern California. Regardless of the exact form of the
variable tested, evidence of competition between different types of racing consistently
appeared.”®

Church and Bohara (1992) examined the demand for horse race wagering in New
Mexico using data for seven racetracks over the period of 1964—1988. Four of the race-
tracks were operating in 1964 at the beginning of the sample period, one opened in
1971, one in 1985, and the last one in 1986. Competition for a subject racetrack in a
given year was measured by an interaction term of the product of the race days for the
subject racetrack and the difference in total race days for all racetracks less the number
of race days for the subject racetrack. Competition was found to have the expected neg-
ative sign for six of the seven racetracks, three of which were significant. Although the
competition variable for the seventh racetrack was found to be positive, it was not found
to be significant.

In Thalheimer and Ali (1995a), the two New Jersey thoroughbred racetracks whose
demands were estimated, Atlantic City Race Course and Monmouth Park Racetrack,
had overlapping dates and as a result were competitors with each other for that period.
The two racetracks also faced competition from Freehold Raceway (harness), while
Monmouth Park also faced competition from the nearby Meadowlands racetrack (har-
ness meet). Competition in a given year was measured as the number of overlapping
days between racetracks for that year. Competition between Monmouth Park and
Atlantic City began in 1975 and averaged 64.8 days over the period of 1975-1990.° As
a result of this competition, straight and exotic wagering demands for the Atlantic City
racetrack were estimated to have been reduced 51.4% and 43.2%, respectively. On the
other hand, competition from the Atlantic City racetrack was found to have a statistically
insignificant effect on exotic wagering demand at Monmouth Park. However, it
did have a significant effect on straight wagering demand, reducing that demand

8Morgan and Vasche (1979), p. 190.
9See Thalheimer and Ali (1994) for means of the competition variables.
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by 17.5%.'° The difference in these relative effects may be due to the difference in
the quality of racing offered by the two racetracks. Monmouth Park had higher purses
and thus a higher quality of racing over the estimation period.

Competition from Freehold Raceway was not found to have had a statistically signif-
icant impact on the demand for wagering at Monmouth Park. The demand for wagering
at Atlantic City Race Course was found to be only slightly reduced by competition with
Freehold Raceway. Exotic wagering demand was reduced 3.1% while straight wagering
demand was not found to be significantly affected. Finally, straight wagering demand at
Monmouth Park was not significantly impacted by competition from the harness race
meet at the nearby Meadowlands, while exotic wagering demand was found to have
been reduced by 12.2%.

In Thalheimer and Ali (1995b), the effect on wagering at a racetrack as a result of
competition with other racetracks in its market area was estimated. In this study of four
thoroughbred racetracks and two harness racetracks in Kentucky, using daily data, the
competition variable took the value of one, on a day when there was wagering at a com-
peting racetrack, otherwise it was zero. Of the six Kentucky racetracks whose demands
were estimated, four faced competition from other racetracks at some time during the
year. Three of the racetracks faced competition from one racetrack while one racetrack
faced competition from two racetracks. Competition from four of the five competing
racetracks was found to have a significant and negative effect on wagering at the race-
track whose demand was being affected. The opportunity to wager on races offered
at a competing racetrack was found to result in an estimated 8.1-23.0% reduction in
wagering at the subject racetrack.'!

Ali and Thalheimer (1997) examined the effect of competition on the aggregate of
all thoroughbred racetracks and of all harness racetracks in New Jersey from racetracks
located in the bordering states of Delaware, New York, and Pennsylvania. The time
period of the analysis was 1960-1988. Unlike in earlier studies, where competition was
measured as days of overlapping race meets, the degree of competition was measured
using a specially constructed visit cost (VC) variable. Visit cost to competing race-
tracks was computed as the cost of a trip multiplied by the average traveling distance
(ATD) to a competing out-of-state racetrack. The cost of a trip was computed as the
average of the New Jersey wage cost index (opportunity cost) and the transportation
component of the New Jersey consumer price index. The distance for a New Jersey
pari-mutuel racetrack patron to travel to a competing out-of-state racetrack site was
computed using information on the distance from each New Jersey market area popula-
tion center to each competing out-of-state racetrack. Since wagering opportunities were
not available at every wagering site on every day of the year, the distance, for the same
consumer, could vary from day to day. For each day of the year, the traveling distance

10The significance of the competition variables was reported in Thalheimer and Ali (1995a) but not the mag-
nitude of the impacts. The magnitude of the impacts reported here was computed from information provided
in the paper.

'Magnitude of impacts computed using competition variable coefficients as reported in Thalheimer and Ali
(1995b).
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from each New Jersey population center (14 metropolitan statistical areas) to the
out-of-state wagering sites was determined. The minimum of the distances from that
center to each of the out-of-state wagering sites was chosen as the traveling distance
for that day. Daily distances for each population center were then averaged over the
year. The population-weighted average of the average daily distances for that year was
denoted as the average traveling distance (ATD) for that year.

A decrease in the visiting cost (VC) for New Jersey pari-mutuel thoroughbred or
harness racetrack patrons to wager at racetracks of the same breed in Delaware, Pennsyl-
vania, and New York, resulted in a reduction in wagering at the New Jersey racetracks.
A 1% decrease in VC to out-of-state thoroughbred racetracks from its 1988 level was
estimated to result in a 0.14% decrease in New Jersey thoroughbred wagering. A 1%
decrease in VC to out-of-state harness racetracks was estimated to result in a 0.13%
decrease in New Jersey harness wagering. Had there been no competition from out-
of-state harness racetracks, the New Jersey harness handle would have been 14.3%
greater.

In addition to examining the effect of own-breed, out-of-state competition on New
Jersey pari-mutuel wagering, Ali and Thalheimer (1997) also estimated the effect
of cross-breed competition from both in-state and out-of-state racetrack locations.
A decrease in VC to thoroughbred racetracks, both inside and outside of New Jersey,
was found to reduce New Jersey harness handle. Specifically, a 1% decrease in VC
from its 1988 level was estimated to result in a 0.10% decrease in New Jersey harness
wagering. Had there been no competition from in-state and out-of-state thoroughbred
racetracks, the New Jersey harness handle would have been 10.5% greater. New Jersey
thoroughbred wagering was not found to be significantly impacted by competition from
harness racetracks located inside and outside of New Jersey.

6. COMPETITION FROM SIMULCAST WAGERING

There are several forms of simulcast wagering products available to pari-mutuel wager-
ing customers. One of these is intrastate intertrack wagering (ITW), the simulcasting
of the live race product offered by a racetrack, simultaneously, to other racetrack loca-
tions within the state in which that racetrack is located. It is expected that by offering
ITW, total wagering on a racetrack’s live race product will increase, while wagering at
that racetrack’s location may decrease. The expected increase in total (live plus ITW)
wagering can be attributed to the reduction in the cost of attending the races due to
the increase in availability of the product to customers in the market area. On the other
hand, on-track wagering at the location in which the live races are being offered may
decrease since the locations at which the simulcasts of the live races are received are
essentially competitors of the live race site. The degree of competition with the on-track
live races is expected to increase as the travel distance to alternative wagering sites to
bet on those races is decreased.
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In Thalheimer and Ali (1995b), the presence of ITW was measured as the weighted
average traveling distance to the nearest wagering site (including the racetrack con-
ducting the live races). The weights used to compute the weighted average distance
are the income for each of the eight major population centers from which a racetrack
customer must travel to attend and bet on the races, divided by total income of all the
population centers. As the number of ITW racetrack sites is increased, the weighted
average traveling distance is decreased. The demands for wagering were estimated for
four thoroughbred and two harness racetracks in Kentucky. It was found that ITW had
an insignificant effect on the on-track handle for four of the six racetracks, while han-
dle decreased 5% for one thoroughbred racetrack and 8% for one harness racetrack. On
the other hand, as expected, total (live plus ITW) wagering at all six racetracks was
found to increase. The increase in the total handle ranged from 12% to 77% over all six
racetracks.

The introduction of ITW may also create new cross-breed competition for existing
racetracks. For example, thoroughbred (harness) racetracks may face increased compe-
tition from cross-breed harness (thoroughbred) ITW wagering sites. In Kentucky, where
the demand for the harness racing product is not as strong as for the thoroughbred racing
product, the cross-breed competition from ITW harness racing on thoroughbred wager-
ing was not found to be significant. On the other hand, the demand for harness wagering
was reduced by 4% at one harness racetrack (Red Mile) and by 24% at the other harness
racetrack (Louisville Downs) due to competition from ITW thoroughbred racing.

Another form of simulcast wagering is wagering on simulcasts of live races at off-
track betting sites (OTB’s) which, themselves, do not offer live pari-mutuel racing.
Coate and Ross (1974) estimated the effect of the introduction of off-track betting in
New York City in 1971 on live pari-mutuel thoroughbred and harness horse wager-
ing there. Off-track betting was found to have a significant and negative effect on both
thoroughbred and harness horse wagering.

Yet another form of simulcast wagering is referred to as full-card (whole-card) simul-
casting. A customer at an in-state wagering location is able to wager on entire live race
programs from one or more out-of-state racetracks that simulcast those races to the
in-state location. In a recent study (Ali and Thalheimer, 2002), the wagering demands
of a number of racetracks whose simulcast races were imported at a single racetrack
location and offered to patrons there, along with live racing conducted at the racetrack,
was estimated. The subject of the analysis was Garden State Park, a New Jersey race-
track that offered wagering on its own live thoroughbred and harness horse racing, and
on simulcast racing from both in-state and out-of-state locations. The study period cov-
ered each day that live, simulcast, or a combination of live and simulcast racing was
offered in 1995. Over this period, there were 49 racetracks whose simulcast programs
were taken by Garden State Park at various times over the year. In addition, Garden
State Park offered its own live thoroughbred and harness horse race meetings. In total,
51 racetrack products were offered, 49 of which were simulcasts of live race products
from other locations to Garden State Park and two of which were live race products
conducted at Garden State Park. To overcome data and statistical limitations, the 51
racetracks were aggregated by geographical location into eight thoroughbred, simulcast
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racetrack groups, five simulcast harness racetrack groups, one live thoroughbred group,
and one live harness group, for a total of 15 racetrack groups.

The wagering demand for each racetrack group was specified as a function of its
own number of races, takeout rate, average purse per race, and average field size per
race. In addition, this demand was taken as a function of the number of races offered,
takeout rate, average purse per race, and average field size per race for the racetrack
groups with which it competed on a given day. A number of other product specific
characteristic variables for different racetrack groups were also included.

Wagering on a racetrack group’s races was found to decrease as a result of compe-
tition from competing racetrack groups on a given day. The number of races offered
by competing racetrack groups was found to have a significant and negative effect
on wagering for nine of the 15 racetrack groups. The median number of races’ cross-
elasticity for those racetrack groups where number of races was found to be significant
was —0.67. Field size associated with competing racetrack groups was found to have
a significant and negative effect on wagering for six of the 15 racetrack groups. The
median field size cross-elasticity for those racetrack groups where field size was found
to be significant was —1.07. While average purse per race of competing racetracks was
found to have a significant and negative impact on wagering, this was true for only three
of the 15 racetrack groups. Thus, wagering demand for a particular racetrack group is
not much affected by average purse per race of competing racetrack groups on a given
day. The takeout rate associated with competing racetrack groups was also found to
have a significant positive effect on wagering for five of the 15 racetrack groups, indi-
cating that the competing racetrack groups were substitutes for a particular racetrack
group whose demand was being determined. The median takeout rate cross-elasticity
for those racetrack groups where takeout rate was found to be significant was 1.07.

The presence of live thoroughbred or harness racing at Garden State Park among
the competing racetrack groups was found to have a statistically significant effect
for only three of the racetrack groups. In those instances where the presence of
live racing was found to be significant, it was a substitute for same-breed and a
complement for cross-breed racetrack groups. The fact that offering thoroughbred (har-
ness) live races on a given day results in higher wagering on harness (thoroughbred)
simulcast racing can possibly be explained by increased attendance of New Jersey
harness (thoroughbred) horsemen on those days. These horsemen are familiar with all
New Jersey (harness and thoroughbred) racing and may bet both breeds when attracted
to the betting site on days when there is betting offered on their own-breed New Jersey
live race product.

7. SUMMARY AND CONCLUSIONS

Competition from casino gaming offered at locations outside pari-mutuel horse racing
sites was found to have a significant and negative impact on pari-mutuel horse race
wagering. Casino gaming in Atlantic City, New Jersey was estimated to have resulted in
a 32% reduction in wagering over all New Jersey thoroughbred and harness racetracks.
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On an individual racetrack basis, casino gaming in Atlantic City was found to have
resulted in a 31% decline in wagering at Atlantic City Race Course and a 39% decline
in wagering at Monmouth Park Racetrack.

Competition from casino gaming within the pari-mutuel industry takes the form
of integration of slot machines (VLT’s) at a pari-mutuel racing and wagering facility
(racino). Such devices are installed at the facility to broaden its product line. The intro-
duction of casino gaming in the form of the placement of VLT’s at a racetrack was
found to reduce pari-mutuel wagering by 24%, at a level of 114 VLT’s and 39% at a
level of 3,000 VLT’s. The VLT handle was found to have increased as much as 22% as
a result of the presence of year-round live horse racing. At the level of 3,000 VLT’s, the
increase in VLT revenue from year-round live horse racing was found to be far greater
than the decrease in pari-mutuel revenue from the VLT’s. Offering simulcast races from
other racetracks was also found to have a positive effect on VLT handle.

The impact of state lottery gaming on pari-mutuel horse race wagering was esti-
mated for several individual state lotteries (Kentucky, Ohio, and New Jersey) as well as
for the lotteries in the U.S. as a whole. The reduction in pari-mutuel wagering due to
competition from state lotteries was estimated to range from 10% to 36%. With respect
to non-gaming competition, a professional sporting event, held on the same day that
wagering is conducted at a pari-mutuel racetrack, was found to have a significant and
negative impact on wagering at that racetrack.

Within-industry competition between racetracks conducting live race meets was
found to result in significant reductions in wagering in many cases. With respect to
simulcast wagering, in several cases the introduction of intrastate intertrack simulcast
wagering was found to result in reduced on-track wagering at the site conducting the
live races while simulcasting those races to other racetrack sites in the state. On the other
hand, total pari-mutuel handle (live plus simulcast) for the racetrack was estimated to
increase in every case. Where more than one breed of racehorse conducts racing in a
state (e.g., thoroughbred and harness), the introduction of ITW in that state may create
new cross-breed competition for each breed. That is, wagering on thoroughbred races
will face competition from ITW sites taking harness racing and vice versa. This ITW
cross-breed competition may result in reduced wagering at existing wagering locations
for the other breed. Competition from wagering on simulcasts at off-track betting loca-
tions was found to result in reduced wagering at racetracks in the same market area. At a
single racetrack location where the customer may choose among a variety of simulcast
pari-mutuel wagering products from other locations, wagering on an individual simul-
cast racetrack’s product was found to be reduced by competition from other simulcast
racetrack products being offered on the same day.

References

Ali, M. M., and R. Thalheimer. 2002. Product Choice for a Firm Selling Related Products: A Parimutuel
Application, Applied Economics 34, 1251-1271.

Ali, M. M., and R. Thalheimer. 1997. Transportation Costs and Product Demand: Wagering on Parimutuel
Horse Racing, Applied Economics 29, 529-542.



Richard Thalheimer and Mukhtar M. Ali 15

Christiansen, E. M., and S. Sinclair. 2001. The Gross Annual Wager of the United States, 2000 (revised).
Report available from Christiansen Capital Advisors at www.cca-i.com.

Church, A. M., and A. K. Bohara. 1992. Incomplete Regulation and the Supply of Horse Racing, Southern
Economic Journal 58, 732-742.

Coate, D., and G. Ross. 1974. The Effects of Off-Track Betting in New York City on Revenues to the City
and State Governments, National Tax Journal 27, 63—69.

Morgan, W. D., and J. D. Vasche. 1979. Horse Racing Demand, Parimutuel Taxation and State Revenue
Potential, National Tax Journal 32, 185-194.

Morgan, W. D., and J. D. Vasche. 1982. A Note on the Elasticity of Demand for Wagering, Applied Economics
14, 469-474.

Simmons, S., and R. Sharp. 1987. State Lotteries’ Effects on Thoroughbred Horse Racing, Journal of Policy
Analysis and Management 6, 446—448.

Thalheimer, R., 1998. Parimutuel Wagering and Video Gaming: A Racetrack Portfolio, Applied Economics
30, 531-543.

Thalheimer, R., 2008. Government Restrictions and the Demand for Casino and Parimutuel Wagering, Applied
Economics 40, 1-19.

Thalheimer, R., and M. M. Ali. 1992. Demand for Parimutuel Horse Race Wagering with Specific Reference
to Telephone Betting, Applied Economics 24, 137-142.

Thalheimer, R., and M. M. Ali. 1994. Exotic Betting, Pricing Policy and the Demand for Parimutuel
Horse Race Wagering. Working Paper, Department of Equine Administration, College of Business and
Public Administration, University of Louisville, Louisville, K.

Thalheimer, R., and M. M. Ali. 1995a. Exotic Betting Opportunities, Pricing Policies and the Demand for
Parimutuel Horse Race Wagering, Applied Economics 27, 689-703.

Thalheimer, R., and M. M. Ali. 1995b. Intertrack Wagering and the Demand for Parimutuel Horse Racing,
Journal of Economics and Business 47, 369-383.

Thalheimer, R., and M. M. Ali. 2003. The Demand for Casino Gaming, Applied Economics 35, 907-918.

Vasche, J. D. 1990. The Net Revenue Effect of California’s Lottery, Journal of Policy Analysis and
Management 9, 561-564.



This page intentionally left blank



CHAPTER 2

Modeling Money Bet on Horse Races
in Hong Kong

John Bacon-Shone
Social Sciences Research Centre, The University of Hong Kong, Hong Kong.

Alan Woods

Deceased.

1. Introduction
2. Variables examined
2.1. Outcome Variables
2.2. Independent Variables
3. Results and Discussion
4. Conclusion
References
Appendix: 31 Independent Variables Examined (Excluding Quadratic Terms)

HANDBOOK OF SPORTS AND LOTTERY MARKETS
Copyright © 2008, Elsevier B.V. All rights reserved.

18
18
18
19
19
21
22
23

17



18

Chapter 2 « Modeling Horse Race Bets in Hong Kong
Abstract

This chapter examines factors that affect the total money bet on races in Hong Kong
and also how that money is distributed between different pools. The conclusion is that
quite different processes are at work, but good predictive models are feasible, enabling
the detection of the impact of relatively small changes in the betting tax, particularly on
how the money is distributed across pools and also enabling us to detect what attracts
gamblers to bet more or shift money across pools.

Keywords: pool size, handle size, betting tax changes, horse race betting

1. INTRODUCTION

Horse races in Hong Kong provide a rich source of data given the large amount of
money bet and the evidence that the favorite-longshot bias found elsewhere is not found
there (Busche and Hall, 1988; Lo et al., 1995). This study was triggered by the claim
of the Hong Kong Jockey Club (which controls racing and pari-mutuel betting in Hong
Kong) that the money bet on horse races in Hong Kong had rebounded as a result of
the introduction at the beginning of the 2006 season of a rebate in some pools' to better
compete with illegal bookmakers. We examine a total of 5,271 races from the beginning
of the 2000 season until the middle of the 2007 season, during which 482 billion HK
dollars were bet (about U.S.$61B). Thalheimer and Ali (1992, 1995a, 1995b, 1997,
1998) have examined a number of predictors of money bet on races across tracks and
years. Their analysis provides insight into competitive elements at the track level, but it
is a crude analysis in that it does not enable us to understand factors that affect money bet
within years, let alone within meetings. Ray (2002) examined the predictors of money
bet on individual races across a one-month period at a single track. In that analysis, the
short time period and single track limits the generalizability of the results, while this
study examines more than seven seasons at two tracks with large betting volume.

2. VARIABLES EXAMINED

2.1. Outcome Variables

LTPCPI: Log of total betting pool in HKS$ on a race, adjusted for inflation using the
Consumer Price Index (A). The log transform ensures a symmetric distribution. The
Consumer Price Index (A) is the CPI with broadest base in Hong Kong (covering 50%
of households). This variable provides the broadest measure of demand for gambling
on horse races in Hong Kong, excluding only illegal bookmakers.

The rebate takes the form of a 10% rebate on losing bets of at least HK$10,000 in the win, place, quinella,
and quinella-place pools.
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LRREBNREB: Log ratio of the total bets on pools eligible for rebate (from 2006
onward) to the total for all other pools for each race. The log ratio follows the
standard approach for compositional data analysis of Aitchison (1986), to avoid the
constraints imposed by proportions, which distort standard statistical analysis. This
variable should provide the most sensitive assessment of the impact of the rebate, but
also provides a good summary of the demand for standard versus exotic bets.>

2.2. Independent Variables

The full list of 31 independent variables (covering economic, race, weather, pool
availability, and money distribution) appears in Appendix A.

3. RESULTS AND DISCUSSION

All the independent variables and quadratic extensions were examined as possible pre-
dictors of the two dependent variables, with a requirement that the variables should
be marginally significant at 1%. The use of 1% significance rather than 5% takes into
account the overall Type II error, that is, the risk of bias due to selecting from a large
set of variables and also the large sample size.

This analysis yields a model for the total money bet as shown in Table 1 in decreasing
order of t-statistics. This model has an adjusted R? of 83.8% and root mean stan-
dard error (RMSE) of 0.045, which is quite remarkable compared to the 64% of Ray’s
model. Decreasing seasonal trend, decreasing class trend, increasing race number trend,
increasing number of horses trend, preference for middle distance races, decreasing day
of week trend, increasing start time trend, increasing trend by month within season,
decreasing surface trend, decreasing rain trend, increasing unemployment trend, and
increasing atmospheric pressure trend are all stronger marginal predictors of amount bet
than the introduction in bet rebates, although the rebate impact is still strongly signifi-
cant. All of these variables have an impact in the expected direction, with the exception
of unemployment, although the presence of a seasonal trend in the opposite direction
suggests caution in interpretation of this effect.

This model is much more detailed than those of Thalheimer and Ali, but it is interest-
ing that the positive impact of exotic betting opportunities they found does not show up
in Hong Kong. It is difficult to make a direct comparison with Ray’s model given the
different time scale and more detailed list of variables, however, the increasing trend
with race number is found in Hong Kong, but not the tailing off toward the end of the
meeting. In Hong Kong, there is a preference for Sunday, not Saturday, compared to the
general preference for the weekend in Ray’s model. Like Thalheimer and Ali, she finds
an increase when exotic bets are available. In this case, the difference in Hong Kong
may be that there are always some exotic bets available, it is just a matter of how many
pools are open for a specific race.

2Win, place, quinella, and quinella-place pools versus tierce, trio, first four, double, and treble.
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TABLE 1 Summary of Best Model Predicting Total
Pool per Race

LTPCPI Coefficient ~ Standard error t
SEASON —-0.01611 0.00080 -20.2
CLASS2 —0.00351 0.00017 -20.1
RACENO 0.01641 0.00085 19.3
NUMHSE 0.01135 0.00074 15.4
CLASS -0.01015 0.00069 —14.8
SEA2 0.00633 0.00045 14.0
DIST2 0.00000 0.00000 -12.9
NUMH2 —0.00356 0.00028 -12.9
DAYWEEK —0.00368 0.00030 -12.3
STARTTIME 0.42798 0.03587 11.9
SEMONTH 0.00256 0.00024 10.6
SURFACE —-0.02154 0.00206 —-10.5
RACE2 0.00097 0.00009 10.3
DISTANCE 0.00002 0.00000 8.7
SEM2 —0.00121 0.00014 -85
SQRAIN —0.00278 0.00034 -82
LUP 0.11817 0.01480 8.0
MEANPRESS 0.00186 0.00023 7.9
TIMEID —0.06269 0.00894 -7.0
LWR2 0.03092 0.00493 6.3
NUMREB 0.09561 0.02514 3.8
BETCHANGE 0.01232 0.00371 33
DAYW2 —0.00090 0.00029 -3.1
MEANDP 0.00058 0.00021 2.7

Overall, betting on horse races in Hong Kong is generally becoming less popu-
lar, but races with more horses, racing at middle distance, and in higher classes are
preferred, with increasing money bet per race across the meeting. However, look-
ing at the distribution of betting money across pools eligible for rebate (versus not
eligible) shows a different story. Table 2 shows the summary of the best prediction
model, which has an adjusted R? of 64.6% and root mean standard error of 0.035.
This shows that the single most important marginal predictor is the number of dif-
ferent pools available in the non-rebate category, with increased bet options moving
money away from the rebate pools. After the race number, the next most impor-
tant variables are the increase in money toward the rebate pools across seasons and
the switch toward the rebate pools, when the rebate was introduced. Interestingly,
both of the variables relating to the distribution of money across horses show very
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TABLE 2 Summary of Best Model Predicting Ratio of
Total Pools per Race

LRREBNREB Coefficient  Standard error t

NUMNREB —0.08369 0.00187 —44.7
RACE2 —0.00226 0.00007 -30.9
SEASON 0.01409 0.00046 30.7
BETCHANGE 0.06858 0.00228 30.1
LWR1 —0.08684 0.00298 -29.1
CLASS2 —0.00260 0.00013 -19.7
LWR2 —0.04477 0.00402 -11.1
LSUP —0.06495 0.00666 -9.8
NUMNR2 0.01153 0.00128 9.0
NUMH2 —0.00162 0.00020 -8.2
SURFACE —-0.01130 0.00156 =72
DIST2 0.00000 0.00000 -6.3
DISTANCE 0.00001 0.00000 5.4
DAYWEEK 0.00113 0.00022 53
CLASS 0.00221 0.00052 4.2
NUMHSE 0.00194 0.00047 4.2
SEMONTH —0.00073 0.00018 —4.1
RACENO —0.00102 0.00026 -39
NUMREB 0.06166 0.01913 32

strong effects, with strong first and second favorites making the exotic pools more
attractive.

Overall, the introduction of the rebate has shifted money away from the exotic pools
and the other major determinant is that strong first and second favorites move money
toward the exotic pools, both of which seem very rational responses from gamblers.

