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Vienna, Austria

Justin Wolfers, Business and Public Policy Dept., The Wharton School, University of
Pennsylvania, Philadelphia, PA, USA

Alan Woods, Deceased

William T. Ziemba, Sauder School of Business, UBC, Vancouver, Canada, Mathe-
matical Institute, Oxford University, and ICMA Centre, University of Reading, UK

Eric Zitzewitz, Department of Economics, Dartmouth College, Hanover, NH, USA



Preface

This volume surveys the broad subject of sports and lotto investments. The various
chapters cover many sports, such as soccer, NFL and college football, baseball, basket-
ball, Jai Alai, and lotto markets. We do not discuss casino gambling nor the statistics of
sports; rather, we focus on the financial markets associated with legal betting on sports
and lotto events. All the chapters are newly written academic surveys that we commis-
sioned for this volume. In certain areas, this volume updates to 2008 our earlier edited
volume [Hausch, D. B., V. Lo, and W. T. Ziemba (HLZ), 1994, Efficiency of Racetrack
Betting Markets, Academic Press, San Diego, CA]. That volume became not only a clas-
sic, but a cult item as it helped usher in professional racetrack betting. While small in
comparison with hedge funds, the various syndicates across the world have made about
$10 billion using computerized betting strategies. This volume continues with some of
the basic research behind such investment teams and the academic theory of investment
in sports and lotto markets. HLZ reprinted older classic papers and complemented them
with new original work. This current volume is entirely composed of newly written
chapters that build on earlier papers. So, in our view, HLZ (which was reprinted in its
entirety with no changes except a new preface as HLZ, 2008, 2nd ed., World Scientific,
Singapore) and this volume are companion books in this field. Other books that discuss
similar topics are Vaughan Williams, L., 2003, The Economics of Gambling, Routledge,
London; Vaughan Williams, L., 2005, Information Efficiency in Financial and Betting
Markets, Cambridge University Press, Cambridge, UK, which are highly recommended;
and our trade books, Ziemba, W. T., and D. B. Hausch, 1984, Beat the Racetrack, Har-
court, Brace and Jovanovich, NewYork; Ziemba, W. T., and D. B. Hausch, 1986, Betting
at the Racetrack, Dr Z Investments, Inc., San Luis Obispo, CA; Ziemba, W. T., and D.
B. Hausch, 1987, Dr Z’s Beat the Racetrack, William Morrow, New York.

The volume is organized into eight parts. Part I discusses the industry side of the
racetrack and other betting markets. Ali and Thalheimer discuss the effects of com-
petition from casinos, lotteries, professional sports, and horse racing and wagering on
racetrack handle. Bacon-Shone and Woods empirically study the factors that influence
both the extent of the public’s wagering and its allocation across the betting pools. One
factor addressed is the partial rebate sometimes available to losers of large wagers.

xix



xx Preface

Part II studies the bettors and horses in a race. Jullien and Salanié survey the
literature dealing with the empirical estimation of the bettor’s utility function, includ-
ing addressing issues such as representative bettors versus heterogeneous beliefs, and
expected versus nonexpected utility. Lo and Bacon-Shone devise probabilities for
multientry competitions. Edelman empirically studies the running patterns of race
horses, finding distance preferences and establishing pace characteristics somewhat at
odds with established physiological results on optimal running.

Part III discusses the well-established favorite-longshot bias in horse racing, which
is the tendency for favorites to be underbet and longshots to be overbet. Ottaviani and
Sørensen present various theoretical constructs that generate this bias. Snowberg and
Wolfers use massive data sets to empirically estimate the recent favorite-longshot bias
in the U.S., Australia, and other locales. They argue that the anomaly is based more
on perceptions than preferences. That means that bettors overestimate the chances of
low probability events. They also show that extreme favorites no longer have positive
expected value as Ziemba and Hausch found in 1986. This updates the studies surveyed
in Ziemba and Hausch (1986); see also the updated graph in Ziemba’s chapter in Part
IV and Ziemba, W. T., 2004, Behavioral Finance, Racetrack Betting and Options and
Futures Trading, Mathematical Finance Seminar, Stanford University, Palo Alto, CA.
Busche, K., and C. Hall, 1988, An Exception to the Risk Preference Anomaly, Journal
of Business 61, 337–346; Busche, K., 1994, Efficient Market Results in an Asian Setting,
in HLZ; Vaughan Williams, L., and D. Paton, 1998, Why Are Some Favourite-Longshot
Biases Positive and Others Negative? Applied Economics 30, 1505–1510 discuss reverse
biases in Asia and other locales. Sobel and Ryan document a pattern of public betting
that varies by the day of the week. Different levels of casual and serious bettors at
the track on different days of the week can explain this variation and provides a basis
for understanding the favorite-longshot bias. Tompkins, Ziemba, and Hodges show that
there are similar biases in the S&P 500 and FTSE 100 index put and call options.

Part IV discusses weak form market efficiency in racing and various sports events.
Ziemba discusses efficiency in racing and other sports as well as in lotto games. He
describes the place and show betting system that arises because these markets are more
complex than the win market. The original 1981 system, which was popularized in the
trade books by Ziemba and Hausch (1984, 1986, and 1987), still basically produces
profits but needs rebates to do this because, currently, so much of the public’s wagers
do not enter the pools until after the race has started. This is because about 87% of the
typical track’s handle is bet off that track by other bettors and by professional syndi-
cates. Ziemba also discusses cross-track betting, NFL, and NBA games and provides an
introduction to lotteries. The latter topic is discussed in three chapters in Part VIII. Stern
studies point spread and odds betting in U.S. college and professional baseball, basket-
ball, and football and how these two betting concepts are related. He also investigates
whether point spread betting is as efficient in these sports as it is in horse racing. Also, he
shows how to estimate the odds of winning midway during a game based on the current
score and the original odds line. Golec and Tamarkin analyze the market for over/under
bets on NFL and NBA games. Lane and Ziemba discuss pure, no risk arbitrage and risk
arbitrage in team jai alai. Most of their results generalize to other sports betting games
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such as those covered by betting exchanges like London’s Betfair as discussed in Part
VI as well as some financial market applications. The arbitrage conditions are utility
free and the risk arbitrage investments are based on the Kelly capital growth log utility
criterion.

Part V discusses semi-strong form efficiency where public information is added to
prices. Johnson and Sung provide a comprehensive survey of this subject in various rac-
ing markets. Gramm and Ziemba discuss the application of the breeding theory called
dosage to the U.S. triple crown races, the Kentucky Derby, the Preakness, and the Bel-
mont Stakes. The key idea is that, since the horses have never raced 11/4 miles before
the Kentucky Derby or 11/2 miles before the Belmont Stakes, the public does not have
direct evidence of a horse’s speed and stamina for these distances. However, a horse’s
pedigree might provide indirect evidence, particularly if the pedigree includes stallions
whose offspring exhibit consistent levels of speed and stamina. This chapter studies
whether this indirect pedigree evidence can be used to profitably revise the public’s
win odds. And indeed this is the case, with the greatest gains associated with the 11/2

mile Belmont, followed by the 11/4 mile Kentucky Derby. For the 13/16 mile Preakness,
however, pedigree offered no gains. Since many horses in the Preakness have raced 13/16

miles before the Preakness (including some who ran 11/2 miles in the Derby just two
weeks earlier), the odds established by the public have incorporated direct evidence of
the each horse’s speed and stamina for this distance, making indirect pedigree evidence
of limited incremental value. Gergaud and Deschamps investigate the effectiveness of
the recommended horses from tipsters in Paris.

Part VI presents three chapters related to the recent explosion of interest in bet-
ting exchanges. Haigh and Vaughan Williams discuss index betting for sports and stock
indices. The idea is that the house sets an x and a y for each event where y > x. The
difference y − x is their profit and expenses and reserve for risk. Then those that go long
do it at y and those who go short do it at x. If the number of longs and shorts is about
equal, then the house gets the y − x. But if it is not, then the house bears some risk.
The payoff to longs is the final price z − y and to the shorts it is x − z. This activity
is tax free in the UK, so it is a popular way to bet on index futures. The spread cost is
balanced by the tax savings in regular futures accounts by investors. Snowberg, Wolfers,
and Zitzewitz investigate the prediction ability of internet wagering markets in various
areas including, especially, politics. The contracts available form a fascinating descrip-
tion of modern times from elections, to war, to sports betting, all of which induce good
probabilities that are generally superior to political polls and other estimates. Putting
real money on the line tends to generate good market forecasts. Finally, Smith and
Vaughan Williams provide a comprehensive survey of betting exchanges. In these cases,
person A is betting against person B and the house has no risk and garners its profits
from a small commission on the net winning bets. Betfair in London is the largest such
betting exchange offering wagers on a vast variety of contests from sports to Academy
Awards to politics and other areas around the world. From a beginning in 1999, these
exchanges, especially Betfair, now match millions of bets per week.

Part VII presents two chapters on the efficiency of soccer betting markets. Forrest dis-
cusses British markets and Kossmeier and Weinberger discuss Austrian markets. Soccer
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is probably the world’s most popular sport, and betting on games with European, Asian,
South American and other punters is huge. These two papers update the reader on this
key topic. Since scores are low, there are various types of exotic wagers as well.

Finally, Part VIII discusses lotteries. (Lotteries, especially Canadian games, are
briefly discussed in the Ziemba chapter in Part IV.) Walker discusses economic issues
facing UK lotto organizations. He studies where the moneys (the sales) come from
based on factors such as jackpot size and rollover policies and where they go and vari-
ous microeconomic analyses that can tilt the situation. His chapter provides an outline to
the statistical, economic, and practical considerations to designing lottery games. Haigh,
also working in the UK, presents a marvelous analysis of the statistics of lotto games.
Finally, Matheson and Grote give a comprehensive survey of their work and that of
others and that from the lottery organizations regarding U.S. lottos. In the U.S., the
payments are usually spread over 20 years and are taxable. So, in comparison to Canada
and the UK, the U.S. prizes are worth about a third as much; see Ziemba, W. T.,
S. L. Brumelle, A. Gautier, and S. L. Schwartz, 1986, Dr Z’s 6/49 Lotto Guidebook,
Dr Z Investments, Inc., San Luis Obispo, CA, for additional calculations as this and
other lotto questions such as growth in carryovers and sales from the optimality some-
times to buy the pot, that is, buy all the numbers and profit from the winners. Hence,
they are not as good a deal despite their popularity in the U.S. Lotteries remain a dream
hope of poor people who yearn for those million dollar or pound payoffs.

Donald B. Hausch, Madison
William T. Ziemba, Vancouver

February 2008
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Abstract

From 1960 through 2002, real dollar wagering on pari-mutuel horse racing (handle)
in North America peaked in 1977, declining 44% through the end of the period.
A number of factors have been identified as contributing to this decline in handle. Most
significant among these are increased competition from casino and state lottery gam-
ing venues. The presence of casino gaming in a racetrack’s market area has been found
to reduce pari-mutuel handle by 31–39%. Competition from casino gaming within the
pari-mutuel industry takes the form of the integration of slot machines at a pari-mutuel
racing facility (racino). Slot machines and video lottery terminals (VLT’s), when placed
under the auspices of a state lottery, have been estimated to reduce the pari-mutuel han-
dle at a racino from 24% to 39%, varying with the number of machines. State lotteries
have resulted in estimated pari-mutuel handle reductions ranging from 10% to 36%.
The presence of professional sports in a racetrack’s market area has also been found to
reduce pari-mutuel wagering, although to a lesser extent than competition from casino
gaming or a state lottery. Finally, within-industry competition from other pari-mutuel
wagering venues has had a negative effect on pari-mutuel wagering.

JEL Classifications: L83

Keywords: pari-mutuel horse race wagering, pari-mutuel wagering, horse race wagering, casino,
racing, lottery

1. INTRODUCTION

From 1960 through 2002, real dollar wagering (handle) on horse racing in North
America peaked in 1977 before declining 44% through the end of the period.1 A num-
ber of factors have been identified as contributing to the decline in pari-mutuel handle.
Among the major causes of this decline are increased levels of competition from gam-
ing venues such as casinos and state lotteries. There has been tremendous growth in the
gaming industry over the past several decades. Non-pari-mutuel real dollar gaming han-
dle (casino-type gaming, lottery gaming, and charitable gaming) increased 355% from
1982 through 2002.2 Competition from professional sports has also contributed to the
decline in pari-mutuel handle. Finally, competition from other pari-mutuel racetracks
has been found to have a negative impact on individual racetrack handle. This study is
an attempt to summarize the findings on how competition both within and outside the
industry have affected horse race wagering. A comprehensive review of the literature is
made to ascertain the effects of such competition.

1Total horse racing handle obtained from Association of Racing Commissioners, Inc., Pari-mutuel Racing,
A Statistical Summary (annual issues). Adjustment to real dollars using the consumer price index (CPI)
obtained from the U.S. Department of Labor, Bureau of Labor Statistics.
2Christiansen and Sinclair (2001) gaming handle statistics. U.S. Department of Labor, Bureau of Labor
Statistics, CPI statistics.
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The chapter is organized as follows. Section 2 reports results of studies that examined
the effect of competition from casino gaming on the demand for pari-mutuel wagering.
Section 3 reports the results of studies that examined the effect of competition from
state lotteries on the demand for pari-mutuel wagering. Section 4 reports the results of
studies that examined the effect of competition from professional sporting events on the
demand for pari-mutuel wagering. Section 5 reports the results of studies that examined
the effects of live race competition from other racetracks on the demand for wagering
at a subject racetrack. Section 6 reports the results of studies that examined the effect of
competition from simulcast wagering on the demand for wagering at a subject racetrack.
Section 7 presents the summary and conclusions of the chapter.

2. COMPETITION FROM CASINO GAMING

Casino gaming has been found to be a strong substitute for pari-mutuel horse race
wagering. Ali and Thalheimer (1997) examined the demand for pari-mutuel horse race
wagering in the presence of casino gaming. Two demand functions were estimated, one
each for thoroughbred and harness horse racetracks in New Jersey over the period of
1960–1988. Casino gaming was introduced during the study period in Atlantic City,
New Jersey in 1978. Initially, there was one casino, increasing to 12 by 1988, the end
of the sample period. It was estimated that the presence of 12 casino gaming facilities
in Atlantic City had a significant and negative impact on the demand for wagering and
resulted in a 32% decrease in live and total (live plus intrastate simulcast) pari-mutuel
horse race wagering at the New Jersey thoroughbred and harness racetracks.

Another estimate of the relationship between casino gaming and pari-mutuel horse
race wagering is given in Thalheimer and Ali (1995a). Separate straight and exotic
pari-mutuel wagering demand equations were estimated for two New Jersey thorough-
bred racetracks, Atlantic City Race Course and Monmouth Park Racetrack, over the
1960–1990 sample period.3 For each racetrack, the impact of casino gaming was found
to be significant and negative. Casino gaming was estimated to have reduced wager-
ing at Atlantic City Race Course and Monmouth Park Racetrack by 31% and 39%,
respectively.4

Thalheimer (1998) examined the relationship of casino gaming and pari-mutuel
horse race wagering when both are located at the same racetrack (racino). The loca-
tion was Mountaineer Racetrack and Resort, a pari-mutuel racetrack in West Virginia.
This was the first racetrack in the United States to offer casino gaming on a signifi-
cant scale to its patrons. In June 1990, a limited number of electronic gaming devices
under the auspices of the State Lottery, referred to as video lottery terminals (VLT’s),
were made available, on an experimental basis, to customers of the racetrack. VLT’s
are a form of slot machine and are perceived as such by the customer. Three wagering

3A straight and exotic wagering demand model was also estimated for a harness racetrack in Kentucky. Since
Kentucky did not have casino gaming, the results of this model are not discussed further.
4Evaluated at the non-zero mean of 8.9 casinos, weighted by mean values of exotic and straight handle shares.
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demand models were estimated: one for live handle, one for full-card simulcast handle5

(wagering on simulcasts of races taken from locations outside the state), and one for
VLT handle. Each of the three demand models contained its own-demand variable and
also cross-demand variables from the other two. Data were taken daily over the period of
1990–1991.

VLT’s were found to have a significant and negative impact on pari-mutuel wagering.
At the 1991 average VLT level of 114 machines, wagering on pari-mutuel horse races
was estimated to have been reduced by 24%. On the other hand, total wagering (pari-
mutuel plus VLT) was estimated to have increased 21%. That is, wagering on the 114
VLT’s offset the 24% reduction in pari-mutuel wagering and added an additional 21%
to the handle. Total revenue or takeout (handle less payout to customers), however,
increased only 4% due to a lower takeout on VLT handle relative to the pari-mutuel
handle which it replaced. One conclusion of the paper was that in order to generate
sufficient VLT handle to produce positive net revenue, a minimum number of VLT’s
is required. A second conclusion was that customers who wagered on the VLT’s were
not likely to bet on the horse races being offered while those who wagered on those
pari-mutuel horse races were also likely to bet on the VLT’s.

In an update and expansion of the Thalheimer (1998) study, Thalheimer (2008)
again examined the relationship of casino gaming and pari-mutuel horse race wager-
ing at Mountaineer Racetrack and Resort. Pari-mutuel and VLT data were taken weekly
from fiscal year 1994, when VLT’s were first permitted at racetracks by state law on a
permanent basis, through 2002. Over this period, the number of VLT’s was increased
from 400 to 3,000. On-track live and simulcast pari-mutuel handle were estimated
to have decreased 39% as a result of the increase in the number of VLT’s. As in
the earlier study (Thalheimer, 1998), VLT handle was found to have increased when
the pari-mutuel product was made available. VLT handle increased 22% as a result
of the presence of year-round live horse racing. Since revenue (handle less payout to
customers) was $2.6 billion for the VLT’s in 2002 compared to on-track pari-mutuel
revenue of $39 million, the increase in VLT revenue from the presence of live racing
was far greater than the reduction in pari-mutuel revenue from the increased number
of VLT’s. The number of simulcast races from other racetracks offered to Mountaineer
customers was also found to have a positive effect on VLT handle. As in the earlier study
Thalheimer (1998), there was little or no crossover of VLT customers to the pari-mutuel
wagering product while there was a significant crossover of pari-mutuel customers to the
VLT product.

The studies reviewed so far examined the impact of casino competition on pari-
mutuel wagering under two situations: (1) casinos were permitted in an existing
pari-mutuel wagering market but at locations other than racetracks, and (2) casino gam-
ing, in the form of VLT’s, was permitted at existing pari-mutuel wagering facilities. Not
mentioned above is the effect of competition from pari-mutuel venues on casino gam-
ing demand when both are located in the same market area. In a study of the demand
for casino gaming, Thalheimer and Ali (2003) examined this relationship. The demand

5Full-card simulcasting of races from locations outside West Virginia was introduced in June, 1990.
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for slot machine gaming was estimated for 24 riverboat casinos and three racetrack-slot
machine casinos (racinos) in the states of Illinois, Iowa, and Missouri from 1991 to
1998. One of the demand factors was competition from pari-mutuel horse race wager-
ing venues (live and simulcast locations) measured by the distance-related accessibility
of riverboat/racino customers to these alternative wagering locations. Access to pari-
mutuel wagering venues was found to have a negative but insignificant effect on the
demand for casino slot machine gaming.

3. COMPETITION FROM STATE LOTTERIES

State lottery wagering products have been found to be strong substitutes for pari-mutuel
horse race wagering. Simmons and Sharp (1987) employed an econometric model of
pari-mutuel wagering using 89 of the 100 U.S. thoroughbred race meets in various U.S.
counties for the year 1982. State lotteries were estimated to have resulted in a 36% loss
in pari-mutuel handle.

Vasche (1990) estimated the impact of the introduction of the California State Lot-
tery in 1985 on pari-mutuel horse race wagering. An econometric model of California
pari-mutuel thoroughbred horse race wagering developed with data prior to introduction
of the lottery in 1985 is employed to estimate handle from 1985 to 1990.6 Estimated
handle was then compared to actual handle from 1985 to 1990, the period beginning
with the introduction of the lottery. The California State Lottery was estimated to have
reduced pari-mutuel horse race handle by 20–30%.

Thalheimer and Ali (1995c) estimated three pari-mutuel wagering demand models,
one each for two racetracks in southern Ohio: Lebanon Raceway (harness) and River
Downs (thoroughbred); and another for a nearby thoroughbred racetrack in Northern
Kentucky: Turfway Park. The data were annual over the period of 1960–1987. The
Ohio State Lottery was introduced in 1974. The effect of competition from the Lottery
was found to be significant and negative. The payout rate of the Ohio Lottery at the end
of the sample period was 55.2%, resulting in an estimated 27% reduction in pari-mutuel
handle for each of the three racetracks.

In Thalheimer and Ali (1995b), an econometric model of pari-mutuel wagering
demand was estimated for six Kentucky racetracks using daily race meet data from 1986
to 1990. The demand model included the Kentucky State Lottery (introduced April 4,
1989) as one of its determinants. Introduction of the Kentucky State Lottery was found
to have a significant and negative impact on the demand for wagering at each of the race-
tracks whose demands were being estimated. The reduction in pari-mutuel wagering at
these racetracks ranged from 10.3% to 32.6% and averaged 18.4%.7

6The model used is not given in the article.
7The lottery impacts were not reported in the article but were easily computed using the lottery coefficients
and the value of the fully implemented lottery (= 1.0).
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4. COMPETITION FROM PROFESSIONAL SPORTS

Professional sporting events that compete with pari-mutuel horse racing have been
found to have an adverse effect on pari-mutuel horse race wagering. Coate and Ross
(1974) estimated the demand for thoroughbred and harness horse wagering in New
York using daily data from 1970 to 1972. Competition from three professional sports,
basketball (the New York Knickerbockers), hockey (the New York Rangers), and foot-
ball (NFL Monday Night Football), was estimated to have a significant and negative
effect on pari-mutuel harness horse wagering.

Thalheimer and Ali (1992) estimated the demand for wagering at a pari-mutuel har-
ness horse racetrack in Louisville, Kentucky over the period of 1970–1987. There were
two race meets per year over this period. The Louisville Redbirds, a minor league pro-
fessional baseball team, began operations in Louisville in 1982. The presence of the
Redbirds for a given horse race meet was measured as the number of home games over
that meet. There were an average of 19.1 home games per race meet from 1982 for-
ward. The impact of competition from the presence of the professional baseball team
was estimated to have resulted in a 5.3% loss in handle at Louisville Downs.

In another study by Thalheimer and Ali (1995b), one of the pari-mutuel wagering
demand determinants for Turfway Park, a thoroughbred racetrack in northern Kentucky,
was the presence of major league professional sports in nearby Cincinnati, Ohio on a
race day. Over the estimation period, Cincinnati was home to two professional sports
teams, the Cincinnati Redlegs (Reds) baseball team and the Cincinnati Bengals football
team. A professional baseball game, offered on the same day as pari-mutuel wagering
at the racetrack, was found to have a negative but insignificant effect on wagering there.
On the other hand, the presence of a professional football game in Cincinnati was esti-
mated to have a significant and negative (−9.7%) effect on pari-mutuel wagering at the
racetrack on that day.

In Thalheimer and Ali (1995c), one determinant of the demands for wagering at
two racetracks in southern Ohio and for a nearby thoroughbred racetrack in northern
Kentucky was the presence of competition from professional sports in Cincinnati, Ohio.
In this case, sports competition was measured as the weighted total number of days over
a year when home games were available for three professional sports, football, baseball,
and basketball. Attendance at these events was used to derive weights from which the
weighted average number of competing days was computed. The impact of competition
from professional sports on the three racetracks was found to be significant and equal.
An additional 10 days of competition from professional sports in 1987 was estimated to
result in a 4% reduction in handle at the three racetracks.

5. COMPETITION FROM LIVE RACING

Several studies have found that wagering at a pari-mutuel racetrack is reduced when
there is increased competition within the industry from other pari-mutuel racetracks in
the market area. Morgan and Vasche (1979) estimated the demand for wagering for
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three Southern California thoroughbred racetracks conducting four race meets (Santa
Anita, Oak Tree Racing at Santa Anita, Del Mar, and Hollywood Park) using a pooled
time-series cross-section database over the period of 1958–1978. In Morgan and Vasche
(1982) the dataset was updated to include two more years, 1979 and 1980. Both demand
models had identical specifications, the only difference being the two-year update of the
sample in the 1982 study. In each demand model (Morgan and Vasche, 1979, 1982),
the presence of competition from nighttime non-thoroughbred (i.e., quarter horse and
harness) racing was found to be significant and to result in reduction in pari-mutuel
wagering at the Southern California thoroughbred racetracks. Another competition vari-
able, the combined number of harness and quarter horse racing days, was not found
to be statistically significant. Morgan and Vasche (1979) state that, in addition to the
two non-thoroughbred competition variables included in their models (i.e., day to night
harness and quarter horse racing and combined number of harness and quarter horse
days), “a number of alternative variable specifications to reflect horse racing competi-
tion were considered, such as number of thoroughbred days which face overlaps with
other day and night racing in Southern California. Regardless of the exact form of the
variable tested, evidence of competition between different types of racing consistently
appeared.”8

Church and Bohara (1992) examined the demand for horse race wagering in New
Mexico using data for seven racetracks over the period of 1964–1988. Four of the race-
tracks were operating in 1964 at the beginning of the sample period, one opened in
1971, one in 1985, and the last one in 1986. Competition for a subject racetrack in a
given year was measured by an interaction term of the product of the race days for the
subject racetrack and the difference in total race days for all racetracks less the number
of race days for the subject racetrack. Competition was found to have the expected neg-
ative sign for six of the seven racetracks, three of which were significant. Although the
competition variable for the seventh racetrack was found to be positive, it was not found
to be significant.

In Thalheimer and Ali (1995a), the two New Jersey thoroughbred racetracks whose
demands were estimated, Atlantic City Race Course and Monmouth Park Racetrack,
had overlapping dates and as a result were competitors with each other for that period.
The two racetracks also faced competition from Freehold Raceway (harness), while
Monmouth Park also faced competition from the nearby Meadowlands racetrack (har-
ness meet). Competition in a given year was measured as the number of overlapping
days between racetracks for that year. Competition between Monmouth Park and
Atlantic City began in 1975 and averaged 64.8 days over the period of 1975–1990.9 As
a result of this competition, straight and exotic wagering demands for the Atlantic City
racetrack were estimated to have been reduced 51.4% and 43.2%, respectively. On the
other hand, competition from the Atlantic City racetrack was found to have a statistically
insignificant effect on exotic wagering demand at Monmouth Park. However, it
did have a significant effect on straight wagering demand, reducing that demand

8Morgan and Vasche (1979), p. 190.
9See Thalheimer and Ali (1994) for means of the competition variables.
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by 17.5%.10 The difference in these relative effects may be due to the difference in
the quality of racing offered by the two racetracks. Monmouth Park had higher purses
and thus a higher quality of racing over the estimation period.

Competition from Freehold Raceway was not found to have had a statistically signif-
icant impact on the demand for wagering at Monmouth Park. The demand for wagering
at Atlantic City Race Course was found to be only slightly reduced by competition with
Freehold Raceway. Exotic wagering demand was reduced 3.1% while straight wagering
demand was not found to be significantly affected. Finally, straight wagering demand at
Monmouth Park was not significantly impacted by competition from the harness race
meet at the nearby Meadowlands, while exotic wagering demand was found to have
been reduced by 12.2%.

In Thalheimer and Ali (1995b), the effect on wagering at a racetrack as a result of
competition with other racetracks in its market area was estimated. In this study of four
thoroughbred racetracks and two harness racetracks in Kentucky, using daily data, the
competition variable took the value of one, on a day when there was wagering at a com-
peting racetrack, otherwise it was zero. Of the six Kentucky racetracks whose demands
were estimated, four faced competition from other racetracks at some time during the
year. Three of the racetracks faced competition from one racetrack while one racetrack
faced competition from two racetracks. Competition from four of the five competing
racetracks was found to have a significant and negative effect on wagering at the race-
track whose demand was being affected. The opportunity to wager on races offered
at a competing racetrack was found to result in an estimated 8.1–23.0% reduction in
wagering at the subject racetrack.11

Ali and Thalheimer (1997) examined the effect of competition on the aggregate of
all thoroughbred racetracks and of all harness racetracks in New Jersey from racetracks
located in the bordering states of Delaware, New York, and Pennsylvania. The time
period of the analysis was 1960–1988. Unlike in earlier studies, where competition was
measured as days of overlapping race meets, the degree of competition was measured
using a specially constructed visit cost (VC) variable. Visit cost to competing race-
tracks was computed as the cost of a trip multiplied by the average traveling distance
(ATD) to a competing out-of-state racetrack. The cost of a trip was computed as the
average of the New Jersey wage cost index (opportunity cost) and the transportation
component of the New Jersey consumer price index. The distance for a New Jersey
pari-mutuel racetrack patron to travel to a competing out-of-state racetrack site was
computed using information on the distance from each New Jersey market area popula-
tion center to each competing out-of-state racetrack. Since wagering opportunities were
not available at every wagering site on every day of the year, the distance, for the same
consumer, could vary from day to day. For each day of the year, the traveling distance

10The significance of the competition variables was reported in Thalheimer and Ali (1995a) but not the mag-
nitude of the impacts. The magnitude of the impacts reported here was computed from information provided
in the paper.
11Magnitude of impacts computed using competition variable coefficients as reported in Thalheimer and Ali
(1995b).
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from each New Jersey population center (14 metropolitan statistical areas) to the
out-of-state wagering sites was determined. The minimum of the distances from that
center to each of the out-of-state wagering sites was chosen as the traveling distance
for that day. Daily distances for each population center were then averaged over the
year. The population-weighted average of the average daily distances for that year was
denoted as the average traveling distance (ATD) for that year.

A decrease in the visiting cost (VC) for New Jersey pari-mutuel thoroughbred or
harness racetrack patrons to wager at racetracks of the same breed in Delaware, Pennsyl-
vania, and New York, resulted in a reduction in wagering at the New Jersey racetracks.
A 1% decrease in VC to out-of-state thoroughbred racetracks from its 1988 level was
estimated to result in a 0.14% decrease in New Jersey thoroughbred wagering. A 1%
decrease in VC to out-of-state harness racetracks was estimated to result in a 0.13%
decrease in New Jersey harness wagering. Had there been no competition from out-
of-state harness racetracks, the New Jersey harness handle would have been 14.3%
greater.

In addition to examining the effect of own-breed, out-of-state competition on New
Jersey pari-mutuel wagering, Ali and Thalheimer (1997) also estimated the effect
of cross-breed competition from both in-state and out-of-state racetrack locations.
A decrease in VC to thoroughbred racetracks, both inside and outside of New Jersey,
was found to reduce New Jersey harness handle. Specifically, a 1% decrease in VC
from its 1988 level was estimated to result in a 0.10% decrease in New Jersey harness
wagering. Had there been no competition from in-state and out-of-state thoroughbred
racetracks, the New Jersey harness handle would have been 10.5% greater. New Jersey
thoroughbred wagering was not found to be significantly impacted by competition from
harness racetracks located inside and outside of New Jersey.

6. COMPETITION FROM SIMULCAST WAGERING

There are several forms of simulcast wagering products available to pari-mutuel wager-
ing customers. One of these is intrastate intertrack wagering (ITW), the simulcasting
of the live race product offered by a racetrack, simultaneously, to other racetrack loca-
tions within the state in which that racetrack is located. It is expected that by offering
ITW, total wagering on a racetrack’s live race product will increase, while wagering at
that racetrack’s location may decrease. The expected increase in total (live plus ITW)
wagering can be attributed to the reduction in the cost of attending the races due to
the increase in availability of the product to customers in the market area. On the other
hand, on-track wagering at the location in which the live races are being offered may
decrease since the locations at which the simulcasts of the live races are received are
essentially competitors of the live race site. The degree of competition with the on-track
live races is expected to increase as the travel distance to alternative wagering sites to
bet on those races is decreased.
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In Thalheimer and Ali (1995b), the presence of ITW was measured as the weighted
average traveling distance to the nearest wagering site (including the racetrack con-
ducting the live races). The weights used to compute the weighted average distance
are the income for each of the eight major population centers from which a racetrack
customer must travel to attend and bet on the races, divided by total income of all the
population centers. As the number of ITW racetrack sites is increased, the weighted
average traveling distance is decreased. The demands for wagering were estimated for
four thoroughbred and two harness racetracks in Kentucky. It was found that ITW had
an insignificant effect on the on-track handle for four of the six racetracks, while han-
dle decreased 5% for one thoroughbred racetrack and 8% for one harness racetrack. On
the other hand, as expected, total (live plus ITW) wagering at all six racetracks was
found to increase. The increase in the total handle ranged from 12% to 77% over all six
racetracks.

The introduction of ITW may also create new cross-breed competition for existing
racetracks. For example, thoroughbred (harness) racetracks may face increased compe-
tition from cross-breed harness (thoroughbred) ITW wagering sites. In Kentucky, where
the demand for the harness racing product is not as strong as for the thoroughbred racing
product, the cross-breed competition from ITW harness racing on thoroughbred wager-
ing was not found to be significant. On the other hand, the demand for harness wagering
was reduced by 4% at one harness racetrack (Red Mile) and by 24% at the other harness
racetrack (Louisville Downs) due to competition from ITW thoroughbred racing.

Another form of simulcast wagering is wagering on simulcasts of live races at off-
track betting sites (OTB’s) which, themselves, do not offer live pari-mutuel racing.
Coate and Ross (1974) estimated the effect of the introduction of off-track betting in
New York City in 1971 on live pari-mutuel thoroughbred and harness horse wager-
ing there. Off-track betting was found to have a significant and negative effect on both
thoroughbred and harness horse wagering.

Yet another form of simulcast wagering is referred to as full-card (whole-card) simul-
casting. A customer at an in-state wagering location is able to wager on entire live race
programs from one or more out-of-state racetracks that simulcast those races to the
in-state location. In a recent study (Ali and Thalheimer, 2002), the wagering demands
of a number of racetracks whose simulcast races were imported at a single racetrack
location and offered to patrons there, along with live racing conducted at the racetrack,
was estimated. The subject of the analysis was Garden State Park, a New Jersey race-
track that offered wagering on its own live thoroughbred and harness horse racing, and
on simulcast racing from both in-state and out-of-state locations. The study period cov-
ered each day that live, simulcast, or a combination of live and simulcast racing was
offered in 1995. Over this period, there were 49 racetracks whose simulcast programs
were taken by Garden State Park at various times over the year. In addition, Garden
State Park offered its own live thoroughbred and harness horse race meetings. In total,
51 racetrack products were offered, 49 of which were simulcasts of live race products
from other locations to Garden State Park and two of which were live race products
conducted at Garden State Park. To overcome data and statistical limitations, the 51
racetracks were aggregated by geographical location into eight thoroughbred, simulcast
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racetrack groups, five simulcast harness racetrack groups, one live thoroughbred group,
and one live harness group, for a total of 15 racetrack groups.

The wagering demand for each racetrack group was specified as a function of its
own number of races, takeout rate, average purse per race, and average field size per
race. In addition, this demand was taken as a function of the number of races offered,
takeout rate, average purse per race, and average field size per race for the racetrack
groups with which it competed on a given day. A number of other product specific
characteristic variables for different racetrack groups were also included.

Wagering on a racetrack group’s races was found to decrease as a result of compe-
tition from competing racetrack groups on a given day. The number of races offered
by competing racetrack groups was found to have a significant and negative effect
on wagering for nine of the 15 racetrack groups. The median number of races’ cross-
elasticity for those racetrack groups where number of races was found to be significant
was −0.67. Field size associated with competing racetrack groups was found to have
a significant and negative effect on wagering for six of the 15 racetrack groups. The
median field size cross-elasticity for those racetrack groups where field size was found
to be significant was −1.07. While average purse per race of competing racetracks was
found to have a significant and negative impact on wagering, this was true for only three
of the 15 racetrack groups. Thus, wagering demand for a particular racetrack group is
not much affected by average purse per race of competing racetrack groups on a given
day. The takeout rate associated with competing racetrack groups was also found to
have a significant positive effect on wagering for five of the 15 racetrack groups, indi-
cating that the competing racetrack groups were substitutes for a particular racetrack
group whose demand was being determined. The median takeout rate cross-elasticity
for those racetrack groups where takeout rate was found to be significant was 1.07.

The presence of live thoroughbred or harness racing at Garden State Park among
the competing racetrack groups was found to have a statistically significant effect
for only three of the racetrack groups. In those instances where the presence of
live racing was found to be significant, it was a substitute for same-breed and a
complement for cross-breed racetrack groups. The fact that offering thoroughbred (har-
ness) live races on a given day results in higher wagering on harness (thoroughbred)
simulcast racing can possibly be explained by increased attendance of New Jersey
harness (thoroughbred) horsemen on those days. These horsemen are familiar with all
New Jersey (harness and thoroughbred) racing and may bet both breeds when attracted
to the betting site on days when there is betting offered on their own-breed New Jersey
live race product.

7. SUMMARY AND CONCLUSIONS

Competition from casino gaming offered at locations outside pari-mutuel horse racing
sites was found to have a significant and negative impact on pari-mutuel horse race
wagering. Casino gaming in Atlantic City, New Jersey was estimated to have resulted in
a 32% reduction in wagering over all New Jersey thoroughbred and harness racetracks.
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On an individual racetrack basis, casino gaming in Atlantic City was found to have
resulted in a 31% decline in wagering at Atlantic City Race Course and a 39% decline
in wagering at Monmouth Park Racetrack.

Competition from casino gaming within the pari-mutuel industry takes the form
of integration of slot machines (VLT’s) at a pari-mutuel racing and wagering facility
(racino). Such devices are installed at the facility to broaden its product line. The intro-
duction of casino gaming in the form of the placement of VLT’s at a racetrack was
found to reduce pari-mutuel wagering by 24%, at a level of 114 VLT’s and 39% at a
level of 3,000 VLT’s. The VLT handle was found to have increased as much as 22% as
a result of the presence of year-round live horse racing. At the level of 3,000 VLT’s, the
increase in VLT revenue from year-round live horse racing was found to be far greater
than the decrease in pari-mutuel revenue from the VLT’s. Offering simulcast races from
other racetracks was also found to have a positive effect on VLT handle.

The impact of state lottery gaming on pari-mutuel horse race wagering was esti-
mated for several individual state lotteries (Kentucky, Ohio, and New Jersey) as well as
for the lotteries in the U.S. as a whole. The reduction in pari-mutuel wagering due to
competition from state lotteries was estimated to range from 10% to 36%. With respect
to non-gaming competition, a professional sporting event, held on the same day that
wagering is conducted at a pari-mutuel racetrack, was found to have a significant and
negative impact on wagering at that racetrack.

Within-industry competition between racetracks conducting live race meets was
found to result in significant reductions in wagering in many cases. With respect to
simulcast wagering, in several cases the introduction of intrastate intertrack simulcast
wagering was found to result in reduced on-track wagering at the site conducting the
live races while simulcasting those races to other racetrack sites in the state. On the other
hand, total pari-mutuel handle (live plus simulcast) for the racetrack was estimated to
increase in every case. Where more than one breed of racehorse conducts racing in a
state (e.g., thoroughbred and harness), the introduction of ITW in that state may create
new cross-breed competition for each breed. That is, wagering on thoroughbred races
will face competition from ITW sites taking harness racing and vice versa. This ITW
cross-breed competition may result in reduced wagering at existing wagering locations
for the other breed. Competition from wagering on simulcasts at off-track betting loca-
tions was found to result in reduced wagering at racetracks in the same market area. At a
single racetrack location where the customer may choose among a variety of simulcast
pari-mutuel wagering products from other locations, wagering on an individual simul-
cast racetrack’s product was found to be reduced by competition from other simulcast
racetrack products being offered on the same day.
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Abstract

This chapter examines factors that affect the total money bet on races in Hong Kong
and also how that money is distributed between different pools. The conclusion is that
quite different processes are at work, but good predictive models are feasible, enabling
the detection of the impact of relatively small changes in the betting tax, particularly on
how the money is distributed across pools and also enabling us to detect what attracts
gamblers to bet more or shift money across pools.

Keywords: pool size, handle size, betting tax changes, horse race betting

1. INTRODUCTION

Horse races in Hong Kong provide a rich source of data given the large amount of
money bet and the evidence that the favorite-longshot bias found elsewhere is not found
there (Busche and Hall, 1988; Lo et al., 1995). This study was triggered by the claim
of the Hong Kong Jockey Club (which controls racing and pari-mutuel betting in Hong
Kong) that the money bet on horse races in Hong Kong had rebounded as a result of
the introduction at the beginning of the 2006 season of a rebate in some pools1 to better
compete with illegal bookmakers. We examine a total of 5,271 races from the beginning
of the 2000 season until the middle of the 2007 season, during which 482 billion HK
dollars were bet (about U.S.$61B). Thalheimer and Ali (1992, 1995a, 1995b, 1997,
1998) have examined a number of predictors of money bet on races across tracks and
years. Their analysis provides insight into competitive elements at the track level, but it
is a crude analysis in that it does not enable us to understand factors that affect money bet
within years, let alone within meetings. Ray (2002) examined the predictors of money
bet on individual races across a one-month period at a single track. In that analysis, the
short time period and single track limits the generalizability of the results, while this
study examines more than seven seasons at two tracks with large betting volume.

2. VARIABLES EXAMINED

2.1. Outcome Variables

LTPCPI: Log of total betting pool in HK$ on a race, adjusted for inflation using the
Consumer Price Index (A). The log transform ensures a symmetric distribution. The
Consumer Price Index (A) is the CPI with broadest base in Hong Kong (covering 50%
of households). This variable provides the broadest measure of demand for gambling
on horse races in Hong Kong, excluding only illegal bookmakers.

1The rebate takes the form of a 10% rebate on losing bets of at least HK$10,000 in the win, place, quinella,
and quinella-place pools.
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LRREBNREB: Log ratio of the total bets on pools eligible for rebate (from 2006
onward) to the total for all other pools for each race. The log ratio follows the
standard approach for compositional data analysis of Aitchison (1986), to avoid the
constraints imposed by proportions, which distort standard statistical analysis. This
variable should provide the most sensitive assessment of the impact of the rebate, but
also provides a good summary of the demand for standard versus exotic bets.2

2.2. Independent Variables

The full list of 31 independent variables (covering economic, race, weather, pool
availability, and money distribution) appears in Appendix A.

3. RESULTS AND DISCUSSION

All the independent variables and quadratic extensions were examined as possible pre-
dictors of the two dependent variables, with a requirement that the variables should
be marginally significant at 1%. The use of 1% significance rather than 5% takes into
account the overall Type II error, that is, the risk of bias due to selecting from a large
set of variables and also the large sample size.

This analysis yields a model for the total money bet as shown in Table 1 in decreasing
order of t-statistics. This model has an adjusted R2 of 83.8% and root mean stan-
dard error (RMSE) of 0.045, which is quite remarkable compared to the 64% of Ray’s
model. Decreasing seasonal trend, decreasing class trend, increasing race number trend,
increasing number of horses trend, preference for middle distance races, decreasing day
of week trend, increasing start time trend, increasing trend by month within season,
decreasing surface trend, decreasing rain trend, increasing unemployment trend, and
increasing atmospheric pressure trend are all stronger marginal predictors of amount bet
than the introduction in bet rebates, although the rebate impact is still strongly signifi-
cant. All of these variables have an impact in the expected direction, with the exception
of unemployment, although the presence of a seasonal trend in the opposite direction
suggests caution in interpretation of this effect.

This model is much more detailed than those of Thalheimer and Ali, but it is interest-
ing that the positive impact of exotic betting opportunities they found does not show up
in Hong Kong. It is difficult to make a direct comparison with Ray’s model given the
different time scale and more detailed list of variables, however, the increasing trend
with race number is found in Hong Kong, but not the tailing off toward the end of the
meeting. In Hong Kong, there is a preference for Sunday, not Saturday, compared to the
general preference for the weekend in Ray’s model. Like Thalheimer and Ali, she finds
an increase when exotic bets are available. In this case, the difference in Hong Kong
may be that there are always some exotic bets available, it is just a matter of how many
pools are open for a specific race.

2Win, place, quinella, and quinella-place pools versus tierce, trio, first four, double, and treble.
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TABLE 1 Summary of Best Model Predicting Total
Pool per Race

LTPCPI Coefficient Standard error t

SEASON −0.01611 0.00080 −20.2

CLASS2 −0.00351 0.00017 −20.1

RACENO 0.01641 0.00085 19.3

NUMHSE 0.01135 0.00074 15.4

CLASS −0.01015 0.00069 −14.8

SEA2 0.00633 0.00045 14.0

DIST2 0.00000 0.00000 −12.9

NUMH2 −0.00356 0.00028 −12.9

DAYWEEK −0.00368 0.00030 −12.3

STARTTIME 0.42798 0.03587 11.9

SEMONTH 0.00256 0.00024 10.6

SURFACE −0.02154 0.00206 −10.5

RACE2 0.00097 0.00009 10.3

DISTANCE 0.00002 0.00000 8.7

SEM2 −0.00121 0.00014 −8.5

SQRAIN −0.00278 0.00034 −8.2

LUP 0.11817 0.01480 8.0

MEANPRESS 0.00186 0.00023 7.9

TIMEID −0.06269 0.00894 −7.0

LWR2 0.03092 0.00493 6.3

NUMREB 0.09561 0.02514 3.8

BETCHANGE 0.01232 0.00371 3.3

DAYW2 −0.00090 0.00029 −3.1

MEANDP 0.00058 0.00021 2.7

Overall, betting on horse races in Hong Kong is generally becoming less popu-
lar, but races with more horses, racing at middle distance, and in higher classes are
preferred, with increasing money bet per race across the meeting. However, look-
ing at the distribution of betting money across pools eligible for rebate (versus not
eligible) shows a different story. Table 2 shows the summary of the best prediction
model, which has an adjusted R2 of 64.6% and root mean standard error of 0.035.
This shows that the single most important marginal predictor is the number of dif-
ferent pools available in the non-rebate category, with increased bet options moving
money away from the rebate pools. After the race number, the next most impor-
tant variables are the increase in money toward the rebate pools across seasons and
the switch toward the rebate pools, when the rebate was introduced. Interestingly,
both of the variables relating to the distribution of money across horses show very
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TABLE 2 Summary of Best Model Predicting Ratio of
Total Pools per Race

LRREBNREB Coefficient Standard error t

NUMNREB −0.08369 0.00187 −44.7

RACE2 −0.00226 0.00007 −30.9

SEASON 0.01409 0.00046 30.7

BETCHANGE 0.06858 0.00228 30.1

LWR1 −0.08684 0.00298 −29.1

CLASS2 −0.00260 0.00013 −19.7

LWR2 −0.04477 0.00402 −11.1

LSUP −0.06495 0.00666 −9.8

NUMNR2 0.01153 0.00128 9.0

NUMH2 −0.00162 0.00020 −8.2

SURFACE −0.01130 0.00156 −7.2

DIST2 0.00000 0.00000 −6.3

DISTANCE 0.00001 0.00000 5.4

DAYWEEK 0.00113 0.00022 5.3

CLASS 0.00221 0.00052 4.2

NUMHSE 0.00194 0.00047 4.2

SEMONTH −0.00073 0.00018 −4.1

RACENO −0.00102 0.00026 −3.9

NUMREB 0.06166 0.01913 3.2

strong effects, with strong first and second favorites making the exotic pools more
attractive.

Overall, the introduction of the rebate has shifted money away from the exotic pools
and the other major determinant is that strong first and second favorites move money
toward the exotic pools, both of which seem very rational responses from gamblers.

4. CONCLUSION

While the impact of the introduction of a rebate can be clearly seen, most of the impact
is on a shift in money away from exotic pools, with a much weaker impact on increas-
ing the total money bet. Gamblers clearly prefer larger fields, middle distances, and
higher class races. They respond to strong first and second favorites by shifting money
to exotic bets. Modeling the distribution of money bet across races shows potential in
understanding the behavior of gamblers and provides guidance on what attracts them to
bet more or shift money across pools.
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APPENDIX: 31 Independent Variables Examined
(Excluding Quadratic Terms)

Economy:
LUP: Log unemployment rate
LSUP: Log unemployment rate (seasonally adjusted)

Weather:
MINTEMP: Min daily temperature
MAXTEMP: Max daily temperature
MEANTEMP: Mean daily temperature
MEANPRESS: Mean atmospheric pressure
TOTALRAIN: Total daily rainfall
ANYRAIN: Indicator of more than trace rainfall
MMRAIN: Indicator of more than 1 mm rainfall
MM10RAIN: Indicator of more than 10 mm rainfall
SQRAIN: Square root of rainfall
MEANCLOUD: Average daily cloud cover
MEANRH: Mean relative humidity
MEANDP: Mean DP

Pool Availability:
NUMREB: Number of active pools from the set of Win, Place, Quinella, and

Quinella-Place (3–4)
NUMNREB: Number of active pools from the set of Tierce, Trio, Double, Treble,

and First 4 (2–5)
BETCHANGE: Whether rebate introduced yet (0–1)

Race Information:
SEASON: Season (2000–2007)
SEMONTH: Month of season (0–11)
TRACK: Track (Shatin or Happy Valley)
DIST: Distance (1000–2400)
SURFACE: Surface (1–2)
GOING: Going (1–9)
CLASS: Class (1–9)
DAYWK: Day of week (1–7)
TIMEID: Day/night race
STARTTIME: Time of day (as proportion of day)
RACENO: Race number (1–10)
NUMHSE: Number of horses starting race (5–14)
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Money Distribution Among Horses:
LWR1: Log ratio of money bet on first favorite to money bet on all other horses bet

less in win pool
LWR2: Log ratio of money bet on second favorite to money bet on all other horses

bet less in win pool
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1. INTRODUCTION

This chapter is devoted to the empirical estimation of the preferences for risk of
gamblers on real market data. While there have been several experimental studies try-
ing to elicit preferences of gamblers in the laboratory,1 the observation of real markets
remains a necessary step in assessing the properties of gamblers’ preferences.2 This is
particularly true for gambling; it is indeed often asserted that gambling on racetracks
(or in a casino) involves some type of utility that is hardly replicable in experiments.3

We concentrate in this survey on the empirical work that has been conducted for
horse races,4 in the pari-mutuel system, or in a bookmaker system.5 Horse races (or
other types of betting markets, e.g., sports events) are very good candidates to test the-
ories of preferences under risk: they allow researchers to collect large datasets, and
the average amount of money at stake is significant.6 Financial markets would be a
natural area where the empirical relevance of the implications of the various non-
expected utility models could be tested.7 However, portfolio choices have a very marked
dynamic character, and non-expected utility theories are difficult to handle in dynamic
settings.

Racetrack studies may provide key insights for the analysis of risk-taking behavior
in financial investment, as well as in other contexts where risk is a main issue (e.g.,
environmental risk). Betting markets have the advantage of being short-run, lasting for
one period only. This allows an exact evaluation of the ex-post return on each bet. As
such, they provide an archetype of a simple contingent security market as defined by
Arrow (1964). For horse races, a winning bet of $1 on a particular horse is simply a
contingent security that yields a revenue (R + 1) dollars in the event the horse wins the
race and 0 otherwise. Note that such a security cannot be retraded. The odds R of the
horse in this context is defined as the net return in the winning case.8 In a bookmaker
system, odds are commitments of payment by bookmakers who quote the prices. In a
pari-mutuel system, they are endogenous, resulting from the distribution of the wagers
over the horses: the odds of horse i is the ratio between the total money B wagered
on the race net of the track revenue9 and the total money wagered on the horse Bi,

1See the survey by Camerer (1995).
2An alternative is to use household surveys (see, e.g., Donkers et al., 2001).
3See for instance Thaler and Ziemba (1988).
4There has been some work on Lotto games, sports events, and TV shows (see the conclusion).
5Hausch et al. (1994) present contributions covering most aspects of the economics of racetrack betting. The
book edited by Vaughan Williams (2003) discusses the economics of gambling more generally.
6Weitzman (1965) estimates an average $5 win bet on individual horses in the 1960s, while Metzger (1985)
evaluates that $150 was the average amount bet by an individual during the day in 1980.
7For a recent overview the theory and empirical evidence of portfolio choices, see the contributions in Guiso
et al. (2002).
8Note that 3 to 1 odds correspond to R = 3 and thus a revenue of $4 for a bet of $1 in the event that the horse
wins the race. Following the empirical literature, we focus on win bets, and ignore combinatorial bets.
9It includes the take and the breakage. The take corresponds to the percentage of bets collected by the race-
track organizers, and the taxes. The breakage corresponds to the part of the return lost due to the fact that it is
rounded to the nearest monetary unit.
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minus 1:

Ri =
(1 − t)B

Bi
− 1, (1)

where t is the take.
At any point in time, odds reflect the market information on winning probabilities

and evolve over time, until the race starts. In particular, data may include odds quoted
before the racetrack opens, and odds quoted on the track. The most common practice
is to use starting prices, that is, odds measured at the last minute of betting.10 The
empirical studies discussed below then start with odds data and winners data, and use
them to derive econometric estimates of bettors’ preferences.

Note that there is clearly a selection bias in focusing on bettors and starting prices.
All individuals do not bet, and the population of individuals betting at the track (and thus
going to the race field) is hardly representative of the whole population. It may not even
be representative of the whole population of bettors, as bettors off-track are not the same
as bettors on-track. So the only information that can be derived is information on the
preferences exhibited by individuals betting on the fields. Still, this is indicative of the
type of risk that individuals may engage in, and, given the simple nature of the market,
provides a very good test for various theories of preference under risk. Moreover, as the
selection bias is in the direction of selecting individuals within the most risk loving part
of the population, this provides an overestimate of (and thus a bound on) the level of
risk that an average individual may be willing to accept, which is clearly very useful.

Using econometric methods on racetrack data has the advantage of exploiting the
large size of the samples available. Datasets usually include thousands of races, and
thus allow precise estimates. Moreover, researchers can rely on fairly standard econo-
metric models and procedures, ranging from the simple regression methods used in
early work, to more sophisticated estimations of structural models. The main drawback
is that individual data on bets and on bettor characteristics are typically not available.
This implies several restrictions. First, the size of the wager can usually not be iden-
tified. Second, going to the racetrack and betting involves some type of entertainment
value, and it is not possible to disentangle what is due to the specific utility derived
from the attendance at the race, and more fundamental properties of preferences. It is
also clear that racetrack bettors have heterogeneous preferences and information. To the
best of our knowledge, no one has found a general approach to modeling heterogeneity
in beliefs. The lack of individual data has led most researchers to focus on some form
of average behavior, or more to the point, on the behavior of a representative bettor
capturing the average risk attitude embedded in the dataset. In the bookmaker system,
it seems to be the best one can do. Recent advances have shown that pari-mutuel data
allows researchers to go beyond the representative agent model as it implicitly contains
information about the total amount bet on each horse.

10The studies discussed below could be done with any odds, under a rational expectation assumption. The
informational content of prices is the highest at starting prices, so that they should provide a more accurate
predictor of winning probabilities than earlier odds. See for instance Asch et al. (1982).
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In what follows we first discuss (Section 2) the main stylized facts of horse races that
have shaped the research agenda. We then present in Section 3 the work based on the
expected utility model, which put in place the foundation for subsequent work. Sections
4 and 5 review the work departing from the expected utility paradigm. Section 4 focuses
on the perception on winning probabilities by bettors, while Section 5 discusses the role
of the reference point and the asymmetric treatment of wins and losses.

All of this work assumes a representative bettor; but two very recent contributions
(Gandhi, 2006; Chiappori et al., 2007) show that the distribution of risk preferences
among bettors can be elicited from pari-mutuel data, at least if the heterogeneity of
these preferences is low-dimensional. We briefly discuss their method and their pre-
liminary results in Section 6. Then Section 7 turns to recent work by Snowberg and
Wolfers (2007) that pools information across simple bets and exotic bets. We conclude
by offering some ideas for future research in Section 8.

2. SOME STYLIZED FACTS

Any empirical study of the preferences of racetrack bettors must account for the most
salient stylized fact of racetrack betting data: the favorite-longshot bias. The favorite-
longshot bias refers to the observation that bettors tend to underbet on favorites and to
overbet on outsiders (called longshots). As it is presented in more detail in the chapters
by Ottaviani and Sorensen and by Tompkins, Ziemba, and Hodges in this Handbook,
we only recall here the points that matter for our discussion.11 Thus we focus on the
implications of the favorite-longshot bias on how we view bettors’ preferences.

The favorite-longshot bias seems to have been documented first by Griffith (1949)
and McGlothlin (1959). Griffith studied 1,386 races run under the pari-mutuel system
in the United States in 1947. For each odds class R, he computed both the number of
entries ER (the total number of horses with odds in odd class R entered in all races) and
the product of the number of winners in this class and the odds NR. A plot of ER and
NR against R showed that while the two curves are very similar, NR lies above (below)
ER when R is small (large). Since small R corresponds to short odds (favorites) and
large R to long odds (longshots), this is evidence that in Griffith’s words, there is “a
systematic undervaluation of the chances of short-odded horses and overvaluation of
those of long-odded horses.” A risk-neutral bettor with rational expectations should bet
all his other money on favorites and none on longshots.

A number of papers have corroborated Griffith’s evidence on the favorite-longshot
bias.12 To give just one example, let us look at the dataset used by Jullien and Salanié
(2000). This dataset is composed of each flat horse race run in Britain between 1986
and 1995, or 34,443 in total. British racetrack betting runs on the bookmaker system,
so odds R are contractual. This dataset makes it easy to compute the expected return of
betting on a horse with given odds, as plotted in Figure 1. For any given R, we compute

11See also Hausch et al. (1994) for a survey of the evidence.
12Exceptions have been found for Hong Kong races by Bushe and Hall (1988).
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FIGURE 1 Observed expected return.

p̂(R), the proportion of horses with rate of return R that won their race. The expected
return then is

ÊR(R) = p̂(R)R − (1 − p̂(R))

for a bet of £1, since such a bet brings a net return of R with probability p̂(R) and a net
return of −1 with probability (1 − p̂(R)).

Figure 1 plots ÊR(R), along with a 95% confidence interval. The expected return
is always negative (the occasional spikes on the left of the figure are for odds that cor-
respond to relatively few horses): it does not pay for a risk-neutral bettor to gamble at
the racetrack. More interestingly, the expected return decreases monotonically with the
odds R, so that it is much less profitable for such a bettor to bet on longshots than to bet
on favorites: even for very common odds of 10 to 1, the expected loss is 25 pence on
the pound, as compared to less than 10 pence for horses with even odds (of 1 to 1).

The favorite-longshot bias has been much discussed and four main types of
explanations have emerged in the literature:13

1. The original explanation of the favorite-longshot bias was given by Griffith
(1949) and referred to misperceptions of probabilities by bettors. Griffith argued
that as in some psychological experiments, subjects tend to underevaluate large
probabilities and to overevaluate small probabilities. Thus, they scale down

13Ali (1977) also points out that the favorite-longshot bias can be explained by heterogeneous beliefs, reflect-
ing different subjective probabilities of bettors and a lack of common knowledge. Modeling this would require
introducing some heterogeneity in nonexpected utility models with probability distortions, and so far, the data
does not allow us to do this.
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the probability of a favorite winning a race and they scale up the probability
that a longshot wins a race, which indeed generates the favorite-longshot bias.
Henery (1985) suggests a somewhat similar explanation. He argues that bettors
tend to discount losses: if the true probability that a horse loses the race is q, they
take it to be Q = fq, where 0 < f < 1 is some constant number. This theory
can be tested by measuring Q(R) to be the value that makes the expected return
of betting on a horse with odds R exactly zero; from the formula above, this
Q(R) equals R/(R + 1). Now the value of q(R) is given as q(R) = 1 − p̂(R).
By regressing Q(R) on q(R) without a constant, Henery found an estimated f
of about 0.975 and a rather good fit.14

2. Quandt (1986) showed how risk-loving attitudes generate the favorite-longshot
bias at the equilibrium of betting markets. To see this, take two horses i and j in
the same race, with odds Ri and Rj and true probabilities of winning pi and pj .
The expected return of betting $1 on horse h = i, j is

�h = phRh − (1 − ph),

and the variance of this bet is

vh = phR
2
h + (1 − ph) − �2

h,

which is easily seen to be

vh = ph(1 − ph)(Rh + 1)2.

Now if bettors are risk-loving, the mean-variance frontier must be decreasing in
equilibrium: if �i < �j , then it must be that vi > vj . Then a fortiori equilibrium
requires that

vi

(�i + 1)2
>

vj

(�j + 1)2
.

But easy computations show that

vh

(�h + 1)2
=

1 − ph
ph

,

so that if �i < �j , then pi < pj . The contrapositive implies that horses with a
larger probability of winning (favorites) yield a higher expected return, which is
exactly the favorite-longshot bias.

3. Following the evidence of informed trading (Asch et al., 1982; Craft, 1985),
Shin showed in a series of papers (1991, 1992, 1993—see also Jullien and
Salanié, 1994) that in a bookmakers’ market, the presence of insider traders
generates the favorite-longshot bias as bookmakers set odds so as to protect
themselves against such well-informed bettors.

14Our own estimates on our dataset suggest that the constant term in Q = a + bq is highly significant.
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4. Finally, it may be that the utility of gambling is higher for bets on longshots,
perhaps because they provide more excitement; this explanation is advanced by
Thaler and Ziemba (1988). Then, if risk-neutral bettors equalize the sum of the
expected return and the utility of gambling across horses in each race, clearly the
expected return will be higher for favorites.

These four explanations are not mutually incompatible. In modern terms that were
not available to Griffith (1949), explanation 1 hints at a nonexpected-utility model of
bettors’ preferences with non-linear weighing of probabilities.15 Explanation 2 therefore
can be subsumed in explanation 1, with risk-loving appropriately redefined so that it
makes sense for nonexpected-utility preferences.

Because the rest of this chapter will focus on explanations 1 and 2, we should explain
here why we put aside explanations 3 and 4. The literature on insider trading is covered
in Sauer (1998) along with the test of efficiency of wagering markets. For our purposes,
one problem with Shin’s models is that they are rather specific, so that estimating the
incidence of insider trading requires strong assumptions on preferences and the infor-
mation structure of insider traders. Still, it might make sense to pursue this direction.
However, this is in fact not necessary so far as the gambler’s preference is the object of
interest. It is true that the existence of a fringe of insider traders changes the behavior
of bookmakers; but under rational expectations, all the information available is incor-
porated into prices so that one may still estimate the preferences of a gambler with
no private information. Finally, explanation 4 also is intuitively appealing: betting on a
huge favorite, say with a 99% chance of making a net return of 1 cent on the dollar, is
clearly less fun than betting on a longshot that brings $100 with a 1% probability. One
difficulty with this explanation is that in a sense, it explains too much: since there is lit-
tle evidence on the determinants and the functional form of the utility of gambling, any
feature of the equilibrium relationship between p and R can be explained by an ad hoc
choice of functional form for the utility of gambling. However, we will see later that
models with nonexpected-utility preferences, by reweighting probabilities, may yield
similar predictions to models with a utility of gambling that depends on the probability
of a win.

3. EXPECTED UTILITY

The seminal contribution in the domain is the work of Weitzman (1965) who builds
on the above findings and attempts to estimate the utility function of an average
expected utility maximizer. Weitzman had at his disposal a dataset of 12,000 races,
collected on four New York racetracks for a period covering 1954 to 1963. Following
Griffith (1949), Weitzman starts by aggregating horses over all races by odds category,
obtaining 257 odds classes. From the winners dataset, he then constructs the ex post
estimate p̂(R) of the winning probability of a horse conditional on its odds category
R. This allows him to estimate a functional relation between the odds category and

15See the conclusion for other types of cognitive biases.
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the winning probability.16 Then he attempts to build the utility function of an average
bettor, referred to as Mr. Avmart (average man at the racetrack), as follows. Mr. Avmart
is an expected utility maximizer with a utility function u(.) and he bets a fixed amount
on each race,17 normalized to 1 for the exposition (the actual unit Weitzman uses is
$5). Mr. Avmart is representative in the following sense: the data observed could be
generated by Mr. Avmart (or a population of identical Mr. Avmarts) betting. As every
odds category receives some bet, Mr. Avmart must be indifferent between all the odds
categories, which implies that

p̂(R)u(R) + (1 − p̂(R)) u(−1) = K for all R,

where K is the constant expected utility. This yields the relation

u(R) = u(−1) +
K − u(−1)

p̂(R)
,

which allows him to estimate a utility function for all money levels R. Using this pro-
cedure, Weitzman found a convex utility function on the range of money value covered
($5 to $500), consistent with the assumption of a risk-loving attitude.

Ali (1977) conducted a similar study with a 20,247 race dataset, grouping the horses
according to their ranking as opposed to their odds. For each ranking, an average odds
and an empirical winning probability are computed. He then estimates the utility func-
tion of an agent indifferent to betting on any horse category. Ali confirms the Weitzman
finding, with a risk-loving utility function. He estimates a constant relative risk-aversion
utility (CRRA) with a coefficient of relative risk aversion of −0.1784. Applying the
methodology to different data, Kanto et al. (1992) and Golec and Tamarkin (1998)
estimate somewhat similar CRRA utility functions.18

By construction, the preferences of the representative agent are based only on the
information contained in the odds category (or the ranking in the case of Ali). The
behavior of the agent is representative on average, in the sense that he is indifferent
between betting on the horse in a given category on all races, and betting on the horse
in another category on all races.19 Thus, the construction of Mr. Avmart’s preferences
involves two types of aggregation: of the information over odds and winning proba-
bilities, and of the preferences. One of the drawbacks of the categorization of odds is
that the number of points used to fit the utility function is usually small (except for
Weitzman, 1965, who builds 257 categories). Another important aspect is that the only
information used is the category of the horse, so some information on the races included
in the dataset is not used by Mr. Avmart. This is the case, for instance, for the number
of runners in each race. Given the nature of the pari-mutuel system, one may think

16He estimates a hyperbola p̂(R) = 0.845
R and a “corrected hyperbola” p̂(R) = 1.01− 0.09 log(1+R)

R .
17Recall that data on individual bets are not available, so the amount bet must be postulated.
18Golec and Tamarkin’s estimates for relative risk aversion, based on odds category, are −0.14 for the whole
dataset, and −0.2 for a data conditional on having a large favorite. Values differ but they all confirm a risk-
loving attitude.
19Or in a race chosen at random in the sample of races.
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that the number of runners may affect the relationship between the winning probability
and the odds. More generally, this relationship may vary with the race characteristics.20

A second remark is that it may also vary with the take, or more generally with the mark-
up over winning probabilities that corresponds to the revenue of the betting institution.
In the case of a pari-mutuel market, this is not so problematic, as the take is fixed at the
race track level. However, when applied to a betting market organized by bookmakers,
the procedure may create serious biases as the mark-up is chosen by the bookmakers
and may vary from one race to the another.21

Jullien and Salanié (2000) propose a method to estimate the representative agent’s
preferences that accounts for heterogeneity among races. To understand the procedure,
let us consider a given race r with Er horses. Let pir denote the objective winning
probability of horse i in race r and Rir be the odds. Now assume that the representative
agent is indifferent between betting $1 on any horse in race r. Then there must be some
constant Kr such that:

piru(Rir) + (1 − pir)u(−1) = Kr.

Using the fact that probabilities add up to one, one can then recover for each race
and each horse, a unique predicted probability of winning p̂(i, r, u) and a constant Kr

consistent with this relation. The procedure then consists of using the winners’ dataset
to find the utility function u(.) that provides the best fit to the empirical dataset using
a maximum likelihood method. Note that the method has the advantage of using all
the data information, and getting rid of the categorization of odds. The nature of the
representative agent is slightly different as he or she is indifferent between betting on
any horse on any given race, as opposed to placing a systematic bet on a given odds
category on all races. Thus the agent too uses all the information in the dataset, and may
even use more information, in order to adjust to the specificities of races.

Applying this procedure to the estimate of a utility function, Jullien and Salanié con-
firmed the finding of a risk-loving utility function. It appears, however that the CRRA
utility representation is outperformed by a utility function with a constant absolute risk
aversion (CARA). Among the class of utility functions with a hyperbolic risk aversion,
the best fit was obtained for a CARA utility function, with a fairly moderate degree of
risk-loving behavior.