4. CONCLUSION

While the impact of the introduction of a rebate can be clearly seen, most of the impact
is on a shift in money away from exotic pools, with a much weaker impact on increas-
ing the total money bet. Gamblers clearly prefer larger fields, middle distances, and
higher class races. They respond to strong first and second favorites by shifting money
to exotic bets. Modeling the distribution of money bet across races shows potential in
understanding the behavior of gamblers and provides guidance on what attracts them to
bet more or shift money across pools.
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APPENDIX: 31 Independent Variables Examined
(Excluding Quadratic Terms)

Economy:
LUP: Log unemployment rate
LSUP: Log unemployment rate (seasonally adjusted)

Weather:
MINTEMP: Min daily temperature
MAXTEMP: Max daily temperature
MEANTEMP: Mean daily temperature
MEANPRESS: Mean atmospheric pressure
TOTALRAIN: Total daily rainfall
ANYRAIN: Indicator of more than trace rainfall
MMRAIN: Indicator of more than 1 mm rainfall
MMI10RAIN: Indicator of more than 10 mm rainfall
SQRAIN: Square root of rainfall
MEANCLOUD: Average daily cloud cover
MEANRH: Mean relative humidity
MEANDP: Mean DP

Pool Availability:
NUMREB: Number of active pools from the set of Win, Place, Quinella, and
Quinella-Place (3—4)
NUMNREB: Number of active pools from the set of Tierce, Trio, Double, Treble,
and First 4 (2-5)
BETCHANGE: Whether rebate introduced yet (0-1)

Race Information:
SEASON: Season (2000-2007)
SEMONTH: Month of season (0-11)
TRACK: Track (Shatin or Happy Valley)
DIST: Distance (1000-2400)
SURFACE: Surface (1-2)
GOING: Going (1-9)
CLASS: Class (1-9)
DAYWK: Day of week (1-7)
TIMEID: Day/night race
STARTTIME: Time of day (as proportion of day)
RACENO: Race number (1-10)
NUMHSE: Number of horses starting race (5-14)
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Money Distribution Among Horses:
LWRI1: Log ratio of money bet on first favorite to money bet on all other horses bet
less in win pool
LWR2: Log ratio of money bet on second favorite to money bet on all other horses
bet less in win pool



PART II: Utility, Probability, and Pace Estimation
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1. INTRODUCTION

This chapter is devoted to the empirical estimation of the preferences for risk of
gamblers on real market data. While there have been several experimental studies try-
ing to elicit preferences of gamblers in the laboratory,! the observation of real markets
remains a necessary step in assessing the properties of gamblers’ preferences.? This is
particularly true for gambling; it is indeed often asserted that gambling on racetracks
(or in a casino) involves some type of utility that is hardly replicable in experiments.’

We concentrate in this survey on the empirical work that has been conducted for
horse races,* in the pari-mutuel system, or in a bookmaker system.> Horse races (or
other types of betting markets, e.g., sports events) are very good candidates to test the-
ories of preferences under risk: they allow researchers to collect large datasets, and
the average amount of money at stake is significant.’ Financial markets would be a
natural area where the empirical relevance of the implications of the various non-
expected utility models could be tested.” However, portfolio choices have a very marked
dynamic character, and non-expected utility theories are difficult to handle in dynamic
settings.

Racetrack studies may provide key insights for the analysis of risk-taking behavior
in financial investment, as well as in other contexts where risk is a main issue (e.g.,
environmental risk). Betting markets have the advantage of being short-run, lasting for
one period only. This allows an exact evaluation of the ex-post return on each bet. As
such, they provide an archetype of a simple contingent security market as defined by
Arrow (1964). For horse races, a winning bet of $1 on a particular horse is simply a
contingent security that yields a revenue (R + 1) dollars in the event the horse wins the
race and 0 otherwise. Note that such a security cannot be retraded. The odds R of the
horse in this context is defined as the net return in the winning case.® In a bookmaker
system, odds are commitments of payment by bookmakers who quote the prices. In a
pari-mutuel system, they are endogenous, resulting from the distribution of the wagers
over the horses: the odds of horse i is the ratio between the total money B wagered
on the race net of the track revenue’ and the total money wagered on the horse B;,

ISee the survey by Camerer (1995).

2 An alternative is to use household surveys (see, e.g., Donkers et al., 2001).

3See for instance Thaler and Ziemba (1988).

4There has been some work on Lotto games, sports events, and TV shows (see the conclusion).

SHausch et al. (1994) present contributions covering most aspects of the economics of racetrack betting. The
book edited by Vaughan Williams (2003) discusses the economics of gambling more generally.

SWeitzman (1965) estimates an average $5 win bet on individual horses in the 1960s, while Metzger (1985)
evaluates that $150 was the average amount bet by an individual during the day in 1980.

7For a recent overview the theory and empirical evidence of portfolio choices, see the contributions in Guiso
et al. (2002).

8Note that 3 to 1 odds correspond to R = 3 and thus a revenue of $4 for a bet of $1 in the event that the horse
wins the race. Following the empirical literature, we focus on win bets, and ignore combinatorial bets.

91t includes the take and the breakage. The take corresponds to the percentage of bets collected by the race-
track organizers, and the taxes. The breakage corresponds to the part of the return lost due to the fact that it is
rounded to the nearest monetary unit.
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minus 1:
1, (D

where ¢ is the take.

At any point in time, odds reflect the market information on winning probabilities
and evolve over time, until the race starts. In particular, data may include odds quoted
before the racetrack opens, and odds quoted on the track. The most common practice
is to use starting prices, that is, odds measured at the last minute of betting.'® The
empirical studies discussed below then start with odds data and winners data, and use
them to derive econometric estimates of bettors’ preferences.

Note that there is clearly a selection bias in focusing on bettors and starting prices.
All individuals do not bet, and the population of individuals betting at the track (and thus
going to the race field) is hardly representative of the whole population. It may not even
be representative of the whole population of bettors, as bettors off-track are not the same
as bettors on-track. So the only information that can be derived is information on the
preferences exhibited by individuals betting on the fields. Still, this is indicative of the
type of risk that individuals may engage in, and, given the simple nature of the market,
provides a very good test for various theories of preference under risk. Moreover, as the
selection bias is in the direction of selecting individuals within the most risk loving part
of the population, this provides an overestimate of (and thus a bound on) the level of
risk that an average individual may be willing to accept, which is clearly very useful.

Using econometric methods on racetrack data has the advantage of exploiting the
large size of the samples available. Datasets usually include thousands of races, and
thus allow precise estimates. Moreover, researchers can rely on fairly standard econo-
metric models and procedures, ranging from the simple regression methods used in
early work, to more sophisticated estimations of structural models. The main drawback
is that individual data on bets and on bettor characteristics are typically not available.
This implies several restrictions. First, the size of the wager can usually not be iden-
tified. Second, going to the racetrack and betting involves some type of entertainment
value, and it is not possible to disentangle what is due to the specific utility derived
from the attendance at the race, and more fundamental properties of preferences. It is
also clear that racetrack bettors have heterogeneous preferences and information. To the
best of our knowledge, no one has found a general approach to modeling heterogeneity
in beliefs. The lack of individual data has led most researchers to focus on some form
of average behavior, or more to the point, on the behavior of a representative bettor
capturing the average risk attitude embedded in the dataset. In the bookmaker system,
it seems to be the best one can do. Recent advances have shown that pari-mutuel data
allows researchers to go beyond the representative agent model as it implicitly contains
information about the total amount bet on each horse.

10The studies discussed below could be done with any odds, under a rational expectation assumption. The
informational content of prices is the highest at starting prices, so that they should provide a more accurate
predictor of winning probabilities than earlier odds. See for instance Asch et al. (1982).
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In what follows we first discuss (Section 2) the main stylized facts of horse races that
have shaped the research agenda. We then present in Section 3 the work based on the
expected utility model, which put in place the foundation for subsequent work. Sections
4 and 5 review the work departing from the expected utility paradigm. Section 4 focuses
on the perception on winning probabilities by bettors, while Section 5 discusses the role
of the reference point and the asymmetric treatment of wins and losses.

All of this work assumes a representative bettor; but two very recent contributions
(Gandhi, 2006; Chiappori et al., 2007) show that the distribution of risk preferences
among bettors can be elicited from pari-mutuel data, at least if the heterogeneity of
these preferences is low-dimensional. We briefly discuss their method and their pre-
liminary results in Section 6. Then Section 7 turns to recent work by Snowberg and
Wolfers (2007) that pools information across simple bets and exotic bets. We conclude
by offering some ideas for future research in Section 8.

2. SOME STYLIZED FACTS

Any empirical study of the preferences of racetrack bettors must account for the most
salient stylized fact of racetrack betting data: the favorite-longshot bias. The favorite-
longshot bias refers to the observation that bettors tend to underbet on favorites and to
overbet on outsiders (called longshots). As it is presented in more detail in the chapters
by Ottaviani and Sorensen and by Tompkins, Ziemba, and Hodges in this Handbook,
we only recall here the points that matter for our discussion.!! Thus we focus on the
implications of the favorite-longshot bias on how we view bettors’ preferences.

The favorite-longshot bias seems to have been documented first by Griffith (1949)
and McGlothlin (1959). Griffith studied 1,386 races run under the pari-mutuel system
in the United States in 1947. For each odds class R, he computed both the number of
entries Eg (the total number of horses with odds in odd class R entered in all races) and
the product of the number of winners in this class and the odds Ng. A plot of Er and
N against R showed that while the two curves are very similar, Ny lies above (below)
Eg when R is small (large). Since small R corresponds to short odds (favorites) and
large R to long odds (longshots), this is evidence that in Griffith’s words, there is “a
systematic undervaluation of the chances of short-odded horses and overvaluation of
those of long-odded horses.” A risk-neutral bettor with rational expectations should bet
all his other money on favorites and none on longshots.

A number of papers have corroborated Griffith’s evidence on the favorite-longshot
bias.!? To give just one example, let us look at the dataset used by Jullien and Salanié
(2000). This dataset is composed of each flat horse race run in Britain between 1986
and 1995, or 34,443 in total. British racetrack betting runs on the bookmaker system,
so odds R are contractual. This dataset makes it easy to compute the expected return of
betting on a horse with given odds, as plotted in Figure 1. For any given R, we compute

1See also Hausch et al. (1994) for a survey of the evidence.
12Exceptions have been found for Hong Kong races by Bushe and Hall (1988).



Bruno Jullien and Bernard Salanié 31

0.1 _Return

—-0.1

-0.2}

-0.3

-05

1 2 5 10 20

FIGURE 1 Observed expected return.

P(R), the proportion of horses with rate of return R that won their race. The expected
return then is

ER(R) = p(R)R — (1 - p(R))

for a bet of £1, since such a bet brings a net return of R with probability p(R) and a net
return of —1 with probability (1 — p(R)).

Figure 1 plots EI\Q(R), along with a 95% confidence interval. The expected return
is always negative (the occasional spikes on the left of the figure are for odds that cor-
respond to relatively few horses): it does not pay for a risk-neutral bettor to gamble at
the racetrack. More interestingly, the expected return decreases monotonically with the
odds R, so that it is much less profitable for such a bettor to bet on longshots than to bet
on favorites: even for very common odds of 10 to 1, the expected loss is 25 pence on
the pound, as compared to less than 10 pence for horses with even odds (of 1 to 1).

The favorite-longshot bias has been much discussed and four main types of
explanations have emerged in the literature:'3

1. The original explanation of the favorite-longshot bias was given by Griffith
(1949) and referred to misperceptions of probabilities by bettors. Griffith argued
that as in some psychological experiments, subjects tend to underevaluate large
probabilities and to overevaluate small probabilities. Thus, they scale down

13 Ali (1977) also points out that the favorite-longshot bias can be explained by heterogeneous beliefs, reflect-
ing different subjective probabilities of bettors and a lack of common knowledge. Modeling this would require
introducing some heterogeneity in nonexpected utility models with probability distortions, and so far, the data
does not allow us to do this.
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the probability of a favorite winning a race and they scale up the probability
that a longshot wins a race, which indeed generates the favorite-longshot bias.
Henery (1985) suggests a somewhat similar explanation. He argues that bettors
tend to discount losses: if the true probability that a horse loses the race is g, they
take it to be Q = fq, where 0 < f < 1 is some constant number. This theory
can be tested by measuring Q(R) to be the value that makes the expected return
of betting on a horse with odds R exactly zero; from the formula above, this
O(R) equals R/(R + 1). Now the value of g(R) is given as g(R) = 1 — p(R).
By regressing Q(R) on g(R) without a constant, Henery found an estimated f
of about 0.975 and a rather good fit.'*

. Quandt (1986) showed how risk-loving attitudes generate the favorite-longshot

bias at the equilibrium of betting markets. To see this, take two horses i and j in
the same race, with odds R; and R; and true probabilities of winning p; and p;.
The expected return of betting $1 on horse 4 = i, j is

Wn = prRy — (1 = pp),
and the variance of this bet is
vi = pnRy + (1= py) — 1,
which is easily seen to be
vi = pu(1 = pr)(Ry + 1),

Now if bettors are risk-loving, the mean-variance frontier must be decreasing in
equilibrium: if w; < p;, then it must be that v; > v;. Then a fortiori equilibrium
requires that
Vi > Vj .
(wi + D7 (u;+ 1)

But easy computations show that

Vi _ 1 —pp
(n + 1)? Dh

’

so that if p; < w;, then p; < p;. The contrapositive implies that horses with a
larger probability of winning (favorites) yield a higher expected return, which is
exactly the favorite-longshot bias.

. Following the evidence of informed trading (Asch et al., 1982; Craft, 1985),

Shin showed in a series of papers (1991, 1992, 1993—see also Jullien and
Salanié, 1994) that in a bookmakers’ market, the presence of insider traders
generates the favorite-longshot bias as bookmakers set odds so as to protect
themselves against such well-informed bettors.

14Our own estimates on our dataset suggest that the constant term in Q = a + bq is highly significant.
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4. Finally, it may be that the utility of gambling is higher for bets on longshots,
perhaps because they provide more excitement; this explanation is advanced by
Thaler and Ziemba (1988). Then, if risk-neutral bettors equalize the sum of the
expected return and the utility of gambling across horses in each race, clearly the
expected return will be higher for favorites.

These four explanations are not mutually incompatible. In modern terms that were
not available to Griffith (1949), explanation 1 hints at a nonexpected-utility model of
bettors’ preferences with non-linear weighing of probabilities.!> Explanation 2 therefore
can be subsumed in explanation 1, with risk-loving appropriately redefined so that it
makes sense for nonexpected-utility preferences.

Because the rest of this chapter will focus on explanations 1 and 2, we should explain
here why we put aside explanations 3 and 4. The literature on insider trading is covered
in Sauer (1998) along with the test of efficiency of wagering markets. For our purposes,
one problem with Shin’s models is that they are rather specific, so that estimating the
incidence of insider trading requires strong assumptions on preferences and the infor-
mation structure of insider traders. Still, it might make sense to pursue this direction.
However, this is in fact not necessary so far as the gambler’s preference is the object of
interest. It is true that the existence of a fringe of insider traders changes the behavior
of bookmakers; but under rational expectations, all the information available is incor-
porated into prices so that one may still estimate the preferences of a gambler with
no private information. Finally, explanation 4 also is intuitively appealing: betting on a
huge favorite, say with a 99% chance of making a net return of 1 cent on the dollar, is
clearly less fun than betting on a longshot that brings $100 with a 1% probability. One
difficulty with this explanation is that in a sense, it explains too much: since there is lit-
tle evidence on the determinants and the functional form of the utility of gambling, any
feature of the equilibrium relationship between p and R can be explained by an ad hoc
choice of functional form for the utility of gambling. However, we will see later that
models with nonexpected-utility preferences, by reweighting probabilities, may yield
similar predictions to models with a utility of gambling that depends on the probability
of a win.

3. EXPECTED UTILITY

The seminal contribution in the domain is the work of Weitzman (1965) who builds
on the above findings and attempts to estimate the utility function of an average
expected utility maximizer. Weitzman had at his disposal a dataset of 12,000 races,
collected on four New York racetracks for a period covering 1954 to 1963. Following
Griffith (1949), Weitzman starts by aggregating horses over all races by odds category,
obtaining 257 odds classes. From the winners dataset, he then constructs the ex post
estimate p(R) of the winning probability of a horse conditional on its odds category
R. This allows him to estimate a functional relation between the odds category and

15See the conclusion for other types of cognitive biases.
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the winning probability.!® Then he attempts to build the utility function of an average
bettor, referred to as Mr. Avmart (average man at the racetrack), as follows. Mr. Avmart
is an expected utility maximizer with a utility function u(.) and he bets a fixed amount
on each race,!” normalized to 1 for the exposition (the actual unit Weitzman uses is
$5). Mr. Avmart is representative in the following sense: the data observed could be
generated by Mr. Avmart (or a population of identical Mr. Avmarts) betting. As every
odds category receives some bet, Mr. Avmart must be indifferent between all the odds
categories, which implies that

P(R)u(R) + (1 — p(R))u(—1) = K forall R,
where K is the constant expected utility. This yields the relation

K —u(-1)
u(R) = u(=1) + =,
which allows him to estimate a utility function for all money levels R. Using this pro-
cedure, Weitzman found a convex utility function on the range of money value covered
($5 to $500), consistent with the assumption of a risk-loving attitude.

Ali (1977) conducted a similar study with a 20,247 race dataset, grouping the horses
according to their ranking as opposed to their odds. For each ranking, an average odds
and an empirical winning probability are computed. He then estimates the utility func-
tion of an agent indifferent to betting on any horse category. Ali confirms the Weitzman
finding, with a risk-loving utility function. He estimates a constant relative risk-aversion
utility (CRRA) with a coefficient of relative risk aversion of —0.1784. Applying the
methodology to different data, Kanto et al. (1992) and Golec and Tamarkin (1998)
estimate somewhat similar CRRA utility functions.'®

By construction, the preferences of the representative agent are based only on the
information contained in the odds category (or the ranking in the case of Ali). The
behavior of the agent is representative on average, in the sense that he is indifferent
between betting on the horse in a given category on all races, and betting on the horse
in another category on all races.!” Thus, the construction of Mr. Avmart’s preferences
involves two types of aggregation: of the information over odds and winning proba-
bilities, and of the preferences. One of the drawbacks of the categorization of odds is
that the number of points used to fit the utility function is usually small (except for
Weitzman, 1965, who builds 257 categories). Another important aspect is that the only
information used is the category of the horse, so some information on the races included
in the dataset is not used by Mr. Avmart. This is the case, for instance, for the number
of runners in each race. Given the nature of the pari-mutuel system, one may think

16He estimates a hyperbola p(R) = % and a “corrected hyperbola” p(R) = w.

17Recall that data on individual bets are not available, so the amount bet must be postulated.

18Golec and Tamarkin’s estimates for relative risk aversion, based on odds category, are —0.14 for the whole
dataset, and —0.2 for a data conditional on having a large favorite. Values differ but they all confirm a risk-
loving attitude.

190Or in a race chosen at random in the sample of races.
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that the number of runners may affect the relationship between the winning probability
and the odds. More generally, this relationship may vary with the race characteristics.?’
A second remark is that it may also vary with the take, or more generally with the mark-
up over winning probabilities that corresponds to the revenue of the betting institution.
In the case of a pari-mutuel market, this is not so problematic, as the take is fixed at the
race track level. However, when applied to a betting market organized by bookmakers,
the procedure may create serious biases as the mark-up is chosen by the bookmakers
and may vary from one race to the another.?!

Jullien and Salanié (2000) propose a method to estimate the representative agent’s
preferences that accounts for heterogeneity among races. To understand the procedure,
let us consider a given race r with E, horses. Let p;. denote the objective winning
probability of horse i in race r and R;, be the odds. Now assume that the representative
agent is indifferent between betting $1 on any horse in race . Then there must be some
constant K, such that:

pirt(Riy) + (1 = pipJu(=1) = K.

Using the fact that probabilities add up to one, one can then recover for each race
and each horse, a unique predicted probability of winning p(i, r,u) and a constant K,
consistent with this relation. The procedure then consists of using the winners’ dataset
to find the utility function u(.) that provides the best fit to the empirical dataset using
a maximum likelihood method. Note that the method has the advantage of using all
the data information, and getting rid of the categorization of odds. The nature of the
representative agent is slightly different as he or she is indifferent between betting on
any horse on any given race, as opposed to placing a systematic bet on a given odds
category on all races. Thus the agent too uses all the information in the dataset, and may
even use more information, in order to adjust to the specificities of races.

Applying this procedure to the estimate of a utility function, Jullien and Salanié con-
firmed the finding of a risk-loving utility function. It appears, however that the CRRA
utility representation is outperformed by a utility function with a constant absolute risk
aversion (CARA). Among the class of utility functions with a hyperbolic risk aversion,
the best fit was obtained for a CARA utility function, with a fairly moderate degree of
risk-loving behavior.

Expected utility estimates provide results that are consistent with explanation 2 of the
favorite-longshot bias, that is, a risk-loving attitude. However, as documented by Golec
and Tamarkin (1998), and Jullien and Salanié¢ (2000), these estimates tend to perform
poorly for large favorites. Indeed, the probabilities of winning implied by the estimated
utility and the underlying structural model of the representative agent tend to be too
small for large favorites. Arguably, this can be due to the parametric forms chosen for
the utility function estimated, which restrict its curvature. Arguing that CRRA utility

20McGlothin (1956) and Metzger (1985) provide evidence that the position of the race in the day matters, as
well as the amount of publicity for the race.

211f the average mark-up varies with the race, as is the case with bookmakers, the constant K above should
depend on the race. The same issue arises when using data from racetracks with different values of the take.
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functions perform poorly for large favorites, Golec and Tamarkin (1998) estimate a
cubic utility function:

u(R) = —0.071 + 0.076R — 0.004R* + 0.0002R°.

The utility function exhibits risk aversion for low odds (favorites) and a risk-loving
attitude for larger levels of odds. As the coefficient for the variance is negative, they
conclude that the risk-loving attitude is related to the skewness of the distribution (the
third moment). While the risk-averse attitude for small probabilities is an interesting
result, this is probably as far as one can go with the expected utility model on this type
of dataset. In particular, given the specific economic context, the non-representativeness
of the population studied and the lack of data on individual bets and characteristics,
very detailed estimates of the curvature of the utility function at various levels of odds
may not be of much relevance for other applications. We now follow a different route.
As argued before, although the precise preference of racetrack bettors may not be of
special interest to the economist in a different domain, they provide a simple and clear
real-life experiment. The next step is thus to use the data to test various departures from
the expected utility paradigm on a real-life situation. Among these, the most popular
in modern theory are the so-called nonexpected utility models, which provide mathe-
matical representations of preferences under risk that are non-linear in the space of
probability distributions.

Before we proceed, let us point out that there is no inherent contradiction between
the expected utility representation and a nonexpected utility model of the agent behav-
ior. Indeed, as we already noted, the data contains no information on the individual
characteristics, and in particular on wealth. This means that all the utility functions are
estimated only for the revenue derived from the betting activity. One may then con-
sider that the distribution of this revenue represents a relatively small fraction of the
risk supported by individuals on their total wealth, at least for the average bettor. As
shown by Machina (1982), even when an agent evaluates his or her total wealth in a
nonexpected utility manner, one may still evaluate small risks with an expected utility.
The utility function is then local as it represents the differential of the global functional,
and it depends on the underlying total wealth. Thus one may see expected utility esti-
mates as a first order linear approximation of preferences. The question is then whether
alternative utility representations provide a better representation of preferences than this
approximation.

4. DISTORTIONS OF PROBABILITIES

The empirical evidence collected in the previous section suggests that the best expected
utility rationalization of the equilibrium relationship between probabilities and odds
exhibits a significant but not very large degree of risk loving. Still, a very copious body
of experimental literature, starting with the work of Allais (1953), has accumulated to
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shed doubt on the value of the expected utility model as a representation of behavior
under risk. The recent survey by Camerer (1995), for instance, strongly suggests that
the independence axiom is violated in most experiments.

On the other hand, there is no consensus about which nonexpected utility model to
choose, even among authors who hold that we should drop the expected utility represen-
tation. Moreover, most of the evidence is experimental; there seems to be little evidence
based on real-life economic situations. As argued in the introduction, bets on horses
are very simple Arrow-Debreu assets that cannot be retraded and thus offer an exciting
way of testing these theories. The next three sections are dedicated to this task. The
first two mostly describe our own work (Jullien and Salanié, 2000). Then we move to
very recent developments that start to account for the unobserved heterogeneity in risk
attitudes among bettors. We can only hope that in 10 years, there will be many more
papers to present in this field.

Recall that the expected utility of betting on horse i with odds R; and probability of
winning p; is

piu(R;) + (1 — pu(=1).

This is a special case of the standard formula

J u(x)dF(x),

where the risky outcome X has a cumulative distribution function F. There are many
ways of altering this formula in order to obtain a nonexpected utility representation
of preferences. One of the most natural, suggested by Quiggin (1982), consists of re-
weighting probabilities, so that the value of X now takes the form

_ J u()d(G o (1 = F))(x)

where G is a continuous and increasing function that maps [0, 1] into itself. While this
may seem opaque, the application of this formula to the bet on horse i yields

G(p)u(R) +[1 = G(p)lu(=1).

While Quiggin (1982) called this specification “anticipated utility,” it now goes under
the name of “rank dependent expected utility” (RDEU for short). Because G is a priori
non-linear, RDEU breaks the independence axiom of expected utility. It does so in ways
that may allow it to account for violations such as the Allais paradox: when G is convex,
RDEU preferences indeed solve what is called in the literature the “generalized Allais
paradox.”

Remember that Griffith (1949) explained the favorite-longshot bias by appealing
to an overestimation of small probabilities and an underestimation of large probabili-
ties. This points to a G' function that is concave and then convex. On the other hand,
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the weighting function postulated by Henery (1985) does not fit within RDEU, strictly
speaking. It can indeed be written as

G(p=1-f0-p)

which gives G(0) = 1 — f > 0 and thus is inconsistent with the axioms of RDEU (and
indeed of any reasonable theory of choice under risk). This could of course be fixed by
smoothly connecting G(0) = 0 with the segment represented by Henery’s specification.
Note that neither of these specifications yields a convex weighting function G( p), as
required to solve the generalized Allais paradox.

Jullien and Salanié (2000) fitted various RDEU functionals to their dataset of British
flat races. All of these functionals assumed that the utility of wealth function u was
a CARA function; on the other hand, they allowed for much more flexibility on the
shape of the weighting function G( p), which allowed them to nest the shapes suggested
by Henery and Griffith, among others. Figure 2 offers a summary of their results. The
most striking feature of these curves is that they are very close to the diagonal for each
specification. Thus the estimated RDEU functionals hardly depart from the expected
utility model. This is confirmed by formal tests, since the null hypothesis of expected
utility is only rejected for one specification of the weighting function, that proposed by
Prelec (1998) on the basis of an axiomatic derivation. According to this study at least,
rank-dependent expected utility does not appear to provide a better fit of bettors’ prefer-
ences than expected utility. Note that if anything, the estimated weighting functions are
slightly convex on the whole [0, 1] interval and thus do not go in the direction suggested
by Griffith or Henery.
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FIGURE 2 Estimated weighting functions for RDEU.
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5. REFERENCE POINTS AND ASYMMETRIC
PROBABILITY WEIGHTS

While the results in the previous section are not very encouraging for nonexpected
utility, there are many alternative specifications of these models. In particular, since
Markowitz (1952), the notion of reference point has received some attention. This refers
to the idea that individuals evaluate risk by comparison to some reference wealth, and
treat losses and gains in an asymmetric way. This is particularly attractive in the case
of betting, as there is a natural reference point (no bet) and a clear distinction between
losses and gains.

In a recent work, Bradley (2003) proposes such a representation where the agent
maximizes an expected utility with a reference point and a differential treatment of
losses and gains.?? His representation assumes a different constant relative risk-aversion
utility function for losses and for gains. This allows the representation to endogeneize
the size of the bet, which is not done in other approaches. Although his investigation
is still preliminary, it suggests that a representation with risk aversion on losses and a
risk-loving attitude on gains may fit the data, in particular the favorite-longshot bias.