Expected utility estimates provide results that are consistent with explanation 2 of the
favorite-longshot bias, that is, a risk-loving attitude. However, as documented by Golec
and Tamarkin (1998), and Jullien and Salanié (2000), these estimates tend to perform
poorly for large favorites. Indeed, the probabilities of winning implied by the estimated
utility and the underlying structural model of the representative agent tend to be too
small for large favorites. Arguably, this can be due to the parametric forms chosen for
the utility function estimated, which restrict its curvature. Arguing that CRRA utility

20McGlothin (1956) and Metzger (1985) provide evidence that the position of the race in the day matters, as
well as the amount of publicity for the race.
21If the average mark-up varies with the race, as is the case with bookmakers, the constant K above should
depend on the race. The same issue arises when using data from racetracks with different values of the take.
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functions perform poorly for large favorites, Golec and Tamarkin (1998) estimate a
cubic utility function:

u(R) = −0.071 + 0.076R − 0.004R2 + 0.0002R3.

The utility function exhibits risk aversion for low odds (favorites) and a risk-loving
attitude for larger levels of odds. As the coefficient for the variance is negative, they
conclude that the risk-loving attitude is related to the skewness of the distribution (the
third moment). While the risk-averse attitude for small probabilities is an interesting
result, this is probably as far as one can go with the expected utility model on this type
of dataset. In particular, given the specific economic context, the non-representativeness
of the population studied and the lack of data on individual bets and characteristics,
very detailed estimates of the curvature of the utility function at various levels of odds
may not be of much relevance for other applications. We now follow a different route.
As argued before, although the precise preference of racetrack bettors may not be of
special interest to the economist in a different domain, they provide a simple and clear
real-life experiment. The next step is thus to use the data to test various departures from
the expected utility paradigm on a real-life situation. Among these, the most popular
in modern theory are the so-called nonexpected utility models, which provide mathe-
matical representations of preferences under risk that are non-linear in the space of
probability distributions.

Before we proceed, let us point out that there is no inherent contradiction between
the expected utility representation and a nonexpected utility model of the agent behav-
ior. Indeed, as we already noted, the data contains no information on the individual
characteristics, and in particular on wealth. This means that all the utility functions are
estimated only for the revenue derived from the betting activity. One may then con-
sider that the distribution of this revenue represents a relatively small fraction of the
risk supported by individuals on their total wealth, at least for the average bettor. As
shown by Machina (1982), even when an agent evaluates his or her total wealth in a
nonexpected utility manner, one may still evaluate small risks with an expected utility.
The utility function is then local as it represents the differential of the global functional,
and it depends on the underlying total wealth. Thus one may see expected utility esti-
mates as a first order linear approximation of preferences. The question is then whether
alternative utility representations provide a better representation of preferences than this
approximation.

4. DISTORTIONS OF PROBABILITIES

The empirical evidence collected in the previous section suggests that the best expected
utility rationalization of the equilibrium relationship between probabilities and odds
exhibits a significant but not very large degree of risk loving. Still, a very copious body
of experimental literature, starting with the work of Allais (1953), has accumulated to
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shed doubt on the value of the expected utility model as a representation of behavior
under risk. The recent survey by Camerer (1995), for instance, strongly suggests that
the independence axiom is violated in most experiments.

On the other hand, there is no consensus about which nonexpected utility model to
choose, even among authors who hold that we should drop the expected utility represen-
tation. Moreover, most of the evidence is experimental; there seems to be little evidence
based on real-life economic situations. As argued in the introduction, bets on horses
are very simple Arrow-Debreu assets that cannot be retraded and thus offer an exciting
way of testing these theories. The next three sections are dedicated to this task. The
first two mostly describe our own work (Jullien and Salanié, 2000). Then we move to
very recent developments that start to account for the unobserved heterogeneity in risk
attitudes among bettors. We can only hope that in 10 years, there will be many more
papers to present in this field.

Recall that the expected utility of betting on horse i with odds Ri and probability of
winning pi is

piu(Ri) + (1 − pi)u(−1).

This is a special case of the standard formula∫
u(x)dF (x),

where the risky outcome X has a cumulative distribution function F . There are many
ways of altering this formula in order to obtain a nonexpected utility representation
of preferences. One of the most natural, suggested by Quiggin (1982), consists of re-
weighting probabilities, so that the value of X now takes the form

−
∫
u(x)d(G ◦ (1 − F ))(x)

where G is a continuous and increasing function that maps [0, 1] into itself. While this
may seem opaque, the application of this formula to the bet on horse i yields

G( pi)u(Ri) + [1 − G( pi)]u(−1).

While Quiggin (1982) called this specification “anticipated utility,” it now goes under
the name of “rank dependent expected utility” (RDEU for short). Because G is a priori
non-linear, RDEU breaks the independence axiom of expected utility. It does so in ways
that may allow it to account for violations such as the Allais paradox: when G is convex,
RDEU preferences indeed solve what is called in the literature the “generalized Allais
paradox.”

Remember that Griffith (1949) explained the favorite-longshot bias by appealing
to an overestimation of small probabilities and an underestimation of large probabili-
ties. This points to a G function that is concave and then convex. On the other hand,
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the weighting function postulated by Henery (1985) does not fit within RDEU, strictly
speaking. It can indeed be written as

G( p) = 1 − f (1 − p)

which gives G(0) = 1 − f > 0 and thus is inconsistent with the axioms of RDEU (and
indeed of any reasonable theory of choice under risk). This could of course be fixed by
smoothly connecting G(0) = 0 with the segment represented by Henery’s specification.
Note that neither of these specifications yields a convex weighting function G( p), as
required to solve the generalized Allais paradox.

Jullien and Salanié (2000) fitted various RDEU functionals to their dataset of British
flat races. All of these functionals assumed that the utility of wealth function u was
a CARA function; on the other hand, they allowed for much more flexibility on the
shape of the weighting function G( p), which allowed them to nest the shapes suggested
by Henery and Griffith, among others. Figure 2 offers a summary of their results. The
most striking feature of these curves is that they are very close to the diagonal for each
specification. Thus the estimated RDEU functionals hardly depart from the expected
utility model. This is confirmed by formal tests, since the null hypothesis of expected
utility is only rejected for one specification of the weighting function, that proposed by
Prelec (1998) on the basis of an axiomatic derivation. According to this study at least,
rank-dependent expected utility does not appear to provide a better fit of bettors’ prefer-
ences than expected utility. Note that if anything, the estimated weighting functions are
slightly convex on the whole [0, 1] interval and thus do not go in the direction suggested
by Griffith or Henery.
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FIGURE 2 Estimated weighting functions for RDEU.
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5. REFERENCE POINTS AND ASYMMETRIC
PROBABILITY WEIGHTS

While the results in the previous section are not very encouraging for nonexpected
utility, there are many alternative specifications of these models. In particular, since
Markowitz (1952), the notion of reference point has received some attention. This refers
to the idea that individuals evaluate risk by comparison to some reference wealth, and
treat losses and gains in an asymmetric way. This is particularly attractive in the case
of betting, as there is a natural reference point (no bet) and a clear distinction between
losses and gains.

In a recent work, Bradley (2003) proposes such a representation where the agent
maximizes an expected utility with a reference point and a differential treatment of
losses and gains.22 His representation assumes a different constant relative risk-aversion
utility function for losses and for gains. This allows the representation to endogeneize
the size of the bet, which is not done in other approaches. Although his investigation
is still preliminary, it suggests that a representation with risk aversion on losses and a
risk-loving attitude on gains may fit the data, in particular the favorite-longshot bias.

Among various theories involving a reference point, the cumulative prospect theory
(CPT) has become very popular in recent years. Prospect theory was introduced by
Kahneman and Tversky (1979) and developed into cumulative prospect theory in Tver-
sky and Kahneman (1992). Most theories of choice under risk evaluate lotteries as
probability distributions over final wealth. CPT diverges from this literature in that it
evaluates changes in wealth with respect to a reference point that may for instance be
current wealth. This matters in that in CPT, losses and gains are evaluated in differ-
ent ways. Kahneman and Tversky first appeal to the principle of diminishing sensitivity,
which states that the psychological impact of a marginal change decreases when moving
away from the reference point. Applied to the utility of (changes in) wealth function, it
suggests that this function is concave for gains but convex for losses. When applied to
the probability weighting function, and given that the endpoints of the [0, 1] interval are
natural reference points, it suggests that this function should have the inverted-S shape
implicit in Griffith (1949).

Cumulative prospect theory also adds two elements of asymmetry in the treatment of
gains and losses. First, it allows for different probability weighting functions for gains
and losses. Second, it assumes loss aversion, that is, that the utility of changes in wealth
is steeper for losses than for gains, so that the function u(x) has a kink at zero.

For a general prospect X with cumulative distribution function F , the value
according to CPT is∫

x<0
u(x)d(H ◦ F )(x) −

∫
x>0

u(x)d[G ◦ (1 − F )](x)

22As pointed out in Section 2, if we see the utility function as a local utility function, the notion of reference
point becomes natural.
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where G and H are two continuous and increasing functions that map [0, 1] into itself
where ◦ denotes composition of functions. Given a bet on horse i with odds Ri and
a probability of a win pi, the CPT value simplifies to

G( pi)u(Ri) +H (1 − pi)u(−1).

Note the differences with RDEU. The most obvious one is that in general H (1 − p) �=
1 − G( p). The other one is hidden in the formula, since the function u should be convex
for losses (x < 0), have a concave kink at zero [with u(0) = 0], and be concave for gains
(x > 0). Clearly, only some of these properties can be tested from the data, since the
only values of u on which we can recover information are those in −1 and on [R,+�),
where R is the smallest odds observed in the data.

In their paper, Jullien and Salanié (2000) chose to circumvent these difficulties
by assuming that u was a CARA function. This is clearly not satisfactory, as it
assumes away by construction any form of loss aversion and it violates the principle
of diminishing sensitivity by forcing the concavity of u to have the same sign for
losses and for gains. Jullien and Salanié normalize u by setting u(0) = 0 and u′(0+) = 1;
then the parameter of the CARA function is estimated from the relationship between
probabilities and odds, and it implies a value for u(−1), say A. Then they run a test of
(and do not reject) the null hypothesis that u(−1) = A. This may be construed as a test
of loss aversion by a sympathetic reader, but we admit that it is not very convincing. The
best justification for their assuming a CARA utility function probably is that they want
to focus on the probability weighting functions G and H and there is just not enough
information in the data to probe more deeply into the function u.

Given this restriction, Jullien and Salanié tried three specifications for functions
G and H . Figure 3 plots their estimation results for the function G. As in the RDEU
case, the function appears to be slightly convex but very close to the diagonal: there
is little evidence of a distortion of the probabilities of gains. The estimated H func-
tion, however, has a markedly concave shape for all specifications as shown in Figure 4.
These results are somewhat at variance with the theory, which led us to expect inverted-S
shapes for the probability weighting functions.

There are several ways to interpret these results, and Jullien and Salanié illustrate
some of them. First, it can be shown that G convex and H concave explain the general-
ized Allais paradox. Second, local utility functions a la Machina (1982) can be derived
from these estimates; they have a shape similar to that hypothesized by Friedman and
Savage (1948). Let us focus here on how these preferences explain the favorite-longshot
bias. To see this, remember that the function u exhibits a moderate degree of risk-loving
behavior, and the function G is very close to the diagonal. Thus, to simplify things,
assume u(x) = x and G(p) = p. Then horse i is valued at

piRi −H (1 − pi)

which can be rewritten as

pi(Ri + 1) − 1 − [H (1 − pi) − (1 − pi)].
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FIGURE 3 CPT probability weighting for gains.
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FIGURE 4 CPT probability weighting for losses.

Now given the estimates of Jullien and Salanié, the function q −→ H (q) − q is zero in
0 and 1 and has a unique maximum close to q∗ = 0.2. Since most horses have a proba-
bility of winning much lower than 1 − q∗ = 0.8, it follows that H (1 − p) − (1 − p) is an
increasing function of p and therefore in equilibrium, the expected return pi(Ri + 1) − 1
is an increasing function of the probability of a win. Thus bigger favorites are more
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profitable bets for risk-neutral bettors, which is the definition of the favorite-longshot
bias. The data suggest that the bias may be due not only to risk-loving behavior, as sug-
gested by Quandt (1986), but also to the shape of the probability weighting functions.
This is an intriguing alternative, since it can be shown that the concavity of H pulls
toward risk-averse behavior for losses. Thus the favorite-longshot bias is compatible
with risk-averse behavior, contrary to the standard interpretation.

Finally, let us return to explanation 4 of the favorite-longshot bias, based on the utility
of gambling. First, note that the method used by Jullien and Salanié is robust to a utility
of gambling that may differ across races but is the same for all horses in a given race.
Now assume that for horse i, there is a horse-specific utility of gambling f ( pi,Ri), so
that the value of this bet for a risk-neutral bettor is

pi(Ri + 1) − 1 + f ( pi,Ri).

By identifying this formula and the one above, we can see that our CPT estimates can be
interpreted as representing the preferences of a risk-neutral bettor with a horse-specific
utility of gambling given by

f ( pi,Ri) = 1 − pi −H (1 − pi)

which only depends on the probability of a win. Moreover, we know that it is a decreas-
ing function of pi for most horses. Thus this reinterpretation of Jullien and Salanié’s
CPT estimates brings us back to explanation 4 of Thaler and Ziemba (1988). There is
in fact nothing in the data that allows the econometrician to distinguish between these
two interpretations.

6. HETEROGENEOUS PREFERENCES

Recent work by Gandhi (2006) and Chiappori, Gandhi, Salanié, and Salanié—hereafter
CGSS (Chiappori et al., 2007)—adapts the paradigm of empirical industrial organiza-
tion to explore the heterogeneity of preferences among bettors on horse races. First,
assume that all bettors have the same beliefs on the probability that any horse wins any
given race. Then horses in a race are vertically differentiated goods: at any given price
(or odds), a horse is preferred to another if and only if it is considered more likely to win.

Of course, prices are not equal; and in a bookmaker system they depend in a fairly
opaque way on the bookmakers’ own beliefs, the market structure, and other factors that
are hard to control for. But in a pari-mutuel system, by construction, a simple formula
relates prices and market shares. Denote by Si(R) the amount of money that is bet on
horse i in a race with n horses and odds R = (R1, . . . ,Rn), and t the track take. Then
the odds on horse i are given by

(1 − t)
n∑

j=1

Sj(R) = (Ri + 1)Si(R).
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It is easy to get data on odds in a large number of races; then these yield directly the
relative market shares (the percentage of money that was bet on each horse in a given
race), since from the above

mi(R)
mj(R)

=
Rj + 1
Ri + 1

.

Thus, in addition to the information on probabilities of winning that Jullien and Salanié
(2000) used, pari-mutuel data contains information on market shares. For simplicity,
assume here that the population of bettors is the same in all races, and let W ( pi,Ri)
denote the value that a bettor indexed with W attributes to a $1 bet on a horse i which is
expected to win a net return of Ri with probability pi. Then if all bettors place $1 bets,
the market share is simply

mi(R) = Pr (W ( pi,Ri) ≥ W ( pj ,Rj)) for all j = 1, . . . , n,

where the probability is taken over the distribution of W in the population.
Gandhi (2006) shows that even if bettors have different beliefs about the chances that

any horse will win, under mild conditions there exists a rational expectations equilib-
rium where the odds reveal all information available to bettors. Thus, in equilibrium, all
bettors effectively have the same beliefs, so that focusing on identical beliefs is at least
internally consistent.

Going back to econometrics, we can recover the pj’s by observing the odds of the
winning horse in the many races in the data; and the equation above shows that observ-
ing the odds (and thus the market shares in a pari-mutuel system) conveys information
about the distribution of the preferences of bettors. Gandhi estimates such a model by
maximum likelihood, and tests various formulations of the EU model against RDEU.
Unlike Jullien and Salanié, Gandhi uses a non-nested representation of EU and RDEU.
He finds that his EU representation outperforms the RDEU model, the latter collapsing
in a representative agent model. The EU estimates confirm the presence of heterogene-
ity; the favorite-longshot bias can then be interpreted as the outcome of the interaction
between risk-averse and risk-loving bettors.

More generally, CGSS consider the case when all preferences W belong to an
unknown family V (., ., �) indexed by a one-dimensional parameter �, and satisfy a
single-crossing property. CGSS show that the distribution of the V (., ., �) in the popula-
tion of bettors then is non-parametrically identified, and they give a simple constructive
procedure to estimate this distribution from the data. To review, assume that expected
utility describes every bettor. Then bettor � has a utility

piu(Ri, �) + (1 − pi) u(−1, �)

from betting $1 on horse i in a given race. The single-crossing condition in CGSS
implies that in any race (R = R1, . . . ,Rn), the interval [0, 1] partitions neatly: bettors
with a � in [�i−1(R), �i(R)] will bet on horse i.
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The bounds of these intervals are easy to recover from the market shares. For
instance, normalizing the distribution of � to be uniform in [0, 1] yields:

mi(R) = �i(R) − �i−1(R).

Now by definition, a bettor in �i(R) is indifferent between betting on horses i and
(i + 1). Therefore

pi{u[Ri, �i(R)] − u[−1, �i(R)]} = pi+1{u[Ri+1, �i(R)] − u[−1, �i(R)]}.

Since we know �i(R) and we can estimate probabilities pi from the data, we can use
this as an estimating equation for the function u(R, �) − u(−1, �). The unknown utility
function can be expanded into series of R and �, so that it is very easy to estimate, and
tests that bettors have identical preferences follow quite naturally.23

With expected utility, the linearity in p allows us to circumvent the preliminary stage
of estimating the probabilities. Defining fi = 1 if horse i finished first, fi = 0 other-
wise, and noting that estimating probabilities from the data amounts in replacing pi
with pi(R) = E(fi|R), we can use the properties of conditional expectation and obtain
the following moment condition:

E (fi(u(Ri, �i(R)) − u(−1, �i(R)))|R) = E (fi+1(u(Ri, �i(R)) − u(−1, �i(R)))|R) ,

which can be estimated by linear regression methods from data on market shares and
on which horse finished first.

CGSS apply this approach to a sample of about 50,000 races run in the U.S. in
2001.24 Figure 5 gives a taste of their results, on expected utility preferences. It shows
the estimated absolute risk-aversion indexes

�(R, �) = −u′′RR(R, �)

u′R(R, �)

for the four quantiles of the distribution of risk preferences � = 0.3, 0.5, 0.7, 0.9, along
with the absolute risk-aversion index estimated under the assumption that all bettors
have the same preferences (“EU Homo”).

There is clearly much heterogeneity among preferences toward risk in this data,25

and assuming homogeneity would be quite misleading. Beyond that, the nature of this
heterogeneity is not easy to describe. All curves are U-shaped, suggesting risk-averse
behavior on low- and high-probability bets, and risk-loving behavior in between.

23This can be generalized to nonexpected utility directly, adding of course new terms that are non-linear in
probability p.
24Ideally, races should be differentiated by adding some covariates, and changes in the population of bettors
should be modeled too.
25Given the size of the sample, the estimates are very precise, and therefore we do not show confidence bands.
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FIGURE 5 Estimated absolute risk aversions of heterogeneous bettors.

7. EXOTIC BETS

Snowberg and Wolfers (2007) exploit the existence of exotic bets26 to build a non-
parametric test of EU. They focus on so-called exactas, which are bets on the ordered
first two horses. An exacta (i, j) wins if horse i wins and horse j is second. The idea
of the test is that EU and NEU preferences that generate the same behavior on simple
bets have different implications for exotic bets. Let pij be the conditional probability that
horse j ends second when horse i wins. Let Rij be the odds of the exacta (i, j). Snowberg
and Wolfers extend the standard model by imposing the condition that the represen-
tative bettor is also indifferent to the choice between simple bets and exactas. In the
case of expected utility, we thus have pipij[u(Rij) − u(−1)] = pi[u(Ri) − u(−1)] which
reduces to

pij[u(Rij) − u (−1)] = u (Ri) − u (−1) .

They contrast this with models having distortions of probabilities and a linear
utility function [u(R) = R]. They also assume that individuals do not reduce com-
pound lotteries: defining G(.) as in Section 4, the distorted probability of winning an

26Exotic bets are combinatorial bets allowing a bet on mutiple horses in various orders.
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exacta is G(pi)G(pij) as opposed to G(pipij). Here the indifference condition becomes
G(pi)G(pij)(Rij + 1) = G(pi)(Ri + 1) or

G(pij)(Rij + 1) = Ri + 1.

Using a U.S. dataset, they then estimate non-parametrically the functions u(.) and
G(.) on simple bets along the line of Weitzman (1965), and use the exactas to compare
the EU model and the NEU model. The procedure has the advantage of being non-
parametric, at the cost of ignoring race specific effects due, for instance, to the number
of horses (in the above notation Kr is the same for all races). They conclude that the
NEU model better fits the data than the EU model.

8. CONCLUDING REMARKS

This survey has attempted to describe the literature estimating and testing various utility
representations on racetrack betting data. Clearly, much more work is required before
some definite conclusion emerges. We hope to have convinced the reader that this type
of study provides useful insight and is worth pursuing. In particular, the pattern that
emerges is that the nature of the risk attitude that is embedded in odds and winners
data is more complex than predicted by a simple risk-loving utility function, and may
involve some elements of risk-aversion behavior as well. Assessing precisely which type
of preference representation best fits the data would require more extensive studies. The
methodology described here can apply to other existing theories, such as, for instance,
regret theory (Loomes and Sugden, 1982) or disappointment theory (Gul, 1991).

As exposed in Kahneman et al. (1982), departures from expected utility involve more
heuristics and biases than the static discrepancy between psychological probabilities
and objective probabilities that can be captured by a non-linear preference function.
The richness of the data available on horse races could help to test some of these other
departures. This would require the researcher to collect more data than the odds and the
winners, but there is, for instance, a potential to exploit information on the races, or the
dynamics of odds. An attempt in this direction is Metzger (1985) who uses the ranking
of the race during the day to provide some empirical supports for the gambler’s fallacy
(among others), here the effect of the outcome of the previous races on the perception
of the respective winning probabilities of favorites and longshots. Ayton (1997) uses
data on UK football gambling and horse races to study the support theory developed by
Tversky and Koehler (1994), with mitigated conclusions.

We have focused on horse races studies. Other gambling modalities provide docu-
mented natural experiments. Because each type of gambling involves a different
entertainment value and motivation of gamblers, it is difficult to compare the results
obtained in different gambling contexts. Studies are still relatively scarce, and we will
have to wait for more work before drawing any conclusion from the comparison of the
patterns of behavior observed for various games. Still, let us mention that work has
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been conducted for lotteries that sheds some light on the nature of cognitive biases.27

For instance, it is well documented that the return varies with the numbers chosen (see
Thaler and Ziemba, 1988; Simon, 1999). Simon (1999) and Papachristou (2004) also
examine whether lotto data exhibit a gambler’s fallacy pattern, with mixed conclusions.
Televised gambling has also been examined. References can be found in Beetsma and
Schotman (2001) estimating risk-aversion for participants to the Dutch television show
LINGO, or in Février and Linnemer (2002) who conclude from a study of the French
edition of the television show The Weakest Link that some pieces of information are
not used by participants.28 Finally, we should mention the recent work by Levitt (2004)
using micro-data on gambling on the National Football League to analyze biases and
skills in individual betting.
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Abstract

To predict the ordering probabilities of multi-entry competitions (e.g., horse races),
Harville (1973) proposed a simple way of computing the ordering probabilities based
on the simple winning probabilities. This simple model is implied by assuming that
the underlying model (e.g., running times in horse racing) is the independent expo-
nential or extreme-value distribution. Henery (1981) and Stern (1990) proposed to
use normal and gamma distributions, respectively, for the running time. However,
both the Henery and Stern models are too complicated to use in practice. Bacon-
Shone et al. (1992b) have shown that the Henery and Stern models fit better than
the Harville model for particular horse racing datasets. In this chapter, we first give
a theoretical result for the limiting case that all the horses have the same abilities. This
theoretical result motivates an approximation of ordering probabilities for the Henery
and Stern models. We then show empirically that this approximation works well in
practice.

Keywords: ordering probabilities, horse races, running-time distributions.

1. INTRODUCTION

In multi-entry competitions, Harville (1973) proposed to use the following formula to
compute the ordering probabilities:

�ij =
�i�j

1 − �i
(1)

where �ij = P (i wins and j finishes second), and

�i = P (i wins).

In horse racing, i and j are two horses, and the value of �i can be estimated by the win
bet fraction (see Ali, 1977; Synder, 1978; Busche and Hall, 1988; and Bacon-Shone
et al., 1992a for details of using the win bet fractions). The case is similar for more
complicated ordering probabilities.

Although Harville (1973) did not relate his model to any probability distribution, the
simple formula in Equation (1) can be implied from the assumption of independent
exponential distributions for running times with different scale parameters (Dansie,
1983) for each horse in each race or independent extreme-value distributions with
different location parameters. Henery (1981) proposed assuming independent normal
distributions for the running times (hereafter called the Henery model), that is, the
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running time of the ith horse, Ti ∼ N (�i, 1). Then

�ij = P (Ti < Tj < min
r �=i,j

{Tr})

=
∫�

−�

�(u + �j − �i)
∏
r �=i,j

[1 − �(u + �j − �r)]�(u)du,

where the �i’s are found by solving

�i =
∫�

−�

∏
r �=i

�(u + �i − �r)�(u)du.

Hence, numerical integration or an approximation method is required. Similarly, Stern
(1990) proposed to use independent gamma distributions with fixed integral shape
parameter r, that is, Ti ∼ G(r, �i). Similar to the Henery model, no closed form has
been found for computing the ordering probabilities. For descriptions of the three mod-
els, see Bacon-Shone et al. (1992b). Thus, to apply these models in practice, a good
approximation is essential; otherwise the Harville model has to be used (e.g., Hausch
et al., 1981).

Bacon-Shone et al. (1992b) reported many empirical analyses of different compli-
cated bets. Their conclusion is that using the information from win bet fractions alone,
for the analyses of an exacta bet (in the Meadowlands), trifecta bet (in the Meadow-
lands and Hong Kong), and quinella bet (in Hong Kong), the Henery model was found
to be better than the others in predicting the relevant ordering probabilities for those bets
according to a likelihood approach. For details, see Bacon-Shone et al. (1992b). How-
ever, an exceptional case has been found in Japan where the Stern model with a fixed
shape parameter is better than the Henery or Harville models (see Lo and Bacon-Shone,
1992).

In this chapter, we first give a limiting result for some functions of the ordering
probabilities when all horses have equal abilities in Section 2. This motivates the method
of approximation for the ordering probabilities. Empirical results which illustrate the
accuracy of this approximation are included in Section 3. The conclusion is given in
Section 4.

2. THEORETICAL RESULTS OF THE LIMITING CASES

In this section, we will show that some functions of the ordering probabilities under the
Henery and Stern models will become constants when all the horses have equal abilities
(i.e., equal mean running times).

Define

�Hen
ijl =

ln(�ij/�il)
ln(�j/�l)

(2)
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and

� Hen
ijkl =

ln(�ijk/�ijl)
ln(�k/�l)

(3)

where �i = the winning probability of horse i which can be estimated by the win bet
fraction of horse i; �ij = P (horse i wins and j finishes second) under the Henery model
and �ijk = P (horse i wins, j finishes second, and k finishes third) under the Henery
model. Then, the following theorem holds:

Theorem 1. When the running times follow independent normal distributions with
means �1, . . . , �n, and let 	i;n be the ith expected normal order statistics, we have:

(a) lim
�l→�j

�Hen
ijl = lim

�l→�j

ln(�ij/�il)
ln(�j/�l)

where �s = �j for all—s �= l

=
(

1 − 1
n

)
	2;n

	1;n
+

n − 1
n(n − 2)

(
	1;n + 	2;n

	1;n

)
(n ≥ 3)

� 	2;n

	1;n
when n is large, (4)

(b) lim
�l→�k

� Hen
ijkl = lim

�l→�k

ln(�ijk/�ijl)
ln(�k/�l)

where �s = �k for all—s �= l

=
(
n − 1
n

)(
1

n − 3

)(
1 +

	2;n + 	3;n

	1;n

)

+
(
n − 1
n

)
	3;n

	1;n
(n ≥ 4)

� 	3;n

	1;n
when n is large. (5)

The proof of Theorem 1 is given in the Appendix.

The above two limiting values, Equations (4) and (5), are reported in Table 1 for
different race sizes, n.

For the Stern model, define

�
(r)
ijl =

ln(�(r)
ij /�

(r)
il )

ln(�j/�l)
(6)

�
(r)
ijkl =

ln(�(r)
ijk/�

(r)
ijl )

ln(�k/�l)
(7)

where the ordering probabilities in Equations (6) and (7) are based on the Stern model
with shape parameter r.

A similar theorem holds for the Stern model.
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TABLE 1 Limiting Values of �Hen
ijl

and �Hen
ijkl

Race size lim �Hen
ijl lim �Hen

ijkl

3 0.6667 —

4 0.6996 0.5336

5 0.7207 0.5703

6 0.7359 0.5952

7 0.7475 0.6138

8 0.7569 0.6285

9 0.7648 0.6406

10 0.7714 0.6508

11 0.7771 0.6596

12 0.7822 0.6672

13 0.7867 0.6741

14 0.7907 0.6802

Theorem 2. When the running times follow independent Gamma distributions with
shape parameter r, let 	

(r)
i;n be the associated ith expected order statistics and �1, . . . , �n

the scale parameters of the running times, then

(a) lim
�l→�j

�
(r)
ijl = lim

�l→�j

ln(�ij/�il)
ln(�j/�l)

where �s = �j for all—s �= l

=
(n − 1)2

n(n − 2)

[
(r − 	

(r)
1;n) + (r − 	

(r)
2;n)

r − 	
(r)
1;n

]
− n − 1

n
(n ≥ 3)

�
r − 	

(r)
2;n

r − 	
(r)
1;n

when n is very large,

(b) lim
�l→�k

�
(r)
ijkl = lim

�l→�k

ln(�ijk/�ijl)
ln(�k/�l)

where �s = �k for all—s �= l

=
(
n − 1
n

)(
n − 2
n − 3

)[
1

(n − 2)

+
(r − 	

(r)
2;n)/(n − 2) + (r − 	

(r)
3;n)

r − 	
(r)
1;n

]
(n ≥ 4)

�
r − 	

(r)
3;n

r − 	
(r)
1;n

when n is large.

The proof of Theorem 2 is omitted because it is very similar to that of Theorem 1.
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3. A SIMPLE APPROXIMATION

For the Henery and Stern models, computation of �ij is not simple because it
involves multidimensional numerical integrations. To use the two models in practice,
we need good approximations. From Equations (2) and (3), if �Hen

ijl � �Hen
ijl = �Hen and

� Hen
ijkl � lim � Hen

ijkl = � Hen, where �Hen and � Hen depend on n, the race size, then

�ijk � �i

��Hen

j∑
s�=i

��Hen

s

��Hen

k∑
t�=ij

��Hen

t

(8)

Similarly for the Stern model

�ijk � �i

��(r)

j∑
s�=i

��(r)

s

��(r)

k∑
t�=ij

��(r)

t

(9)

where Equations (8) and (9) are hereafter called the discount model.

3.1. Empirical Analysis for the Approximated Henery Model

We now show that the approximation in Equation (8) works well in practice. First, con-
sider some summary values of �Hen

ijl and �Hen
ijkl for different race sizes in Hong Kong,

the Meadowlands, and Japan through numerical integration as shown in Tables 2a
and 2b. From Tables 2a and 2b, we can observe that the mean values are close to the
limiting values shown in Table 1.

We now compare the above approximation with different models. The exact Henery
models are based on numerical integrations. We use two approximations: (i) fixed val-
ues: �Hen = 0.76 and � Hen = 0.62; (ii) varying values: �Hen and � Hen vary over the race
size n. We also compare our approximation with Henery’s approximation using first
order Taylor series expansion. The empirical results are shown in Table 3. For example,
the log likelihood for trifecta bets is given by

∑
l ln�[123],l where [1, 2, 3], l denotes the

three horses finishing in the top three positions in race l.
From Table 3, it is clear that the accuracy (measured by the log likelihood) of the

discount model is close to that of the Henery model. And the log likelihood values
produced by Henery’s approximation deviate a lot from those produced by the exact
Henery model. For our discount model, varying values of �Hen and �Hen do not seem to
be much better than a fixed value approximation since the log likelihood values of both
approximations are very close to the log likelihood value of the exact Henery model.
Hence, we conclude that the discount model with fixed values of �Hen and �Hen is good
enough to use in practice.
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TABLE 2a Summary Values of �Hen and �Hen for Different Race Sizes in
Hong Kong∗

�Hen �Hen

Race size No. of races Mean SD Mean SD

4 4 0.6685 0.0405 0.5186 0.0125

5 6 0.6914 0.0369 0.5580 0.0208

6 20 0.7209 0.0213 0.5877 0.0163

7 30 0.7407 0.0206 0.6127 0.0186

8 78 0.7507 0.0191 0.6251 0.0216

9 54 0.7620 0.0160 0.6399 0.0224

10 88 0.7654 0.0155 0.6519 0.0245

11 28 0.7726 0.0173 0.6569 0.0232

12 42 0.7776 0.0142 0.6648 0.0260

13 28 0.7821 0.0176 0.6725 0.0262

14 43 0.7859 0.0172 0.6786 0.0338

Overall 421 0.7669 0.0238 0.6518 0.0340

∗In this table, i and j are the horses finishing first and second, respectively, with k and l

varying over all the other horses for �Hen
ijl and �Hen

ijkl .

TABLE 2b Summary Values of �Hen and �Hen for Different Race Sizes in
the Meadowlands

�Hen �Hen

Race size No. of races Mean SD Mean SD

6 10 0.7089 0.0294 0.5817 0.0219

7 16 0.7287 0.0253 0.6077 0.0233

8 59 0.7455 0.0223 0.6214 0.0256

9 119 0.7522 0.0202 0.6358 0.0283

10 275 0.7605 0.0189 0.6451 0.0302

11 20 0.7588 0.0186 0.6262 0.1343

12 11 0.7573 0.0312 0.6644 0.0328

Overall 510 0.7561 0.0216 0.6393 0.0427

3.2. Empirical Analysis for the Stern Model

The limiting values of �(r) and �(r) for the Stern model in Theorem 2 depend on both
the race size (n) and the shape parameter (r). We have computed the limiting values
for n = 2, . . . , 18 and r = 2, . . . , 8 and observed that the dependence on n is not very
strong. Fixing n = 11, the limiting values are shown in Table 4. These limiting values
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TABLE 3 Comparison Among Different Models in Different Bet Types

Models Log likelihood Models Log likelihood

Exacta: 510 races Quinella: 4,153 races
(the Meadowlands) (Hong Kong)

Harville −1,875.77 Harville −13,619.28

Henery −1,859.63 Henery −13,589.55

Henery’s approximation −1,872.81 Henery’s approximation −13,626.43

Discount: Discount:

(i) Fixed values −1,859.25 (i) Fixed values −13,586.95

(ii) Varying values −1,859.40 (ii) Varying values −13,586.99

Trifecta: 120 races Trifecta: 1,809 races
(the Meadowlands) (Hong Kong)

Harville −711.50 Harville −10,747.98

Henery −699.83 Henery −10,667.25

Henery’s approximation −703.12 Henery’s approximation −10,689.61

Discount: Discount:

(i) Fixed values −699.68 (i) Fixed values −10,667.80

(ii) Varying values −700.03 (ii) Varying values −10, 666.87

TABLE 4 Limiting Values of
�(r) and �(r) for n = 11

r lim �(r) lim �(r)

2 0.93 0.89

3 0.90 0.84

4 0.88 0.81

5 0.87 0.80

6 0.86 0.78

7 0.86 0.77

8 0.85 0.76

will be used for our approximation. We also compute the empirical summary values of
�(r) and �(r) using Japanese data in Table 5. The limiting values in Table 4 and the mean
values in Table 5 are close to each other.

Lo and Bacon-Shone (1992) reported that the Stern model is better than the Harville
and Henery models in Japan. We compare the log likelihood values using numerical
integration and the discount model in Table 6. For the discount model, again, two
alternatives are tried: (i) fixed values of �(r) and �(r) (by fixing n = 11 in Table 4);
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TABLE 5 Summary Values of �
(r)
ijl and �

(r)∗
ijkl

�(r) �(r)

r Mean SD Mean SD

2 0.9336 0.0135 0.8920 0.0269

3 0.9021 0.0168 0.8423 0.0250

4 0.8836 0.0186 0.8140 0.0266

5 0.8712 0.0198 0.7953 0.0278

6 0.8623 0.0206 0.7819 0.0286

7 0.8555 0.0214 0.7717 0.0292

8 0.8500 0.0219 0.7636 0.0297

∗In this table, i, j, k represent the horses finishing in the top
three positions in each race and l is varying over all the other
horses for �

(r)
ijl and �

(r)
ijkl .

TABLE 6 Log Likelihood Values Under the Stern
Model for Japanese Data

Numerical (i) (ii)
r integrations Fixed values Varying values

2 −8,954.57 −8,955.98 −8,956.59

3 −8,950.60 −8,952.31 −8,953.11

4 −8,950.35 −8,952.11 −8,952.82

5 −8,950.94 −8,952.61 −8,953.36

6 −8,951.82 −8,953.45 −8,954.12

7 −8,952.65 −8,953.67 −8,954.90

8 −8,953.44 −8,954.89 −8,955.66

(ii) varying values of �(r) and �(r) over race size, n. From Table 6, we observe that
the difference between (i) and (ii) above is not great and thus we recommend using the
values in Table 4 for approximation.

4. CONCLUSION

We have proposed using the discount model in Equations (8) and (9) with different
parameter values. This model has been shown to provide a good approximation to
both the Henery and Stern models. It also includes the Harville model (r = 1). More
empirical evidence is given in Lo and Bacon-Shone (1992). To apply the model in
practice (e.g., betting), we recommend collecting relevant data and choosing the most
appropriate model, whether Henery or Stern (r), using a likelihood comparison and
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then applying Equations (8) and (9) using appropriate parameter values. Alternatively,
we can estimate � and � directly through logistic modeling, for example, see Lo and
Bacon-Shone (1994) and Lo (1994). The effect of this improved probability estimation
on betting strategy (e.g., the Dr. Z system proposed by Hausch et al. 1981) may result
in better returns, see Lo et al. (1995) and Hausch et al. (1994). We assume that the
win bet fraction is a good estimate of the win probability. Bacon-Shone et al. (1992a)
suggest a method to remove any bias using a logit model before estimating the ordering
probabilities. For future research opportunities, one can derive a similar approximation
to a more complex probability model in Lo and Bacon-Shone (2008).
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APPENDIX: Proof of Theorem 1

(a) Let �l/�j = b and �s = �j for s �= j, l. Then,

lim
�l→�j

�Hen
ijl = lim

�l→�j

ln(�ij/�il)
ln(�j/�l)

= lim
b→1

(�il/�ij)

(�ij/�il)


b

(�l/�j)

(�j/�l)


b

by L’Hospital’s rule

= lim
b→1

(
�il


�ij


b
− �ij


�il


b

)/
�2
il(

�l


�j


b
− �j


�l


b

)/
�2
l

assuming this limit exists. (A.1)

Consider

�j = P (Tj < Ts, ∀s �= j), Ts ∼ N (�s, 1)

=
∫�

−�

∏
s�=j

�(u − �j + �s)�(u)du,

where �(·) and �(·) denote the pdf and cdf of standard normal, respectively.

=
∫�

−�

�(u)n−2�
[
u + �j(b − 1)

]
�(u)du,

then


�j


b
=
∫�

−�

�(u)n−2�
[
u + �j(b − 1)

]
�j�(u)du

−→ �j

∫�

−�

�(u)n−2�(u)2du as b → 1

= − 	1;n

n(n − 1)
�j , using integration by parts (A.2)

and

�l =
∫�

−�

∏
s�=l

�(u − �l + �s)�(u)du

=
∫�

−�

�
[
u + �j(1 − b)

]n−1
�(u)du,
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�l


b
= −�j(n − 1)

∫�

−�

�
[
u + �j(1 − b)

]n−2
�
[
u + �j(1 − b)

]
�(u)du

−→ −�j(n − 1)
∫�

−�

�(u)2�(u)n−2du as b → 1

=
	1;n�j

n
, (A.3)

thus, from Equations (A.2) and (A.3),

lim
b→1

(
�l


�j


b
− �j


�l


b

)
�l2

= −
( n

n − 1

)
	1;n�j. (A.4)

In addition,

�ij = P (Ti < Tj < Ts, ∀s �= i, j)

=
∫�

−�

[
1 − �(u − �j + �i)

]∏
s�=ij

�
(
u − �j + �s

)
�(u)du

=
∫�

−�

[
1 − �(u)

]
�(u)n−3�

[
u + �j(b − 1)

]
�(u)du,


�ij


b
=
∫�

−�

[
1 − �(u)

]
�(u)n−3�

[
u + �j(b − 1)

]
�j�(u)du

−→ �j

∫�

−�

�(u)2 [1 − �(u)
]
�(u)n−3du as b → 1

=
�j

n − 2

∫�

−�

�(u)n−2 {u�(u)
[
1 − �(u)

]
+ �(u)2} du

= − 	1;n + 	2;n

n(n − 1)(n − 2)
�j , using integration by parts (A.5)

and

�il =
∫�

−�

[
1 − �(u − �l + �i)

]∏
s�=il

�(u − �l + �s) �(u)du

=
∫�

−�

{
1 − �

[
u + �j(b − 1)

]}
�
[
u + �j(1 − b)

]n−2
�(u)du,
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�il


b
=
∫�

−�

{
− �
[
u + �j(1 − b)

]
(−�j) �

[
u + �j(1 − b)

]n−2

+
{

1 − �
[
u + �j(1 − b)

]}
(n − 2) �

[
u + �j(1 − b)

]n−3

�
[
u + �j(1 − b)

]
(−�j)

}
�(u)du

−→ �j

∫�

−�

�(u)2�(u)n−2du

− �j(n − 2)
∫�

−�

�(u)2[1 − �(u)
]
�(u)n−3du as b → 1

=
	2;n

n(n − 1)
�j , using integration by parts (A.6)

thus from Equations (A.5) and (A.6)

lim
b→1

(
�il


�ij


b
− �ij


�il


b

)
�il2

= −�j

(
	1;n + 	2;n

n − 2
+ 	2;n

)
. (A.7)

Hence, from (A.1), (A.4), and (A.7)

lim
�l−�j

�Hen
ijl =

	2;n +
	1;n + 	2;n

n − 2( n

n − 1

)
	1;n

=
(

1 − 1
n

)
	2;n

	1;n
+

n − 1
n(n − 2)

(
	1;n + 	2;n

	1;n

)
.

(b) Let �l/�k = a and �s = �k for s �= k, l. Then,

lim
�l→�k

�Hen
ijkl = lim

�l→�k

ln(�ijk/�ijl)
ln(�k/�l)

where �s = �k (s �= l, k)

= lim
a→1

(�ijl/�ijk)

(�ijk/�ijl)


a

(�l/�k)

(�k/�l)


a

by L’Hospital’s rule (A.8)

= lim
a→1

(
�ijl


�ijk


a
− �ijk


�ijl


a

)/
�2
ijl(

�l

�k


a
− �k


�l


a

)/
�2
l

assuming this limit exists.
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Using the result obtained in (a),

lim
a→1

(
�l


�k


a
− �k


�l


a

)
�l2

= −
( n

n − 1

)
	1;n�k. (A.9)

Now

�ijk = P (Ti < Tj < Tk < Ts, ∀s �= i, j, k)

=
∫�

−�

∫ u+�k−�j

−�

�(v + �j − �i) �(v)du
∏
s�=ijk

[
1 − � (u + �k − �s)

]
�(u)du

=
1
2

∫�

−�

�(u)2[1 − �(u)
]n−4 {1 − � [u + �k(1 − a)]}�(u)du,


�ijk


a
=

1
2

∫�

−�

�(u)2 [1 − �(u)
]n−4 {−� [u + �k(1 − a)]} (−�k)�(u)du

−→ �k

2

∫�

−�

�(u)2�(u)2 [1 − �(u)
]n−4

du as a → 1

=
�k

2
1

n − 3

∫�

−�

[
1 − �(u)

]n−3 [−u� (u) � (u)2 + 2�(u)2�(u)
]
du

=
−2

n(n − 1)(n − 2)(n − 3)
(	1;n + 	2;n + 	3;n),

using integration by parts
(A.10)

and

�ijl =
∫�

−�

∫ u+�l−�j

−�

�(v + �j − �i)�(v) dv
∏
s�=ijl

[
1 − �(u + �l − �s)

]
�(u)du

=
1
2

∫�

−�

� [u + �k(a − 1)]2 {1 − � [u + �k(a − 1)]
}n−3

�(u)du,
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�ijl


a
=

1
2

∫�

−�

{
2� [u + �k(a − 1)] � [u + �k(a − 1)] �k{1 − � [u + �k(a − 1)]}n−3

+ � [u + �k(a − 1)]2 (n − 3) {1 − � [u + �k(a − 1)]}n−4

{−� [u + �k(a − 1)]} �k

}
�(u)du

−→ �k

2

{
2
∫�

−�

�(u)2�(u)
[
1 − �(u)

]n−3
du

− (n − 3)
∫�

−�

�(u)2�(u)2 [1 − �(u)
]n−4

du
}

as a → 1

=
	3;n�k

n(n − 1)(n − 2)
, using integration by parts (A.11)

thus, from Equations (A.10) and (A.11)

lim
a→1

(
�ijl


�ijk


a
− �ijk


�ijl


a

)
�ijl2

= −�k

[
	3;n +

1
n − 3

(	1;n + 	2;n + 	3;n)
]
. (A.12)

Hence, from (A.8), (A.9), and (A.12),

lim
�l→�k

�Hen
ijkl =

	3;n +
1

n − 3
(	1;n + 	2;n + 	3;n)( n

n − 2

)
	1;n

=
(
n − 2
n

)(
1

n − 3

)(
1 +

	2;n + 	3;n

	1;n

)
+
(
n − 1
n

)
	3;n

	1;n
.

Note that all the limits are essentially iterated limits for the case that all the horses
have equal mean running times:

lim
�l→�j

lim
�s→�j
(s�=l,j)

.

It is easy to show that these iterated limits are also equal to

lim
�s→�j
(s�=l,j)

lim
�l→�j

.
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Abstract

A number of questions are raised about the modeling of distance preference and pace
character of individual horses in the context of horse racing, particularly races run on a
turf surface. We investigate some of these via two case studies of racing on turf, the first
in Hong Kong, and the second in Sydney, Australia. The results obtained tend to confirm
certain maxims of folk wisdom in racing such as the “horses for courses” principle
that different horses tend to have different favored race distances, and that higher-class
races tend to be run more sensibly with regard to pace and energy expenditure. The
results and methods presented are of interest in and of themselves in the understanding
of horse racing, and also serve as examples of how such questions may be explored
methodologically. Discussion and speculation about related questions not specifically
included in the case study are included here as well, pointing to directions for further
enquiry.

1. BACKGROUND

While it may be clear that the average speed a horse (or other animal, including humans)
is capable of running will decrease the longer the distance traveled, it is not immedi-
ately obvious how this relationship varies from one horse (or animal, or individual) to
another, nor is it immediately clear whether running should be even or varied in order
to obtain the optimal result.

With regard to the latter question, among a body of work on physiology of exercise
and sport, arguably the most widely accepted basic model of energy expenditure in
running (human and animal) is that proposed by Hill and Keller (see Keller, 1973;
see also Noble, 1986 for a wider treatment) which implies that in order to optimize the
overall average speed over a distance (and thus complete it in the shortest possible time),
pace should be planned so as to enable as even a proportion of energy expenditure as
possible over the distance to be covered, resulting in an exponential decline in velocity
over time (and distance) during the course of the race.

Surprisingly, however, in the highest classes of horse racing, particularly on the turf
surface, the speed (or more technically, instantaneous velocity) over a race distance
tends to deviate significantly from this, as horses tend to run more slowly early on
to conserve energy, and accelerate sharply in the final 400 m (roughly 1/4 mi) or so.
This would appear to constitute a paradox, one which will be discussed later in this
chapter, but fortunately for modeling purposes, while such pace character appears to
be suboptimal, it seems from exploratory evidence that jockeys and trainers tend to run
their horses in a somewhat consistent fashion (with regard to pace) from race to race.
This allows us, as a first pass, to address the first of our topics, namely distance prefer-
ence, independently of the second, which is pace character. In fact, we shall really only
study distance preference in detail, while raising questions, and suggesting hypothe-
ses and further research, in the area of pace. As the most marked instances of the
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phenomena described above appear to be in turf racing, as opposed to dirt racing (which
has a different profile with regard to energy expenditure), we focus on the former.

2. CASE STUDY 1: SHA TIN (HONG KONG, SAR, PRC)

We begin with a study of pace in a relatively small number of races in which some
sectional time information is available, taking place at Sha Tin Racecourse in Hong
Kong, during the period of August 2003 through July 2004, where we have limited the
study to a single track in order to control for as many external factors as possible. For the
same reason, we limit our study to local or noninternational races (i.e., with group and
listed races excluded), and the class range limited from one (highest) to five (second-
lowest, apart from races consisting of Griffin, or previously unraced horses), and races
where the track condition was not slow or heavy. During this period, there remain 405
relevant races, clearly not a large enough sample to make any definitive conclusions, but
larger than a mere exploratory study.

In order to study pace under maximum exertion, we focus on the winning horses
in the respective races, where the time of that particular horse to the final 400 m mark
(as opposed to the leading runner, as is often reported) and the time of finish are used.
While it would obviously be desirable to use as much information as possible, a study
of discouragement effects (the possibility that some runners may not exert when it is
clear they will not win), will be left to a future study and the dataset here is restricted as
a precaution.

Next, we assume that the three main determinants of the overall average speed of
which horses are capable over a race are (i) the distance traveled, (ii) the track condi-
tions, and (iii) the class of race. We conjecture, and propose to test, that (controlling for
the aforementioned three factors) races that are run too slowly in the early stages result
in significantly reduced overall average speed.

Arguably, the most difficult to model of the factors mentioned above is the track
condition. We avoid this entirely by centering all data by meeting, which removes any
systematic effects of track condition, but avoids having to rely on the accuracy and
precision of official (going) ratings (i.e., “good to yielding,” etc.). Class may be incor-
porated as four indicator variables (for five classes), where Class 3 has no variable, and
as in previous studies (and in the study to follow) distance is seen to be well-modeled
on the logarithmic scale. (As the track is large and the final 400 m entirely straight,
curve effects may be neglected, as may be seen by [near-linear] graphs of velocity and
log-distance for a similar track analyzed in the second case study. Also, since runners
that run extremely wide rarely win, and we only analyze winners here, we can be rea-
sonably confident that the distance run is not too far from that measured for the present
study.)

Before attempting to include a pace variable, we note that average velocity of the
winner over a race (in km/hr) for this sample is 60.38. The results of a regression,
centered by meeting, are presented in Table 1. The going/meeting, class, and distance
variables described above are seen to explain 92% of the observed variation of velocity,
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TABLE 1 Regression Results, Centered by Meeting

Variable Coefficient S.E. T Correlation with model

Int 0.000 0.019 0.000 —

log d −6.816 0.107 −63.932 −0.974

cl1? 0.439 0.078 5.667 0.099

cl2? 0.180 0.060 3.007 0.052

cl4? −0.290 0.048 −5.985 −0.029

cl5? −0.610 0.066 −9.203 −0.182

NOTE: R2: 0.915; s res: 0.376.

TABLE 2 Second Regression Results, Centered by Meeting

Variable Coefficient S.E. T Correlation with model

Int 0.000 0.018 0.000 —

log d −6.675 0.111 −60.038 −0.972

cl1? 0.470 0.077 6.134 0.099

cl2? 0.199 0.059 3.370 0.052

cl4? −0.300 0.048 −6.297 −0.029

cl5? −0.661 0.067 −9.932 −0.182

Pace −0.043 0.011 −3.821 −0.309

NOTE: R2: 0.918; s res: 0.369.

resulting in a residual error of approximately 0.38 km/h (down from 1.38, the raw
standard deviation), with all effects being highly significant.

As a proxy for pace, the average velocity is subtracted to the final 400 m mark from
the average velocity in the final 400 m section. When the additional pace variable is
added to the model, the resulting coefficient is negative (as had been anticipated), with
a value of –0.043 and a T -ratio of –3.82, highly significant on 356 degrees of freedom.

The results of the regression (with variables centered by meeting) are presented in
Table 2. The pace variable used here (which is actually just a difference in average
velocities—late minus early) has a mean of 0.81 km/h with a standard deviation of
2.17 km/h (significantly positive, incidentally at much higher than the 1 in 1,000 level).
Here, it appears that for every km/h of difference, the overall average velocity effect
is roughly 0.043 km/h overall, corresponding to the equivalent of nearly 1 m in finish-
ing length over 1,600 m (a metric mile), enough to determine the difference between
winning and losing in a significant proportion of races.

Interestingly, it appears that the pace variable is 23% negatively correlated with class
(one to five), suggesting that lower-class races seem to be more likely to be run at
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a relatively slow early pace (accelerating afterwards), a tendency which (given the
regression results of this section) could well result in slower overall runtimes. (This
begs the question as to why more lower-class runners do not merely choose a quicker
early pace to improve their chances of winning.)

The dataset examined here is not extensive enough to extend the above analysis to
the more general relationship between pace and distance. Instead, then next section will
explore how individual horses respond to distance.

3. CASE STUDY 2: RANDWICK (SYDNEY, AUSTRALIA)

In order to investigate the variation in distance preference between horses with regard
to the time required to finish a race, we study a dataset from one of the most significant
venues in Australian racing, namely Royal Randwick Racecourse in the Kensington
suburb of Sydney, and look at data collected during 1995–1998. This dataset has been
used by the author more in a forecasting context in Edelman (2005), but as the emphasis
here is on relating the mathematics to the physical system of racing, a more transparent
analysis will be presented.

Just as the use of a single racecourse is used to eliminate variation across racing
venues, analysis is restricted to races with track conditions corresponding to days on
which there was no significant rainfall. Also, in order to eliminate the lowest classes
of races, only data from Saturday race meetings are included. As a further restriction,
the discouragement effect (whereby jockeys on horses not in contention in the final
stages of a race do not run them to their full potential) suggests that only the first
half of the runners across the finish line in a given race be included here. As a final
restriction, only horses with at least three runs in the sample will be included, result-
ing in some 495 horses and 2,655 runs. This is done since the most general model
considered here will effectively include separate subregressions on each of the horses,
with three observations or more being required for each having non-zero degrees of
freedom.

Having carefully selected the data, a number of important modeling choices must
be made. Arguably chief among these is a suitable numeraire or measurement of the
observed outcomes. While the order of finish (either raw or normalized) is used in many
contexts in racing, for the present study, the controlling of track conditions facilitates
the use of overall runtime, or (equivalently) the average velocity over the distance for
each race, which is what shall constitute the numeraire here.

It is interesting to note that the average velocity of racehorses at distances from
1,000 m (approximately 5/8 mi) to 3,200 m (approximately 2 mi) varies around a figure
of approximately 60 km/h (roughly 40 mph), with a trend which (corresponding to intu-
ition) generally decreases, on average, over this distance range, as can be seen in Figure
1. It appears that the trend is approximately log-linear, which, on reflection, might not
be too different from a reasonable first guess (i.e., that relative increase in distance is
more significant than absolute increase).
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FIGURE 1 Velocity vs. log-distance.

TABLE 3 Regression of Velocity vs. Distance and Carried
Weight

Coefficient Value S.E. T -ratio

const 60.058 0.016 3,781.449

log-d –5.583 0.061 –91.334

wt 0.024 0.007 3.634

NOTE: d.f.= 2,652; R2 = 0.759; s= 0.754; RSS= 1,505.895.

One other control must be considered, which is the weight carried by each horse.
Generally speaking, if all else is held constant, an increase in carried weight will result
in a slower average velocity. Thus, a regression is run with velocity (in km/h) as a
function of log-distance (in relation to 1,400 m) and weight (differenced from 55 kg).
The results are summarized in Table 3.

The resulting fit is highly significant, with a prediction of approximately 60 km/h, on
average, for a horse at 1,400 m carrying a weight of 55 kg. For fixed carried weight, this
speed degrades by approximately 5 km/h for every 100% increase in distance traveled,
or (more usefully) 0.5 km/h for every 10% increase in distance.

Parodoxically, the model appears to suggest that average velocity (over a given dis-
tance) increases with carried weight, a non-physical relationship that is explained by the
fact that the better horses are handicapped by being required to carry higher weights,
but tend to run faster anyway (suggesting that the handicappers do not appear to be
penalizing them enough, if their objective is to even out the race).

This may be seen more clearly by including a different intercept or ability variable for
each horse (where most of the horses are each running a number of races in the dataset).
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TABLE 4 Regression of Velocity vs. Distance, Weight, and Ability

Coefficient Value S.E. T -ratio

const 0.000 1.569 0.000

log-d –5.130 0.050 –91.717

wt –0.032 0.006 –5.189

ablty 1.000 0.026 34.538

NOTE: Matrix xsp: 2,655 rows, 495 columns. In each row, all zeros, except
for a “1” in column i corresponding to horse i (i.e., a sparse matrix).
d.f.= 2,158; R2 = 0.845; s= 0.671; RSS= 969.791.

In this case, the weight effect is estimated for a given level of horse ability, resulting in
a coefficient of the correct sign. The regression is carried out using sparse matrices (i.e.,
“xsp” in Table 4), and then with the 494 horse ability intercept values combined into
a single input variable (the third variable in Table 4) for diagnostic purposes only. The
results are shown in Table 4.

The results in Table 4 show an improvement in R2 from 75% in the earlier model, to
approximately 85% in the model with individual horse ability intercept included. The
F -test may be used to test the significance of the ability intercept variable, which has
493 and 2,155 degrees of freedom. The resulting F -statistic is

Fcalc =
(1,506 − 970)/493

970/2,155
.
= 2.42

Under the null hypothesis of no ability intercept (heterogeneity) effect, this statistic has
a mean of approximately 1.0 and a standard deviation of approximately

√
2

493
.
= 0.064

and (for large denominator degrees of freedom) is well-approximated by the normal
distribution. Since 2.42 represents many (more than 20) standard deviations above the
mean, the individual ability effect is highly significant.

Thus far, the inclusion of individual ability intercept variable has only captured
an overall effect (i.e., not varying with distance), whereas it would be a widely held
truth in racing that horses respond differently to changes in distance. It is there-
fore useful to introduce individual distance gradient parameters, and to see if they
significantly improve prediction accuracy. Thus, slope and intercept for each horse
are fit (combined into the third variable in Table 5, where the second variable con-
tains the combined individual ability intercept variables) resulting in 494 additional
parameters.

The F -ratio for the test of whether the addition of individual distance gradient
parameters significantly added to the fit may be carried out by comparing the sum of
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TABLE 5 Weight, Ability, and Gradient Model

Coefficient Value S.E. T -ratio

wt –0.036 0.005 –6.168

ablty 1.000 0.000 4428.895

dgrad 1.000 0.004 195.229

NOTE: d.f.= 1,666; R2 = 0.889; s= 0.646; RSS= 694.013.
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FIGURE 2 Histogram of fitted individual ability parameters.

squares of this fit to the previous:

F =
(970 − 694)/493

694/1,664
.
= 1.34

Under the null hypothesis, this should represent a typical value sampled from a normal
distribution with mean of 1 and standard deviation of approximately

√
2

493
.
= 0.064

Since the observed value of 1.34 is more than five standard deviations above the
mean, one would be forced to reject the null hypothsis at any reasonable level of
significance.

Figure 2 contains a histogram of fitted ability intercept parameters for the various
horses in the sample, showing a variation that, because of the relatively low number
of races per horse, is arguably higher than any underlying inherent heterogeneity that
might be expected, keeping in mind that the units are km/hr.
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FIGURE 3 Histogram of fitted individual gradient parameters.

TABLE 6 Toward Reasonable Values

Coefficient Value S.E. T -ratio

const 59.966 0.012 3,857.936

log-d –5.039 0.047 –85.595

wt –0.034 0.005 –5.278

ablty 1.067 0.026 32.842

dgrad 1.714 0.069 19.664

NOTE: d.f.= 1,664; R2 = 0.869; s= 0.700; RSS= 817.001.

Similarly, in Figure 3 where the fitted distance gradient parameters for the vari-
ous horses are shown, the observed variation is much more than would be expected
inherently.

While these distributions of the aforementioned heterogeneity parameters would
clearly not suggest strong predictive performance of the estimates, as a tool for inference
(to determine significance) they have proved helpful. In Edelman (2005) a more deli-
cate analysis similarly tests whether adding individual distance convexity parameters to
the ability intercept and distance gradient parameters, as suggested by Benter (Benter
et al., 1996) yields significant improvement in fit, with a negative result, suggesting the
number of variables in the model presented here to be adequate.

In order to address the issue of excess heterogeneity, the technique of ridge regression
(a version of empirical Bayes modeling) may be employed. This merely involves a
small penalty for the sum of squares of fitted heterogeneity parameters, resulting in
little deterioration in in-sample fit, and greatly improved forecasting performance.

The resulting fitting and diagnostic regression are shown in Table 6, and the
parameter values are summarized in Figures 4 and 5.
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FIGURE 5 Histogram of ridge-fitted individual gradient parameters.

As can be seen, the resulting parameter distributions for the various horses are much
more reasonable (i.e., the range of 10 km/hr in the former does not match intuition).
Further, Figure 6 shows that the quality of the fitted values do not appear to be adversely
affected.

Thus, to summarize the qualitative and practical lessons learned from this case
study, it appears that individual horses not only have significantly different overall abili-
ties, but overall degradation of average speed as the distances over which they run are
increased as well. It is possible to model this variation reasonably using ridge regres-
sion, which (as mentioned earlier) yields not only distributions of heterogeneity, which
seem intuitively reasonable, but resulting fitted values of velocity which appear to be
effective and seem appropriate.
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FIGURE 6 Scatterplot of fitted vs. actual velocities.

4. QUALITATIVE QUESTIONS

It is hoped that the case studies presented in the previous sections may have shed some
light on the general modeling of pace character and distance preference in racing, but it
is of interest to explore any qualitative ramifications of the model developed there, and
to raise several other related issues that may require further work of a similar nature to
unravel.

4.1. Do Distance Specialists Exist?

First, the identification of the distance preference/gradient model in the case study of the
previous section might on first reflection appear to suggest that a given horse’s chances
relative to the others will either increase or decrease monotonically with distance, and
this will certainly be the case when comparing two horses. However, as will be argued
below, if a horse’s distance suitability is compared to two or more other horses, a differ-
ent picture emerges. To see this, a graphical representation is helpful. Figure 7 graphs
the distance preference residual models of three horses, where the slopes are equal to
the difference between the distance gradients of each individual horse and a particu-
lar average or median distance gradient for the entire population of horses. In Figure 7
there is one horse whose distance gradient is lower than average in magnitude, and that
therefore is relatively advantaged with respect to the overall average (log-linearly) as
distance increases. Then there is a horse with an average distance gradient that is nei-
ther advantaged nor disadvantaged relative to the average as distance increases, and a
third horse with a distance gradient of greater magnitude than the average that is most
advantaged the shorter the distance and disadvantaged (log-linearly) the longer.
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FIGURE 7 Distance preference—hypothetical example.

As can be seen from the graph in Figure 7, the more average distance gradient horse
will be advantaged relative to the best of the other two at moderate ranges. Thus a
distance specialist may result even though the distance preference model derived in the
previous section is monotonic for each horse.

4.2. Pace, Class, and Time: The Central Paradox of Racing

It was mentioned earlier that the most widely accepted physiological models imply
that humans and animals wishing to run a distance in the shortest possible time should
attempt to run so that the proportion of energy expended in each instant relative
to the total amount expended previously is roughly constant, which will imply an
instantaneous velocity that decreases exponentialy over the entire distance traveled. This
does not always match the manner in which horses are run in races. In fact, it is a not
uncommon occurrence that the total runtime for a top-class race is slower than that of
a lower-class race run by much lower-class horses over the same distance and condi-
tions. It is an observed fact that many races (even some higher-class races) are won by
horses accelerating markedly in the final stages (say 400 m or 1/4 mi) in a manner which
(from the analysis) appears to be suboptimal with regard to overall runtime. This raises
the question of why (theoretically) a low-class horse couldn’t run an evenly paced race
and win a high-class (or for that manner, any) event where the early speed was slow, of
which there appear to be frequent examples. In the opinion of the author of this article,
this question constitutes a paradox so basic that it might be deserving of the status of
the Central Paradox of Racing.

One potential explanation might be demonstrated by the special case of a two-horse
race. Suppose that each of the jockeys riding the horses believes that, provided that
energy expenditure has not been excessive to the last call position (final 400 m mark),
his or her horse is capable of outrunning the other horse by at least 2 lengths (6 m)
during this final stage. Then there is no incentive for either horse to run quickly during
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the early stages, provided (from the point of view of each horse) neither horse over-
exerts or falls farther behind than an amount slightly less than 2 lengths.

This argument highlights the fact that the objective sought by jockeys when deciding
tactics is winning, rather than achieving the quickest time. The above example of the
two-horse race might fruitfully be generalized to a full field of horses, and with poten-
tially more game-theoretic issues involved, such as each jockey’s uncertainty about the
capabilities of his or her horse. A particular challenge in such an analysis would be the
modeling of a wide range of endowments (i.e., horse characteristics and capabilities).

It is not immediately clear how such game-theoretic models might be posited and
validated empirically, nor indeed whether jockeys could be assumed to be employ-
ing optimal competitive riding strategies, but if such modeling were possible, it would
constitute a very significant contribution indeed.

Another potentially relevant factor in pace and time is wind resistance. While there
appear to be no empirical studies on the effect of wind resistance on speed in horse rac-
ing, it has been proposed that just as the V flight formation of bird flocks has evolved
in such a way as to minimize collective wind resistance (and therefore energy expendi-
ture), so might the herding of galloping horses be expected to have an analogous effect.
If true, this might allow an alternative resolution of the the Central Paradox identified
above, for if an evenly paced horse were to get too far ahead of the herd, it could well
end up expending much more energy than if it shared wind resistance with the rest of
the horses by racing closer to them. Likewise, horses traveling slightly behind the herd
might perhaps be expected to save energy from slip-streaming which is the effect of
wind eddies from the other horses in front, and which might help to pull a hind horse
along. Such an effect appears to be widely acknowledged in automobile racing (with
regard to fuel consumption), but does not appear to have been studied systematically in
the horse racing context.

It is not clear how these hypotheses might be tackled, but perhaps as more data
becomes available on the positions of horses at various times in running, quantitative
exploration of such questions might become feasible.

4.3. Jockeys: Distance or Pace Preference?

Often in racing, it is difficult to unravel the net effect of jockey ability on racing out-
comes, because certain popular jockeys tend to win more races just because they are
given better horses to ride.

Of course, simultaneous League Table analyses of horses and jockeys via Analysis
of Variance may be used to determine the overall marginal effect of jockeys on race
outcomes, but it is interesting additionally to test whether some jockeys tend to run
better races on forward-running horses, as opposed to late-finishing horses. Exploratory
analyses on Hong Kong data appear to suggest a rather strong effect in this regard,
though (as horses tend to run with similar pace style from race to race) this is somewhat
confounded with the possibility that jockeys might have different marginal effects on
different individual horses. In this, as with some other topics raised here, further study
along these lines is needed.
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5. DISCUSSION

The two case studies presented, while limited in their scope, appear to shed light on
several aspects of pace and overall runtime in turf racing. In the first study, a highly
significant statistical pace proxy variable was found for predicting overall runtime of
the winner of a race, namely the difference between its late (last 400 m) average velocity
and its earlier (pre-400 m-mark) average velocity. The coefficients suggest that races
that are run too slowly in the early stages result in slower overall times. This appears
consistent with physiologists’ view that, other factors being equal, an even pace should
result in the best runtimes. Assuming this is true, it appears that lower-class races are
more frequently run too slowly in the early stages, as these tend to have a larger than
average late-minus-early velocity differential.