Among various theories involving a reference point, the cumulative prospect theory
(CPT) has become very popular in recent years. Prospect theory was introduced by
Kahneman and Tversky (1979) and developed into cumulative prospect theory in Tver-
sky and Kahneman (1992). Most theories of choice under risk evaluate lotteries as
probability distributions over final wealth. CPT diverges from this literature in that it
evaluates changes in wealth with respect to a reference point that may for instance be
current wealth. This matters in that in CPT, losses and gains are evaluated in differ-
ent ways. Kahneman and Tversky first appeal to the principle of diminishing sensitivity,
which states that the psychological impact of a marginal change decreases when moving
away from the reference point. Applied to the utility of (changes in) wealth function, it
suggests that this function is concave for gains but convex for losses. When applied to
the probability weighting function, and given that the endpoints of the [0, 1] interval are
natural reference points, it suggests that this function should have the inverted-S shape
implicit in Griffith (1949).

Cumulative prospect theory also adds two elements of asymmetry in the treatment of
gains and losses. First, it allows for different probability weighting functions for gains
and losses. Second, it assumes loss aversion, that is, that the utility of changes in wealth
is steeper for losses than for gains, so that the function u(x) has a kink at zero.

For a general prospect X with cumulative distribution function F, the value
according to CPT is

J' u(x)d(H o F)(x) — [ u(x)d[G o (1 = F)](x)
x<0

x>0

22 As pointed out in Section 2, if we see the utility function as a local utility function, the notion of reference
point becomes natural.
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where G and H are two continuous and increasing functions that map [0, 1] into itself
where o denotes composition of functions. Given a bet on horse i with odds R; and
a probability of a win p;, the CPT value simplifies to

G(pu(R;) + H(1 — pju(-1).

Note the differences with RDEU. The most obvious one is that in general H(1 — p) #
1 — G( p). The other one is hidden in the formula, since the function u should be convex
for losses (x < 0), have a concave kink at zero [with u(0) = 0], and be concave for gains
(x > 0). Clearly, only some of these properties can be tested from the data, since the
only values of u on which we can recover information are those in —1 and on [R, +%),
where R is the smallest odds observed in the data.

In their paper, Jullien and Salanié (2000) chose to circumvent these difficulties
by assuming that u was a CARA function. This is clearly not satisfactory, as it
assumes away by construction any form of loss aversion and it violates the principle
of diminishing sensitivity by forcing the concavity of u to have the same sign for
losses and for gains. Jullien and Salanié normalize u by setting u(0) = 0 and v/(0%) = 1;
then the parameter of the CARA function is estimated from the relationship between
probabilities and odds, and it implies a value for u(—1), say A. Then they run a test of
(and do not reject) the null hypothesis that u(—1) = A. This may be construed as a test
of loss aversion by a sympathetic reader, but we admit that it is not very convincing. The
best justification for their assuming a CARA utility function probably is that they want
to focus on the probability weighting functions G and H and there is just not enough
information in the data to probe more deeply into the function u.

Given this restriction, Jullien and Salanié tried three specifications for functions
G and H. Figure 3 plots their estimation results for the function G. As in the RDEU
case, the function appears to be slightly convex but very close to the diagonal: there
is little evidence of a distortion of the probabilities of gains. The estimated H func-
tion, however, has a markedly concave shape for all specifications as shown in Figure 4.
These results are somewhat at variance with the theory, which led us to expect inverted-S
shapes for the probability weighting functions.

There are several ways to interpret these results, and Jullien and Salanié illustrate
some of them. First, it can be shown that G convex and H concave explain the general-
ized Allais paradox. Second, local utility functions a la Machina (1982) can be derived
from these estimates; they have a shape similar to that hypothesized by Friedman and
Savage (1948). Let us focus here on how these preferences explain the favorite-longshot
bias. To see this, remember that the function u exhibits a moderate degree of risk-loving
behavior, and the function G is very close to the diagonal. Thus, to simplify things,
assume u(x) = x and G(p) = p. Then horse i is valued at

piRi — H(1-p;)
which can be rewritten as

Ppi(Ri+1)—1—-[H1-p)—1-p)l.
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FIGURE 4 CPT probability weighting for losses.

Now given the estimates of Jullien and Salanié, the function ¢ — H(q) — q is zero in
0 and 1 and has a unique maximum close to ¢* = 0.2. Since most horses have a proba-
bility of winning much lower than 1 — ¢* = 0.8, it follows that H(1 — p) — (1 — p) is an
increasing function of p and therefore in equilibrium, the expected return p;(R; + 1) — 1
is an increasing function of the probability of a win. Thus bigger favorites are more
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profitable bets for risk-neutral bettors, which is the definition of the favorite-longshot
bias. The data suggest that the bias may be due not only to risk-loving behavior, as sug-
gested by Quandt (1986), but also to the shape of the probability weighting functions.
This is an intriguing alternative, since it can be shown that the concavity of H pulls
toward risk-averse behavior for losses. Thus the favorite-longshot bias is compatible
with risk-averse behavior, contrary to the standard interpretation.

Finally, let us return to explanation 4 of the favorite-longshot bias, based on the utility
of gambling. First, note that the method used by Jullien and Salanié is robust to a utility
of gambling that may differ across races but is the same for all horses in a given race.
Now assume that for horse i, there is a horse-specific utility of gambling f( p;, R;), so
that the value of this bet for a risk-neutral bettor is

pi(Ri +1) =1+ f(pi, Ry).

By identifying this formula and the one above, we can see that our CPT estimates can be
interpreted as representing the preferences of a risk-neutral bettor with a horse-specific
utility of gambling given by

f(pi,R)=1—-p;—H(1-p)

which only depends on the probability of a win. Moreover, we know that it is a decreas-
ing function of p; for most horses. Thus this reinterpretation of Jullien and Salanié’s
CPT estimates brings us back to explanation 4 of Thaler and Ziemba (1988). There is
in fact nothing in the data that allows the econometrician to distinguish between these
two interpretations.

6. HETEROGENEOUS PREFERENCES

Recent work by Gandhi (2006) and Chiappori, Gandhi, Salanié, and Salanié—hereafter
CGSS (Chiappori et al., 2007)—adapts the paradigm of empirical industrial organiza-
tion to explore the heterogeneity of preferences among bettors on horse races. First,
assume that all bettors have the same beliefs on the probability that any horse wins any
given race. Then horses in a race are vertically differentiated goods: at any given price
(or odds), a horse is preferred to another if and only if it is considered more likely to win.

Of course, prices are not equal; and in a bookmaker system they depend in a fairly
opaque way on the bookmakers’ own beliefs, the market structure, and other factors that
are hard to control for. But in a pari-mutuel system, by construction, a simple formula
relates prices and market shares. Denote by S;(R) the amount of money that is bet on
horse i in a race with n horses and odds R = (Ry,..., R,), and 7 the track take. Then
the odds on horse i are given by

(1=1) ) S;(R) = (R + DSi(R).

j=1
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It is easy to get data on odds in a large number of races; then these yield directly the
relative market shares (the percentage of money that was bet on each horse in a given
race), since from the above

m,(R) _ Rj +1
m;(R) R +1°

Thus, in addition to the information on probabilities of winning that Jullien and Salanié
(2000) used, pari-mutuel data contains information on market shares. For simplicity,
assume here that the population of bettors is the same in all races, and let W ( p;, R;)
denote the value that a bettor indexed with W attributes to a $1 bet on a horse i which is
expected to win a net return of R; with probability p;. Then if all bettors place $1 bets,
the market share is simply

m;(R) = Pr(W(pi,R) > W(p;,R))) forallj=1,...,n,

where the probability is taken over the distribution of W in the population.

Gandhi (2006) shows that even if bettors have different beliefs about the chances that
any horse will win, under mild conditions there exists a rational expectations equilib-
rium where the odds reveal all information available to bettors. Thus, in equilibrium, all
bettors effectively have the same beliefs, so that focusing on identical beliefs is at least
internally consistent.

Going back to econometrics, we can recover the p;’s by observing the odds of the
winning horse in the many races in the data; and the equation above shows that observ-
ing the odds (and thus the market shares in a pari-mutuel system) conveys information
about the distribution of the preferences of bettors. Gandhi estimates such a model by
maximum likelihood, and tests various formulations of the EU model against RDEU.
Unlike Jullien and Salanié, Gandhi uses a non-nested representation of EU and RDEU.
He finds that his EU representation outperforms the RDEU model, the latter collapsing
in a representative agent model. The EU estimates confirm the presence of heterogene-
ity; the favorite-longshot bias can then be interpreted as the outcome of the interaction
between risk-averse and risk-loving bettors.

More generally, CGSS consider the case when all preferences W belong to an
unknown family V'(.,.,08) indexed by a one-dimensional parameter 8, and satisfy a
single-crossing property. CGSS show that the distribution of the V' (., ., 8) in the popula-
tion of bettors then is non-parametrically identified, and they give a simple constructive
procedure to estimate this distribution from the data. To review, assume that expected
utility describes every bettor. Then bettor 6 has a utility

piu(R;,0) + (1 — p))u(=1,6)
from betting $1 on horse i in a given race. The single-crossing condition in CGSS

implies that in any race (R = Ry, ..., R,), the interval [0, 1] partitions neatly: bettors
with a 0 in [0;_1(R), 6;(R)] will bet on horse i.
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The bounds of these intervals are easy to recover from the market shares. For
instance, normalizing the distribution of 0 to be uniform in [0, 1] yields:

m;(R) = 6;(R) — 6;_1(R).

Now by definition, a bettor in 0;(R) is indifferent between betting on horses i and
(i + 1). Therefore

pi{ulR;, 0;(R)] — u[—1,0:(R)]} = pis1 {ulRir1, 0:(R)] —u[-1,60;(R)]}.

Since we know 6;(R) and we can estimate probabilities p; from the data, we can use
this as an estimating equation for the function u(R, 0) — u(—1, 0). The unknown utility
function can be expanded into series of R and 0, so that it is very easy to estimate, and
tests that bettors have identical preferences follow quite naturally.??

With expected utility, the linearity in p allows us to circumvent the preliminary stage
of estimating the probabilities. Defining f; = 1 if horse i finished first, f; = 0 other-
wise, and noting that estimating probabilities from the data amounts in replacing p;
with p;(R) = E(f;|R), we can use the properties of conditional expectation and obtain
the following moment condition:

E (fi(u(R;, 0;(R)) —u(=1,8;(R))IR) = E (fis1(u(R;, 8:(R)) —u(—1,0;(R)))|R),

which can be estimated by linear regression methods from data on market shares and
on which horse finished first.

CGSS apply this approach to a sample of about 50,000 races run in the U.S. in
2001.%* Figure 5 gives a taste of their results, on expected utility preferences. It shows
the estimated absolute risk-aversion indexes

upr(R,0)

o(R,0) =——F——7—
up(R,0)

for the four quantiles of the distribution of risk preferences 6 = 0.3,0.5,0.7,0.9, along
with the absolute risk-aversion index estimated under the assumption that all bettors
have the same preferences (“EU Homo”).

There is clearly much heterogeneity among preferences toward risk in this data,?
and assuming homogeneity would be quite misleading. Beyond that, the nature of this
heterogeneity is not easy to describe. All curves are U-shaped, suggesting risk-averse
behavior on low- and high-probability bets, and risk-loving behavior in between.

23This can be generalized to nonexpected utility directly, adding of course new terms that are non-linear in
probability p.

241deally, races should be differentiated by adding some covariates, and changes in the population of bettors
should be modeled too.

25Given the size of the sample, the estimates are very precise, and therefore we do not show confidence bands.
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FIGURE 5 Estimated absolute risk aversions of heterogeneous bettors.

7. EXOTIC BETS

Snowberg and Wolfers (2007) exploit the existence of exotic bets?® to build a non-
parametric test of EU. They focus on so-called exactas, which are bets on the ordered
first two horses. An exacta (i, j) wins if horse i wins and horse j is second. The idea
of the test is that EU and NEU preferences that generate the same behavior on simple
bets have different implications for exotic bets. Let p;; be the conditional probability that
horse j ends second when horse i wins. Let R;; be the odds of the exacta (i, j). Snowberg
and Wolfers extend the standard model by imposing the condition that the represen-
tative bettor is also indifferent to the choice between simple bets and exactas. In the
case of expected utility, we thus have p;p;;[u(R;;) — u(—=1)] = p;[u(R;) — u(-1)] which
reduces to

pijlu(Rij)) —u(=D] =u(R;)) —u(=1).

They contrast this with models having distortions of probabilities and a linear
utility function [u(R) = R]. They also assume that individuals do not reduce com-
pound lotteries: defining G(.) as in Section 4, the distorted probability of winning an

26Exotic bets are combinatorial bets allowing a bet on mutiple horses in various orders.
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exacta is G(p;)G(p;;) as opposed to G(p;p;;). Here the indifference condition becomes
G(p)G(pij))(Rij +1) = G(p)(R; + 1) or

G(pij)(Rij+ 1) = R,‘ +1.

Using a U.S. dataset, they then estimate non-parametrically the functions u(.) and
G(.) on simple bets along the line of Weitzman (1965), and use the exactas to compare
the EU model and the NEU model. The procedure has the advantage of being non-
parametric, at the cost of ignoring race specific effects due, for instance, to the number
of horses (in the above notation K, is the same for all races). They conclude that the
NEU model better fits the data than the EU model.

8. CONCLUDING REMARKS

This survey has attempted to describe the literature estimating and testing various utility
representations on racetrack betting data. Clearly, much more work is required before
some definite conclusion emerges. We hope to have convinced the reader that this type
of study provides useful insight and is worth pursuing. In particular, the pattern that
emerges is that the nature of the risk attitude that is embedded in odds and winners
data is more complex than predicted by a simple risk-loving utility function, and may
involve some elements of risk-aversion behavior as well. Assessing precisely which type
of preference representation best fits the data would require more extensive studies. The
methodology described here can apply to other existing theories, such as, for instance,
regret theory (Loomes and Sugden, 1982) or disappointment theory (Gul, 1991).

As exposed in Kahneman et al. (1982), departures from expected utility involve more
heuristics and biases than the static discrepancy between psychological probabilities
and objective probabilities that can be captured by a non-linear preference function.
The richness of the data available on horse races could help to test some of these other
departures. This would require the researcher to collect more data than the odds and the
winners, but there is, for instance, a potential to exploit information on the races, or the
dynamics of odds. An attempt in this direction is Metzger (1985) who uses the ranking
of the race during the day to provide some empirical supports for the gambler’s fallacy
(among others), here the effect of the outcome of the previous races on the perception
of the respective winning probabilities of favorites and longshots. Ayton (1997) uses
data on UK football gambling and horse races to study the support theory developed by
Tversky and Koehler (1994), with mitigated conclusions.

We have focused on horse races studies. Other gambling modalities provide docu-
mented natural experiments. Because each type of gambling involves a different
entertainment value and motivation of gamblers, it is difficult to compare the results
obtained in different gambling contexts. Studies are still relatively scarce, and we will
have to wait for more work before drawing any conclusion from the comparison of the
patterns of behavior observed for various games. Still, let us mention that work has



Bruno Jullien and Bernard Salanié 47

been conducted for lotteries that sheds some light on the nature of cognitive biases.?’

For instance, it is well documented that the return varies with the numbers chosen (see
Thaler and Ziemba, 1988; Simon, 1999). Simon (1999) and Papachristou (2004) also
examine whether lotto data exhibit a gambler’s fallacy pattern, with mixed conclusions.
Televised gambling has also been examined. References can be found in Beetsma and
Schotman (2001) estimating risk-aversion for participants to the Dutch television show
LINGO, or in Février and Linnemer (2002) who conclude from a study of the French
edition of the television show The Weakest Link that some pieces of information are
not used by participants.?® Finally, we should mention the recent work by Levitt (2004)
using micro-data on gambling on the National Football League to analyze biases and
skills in individual betting.
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Chapter 4 « Method for Approximating Multi-Entry Competitions
Abstract

To predict the ordering probabilities of multi-entry competitions (e.g., horse races),
Harville (1973) proposed a simple way of computing the ordering probabilities based
on the simple winning probabilities. This simple model is implied by assuming that
the underlying model (e.g., running times in horse racing) is the independent expo-
nential or extreme-value distribution. Henery (1981) and Stern (1990) proposed to
use normal and gamma distributions, respectively, for the running time. However,
both the Henery and Stern models are too complicated to use in practice. Bacon-
Shone et al. (1992b) have shown that the Henery and Stern models fit better than
the Harville model for particular horse racing datasets. In this chapter, we first give
a theoretical result for the limiting case that all the horses have the same abilities. This
theoretical result motivates an approximation of ordering probabilities for the Henery
and Stern models. We then show empirically that this approximation works well in
practice.

Keywords: ordering probabilities, horse races, running-time distributions.

1. INTRODUCTION

In multi-entry competitions, Harville (1973) proposed to use the following formula to
compute the ordering probabilities:

Uy

ey

i =
/ 1—’1Ti

where 7;; = P (i wins and j finishes second), and
T; = P(i wins).

In horse racing, i and j are two horses, and the value of ; can be estimated by the win
bet fraction (see Ali, 1977; Synder, 1978; Busche and Hall, 1988; and Bacon-Shone
et al., 1992a for details of using the win bet fractions). The case is similar for more
complicated ordering probabilities.

Although Harville (1973) did not relate his model to any probability distribution, the
simple formula in Equation (1) can be implied from the assumption of independent
exponential distributions for running times with different scale parameters (Dansie,
1983) for each horse in each race or independent extreme-value distributions with
different location parameters. Henery (1981) proposed assuming independent normal
distributions for the running times (hereafter called the Henery model), that is, the
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running time of the ith horse, T; ~ N(6;, 1). Then

m; = PTG <T; < {Y#l%fjl_{Tr})

= J D(u+0; - 0,) [J11 - P+ 6; - 0,)]bw)du,

r#iLj

where the 0;’s are found by solving

m = J [ ®w@+6; - 0.)bwdu.

% pi

Hence, numerical integration or an approximation method is required. Similarly, Stern
(1990) proposed to use independent gamma distributions with fixed integral shape
parameter r, that is, T; ~ G(r,0;). Similar to the Henery model, no closed form has
been found for computing the ordering probabilities. For descriptions of the three mod-
els, see Bacon-Shone et al. (1992b). Thus, to apply these models in practice, a good
approximation is essential; otherwise the Harville model has to be used (e.g., Hausch
etal., 1981).

Bacon-Shone et al. (1992b) reported many empirical analyses of different compli-
cated bets. Their conclusion is that using the information from win bet fractions alone,
for the analyses of an exacta bet (in the Meadowlands), trifecta bet (in the Meadow-
lands and Hong Kong), and quinella bet (in Hong Kong), the Henery model was found
to be better than the others in predicting the relevant ordering probabilities for those bets
according to a likelihood approach. For details, see Bacon-Shone et al. (1992b). How-
ever, an exceptional case has been found in Japan where the Stern model with a fixed
shape parameter is better than the Henery or Harville models (see Lo and Bacon-Shone,
1992).

In this chapter, we first give a limiting result for some functions of the ordering
probabilities when all horses have equal abilities in Section 2. This motivates the method
of approximation for the ordering probabilities. Empirical results which illustrate the
accuracy of this approximation are included in Section 3. The conclusion is given in
Section 4.

2. THEORETICAL RESULTS OF THE LIMITING CASES

In this section, we will show that some functions of the ordering probabilities under the
Henery and Stern models will become constants when all the horses have equal abilities
(i.e., equal mean running times).

Define

Hen _ In(w;; /i)
it In(m; /)

2)
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and

Hen _ In(wji /mij1)
UKL (/)

3)

where ; = the winning probability of horse i which can be estimated by the win bet
fraction of horse i; 7;; = P(horse i wins and j finishes second) under the Henery model
and m;;x = P(horse i wins, j finishes second, and k finishes third) under the Henery
model. Then, the following theorem holds:

Theorem 1. When the running times follow independent normal distributions with

means 01, ...,0,, and let p;,, be the ith expected normal order statistics, we have:
(@ lim Aen = g M where 0, = 0; for all—s # |
06, U1 ¢56; In(m;/m) s
1 n - 1 n + n
=<1__> Mo 1 <P~1, P«z,) (n>3)
n) b nn—2) Win
M2:n .
~ when 7 is large, 4)
K1;n

In ii ii
(b) lim TS‘;’(‘[‘ = lim M where 0, = 0 for all—s # [

9,—>6k 6,—>9k ]n("lTk/1T1)

_ (n—1)< 1 ><1+P~2;n+M3;n>
n n-3 M1;n

1 "

+ (" > e N
n W1;n

3.0

when # is large. (5)

12

Ml;n
The proof of Theorem 1 is given in the Appendix.
The above two limiting values, Equations (4) and (5), are reported in Table 1 for

different race sizes, n.
For the Stern model, define

" _ ln(ﬁn-g;)/ﬂn-f;)) ©)
UL An(m; /)
e )
Tk = Tn (e /)

where the ordering probabilities in Equations (6) and (7) are based on the Stern model
with shape parameter r.
A similar theorem holds for the Stern model.
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TABLE 1  Limiting Values of A"

Hen

and Tkl

Hen

o : Hen .
Race size lim\; il lim ikl

3 0.6667 —

4 0.6996 0.5336
5 0.7207 0.5703
6 0.7359 0.5952
7 0.7475 0.6138
8 0.7569 0.6285
9 0.7648 0.6406

10 0.7714 0.6508
11 0.7771 0.6596
12 0.7822 0.6672
13 0.7867 0.6741
14 0.7907 0.6802

Theorem 2. When the running times follow independent Gamma distributions with
shape parameter r, let pfr; be the associated ith expected order statistics and 61,...,0,
the scale parameters of the running times, then

@ GmA? = fim T e 0, = 0, for all—s # ]
0,—-0; it 0,—0; ln(’n'j/’n,) ’ J
(r r
=12 [e=pD)+e-wID] n-1
= = - (n>3)

n(n—2) r— IJJI’;n n

(r
r—= p“2;::

12

= when 7 is very large,
r—= M‘];;'1
ln(Tl'ijk/Tfijl)
0,—0 h’l(’iTk/’ITl)
n—1 n—2 1
n n—73 (n=2)
L, - W)/ (n=2) + (r — i)

r—= IJ’l;n

~
o
g
=
8
A
)
|

where 0; = 0, for all—s # [

12

when n is large.

The proof of Theorem 2 is omitted because it is very similar to that of Theorem 1.



56

Chapter 4 « Method for Approximating Multi-Entry Competitions
3. A SIMPLE APPROXIMATION

For the Henery and Stern models, computation of r;; is not simple because it
involves multidimensional numerical integrations. To use the two models in practice,

we need good approximations. From Equations (2) and (3), if )\fj‘.j’“ ~ )\f.'}‘.j’“ = AHem and

T = limr [ = wHen where A" and 11" depend on n, the race size, then
Hen Hen
Tr)-\ T ’
N j k ]
Tijk = Ti Hen Hen ®)
N T
Xms X
s#i 1#ij
Similarly for the Stern model
A ()
N j k
Tijk =TS 0 < 0 ©)
xm X
s#i 141

where Equations (8) and (9) are hereafter called the discount model.

3.1. Empirical Analysis for the Approximated Henery Model

We now show that the approximation in Equation (8) works well in practice. First, con-
sider some summary values of )\gfn and Tsil; for different race sizes in Hong Kong,
the Meadowlands, and Japan through numerical integration as shown in Tables 2a
and 2b. From Tables 2a and 2b, we can observe that the mean values are close to the
limiting values shown in Table 1.

We now compare the above approximation with different models. The exact Henery
models are based on numerical integrations. We use two approximations: (i) fixed val-
ues: A" = (.76 and 77" = 0.62; (ii) varying values: AHe" and 71" vary over the race
size n. We also compare our approximation with Henery’s approximation using first
order Taylor series expansion. The empirical results are shown in Table 3. For example,
the log likelihood for trifecta bets is given by Y, ; InTrp1231; where [1, 2, 3], I denotes the
three horses finishing in the top three positions in race /.

From Table 3, it is clear that the accuracy (measured by the log likelihood) of the
discount model is close to that of the Henery model. And the log likelihood values
produced by Henery’s approximation deviate a lot from those produced by the exact
Henery model. For our discount model, varying values of AHe" and 71" do not seem to
be much better than a fixed value approximation since the log likelihood values of both
approximations are very close to the log likelihood value of the exact Henery model.
Hence, we conclude that the discount model with fixed values of A" and 7" is good
enough to use in practice.
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TABLE 2a  Summary Values of Af" and 7" for Different Race Sizes in

Hong Kong*
\Hen Hen
Race size No. of races Mean SD Mean SD
4 0.6685 0.0405 0.5186 0.0125
5 0.6914 0.0369 0.5580 0.0208
6 20 0.7209 0.0213 0.5877 0.0163
7 30 0.7407 0.0206 0.6127 0.0186
8 78 0.7507 0.0191 0.6251 0.0216
9 54 0.7620 0.0160 0.6399 0.0224
10 38 0.7654 0.0155 0.6519 0.0245
11 28 0.7726 0.0173 0.6569 0.0232
12 42 0.7776 0.0142 0.6648 0.0260
13 28 0.7821 0.0176 0.6725 0.0262
14 43 0.7859 0.0172 0.6786 0.0338
Overall 421 0.7669 0.0238 0.6518 0.0340

*In this table, i and j are the horses finishing first and second, respectively, with k and /

varying over all the other horses for )\57" and )\I}JIi‘;

TABLE 2b  Summary Values of A" and 77" for Different Race Sizes in
the Meadowlands

\Hen Hen
Race size No. of races Mean SD Mean SD
6 10 0.7089 0.0294 0.5817 0.0219
7 16 0.7287 0.0253 0.6077 0.0233
8 59 0.7455 0.0223 0.6214 0.0256
9 119 0.7522 0.0202 0.6358 0.0283
10 275 0.7605 0.0189 0.6451 0.0302
11 20 0.7588 0.0186 0.6262 0.1343
12 11 0.7573 0.0312 0.6644 0.0328
Overall 510 0.7561 0.0216 0.6393 0.0427

3.2. Empirical Analysis for the Stern Model

The limiting values of A\ and 1 for the Stern model in Theorem 2 depend on both
the race size (n) and the shape parameter (r). We have computed the limiting values
forn=2,..., 18 and r = 2,..., 8 and observed that the dependence on # is not very
strong. Fixing n = 11, the limiting values are shown in Table 4. These limiting values
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TABLE 3 Comparison Among Different Models in Different Bet Types

Models Log likelihood ~ Models Log likelihood
Exacta: 510 races Quinella: 4,153 races
(the Meadowlands) (Hong Kong)
Harville -1,875.77 Harville —13,619.28
Henery -1,859.63 Henery —13,589.55
Henery’s approximation —1,872.81 Henery’s approximation —13,626.43
Discount: Discount:
(i) Fixed values —1,859.25 (i) Fixed values —13,586.95
(ii) Varying values —1,859.40 (ii) Varying values —13,586.99
Trifecta: 120 races Trifecta: 1,809 races
(the Meadowlands) (Hong Kong)
Harville -711.50 Harville —10,747.98
Henery —699.83 Henery —10,667.25
Henery’s approximation —703.12 Henery’s approximation —10,689.61
Discount: Discount:
(i) Fixed values —699.68 (i) Fixed values —-10,667.80
(ii) Varying values —700.03 (ii) Varying values —-10, 666.87

TABLE 4 Limiting Values of
A and 7 for n = 11

r lim A" lim 7
2 0.93 0.89
3 0.90 0.84
4 0.88 0.81
5 0.87 0.80
6 0.86 0.78
7 0.86 0.77
8 0.85 0.76

will be used for our approximation. We also compute the empirical summary values of
A" and 1) using Japanese data in Table 5. The limiting values in Table 4 and the mean
values in Table 5 are close to each other.