While the first case study did not analyze characteristics of individual horses due to
limited data, the second, more extensive, dataset enabled examination of certain aspects
of overall runtime characteristics for individual horses (albeit not with regard to pace).
In particular, the question of whether different horses appear to respond differently to
different distances was asked, and answered in the affirmative. It is hoped that data
may become available that would enable the study of both pace character and dis-
tance preference for individual horses in the same study, the results of which could help
greatly not only in the understanding and forecasting of runtimes and race outcomes,
but potentially in informing racing connections with regard to optimal riding tactics for
their horses as well.

In general terms, the intent here has been to stimulate thought on and to demonstrate
methodology in the modeling of distance and pace aspects in horse racing.

In the case studies presented, some aspects of the modeling of horses that are racing
at different paces and distances have been addressed, and some tentative conclusions
reached. With regard to pace, or the variation in velocity of runners during the course of
a race, results from physiology can motivate important questions to be asked, but more
extensive data are required if studies are to be carried out to draw any clear conclu-
sions. The lack of existing quantitative studies on such topics (apart from that presented
here) does not prevent speculation on certain aspects, which can only serve to stimulate
the type of curiosity that will lead to further endeavor.
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Abstract

In betting markets, the expected return on longshot bets tends to be systematically lower
than on favorite bets. This favorite-longshot bias is a widely documented empirical fact,
often perceived to be an important deviation from the market efficiency hypothesis. This
chapter presents an overview of the main theoretical explanations for this bias proposed
in the literature.

1. INTRODUCTION

A central theme of the literature on betting is the occurrence of the favorite-longshot
bias. The first documentation of this bias is attributed to Griffith (1949), who observed
that horses with short odds (i.e., favorites) yield on average higher returns than horses
with long odds (i.e., longshots). This means that market probabilities of longshots
(obtained from market prices) overpredict on average their empirical probabilities
(computed from race outcomes). At the other end of the spectrum, the market prob-
abilities of favorites tend to underpredict their empirical probabilities. This chapter
presents an overview of the wide range of theories proposed in the literature to explain
this bias.

Betting markets have attracted a lot of attention by economists because they provide
a particularly appealing environment for testing theories of market efficiency.1 First,
the outcomes in these markets are publicly observed at a prespecified time. In regular
financial markets, the uncertainty about asset values is typically resolved only in the
long run, if ever. Second, in the case of betting, the realized outcomes are exogenous
to the trading process and the resulting prices. In comparison, the intrinsic value can
easily be affected by market prices in more traditional financial settings. Third, pari-
mutuel betting markets are particularly suited to testing for market efficiency because
prices there are not set (and so potentially misaligned) by individual market makers.
By placing a pari-mutuel bet on an outcome, a participant demands a share of all the
funds supplied by the other participants conditional on the realization of that outcome
and, contemporaneously, supplies funds to all the other participants if that outcome is
not realized.

Indeed, most of the empirical literature has focused on pari-mutuel markets, in which
the money bet on all outcomes is pooled and then shared proportionally among those
who picked the winning outcome, after a fractional sum is deducted for taxes and
expenses. If the market were efficient, all the bettors were risk neutral, and they shared
the same belief about the outcome, the final distribution of pari-mutuel bets should be
directly proportional to the market’s assessment of the horses’ chances of winning. This
is because the gross expected payoff of a bet on an outcome is equal to the ratio of the
outcome’s probability to the proportion of bets placed on that outcome. If the fraction

1A clear drawback of betting markets is that traders may be motivated by recreational objectives that we
expect to play less of a role in regular financial markets.
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of money bet on each outcome is equal to its probability, the expected payoffs would
then be equalized across all outcomes.

The bias is often perceived to be an important deviation from the market efficiency
hypothesis. A voluminous empirical literature (surveyed, among others, by Thaler and
Ziemba, 1988; Hausch and Ziemba, 1995; Sauer, 1998; and Jullien and Salanié, 2008)
has documented the extent of this bias across different events, countries, and market
structures. Despite the presence of a fair amount of variation in the extent and some-
times the direction of the bias, the favorite-longshot bias has emerged as an empirical
regularity. While the initial literature focused on pari-mutuel markets, the favorite-
longshot bias is also observed (often to a greater extent) in markets dominated by
bookmakers.

In a short paper that appears to have gone completely unnoticed, Borel (1938)
presented the first theoretical analysis of optimal betting behavior and equilibrium in the
pari-mutuel game.2 This remarkable paper foretells a number of the essential elements
of the theories developed later in the literature.

• First, Borel introduced the problem and defined the equilibrium in the context of
betting on the sum obtained rolling two dice, for which players naturally share
common (or objective) probability assessments: “This game will be equitable, if
the total amount bet on each point is proportional to the probability of obtaining
that point; but there appears to be no a priori reason for this condition to be realized
on its own.”3 He then discussed informally the forces that bring the system to
equilibrium in the context of this game.

• Second, Borel described how pari-mutuel odds adjust against the bettor and then
determined the optimal amount a bettor should place on one of two outcomes to
maximize the expected return, given an initial distribution of bets.4 He then consid-
ered the case of a sequence of players who make optimal bets, after observing the
amounts placed in the past. He noted that the amounts bet (in the subgame-perfect
equilibrium) make the game asymptotically equitable.

• Third, Borel modeled a pari-mutuel market with two classes of strategic bettors
with heterogeneous subjective probability beliefs about the outcome of a race
between two horses. In each class, there are two bettors who share the same prob-
ability belief about the race outcome, but beliefs are different for bettors belonging
to the two classes. Borel characterized the (Nash) equilibrium of this game and
concluded with an informal discussion of the timing incentives.5

Over the last seven decades, a number of theories have been advanced to explain
the favorite-longshot bias. In this chapter we review the main theoretical explanations
for the favorite-longshot bias proposed thus far in the literature, in order of their
chronological development:

2We searched extensively for references to this article, but did not find any.
3This equilibrium notion is the main benchmark with respect to which the favorite-longshot bias is defined in
the literature.
4This problem is further explored by Borel (1950) and later generalized by Isaacs (1953). See Section 4.
5As explained below in Section 10.1, pari-mutuel betting is a version of Cournot’s quantity competition game.
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1. Misestimation of Probabilities (Section 3) The bias can be due to the tendency
of individual decision makers to overestimate small probability events. This
explanation was initially advanced by Griffith (1949), who suggested that there
is a psychological bias that leads individuals to subjectively ascribe excessively
large probabilities to rare events.

2. Market Power by Informed Bettors (Section 4) A monopolist bettor who bets
large amounts should not equate the expected return on the marginal bet to zero,
since this would destroy the return on the inframarginal bets. If this large bettor
has unbiased beliefs and bets optimally on the favorite, the favorite-longshot bias
results. This explanation follows from the analysis of Isaacs (1953).

3. Preference for Risk (Section 5) If individual bettors love risk or skewness, they
are willing to accept a lower expected payoff when betting on longshots. This
explanation was articulated by Weitzman (1965), for the case of a representative
bettor who loves risk, and so is willing to give up a larger expected payoff when
assuming a greater risk on a longshot with longer odds.

4. Heterogeneous Beliefs (Section 6) If bettors have heterogeneous beliefs, the
market probabilities resulting in the pari-mutuel system tend to be less extreme
than the bettors’ median belief. This theory, formulated by Ali (1977), can
explain the favorite-longshot bias if one is prepared to assume that the bettors’
median belief is equal to the empirical probability.

5. Market Power by Uninformed Bookmakers (Section 7) For fixed odds bet-
ting markets, Shin (1991 and 1992) explained the favorite-longshot bias as the
response of an uninformed bookmaker to the private information possessed by
insiders.

6. Limited Arbitrage by Informed Bettors (Section 8) The favorite-longshot bias
results when price-taking (and risk-neutral) bettors possess superior information,
since the amount of arbitrage is limited by the presence of the track take and the
inability to place negative bets. This explanation was proposed by Hurley and
McDonough (1995).

7. Simultaneous Betting by Partially Informed Insiders (Section 9) In pari-mutuel
markets, the bias arises if privately informed bettors place last-minute bets with-
out knowing the final distribution of other bettors’ bets. This explanation is due
to Ottaviani and Sørensen (2006), who derived the bias in a pari-mutuel market
as the result of bets placed simultaneously.

We begin by introducing the notation in Section 2 and then proceed to develop the
explanations. Given that these explanations have similar qualitative implications about
the favorite-longshot bias, it has proven difficult for empiricists to distinguish between
the alternative theories. To reach some tentative conclusions about the relative merits
of the different explanations, it is promising to test for the ability of theories to simul-
taneously explain the favorite-longshot bias as well as other regularities regarding the
dynamic adjustment in market prices and the timing of bets. While a comparison of the
performance of the different explanations is well beyond the scope of this chapter, we
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conclude in Section 10 by giving an indication of some additional theoretical predictions
regarding the timing of bets.

2. NOTATION

Given our aim at presenting the explanations in the simplest possible setting, we focus
on the case with two outcomes. We denote the outcome (corresponding to the win-
ning horse) by x ∈ X = {1, 2}. We denote bettors by n ∈ N = {0, 1, . . . ,N}, where
n = 0 represents all outsiders and bettors with index n ≥ 1 are strategic insiders. Bettors
may have different prior beliefs. For convenience, we denote bettor n’s prior belief for
outcome 1 by qn = Pr(x = 1). When allowing for private information, bettor n’s signal
is sn ∈ S, resulting in posterior belief rn = Pr (x = 1|s = sn).

The amount placed by bettor n on horse x is bn (x), and the total amount placed
on x is b(x) =

∑
N bn (x). The total bets placed on x by the opponents of bettor n are

b−n (x) = b (x) − bn (x). The total overall bets are B =
∑

X b (x) (also known as the
pool), while total bets placed by the opponents of bettor n are B−n =

∑
X b−n (x).6 The

track take, �, is a percentage subtracted from the pool for taxes and expenses.7

The pari-mutuel odds are then �(x) = [(1 − �) B − b (x)] /b (x), so that every bet
on horse x wins 1 + � (x) = [(1 − �) B] /b (x) if x is realized. The pari-mutuel system
results in the market probability m(x) = (1 − �)/[1 + �(x)] = b (x) /B, with m = m (1)
for convenience. We denote the objective (or empirical) probability by p (x), with
p = p(1).

3. MISESTIMATION OF PROBABILITIES

When Griffith (1949) uncovered the favorite-longshot bias, he referred informally to a
simple psychological explanation based on biases in the market participants’ assess-
ment of the probability attached to the different outcomes. For the purpose of our
illustration with two outcomes, assume that all bettors attribute a perceived probabil-
ity equal to �(p) to an outcome with objective probability p. The key assumption of
the theory is that bettors overestimate the chance of unlikely outcomes but underesti-
mate the chance of likely outcomes: 1/2 > �(p) > p for p < 1/2 and 1/2 < �(p) < p
for p > 1/2.

Let p be the objective probability of horse 1 and �(p) the perceived probability. The
perceived expected net monetary payment (or payoff) of a bet on horse 1 is

�(p)
(
−1 +

1
m

)
+ [1 − �(p)] (−1) =

�(p)
m

− 1. (1)

6Note that b−0 is different from b0, and similarly B−0 is different from B0.
7The presence of a positive track take plays a key role in the explanation proposed in Section 8. To simplify
our derivations, we set � = 0 when presenting most of the other explanations.
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FIGURE 1 Market probability against objective probability for a = 0.8. The dashed line is the diagonal.

Similarly, the perceived expected payoff of a bet on horse 2 is

�(1 − p)
(
−1 +

1
1 − m

)
+ [1 − �(1 − p)] (−1) =

�(1 − p)
1 − m

− 1. (2)

In equilibrium, the perceived expected payoffs of the two bets must be equal,

�(p)
m

=
�(1 − p)

1 − m
.

Suppose that p > 1/2 > 1 − p. Then p > �(p) > 1/2 > �(1 − p) > 1 − p by the key
assumption of the theory. Hence,

p

1 − p
>

m

1 − m
=

�(p)
�(1 − p)

> 1.

We can conclude that the favorite-longshot bias arises as stated in following proposition.

Proposition 1 If �(p) < p for p > 1/2 and �(p) > p for p < 1/2, the market prob-
ability of the favorite (respectively longshot) is lower (respectively higher) than its
objective probability: if p > 1/2, then 1/2 < m < p (respectively if p < 1/2, then
p < m < 1/2).

We illustrate this explanation by using Prelec’s (1998) weighting function with
a < 1,

m = �(p) = exp
[−(− ln p)a

]
,

where m is the market probability and p is the objective probability.8 Figure 1 plots �(p)
for a = 0.8.

8As is evident from Figure 1, Prelec’s function has �(p̂) = p̂ for a threshold p̂ = 1/e somewhat below 1/2.
The spirit of the favorite-longshot bias is preserved, nevertheless.



Marco Ottaviani and Peter Norman Sørensen 89

4. MARKET POWER BY INFORMED BETTORS

Borel (1938 and 1950) and Isaacs (1953) proposed a theory compatible with an
explanation for the favorite-longshot bias based on optimal betting behavior by a large
privately informed bettor. This explanation is based on the fact that the more money this
bettor places on a horse, the lower the odds that result in the pari-mutuel system. Then,
an informed bettor would want to limit the amount bet in order to maximize the profits
made.

To understand why additional bets on a horse depress the horse’s odds, imagine a
single strategic bettor (the insider, N = 1) who estimates that horse 1 is more likely to
win than according to the prevailing market odds (set by outsiders). Suppose that the
outsiders are not placing any money on 1, while they are placing some money on the
competing horse 2. By betting just one dollar, when horse 1 wins our bettor can be sure
to obtain all the money bet by the outsiders on the other horses. Hence, the first dollar
has a higher expected return than the second dollar, which has a zero marginal return.
Since our bettor loses the dollar when horse 1 does not win the race, in this extreme
example our bettor does not want to bet more than one dollar on horse 1.

More generally, given the pari-mutuel payoff structure, the payout per dollar bet on
horse 1 is decreasing in the fraction of money that is bet on horse 1. Because the insider
takes into account the payoff on all of his or her bets, it is optimal to cease betting before
the payout on the marginal bet equates the marginal cost. This implies a bias, that our
bettor does not bet until the market probability equals his or her posterior belief.

From the mathematical point of view, the bettor’s problem is the same as the problem
of a monopolist who decides how much quantity of a product to sell in a market with a
downward sloping demand curve. Essentially, the pari-mutuel market structure induces
such a downward sloping demand, because the average payout decreases in the amount
wagered.

We now illustrate this explanation in the simplest possible setting, keeping N = 1.
Clearly, it is never optimal for our insider to bet on both horses.9 Suppose that the
insider believes sufficiently more than the outsiders that horse 1 will win so that there is
a positive gain from betting a little on it. Precisely, assume q1 > b0(1)/ [B0(1 − �)]. If
bettor 1 bets the amount b1 (1) = b on this horse, the price of each bet is determined on
the basis of the inverse demand curve

P (b) =
q1

m
= (1 − �)q1

B0 + b

b0(1) + b
. (3)

The insider’s objective is to maximize the expected revenue [P (b) − 1]b. The
marginal revenue is P (b) − 1 + P ′(b)b. Our assumption that q1 > b0(1)/ [B0(1 − �)]
means precisely that the marginal revenue evaluated at b = 0 is positive, P (0) > 1. The
optimal positive bet size is then determined by the first order condition

P (b) − 1 = −P ′(b)b. (4)

9Isaacs (1953) shows more generally that a bettor should bet at most on all but one horse.
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FIGURE 2 The optimal bet equalizes the marginal revenue (the dashed curve) to the unit marginal cost
(the dotted line). The solid curve represents the demand.

Since the demand curve is downward sloping, the right-hand side is strictly positive, so
we can conclude that the insider’s optimal bet satisfies P (b) > 1. This is clearly equiv-
alent to q1 > m. If we additionally suppose that the insider is betting on the favorite10

and suppose that the insider’s belief q1 is correctly equal to p, we obtain the main result
in the following proposition

Proposition 2 Suppose that the insider bets on the favorite with correct beliefs. Then
the favorite’s market win chance is lower than the empirical chance: p > m > 1/2.

Figure 2 displays the demand curve, the marginal revenue, and the marginal cost
for an example with B0 = 100, b0(1) = 50, � = 0, p = 3/4. It is possible to solve the
insider’s optimization problem for the optimal bet b1(1) = 50(

√
3 − 1) = 36.603. The

market probability is then m(1) = b(1)/B = (3 − √
3)/2 = 0.633. 97 < 3/4 = p.

Chadha and Quandt (1996) extended this explanation by considering the case with
multiple bettors who play a Nash equilibrium.11

5. PREFERENCE FOR RISK

The third explanation for the favorite-longshot bias is based on the different variability
in the payout of a bet on a longshot compared to one on a favorite. Longshots tend
to pay out more, but with smaller probability. If bettors prefer riskier bets, the relative

10A sufficient condition for outcome 1 being the favorite is that the outsiders have it as their favorite,
b0(1)/B0 ≥ 1/2. Outcome 1 is also likely to become the favorite because the insider bets on it, so the
condition is not necessary.
11On the way to deriving the competitive limit with infinitely many bettors, Hurley and McDonough (1995)
also characterize the Nash equilibrium resulting with a finite number of bettors.
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price of longshots should be relatively higher. This explanation was first spelled out by
Weitzman (1965), followed by many others.12

Keeping with Weitzman (1965), we assume that there are many identical bettors, all
with the same beliefs and risk preferences. Without loss of generality, normalize the
mass of bettors to N = 1. For simplicity, we further assume with Quandt (1986) that
bettors have mean-variance preferences, u = E − �V , with coefficient of risk aversion
equal to �. Each bettor is small relative to the size of the market, and so takes the market
prices as given when deciding which of the two horses to back. Set � = 0.

If horse 1 is the market favorite and attracts a fraction m = mF = 1 − mL > 1/2 of
the pool of pari-mutuel bets, it yields the expected net monetary payment

EF =
p

m F
− 1. (5)

Similarly, the expected net monetary payment on the longshot is

EL =
1 − p

mL
− 1. (6)

The variance of the net monetary payment on the favorite is

VF = p

(
−1 +

1
m F

)2

+ (1 − p)(−1)2 −
(

p

m F
− 1
)2

=
(1 − p)p

m2
F

. (7)

Similarly, the variance of a bet on the longshot is

VL = p(−1)2 + (1 − p)
(
−1 +

1
mL

)2

−
(

1 − p

mL
− 1
)2

=
(1 − p) p

m2
L

. (8)

Note that VL > VF because m F = 1 − mL > 1/2 because by definition the favorite has a
higher market probability.

In equilibrium, the following indifference condition must hold EF − �VF =
EL − �VL, or equivalently

−� =
EF − EL

VL − VF
. (9)

Now, if the representative bettor has a preference for risk (� < 0), at equilibrium we
must have

EF − EL

VL − VF
> 0.

Given that the denominator of the left-hand side is positive (VL > VF, as shown above),
this inequality implies that EF − EL > 0, that is, that m F < p or, equivalently by

12Golec and Tamarkin (1998) advanced the related hypothesis that bettors love skewness, while being risk
averse.
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FIGURE 3 Market probability against objective probability for � = −1. The market probability is above
the objective probability (represented by the dashed diagonal) for the favorite (p > 1/2). The pattern is
reversed for the longshot (p < 1/2).

m F = 1 − mL, that 1 − p < mL. Combining these inequalities with m F = 1 − mL >
1/2, we obtain the favorite-longshot bias: 1 − p < mL < 1/2 < m F < p.

Proposition 3 Suppose that there is zero track take, � = 0, and a representative bettor
with mean-variance preferences and negative coefficient of risk aversion, � < 0. The
market probability of the favorite (respectively longshot) is lower (respectively higher)
than its objective probability: if p > 1/2, then 1/2 < m < p (respectively if p < 1/2,
then p < m < 1/2).

It is easy to further characterize the equilibrium in this setting. In equilibrium, each
bettor must be indifferent between betting on the favorite and betting on the longshot,

u F =
p

m F
− 1 − �

(1 − p)p

m2
F

=
1 − p

1 − m F
− 1 − �

(1 − p)p

(1 − m F)2
= uL,

where we have substituted Equations (5), (6), (7), and (8) and the identity mL = 1 − m F

into the indifference condition (9). This equation can be solved to obtain the equilibrium
market probability as a function of the objective probability, m(p). The inverse function
p(m) has the simpler analytic expression

p(m) =
1
2
+

√[
�(2m − 1) + m(1 − m)

]2 − 4�(2m − 1)m2(1 − m) − m(1 − m)

−2�(2m − 1)
.

Figure 3 displays the market probability as a function of the objective probability for an
example with � = −1. Quandt (1986) further generalized this example by allowing for
heterogeneous risk attitudes.
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6. HETEROGENEOUS BELIEFS

Following Ali (1977), suppose that bettors have heterogeneous prior beliefs. Suppose
that bettors do not observe any private signal, so that they do not have superior informa-
tion. Suppose that the track take is zero, � = 0, bettors are risk neutral, u(w) = w, have
identical wealth available for betting, and have beliefs drawn from the same distribution,
qn ∼ F (.).

It follows that each bettor bets all the available wealth on either of the two horses.
The competitive equilibrium is characterized by the indifference threshold belief q̄,
at which the expected payoff from betting on either horse is equalized. Bettors with
belief above threshold q̄ bet on horse 1 and bettors with belief below q̄ bet on
horse 2.

Proposition 4 (i) The market probability on the favorite is below the belief of the
median bettor: If m > 1/2, then m < p where p = F−1(1/2). (ii) If in addition the belief
of the median bettor is equal to the objective probability, then the market probability
that the favorite wins is lower than the objective probability.

We focus on a horse whose market probability in the pari-mutuel system is

m > 1/2. (10)

By definition, the fraction of all bets that are placed on this horse is equal to the market
probability m. Note that a risk-neutral bettor optimally bets on the horse when sub-
jectively believing that this horse is more likely to win than indicated by the market
probability. So, it must be that the fraction of bettors who have subjective beliefs above
m is equal to the market probability,

1 − F (m) = m. (11)

By definition of the median p, half of the bettors have beliefs above it,

1 − F (p) = 1/2. (12)

Combining Equations (10), (11), and (12), and the property that the belief distribution
F is increasing, the market probability is below the median, m < p, as stated in part (i)
of the proposition. Part (ii) follows immediately.

This result is a general implication of competitive equilibrium behavior, and holds
independently of the pari-mutuel market structure. What drives this result is the fact
that bettors are allowed to put at risk a limited amount of money. To see this, we
now reinterpret the pari-mutuel equilibrium as the Walrasian equilibrium in a complete
Arrow-Debreu market. Traders are allowed to buy long positions or sell short positions
on the asset that pays 1 conditional on horse 1 winning. Each trader is allowed (or
desires) to lose at most an amount equal to 1. This means that, when wishing to buy
long the asset that is traded at price m, a trader purchases at most 1/m asset units—by
risk neutrality, this is the exact amount purchased. At price m, the demand curve for the
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FIGURE 4 Plot of the median belief against the market probability. The dashed line is the diagonal.

asset is then [1 − F (m)]/m. Similarly, a trader who wishes to sell short actually sells at
most 1/(1 − m) asset units when the asset price is m.13 The asset’s supply curve is then
F (m)/(1 − m). The equilibrium price m prevailing in the market equates demand and
supply

1 − F (m)
m

=
F (m)
1 − m

,

which is equivalent to (11).14

Intuitively, m < p means that the median bettor (with belief p) strictly prefers to risk
all his or her money on horse 1, by taking long positions. By continuity, a bettor with a
belief slightly more pessimistic is also long on horse 1. If all traders were to invest the
same amount on either horse, the market could not equilibrate because the demand for
long positions would outstrip the supply at price m, given that 1 − F (m) > F (m) for a
price below the median, m < p. In equilibrium, the number of assets bought is equal to
the number of securities sold, so each trader on the long side must be allowed to buy
less than each trader on the short side can sell, that is, m > 1 − m.

Ali’s result may be illustrated by this class of belief distributions F	(q) = q	, para-
meterized by 	 > 0. There is a one-to-one relationship between the parameter 	 > 0
and the equilibrium market probability 0 < m < 1 solving Equation (11), which can be
expressed as 	 = [log(1 − m)]/[log(m)]. The median of F	 solving Equation (12) is
p = 2−1/	. Figure 4 plots the median belief against the market probability. Note that the
favorite-longshot bias results: If m > 1/2 we have 1/2 < m < p, while if m < 1/2 we
have 1/2 < p < m.

Blough (1994) extended this result to an arbitrary number of horses under a natural
symmetry assumption.

13The reason for this is that this trader’s income on the contracts sold is −m/(1 − m), while the trader’s outlays
are 1/(1 − m) when horse 1 wins. Overall, this trader risks 1/(1 − m) − m/(1 − m) = 1.
14Eisenberg and Gale (1959) considered the properties of the pari-mutuel equilibrium price as an aggregation
device for the heterogeneous beliefs.



Marco Ottaviani and Peter Norman Sørensen 95

7. MARKET POWER BY UNINFORMED BOOKMAKER

We now turn to Shin’s (1991 and 1992) explanation, based on the response of an
uninformed bookmaker to the private information possessed by insiders. Shin mostly
focused on the case of a monopolist bookmaker who sets odds in order to maximize
profits.15

Shin (1991) considered the case of a bookmaker who faces a heterogeneous pop-
ulation of bettors. Some bettors are informed insiders, while others are uninformed
outsiders who have heterogeneous beliefs. The N insiders are perfectly informed, so
that they always pick the winning horse. In the absence of outsiders, the bookmaker
would then be sure to make a loss at any finite price. In his model, the bookmaker is
active thanks to the presence of outsiders, who play the role of noise traders. The out-
siders are assumed to have beliefs distributed uniformly, with q0 ∼ U [0, 1], and to have
aggregate wealth b0.

Shin first established that the bookmaker sets prices such that some outsiders find
it most attractive to abstain from betting. This is a natural precondition for the book-
maker’s ability to make any positive profit at all. For the purpose of our analysis, this
partial abstention implies that we can consider odds-setting on one horse, say horse 1,
in isolation.

A unit bet on the horse under consideration (i.e., a bet that pays 1 if horse 1 wins)
will have price m set by the bookmaker.16 Outsiders with beliefs above a unit bet’s price
place the bet. At price m, the outsiders’ demand is then equal to b0 (1 − m).

The bookmaker believes that horse 1 wins with chance q. He or she chooses m to
maximize the profit

−q [b0(1 − m) +N]
(

1 − m

m

)
+ (1 − q)b0(1 − m). (13)

The bookmaker believes that horse 1 wins with probability q, in which case the book-
maker makes a net payment equal to (1 − m)/m to b0(1 − m) outsiders and to the
insiders. If instead horse −1 wins, which happens with probability 1 − q, the bookmaker
gains b0(1 − m), the amount placed by the outsiders on horse 1.

The monopolist bookmaker’s first-order condition for choosing m to maximize
Equation (13) is

q (b0(1 − m) +N)
1
m2

+ b0q

(
1 − m

m

)
− b0(1 − q) = 0,

15Bookmakers play the role of market makers, as in Copeland and Galai (1983) and Glosten and Milgrom
(1985). Shin, however, makes different assumptions about the relative elasticities of the demands of informed
and uninformed traders.
16In this setting, these prices do not sum to one. Market probabilities can nevertheless be obtained by dividing
these prices by their sum.
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solved by

m =
√√√√ q

1 − N

b0 +N

.

The fraction of the insiders’ wealth over the total, z = N
b0+N

is a measure of the
amount of insider information in the market. While the market price m is an increas-
ing function of the bookmaker’s belief q, now the average return to a bet on horse 1 is
q/m =

√
(1 − z)q which is increasing in q. This is the favorite-longshot bias.

Proposition 5 If the bookmaker’s belief is correct, q = p, market probabilities underre-
act to changes in p as m/p is decreasing in p (and m).

Intuitively, the lower is the market price m, the fewer outsiders participate, and the
greater the bookmaker chooses the bias ratio q/m to protect against the adverse selection
of bettors. In this setting, the effect vanishes if bookmaking is perfectly competitive.17

The market price m then makes the profit of Equation (13) equal to zero, a condition
solved by m = q/(1 − z). In that case m/q is constant so there is no favorite-longshot
bias.18

8. LIMITED ARBITRAGE

Hurley and McDonough (1995) explained the favorite-longshot bias on the basis of
limited arbitrage by informed bettors.19 Our illustration of this logic is similar to that in
Section 4, except that there is now perfect competition among the insiders.

Suppose that very (or infinitely) many insiders know that the probability that horse 1
wins is q = p > 1/2. Given that the number of insiders is large, it is reasonable to
assume that they are price takers.

In the absence of transaction costs these insiders will place their bets such that the
expected payoffs on both horses are equal. Equating these two expected payoffs gives

p
B0 + B−0

b0(1) + B−0
=

p

m
=

1 − p

1 − m
= (1 − p)

B0 + B−0

b0(2)
,

which determines the amount B−0 bet by the insiders on horse 1. In this case with zero
track take, the equation implies m = p, so that there is no favorite-longshot bias.

Suppose now that the track take is positive, � > 0. Now the insiders will keep betting
on the favorite, horse 1, only if the net expected payoff is non-negative. Equating to zero

17However, Ottaviani and Sørensen (2005) show that the favorite-longshot bias results in a natural model with
competitive fix-odds bookmakers, when insiders are partially (rather than perfectly) informed.
18In Shin (1992), the bookmaker solves a related constrained maximization problem. In an initial stage of
bidding for the monopoly rights, the bookmaker has committed to a cap 
 > 0 such that the implied market
probabilities satisfy

∑
x∈X m(x) ≤ 
. The favorite-longshot bias is derived along similar lines.

19See also Terrell and Farmer (1996).
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the net expected payoff of betting on horse 1,

(1 − �)p
B0 + B−0

b0(1) + B−0
= (1 − �)

p

m
= 1,

we determine the amount B−0 the insiders bet on horse 1. If the insiders bet a positive
amount, m = p(1 − �) < p.

Proposition 6 Suppose that there is a positive track take, and an infinite number
of insiders with correct common belief on horse 1, p > 1/2. If they bet on horse
1, its market probability is lower than the insider’s probability, m = p(1 − �) < p,
and the expected payoff on the favorite is greater than on the longshot, 1 > (1 − �)
(1 − p)/ [(1 − p) + p�].

It can be immediately verified that the longshot’s market probability is 1 − m =
1 − p + p�. The expected payoff is (1 − �)(1 − p)/[(1 − p) + p�] < 1. Because arbitrage
is limited, relatively too many bets are placed on the longshot, and the bets placed on
the favorite are not sufficient to bring up the expected return on the longshot to the same
level as on the favorite. The track take thus induces an asymmetry in the rational bets,
resulting in the favorite-longshot bias.

9. SIMULTANEOUS BETTING BY INSIDERS

Ottaviani and Sørensen (2006) proposed a purely informational explanation for the
favorite-longshot bias in the context of pari-mutuel betting. To illustrate this explana-
tion, we consider the simplest case in which the two horses are ex ante equally likely
to win (q = 1/2), the outsiders bets equal amounts on the two horses ([b0(1) = b0(2) =
b0]), the track take is zero (� = 0), and the number of privately informed insiders is
large (with mass N).

For the purpose of the starkest illustration of this explanation, focus on the case with
a continuum of insiders. The conditional distributions of the insiders’ initial beliefs are
such that G(r|x = 2) > G(r|x = 1) for all 0 < r < 1, given that these beliefs contain
information about the outcome of the race. Conditional on the outcome, the insiders’
beliefs are independent. In addition, we make the natural assumption that these beliefs
have symmetric distributions: G(r|x = 1) = 1 − G(1 − r|x = 2).

Since higher private beliefs are more frequent when horse 1 wins, in equilibrium
each individual bets more frequently on horse x in state x. For simplicity of expo-
sition, suppose that all insiders choose to bet (even if they make negative profits).
The equilibrium has a simple form, with bettors placing their bet on horse 2 with beliefs
below a cutoff level and on horse 1 above the cutoff. Given that the outsiders’ bets are
balanced ([b0(1) = b0(2) ≡ b0]), the cutoff of the posterior belief at which the expected
payoff of a bet on horse 1 is equalized to the expected payoff of a bet on horse 2
is r̄ = 1/2.
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Conditional on horse x winning, the market probability for horse 1 is

m =
b0 +N

[
1 − G(1/2|x)

]
2b0 +N

.

Horse 1 has a higher market probability (i.e., is more favored) when state 1 is true,

b0 +N
[
1 − G(1/2|1)

]
2b0 +N

>
b0 +N

[
1 − G(1/2|2)

]
2b0 +N

,

given that G(1/2|2) > G(1/2|1). This means that the identity of the winning horse, x, is
fully revealed upon observation of the market probability. In this symmetric setting with
a continuum of bettors, the horse with higher market probability, m > 1/2, is revealed
to be the sure winner, p = 1, and the horse with lower market probability, m < 1/2, is
revealed to be the sure loser, p = 0. The market probabilities are always less extreme
than the objective probabilities, hence the favorite-longshot bias.

Proposition 7 When there is a large number of privately informed bettors, equilibrium
betting with pari-mutuel payoffs results in the favorite-longshot bias.

The bias would be reduced if bettors could instead adjust their positions in response
to the final market distribution of bets (or, equivalently, the odds), as in a rational expec-
tations equilibrium.20 However, the assumption that bettors observe the final odds is not
realistic. Given that a large amount of bets are placed at the end of the betting period, the
information on the final market odds is typically not available to bettors. The aggregate
amounts bet are observable only after all bets have been placed. The explanation that
we have exposed here is based on the fact that in a Bayes-Nash equilibrium the bettors
do not observe the final distribution of bets.

For example, suppose that each bettor observes a signal with conditional distribu-
tions F (s|1) = s2 and F (s|2) = 1 − (1 − s)2. This signal structure can be derived from
a binary signal with uniformly distributed precision. With fair prior q = 1/2, we have
r = s so that G(r|1) = r2 and G(r|2) = 2r − r2. Hence, conditional on horse 1 winning,
the market probability for horse 1 is

m =
b0 +N[1 − G(1/2|x)]

2b0 +N
=

b0 + (3/4)N
2b0 +N

,

while the market probability for horse 2 is

1 − m =
b0 + (1/4)N

2b0 +N
< m.

Instead, conditional on the information revealed by the bets, the objective probability is
1 for horse 1 and 0 for horse 2.

20If the insiders have unlimited wealth, the favorite-longshot bias would be fully eliminated in a rational
expectations equilibrium.
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10. TIMING OF BETS

Ottaviani and Sørensen (2004) identified two countervailing incentives for timing bets
in pari-mutuel markets.

• On the one hand, bettors have an incentive to place their bets early, in order to
capture a good market share of profitable bets. This effect is best isolated when
there is a small number of large bettors who share the same information. These
bettors have the power to affect the odds, given that they have a sizeable amount
of money.

• On the other hand, if bettors have private information, they have an incentive to
delay their bets. As in open auction with fixed deadline, waiting allows the bettors
to conceal their private information and maybe gain the information possessed by
the other bettors. To abstract from the first effect, this second effect is best isolated
when bettors are small and so have no market power.

10.1. Early Betting

If bettors are not concerned about revealing publicly their private information (for exam-
ple because they have no private information), they have an incentive to bet early.
As also observed by Isaacs (1953) and discussed in Section 4, with pari-mutuel bet-
ting the expected return on each additional dollar bet on horse 1 is decreasing in the
amount the insider bets on this horse.

Next, consider what happens when there are two insiders. Suppose that there are two
large strategic bettors, insider 1 and 2, who both think that horse 1 is more likely to
win than horse 2. These bettors need to decide how much to bet and when to bet. For
simplicity, suppose that there are just two periods, t = 1 (early) and t = 2 (late). Each
bettor prefers to bet early rather than late because by being early a bettor can secure a
higher payoff and steal profitable bets from the other bettor. Both bettors do so, and in
equilibrium they end up both betting early.21

Pari-mutuel betting among the two insiders is thus a special case of the classic
Cournot (1838) quantity competition game. The result that betting takes place early
is a corollary of Stackelberg’s (1934) result that under quantity competition the first
mover (or leader) derives higher payoff than the second mover (or follower).22

10.2. Late Betting

In addition to the incentive to bet early discussed above, Ottaviani and Sørensen (2004)
also analyzed the incentive to bet late in order to conceal private information and maybe
observe others, as in an open auction with a fixed deadline. This second effect is best

21Pennock’s (2004) dynamic modification of pari-mutuel payoffs would further increase the incentive to bet
early.
22Ottaviani and Sørensen (2004) extend this bet timing result to the case with more than two bettors.
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understood by considering the case with small bettors without market power, but with
private information.

It would be interesting to characterize the interplay of the two contrasting timing
incentives that are present when market power and private information coexist.
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Jullien, B., and B. Salanié. 2008. Empirical Evidence on the Preferences of Racetrack Bettors, in D. B.

Hausch and W. T. Ziemba (eds.), Handbook of Sports and Lottery Markets. North-Holland, Amsterdam,
pp. 27–49.

Ottaviani, M., and P. N. Sørensen. 2004. The Timing of Pari-Mutuel Bets. Mimeo, London Business School
and University of Copenhagen.

Ottaviani, M., and P. N. Sørensen. 2005. Parimutuel Versus Fixed-Odds Markets. Mimeo, London Business
School and University of Copenhagen.

Ottaviani, M., and P. N. Sørensen. 2006. Noise, Information, and the Favorite-Longshot Bias. Mimeo, London
Business School and University of Copenhagen.

Pennock, D. M. 2004. A Dynamic Pari-Mutuel Betting Market for Hedging, Wagering, and Information
Aggregation, ACM Conference on Electronic Commerce.

Prelec, D. 1998. The Probability Weighting Function, Econometrica 66(3), 497–527.
Quandt, R. E. 1986. Betting and Equilibrium, Quarterly Journal of Economics 101(1), 201–207.
Sauer, R. D. 1998. The Economics of Wagering Markets, Journal of Economic Literature, 36(4), 2021–2064.
Shin, H. S. 1991. Optimal Betting Odds Against Insider Traders, Economic Journal 101(408), 1179–1185.
Shin, H. S. 1992. Prices of State Contingent Claims with Insider Traders, and the Favourite-Longshot Bias,

Economic Journal 102(411), 426–435.



Marco Ottaviani and Peter Norman Sørensen 101

Stackelberg, H. 1934. Marktform und Gleichgewicht. Springer, Vienna.
Terrell, D., and A. Farmer. 1996. Optimal Betting and Efficiency in Pari-Mutuel Betting Markets with

Information Costs, Economic Journal 106(437), 846–868.
Thaler, R. H., and W. T. Ziemba. 1988. Anomalies: Pari-Mutuel Betting Markets: Racetracks and Lotteries,

Journal of Economic Perspectives 2(2), 161–174.
Weitzman, M. 1965. Utility Analysis and Group Behavior: An Empirical Analysis, Journal of Political

Economy 73(1), 18–26.



This page intentionally left blank



CHAPTER 7

Examining Explanations of a Market
Anomaly: Preferences or Perceptions?

Erik Snowberg
Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA.

Justin Wolfers
The Wharton School, University of Pennsylvania, Philadelphia, PA, USA.

1. Introduction 104
2. Preferences—Expected Utility Models with Linear Probabilities 108
3. Perceptions—The Weighting of True Probabilities 111
4. Perceptions—Informational Effects 112
5. Definition of Models and Implications for Combinatoric Bets 114
6. Using Combinatoric Markets to Test the Models 119

6.1. Testing Conditional Independence 123
6.2. Relaxing Conditional Independence Further 125

7. Conclusion 129
References 130
Appendix A: Pricing of Combinatoric Bets Using Conditional Independence 134
Appendix B: Data 135

Acknowledgments

We would like to thank David Siegel of Trackmaster for supplying the data, and Scott
Hereld and Ravi Pillai for their valuable assistance in managing the data. Betsey Steven-
son, Matthew White, and William Ziemba provided valuable insights. Later sections of
this article draw heavily from our paper “The Favorite-Longshot Bias: Is it Risk-Love
or Misperceptions?”

HANDBOOK OF SPORTS AND LOTTERY MARKETS
Copyright c© 2008, Elsevier B.V. All rights reserved. 103



104 Chapter 7 • Examining a Market Anomaly

Abstract

This paper compiles and summarizes the theoretical literature on the favorite-longshot
bias, an anomaly that has been found in sports betting markets for over half a cen-
tury. Explanations of this anomaly can be broken down into two broad categories, those
involving preferences and those involving perceptions. We propose a novel test of these
two classes of models that allows us to discriminate between them without parametric
assumptions. We execute these tests on a new dataset, which is an order of magnitude
larger than any used in previous studies, and conclude that the perceptions model, in
which bettors overestimate the chances of small probability events, provides a better fit
to the data.

1. INTRODUCTION

Gambling has long been of interest to economists as it provides a natural laboratory for
studying decision-making under uncertainty. In addition, the very existence of gambling
is difficult to rationalize in a neo-classical framework along with the fact that gamblers
often purchase insurance at actuarially unfair premiums. The first behavior is evidence
of risk-love, and the latter is evidence of risk aversion. Although progress has been
made, there is no single agreed upon way to understand and model such behavior.

Any model that explains the purchase of insurance and gambling must also explain
other features of gambling markets. The longest standing empirical regularity of these
markets is the favorite-longshot bias: bettors systematically overbet longshots and
underbet favorites relative to their true probabilities of winning. This anomaly has per-
sisted since it was discovered in horse racing markets over half a century ago.1 Figure 1
shows the favorite-longshot bias in our data.

Figure 2 shows the same rate of return calculations for several other datasets. We
present new data from 2,725,000 starts in Australia from the South Coast Database,
and 380,000 starts in Great Britain from flatstats.co.uk. The favorite-longshot bias
appears equally evident in these countries, despite the fact that odds are determined
by a bookmaker-dominated market in the United Kingdom, and bookmakers compet-
ing with a state-run pari-mutuel market in Australia.2 Figure 2 also includes historical
estimates of the favorite-longshot bias, showing that it has been stable since it was first
noted in Griffith (1949).3

1Griffith (1949), McGlothlin (1956).
2This is consistent with Dowie (1976) and Crafts (1985).
3The favorite-longshot bias has been documented in the gambling markets of many other sports, while the
opposite pattern—often termed the reverse favorite-longshot bias—has been observed in some others. Wood-
land and Woodland (1994, 2001, 2003) find a reverse favorite-longshot bias in baseball and hockey. Gray and
Gray (1997) find a favorite-longshot bias in football, and Metrick (1996) finds a reverse favorite-longshot
bias in office NCAA pools. Cain and Peel (2000) find a favorite-longshot bias in UK football (soccer) betting
markets. Gander et al. (1998) find it in New Zealand horse racing markets. Busche and Hall (1988) document
that the favorite-longshot bias does not exist in Japanese and Hong Kong horse racing markets, and in fact, a
reverse favorite-longshot bias may be present.
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FIGURE 1 The favorite-longshot bias.

There are two related regularities of interest, although they have not been as
extensively documented. The first is the tendency for gamblers to exhibit greater risk
preference in the last race or two as compared with earlier races (McGlothlin, 1956;
and Ali, 1977). We call this the end of the day difference. The second regularity
is positive expected profits on horses with very short odds—that is, overwhelming
favorites (Hausch and Ziemba, 1995). These features do not appear in our dataset.
These two regularities may have been the result of statistical imprecision, or the market
may have corrected them over time. The latter hypothesis is suspect, however, as the
favorite-longshot bias has persisted while these other anomalies have faded.

Starting with Rossett (1965), gambling markets have been used to examine the
sophistication and rationality of gamblers. Snyder (1978) uses a gambling market,
specifically betting on horse races, to examine market efficiency.4 Since then, gambling
markets have provided a fertile ground for financial economists testing the efficient
markets hypothesis. As Thaler and Ziemba (1988) note:

The advantage of wagering markets is that each asset (bet) has a well-
defined termination point at which its value becomes certain. The absence
of this property is one of the factors that has made it so difficult to test for
rationality in the stock market. Since a stock is infinitely lived, its value
today depends both on the present value of future cash flows and on the

4There is a large body of literature focused on testing market efficiency in gambling markets. A sample
includes: Figelewski (1979) and Losey and Talbott (1980) who study horse racing, Zuber et al. (1985), Sauer
et al. (1988), Golec and Tamarkin (1992) and Gander et al. (1998) who study football, and Brown and Sauer
(1993) who study basketball.
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FIGURE 2 The favorite-longshot bias across the world and time.

price someone will pay for the security tomorrow. Indeed, one can argue that
wagering markets have a better chance of being efficient because the condi-
tions (quick, repeated feedback) are those which usually facilitate learning.
However, empirical research has uncovered several interesting anomalies.

The favorite-longshot bias is interesting then for two reasons. The first is that any
theory that explains the taking of small unfair gambles and the purchase of insurance
must explain this feature. The favorite-longshot bias indicates that gamblers are willing
to accept greater risk with lower expected return, which flies in the face of the intuitive
risk-return trade-off. The second is that in some cases it provides evidence against weak-
form market efficiency.5

This chapter summarizes existing theories of the favorite-longshot bias and shows
that those theories stress either preferences or perceptions. We then discriminate
between those classes of theories using data from combinatoric gambling markets.6

5Weak form tests of market efficiency check that current prices reflect all information contained in past prices.
That is, it should not be possible to come up with a profitable strategy only based on past prices. Positive
returns on extreme favorites would violate weak form efficiency since it would be possible to make a profit
simply by betting on extreme favorites as defined by horses with odds of 0.2/1 or less. For more on the efficient
markets hypothesis and a summary of tests see Fama (1970).
6These gambles are often called exotics and consist of exactas, which is a bet on a given horse to finish first
and a given horse to finish second; quinellas, which is a bet on two horses to come first and second in either
order; and trifectas, which is a bet on given horses to come in first, second, and third. We call these bets
combinatoric because they are generically available (i.e., not exotic) and this taxonomy is a more accurate
representation of their implementation.
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Theories of the favorite-longshot bias can be split into two classes of theories. First,
standard neo-classical theory suggests that the price one is willing to pay for various
gambles can be used to recover a utility function. While betting at any odds is actuarially
unfair, the data suggests that this is particularly acute for longshots—which are also the
riskiest investment. Thus, the neo-classical approach can reconcile both gambling and
the longshot bias by positing locally risk-loving utility functions (Friedman and Savage,
1948). Because this rationalization of the favorite-longshot bias relies on the shape of
the utility function, we refer to it as a preference-based model. Alternatively, behavioral
theories suggest that cognitive errors play a role in market mispricing. These theo-
ries generally point to laboratory studies by cognitive psychologists that suggest that
people are systematically poor at discerning between small and tiny probabilities (and
hence they will price each similarly). Further, certain events are strongly preferred to
extremely likely events, leading even very likely events to be underpriced. These results
form a key part of Kahneman and Tversky’s (1979, 1992) prospect theory. Beyond the
laboratory, these theories can rationalize the purchase of sometimes extremely unfavor-
able lottery tickets, and actuarially unfair insurance on items like internal telephone
wiring.7 We term these nonexpected utility theories perception-based because they
rationalize the favorite-longshot bias by referring to (mis)perceptions of the likelihood
of each horse winning.

There is also a third class of models that focus on groups of bettors with different
information available to them. These models, however, yield implications in aggregate
data that are equivalent to a model with a representative agent that bases decisions
on a set of weights that diverge from true probabilities. We will argue that all of the
models posited to date yield observationally equivalent results to those that posit either
a risk-loving or misperceiving representative agent.8 As such, the preferences versus
perceptions distinction is not so much between two sharply defined theories, but rather
a taxonomy for organizing the two sets of theories. Alternatively, using the language in
Gabriel and Marsden (1990), we ask: “are we observing an inefficient market or simply
one in which the tastes and preferences of the market participations lead to the observed
results?”

The rest of this chapter proceeds as follows. In Sections 2 through 4, we review
the favorite-longshot literature and categorize the theories into our perceptions versus
preferences taxonomy, with an additional section exploring theories based on informa-
tional effects. We then lay out the implications of both preference- and perception-based
theories for the pricing of exotic bets. This is followed by our empirical findings. In
summary, the pricing function implied by the perception-based models better matches
the observed prices of exactas, quinellas, and trifectas. The key implication is that

7Camerer (2001).
8For instance, a preference for the “bragging rights” that accrue from picking a longshot that wins (Thaler
and Ziemba, 1988) yields predictions that are observationally equivalent in aggregate data to a risk-loving
representative agent. This is also true of models with heterogeneity, where some naifs bet randomly (and
hence overbetting the favorite), and imperfect arbitrage preventing sophisticated bettors from offsetting this.
See Section 5 for further discussion.
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rationalizing prices of win bets and combinatoric bets require a utility function that
is not linear in probabilities. Section 7 reviews the robustness of this result, and
concludes.

2. PREFERENCES—EXPECTED UTILITY MODELS
WITH LINEAR PROBABILITIES

Thaler and Ziemba (1988) list five explanations that are commonly offered to rationalize
the favorite-longshot bias, to which we add one more. They are:

1. Bettors are locally risk-loving.
2. Bettors may derive utility simply from holding a ticket on a longshot.
3. Bragging rights for predicting that a longshot comes through are much higher.
4. Bettors might overestimate the chances that the longshots will win.
5. Bettors might overweight the small probability of winning in calculating the

utility of the bet.
6. Some bettors may choose horses for essentially irrational reasons like the horse’s

name.

The first three reasons specify a representative bettor’s preferences, reasons four
and five specify how a representative gambler views probabilities, and reason six
implies that participants in gambling markets are asymmetrically informed. We have
chosen to divide the theories into three categories, rather than the more familiar neo-
classical/behavioral division, for three reasons. The first is that all of the above reasons,
with the exception of the first, are to some extent behavioral. The second is that the
classical distinction made in the literature is misleading and an artifice of the way the
literature has developed. Finally, these categories are amenable to discrimination
through empirical tests we propose and carry out in this chapter.

One of the earliest and best known attempts to explain a consumer’s purchase of
insurance and acceptance of unfair gambles simultaneously is that of Friedman and
Savage (1948). This theory posits a wiggle in the consumer’s utility function that can
make consumers exhibit risk-loving behavior in certain circumstances even though they
are generally risk-averse.9 That is, consumers may be locally risk-loving, but globally
risk-averse agents.

The first attempts by economists to explain the favorite-longshot bias relied on the
Friedman-Savage theory.10 Weitzman (1965) introduces the concept of a representative
bettor. In equilibrium, each bettor must be indifferent between the odds offered on all
horses. If the odds were too high on some horse, then the representative bettor would

9By locating this wiggle at the level of current wealth, Markowitz (1952) avoided several pitfalls of the
Friedman-Savage theory.
10Although not applied specifically to the favorite-longshot bias, Brunk (1981) argues that the fact that lottery
play is highly correlated with dissatisfaction about current levels of income, while gambling on horse races
(which has smaller payoffs) is not as consistent with the Friedman-Savage hypothesis.
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bet on that horse, driving the odds down. If the odds were too low, the opposite would
happen.11 Weitzman (1965) fits an indifference curve to race betting data and finds that
the representative bettor is risk-loving.

Ali (1977) uses a similar technique and also finds that gamblers are risk-loving. He
suggests that bettors display constant relative risk aversion. This, coupled with risk-love,
implies that a bettor’s coefficient of absolute risk aversion increases with wealth—that
is, a bettor becomes more risk-averse as his or her wealth rises. Thus, if bettors take a
position in each race and bet a constant fraction of their wealth, then, due to the track
take and other costs, the aggregate wealth of the bettors will be lower in the last race than
in the first.12 As wealth declines, the representative bettor becomes more risk-loving,
rationalizing the end of the day difference discussed in the introduction.

The most explicit explanation of the preferences theory is in Quandt (1986), which
shows that the favorite-longshot bias is a necessary condition of equilibrium with risk-
loving gamblers. A risk-lover’s utility increases as the variance of a bet increases, thus,
they must be willing to accept a lower expected payout for a higher variance bet (a bet
on a longshot).

A subclass of preference theories suggests that gamblers are either risk-averse or
risk-neutral, but have a definite preference for positive skew. That is, bettors derive
greater utility from an increase in the third moment of the distribution of a gamble.
Evidence of skew-love is found in the finance literature; thus, we might expect bettors
to exhibit similar behavior. Evidence of skew-love is found first in Bird et al. (1987)
followed by Golec and Tamarkin (1998). Golec and Tamarkin note that skew-love is
consistent with taking multiple bets throughout a night, and taking multiple bets in a
single race. Risk-love is not consistent with these facts. Finally, skew-love can be seen
as more consistent (than risk-love) with gamblers’ participation in minus pools.13

A final subclass of preference theories models gamblers as having an extra utility for
gambling. The most persuasive model is Conlisk (1995), although Fishburn (1980) and
others have proposed similar explanations. Such an explanation is generally avoided
because, as Conlisk notes, it seems “to be devoid of any scientific content.” However,
it can be said that this rationalization is no more ad hoc than a wiggle in a utility
function. An additional utility from gambling is not always associated with the favorite-
longshot bias, but the additional utility can easily be structured in such a way as to yield
the bias.

11More specifically, “If the price on a ticket that pays $1 if the horse wins was lower than a fair bet based on
the agent’s subjective assessment of the probability of that horse winning is too high.”
12The track take is the amount the betting establishment withholds from the betting pool, and from which
most of its profits are derived. In addition there is “breakage” due to the rounding down of odds. Track take
plus breakage is usually 15–25% of the total amount bet.
13A minus pool occurs when a horse is an overwhelming favorite. Since in most places the minimum payout
on a $2 bet is $2.10, if a horse is a strong enough favorite, then the track will actually lose money. Such bets
have positive expected return and very small variance. A risk-lover would prefer a bet with higher variance,
although the bettor would have to trade this off versus the lower expected return of higher variance bets at the
racetrack. Hamid et al. (1996) find the opposite: bettors are risk-loving and have an aversion to positive skew.
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As noted in Asch and Quandt (1990), it is impossible to distinguish between a
representative bettor with a risk-loving utility function and one that has additional util-
ity for holding a ticket on a longshot. Intuitively, there is no difference between loving
risk and loving a risky activity. However, Piron and Smith (1994) attempt to distinguish
between these two theories. They use a laboratory gambling situation to try to eliminate
the consumption effects of gambling and find that the favorite-longshot bias still exists.
However, if the additional utility were due to placing a risky bet on a longshot or brag-
ging rights, it would be impossible to get rid of this consumption effect no matter how
sterile and boring the laboratory setting.

The additional utility in Conlisk’s model is an additive term that only takes effect
when the bettor gambles. This is functionally similar to mental accounting. Thaler and
Ziemba (1988) explicitly apply this concept to gambling on horse races.

The idea behind mental accounting is that agents keep different accounts in their
head for different activities. Thus, losses or gains incurred in other realms of life have
nothing to do with an agent’s behavior in the separate—mentally and physically—realm
of gambling. Although Thaler (1985) indicates that agents have the same value or utility
function for all their mental accounts, the suggestion in Thaler and Ziemba (1988) is
that the value function for the gambling account is risk-loving, while those for most
other everyday activities are risk-averse. The resulting utility functions in this model
may look much like the Friedman-Savage or other models discussed above, except that
rather than being risk-loving around a certain wealth level, or “location” in the wealth
scale, risk-love is local to the a physical location, specifically, the racetrack. Mental
accounting escapes many of the difficulties of pure expected utility theory because it
does not force the theorist to posit a single utility function that has certain apparently
contradictory features.

Mental accounting can also be used to rationalize the end of the day difference
(Camerer, 2001). The effect is very neatly explained by gamblers who open an account
at the beginning of a day at the track with the intention of closing it at the end of the
day with a profit.

Ali (1977) posits a slightly different model of the favorite-longshot bias. Two bet-
tors bet on two horses—one on the longshot and the other on the favorite. Each must
gamble $1, thus, the odds are always 1/1 on both horses. This means the favorite
is underbet and the longshot is overbet. As illustrated here, the driving assumption
is somewhat unreasonable. Despite this weakness, Ali’s model has been extended to
prediction markets.14

Finally, Bradley (2003) relaxes the assumption that bettors make equal sized bets.
This assumption is explicitly or implicitly made by all of the theories thus far. This
model endogenizes the bet size while allowing the value function for losses to differ
from that for gains. In order for the optimal bet size to be finite and different from zero,
it must be that the value function for losses is less concave (or convex) than the one for
gains—which is consistent with prospect theory.

14See Manski (2006), where a similar model is used to show that prediction market prices may be inaccurate.
For a more complete description of prediction markets, see Snowberg et al. (this volume).
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3. PERCEPTIONS—THE WEIGHTING OF TRUE
PROBABILITIES

There are two obvious ways to extend the theories in the previous section. The first
incorporates a subjective view of probabilities into the representative bettor’s value
function. The second is to change our model to endogenize features of the real world
that we feel are not accurately represented. This section addresses theories of the first
type, and the next section addresses theories of the second type.

Theories involving subjective probabilities draw their inspiration from Khaneman
and Tversky’s (1979) prospect theory. Prospect theory modifies expected utility theory
in two important ways. The first is that all expected utility calculations are made with
respect to current wealth. Expected utility is evaluated over gains and losses, not over
possible ending wealth levels, through a value function. Additionally, expected utility is
not linear in probabilities. Instead, objective probabilities enter expected utility through
an arbitrary weighting function that multiplies the value function. In addition, both the
value and weighting functions can be different for gains and losses. Note that prospect
theory nests expected utility theory, that is, we can regain the expected utility framework
by simply making the weighting function equal to the probabilities and making the value
function equal for gains and losses.15

Jullien and Salanié (2000) use maximum likelihood estimation to fit gambling data
to prospect theory as well as expected utility theory.16 They find that the additional
coefficients allowed by prospect theory are economically and statistically different from
the values that would return expected utility theory through the nesting described above.
They find that the additional flexibility of prospect theory is appropriate in describing
the favorite-longshot bias.

In Jullien and Salanié’s results, the weighting function for losses is quite concave—it
overweights small probabilities. This is consistent with the fifth explanation offered in
the previous section and is intuitively very simple to understand. The weighting function
can be interpreted as a bettor’s subjective evaluation of the true probability of a horse
winning. Thus, if bettors overweight low probabilities, they will believe that low odds
horses are more likely to win than they actually are, and will bet more money on them.

Camerer (2001) offers another interpretation of Jullien and Salanié’s results. He
notes that bettors weight their high chances of losing and small chances of winning
roughly linearly. They hate to bet on favorites not because they are risk-loving, but
because they are disproportionately afraid of the small chance of losing when betting
on a favorite.

15Although we will posit a risk-neutral representative agent for our perceptions based model, prospect theory
allows for a risk-averse agent who still takes unfair gambles. This would also allow us to take advantage of
theories like those of Woodland and Woodland (1991) which explains why some gambling markets are based
on odds, and others on point spreads. It should be noted that there is a competing theory in this realm—that
of Bassett (1981), which appeals to profit maximization of the market maker. Data from the emergence of
internet gambling markets, which have significantly lower profit margins for market makers, should allow one
to test these two theories against each other.
16Jullien and Salanié (this volume) update their results.
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An oft-overlooked and elegant explanation of the favorite-longshot bias that centers
on perceptions is that of Henery (1985). If bettors discount a constant fraction of their
losses, then the average return to a bettor from a bet at given odds decreases with the
odds. This is exactly the favorite-longshot bias.

Mathematically, the idea that bettors discount a constant fraction of their losses can
be represented as follows. If the true probability of a horse losing a race is (1−pi) and
the bettor discounts his or her losses by the fraction (1−f ), then he or she believes
that the probability of winning is actually f (1−pi) + pi. Intuitively (or behaviorally)
this discounting could take the form of ignoring losses where the bettor’s horse came
“really close” to winning.

4. PERCEPTIONS—INFORMATIONAL EFFECTS

Most recent explanations of the favorite-longshot bias have focused on the information
sets of bettors. However, since it is the marginal, not the average dollar that determines
the final odds, the presence of a large mass of uninformed, or wrongly informed, bettors
alone cannot explain the favorite-longshot bias.17

To develop the intuition of these models, start with a simple case. There are two
horses and two groups of bettors. One is a group of uninformed bettors who bet on the
longshot and whose total bets are determined exogenously. Then a group of informed,
risk-neutral bettors have a chance to bet. These informed bettors know the true probabi-
lities of a horse winning and continue to bet until the odds reflect the true probabilities.
This illustrates that information asymmetries alone cannot explain the favorite-longshot
bias.

Hurley and McDonough (1996) extend this simple model by adding the transaction
cost of the track take. This is sufficient to generate the favorite-longshot bias. As before,
the informed bettors will bet on the favorite until all expected profits have been taken
off the table. In the presence of the track take it is not profitable to bet on the favorite at
odds that are only slightly better than an actuarially fair bet. The odds have to be much
more favorable than a fair bet in order to make up for the fact that a certain portion of the
profits must go to the track. Thus, the favorite is underbet, and the longshot is overbet.
Note that the longshot has negative expected profits in this model. In a normal financial
market this could not persist because investors could simply short sell the longshot.
However, this model also disallows short selling, which allows the favorite-longshot
bias to persist.

Terell and Farmer (1996) extend this model by endogenizing the cost to bettors of
becoming informed. They find that the magnitude of the favorite-longshot bias depends
on the track take and relative probabilities of the horse’s winning, as well as the cost of
becoming an informed bettor.

17A trip to the track is enough to convince most people that gamblers bet based on different information
sets. There are also some empirical tests in the literature that find evidence of this. Gander et al. (1998)
finds evidence of informed bettors in basketball betting. Crafts (1985) finds evidence of insider knowledge in
British horse race betting.
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Most models are significantly more complex than the one offered above. However, in
each model, what drives the favorite-longshot bias is not the asymmetry of information
per se, but additional marketplace restrictions that are incorporated into the model. In
these models, asymmetric information is a necessary, but not sufficient, condition for
the existence of the favorite-longshot bias.

Vaughan Williams and Paton (1998) create a model where the uninformed bettors
bet on all horses evenly, and the informed bettors have an additional utility for betting
on the favorite. They find that if the additional utility for betting on the favorite is pos-
itive, then even if the track take is zero, there will be a favorite-longshot bias. This is
essentially the same as the basic model above, except the cost that prevents the equaliza-
tion of odds with true probabilities comes from forgoing the extra utility due to betting
on a favorite rather than the transaction costs from the track take. This model has an
additional implication, which is that if the transaction costs in the betting market are
less than the extra utility of betting on the favorite, then a reverse favorite-longshot bias
will exist.

Shin (1991, 1992, 1993) models betting markets controlled by a bookmaker. As
noted above, the favorite-longshot bias has been shown to exist in these markets. In
his model outsiders bet rationally, that is, in proportion with the actual win probabilities
of the horses. In addition, there are a certain proportion of the bettors who are insiders
and learn ahead of time which horse will win the race. As long as the proportion of
insider bets does not increase faster than the inverse of the probability that a horse will
win, then the favorite-longshot bias exists as the optimal response of the bookmaker to
the presence of informed bettors.18 Moreover, by offering odds that exhibit the favorite-
longshot bias, the bookmaker increases his or her profits. This accords with Levitt’s
(2004) finding that bookmakers do not set odds to clear the market, but rather to exploit
known biases in the betting public’s behavior.

Laboratory settings have found that the presence or absence of a track take has no
effect on the size or existence of the favorite-longshot bias, which does not accord with
the above theories.19 Potters and Wit (1996) model informed bettors with asymmetric
information who do not take into account the information revealed about others bettors’
signals through the market odds when they place their bets. Since each bettor receives
an independent signal of win probabilities from a known distribution, having more sig-
nals would allow a more precise estimate of the true win probabilities. By watching
the bets of others, a bettor would be able to capture this information and make a better
assessment of the true odds—and the odds would then converge to the objective proba-
bilities. However, by ignoring the bets of others, a bettor is relying too heavily on his or
her own (imprecise) signal, which introduces a bias into the betting market. This effect
is very similar to the winner’s curse in auctions with private information.

18That is, the proportion of insiders cannot be significantly higher when a favorite wins than when a longshot
wins. A constant amount of insider bets easily satisfies this condition.
19See Hurley and McDonough (1995). Although by examining fixed odds vs. spread betting, Vaughan
Williams and Paton (1998) find that transaction costs may be partly responsible for the favorite-longshot
bias.
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Ottaviani and Sørensen (2003) exploit this insight in their own models by only
allowing informed gamblers to bet simultaneously at the end of the betting period.
Thus, the informed bettors are unable to gather information contained in the market
odds. Hence, the betting exhibits a favorite-longshot bias. The idea that informed bet-
tors place their bets last has some empirical support. Asch et al. (1982) find that the bets
placed in the last 5 minutes show evidence of informed betting.

In the Potters and Wit model, sequential and simultaneous betting are the same
since each gambler knows the other bettors will not take into account the informa-
tion revealed by their bets. However, if bettors believe that others will use their bets to
deduce something about their private information, they must take this into account and
act strategically in equilibrium. This is the approach taken by Koessler and Ziegelmeyer
(2002). They note that in a simultaneous game with asymmetric information, a fully
revealing equilibrium always exists and becomes unique as the number of bettors
grows large. In contrast, in a sequential game, a fully revealing equilibrium does not
exist as the number of bettors grows large. When a fully revealing equilibrium does
not exist, the game is subject to extreme prices and persistent biases. Note that this
is not inconsistent with Ottaviani and Sørensen, since in that model after the final
odds are posted everyone can see that the longshot was overbet—there is just noth-
ing they can do about it. Koessler et al. (2003) extend this insight by proposing a
sequential game in which a favorite-longshot bias arises. However, the strategic bet-
tors in their model have subjective attitudes toward probabilities, which, as we saw in
the last section, is enough to create a favorite-longshot bias even without asymmetric
information.

5. DEFINITION OF MODELS AND IMPLICATIONS FOR
COMBINATORIC BETS

We start with two extremely stark models, each of which has the merit of simplic-
ity. Both are representative agent models, but as we suggest below, can be usefully
expanded to incorporate heterogeneity. Ultimately, aggregate price data will not be
able to separately identify more complex models from these representative agent
models.

Under the preference-based approach, we start by postulating an expected utility
maximizer with unbiased beliefs. In equilibrium, bettors must be indifferent between
betting on the favorite horse (at odds of F/1, and a probability of winning of f ), and
betting on a longshot (at odds of L/1, with probability of winning, l)

fU (F ) = lU (L) (normalizing utility to zero, if the bet is lost).20

20We also assume that each bettor chooses to bet on only one horse in a race. This simplifies the analysis, as
otherwise we would need to also keep track of the fraction of wealth that each bettor chooses to gamble.
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FIGURE 3 Utility function implied by betting odds.

Given that we observe in the data the probabilities of each horse winning (f , l) and
their odds (F ,L), these data reveal the representative bettor’s utility function. That is,
by comparing the betting odds and the winning probability of pairs of “nearby” bets, we
can identify the utility function of the representative bettor (up to a scaling factor).21 In
order to simplify notation, we normalize so that utility is zero if the bet loses, and utility
is one if the bettor chooses not to bet. Thus, if the bettor is indifferent as to whether to
accept a gamble paying odds G, with probability g, then U (G) = g−1. Figure 3 performs
precisely this analysis, backing out the utility function required to fully rationalize the
choices shown in Figure 1.

The observation that bettors are willing to accept bets on horses at increasingly long
odds, even as the expected payoff becomes increasingly actuarially unfair, implies that
U ′′ > 0. Beyond this, the specific shape of the declining rates of return identifies the
slope of the utility function at each point.

As can be seen quite clearly, a risk-loving (or locally risk-loving) utility function is
required in order to rationalize these results. The utility function—by construction—
fully explains all of the variation in Figure 1.22 Several other theories of the favorite-
longshot bias have also been proposed that yield implications that are observationally
equivalent to a simple risk-loving representative agent model. For instance, Thaler and
Ziemba (1988), echoing Hausch and Ziemba (1995) argue that bragging rights accrue
from winning a bet at long odds. Formally, this suggests agents maximize expected
utility, where utility is the sum of the felicity of wealth, v, and the felicity of bragging
rights or the thrill of winning, w, and hence the expected utility of a gamble that returns

21See Weitzman (1965), Ali (1977), and Jullien and Salanié (2000) for examples.
22Imposing a CRRA functional form on the utility function, a simple non-linear probability model yielded an
estimate of the coefficient of relative risk aversion of −0.16 (standard error 0.0006; n = 4,867,857, which is
remarkably close to Ali’s (1977) estimate.
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G with probability g can be expressed as

EU (G) = g[w(G) + v(x)] + (1 − g)w(0)

where the initial wealth level is normalized to zero.
As in the representative agent model, bettors will be prepared to accept lower returns

on riskier wagers (betting on longshots) if U ′′ > 0. This is possible if either utility of
wealth is sufficiently convex (w′′ > 0), or bragging rights are increasing in the payoff
at a sufficiently increasing rate. More to the point, decisions under uncertainty do not
allow us to separately identify effects operating through w, rather than v, and this is the
sense in which the model is observationally equivalent with the simple representative
agent who is risk-loving. A similar argument shows that a model in which the mere
purchase of a ticket on a longshot confers some utility (such as the dream of striking it
rich), is also observationally equivalent.

Alternatively, under the perceptions-based approach, we postulate a subjective, risk-
neutral, expected wealth maximizer. The agent’s subjective beliefs, �, are systematically
biased estimators of the true probabilities. In equilibrium, bettors must believe that the
rates of return to betting on the favorite and the longshot are equal, and hence

�(f )F = �(l)L.

Consequently, data on the probabilities of each horse winning (f, l) and their odds
(F ,L), reveal the systematic component of the representative bettor’s subjective expec-
tations. Thus, we can identify the decision weights of the representative bettor, and
Figure 4 (which is a simple transform of Figs. 1 and 3) can be interpreted as showing
precisely this function. The low rates of return to betting longshots are thus rational-
ized by the assertion that bettors tend to bet as though horse’s “tiny” probabilities are
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FIGURE 4 Perception function implied by betting odds.
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actually “small” probabilities. Beyond this, the specific shape of the declining rates of
return identifies the decision weights at each point. The overall form of the weighting
function of a gamble with probability of winning g and odds G is

�(g) = (1 + G)−1.

Note that as in Figure 3, by construction the function derived here explains all of the
variation in Figure 1.

While the assumption of risk-neutrality is clearly too stark, as long as bettors gam-
ble small proportions of their wealth, the approximation error is second-order. For
instance, assuming log utility, a bettor is indifferent over betting �% of their wealth
on the favorite or the longshot if: �(f ) log(w + F ) = �(l) log(w + L), which under the
standard approximation implies that: �(f )F ≈ �(l)L.

While we have presented the perceptions model as a highly stylized representative
agent model, a range of somewhat richer alternatives that have been proposed in the
literature yield similar implications. For instance, Hurley and McDonough consider a
simple form of heterogeneity in which naifs bet randomly (for instance based on the
horse’s name), and rational agents bet according to the true probabilities. Based on this,
the rational agents will partly offset the longshot bias caused by the naifs, but the track
take means that it is not optimal to fully offset this bias. Consequently, the market as a
whole prices gambles as if it overestimated the probability of longshots winning, while
only a fraction of market participants have biased beliefs. Since we do not have data
on individual gamblers it is impossible to identify whether there are separate groups of
bettors. Thus, maintaining the representative agent assumption, this is indistinguishable
from the perceptions model.

Related models by Ali (1977) and Manski (2004) posit that the betting population
has—on average—unbiased beliefs, but that there is heterogeneity around these beliefs.
Thus, those with beliefs that the favorite is particularly likely to win will bet the favorite,
while others will bet the longshot. The driving force in the model is that longshot bettors
back their horse to win more than favorite-bettors, which causes the odds of the longshot
to become compressed relative to the true probabilities. Thus position-weighted aver-
age perceptions exhibit a favorite-longshot bias. Finally, Henery (1985) and Williams
and Patton (1997) argue that bettors discount a constant proportion of the gambles in
which they backed a loser, possibly due to a self-serving bias in which they argue that
conditions were atypical. Because longshot bettors lose more often, this discount makes
betting longshots relatively more attractive. In this case, it is entirely accurate to describe
these bettors as motivated by misperceptions of probabilities.

By construction, both of these models explain all of the variation in the data from
win betting (betting on which horse will cross the finish line first). These data provide
no traction in establishing which of the two models are better explanations, as both are
tautological in this space. The only way to argue that one model is “better” than another
is to make strong parametric assumptions. This is what all previous authors have done.
Our innovation is to consider data from combinatoric markets as well, which allows us
to make minimal assumptions and still discriminate between the two models.
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We start by examining in detail how our method works for an exacta bet (picking the
first two horses in order), before proceeding to other combinatoric bets: the quinella and
trifecta. As before, we price these bets by considering indifference conditions. Pricing
an exacta requires data on the perceived likelihood of the pick for first actually winning,
and conditional on that, the likelihood of the pick for second coming second, as well
as the bettor’s utility function. As such, a bettor will be indifferent between betting on
an exacta with horses A then B paying odds of OAB/1 and not betting (which yields no
change in wealth, and hence a utility of one), if:

Preferences Model Perceptions Model

(Risk-lover, unbiased expectations) (Biased expectations, risk-neutral)

pApB|AU(OAB) = 1 �(pA)�(pB|A)OAB − (1 − �(pA)�(pB|A)) = 0

Noting that p =
1

U (O)
, Noting �(p) =

1
O + 1

,

OAB = U−1(U (OA)U (OB|A)) OAB = (OA + 1)(OB|A + 1) − 1

Under the preferences model, we estimate the utility function based on the pricing
of win bets (in Figure 3), and we then invert this to compute unbiased win proba-
bilities from the betting odds. While we do not have data on OB|A—the odds of B
coming second, conditional on A coming first—we can infer this conditional prob-
ability from win odds, by assuming conditional independence. That is, �(B|A) =
�(B)/(1 − �(A))23 under the perceptions model. This assumption is akin to thinking
about the race for second as a “race within the race.”24 With this assumption in hand,
we can explore how either the utility function in Figure 3 or the decision weights in
Figure 4 yield different implications for pricing of exactas.25

Figure 5a, b shows the pricing functions implied by these two models; the x- and
y-axes show the odds on the first and second place horse, and the z-axis shows the equi-
librium exacta odds implied by each model. Appendix A carries out similar calculations
for quinellas and trifectas in more detail.

23The calculation for the preferences model takes the same form, replacing p for �(p) in the equation.
24While relying on conditional independence (as per Harville, 1973) is standard in the literature, Hausch et al.
(1981) find that Harville produces estimates for second and third place horses that are too high but that the
biases cancel such that the place and show probabilities are not biased much. We showed in Section 6 that we
can relax this assumption and our major results remain unchanged. See also Appendix A for more details on
how these pricing functions are calculated.
25There remains one minor issue: as Figure 4 shows, horses never win as often as suggested by their win odds.
In mapping these empirical probabilities to the �(p) function, we have two choices: (1) apply this mapping
literally, even though it implies that agents systematically overestimate all probabilities, or (2) adjust the
odds for the track take by dividing the odds-implied probabilities by their sum, within each race. This latter
possibility can be rationalized by assuming that bettors gain a small utility from having a horse to cheer in
each race as in Conlisk (1993). This small utility determines bet sizes (it equals bet size times the track
take), and can both rationalize why risk-neutral or even risk-averse bettors gamble, and also results in a �(p)
function that is not systematically an overestimate for all p. We choose the latter, although our results are
qualitatively similar either way.
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Predictions of the Preferences Model
Odds shown as price of a contract paying $1 if bet wins

Predictions of the Perceptions Model
Odds shown as price of a contract paying $1 if bet wins
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FIGURE 5 a: Pricing functions for exactas for the perceptions model. b: Pricing functions for exactas for the preferences model.

6. USING COMBINATORIC MARKETS TO TEST
THE MODELS

This chapter proposes a test capable of differentiating between the perceptions and pref-
erences models. A secondary aim is to bring a new dataset to the question, documenting
the stylized facts from all 5,600,000 horse race starts in the U.S. between 1991 and
2001. These data are an order of magnitude larger than any other dataset previously
examined, and allow us to be quite precise in establishing the relevant stylized facts.

Our chapter is most closely related to the papers of Julien and Salanié (2000) and
Gandhi (2007) which both attempt to sort out the extent to which the favorite-longshot
bias reflects risk-love versus misperceptions in win pool betting data.26 Julien and

26There are other papers that try to distinguish between different explanations of the favorite-longshot bias.
Coleman (2004) concludes on the basis of Occam’s razor that the bias is due to the interaction of informed and
uninformed bettors. Golec and Tamarkin (1995) find that overconfidence (i.e., misweighting of probabilities)
fits the data in the win pool better than risk-love, but cannot reject the hypothesis of risk-love. Plott et al.
(2003) find that a rational expectations model is better than one centered on private information in explaining
the favorite-longshot bias. Sobel and Raines (2003) test between risk-love and informational models and
come down in favor of the information model. Their models, however, make functional form assumptions.
See Sobel and Ryan (this volume) for an update.
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Salanié (2000) find evidence consistent with the misperceptions model (which they
label as nonexpected utility theories). Gandhi (2007) shows that it is possible to iden-
tify the preferences of bettors without the representative bettor assumption. He finds
the preferences identified in this way are more consistent with expected utility theory
(rather than risk-love, since some bettors are estimated to be risk-averse) rather than
misperceptions.

Our innovation is to argue that combinatoric bets can be used to derive testable
restrictions that differentiate these theories. The question then is whether the specific
forms of preferences and perceptions that rationalize the favorite-longshot bias in the
win pool can also explain exacta (and quinella and trifecta) pricing; and further which
gives a fuller accounting of the variation in that data. By expanding the choice set under
consideration (to correspond with the bettor’s actual choice set!), we have the oppor-
tunity to use the relevant theory to derive testable restrictions of each theory. While
authors such as Asch and Quandt (1987, 1988) and Ali (1979) have tested the effi-
ciency of these exotic betting markets, we are the first to use these prices to distinguish
between competing theories of possible market inefficiency.

Our data contains every horse race run in the U.S. between 1992 and 2002. These
data are official jockey club data, and hence are the most precise data available. Data
of this nature are prohibitively expensive, and so we are extremely grateful to David
Siegel of TrackMaster Inc. for providing us access. While we have a vast database on
every horse and every race, jockey, owner, trainer, sire and dam, we will only exploit
the betting data, and whether or not a horse won the race. Appendix B further describes
the data.

We summarize our data in Figures 6 and 7. We group horses into 74 separate groups;
this allows for fine distinctions to be made, but also ensures that we have sufficient
observations to make precise estimates of the rates of return to betting horses in each
group. The x-axis of both figures inverts the odds so as to work out an implied probabil-
ity, or, alternatively, how often a horse at those odds must win in order for the bettor to
break even. Data are graphed on a log scale so as to better show the relevant range of the
data. Figure 1 shows the actual rate of return to betting on horses in each category. The
average rate of return for betting favorites is about −10%, while horses at a midrange
of 1/1 to 20/1 yield a rate of return of −20%, and real longshots—horses at 100/1 or
more—are much more expensive to bet on, costing 60 cents per dollar bet. This is, once
again, the favorite-longshot bias. Figure 6 also shows the same pattern for the 54,013
races for which the jockey club recorded payoffs to exacta, quinella, and trifecta bets.
Given that much of our analysis will focus on this smaller sample, it is reassuring to see
a similar pattern of returns.

The literature has suggested two other empirical regularities that we can explore.
Ziemba and Hausch (1986) and Hausch and Ziemba (1995) present data suggesting
that there are positive rates of return to betting extreme favorites, perhaps suggesting
limits to arbitrage. However, as the confidence intervals in Figures 1, 6, and 7 show,
there is substantially greater statistical uncertainty about returns on extreme favorites
and longshots, and in none of these datasets is there a positive effect of betting on horses
less than 0.2/1.
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FIGURE 6 The favorite-longshot bias in different subsets of data.

Second, McGlothlin (1956) and Ali (1977) argue that the rate of return to betting
moderate longshots falls in the last race of the day. While this conclusion was based
on a small sample, Thaler and Ziemba (1988), and Camerer (2001) interpret this as
consistent with loss aversion: most bettors are losing at the end of the day, and the
“get out of jail” race provides them with a chance to leave the racetrack even for the
day. Thus, bettors underbet the favorite even more than usual, and overbet horses at
odds that would eliminate their losses—around 8/1. Figure 7 replicates Figure 1, but
separates out the last race of the day from earlier races. As should be clear, there is no
statistically discernible difference between the last race and earlier races.27 If there were
evidence of loss aversion in McGlothlin or Ali’s data, it no longer appears evident in
more recent data, even as the favorite-longshot bias has persisted.28

We now turn to the major contribution of this paper—testing the different models
on combinatoric bets. Our empirical approach is simply to estimate which of the pric-
ing functions shown in Figure 5 better fits the data. In Table 1, we convert the odds
into the price of a contingent contract that pays $1 if the chosen exacta wins (that is,
Price = (Odds + 1)−1), and then regress the price of the winning exacta against the
prices implied by preference model (column 1), the perceptions model (column 2)
and then put them both in the regression (column 3). Comparing columns 1 and 2,

27Note that the last race sample is about one-ninth the size of the all races sample. As such, the standard errors
on the estimates for the last race are approximately three times as wide as those for all races.
28There are reasons other than statistical uncertainty why positive returns may have dissipated. Since these
studies, there have been many changes in the market structure, such as a larger role for rebates and more
off-track betting, which may have changed the incentives of bettors.
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the explanatory power of the perceptions model is substantially greater, and the regres-
sions in column 3 confirm this, showing that when the regression is allowed to choose
optimal weights on the implications of each theory, it strongly prefers the perceptions
model. When we weight by the size of the relevant betting pool, we obtain qualitatively
similar results.

Panels B and C repeat this analysis, but this time extending our test to see which
model can better explain the pricing of quinella and trifecta bets. While the specific
formulae to generate the implications of each model differs, the intuition is precisely
the same. Appendix A shows the relevant pricing functions in more detail.

Our results are clear: the perceptions model gives us more traction in explaining the
pricing of combinatoric bets. First, observe that in all three betting pools, the coefficient
on the perceptions model is closer to unity than the preferences model. Also, in all
three pools, the perceptions model explains a significantly larger part of the variation
in the data than the preferences model does. Although the differences in R2 are small
numerically, given the size of the dataset, the perceptions model is actually quite an
improvement in explanatory power. Finally, the bake-off prefers the perceptions model.
Given how similar the predictions of each model are, this is actually quite a striking
result.29

We have also re-run these regressions a number of other ways to test for robustness,
and our conclusions are unaltered by whether or not we include constant terms in the

29This is normally called a horse race, but to avoid confusion, we call it a bake-off.
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TABLE 1 Testing the Fit of Each Model

Specification (1) Preferences (2) Perceptions (3) Bake-Off

Panel A: Exacta Bets (n = 52,168)

Preferences-based model predictions 0.7993 0.1791
(risk-love) (0.0016) (0.0102)

Perception-based model predictions 0.9172 0.7159
(misperceive probabilities) (.0017) (0.0105)

Constant 0.0076 .0056 0.0058
(0.0001) (.0001) (0.0001)

Adjusted R2 0.8358 0.8482 0.8492

Panel B: Quinella Bets (n = 52,778)

Preferences-based model predictions 0.8124 −0.216
(risk-love) (0.0014) (0.0123)

Perception-based model predictions 0.8826 1.1137
(misperceive probabilities) (0.0014) (0.0132)

Constant 0.0129 0.0103 0.0101
(0.0002) (0.0002) (0.0002)

Adjusted R2 0.8602 0.8761 0.8768

Panel C: Trifecta Bets (n = 34,313)

Preferences-based model predictions 0.6410 0.1391
(risk-love) (0.0021) (0.0071)

Perception-based model predictions 0.8257 0.6575
(misperceive probabilities) (0.0025) (0.009)

Constant 0.0027 0.0030 0.0027
(0.0001) (0.0001) (0.0001)

Adjusted R2 0.7247 0.7593 0.7619

NOTE: Dependent variable: price of a contract paying $1 if the combinatoric bet wins.

regressions, whether or not we weight by the size of the betting pool, whether we drop
observations where the models imply very long odds, or whether or not we adjust the
perceptions model in the manner described in footnote 37. The results are also robust
different functional forms, including the natural log price of a $1 claim, the odds, or
log-odds.

6.1. Testing Conditional Independence

The assumption of conditional independence was a key assumption simplifying the
analysis in the previous section. We now turn to both testing this assumption, and then
deriving two further tests that can distinguish between our families of models even if
conditional independence fails.
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Recall that the only unobservable in the previous section was the probability of horse
B finishing second, conditional on horse A winning. Conditional independence posits
a specific functional form for this relationship, based on the chances of horses A and
B winning the race. However, there may be good reason to doubt this assumption. For
instance, if a heavily favored horse does not win a race, this may reflect the fact that
it was injured during the race, which then implies that it is very unlikely to come
second. That is, the odds may provide useful guidance on the probability of win-
ning, but conditional on not winning, may be a poor guide for the race to come
second.

We can directly test the assumption of conditional independence by asking whether
the Harville formulae provide a sufficient statistic for whether a horse will come
second. We compute the Harville statistic as pB (1 − pA)−1, where pA and pB reflect
the probability that horses at odds of A/1 and B/1, respectively, win their races. We
then run a linear probability model where the dependent variable is an indicator vari-
able for whether horse B runs second.30 Beyond the Harville predictor, we both loosen
up the functional form of the specified relationship, adding linear and quadratic terms
in both pA and pB to the regression. In the third column we also append other factors
to the regression, such as the probability that a horse at the odds of the favorite wins
the race, and a Herfindahl index of the probabilities of each of the horses in the race.
Table 2 shows our results.

Two main conclusions can be drawn from Table 2. First, the Harville formulae are
extremely useful predictors of the probability of a horse finishing second. To provide
a yardstick for thinking about the explanatory power, note that this is about four-
fifths as high as the R2 one gets when trying to explain which horse wins the race,
using the predictions in Figure 5. Second, the Harville formula is not a sufficient
statistic; our other independent variables raised the explanatory power of the regression
somewhat.

An immediate concern is that the Harville approximation error might be driv-
ing our main results in Table 1. However, there is an easy solution, which is to
simply to calculate pB|A directly from the dataset. We implement this procedure in
Table 3.

In order to do this, we had to find the true probability that an exacta with odds A/1
and B/1 actually wins using the same odds ranges to organize the bins as before. This
means that there are 74 × 74 = 5,476 combinations for which we need to calculate the
probabilities, so on average there are ∼1,000 observations per combination. However,
certain combinations are much more likely, and others, such as having two horses at
0.1/1 odds in the same race, are impossible. The range of the number of observations in
these cells goes from 1 to 441,930. This affects the precision to which we can estimate
pB|A, so when we run regressions, we weight by the inverse of the standard error to
which we estimated pA|B . The standard error of each cell is given by the familiar for-
mula sqrt((pB|A∗(1 − pB|A))/n). This is just standard WLS to account for independent
heteroskedastic observations.

30Probits yield similar results.
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TABLE 2 Conditional Independence of Second Place Finish

Specification (n = 4,121,025) (1) (2) (3)

Prediction from conditional independence 0.7881 0.8794 0.8265
(Harville formula) (0.0013) (0.0083) (0.0085)

Predicted probability of first place finish from odds 0.1484 0.2083
(0.0123) (0.0127)

Predicted probability of first place finish squared −0.7371 −0.6699
(0.0116) (0.0133)

Predicted probability of first place horse 0.0165 0.0377
(0.0042) (0.0051)

Predicted probability of first place horse squared −0.0756 −0.1377
(0.0075) (0.0099)

Horse was favorite −0.0173
(0.0008)

Number of horses −0.0035
(0.0110)

Max probability of horse in race −0.0312
(0.0110)

Max probability of horse in race squared 0.1392
(0.0170)

Herfindahl index 0.0770
(0.0103)

Constant 0.0293 0.0172 −0.0190
(0.0003) (0.0006) (0.0009)

Adjusted R2 0.0767 0.0778 0.0782

NOTE: Dependent variable: indictor for whether a horse came in second.

The results in Table 3 are consistent with those in Table 1. For each of the three exotic
bets, the perceptions model has greater explanatory power than the risk-love model, and,
in the bake-off, is strongly preferred.

6.2. Relaxing Conditional Independence Further

Our final test of the two models is even more non-parametric, and relies only on
the relative pricing of exacta and quinella bets.31 As before, we derive predictions
from each model and test which better explains the observed data. The advantage of
focusing only on comparisons between the first two horses is that these tests are—by

31Note that these tests are distinct from the work by authors such as Asch and Quandt (1987, 1988) and Ali
(1979), who test whether quinella pricing is arbitrage-linked to exacta pricing. Instead, we ask whether the
same model that explains pricing of win bets can jointly explain the pricing of exacta and quinella bets.
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TABLE 3 Testing the Fit of Each Model without Conditional Independence, Correcting
for Heteroskedasticity

Specification (1) Preferences (2) Perceptions (3) Bake-Off

Panel A: Exacta Bets (n = 52,322)

Preferences-based model predictions 1.0078 −0.0506
(risk-love) (0.0023) (0.0424)

Perception-based model predictions 1.0492 1.1017
(misperceive probabilities) (0.0024) (0.0441)

Constant −0.0015 0.0013 0.0015
(0.0001) (0.0001) (0.0001)

Adjusted R2 0.7859 0.7884 0.7884

Panel B: Quinella Bets (n = 52,774)

Preferences-based model predictions 1.002 0.263
(risk-love) (0.0017) (0.037)

Perception-based model predictions 0.9191 0.6783
(misperceive probabilities) (0.0015) (0.0339)

Constant 0.0005 0.0028 0.0022
(0.0001) (0.0001) (0.0001)

Adjusted R2 0.8688 0.8697 0.8698

NOTE: Dependent variable: price of a contract paying $1 if the combinatoric bet wins.

construction—conditionally independent of the characteristics of all other horses in the
race.

Before deriving the predictions, we will explore the setup and basic intuition. Given
two horses with odds F/1 (which we will also call the favorite) and L/1 (the longshot)
and F < L, each model makes a unique prediction about the odds of the exacta and
quinella. However, each observation with given odds of the first and second place horse
does not have the same exacta and quinella odds. We can use the quinella (exacta) price
and our models to make a better prediction about the price of the exacta (quinella).
This section uses all four of these odds in concert to make predictions about the prob-
ability of the favorite coming first (given that F and L came first and second in some
order).

For the derivation below, note that the exacta F-L occurs with probability pF ∗pL|F and
the L-F exacta occurs with probability pL∗pF |L, and hence the corresponding quinella
occurs with probability pF∗pL|F + pL∗pF |L (where pF is the probability of F winning,
and pL|F denotes the probability of F coming second given that L won the race). Also,
the L-F exacta has odds of ELF/1, and the L-F quinella (which is the same as the F-L
quinella) has odds Q/1.

Consequently, these two models have different implications for how frequently we
expect to observe the L-F exacta winning, relative to the F-L exacta winning. Further,
these comparisons yield distinct predictions even within any set of apparently similar
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Preferences Model Perceptions Model

(Risk-lover, unbiased expectations) (Biased expectations, risk-neutral)
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races (those whose first two finishers are at L/1 and F/1 with the quinella paying
Q/1).

Thus, we can include a full set of fixed effects for L, F , Q and their interactions in
our statistical tests.32 The residual after partialing out these fixed effects is the marginal
effect of including quinella and exacta odds in our predictions. Since much of the varia-
tion in the quinella and exacta payoffs comes from the first place odds, which we have
already used in our tests, we are here interested in the improvement in prediction when
using the bettor’s full choice set.

Figure 8 compares these predicted values with their actual values, where each are
reported as deviations from their baseline (or L-F -Q cell mean). It is important to note
that by focusing only upon comparisons between the first two horses, we eliminate
parametric assumptions about “the race for second place” (conditional independence).

Clearly the preference-based model does a much better job in predicting the winning
exacta, given horses that finish in the top two positions (and their odds). Indeed, the
predictions of the perceptions-model are robustly positively correlated with actual out-
comes (� = 0.12; n = 50,216), while the preferences model yields predictions that are
perversely negatively correlated with actual outcomes (� = −0.16). The results of a
fixed effects regression on these predictions can be found in Table 4.

Table 4 requires some explanation. The first thing to note is that if we run this regres-
sion using OLS without fixed effects, the results look much the same as before. The
perceptions model has more explanatory power, and a coefficient close to one in the
bake-off. The preferences model has a coefficient near zero. However, we are interested
here in the incremental effect of adding the quinella and exacta odds, hence we have
used a fixed effects model.

32Because the odds L, F , and Q are actually continuous variables, we include 100 fixed effects for each, one
for each percentile of the distribution of each.
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Model Predictions
Probability that Favorite Beats Longshot, Relative to Baseline

Predicting the Winning Exacta Within a Quinella
Proportion of Races in which Favored Horse Beats Longshot, relative to Baseline

Chart shows model predictions and outcomes relative to a fixed-effect regression baseline.
Baseline controls for saturated dummies for: (a) The odds of the favored horse; (b) The odds of the
longshot (c) The odds of the quinella; and (d) A full set of interactions of all three sets of dummy variables

Perceptions Model

Risk-Love Model
45 degree line

FIGURE 8 Predictions including quinella and exacta odds—demeaned.
NOTE: For each race we compute the likelihood of an F-L exacta given an F-L quinella. These predictions
are made under the two models outlined in the text, using as inputs data on the odds of each horse (F /1, L/1),
their quinella (Q/1) and the winning exacta (E/1). We then compute the mean predictions and outcomes for
all races within the same {F , L, Q} cell. Subtracting these means yields the model predictions and outcomes
relative to these fixed effects. For the purposes of the plot, we round these residuals to the nearest percentage
point (shown on the x-axis), and the y-axis shows actual win percentages for races in each bucket.

TABLE 4 Fixed Effects Regression of Models Using Quinella and Exacta Odds

Specification (1) Preferences (2) Perceptions (3) Bake-Off

Panel A: Exacta Bets (n = 50,216)

Preferences-based model predictions −0.7582 −8.2994
(risk-love) (0.0126) (0.0222)

Perception-based model predictions 0.4909 8.5581
(misperceive probabilities) (0.0134) (0.0212)

Constant −3.52 × 10−9 −3.64 × 10−9 −5.69 × 10−9

(0.0015) (0.0015) (0.6103)

Adjusted R2 0.0347 0.0132 0.0352

NOTE: Dependent variable—dummy variable for whether favorite came first.

The perceptions model has a moderate coefficient when presented alone in the regres-
sion. The preferences-based model is actually systematically biased the wrong way.
The bake-off provides us with no useful information, except that the models make, in
general, highly correlated predictions.
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A concrete example provides further intuition of why the models make different pre-
dictions and why the perceptions model fairs better. Consider all races in which F was at
4/1, and L was at 9/1, while the quinella was at 20/1 (which is close to actuarially fair).
If the F-L exacta is at odds of 40/1, then given the utility function shown in Figure 3,
a risk-loving bettor is willing to bet this high-risk F-L exacta, even if its chances of
winning are quite low. Given the odds of the quinella, and the fact that the probability
of the F-L exacta is lower than implied by the odds (because of the extra risk pre-
mium associated with it), this implies that the risk-loving bettor must believe that L-F is
(relatively) quite likely. This turns out to be a poor prediction, and indeed empirically,
F-L is typically more likely than L-F as we would expect. This explains the anoma-
lous negative performance of the risk-love model, particularly around the region where
either exacta is about as likely as the other. By contrast, the perceptions model performs
well because the relative misperceptions of bettors are approximately constant for most
horses, leading them to misprice the F-L exacta and quinella in roughly similar ways,
which yields well-calibrated estimates of the relative likelihood of the L-F exacta.

The intuition above leads us to wonder about the usefulness of an unbiased risk-
neutral model. This model explains the data in this test as well as the preferences
model, even in the fixed effects form. However, an unbiased risk-neutral model cannot
account for the fact that people gamble or the favorite-longshot bias in the first place,
so even though it performs well in this test, we can eliminate it from consideration as
an explanation of the behavior we observe at the track.

These tests imply that while a preference-based model can be constructed to account
for the pricing of win bets, it yields inaccurate implications for the pricing of exacta and
quinella bets. Moreover, its predictions of the relative frequency of exacta outcomes are
on average often negatively related to actual outcomes. By contrast, the perceptions-
based model is consistent with the pricing of exacta, quinella, and trifecta betting, and
as this section showed, also consistent with the relative pricing of exacta and quinella
bets. Moreover, these results are robust to a range of different approaches to testing the
theory.

7. CONCLUSION

This chapter summarizes all of the theories of the favorite-longshot bias in gambling.
However, the term bias is somewhat misleading here. That the rate of return to betting
on horses at long odds is much lower than the average return to betting on favorites
simply falsifies a model that bettors maximize a function that is linear in probabilities
and linear in payoffs.

By examining these theories and placing them within the larger economics litera-
ture, we are able to divide them into three categories. The first are theories that involve
preferences, the second are theories that involve the weighting of probabilities of a
bet winning, or misperceptions. The third is observationally equivalent to the sec-
ond, and involves different classes of bettors that have different information sets. For
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compactness, we referred to the former as explaining the data with preferences, while
we refer to the latter as explaining the data with perceptions. Neither label is particularly
accurate.

Employing a new dataset that is an order of magnitude larger than anything consid-
ered to date, we document a set of stylized facts from the win market. As with other
authors, we note a substantial favorite-longshot bias. However, two features of the win
market reported by other authors are notably absent. Namely, we fail to find positive
expected payoffs on extreme favorites. We are also unable to replicate results that posit
that the risk attitudes (or misperceptions) are significantly different in the last race of
the day. These features have either disappeared since the time other authors originally
wrote about them, or more likely, were not statistically significant in the first place.

This chapter also contributes to the literature that tries to determine whether neo-
classical or behavioral theories better explain aggregate behavior in the field. Our
innovation is to consider combinatoric bets, such as exactas, quinellas, and trifectas.
Because the underlying risk, or set of beliefs (depending on the relevant theory) is
traded in both the win and combinatoric betting markets, we can derive testable impli-
cations of both sets of theories. Our results suggest that the perception-based theories
yield greater explanatory power than the preference-based theories. Indeed, while both
are significant explanations of the pricing of exotic bets, the preference-based model
adds little explanatory power beyond the perceptions model. These results are robust to
a range of alternative approaches.

Of course, neither model is literally correct, and thus there is plenty of scope for
related work on these issues. Thus, rather than stating a strong conclusion, we would
simply argue that our results suggest it seems likely that nonexpected utility theories are
the more promising candidate for explaining racetrack betting, and perhaps this is cause
for optimism that they may also explain anomalies in other domains of decision-making
under uncertainty.
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APPENDIX A: Pricing of Combinatoric Bets Using Conditional
Independence

This appendix details how we come up with the predictions of our models using
the assumption of conditional independence. It takes a slightly different form than
the method of pricing exactas developed in the text but we hope that by sacrificing
parsimony we will increase the reader’s intuition for what we are doing.

The following formulae, derived in the text, are central for the derivations in this
section.

Preferences Model Perceptions Model
(Risk-lover, unbiased expectations) (Biased expectations, risk-neutral)

U (O) =
1
p

� (p) =
1

1 + O

⇒ O = U−1

(
1
p

)
⇒ O =

1
� (p)

− 1

The functions U (O) and � (p) are derived from Figure 1, and displayed in Figures 3
and 4, respectively. Given the odds of a horse winning, we can find the market’s
expectation of the true probability of that horse winning under either model.

An exacta is a bet on two horses to finish first and second in a particular order.
In order to calculate the probability of an exacta winning, we use the assumption of
conditional independence commonly found in the literature. This assumption states
in particular that the probability of a horse finishing in some place in a race is inde-
pendent of where the other horses finish. If we observe horse A finishing first (with
first odds A/1), and we knew that it had a probability pA of doing so, we can figure
out the probability of horse B (with first place odds B/1) finishing second by deter-
mining the probability of it coming first in the race among the remaining horses. Of
course, the fact that horse A came first provides us with no new information about the
other horses, so we just renormalize the probability of the new race to 1, giving the
conditional probability pB|A = pB (1 − pA)−1. Thus

pE =
pApB

1 − pA

⇒ OE = U−1

(
1 − pA
pApB

)
�E =

�(pA)�(pB)
1 − �(pA)

⇒ OE =
1 − �(pA)

�(pA)�(pB)
− 1 = OA(OB + 1) − 1

We can then test the predictions of the two models against the observed exacta odds.
In Table 1 we do this, but we express both the predictions and the observed odds as the
amount you have to pay to win $1. This is simply given by (1 + Odds)−1.

A quinella is a bet on two horses to finish first and second in any order. Thus, the
probability of an A-B quinella is the same as the sum of the probabilities of the A-B
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exacta and B-A exacta. A trifecta is a bet on three horses to finish one-two-three in a
specific order. The probability of a trifecta is found by starting with the probability of
an A-B exacta and applying the assumption of conditional independence once again to
determine the probability of a horse C (with win odds C/1) crossing the line third after
A and B have crossed first and second. This gives us the following relations:

pQ =
pApB

1 − pA
+

pApB
1 − pB

pT =
pApBpC

(1 − pA)(1 − pA − pB)

�Q =
�(pA)�(pB)
1 − �(pA)

+
�(pA)�(pB)
1 − �(pB)

�T =
�(pA)�(pB) �(pC )

(1 − �(pA))(1 − �(pA) − �(pB))

The odds implied by each model can then be calculated by inverting as before.

APPENDIX B: Data

Our dataset consists of all horse races run in North America between 1992 and 2002.
The data was generously provided to us by Trackmaster, a subsidiary of the jockey club.
The data record the performance of every horse in each of its starts, and contains the
universe of officially recorded variables having to do with the horses themselves, the
tracks, and race conditions.

Our concern is with the pricing of bets. Thus, our primary sample consists of the
5,376,560 observations in 647,903 races for which win odds and finishing positions are
recorded. We use these data, subject to the data cleaning restrictions below, to generate
the data that allows us to map between odds and the true probability of a horse winning.
We are also interested in pricing exacta, quinella, and trifecta bets. For about 10% of
these observations (59,414 races covering 491,040 horse race starts) we also have the
exacta and quinella payoffs for the actual winners of that race. (The prices of non-
winning combinations are not recorded.) In 50,421 of these races (covering 429,493
horse race starts) we also observe the winning trifecta payoff.

Due to the size of our dataset, whenever observations were suspect, or difficult to
deal with, we simply dropped the entire race from our dataset. Specifically, if a race has
more than one horse owned by the same owner, rather than deal with “coupled runners,”
we simply dropped the race. Additionally, if a race had a dead heat for first, second,
or third place, the exacta, quinella, and trifecta payouts may not be well defined. Thus,
we dropped these races. Certain observations on the winning odds were clearly wrong
(e.g., when the odds were reported as zero), and so we simply dropped the entire race
whenever the odds suggested that the sum of the probabilities implied by the odds was
less than 118%, or greater than 128% (i.e, unless the track take implied by the odds is
between 15% and 22%, we drop the data as likely to be faulty). After these steps, we
are left with 4,867,857 valid observations on win bets from 588,175 races and 447,535
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observations in 54,013 races include both valid win odds and payoffs for the winning
exotic bets.

Finally, Figures 1, 6, and 7 show a mapping between odds and returns for different
subsets of the data. For prices that are relatively common (such as 4/1), we had enough
observations that we could reliably estimate the true probability. At more unusual levels
we had to group together horses with similar odds. Our grouping algorithm chose the
width of each bin so as to yield a standard error on the estimated rate of return in that
bin that was less than 2%; we included all starts above 150/1 in a single final grouping.
We used a consistent set of bins and data for all the results in our chapter, and linearly
interpolated between bins when necessary.
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1. INTRODUCTION

The favorite-longshot bias in racetrack wagering is perhaps the most well-documented
anomaly in the literature on betting market efficiency. Dozens of studies have shown
a consistent bias in which the expected return from betting on favorites exceeds the
expected return from betting on longshots. This chapter focuses on the bigger picture
with respect to this anomaly, namely to what extent it can be viewed as a bias that can be
integrated with the differing biases found in other financial and betting markets—biases
that are often in the opposite direction.

This chapter begins by reviewing the empirical findings on how the favorite-longshot
bias differs across different types of bets, and different betting markets. The chapter
then proceeds by discussing the different types of bettors, and also the different possible
theories that have been presented to explain this bias, and whether they can be viewed
in a broader context to provide a consistent explanation for these many biases. Finally,
this chapter discusses the issue of arbitrage, and specifically why arbitrage may not
eliminate these differential returns across bets.

2. BIASES FOUND IN THE PREVIOUS LITERATURE

Economists have spent considerable effort exploring the efficiency of market outcomes.
Betting markets, because of their unique characteristics, provide an interesting case
in which to conduct empirical studies of efficiency. At the top of the list of favorable
characteristics is the outright abundance of data available—a facet that makes analyzing
the stock market fruitful as well. However, Thaler and Ziemba (1988) note distinct
advantages that betting markets have over financial markets:

The advantage of wagering markets is that each asset (bet) has a well-
defined termination point at which its value becomes certain. The absence
of this property is one of the factors that have made it so difficult to test
for rationality in the stock market. Since a stock is infinitely lived, its
value today depends both on the present value of future cash flows and
on the price someone will pay for the security tomorrow. Indeed, one can
argue that wagering markets have a better chance of being efficient because
the conditions (quick, repeated feedback) are those which usually facilitate
learning.

Despite the feedback and large-scale repeated-play aspect of betting markets, the
search for market efficiency has led to the identification of an unexpected, and per-
sistent, anomaly known as the favorite-longshot bias. In practice, weak-form market
efficiency would imply that betting on racetrack favorites should be equally profitable
as betting on longshots. Dozens of empirical studies of racetrack betting, however, have
consistently found that the return to betting on favorites is higher than the return to bet-
ting on longshots. While Thaler and Ziemba (1988) provide perhaps the best overview
of this body of literature, some of the more influential individual studies include Ali
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(1977, 1979), Asch et al. (1982, 1984, 1986), Busche and Hall (1988), Figlewski
(1979), Hausch et al. (1981), Losey and Talbott (1980), Snyder (1978), Swidler and
Shaw (1995), Tuckwell (1983), and Ziemba and Hausch (1986). In some particu-
lar instances, such as discrepancies in win bets versus place and show bets (Hausch
et al., 1981) as well as in exacta markets (Ziemba and Hausch, 1986), the return differ-
ential has actually been strong enough to produce deviations from weak-form market
efficiency as well, in the form of profitable (positive expected value) wagers.

This unexpected bias identified in betting markets, while present in the vast majority
of studies, does not uniformly hold true. Several notable studies have, in fact, found an
exactly opposite bias, with favorites being overbet and longshots underbet, an opposite
favorite-longshot bias. Swidler and Shaw (1995) find this opposite bias for a smaller
Class II racetrack in Texas, and Busche and Hall (1988) find this opposite bias at a
racetrack in Hong Kong that had much higher betting volumes than the U.S. racetracks
used in other studies. More recently, Sobel and Raines (2003) have identified a situation
in which the bias changes from the regular favorite-longshot bias to an opposite bias,
under certain predictable conditions. Gramm and Owens (2005) find that the favorite-
longshot bias diminishes for races with larger betting pools and more entrants. While
these studies might appear at odds with the other literature on racetrack wagering, their
results are actually more consistent with findings from studies of efficiency in markets
other than racetrack wagering.

Studies of Las Vegas sports wagering have concentrated on betting on National Foot-
ball League (NFL), National Basketball Association (NBA), National Hockey League
(NHL), and Major League Baseball (MLB) games. In these markets, deviations from
market efficiency have been found in about three-fourths of the studies, and in the vast
majority of cases where it existed, it was an opposite favorite-longshot bias. In the ter-
minology of this literature, bettors tend to overvalue favorites. Gandar et al. (1988)
show that a strategy of betting on NFL longshots produces a return greater than bet-
ting on favorites for point spread betting on NFL games. Kochman and Badarinathi
(1992) found through a simple analysis of role (underdog or favorite), location of the
game (home or away), and month in which the game was played, that a rate of suc-
cess above break-even could be achieved for wagering on NFL games between 1986
and 1990. Zuber et al. (1985) found an exploitable inefficiency in NFL point spread bet-
ting market during the 1983 regular season, while Lacey (1990) finds some profitable
opportunities in certain betting rules in NFL point spreads from 1984 to 1986. In profes-
sional baseball, Woodland and Woodland (1994) find an opposite favorite-longshot bias
in baseball betting against the odds, which they confirm still exists after including 10
additional years of data in their updated study, Woodland and Woodland (2003). In their
study of NHL betting markets, Woodland and Woodland (2001) find a strong opposite
favorite-longshot bias, which is confirmed in an updated and corrected version of this
study by Gandar et al. (2004). Similar to the case of the regular favorite-longshot bias,
these opposite favorite-longshot bias findings in professional sports betting markets are
not always found. Sauer (1988), for example, finds efficiency in NFL over/under betting,
while Johnson and Pawlukiewicz (1992) find efficiency in over/under betting in the NBA.

In the stock market, there are several findings related to the studies of betting sum-
marized above. The first is the finding that portfolios of recent loser stocks seem to
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outperform portfolios of recent winner stocks. To the extent that recent winner stocks
are comparable to racetrack favorites, this is an opposite favorite-longshot bias. Several
of the articles demonstrating (and providing explanations for) this bias in the stock
market include De Bondt and Thaler (1985, 1987, 1990), Chan (1988), Bremer and
Sweeney (1991), Brown and Van Harlow (1988), Lehmann (1990), and Howe (1986).
The best overall summaries of the literature on stock market efficiency are De Bondt
and Thaler (1989) and Thaler (1992).

More closely related is the finding of De Bondt and Thaler (1990) that professional
stock market forecasters’ predictions about company earnings tend to have an opposite
favorite-longshot bias. They regress actual company earnings on forecasted earnings
and find a slope coefficient significantly less than one. This implies that the companies
with the highest forecasted earnings tended to be overestimates of true earnings, while
the companies with the lowest forecasted earnings tended to be underestimates of true
earnings. In studies of betting behavior, this type of bias would result in favorites being
overbet and longshots being underbet. This phenomenon also manifests itself in vari-
ance comparisons, as the variance in the predicted values is significantly higher than the
variance in the true-underlying values.

Perhaps most ironically, while economists have struggled to find an explanation for
these biases, a similar opposite favorite-longshot bias has been found to exist in pro-
fessional economists’ own economic forecasts in the Livingston survey by Ahlers and
Lakonishok (1983).

The link between deviations from market efficiency in these many markets has not
been clearly made in the previous literature. They have been largely viewed as separate
anomalies, each with its own potential explanation. However, the key to unlocking the
mystery of why human behavior results in departures from market efficiency may lie
precisely in developing a unified theory that simultaneously explains the phenomenon
occurring in these different markets. In fact, with so-called anomalies, or departures
from efficiency, appearing in every strand of economic research from international
finance to labor economics, a unified theory is essential to our general understanding
of how markets work. This chapter attempts to provide a starting point for that unified
framework.

3. WHAT CAUSES THE FAVORITE-LONGSHOT BIAS
AT THE RACETRACK?

Previous authors have attempted to provide theoretical explanations for the existence
of the specific bias found in their study. Some of the explanations for the regular
favorite-longshot bias in racetrack betting include risk-loving behavior on the part of
bettors, poorly informed casual bettors who bet too evenly across all entrants, bettors
getting direct utility from betting on longshots, a systematic tendency of individuals to
overestimate the chances of low probability outcomes, and bettors having preferences
over the skewness of the payouts. Ali (1977) suggests that this bias could simply be
a general feature of any odds-based pari-mutuel system. In contrast to many of the
utility-based theories grounded in the idea of a risk-loving bettor, Golec and Tamarkin
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(1998) conclude that after controlling for skewness, the data are also consistent with
risk-aversion. Theories explaining the favorite-longshot bias cover a broad spectrum, to
say the least.

Despite their range, previous theories for the favorite-longshot bias can be gener-
ally grouped into two categories: risk-preference theories and information-perception
theories. The first group of theories attributes the bias to a preference for risk among
gamblers. Utility curves can be constructed so as to generate the desired effect;
Friedman and Savage (1948) posited that consumers have a globally risk-averse util-
ity function, yet over the relevant range concerning gambling and betting, the utility
function becomes locally risk-loving. Weitzman (1965) introduced the concept of the
“representative bettor,” along with this representative bettor behaving as an economic
actor. Seeing as any rational actor would take the higher expected return over the lower
one, and thus equilibrate the market of odds via expected returns, the representative bet-
tor must be logically risk-loving in shifting his bets disproportionately (in profit terms)
toward longshots. Starting with the conclusion that bettors are risk-loving, Quandt
(1986) shows that the favorite-longshot bias must exist in order to clear the market.
Because of the additional utility derived from taking high-risk (high variance) bets, the
payoff of such a bet must necessarily be smaller for the high-risk longshot bet than the
low-risk favorite bet.

The second group of theories, the information-perception theories, places the activi-
ties of the bettor as a reactionary to new information at the time of betting, as opposed
to being naturally predisposed to take riskier bets. This literature generally assumes that
bettors do not perfectly absorb information. Snowberg and Wolfers (2008), for example,
point to “studies by cognitive psychologists that suggest that people are systematically
poor at discerning between small and tiny probabilities (and hence they will price each
similarly). Further, certain events are strongly preferred to extremely likely events, lead-
ing to even very likely events to be underpriced.” Ultimately, it is the representative
bettor’s inability to process information correctly that leads to a favorite-longshot bias
in the information-perception theories.

One common aspect in these explanations is the utilization of a representative bettor
model in which all bettors are assumed to be acting in one particular manner. However,
Sobel and Raines (2003) unambiguously show that this is not the case. The authors
analyze nearly 2,800 races at two dog tracks in West Virginia.1 By analyzing attendance,
and the breakdown of types and sizes of bets placed on different days of the week at the
same tracks, and on the exact same set of racing entrants, they find that some days, in

1There exist some differences between betting on dog racing as compared to more traditional horse racing.
While the structure of the betting, types of bets, track take percentages and information provided to bettors are
all identical to horse racing, dog racing tends to exhibit a far higher percentage of serious bettors due to the
fact that the incidence of exotic bets is four to five times higher than at horse tracks. For further explanation
of serious bettors, see Section 3.1. In addition, dog tracks are much less costly to run than horse tracks. The
typical attendance found in studies of horse racing is generally around 15,000 per night; the average dog track
attendance in the Sobel and Raines dataset is approximately 1,300. The data exclude races in which entrants
were scratched from the race, so that all races examined include eight entrants. However, races with fewer
entrants are analyzed separately in the original paper and also provide evidence in favor of their hypothesis.
In addition, races in which there were ties in the finish were also excluded to avoid problems in computing
objective probabilities.
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TABLE 1 Favorite vs. Longshot Betting: Weekends vs. Weekday Nights

Weekdays Weekends Ratio weekdays/weekends

Average wager per person per race $6.28 $5.71 1.100

Exotic bets (% of all bets) 17.3% 13.2% 1.311

Average percentage of win pool bet on favorite 28.9% 26.6% 1.086

Average percentage of win pool bet on longshot 3.8% 5.1% 0.745

Favorite/longshot betting ratio 7.5 5.2 1.442

NOTE: Data derived from Sobel and Raines (2003). The favorite/longshot betting ratio is the average
percent of win bets on the favorite divided by the average percent of win bets on the longshot.

particular weeknights, have a substantially larger percentage of serious bettors, while
the weekends have a higher portion of casual bettors. This observation follows from
the fact that serious bettors are characterized by larger average wagers and a higher
incidence of exotic bets. Casual bettors, on the other hand, tend to wager less, and
wager on simpler bets.2 Table 1 shows the breakdown of favorite and longshot wagers
during the weekdays and the weekends in the Sobel and Raines dataset, along with data
on average wager size and exotic bet frequency.3

As can be seen in Table 1, the average bet per person per race is 10% higher on
weekdays than on weekends, and the proportion of exotic bets is over 30% greater.
Both of these outcomes are consistent with a higher proportion of casual bettors at the
track on weekends than on weeknights. The result of this difference in the favorite and
longshot betting patterns is also clearly visible. On the average weekday night, for every
$1 bet on the longshot, there is $7.50 bet on the favorite. On the weekends, however,
this falls substantially to $5.20 bet on the favorite for every $1 bet on the longshot.
This discrepancy cannot be explained by a difference in the characteristics of the races
themselves, because at the two tracks studied the exact same racing entrants are used
across days. This visible difference, then, is entirely due to a difference in the types of
bettors at the track—a difference that is not arbitraged away.

Figure 1 shows a plot of the weekday subjective betting percentages against the
weekend subjective betting percentages for all racing entrants (not just the favorite and
longshot). Each point is also for a specific grade of race. The observation in the upper
right hand corner, for example, is the average betting on the first favorite in grade AA
races on weekdays plotted against the same value for weekends. There is a clear rotation

2Casual bettors also tend to leave the track earlier, allowing later evening races to actually have a different
proportion in the bettor mix than earlier races.
3At both tracks studied, races are offered on Monday evening, Wednesday evening, Thursday evening,
Friday evening, Saturday afternoon, Saturday evening, and Sunday afternoon. In addition, one track, Wheeling
Downs, also offered a Wednesday afternoon race. The weekdays subsample includes all races on worknights
(Monday, Wednesday, and Thursday nights), while the weekend subsample includes Friday evening, and
both races on Saturday. Wednesday afternoon and Sunday races are not included in either subsample, but
are included in all data showing combined numbers for all races. Wednesday afternoons are special events
at which large tour groups are present, appearing more like a weekend. Interestingly, Sunday at one track
appears more typical of a weekend, while at the other track more typical of a weekday night, in terms of
average attendance and betting patterns. For these reasons it was included in neither subgroup.
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FIGURE 1 Weekday vs. weekend betting: all dogs by grade.
NOTE: Taken from Sobel and Raines (2003). Individual observations are the percentages bet on the favorite,
second favorite, and so on, to the longshot, by the grade of the race. The observation in the upper right
hand corner, for example, is the average betting on the first favorite in grade AA races on weekdays plotted
against the same value for weekends. Lines show fitted regressions from the linear information model and the
double-log risk model.

of the bets, showing an outcome on weekends that might best be described as the week-
day bets, just with an added proportion of uniform bets across all racing entrants and
grades. Statistical testing shows clearly that the objective probabilities across the two
tracks, different grades, and different racing conditions are identical. This difference
in betting percentages occurs despite the exact same probability structure facing the
bettors.

Given the clear presence of heterogeneous bettors, and the potential for heteroge-
neous bettor models to explain the favorite-longshot bias, we now turn to an explicit
discussion of the different types of bettors generally participating in betting markets.
We identify three such categories: the causal bettor, the serious or regular bettor, and
the arbitrageur.

3.1. The Casual Bettor

The casual bettor does not attend the track frequently, and is thus less able to use infor-
mation to make an informed bet.4 Information used for a wealth-maximizing bet can

4Piron and Smith (1995) and Sobel and Raines (2003) are the only studies that attempt to explicitly account
for casual bettors.
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come from a variety of sources, including previous race performance (and quality of
opponents), track conditions and locale, as well as initial race odds and preliminary
wagering. The casual bettor can simply be viewed as being able to only fully inte-
grate some of this information. In a Bayesian framework, the casual bettor simply has
more weight on a uniform prior in the construction of the posterior probabilities. In
many cases these bettors are at the track accompanying friends or family and have other
non-wealth-maximizing objectives, or could even be deriving utility from the act of
gambling itself. Casual bettors will make bets in a more arbitrary fashion, and are also
more likely to choose simpler and less risky types of bets. Arbitrary bets could be based
on any predisposed preference—the race position or number of the entrant, the color the
entrant is wearing, or even the entrant’s name or appearance. By definition, these bets
will tend to be more evenly distributed across all participants than the true probabilities
would suggest. Thus, the actions of this group of bettors results in a pool of bets that
are placed too heavily on longshots and too lightly on favorites, which by itself can
generate a regular favorite-longshot bias in which the return to betting on the favorites
is higher than the return to betting on longshots. These casual bettors will overbet any
racing entrant with an objective probability lower than the average probability of 1/N
(where N is the number of racing entrants), and will underbet any racing entrant with
an objective probability higher than average. The result is a linear rotation of the bet-
ting proportions around 1/N. In a game theoretic approach, making money by playing
against these causal bettors is the focus of our second group, which we term serious or
regular bettors.

3.2. The Serious or Regular Bettor

The serious or regular bettor is the type of person who attends the track regularly, is
an informed participant in the betting market, places bets with a strong understanding
of the participants in the races, can digest the vast amount of information provided in
the racing forms, and believes he has a knack for picking the entrant most likely to
win based on past performance. He will be someone who consistently picks the win-
ning entrants or combinations more frequently than the casual bettors at the track. This
type of bettor gets utility from the action of picking the winning entrant, or winning
money, more often through the betting night than other serious and casual bettors in
his social group at the track. Making money by playing against causal bettors who
cannot accurately identify the likely winning entrants is the goal of serious or regular
bettors.

This type of bettor is likely to place bets to win, place, or show on who he thinks
is likely to win the race, and to bet on the likely combinations of the best entrants in
the multi-entrant, exotic bets. By doing so, the actions of the serious or regular bettor
generally lead to an opposite favorite-longshot bias in which the favorites are overbet
and yield a lower return. These bets are often supplemented with much riskier exotic
bets, including picking the top two or three finishers. These bets are often placed with
a wheel or box option, in which the bettor picks his favorite one or two entrants, and
then buys a single bet on every possible combination of those two entrants near the top,
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with all other entrants in the remaining places. Almost by definition, these types of bets
cause a favorite-longshot bias, because they place a single bet on each of many possible
combinations, not all of which are equally likely to occur.

A better term for these types of bettors may be winner pickers, as this is their bet-
ting strategy’s main focus. These bettors examine and understand the odds system, and
frequently utilize the displayed odds prior to the race as a supplement to their own
unique information to further help their ability to pick the entrants most likely to win.
These serious or regular bettors sometimes have inside information not available to
all bettors—for example, they could be closely associated with the owners or train-
ers. Further, they may think their analytical abilities based on their experience allow
them to pick the true winners better than the other bettors against which they compete.
Again, they use this information to attempt to pick the winning entrant, and often wait to
place their bets until near the close of the betting period so as to not reveal their actions
(through the displayed odds) to other bettors. Gandar et al. (2001) show that bets placed
closer to the end of betting more closely correspond to the true objective probabilities
than early bets.

These serious bettors, however, as is more often assumed, are not arbitrageurs.
Serious bettors and arbitrageurs are two distinctly different groups. Sobel and Raines
consistently find in their data that the number of clearly visible arbitrage opportunities
present at the track is actually higher on days dominated by more serious or regular
bettors.5

Table 2 shows the estimates of how the favorite-longshot bias in the win betting
market differs between weekdays and weekends.6 On the weekday races, dominated
by a larger proportion of serious bettors, there is a strong opposite favorite-longshot
bias that weakens as the betting pool rotates more heavily toward longshot betting on
weekends. Had the effect been slightly larger on weekends, the bias would turn into
a regular favorite-longshot bias on weekends. On weekdays, despite the presence of a
large proportion of more serious bettors, there is a clearly arbitragable positive rate of
return on longshot betting in the win market. One important implication of this finding
is that the biases are not the result of arbitrage equilibriums, but rather are allowed to
persist because of its absence.7

To explore for any time-of-day effects, the data were grouped into the first 13 races
and the final two races of the day. An immediate problem is that races vary in grade
from AA to M. The data suggest that favorites win a higher proportion of AA races than
any other grade. In fact, the proportion of races that a favorite wins declines as the grade
of the race becomes lower. This is relevant because in almost 90% of the days at both

5In their study this is weekday evenings when attendance is lower and when exotic betting is much heavier.
This result also holds for “Superfecta Sundays” when these types of bettors dominate the track.
6In cases where two racing entrants tied for being the favorite (having identical odds and thus subjective
probabilities), each was viewed as the first favorite with weight one-half and the second favorite with weight
one-half.
7In Ali’s (1977) model, for example, the favorite-longshot bias is explained as a natural result of bettors
making bets relative to the market odds, when those odds diverged from the bettor’s guess about the true win
probabilities, thus making it a result of arbitrage.
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TABLE 2 Objective vs. Subjective Win Probabilities: By Group, Removing Ties

All days Weekdays Weekends
(2,558 races) (952 races) (1,066 races)

Objective Subjective Rate of Objective Subjective Rate of Objective Subjective Rate of
probability probability return from probability probability return from probability probability return from

Favorite of win (�) of win (�) bet of win (�) of win (�) bet of win (�) of win (�) bet

1 27.64% 25.27% –23.72% 28.33% 24.53% –27.41% 27.36% 25.69% –22.08%

2 18.45% 18.04% –18.89% 18.82% 20.12% –9.47% 18.23% 16.01% –27.91%

3 14.26% 14.82% –13.90% 14.22% 14.06% –18.18% 14.25% 15.76% –8.13%

4 11.55% 11.53% –18.45% 11.48% 12.41% –10.79% 11.57% 11.02% –22.43%

5 9.49% 9.27% –17.61% 9.33% 9.45% –16.67% 9.58% 9.80% –11.73%

6 7.78% 8.84% –7.72% 7.60% 7.67% –19.73% 7.85% 9.04% –6.28%

7 6.23% 6.48% –12.64% 5.96% 5.64% –20.09% 6.36% 7.18% –7.94%

8 4.61% 5.76% 17.48% 4.26% 6.13% 36.96% 4.80% 5.50% 17.93%
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FIGURE 2 Time of day effects on favorite betting. NOTE: Taken from Sobel and Raines (2003).

tracks, the final two races were grade AA. Because favorites win a larger share of grade
AA races, and the final race tends to be grade AA, it is natural to expect betting on the
favorite to be higher in the final race irrespective of risk, wealth, or mental accounting.
To adjust for these grade effects, we performed a simple race level regression controlling
for race number (a constant was omitted) and grade (AA was the excluded group).
Figures 2 and 3 show the raw race averages and the averages after controlling for grade
for the favorite and longshot, respectively, for each and every race of the day.

Both figures clearly show the importance of controlling for grade effects in the last
few races. The raw data show that betting on the favorite rises significantly in the last
race, which disappears after controlling for the fact that it is a grade AA race. Look-
ing at the corrected data, betting on the favorite remains fairly constant throughout the
racing day. The notable exception is in the final two races, where betting on the longshot
reverses its slight downward trend and rises up again, especially in the last race of the
day. This last race effect appears to be isolated to the longshot, with no similar last race
effect happening for the favorite.8

8This is also evidence against a risk-preference theory of the favorite longshot bias. As the average
bettor’s wealth declines throughout the evening (due to track take), risk-preference would suggest they move
to more risk-averse bets, but they don’t. One plausible explanation of the general trend over the last half of the
evening is that attendance falls significantly through the evening, and it is disproportionately casual bettors
who leave early, implying that the later races are dominated by serious bettors who bet more heavily on the
favorites. Thus, the pattern through the course of the racing day is more supportive of the information theory
(casual/serious bettor differences) than of the risk theory.
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FIGURE 3 Time of day effects on longshot betting. NOTE: Taken from Sobel and Raines (2003).

3.3. The Arbitrageur

The arbitrageur is the typical type of agent modeled in economic theory. He or she
takes into account all available information, and attempts only to maximize his or her
return on investment with no other utility considerations, and risk neutral preferences.
As in other markets, arbitrageurs are the agents that drive markets toward efficiency.
Profit opportunities are quickly identified and acted on, eliminating any deviations from
efficiency. Most important to this type of bettor is the information conveyed in the mar-
ket odds at the track that constantly change to reflect betting intensities, and how these
compare, for all entrants, to his or her best estimate of the true probabilities. The arbi-
trageur cares little about who might win the race, and more about which entrant has the
highest expected return based on any divergence he or she sees.

The actions of arbitrageurs lead to market efficiency, in the weak sense. A market is
weakly efficient as long as no persistent profit opportunities exist that could be exploited
based on all available information. While there is no doubt that these types of individuals
exist in society, and account for the efficiency of many other markets, the persistence
of the favorite-longshot bias, and of its opposite, imply that either: (1) they simply do
not participate to a great enough extent in these markets, or (2) they don’t have the
necessary information or at least not in a timely enough manner to utilize it before the
betting window closes for the race.
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There is substantial evidence in Sobel and Raines (2003) that these arbitrageurs are
absent to a large extent at the two tracks they study based on the clear and persistent
presence of arbitrage opportunities at these tracks. These occurrences actually increase
on nights (or during later races) dominated by the serious or regular bettors. Their data
suggest that these arbitrage opportunities are less frequent on higher-attendance week-
end nights, not because arbitrageurs are there to arbitrage these away, but because of
the presence of casual bettors who tend to bet on longshots. The serious bettors at these
tracks appear to allocate their time and money toward betting in the exotic bets, and
attempting to pick winners better than everyone else, with little regard for attempting to
arbitrage away even visible opportunities. In fact, evidence from other studies appears
to be mounting that the vast majority of bettors tend to make bets independent of the
track odds.

Camerer (1998), for example, finds that track bettors did not respond to large changes
in track odds. Camerer went to a local track and made large bets on single horses to
change their odds. He then withdrew the bets just before the betting on the race closed.
By comparing the remaining bets in these races with bets made on similar horses when
he did not interfere, he was able to see how the large changes in odds influenced other
bettors. He found no statistically significant difference. He interprets this result as that it
did not manipulate the bettors who saw through the incorrect odds, but in fact arbitrage
would suggest that bettors should have responded to this horse being overbet by betting
on other entrants, who have now become underbet. The bettors did not. His results also
suggest that these average racetrack bettors do not actively search out or participate in
arbitrage activities. In a similar study, Hanson et al. (2006) find experimentally that
prediction market prices are unaffected by agents wishing to distort them. Wolfers and
Zitzewitz (2004) survey studies in price manipulation and conclude that no effect exists
on prices beyond the short term. A historical study by Strumpf and Rhode (2003) finds,
as well, that efforts to manipulate prices are ultimately unsuccessful.

It is important to note that arbitrage involves both discovering profit opportunities,
which often requires data and time-intensive statistical analysis, and then acting on
this information. This is precisely the type of entrepreneurship modeled by Kirzner
(1973). The entrepreneur is someone who spots previously unnoticed profit opportuni-
ties and acts on them. This not only takes a certain type of individual to perform, but
also requires a market return from their actions.

One must keep in mind that the arbitrage opportunities available at racetracks are
not only minor, but are also uncovered. Unlike triangular exchange rate arbitrage, race-
track bettors must still take risk to exercise arbitrage. In addition, like any other pure
return-maximizing strategy, returns will be driven down to zero economic profit, not
zero accounting profit, on the time and investment needed to conduct the arbitrage itself.
While the return to betting on favorites exceeds the return on longshots in most studies,
the absolute level of the return on favorites must be high enough to overcome the track
take which is usually between 15% and 20%. However, using experimental methods,
Hurley and McDonough (1995) find that changing the track take has no effect on the
severity of the favorite-longshot bias. In addition, the track minimum payout of $1.10 on
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a $1 bet creates a lower bound on the return from a bet on an extreme favorite, perhaps at
a level that is positive. Swidler and Shaw (1995) point out that the total daily monetary
return on the arbitrage opportunities they identify would not be enough to cover the cost
of admission, parking, the program, and a minimum wage rate per hour given the price
setting ability of large individual bets. One might similarly ask why economists who
have found and published numerous examples of profitable arbitrage opportunities in
the stock market have not used their own money to arbitrage these inefficiencies away.
The reason, of course, is the opportunity cost of economists’ time and the risk involved.
With so many arbitrage opportunities abounding in the world, it would seem to be con-
sistent to say the arbitrageurs have plenty of work and can concentrate on the least costly
and most covered opportunities, while leaving the smaller inefficiencies abounding in
other markets.

As Leeson et al. (2006) discuss, the presence of forgone profit opportunities is much
more likely than the presence of persistent losses in markets. Economic losses diminish
resources under the control of the decision-maker, and lead to business failure. When
a potential profit opportunity goes unexploited, while there is an opportunity cost, it
does not create the same strong incentive for self correction. In fact, an individual may
never know he or she passed up a potentially profitable opportunity, but will certainly
know if he or she earns a loss. According to this theory, then, the weaker incentive for
market correction can lead to a greater presence and persistence of unexploited profit
opportunities in markets.

One final explanation for the lack of arbitrage is that the bettors capable of this
activity simply do not have the necessary information or at least not in a timely enough
manner to utilize it before bets close for the race. Because the returns on bets in eco-
nomic studies are based on the final odds, these are not the odds visible during the
entire betting period to potential bettors. At some tracks, for example, late money bets,
accompanied by the delay in updating the odds on the tote board, and the unpredictable
length of time needed to wait in line to place the bet, means that it is almost impossible
to make a bet based on the final market odds.

4. IS IT RISK OR INFORMATION?

Thus we are left with two potential theories to explain the favorite-longshot bias (or
its opposite). It is either the result of an equilibrium outcome driven by arbitrageurs
with a preference for risk, or it is the result of a weighted average of casual and regular
bettors’ strategies without offsetting arbitrage occurring. And while the risk-preference
model dominated the literature for decades, modern evidence seems to clearly point in
the other direction.

The most convincing evidence on this comes from Sobel and Raines (2003), who
gathered not only overall odds and payout data for the win market, but also data on
all other markets, as well as the day of the week, track attendance, number of racing
entrants in the race, the grade (or quality level) of the race, and the race number. In
addition, data were collected on the various types of bets placed, from simple to exotic.
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This breadth of supplemental data allowed them to see how the favorite-longshot bias
changed across different bets existing at the same time at the track, as well as how
these biases changed across different nights that had significantly different proportions
of serious and causal bettors.

They conclude that the bias can be explained (and its presence in certain situations,
and the opposite in others) as a reflection of changing combinations of serious and
casual bettors. This information-based model of serious and casual bettors has clearly
different empirical predictions from the risk-preference model, most notably the linear
versus non-linear nature of the betting percentages relative to their true values, and also
in terms of how the bias would change based on the number of racing entrants in the
race, and across different types of bets.

Figure 4 shows the relationships between objective (true) probabilities of an entrant
winning the race and the subjective probability of the entrant winning, gauged by true
betting percentages. In an efficient market, subjective probabilities match perfectly with
the objective probabilities, which would be reflected by a 45◦ line from the origin.

I

45°

1/N

1/N Objective Probability (π)

R

Subjective Probability (ρ)

FIGURE 4 Information vs. risk in subjective and objective probabilities.
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No bias exists in this case. The existence of less-informed bettors, who bet too evenly
across racing entrants, can be illustrated as a rotation of this line around the average
probability of 1/N. This is shown by the line I in the figure. The degree to which casual
bettors dominate the betting market will determine the degree to which the line rotates.

The risk model does not involve a linear rotation as is true in the case of the
information-based model. Instead, pre-existing desires for riskier bets dictate betting
patterns. A typical risk-preference would result in a betting pattern illustrated by the
curve R in Figure 4 according to the relationship �i = ���

i , where �i represents the sub-
jective probability for racing entrant i, �i represents the objective probability for racing
entrant i, and � and � are parameters of the utility function that measure preference for
risk that can be estimated using betting market outcomes. The existence of the favorite-
longshot bias in this theory comes from a desire of bettors to choose the riskier bets
associated with longshots.