Lo and Bacon-Shone (1992) reported that the Stern model is better than the Harville
and Henery models in Japan. We compare the log likelihood values using numerical
integration and the discount model in Table 6. For the discount model, again, two
alternatives are tried: (i) fixed values of A and 7" (by fixing n = 11 in Table 4);
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TABLE 5 Summary Values of A" and 17"

ijl ijkl
NG )

r Mean SD Mean SD

2 0.9336 0.0135 0.8920 0.0269
3 0.9021 0.0168 0.8423 0.0250
4 0.8836 0.0186 0.8140 0.0266
5 0.8712 0.0198 0.7953 0.0278
6 0.8623 0.0206 0.7819 0.0286
7 0.8555 0.0214 0.7717 0.0292
8 0.8500 0.0219 0.7636 0.0297

*In this table, i, j, k represent the horses finishing in the top
three positions in each race and / is varying over all the other
horses for )\f;l) and T,(:,)( i
TABLE 6 Log Likelihood Values Under the Stern
Model for Japanese Data

Numerical (i) (i)
r integrations Fixed values Varying values
2 —8,954.57 —8,955.98 —8,956.59
3 —8,950.60 —8,952.31 —8,953.11
4 —-8,950.35 —-8,952.11 —8,952.82
5 —-8,950.94 —8,952.61 —8,953.36
6 —8,951.82 —8,953.45 —8,954.12
7 —8,952.65 —8,953.67 —8,954.90
8 —8,953.44 —8,954.89 —8,955.66

(ii) varying values of A and T over race size, n. From Table 6, we observe that
the difference between (i) and (ii) above is not great and thus we recommend using the
values in Table 4 for approximation.

4. CONCLUSION

We have proposed using the discount model in Equations (8) and (9) with different
parameter values. This model has been shown to provide a good approximation to
both the Henery and Stern models. It also includes the Harville model ( = 1). More
empirical evidence is given in Lo and Bacon-Shone (1992). To apply the model in
practice (e.g., betting), we recommend collecting relevant data and choosing the most
appropriate model, whether Henery or Stern (r), using a likelihood comparison and
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then applying Equations (8) and (9) using appropriate parameter values. Alternatively,
we can estimate A and T directly through logistic modeling, for example, see Lo and
Bacon-Shone (1994) and Lo (1994). The effect of this improved probability estimation
on betting strategy (e.g., the Dr. Z system proposed by Hausch et al. 1981) may result
in better returns, see Lo et al. (1995) and Hausch et al. (1994). We assume that the
win bet fraction is a good estimate of the win probability. Bacon-Shone et al. (1992a)
suggest a method to remove any bias using a logit model before estimating the ordering
probabilities. For future research opportunities, one can derive a similar approximation
to a more complex probability model in Lo and Bacon-Shone (2008).
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APPENDIX: Proof of Theorem 1

(a) Let 0,/6; = band 6, = 0, for s # j, /. Then,

In(7;; /;
lim )\Hf“ = lim (;/1)
0,—6; 0,—6; 1Il(1Tj/’1T1)
o(mi; /i)
(Tl'il/"Tij)T
= lim by L’Hospital’s rule
b—1 a(’lTj/’n'])
(Trl/'ﬂ'j) 9b
T i )
(mugy =m0 /i
= lim assuming this limit exists. (A.1)
S m _w.@)/q#
Yob  Van ]
Consider
7Tj=P(]}<Tv9 Vs #j), Ty~ N(0,1)

J [[®w -0, +0)bdu,

% s#j

where ¢(-) and ®(-) denote the pdf and cdf of standard normal, respectively.

o0

= j D) [u+ 0,6 — D] dbu)du,

then
aﬂj - n—-2
- = Dw)" P u+6;(b— 1)]6;dw)du
— 0 ,[ Ow)"2du)*du asbh — 1
= —&e j, using integration by parts (A2)
nn—1)
and

= J [ @@ -6, + 6,)d)du
=% s#l

©

- J ®fu+6,(1-5)]"" dwdu,
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9 - n-
% = —0;(n— 1)J m<b[u+6,(1 —5)]" 7 du+6,(1 = b)] b(w)du

o0

— —6;(n— I)J G’ Pw)"2du asb— 1

Mlznej

=7 (A.3)
n
thus, from Equations (A.2) and (A.3),
% ) N
In addition,
mij = P(T; <T; <Ty, Vs #1i,j)
= J [1-®@—0;+0)] []® (u—0;+0,)dw)du
- s#ij
= J [1 = ®w)] P> ®[u+6;(b— 1] du)du,
a’lT,'j * n—3
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= - _’2 [ D) {udW)[1 = Pw)| + d(u)*} du
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and

o0
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J (1= [u+0;(b— D]} ® [u+0;(1 = )" b(w)du,
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a"lT,']

+ {1=®u+0;(1-5)]} (n=2)®[u+6;(1-5)]""

¢ [u+6;(1-0) (—Gj)}d)(u)du

— 0, I bW)>P(u)">du
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= ﬂ@ ;, using integration by parts (A.6)
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thus from Equations (A.5) and (A.6)
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Hence, from (A.1), (A.4), and (A.7)
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Using the result obtained in (a),

) 1 (A9)
Now
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om 17 n=3
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Note that all the limits are essentially iterated limits for the case that all the horses
have equal mean running times:

lim lim.
0, —0; 0s—0;
&)

It is easy to show that these iterated limits are also equal to
lim lim .

050 9,—8;
(s#1.J)
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Chapter 5 « Distance Preference in Thoroughbred Racing
Abstract

A number of questions are raised about the modeling of distance preference and pace
character of individual horses in the context of horse racing, particularly races run on a
turf surface. We investigate some of these via two case studies of racing on turf, the first
in Hong Kong, and the second in Sydney, Australia. The results obtained tend to confirm
certain maxims of folk wisdom in racing such as the “horses for courses” principle
that different horses tend to have different favored race distances, and that higher-class
races tend to be run more sensibly with regard to pace and energy expenditure. The
results and methods presented are of interest in and of themselves in the understanding
of horse racing, and also serve as examples of how such questions may be explored
methodologically. Discussion and speculation about related questions not specifically
included in the case study are included here as well, pointing to directions for further
enquiry.

1. BACKGROUND

While it may be clear that the average speed a horse (or other animal, including humans)
is capable of running will decrease the longer the distance traveled, it is not immedi-
ately obvious how this relationship varies from one horse (or animal, or individual) to
another, nor is it immediately clear whether running should be even or varied in order
to obtain the optimal result.

With regard to the latter question, among a body of work on physiology of exercise
and sport, arguably the most widely accepted basic model of energy expenditure in
running (human and animal) is that proposed by Hill and Keller (see Keller, 1973;
see also Noble, 1986 for a wider treatment) which implies that in order to optimize the
overall average speed over a distance (and thus complete it in the shortest possible time),
pace should be planned so as to enable as even a proportion of energy expenditure as
possible over the distance to be covered, resulting in an exponential decline in velocity
over time (and distance) during the course of the race.

Surprisingly, however, in the highest classes of horse racing, particularly on the turf
surface, the speed (or more technically, instantaneous velocity) over a race distance
tends to deviate significantly from this, as horses tend to run more slowly early on
to conserve energy, and accelerate sharply in the final 400 m (roughly 1/4 mi) or so.
This would appear to constitute a paradox, one which will be discussed later in this
chapter, but fortunately for modeling purposes, while such pace character appears to
be suboptimal, it seems from exploratory evidence that jockeys and trainers tend to run
their horses in a somewhat consistent fashion (with regard to pace) from race to race.
This allows us, as a first pass, to address the first of our topics, namely distance prefer-
ence, independently of the second, which is pace character. In fact, we shall really only
study distance preference in detail, while raising questions, and suggesting hypothe-
ses and further research, in the area of pace. As the most marked instances of the
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phenomena described above appear to be in turf racing, as opposed to dirt racing (which
has a different profile with regard to energy expenditure), we focus on the former.

2. CASE STUDY 1: SHA TIN (HONG KONG, SAR, PRC)

We begin with a study of pace in a relatively small number of races in which some
sectional time information is available, taking place at Sha Tin Racecourse in Hong
Kong, during the period of August 2003 through July 2004, where we have limited the
study to a single track in order to control for as many external factors as possible. For the
same reason, we limit our study to local or noninternational races (i.e., with group and
listed races excluded), and the class range limited from one (highest) to five (second-
lowest, apart from races consisting of Griffin, or previously unraced horses), and races
where the track condition was not slow or heavy. During this period, there remain 405
relevant races, clearly not a large enough sample to make any definitive conclusions, but
larger than a mere exploratory study.

In order to study pace under maximum exertion, we focus on the winning horses
in the respective races, where the time of that particular horse to the final 400 m mark
(as opposed to the leading runner, as is often reported) and the time of finish are used.
While it would obviously be desirable to use as much information as possible, a study
of discouragement effects (the possibility that some runners may not exert when it is
clear they will not win), will be left to a future study and the dataset here is restricted as
a precaution.

Next, we assume that the three main determinants of the overall average speed of
which horses are capable over a race are (i) the distance traveled, (ii) the track condi-
tions, and (iii) the class of race. We conjecture, and propose to test, that (controlling for
the aforementioned three factors) races that are run too slowly in the early stages result
in significantly reduced overall average speed.

Arguably, the most difficult to model of the factors mentioned above is the track
condition. We avoid this entirely by centering all data by meeting, which removes any
systematic effects of track condition, but avoids having to rely on the accuracy and
precision of official (going) ratings (i.e., “good to yielding,” etc.). Class may be incor-
porated as four indicator variables (for five classes), where Class 3 has no variable, and
as in previous studies (and in the study to follow) distance is seen to be well-modeled
on the logarithmic scale. (As the track is large and the final 400 m entirely straight,
curve effects may be neglected, as may be seen by [near-linear] graphs of velocity and
log-distance for a similar track analyzed in the second case study. Also, since runners
that run extremely wide rarely win, and we only analyze winners here, we can be rea-
sonably confident that the distance run is not too far from that measured for the present
study.)

Before attempting to include a pace variable, we note that average velocity of the
winner over a race (in km/hr) for this sample is 60.38. The results of a regression,
centered by meeting, are presented in Table 1. The going/meeting, class, and distance
variables described above are seen to explain 92% of the observed variation of velocity,
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TABLE 1 Regression Results, Centered by Meeting

Variable Coefficient S.E. T Correlation with model
Int 0.000 0.019 0.000 —

logd —6.816 0.107 —63.932 -0.974

cll? 0.439 0.078 5.667 0.099

cl2? 0.180 0.060 3.007 0.052

cl4? —0.290 0.048 -5.985 —-0.029

cl5? -0.610 0.066 -9.203 —0.182

NOTE: R%: 0.915; s_res: 0.376.

TABLE 2 Second Regression Results, Centered by Meeting

Variable Coefficient S.E. T Correlation with model
Int 0.000 0.018 0.000 —

logd —6.675 0.111 —60.038 -0.972

cll? 0.470 0.077 6.134 0.099

cl2? 0.199 0.059 3.370 0.052

cl4? —0.300 0.048 -6.297 —-0.029

cl5? —0.661 0.067 -9.932 -0.182

Pace —0.043 0.011 -3.821 —0.309

NOTE: R%:0.918; s_res: 0.369.

resulting in a residual error of approximately 0.38 km/h (down from 1.38, the raw
standard deviation), with all effects being highly significant.

As a proxy for pace, the average velocity is subtracted to the final 400 m mark from
the average velocity in the final 400 m section. When the additional pace variable is
added to the model, the resulting coefficient is negative (as had been anticipated), with
a value of —0.043 and a T'-ratio of —3.82, highly significant on 356 degrees of freedom.

The results of the regression (with variables centered by meeting) are presented in
Table 2. The pace variable used here (which is actually just a difference in average
velocities—Ilate minus early) has a mean of 0.81 km/h with a standard deviation of
2.17 km/h (significantly positive, incidentally at much higher than the 1 in 1,000 level).
Here, it appears that for every km/h of difference, the overall average velocity effect
is roughly 0.043 km/h overall, corresponding to the equivalent of nearly 1 m in finish-
ing length over 1,600 m (a metric mile), enough to determine the difference between
winning and losing in a significant proportion of races.

Interestingly, it appears that the pace variable is 23% negatively correlated with class
(one to five), suggesting that lower-class races seem to be more likely to be run at
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a relatively slow early pace (accelerating afterwards), a tendency which (given the
regression results of this section) could well result in slower overall runtimes. (This
begs the question as to why more lower-class runners do not merely choose a quicker
early pace to improve their chances of winning.)

The dataset examined here is not extensive enough to extend the above analysis to
the more general relationship between pace and distance. Instead, then next section will
explore how individual horses respond to distance.

3. CASE STUDY 2: RANDWICK (SYDNEY, AUSTRALIA)

In order to investigate the variation in distance preference between horses with regard
to the time required to finish a race, we study a dataset from one of the most significant
venues in Australian racing, namely Royal Randwick Racecourse in the Kensington
suburb of Sydney, and look at data collected during 1995—-1998. This dataset has been
used by the author more in a forecasting context in Edelman (2005), but as the emphasis
here is on relating the mathematics to the physical system of racing, a more transparent
analysis will be presented.

Just as the use of a single racecourse is used to eliminate variation across racing
venues, analysis is restricted to races with track conditions corresponding to days on
which there was no significant rainfall. Also, in order to eliminate the lowest classes
of races, only data from Saturday race meetings are included. As a further restriction,
the discouragement effect (whereby jockeys on horses not in contention in the final
stages of a race do not run them to their full potential) suggests that only the first
half of the runners across the finish line in a given race be included here. As a final
restriction, only horses with at least three runs in the sample will be included, result-
ing in some 495 horses and 2,655 runs. This is done since the most general model
considered here will effectively include separate subregressions on each of the horses,
with three observations or more being required for each having non-zero degrees of
freedom.

Having carefully selected the data, a number of important modeling choices must
be made. Arguably chief among these is a suitable numeraire or measurement of the
observed outcomes. While the order of finish (either raw or normalized) is used in many
contexts in racing, for the present study, the controlling of track conditions facilitates
the use of overall runtime, or (equivalently) the average velocity over the distance for
each race, which is what shall constitute the numeraire here.

It is interesting to note that the average velocity of racehorses at distances from
1,000 m (approximately 5/8 mi) to 3,200 m (approximately 2 mi) varies around a figure
of approximately 60 km/h (roughly 40 mph), with a trend which (corresponding to intu-
ition) generally decreases, on average, over this distance range, as can be seen in Figure
1. It appears that the trend is approximately log-linear, which, on reflection, might not
be too different from a reasonable first guess (i.e., that relative increase in distance is
more significant than absolute increase).
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FIGURE 1 Velocity vs. log-distance.

TABLE 3 Regression of Velocity vs. Distance and Carried

Weight
Coefficient Value S.E. T-ratio
const 60.058 0.016 3,781.449
log-d -5.583 0.061 -91.334
wt 0.024 0.007 3.634

NOTE: d.f. =2,652; R?>=0.759; s=0.754; RSS=1,505.895.

One other control must be considered, which is the weight carried by each horse.
Generally speaking, if all else is held constant, an increase in carried weight will result
in a slower average velocity. Thus, a regression is run with velocity (in km/h) as a
function of log-distance (in relation to 1,400 m) and weight (differenced from 55 kg).
The results are summarized in Table 3.

The resulting fit is highly significant, with a prediction of approximately 60 km/h, on
average, for a horse at 1,400 m carrying a weight of 55 kg. For fixed carried weight, this
speed degrades by approximately 5 km/h for every 100% increase in distance traveled,
or (more usefully) 0.5 km/h for every 10% increase in distance.

Parodoxically, the model appears to suggest that average velocity (over a given dis-
tance) increases with carried weight, a non-physical relationship that is explained by the
fact that the better horses are handicapped by being required to carry higher weights,
but tend to run faster anyway (suggesting that the handicappers do not appear to be
penalizing them enough, if their objective is to even out the race).

This may be seen more clearly by including a different intercept or ability variable for
each horse (where most of the horses are each running a number of races in the dataset).
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TABLE 4 Regression of Velocity vs. Distance, Weight, and Ability

Coefficient Value S.E. T-ratio
const 0.000 1.569 0.000
log-d -5.130 0.050 -91.717
wt -0.032 0.006 -5.189
ablty 1.000 0.026 34.538

NOTE: Matrix xsp: 2,655 rows, 495 columns. In each row, all zeros, except
for a “1” in column i corresponding to horse i (i.e., a sparse matrix).
df.=2,158; R2=0.845; s=0.671; RSS=969.791.

In this case, the weight effect is estimated for a given level of horse ability, resulting in
a coefficient of the correct sign. The regression is carried out using sparse matrices (i.e.,
“xsp” in Table 4), and then with the 494 horse ability intercept values combined into
a single input variable (the third variable in Table 4) for diagnostic purposes only. The
results are shown in Table 4.

The results in Table 4 show an improvement in R? from 75% in the earlier model, to
approximately 85% in the model with individual horse ability intercept included. The
F-test may be used to test the significance of the ability intercept variable, which has
493 and 2,155 degrees of freedom. The resulting F-statistic is

(1,506 — 970)/493 .
Feae = =242
cale 970/2,155

Under the null hypothesis of no ability intercept (heterogeneity) effect, this statistic has
a mean of approximately 1.0 and a standard deviation of approximately

2
\/ == = 0.064
293 = 006

and (for large denominator degrees of freedom) is well-approximated by the normal
distribution. Since 2.42 represents many (more than 20) standard deviations above the
mean, the individual ability effect is highly significant.

Thus far, the inclusion of individual ability intercept variable has only captured
an overall effect (i.e., not varying with distance), whereas it would be a widely held
truth in racing that horses respond differently to changes in distance. It is there-
fore useful to introduce individual distance gradient parameters, and to see if they
significantly improve prediction accuracy. Thus, slope and intercept for each horse
are fit (combined into the third variable in Table 5, where the second variable con-
tains the combined individual ability intercept variables) resulting in 494 additional
parameters.

The F-ratio for the test of whether the addition of individual distance gradient
parameters significantly added to the fit may be carried out by comparing the sum of
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TABLE 5 Weight, Ability, and Gradient Model

Coefficient Value S.E. T-ratio

wt -0.036 0.005 -6.168
ablty 1.000 0.000 4428.895
dgrad 1.000 0.004 195.229

NOTE: d.f. = 1,666; R>=0.889; s=0.646; RSS=694.013.
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FIGURE 2 Histogram of fitted individual ability parameters.

squares of this fit to the previous:

_ (970 —694)/493 134
O 694/1,664

Under the null hypothesis, this should represent a typical value sampled from a normal

distribution with mean of 1 and standard deviation of approximately

[ 2
= = 0.064
193 0.06

Since the observed value of 1.34 is more than five standard deviations above the
mean, one would be forced to reject the null hypothsis at any reasonable level of
significance.

Figure 2 contains a histogram of fitted ability intercept parameters for the various
horses in the sample, showing a variation that, because of the relatively low number
of races per horse, is arguably higher than any underlying inherent heterogeneity that
might be expected, keeping in mind that the units are km/hr.
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FIGURE 3 Histogram of fitted individual gradient parameters.

TABLE 6 Toward Reasonable Values

Coefficient Value S.E. T-ratio

const 59.966 0.012 3,857.936
log-d -5.039 0.047 —-85.595
wt -0.034 0.005 -5.278
ablty 1.067 0.026 32.842
dgrad 1.714 0.069 19.664

NOTE: d.f. = 1,664; R>=0.869; s=0.700; RSS=2817.001.

Similarly, in Figure 3 where the fitted distance gradient parameters for the vari-
ous horses are shown, the observed variation is much more than would be expected
inherently.

While these distributions of the aforementioned heterogeneity parameters would
clearly not suggest strong predictive performance of the estimates, as a tool for inference
(to determine significance) they have proved helpful. In Edelman (2005) a more deli-
cate analysis similarly tests whether adding individual distance convexity parameters to
the ability intercept and distance gradient parameters, as suggested by Benter (Benter
et al., 1996) yields significant improvement in fit, with a negative result, suggesting the
number of variables in the model presented here to be adequate.

In order to address the issue of excess heterogeneity, the technique of ridge regression
(a version of empirical Bayes modeling) may be employed. This merely involves a
small penalty for the sum of squares of fitted heterogeneity parameters, resulting in
little deterioration in in-sample fit, and greatly improved forecasting performance.

The resulting fitting and diagnostic regression are shown in Table 6, and the
parameter values are summarized in Figures 4 and 5.
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FIGURE 4 Histogram of ridge-fitted individual ability parameters.
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FIGURE 5 Histogram of ridge-fitted individual gradient parameters.

As can be seen, the resulting parameter distributions for the various horses are much
more reasonable (i.e., the range of 10 km/hr in the former does not match intuition).
Further, Figure 6 shows that the quality of the fitted values do not appear to be adversely
affected.

Thus, to summarize the qualitative and practical lessons learned from this case
study, it appears that individual horses not only have significantly different overall abili-
ties, but overall degradation of average speed as the distances over which they run are
increased as well. It is possible to model this variation reasonably using ridge regres-
sion, which (as mentioned earlier) yields not only distributions of heterogeneity, which
seem intuitively reasonable, but resulting fitted values of velocity which appear to be
effective and seem appropriate.



David Edelman

71

64
63
62
61
60
59
58
57
56

55 1 N

54 T T T T T T T T T
54 55 56 57 58 59 60 61 62 63 64

FIGURE 6 Scatterplot of fitted vs. actual velocities.

4. QUALITATIVE QUESTIONS

It is hoped that the case studies presented in the previous sections may have shed some
light on the general modeling of pace character and distance preference in racing, but it
is of interest to explore any qualitative ramifications of the model developed there, and
to raise several other related issues that may require further work of a similar nature to
unravel.

4.1. Do Distance Specialists Exist?

First, the identification of the distance preference/gradient model in the case study of the
previous section might on first reflection appear to suggest that a given horse’s chances
relative to the others will either increase or decrease monotonically with distance, and
this will certainly be the case when comparing two horses. However, as will be argued
below, if a horse’s distance suitability is compared to two or more other horses, a differ-
ent picture emerges. To see this, a graphical representation is helpful. Figure 7 graphs
the distance preference residual models of three horses, where the slopes are equal to
the difference between the distance gradients of each individual horse and a particu-
lar average or median distance gradient for the entire population of horses. In Figure 7
there is one horse whose distance gradient is lower than average in magnitude, and that
therefore is relatively advantaged with respect to the overall average (log-linearly) as
distance increases. Then there is a horse with an average distance gradient that is nei-
ther advantaged nor disadvantaged relative to the average as distance increases, and a
third horse with a distance gradient of greater magnitude than the average that is most
advantaged the shorter the distance and disadvantaged (log-linearly) the longer.
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FIGURE 7 Distance preference—hypothetical example.

As can be seen from the graph in Figure 7, the more average distance gradient horse
will be advantaged relative to the best of the other two at moderate ranges. Thus a
distance specialist may result even though the distance preference model derived in the
previous section is monotonic for each horse.

4.2. Pace, Class, and Time: The Central Paradox of Racing

It was mentioned earlier that the most widely accepted physiological models imply
that humans and animals wishing to run a distance in the shortest possible time should
attempt to run so that the proportion of energy expended in each instant relative
to the total amount expended previously is roughly constant, which will imply an
instantaneous velocity that decreases exponentialy over the entire distance traveled. This
does not always match the manner in which horses are run in races. In fact, it is a not
uncommon occurrence that the total runtime for a top-class race is slower than that of
a lower-class race run by much lower-class horses over the same distance and condi-
tions. It is an observed fact that many races (even some higher-class races) are won by
horses accelerating markedly in the final stages (say 400 m or 1/4 mi) in a manner which
(from the analysis) appears to be suboptimal with regard to overall runtime. This raises
the question of why (theoretically) a low-class horse couldn’t run an evenly paced race
and win a high-class (or for that manner, any) event where the early speed was slow, of
which there appear to be frequent examples. In the opinion of the author of this article,
this question constitutes a paradox so basic that it might be deserving of the status of
the Central Paradox of Racing.

One potential explanation might be demonstrated by the special case of a two-horse
race. Suppose that each of the jockeys riding the horses believes that, provided that
energy expenditure has not been excessive to the last call position (final 400 m mark),
his or her horse is capable of outrunning the other horse by at least 2 lengths (6 m)
during this final stage. Then there is no incentive for either horse to run quickly during



David Edelman

79

the early stages, provided (from the point of view of each horse) neither horse over-
exerts or falls farther behind than an amount slightly less than 2 lengths.

This argument highlights the fact that the objective sought by jockeys when deciding
tactics is winning, rather than achieving the quickest time. The above example of the
two-horse race might fruitfully be generalized to a full field of horses, and with poten-
tially more game-theoretic issues involved, such as each jockey’s uncertainty about the
capabilities of his or her horse. A particular challenge in such an analysis would be the
modeling of a wide range of endowments (i.e., horse characteristics and capabilities).

It is not immediately clear how such game-theoretic models might be posited and
validated empirically, nor indeed whether jockeys could be assumed to be employ-
ing optimal competitive riding strategies, but if such modeling were possible, it would
constitute a very significant contribution indeed.

Another potentially relevant factor in pace and time is wind resistance. While there
appear to be no empirical studies on the effect of wind resistance on speed in horse rac-
ing, it has been proposed that just as the V flight formation of bird flocks has evolved
in such a way as to minimize collective wind resistance (and therefore energy expendi-
ture), so might the herding of galloping horses be expected to have an analogous effect.
If true, this might allow an alternative resolution of the the Central Paradox identified
above, for if an evenly paced horse were to get too far ahead of the herd, it could well
end up expending much more energy than if it shared wind resistance with the rest of
the horses by racing closer to them. Likewise, horses traveling slightly behind the herd
might perhaps be expected to save energy from slip-streaming which is the effect of
wind eddies from the other horses in front, and which might help to pull a hind horse
along. Such an effect appears to be widely acknowledged in automobile racing (with
regard to fuel consumption), but does not appear to have been studied systematically in
the horse racing context.

It is not clear how these hypotheses might be tackled, but perhaps as more data
becomes available on the positions of horses at various times in running, quantitative
exploration of such questions might become feasible.

4.3. Jockeys: Distance or Pace Preference?

Often in racing, it is difficult to unravel the net effect of jockey ability on racing out-
comes, because certain popular jockeys tend to win more races just because they are
given better horses to ride.

Of course, simultaneous League Table analyses of horses and jockeys via Analysis
of Variance may be used to determine the overall marginal effect of jockeys on race
outcomes, but it is interesting additionally to test whether some jockeys tend to run
better races on forward-running horses, as opposed to late-finishing horses. Exploratory
analyses on Hong Kong data appear to suggest a rather strong effect in this regard,
though (as horses tend to run with similar pace style from race to race) this is somewhat
confounded with the possibility that jockeys might have different marginal effects on
different individual horses. In this, as with some other topics raised here, further study
along these lines is needed.
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5. DISCUSSION

The two case studies presented, while limited in their scope, appear to shed light on
several aspects of pace and overall runtime in turf racing. In the first study, a highly
significant statistical pace proxy variable was found for predicting overall runtime of
the winner of a race, namely the difference between its late (last 400 m) average velocity
and its earlier (pre-400 m-mark) average velocity. The coefficients suggest that races
that are run too slowly in the early stages result in slower overall times. This appears
consistent with physiologists’ view that, other factors being equal, an even pace should
result in the best runtimes. Assuming this is true, it appears that lower-class races are
more frequently run too slowly in the early stages, as these tend to have a larger than
average late-minus-early velocity differential.

While the first case study did not analyze characteristics of individual horses due to
limited data, the second, more extensive, dataset enabled examination of certain aspects
of overall runtime characteristics for individual horses (albeit not with regard to pace).
In particular, the question of whether different horses appear to respond differently to
different distances was asked, and answered in the affirmative. It is hoped that data
may become available that would enable the study of both pace character and dis-
tance preference for individual horses in the same study, the results of which could help
greatly not only in the understanding and forecasting of runtimes and race outcomes,
but potentially in informing racing connections with regard to optimal riding tactics for
their horses as well.

In general terms, the intent here has been to stimulate thought on and to demonstrate
methodology in the modeling of distance and pace aspects in horse racing.

In the case studies presented, some aspects of the modeling of horses that are racing
at different paces and distances have been addressed, and some tentative conclusions
reached. With regard to pace, or the variation in velocity of runners during the course of
a race, results from physiology can motivate important questions to be asked, but more
extensive data are required if studies are to be carried out to draw any clear conclu-
sions. The lack of existing quantitative studies on such topics (apart from that presented
here) does not prevent speculation on certain aspects, which can only serve to stimulate
the type of curiosity that will lead to further endeavor.
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Abstract

In betting markets, the expected return on longshot bets tends to be systematically lower
than on favorite bets. This favorite-longshot bias is a widely documented empirical fact,
often perceived to be an important deviation from the market efficiency hypothesis. This
chapter presents an overview of the main theoretical explanations for this bias proposed
in the literature.

1. INTRODUCTION

A central theme of the literature on betting is the occurrence of the favorite-longshot
bias. The first documentation of this bias is attributed to Griffith (1949), who observed
that horses with short odds (i.e., favorites) yield on average higher returns than horses
with long odds (i.e., longshots). This means that market probabilities of longshots
(obtained from market prices) overpredict on average their empirical probabilities
(computed from race outcomes). At the other end of the spectrum, the market prob-
abilities of favorites tend to underpredict their empirical probabilities. This chapter
presents an overview of the wide range of theories proposed in the literature to explain
this bias.

Betting markets have attracted a lot of attention by economists because they provide
a particularly appealing environment for testing theories of market efficiency.! First,
the outcomes in these markets are publicly observed at a prespecified time. In regular
financial markets, the uncertainty about asset values is typically resolved only in the
long run, if ever. Second, in the case of betting, the realized outcomes are exogenous
to the trading process and the resulting prices. In comparison, the intrinsic value can
easily be affected by market prices in more traditional financial settings. Third, pari-
mutuel betting markets are particularly suited to testing for market efficiency because
prices there are not set (and so potentially misaligned) by individual market makers.
By placing a pari-mutuel bet on an outcome, a participant demands a share of all the
funds supplied by the other participants conditional on the realization of that outcome
and, contemporaneously, supplies funds to all the other participants if that outcome is
not realized.

Indeed, most of the empirical literature has focused on pari-mutuel markets, in which
the money bet on all outcomes is pooled and then shared proportionally among those
who picked the winning outcome, after a fractional sum is deducted for taxes and
expenses. If the market were efficient, all the bettors were risk neutral, and they shared
the same belief about the outcome, the final distribution of pari-mutuel bets should be
directly proportional to the market’s assessment of the horses’ chances of winning. This
is because the gross expected payoff of a bet on an outcome is equal to the ratio of the
outcome’s probability to the proportion of bets placed on that outcome. If the fraction

A clear drawback of betting markets is that traders may be motivated by recreational objectives that we
expect to play less of a role in regular financial markets.
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of money bet on each outcome is equal to its probability, the expected payoffs would
then be equalized across all outcomes.

The bias is often perceived to be an important deviation from the market efficiency
hypothesis. A voluminous empirical literature (surveyed, among others, by Thaler and
Ziemba, 1988; Hausch and Ziemba, 1995; Sauer, 1998; and Jullien and Salanié, 2008)
has documented the extent of this bias across different events, countries, and market
structures. Despite the presence of a fair amount of variation in the extent and some-
times the direction of the bias, the favorite-longshot bias has emerged as an empirical
regularity. While the initial literature focused on pari-mutuel markets, the favorite-
longshot bias is also observed (often to a greater extent) in markets dominated by
bookmakers.

In a short paper that appears to have gone completely unnoticed, Borel (1938)
presented the first theoretical analysis of optimal betting behavior and equilibrium in the
pari-mutuel game.? This remarkable paper foretells a number of the essential elements
of the theories developed later in the literature.

e First, Borel introduced the problem and defined the equilibrium in the context of
betting on the sum obtained rolling two dice, for which players naturally share
common (or objective) probability assessments: “This game will be equitable, if
the total amount bet on each point is proportional to the probability of obtaining
that point; but there appears to be no a priori reason for this condition to be realized
on its own.”? He then discussed informally the forces that bring the system to
equilibrium in the context of this game.

e Second, Borel described how pari-mutuel odds adjust against the bettor and then
determined the optimal amount a bettor should place on one of two outcomes to
maximize the expected return, given an initial distribution of bets.* He then consid-
ered the case of a sequence of players who make optimal bets, after observing the
amounts placed in the past. He noted that the amounts bet (in the subgame-perfect
equilibrium) make the game asymptotically equitable.

e Third, Borel modeled a pari-mutuel market with two classes of strategic bettors
with heterogeneous subjective probability beliefs about the outcome of a race
between two horses. In each class, there are two bettors who share the same prob-
ability belief about the race outcome, but beliefs are different for bettors belonging
to the two classes. Borel characterized the (Nash) equilibrium of this game and
concluded with an informal discussion of the timing incentives.’

Over the last seven decades, a number of theories have been advanced to explain
the favorite-longshot bias. In this chapter we review the main theoretical explanations
for the favorite-longshot bias proposed thus far in the literature, in order of their
chronological development:

2We searched extensively for references to this article, but did not find any.

3This equilibrium notion is the main benchmark with respect to which the favorite-longshot bias is defined in
the literature.

4This problem is further explored by Borel (1950) and later generalized by Isaacs (1953). See Section 4.

3 As explained below in Section 10.1, pari-mutuel betting is a version of Cournot’s quantity competition game.
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1. Misestimation of Probabilities (Section 3) The bias can be due to the tendency
of individual decision makers to overestimate small probability events. This
explanation was initially advanced by Griffith (1949), who suggested that there
is a psychological bias that leads individuals to subjectively ascribe excessively
large probabilities to rare events.

2. Market Power by Informed Bettors (Section 4) A monopolist bettor who bets
large amounts should not equate the expected return on the marginal bet to zero,
since this would destroy the return on the inframarginal bets. If this large bettor
has unbiased beliefs and bets optimally on the favorite, the favorite-longshot bias
results. This explanation follows from the analysis of Isaacs (1953).

3. Preference for Risk (Section 5) If individual bettors love risk or skewness, they
are willing to accept a lower expected payoff when betting on longshots. This
explanation was articulated by Weitzman (1965), for the case of a representative
bettor who loves risk, and so is willing to give up a larger expected payoff when
assuming a greater risk on a longshot with longer odds.

4. Heterogeneous Beliefs (Section 6) If bettors have heterogeneous beliefs, the
market probabilities resulting in the pari-mutuel system tend to be less extreme
than the bettors’ median belief. This theory, formulated by Ali (1977), can
explain the favorite-longshot bias if one is prepared to assume that the bettors’
median belief is equal to the empirical probability.

5. Market Power by Uninformed Bookmakers (Section 7) For fixed odds bet-
ting markets, Shin (1991 and 1992) explained the favorite-longshot bias as the
response of an uninformed bookmaker to the private information possessed by
insiders.

6. Limited Arbitrage by Informed Bettors (Section 8) The favorite-longshot bias
results when price-taking (and risk-neutral) bettors possess superior information,
since the amount of arbitrage is limited by the presence of the track take and the
inability to place negative bets. This explanation was proposed by Hurley and
McDonough (1995).

7. Simultaneous Betting by Partially Informed Insiders (Section 9) In pari-mutuel
markets, the bias arises if privately informed bettors place last-minute bets with-
out knowing the final distribution of other bettors’ bets. This explanation is due
to Ottaviani and Sgrensen (2006), who derived the bias in a pari-mutuel market
as the result of bets placed simultaneously.

We begin by introducing the notation in Section 2 and then proceed to develop the
explanations. Given that these explanations have similar qualitative implications about
the favorite-longshot bias, it has proven difficult for empiricists to distinguish between
the alternative theories. To reach some tentative conclusions about the relative merits
of the different explanations, it is promising to test for the ability of theories to simul-
taneously explain the favorite-longshot bias as well as other regularities regarding the
dynamic adjustment in market prices and the timing of bets. While a comparison of the
performance of the different explanations is well beyond the scope of this chapter, we
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conclude in Section 10 by giving an indication of some additional theoretical predictions
regarding the timing of bets.

2. NOTATION

Given our aim at presenting the explanations in the simplest possible setting, we focus
on the case with two outcomes. We denote the outcome (corresponding to the win-
ning horse) by x € X = {1,2}. We denote bettors by n € N' = {0,1,..., N}, where
n = 0 represents all outsiders and bettors with index n > 1 are strategic insiders. Bettors
may have different prior beliefs. For convenience, we denote bettor »’s prior belief for
outcome 1 by g, = Pr(x = 1). When allowing for private information, bettor »’s signal
is s, € S, resulting in posterior belief r, = Pr(x = 1|s = s,,).

The amount placed by bettor n on horse x is b, (x), and the total amount placed
on x is b(x) = ), b, (x). The total bets placed on x by the opponents of bettor n are
b_, (x) = b(x) — b, (x). The total overall bets are B = Zx b (x) (also known as the
pool), while total bets placed by the opponents of bettor n are B_, = ), b_, (x).% The
track take, 7, is a percentage subtracted from the pool for taxes and expenses.’

The pari-mutuel odds are then p(x) = [(1 —T) B—b(x)]/b(x), so that every bet
on horse x wins 1 + p (x) = [(1 — 7) B] /b (x) if x is realized. The pari-mutuel system
results in the market probability m(x) = (1 — 1) /[1 + p(x)] = b(x) /B, withm = m (1)
for convenience. We denote the objective (or empirical) probability by p(x), with
p=p(l).

3. MISESTIMATION OF PROBABILITIES

When Griffith (1949) uncovered the favorite-longshot bias, he referred informally to a
simple psychological explanation based on biases in the market participants’ assess-
ment of the probability attached to the different outcomes. For the purpose of our
illustration with two outcomes, assume that all bettors attribute a perceived probabil-
ity equal to w(p) to an outcome with objective probability p. The key assumption of
the theory is that bettors overestimate the chance of unlikely outcomes but underesti-
mate the chance of likely outcomes: 1/2 > w(p) > pforp< 1/2and 1/2 < w(p) <p
forp > 1/2.

Let p be the objective probability of horse 1 and (p) the perceived probability. The
perceived expected net monetary payment (or payoff) of a bet on horse 1 is

1
w(p) <—1+—)+[1—w(p>](—1>=—“(”)—1. (1)
m m

SNote that b_g is different from b, and similarly B_g is different from By.
"The presence of a positive track take plays a key role in the explanation proposed in Section 8. To simplify
our derivations, we set T = 0 when presenting most of the other explanations.
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FIGURE 1 Market probability against objective probability for a = 0.8. The dashed line is the diagonal.
Similarly, the perceived expected payoff of a bet on horse 2 is

m(l-p)
1-m

1
(1 - p) <—1+1—)+[1—w(1—p)] (-1) = L. @)
—m

In equilibrium, the perceived expected payoffs of the two bets must be equal,

w(p) _m(l-p)
m ~ 1l-m

Suppose that p > 1/2 > 1 — p. Then p > w(p) > 1/2 > w(1 — p) > 1 — p by the key
assumption of the theory. Hence,

p m m(p)
> = > 1.
l1-p 1-m =w(l-p)

We can conclude that the favorite-longshot bias arises as stated in following proposition.

Proposition 1 If w(p) < p for p > 1/2 and w(p) > p for p < 1/2, the market prob-
ability of the favorite (respectively longshot) is lower (respectively higher) than its
objective probability: if p>1/2, then 1/2 < m < p (respectively if p<1/2, then
p<m<1/2).

We illustrate this explanation by using Prelec’s (1998) weighting function with
a<l,

m = 7(p) = exp [~(=Inp)’],

where m is the market probability and p is the objective probability.® Figure 1 plots m(p)
fora =0.8.

8 As is evident from Figure 1, Prelec’s function has w(p) = p for a threshold p = 1/e somewhat below 1/2.
The spirit of the favorite-longshot bias is preserved, nevertheless.
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4. MARKET POWER BY INFORMED BETTORS

Borel (1938 and 1950) and Isaacs (1953) proposed a theory compatible with an
explanation for the favorite-longshot bias based on optimal betting behavior by a large
privately informed bettor. This explanation is based on the fact that the more money this
bettor places on a horse, the lower the odds that result in the pari-mutuel system. Then,
an informed bettor would want to limit the amount bet in order to maximize the profits
made.

To understand why additional bets on a horse depress the horse’s odds, imagine a
single strategic bettor (the insider, N = 1) who estimates that horse 1 is more likely to
win than according to the prevailing market odds (set by outsiders). Suppose that the
outsiders are not placing any money on 1, while they are placing some money on the
competing horse 2. By betting just one dollar, when horse 1 wins our bettor can be sure
to obtain all the money bet by the outsiders on the other horses. Hence, the first dollar
has a higher expected return than the second dollar, which has a zero marginal return.
Since our bettor loses the dollar when horse 1 does not win the race, in this extreme
example our bettor does not want to bet more than one dollar on horse 1.

More generally, given the pari-mutuel payoff structure, the payout per dollar bet on
horse 1 is decreasing in the fraction of money that is bet on horse 1. Because the insider
takes into account the payoff on all of his or her bets, it is optimal to cease betting before
the payout on the marginal bet equates the marginal cost. This implies a bias, that our
bettor does not bet until the market probability equals his or her posterior belief.

From the mathematical point of view, the bettor’s problem is the same as the problem
of a monopolist who decides how much quantity of a product to sell in a market with a
downward sloping demand curve. Essentially, the pari-mutuel market structure induces
such a downward sloping demand, because the average payout decreases in the amount
wagered.

We now illustrate this explanation in the simplest possible setting, keeping N = 1.
Clearly, it is never optimal for our insider to bet on both horses.” Suppose that the
insider believes sufficiently more than the outsiders that horse 1 will win so that there is
a positive gain from betting a little on it. Precisely, assume g; > bo(1)/ [Bo(1 — 7)]. If
bettor 1 bets the amount b; (1) = b on this horse, the price of each bet is determined on
the basis of the inverse demand curve

By+b
Py =— =1 -Dg—>— O 3)

The insider’s objective is to maximize the expected revenue [P(b) — 1]b. The
marginal revenue is P(b) — 1 + P'(b)b. Our assumption that q; > bo(1)/ [Bo(1 — )]
means precisely that the marginal revenue evaluated at b = 0 is positive, P(0) > 1. The
optimal positive bet size is then determined by the first order condition

P(b) — 1 = —P'(b)b. “4)

9Tsaacs (1953) shows more generally that a bettor should bet at most on all but one horse.
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FIGURE 2 The optimal bet equalizes the marginal revenue (the dashed curve) to the unit marginal cost
(the dotted line). The solid curve represents the demand.
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Since the demand curve is downward sloping, the right-hand side is strictly positive, so
we can conclude that the insider’s optimal bet satisfies P(b) > 1. This is clearly equiv-
alent to g, > m. If we additionally suppose that the insider is betting on the favorite'®
and suppose that the insider’s belief g, is correctly equal to p, we obtain the main result
in the following proposition

Proposition 2 Suppose that the insider bets on the favorite with correct beliefs. Then
the favorite’s market win chance is lower than the empirical chance: p > m > 1/2.

Figure 2 displays the demand curve, the marginal revenue, and the marginal cost
for an example with By = 100, by(1) = 50, T =0, p = 3/4. It is possible to solve the
insider’s optimization problem for the optimal bet b;(1) = 50(v/3 — 1) = 36.603. The
market probability is then m(1) = b(1)/B = (3 —+/3)/2 = 0.633.97 < 3/4 = p.

Chadha and Quandt (1996) extended this explanation by considering the case with
multiple bettors who play a Nash equilibrium.!!

S. PREFERENCE FOR RISK

The third explanation for the favorite-longshot bias is based on the different variability
in the payout of a bet on a longshot compared to one on a favorite. Longshots tend
to pay out more, but with smaller probability. If bettors prefer riskier bets, the relative

10A sufficient condition for outcome 1 being the favorite is that the outsiders have it as their favorite,
bo(1)/By > 1/2. Outcome 1 is also likely to become the favorite because the insider bets on it, so the
condition is not necessary.

10n the way to deriving the competitive limit with infinitely many bettors, Hurley and McDonough (1995)
also characterize the Nash equilibrium resulting with a finite number of bettors.
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price of longshots should be relatively higher. This explanation was first spelled out by
Weitzman (1965), followed by many others.'?

Keeping with Weitzman (1965), we assume that there are many identical bettors, all
with the same beliefs and risk preferences. Without loss of generality, normalize the
mass of bettors to N = 1. For simplicity, we further assume with Quandt (1986) that
bettors have mean-variance preferences, u = E — pV/, with coefficient of risk aversion
equal to p. Each bettor is small relative to the size of the market, and so takes the market
prices as given when deciding which of the two horses to back. Set T = 0.

If horse 1 is the market favorite and attracts a fraction m = mg =1 —mp > 1/2 of
the pool of pari-mutuel bets, it yields the expected net monetary payment

p

Ep=——1. (5)
mg

Similarly, the expected net monetary payment on the longshot is

-1. (6)
my,

The variance of the net monetary payment on the favorite is

Ly » (2 Y _U-pp
VF=p<—1+ > +(1-p(-1) —<——1> = — @)
meg meg

myg

Similarly, the variance of a bet on the longshot is
2 2
1 1- 1-
VL=p(—1)2+(1—p>(—1+—) —( p—l) Sl LG
mp my my

Note that V1, > Vg because mg = 1 — m > 1/2 because by definition the favorite has a
higher market probability.

In equilibrium, the following indifference condition must hold Ep — pVg =
E; — pWL, or equivalently

Er - E
L—Vr
Now, if the representative bettor has a preference for risk (p < 0), at equilibrium we
must have
Er—E
¥ > 0.
W —Tr

Given that the denominator of the left-hand side is positive (V1 > Vg, as shown above),
this inequality implies that Er — Ep > 0, that is, that mg < p or, equivalently by

12Golec and Tamarkin (1998) advanced the related hypothesis that bettors love skewness, while being risk
averse.
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FIGURE 3 Market probability against objective probability for p = —1. The market probability is above
the objective probability (represented by the dashed diagonal) for the favorite (p > 1/2). The pattern is
reversed for the longshot (p < 1/2).

mgp=1-—my, that 1 — p <mp. Combining these inequalities with mp=1—m >
1/2, we obtain the favorite-longshot bias: 1 — p <mp < 1/2 < mp < p.

Proposition 3 Suppose that there is zero track take, T = 0, and a representative bettor
with mean-variance preferences and negative coefficient of risk aversion, p < 0. The
market probability of the favorite (respectively longshot) is lower (respectively higher)
than its objective probability: if p > 1/2, then 1/2 < m < p (respectively if p < 1/2,
thenp <m < 1/2).

It is easy to further characterize the equilibrium in this setting. In equilibrium, each
bettor must be indifferent between betting on the favorite and betting on the longshot,

_ (I-pp 1-p (I-pp _
up=—-—-1-p = —l—p—= =uy,

mpg m2F 1 —mp (1 —mp)?

where we have substituted Equations (5), (6), (7), and (8) and the identity my. = 1 — mp
into the indifference condition (9). This equation can be solved to obtain the equilibrium
market probability as a function of the objective probability, m(p). The inverse function
p(m) has the simpler analytic expression

1 \/[p(2m—1)+m(1—m)]2—4p(2m—1)m2(1—m)—m(l—m)
plm) =5+ 2p(m—1) ‘
Figure 3 displays the market probability as a function of the objective probability for an

example with p = —1. Quandt (1986) further generalized this example by allowing for
heterogeneous risk attitudes.
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6. HETEROGENEOUS BELIEFS

Following Ali (1977), suppose that bettors have heterogeneous prior beliefs. Suppose
that bettors do not observe any private signal, so that they do not have superior informa-
tion. Suppose that the track take is zero, T = 0, bettors are risk neutral, u(w) = w, have
identical wealth available for betting, and have beliefs drawn from the same distribution,
gn ~ F().

It follows that each bettor bets all the available wealth on either of the two horses.
The competitive equilibrium is characterized by the indifference threshold belief ¢,
at which the expected payoff from betting on either horse is equalized. Bettors with
belief above threshold § bet on horse 1 and bettors with belief below g bet on
horse 2.

Proposition 4 (i) The market probability on the favorite is below the belief of the
median bettor: If m > 1/2, then m < p where p = F~'(1/2). (ii) If in addition the belief
of the median bettor is equal to the objective probability, then the market probability
that the favorite wins is lower than the objective probability.

We focus on a horse whose market probability in the pari-mutuel system is
m>1/2. (10)

By definition, the fraction of all bets that are placed on this horse is equal to the market
probability m. Note that a risk-neutral bettor optimally bets on the horse when sub-
jectively believing that this horse is more likely to win than indicated by the market
probability. So, it must be that the fraction of bettors who have subjective beliefs above
m is equal to the market probability,

1 - F(m)=m. (1)
By definition of the median p, half of the bettors have beliefs above it,
1-F(p)=1/2. (12)

Combining Equations (10), (11), and (12), and the property that the belief distribution
F is increasing, the market probability is below the median, m < p, as stated in part (i)
of the proposition. Part (ii) follows immediately.

This result is a general implication of competitive equilibrium behavior, and holds
independently of the pari-mutuel market structure. What drives this result is the fact
that bettors are allowed to put at risk a limited amount of money. To see this, we
now reinterpret the pari-mutuel equilibrium as the Walrasian equilibrium in a complete
Arrow-Debreu market. Traders are allowed to buy long positions or sell short positions
on the asset that pays 1 conditional on horse 1 winning. Each trader is allowed (or
desires) to lose at most an amount equal to 1. This means that, when wishing to buy
long the asset that is traded at price m, a trader purchases at most 1/m asset units—by
risk neutrality, this is the exact amount purchased. At price m, the demand curve for the
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FIGURE 4 Plot of the median belief against the market probability. The dashed line is the diagonal.

asset is then [1 — F(m)]/m. Similarly, a trader who wishes to sell short actually sells at
most 1/(1 — m) asset units when the asset price is m.'> The asset’s supply curve is then
F(m)/(1 — m). The equilibrium price m prevailing in the market equates demand and

supply
1—F(m) F(m)
m T 1l-m

which is equivalent to (11).'4

Intuitively, m < p means that the median bettor (with belief p) strictly prefers to risk
all his or her money on horse 1, by taking long positions. By continuity, a bettor with a
belief slightly more pessimistic is also long on horse 1. If all traders were to invest the
same amount on either horse, the market could not equilibrate because the demand for
long positions would outstrip the supply at price m, given that 1 — F(m) > F(m) for a
price below the median, m < p. In equilibrium, the number of assets bought is equal to
the number of securities sold, so each trader on the long side must be allowed to buy
less than each trader on the short side can sell, that is, m > 1 — m.

Ali’s result may be illustrated by this class of belief distributions F,(q) = q%, para-
meterized by a > 0. There is a one-to-one relationship between the parameter a > 0
and the equilibrium market probability 0 < m < 1 solving Equation (11), which can be
expressed as a = [log(1 — m)]/[log(m)]. The median of F, solving Equation (12) is
p = 271/% Figure 4 plots the median belief against the market probability. Note that the
favorite-longshot bias results: If m > 1/2 we have 1/2 < m < p, while if m < 1/2 we
have 1/2 < p < m.

Blough (1994) extended this result to an arbitrary number of horses under a natural
symmetry assumption.

13The reason for this is that this trader’s income on the contracts sold is —m/(1 — m), while the trader’s outlays
are 1/(1 — m) when horse 1 wins. Overall, this trader risks 1/(1 —m) —m/(1 —m) = 1.

l4Eisenberg and Gale (1959) considered the properties of the pari-mutuel equilibrium price as an aggregation
device for the heterogeneous beliefs.
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7. MARKET POWER BY UNINFORMED BOOKMAKER

We now turn to Shin’s (1991 and 1992) explanation, based on the response of an
uninformed bookmaker to the private information possessed by insiders. Shin mostly
focused on the case of a monopolist bookmaker who sets odds in order to maximize
profits.!>

Shin (1991) considered the case of a bookmaker who faces a heterogeneous pop-
ulation of bettors. Some bettors are informed insiders, while others are uninformed
outsiders who have heterogeneous beliefs. The N insiders are perfectly informed, so
that they always pick the winning horse. In the absence of outsiders, the bookmaker
would then be sure to make a loss at any finite price. In his model, the bookmaker is
active thanks to the presence of outsiders, who play the role of noise traders. The out-
siders are assumed to have beliefs distributed uniformly, with gy ~ U [0, 1], and to have
aggregate wealth by.

Shin first established that the bookmaker sets prices such that some outsiders find
it most attractive to abstain from betting. This is a natural precondition for the book-
maker’s ability to make any positive profit at all. For the purpose of our analysis, this
partial abstention implies that we can consider odds-setting on one horse, say horse 1,
in isolation.

A unit bet on the horse under consideration (i.e., a bet that pays 1 if horse 1 wins)
will have price m set by the bookmaker.'® Outsiders with beliefs above a unit bet’s price
place the bet. At price m, the outsiders’ demand is then equal to by (1 — m).