Now, for comparison, it is worthwhile to briefly derive the mathematical properties
of an information-based model for risk-neutral bettors with Bayesian updating. Assum-
ing that prior to arriving at the track, each bettor has no knowledge about the racing
entrants, thus all entrants are equally likely to win in the diffuse prior. The mean of
the bettor’s prior belief about the entrants probability of win, �P , must be �P = 1/N .
Once at the track, the bettor collects a set, k, of information signals regarding the rac-
ing entrants’ true probability of win. Let �I denote the mean probability implied by
the information signals received by the bettor. Using Bayes’ theorem, the mean of the
bettor’s posterior probability of win distribution, �, on which the bettor makes bets, is
given by � = (1 − h) �P + h�I , where h is a precision parameter that allocates the rela-
tive weight placed on the new information and the prior belief. The precision parameter
h = h (k, �P , �I , c) is a function of the information received, the variance of the priors
and the information signals, and of the degrees of freedom, or complexity of the bet, c.
Without assuming a specific form for h, the relationship with its arguments is intuitively
obvious

�h

�k
> 0,

�h

��I
< 0,

�h

�c
< 0.

This simply says that as a bettor becomes more information rich, he or she will choose
to place less weight on prior beliefs. However, if there is high variance in the new infor-
mation, or the complexity of processing the information is great, then the bettor will
place more weight on prior beliefs. Let the relationship between the entrant’s true prob-
ability of win and the mean of the information signals conveyed to the bettor through
the information be given by �I = � + 	�. The posterior mean equation from which
the bettor places his or her bets is � = 
 + ��, where 
 = (1 − h)/H + h (� + 	) and
� = h	. Strong form market efficiency would exist if � = 1 and 
 = 0. The relation
0 < � < 1 gives the traditional favorite-longshot bias, while � > 1 produces an opposite
favorite-longshot bias.

How do these differing model predictions fit actual betting data? Figure 5 shows data
on the objective and subjective probabilities for all quinella bets at the tracks studied
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FIGURE 5 Risk model vs. information model in quinella bets: subjective vs. objective probabilities.
Source: Sobel and Raines (2003). (Observations are for each possible quinella combination, illustrating the
objective and subjective probabilities of each.)

by Sobel and Raines, along with fitted risk and information model regression lines.
In Figure 5 the relationship in the data is almost perfectly linear, in rejection of the
risk explanation that implies a non-linear relationship between objective and subjec-
tive probabilities. The linear relationship suggested by the information model does a
particularly good job in fitting the data at the two extremes relative to the risk model.

To this point we have focused on a comparison of the subjective and objective
probabilities. We now turn our attention to how this relationship appears once con-
verted into the rates of return on bets versus objective probabilities. Let �i denote the
true win probability of racing entrant i. Let �i denote the betting market’s subjective
estimate of the entrant’s probability of win. Griffith (1949), and McGlothlin (1956),
were the first to observe that this subjective probability is the percent of the total bet-
ting pool that is bet on this particular racing entrant i. The track payout per dollar if
the bet wins, $i, is given by $i = Oi + 1, where Oi is the track odds, which are defined
in terms of the underlying subjective probabilities as Oi = (1 − �i)/�i.9 Further substi-
tution and simplification produces $i = 1/�i. The expected return per dollar bet, R =
$i × �i + 0 × (1 − �i) = $i × �i. The rate of return, r, for a $1 bet, is r = (R − 1)/1,

9Here we abstract from the track take for simplicity. Inclusive of a track take of t, the track odds are
O = (1 − �′)/�′ where �′ = �∗(1 − t).
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FIGURE 6 Risk model vs. information model in quinella bets: rate of return vs. objective probabilities.
NOTE: Taken from Sobel and Raines (2003). Observations are for each possible quinella combination,
illustrating the objective probabilities and the corresponding actualized rates of return.

which through substitution yields r = (�i − �i)/�i. Figure 6 shows the data from
Figure 5 transformed using this relationship.

In the transformed data, the information model and the risk model now both predict
a non-linear relationship, however these non-linear relationships are clearly differ-
ent. Again, the information model clearly fits the data better than a risk-preference
model.

Additional evidence in favor of the information-based explanation is found by
examining bets of different complexity that exist simultaneously at the track. More
complex, exotic bets function to turn informed regular bettors into bettors with less
information in a Bayesian-type information model. Information-perception models are
grounded in the ability of the bettor to digest information and to make an appropriate bet
based on this information. As such, more complicated bets should see the same smooth-
ing effect when compared to easier ones. Sobel and Raines’ data show that the relative
lack of information available for the more complex bets creates a greater smoothing
effect among the more complex bets.

Table 3 displays the regression results for each of five different types of bets for
which data were available and present at the same time at the track. The regressions
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TABLE 3 Objective vs. Subjective Probability Regressions: All Bets

Betting market regressions. Dependent variable is
subjective probability (standard errors shown in parentheses)

Win Place Show Quinella Perfecta

Constant −0.018∗∗ −0.003 0.049∗∗ 0.008∗∗ 0.003∗∗

(0.006) (0.005) (0.013) (0.001) (0.001)

Objective probability 1.143∗∗ 1.013∗∗ 0.869∗∗ 0.770∗∗ 0.788∗∗

(0.041) (0.020) (0.032) (0.019) (0.035)

R2 0.9924 0.9977 0.9919 0.9849 0.9062

Betting combinations 8 8 8 28 56

Observations per betting 2558 2558 2558 2459 893
combination

T -ratio for slope= 1 3.503∗∗ 0.645 −4.082∗∗ −12.262∗∗ −6.136∗∗

Estimated rotation point 12.59% 25.10% 37.51% 3.55% 1.45%

Predicted rotation point 12.50% 25.00% 37.50% 3.57% 1.79%
(null prior)

Source: Sobel and Raines (2003). (∗∗indicates statistical significance at the 1% level, ∗at the 5% level.
The test of market efficiency is not just that the slope equals one, but also that the intercept term equals
zero. The F -statistics for this joint test strongly rejected this hypothesis for all markets except the place mar-
ket. The predicted rotation point is the average probability across all betting combinations (i.e., one of eight
entrants win, two of eight place, three of eight show, one of 28 quinellas win, and one of 56 perfectas win).
The rotation point estimated by the model is equal to the constant divided by one minus the slope coeffi-
cient. This is the probability at which any bet above has the opposite bias as any bet below in the information
model.)

are ordered so that the complexity of the bet, in terms of the number of parameters or
data points needed to estimate the objective probability, increases as we move right-
ward among the columns in the table. The more complex bets show lower regression
coefficients—in other words, the slope of the line becomes flatter. This is the exact result
predicted by an information-based model—more flattening due to the smoothing effect
of casual bettors. A further strike to the risk-preference theories is the fact that the least
risky market (the show bet) and the most risky one (the perfecta) demonstrate the usual
favorite-longshot bias, while the middle-risk bets show either little bias or an opposite
favorite-longshot bias. These biases, however, line up in order when they are ranked by
complexity.

Also, Sobel and Raines examine how the bias changes as the number of racing
entrants changes. Within a pure risk model, the over (or under) betting of a particu-
lar entrant is entirely dependent on the entrant’s true probability of win. This is not
true in a model with casual bettors causing the bias by betting too evenly across racing
entrants. Because casual bettors bet too evenly, the direction of the bias will depend on
whether the racing entrant has an above (or below) average probability given the num-
ber of entrants in the race. They indeed find this to be the case, that a racing entrant with,
say, a 1/7 probability of win would be overbet with six entrants, but underbet with eight
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entrants.10 Returning to the bottom row in Table 4, these rotation points (the points at
which it switches from entrants being overbet to underbet) are presented, along with the
value predicted by the information model (1/N according to a null prior). They coin-
cide almost perfectly with the predictions of the information model. The risk model, on
the other hand, has no prediction as to the rotation point, which would depend on the
severity of the preference for risk. However, the risk model would unambiguously imply
that the rotation point, whatever it is, should be the same across all bets existing at the
track, given that it is a reflection of risk-preference related to the probability structure
of the bets. This can clearly be rejected in the data.

5. CAN THE MODEL EXPLAIN THE BIASES
IN OTHER MARKETS?

No firm understanding of why sports betting markets contain the opposite bias from
most racetracks is known. According to our theory, however, one possible explanation
is that Vegas sports betting markets tend to be dominated by a higher proportion of
serious or regular bettors (and fewer casual bettors) than are racetracks. In football and
basketball, the bets studied have been the point spread and over/under (total game score)
bets. These bets do differ somewhat from racetrack bets made relative to market odds,
however. Bets on baseball, like in racetrack wagering, are made relative to odds, and
because the opposite favorite-longshot bias is found in baseball as well, a difference in
the types of bets cannot be responsible for causing an opposite bias in sports wagering
than the one present in racetrack wagering. In addition, the regular favorite-longshot
bias in racetrack wagering has been found by Gabriel and Marsden (1990, 1991) in the
UK where bets are made against a bookie-based fixed odds system, rather than the pure
market odds structure as in the U.S.

A systematic difference in the betting behavior of serious and casual bettors might
also explain why some racetrack studies find opposite favorite-longshot biases in con-
trast to most other studies on racetrack betting. The higher betting per person at
the Hong Kong track suggests that it is dominated more heavily by serious bettors than
the average U.S. racetrack used in other studies, and similarly, one might argue that the
smaller Class II racetrack draws a relatively higher proportion of serious bettors than
the tracks used in other studies.

If a difference between the behavior of serious and casual bettors is accountable
for the flipping of a favorite-longshot bias to its opposite, it might also suggest that
the stock market findings are due to a relatively high proportion of serious to casual
investors. An uninformed casual investor will frequently invest in mutual funds, or

10Finally, another degree to which data can be broken down is the time of day that the bet is placed. After
controlling for the quality level of the race, later evening races become more heavily dominated by serious
bettors (as casual bettors are more likely to leave the track early). As expected, the proportion of bets on the
favorite relative to the longshot grows throughout the evening as casual bettors leave the track.
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somehow otherwise allow an informed middleman to manage his or her portfolio.
Possible explanations for the stock market bias proposed by previous authors have
been that investors overreact to information, that the bias is due to risk-preferences
(an explanation that includes the small/large firm risk differential explanation), and the
presence of uninformed noise traders in the market.

While stock market research has found an opposite favorite-longshot bias in stocks
and earnings forecasts, some other studies have found a regular favorite-longshot bias
in options pricing. For example, the longshot or shorter maturity options have been
found to be overpriced by Rubinstein (1985, 1987), Shastri and Wethyavivorn (1987),
and Tompkins, Ziemba, and Hodges (2008) who survey other references. Could the
much more complex calculations necessary for options pricing create the different bias?
Thaler (1992) has suggested that differences between biases found across different types
of racetrack bets might be due to differing complexities of the bets. In addition, Elton et
al. (1982) show a similar example regarding complexity affecting behavior in the stock
market with respect to futures transactions. The idea is that, to some degree, as bets
become more complex, all bettors become less informed relative to the level necessary
to obtain accurate probability estimates. That is the essence of the place and show sys-
tem, and other exotic wagers, in Hausch, Ziemba, and Rubinstein (1981) and Ziemba
and Hausch (1986).

The general theory presented in this chapter suggests a starting point for a unified
model of these anomalies. This model is a three-group heterogeneous bettor model.
The first group—the casual bettors—generally tends to overbet longshots (and under-
bet favorites) with their strategy of using selected, and perhaps highly unreliable, signals
to select their bets (due to their significantly limited information set). The second
group—the serious bettors—generally tends to overbet favorites (and underbet long-
shots) with their strategy of attempting to use their knowledge and human capital to
pick the winners. The third, and final, group—the arbitrageurs—are individuals who
invest resources to both discover (usually through intensive data analysis) and exploit
profit opportunities, but only when these opportunities generate a higher than normal
(risk adjusted) rate of return from their resource investment.

In addition to allowing for heterogeneous bettors, our theory also incorporates
heterogeneous bets, differing in their level of complexity. Employing Bayesian logic, a
change in the complexity of a bet has a mathematically equivalent effect to changing the
information level of the bettor. On more complex bets, even serious bettors become rel-
atively more uninformed, causing them—just like the casual bettors—to bet too evenly
across possible outcomes. Thus markets with simple bets and/or dominated by seri-
ous bettors will tend toward an opposite favorite-longshot bias (like sports betting),
while markets with complex bets and/or dominated by casual bettors will tend toward a
regular favorite-longshot bias (like exotic bets). The presence of arbitrageurs can elim-
inate these divergences from efficiency when they are identified and exploited, but at
a cost that makes this type of activity unprofitable in most narrow and limited betting
markets.
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6. CONCLUSION

The ideas presented in this chapter lay a framework for a unified theory of devia-
tions from market efficiency. If a unified model can explain these anomalies, it may
allow great insights into human behavior and further the refinement of our economic
models. It appears that information, complexity, and human analytical capital are
jointly responsible. Highly informed and educated bettors faced with simple situations
appear to systematically overvalue favorites and undervalue longshots—they attempt
to pick winners better than everyone else. As complexity increases, or the number of
less informed (or less able) bettors increases, this bias moves toward the other direction,
eventually overtaking the underlying opposite bias.

Opportunities to further test our model abound in other areas where these inefficien-
cies have been found to exist.11 In addition, the fundamental model presented here has
broad, sweeping implications for the efficiency of product markets where consumers
are faced with uncertainty with regard to things such as product quality or price dif-
ferences across firms, and for public sector economics in models of rent seeking, voter
information, and electoral competition.
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Abstract

This chapter examines whether the favorite-longshot bias that has been found in
gambling markets (particularly horse racing) applies to options markets. We investigate
this for all options on the S&P 500 futures and the FTSE 100 futures for the 17+ years
from March 1985 to September 2002. Calls on the S&P 500 with both three months and
one month to expiration display a relationship between probabilities and mean returns
that are very similar to the favorite bias in horse racing markets. There are slight profits
from deep in-the-money and at-the-money calls on the S&P 500 futures and increasingly
greater losses as the call options are out-of-the-money. For three-month and one-month
calls on the FTSE 100 futures, the favorite bias is not found, but a significant longshot
bias has existed for the deepest out-of-the-money options. For the put options on both
markets, and for both three-month and one-month horizons, investors overpay for all put
options as an expected cost of insurance to protect against downside risk. The patterns
of mean returns is analogous to the favorite-longshot bias in racing markets.

JEL Classifications: C15, G13

Keywords: Longshot bias, gambling, option prices, implied volatilities

1. INTRODUCTION

Griffith (1949), McGlothin (1956), Snyder (1978), Ali (1979), and others have doc-
umented a favorite-longshot bias in racetrack betting.1 High probability–low payoff
gambles have high expected value and low probability–high payoff gambles have low
expected value. For example, a 1/10 horse having more than a 90% chance of winning
has an expected value of about $1.03 per $1 bet, whereas a 100/1 horse has an expected
value of about 14 ¢. The favorite-longshot bias exists in other gambling markets such as
sports betting; see Hausch et al. (1994) for a survey of results.

In Ziemba and Hausch (1986), the expected return per dollar bet versus the odds
levels are studied for over 300,000 horse races. The North American public underbets
favorites and overbets longshots. This bias has appeared for many years across all sizes
of racetrack betting pools. The effect of these biases is that for a given fixed amount
of money bet, the expected return varies with the odds level; see Figure 1. For bets on
extreme favorites, there is a positive expected return. For all other bets, the expected
return is negative. The favorite-longshot bias is monotonic across odds or, equivalently,
the probability of winning and the drop in expected value is especially large for the

1While the horse racing favorite-longshot bias is quite stable and pervasive, there exist exceptions in Asian
racetrack markets (Busche and Hall, 1988; and Busche, 1994). The favorite-longshot bias literature is sur-
veyed in Hausch et al. (1994, 2008) where many papers are reprinted including the early studies of Griffith
(1949) and McGlothin (1956). See also the survey of Sauer (1998). Recent papers consistent with the usual
bias are Hurley and McDouough (1996), Sobel and Raines (2003), and Ottaviani and Sørensen (2003) plus
the chapters in this volume.
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FIGURE 1 The effective track payback less breakage for various odds levels in California and New York
for 300,000 plus races over various years and tracks.
Source: Ziemba and Hausch (1986).

lower probability horses. The effect of differing track take/transaction costs is seen in
the California versus New York graphs.

Thaler and Ziemba (1988) suggest a number of possible reasons for this bias.
These include bettors’ overestimation of the chances that longshot bets will win as
in Kahneman and Tversky (1979). Tversky and Kahneman (1983) argue that bettors
might overweight small probabilities of winning when the potential payout is large (in
calculating their utility). Bettors may derive utility simply from the hope associated
with holding a ticket on a longshot, as it is more fun to pick a longshot to win over a
favorite and this has more bragging rights. Transaction costs also play a role. Finally,
they suggest that some bettors may choose horses for irrational reasons, such as the
name of the horse. Other explanations are that the bias results from the complexity
of the wagers and the information available to bettors and not from risk-preferences;
see Sobel and Raines (2003). Ottaviani and Sørenson (2003), Hurley and McDonough
(1996), Quandt (1996), and Shin (1991, 1992) provide theoretical models that attempt
to explain the bias. See also the chapters in this volume, especially Ottaviani and
Sørensen (2008). The reasons for the effect varying over time are a combination of
several factors. These include: (1) the utility bettors gain from betting on longshots and
the associated preferences over the skewness of returns; (2) the systematic tendency
for bettors to overestimate the chances of low probability outcomes, and underestimate
high probability outcomes, and (3) the type and information aspects of informed and
noise bettors in the race involved. Sobel and Raines (2003) show that the bias is steeper
for lower quality races compared to higher quality races even on the same day at the
same track. Consistent with this, Ziemba and Hausch (1987) show that the bias for the
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Kentucky Derby is much less than is typical. The 1986 graph in Figure 1 is more flat in
2007 until the tail dropoff for high odds horses. On this, see, in this volume, the chapters
by Snowberg and Wolfers (2008) and Ziemba (2008).

Puts and calls on stock index futures represent leveraged short or long positions on
the index and their behavior might have similar features to racetrack bets. Demand for
options comes from both hedging and speculation. The primary use of put options is for
hedging.

For the call options, the most obvious hedging demand is to sell them against existing
holdings of equity. This covered call strategy tends to depress the price of (especially
out-of-the-money) call options. If this were the sole mechanism for dealing in call
options, this should result in an increase in the expected return for purchasers of out-of-
the-money call options. Coval and Shumway (2001) considered the expected and actual
returns for options on the S&P 500. They find that call options (in a fairly narrow range
around the current underlying S&P 500 price) have a higher expected return relative to
the underlying S&P 500 index market. While this result is consistent with a leverage
effect (the beta of options being much larger than the beta of the S&P 500), the return
remains less than what it should be if leverage were the sole factor. Coval and Shumway
(2001) do not consider the investment in deep out-of-the-money call options on the S&P
500 as we do here.2

We find significant expected losses for such deep out of the money call options. This
could be due to speculative activity similar to that for longshot horse race bets. However,
Bollen and Whaley (2003) showed that buyer-initiated trading in index puts dominates
the market. Because there are few natural counter-parties to these trades (apart from
hedge funds), the implied volatilities of these options rise and the implied volatilities
of the corresponding call options rise due to put-call parity. However, they show that
the primary choice of buyer-initiated index put trading occurs for the nearest out-of-
the-money put options. They also stated, “since portfolio insurers generally buy OTM
puts rather than ITM puts,” this implies that relatively speaking the demand for in-the-
money puts is less and given that they argue that option mispricing is due to supply and
demand imbalances at different strike prices, then in-the-money puts would be relatively
less expensive. By put-call parity, this implies that the costs of the out-of-the-money call
options would be relatively less expensive and offer a higher return. Nevertheless, our
results indicate that deep out-of-the-money call options are overpriced.

Rubinstein (1994) pointed out that the implied volatilities for options on the S&P
500 changed after the 1987 stock market crash with the prices of out-of-the-money
put options rising and the prices of out-of-the-money call options falling (relative to
the price of the at-the-money option). This implied volatility skew (or smile) effect
has been an active area of research. Buraschi and Jackwerth (2001, p. 523) con-
clude, “returns on out-from-the-money options are driven by different economic factors

2During January 1990 to October 1995, which was the period of the Coval and Shumway (2001) analysis,
the average underlying S&P 500 futures price was approximately 430. They examined puts with strikes 15
points below and calls with strikes 10 points above. This implies an average percentage difference of strike
prices that were 3.5% below the current price for puts and 2.3% higher for calls. In this study, we examined
all traded options with ranges ±43.3% of the current S&P 500 price.
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than those relevant for at-the-money options.” We consider the returns for such deep
away-from-the-money put options (as opposed to the near-the-money options consid-
ered by Coval and Shumway, 2001).

With market imperfections (such as transaction costs or other frictions that disallow
riskless hedges to be constructed in continuous time) or incomplete markets, option
prices are no longer uniquely determined by arbitrage, and may be determined (within
limits) by supply and demand. Dumas et al. (1998) suggest that the behavior of market
participants may be the reason for the existence of smiles. They state: “with institu-
tional buying pressures for out-of-the-money puts and no naturally offsetting selling
pressure, index put prices rise to a level where market makers are eventually willing
to step in and accept the bet that the index level will not fall below the exercise price
before the option’s expiration (i.e., they sell naked puts) . . . option series clienteles may
induce patterns in implied volatilities, with these patterns implying little in terms of the
distributional properties of the underlying index” (p. 21).

Figlewski (1989) suggests that volatility smiles exist because of the demands of
option users. He suggests that the higher prices (and resulting higher implied volatil-
ities) associated with out-of-the-money options exist because people simply like the
combination of a large potential payoff and limited risk. He likens out-of-the-money
options to lottery tickets with prices such that they embody an expected loss. Never-
theless, this does not dissuade some from purchasing them.3 This would suggest that
investors might be acting irrationally. Poteshman and Serbin (2002) show that this is
the case for the exercise of exchange-traded stock options. They conclude that the early
exercise of American calls on stocks during the period of 1996–1999 was in many
instances “clearly irrational without invoking any model or market equilibrium.” If
investors act irrationally in this regard, it is also possible they also act irrationally when
assessing the value of the option and could display similar irrational behavior to other
speculative endeavors such as gambling.

We examine the returns from investing in call and put options on stock index futures
markets and assess whether the mean returns are biased for high leverage situations,
as they are in various betting markets. To test the hypothesis that options display such
biases requires a sufficient number of independent observations in actively traded mar-
kets and a broad enough range of strike prices where such low probability options are
quoted. We use stock index futures options data, as these markets have existed for a
sufficiently long period of time to yield enough independent exercise cycles and the
range of offered strike prices allow the entire probability spectrum to be spanned. These
instruments may be dominated by institutional investors buying portfolio insurance (as
suggested by Bollen and Whaley, 2003). Given that such speculative behavior may be
more likely in option markets with more retail activity, it could be helpful to exam-
ine individual stock option markets in parallel. However, either such individual stock
option markets may not have been as actively (and consistently) traded as the stock

3The purchase of overpriced out-of-the-money puts may be justified by the desire of investors to provide a
smoother risk profile in volatile markets.
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index options, yield sufficient independent expiration cycles,4 and often do not offer
a sufficiently wide range of strike prices to examine extreme probability events, we
exclude their analysis here. In any case, Bakshi et al. (2003) suggest that the exclusion
of individual stock options in our study will not seriously affect our general conclu-
sions. They consider the skew effect for individual equity options written on the S&P
100 (OEX) cash index and its 30 largest equity components. Using 1991–1995 data,
they show that the risk-neutral index skews exist and are a consequence of risk aversion
and fat tailed distributions. Given that they report that individual stock skews are flatter
than the index skews, this suggests that the option pricing bias is not greater in mar-
kets with more retail customers (i.e., individual stock options) but is in fact less. These
equity markets have less systematic risk premium than the index markets and that is
reflected in the less steep skew.

As equity index option markets have a wider range of available strike prices and
trade on a monthly expiration cycle, yielding more independent trials than for stock
options, we restrict our analysis solely to these markets. We examine two markets that
have slightly different levels of retail trading activity. Our first is the S&P 500 futures
options market. According to the Marketing Department of the Chicago Mercantile
Exchange (and from Large Position reports from the Commodity Futures Trading Com-
mission) virtually all trading activity for options on the S&P 500 futures comes from
institutional traders. For options on the Financial Times Stock Exchange (FTSE) 100
futures traded at the London International Financial Futures Exchange (LIFFE) there
is more retail involvement. Press releases from LIFFE report that retail involvement in
these options comprise up to 10% of the total volume (similar to that of the individual
stock options traded on the LIFFE). This market will provide some insights into the
impacts of non-professional trading on the favorite-longshot bias.

Section 2 presents data sources and the methodology for the transformation of option
prices into odds, so that the results can be compared to the horse racing literature.
Section 3 presents results for the S&P 500 and FTSE 100 options markets. Section 4
concludes.

2. METHODOLOGY

To investigate whether a favorite-longshot bias exists in option markets requires a trans-
formation of option prices into odds. In the Black Scholes (1973) equation, N (d2) is
the forward price of a digital option that pays $1 if F > X. It is the (risk neutral) odds
at which investors can bet on this event. For a put option, the digital that pays $1 if
X < F is N (−d2). As with the racing studies, one must collect a large sample of inde-
pendent events, determine the odds of certain events occuring, invest a fixed amount in
each bet (say $1), and examine the a posteriori payoff of that bet. A pool of bets with
the same odds must be aggregated and the mean payoff returns calculated. Our data

4Individual Stock Options are only offered on a quarterly cycle. Given that Stock Index options have had
monthly expirations since 1987, there are more independent observations to test the hypotheses.
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is the publicly available settlement prices for the futures contracts and all call and put
options on the S&P 500 and FTSE 100 index markets on those dates when the options
had either exactly one month or three months to expiration.5 The period of analysis
was the 17.5 years from March 1985 to September 2002 and yielded 69 indepen-
dent quarterly observations for the S&P 500 and FTSE 100 futures.6 S&P 500 futures
began trading on April 21, 1982 and puts and calls on the S&P 500 began trading on
January 28, 1983. The early years had little volume and few strike prices. Hence,
our dataset covers the vast bulk of options trading in the S&P 500. For the monthly
observations (serial options), there were 187 independent observations for the S&P
500 futures and 124 observations for the FTSE 100 index options markets. The data
were obtained from the Chicago Mercantile Exchange for the S&P 500 futures and
options. These option contracts are American style options on futures. The data for the
FTSE 100 futures and options were obtained from the LIFFE for the European style
options on futures from 1992 to 2002 and from Gordon Gemmill for the American style
options on futures prior to 1992. The interest rate inputs were obtained from the British
Bankers Association (U.S. Dollar or British Pound LIBOR).

Monthly and quarterly data were used instead of daily data to ensure independence of
the observations and final outcomes. We identified all expiration dates for all available
options over the sample period. On that day, we recorded the settlement levels of the
futures contract (the nearest to the expiration of the futures contract and possibly the
cash index if that date was a simultaneous expiration of the futures and options contract),
and all available option prices on this nearby futures contract that had either one month
or three months to expiration.

Given that settlement prices were used, it was not necessary to conduct the standard
filtering procedures such as butterfly arbitrages; see Jackwerth and Rubinstein (1996).
However, we did remove all options with prices below 0.05 (as for a trade to take place
the offer price must be at least 0.05). With 17 years of quarterly data, we had 69 quar-
terly observations in our analysis with an average of 39.1 available strike prices per
observation for the options on the S&P 500 and 30.8 strikes for options on the FTSE
100. For the monthly expirations, the average number of strike prices available for the
S&P 500 options was 39.0 and 28.6 for the FTSE 100.

The first step is to calculate a measure of the odds of options finishing in the
money (analogous to the odds in horse racing). Since the options are American, the
Barone-Adesi and Whaley (1987) approximation has been used to recover the implied
volatilities, which have then been substituted into the Black (1976) formula to calculate
the pseudo-European option probabilities [N (d2) and N (−d2)]. For the European style

5The pit committee of the CME determines the settlement prices rather than by market transactions and this
could impact our results (especially for OTM options). However, the actual price at the end of the trading
day could be a bid, mid, or offer price. Given that our analysis considers the payoffs from purchasing options,
if the actual price that could be dealt at was the bid or mid price (rather than the offer price we implicitly
assume), the payoffs of the options would be reduced accordingly. Therefore, our estimates of the wealth
relatives for buying OTM options are more likely to be overly optimistic.
6To examine the impact of the 1987 crash, we also analyzed the post-crash period of our dataset. The results
were not materially different (apart from small reductions in the mean wealth relatives of out-of-the-money
put purchases).
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options on the FTSE 100, the Black (1976) implied volatilities were directly used.7 In
all markets, the implied volatilities for each option were used to calculate the odds. To
make a more consistent comparison with horse race betting, the premium for the options
were expressed in forward value terms. Using Black’s (1976) formula

Cfv = FN (d1) −XN (d2) (1a)

Pfv = XN (−d1) − FN (−d2). (1b)

where

d1 =
ln
(
F
X

)
+ 1

2 �2 (T − t)

�
√

(T − t)

and

d2 = d1 − �
√

(T − t).

As we only observe the current option prices Cpv and Ppv , we transform these to the
results in Equations (1a) and (1b) by multiplying the observed prices by er(T−t) (where
r is the LIBOR interpolated between adjacent standard maturities as reported by the
British Bankers Assocation on the observation date, t, and T is the expiration date).

The terminal payoffs of the options are

CT = MAX (FT −X, 0) and PT = MAX (X − FT , 0), (2)

respectively. We calculate the wealth relatives of the ratios of these to the initial option
forward values: in the absence of risk premiums these would be expected to average
to one.

An important issue in averaging them is how the wealth relative on each option
should be weighted. In our data sample, the number of strikes available increases with
time. We would therefore lose efficiency if we weighted all options equally, as this
would correspond to investing increasing amounts over time, where, for a given day the
returns on options at different strikes are not independent. Our first principle is therefore
to weight each monthly or quarterly period equally, by investing a fixed amount of
money (e.g., $1) at each date.

To achieve the same investment amount for the alternative option contracts, the
number of options purchased equals

QC = $1/Cfv and QP = $1/Pfv , (3)

respectively, for all calls and puts. Equation (3) suggests that for higher priced options
(e.g., in-the-money), the quantity purchased will be small and for lower priced options

7To be strictly comparable with horse racing odds, we should calculate the cost of a digital option under the
distribution implied from option prices. However, it is not clear which of the variety of parametric and non-
parametric approaches for the determination of implied distributions would be most appropriate. In any case,
this would introduce another possible source of error.
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(e.g., out-of-the-money), the number of options purchased will be large. We interprete
the in-the-money options as the favorites and the out-of-the-money options as the
longshots.

Unlike horse racing, the (risk neutral) probabilities of payoff in the options markets
are not expressed as odds but in a continuous probability range from 0% to 100% (and at
random points). In horse racing, while the bets are expressed as odds, such bets actually
represent a continous probability range for all bets between discrete categories (and are
rounded down). As examples, 9/5 bets cover all ranges from 1.80 to 1.99 to 1 and 5/2
bets covers all bets from 2.00 to 2.49 to 1.

To determine expected wealth relative at fixed “odds” levels [N (d2) or N (−d2)],
we use interpolation to estimate what strike and option price would apply. Within the
range of “odds” that exist on a given day,8 we linearly interpolate the implied volatility
between adjacent strikes. With each wealth relative estimated thus, we form a sim-
ple average of wealth relatives from non-overlapping periods, and can therefore easily
perform significance tests.9

Standard significance tests (such as a one-tailed t-test) may be inadequate when the
sample distribution is not normal. The holding period return distributions of options
tend to be quite positively skewed, and particularly so for out-of-the-money options, and
when a risk premium on the underlying increases (for calls) or reduces (for puts) the
(objective) probability of exercise. Care is therefore needed in testing the significance
of the mean wealth relative to any given null hypothesis. To address this, we conducted
Monte Carlo simulations to obtain the distribution of the realized mean wealth relatives
for samples of suitable sizes (60 for quarterly and 160 for monthly horizons).10 These
simulations were done under Black Scholes assumptions, with and without a risk pre-
mium, and for one-month and three-month times to expiration. The confidence intervals
obtained in this way were noticably different from the t-test intervals that would have
been applicable for a normal (or nearly normal) distribution.11

8We only interpolate and do not extrapolate beyond the range of traded strikes.
9We compute mean expected payoffs for various odds (probability of finishing in the money) bets to be
comparable to the racetrack literature. One could beta risk adjust these bets to possibly separate out risk from
behavorial biases. Coval and Shumway (2001) show how to do this. They find that there are then negative
expected returns from buying puts and calls. This is consistent with our story that long run expected profits
accrue to option sellers rather than option buyers. However, the Shumway and Coval results show that if
you risk adjust the expected return from buying in-the-money 3 month calls is most likely negative and not
positive as shown in Figure 3.
10The Monte Carlo simulation entailed simulating 10,000 times the average wealth relative for 60 (quarterly)
and 160 (monthly) payoffs for call and put options with N (d2) from 0.05 to 0.95 in 0.05 increments. The
standard error of the wealth relative was determined and the appropriate confidence levels were determined.
For the inclusion of the risk premium, the negative continuous dividend adjustment to the Merton (1973)
model proposed in the following section was used to determine the ratio of the expected wealth relative
compared to the Black Scholes (1973) option price.
11Nevertheless, because the confidence intervals most affected are for the right hand tails of out-of-the-money
options (which tended not to be observed empirically) the use of the simulated intervals makes little difference
to our results.
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3. RESULTS

The first step is to examine what the payoffs of call and put options would be under the
Black Scholes (1973) model. Although the presence of a risk premium on the equity
index does not affect the option valuation, it will affect the pattern of realized wealth
relatives. When risk premiums exist (e.g., in equity markets, see Constantinides, 2002),
the expected return for the investment in options will differ from the $1 investment.
Similar in spirit to Coval and Shumway (2001), we examined the expected theoretical
returns for call and put options using the Black Scholes (1973) formula with no risk
premiums and risk premiums of 2%, 4%, and 6%. This is done by using −2%, −4%, and
−6%, respectively, as the continuous dividend rate, using the Merton (1973) dividend
adjustment, in the Black Scholes formula. The ratios of the option prices are determined
and plotted as a function of money. This can be seen in Figure 2 for call and put options.
The calls lie above the $1 investment and the puts lie below the $1 investment.

Consistent with the theoretical results of Coval and Shumway (2001), who show that
in a very general setting, call options written on securities with expected returns above
the risk-free rate should earn expected returns that exceed those of the underlying secu-
rity and put options should earn expected returns below that of the underlying security.
They also show that under very general conditions, these divergent expected returns
would be increasing with the strike price (degree of out-of-the-moneyness). With this
guidance as to how we would expect option returns to behave as a function of the
Black Scholes (1973) model with risk premiums, we can now assess the returns actu-
ally observed for options on the S&P 500 and FTSE 100 futures. The results appear in
Tables 1 and 2 for three-month options. The call and puts options appear on the left-hand
and right-hand sides, respectively. For both, the first column is the odds of finishing in
the money as measured by N(d2) or N(−d2). The next column indicates the number

Expected Wealth Relatives: Calls and Puts
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FIGURE 2 Expected wealth relatives for call and put options with alternative risk premium levels.
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TABLE 1 Mean Return per $1 Bet vs. Odds Levels: Three-Month Options on S&P 500 Futures, 1985–2002

Call options on the S&P 500 futures Put options on the S&P 500 futures

Average SD of Average SD of
Odds (%) #Obs payoff payoff t-test vs. $1 Odds (%) #Obs payoff payoff t-test vs. $1

.95–1.00 47 1.0010 0.3204 0.02 .95–1.00 37 0.8998 0.4493 –1.35∗

.90–.95 60 1.0561 0.4605 0.95 .90–.95 44 0.8662 0.5872 –1.50∗

.85–.90 66 1.1231 0.5704 1.76∗∗ .85–.90 50 0.8426 0.7265 –1.53∗

.80–.85 67 1.1407 0.6990 1.66∗∗ .80–.85 54 0.7937 0.8120 –1.86∗∗

.75–.80 63 1.0938 0.5953 1.25 .75–.80 53 0.8137 0.8950 –1.51∗

.70–.75 64 1.1366 0.7732 1.41∗ .70–.75 51 0.7879 0.9979 –1.51∗

.65–.70 62 1.1461 0.8648 1.33∗ .65–.70 53 0.7702 0.9648 –1.73∗

.60–.65 59 1.1311 0.9972 1.01 .60–.65 54 0.6215 1.0258 –2.70∗∗∗∗

.55–.60 58 1.1727 1.1154 1.18 .55–.60 50 0.8225 1.2458 –1.01

.50–.55 54 0.9890 1.0410 –0.08 .50–.55 56 0.5807 1.1377 –2.76∗∗∗∗

.45–.50 56 1.1365 1.3925 0.73 .45–.50 51 0.7344 1.4487 –1.31∗

.40–.45 58 1.2063 1.6012 0.98 .40–.45 56 0.6785 1.5367 –1.57∗

.35–.40 51 0.9770 1.7015 –0.10 .35–.40 56 0.4744 1.2383 –3.19∗∗∗∗

.30–.35 54 0.9559 1.6041 –0.20 .30–.35 62 0.6257 1.6791 –1.76∗∗

.25–.30 59 1.2923 2.7539 0.81 .25–.30 64 0.6316 1.8231 –1.62∗

.20–.25 53 1.1261 2.5378 0.36 .20–.25 65 0.6426 1.9854 –1.45∗

.15–.20 55 0.8651 2.0742 –0.48 .15–.20 64 0.6696 2.2441 –1.18

.10–.15 56 1.2262 3.6982 0.46 .10–.15 66 0.6602 2.6359 –1.05

.05–.10 53 1.5085 5.3370 0.69 .05–.10 66 0.6432 3.4256 –0.85

.00–.05 39 0.0123 0.1345 –44.89∗∗∗∗ .00–.05 57 0.7525 5.6025 –0.33

All All
options 69 1.1935 2.4124 0.67 options 69 0.6212 2.5247 –1.25

of observations we have for that particular 5% band (i.e., days for which $1 could be
invested). The average payoff for a $1 investment in that particular option band appears
next and is followed by the standard deviation of the option payoffs within the band.
The final column is a modified one tailed t-test of the hypothesis that the mean return is
equal to the initial investment of $1 using

t =
(
Xi − $1�

)
/
(
si/
√
n
)

(4)

where

Xi =
n∑

j=1

Xi,j

/
n and Xi,j (5)
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Xi,j is the wealth relative of the jth option in the ith continuous “odds” range, and � is
the equity risk premium. Critical levels for the t-test were determined using a Monte
Carlo simulation. When the hypothesis is rejected at a 90% level or above, the t-statistic
appears in bold print, “*”, “**”,“***”, or “****” on the t-statistic indicates that the
level of significance is greater than the 90%, 95%, 97.5%, or 99% level, respectively.12

Figures 3 and 4 provide a graphical view of the mean returns, related to in-the-
moneyness, in these markets. These are not plots of the data in Tables 1 and 2, but were
calculated by our continuous interpolation method. This was done solely to allow

TABLE 2 Mean Return per $1 Bet vs. Odds Levels: Three-Month Options on FTSE Futures, 1985–2002

Call options on the FTSE futures Put options on the FTSE futures

Average SD of t-test Average SD of t-test
Odds (%) #Obs payoff payoff vs. $1 Odds (%) #Obs payoff payoff vs. $1

.95–1.00 32 1.0294 0.3215 0.52 .95–1.00 29 1.0019 0.5058 0.02

.90–.95 38 1.0485 0.4830 0.62 .90–.95 38 0.8995 0.6101 −1.02

.85–.90 41 1.1025 0.5901 1.11 .85–.90 36 0.8564 0.7274 −1.19

.80–.85 43 1.1033 0.7033 0.97 .80–.85 37 0.9628 0.8862 −0.25

.75–.80 44 0.9531 0.6601 −0.47 .75–.80 40 0.9709 0.9221 −0.20

.70–.75 49 0.9473 0.7491 −0.49 .70–.75 37 0.9201 1.0829 −0.45

.65–.70 47 1.1151 1.0764 0.73 .65–.70 40 1.0430 1.1861 0.23

.60–.65 49 0.8999 0.7903 −0.89 .60–.65 43 0.8264 1.1006 −1.03

.55–.60 44 1.1142 1.1296 0.67 .55–.60 38 0.9276 1.3428 −0.33

.50–.55 45 0.9505 1.2324 −0.27 .50–.55 39 0.8525 1.3050 −0.71

.45–.50 44 1.0148 1.1783 0.08 .45–.50 48 0.8615 1.5273 −0.63

.40–.45 41 0.8594 1.1062 −0.81 .40–.45 43 0.8764 1.7370 −0.47

.35–.40 43 1.1381 1.8821 0.48 .35–.40 48 0.7311 1.4967 −1.25

.30–.35 43 0.6177 1.1931 −2.10∗∗∗ .30–.35 44 1.0169 2.2145 0.05

.25–.30 47 1.0396 2.1356 0.13 .25–.30 53 0.7216 2.2611 −0.90

.20–.25 38 0.8813 1.9081 −0.38 .20–.25 49 0.6252 1.9079 −1.37

.15–.20 0 0.4773 1.3779 −2.40∗∗∗ .15–.20 48 1.0081 3.3628 0.02

.10–.15 42 0.9025 2.6841 −0.24 .10–.15 46 0.4131 1.9507 −2.04∗∗∗

.05–.10 37 0.1421 0.7891 −6.60∗∗∗∗ .05–.10 44 0.3600 2.2526 −1.88∗∗

.00–.05 35 0.1877 1.1102 −4.32∗∗∗∗ .00–.05 38 0.0893 1.0420 −5.39∗∗∗∗

All All
options 70 0.9983 1.4668 −0.01 options 70 0.6016 1.6203 −2.05∗∗∗

12The confidence intervals used were based on a risk premium of 1.75% per quarter, which was the average
realized risk premium for the two stock index markets over the period of our analysis. Thus, � in Equation
(4) is 1.0175 for quarterly options and 1.00583 for monthly options.
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FIGURE 3 Mean return per dollar bet vs. odds levels: three-month stock index calls, 1985–2002.
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FIGURE 4 Average return per dollar bet vs. odds levels: five-month stock index puts, 1985–2002.
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continuous, smooth curves to be drawn (and does not alter our interpretation of the
results for the ranges in Tables 1 and 2).

3.1. Results for Quarterly Options on Stock Index Futures

For the call options on the S&P 500 futures, we find a similar favorite-longshot bias as
in horse racing. The deep in-the-money call options in the probability ranges of 65% to
90% have a mean return of $1.058. For the remaining ranges from 5% to 65%, we can-
not reject the hypothesis that the return is significantly different from the $1 investment.
For the deepest out-of-the-money calls (0−5%) the mean returns are only 1.23 cents
per dollar invested. We reject the hypothesis of an expected return of $1 for the lowest
5% at a 99% level or above. This result supports the hypothesis of Figlewski (1989)
that out-of-the-money call options are seen by investors is lottery tickets and investors
overpay for deep out-of-the-money call options on the S&P 500 futures. Thus, the liter-
ature on “excessive optimism” in the assessment of risky situations may apply here; see
Kahneman and Tversky (1979) and Tversky and Kahneman (1983).

For the call options on the FTSE 100 futures, for call options in the range between
80% to 100% probabilities, there is no significant difference between the expected pay-
off and the initial $1 investment. Likewise, for most of the range from 35% to 80%, we
cannot reject the hypothesis that the return is significantly different from the $1 invest-
ment. However, for most of the out-of-the-money calls with probabilities less than 35%,
we reject the hypothesis of an expected return of $1 at above a 99% confidence level.

The put options on both the FTSE 100 and S&P 500 futures (essentially) all have
negative mean returns. Moreover, the mean payoff is decreasing as the probabilities
decrease, analogous to the horse racing favorite-longshot bias. This is also consistent
with the contentions of Rubinstein and Jackwerth (1996), Dumas et al. (1998), and
Bollen and Whaley (2002) that investors view put options as insurance policies and are
willing to accept an expected loss to protect their holdings of equity against downside
risk losses. To provide a clearer comparison between our results and those of Ziemba
and Hausch (1986), the figures use similar axes: probabilities equal the reciprocal of the
odds plus one. This can be seen for sets of stock index options in Figures 3 and 4.

This allows direct comparison to Figure 2, that presents the theoretical relationship
between an option’s expected returns and risk premiums. If risk premium was causing
call options returns to return more than the $1 investment, we would expect Figure 3
to resemble the upper portion of Figure 2. When the returns are expressed as wealth
relatives, out-of-the-money options offer a lower rate of return—exactly the opposite
of what we expect. Therefore we conclude that the mechanism at work is not the risk
premium argument of Coval and Shumay (2001) but a favorite-longshot bias.

In Figure 3, in-the-money call options yield more than the $1 invested in each option.
This is not surprising, given the existence of a risk premium for the equity market.13

However, the overall pattern is surprising: we would expect all calls to offer a higher
rate of return, and for this to increase as the odds lengthen, as in Figure 2. For put options
on the stock index futures in Figure 4, the mean return tends to decrease, as the option

13In the probability ranges from 45% to 55%, our results are similar to those of Coval and Shumway (2001).
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is further out of the money. This is more consistent with Figure 2, but still suggests
some anomalous behavior. For the S&P 500 put option returns, it is the in-the-money
ones that are significant, whereas for the FTSE 100 options, only the out-of-the-money
options are significant. In all cases, the returns on the longshot options are much more
variable than on the favorites. Thus a much larger deviation of the sample mean from
one is required, for a given number of observations, in order to reject the hypothesis.

3.2. Results for Monthly Options on Stock Index Futures

An enlargment of the data for the index options occurs when one considers options on
futures with monthly expirations. This also allows a comparison with the three-month
terms to expiration discussed above. The results appear in Tables 3 and 4 for the one-
month calls and puts for the S&P 500 futures and FTSE 100 futures, respectively.

TABLE 3 Mean Return per $1 Bet vs. Odds Levels: One-Month Options on S&P 500 Futures, 1985–2002

Call options on the S&P 500 futures Put options on the S&P 500 futures

Average SD of t-test Average SD of t-test
Odds (%) #Obs payoff payoff vs. $1 Odds (%) #Obs payoff payoff vs. $1

.95–1.00 187 1.0092 0.2506 0.50 .95–1.00 187 0.9792 0.4949 −1.87∗∗

.90–.95 187 0.9938 0.3923 −0.22 .90 –.95 187 0.9883 0.6677 −2.01∗∗∗

.85–.90 187 1.0029 0.4877 0.08 .85–.90 187 0.9989 0.7746 −1.18

.80–.85 187 0.9796 0.5925 −0.47 .80–.85 187 0.9544 0.8778 −1.67∗

.75–.80 187 1.0064 0.6762 0.13 .75–.80 187 0.9880 0.9814 −0.61

.70–.75 187 0.9346 0.7612 −1.18 .70–.75 187 0.9437 0.9879 −1.54

.65–.70 187 0.9693 0.8699 −0.48 .65–.70 187 0.9520 1.0734 −0.74

.60–.65 187 0.9656 0.9497 −0.50 .60–.65 187 0.9193 1.2257 −0.97

.55–.60 187 0.9196 1.0671 −1.03 .55–.60 187 0.8867 1.2654 −1.48∗

.50–.55 187 0.9586 1.1004 −0.51 .50–.55 187 0.9217 1.4020 −0.72

.45–.50 187 0.8954 1.2820 −1.12 .45–.50 187 0.8146 1.4427 −1.54∗

.40–.45 187 0.9204 1.3652 −0.80 .40–.45 187 0.9064 1.6557 −1.17

.35–.40 187 0.9671 1.5108 −0.30 .35–.40 187 0.7672 1.6412 −2.53∗∗∗

.30–.35 187 0.8673 1.6712 −1.09 .30–.35 187 0.7987 1.9158 −1.64∗

.25–.30 187 0.9927 1.8245 −0.05 .25–.30 187 0.7454 2.0390 −2.38∗∗∗

.20–.25 187 0.7939 1.8764 −1.50∗ .20–.25 187 0.6910 2.1639 −2.55∗∗∗

.15–.20 187 0.9257 2.5402 −0.40 .15–.20 187 0.6101 2.3346 −3.28∗∗∗∗

.10–.15 187 0.7585 2.8601 −1.15 .10–.15 187 0.5303 2.4037 −3.11∗∗∗∗

.05–.10 187 0.6940 3.5704 −1.17 .05–.10 187 0.4039 2.3630 −3.52∗∗∗∗

.00–.05 187 0.50958 3.9119 −1.71∗∗ .00–.05 187 0.0508 0.9785 −14.49∗∗∗∗

All All
options 187 0.9668 2.1085 −0.22 options 187 0.5033 1.3827 −4.92∗∗∗∗
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TABLE 4 Mean Return per $1 Bet vs. Odds Levels: One-Month Options on FTSE Futures, 1985–2002

Call options on the FTSE futures Put options on the FTSE futures

Average SD of t-test Average SD of t-test
Odds (%) #Obs payoff payoff vs. $1 Odds (%) #Obs payoff payoff vs. $1

.95–1.00 123 0.9595 0.2694 −1.67∗ .95–1.00 123 1,0105 0.4717 0.25

.90–.95 123 0.9719 0.4011 −0.78 .90–.95 123 0.9847 0.6005 −0.28

.85–.90 123 0.9596 0.5020 −0.89 .85–.90 123 1.0229 0.6874 0.37

.80–.85 123 0.9474 0.6020 −0.97 .80–.85 123 0.9235 0.7736 −1.10

.75–.80 123 0.9761 0.6480 −0.41 .75–.80 123 0.9760 0.9099 −0.29

.70–.75 123 0.8576 0.7525 −2.10∗∗ .70–.75 123 1.0093 1.0292 0.10

.65–.70 123 0.9296 0.8458 −0.92 .65–.70 123 0.9501 1.0715 −0.52

.60–.65 123 0.8632 0.8191 −1.85∗∗ .60–.65 123 0.8984 1.1686 −0.96

.55–.60 123 0.8866 1.0456 −1.20 .55–.60 123 0.9579 1.1831 −0.39

.50–.55 123 0.8295 0.9372 −2.02∗∗ .50–.55 123 0.8033 1.2349 −1.77∗∗

.45–.50 123 0.9129 1.2141 −0.80 .45–.50 123 0.8161 1.4092 −1.45∗

.40–.45 123 0.7647 1.2268 −2.13∗∗ .40–.45 123 0.9409 1.5550 −0.42

.35–.40 123 0.7588 1.1234 −2.38∗∗ .35–.40 123 0.8699 1.6963 −0.85

.30–.35 123 0.8685 1.6097 −0.91 .30–.35 123 0.7072 1.7646 −1.84∗∗

.25–.30 123 0.4707 1.1119 −5.28∗∗∗ .25–.30 123 0.8041 2.0297 −1.07

.20–.25 123 0.7006 2.0045 −1.66∗∗ .20–.25 123 0.5855 2.0360 −2.26∗∗

.15–.20 123 0.4952 1.4297 −3.92∗∗∗ .15–.20 123 0.5423 2.4428 −2.08∗∗

.10–.15 123 0.4779 2.4364 −2.38∗∗∗ .10–.15 123 0.5878 2.8156 −1.62∗

.05–.10 123 0.4920 3.6893 −1.53∗ .05–.10 123 0.4872 3.3026 −1.72∗∗

.00–.05 123 0.3427 4.8288 −1.51∗ .00–.05 123 0,2968 3.4337 −2.27∗∗

All All
options 2.460 0.7926 2.0670 −4.98∗∗∗ options 2.460 0.6535 2.4630 −6.98∗∗∗

For both the S&P 500 and FTSE 100 option markets, the deep in-the-money one-
month calls have a mean wealth relative close to one. The further the options are out of
the money, the lower the mean payoff, as shown in Figures 5 and 6 using our interpola-
tion method to give returns for odds spaced at every 1%. The pattern is quite striking for
both markets: the payoff decays monotonically and is similar to the racetrack longshot
bias shown in Figure 1. However, the only cases of mean returns significantly below
one are for the FTSE 100 options, for which there is more retail activity. We have the
usual problem of the large measurement error in expected returns measured with limited
observations over short horizons.

For all the put options, the pattern of mean returns for the one-month puts is
extremely close to those found for the three-month put options.The deepest in-the-
money puts pay on average the initial bet. Losses increase as the puts are further out
of the money, displaying a similar longshot bias to Figure 1.
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FIGURE 5 Mean return per dollar bet vs. odds levels: one-month stock index calls, 1985–2002.
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FIGURE 6 Mean return per dollar bet vs. odds levels: puts on stock index futures, 1985–2002.
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Figures 5 and 6 show the mean return for one-month options on the S&P 500 and
FTSE 100 futures across continuous probability bandwidths. In Figure 5, S&P 500 call
options return the $1 invested in each option on average. For the FTSE 100, the options
tend to return slightly less than the initial investment. Therefore, there is no evidence
of a favorite bias as the expected wealth relative is either equal to the initial investment
or is statistically significantly below the initial investment. However, for both markets a
significant longshot bias exists for the out-of-the-money calls in the probability ranges
from 0% to 15% (the return is significantly less than the initial investment at a 90%
level). However, the degree of the loss for the deep out-of-the-money calls in the 0% to
15% range is smaller than for the three-month options seen in Tables 1 and 2. This is
not surprising as the expected losses occur at an almost steady rate over time, and we
have only a third of the previous time to expiration.

The one-month put option returns appear in Figure 6. As with Figure 4 for the three-
month put options, the mean return tends to decrease, as the option is further out of the
money. For these options, the shape of the average return function is smoother than
the three-month pattern. One possible explanation for this comes from Bollen and
Whaley (2002). They indicate that the greatest concentration of trading in stock index
put options is for put options with one month or less to expiration. Therefore, with more
actively traded put options across the entire maturity spectrum, there is less need to
interpolate.

4. CONCLUSIONS

The motivation for this research was to assess whether the favorite-longshot bias that
has been found in horse racing and other gambling markets applies to options markets.
The choice of stock index options was made due to a previous conjecture by Figlewski
(1989) that deep OTM stock index call options are seen by investors as the equivalent of
low cost/high payoff gambles and Dumas et al. (1998) that stock index put options are
purchased at higher prices due to the need for insurance. We investigated the favorite-
longshot bias for options on the S&P 500 Index Futures and FTSE 100 Index Futures
for the 17+ years, March 1985 to September 2002.

The deep OTM index call options on the S&P 500 futures and FTSE 100 futures
have negative mean returns. During the period of 1985–2002, the mean payback from
the purchase of three-month call options in the probability range of 0–5% was less than
1.23 and 18.77 cents for every $1 invested in the options for the S&P 500 and FTSE 100,
respectively. Deep in-the-money three-month calls and one-month calls on the S&P 500
provide a mean return higher than the initial investment similar to the favorite-longshot
bias in racetrack markets.

For the put options on the S&P 500 and FTSE 100, we find evidence consistent
with the hypothesis of Dumas et al. (1998) that investors pay more for puts than they
are subsequently worth. The degree of overpaying for these options increases mono-
tonically as the probability of finishing in the money decreases. These results are also
consistent with Coval and Shumay (2001), for options in the similar strike price range
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they considered in their research. We present an empirical study of these index option
markets rather than a theoretical analysis of why the biases exist. We know that the
put skew bias steepens when there is a large drop in the underlying index and flattens
when prices rise and that the shape of the bias varies over time. The one-month versus
three-month figures document this. The bias in the puts is related to portfolio insurance
protection against downside risks. Harvey and Siddique (2000) call this skewness pref-
erence. The deep out-of-the-money calls seem to be, as Figlewski (1989) argued, seen
as lottery tickets which have low expected returns. The in-the-money and out-of-the-
money three-month calls seem to reflect the equity risk premium as theoretically shown
in Figure 2. The one-month calls in this range, which are highly price dependent on
steep option time decay, are fairly priced for the S&P 500 and negatively priced for the
FTSE 100. Investors’ aversion to downside risk shown in overpriced puts, especially fol-
lowing the 1987 crash, is consistent with our data; see also Rubinstein (1994) and Bollen
and Whaley (2002). This is similar to the pattern observed for the favorite-longshot bias,
and is the expected cost of insurance.

The month call options on the S&P 500 and the FTSE 100 have similar patterns,
but with magnitudes closer to one. Only for the in-the-money calls on the S&P 500 is
a favorite bias found. The deep in-the-money calls on the FTSE 100 pay an average
return very close to the intial bet. For the out-of-the-money options, there is a reduction
in the expected return (like a longshot bias). However, this is not as extreme as for the
three-month options, and only statistically significant for the FTSE 100 options.
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Abstract

This is a survey of efficiency in racing, sports, and lottery markets. The win market
is efficient but exhibits a favorite-longshot bias. The place and show markets, which
involve more possible finishes, allow inefficiencies by using the win probabilities. These
biases are discussed for U.S. and Hong Kong markets. The Kelly capital growth criterion
is useful to implement a model to exploit these inefficiencies. Exotic markets involve
even more complex sets of bets. Finally, possible inefficiencies in cross-track betting
are discussed. Football and basketball betting markets are largely efficient. Lotteries
provide interesting markets with one way to potentially exploit them being the use of
unpopular numbers.

Keywords: market efficiency, horserace betting, sports betting, lottery wagers

1. INTRODUCTION

Financial economists have long been interested in the efficiency of financial markets.
Kendall (1953) examined the behavior of industrial share prices and spot prices for
cotton and wheat. By analyzing serial correlations, prices appeared to follow a random
walk. In the 1960s the focus was on defining efficiency and performing tests for a range
of efficiency notions. Roberts (1967) defined weak, semi-strong, and strong form effi-
ciencies as holding when stock market prices reflect all price information, all publicly
available information, and all information, respectively. Most financial markets have
been shown to be efficient in the weak form. The evidence for semi-strong is mixed;
see Sung and Johnson (2008) for a survey of the racing literature. The strong form is
largely inefficient. See Fama (1970) for a survey of this work in financial markets. The
exceptions, termed anomalies, include seasonal patterns such as the small firm January
effect, turn-of-the-month and year effects, holiday effect, day of week, time of day, the
Value Line enigma, and cross-sectional regularities that apply to stocks with low price
to earnings ratios or with earnings surprises, and so forth. See the surveys by Hawaw-
ini and Keim (1995, 2000), Ziemba (1994), and Keim and Ziemba (2000) for more
details.

Fama (1991) updated his earlier survey. Tests for return predictability focus on fore-
casting returns using variables such as interest rates and dividend yields. Event studies
formalize the semi-strong form idea by testing whether or not there are adjustments
of prices to specific public announcements. Finally, the strong form concept is studied
through tests for private information. The evidence is that future returns are predictable
from past returns, dividend yields, and term structure variables. On the face of it, this is
a violation of weak-form efficiency. But, as suggested by Roll (1977), since every test
of efficiency must be a joint one with a maintained equilibrium hypothesis of price
formation (e.g., the capital asset or arbitrage pricing models), this violation is
confounded by the joint hypothesis problem of whether there is a rational variation
over time in expected returns or systematic deviations from fundamental value. While



William T. Ziemba 185

arguments can be made that increased returns may be occurring because of increased
risk, which is difficult or impossible to measure accurately, there is very strong evidence
that most or all of the gains in securities markets have occurred during the seasonally
anomalous periods. Ritter and Chopra (1989) and Cadsby (1992) show, for example,
that the only periods where risk as measured by the capital asset pricing model is
rewarded with equity returns are precisely at the anomalous periods such as the day
before holidays, the turn of the month, in the first two weeks of January for small stocks,
and so on. Ariel (1987), Lakonishok and Smidt (1988), and Hensel et al. (2000) showed
that essentially all the stock market’s gains during the twentieth century in the U.S.
occurred in the first half of the month. Event studies are more straightforward and less
controversial, since they are able to provide more clear-cut evidence of the effect of new
information. Regarding strong-form tests, there is considerable evidence that corporate
insiders have private information that is not fully reflected in current prices.

Sports and betting markets are well suited for testing market efficiency and bettor
rationality. This is because vast amounts of data are available, in the form of prices (for
devising technical systems) and other information (for devising fundamental systems),
and each bet has a specified termination point when its final asset value is determined.
For rationality tests, markets with this latter property offer an advantage over markets,
like securities markets, where the current value depends upon future events and current
expectations of future values. Also, some wagering markets have characteristics that
reduce the problematic nature of the aforementioned joint hypothesis test. For instance,
Dana and Knetter (1994) note that point spread bets on National Football League games
all have identical risk and return characteristics, as well as similar horizons. This allows
a test of efficiency without specifying the bettors’ utility functions.

The special properties of sports betting and lotteries might lead one to speculate that
they are even more efficient than financial markets. However, there is another aspect
to these markets that confounds the notion of rationality: for them to be offered, the
average bettor must lose. Indeed, given the transaction costs involved in these markets
(e.g., about 13–30% for horse racing and about 50% for lotteries), the average losses
are large. This has not stopped the search for profitable wagering systems, though, and
there are some notable successes. For example, Thorp (1961, 1962) demonstrated that
card-counters can win playing blackjack. This survey of research on horse racing, sports
betting on football and basketball, and lotteries reports numerous studies of efficiency
in these markets. Several profitable systems are also described, though.1 The continued
success of these winning systems tends to be related to some complicating factor in its
development or execution. For instance, the system may involve short odds and complex
probability estimation (e.g., place and show wagering at the racetrack), it may rely on
syndicates of bettors (e.g., cross-track horse race betting), it could require extremely
long time horizons (e.g., lotteries), or extensive data collection and statistical work (e.g.,
fundamental handicapping systems for horse racing). The winning systems described
are, of course, just a subset of the winning systems used in practice. The incentives to

1Beyond the academic work surveyed here, evidence abounds of individuals who have successfully beaten
the odds. See, for example, Akst (1989), Benter (1994, 2001), and Beyer (1978).
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disclose details of a winning system may not be sufficient in some cases given that such
an action typically reduces the system’s profitability as others employ it. Finally, we also
discuss optimal betting strategies for exploiting inefficiencies when they are present.

Sports betting and lotteries involve substantial transactions costs. Because it directly
affects prices, the take—what the gambling establishment keeps for its operation—is
properly accounted for in all of the analyses discussed in this survey. Another cost in
these markets is for information (e.g., tip sheets at the racetrack). Costly information
requires a redefinition of efficiency, one where prices are said to reflect information to
the point where the cost of additional information just equals the benefit of acting on
that information. But because they are difficult to measure, this survey ignores informa-
tion costs (and other transaction costs beyond the take). Thus, our general findings of
efficiency gain further support after the introduction of these other costs. In racing, the
advent of rebates has driven the take from 13% to 30% for various bets to about 10%
for large bettors. Just like shopping at a wholesale market for food, large bettors get a
quantity discount. The rebaters and the large bettors share a discount given by the track
for the signals (outcomes). The net effect of this is that when these discount bets are
blended with the rest of the bets, the effective track take for the small bettor is more
than the posted take. Rebates at a lower level are available to small bettors.

Figure 1 provides a taxonomy for the types of games that we discuss. Games are
classified by: (1) whether the chance of winning is purely luck or can be influenced with
skill; and (2) whether the payoff upon winning is predetermined or can be improved with
skill. Luck-luck games allow no possibility of discovering a profitable strategy, and so
as markets they are trivially efficient. On the other hand, there need not be a guarantee
of efficiency for luck-skill games such as lotto (where we discuss a strategy of betting
unpopular numbers, which does not affect the probability of winning but does affect the
payoff upon winning) and skill-luck games (which are relatively uncommon). Blackjack,
a skill-skill game, allows a profitable strategy. For horse racing, another skill-skill game,
we review findings that certain forms of wagers are efficient while others are not.

Unlike most financial securities markets, the average lottery and sports betting par-
ticipant must lose. We may, indeed, choose to differentiate gambling and investing by

CHANCE OF WINNING

COMPLETE LUCK SKILL INVOLVED
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Example: Pay $1 for a chance to 
pick all winners of hockey games 
on a particular day. From those 
who have all correct selections, 
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Lotto, such as 6/49, with
some or all pari-mutuel
payoffs

Sports pool games
Horse racing 
Blackjack
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FIGURE 1 Taxonomy of games. Source: Adapted from Ziemba et al. (1986).
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their expected returns, using the terms gambling when the expected profit is negative
and investing when the expected profit, including all transactions costs and risk adjust-
ments, is positive. Obviously, a willingness to assume risk in the face of negative
expected returns is inconsistent with the traditional assumptions that (1) individuals
maximize the expected utility of wealth, and (2) utility functions are concave, that is,
risk aversion. Instead of the second assumption, Friedman and Savage (1948) assumed
a utility function that is convex in a neighborhood of the individuals present wealth but
concave over higher and lower wealths. Given their different payoff distributions, simul-
taneously purchasing lottery tickets and insurance can be consistent with this form of
a utility function. Markowitz (1952) offered a functional form that eliminates some
behavior admitted by Friedman and Savage’s form that is not generally observed. He
also pointed to the possibility of a utility function that recognizes the fun of gambling.
Conlisk (1993) formalized this notion and found his model to be largely consistent with
actual risk-taking behavior.

Other surveys on this topic include Clotfelter and Cook (1991) and three chapters
in Part VIII of this volume. On lotteries, Thaler and Ziemba (1988) on horse racing
and lotteries, Hausch and Ziemba (1992) and Vaughan Williams (2003, 2005) on sports
betting and lotteries, and Hausch et al. (1994a, 2008) on horse racing. Lane and Ziemba
(2004, 2008) study hedging strategies for jai alai, a sport not considered in this survey.

2. EXTENT OF GAMBLING IN THE U.S.

The level of gambling in the U.S. is enormous. Welles (1989) estimates $240 billion
as the total annual wagering by Americans, both legal and illegal; an amount that is
growing at 10% per year. By 1992, the estimate is $329.9 billion including $29.9 billion
of gross revenue for governments and gaming institutions, more than six times annual
movie ticket sales in the U.S. (Kleinfield, 1993). Table 1 presents gross gambling rev-
enues from various gambling from 1985 to 1992. Pari-mutuel betting revenues have
grown slowest, while revenues from Indian gaming have dramatically risen.

Lotteries accounted for about one-third of gross gambling revenues over this period;
see Table 1. On average, the lottery returns are only about 54% of sales. For pari-mutuel
wagering, the average payback is about 80%, with the state government collecting usu-
ally only a few percent. That tax rate can vary across the tracks within a state, though.
For example, the three major thoroughbred tracks in south Florida have long feuded
over the prime winter racing season when tourism is at a peak. Florida passed a bill
that in 1994 granted the prime season to Gulfstream Park with a 3.0% state tax. Hialeah
Park’s season was taxed by the state at 1.15%, while Calder’s tax was 2.4%. Thalheimer
and Ali (1995, 2008) found that demand for racetrack betting is price elastic, which sug-
gests that track-take revenue should increase with a reduction in the track-take fraction.
By 1990, 34 states were offering pari-mutuel betting on thoroughbred or standardbred
horses, or on greyhounds. Thalheimer and Ali (1995) also found that the presence of a
state lottery lowered both attendance and the average bettor’s wager. See Table 2.
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TABLE 1 Gross Gambling Revenues from Various Gambling Activities ($billions)

Year Lottery Casinoa Pari-mutuelb Bingo Indian gaming Totalc

1985 5.2 5.5 3.1 0.91 0.09 15.4

1986 6.3 5.7 3.2 0.94 0.10 16.9

1987 6.6 6.4 3.3 0.90 0.11 18.3

1988 8.4 7.1 3.5 0.88 0.10 21.5

1989 9.6 7.7 3.6 0.95 0.30 24.0

1990 10.3 8.7 3.7 1.0 0.48 26.2

1991 10.2 9.0 3.7 1.1 0.72 26.7

1992 11.5 10.1 3.7 1.1 1.5 29.9

aDoes not include Indian gaming.
bIncludes horse and greyhound racing, jai alai, and off-track betting.
cBecause of other forms of gambling, columns sum to less than the total column.
Source: Kleinfield (1993).

TABLE 2 State Lottery Startup Dates, FY 2002 Sales, Sales Per Capita
FY 2004, and Rank

State Startup Sales ($ million) Per capita sales Rank

Arizona 1981 294.82 64.75 38

California 1985 2,915.90 82.57 29

Colorado 1983 407.97 87.71 28

Connecticut 1972 907.9 259.68 9

Delawareb 1975 674.01 777.57 3

Florida 1988 2,330.36 178.56 18

Georgia 1993 2,449.36 309.66 7

Idaho 1989 92.67 79.21 31

Illinois 1974 1,590.15 134.78 24

Indiana 1989 626.31 118.17 26

Iowa 1985 181.22 71.20 37

Kansas 1987 190.08 82.12 30

Kentucky 1989 638.72 175.52 19

Louisiana 1991 311.62 75.50 35

Maine 1974 157.9 141.54 22

Maryland 1973 1,306.55 252.10 11

Massachusetts 1972 4,213.22 682.60 5

Michigan 1972 1,688.04 194.88 14

Minnesota 1990 377.36 76.12 34
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TABLE 2 (continued)

Missouri 1986 585.19 137.97 23

Montana 1987 33.63 39.83 40

Nebraska 1993 73.91 53.17 39

New Hampshire 1964 212.9 183.23 17

New Jersey 1970 2,068.52 252.40 10

New Mexico 1996 133.97 78.64 32

New York 1967 4,753.62 304.24 8

North Dakotae 9.21 41

Ohio 1974 1,983.11 188.21 16

Oregonb 1985 816.94 249.55 12

Pennsylvania 1972 1,934.16 189.86 15

Rhode Islandc 1974 1,171.10 373.04 1

South Carolina 2002 319.99 227.63 13

South Dakotac 1987 629.96 865.25 2

Tennesseed 72.82 36

Texas 1992 2,966.27 130.28 25

Vermont 1978 81.99 148.83 21

Virginia 1988 1,108.07 170.30 20

Washington 1982 438.61 78.06 33

Washington, DC 1982 211.13 441.06 6

West Virginiab 1986 848.63 718.81 4

Wisconsin 1988 427.57 87.94 27

U.S.a 42,153.43 184.25 —

aExcludes states with no lottery: Alabama, Alaska, Arkansas, Hawaii, Mississippi,
Nevada, North Carolina, Oklahoma, Utah, and Wyoming.
bIncludes net VLT sales (cash in less cash out).
cIncludes gross VLT sales (cash in).
dSales began January 20, 2004.
eSales began March 25, 2004.
Source: Garrett and Wagner (2003) and Tax Foundation (2008). North American Association
of State and Provincial Lotteries; Census Bureau population data; Tax Foundation calculations.

Sports betting in Nevada was estimated at $1.3 billion in 1988, and illegal action
nationwide at more than $26 billion (see Akst, 1989), with the largest event being the
Super Bowl for the championship of American football. Super Bowl wagering in 2008
was estimated to be over $50 billion. A study in Ontario (see Abbate, 1995) found that
69% of adults played the lottery in the last month. For other forms of gambling, the
corresponding percentages were 12% for sports gambling, 9% for card gambling, 7%
for bingo, 3% for casinos, and 2% for horse racing.
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3. RACETRACK BETTING MARKETS

3.1. Introduction to Racetrack Betting

The racetrack is a market in miniature in which wagering, odds, the outcome of the
race, and payoffs all occur over a period of 20–30 min, followed by a new market,
the next race. The number of horses in a race usually ranges from six to 12 in the
U.S., three to 14 in Hong Kong, six to 18 in Japan, and four to 20 in England.
A variety of wagers is available to bettors. The simplest is a wager to win, which
involves picking the horse that finishes first. A place (show) bet involves picking a horse
that is at least second (third). Exotic wagers are based on two or more horses, such as
the daily double—picking the winners of two consecutive races; quinellas—picking the
top two finishers in a race; and exactas—picking the top two finishers in a race in the
correct order. As in securities markets, the public directly establishes the odds in a pari-
mutuel betting market; the more the public bets on a horse, the lower its odds and the
lower its return upon winning. The track pools the public’s wagers and returns a fraction
Q—the track payback—of that total to the winners. The remainder—the track take—is
shared by the track owners, the state government, jockey’s fund, race purses, and so on.
An additional transactions cost is breakage, where the track rounds down returns to the
nearest nickel or dime on the dollar.

Weak-form efficiency means that, with access only to the publics odds, no bet allows
a positive expected profit. A profitable betting system based on the publics odds is pos-
sible only if weak-form efficiency is violated (see Epstein, 1977). We also consider a
stricter version—strictly-weak-form efficiency—which requires that with access to the
publics odds, all bets have equal expected return, namely Q, for a loss of 1 −Q.

There is an extensive literature on horse race betting. We begin in Section 3.2 with
studies of win betting; they point to a weak-form efficient win market but one that is not
strictly-weak-form efficient given a strong and stable betting bias by the public against
favorites and for longshots. Section 3.3 discusses the evidence against weak-form effi-
ciency of the place and show markets. It also describes theoretical and implementation
aspects of wagering schemes that have been devised to exploit this inefficiency. Exotic
markets and cross-track betting are discussed in Sections 3.4 and 3.5, respectively. This
survey of horse racing is restricted to pari-mutuel betting, that is, where the payoffs are
directly determined by the public’s betting. In many countries outside of North America,
betting is handled by bookies who offer fixed odds. This literature is discussed in
Hausch et al. (1994a, 2008).

3.2. Win Market

Define Wi as the public’s wager to win on horse i and W =
∑

i Wi as the public’s win
pool. Then, ignoring breakage, QW/Wi is the payoff per dollar wagered on horse i to
win if and only if horse i wins. Let Oi = QW/Wi − 1. The odds on horse i are expressed
as Oi to one, or Oi/1, and the return on a $1 wager to win on horse i is the original $1
plus another Oi in profit. Similarly, odds of x to y (or x/y) means that a $y wager
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will pay $x + y, the original wager plus $x. The quantity Wi/W can be interpreted as
the public’s subjective probability that horse i will win. If these subjective probabilities
are indeed correct, then the gross expected return on a win bet on any horse i is Q,
that is, strictly-weak-form efficiency. Based on data on over 50,000 races and 300,000
horses collected from numerous studies, Figure 2 shows the actual expected returns for
various odds categories. (This extends the analysis of Snyder, 1978.) Expected returns
are plotted against odds using transaction costs of 0.1533 (=1 −Q) which applies in
California. The horizontal line indicates the point at which returns are the expected
0.8467 (=Q). While objective odds (actual outcomes) and the public’s subjective odds
are highly correlated, actual returns departing from the horizontal line indicates that
strictly-weak-form efficiency is violated.

Figure 2 exhibits a clear favorite-longshot bias, with expected returns falling as
odds lengthen, down to only 13.7 ¢ per dollar wagered at odds exceeding 100/1. This
bias is strong and stable, having appeared in datasets collected over several decades
and from tracks of all sizes and throughout the world. (Early studies include Griffith,
1949; McGlothlin, 1956; and Fabricand, 1965.) In England, a similar graph (see
Ziemba and Hausch, 1986) pertains even for fixed odds systems where bookies con-
struct this risk-preference situation to mirror bettor’s desires to overbet longshots and
underbet favorites. Exceptions to this bias are Busche and Hall (1988) and Busche
(1994) for Hong Kong and Japan. While clearly violating strictly-weak-form efficiency,
Figure 2 illustrates that the favorite-longshot bias is insufficient to allow for profitable
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wagers except on odds below 3/10. In this range, expected returns are positive and
are about 4–5% for horses with the shortest odds. Such short odds are relatively rare;
hence, for practical purposes, the win market, while not strictly-weak-form efficient, is
weak-form efficient. This supports the notion that bettors, at least in aggregate, behave
rationally in the sense that few profitable wagers remain. The filled squares in Fig-
ure 2 show more recent data (1997–2004) and in this period extreme favorites did not
have positive expected value. Also, favorites have lower expected value than in the past.
However, longshots are similarly overbet as in the data up to 1986. Rosett (1965) finds
additional support for bettor rationality with evidence that a bettor will not make a sim-
ple bet over a more complicated one (a parlay) that is preferred in terms of overall
probability of payoff.

McGlothlin (1956) studied the favorite-longshot bias over the course of a racing day,
finding interesting departures from the usual bias for the last two races of the day. The
penultimate race is frequently the feature race of the day, involving horses with well-
documented records that have received more public scrutiny than usually occurs, and
this is particularly so for the favorites. Interestingly, McGlothlin found little underbet-
ting of these favorites. For the final race, McGlothlin calculated significantly positive
expected returns for short-odds horses, atypically low returns for mid-range odds horses,
and small but positive expected returns for the longest-odds horses. An explanation
offered for these returns is that bettors who are losers—which describes the average
bettor by the beginning of the last race of the day—use an end-game strategy to recover
their day’s losses. Such a strategy will tend to overlook favorites because of their low
payoff, key in on mid-range odds horses because of their adequate returns together with
a reasonable probability of success, and perhaps even involve underbetting of extreme
longshots given their low probability of success. Metzger (1985) also found a loose
pattern of increased underbetting on the favorite as the racing day progressed.

The favorite-longshot bias may be insufficient to allow for a practical and profit-
able technical betting scheme, but its existence is still worthy of explanation. Two
approaches based on rational betting behavior have considered risk-seeking bettors and
differences of opinion. The first of these generates the bias because risk-seeking bet-
tors will demand a higher expected return for favorites, which have a lower variance of
return than do longshots. Weitzman (1965) and Ali (1977) estimated the utility func-
tion of the representative bettor and showed it to be convex. Quandt (1986) proved that
locally risk-seeking bettors are a necessary condition for the bias if the bettors have
homogeneous beliefs, since a loss to the bettors in aggregate follows from a positive
track take. Ali (1977) offered the second approach for generating the favorite-longshot
bias. He considered races with two horses and assumed that the risk-neutral bettors hold
heterogeneous beliefs about the likelihood of each horse winning, and all bettors wager
an identical amount (say $1) on the horse with the highest expected return on the basis
of their belief. Ali defined �1 as the true probability that horse 1 wins and supposed that
each bettor’s belief about that probability is a draw from a distribution that has �1 as its
median value. Suppose that �1 > 1/2, that is, horse 1 truly is the favorite. Since each
bettor wagers $1, a pari-mutuel market belief of �1 would require that a fraction �1 of
the bettors have beliefs exceeding �1. This would be unexpected, though, since �1 is the
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median belief. The pari-mutuel market payoff must be lower on average to attract the
additional bettors needed to sustain that payoff. The pari-mutuel result is that horse 1
will tend to be the betting favorite but it will be underbet relative to its true probability.
The reverse occurs with the other horse, the longshot, resulting in the favorite-longshot
bias.2 Blough’s (1994) model incorporated both non-linear utility and heterogeneous
beliefs, and with a restriction on the beliefs of bettors he extended Ali’s analysis beyond
two horses to an arbitrary number. He also developed an econometric test to distinguish
between these two causes of the favorite-longshot bias but, as his data did not exhibit
the bias, neither cause appeared to be present.

Behavioral explanations have also been offered for the favorite-longshot bias.
Thaler and Ziemba (1988) mentioned several, including: (1) overestimation of small
probability events; (2) exaggerating a longshot’s contribution to expected utility (from
prospect theory; see Kahneman and Tversky, 1979); and (3) bragging rights that are
available to those who win with longshots but not to those winning with favorites.
They also suggest that mental accounting (see Kahneman and Tversky, 1984) may be a
promising way of modeling racetrack betting. It allows the bettor to be risk seeking in
one domain while risk averse in another. The notion is that bettors have mental accounts
and act as if the funds in these accounts are not fungible. Suppose bettors A and B have
the same betting behavior. If A just lost his or her $100 on a horse race while B just read
in the newspaper’s financial section of a $100 loss in his or her stock portfolio, then
mental accounting predicts different subsequent wagering behavior because B’s loss is
unrelated to racetrack betting.

Figure 2 is based on final odds—the odds on which win payoffs are determined.
The public’s odds can vary considerably over the betting period, though. Such price
movements are of interest if they themselves reveal information. Asch et al. (1982)
concluded that bettors late in the betting period do achieve higher returns than early
bettors but were unable to devise a profitable strategy exploiting this. Asch et al. (1984,
1986) and Asch and Quandt (1986), using new data, showed that wagering on the horse
with the highest win probability, when that probability is partially based on the public’s
marginal odds (i.e., odds calculated using only wagering late in the betting period), did
not provide statistically significant profits.

Assuming that a bettor knows perfectly the true win odds of the horses in a race,
Isaacs (1953) determined the betting scheme that maximizes expected profit. Isaacs
accounted for the effect of one’s bets on the odds and determined an algorithmic solution
to the non-linear optimization problem.3 Rosner (1975) extended Isaacs by introducing
logarithmic utility and a budget constraint, but ignored one’s effect on the odds. Levin
(1994) also extended Isaacs in several ways, for example, by introducing non-linear
utility and a budget constraint. The public’s win odds are just one source of informa-
tion at the track. Others include the racing form, which provides past performances
on all the horses entered in a race, predictions of expert handicappers that appear in

2This clearly is not a rational expectations equilibrium since bettors are not revising their estimates on the
basis of the price that is offered.
3Below, we develop a similar optimization problem for place and show betting.
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local newspapers, and tip sheets that can be purchased at the track. Semi-strong form
efficiency can be studied by considering this information. Using a multinomial logit
model to measure the information content of the forecasts of professional handicappers,
Figlewski (1979) found their forecasts to contain considerable information but the pub-
lic’s odds discount almost all of it, in support of semi-strong efficiency. Snyder (1978)
and a reanalysis of Losey and Talbott (1980) also showed that following the advice of
professional handicappers is generally unprofitable. For harness racing, Ludlow (1994)
tested a fundamental system. He considered several classification schemes for separat-
ing winners and nonwinners in one dataset, and then cross-validated them on another
dataset.

Bolton and Chapman (1986) developed another fundamental system using a multi-
nomial logit model to estimate win probabilities with 10 factors such as weight, post
position, past performances, and jockey. They were essentially unable to demonstrate
any significantly positive profits, though, in support of semi-strong form efficiency.
Chapman (1994) extended this work to a 20-variable model and increased the dataset to
2,000 races from 200 in Bolton and Chapman (1986). Despite a very simple scheme
of betting $1 on the horse with the highest expected return as long as that return
was positive, some evidence of profits was shown. Chapman also showed that the
public’s win odds contained considerable information beyond that contained in his
20 factors, but he did not investigate how its inclusion in his model would improve
profits.

Benter (1994) provided some details of a very elaborate implementation of a multi-
nomial logit model that is reported to have been successfully employed in Hong Kong
for a number of years. Benter described the importance of defining factors that extract as
much information as possible, stating that a model involving only simplistic specifica-
tions of factors does not provide sufficiently accurate estimates of winning probabilities.
An example of the complexity of the factors that Benter uses is seen in his discussion of
a distance preference factor to indicate the horse’s demonstrated preference for a race
of the distance that it will run in the upcoming race. For predicting races of 1–1.25 mi,
Bolton and Chapman (1986) deal with the distance preference factor through a variable
that equals one if a horse had run three or four of its last four races at distance levels
of less than 1 mi, and zero otherwise (p. 1047). Benter (1994), as a result of a large
number of progressive refinements, uses a variable defined as follows:

[F]or each of a horse’s past races, a predicted finishing position is calculated
via multiple regression based on all factors except those relating to distance.
This predicted finishing position in each race is then subtracted from the
horse’s actual finishing position. The resulting quantity can be considered
to be the unexplained residual which may be due to some unknown distance
preference that the horse may possess plus a certain amount of random error.
To estimate the horse’s preference or aversion to today’s distance, the resid-
ual in each of its past races is used to estimate a linear relationship between
performance and similarity to today’s distance. Given the statistical uncer-
tainty of estimating this relationship from the usually small sample of past
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races, the final magnitude of the estimate is standardized by dividing it by
its standard error. The result is that horses with a clearly defined distance
preference demonstrated over a large number of races will be awarded a
relatively larger magnitude value than in cases where the evidence is less
clear.

A horse’s post position is further information that is available to the bettor. Horses
with inside post positions typically have an advantage in gaining positions near the
rail during the race, a benefit that increases with the number of turns in the race; in
fact, horses lose about one length every turn for each horse between them and the rail.
Canfield et al. (1987) demonstrated that a post position bias exists favoring the inside
posts and showed that the market correctly adjusted odds to reflect it, both in the
win market and other markets. An exception is when the situation is nonobvious and
the bet is complex, such as exacta wagering on rainy days when the inside bias may
not be present.4 Such situations may allow profitable betting strategies. Betton (1994)
also demonstrated a post position bias that was only partially reflected in the mar-
kets odds. She did not consider whether the bias was sufficient for profitable betting
strategies.

Numerous trade publications purport to offer profitable systems that violate semi-
strong form efficiency. Among the more “scientific” are Mitchell (1986), Quinn (1986,
1987, 1992), and Ziemba and Hausch (1986, 1987). Tests of strong-form efficiency
are more difficult to conduct as they involve data that is generally not publicly avail-
able. Self-proclaimed accounts of successful gambling exploits do exist, though (e.g.,
Beyer, 1978, 1993). Also, Schnytzer and Shilony (1995) show that observing inside
information in the odds can be beneficial. (See also Shin, 1992, 1993.)

3.3. Place and Show Markets

In the place and show markets, bets are profitable if the horse is at least second and third,
respectively. Define Pj as the amount bet by the public on horse j to place and P =

∑
Pj

as the place pool. Similarly, Sk is the public’s show bet on horse k and S =
∑

Sk is the
show pool. Then the payoff per dollar bet on horse j to place is

1 +
QP − Pi − Pj

2Pj
(1)

if horses i and j are the first two finishers (in either order). Otherwise the payoff is zero.
The first term of Equation (1) is the return of the dollar that was wagered. The second
term recognizes that the track returns only OP of the pool, and from that amount the
original wagers on horses i and j are returned. Of the remainder, PQ − Pi − Pj , half
goes to the bettors of j, who share it on a per-dollar-wagered basis. The payoff on j
is independent of whether j finishes first or second, but does depend on which horse

4Because tracks are beveled, rain may collect in the inside post positions.
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it finishes with. A bettor on j to place generally prefers that a longshot, not a favorite,
finishes with horse j. The payoff per dollar bet on horse k to show is similar:

1 +
QS − Si − Sj − Sk

3Sk
(2)

if horses i, j, and k are the top three finishers.5

One approach to place and show betting is to study whether profitable rules for those
markets can be devised based on information in the win market. For instance, given the
win market’s bias for favorites, perhaps place and show bets on favorites—which are
more likely to pay off than win bets—allow positive profits. Asch et al. (1984, 1986)
studied this possibility using a logit model to estimate win probability based on the win
odds, the marginal win odds (odds based on late betting only), and the morning line.
Betting to win, place, and show on the horse with the highest win probability (together
with additional screens), returns far exceeded those of the average bettor but were not
positive with statistical significance. Betting to place or show based just on information
in the win market can only be improved with some attention to information in the place
and show markets, since it is the public’s wagering in those markets that alone determine
place and show payoffs. This was the approach of Hausch, Ziemba, and Rubinstein
(Hausch et al., 1981, hereafter HZR), who demonstrated that weak-form inefficiencies
can be identified in the place and show markets. There are three distinct aspects to their
model: (i) determining place and show probabilities which together with Equations (1)
and (2) allow expected returns to be calculated; (ii) using the optimal capital growth
model for wagering; and (iii) using approximations for implementation in real time. All
three aspects will be described.

3.4. Place and Show Probabilities

Suppose that horse i’s true win probability is (which could be determined on the basis of
fundamental handicapping or, as HZR assumed, be derived from the public’s wagering
as Wi/W ). Then Harville’s (1973) formulas estimate the probability that horse i is first
and horse j is second as:

qij ≡
qiqj

1 − qi
. (3)

Equation (3) follows from assuming that the likelihood that j will be second, conditional
on i being first, is the probability that j would be first if i were not in the race, which can

5Equations (1) and (2) ignore breakage, which is incorporated by rounding down a payoff to the nearest
nickel or, more typically, dime on the dollar. A further consideration is that U.S. tracks generally guarantee
winners a minimum profit of 5%. So, even if (SQ − Si − Sj − Sk )/3Si < 0.05, which is termed a minus
pool, show bettors on i receive a 5% return. Minus pools are most common when there is an extreme favorite.
In that event, Hausch and Ziemba (1990b) show how risk-free arbitrage may be possible in the place and
show markets.
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be estimated to be qj/(1 − qi). Similarly, Harville estimated the probability that horses
i, j, and k finish first, second, and third, respectively, to be:

qijk ≡ qiqjqk

(1 − qi)(1 − qi − qj)
. (4)

Harville’s formulas have also been discussed by Savage (1957) and Plackett (1975).
With these ordering probabilities, place and show probabilities can be calculated. The
probability that i places is the probability that i finishes first or second, which is:

qi +
∑
j �=i

qji, (5)

and the probability that i shows is:

qi +
∑
j �=j

qij +
∑
k �=i

∑
j �=i

qkji (6)

Dansie (1983) and Henery (1981) demonstrated that Harville’s formulas, Equa-
tions (3) and (4), are implied when horses running times are independently and
exponentially distributed. If horse i’s running time, Ti, is exponentially distributed with
mean 1/�, then Equations (3) and (4) follow with qi = �i/

∑
j �j . An alternative deriva-

tion supposes that Ti has the extreme-value distribution with location parameter, that is,
i’s running time has density function:

fi(ti) = exp(ti − �i) exp[− exp(ti − �i)], −� < ti < �

Then, if T1, . . . , Tn are independent, Equations (3) and (4) follow with qi = exp(�i)/∑
j exp(−�j). These two derivations are related because the extreme-value distri-

bution is the logarithm of an exponential distribution, and the logarithm preserves
order.

Underlying probability distributions not generating Equations (3) and (4) have been
considered, too. Henery (1981) considered running times, Ti, that are independent and
normally distributed as Equation (1). Then

qij = P (Ti < Tj < min
k �=i,j

[Tk])

=
∫�

−�

�(t + �j − �i)
∏
k �=i,j

[
1 − �(t + �j − �k)

]
(t)dt,

where �(·) and (·) are the standard normal cumulative distribution function (cdf) and
density function, respectively. A similar expression holds for qijk. Thus, with (�i), the
ordering probabilities involve numerical integration. With (qi), possibly on the basis
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of the public’s win bets or from handicapping, (�i) is the solution of the following
non-linear system of equations:

qi = P (Ti < Tj < min
j �=i
[
Tj
]
) i = 1, . . . , n

=
∫�

−�

∏
k �=i,j

�(t + �i − �j)(t)dt.

Stern (1990) proposed another alternative to the Harville formulas. He assumed that
running times are independent and gamma distributed with fixed shape parameter r.
Such an underlying distribution is descriptive of a game where players score points
according to independent Poisson processes and the winner is the first to score r points.
With r = 1, Stern’s model is Harville’s model, and as r → �, it converges to Henery’s
model.

Several empirical studies have considered these various models. Henery (1984) fit
running times to the extreme-value distribution, finding that it best fit the faster running
times. Harville (1973) showed that his formulas tend to over estimate the probability
that favorites finish second or third and underestimate these same probabilities for long-
shots. This reverse favorite-longshot bias for the likelihood that horses finish second
and third was also observed by HZR. The betting data in these two papers exhibits the
favorite-longshot bias. One might conjecture that a natural consequence of this bias for
first position is the reverse favorite-longshot bias for other positions, like second and
third, as probabilities over a horse’s finish positions must sum to one. However, Benter
(1994), using Hong Kong data that does not exhibit the favorite-longshot bias, showed
this conjecture to be incomplete at best in Hong Kong. Tables 3–5 show his results.

TABLE 3 Public’s Estimate of Expected Win Probability Versus Actual Win
Frequency (Based on 3,198 Races, Royal Hong Kong Jockey Club, September
1986–June 1993)

Range of estimated Horses Mean expected Actual win
probabilities within range win probability frequency observed Z-statistic

0000–0.010 1,343 0.007 0.007 0.0

0.010–0.025 4,356 0.017 0.020 1.3

0.025–0.050 6,193 0.037 0.042 2.1

0.050–0.100 8,720 0.073 0.069 −1.5

0.100–0.150 5,395 0.123 0.125 0.6

0.150–0.200 3,016 0.172 0.173 0.1

0.200–0.250 1,811 0.222 0.219 −0.3

0.250–0.300 1,015 0.273 0.253 −1.4

0.300–0.400 716 0.339 0.339 0.0

>0.400 312 0.467 0.484 0.6

Source: Benter (1994).
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TABLE 4 Harville Calculation of Expected Probability of Finishing Second Versus
Actual Frequency (Based on 3,198 Races, Royal Hong Kong Jockey Club, September
1986–June 1993)

Range of estimated Horses Mean Harville Actual second finish
probabilities within range probability of second frequency observed Z-statistic

0.000–0.010 962 0.007 0.010 0.9

0.010–0.025 3,449 0.018 0.030 5.3

0.025–0.050 5,253 0.037 0.045 2.8

0.050–0.100 7,682 0.073 0.080 2.3

0.100–0.150 4,957 0.123 0.132 1.9

0.150–0.200 3,023 0.173 0.161 −1.8

0.200–0.250 1,834 0.223 0.195 −3.0

0.250–0.300 1,113 0.272 0.243 −2.3

0.300–0.400 1,011 0.338 0.317 −1.4

>0.400 395 0.476 0.372 −4.3

Source: Benter (1994).

TABLE 5 Harville Calculation of Expected Probability of Finishing Third Versus
Actual Frequency (Based on 3,198 Races, Royal Hong Kong Jockey Club, September
1986–June 1993)

Range of estimated Horses Mean Harville Actual third finish
probabilities within range probability of third frequency observed Z-statistic

0.000–0.010 660 0.007 0.009 0.5

0.010–0.025 2,680 0.018 0.033 4.3

0.025–0.050 4,347 0.037 0.062 6.8

0.050–0.100 6,646 0.073 0.087 4.0

0.100–0.150 4,325 0.123 0.136 2.5

0.150–0.200 2,923 0.173 0.178 0.7

0.200–0.250 1,831 0.223 0.192 −3.4

0.250–0.300 1,249 0.273 0.213 −4.9

0.300–0.400 1,219 0.341 0.273 −5.3

>0.400 601 0.492 0.333 −8.3

Source: Benter (1994).

Table 3 categorizes horses by the public’s estimate of their win probability (through the
win odds) and compares that estimate to the actual win frequency. There is no obvious
bias. Tables 4 and 5 calculate Harville’s estimate of finishing second and of finishing
third, respectively, and compare those with actual frequencies. The reverse favorite-
longshot bias is clearly exhibited, and is more pronounced for third position than for
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second. Benter’s explanation of this bias is that Harville’s formula does not recognize
the increasing randomness of the contests for second and third place.

Lo (1994) provided a theoretical basis for this bias, demonstrating that Harville’s
formulas produce such a bias if the underlying distribution of running times is indeed
independent gamma. HZR described a special type of late-charging horse that tends
to either win or finish far back in the field, making a second or third place finish
unlikely. For such horses, this “Silky Sullivan” phenomenon (named after a horse that
displayed this racing pattern) provides another explanation of the probability bias for
second and third. Stern (1994) described this as a type of information contained in
the horse’s failure to win that j is not used to adjust the probabilities, and related it
to the memoryless property of the exponential distribution for running times. Stern
(1990) analyzed 47 races and found that ordering probabilities estimated using r = 1
(Harville’s model) were less accurate than those estimated using r = 2. Using a likeli-
hood approach and Japanese wagering data, Lo (1994) found r = 4 to be best for Stern’s
model. He reported r = � (Henery’s model) was best on his Meadowlands and Hong
Kong data, though. Thus, while one running-time distribution model does not appear
to hold universally, there is limited empirical support for Harville’s model. (Other
empirical studies include Bacon-Shone et al., 1992a,b; Lo, 1994; and Lo and Bacon-
Shone, 2008.)

While Henery’s (1981) and Stern’s (1987) ordering probabilities are superior to
Harville’s, the complex numerical calculations that they both require essentially pre-
cludes them from being used on-track (unless one determines one’s own odds in advance
of the race). Henery suggested using a first order Taylor series approximation, but
Bacon-Shone et al. (1992b) demonstrated its inaccuracy. Stern (1994) also mentioned
that this simplification does not seem to improve on Harville’s model.

Thus, Harville’s model still is useful; in particular for place and show probability at
tracks where the favorite-longshot bias is exhibited in the win market. The probability
of place, say, involves adding the probability of first, for which there is a favorite-
longshot bias, and the probability of second, which has a reverse bias when calculated
using Harville’s formula. These biases tend to cancel each other, as HZR demonstrated.
Lo and Bacon-Shone’s (2008) discount model retains the simplicity of the Harville
model but attempts to directly correct its bias for ordering probabilities. They define
LO(i, j|k) ≡ logarithm of the odds that horse i beats j for the kth position given that
neither i nor j finish in the top k − 1 positions. For Harville this is simply log(qi/qj),
independent of k. Lo and Bacon-Shone assumed instead that

LO(i, j|k) = �kLO(i, j|k),

and further assumed that �k is decreasing in k, presuming that the relative abilities of
the horses matters less as the finish position worsens and the prize money decreases.
The parameters �2 and �3 can be estimated to best fit with Henery’s or Stern’s models,
or estimated to best fit data from a particular track, from which simple ordering proba-
bilities qjjk can be calculated. For example, Benter’s (1994) Hong Kong data generated
values of �2 = 0.81 and �3 = 0.65, and Lo et al. (1995) used �2 = 0.88 and �3 = 0.8
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for their Japanese data. They reported an improved fit between actual and expected
frequencies.

For any of these ordering probability models, the expected return on a bet on horse i
to place and show can, respectively, be calculated using Equations (1) and (2) as:

EXPi =
∑
j �=i

(qij + qji)
(

1 +
QP − Pi − Pj

2Pi

)
, (7)

and

EXSi =
∑
k �=j

∑
j �=i

(qijk + qjik + qjki)
(

1 +
QS − Si − Sj − Sk

3Si

)
. (8)

Using Harville’s model and Equations (3) and (4), HZR studied Equations (5) and
(6) with data from the 1978 summer season at Exhibition Park (1,065 races and 9,037
horses over 110 days) and the 1973–1974 winter season at Santa Anita Racetrack (627
races and 5,895 horses over 75 days). Table 6 shows the results of wagering on bets
that, through Equations (5) and (6), are identified as having certain minimum levels of
positive expected return.6 The results strongly suggest that inefficiencies can be iden-
tified in the place and show markets. Furthermore, HZR found that such inefficiencies
appear about 2–4 times per racing day. Additional calculations along these lines appear
in Harville (1973).

3.5. Optimal Capital Growth

The previous section showed evidence of inefficiencies in the place and show markets.
The second aspect of HZR’s model is to determine the bet size upon identifying a profit-
able wager. HZR employ the optimal capital growth model, or the Kelly criterion, which
maximizes the expected logarithm of wealth on a race-by-race basis. It was devel-
oped by Kelly (1956) for information transmission independently developed by Latané
(1959), extended by Breiman (1961) who provided rigorous proofs of the main results,
and is described in detail by Hakansson and Ziemba (1995).7 Among its properties are:
(1) it maximizes the asymptotic growth rate of capital; (2) asymptotically, it minimizes
the expected time to reach a specified wealth goal; and (3) it outperforms in the long run
any other essentially different strategy almost surely. While these are impressive asymp-
totic properties, Aucamp (1993) asked: how many periods are required to be reasonably
confident that the Kelly criterion will be superior? Both theoretical and experimental
evidence point to the need for only a moderate number of plays when the risk is low but

6See HZR for Equations (5) and (6) adjusted for breakage. Table 6 correctly accounts for the adverse effects
of breakage.
7See also Algeot and Cover (1988) and Thorp (2006) for a more general mathematical treatment, and
MacLean et al. (1992) and MacLean and Ziemba (2006) for fractional Kelly strategies and a comparison
of its properties.
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TABLE 6 Results of Betting $1 at Exhibition Park and Santa Anita to Place and
Show on Horses with a Theoretical Expected Profit of at Least a Specified Minimum
Level

Place Show

Minimum Number Total net Rate of Number Total net Rate of
level of bets profit ($) return ($) of bets profit ($) return ($)

Exhibition Park

1.04 225 5.10 2.3 612 33.20 5.4

1.08 126 −10.10 −8.0 386 53.50 13.9

1.12 69 11.10 16.1 223 40.80 18.3

1.16 40 5.10 12.8 143 26.30 18.4

1.20 18 5.30 29.4 95 21.70 22.8

1.25 11 −2.70 −24.5 44 11.20 25.5

1.30 3 −3.00 −100.0 27 10.80 40.0

1.50 0 — — 3 6.00 200.0

Santa Anita

1.04 103 12.30 −11.9 307 −18.00 −5.9

1.08 52 12.80 24.6 162 6.90 4.3

1.12 22 9.20 41.8 89 3.00 3.4

1.16 7 2.30 32.9 46 12.40 27.0

1.20 3 −1.30 −43.3 27 6.20 23.0

1.25 0 — — 9 6.00 66.7

1.30 0 — — 5 5.10 102.0

1.50 0 — — 0 — —

Source: Hausch et al. (1981).

a large number generally when the risk is high. See also Ziemba and Hausch (1986) for
empirical calculations.

Using Equations (5) and (6), assuming the appropriateness of Harville’s formu-
las, introducing bets to place and show as decision variables, and accounting for
one’s effect on the odds (but ignoring breakage), the optimal capital growth model
solves optimization problem 1 (OP1).8 Notice that OP1 considers each possible 1-2-3
finish of the horses, determines the logarithm of final wealth in that event, and aver-
ages over all possible 1-2-3 finishes. For convenience, OP1 defines Pij ≡ Pi + Pj and
Sijk ≡ Si + Sj + Sk. OP1 also involves a budget constraint with w0 representing current
wealth.

8Kallberg and Ziemba (1994) described OP1’s generalized concavity properties.
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Optimization problem 1 is shown as follows with place and show betting with the
optimal capital growth model.

max
pisi

n∑
i=1

n∑
j=i
j �=i

n∑
k=i
k �=i,j

qiqjqk

(1 − qi)(1 − qi − qj)
log

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q(P+
∑n

l=1 pl) − (pi+pj+Pij )
2

×
[

pi
pi+Pi

+ pj
pj+Pj

]
+

Q(S+
∑n

l=1 sl) − (si+sj+sk+Sijk )
3

×
[

si
si+Si

+ sj
sj+Sj

+ sk
sk+Sk

]
+ w0 −

n∑
l=1

l �=i,j,k

sl +
n∑
l=1
l �=i,j

pl

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

s.t.
n∑

l=1

(pl + sl) � w0, pl � 0, sl � 0, l = 1, . . . , n.

3.6. Implementing the System and Empirical Results

HZR and Hausch and Ziemba (1985) provided tests of OP1 on data from three North
American racetracks. Figures 3, 4, and 5 show, respectively, the wealth level histo-
ries for the 1978 season at Exhibition Park (Vancouver, BC), the 1973–1974 winter
season at Santa Anita (Arcadia, CA), and the 1981–1982 winter season at Aqueduct
(Jamaica, NY). Given the many approximations involved in the system, the authors
established cutoffs on the expected return of a bet (see Equations (5) and (6)) that were
necessary for wagering, cutoffs that decrease with the size of the track, and one’s confi-
dence with the accuracy of the public’s win odds. Specifically, Figure 3 for Exhibition
Park, a relatively small track, uses an expected return cutoff of 1.20. Figure 4 for Santa
Anita, a much larger track, uses a 1.16 cutoff, and Figure 5 for Aqueduct uses 1.14. The
track take is generally established by the state or province, and varied across these three
tracks. For the seasons studied, the track takes were 18.9% for Exhibition Park, 17.5%
for Santa Anita, and 15% for Aqueduct. To appreciate the dramatic long run effect of
the take, Figure 5 also considers takes of 14% and 17%.

Figures 3–5 are based on OP1’s use of final public wagers, that is, the presump-
tion was that our bettor could wager last. In practice, that is not possible because of
three time-consuming activities necessary for implementing OP1 in real time. First is
the input of the required data—the public’s win, place, and show bets on all horses
in a race. This data is on the order of 3 four- or five-digit numbers for, perhaps,
10 horses. Second is the solution of the non-linear optimization problem OP1. And third
is the time necessary to make one’s bets before the end of the betting period. Since the
public’s wagering can and commonly does change over the betting period, these three
activities mean that one must work with data that only imperfectly forecast the eventual
payoffs. To reduce the time involved in the first two activities, HZR developed regres-
sion approximations to the solution of OP1 that, once a horse was identified as being
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FIGURE 3 Wealth level history, Exhibition Park, 1978 season. Results from expected log betting to
place and show when expected returns 1.20. Initial wealth is $2,500, track payback is 81.9%, and breakage is
accounted for. Source: Hausch et al. (1981).
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FIGURE 4 Wealth level history, Santa Anita, 1973–1974 season. Results from expected log betting to
place and show when expected returns 1.16. Initial wealth is $2,500, track payback is 82.5%, and breakage is
accounted for. Source: Hausch et al. (1981).
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FIGURE 5 Wealth level history. Aqueduct, 1981–1982 season. Results from expected log betting to place
and show when expected returns 1.14. Initial wealth is $2,500, breakage is accounted for and track paybacks
considered are 83%, 85% (actual), and 86%. Source: Hausch and Ziemba (1985).

a possible bet, required as inputs only the public’s win and place (or show) wagers on
that horse as well as the win and place (or show) pools. Analyzing a small sample of
races with data 2 min prior to the end of betting, HZR found that the problem of using
such data is limited—bets identified as profitable based on odds 2 min before the end
of the betting period generally remained profitable based on the eventual final odds.
Hausch and Ziemba (1985) and Ziemba and Hausch (1987) improved upon HZR’s
regression approximations and introduced additional approximations for multiple horse
entries and multiple bets. Programmed into a speciality calculator, entry of the required
data and calculations takes about 15 sec.

Hausch et al. (1995) tested these approximations on 62 runnings of the Kentucky
Derby (1934–1995). The anomaly was present during this period and $2,500 grew to
$8,002. With a breeding filter (based on dosage theory), wealth increased to $12,508.
See Bain et al. (2006) and Gramm and Ziemba (2008) in this volume for updates of this
and applications to the Preakness and Belmont Stakes.

Ritter (1994), in a revision of work predating HZR, also considered place and show
betting. Instead of computing expected returns, Ritter used various filter rules to select
place and show bets. He achieved positive profits using final odds, but not when wagers
were based on the odds 1.5 min from the end of betting.
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Lo et al. (1995) demonstrated that OP1s performance can be improved by replacing
Harville’s model with Lo and Bacon-Shone’s (2008) discount model that corrects for
biases in Harville’s model.

3.7. Does the System Still Provide Profits?

We have a final odds place and show wager simulation; see Ziemba (2004). The effect
of bets on payoffs was not considered. For 4,879 races from major U.S. tracks, there
were 752 wagers made including full, half, and third Kelly wagers. The initial bankroll
was $10,000 and yielded final bankrolls of $55,757 with full, $32,878 with half, and
$24,100 with third Kelly. The assumptions were

• No rebates.
• Expected value cutoff = 1.14 for large tracks and 1.18 for small tracks.
• For all tracks evaluated, no bets were made when the odds were greater than 8.00/1.
• All surfaces and track conditions were included.
• All classes of races were included.
• Coupled entries were used and optimized.
• Place and show bets on the same horse were optimized.
• Bets on multiple horses in the same race were not optimized.

Figure 6 shows the wealth path. The odds of the favorite, and often our place and/or
show bet, tended to fall as the betting period ended. But more and more of the betting

45,000

40,000

35,000

30,000

20,000

15,000

10,000

5,000

0

25,000

2/
6/

02

2/
13

/0
2

2/
20

/0
2

2/
27

/0
2

3/
6/

02

3/
13

/0
2

3/
20

/0
2

3/
27

/0
2

4/
3/

02

4/
10

/0
2

4/
17

/0
2

4/
24

/0
2

5/
1/

02

5/
8/

02

5/
15

/0
2

5/
22

/0
2

FIGURE 6 Wealth path of place and show bets on 752 wagers from 4,879 races in 2003.
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actually is not posted until after the race has begun. By 2008 this was about 50% largely
because about 87% of the total bets for a typical U.S. racetrack are made off track. This
money is bet before the race begins, but the time lags in its reporting in the pools from
the other track betting and from professional betting near the start of the race causes
this effect and significant odds changes from the off-track prices. A typical appliction in
2006 with rebates provided a loss of about 7% over 80 U.S. racetracks with an average
of about 9% rebate for a profit of about 2%. A test account with $5,000 grew to $30,000
with total betting of about $1,500,000 over eight months.

3.8. Exotic Markets

For at least two reasons, exotic bets are typically more complicated to assess than
bets to win, place or show: (1) they involve the outcome of two or more horses; and
(2) one often has poor access to information about the public’s exotic wagering (in
fact, some tracks display no exotic wagering data). The reason for not fully displaying
exotic data is entirely due to the large quantity of it. For example, in a 10 horse race,
the public’s win, place, and show bets involve 30 numbers. By comparison, there are
45 quinella numbers, 90 exacta numbers, and 720 trifecta numbers. Exotic wagers tend
to be popular with the public. One attraction is their low probability and high payoff
characteristics. In view of the favorite-longshot bias for win bets, it is not surprising
that longer-odds events than win bets will be heavily wagered. To illustrate a second
attraction, consider the daily double. Bettors can create for themselves a daily double
by wagering to win on a horse and then, if successful, betting all the proceeds to win on
a horse in the next race. This self-constructed daily double, called a parlay, differs from
a daily double in an important way. The parlay is subjected to the track take twice while
the daily double pays it only once. Thus, transaction costs are higher with the sequence
of win bets. A successful handicapper needs skills significantly better than those of the
average bettor. As transaction costs decrease, though, success demands less of a skill
advantage or, for the same skill advantage, profits are greater.9 Most tracks appreciate
this and charge a higher track take on exotic wagers, reducing their advantage.

While a parlay that is a self-constructed version of a daily double pays the track
take twice, it does allow the bettor more information. Since the daily double must be
wagered before either race, the bettor has little information about the public’s view of
the second race (other than any information that can be gleaned from the payoffs that are
offered on daily double combinations, but that information is usually difficult to access).
The parlay allows one to wager on the second race with a better sense of the public’s
impressions of the horses. Ali (1979) found that returns of parlays and double bets
were not significantly different. Asch and Quandt (1987), however, found that doubles
are statistically more profitable than parlays. When parlay payoffs are adjusted as if
parlay bettors paid the track take just once, then returns on parlays and doubles are
not significantly different. Lo and Busche’s (1994) conclusions were similar for Hong
Kong data.

9For more details on this effect and a numerical example, see Benter (1994).
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Asch and Quandt (1987) found some support for the notion that the smart money is
in the exotic pools. The basis for this notion is that the informational content of the smart
money is more difficult for the public to discern in the exotic market than it would be if
it were wagered in the win market. Their analysis ignores the systematic biases of the
Harville (1973) model, though. Also, Dolbear (1993) described a further bias in their
comparison of the theoretical and subjective probabilities of exacta outcomes. Bacon-
Shone et al. (1992b) addressed these concerns and concluded that the public’s exacta
betting provides more accurate estimates of ordering probabilities (the probability that i
wins and finishes second) than does the win market, and this is so using any of the prob-
ability models offered by Harville (1973), Henery (1981), or Stern (1990). Similarly,
the trifecta market provides more accurate estimates of their ordering probabilities than
does the win market.

Asch and Quandt (1988) analyzed the unbiasedness of the probabilities implied by
exacta and trifecta bet fractions. Using simple linear regressions on the relationship
between objective probabilities (estimated by win frequencies) and subjective probabi-
lities (average bet fractions), they drew different conclusions for the two pools. Exacta
pools implied probabilities that appeared to be unbiased while the trifecta bet fractions
more weakly approximated the objective probabilities and some clear over/underbetting
bias was exhibited.

Ziemba and Hausch (1986) adapted for exotic wagering the techniques developed
by HZR for place and show wagering: win probabilities from the efficient win mar-
ket, Harville’s (1973) model to price other wagers and the Kelly criterion to determine
wagers. Hausch et al. (1994b, 2008) developed general formulas for optimal wagering
on exotic bets, allowing ordering probabilities based on Harville (1973), Henery (1981),
or Stern (1990) with the help of approximations developed by Lo and Bacon-Shone
(1993). Quinella data on 369 Hong Kong races was used to illustrate the system.

Kanto and Rosenqvist (1994) developed a betting system for quinella bets (called
double bets in Finland) at a Finnish racetrack. Instead of using the win odds data
directly, they used maximum likelihood estimation and Harville’s (1973) model to
estimate the win probabilities and the probabilities associated with a quinella bet by
assuming that the quinella bet amounts for different combinations follow a multinomial
distribution. Using the Kelly criterion for wagering and 111 races, they showed some
evidence of positive profits.

3.9. Cross-Track Betting

Cross-track betting allows bettors to wager at their track (a cross track) on a race being
run at another track (the home track). Since each track operates a separate pool, the
payoffs at the tracks can differ. And, in fact, they do often differ, sometimes quite
dramatically. For instance, a $2.00 win ticket on Ferdinand, the winner of the 1986
Kentucky Derby, paid $16.80 at Hollywood Park in California, $79.90 at Woodbine in
Toronto, and $90.00 at Evangeline in Louisiana. Using data from Triple Crown races,
Hausch and Ziemba (1990a) developed and tested optimal betting strategies for cross-
track betting to exploit different odds across tracks. One strategy identified whether
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a risk-free hedge could be developed by betting each horse at the track where its offered
odds were longest, in relative amounts that guarantee a profit. Examples where the vari-
ance in odds across tracks was sufficient were provided. Also analyzed was the optimal
capital growth strategy. This latter strategy was studied in two environments: (1) a sin-
gle bettor at a cross track observing (perhaps by television) the home tracks odds; and
(2) a syndicate of bettors, one at each track, communicating with each other.

Leong and Lim (1994) also found evidence of profits using cross-track betting that
exists between races in Singapore and Malaysia. Both papers showed profits but neither
had sufficient data for statistically significant profits. Thus, further work is needed to
understand cross-track betting, particularly as it is becoming more popular. Tracks have
been facing declining attendance, due in part to the increase in other forms of gam-
bling, for example, lotteries. Cross-track betting helps attendance by offering bettors
the opportunity to wager on prestigious horses in races at large tracks. Since the cross
track does not need to stage an expensive race and the home track receives a portion of
the cross track’s revenues, both tracks can benefit from this arrangement.

4. THE FOOTBALL BETTING MARKET

Bettors on National Football League (NFL) games are offered a point spread. For exam-
ple, suppose team A is a 10 point favorite over team B. Then a bet on A pays only if
A wins by at least 11 points while a wager on B pays only if B either wins or loses by
fewer than 10 points. If A wins by exactly 10 points, then wagers are usually refunded.
Typically bettors pay $11 for a $10 profit when they win. This provides the bookmaker
a commission and means that a bettor has to beat the spread 52.4% of the time to break
even. When the actual point spread equals the offered point spread, the bookmaker
receives no return. Otherwise, by perfectly balancing the wagers, a bookmaker can guar-
antee a profit of 4.55% (since $21 is paid for each $22 wagered). The Las Vegas sports
books, which dominate the market, offer opening point spreads on the coming week’s
game. These spreads may change over the week, but bettors receive the spread offered
at the time they placed their bet.10

The efficiency of NFL betting rests on the accuracy of the point spreads. An obvious
and common approach to study their accuracy is to regress the actual point spread on
the offered point spread. If, say, bettors tend to wager on underdogs then, to balance the
books, the bookmaker has to offer point spreads lower than unbiased expectations about
actual point spreads. Bettor biases should be reflected in the point spread offered and,
if they are sufficiently large, should allow profitable betting opportunities, which would
reject efficiency.

10These dynamics are also present in horse race wagering against bookies. Wagering on jai alai is similar
(see Lane and Ziemba, 2004, 2008), too, but its odds change during the contest as points are scored rather
than before the contest as with sports betting. Pari-mutuel betting is different, though; its odds change over
the course of the betting period as betting patterns change, but payoffs to all bettors are based only on the
final odds.
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Let A1 be the actual point spread in game i and let Pi, be the point spread offered.
The following equation can be estimated:

Ai = 
1 + 
2Pi + �i, (9)

where �i is the error term. The efficiency test is the joint hypothesis that 
1 = 0 and

2 = 1. Pankoff (1968), Zuber et al. (1985), and Sauer et al. (1988) all found signifi-
cant support for the hypothesis. Gandar et al. (1988) results are similar for both opening
and closing point spreads (the point spread can change over the betting period as book-
makers attempt to balance their books). Their large t-statistic on 
2 and low R2 (3.4%
for closing data) suggest that while the point spread for any particular game is a poor
predictor of the actual point spread, it is a good predictor of the average actual point
spread for a group of games with this point spread.

While these results support market efficiency, they are not directly useful in answer-
ing whether there might be technical rules that are economically profitable. Vergin and
Scriabin (1978) used NFL data from 1969 to 1972 to consider various rules, such as bet-
ting on the underdog when the point spread exceeds some specified level, and identified
several profitable strategies. Using 1975–1981 data, Tryfos et al. (1984) demonstrated
that most of these strategies were unprofitable or, if profitable, not at the 5% significance
level. Those that were significantly profitable all required a syndicate taking advantage
of different point spreads in different cities. Gandar et al. (1988) found similar negative
results for these strategies using their 1980–1985 data.

Golec and Tamarkin (1991) discussed how a model such as Equation (7) can mask
specific biases: consider that 
1 measures the average of the biases that do not change
with the magnitude of the point spread. If half the observations in a data sample include
a positive bias and the other half a negative bias of equal magnitude, then 
1 = 0
(p. 314). The problem is that Equation (7) can deal with only one bias. For instance,
a bias in favor (or against) the home team can be considered by defining the data, Pi,
relative to the home team. But if there is also a bias for (or against) the favored team,
that can confound measuring the home team bias. To specifically test for possible biases
for the favorite and the home teams, Golec and Tamarkin used the following model:

Ai = 
1 + 
2Pi + 
3Hi + 
4Fi + �i,

where Hi is a dummy variable that is one for home teams and zero otherwise, and Fi

is another dummy variable that is one if the team is favored and zero otherwise. Here,
the test of efficiency is that 
1 = 
3 + 
4 = 0 and 
2 = 1. Their empirical results for
NFL games from 1973 to 1987 indicated that bettors tend to underestimate the home
field advantage and overestimate the distinction of being the favorite. Interestingly, they
showed that the home field bias is disappearing over time while the underdog bias
is actually growing. Despite demonstrating these biases, profits are shown to be slim
at best in the face of the bookmaker’s commission. Neither bias is present in college
football.

Sauer et al. (1988) considered explanatory variables beyond the point spread, such as
the number of wins prior to this game, fumbles, interceptions, penalties, yards passed,
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and so on. Regressing these variables on the difference between the offered and the
actual point spreads, they were unable to reject the hypothesis that their coefficients
are all jointly zero. They concluded that these variables add essentially no information
beyond that already in the point spread. Dana and Knetter (1994) allowed two modi-
fications. Since fumbles, interceptions, and penalties affect the game but are relatively
uninformative about a team’s ability, they accounted for these unsystematic sources of
noise. Further, they used a non-linear function of past point spreads. There is scant sup-
port for any of their models achieving the minimum 52.4% winners needed for profitable
wagering.

What is the probability that a team favored to win a football game by p points does
win the game? Stern (1991) showed that the margin of victory for the favorite is approxi-
mately normally distributed with mean equal to the point spread and standard deviation
estimated at 13.86. The probability of winning a game is then

Pr(F > U |P = p) = 1 −N
( −p

13.86

)
=
( p

13.86

)
where F and U represent actual points scored by the favorite and the underdog, respec-
tively, and N (·) is the standard normal cumulative distribution function. A linear
approximation to the probability of winning is

Pr(F > U |P = p) = 0.50 = 0.03p.

This formula is accurate to within 0.0175 for p < 6 and is based on data from the 1981,
1983, and 1984 NFL seasons. Data from 1985 and 1986 indicate that the normal approx-
imation is valid outside of the original dataset. This approximation is useful for a variety
of applications, for example, estimating the probability distribution of games won by
a team, the probability a team makes the playoffs, and the probability distribution of
season or playoff outcomes for particular teams.

5. THE BASKETBALL BETTING MARKET

Do athletes have performance that runs in streaks? Gilovich et al. (1985) using data
from the 1980–1981 season for the Philadelphia 76ers found that consecutive shots,
if anything, were negatively autocorrelated. Hence there is no hot hand. They also let
college players take shots while the players and other observers bet on the outcomes.
Both players and observers made larger bets after players had just made shots, although
bet size and actual performance were uncorrelated.11 Camerer (1989, p. 1257) argued
that belief in the hot hand is a mistake generated by the persistent misunderstanding
of randomness. People usually expect more alternations and fewer long streaks than
actually occur in random series.

11Albright (1993) studied hitting streaks of baseball players and found no evidence of streaks beyond those
expected by a statistical model of randomness. Comments on Albright’s work and a rejoinder follow the
Albright (1993) article in the same journal issue.
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If the hot hand is believed to exist within a game then bettors might also believe
in hot and cold streaks across games. And if point spreads reflect a mistaken belief in
hot hands, then winning-streak teams should do worse than expected. For NBA regular
season games from 1983 to 1986, Camerer (1989) found this effect to be very weak.
The effect for losing streaks is slightly stronger, but in neither case is the bias sufficient
to overcome the bookmaker’s transactions costs. Camerer’s test is premised on the myth
of the hot hand. Using more data and a test that can also detect the presence of the hot
hand, Brown and Sauer (1993b) demonstrated that the market believes in the hot hand.
Neither the hypothesis that the hot hand is real nor that it is a myth could be rejected,
though.

Brown and Sauer (1993a) examined the error term in a point spread pricing
model. While the model’s ex ante predictions explained 85% of the variation in point
spreads, the error term has significant predictive power. Hence, the error term contains
unobserved fundamentals, not just noise.

Sauer (1991) showed that the Las Vegas market point spreads offered at 5 PM

Eastern time on the day of 5,636 NBA games are an unbiased estimate of the actual
difference in scores. In a subsample of 700 games that involved injuries to star play-
ers, the teams with the injured stars performed more than a point worse than the
point spread. Obviously this is a nonrepresentative sample, though, because it con-
sists of the games in which the injured star did not play, but not the games where the
injured player decided after 5 PM to play. Accounting for the likelihood that a star
with a nagging injury will play, the point spreads provided unbiased estimates of actual
outcomes.

6. LOTTERIES

6.1. Introduction to Lotteries

For thousands of years, choosing by lots has been used as one means of resolving
disputes. The first lottery of a more traditional form, where one pays for a chance to
win, dates at least to the Middle Ages in Italy, studied by Ziemba, Brumelle, Gautier,
and Schwartz (Ziemba et al., 1986, hereafter ZBGS). Prior to this century, lotteries
were successfully used in the U.S. for local and state governments, and to fund numer-
ous causes, such as universities. Corruption, fraud, and moral opposition together with
lottery restrictions imposed by Congress ended legalized lotteries by the end of the
nineteenth century, with 35 states going so far as to explicitly prohibit them in their
constitutions (Clotfelter and Cook, 1991, p. 38). State lotteries continued to be non-
existent12 until 1964 when New Hampshire introduced its lottery. Since then, the U.S.
has seen an explosive resurgence of lotteries. In 1991, Washington, DC and 32 states
offered lotteries. Furthermore, ticket sales across states exceeded $19 billion. Of that

12Other lottery possibilities were available, such as charity raffles, foreign lotteries like the Irish Sweepstakes,
and illegal lotteries.



William T. Ziemba 213

amount, prizes were $10.4 billion, administration including advertising was $1.1 bil-
lion, and net revenue was $7.6 billion.13 Clotfelter and Cook (1990) mention that in the
course of a year, 60% of the adults who live in lottery states play the lottery at least once
(p. 105). They also report that per capita sales in lottery states increased from (in 1989
dollars) $22 in 1975 to $108 in 1989 (p. 105). The present popularity of lotteries is more
widespread than just the U.S.; in 1986, over 100 countries offered legalized lotteries
(ZBGS, 1986, p. 2). See ZBGS for more on the history and the practice of lotteries.

Despite their popularity, with expected returns typically of 40–60%, lotteries are
usually a poor investment.14 This range is even lower (10–20%) if prizes are not tax-
free or if they are paid in installments over, say, 20 years, as they typically are in the U.S.
Canadian and UK prizes are paid in cash and are tax-free. (See ZBGS for calculations
on the effects of tax and payment in installments.)

Lotteries take several forms. A simple version has players buy prenumbered tickets
followed by a random drawing. Instant scratch-off games allow one to determine imme-
diately if a prize has been won. Another form is the numbers game that requires players
to match a randomly generated three- or four-digit number. Lastly, players of lotto
games attempt to match five to seven numbers (with six most common) drawn from
50 or so numbers (with 49 most common), with the actual choice of the parameters
varying state by state. A feature distinguishing the numbers and lotto games from the
other two forms is the player’s act of choosing his or her numbers. For reasons not
easily explained by traditional economics, the feature of choice is of tremendous impor-
tance. This was illustrated by Langer (1975) who conducted two lotteries where tickets
cost $1 and all the money collected was awarded to the winner, that is, the payback
was 100%. Players in the first lottery were assigned their tickets while those in the
second lottery chose theirs. As the winner was randomly drawn, subjects in both lot-
teries had the same chance of winning. However, Langer found that ticket holders in
the two lotteries viewed their situations differently. When individually approached to
sell their tickets before the drawing, those in the first lottery demanded a mean payment
of $1.96, while in the second lottery the mean was $8.67. Langer referred to this phe-
nomenon as the illusion of control, that choosing one’s ticket improves in some way
the likelihood one will win. States seem to appreciate this phenomenon and lotteries
involving choices are very common.

The prenumbered and instant scratch-off games allow a state to establish winning
payoffs that exactly conform to any payback percentage. For instance, if the instant
scratch-off game has $1 tickets and a $100 prize, then a 40% payback can be guaranteed
by printing 0.4% winning tickets. The numbers game can also involve fixed payoffs.
For instance, if the game is to pick the three-digit number that is randomly drawn from
the 1,000 possible three-digit numbers, then a prize of $400 is a 40% payback. The
difference here is that the state averages a 60% return, but this return is not guaranteed.
If the winning number has disproportionately many bettors, then the state’s return will

13See State Government Finances in 1991 (Washington, DC, Government Printing Office), Table 35.
14An exception was the inaugural offering of a new lottery in British Columbia. To create a keen interest in its
game, participants received six tickets for the price of one, for an expected return of $0.385 times 6 or $2.31,
a 131% edge. See Ziemba (1995).
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be less than 60%, and the possibility exists that it could even be negative. Despite this
difference to the state, the advice to bettors remains: no profitable betting scheme exists
for lottery games of this sort and each bet’s expected return equals the state’s payback
percentage.

For the numbers game, Clotfelter and Cook (1993) document a tendency for the
public to choose numbers relatively less often immediately after they have been drawn.
They describe this pattern as a form of the gambler’s fallacy, the belief that if an event
just occurred, then the likelihood that it will occur again falls.15

6.2. Inefficiencies with Unpopular Numbers

Fixed payoffs for lotteries are not the only possibility. Pari-mutuel payoffs are used
by all states for lotto games and by Massachusetts for its numbers game. The pari-
mutuel method allows a state to guarantee its percentage take by having the payoff
to winners decreasing in the number of winners. Given that all numbers are equally
likely,16 no system can be developed that will improve the likelihood of winning any
of the lotteries that have been described. However, if a numbers or lotto game employs
pari-mutuel payoffs, then by choosing unpopular numbers, upon winning, one is likely
to share the given prize with fewer other winners. If some numbers are sufficiently
unpopular, bets with positive expected return may exist, despite the lottery’s low payout
rate. Chernoff’s (1980, 1981) study of the Massachusetts number game, where players
pick a number from 0,000 to 9,999, found that numbers with 0s, 9s, and to a lesser extent
8s, tended to be unpopular. He showed that by concentrating on the unpopular numbers,
bets with a positive expected return were possible. Clotfelter and Cook (1991) provided
some evidence of this, too, with three days of 1986 data from Maryland’s three-digit
numbers game. The most popular three-digit choice was 333 which was 9.93 times
more common than the average. The seven most popular choices were all triples—333,
777, 555, 444, 888, 666, and 999—and all were at least five times more popular than the
average number. The least popular was 092, picked 0.23 times as often as the average
number, and was followed in unpopularity by 086, 887, 884, and 968, all 0.25 times as
popular as the average.

Lotto, with its possibility of prizes of tens of millions of dollars, is one of the most
popular games, and it has received the most media attention. It involves matching six
numbers drawn without replacement from 50 or so total possible numbers. If T is the
total possible numbers and D is the number drawn, then the probability of matching is
1 in T !/(D!(T −D)!). So, for example, the probability of winning when six numbers

15Metzger (1985) considered the gambler’s fallacy at the racetrack, and found support for the hypothesis that
betting on the favorite should be more attractive after a series of longshots have won than after a series of
wins by favorites.
16Johnson and Klotz (1993), on the basis of 200 Lotto America winning combinations, suggest that each
number may not be equally likely. They find that, roughly, small numbers are drawn more frequently than large
numbers. They suggest that it may be a consequence of the mechanical mixing process, that small-numbered
balls are dropped into the urn first.
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are drawn from 49 is 1 in 13,983,816. Most games have prizes for matching fewer than
all the drawn numbers, too, but it is common for half the prize money to go to the grand
prize. The long odds mean that none of the perhaps millions of bettors might win in a
given week (the usual period over which lotto is played). In this event, the grand prize
jackpot is carried over to the next week. ZBGS studied whether unpopular numbers and
the carryover can allow a profit. Using several methods, they determined that there were
unpopular numbers, they were virtually the same ones year to year, and they tended to
be high numbers (non-birthdays, etc.) and those ending in 0s, 9s, and 8s. For instance,
a regression method based on actual payoffs generated the following as the 12 most
unpopular numbers: 32, 29, 10, 30, 40, 39, 48, 12, 42, 41, 38, and 18. They were 1,530%
less popular than average. The most popular number, 7, was selected nearly 50% more
often than the average number. Using a maximum entropy distribution approach, Stern
and Cover (1989) identified 20, 30, 38, 39, 40, 41, 42, 46, 48, and 49 as the 10 most
unpopular numbers while 3, 7, 9, 11, 25, and 27 were the six most popular.17

ZBGS showed that expected returns of $1.50 without carryover and up to $2.25 with
carryover per dollar bet are possible. Does this imply that lotto games can be profitable,
though? To see that it may not, consider a hypothetical game where you pay $1, choose a
number between 1 and 1,000,000, and if your number matches the one that is randomly
selected, then you win $2,000,000. In spite of your edge, you are likely to go bankrupt
before winning the jackpot. A reduced wager will increase the likelihood that you will
eventually hit the correspondingly reduced jackpot before you go bankrupt, but your
expected wealth will suffer. MacLean et al. (1992) analyzed this problem using a model
contrasting the growth of wealth and the security of wealth and found that lotteries are
an impractical way for modestly endowed investors to enhance their long-term wealth.
For instance, by wagering an optimally small amount each round, one’s initial stake
can be increased tenfold before losing half the stake with a probability close to one.
However, millions of years of wagering are required, on average. For example, consider
the hypothesized data in Table 7 and the results in Figure 7. With a more attractive set
of prizes, the probability is arbitrarily close to one for sufficiently small wagers (see
MacLean et al., 1992).

Rather than make optimally small wagers in the face of small probability gambles,
growth may be improved by increasing the probability of success. For lotteries, this
can be accomplished by buying more than one combination of numbers. It may even be
possible in the face of a substantial carryover to profitably purchase most, or perhaps all,
of the combinations. There have been times when this would have been profitable. In
practice, though, the transaction costs are enormous because tickets must be purchased
one at a time. Furthermore, there is the worry that others might also be covering all the
numbers, to your joint detriment.18

17See also Joe (1987). Clotfelter and Cook (1991) provided another example of popular numbers from Mary-
land’s lotto, which has 40 total possible numbers. On the particular day they analyzed, players picked the
1-2-3-4-5-6 combination over 2,000 times more frequently than the average pick. Had this been the winning
combination (at a chance of one in 3,838,380), winners would have collected only $193.50!
18A related opportunity arises with horse racing pick-sixes (pick the winners of six consecutive races) if there
are substantial carryovers. Covering all pick-six possibilities is easily accomplished at the track and may be
profitable if few others behave likewise.
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TABLE 7 Lotto 6/49 Data

Prizes Probability Value Contribution

Jackpot 1/13,983,816 $6,000,000 42.9

Bonus 1/2,330,636 $800,000 34.3

5/6 1/55,492 $1,000,000 9.0

4/6 1/1,032 $5,000 14.5

3/6 1/57 $150 17.6

Edge 18.1%

Kelly bet 0.00000011

Number of tickets with $10,000,000 bankroll 11

Source: MacLean et al. (1992).
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FIGURE 7 Lotto 6/49—Probability of multiplying before losing half of one’s fortune vs. bet size.
Source: MacLean et al. (1992).

Lotto typically involves drawing six numbers. Different states have different total
possible numbers, though, resulting in very different probabilities of winning. In 1990,
the extremes were one chance in 974,000 (36 numbers and two picks per ticket) in
Delaware and one chance in 22,957,480 (53 total numbers and one pick per ticket) in
California (Cook and Clotfelter, 1993, p. 635). Cook and Clotfelter (1993) explain this
as a trade-off that states must make between the size of the jackpot and a player’s esti-
mate of the likelihood that he or she will win. The former is easily learned through
advertisements and the media. The latter, according to Cook and Clotfelter, is gener-
ally not well understood but tends to be based on the frequency with which someone
wins (p. 634). Thus, Delaware could increase its total possible numbers to 53 as in
California but, given its population, on average there would be many weeks between
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winners. This would lower the public’s view of the likelihood of winning and the
attractiveness of purchasing a ticket. On the other hand, given California’s population,
even with 53 total possible numbers there will usually be a winner each week. This
nonrational means of probability assessment causes a scale effect whereby per capita
expenditure increases with the population base of the lottery. Smaller states cannot
exploit this scale effect themselves but can through forming consortia with other states,
as happens with the Tri-State lottery (involving Maine, New Hampshire, and Vermont)
and the states constituting Lotto America.

References

Abbate, G. 1995. Gambling Afflicts Ontarians, Study Says, The Globe and Mail, August 11, Al.
Akst, D. 1989. This Is Like Stealing, Forbes, November 13, 142–144.
Albright, C. 1993. A Statistical Analysis of Hitting Streaks in Baseball, Journal of the American Statistical

Association 88(424), 1175–1183.
Algeot, P., and T. Cover. 1988. Asymptotic Optimality and Asymptotic Equipartition Properties of Log-

Optimum Investment, Annals of Probability 16, 875–898.
Ali, M. 1977. Probability and Utility Estimates for Racetrack Bettors, Journal of Political Economy

85, 803–815.
Ali, M. 1979. Some Evidence of the Efficiency of a Speculative Market, Econometrica 47, 387–392.
Arid R. 1987. A Monthly Effect in Stock Returns, Journal of Financial Economy 18, 161–174.
Asch, P., B. Malkiel, and R. Quandt. 1982. Racetrack Betting and Informed Behavior, Journal of Financial

Economy 10, 187–194.
Asch, P., B. Malkiel, and R. Quandt. 1984. Market Efficiency in Racetrack Betting, Journal of Business

57, 65–75.
Asch, P., B. Malkiel, and R. Quandt. 1986. Market Efficiency in Racetrack Betting: Further Evidence and a

Correction, Journal of Business 59, 157–160.
Asch, P., and R. Quandt. 1986. Racetrack Betting: The Professors’ Guide to Strategies, Auburn House,

Dover, MA.
Asch, P., and R. Quandt. 1987. Efficiency and Profitability in Exotic Bets, Economica 59, 278–298.
Asch, P., and R. Quandt. 1988. Betting Bias in Exotic Bets. Economic Letters 28, 215–219.
Aucamp, D. 1993. On the extensive Number of Plays to Achieve Superior Performance with the Geometric

Mean Strategy, Management Science 39(9), 1163–1172.
Bacon-Shone, J., V. S. Lo, and K. Busche. 1992a. Modelling Winning Probability. Working Paper, University

of Hong Kong.
Bacon-Shone, J., V. S. Lo, and K. Busche. 1992b. Logistic Analyses for Complicated Bets. Working Paper.