The bookmaker believes that horse 1 wins with chance g. He or she chooses m to
maximize the profit

1—-m

—q[bo(1 —m) + N] <T> + (L= q)bo(1 —m). 13)

The bookmaker believes that horse 1 wins with probability ¢, in which case the book-
maker makes a net payment equal to (1 —m)/m to by(1 — m) outsiders and to the
insiders. If instead horse —1 wins, which happens with probability 1 — g, the bookmaker
gains by(1 — m), the amount placed by the outsiders on horse 1.

The monopolist bookmaker’s first-order condition for choosing m to maximize
Equation (13) is

1 1-
Q(bo(l—m)+N)—2+bOQ<—m> ~bo(1 =) =0,
m m

15Bookmakers play the role of market makers, as in Copeland and Galai (1983) and Glosten and Milgrom
(1985). Shin, however, makes different assumptions about the relative elasticities of the demands of informed
and uninformed traders.

161n this setting, these prices do not sum to one. Market probabilities can nevertheless be obtained by dividing
these prices by their sum.
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solved by

The fraction of the insiders’ wealth over the total, z = bO’JYN is a measure of the

amount of insider information in the market. While the market price m is an increas-
ing function of the bookmaker’s belief ¢, now the average return to a bet on horse 1 is
q/m = /(1 — z)q which is increasing in g. This is the favorite-longshot bias.

Proposition S If the bookmaker’s belief is correct, ¢ = p, market probabilities underre-
act to changes in p as m/p is decreasing in p (and m).

Intuitively, the lower is the market price m, the fewer outsiders participate, and the
greater the bookmaker chooses the bias ratio g /m to protect against the adverse selection
of bettors. In this setting, the effect vanishes if bookmaking is perfectly competitive.'’
The market price m then makes the profit of Equation (13) equal to zero, a condition
solved by m = q/(1 — z). In that case m/q is constant so there is no favorite-longshot
bias.!

8. LIMITED ARBITRAGE

Hurley and McDonough (1995) explained the favorite-longshot bias on the basis of
limited arbitrage by informed bettors.!® Our illustration of this logic is similar to that in
Section 4, except that there is now perfect competition among the insiders.

Suppose that very (or infinitely) many insiders know that the probability that horse 1
wins is ¢ = p > 1/2. Given that the number of insiders is large, it is reasonable to
assume that they are price takers.

In the absence of transaction costs these insiders will place their bets such that the
expected payoffs on both horses are equal. Equating these two expected payoffs gives

By + B p 1-p By + B_g
bo(D+Bo m 1-m bo(2)

which determines the amount B_ bet by the insiders on horse 1. In this case with zero
track take, the equation implies m = p, so that there is no favorite-longshot bias.

Suppose now that the track take is positive, T > 0. Now the insiders will keep betting
on the favorite, horse 1, only if the net expected payoff is non-negative. Equating to zero

"However, Ottaviani and Sgrensen (2005) show that the favorite-longshot bias results in a natural model with
competitive fix-odds bookmakers, when insiders are partially (rather than perfectly) informed.

181n Shin (1992), the bookmaker solves a related constrained maximization problem. In an initial stage of
bidding for the monopoly rights, the bookmaker has committed to a cap 8 > 0 such that the implied market
probabilities satisfy Y ., m(x) < B. The favorite-longshot bias is derived along similar lines.

19Gee also Terrell and Farmer (1996).
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the net expected payoff of betting on horse 1,

By + B_y )4
( T)pbo(l) + By ( T)m ’

we determine the amount B_ the insiders bet on horse 1. If the insiders bet a positive
amount, m = p(1 — 1) < p.

Proposition 6 Suppose that there is a positive track take, and an infinite number
of insiders with correct common belief on horse 1, p> 1/2. If they bet on horse
1, its market probability is lower than the insider’s probability, m = p(1 — 1) < p,
and the expected payoff on the favorite is greater than on the longshot, 1 > (1 — 1)

(I=p)/ (1 =p)+prl.

It can be immediately verified that the longshot’s market probability is 1 —m =
1 — p + pr. The expected payoffis (1 — 7)(1 — p)/[(1 — p) + pt] < 1. Because arbitrage
is limited, relatively too many bets are placed on the longshot, and the bets placed on
the favorite are not sufficient to bring up the expected return on the longshot to the same
level as on the favorite. The track take thus induces an asymmetry in the rational bets,
resulting in the favorite-longshot bias.

9. SIMULTANEOUS BETTING BY INSIDERS

Ottaviani and Sgrensen (2006) proposed a purely informational explanation for the
favorite-longshot bias in the context of pari-mutuel betting. To illustrate this explana-
tion, we consider the simplest case in which the two horses are ex ante equally likely
to win (g = 1/2), the outsiders bets equal amounts on the two horses ([by(1) = by(2) =
bo]), the track take is zero (7 = 0), and the number of privately informed insiders is
large (with mass N).

For the purpose of the starkest illustration of this explanation, focus on the case with
a continuum of insiders. The conditional distributions of the insiders’ initial beliefs are
such that G(r|x =2) > G(r|x = 1) for all 0 < r < 1, given that these beliefs contain
information about the outcome of the race. Conditional on the outcome, the insiders’
beliefs are independent. In addition, we make the natural assumption that these beliefs
have symmetric distributions: G(r|x = 1) =1 - G(1 — r|x = 2).

Since higher private beliefs are more frequent when horse 1 wins, in equilibrium
each individual bets more frequently on horse x in state x. For simplicity of expo-
sition, suppose that all insiders choose to bet (even if they make negative profits).
The equilibrium has a simple form, with bettors placing their bet on horse 2 with beliefs
below a cutoff level and on horse 1 above the cutoff. Given that the outsiders’ bets are
balanced ([bo(1) = by(2) = bo]), the cutoff of the posterior belief at which the expected
payoff of a bet on horse 1 is equalized to the expected payoff of a bet on horse 2
isF=1/2.
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Conditional on horse x winning, the market probability for horse 1 is

_ b+ N [1-G(1/2]x)]
B 2by+ N '

m

Horse 1 has a higher market probability (i.e., is more favored) when state 1 is true,

bo+ N [1-G(1/2[1)] bo+ N [1-G(1/22)]
2bp+ N 2bp+ N

)

given that G(1/2]2) > G(1/2|1). This means that the identity of the winning horse, x, is
fully revealed upon observation of the market probability. In this symmetric setting with
a continuum of bettors, the horse with higher market probability, m > 1/2, is revealed
to be the sure winner, p = 1, and the horse with lower market probability, m < 1/2, is
revealed to be the sure loser, p = 0. The market probabilities are always less extreme
than the objective probabilities, hence the favorite-longshot bias.

Proposition 7 When there is a large number of privately informed bettors, equilibrium
betting with pari-mutuel payoffs results in the favorite-longshot bias.

The bias would be reduced if bettors could instead adjust their positions in response
to the final market distribution of bets (or, equivalently, the odds), as in a rational expec-
tations equilibrium.?’ However, the assumption that bettors observe the final odds is not
realistic. Given that a large amount of bets are placed at the end of the betting period, the
information on the final market odds is typically not available to bettors. The aggregate
amounts bet are observable only after all bets have been placed. The explanation that
we have exposed here is based on the fact that in a Bayes-Nash equilibrium the bettors
do not observe the final distribution of bets.

For example, suppose that each bettor observes a signal with conditional distribu-
tions F(s|1) = s?> and F(s|2) = 1 — (1 — 5)?. This signal structure can be derived from
a binary signal with uniformly distributed precision. With fair prior ¢ = 1/2, we have
r = s sothat G(r|1) = r* and G(r|2) = 2r — r?. Hence, conditional on horse 1 winning,
the market probability for horse 1 is

_bo+ N[1-G(1/2|x)] _ by + (3/4HN
- 2bg+ N T 2pp+ N

while the market probability for horse 2 is

bo + (1/4)N
l-m=—2""/1""
2by + N

Instead, conditional on the information revealed by the bets, the objective probability is
1 for horse 1 and O for horse 2.

201f the insiders have unlimited wealth, the favorite-longshot bias would be fully eliminated in a rational
expectations equilibrium.
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10. TIMING OF BETS

Ottaviani and Sgrensen (2004) identified two countervailing incentives for timing bets
in pari-mutuel markets.

e On the one hand, bettors have an incentive to place their bets early, in order to
capture a good market share of profitable bets. This effect is best isolated when
there is a small number of large bettors who share the same information. These
bettors have the power to affect the odds, given that they have a sizeable amount
of money.

e On the other hand, if bettors have private information, they have an incentive to
delay their bets. As in open auction with fixed deadline, waiting allows the bettors
to conceal their private information and maybe gain the information possessed by
the other bettors. To abstract from the first effect, this second effect is best isolated
when bettors are small and so have no market power.

10.1. Early Betting

If bettors are not concerned about revealing publicly their private information (for exam-
ple because they have no private information), they have an incentive to bet early.
As also observed by Isaacs (1953) and discussed in Section 4, with pari-mutuel bet-
ting the expected return on each additional dollar bet on horse 1 is decreasing in the
amount the insider bets on this horse.

Next, consider what happens when there are two insiders. Suppose that there are two
large strategic bettors, insider 1 and 2, who both think that horse 1 is more likely to
win than horse 2. These bettors need to decide how much to bet and when to bet. For
simplicity, suppose that there are just two periods, ¢ = 1 (early) and ¢ = 2 (late). Each
bettor prefers to bet early rather than late because by being early a bettor can secure a
higher payoff and steal profitable bets from the other bettor. Both bettors do so, and in
equilibrium they end up both betting early.”!

Pari-mutuel betting among the two insiders is thus a special case of the classic
Cournot (1838) quantity competition game. The result that betting takes place early
is a corollary of Stackelberg’s (1934) result that under quantity competition the first
mover (or leader) derives higher payoff than the second mover (or follower).??

10.2. Late Betting

In addition to the incentive to bet early discussed above, Ottaviani and Sgrensen (2004)
also analyzed the incentive to bet late in order to conceal private information and maybe
observe others, as in an open auction with a fixed deadline. This second effect is best

21Pennock’s (2004) dynamic modification of pari-mutuel payoffs would further increase the incentive to bet
early.
22Qttaviani and Sgrensen (2004) extend this bet timing result to the case with more than two bettors.
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understood by considering the case with small bettors without market power, but with
private information.

It would be interesting to characterize the interplay of the two contrasting timing
incentives that are present when market power and private information coexist.
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Abstract

This paper compiles and summarizes the theoretical literature on the favorite-longshot
bias, an anomaly that has been found in sports betting markets for over half a cen-
tury. Explanations of this anomaly can be broken down into two broad categories, those
involving preferences and those involving perceptions. We propose a novel test of these
two classes of models that allows us to discriminate between them without parametric
assumptions. We execute these tests on a new dataset, which is an order of magnitude
larger than any used in previous studies, and conclude that the perceptions model, in
which bettors overestimate the chances of small probability events, provides a better fit
to the data.

1. INTRODUCTION

Gambling has long been of interest to economists as it provides a natural laboratory for
studying decision-making under uncertainty. In addition, the very existence of gambling
is difficult to rationalize in a neo-classical framework along with the fact that gamblers
often purchase insurance at actuarially unfair premiums. The first behavior is evidence
of risk-love, and the latter is evidence of risk aversion. Although progress has been
made, there is no single agreed upon way to understand and model such behavior.

Any model that explains the purchase of insurance and gambling must also explain
other features of gambling markets. The longest standing empirical regularity of these
markets is the favorite-longshot bias: bettors systematically overbet longshots and
underbet favorites relative to their true probabilities of winning. This anomaly has per-
sisted since it was discovered in horse racing markets over half a century ago.! Figure 1
shows the favorite-longshot bias in our data.

Figure 2 shows the same rate of return calculations for several other datasets. We
present new data from 2,725,000 starts in Australia from the South Coast Database,
and 380,000 starts in Great Britain from flatstats.co.uk. The favorite-longshot bias
appears equally evident in these countries, despite the fact that odds are determined
by a bookmaker-dominated market in the United Kingdom, and bookmakers compet-
ing with a state-run pari-mutuel market in Australia.> Figure 2 also includes historical
estimates of the favorite-longshot bias, showing that it has been stable since it was first
noted in Griffith (1949).3

1 Griffith (1949), McGlothlin (1956).

2This is consistent with Dowie (1976) and Crafts (1985).

3The favorite-longshot bias has been documented in the gambling markets of many other sports, while the
opposite pattern—often termed the reverse favorite-longshot bias—has been observed in some others. Wood-
land and Woodland (1994, 2001, 2003) find a reverse favorite-longshot bias in baseball and hockey. Gray and
Gray (1997) find a favorite-longshot bias in football, and Metrick (1996) finds a reverse favorite-longshot
bias in office NCAA pools. Cain and Peel (2000) find a favorite-longshot bias in UK football (soccer) betting
markets. Gander et al. (1998) find it in New Zealand horse racing markets. Busche and Hall (1988) document
that the favorite-longshot bias does not exist in Japanese and Hong Kong horse racing markets, and in fact, a
reverse favorite-longshot bias may be present.
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Favorite-Longshot Bias: Rate of Return at Different Odds
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FIGURE 1 The favorite-longshot bias.

There are two related regularities of interest, although they have not been as
extensively documented. The first is the tendency for gamblers to exhibit greater risk
preference in the last race or two as compared with earlier races (McGlothlin, 1956;
and Ali, 1977). We call this the end of the day difference. The second regularity
is positive expected profits on horses with very short odds—that is, overwhelming
favorites (Hausch and Ziemba, 1995). These features do not appear in our dataset.
These two regularities may have been the result of statistical imprecision, or the market
may have corrected them over time. The latter hypothesis is suspect, however, as the
favorite-longshot bias has persisted while these other anomalies have faded.

Starting with Rossett (1965), gambling markets have been used to examine the
sophistication and rationality of gamblers. Snyder (1978) uses a gambling market,
specifically betting on horse races, to examine market efficiency.* Since then, gambling
markets have provided a fertile ground for financial economists testing the efficient
markets hypothesis. As Thaler and Ziemba (1988) note:

The advantage of wagering markets is that each asset (bet) has a well-
defined termination point at which its value becomes certain. The absence
of this property is one of the factors that has made it so difficult to test for
rationality in the stock market. Since a stock is infinitely lived, its value
today depends both on the present value of future cash flows and on the

“4There is a large body of literature focused on testing market efficiency in gambling markets. A sample
includes: Figelewski (1979) and Losey and Talbott (1980) who study horse racing, Zuber et al. (1985), Sauer
et al. (1988), Golec and Tamarkin (1992) and Gander et al. (1998) who study football, and Brown and Sauer
(1993) who study basketball.
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Favorite-Longshot Bias: Rate of Return at Different Odds
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FIGURE 2  The favorite-longshot bias across the world and time.

price someone will pay for the security tomorrow. Indeed, one can argue that
wagering markets have a better chance of being efficient because the condi-
tions (quick, repeated feedback) are those which usually facilitate learning.
However, empirical research has uncovered several interesting anomalies.

The favorite-longshot bias is interesting then for two reasons. The first is that any
theory that explains the taking of small unfair gambles and the purchase of insurance
must explain this feature. The favorite-longshot bias indicates that gamblers are willing
to accept greater risk with lower expected return, which flies in the face of the intuitive
risk-return trade-off. The second is that in some cases it provides evidence against weak-
form market efficiency.’

This chapter summarizes existing theories of the favorite-longshot bias and shows
that those theories stress either preferences or perceptions. We then discriminate
between those classes of theories using data from combinatoric gambling markets.®

SWeak form tests of market efficiency check that current prices reflect all information contained in past prices.
That is, it should not be possible to come up with a profitable strategy only based on past prices. Positive
returns on extreme favorites would violate weak form efficiency since it would be possible to make a profit
simply by betting on extreme favorites as defined by horses with odds of 0.2/1 or less. For more on the efficient
markets hypothesis and a summary of tests see Fama (1970).

OThese gambles are often called exotics and consist of exactas, which is a bet on a given horse to finish first
and a given horse to finish second; quinellas, which is a bet on two horses to come first and second in either
order; and trifectas, which is a bet on given horses to come in first, second, and third. We call these bets
combinatoric because they are generically available (i.e., not exotic) and this taxonomy is a more accurate
representation of their implementation.



Erik Snowberg and Justin Wolfers 107

Theories of the favorite-longshot bias can be split into two classes of theories. First,
standard neo-classical theory suggests that the price one is willing to pay for various
gambles can be used to recover a utility function. While betting at any odds is actuarially
unfair, the data suggests that this is particularly acute for longshots—which are also the
riskiest investment. Thus, the neo-classical approach can reconcile both gambling and
the longshot bias by positing locally risk-loving utility functions (Friedman and Savage,
1948). Because this rationalization of the favorite-longshot bias relies on the shape of
the utility function, we refer to it as a preference-based model. Alternatively, behavioral
theories suggest that cognitive errors play a role in market mispricing. These theo-
ries generally point to laboratory studies by cognitive psychologists that suggest that
people are systematically poor at discerning between small and tiny probabilities (and
hence they will price each similarly). Further, certain events are strongly preferred to
extremely likely events, leading even very likely events to be underpriced. These results
form a key part of Kahneman and Tversky’s (1979, 1992) prospect theory. Beyond the
laboratory, these theories can rationalize the purchase of sometimes extremely unfavor-
able lottery tickets, and actuarially unfair insurance on items like internal telephone
wiring.” We term these nonexpected utility theories perception-based because they
rationalize the favorite-longshot bias by referring to (mis)perceptions of the likelihood
of each horse winning.

There is also a third class of models that focus on groups of bettors with different
information available to them. These models, however, yield implications in aggregate
data that are equivalent to a model with a representative agent that bases decisions
on a set of weights that diverge from true probabilities. We will argue that all of the
models posited to date yield observationally equivalent results to those that posit either
a risk-loving or misperceiving representative agent.® As such, the preferences versus
perceptions distinction is not so much between two sharply defined theories, but rather
a taxonomy for organizing the two sets of theories. Alternatively, using the language in
Gabriel and Marsden (1990), we ask: “are we observing an inefficient market or simply
one in which the tastes and preferences of the market participations lead to the observed
results?”

The rest of this chapter proceeds as follows. In Sections 2 through 4, we review
the favorite-longshot literature and categorize the theories into our perceptions versus
preferences taxonomy, with an additional section exploring theories based on informa-
tional effects. We then lay out the implications of both preference- and perception-based
theories for the pricing of exotic bets. This is followed by our empirical findings. In
summary, the pricing function implied by the perception-based models better matches
the observed prices of exactas, quinellas, and trifectas. The key implication is that

TCamerer (2001).

8For instance, a preference for the “bragging rights” that accrue from picking a longshot that wins (Thaler
and Ziemba, 1988) yields predictions that are observationally equivalent in aggregate data to a risk-loving
representative agent. This is also true of models with heterogeneity, where some naifs bet randomly (and
hence overbetting the favorite), and imperfect arbitrage preventing sophisticated bettors from offsetting this.
See Section 5 for further discussion.
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rationalizing prices of win bets and combinatoric bets require a utility function that
is not linear in probabilities. Section 7 reviews the robustness of this result, and
concludes.

2. PREFERENCES—EXPECTED UTILITY MODELS
WITH LINEAR PROBABILITIES

Thaler and Ziemba (1988) list five explanations that are commonly offered to rationalize
the favorite-longshot bias, to which we add one more. They are:

Bettors are locally risk-loving.

. Bettors may derive utility simply from holding a ticket on a longshot.

. Bragging rights for predicting that a longshot comes through are much higher.

. Bettors might overestimate the chances that the longshots will win.

. Bettors might overweight the small probability of winning in calculating the
utility of the bet.

. Some bettors may choose horses for essentially irrational reasons like the horse’s

name.

I O I S R

@)}

The first three reasons specify a representative bettor’s preferences, reasons four
and five specify how a representative gambler views probabilities, and reason six
implies that participants in gambling markets are asymmetrically informed. We have
chosen to divide the theories into three categories, rather than the more familiar neo-
classical/behavioral division, for three reasons. The first is that all of the above reasons,
with the exception of the first, are to some extent behavioral. The second is that the
classical distinction made in the literature is misleading and an artifice of the way the
literature has developed. Finally, these categories are amenable to discrimination
through empirical tests we propose and carry out in this chapter.

One of the earliest and best known attempts to explain a consumer’s purchase of
insurance and acceptance of unfair gambles simultaneously is that of Friedman and
Savage (1948). This theory posits a wiggle in the consumer’s utility function that can
make consumers exhibit risk-loving behavior in certain circumstances even though they
are generally risk-averse.” That is, consumers may be locally risk-loving, but globally
risk-averse agents.

The first attempts by economists to explain the favorite-longshot bias relied on the
Friedman-Savage theory.!? Weitzman (1965) introduces the concept of a representative
bettor. In equilibrium, each bettor must be indifferent between the odds offered on all
horses. If the odds were too high on some horse, then the representative bettor would

9By locating this wiggle at the level of current wealth, Markowitz (1952) avoided several pitfalls of the
Friedman-Savage theory.

10 Although not applied specifically to the favorite-longshot bias, Brunk (1981) argues that the fact that lottery
play is highly correlated with dissatisfaction about current levels of income, while gambling on horse races
(which has smaller payoffs) is not as consistent with the Friedman-Savage hypothesis.
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bet on that horse, driving the odds down. If the odds were too low, the opposite would
happen.!! Weitzman (1965) fits an indifference curve to race betting data and finds that
the representative bettor is risk-loving.

Ali (1977) uses a similar technique and also finds that gamblers are risk-loving. He
suggests that bettors display constant relative risk aversion. This, coupled with risk-love,
implies that a bettor’s coefficient of absolute risk aversion increases with wealth—that
is, a bettor becomes more risk-averse as his or her wealth rises. Thus, if bettors take a
position in each race and bet a constant fraction of their wealth, then, due to the track
take and other costs, the aggregate wealth of the bettors will be lower in the last race than
in the first.!? As wealth declines, the representative bettor becomes more risk-loving,
rationalizing the end of the day difference discussed in the introduction.

The most explicit explanation of the preferences theory is in Quandt (1986), which
shows that the favorite-longshot bias is a necessary condition of equilibrium with risk-
loving gamblers. A risk-lover’s utility increases as the variance of a bet increases, thus,
they must be willing to accept a lower expected payout for a higher variance bet (a bet
on a longshot).

A subclass of preference theories suggests that gamblers are either risk-averse or
risk-neutral, but have a definite preference for positive skew. That is, bettors derive
greater utility from an increase in the third moment of the distribution of a gamble.
Evidence of skew-love is found in the finance literature; thus, we might expect bettors
to exhibit similar behavior. Evidence of skew-love is found first in Bird et al. (1987)
followed by Golec and Tamarkin (1998). Golec and Tamarkin note that skew-love is
consistent with taking multiple bets throughout a night, and taking multiple bets in a
single race. Risk-love is not consistent with these facts. Finally, skew-love can be seen
as more consistent (than risk-love) with gamblers’ participation in minus pools.'3

A final subclass of preference theories models gamblers as having an extra utility for
gambling. The most persuasive model is Conlisk (1995), although Fishburn (1980) and
others have proposed similar explanations. Such an explanation is generally avoided
because, as Conlisk notes, it seems “to be devoid of any scientific content.” However,
it can be said that this rationalization is no more ad hoc than a wiggle in a utility
function. An additional utility from gambling is not always associated with the favorite-
longshot bias, but the additional utility can easily be structured in such a way as to yield
the bias.

'More specifically, “If the price on a ticket that pays $1 if the horse wins was lower than a fair bet based on
the agent’s subjective assessment of the probability of that horse winning is too high.”

12The track take is the amount the betting establishment withholds from the betting pool, and from which
most of its profits are derived. In addition there is “breakage” due to the rounding down of odds. Track take
plus breakage is usually 15-25% of the total amount bet.

13 A minus pool occurs when a horse is an overwhelming favorite. Since in most places the minimum payout
on a $2 bet is $2.10, if a horse is a strong enough favorite, then the track will actually lose money. Such bets
have positive expected return and very small variance. A risk-lover would prefer a bet with higher variance,
although the bettor would have to trade this off versus the lower expected return of higher variance bets at the
racetrack. Hamid et al. (1996) find the opposite: bettors are risk-loving and have an aversion to positive skew.
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As noted in Asch and Quandt (1990), it is impossible to distinguish between a
representative bettor with a risk-loving utility function and one that has additional util-
ity for holding a ticket on a longshot. Intuitively, there is no difference between loving
risk and loving a risky activity. However, Piron and Smith (1994) attempt to distinguish
between these two theories. They use a laboratory gambling situation to try to eliminate
the consumption effects of gambling and find that the favorite-longshot bias still exists.
However, if the additional utility were due to placing a risky bet on a longshot or brag-
ging rights, it would be impossible to get rid of this consumption effect no matter how
sterile and boring the laboratory setting.

The additional utility in Conlisk’s model is an additive term that only takes effect
when the bettor gambles. This is functionally similar to mental accounting. Thaler and
Ziemba (1988) explicitly apply this concept to gambling on horse races.

The idea behind mental accounting is that agents keep different accounts in their
head for different activities. Thus, losses or gains incurred in other realms of life have
nothing to do with an agent’s behavior in the separate—mentally and physically—realm
of gambling. Although Thaler (1985) indicates that agents have the same value or utility
function for all their mental accounts, the suggestion in Thaler and Ziemba (1988) is
that the value function for the gambling account is risk-loving, while those for most
other everyday activities are risk-averse. The resulting utility functions in this model
may look much like the Friedman-Savage or other models discussed above, except that
rather than being risk-loving around a certain wealth level, or “location” in the wealth
scale, risk-love is local to the a physical location, specifically, the racetrack. Mental
accounting escapes many of the difficulties of pure expected utility theory because it
does not force the theorist to posit a single utility function that has certain apparently
contradictory features.

Mental accounting can also be used to rationalize the end of the day difference
(Camerer, 2001). The effect is very neatly explained by gamblers who open an account
at the beginning of a day at the track with the intention of closing it at the end of the
day with a profit.

Ali (1977) posits a slightly different model of the favorite-longshot bias. Two bet-
tors bet on two horses—one on the longshot and the other on the favorite. Each must
gamble $1, thus, the odds are always 1/1 on both horses. This means the favorite
is underbet and the longshot is overbet. As illustrated here, the driving assumption
is somewhat unreasonable. Despite this weakness, Ali’s model has been extended to
prediction markets.'*

Finally, Bradley (2003) relaxes the assumption that bettors make equal sized bets.
This assumption is explicitly or implicitly made by all of the theories thus far. This
model endogenizes the bet size while allowing the value function for losses to differ
from that for gains. In order for the optimal bet size to be finite and different from zero,
it must be that the value function for losses is less concave (or convex) than the one for
gains—which is consistent with prospect theory.

14See Manski (2006), where a similar model is used to show that prediction market prices may be inaccurate.
For a more complete description of prediction markets, see Snowberg et al. (this volume).
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3. PERCEPTIONS—THE WEIGHTING OF TRUE
PROBABILITIES

There are two obvious ways to extend the theories in the previous section. The first
incorporates a subjective view of probabilities into the representative bettor’s value
function. The second is to change our model to endogenize features of the real world
that we feel are not accurately represented. This section addresses theories of the first
type, and the next section addresses theories of the second type.