University of Hong Kong.
Benter, W. 1994. Computer Based Horse Race Handicapping and Wagering Systems: A Report, in

D. B. Hausch, V. S. Lo, and W. T. Ziemba (eds.), Efficiency of Racetrack Betting Markets. Academic
Press, San Diego, CA, pp. 183–198.

Bain, R., D. B. Hausch, and W. T. Ziemba. 2006. An Application of Expert Information to Win Betting
on the Kentucky Derby, 1981–2005, European Journal of Finance 12, 283–301.

Betton, S. 1994. Post Position Bias: An Econometric Analysis of the 1987 Season at Exhibition Park, in
D. B. Hausch, V. S. Lo, and W. T. Ziemba (eds.), Efficiency of Racetrack Betting Markets. Academic Press,
San Diego, CA, pp. 511–521.

Beyer, A. 1978. My $50,000 Year at the Races. Harcourt, Brace and Jovanovich, New York.
Beyer, A. 1993. Beyer on Speed. Houghton Mifflin, Boston.
Blough, S. 1994. Differences of Opinions at the Racetrack, in D. B. Hausch, V. S. Lo, and W. T. Ziemba

(eds.), Efficiency of Racetrack Betting Markets. Academic Press, San Diego, CA, pp. 323–341.



218 Chapter 10 • Efficiency of Betting Markets

Bolton, R., and R. Chapman. 1986. Searching for Positive Returns at the Track: A Multinomial Logit Model
for Handicapping Horse Races, Management Science 32, 1040–1060.

Breiman, L. 1961. Optimal Gambling Systems for Favorable Games, in Proceedings of the Fourth Berkeley
Symposium, University of California Press, Berkeley, CA, pp. 65–85.

Brown, W., and R. Sauer. 1993a. Fundamentals or Noise? Evidence from the Point Spread Betting Market,
Journal of Finance 48(4), 1193–1209.

Brown, W., and R. Sauer. 1993b. Does the Baseball Market Believe in the Hot Hand? Comment, American
Economic Review (December), 1377–1386.

Busche, K. 1994. Efficient Market Results in an Asian Setting, in D. B. Hausch, V. S. Lo, and W. T. Ziemba
(eds.), Efficiency of Racetrack Betting Markets, Academic Press, San Diego, CA, pp. 615–616.

Busche, K., and C. Hall. 1988. An Exception to the Risk-Preference Anomaly, Journal of Business
61, 337–346.

Cadsby, C. 1992. The CAPM and the Calendar: Empirical Anomalies and the Risk-Return Relationship.
Management Science, 38(11), 1543–1561.

Camerer, C. 1989. Does the Basketball Market Believe in the Hot Hand? American Economic Review
(December), 1257–1261.

Canfield, B., B. Fauman, and W. T. Ziemba 1987. Efficient Market Adjustment of Odds Prices to Reflect
Track Biases, Management Science 33, 1428–1439.

Chapman, R. 1994. Still Searching for Positive Returns at the Track: Empirical Results from 2,000
Hong Kong Races, in D. B. Hausch, V. S. Lo, and W. T. Ziemba (eds.), Efficiency of Racetrack Betting
Markets. Academic Press, San Diego, CA, pp. 173–181.

Chernoff, H. 1980. An Analysis of the Massachusetts Numbers Game. Tech. Report No. 23, Department of
Mathematics, MIT, Cambridge, MA.

Chernoff, H. 1981. How to Beat the Massachusetts Number Game: An Application of Some Basic Ideas in
Probability and Statistics, Mathematical Intelligencer 3(4), 166–172.

Clotfelter, C., and P. Cook. 1990. On the Economics of State Lotteries, Journal of Economic Perspectives
4(4), 101–119.

Clotfelter, C., and P. Cook. 1991. Selling Hope: State Lotteries in America. Harvard University Press,
Cambridge, MA.

Clotfelter, C., and P. Cook. 1993. The Gamblers Fallacy in Lottery Play, Management Science 39(12),
1521–1525.

Conlisk, J. 1993. The Utility of Gambling, Journal of Risk Uncertainty 6, 255–275.
Cook, P., and C. Clotfelter. 1993. The Peculiar Scale Economies of Lotto, American Economic Review 83(3),

634–643.
Dana, J. D., and M. Knetter. 1994. Learning and Efficiency in a Gambling Market, Management Science

40(10), 1317–1328.
Dansie, B. 1983. A Note on Permutation Probabilities, Journal of the Royal Statistical Association 68,

312–316.
Dolbear, F. 1993. Is Racetrack Betting on Exactas Efficient? Economica 60, 105–111.
Epstein, R. 1977. The Theory of Gambling and Statistical Logic, Academic Press, San Diego, CA.
Fabricand, B. 1965. Horse Sense. McKay, New York.
Fama, E. 1970. Efficient Capital Markets: A Review of Theory and Empirical Work, Journal of Finance

25, 383–417.
Fama, E. 1991. Efficient Capital Markets: II, Journal of Finance 46, 1575–1617.
Figlewski, S. 1979. Subjective Information and Market Efficiency in a Betting Model, Journal of Political

Economy 87, 75–88.
Friedman, M., and L. Savage. 1948. The Utility Analysis of Choices Involving Risk, Journal of Political

Economy 56, 279–304.
Gandar, J., R. Zuber, T. O’Brien, and B. Russo. 1988. Testing Rationality in the Point Spread Betting Market,

Journal of Finance (September), 995–1008.
Garrett, T. A., and G. A. Wagner. 2003. State Government Finances: World War II to the Current Crisis.

Working Paper 2003-035A, Federal Reserve Bank of St Louis. Available at http://research.stlouisfed.org/
wp/2003/2003-035.pdf November 2003.



William T. Ziemba 219

Gilovich, T., R. Vallone, and A. Tversky. 1985. The Hot Hand in Basketball: On the Misperception of Random
Sequences, Cognitive Psychology 17, 295–314.

Golec, J., and S. Tamarkin. 1991. The Degree of Inefficiency in the Football Betting Market, Journal of
Financial Economy 30, 311–323.

Gramm, M., and W. T. Ziemba. 2008. The Dosage Breeding Theory for Horse Race Predictions, in
D. B. Hausch and W. T. Ziemba (eds.), Handbook of Sports and Lottery Markets. North-Holland,
Amsterdam, pp. 307–340.

Griffith, R. 1949. Odds Adjustments by American Horse Race Bettors, American Journal of Psychology
62, 290–294.

Hakansson, N., and W. T. Ziemba. 1995. Capital Growth Theory, in R. Jarrow, V. Maksimovic, and
W. T. Ziemba (eds.), Finance, Handbooks in Operations Research and Management Science, Vol. 9.
North-Holland, Amsterdam, pp. 123–144.

Harville, D. 1973. Assigning Probabilities to the Outcome of Multi-Entry Competitions, Journal of the
American Statistical Association 68, 312–316.

Hausch, D. B., R. Bain, and W. T. Ziemba. 1995. Betting with the Dr. Z System at the Kentucky Derby,
1934–1995, Working Paper, University of British Columbia.

Hausch, D. B. and W. T. Ziemba. 1995. Efficiency of Sports and Lottery Betting Markets, in R. Jarrow,
V. Maksimovic, and W. T. Ziemba (eds.), Handbooks in Operations Research and Management Science,
Vol. 9: Finance, Elsevier B. V., Amsterdam.

Hausch, D. B., V. S. Lo, and W. T. Ziemba (eds.). 1994a. Efficiency of Racetrack Betting Markets, Academic
Press, San Diego, CA, Second edition (2008). World Scientific, Singapore.

Hausch, D. B., V. S. Lo, and W. T. Ziemba. 1994b. Pricing Exotic Racetrack Wagers, in D. B. Hausch, V. S. Lo,
and W. T. Ziemba (eds.), Efficiency of Racetrack Betting Markets, Academic Press, San Diego, CA,
pp. 469–483.

Hausch, D. B., and W. T. Ziemba. 1985. Transactions Costs, Extent of Inefficiencies, Entries and Multiple
Wagers in a Racetrack Betting Model, Management Science 31, 381–394.

Hausch, D. B., and W. T. Ziemba. 1990a. Arbitrage Strategies for Cross-Track Betting on Major Horse Races,
Journal of Business 63, 61–78.

Hausch, D. B., and W. T. Ziemba. 1990b. Locks at the Racetrack, Interfaces 20, 41–48.
Hausch, D. B., and W. T. Ziemba. 1992. Efficiency of Sports and Lottery Betting Markets, in P. Newman,

M. Milgate, and J. Eatwell (eds.), The New Palgrave Dictionary of Money and Banking. Macmillan,
London, pp. 735–739.

Hausch, D. B., W. T. Ziemba, and M. Rubinstein. 1981. Efficiency of the Market for Racetrack Betting,
Management Science 27, 1435–1452.

Hawawini, G., and D. Keim. 1995. On the Predictability of Common Stock Returns: Worldwide Evidence,
in R. Jarrow, V. Maksimovic, and W. T. Ziemba (eds.), Finance, Handbooks in Operations Research and
Management Science, Vol. 9, North Holland, Amsterdam, pp. 497–544.

Henery, R. 1981. Permutation Probabilities as Models for Horse Races, Journal of the Royal Statistical
Society 43, 86–91.

Henery, R. 1984. An Extreme-Value Model for Predicting the Results of Horse Races, Applied Statistics 33,
125–133.

Hensel, C., G. Sick, and W. T. Ziemba. 1993. The Turn-of-the-Month Effect in the S&P 500 (1928–1993).
Mimeo, Frank Russell Company.

Isaacs, R. 1953. Optimal Horse Race Bets, American Mathematical Monthly 60, 310–315.
Joe, H. 1987. An Ordering Dependence for Distribution of k-tuples, with Applications to Lotto Games,

Canadian Journal of Statistics 15(3), 227–238.
Johnson R., and J. Klotz. 1993. Estimating Hot Numbers and Testing Uniformity for the Lottery, Journal of

the American Statistical Association 88(422), 662–668.
Kahneman, D., and A. Tversky. 1979. Prospect Theory: An Analysis of Decision under Risk, Econometrica

47, 263–291.
Kahneman, D., and A. Tversky. 1984. Choices, Values, and Frames, American Psychologist 39, 341–350.
Kallberg, J., and W. T. Ziemba. 1994. Parimutuel Betting Models, in D. B. Hausch, V. S. Lo, and W. T. Ziemba

(eds.), Efficiency of Racetrack Betting Markets. Academic Press, San Diego, CA, pp. 99–107.



220 Chapter 10 • Efficiency of Betting Markets

Kanto, A., and G. Rosenqvist. 1994. On the Efficiency of the Market for Double (Quinella) Bets at a Finnish
Racetrack, in D. B. Hausch, V. S. Lo, and W. T. Ziemba (eds.), Efficiency of Racetrack Betting Markets.
Academic Press, San Diego, CA, pp. 485–498.

Kendall, M. 1953. The Analysis of Economic Time-Series, Part I: Prices, Journal of the Royal Statistical
Society 96(1), 11–25.

Kelly, J. 1956. A New Interpretation of the Information Rate, Bell System Technical Journal 1, 917–926.
Kleinfield, N. 1993. Legal Gambling Faces Higher Odds, New York Times, August 29, E3.
Lakonishok, J., and S. Smidt. 1988. Are Seasonal Anomalies Real? A Ninety-Year Perspective, The Review

of Financial Studies 1, 403–426.
Lane, D., and W. T. Ziemba. 2004. Jai Alai Hedging Strategies, European Journal of Finance, 353–369.
Lane, D., and W. T. Ziemba. 2008. Arbitrage and Risk Arbitrage in Team Jai Alai, in D. B. Hausch and

W. T. Ziemba (eds.), Handbook of Sports and Lottery Markets. North-Holland, Amsterdam, pp. 253–271.
Langer, E. 1975. The Illusion of Control, Journal of Personality and Social Psychology 32(2), 311–328.
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Abstract

Sports betting is extremely popular and many sports offer a variety of wagering options.
These include odds betting (also known as the money line) on the simple proposition of
who will win the game, and point spread betting in which the proposition concerns the
margin of victory. Studies of betting market efficiency in horse racing have been com-
mon, but betting markets for other sports are less well studied. This chapter considers
the efficiency of the point spread and odds betting markets for a variety of sports; we
find that the markets appear to be weakly efficient in the sense that betting based only
on previous results is unlikely to yield profitable strategies.

1. INTRODUCTION

In some sports, for example, horse racing worldwide and baseball in the U.S., odds
betting is the dominant (often only) form of wagering. In other U.S. sports, such as
basketball and American football, there is also point spread wagering. There is much evi-
dence, some of it reviewed in other chapters of this volume, that horse racing odds reflect
a form of collective wisdom. Win probability estimates for the horses that are derived
from the odds are quite accurate. There is anomalous behavior such as the favorite-
longshot bias, but overall, the racetrack betting market achieves a level of efficiency
beyond what many might expect initially. This raises a natural question as to whether
odds betting in other sports and point spread betting achieve a similar level of market
efficiency. For some U.S. sports events, both point spread and odds wagering are offered.
In such cases, it is natural to ask how the point spread and odds relate. This chapter offers
an empirical exploration of the efficiency of point spread and odds betting in a variety
of U.S. sports and an analytic investigation of the relationship between point spread and
odds betting. Finally, having a relationship between the point spread and the odds of
winning a game allows for some interesting speculation about mid-game betting.

2. EFFICIENCY OF ODDS BETTING MARKETS

We begin with a review of odds and probabilities. Odds are used to represent proba-
bilities in betting situations. If the odds against an event happening are quoted as b/a,
then a bettor that believes the event will occur must risk a wager of a units to win a
profit of b units. If the event occurs, then the bettor has a profit of b units; if the event
does not occur, then the better has a loss of a units. This is a fair bet with zero expected
profit / loss if the probability that the event occurs is a/(a + b). Thus odds of b/a against
an event imply a probability of a/(a + b).

2.1. Horse Race Betting

The horse race betting market at the racetrack uses a pari-mutuel system in which the
track takes a portion of all bets (15–18% in most U.S. states) and the remainder of
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the pool is used to pay off winning bettors. With rebates now commonly offered to
off-track bettors, the effective track take can be reduced to approximately 10% for large
players and 12–13% for small players. The odds against each horse’s winning the race
are calculated based on the remainder of the win pool after the track take is removed.
One key point in such a system is that (after the track takes its piece) racetrack bettors
are essentially betting against the opinion of the collective group. The odds against each
horse’s winning the race are derived from the win betting pool and are displayed at the
track. One can estimate the implied probability that each horse wins the race from the
odds as described above, O/1 odds correspond to estimated probability 1/(O + 1). If
you add up the values of 1/(O + 1) for all the horses in a given race, the sum will be
greater than one, so these cannot possibly be valid probability estimates. This occurs
because of the track take. It is easily remedied by taking the estimated probability for a
horse to be proportional to 1/(O + 1) and then normalizing the probabilities to ensure
that they sum to one.

Though other chapters have already made the case, we use one dataset here to
demonstrate the accuracy of the win probabilities derived from race track odds. Table 1
provides results for all horses from a set of 3,785 Hong Kong horse races (38,047 horse
race entrants in all) held between 1981 and 1987. The horses are placed in categories
based on their estimated probability of winning. Table 1 gives the average estimated
win probability for the horses in each category along with the observed proportion of
winners. The observed proportions match up quite well with the estimates. As seen
elsewhere, for example in Ziemba and Hausch (1987), horses with high estimated
probabilities of winning (0.3 or above) actually win more often than expected.

TABLE 1 Probability of Winning Horse Race Derived from Racetrack Odds
Compared to Actual Performance

Probability Expected Observed Estimated Observed
implied Number number of number of probability proportion
by the odds of horses winners winners of winning of wins

[0.000, 0.010) 1,830 12.7 15 0.007 0.008

[0.010, 0.025) 5,096 87.0 78 0.017 0.015

[0.025, 0.050) 6,562 242.9 278 0.037 0.042

[0.050, 0.100) 9,718 713.9 695 0.073 0.072

[0.100, 0.150) 6,461 792.6 781 0.123 0.121

[0.150, 0.200) 3,742 643.4 657 0.172 0.176

[0.200, 0.250) 2,167 480.7 451 0.222 0.208

[0.250, 0.300) 1,227 334.6 325 0.273 0.265

[0.300, 0.400) 856 290.4 303 0.339 0.354

[0.400, 0.500) 267 117.7 121 0.441 0.453

[0.500, 1.00) 121 69.0 81 0.570 0.669

NOTE: Data from 3,785 Hong Kong races during the time period 1981–1987.
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There is of course no guarantee that probability estimates derived from a collective
betting effort such as is found at the racetrack will be accurate. Explanations for the effi-
ciency of the betting market typically emphasize that if the collective effort consistently
made large mistakes, then an intelligent observer (or a group of such people) could
capitalize on these errors. As the knowledgeable bettors placed their wagers, they would
correct the odds and fix the anomalous behavior. The theory holds that small errors like
the favorite bias observed in Table 1 continue to exist because there is not enough finan-
cial reward for individuals to make the wagers required to correct them. Other chapters
in this volume demonstrate that it is in fact possible to capitalize on inefficiencies that
arise in the place and show pools at the race track and in various combination bets at the
racetrack.

2.2. Baseball

The efficiency of the horse race betting market is well known and the subject of several
chapters in this book. A major contribution of this chapter is to consider the efficiency
of betting markets in other, primarily U.S., sports. Odds are the dominant form of
betting for baseball games in the U.S. Baseball odds are usually quoted in the form
“NY−150/+140 Cleveland.” This expression contains the odds for two bets. The odds
against New York winning are 100/150 (i.e., New York is favored) so that a New York
supporter must bet $150 to earn a profit of $100. The odds against Cleveland winning are
140/100 so that a Cleveland supporter must bet $100 to earn a profit of $140. The spread
between the two numbers, that is, the lack of symmetry in the odds, leaves the betting
shops with their profit. Assuming they can balance the volume of bets appropriately,
they can generate a guaranteed profit. For example, if $1,000 were bet on New York
and $700 on Cleveland, then the game will end up in one of two ways: (1) If New York
wins, then New York bettors are owed $667; (2) If Cleveland wins, then Cleveland bet-
tors are owed $980. In either case, the losing team’s bets will pay off the winners and
leave a profit for the betting shop. There is risk here in that the bookmaker is guar-
anteed a profit only if the amount bet on Cleveland is between 100/150 = 0.667 and
100/140 = 0.714 times the amount bet on New York.

As with horse racing odds, one can derive the implied probability that a team wins a
baseball game from the odds that are offered. The 100:150 odds against New York imply
that their probability of winning is 150/250 = 0.600 while the 140/100 odds against
Cleveland imply a probability of 100/240 = 0.417. The two implied probabilities add
up to more than one but can be easily renormalized so that, for example, the probability
that New York wins is estimated as 0.600/(0.417 + 0.600) = 0.590. The accuracy of
baseball odds is assessed from a modest dataset comprised of games from the 1986
National League season. A total of 969 games were played and odds were obtained
from a historical record (Jack Painter’s 1986 Baseball Money Line and Totals Guide)
for 937 games. The games are collected in Table 2 grouped according to the odds of the
favored team. Table 2 shows that, once again, the actual outcomes are consistent with
the probabilities implied by the odds.
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TABLE 2 Implied Probability from Baseball Odds Compared to
Actual Performance

Estimated Games Observed
Favorite’s probability Games won by proportion
odds favorite wins played favorite won by favorite

–110 0.51 89 41 0.46

–115 0.52 98 56 0.57

–120 0.53 71 32 0.45

–125 0.54 82 47 0.57

–130 0.55 70 32 0.46

–135 0.56 80 41 0.51

–140 0.57 75 43 0.57

–145 0.58 79 41 0.52

–150 0.59 54 34 0.63

–155 0.60 58 29 0.50

–160 to –165 0.61 67 41 0.61

–170 to –185 0.63 51 36 0.71

–190 to –300 0.67 63 43 0.68

NOTE: Data are from 969 National League baseball games from 1986.

3. EFFICIENCY OF POINT SPREAD BETTING MARKETS

Point spread betting is used in sports like football and basketball. A betting line is
established for each game. For example, in the 2008 American football championship
(known as the Super Bowl) the New England Patriots were established as a 12 point
favorite to defeat the New York Giants. Bettors can bet on New England to win by more
than 12 points or they can bet on New York to lose by less than 12 points (or win out-
right). Bettors bet $11 to win $10. If New England wins by exactly 12 points then the
bet is cancelled and wagers are returned. The betting line is ideally set at a point that
attracts equal amounts of money to each team. If that happens, then the bookmakers are
assured a profit since the losers pay the winners with bookmakers keeping $1 from each
$11 bet on the losing team.

3.1. American Football

The betting line for American football games is regularly reported in newspaper sports
sections. During the period from 1981 through 1997 data were recorded by the author
for each National Football League game (except the years 1982 and 1986 that were
affected by labor actions). For each game, the point spread (recorded from a local
newspaper that varied over the period) and the game outcome were recorded. There
is some variability in the published point spreads (from day to day and from newspaper
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to newspaper), however, that variability is small (typically less than one point) and
should not have a large impact on the results described here. An attempt was made to
use point spreads from late in the week since these incorporate more information (e.g.,
regarding injured players) than point spreads from early in the week. For reasons of con-
venience, the day on which the data was collected varied. Tables 3 and 4 provide some
basic evidence regarding the efficiency of the point spread betting line. Table 3 presents
results related to the effectiveness of the betting line as a predictor of game outcomes.
If F denotes the favored team’s score, U denotes the underdog’s score, and P denotes
the point spread, then the margin of victory over the point spread (M) is defined by
M = F − U − P . This variable measures the difference between the point spread and
the actual game outcome. Table 3 presents the mean and standard deviation of M for
each season. The means are quite small and not significantly different from zero accord-
ing to standard statistical tests. There is a tendency for the means to be negative but this
does vary over the time period. As with the horse racing odds, the collective wisdom
reflected in the point spread is reasonably accurate.

Table 4 records the outcomes of games separately for each betting line. The point
spread seems to be a reliable measure of the relative ability of the teams in that the
proportion of games won increases as the point spread increases. The relationship is
not perfectly monotone but the observed deviations may be due to the relatively small

TABLE 3 Mean and Standard Deviation of the Differences Between Football
Game Point Spreads and Actual Game Outcomes

Number of Mean point SD point
Year games spread error spread error

1981 224 −0.7 14.1

1982 224 −0.4 13.8

1984 224 1.3 13.6

1985 224 1.1 13.5

1986 224 −0.5 13.8

1988 224 −0.3 14.3

1989 224 0.7 13.6

1990 224 0.9 13.6

1991 224 0.8 12.6

1992 224 −0.7 13.9

1993 224 −1.0 13.1

1994 224 −1.4 12.3

1995 240 −1.1 12.5

1996 240 −0.5 12.9

1997 240 −1.6 13.3

Total 3,408 −0.24 13.42

NOTE: Data from 3,408 National Football League games over the period 1981–1997.
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TABLE 4 Proportion of Games Won by the Favorite for Each Betting Line
and the Proportion of Games in Which the Favorite Won by More Than the
Betting Line

Point Proportion Proportion
spread Games won by favorite
P played favorite beat spread

0.0 85 — —

1.0 141 0.52 0.51

1.5 128 0.47 0.46

2.0 201 0.55 0.51

2.5 231 0.51 0.44

3.0 386 0.62 0.52

3.5 284 0.57 0.47

4.0 200 0.63 0.48

4.5 110 0.67 0.50

5.0 145 0.69 0.50

5.5 111 0.78 0.55

6.0 186 0.65 0.44

6.5 198 0.71 0.50

7.0 209 0.73 0.50

7.5 83 0.78 0.48

8.0 75 0.80 0.49

8.5 52 0.85 0.52

9.0 106 0.75 0.41

9.5 79 0.78 0.52

10.0 82 0.74 0.43

>10 307 0.83 0.48

NOTE: Games ending in a tie are ignored when computing the proportion won and
games ending on the betting line are ignored when computing the proportion won by
more than the betting line. (Data from 3,408 NFL games, 1981–1997 [except 1982,
1986].)

number of games at each point spread. The final column of Table 4 provides additional
evidence of the efficiency of the point spread betting market. Notice that at each level
of the betting line, approximately half of the bets are won by the favorite and half
by the underdog. None of the deviations from 50% are statistically significant. The
consistency is really quite remarkable. Given the 11/10 odds for point spread wagers,
a successful betting strategy must win 52.4% (11 of 21) of wagers (assuming a flat or
constant bet size). For almost every row of the table, the proportion of games in which
the favorite beats the spread is between 47.6% and 52.4% so that simple strategies
based on past outcomes would not be successful. The few exceptions are so close to the
cutoff that there is little reason to believe the patterns persist. Some online bookmakers
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are reducing the 11/10 odds, which reduces the required win rate, but to this point the
effect is a small one. Related evidence of market efficiency in football point spreads was
earlier reported by Pankoff (1968), Vergin and Scriabin (1978), Tryfos et al. (1984), and
Zuber et al. (1985). Cultural evidence of the efficiency of the football betting market
abounds. One online sports columnist picks the games each week against the spread. As
an experiment, he began comparing his picks to those of his wife who does not watch
any football. Her selections have performed better than his over the two years of the
experiment.

3.2. Basketball

A similar analysis was done for professional and college basketball in the U.S. Data
from the 1985–1986 and 1986–1987 National Basketball Association seasons was
obtained in the same manner as described above for football. Point spreads and game
outcomes were recorded from newspaper reports. During the two seasons, a total of
1,886 games were played; point spreads were obtained for 1,880 games. Across the
1,880 games, the mean margin of victory over the point spread is 0.42 and the standard
deviation is 11.6. The mean is positive here (it was negative in the football data) but not
significantly different from zero. Once again, the point spread appears to be an unbiased
estimate of the difference in ability of the competing teams. An analysis of the games
according to the point spread indicates once again that for each possible betting line,
approximately half of the games are won by more than the point spread and half are not.

It is also possible to wager on college basketball in the U.S. Data from the 1995–1996
regular college basketball season was obtained from the Website of The Gold Sheet, a
professional gambling information service (http://www.goldsheet.com). The data are
results for 152 Division I (the most competitive division) teams. These are not all of
the Division I basketball teams, but it includes all of the major conferences. In all,
there are game results for 2,656 games; point spreads are available for 2,109 games.
The mean value of the 2,109 differences is −0.2 and the standard deviation is 10.9.
The mean is not significantly different from zero, which suggests the point spread can
again be considered an unbiased estimate of the difference between the two teams. The
standard deviation tells us about the variability of the outcomes—there is less variability
in college basketball than in professional basketball. This is not a surprise in that the
average team score in college basketball during this era is about 70 points, whereas the
average professional team score during the 1985–1987 period is about 110 points.

4. RELATIONSHIP OF POINT SPREAD AND ODDS BETTING

The previous sections demonstrate that both odds and point spreads appear to be accu-
rate assessments of the relative strengths of two teams. It is natural to wonder if there
is a relationship between the two forms of wagering. There does appear to be a rela-
tionship and this relationship is most easily seen by first determining the relationship
between the point spread and the probability of winning a game.
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4.1. Normal Distribution Result

Though the point spread is not intended as a predictor of the outcome of a game, the
results of the previous section indicate that it appears to be a fairly accurate predictor.
For example, Table 3 indicates that the mean difference between the point spread and the
game outcome is zero. The relationship between the point spread and the game outcome
is explored further here, initially in the context of professional football games but then
subsequently with basketball data as well.

What can one say about the probability that a P -point favorite wins a football game?
A natural estimate is obtained by looking at the proportion of P -point favorites in
the sample that have won their game as reported in Table 4. This empirical approach
works well but leads to estimates with large standard errors due to the small num-
ber of games with any particular point spread. An alternative approach builds on an
interesting distributional result for the victory over the point spread, M = F − U − P .
Figure 1 presents a graphical display of the distribution of M (the difference between
the point spread and the game outcome) for 3,000+ professional football games. The
figure suggests that the outcomes of National Football League (NFL) games can be
approximated as normal random variables. This observation is quite similar to the result
in Stern (1991) which was based on a much smaller sample. Table 3 reports a sam-
ple mean for M of −0.24 and a standard deviation of 13.42. For the remainder of this
chapter we take the normal distribution with mean 0 and standard deviation 13.5 as the
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FIGURE 1 Histogram of margin of victory over the point spread supports a normal approximation.
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approximating distribution of M . The normal approximation can perhaps be justified
by an argument that takes the game outcome as the “sum” of the contributions of a large
number of plays/events and thus subject to the Central Limit Theorem. Clearly, though,
the normal distribution is just an approximation. For one thing, football scores vary in
size (field goals worth 3; touchdowns worth 7), and for another, the number of scores in
a game is not always variable M is concentrated on multiples of one-half, and integer
values occur twice as often as noninteger values. This would not be the case if normality
provided a more exact fit. Indeed with this large sample size the normal approximation
is rejected by some statistical tests. Nonetheless the approximation turns out to be use-
ful in a number of contexts, including as a useful way to translate point spreads into
probabilities.

The normal approximation can be used to provide improved estimates of the
probability that a P -point favorite wins a game. The probability that a team favored
by P points wins the game is

Pr (F > U |P ) = Pr (F − U − P > −P |P ) = Pr (M > −P |P ).

The discussion above shows that M = F − U − P is approximately normal (accumu-
lated over all point spreads). A more detailed analysis indicates that normality appears
to be a valid approximation for M = F − U − P conditioned on each value of P . Note
that the conditional distribution result is more difficult to demonstrate since there are not
many games with any particular value of P . A series of statistical tests were performed
for games with similar point spreads, and these tests seem to indicate that normality
is an adequate approximation for each range of point spreads. If we apply normality
for a particular point spread, P , then F − U is approximately normal with mean P and
standard deviation 13.5. The probability of winning a game is then computed as

Pr (F > U |P ) = Pr (M > −P |P )1 − �

(
− P

13.5

)
= �

(
P

13.5

)

where �(·) is the cumulative distribution function of the standard normal random
variable.

The normal approximation for the probability of victory is given for some sample
point spreads in Table 5 along with the observed proportion of P -point favorites that
won their games (repeated from Table 4). The estimates from the normal formula are
consistent with the estimates made directly from the data. In addition, they are monotone
increasing in the point spread. This is consistent with the interpretation of the point
spread as a measure of the difference between two teams.

A similar distributional result appears to hold for the professional and college bas-
ketball data. A normal approximation again appears to be a useful approximation. The
mean of the normal approximation is the point spread; the standard deviation of the out-
come appears to vary from sport to sport. In professional football the standard deviation
is approximately 13.5; for professional basketball the estimated standard deviation is
11.6, and for college basketball the estimated standard deviation is 11.0. The standard
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TABLE 5 Probability that a P Point Favorite Wins a Professional
Football Game Based on Normal Approximation Along with Empirical
Results

Normal Proportion
Point spread approximation to won by
P win probability favorite

1 0.53 0.52

2 0.56 0.55

3 0.59 0.62

4 0.62 0.63

5 0.64 0.69

6 0.67 0.65

7 0.70 0.73

8 0.72 0.80

9 0.75 0.75

10 0.77 0.74

12 0.81 —

14 0.85 —

17 0.90 —

21 0.94 —

NOTE: Data from 3,408 NFL games, 1981–1997 (except 1982, 1986).

deviation is a key parameter in translating the point spread to the probability of winning
and thence to the odds for a game. One can think of the standard deviation of M in the
same way that one thinks of volatility in valuing financial assets.

4.2. Applications of the Normal Approximation

The normal approximation formula for the probability of winning a game as a function
of the point spread has a number of applications. Most simply, it can be used as a
form of calibration. For example, if two professional football teams are to play and we
believe the stronger team might win seven of 10 times in such games, then we implicitly
are assigning a point spread of 13.5 ∗ �−1(0.7) = 7 points to the game. This can be
compared to the published point spread as a way of calibrating our opinion against
the betting line. As another example, the home-field advantage in college basketball is
generally assumed to be worth approximately five points. Assuming a normal approxi-
mation with standard deviation of 11 for college basketball, the probability that a five
point favorite wins is 0.68; this is exactly the observed winning percentage for home
teams in the 1995–1996 college basketball data.

Beyond its uses as a method for calibrating probabilistic assessments and point
spread assessments, the normal approximation also provides an opportunity for
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examining the relationship between odds and point spread wagering. The 2008 Super
Bowl provides an instance where this may have been useful knowledge. Recall that
the New England Patriots were regarded as a 12 point favorite to defeat the New York
Giants. For significant events such as the Super Bowl, oddsmakers frequently offer both
point spread and odds wagering. One oddsmaker offered the New England Patriots as
−450/+350 favorites to win the Super Bowl. Note that the Patriots’ portion of the odds
appears well calibrated; the probability implied by odds of 100/450 is 0.818 which cor-
responds to a point spread of 12.3 points. There is good agreement between the odds
wager and the point spread wager for a Patriots bettor. However, the odds received by
a Giants bettor, 350/100 imply the Giants probability of winning is 0.222 which corre-
sponds to a point spread of 10.3 points or so. For a Giants fan, the point spread wager
offers the better value!

5. THE NORMAL MODEL AND MID-EVENT WAGERING

The normal approximation derived in the previous section pertains to end of game
results. Stern (1994) examines professional basketball data and finds that the normal
approximation appears to work well at shorter time scales also. That work exam-
ines results for games between a generic “home” and “visiting” team but did not use
point spread data. The results of the previous section suggest that the point spread
can serve as a measure of the expected difference in ability between two teams in
generalizing the results of Stern (1994). Assume that Team A is a P point favorite
to defeat Team B and that the standard deviation for the normal approximation is .
We follow the argument in Stern (1994) by initially transforming the time scale of
a sporting event to the unit interval. Then a time t ∈ (0, 1) refers to the point in a
sports contest at which a fraction t of the contest has been completed. Define X(t)
as a random variable giving the advantage at time t of the favored team. Then assum-
ing a Brownian motion model (i.e., a normal model) is a reasonable approximation
for all t in the unit interval one can take X(t) ∼ N (P t, 2t). Of course, the model
is not correct in that X(t) is integer-valued, but it turns out to be a useful approx-
imation. We return to the limitations of the model below. Another consequence of
assuming a Brownian motion model for X(t) is that X(s) −X(t), s > t, the change
in the score from time t to time s, is independent of X(t), the score difference at time t,
with

X(s) −X(t) ∼ N (P (s − t), 2(s − t)).

At t = 1 (the end of the game) the normal model indicates the probability that the
favorite wins as Pr (X(1) > 0) = �(P/), which matches our earlier expression. Under
the Gaussian process model, however, we can do much more. The probability that the
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favored team wins (i.e., X(1) > 0) given that they have an l point advantage (or deficit)
at time t (i.e., X(t) = l) is

�P ,(l, t) = Pr
(
X(1) > 0 | X(t) = l

)
= Pr

(
X(1) −X(t) > −l)

= �

(
l + (1 − t)P√

(1 − t)2

)

where � is the cumulative distribution function of the standard normal distribution. The
formula is quite intuitive; the outcome of the game from time t to the end is approxi-
mated by a normal random variable with mean equal to the current score difference plus
the remaining fraction of the presumed pre-game advantage P and variance equal to the
remaining fraction of the presumed pre-game variance 2. Of course, as t → 1 for fixed
l �= 0, the probability tends to either zero or one, indicating that any lead is critically
important very late in a game. For fixed t, the lead l must be relatively large compared
to the remaining variability in the contest in order for the probability of winning to be
substantial.

There are several important limitations that must be recognized before applying the
normal approximation to mid-game probability calculations. One limitation arises from
the fact that the normal approximation assumes a continuous distribution on scores
when of course the distribution is discrete. This can be addressed via a continuity cor-
rection as in Stern (1994). A more important limitation is that the computed probability
of winning does not account for which team is in possession of the ball at time t and
therefore has the next chance to score. This is crucial information in the last few minutes
of a game (e.g., t > 0.96 in a 48 min basketball game). There is a very large difference
in the last minute of a basketball game between being a team with a one-point lead
and having possession of the ball and being a team with a one-point lead that does not
have the ball. Thus, the probability of winning should change radically with possession
of the ball, yet this factor is not incorporated in the above. The results from the for-
mula should thus be viewed with great caution late in the game. The point at which the
approximation would be expected to fail depends on various characteristics of the sport
including the length of a typical possession and the number of points that can be scored
on a single possession. The approximation is likely best for basketball in which each
possession lasts a short time (less than 24 sec in the professional game) and each team
can score at most three points on a possession.

Table 6 gives the probability of winning for several values of l, t for two different
point spreads. The top half of the table displays results for a five point favorite while the
bottom half displays results for a 10 point favorite. Results for five or 10 point underdogs
(P = −5 or −10) can be easily obtained by noting that �−P ,(l, t) = 1 − �P ,(−l, t). At
the start of the game the five point favorite has a better than 50% chance of winning
as should be true. Note that even if it is behind by two points at halftime (t = 0.50)
the favored team is still given a better than 50% chance to win the game. Under the
Brownian motion model it is not possible to obtain a tie at t = 1 so this cell is blank; we
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TABLE 6 Probability that a Favorite Wins a Professional Basketball
Game Given a Lead l After a Fraction t of the Game Assuming a Standard
Deviation  = 11.6

Lead l
Elapsed
time t l = −10 l = −5 l = −2 l = 0 l = 2 l = 5 l = 10

Probability P = 5 point favorite wins game:

0.00 .67

0.25 .27 .45 .57 .65 .72 .81 .91

0.50 .18 .38 .52 .62 .71 .82 .94

0.75 .07 .26 .45 .55 .75 .86 .97

0.90 .005 .11 .34 .55 .75 .93 .998

1.00 .00 .00 .00 1.00 1.00 1.00

Probability P = 10 point favorite wins game:

0.00 .81

0.25 .40 .60 .71 .77 .83 .89 .96

0.50 .27 .50 .64 .73 .80 .89 .97

0.75 .10 .33 .53 .67 .78 .90 .98

0.90 .01 .14 .39 .61 .79 .95 .99

1.00 .00 .00 .00 1.00 1.00 1.00

NOTE: Top half of table assumes a five point favorite; bottom half assumes a 10 point
favorite.

might think of the value there as being approximately 0.50. In professional basketball
t = 0.9 corresponds roughly to 5 min remaining in the game. Notice that having the
favorite comeback from five points in the final 5 min is not terribly unusual (about 1 in
10 chance) while a 10 point comeback is considerably more unusual (about 1 in 200
chance). This latter value seems somewhat low. Stern (1994), using a different dataset,
finds a much greater value of  = 15.8. It may be that the larger value adjusts for some
of the limitations mentioned earlier and yields more realistic probabilities near the end
of a game.

6. SUMMARY

Data collected from a variety of U.S. sports leagues argues for weak-form efficiency of
the betting markets in these sports. Extensive data from professional football shows that
the betting point spread is an approximately unbiased estimate of the expected game out-
come. Similar results hold for college and professional basketball. These results argue
for efficiency in point spread betting markets. In addition, win probabilities derived from
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the odds of professional baseball games appear to match the empirical win probabilities.
Thus odds wagering markets also appear to satisfy weak efficiency.

Additional data analysis for those sports in which point spread betting is popular
suggests a useful normal approximation for game outcomes. This approximation allows
one to relate point spreads to win probabilities and to betting odds. Moreover, with some
additional assumptions, the normal model can be used to make probabilistic assessments
of game outcomes during the game, which has implications for mid-game betting.
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1. INTRODUCTION

Sports betting markets are attractive research candidates because they are similar to
traditional financial markets in many aspects but are often much simpler to study. Both
expected values and outcomes are more clearly observable over fixed betting (invest-
ment) horizons. Earlier studies typically focus on the efficiency of a single type of bet in
a particular sports market. For example, Brown and Abraham (2002) study over/under
betting on professional baseball, and Paul and Weinbach (2002) do the same for foot-
ball. Our study of over/under-bets in the U.S. professional football league (NFL) and
the U.S. professional basketball association (NBA) compares the efficiency of a single
bet across two sports.

In Golec and Tamarkin (2002), we identified some inefficiencies in over/under bet-
ting on NFL games, applying the usual regression and profitability tests. We started
by identifying inefficiencies in the aggregate sample, but also showed that they tended
to be stronger in certain years and nonexistent or reversed in others. Like most ear-
lier gambling studies, the aggregate inefficiencies were statistically significant but not
particularly large. Hence, one might question whether these inefficiencies represent a
systematic gambling tendency by bettors, or just a chance result, perhaps due to some
quirk of the NFL market data in particular years. For example, football point scoring is
lumpy, usually in 7s and 3s, so some runs of unusual outcomes in a particular year could
drive the results. If predictions by line-setters are off by one score, they can be relatively
far away from outcomes. Indeed, the NFL sample size is relatively small because teams
play 16 or fewer games per regular season. Hence, a relatively small number of unusual
outcomes could drive results.

We now propose to run the same tests for NBA games, where each team plays 82
regular season games and scoring is less lumpy (in 1s, 2s, or 3s). The idea is to see if
the same types of inefficiencies arise in the same years as in the NFL market. If they do,
then we can be more confident that the inefficiencies observed in the two markets are
legitimate. The underlying assumption is that the behavior of the marginal NFL gambler
is similar to that of the marginal NBA gambler. Indeed, the two pools of bettors probably
overlap. Nevertheless, the difference in the statistical properties of point scoring could
produce different results. For example, predictions that deviate from outcomes by one
score will represent a smaller error as a proportion of the prediction for NBA games.
Hence, inefficiencies in the NBA market may be smaller or less significant than in the
NFL market.

The chapter is organized as follows: Section 2 briefly describes the football betting
market and how point spreads are set; Section 3 describes the data and presents the test
results. The results are summarized in the conclusion.

2. THE SPORTS BETTING MARKET: SETTING
POINT SPREADS AND OVER/UNDERS

Although we will focus on the over/under market, we examine some of the related
statistical properties of point spreads to see if information in that market can be used to
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win over/under-bets. Like stocks and options, or spot commodities and futures, spread
and over/under-bet pricing could be related. NFL and NBA betting markets are predic-
tion markets like securities markets. Both spreads and over/unders are “line” bets, with
winners and losers defined by whether the outcome ends up above or below the quoted
line. For example, gamblers “invest” through a bookie (market-maker) at a point spread
(price), which is the market’s prediction of the number of points by which the (stronger)
favored team will outscore the (weaker) underdog team. Those who bet on the favorite
speculate that their team is underpriced; that is, that the favorite will defeat the underdog
by more than the point spread. Those who bet on the underdog expect their team to win
the game or lose by less than the point spread.

Sports bookies also offer bets on the total points scored by the two teams. The bet-
tor must predict whether the total number of points scored in a game will be over or
under a total quoted by the bookie, that is, the over/under line. The over/under total
depends on the two teams’ relative offensive and defensive strengths, and possibly, the
playing surface, weather, and so on. Spread betting is more established and common,
but over/under betting has grown in popularity. For example, in the 1994 season, spread
bets were available for all NBA games, but over/under-bets were not offered on about
5% of them. By the year 2002, both were offered on all games.

Licensed Las Vegas sports books dominate the organized sports betting markets. Bet-
ting starts on games at the opening point spreads (the line), which typically reflect the
expert opinions of a small group of professional spread forecasters. When new informa-
tion on the relative strengths of opposing teams (e.g., a player injury) becomes available
before game time, bookies often adjust the line. In addition, because gamblers’ identi-
ties are known, bookies sometimes change the line if professional gamblers place bets
disproportionately on one side of the line. Of course, bets placed early at a specific
line remain fixed regardless of future adjustments. The last line available shortly before
game time when the bookie stops taking bets is called the closing line.

Efficient market theory implies that, like securities prices at the end of trading, clos-
ing lines unbiasedly aggregate all relevant information up to that point. For line bets,
perfect efficiency implies that bets on either opponent in a game have a 50% chance of
winning. However, if the marginal market participant is irrational in some way, closing
lines may not properly reflect all relevant information, and bets on one of the opponents
may have a better than 50% chance of winning.

In Las Vegas and other markets for large bettors, winners receive two dollars for
each dollar bet; losers forfeit their bets plus an additional 10% of the bet. The 10% is
the bookie’s commission or “vigorish.” Consequently, a profitable betting strategy must
have at least a 52.4% win percentage. If the line perfectly predicts the outcome (a tie),
all bets are usually canceled (a push).

Many researchers have assumed that bookies adjust the line to even out the betting
on each game, essentially to hedge their positions in each game. But because the bookie
manages a portfolio of mutually uncorrelated gambles, the risk can be diversified away.
Therefore, assuming that lines are a good forecast of the outcomes and that each game’s
bets represent a small component of a bookie’s portfolio, bookies can expect to earn
a return approximately equal to the vigorish, regardless of how disproportionate the
betting might be on any particular game.



242 Chapter 12 • Over/Under-Bets on NFL and NBA Games

One reasonable strategy for a bookie is to maximize the total dollar amount of bets
placed subject to the constraint that the line is set to produce an even money gamble
for each game. This is no different than how a casino treats even money bets in craps
or roulette. They care more about the total amount bet over time as opposed to how
much is bet on one side in any particular game. Of course, over many games, one would
expect the amounts bet on either side of a gamble to be equal, although Levitt (2002)
argues that bookmakers may intentionally offer biased lines if they expect to make
enough vigorish on the additional amount wagered to offset any expected losses due to
the bias.

3. NFL AND NBA BETTING MARKET EFFICIENCY

Our data is provided by The Gold Sheet, a well-known sports information publication
that has been in business since 1957. The sample consists of all National Football
League (NFL) games from 1993 through 2000 and NBA games from 1994 through
2002. The data consists of the point spreads and over/under lines, game dates, scores
of opposing teams, and an overtime designation. There are a total of 2,008 NFL games
and 10,819 NBA games during their respective sample periods.

Table 1 reports summary statistics for the point spread (PS) and the over/under (OU)
lines for both the NFL and NBA. The PS and the margin of victory (MV) are defined rel-
ative to the favorite, hence, PS is the number of points by which the favorite is expected
to win, and MV is the actual difference in score between the favorite and the underdog.
Surprisingly, NFL and NBA average PS and MV do not differ by much, and the average
PS error, (MV – PS), is about minus one half point for both. That is, favorites tend to
score about one half point less than predicted by the PS line. This implies that favorites
could be less attractive bets than underdogs. Considering the medians, the median NFL
error is still minus one half point, but it is zero for NBA games. This suggests that the
favorite bias could be stronger for NFL games. The systematic favorite bias for both
could support Levitt’s (2002) profit-maximizing bookie model.

As one would expect, the average NFL OU and total points scored (TP) is much
smaller than those of the NBA. The nature of the NFL game is that fewer total points
are scored. The average NFL OU error (TP – OU), however, is larger than that of the
NBA. The average NFL error is about a point compared to a quarter point in the NBA.
The positive average errors imply that betting the over could be profitable on average.
As a proportion of the TP, the average NFL error is much larger than the average NBA
error. This could reflect the lumpy NFL scoring increments when compared to NBA
scoring increments. Although the standard deviation of the NFL errors is smaller than
that of the NBA, this could reflect the effect of overtime. NFL overtime is sudden death,
so only one score is required to end the game. The NBA has an overtime period, in which
many points can be scored. Overtime could explain the average positive OU error. The
zero median error, however, implies that OU bets are still even bets.

One feature of the PS and OU lines in both sports is that they exhibit skewness and
kurtosis, with PS negatively skewed and OU positively skewed. PS also exhibits positive
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TABLE 1 Summary Statistics for NFL and NBA Point Spread and Over/Under-Bets

Variable Mean Median SD Skewness Kurtosis

Panel A: NFL statistics

Point Spread (PS) 5.64 5.00 3.58 –0.98 0.75
Margin of victory (MV) 5.17 4.00 13.50 0.02 0.30
[MV−PS] –0.47 –0.50 12.91 0.02 0.24

Over/under (OU) 40.15 40.00 4.13 0.72 1.20
Total points scored (TP) 41.22 41.00 14.22 0.35 –0.04
[TP−OU] 1.07 0.00 13.76 0.36 0.06

Panel B: NBA statistics

Point Spread (PS) 6.37 6.00 3.72 –0.64 –0.10
Margin of victory (MV) 5.94 6.00 12.16 –0.01 0.43
[MV−PS] –0.43 0.00 11.53 0.01 0.49

Over/under (OU) 193.82 193.00 11.145 0.16 –0.21
Total points scored (TP) 194.10 194.00 20.31 0.17 0.10
[TP−OU] 0.28 0.00 17.11 0.19 0.38

NOTE: For both NFL and NBA games, the data are defined relative to the favorite, that is in the NBA the
favorite is expected to win by 6.37 points on average. NFL data cover 2,008 observations of point spreads and
over/unders for the 1993–2000 seasons. The NBA data cover 10,815 point spreads and 10,819 over/unders
for the 1994–2002 seasons.

kurtosis. Margins of victory are basically normally distributed, with little skewness or
kurtosis. This is surprising because if the goal of the bookie is to set PS to mirror MV,
one might expect them to have similar distributions. Of course, the bottom line for
bookies is to end up with an even odds bet, which would be reflected in a zero median.
Except for the NFL PS, the median errors are zero.

Market efficiency requires the closing OU line to be an unbiased measure of TP.
That is, the closing OU should not be systematically higher or lower than the actual
TP. We test market efficiency using the following ordinary least squares regression of
TP on OU.

TP = �1 + �2(OU) + �,

where TP is a vector of total points scored, OU is a vector of over/under lines, �1 and
�2 are regression coefficients, and � is an error term. The market efficiency test is an
F -test of the joint hypothesis, �1 = 0 and �2 = 1.

Table 2, Panels A and B, present the regression tests for the NFL and the NBA,
respectively, and for samples of all years and separate years. For the full sample periods,
we find that the F -statistics reject OU market efficiency for both the NFL and the NBA.
At the top of each panel, the full sample results show that the positive intercept estimates
(�1) are significantly larger than zero, and the slopes are smaller than one for both the
NFL and NBA games.



TABLE 2 Regression Estimates for Tests of Market Efficiency for NFL and NBA Over/Under-Bets

Sample F -statistic F -statistic
period �1 �2 SER R2 (�1 = �2 = 0) (�1 = 0, �2 = 1) Obs.

Panel A: NFL regression tests

1993–2000 5.96* 0.88* 13.75 0.065 139.34* 7.39* 2,008
(3.00) (0.07)

1993 13.18 0.66* 13.68 0.027 6.71* 1.14 242
(9.57) (0.25)

1994 8.87 0.81* 13.97 0.055 13.68* 1.53 236
(8.66) (0.21)

1995 29.65* 0.34 14.54 0.006 1.52 7.01* 252
(11.02) (0.27)

1996 13.32 0.68* 12.64 0.022 5.56* 0.85 252
(11.77) (0.29)

1997 13.75 0.67* 13.68 0.021 5.38* 0.78 252
(11.90) (0.29)

1998 –3.85 1.13* 13.16 0.105 29.66* 1.87 254
(8.56) (0.20)

1999 6.41 0.87* 14.08 0.065 18.08* 1.64 259
(8.34) (0.20)

2000 –3.73 1.08* 14.06 0.165 51.24* 0.18 261
(6.31) (0.15)

Panel B: NBA regression tests

1994–2002 8.73* 0.96* 17.10 0.291 4,435.41* 6.11* 10,819
(2.78) (0.01)

1994 19.75* 0.90* 16.58 0.255 402.92* 2.38 1,178
(9.08) (0.25)

1995 22.59* 0.89* 18.02 0.240 390.90* 3.34* 1,241
(9.15) (0.04)

1996 19.91* 0.90* 16.96 0.222 333.07* 2.08 1,169
(9.79) (0.05)

1997 1.33 1.00* 17.15 0.288 496.97* 1.94 1,230
(8.65) (0.04)

1998 –3.72 1.02* 17.46 0.205 328.67* 0.06 1,280
(10.72) (0.06)

1999 –5.70 1.03* 16.75 0.238 252.85* 0.16 812
(11.82) (0.06)

2000 14.95 0.92* 16.75 0.223 362.85* 1.28 1,270
(9.42) (0.05)

2001 18.49 0.91* 17.35 0.173 276.36* 2.24 1,328
(10.2) (0.05)

2002 2.24 0.99* 16.68 0.208 343.15* 0.20 1,311
(10.19) (0.05)

NOTE: This table presents regression tests for the over/under betting market for combined seasons and for indi-
vidual seasons separately. The regression is TP = �1 + �2(OU) + �, where TP is total points scored, OU is the
over/under line, �1 and �2 are regression coefficients, and � is an error term. The test of efficiency is an F -test of
the joint hypothesis that �1 = 0 and �2 = 1. Standard errors in parentheses appear below the estimates. SER is the
standard error of the regression. ∗denotes statistical significance at least at the 5% significance level.



Joseph Golec and Maurry Tamarkin 245

Notice that the NFL regression R2 is only about one quarter of the NBA R2. This
implies that the NBA OU explains a larger proportion of the variation in the TP. This
could reflect the fact that NFL point scoring is comparatively lumpy. A one-score NFL
error is three or seven points, whereas it is three points or less in the NBA. Consequently,
one would expect more noise in the NFL regressions.

Further evidence on the consistency of the bias can be found in the regressions for the
data subset by year. Panel A shows that in six of the eight years, the NFL had positive
intercept estimates, although only the 1995 estimate is statistically significant. Further-
more, 1995 is the only year where the F -statistic rejects market efficiency. During the
last three years of the sample period, the NFL market appears to be relatively more effi-
cient in the sense that the intercepts are closer to zero and the slopes are closer to one.
The regression R2 are also considerably larger. This means that the OU line explains a
larger portion of the variation in TP.

In Panel B, the NBA regressions show seven of nine years with positive intercepts,
with three being statistically significant. Like the NFL, the early years appear to drive
the full sample results, particularly 1995. And again, like the NFL, 1995 is the only year
where the F -statistic rejects market efficiency. Therefore, whatever was driving the OU
market inefficiency could perhaps explain both the NFL and NBA bias because the bias
appears mostly around 1995.

Table 1 results showed that the average total points scored exceeded the average
over/under line, and Table 2 results reject efficiency for both the NFL and NBA mar-
kets. Hence, betting the over would have been more profitable than betting the under,
particularly in 1995.

As mentioned above, overtime rules for NFL and NBA games differ, hence, our
results could change if we account for the effect of overtime on TP. Surprisingly, about
5.4% of games end up in overtime for both the NFL and NBA. But with the NFL playing
sudden death and the NBA playing extra periods, the effects of overtime on TP could
differ substantially. If overtime can be predicted, then the effects should be included
in the OU. To consider this possibility, we first examined whether the probability of
overtime could be predicted from the PS or OU. PS could be related to overtime prob-
ability, because if team scores are expected to be close, one might expect games to end
regular play in a tie. We ran probit regressions of overtime on the PS separately, OU
separately, and then PS and OU together. The results showed no significant relations for
NFL games. For NBA games, however, PS is negatively related and OU is positively
related to the probability of overtime, beyond the 1% level of significance. This was true
in separate regressions or when PS and OU appeared in the same regression. Therefore,
overtime appears to be at least partially predictable in the NBA, but PS does not account
for all of the predictability.

Overtime games tend to result in larger point totals. Table 3 reports market efficiency
tests after adding an overtime dummy variable and the spread. For the entire NFL sam-
ple period, we find that overtime games increase TP by a statistically significant average
of 3.73 points on average. This is reasonable because NFL sudden death overtime typi-
cally ends on a three-point field goal, which is easier to score than a touchdown. Indeed,
the actual difference between TP and OU in overtime games is 3.75, which shows that



TABLE 3 Market Efficiency Tests for NFL and NBA Over/Under-Bets Adjusted for Overtime Games
and Point Spread

Sample F -statistic
period �1 �2 �3 �4 R2 (�1 = �4 = 0, �2 = 1) Obs.

Panel A: NFL regression tests

1993–2000 5.64* 0.87* 3.73* 0.06 0.069 3.52* 2,008
(3.00) (0.07) (1.35) (0.08)

1993 11.66 0.73* 8.69 –0.21 0.044 0.85 242
(9.56) (0.26) (4.63) (0.24)

1994 10.40 0.71* –0.25 0.42 0.066 1.90 236
(8.74) (0.23) (3.63) (0.26)

1995 27.15* 0.41 5.95 –0.17 0.021 3.58* 252
(11.11) (0.28) (3.31) (0.26)

1996 12.94 0.68* 4.81 0.02 0.029 0.44 252
(11.79) (0.29) (3.48) (0.24)

1997 12.96 0.67* −1.37 0.23 0.025 0.82 252
(11.97) (0.29) (3.55) (0.26)

1998 0.53 0.97* 2.10 0.40 0.115 1.95 254
(8.98) (0.23) (4.75) (0.26)

1999 5.34 0.91* 10.82* −0.12 0.086 0.66 259
(8.31) (0.21) (4.53) (0.26)

2000 −4.13 1.08* 1.40 0.09 0.166 0.18 261
(6.39) (0.15) (3.90) (0.25)

Panel B: NBA regression tests

1994–2002 9.32* 0.94* 16.92* 0.07 0.327 10.04* 10,819
(2.72) (0.01) (0.71) (0.04)

1994 19.66* 0.89* 9.68* 0.25* 0.277 3.74* 1,178
(9.00) (0.05) (1.71) (0.12)

1995 24.62* 0.97* 17.74* 0.16 0.286 3.61* 1,241
(8.93) (0.04) (2.00) (0.13)

1996 16.28 0.91* 18.65* 0.09 0.272 2.76* 1,169
(9.49) (0.05) (2.10) (0.13)

1997 0.60 1.00* 17.24* –0.14 0.328 0.46 1,230
(8.41) (0.04) (2.04) (0.24)

1998 –5.19 1.03* 11.86* –0.05 0.213 0.23 1,280
(10.72) (0.06) (3.21) (0.12)

1999 –3.14 1.02* 16.90* –0.04 0.268 0.30 812
(11.64) (0.06) (2.93) (0.17)

2000 11.03 0.94* 18.88* 0.05 0.268 1.57 1,270
(9.26) (0.05) (4.53) (0.13)

2001 13.94 0.91* 22.31* 0.26 0.250 2.84* 1,328
(9.82) (0.05) (1.92) (0.14)

2002 3.96 0.98* 18.50* –0.02 0.258 0.94 1,311
(9.88) (0.05) (1.96) (0.13)

NOTE: This table presents regression tests for the NFL and NBA over/under betting market efficiency after controlling
for the effects of overtime and point spread information for combined seasons and for individual seasons. The regression
is TP = �1 + �2(OU) + �3(OT) + �4(PS) + �, where TP is total points scored, OU is the over/under line, OT equals 1
for an overtime game and zero otherwise, PS is point spread, �1, �2, �3, and �4 are regression coefficients, and � is an
error term. The test of efficiency is an F -test of the joint hypothesis, �1 = �4 = 0 and �2 = 1. Standard errors appear in
parentheses below the estimates. SER is the standard error of the regression. ∗denotes statistical significance at least at
the 5% significance level.
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the OU line explains none of the overtime effect on TP. Adding an overtime dummy has
almost no effect on R2 (compare Tables 2 and 3). But the intercept decreases, which
means that the over bias is reduced after accounting for overtime effects. The F -test of
market efficiency is still significant, but the level of significance falls. But this means
that it could be important to account for overtime in other cases.

For the NBA, where the overtime is not sudden death, Panel B shows that overtime
games increase the total points scored by a statistically significant 16.92 points on aver-
age. Furthermore, the actual difference between TP and OU for these games is 16.1
points. Therefore, the OU accounts for about 0.82 points of the overtime effect.1 In this
case, the intercept increases, which means that the over bias is greater after controlling
for the predictability of NBA overtime. This is reinforced by the F -test, which is now
more significant than it was when overtime was ignored in Table 2. It also reinforces the
notion that OU predicts TP more precisely for the NBA than the NFL, perhaps because
of the NFL’s lumpy scoring.

Compared to Table 2, the overall results in Table 3 are little changed. Market effi-
ciency is still rejected and the years around 1995 again drive the rejection. Adding the
PS to the regression tests shows no significant relation between TP and PS.

Table 4 presents outcomes for betting strategies of both over and under. Panel A
shows that betting the over for the full sample of NFL games is only marginally bet-
ter than betting the under. Furthermore, the 50.1% winning percentage in the NFL is
nowhere near the 52.4% required to cover the vigorish paid to the bookie. For the NBA
in Panel B, the number of over wins is exactly equal to the number of under wins. These
full sample results illustrate how the statistically significant biases found in Tables 2 and
3 do not necessarily translate into profitable betting strategies.

Of course, variations in efficiency in particular years could make a strategy profitable
in some years. One should not be surprised to find one profitable strategy in the 17
years of combined NFL and NBA data, especially because they represent 34 trials as
we are considering both sides of the bet. The regression tests imply that 1995 could be
a profitable year to bet the over. Indeed, for the NFL this is true; the winning percentage
of 54.3% significantly exceeds the 52.4% breakeven point. But the over strategy for
NBA games in 1995 does not exceed breakeven. In 1997, the over looks profitable for
the NBA, but the 52.5% winning percentage is not statistically larger than 52.4%.

Because there is no way of knowing beforehand that the over-bet would be profitable
in the NFL in 1995, our results are of little value to a bettor. Even in 1993 through 1997
in the NFL, where the regression tests appear to show relatively large biases, betting the
over would not have yielded a profit. Furthermore, in three of the five years, betting the
under would have been as good as or better than betting the over.

The results in Table 3 show that information impounded in the PS cannot be used
systematically to predict the TP after controlling for the OU and OT. Nevertheless, we
considered two ways to use PS and OU in a non-linear fashion that might generate

1The correlation between OU and OT for the NBA is a statistically significant 0.023 ( p < 0.02). The same
correlation for the NFL is insignificant. If we run the regressions in Table 3 after excluding OT, we find little
change in the NFL intercept and OU estimates (5.64 vs. 5.98 and 0.87 vs. 0.87) but significant changes for
the NBA estimates (9.32 vs. 8.67 and 0.94 vs. 0.96).



TABLE 4 NFL and NBA Over/Under Betting Strategies’ Winning Percentages

Sample Betting Number Bets Winning
period strategy of bets won Ties percentages

Panel A: NFL bet results

1993–2000 Over 2,008 988 36 0.501
Under 2,008 984 36 0.499

1993 Over 242 119 4 0.500
Under 242 119 4 0.500

1994 Over 236 115 4 0.496
Under 236 117 4 0.504

1995 Over 252 133 7 0.543*
Under 252 112 7 0.457

1996 Over 252 125 5 0.506
Under 252 122 5 0.494

1997 Over 252 122 2 0.488
Under 252 128 2 0.512

1998 Over 254 126 5 0.506
Under 254 123 5 0.494

1999 Over 259 125 3 0.488
Under 259 131 3 0.512

2000 Over 261 123 6 0.482
Under 261 132 6 0.518

Panel B: NBA bet results

1994–2002 Over 10,819 5,290 239 0.500
Under 10,819 5,290 239 0.500

1994 Over 1,178 565 29 0.492
Under 1,178 584 29 0.508

1995 Over 1,241 625 25 0.514
Under 1,241 591 25 0.486

1996 Over 1,169 563 29 0.494
Under 1,169 577 29 0.506

1997 Over 1,230 631 29 0.525
Under 1,230 570 29 0.475

1998 Over 1,280 620 32 0.497
Under 1,280 628 32 0.503

1999 Over 812 409 16 0.514
Under 812 387 16 0.486

2000 Over 1,270 603 32 0.487
Under 1,270 635 32 0.513

2001 Over 1,328 640 25 0.491
Under 1,328 663 25 0.509

2002 Over 1,311 635 24 0.493
Under 1,311 652 24 0.507

NOTE: The profitability of over/under betting strategies for NFL and NBA games for combined seasons and
for individual years. ∗denotes a statistically significant winning percentage based on a binomial distribution.
Winning percentages are calculated assuming that ties push. A push means that all bets are returned when the
over/under betting line equals the total points scored in the corresponding game (a tie).
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profitable bets. First, if PS is larger than average and OU is smaller than average, it
might be profitable to bet the underdog. The idea is that if OU is small, the market is
expecting fewer points to be scored, which could make it more difficult for a favorite
to outscore an underdog by many points. Second, if PS is larger than average and OU
is also larger than average, it might be profitable to bet on the favorite. In this case,
because the market expects a large number of points to be scored, favorites might
be more likely to outscore underdogs by a large number of points and beat a large
spread.

Table 5 reports results for these strategies. Panel A starts by examining the NFL over
the full sample without any filter. Overall, betting the underdog was nearly a profitable
strategy, with a 52.1% winning percentage. But in Panel B, the NBA underdog was
only marginally better than an even bet (50.5% winning probability). Next, we filtered
by choosing only games where the PS was above average (PS > 5.5 for NFL and PS
> 6.5 for NBA) and the OU was below average (OU < 41 for NFL and OU < 195
for NBA). Betting on the underdog was more profitable for the NFL (55.8%) but still
only an even bet for the NBA (50.1%). The NFL bets were profitable in six of the eight
sample years, with a winning percentage greater than 55% in four of those years.

For the second filtered bet, we chose games where the point spread was above aver-
age (PS > 5.5 for NFL and PS > 6.5 for NBA), but the over/under was above average
(OU > 40 for NFL and OU > 194 for NBA). Our proposed strategy of betting on the
favorite after this filter was actually worse than betting the underdog for both the NFL
and NBA.

Table 5 also reports more extreme filters for the two filtered betting strategies. We
selected games with PS and OU at least one standard deviation away from their means.
For the NFL, the first strategy includes bets where PS > 8 and OU < 38. The more
extreme filter increases the underdog winning percentage from 55.8% to 58.3%. For
the second strategy, we selected games where PS > 8 and OU > 43. Betting the favorite
becomes more profitable at 52.4%, but is still not significantly better than breakeven. For
the NBA, the first strategy includes bets where PS > 9 and OU > 185. The more extreme
filter increases the underdog winning percentage slightly from 50.1% to 50.7%. For the
second strategy, we selected games where PS > 9 and OU > 210. The favorite winning
percentage increases slightly from 46.9% to 47.6%, but the bet is still unprofitable.
Overall, the restrictive filters increase the winning probabilities, but the improvement is
only significant for the NFL bets.

4. CONCLUSION

We have studied the efficiency of the NFL and NBA betting markets with respect to
over/under-bets. Regression tests of over/under-bets reject efficiency in both markets.
Those tests imply that there is a bias that makes the over a better bet than the under on
average. Furthermore, in both markets, the inefficiency is largest in the early years of
the sample, with 1995 exhibiting the largest bias. Therefore, the NBA bias confirms the
NFL bias, and vice versa. Because it appears in both data samples in the same years,
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TABLE 5 NFL and NBA Favorite/Underdog Point Spread Betting Strategies Using the
Over/Under Line

Sample Betting Number Bets Winning
period strategy of bets won Ties percentages

Panel A: NFL bet results

1993–2000 Favorite 2,008 920 86 0.479
Underdog 2,008 1,002 86 0.521

PS > 5.5, OU < 41

Favorite 468 202 11 0.442
Underdog 468 255 11 0.558*

PS > 5.5, OU > 40

Favorite 438 205 15 0.485
Underdog 438 218 15 0.515

PS > 8, OU < 38

Favorite 99 40 3 0.417
Underdog 99 56 3 0.583*

PS > 8, OU > 43

Favorite 131 66 5 0.524
Underdog 131 60 5 0.476

Panel B: NBA bet results

1994–2002 Favorite 10,819 5,215 292 0.495
Underdog 10,819 5,312 292 0.505

1994–2002 PS > 6.5, OU < 195

Favorite 2,109 1,033 38 0.499
Underdog 2,109 1,038 38 0.501

1994–2002 PS > 6.5, OU > 194

Favorite 2,311 1,125 30 0.493
Underdog 2,311 1,156 30 0.507

1994–2002 PS > 9, OU < 185

Favorite 325 151 3 0.469
Underdog 325 171 3 0.531

1994–2002 PS > 9, OU > 210

Favorite 778 368 5 0.476
Underdog 778 405 5 0.524

NOTE: The profitability of over/under betting strategies for NFL and NBA games for combined seasons and
for individual years. ∗denotes a statistically significant winning percentage based on a binomial distribution.
Winning percentages are calculated assuming that ties push. A push means that all bets are returned when
the over/under betting line equals the total points scored in the corresponding game (a tie).
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it likely reflects some systematic feature of the over/under market as opposed to an
anomaly in the data for either NFL or NBA data.