Theories involving subjective probabilities draw their inspiration from Khaneman
and Tversky’s (1979) prospect theory. Prospect theory modifies expected utility theory
in two important ways. The first is that all expected utility calculations are made with
respect to current wealth. Expected utility is evaluated over gains and losses, not over
possible ending wealth levels, through a value function. Additionally, expected utility is
not linear in probabilities. Instead, objective probabilities enter expected utility through
an arbitrary weighting function that multiplies the value function. In addition, both the
value and weighting functions can be different for gains and losses. Note that prospect
theory nests expected utility theory, that is, we can regain the expected utility framework
by simply making the weighting function equal to the probabilities and making the value
function equal for gains and losses.'>

Jullien and Salanié (2000) use maximum likelihood estimation to fit gambling data
to prospect theory as well as expected utility theory.'® They find that the additional
coefficients allowed by prospect theory are economically and statistically different from
the values that would return expected utility theory through the nesting described above.
They find that the additional flexibility of prospect theory is appropriate in describing
the favorite-longshot bias.

In Jullien and Salanié’s results, the weighting function for losses is quite concave—it
overweights small probabilities. This is consistent with the fifth explanation offered in
the previous section and is intuitively very simple to understand. The weighting function
can be interpreted as a bettor’s subjective evaluation of the true probability of a horse
winning. Thus, if bettors overweight low probabilities, they will believe that low odds
horses are more likely to win than they actually are, and will bet more money on them.

Camerer (2001) offers another interpretation of Jullien and Salanié’s results. He
notes that bettors weight their high chances of losing and small chances of winning
roughly linearly. They hate to bet on favorites not because they are risk-loving, but
because they are disproportionately afraid of the small chance of losing when betting
on a favorite.

15 Although we will posit a risk-neutral representative agent for our perceptions based model, prospect theory
allows for a risk-averse agent who still takes unfair gambles. This would also allow us to take advantage of
theories like those of Woodland and Woodland (1991) which explains why some gambling markets are based
on odds, and others on point spreads. It should be noted that there is a competing theory in this realm—that
of Bassett (1981), which appeals to profit maximization of the market maker. Data from the emergence of
internet gambling markets, which have significantly lower profit margins for market makers, should allow one
to test these two theories against each other.

16Jullien and Salanié (this volume) update their results.
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An oft-overlooked and elegant explanation of the favorite-longshot bias that centers
on perceptions is that of Henery (1985). If bettors discount a constant fraction of their
losses, then the average return to a bettor from a bet at given odds decreases with the
odds. This is exactly the favorite-longshot bias.

Mathematically, the idea that bettors discount a constant fraction of their losses can
be represented as follows. If the true probability of a horse losing a race is (1 —p;) and
the bettor discounts his or her losses by the fraction (1— f), then he or she believes
that the probability of winning is actually f(1—p;) + p;. Intuitively (or behaviorally)
this discounting could take the form of ignoring losses where the bettor’s horse came
“really close” to winning.

4. PERCEPTIONS—INFORMATIONAL EFFECTS

Most recent explanations of the favorite-longshot bias have focused on the information
sets of bettors. However, since it is the marginal, not the average dollar that determines
the final odds, the presence of a large mass of uninformed, or wrongly informed, bettors
alone cannot explain the favorite-longshot bias.!”

To develop the intuition of these models, start with a simple case. There are two
horses and two groups of bettors. One is a group of uninformed bettors who bet on the
longshot and whose total bets are determined exogenously. Then a group of informed,
risk-neutral bettors have a chance to bet. These informed bettors know the true probabi-
lities of a horse winning and continue to bet until the odds reflect the true probabilities.
This illustrates that information asymmetries alone cannot explain the favorite-longshot
bias.

Hurley and McDonough (1996) extend this simple model by adding the transaction
cost of the track take. This is sufficient to generate the favorite-longshot bias. As before,
the informed bettors will bet on the favorite until all expected profits have been taken
off the table. In the presence of the track take it is not profitable to bet on the favorite at
odds that are only slightly better than an actuarially fair bet. The odds have to be much
more favorable than a fair bet in order to make up for the fact that a certain portion of the
profits must go to the track. Thus, the favorite is underbet, and the longshot is overbet.
Note that the longshot has negative expected profits in this model. In a normal financial
market this could not persist because investors could simply short sell the longshot.
However, this model also disallows short selling, which allows the favorite-longshot
bias to persist.

Terell and Farmer (1996) extend this model by endogenizing the cost to bettors of
becoming informed. They find that the magnitude of the favorite-longshot bias depends
on the track take and relative probabilities of the horse’s winning, as well as the cost of
becoming an informed bettor.

17A trip to the track is enough to convince most people that gamblers bet based on different information
sets. There are also some empirical tests in the literature that find evidence of this. Gander et al. (1998)
finds evidence of informed bettors in basketball betting. Crafts (1985) finds evidence of insider knowledge in
British horse race betting.
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Most models are significantly more complex than the one offered above. However, in
each model, what drives the favorite-longshot bias is not the asymmetry of information
per se, but additional marketplace restrictions that are incorporated into the model. In
these models, asymmetric information is a necessary, but not sufficient, condition for
the existence of the favorite-longshot bias.

Vaughan Williams and Paton (1998) create a model where the uninformed bettors
bet on all horses evenly, and the informed bettors have an additional utility for betting
on the favorite. They find that if the additional utility for betting on the favorite is pos-
itive, then even if the track take is zero, there will be a favorite-longshot bias. This is
essentially the same as the basic model above, except the cost that prevents the equaliza-
tion of odds with true probabilities comes from forgoing the extra utility due to betting
on a favorite rather than the transaction costs from the track take. This model has an
additional implication, which is that if the transaction costs in the betting market are
less than the extra utility of betting on the favorite, then a reverse favorite-longshot bias
will exist.

Shin (1991, 1992, 1993) models betting markets controlled by a bookmaker. As
noted above, the favorite-longshot bias has been shown to exist in these markets. In
his model outsiders bet rationally, that is, in proportion with the actual win probabilities
of the horses. In addition, there are a certain proportion of the bettors who are insiders
and learn ahead of time which horse will win the race. As long as the proportion of
insider bets does not increase faster than the inverse of the probability that a horse will
win, then the favorite-longshot bias exists as the optimal response of the bookmaker to
the presence of informed bettors.'® Moreover, by offering odds that exhibit the favorite-
longshot bias, the bookmaker increases his or her profits. This accords with Levitt’s
(2004) finding that bookmakers do not set odds to clear the market, but rather to exploit
known biases in the betting public’s behavior.

Laboratory settings have found that the presence or absence of a track take has no
effect on the size or existence of the favorite-longshot bias, which does not accord with
the above theories.!” Potters and Wit (1996) model informed bettors with asymmetric
information who do not take into account the information revealed about others bettors’
signals through the market odds when they place their bets. Since each bettor receives
an independent signal of win probabilities from a known distribution, having more sig-
nals would allow a more precise estimate of the true win probabilities. By watching
the bets of others, a bettor would be able to capture this information and make a better
assessment of the true odds—and the odds would then converge to the objective proba-
bilities. However, by ignoring the bets of others, a bettor is relying too heavily on his or
her own (imprecise) signal, which introduces a bias into the betting market. This effect
is very similar to the winner’s curse in auctions with private information.

18That is, the proportion of insiders cannot be significantly higher when a favorite wins than when a longshot
wins. A constant amount of insider bets easily satisfies this condition.

19See Hurley and McDonough (1995). Although by examining fixed odds vs. spread betting, Vaughan
Williams and Paton (1998) find that transaction costs may be partly responsible for the favorite-longshot
bias.
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Ottaviani and Sgrensen (2003) exploit this insight in their own models by only
allowing informed gamblers to bet simultaneously at the end of the betting period.
Thus, the informed bettors are unable to gather information contained in the market
odds. Hence, the betting exhibits a favorite-longshot bias. The idea that informed bet-
tors place their bets last has some empirical support. Asch et al. (1982) find that the bets
placed in the last 5 minutes show evidence of informed betting.

In the Potters and Wit model, sequential and simultaneous betting are the same
since each gambler knows the other bettors will not take into account the informa-
tion revealed by their bets. However, if bettors believe that others will use their bets to
deduce something about their private information, they must take this into account and
act strategically in equilibrium. This is the approach taken by Koessler and Ziegelmeyer
(2002). They note that in a simultaneous game with asymmetric information, a fully
revealing equilibrium always exists and becomes unique as the number of bettors
grows large. In contrast, in a sequential game, a fully revealing equilibrium does not
exist as the number of bettors grows large. When a fully revealing equilibrium does
not exist, the game is subject to extreme prices and persistent biases. Note that this
is not inconsistent with Ottaviani and Sgrensen, since in that model after the final
odds are posted everyone can see that the longshot was overbet—there is just noth-
ing they can do about it. Koessler et al. (2003) extend this insight by proposing a
sequential game in which a favorite-longshot bias arises. However, the strategic bet-
tors in their model have subjective attitudes toward probabilities, which, as we saw in
the last section, is enough to create a favorite-longshot bias even without asymmetric
information.

S. DEFINITION OF MODELS AND IMPLICATIONS FOR
COMBINATORIC BETS

We start with two extremely stark models, each of which has the merit of simplic-
ity. Both are representative agent models, but as we suggest below, can be usefully
expanded to incorporate heterogeneity. Ultimately, aggregate price data will not be
able to separately identify more complex models from these representative agent
models.

Under the preference-based approach, we start by postulating an expected utility
maximizer with unbiased beliefs. In equilibrium, bettors must be indifferent between
betting on the favorite horse (at odds of F/1, and a probability of winning of f), and
betting on a longshot (at odds of L/1, with probability of winning, /)

fU(F) =1U(L) (normalizing utility to zero, if the bet is lost).20

20We also assume that each bettor chooses to bet on only one horse in a race. This simplifies the analysis, as
otherwise we would need to also keep track of the fraction of wealth that each bettor chooses to gamble.
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FIGURE 3 Utility function implied by betting odds.

Given that we observe in the data the probabilities of each horse winning (f, /) and
their odds (F, L), these data reveal the representative bettor’s utility function. That is,
by comparing the betting odds and the winning probability of pairs of “nearby” bets, we
can identify the utility function of the representative bettor (up to a scaling factor).?! In
order to simplify notation, we normalize so that utility is zero if the bet loses, and utility
is one if the bettor chooses not to bet. Thus, if the bettor is indifferent as to whether to
accept a gamble paying odds G, with probability g, then U(G) = g~'. Figure 3 performs
precisely this analysis, backing out the utility function required to fully rationalize the
choices shown in Figure 1.

The observation that bettors are willing to accept bets on horses at increasingly long
odds, even as the expected payoff becomes increasingly actuarially unfair, implies that
U” > 0. Beyond this, the specific shape of the declining rates of return identifies the
slope of the utility function at each point.

As can be seen quite clearly, a risk-loving (or locally risk-loving) utility function is
required in order to rationalize these results. The utility function—by construction—
fully explains all of the variation in Figure 1.2 Several other theories of the favorite-
longshot bias have also been proposed that yield implications that are observationally
equivalent to a simple risk-loving representative agent model. For instance, Thaler and
Ziemba (1988), echoing Hausch and Ziemba (1995) argue that bragging rights accrue
from winning a bet at long odds. Formally, this suggests agents maximize expected
utility, where utility is the sum of the felicity of wealth, v, and the felicity of bragging
rights or the thrill of winning, w, and hence the expected utility of a gamble that returns

21See Weitzman (1965), Ali (1977), and Jullien and Salanié (2000) for examples.

22Imposing a CRRA functional form on the utility function, a simple non-linear probability model yielded an
estimate of the coefficient of relative risk aversion of —0.16 (standard error 0.0006; n = 4,867,857, which is
remarkably close to Ali’s (1977) estimate.
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G with probability g can be expressed as
EU(G) = g[w(G) +v(x)] + (1 — g)w(0)

where the initial wealth level is normalized to zero.

As in the representative agent model, bettors will be prepared to accept lower returns
on riskier wagers (betting on longshots) if U” > 0. This is possible if either utility of
wealth is sufficiently convex (w” > 0), or bragging rights are increasing in the payoff
at a sufficiently increasing rate. More to the point, decisions under uncertainty do not
allow us to separately identify effects operating through w, rather than v, and this is the
sense in which the model is observationally equivalent with the simple representative
agent who is risk-loving. A similar argument shows that a model in which the mere
purchase of a ticket on a longshot confers some utility (such as the dream of striking it
rich), is also observationally equivalent.

Alternatively, under the perceptions-based approach, we postulate a subjective, risk-
neutral, expected wealth maximizer. The agent’s subjective beliefs, , are systematically
biased estimators of the true probabilities. In equilibrium, bettors must believe that the
rates of return to betting on the favorite and the longshot are equal, and hence

w(f)F = w(l)L.

Consequently, data on the probabilities of each horse winning (£, /) and their odds
(F, L), reveal the systematic component of the representative bettor’s subjective expec-
tations. Thus, we can identify the decision weights of the representative bettor, and
Figure 4 (which is a simple transform of Figs. 1 and 3) can be interpreted as showing
precisely this function. The low rates of return to betting longshots are thus rational-
ized by the assertion that bettors tend to bet as though horse’s “tiny” probabilities are

Perception function
that rationalizes
favorite-longshot bias

Perception

Unbiased perceptions

Probability
FIGURE 4  Perception function implied by betting odds.
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actually “small” probabilities. Beyond this, the specific shape of the declining rates of
return identifies the decision weights at each point. The overall form of the weighting
function of a gamble with probability of winning g and odds G is

m(g)=1+G6)".

Note that as in Figure 3, by construction the function derived here explains all of the
variation in Figure 1.

While the assumption of risk-neutrality is clearly too stark, as long as bettors gam-
ble small proportions of their wealth, the approximation error is second-order. For
instance, assuming log utility, a bettor is indifferent over betting £% of their wealth
on the favorite or the longshot if: w(f) log(w + F) = (/) log(w + L), which under the
standard approximation implies that: w(f)F ~ (/) L.

While we have presented the perceptions model as a highly stylized representative
agent model, a range of somewhat richer alternatives that have been proposed in the
literature yield similar implications. For instance, Hurley and McDonough consider a
simple form of heterogeneity in which naifs bet randomly (for instance based on the
horse’s name), and rational agents bet according to the true probabilities. Based on this,
the rational agents will partly offset the longshot bias caused by the naifs, but the track
take means that it is not optimal to fully offset this bias. Consequently, the market as a
whole prices gambles as if it overestimated the probability of longshots winning, while
only a fraction of market participants have biased beliefs. Since we do not have data
on individual gamblers it is impossible to identify whether there are separate groups of
bettors. Thus, maintaining the representative agent assumption, this is indistinguishable
from the perceptions model.

Related models by Ali (1977) and Manski (2004) posit that the betting population
has—on average—unbiased beliefs, but that there is heterogeneity around these beliefs.
Thus, those with beliefs that the favorite is particularly likely to win will bet the favorite,
while others will bet the longshot. The driving force in the model is that longshot bettors
back their horse to win more than favorite-bettors, which causes the odds of the longshot
to become compressed relative to the true probabilities. Thus position-weighted aver-
age perceptions exhibit a favorite-longshot bias. Finally, Henery (1985) and Williams
and Patton (1997) argue that bettors discount a constant proportion of the gambles in
which they backed a loser, possibly due to a self-serving bias in which they argue that
conditions were atypical. Because longshot bettors lose more often, this discount makes
betting longshots relatively more attractive. In this case, it is entirely accurate to describe
these bettors as motivated by misperceptions of probabilities.

By construction, both of these models explain all of the variation in the data from
win betting (betting on which horse will cross the finish line first). These data provide
no traction in establishing which of the two models are better explanations, as both are
tautological in this space. The only way to argue that one model is “better” than another
is to make strong parametric assumptions. This is what all previous authors have done.
Our innovation is to consider data from combinatoric markets as well, which allows us
to make minimal assumptions and still discriminate between the two models.
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We start by examining in detail how our method works for an exacta bet (picking the
first two horses in order), before proceeding to other combinatoric bets: the quinella and
trifecta. As before, we price these bets by considering indifference conditions. Pricing
an exacta requires data on the perceived likelihood of the pick for first actually winning,
and conditional on that, the likelihood of the pick for second coming second, as well
as the bettor’s utility function. As such, a bettor will be indifferent between betting on
an exacta with horses A then B paying odds of O4p/1 and not betting (which yields no
change in wealth, and hence a utility of one), if:

Preferences Model Perceptions Model

(Risk-lover, unbiased expectations) (Biased expectations, risk-neutral)

papBaU(Oyp) =1 T(pa)T(pBla)Oap — (1 — w(pa)m™(ppa)) =0
1 1

Noting that p = m Noting m(p) = oxT

O = U (U(04)U(Op4)) Oup =04+ 1)(Opa+1)—1

Under the preferences model, we estimate the utility function based on the pricing
of win bets (in Figure 3), and we then invert this to compute unbiased win proba-
bilities from the betting odds. While we do not have data on Og4—the odds of B
coming second, conditional on A coming first—we can infer this conditional prob-
ability from win odds, by assuming conditional independence. That is, w(B|A) =
w(B)/(1 — w(A))? under the perceptions model. This assumption is akin to thinking
about the race for second as a “race within the race.”?* With this assumption in hand,
we can explore how either the utility function in Figure 3 or the decision weights in
Figure 4 yield different implications for pricing of exactas.?

Figure 5a, b shows the pricing functions implied by these two models; the x- and
y-axes show the odds on the first and second place horse, and the z-axis shows the equi-
librium exacta odds implied by each model. Appendix A carries out similar calculations
for quinellas and trifectas in more detail.

2The calculation for the preferences model takes the same form, replacing p for w(p) in the equation.
2*While relying on conditional independence (as per Harville, 1973) is standard in the literature, Hausch et al.
(1981) find that Harville produces estimates for second and third place horses that are too high but that the
biases cancel such that the place and show probabilities are not biased much. We showed in Section 6 that we
can relax this assumption and our major results remain unchanged. See also Appendix A for more details on
how these pricing functions are calculated.

25There remains one minor issue: as Figure 4 shows, horses never win as often as suggested by their win odds.
In mapping these empirical probabilities to the w(p) function, we have two choices: (1) apply this mapping
literally, even though it implies that agents systematically overestimate all probabilities, or (2) adjust the
odds for the track take by dividing the odds-implied probabilities by their sum, within each race. This latter
possibility can be rationalized by assuming that bettors gain a small utility from having a horse to cheer in
each race as in Conlisk (1993). This small utility determines bet sizes (it equals bet size times the track
take), and can both rationalize why risk-neutral or even risk-averse bettors gamble, and also results in a 7(p)
function that is not systematically an overestimate for all p. We choose the latter, although our results are
qualitatively similar either way.
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Predictions of the Perceptions Model Predictions of the Preferences Model
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FIGURE 5  a: Pricing functions for exactas for the perceptions model. b: Pricing functions for exactas for the preferences model.

6. USING COMBINATORIC MARKETS TO TEST
THE MODELS

This chapter proposes a test capable of differentiating between the perceptions and pref-
erences models. A secondary aim is to bring a new dataset to the question, documenting
the stylized facts from all 5,600,000 horse race starts in the U.S. between 1991 and
2001. These data are an order of magnitude larger than any other dataset previously
examined, and allow us to be quite precise in establishing the relevant stylized facts.
Our chapter is most closely related to the papers of Julien and Salanié (2000) and
Gandhi (2007) which both attempt to sort out the extent to which the favorite-longshot
bias reflects risk-love versus misperceptions in win pool betting data.® Julien and

20There are other papers that try to distinguish between different explanations of the favorite-longshot bias.
Coleman (2004) concludes on the basis of Occam’s razor that the bias is due to the interaction of informed and
uninformed bettors. Golec and Tamarkin (1995) find that overconfidence (i.e., misweighting of probabilities)
fits the data in the win pool better than risk-love, but cannot reject the hypothesis of risk-love. Plott et al.
(2003) find that a rational expectations model is better than one centered on private information in explaining
the favorite-longshot bias. Sobel and Raines (2003) test between risk-love and informational models and
come down in favor of the information model. Their models, however, make functional form assumptions.
See Sobel and Ryan (this volume) for an update.
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Salanié (2000) find evidence consistent with the misperceptions model (which they
label as nonexpected utility theories). Gandhi (2007) shows that it is possible to iden-
tify the preferences of bettors without the representative bettor assumption. He finds
the preferences identified in this way are more consistent with expected utility theory
(rather than risk-love, since some bettors are estimated to be risk-averse) rather than
misperceptions.

Our innovation is to argue that combinatoric bets can be used to derive testable
restrictions that differentiate these theories. The question then is whether the specific
forms of preferences and perceptions that rationalize the favorite-longshot bias in the
win pool can also explain exacta (and quinella and trifecta) pricing; and further which
gives a fuller accounting of the variation in that data. By expanding the choice set under
consideration (to correspond with the bettor’s actual choice set!), we have the oppor-
tunity to use the relevant theory to derive testable restrictions of each theory. While
authors such as Asch and Quandt (1987, 1988) and Ali (1979) have tested the effi-
ciency of these exotic betting markets, we are the first to use these prices to distinguish
between competing theories of possible market inefficiency.

Our data contains every horse race run in the U.S. between 1992 and 2002. These
data are official jockey club data, and hence are the most precise data available. Data
of this nature are prohibitively expensive, and so we are extremely grateful to David
Siegel of TrackMaster Inc. for providing us access. While we have a vast database on
every horse and every race, jockey, owner, trainer, sire and dam, we will only exploit
the betting data, and whether or not a horse won the race. Appendix B further describes
the data.

We summarize our data in Figures 6 and 7. We group horses into 74 separate groups;
this allows for fine distinctions to be made, but also ensures that we have sufficient
observations to make precise estimates of the rates of return to betting horses in each
group. The x-axis of both figures inverts the odds so as to work out an implied probabil-
ity, or, alternatively, how often a horse at those odds must win in order for the bettor to
break even. Data are graphed on a log scale so as to better show the relevant range of the
data. Figure 1 shows the actual rate of return to betting on horses in each category. The
average rate of return for betting favorites is about —10%, while horses at a midrange
of 1/1 to 20/1 yield a rate of return of —20%, and real longshots—horses at 100/1 or
more—are much more expensive to bet on, costing 60 cents per dollar bet. This is, once
again, the favorite-longshot bias. Figure 6 also shows the same pattern for the 54,013
races for which the jockey club recorded payoffs to exacta, quinella, and trifecta bets.
Given that much of our analysis will focus on this smaller sample, it is reassuring to see
a similar pattern of returns.

The literature has suggested two other empirical regularities that we can explore.
Ziemba and Hausch (1986) and Hausch and Ziemba (1995) present data suggesting
that there are positive rates of return to betting extreme favorites, perhaps suggesting
limits to arbitrage. However, as the confidence intervals in Figures 1, 6, and 7 show,
there is substantially greater statistical uncertainty about returns on extreme favorites
and longshots, and in none of these datasets is there a positive effect of betting on horses
less than 0.2/1.
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Favorite-Longshot Bias: Races that Include Exotic Data
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FIGURE 6 The favorite-longshot bias in different subsets of data.

Second, McGlothlin (1956) and Ali (1977) argue that the rate of return to betting
moderate longshots falls in the last race of the day. While this conclusion was based
on a small sample, Thaler and Ziemba (1988), and Camerer (2001) interpret this as
consistent with loss aversion: most bettors are losing at the end of the day, and the
“get out of jail” race provides them with a chance to leave the racetrack even for the
day. Thus, bettors underbet the favorite even more than usual, and overbet horses at
odds that would eliminate their losses—around 8/1. Figure 7 replicates Figure 1, but
separates out the last race of the day from earlier races. As should be clear, there is no
statistically discernible difference between the last race and earlier races.?’ If there were
evidence of loss aversion in McGlothlin or Ali’s data, it no longer appears evident in
more recent data, even as the favorite-longshot bias has persisted.?®

We now turn to the major contribution of this paper—testing the different models
on combinatoric bets. Our empirical approach is simply to estimate which of the pric-
ing functions shown in Figure 5 better fits the data. In Table 1, we convert the odds
into the price of a contingent contract that pays $1 if the chosen exacta wins (that is,
Price = (Odds + 1)7!), and then regress the price of the winning exacta against the
prices implied by preference model (column 1), the perceptions model (column 2)
and then put them both in the regression (column 3). Comparing columns 1 and 2,

2TNote that the last race sample is about one-ninth the size of the all races sample. As such, the standard errors
on the estimates for the last race are approximately three times as wide as those for all races.

28There are reasons other than statistical uncertainty why positive returns may have dissipated. Since these
studies, there have been many changes in the market structure, such as a larger role for rebates and more
off-track betting, which may have changed the incentives of bettors.
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Favorite-Longshot Bias: Last Race of the Day
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FIGURE 7  The favorite-longshot bias in the last race vs. all other races.

the explanatory power of the perceptions model is substantially greater, and the regres-
sions in column 3 confirm this, showing that when the regression is allowed to choose
optimal weights on the implications of each theory, it strongly prefers the perceptions
model. When we weight by the size of the relevant betting pool, we obtain qualitatively
similar results.

Panels B and C repeat this analysis, but this time extending our test to see which
model can better explain the pricing of quinella and trifecta bets. While the specific
formulae to generate the implications of each model differs, the intuition is precisely
the same. Appendix A shows the relevant pricing functions in more detail.

Our results are clear: the perceptions model gives us more traction in explaining the
pricing of combinatoric bets. First, observe that in all three betting pools, the coefficient
on the perceptions model is closer to unity than the preferences model. Also, in all
three pools, the perceptions model explains a significantly larger part of the variation
in the data than the preferences model does. Although the differences in R? are small
numerically, given the size of the dataset, the perceptions model is actually quite an
improvement in explanatory power. Finally, the bake-off prefers the perceptions model.
Given how similar the predictions of each model are, this is actually quite a striking
result.?”

We have also re-run these regressions a number of other ways to test for robustness,
and our conclusions are unaltered by whether or not we include constant terms in the

29This is normally called a horse race, but to avoid confusion, we call it a bake-off.
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TABLE 1 Testing the Fit of Each Model
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Specification (1) Preferences (2) Perceptions  (3) Bake-Off
Panel A: Exacta Bets (n = 52,168)
Preferences-based model predictions 0.7993 0.1791
(risk-love) (0.0016) (0.0102)
Perception-based model predictions 0.9172 0.7159
(misperceive probabilities) (.0017) (0.0105)
Constant 0.0076 .0056 0.0058
(0.0001) (.0001) (0.0001)
Adjusted R? 0.8358 0.8482 0.8492
Panel B: Quinella Bets (n = 52,778)
Preferences-based model predictions 0.8124 -0.216
(risk-love) (0.0014) (0.0123)
Perception-based model predictions 0.8826 1.1137
(misperceive probabilities) (0.0014) (0.0132)
Constant 0.0129 0.0103 0.0101
(0.0002) (0.0002) (0.0002)
Adjusted R? 0.8602 0.8761 0.8768
Panel C: Trifecta Bets (n = 34,313)
Preferences-based model predictions 0.6410 0.1391
(risk-love) (0.0021) (0.0071)
Perception-based model predictions 0.8257 0.6575
(misperceive probabilities) (0.0025) (0.009)
Constant 0.0027 0.0030 0.0027
(0.0001) (0.0001) (0.0001)
Adjusted R? 0.7247 0.7593 0.7619

NOTE: Dependent variable: price of a contract paying $1 if the combinatoric bet wins.

regressions, whether or not we weight by the size of the betting pool, whether we drop
observations where the models imply very long odds, or whether or not we adjust the
perceptions model in the manner described in footnote 37. The results are also robust
different functional forms, including the natural log price of a $1 claim, the odds, or

log-odds.

6.1. Testing Conditional Independence

The assumption of conditional independence was a key assumption simplifying the
analysis in the previous section. We now turn to both testing this assumption, and then
deriving two further tests that can distinguish between our families of models even if

conditional independence fails.
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Recall that the only unobservable in the previous section was the probability of horse
B finishing second, conditional on horse A winning. Conditional independence posits
a specific functional form for this relationship, based on the chances of horses A and
B winning the race. However, there may be good reason to doubt this assumption. For
instance, if a heavily favored horse does not win a race, this may reflect the fact that
it was injured during the race, which then implies that it is very unlikely to come
second. That is, the odds may provide useful guidance on the probability of win-
ning, but conditional on not winning, may be a poor guide for the race to come
second.

We can directly test the assumption of conditional independence by asking whether
the Harville formulae provide a sufficient statistic for whether a horse will come
second. We compute the Harville statistic as pg(1 — p4)~', where p, and pp reflect
the probability that horses at odds of A/1 and B/1, respectively, win their races. We
then run a linear probability model where the dependent variable is an indicator vari-
able for whether horse B runs second.? Beyond the Harville predictor, we both loosen
up the functional form of the specified relationship, adding linear and quadratic terms
in both p4 and pp to the regression. In the third column we also append other factors
to the regression, such as the probability that a horse at the odds of the favorite wins
the race, and a Herfindahl index of the probabilities of each of the horses in the race.
Table 2 shows our results.

Two main conclusions can be drawn from Table 2. First, the Harville formulae are
extremely useful predictors of the probability of a horse finishing second. To provide
a yardstick for thinking about the explanatory power, note that this is about four-
fifths as high as the R? one gets when trying to explain which horse wins the race,
using the predictions in Figure 5. Second, the Harville formula is not a sufficient
statistic; our other independent variables raised the explanatory power of the regression
somewhat.

An immediate concern is that the Harville approximation error might be driv-
ing our main results in Table 1. However, there is an easy solution, which is to
simply to calculate pg4 directly from the dataset. We implement this procedure in
Table 3.

In order to do this, we had to find the true probability that an exacta with odds A/1
and B/1 actually wins using the same odds ranges to organize the bins as before. This
means that there are 74 x 74 = 5,476 combinations for which we need to calculate the
probabilities, so on average there are ~1,000 observations per combination. However,
certain combinations are much more likely, and others, such as having two horses at
0.1/1 odds in the same race, are impossible. The range of the number of observations in
these cells goes from 1 to 441,930. This affects the precision to which we can estimate
PB|4» SO when we run regressions, we weight by the inverse of the standard error to
which we estimated p 4. The standard error of each cell is given by the familiar for-
mula sqrt((ppja* (1 — pgja))/n). This is just standard WLS to account for independent
heteroskedastic observations.

30Probits yield similar results.
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TABLE 2 Conditional Independence of Second Place Finish

Specification (n = 4,121,025) (€D) 2) 3)

Prediction from conditional independence 0.7881 0.8794 0.8265
(Harville formula) (0.0013) (0.0083) (0.0085)

Predicted probability of first place finish from odds 0.1484 0.2083
(0.0123) (0.0127)

Predicted probability of first place finish squared —-0.7371 —0.6699
(0.0116) (0.0133)

Predicted probability of first place horse 0.0165 0.0377
(0.0042) (0.0051)

Predicted probability of first place horse squared —0.0756 —0.1377
(0.0075) (0.0099)

Horse was favorite -0.0173
(0.0008)

Number of horses —0.0035
(0.0110)

Max probability of horse in race —0.0312
(0.0110)

Max probability of horse in race squared 0.1392
(0.0170)

Herfindahl index 0.0770
(0.0103)

Constant 0.0293 0.0172 —-0.0190
(0.0003)  (0.0006) (0.0009)

Adjusted R? 0.0767 0.0778 0.0782

NOTE: Dependent variable: indictor for whether a horse came in second.
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The results in Table 3 are consistent with those in Table 1. For each of the three exotic
bets, the perceptions model has greater explanatory power than the risk-love model, and,

in the bake-off, is strongly preferred.

6.2. Relaxing Conditional Independence Further

Our final test of the two models is even more non-parametric, and relies only on
the relative pricing of exacta and quinella bets.>! As before, we derive predictions
from each model and test which better explains the observed data. The advantage of
focusing only on comparisons between the first two horses is that these tests are—by

3INote that these tests are distinct from the work by authors such as Asch and Quandt (1987, 1988) and Ali
(1979), who test whether quinella pricing is arbitrage-linked to exacta pricing. Instead, we ask whether the

same model that explains pricing of win bets can jointly explain the pricing of exacta and quinella bets.
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TABLE 3 Testing the Fit of Each Model without Conditional Independence, Correcting
for Heteroskedasticity

Specification (1) Preferences (2) Perceptions  (3) Bake-Off

Panel A: Exacta Bets (n = 52,322)

Preferences-based model predictions 1.0078 —0.0506
(risk-love) (0.0023) (0.0424)
Perception-based model predictions 1.0492 1.1017
(misperceive probabilities) (0.0024) (0.0441)
Constant —0.0015 0.0013 0.0015
(0.0001) (0.0001) (0.0001)
Adjusted R? 0.7859 0.7884 0.7884
Panel B: Quinella Bets (n = 52,774)
Preferences-based model predictions 1.002 0.263
(risk-love) (0.0017) (0.037)
Perception-based model predictions 0.9191 0.6783
(misperceive probabilities) (0.0015) (0.0339)
Constant 0.0005 0.0028 0.0022
(0.0001) (0.0001) (0.0001)
Adjusted R? 0.8688 0.8697 0.8698

NOTE: Dependent variable: price of a contract paying $1 if the combinatoric bet wins.

construction—conditionally independent of the characteristics of all other horses in the
race.

Before deriving the predictions, we will explore the setup and basic intuition. Given
two horses with odds F/1 (which we will also call the favorite) and L/1 (the longshot)
and F < L, each model makes a unique prediction about the odds of the exacta and
quinella. However, each observation with given odds of the first and second place horse
does not have the same exacta and quinella odds. We can use the quinella (exacta) price
and our models to make a better prediction about the price of the exacta (quinella).
This section uses all four of these odds in concert to make predictions about the prob-
ability of the favorite coming first (given that F and L came first and second in some
order).

For the derivation below, note that the exacta F-L occurs with probability pr: p;|r and
the L-F exacta occurs with probability pr#pr|r, and hence the corresponding quinella
occurs with probability pr*pr|r + pr*prr (Where pr is the probability of F winning,
and pyr denotes the probability of F coming second given that L won the race). Also,
the L-F exacta has odds of E;r/1, and the L-F quinella (which is the same as the F-L
quinella) has odds Q/1.

Consequently, these two models have different implications for how frequently we
expect to observe the L-F exacta winning, relative to the F-L exacta winning. Further,
these comparisons yield distinct predictions even within any set of apparently similar
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Preferences Model Perceptions Model
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races (those whose first two finishers are at L/1 and F/1 with the quinella paying
o/1).

Thus, we can include a full set of fixed effects for L, F, Q and their interactions in
our statistical tests.>> The residual after partialing out these fixed effects is the marginal
effect of including quinella and exacta odds in our predictions. Since much of the varia-
tion in the quinella and exacta payoffs comes from the first place odds, which we have
already used in our tests, we are here interested in the improvement in prediction when
using the bettor’s full choice set.

Figure 8 compares these predicted values with their actual values, where each are
reported as deviations from their baseline (or L-F-Q cell mean). It is important to note
that by focusing only upon comparisons between the first two horses, we eliminate
parametric assumptions about “the race for second place” (conditional independence).

Clearly the preference-based model does a much better job in predicting the winning
exacta, given horses that finish in the top two positions (and their odds). Indeed, the
predictions of the perceptions-model are robustly positively correlated with actual out-
comes (p = 0.12; n = 50,216), while the preferences model yields predictions that are
perversely negatively correlated with actual outcomes (p = —0.16). The results of a
fixed effects regression on these predictions can be found in Table 4.

Table 4 requires some explanation. The first thing to note is that if we run this regres-
sion using OLS without fixed effects, the results look much the same as before. The
perceptions model has more explanatory power, and a coefficient close to one in the
bake-off. The preferences model has a coefficient near zero. However, we are interested
here in the incremental effect of adding the quinella and exacta odds, hence we have
used a fixed effects model.

32Because the odds L, F, and Q are actually continuous variables, we include 100 fixed effects for each, one
for each percentile of the distribution of each.
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Predicting the Winning Exacta Within a Quinella
Proportion of Races in which Favored Horse Beats Longshot, relative to Baseline
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Model Predictions
Probability that Favorite Beats Longshot, Relative to Baseline

Chart shows model predictions and outcomes relative to a fixed-effect regression baseline.
Baseline controls for saturated dummies for: (a) The odds of the favored horse; (b) The odds of the
longshot (c) The odds of the quinella; and (d) A full set of interactions of all three sets of dummy variables

Proportion of Races in Which Favorite Beats Longshot
o
1

FIGURE 8 Predictions including quinella and exacta odds—demeaned.

NOTE: For each race we compute the likelihood of an F-L exacta given an F-L quinella. These predictions
are made under the two models outlined in the text, using as inputs data on the odds of each horse (F/1, L/1),
their quinella (Q/1) and the winning exacta (E/1). We then compute the mean predictions and outcomes for
all races within the same { F, L, Q} cell. Subtracting these means yields the model predictions and outcomes
relative to these fixed effects. For the purposes of the plot, we round these residuals to the nearest percentage
point (shown on the x-axis), and the y-axis shows actual win percentages for races in each bucket.

TABLE 4 Fixed Effects Regression of Models Using Quinella and Exacta Odds

Specification (1) Preferences (2) Perceptions (3) Bake-Off

Panel A: Exacta Bets (n = 50,216)

Preferences-based model predictions —0.7582 —8.2994
(risk-love) (0.0126) (0.0222)
Perception-based model predictions 0.4909 8.5581
(misperceive probabilities) (0.0134) (0.0212)
Constant -3.52x107° -3.64 x 107° -5.69 x 107°
(0.0015) (0.0015) (0.6103)
Adjusted R? 0.0347 0.0132 0.0352

NOTE: Dependent variable—dummy variable for whether favorite came first.

The perceptions model has a moderate coefficient when presented alone in the regres-
sion. The preferences-based model is actually systematically biased the wrong way.
The bake-off provides us with no useful information, except that the models make, in
general, highly correlated predictions.
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A concrete example provides further intuition of why the models make different pre-
dictions and why the perceptions model fairs better. Consider all races in which F was at
4/1, and L was at 9/1, while the quinella was at 20/1 (which is close to actuarially fair).
If the F-L exacta is at odds of 40/1, then given the utility function shown in Figure 3,
a risk-loving bettor is willing to bet this high-risk F-L exacta, even if its chances of
winning are quite low. Given the odds of the quinella, and the fact that the probability
of the F-L exacta is lower than implied by the odds (because of the extra risk pre-
mium associated with it), this implies that the risk-loving bettor must believe that L-F is
(relatively) quite likely. This turns out to be a poor prediction, and indeed empirically,
F-L is typically more likely than L-F as we would expect. This explains the anoma-
lous negative performance of the risk-love model, particularly around the region where
either exacta is about as likely as the other. By contrast, the perceptions model performs
well because the relative misperceptions of bettors are approximately constant for most
horses, leading them to misprice the F-L exacta and quinella in roughly similar ways,
which yields well-calibrated estimates of the relative likelihood of the L-F exacta.

The intuition above leads us to wonder about the usefulness of an unbiased risk-
neutral model. This model explains the data in this test as well as the preferences
model, even in the fixed effects form. However, an unbiased risk-neutral model cannot
account for the fact that people gamble or the favorite-longshot bias in the first place,
so even though it performs well in this test, we can eliminate it from consideration as
an explanation of the behavior we observe at the track.

These tests imply that while a preference-based model can be constructed to account
for the pricing of win bets, it yields inaccurate implications for the pricing of exacta and
quinella bets. Moreover, its predictions of the relative frequency of exacta outcomes are
on average often negatively related to actual outcomes. By contrast, the perceptions-
based model is consistent with the pricing of exacta, quinella, and trifecta betting, and
as this section showed, also consistent with the relative pricing of exacta and quinella
bets. Moreover, these results are robust to a range of different approaches to testing the
theory.

7. CONCLUSION

This chapter summarizes all of the theories of the favorite-longshot bias in gambling.
However, the term bias is somewhat misleading here. That the rate of return to betting
on horses at long odds is much lower than the average return to betting on favorites
simply falsifies a model that bettors maximize a function that is linear in probabilities
and linear in payoffs.

By examining these theories and placing them within the larger economics litera-
ture, we are able to divide them into three categories. The first are theories that involve
preferences, the second are theories that involve the weighting of probabilities of a
bet winning, or misperceptions. The third is observationally equivalent to the sec-
ond, and involves different classes of bettors that have different information sets. For
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compactness, we referred to the former as explaining the data with preferences, while
we refer to the latter as explaining the data with perceptions. Neither label is particularly
accurate.

Employing a new dataset that is an order of magnitude larger than anything consid-
ered to date, we document a set of stylized facts from the win market. As with other
authors, we note a substantial favorite-longshot bias. However, two features of the win
market reported by other authors are notably absent. Namely, we fail to find positive
expected payoffs on extreme favorites. We are also unable to replicate results that posit
that the risk attitudes (or misperceptions) are significantly different in the last race of
the day. These features have either disappeared since the time other authors originally
wrote about them, or more likely, were not statistically significant in the first place.

This chapter also contributes to the literature that tries to determine whether neo-
classical or behavioral theories better explain aggregate behavior in the field. Our
innovation is to consider combinatoric bets, such as exactas, quinellas, and trifectas.
Because the underlying risk, or set of beliefs (depending on the relevant theory) is
traded in both the win and combinatoric betting markets, we can derive testable impli-
cations of both sets of theories. Our results suggest that the perception-based theories
yield greater explanatory power than the preference-based theories. Indeed, while both
are significant explanations of the pricing of exotic bets, the preference-based model
adds little explanatory power beyond the perceptions model. These results are robust to
arange of alternative approaches.

Of course, neither model is literally correct, and thus there is plenty of scope for
related work on these issues. Thus, rather than stating a strong conclusion, we would
simply argue that our results suggest it seems likely that nonexpected utility theories are
the more promising candidate for explaining racetrack betting, and perhaps this is cause
for optimism that they may also explain anomalies in other domains of decision-making
under uncertainty.
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APPENDIX A: Pricing of Combinatoric Bets Using Conditional
Independence

This appendix details how we come up with the predictions of our models using
the assumption of conditional independence. It takes a slightly different form than
the method of pricing exactas developed in the text but we hope that by sacrificing
parsimony we will increase the reader’s intuition for what we are doing.

The following formulae, derived in the text, are central for the derivations in this
section.

Preferences Model Perceptions Model
(Risk-lover, unbiased expectations) (Biased expectations, risk-neutral)
1 1
U ) =- =
©)=- w0 =15
(1 1
>0=U - >0=——-
p ™ (p)

The functions U(O) and  (p) are derived from Figure 1, and displayed in Figures 3
and 4, respectively. Given the odds of a horse winning, we can find the market’s
expectation of the true probability of that horse winning under either model.

An exacta is a bet on two horses to finish first and second in a particular order.
In order to calculate the probability of an exacta winning, we use the assumption of
conditional independence commonly found in the literature. This assumption states
in particular that the probability of a horse finishing in some place in a race is inde-
pendent of where the other horses finish. If we observe horse A finishing first (with
first odds A/1), and we knew that it had a probability p4 of doing so, we can figure
out the probability of horse B (with first place odds B/1) finishing second by deter-
mining the probability of it coming first in the race among the remaining horses. Of
course, the fact that horse A came first provides us with no new information about the
other horses, so we just renormalize the probability of the new race to 1, giving the
conditional probability ppj4a = pp(1 — pa)~"'. Thus

pp = 2APB. _ m(pa)T(ps)
o = LP4)™PE)
1= pa 1—7(pa)
1 1—=pa 1 —m(pa)
>0 =U‘<—> 5 0p=—2 _1=0,405+1)-1
£ DADB T wpa)m(ps) 4Op+1D

We can then test the predictions of the two models against the observed exacta odds.
In Table 1 we do this, but we express both the predictions and the observed odds as the
amount you have to pay to win $1. This is simply given by (1 + Odds)™".

A quinella is a bet on two horses to finish first and second in any order. Thus, the
probability of an A-B quinella is the same as the sum of the probabilities of the A-B
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exacta and B-A exacta. A trifecta is a bet on three horses to finish one-two-three in a
specific order. The probability of a trifecta is found by starting with the probability of
an A-B exacta and applying the assumption of conditional independence once again to
determine the probability of a horse C (with win odds C/1) crossing the line third after
A and B have crossed first and second. This gives us the following relations:

_ DAPB | DaDB _ w(pa)w(pp)  w(pa)m(pp)
Po = +— T =
l—ps 1-—ps 1 —m(pa) 1 —m(pp)
pr = baPBPC - w(pa)w(pp) ™(pc)
(I =pa)(I = pa — pB) T

T A= w1 = 7(pa) — 7(pp))

The odds implied by each model can then be calculated by inverting as before.

APPENDIX B: Data

Our dataset consists of all horse races run in North America between 1992 and 2002.
The data was generously provided to us by Trackmaster, a subsidiary of the jockey club.
The data record the performance of every horse in each of its starts, and contains the
universe of officially recorded variables having to do with the horses themselves, the
tracks, and race conditions.

Our concern is with the pricing of bets. Thus, our primary sample consists of the
5,376,560 observations in 647,903 races for which win odds and finishing positions are
recorded. We use these data, subject to the data cleaning restrictions below, to generate
the data that allows us to map between odds and the true probability of a horse winning.
We are also interested in pricing exacta, quinella, and trifecta bets. For about 10% of
these observations (59,414 races covering 491,040 horse race starts) we also have the
exacta and quinella payoffs for the actual winners of that race. (The prices of non-
winning combinations are not recorded.) In 50,421 of these races (covering 429,493
horse race starts) we also observe the winning trifecta payoff.

Due to the size of our dataset, whenever observations were suspect, or difficult to
deal with, we simply dropped the entire race from our dataset. Specifically, if a race has
more than one horse owned by the same owner, rather than deal with “coupled runners,”
we simply dropped the race. Additionally, if a race had a dead heat for first, second,
or third place, the exacta, quinella, and trifecta payouts may not be well defined. Thus,
we dropped these races. Certain observations on the winning odds were clearly wrong
(e.g., when the odds were reported as zero), and so we simply dropped the entire race
whenever the odds suggested that the sum of the probabilities implied by the odds was
less than 118%, or greater than 128% (i.e, unless the track take implied by the odds is
between 15% and 22%, we drop the data as likely to be faulty). After these steps, we
are left with 4,867,857 valid observations on win bets from 588,175 races and 447,535
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observations in 54,013 races include both valid win odds and payoffs for the winning
exotic bets.

Finally, Figures 1, 6, and 7 show a mapping between odds and returns for different
subsets of the data. For prices that are relatively common (such as 4/1), we had enough
observations that we could reliably estimate the true probability. At more unusual levels
we had to group together horses with similar odds. Our grouping algorithm chose the
width of each bin so as to yield a standard error on the estimated rate of return in that
bin that was less than 2%; we included all starts above 150/1 in a single final grouping.
We used a consistent set of bins and data for all the results in our chapter, and linearly
interpolated between bins when necessary.
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1. INTRODUCTION

The favorite-longshot bias in racetrack wagering is perhaps the most well-documented
anomaly in the literature on betting market efficiency. Dozens of studies have shown
a consistent bias in which the expected return from betting on favorites exceeds the
expected return from betting on longshots. This chapter focuses on the bigger picture
with respect to this anomaly, namely to what extent it can be viewed as a bias that can be
integrated with the differing biases found in other financial and betting markets—biases
that are often in the opposite direction.

This chapter begins by reviewing the empirical findings on how the favorite-longshot
bias differs across different types of bets, and different betting markets. The chapter
then proceeds by discussing the different types of bettors, and also the different possible
theories that have been presented to explain this bias, and whether they can be viewed
in a broader context to provide a consistent explanation for these many biases. Finally,
this chapter discusses the issue of arbitrage, and specifically why arbitrage may not
eliminate these differential returns across bets.

2. BIASES FOUND IN THE PREVIOUS LITERATURE

Economists have spent considerable effort exploring the efficiency of market outcomes.
Betting markets, because of their unique characteristics, provide an interesting case
in which to conduct empirical studies of efficiency. At the top of the list of favorable
characteristics is the outright abundance of data available—a facet that makes analyzing
the stock market fruitful as well. However, Thaler and Ziemba (1988) note distinct
advantages that betting markets have over financial markets:

The advantage of wagering markets is that each asset (bet) has a well-
defined termination point at which its value becomes certain. The absence
of this property is one of the factors that have made it so difficult to test
for rationality in the stock market. Since a stock is infinitely lived, its
value today depends both on the present value of future cash flows and
on the price someone will pay for the security tomorrow. Indeed, one can
argue that wagering markets have a better chance of being efficient because
the conditions (quick, repeated feedback) are those which usually facilitate
learning.

Despite the feedback and large-scale repeated-play aspect of betting markets, the
search for market efficiency has led to the identification of an unexpected, and per-
sistent, anomaly known as the favorite-longshot bias. In practice, weak-form market
efficiency would imply that betting on racetrack favorites should be equally profitable
as betting on longshots. Dozens of empirical studies of racetrack betting, however, have
consistently found that the return to betting on favorites is higher than the return to bet-
ting on longshots. While Thaler and Ziemba (1988) provide perhaps the best overview
of this body of literature, some of the more influential individual studies include Ali
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(1977, 1979), Asch et al. (1982, 1984, 1986), Busche and Hall (1988), Figlewski
(1979), Hausch et al. (1981), Losey and Talbott (1980), Snyder (1978), Swidler and
Shaw (1995), Tuckwell (1983), and Ziemba and Hausch (1986). In some particu-
lar instances, such as discrepancies in win bets versus place and show bets (Hausch
et al., 1981) as well as in exacta markets (Ziemba and Hausch, 1986), the return differ-
ential has actually been strong enough to produce deviations from weak-form market
efficiency as well, in the form of profitable (positive expected value) wagers.

This unexpected bias identified in betting markets, while present in the vast majority
of studies, does not uniformly hold true. Several notable studies have, in fact, found an
exactly opposite bias, with favorites being overbet and longshots underbet, an opposite
favorite-longshot bias. Swidler and Shaw (1995) find this opposite bias for a smaller
Class 1II racetrack in Texas, and Busche and Hall (1988) find this opposite bias at a
racetrack in Hong Kong that had much higher betting volumes than the U.S. racetracks
used in other studies. More recently, Sobel and Raines (2003) have identified a situation
in which the bias changes from the regular favorite-longshot bias to an opposite bias,
under certain predictable conditions. Gramm and Owens (2005) find that the favorite-
longshot bias diminishes for races with larger betting pools and more entrants. While
these studies might appear at odds with the other literature on racetrack wagering, their
results are actually more consistent with findings from studies of efficiency in markets
other than racetrack wagering.

Studies of Las Vegas sports wagering have concentrated on betting on National Foot-
ball League (NFL), National Basketball Association (NBA), National Hockey League
(NHL), and Major League Baseball (MLB) games. In these markets, deviations from
market efficiency have been found in about three-fourths of the studies, and in the vast
majority of cases where it existed, it was an opposite favorite-longshot bias. In the ter-
minology of this literature, bettors tend to overvalue favorites. Gandar et al. (1988)
show that a strategy of betting on NFL longshots produces a return greater than bet-
ting on favorites for point spread betting on NFL games. Kochman and Badarinathi
(1992) found through a simple analysis of role (underdog or favorite), location of the
game (home or away), and month in which the game was played, that a rate of suc-
cess above break-even could be achieved for wagering on NFL games between 1986
and 1990. Zuber et al. (1985) found an exploitable inefficiency in NFL point spread bet-
ting market during the 1983 regular season, while Lacey (1990) finds some profitable
opportunities in certain betting rules in NFL point spreads from 1984 to 1986. In profes-
sional baseball, Woodland and Woodland (1994) find an opposite favorite-longshot bias
in baseball betting against the odds, which they confirm still exists after including 10
additional years of data in their updated study, Woodland and Woodland (2003). In their
study of NHL betting markets, Woodland and Woodland (2001) find a strong opposite
favorite-longshot bias, which is confirmed in an updated and corrected version of this
study by Gandar et al. (2004). Similar to the case of the regular favorite-longshot bias,
these opposite favorite-longshot bias findings in professional sports betting markets are
not always found. Sauer (1988), for example, finds efficiency in NFL over/under betting,
while Johnson and Pawlukiewicz (1992) find efficiency in over/under betting in the NBA.

In the stock market, there are several findings related to the studies of betting sum-
marized above. The first is the finding that portfolios of recent loser stocks seem to
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outperform portfolios of recent winner stocks. To the extent that recent winner stocks
are comparable to racetrack favorites, this is an opposite favorite-longshot bias. Several
of the articles demonstrating (and providing explanations for) this bias in the stock
market include De Bondt and Thaler (1985, 1987, 1990), Chan (1988), Bremer and
Sweeney (1991), Brown and Van Harlow (1988), Lehmann (1990), and Howe (1986).
The best overall summaries of the literature on stock market efficiency are De Bondt
and Thaler (1989) and Thaler (1992).

More closely related is the finding of De Bondt and Thaler (1990) that professional
stock market forecasters’ predictions about company earnings tend to have an opposite
favorite-longshot bias. They regress actual company earnings on forecasted earnings
and find a slope coefficient significantly less than one. This implies that the companies
with the highest forecasted earnings tended to be overestimates of true earnings, while
the companies with the lowest forecasted earnings tended to be underestimates of true
earnings. In studies of betting behavior, this type of bias would result in favorites being
overbet and longshots being underbet. This phenomenon also manifests itself in vari-
ance comparisons, as the variance in the predicted values is significantly higher than the
variance in the true-underlying values.

Perhaps most ironically, while economists have struggled to find an explanation for
these biases, a similar opposite favorite-longshot bias has been found to exist in pro-
fessional economists’ own economic forecasts in the Livingston survey by Ahlers and
Lakonishok (1983).

The link between deviations from