Although the bias is statistically significant, we find that it is not economically signif-
icant. On average over the full samples, betting the over is not significantly profitable.
Bets based on filter rules are sometimes profitable for the NFL sample, but not for
the NBA sample, hence, profitability in one market is not confirmed in the other. This
dichotomy could reflect the fact that the OU line tends to better predict the TP in the
NBA market. For example, the average R2 of the NBA regressions of TP on OU are
four times that of the NFL. Furthermore, the NBA OU line accounts for some of the
effects of overtime on TP, while the NFL OU line accounts for none of it. This could
mean that the economic magnitude of the NFL bias exceeds that of the NBA bias. We
suggest that these results could be due to the lumpiness in scoring in the NFL compared
to the NBA.
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Abstract

We present arbitrage and risk arbitrage betting strategies for team jai alai. Most of the
results generalize to other sports betting situations and some financial market applica-
tions. The arbitrage conditions are utility free. The risk arbitrage wagers use the Kelly
expected log criterion.

Keywords: arbitrage, risk arbitrage, hedging, sequential investing

1. INTRODUCTION

This chapter discusses arbitrage and risk arbitrage strategies for betting on team jai
alai.1 The game originated in the Basque region of Spain and is played in Mexico City,
Connecticut, Florida, Nevada, Rhode Island, and other locales (see Hollander and
Schultz, 1978). It is played in a large enclosed rectangular court called a fronton
between two opposing teams, each having two players. Players serve each point in turn
and single points are scored by one team winning a rally off the serve, as in squash,
racquetball, or tennis. Opposing teams alternate hurling and catching a ball (the pelota
made of goatskin and hard rubber which must be recovered every 15 min of play) with
an enlarged basket (cesta) against a wall (granite or concrete). When one team misses,
the other team scores a point. The game is fast and exciting. Games are usually played
to 30 points. At the fronton, bets may be placed on either team to win the game before
every point is played at fixed locked-in odds, until the outcome of the game. Payoffs on
bets made during the game are settled at the end of the game based on the quoted house
odds at each betting point. We construct arbitrage and risk arbitrage bets with zero or
little risk while at the same time yielding a positive return.

Arbitrage occurs in strategies when the net gain of all bets is always non-negative
and sometimes positive and involves no risk of losing. Conditions that lead to arbitrage
in various circumstances are studied in Kallio and Ziemba (2007). Risk arbitrages may
yield losses, but occur more frequently and have higher mean returns. We develop these
arbitrages for team jai alai. Section 2 provides conditions for arbitrage. Risk arbitrage
is discussed in Section 3. Final remarks and applications to other areas are discussed in
Section 4.

Assume that

1. The jai alai fronton bet payout rate is the constant Q ∈ (1, 0).
2. The two teams’ relative ability is known and defined by the probability of win-

ning a single point—team A wins with the score invariant probability p, and B
with q = 1 − p.

The probability of A reaching K points before B, given that A currently has
0 ≤ m < K points and B has 0 ≤ n < K points, is (according to Montmort, see

1Goodfriend and Friedman (1975, 1977) and Skiena (1988) have analyzed the game of individual jai alai.
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Epstein, 1977, p. 109):

Pa = Pa(m, n)

= pK−m
[

1 + q(k − m) + q2 (k − m)(K − m + 1)
2

+ · · · + qK−n−1 (2K − m − n − 2)!
(K − m − 1)(K − n − 1)!

]

= pK−m
[
K−n−1∑
i=0

qi
(
K − m + i − 1

i

)]
.

For K = 30,Pa is the probability that team A will win the game given the current score
is m to n. A schedule of Pa and Pb for all values of m and n over the 30 point game in
abbreviated form appears as Table 1 for the case of p = 0.5.

For given fixed Q, a schedule, as shown in Table 2, can be computed from the
consistent house odds over the game since

Pa = Q/(Oa + 1) and Pb = Q/(Ob + 1) or

Oa =
Q

Pa
− 1 and Ob =

Q

Pb
− 1 =

Q − Pb

Pb
. (1)

In Equation (1) Oa and Ob are the consistent house odds for teams A and B respectively,
when the score is (m, n). Odds of 1.5 to 1 means 1.5 profit plus the original bet or 2.5,
is returned for each 1 bet, and so on. Consistent odds are those that return 1 −Q for
the house’s profit regardless of which team, A or B, wins. Then the expected return per
dollar bet on each team is Q. Since Pa + Pb = 1 independent of Q, the odds then reflect
the actual value of Q through Equation (1). Hence

OaOb =
(Q − Pa)(Q − Pb)

PaPb
= 1 − Q(1 −Q)

PaPb
. (2)

For given Q and odds on A of Oa to 1, consistent odds on B may fail to exist that
guarantee the house advantage 1 −Q. In that case, if there is a minimum payout
of 1, that is, you just get your money back, then there is a minus pool and the house’s
actual take is less than 1 −Q. A minus pool is defined to be this situation where the
house take is 1 −Q∗ < 1 −Q, where Q∗ > Q. So the effective Q, namely Q∗, is higher
and the odds on B always exist since at their lowest the odds on Ob are the reciprocal
of the odds on A. That is the case where the payback is all the money wagered and
the house makes no profit since Q∗ = 1. In general, these odds are possibly as low as
the minimum guarantee, that is, Ob = 1/Oa. In a typical minus pool, the odds on B
are higher than 1/Oa. For example, if the minimum payout is 1.05, as is typical, then
consistent odds on Ob may fail to exist. In this case, the odds on A are too large given
the 1 −Q∗ demanded by the minimum guarantee so that the odds on B do not exist.
Let Ob be Q = 1 consistent odds (i.e., odds that give Q = 1) and Obh are related by
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TABLE 1 Probability that Team A Wins When the Score Is A = m and B = n and the Single Point Probability is p = .5

NOTE: This table is symmetric in the sense that Prob(A wins) with score m, n equals Prob(B wins) with score n, m. This occurs if and only if p = .5.
Source: Lane and Ziemba (2004).
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TABLE 2 Consistent Odds for Teams A and B for Given Q

Payback rate, Q

House odds, Oa/1 1.00 0.950 0.900 0.850 0.800 0.750 0.700

0.100 10.000 9.025 8.100 7.225 6.400 5.625 4.900

0.111 9.000 8.123 7.290 6.503 5.760 5.063 4.410

0.125 8.000 7.220 6.480 5.780 5.120 4.500 3.920

0.143 7.000 6.318 5.670 5.057 4.480 3.938 3.430

0.167 6.000 5.415 4.860 4.335 3.840 3.375 2.940

0.200 5.000 4.512 4.050 3.613 3.200 2.813 2.450

0.250 4.000 3.610 3.240 2.890 2.560 2.250 1.960

0.333 3.000 2.707 2.430 2.167 1.920 1.688 1.470

0.500 2.000 1.805 1.620 1.445 1.280 1.125 0.980

1.000 1.000 0.903 0.810 0.723 0.640 0.563 0.490

1.500 0.667 0.602 0.540 0.482 0.427 0.375 0.327

2.000 0.500 0.451 0.405 0.361 0.320 0.281 0.245

2.500 0.400 0.361 0.324 0.289 0.256 0.225 0.196

3.000 0.333 0.301 0.270 0.241 0.213 0.188 0.163

3.500 0.286 0.258 0.231 0.206 0.183 0.161 0.140

4.000 0.250 0.226 0.202 0.181 0.160 0.141 0.123

4.500 0.222 0.201 0.180 0.161 0.142 0.125 0.109

5.000 0.200 0.180 0.162 0.144 0.128 0.113 0.098

5.500 0.182 0.164 0.147 0.131 0.116 0.102 0.089

6.000 0.167 0.150 0.135 0.120 0.107 0.094 0.082

6.500 0.154 0.139 0.125 0.111 0.098 0.087 0.075

7.000 0.143 0.129 0.116 0.103 0.091 0.080 0.070

7.500 0.133 0.120 0.108 0.096 0.085 0.075 0.065

8.000 0.125 0.113 0.101 0.090 0.080 0.070 0.061

8.500 0.118 0.106 0.095 0.085 0.075 0.066 0.058

9.000 0.111 0.100 0.090 0.080 0.071 0.063 0.054

9.500 0.105 0.095 0.085 0.076 0.067 0.059 0.052

10.000 0.100 0.090 0.081 0.072 0.064 0.056 0.049

Source: Lane and Ziemba (2004).

Obh = Q∗Ob − (1 −Q∗). Actual house odds, Oah may differ from the consistent odds
Oa and Ob for a number of reasons, including the desire of the oddsmakers to balance
their books, competition among individual bookies for larger shares of the total pool, or
additional information about teams’ performance. This then adjusts the actual 1 −Q∗

that the house receives.
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For team A, or respectively B, the house odds are: Oah = Oa (consistent), Oah > Oa

(favorable), and Oah < Oa (unfavorable).

2. THE ARBITRAGE

Arbitrage is the proverbial sure bet. For each betting point of a K point game with a
utility function U and betting wealth W , optimal arbitrage bets can be found by solving

max
Ba>0,Bb>0

E [U (Ba,Bb)] (3)

s.t. Ba + Bb ≤ W

BaOah + Ba ≥ Ba + Bb

BbObh + Bb ≥ Ba + Bb

where Ba and Bb are the amounts bet on A and B, respectively, and E is the expectation
operator. Besides the budget constraint, the arbitrage constraints indicate that the return
if either A or B wins is never less than the total bet on A and B. This reduces to the
arbitrage betting condition at every point of the game. These constraints yield

1/Oah ≤ Ba/Bb ≤ Obh, Bb �= 0, (4)

which demonstrates:

Theorem 1. The arbitrage exists if

OahObh ≥ 1. (5)

The arbitrage condition in Equation (5) is utility free and holds for all U . Both
Ba and Bb must be positive or both zero.

The constraints in Equation (3) imply that

Ba/Bb ≤ W/Bb − 1.

By Equation (4),

1/Oah ≤ W/Bb − 1.

Hence

Bb ≤ OahW/(1 + Oah).

Similarly,

Ba ≥ W/(1 + Oah).
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We consider betting strategies using the strategy variable f ≥ 1, using

Ba = fW/(1 + Oah) and Bb = W (1 − f + Oah)/(1 + Oah),

when

OahObh = 1,Ba = W/(1 + Oah),Bb = OahW/(1 + Oah) and f = 1.

To guarantee the arbitrage, the profit must be non-negative regardless of which team
wins:

profit if A wins = W (Oahf − (1 − f ) − Oah)/(1 + Oah) (6)

= W (f − 1) ≥ 0,

profit if B wins = W (Obh(1 − f ) + ObhOah − f )/(1 + Oah) (7)

= W (Obh(1 + Oah) − f (1 + Obh))/(1 + Oah) > 0.

To satisfy Equations (5–7)

fmin ≡ 1 ≤ f ≤ Obh(1 + Oah)/(1 + Obh) ≡ fmax. (8)

Figure 1 illustrates how the net payoffs vary with f . For

f∗ = (Oah + 1)(Obh + 1)/(1 + Oah + Obh + 2), (9)

one maximizes the minimum arbitrage profit

W (OahObh − 1/Oah + Obh + 2).

More insight about the arbitrage betting condition in Equation (5) may be obtained by
comparing it to consistent odds at each betting point. They require that

OaOb = Q2. (10)

The house odds favorability factors ra > 0 and rb > 0 for favorable odds are defined by

Oah ≡ Oa(1 + ra) and Obh ≡ Ob(1 + rb). (11)

Then Equation (5) implies that

Q2(1 + ra)(1 + rb) > 1. (12)

Note that rA > 0 and rB > 0, although typical, is not required for Equation (12) see also
Figure 2.
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FIGURE 1 Profits for Teams A and B for initial betting wealth of 1 unit vs. strategy variable f , when
Oah > Obh and OahObh > 1. Source: Lane and Ziemba (2004).
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FIGURE 2 House odds favorability regions. Source: Lane and Ziemba (2004).

If ra = rb = r, the schedule of Q versus r and the region of betting under the perfect
hedge is as shown in Figure 3.

For typical values for Q of about 0.85 the required favorability for house odds quoted
on both teams is nearly 20%. Such discrepancies occur occasionally in actual betting.
More frequently, however, one needs to take added risk to get good bets so we now turn
to the construction of risk arbitrages.
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FIGURE 3 Betting region of Q vs. r. Source: Lane and Ziemba (2004).

3. RISK ARBITRAGES

Two approaches are considered for constructing risk arbitrage positions. They exploit
the observed house odds favorability conditions to find good arbitrages strategies.

A maximal capital growth model encompassing these approaches is

max
Ba(i)≥0,Bb(i)≥0

Eg [(lnW (g)] (13)

s.t.
∑
i∈g

(Ba(i) + Bb(i)) ≤ W0

∑
i∈g

Ba(i)Oah(i) ≥ �
∑
i∈g

Bb(i)

∑
i∈g

Bb(i)Obh(i) ≥ �
∑
i∈g

Ba(i),∀g ∈ G

where Eg represents mathematical expectation with respect to the game path g, G is the
set of scenario game paths from (0, 0) to the final outcome, W (g) is the wealth with
g, and the constant � > 0 is the relative degree of risk of the bettor in the arbitrage.
For example, if � = 3/4, the bettor requires that total returns must cover at least 75%
of total bets in any game. With � = 1, the goal is to find an arbitrage to cover all bets
and a premium is required for betting in any game if � > 1. The log utility function
corresponds to the Kelly (1956) system of betting which maximizes the asymptotic
long run rate of growth of the bettor’s fortune. See MacLean and Ziemba (2006), Thorp
(2006), and Ziemba and Ziemba (2007), for a summary of results concerning such
betting strategies.

The first approach to the risk arbitrage problem is a model that analyzes the objec-
tive function over all feasible paths of the game and computes the bets Ba,Bb which
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TABLE 3 Cardinality of G is Large

Game
Points in Total betting points Number of
the game betting points Min Max game paths

1 1 1 1 2

2 4 2 3 6

3 9 3 5 20

4 16 4 7 70

5 25 5 9 252

·· · · ·
·· · · ·
·· · · ·

30 900 30 59 5.91 × 1016

maximize Equation (13). This presupposes that information is known in advance
about the odds Oah and Obh, actually set by the house throughout the game. This
information may be a probability distribution or a function for Oah and Obh, over the
scores of the game. The drawback is that the cardinality of G is very large as shown in
Table 3. Calculations for two and three point games using a = 1, Q = 0.85, and p = 0.5
appear in Table 4. These calculations utilize the following probability distributions for
the house odds favorability factors ra = rb = r:

1. r ∼ N (0, 2) is iid for all scores of the game.
2. r ∼ N[r(i), 2], depends upon the size of the lead and the number of points the

leader is away from winning the game.

This relation is given by

r(i) =

{
exp(−M/D) − 1 if team i is leading by M points
exp(pM/D) − 1 if team i is trailing by M points,

D is the number of points the leader is away from winning the game, namely K − S,
where K are the points needed to win the game and S is the score of the leader.

The results yield insights that may be useful in the construction of good heuristic
strategies for 30 point games. For the normally distributed favorability factors, there is
an intrinsic threshold value for the odds favorability below which no initial bet is placed.
This threshold is about a 20% odds favorability. Secondly, betting almost always takes
place in natural-arbitrage pairs, where a bet on one team at one point of a particular
game path is paired with a compensating bet on the other team later in the game along
the same game path. Where perfect arbitrages could be constructed, these dominated
all other possible bet points. As variance increases, the number of lucrative bets also
increases both in number and in size of bet.
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TABLE 4 Sample Results for Two and Three Point Games

House Games bet per Average percent of bet Average value of
odds type W  games played compared to game bet funds per game played

Two point games

(1) 1 0 0/1 0 0

1 .1 1/10 100 0.0005

1 .2 5/10 84 0.0073

(2) 1 0 0/1 0 0

1 .1 0/10 0 0

1 .2 2/10 100 0.0119

Three point games

(1) 1 0 0/1 0 0

1 .1 0/10 0 0

1 .2 7/10 80 0.0193

(2) 1 0 0/1 0 0

1 .1 3/10 75 0.0098

1 .2 5/10 60 0.0059

Source: Lane and Ziemba (2004).

Many betting points occurred in pairs of tied scores and trailing team bets, where
the higher odds for the trailing team boost the combined bet pair over the arbitrage
condition requirements. Under these situations, gains could be realized on a team that
came from behind to win, and strategies can concentrate on this possible event occurring
while hedging a priori that the leading team wins.

In the exponential function distribution, the high relative favorability of the trailing
team contributes to still greater emphasis on betting on the trailer to come from behind
to win while hedging (usually early in the game, or at a tied point) on the leader to win.
As in the normal case, the initial bet favorability threshold value of 20% continues to
manifest itself in the results.

Additional calculations showed modest expected total gains in the range of 1–2%
using this method for sets of 25 games. The gains in the three point game are larger
than the two point game for the same level of variance, which suggests that higher gains
could be anticipated as the game size increases and more betting opportunities arise.

We now utilize these insights in a second approach to risk arbitrage by constructing
single arbitrage bets for the 30 point game. A single arbitrage is a bet on one team and
subsequently a bet on the opposing team later on in the game such that the constraints
of Equation (13) hold. Unlike arbitrage, which required betting both teams at the same
time, this risk arbitrage does not require concurrent bets. The idea is to exploit the
favorability of quoted odds on one team at some point in the game and take the risk
that the house odds will become attractive enough on the opposing team later on so
that an arbitrage may be constructed. However, the second half of this bet will not
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always materialize. Volatility and prediction models are useful here. This hedge may be
formulated by examining the constraints on the bets B and

Ba(Sa)Oah(Sa) ≥ �Bb(Sa), � > 0

Bb(Sb)Obh(Sb) ≥ �Ba(Sb),
(14)

where Sa and Sb are the scores of the game at the time a bet is made on team A and B,
respectively.

The approach taken in the construction of the single hedge is to simulate the passage
of the 30 point game using the same assumptions about odds favorability as with the
two and three point game model.

The simulation model of the 30 point game generates at each point an odds favora-
bility for each team, and the winner of the point using a uniform distribution on p. Bets
were generated by first initializing a threshold favorability value which is used as the
basis for placing the initial bet. Once the initial bet is placed whose amount is deter-
mined by criteria discussed below, the game continues until a new betting point for the
opposing team is found such that the arbitrage condition in Equation (5) is satisfied. At
the end of the game the bets are settled and the results recorded. Each simulation run is
a set of 30 point games.

To find better strategies, and study the sensitivity of the model, different sets of games
were simulated and compared in order to find the threshold favorability values which
gave consistent positive expected net gains over the entire set of games. The results
are highly sensitive to the value of this parameter. Low threshold values typically mean
early betting points and more likely completion of the single hedge. However, early bets
typically mean low odds and thus a small hedge margin (the amount by which OahObh

actually exceeds 1) and consequently smaller net gains. Higher values mean delayed
betting points with a greater chance of not completing the second half of the hedge.
However, potential loss due to unhedged or single bet games is compensated for by
higher hedge margins (due to later game scores, larger point spreads and higher odds)
and hence more potential net gains when the risk arbitrage is successfully completed.
Typical results for these single arbitrage betting pairs appear in Table 5. In two games,
the risk arbitrage was completed. One leads to a positive gain, the other to a break even
situation. In the other game, the risk arbitrage was not completed and leads to a loss.
If a risk arbitrage is not completed, it invariably leads to a loss because the team that you
would like to bet on to complete the quasi-hedge remains ahead throughout the game.

Figure 4 gives a profile of three different sets of games under various initial bet
threshold favorability values for the normally distributed case.

In the cases illustrated and described above, the implicit assumption in the con-
struction of the hedge and the determination of the amounts bet was that the arbitrage
condition in Equation (5) is satisfied as an equality, that is, OahObh = 1. Thus the arbi-
trage margin was assumed to be zero in the construction of the arbitrage bet pair.
However, if a margin, m > 0 exists, such that

OahObh = 1 + m
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TABLE 5 Sample Results for Single Risk Arbitrage Betting Pairs

Game Amount Score Actual House
number Bet Team bet A B odds odds Favorability

10 1. B 0.8581 18 23 0.1288 0.1654 0.2838

2. A 0.1419 6.2963 7.6719 0.2185

Final
score Bets Payoff

Team A 31 0.1419 1.0886

Team B 29 0.8581 −0.8531

Net betting payoff = 0.2304

Game Amount Score Actual House
number Bet Team bet A B odds odds Favorability

11* 1. A 0.0306 14 23 25.7480 31.6751 0.2302

Final
score Bets Payoff

Team A 15 0.0306 −0.0306

Team B 31 0.0 0.0

Net betting payoff = −0.0306

Game Amount Score Actual House
number Bet Team bet A B odds odds Favorability

21 1. B 0.6493 0 3 0.4466 0.5401 0.2094

2. A 0.3507 1 5 2.0653 1.9782 −0.0422

Final
score Bets Payoff

Team A 17 0.3507 −0.3507

Team B 30 0.6493 0.3507

Net betting payoff = 0.0000

∗Arbitrage condition not realized, only one bet placed. Source: Lane and Ziemba (2004).

then the effect is to permit bets to place more emphasis on one team or the other or
neither within the limits of satisfying the constraint set of Equation (13) (see Figure 1
for the arbitrage case). The perceived existence of a risk arbitrage margin allows the
bettor to express the bet as a function of the score at the time of the bet placement, or as
merely a prediction about the eventual outcome of the game. The actual margin cannot
be known until the arbitrage condition is satisfied at the second betting point. However,
because the value of the margin affects the initial bet, it must be anticipated by some
estimate.

If a margin exists, then the arbitrage, if it has been successfully constructed, satisfies
all the conditions required for a member of the infinite set of betting pairs defined by
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Total
net
gain

Set A
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Set C

4 8 12 16 20

Positive total 
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common to all
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Threshold
favorability

r0

FIGURE 4 Thirty point game, single risk arbitrage simulation r0 search. Source: Lane and Ziemba
(2004).

TABLE 6 Total Gain Values for a 100 Game Set

fmin f* fmax

m/r0 0 0.05 0.10 0.20 0 0.05 0.10 0.20 0 0.05 0.10 0.20

0 1.41 0.47 −0.22 2.22 1.41 0.47 −0.22 2.22 1.41 0.47 −0.22 2.22

0.05 2.22 1.09 −0.02 3.35 2.01 0.93 −0.05 3.50 1.92 0.86 −0.10 3.89

0.10 2.67 2.43 −0.02 3.18 2.32 2.25 −0.08 3.62 2.07 1.92 −0.15 4.27

0.20 1.19 0.08 −1.47 3.09 0.78 −0.03 −1.50 4.09 0.17 −0.68 −1.57 5.17

NOTE: Exponential function favorability,  = 0.2, constant strategy. Source: Lane and Ziemba (2004).

the single betting strategy variable, f of Figure 1. However, if the margin should not
materialize, then the risk is that the risk arbitrage will not be completed and the game
may end with an unpaired bet that may be lost. If on the other hand the anticipated mar-
gin understates the actual margin, then there is an opportunity loss due to the wrongly
specified betting split. Hence even though the bet is not lost, we could have done better
had we known the exact margin value.

This model was used in this second way to search for best values for the anticipated
margin factor, m and the threshold favorability factor, r0 values for the different sets of
games described above. In the first instance, a constant betting strategy was employed
independent of the score at the time of the initial bet. The strategy variable used here
corresponds to the upper and lower limits of f , as well as f∗.

Typical results for various m values are in Table 6.
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When the anticipated margin is zero, the results of the three strategies are identical
since the zero margin assumption uniquely defines the bets for each team (given by
f = 1).

For some (m, r0) pairs, the fmin strategy yields better results while for other pairs fmax

is superior. The f∗ results always take intermediate positions between fmin and fmax for
all (m, r). The results for all three strategies however are not significantly different for
any (m, r0). This performance is not unexpected and for larger game sets it is expected
that there would be less difference between the results of these three strategies.

As m increases for constant r0, the total gain rises and then falls off as the second half
of the bet pair is more difficult to complete. Low r0 returns are, in general, positive with
low variance since bets are placed early and the pairs are completed early, generally with
low odds. High r0 values yield better mean returns with larger variances. Intermediate
r0 values reduce the returns. The results of this strategy for the same set of games used
in Table 6 appear in Table 7.

Comparing the automatic versus constant variable strategies shows that the automatic
strategy dampens the extreme results of the fmin and fmax strategies of Table 6 while
improving on the more conservative results of f∗. While these results may not be consid-
ered as being significantly different, the trend of the automatic strategy is toward a more
stable and profitable outcome. More importantly, the variance of the expected gains is
reduced by about a third from six to four over the comparable results in Table 6. Finally,
the automatic strategy, being score dependent, is more intuitive and appealing and is the
preferred policy for the single hedge construction problem in the 30 point game.

While single risk arbitrage jai alai results are encouraging, the gains that occur for
the simulated game sets are modest. There is greater potential for larger gains in longer
games as there is more opportunity for inefficiency to manifest itself through volatility.

Combining the results of the two risk arbitrages, our final analysis examines the
policy of betting over the 30 point game through the construction of a series of arbitrage
bet pairs.

The simulation model discussed above was modified to accommodate a series of
single arbitrage bets. The same amount was assumed available for each arbitrage bet
pair with a maximum total bet availability requirement of 60 betting units.

TABLE 7 Single Hedge Construction; Total Gain Over 100
Games Sets Using an Automatic Strategy Variable

Threshold favorability, r0

m 0 0.05 0.10 0.20

0 1.41 0.47 −0.22 2.22

0.05 2.11 1.03 −0.02 3.55

0.10 2.49 2.33 0.02 3.61

0.20 0.94 0.02 −1.24 3.12

Source: Lane and Ziemba (2004).
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TABLE 8 Betting Summary: Multiple Quasi-Hedge Bets

Amount Score Actual House
Bet Team bet A B odds odds Favorability

1 A 0.5459 1 0 0.6894 0.8733 0.2668

1 B 0.4541 1 0 1.048 1.2047 0.1495

2 A 0.523 1 1 0.85 0.9356 0.1007

2 B 0.477 4 2 1.3188 1.4157 0.0735

3 A 0.535 2 1 0.6869 0.9127 0.3288

3 B 0.465 2 1 1.0519 1.16 0.1028

4 A 0.6342 4 2 0.5479 0.6057 0.1055

4 B 0.3658 9 6 1.759 1.7204 −0.0219

5 B 0.3139 10 7 1.7899 2.1853 0.2209

5 A 0.6861 10 9 0.6606 0.7306 0.1059

6 B 0.3855 11 9 1.4189 1.5938 0.1233

6 A 0.6145 12 11 0.6517 0.6392 −0.0192

7 B 0.3167 12 10 1.4385 2.1578 0.5

7 A 0.6833 12 10 0.5022 0.5551 0.1052

8 A 0.4782 12 12 0.85 1.1168 0.3139

8 B 0.5218 25 24 1.4049 1.0277 −0.2685

9 A 0.2919 19 21 1.7751 2.4262 0.3668

9 B 0.7081 19 21 0.407 0.4617 0.1344

10 A 0.2301 19 22 2.6866 3.3467 0.2457

10 B 0.7699 21 23 0.3706 0.338 −0.088

11 A 0.4152 22 23 1.3005 1.4085 0.0831

11 B 0.5848 23 23 0.85 0.7379 −0.1319

12 A 0.4123 23 24 1.3452 1.4254 0.0596

12 B 0.5877 25 25 0.85 0.8935 0.0512

13 B 0.4613 24 24 0.85 1.1942 0.4049

13 A 0.5387 24 24 0.85 0.9764 0.1487

14 A 0.4969 25 25 0.85 1.0372 0.2203

14 B 0.5031 26 25 1.4898 1.5992 0.0734

15 B 0.5303 26 26 0.85 0.9089 0.0693

15 A 0.4697 28 29 2.55 3.3276 0.3049

16 B 0.508 29 29 0.85 0.9926 0.1678

Final
score Bets Payoff

Team A 29 7.5549 −7.5549

Team B 30 7.9532 8.7968

NOTE: Net betting payoff = 1.2419. Source: Lane and Ziemba (2004).
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TABLE 9 Exponential Function Favorability,
 = 0.3; 100 Game Set Hedge Series Construction

Threshold favorability, r0

m 0 0.1 0.2

0 −1.96 2.12 11.29 17.21

0.05 −0.76 4.51 13.27 19.12

0.1 −0.79 3.77 10.34 17.26

0.2 2.83 4.74 8.19 14.17

Source: Lane and Ziemba (2004).

The algorithm proceeds by requiring that the preset threshold favorability factor
value is satisfied before the initial bet of any pair is made. Priority over initializing the
first half of a new risk arbitrage is given to matching unmatched hedges. The automatic
strategy policy is used for the construction of all pairs.

Table 8 describes the bets in a typical game where 24% of a betting unit is the
total profit. A summary of the results of this simulation appears in Table 9. The results
are encouraging. Depending on the anticipated margin and the threshold value chosen,
the number of hedges completed in the simulated games can range from 1 to 20 with
never more than three uncompleted bet pairs among this series. Losses may be incurred
on any particular game under this imperfect hedge strategy due to the possibility of
uncompleted bet pairs. Such losses never exceeded one betting unit for any of the sim-
ulated games, whereas the single game gain ranged as high as three units. Game sets
are divided approximately 60/40 in terms of winning to losing games for the sets exam-
ined. The total gain over the entire set of games is increased relative to the single hedge
strategy and the instance of loss is reduced. As the odds favorability variance increases,
the potential for more profitable bets occurs and the expected gains and variance rise
accordingly, positive net gains occur regularly for similar values of the standard devia-
tion of the odds favorability distribution. The variance of the expected gains are larger
than for the single hedge case (40 versus 6) as expected.

4. FINAL REMARKS

It is possible to construct profitable arbitrage strategies for the 30 point jai alai game.
Modest returns may be realized under strategies of arbitrage and risk arbitrage sin-
gle bet pair constructions. Mathematical programming results imply that series of bet
pairs may be optimal for games of this kind. Simulation results suggest that improved
gains may be obtained under such strategies where bet placements are dependent on the
favorability of quoted odds and the score. Further analysis of this situation might con-
centrate on more detailed investigation into the actual distribution of quoted house odds
during the game. This will involve more intensive data collection at jai alai frontons.



270 Chapter 13 • Arbitrage in Team Jai Alai

Data collection in Mexico City indicates that there are substantial inefficiencies. The
formulation here has assumed score invariant single point win probabilities. A more
refined but possibly unmanageable analysis might consider score variant probabilities
possibly using Markov chains. More study should also be undertaken with respect to
the reaction of the oddsmakers to shifts in score and an examination of their individ-
ual objective functions. Parayre (1986) has some results along these lines for win and
perfecta bets based on player strength and post positions. These results follow ideas in
Ziemba and Hausch (1986).

The methodology and insights found for team jai alai also have potential applications
in other situations where one has non-marketable financial instruments. These include
certain horse racing (especially on betting exchanges), currency exposure, and produc-
tion situations. Risk arbitrage in traded options and warrants markets is an additional
example. See Shaw et al. (1995) for one such application related to the Japanese Nikkei
put warrant in 1989–1990.

In England and other European and Commonwealth countries, legalized bookies set
odds that various horses will win a given race both on-course and off-course. These odds
may differ across bookies at a particular moment in time. The odds change during the
20 or so minutes before a race is run as opinions are altered in light of new information
such as the horses’ appearances and because the bookies would like to simultaneously
balance their books to guarantee a profit no matter what horse wins, and maximize
the number of tickets sold. This situation, from the bettor’s perspective, mirrors the
jai alai situation, once extended to multiple outcomes, assuming that he has an indepen-
dent estimate of the probability that each horse will win obtained by a handicapping or
statistical procedure.

A key feature of the team jai alai and racing situations is that the tickets once pur-
chased are not marketable except perhaps at a substantial discount. Other situations
share these features and we will describe two of them briefly here.

Consider a company with substantial foreign accounts receivable at a future date. The
standard way to hedge against possible devaluations is through a futures contract in the
country’s currency. However, in many cases this is not possible because the currency
does not have an active futures market or the time horizon is too long. The curren-
cies of Italy, Thailand, and Turkey are examples of the former. Even for established
heavily traded currencies such as the Euro and the Mexican Peso, such contracts will
not cover a multiple year exposure. Negotiations with a bank might produce a spe-
cial forward contract for part of the exposure. Such a contract would be difficult to
sell except at a substantial discount. As time goes on, the company may add additional
contracts to cover more of the exposure with the original or other banks. In terms of the
jai alai formulation, one may think of the original exposure and any subsequent accounts
receivable as bets on A and the covering as bets on B.

Farmers often have fixed contracts for delivery of the crops from their acreage at a
specified time. Both the price he or she will receive and quantity he or she will have
available are likely uncertain. In a publicly traded commodity such as corn or wheat
he or she could hedge against these uncertainties. However, active futures markets are
not available for most commodities. Lettuce and raspberries are two such examples.
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The farmer can consider his or her crop as bets on A and contracts he or she makes with
other farmers of specific quantitites at fixed prices as bets on B.

Some analyses of problems similar to these two examples using hedging arguments
for static problems appear in Anderson and Danthine (1981), Feiger and Jacquillat
(1979), McKinnon (1967), and Rolfo (1980), and for a two period problem in which
additional information becomes available, see Baesel and Grant (1982).
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Abstract

This chapter reviews the literature addressing the degree to which abnormal returns
can be earned in horse race betting markets using publicly available information, other
than odds alone. Consequently, the chapter examines the extent to which horse race
betting markets are semi-strong form efficient. The conclusion to emerge is that horse
race betting markets incorporate a significant amount of publicly available information.
Bettors appear good at discounting simple, single variable information. However, they
do not efficiently discount more complex information. Studies that examine the simul-
taneous effect of several variables on race outcome demonstrate that bettors often do
not react to the subtle relationships that exist between variables.

1. INTRODUCTION

The degree and manner in which financial markets incorporate information provides
important clues to the manner in which these markets operate. Wagering markets in
general and horse race betting markets in particular have attracted considerable scrutiny
in this regard since, as Sauer (1998, p. 2,021) observes, “wagering markets are espe-
cially simple financial markets, in which the scope of the pricing problem is reduced.
As a result, wagering markets can provide a clear view of pricing issues which are
complicated elsewhere.”

Horse race betting markets, in common with other financial markets, can be regarded
as markets in information. “In its simplest formulation, the market for bets in an
n-horse race corresponds to a market for contingent claims with n states in which the
ith state corresponds to the outcome in which the ith horse wins the race” (Shin, 1992,
p. 1,142). Investors in horse race betting markets purchase assets (place bets), returns
to which depend on the result of the horse race to which the particular market relates.
In state contingent claims terms, the purchase price of a claim on horse i in race j
which pays £1 if horse i wins and nothing if it loses, is given by 1/(1 + Oij), where
Oij represents horse i’s odds. It is argued that bettors will continue to place money on a
horse i in race j until the purchase price of a claim on this horse (1/(1 + Oij)) accurately
reflects the market’s best estimate of the horse’s chance of winning the race (Figlewski,
1979).

Betting markets share many fundamental characteristics with wider financial mar-
kets including: large numbers of participants (market-makers, the holders of private
information, institutional/professional buyers, and noise traders), ease of entry to the
market, the availability of extensive information allowing both fundamental and techni-
cal analysis, the presence of complex and interdependent factors that influence an asset’s
value/bet’s prospects, extensive market knowledge, and some similar behavioral biases
(Law and Peel, 2002; Snyder, 1978a). In addition, with the advent of betting exchanges,
bettors are now able to offer odds to other bettors; providing a close link with short sell-
ing in financial markets. In fact, decisions in betting and wider financial markets share
many features in common. These include the collection, interpretation, and analysis of



M. Sung and J. E. V. Johnson 277

quantitative and qualitative information, including that associated with expert opinion;
the consideration of precedent, the formation of expectations, and the commitment of
resources. In the light of these similarities, the value of betting markets in providing a
window on decision-making in wider financial markets is well established (e.g., Snyder,
1978a; Hong and Chiu, 1988; Johnson and Bruce, 2001). Their value in this regard is
enhanced because betting markets also possess a distinctive feature which makes it pos-
sible to discern behavior more clearly than in other financial markets: the generation of
an unequivocal outcome (a winner) within a finite time frame. This provides a clear,
objective benchmark against which to measure the appropriateness of the asset’s price
(revealed as odds), which helps in the assessment and understanding of factors influ-
encing market efficiency. The finite nature of racetrack betting markets also means that
there is a large pool of markets (races) of essentially similar type available for analysis.

In summary, racetrack betting markets share many features in common with wider
financial markets and they also possess features which enable insights into the manner
and degree to which information is used in markets to be clearly discerned. Conse-
quently, “it is now appreciated that betting markets are well suited to testing market
efficiency” (Law and Peel, 2002, p. 327). With this in mind, the aim of this chapter is to
explore the literature associated with semi-strong form efficiency in horse race betting
markets.

A betting market which is semi-strong form efficient incorporates all publicly avail-
able information into odds. Consequently, returns should be equal across identical
betting opportunities and abnormal returns should not be available to those who use
publicly available information. Clearly, publicly available information includes the odds
themselves, and many studies have explored the extent to which abnormal returns can
be made in horse race betting markets simply using information contained in odds.
The results of these weak-form efficiency studies are reviewed elsewhere in this volume.
Consequently, the studies examined here are restricted to those that investigate the
extent to which abnormal returns are available using publicly available information
other than odds alone. Consequently, the studies discussed here explore the extent to
which information contained in odds, together with some supplementary information
(e.g., in which market, pari-mutuel or bookmaker, the odds were formed) is employed
by bettors. The chapter is structured around the two main classes of semi-strong form
study: those which employ a single variable associated with publicly available infor-
mation (in addition to odds) (see Section 2), and those which simultaneously employ
multiple variables (section 3).

2. SEMI-STRONG FORM EFFICIENCY IN HORSE RACE
BETTING MARKETS: SINGLE VARIABLE MODELS

A number of authors have examined the extent to which horse race betting markets
incorporate various, single types of publicly available information into odds. These stud-
ies are classified here into those in which odds information in one market is effectively
incorporated into odds in a parallel market (Section 2.1) and those which examine the
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degree to which professional predictions (Section 2.2), betting volume (Section 2.3),
post-position (Section 2.4), pedigree (Section 2.5), and distance preference (Section
2.6) are incorporated into odds. A summary of the conclusions to emerge from these
studies is given in Section 2.7.

2.1. Arbitrage Between Parallel Markets

In certain contexts in horse race betting markets, odds on the same race may be formed
in two or more parallel markets. If the odds, together with a knowledge of which market
formed these odds, can be used to make abnormal returns in a parallel market, then the
horse race betting market is not semi-strong form efficient. Research exploring this form
of efficiency falls into three categories, namely, those which examine (i) cross-track
betting, whereby betting pools on the same race are formed in two different locations
and information on odds obtained in one market is used to place bets in the other market,
(ii) arbitrage between betting pools for different bet types; for example, using the odds
information from the win pool to bet in the place and show pools, and (iii) differences
in odds formed in two parallel betting mediums; for example, comparing pari-mutuel
odds with fixed odds formed in a parallel bookmaker market.

2.1.1. Cross-Track Betting

Cross-track betting markets operate where independent betting pools on the same race
are formed at different racetracks, depending on the amounts bet at those tracks. These
are distinguished from inter-track wagering markets, where all amounts bet at different
racetracks on a given race are used to form one common betting pool. Clearly, in cross-
track betting markets, the odds on a given horse may differ from one track to another.
However, if there were no arbitrage costs involved, the odds at the various racetracks
should be identical if the market is efficient. Bettors can generally only access publicly
available information on the odds at the track at which they are located. In addition, they
are only able to bet at the racetrack at which they are located except through establishing
a syndicate to act across tracks. A syndicate is composed of a decision-making center,
individuals at the various tracks, and communication networks. Some researchers have
examined the extent to which markets in these contexts are efficient.

Hausch and Ziemba (1990) explored the efficiency of the North American cross-
track wagering market. They obtained final win odds for each horse from various
racetracks in popular Triple Crown races. They investigated two wagering strategies.
In the first they selected the highest odds available for each horse in a race and employed
these to bet enough on each horse to return $1. Obviously, if a total of less than $1 is
needed to be wagered on a given race, then a risk-free return is possible. In fact, they
discovered that this strategy generated an average risk-free profit of 4.7% on Triple
Crown races between 1982 and 1985. The second wagering strategy involved the Opti-
mal Capital Growth Model (Kelly, 1956), which maximizes the expected logarithm of
one’s final wealth. This approach involved adjusting the odds at the home track for
the favorite-longshot bias, as Snyder (1978a) proposed, and normalizing the resulting
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probabilities based on win odds. The expected return for each horse based on these
normalized probabilities was determined and horses with expected returns exceeding a
certain level ($1.10 to a $1 stake) were bet (assuming a maximum fixed, not accumu-
lated, level of wealth available to bet on each race). This produced an overall return
of 15% although this was not significant at any conventional level. Hausch and Ziemba
(1990) argued that differences in final odds at different racetracks which make profitable
arbitrage possible might be explained by regional differences in the familiarity of bettors
with local horses’ performances. However, while this study demonstrated that abnor-
mal returns are possible from cross-track betting, there are a number of reasons why
these returns may not be available in practice. For example, implementation costs,
such as communication costs and administrative expenses of a syndicate, were not
accounted for in the model. In addition, the time required to execute the arbitrage
strategy may be insufficient for the syndicate to communicate and make the betting
decision, but sufficient for the odds to change adversely. In light of these limitations,
Sauer (1998, p. 2,048) concluded that Hausch and Ziemba’s results represent “another
crease in what is predominantly a smooth pattern of efficiency in the racetrack betting
markets.”

Leong and Lim (1994) replicated Hausch and Ziemba’s (1990) study in the cross-
track betting market between Singapore and Malaysia. They used a relatively large
sample, involving 9,839 horses running in 867 races. Leong and Lim (1994) discovered
that in 1.5% of the races in their sample a risk-free return could be obtained. In addi-
tion, when they restricted bets using the Kelly criterion to those horses offering expected
returns of 2.0 and 2.5 (to a one unit stake) returns of 37% and 65%, respectively, were
obtained; these were significantly different from zero at the 15% level. However, these
profits may not be available in practice, since communication devices are not permitted
at racetracks in either Singapore or Malaysia. In addition, odds information is not avail-
able to bettors in the country where the race is not taking place and police are active in
shutting down illegal communication centers.

In summary, the cross-track betting papers suggest market inefficiency but physical
and cost limitations may make profitable arbitrage difficult in practice.

2.1.2. Arbitrage Between Betting Pools

In pari-mutuel markets, a number of alternative bet types are offered. Consequently, a
horse may be bet to win, to place (to finish first or second), to show (to finish first,
second, or third), or to finish in the first two or three (exacta and trifecta, respectively;
where the order of the first two/three horses must be specified). Equally, there are bets
which span more than one race. For example, the “daily double” is a pari-mutuel bet
paying a return only if a bettor selects the winners of two specified races, the bet being
placed before the first of the two races is run. Bets on a given horse on these various bet
types enter a separate pool. Within the definition of semi-strong form efficiency used in
this chapter, it should not be possible to use the information concerning the horse’s odds
in one of these pools (together with the knowledge of which pool these odds relate to)
to bet profitably on that horse in another pool.
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A number of studies have examined this aspect of market efficiency. For example,
Ali (1979) compared the odds on horses in the daily double pool with the odds in the
win pools of the two races (i.e., assuming that the two horses are bet in succession,
the total winnings from the first horse being placed on the second horse—a parlay).
Ali’s (1979) analysis employed data from 34 racetracks in North America and Canada
in 1975, and confirmed that the win pool odds provide efficient estimates of the daily
double pool odds; a result consistent with the hypothesis that the betting market is semi-
strong form efficient. The daily double was also explored by Asch and Quandt (1987)
using data from the Meadowlands racetrack in the U.S. during 1984, and by Lo and
Busche (1994) on data from the same racetrack in 1984 and on data from Hong Kong
between 1981 and 1989. Both these studies concluded that the daily double bet is sig-
nificantly more profitable than the equivalent parlay. However, when differential track
takes on the two bet types are taken into account, the differences in expected return
disappear.

Hausch et al. (1981) used probabilities revealed by win pool betting to construct
probabilities of horses finishing second and third. They then constructed profitable
wagering strategies based on differences between these probabilities and the odds avail-
able in the place and show pools taking account of investor preferences and the effect
of the bet size on the pari-mutuel pool. One practical barrier to operating this arbitrage
strategy is that it relies on the final odds being known when the bet is struck. How-
ever, Hausch et al. (1981) demonstrated that a profitable arbitrage strategy can still be
constructed using odds available in the pools 2 min before the race starts. In addition,
they developed profitable regression-based solutions with limited data requirements that
approximated their full complex model and demonstrated that the necessary calcula-
tions could be constructed in the time available at the racetrack. The approach adopted
by Hausch et al. (1981) was developed further in Hausch and Ziemba (1985, 1990,
1991) and in Ziemba and Hausch (1984, 1987), including betting strategies that involve
a combination of win and place/show bets which guarantee a positive profit.

The anomaly between place and show pools was also developed into a practical
system (the Dr. Z system) for employing information on win odds to trade profitably
in the place and show markets in North America (e.g., Hausch and Ziemba, 1985).
A similar approach was employed by McCulloch and van Zijl (1986) in the New
Zealand horse race betting market (where, similar to North America, only pari-mutuel
operators are permitted to offer odds, on and off-track). They found a small and variable
underestimation of show odds when these were predicted using win odds; suggesting
that the model could not be employed profitably in New Zealand. Ziemba and Hausch
(1994) also adapted the Dr. Z system for betting on races in the UK where place bets are
normally restricted to those horses finishing in the first three. However, it was suggested
that the significantly larger deductions from the pari-mutuel pools in the UK (cf. North
America) may reduce the profitable opportunities available.

An approach based on that adopted by Hausch et al. (1981) was also employed by
Swidler and Shaw (1995) at Trinity Meadows Raceway, a small racetrack in Texas. By
betting in the show pool on horses that were first or second favorite in the win pool and
those whose expected payoff was at least 1.1, expected returns of 18.5% were realized
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which were statistically different from zero at the 9% level. However, only very modest
gains could be made using this approach since (a) only about two or three bets would
be identified in a typical 10 race card, (b) even relatively small bets would reduce the
returns significantly due to the small pool size at the track, and (c) odds close to the mar-
ket close were often not a good proxy for final odds. To help overcome these limitations,
they explored a strategy which required less information: backing (in the place pool) any
favorite in the win pool which was ranked 2–12 in the place pool. This produced a return
of 2.9%. Ziemba (2008) updates the results on U.S. Dr. Z betting to the current situation
in 2008; with rebates there are still profits.

Anomalies between win and place odds have also been explored in Australia,
where bookmaker and pari-mutuel markets operate alongside each other at racetracks.
Tuckwell (1981) used win probabilities derived from the bookmaker markets at Syd-
ney and Melbourne racetracks to determine the “true” odds for horses to finish in the
first three (to be “placed”). Tuckwell (1981) demonstrated that a strategy of betting on
horses where the true place odds exceeded the place odds available in the pari-mutuel
pool would have produced a return on outlay of 20%. However, two barriers exist to
effective practical application of this approach. First, the place odds are based on book-
maker starting prices (i.e., odds available at the start of the race) and to operate the
strategy approximations to these values (which may vary substantially from the cor-
rect values) would need to be obtained several minutes before the close of the market.
Second, the strategy did not allow for the effect of system bets depressing the place
odds available in the pari-mutuel pool. Despite these barriers, Tuckwell (1981) con-
cluded that significant inconsistencies do exist between the win and place racetrack
betting markets in Australia. Edelman and O’Brian (2004) developed a game theoretic
approach to identifying opportunities for combining various forms of bet (e.g., win,
place, exacta [first two in correct order], trifecta [first three in correct order]) in such
a way as to produce a guaranteed profit. The strategy was tested on 2,667 races run in
Australia in 2000, and they identified a number of races in which guaranteed profits
could be earned. However, Edelman and O’Brian (2004) pointed out that the practi-
cal application of such an approach would be hampered, since the results were based
on final dividend returns (which would not be known at the time the bet was placed)
and large bets into the pools (which would be required to earn sizeable returns) would
substantially reduce the returns themselves.

Jackson and Waldron (2003) demonstrated that anomalies in the place betting market
can also be created by the pari-mutuel operator’s method of calculating place dividends.
In the late 1970s in the UK and in 1995 in Ireland, a different method of calculating these
returns was introduced (including a minimum guaranteed return) which differed from
that used elsewhere in the world. Under these conditions, Jackson and Waldron (2003)
demonstrated that in certain races, where particular betting patterns pertain (e.g., the
fraction bet on the favorite is large), it is possible to construct a betting strategy that
results in a positive expected return to the bettor and where the pool operator can expect
to lose up to 50% of the pool. This occurs because instead of returning the initial stake,
as occurs in standard pari-mutuel markets, the net pool is simply split between those that
collect. Consequently, the minimum guaranteed return is easily reached (see Ziemba
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and Hausch, 1987). Subsequently, the pari-mutuel operators changed their practices
to close this opportunity. Their approach yielded large profits before the rules were
changed. In their Locks paper, which motivates this application, Hausch and Ziemba
(1991) found only infrequent arbitrages with small profits. But these opportunities still
exist in the U.S. and Canada.

In horse race betting markets, in North America, the United Kingdom, and Australia,
anomalies remain between different bet types on the same horse in a given race. Knowl-
edge of which market produces the most accurate probabilities (or what practices the
pari-mutuel operator employs) can be used to construct profitable betting strategies.
Since knowledge of both the odds and the market in which they are formed is required
to exploit these anomalies, this is evidence of semi-strong form inefficiency.

2.1.3. Parallel Betting Mediums

Within the UK horse race betting market, it is permissible to bet on a race with either
the monopoly pari-mutuel operator, the Tote, or with fixed odds bookmakers. If these
markets are semi-strong form efficient, then profitable arbitrage between the betting
mediums should not be possible.

Gabriel and Marsden (1990, 1991) were the first to directly investigate the efficiency
of these parallel markets. They explored the odds of the winners of 1,427 flat races
run in the UK in 1978. To avoid identifying differences in average odds in the two
markets resulting simply from a few very large pari-mutuel odds, they truncated the
dataset by removing horses with odds greater than a pre-defined level (i.e., six sub-
sets, where this level was set at 20/1, 15/1, and 10/1 in (a) the bookmaker, and (b) the
pari-mutuel market). Their corrected results (Gabriel and Marsden, 1991) showed that
the pari-mutuel odds were consistently higher than starting prices, whether for favorites
or longshots, where the dataset truncation was based on the bookmaker market odds.
Furthermore, an ordinary least squares regression of the pari-mutuel odds on the start-
ing prices produced a constant that was significantly different from zero and a slope
coefficient that was significantly different from unity; again, suggesting that odds in
these two parallel markets are different. Gabriel and Marsden (1990, 1991), therefore,
argued that the UK betting market did not satisfy the conditions of semi-strong form
efficiency. They suggested that the differences arose from: (i) different mechanisms of
price formation in the two markets, (ii) reaction on the part of bookmakers to protect
themselves from insiders, and (iii) barriers to arbitrage. Each of these explanations is
now explored briefly. First, in the pari-mutuel market, odds are determined solely by the
relative amount of money bet on each horse, and, hence, they are continuously priced. In
bookmaker markets, on the other hand, the odds are offered in fixed discrete intervals.
For example, pari-mutuel odds of 85/1 fall between two of the bookmakers discrete
odds values (i.e., 66/1 and 100/1) and a profit maximizing bookmaker may well choose
the lower of these. Differences in the price formation mechanism in the two markets
may, thus, account for some of the discrepancy between odds in these parallel markets.
Second, those who hold private (inside) information about a horse’s enhanced prospects
of success in a particular race are likely to bet with bookmakers rather than with the pari-
mutuel operator, since their bet will be settled at the odds prevailing in the market at the
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time the bet is struck. If they bet with the pari-mutuel operator, their returns could be
eroded by other bettors observing a move in the market odds and betting on the horse
themselves. Consequently, Gabriel and Marsden (1990, 1991) argued that bookmakers,
in order to protect themselves from informed traders, may deliberately depress all their
odds. Third, they argued that there are physical barriers to arbitrage. At the time of
the study, Tote odds were not displayed electronically and pari-mutuel bettors had little
information concerning trends in the pari-mutuel odds or what the final pari-mutuel
odds would be. Bettors would, therefore, have little information on which to compare
odds in the two markets and this would act as a significant barrier to arbitrage.

Cain et al. (2001) questioned the appropriateness of the regression methods emp-
loyed by Gabriel and Marsden (1990, 1991). In particular, they argued that the results
would be unduly influenced by large numbers and large outliers associated with long-
shots and that the error term would be heteroscedastic and non-normal. Their analysis
of the same data employed by Gabriel and Marsden (1990, 1991) confirmed their con-
cerns. Cain et al. (2001) corrected for these problems in three separate ways: using
logarithms of tote and bookmaker odds rather than the odds themselves, using robust
estimators, and trimming the datasets to omit outliers. Their refined results suggested
that Tote odds did not consistently exceed bookmaker odds. However, they discovered
that bookmakers’ odds were more generous than those offered by the pari-mutuel oper-
ator for low odds winners, but the pari-mutuel odds were more generous on winners
starting at higher odds. These results were confirmed by Blackburn and Peirson (1995),
Bruce and Johnson (2000b), and Peirson and Blackburn (2003). Blackburn and Peirson
(1995) compared the odds offered in the bookmaker and pari-mutuel market in the UK
for the whole of the 1993 flat season and found that on average, bookmaker odds were
higher at odds of less than 5/1 and the pari-mutuel odds were higher at odds of greater
than 5/1. They suggested that these differences arose because demand elasticity for
betting on longshots is relatively low. Consequently, profit maximizing bookmakers can
offer reduced odds on these horses with little reduction in turnover. They argued that
relatively high elasticity arises for short odds horses because past form is more likely to
be available and heavily scrutinized for these horses than for longshots, leading to more
consistent views about the short odds horses’ probability of winning. On the other hand,
they argued that less continuous and informative form records for longshots is likely to
result in more diverse views about their chance of success, which results in bettors being
less sensitive to the odds that bookmakers offer on longshots. Equally, they argued that
bookmakers can attract bets on less favorably priced longshots because bettors with
bookmakers (cf., the pari-mutuel operator) can secure their returns at the odds prevail-
ing in the market at the time the bet is struck, rather than at the odds prevailing at the
close of the market (which applies to pari-mutuel bets).

Peirson and Blackburn (2003) identified a very large difference between mean pari-
mutuel (39.97/1) and bookmaker odds (26.27/1) for extreme longshots (bookmaker
odds ≥ 20/1). The relatively large standard deviation of the pari-mutuel odds compared
with that for bookmaker odds (29.17 compared to 8.96) suggested that the large dif-
ference in mean odds arose from some very large pari-mutuel odds. In fact, Peirson
and Blackburn (2003) argued that those horses that are unsupported drift out dramati-
cally in the pari-mutuel market and to a far lesser extent in the bookmaker market.



284 Chapter 14 • Semi-Strong Form Efficiency in Horse Race Betting

This, they argued, arises partly because bookmakers are seeking to protect themselves
from potentially large losses and partly because of bookmakers’ incomplete menu of
odds; bookmakers only updating odds to a new category when the exact odds they wish
to offer exceeds an allowed odds category by a sufficient margin.

Bruce and Johnson (2000a, 2005) identified significant differences in the favorite-
longshot bias in parallel bookmaker and pari-mutuel markets, and offered both demand
and supply side explanations for why the odds may differ in these two markets.

Vaughan Williams and Paton (1997) confirmed Blackburn and Peirson’s (1995) con-
clusion that bookmaker odds are significantly higher than pari-mutuel odds for shorter
odds horses. However, Bruce and Johnson (2000b) argued that these results failed to
capture data concerning non-winning horses that may have an important effect on the
overall disparity in odds between the two markets. In addition, by failing to capture the
idiosyncrasies of betting market structure and process, it was argued that the results may
overestimate the opportunities for arbitrage between these markets.

Bruce and Johnson (2001) suggested that Gabriel and Marsden’s (1990, 1991)
approach of removing horses whose bookmaker odds exceed a certain level in order
to reduce inflationary bias in the pari-mutuel mean odds fails to achieve its aim and
that the results they obtained may, therefore, be suspect. In contrast, Bruce and Johnson
(2001), using a sample of 2,109 races run in the UK in 1996, only removed horses
whose pari-mutuel odds exceeded a certain level from the analysis. In addition, unlike
all previous papers investigating differences in pari-mutuel and bookmaker odds, their
dataset was not restricted to race winners, but included all runners in the race. Their
subsequent distribution-based and distribution-free tests revealed that bookmaker odds
exceeded the pari-mutuel odds where the pari-mutuel odds were less than 10/1 but that
otherwise the pari-mutuel odds exceeded bookmaker odds. Bruce and Johnson (2001)
argued that the market for shorter odds horses is particularly competitive, since most
wagers would be placed on such horses. Consequently, since bookmakers are motivated
by turnover as well as margin (Tuckwell, 1983) they are likely to offer relatively good
value odds on short odds horses to attract customers. Equally, they offer relatively poor
value odds on longshots for which there is less competition. Johnson and Bruce (2001)
also pointed to a number of physical barriers to arbitrage which make the elimination of
this inefficiency difficult in practice. One of the most important of these barriers resulted
from the fact that neither the final pari-mutuel odds nor the final bookmaker odds can
be observed until after betting activity has ceased and late bets into the pari-mutuel pool
(both on and off-track) can significantly alter final odds (Bruce and Johnson, 2000a).

In Australian racetrack betting markets, where, once again, bookmaker and pari-
mutuel markets operate alongside each other, it has been discovered that differences
between odds in the two markets tend to reduce toward the close of the market (Bird
and McCrae, 1994). However, disparities in odds remain, but here the disparities depend
upon whether a horse’s odds lengthen (bookmaker odds shorter) or shorten (pari-mutuel
odds shorter). Despite these findings, Bird and McCrae (1994) could not construct a
profitable trading rule that exploited the anomalies.

In summary, the studies exploring odds offered in parallel bookmaker and pari-
mutuel markets suggests that persistent differences in the odds offered in these markets
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remain. A range of explanations for the differences in odds observed in these two
parallel markets have been provided, involving the mechanics of price formation, eco-
nomic, behavioral, and arbitrage barrier aspects. The odds levels at which bookmaker
odds exceed the pari-mutuel odds (and vice versa) differ between studies, and the
precise nature of the bookmaker/pari-mutuel market anomaly appears sensitive to the
methodology employed. However, the consistent disparity of odds observed between
these parallel markets may be thought to suggest some level of semi-strong form ineffi-
ciency, although no study has explicitly tested to what extent these differences in odds
can be used to earn abnormal returns. In addition, it has been shown that disparities
between odds in these two markets are only a sign of inefficiency if the representa-
tive bettor is risk neutral (Cain et al., 2003). They demonstrated that a representative
bettor exhibiting risk loving/averse preferences over favorites/longshots would lead to
the observed anomalies between the pari-mutuel and bookmaker odds.

2.2. Professional Predictions

There is some debate concerning the status of professional predictions of race outcomes
in the efficiency literature. There are those who consider predictions of experts, whether
or not they are available to the general public, as the work of insiders. Consequently,
they argue that tests of whether abnormal returns can be achieved using these predictions
are strong-form tests of efficiency (Snyder, 1978a, 1978b). Equally, there are those who
argue that predictions are generally based on publicly available information and that
market efficiency tests based on predictions that are widely published (e.g., in daily
newspapers) should be regarded as semi-strong efficiency tests (e.g., Losey and Talbott,
1980). It is suggested here that any professional prediction that is available to the public,
whatever its cost (varying from the price of a daily newspaper, to a moderate price paid
for a telephone prediction from a pundit, to perhaps a much higher price paid for a
private prediction service) is, in effect, information available to the public. Clearly, this
is a matter for debate, but in this section tests of the profitability of all professional
predictions will be treated as tests of semi-strong form efficiency. The section is divided
into those studies that focus on predictions provided in newspapers (Section 2.2.1), and
those that are available on subscription (Section 2.2.2).

2.2.1. Newspaper Predictions

Snyder (1978a, 1978b) used a sample of 7,657 horses running in 846 races at Arling-
ton Park, Chicago, USA to compare the rates of return obtainable from bets placed
at the final pari-mutuel odds with bets placed at odds predicted by five representative
experts: track handicappers (whose predicted odds are widely available at the racetrack),
and four newspaper tipsters in the Daily Racing Form, Tribune, Daily News, and Sun
Times. The main conclusion was that the experts’ odds exhibited more bias than those
of the general public; the former group underestimating favorites’ odds and overestimat-
ing longshots’ odds more than the latter group. Snyder (1978a) suggested a number of
possible reasons for this. First, his interviews with the experts revealed that experts did
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not try to predict the true winning probability of each horse; rather, they tried to predict
what the odds would be in the pari-mutuel market. Second, there was an unwritten rule
never to quote odds of greater than 30/1, which clearly depressed the odds on longshots.
Third, their odds usually had to be forecast on the day before racing, and this exposed
the experts to considerably more uncertainty than the general public, who were betting
on the day of the race (e.g., changes in the weather or a withdrawal might signifi-cantly
increase/decrease a horse’s chance of success). The less information available, the more
the odds on all runners are likely to be equal. Therefore, the greater exposure to uncer-
tainty has the effect of underestimating (overestimating) the favorite’s (longshot’s) odds
in the experts’ predictions. In summary, Snyder (1978a, 1978b) concluded that posi-
tive profit could not be achieved using the experts’ predictions. A similar conclusion
was reached by Figlewski (1979) who analyzed the forecasts of 14 professional hand-
icappers whose predictions appeared in the Daily Racing Form, the New York Post,
and the New York Daily News. Figlewski (1979) developed multinomial logit models
that incorporated (a) track odds, (b) handicapper odds, and (c) track odds and handi-
capper odds, respectively, using the outcome of 189 races. The results demonstrated
that the handicappers’ predictions contained valuable information but that this was to
a large extent discounted in the final odds. Consequently, Figlewski (1979) concluded
that these markets are semi-strong form efficient with respect to published predictions
of professional handicappers.

Losey and Talbot (1980) used a similar dataset to that employed by Snyder (1978a,
1978b), based on races run at Arlington Park, Chicago in 1978, augmented with data
from the following meetings in Hawthorne, Chicago. They investigated the profita-
bility of a strategy of betting on horses predicted by the Racing Form handicapper to
start at short odds (≤3/1) but actually go off at longer odds. The strategy yielded even
larger losses (28.4%) than the track takeout rate (17%), suggesting that the experts
were even worse at predicting horses’ probability of winning than were the general
public.

The studies discussed above were conducted in the pari-mutuel betting market, but
studies by Bird and McCrae (1987), Tuckwell (1983), and Smith (2003) have extended
these to bookmaker based markets. Bird and McCrae (1987) tested the extent to which
the Australian bookmaker market was efficient with respect to 10 experts’ predictions
published in a Melbourne newspaper. A horse predicted to finish first, second, and third
by each expert was awarded three, two, and one points, respectively. The horses in a
given race were then ranked in order of favoritism on the basis of the aggregate opinion
of the 10 experts, and on the basis of their degree of favoritism (based on odds) in the
bookmaker market at the market close. The rate of return for horses in each category
of favoritism across a sample of 1,026 races run at Melbourne racetracks during 1983–
1984 was computed, assuming $1 was bet on each horse in that category at bookmaker,
market close odds. Positive returns were not made in any of the categories and there was
no significant difference between the rates of return where horses were ranked on the
basis of favoritism by bookmaker market odds, or experts’ opinions. Bird and McCrae
(1987) concluded that information provided by the newspaper handicappers had been
fully incorporated into the bookmaker odds.
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Tuckwell (1983) examined the extent to which winning probability predictions given
by “Computercard,” which is published in the daily press for races run in Sydney and
Melbourne, could be used to make abnormal returns. A strategy of betting one unit on
any horse whose predicted winning probability was one of the three highest in the race
and exceeded the winning probability implied by the starting price yielded a profit of
6.5% when applied to all races run in 1974. However, subsequent studies in Australia
have failed to find profitable strategies based on forecast odds (e.g., Anderson et al.,
1985).

Smith (2003) focused on the movements of bookmakers’ odds for horses selected
by a leading newspaper tipster, “Winsome,” and other newspaper tipsters in the UK.
He suggested that the tipsters’ selections may help to identify those horses whose odds
are likely to contract during the betting period and that these might, therefore, offer
an arbitrage opportunity. Based on a sample of 4,728 horses running in Saturday races
over a three year period (1998–2000), he classified horses according to whether they
had been selected by Winsome only, Winsome and other tipsters, other tipsters only,
or no tipsters. The winning probability implied by bookmaker odds for those horses
selected by Winsome increased on average by 1.89% whereas for those horses that
were not selected by any tipster, their implied probability decreased by 0.26%. Smith
(2003) calculated the rates of return for each category based on the bookmaker odds
available in the morning before the race and at the bookmaker odds available at market
close. For all those categories including Winsome selections a positive rate of return was
identified (e.g., 37.03% and 7.53% for bets at bookmaker morning and starting prices,
respectively, for the category “Winsome only”) whereas negative returns were identi-
fied for all other categories (“other tipsters only” and “no tipsters”). Statistical tests did
not confirm positive returns for the Winsome selections but Smith (2003) argued that
this may be due to the nonnormal leptokurtic nature of the returns’ distribution. Con-
sequently, Smith (2003) concluded that the evidence pointed to bookmakers’ morning
odds and even the closing market odds did not fully discount Winsome’s selections.

The papers exploring the extent to which selections by newspaper experts are dis-
counted in horse race odds reveal a fairly consistent set of results across a variety of
countries. The advice provided by newspaper experts appears to contain useful informa-
tion but this information is, to a large extent, discounted in final odds in both pari-mutuel
and bookmaker markets. Only two studies report that it may be possible to earn abnor-
mal returns by trading on tipsters’ information. However, one of these (Smith, 2003)
requires that bets are made in the early stages of a bookmaker betting market, and the
second (Tuckwell, 1983) requires knowledge of the starting price, which is not available
until after the race has started.

2.2.2. Predictions Available by Subscription

The few studies that have examined predictions available by subscription fall into
two categories: those that examine the performance of selections indicated by betting
systems, and those that examine the specific selections of professional tipping services.
Betting systems do not strictly fall into the category of approaches employing only a
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single variable (in addition to odds), since they often require several pieces of
information concerning a horse’s previous performances. However, these systems often
employ simple elimination rules (eliminating runners from consideration in order to
leave a single selection in a race), or selection rules (i.e., selecting the positive quali-
ties of a single runner on which to bet); rather than simultaneously considering several
variables in order to predict a horse’s probability of success. These more sophisticated
modeling approaches will be examined in Section 3.

Betting Systems Crafts (1994) examined the performance of three marketed betting
systems that employed publicly available information to select a horse in a given race.
All three systems produced negative post-tax rates of return for periods both before and
after the systems were published. There was also a significant decline in the returns for
the one system that appeared to yield pre-tax profits in the period before it was pub-
lished. In addition, Crafts (1994) reported the results of a study conducted by Roberts
and Newton (1987) that explored the profitability of nine racing systems. Eight of these
produced negative returns and the one that produced positive returns was based on only
12 observations. Using a sample of 102 races run at Santa Anita Park, California in
1972, Vergin (1977) tested the profitability of six betting systems that required infor-
mation concerning the horses’ odds and/or previous performances. Only one of these
produced profits to level stakes betting and the sample size was insufficient to produce
a statistically significant result.

Professional Tipping Services Professional tipping services differ from betting sys-
tems, in that the latter provide a set of decision rules that the purchaser of the system
is required to follow, whereas the former provide horse selections in a given race. Few
studies have examined the degree to which abnormal returns can be earned using pro-
fessional tipping services, and those that have been conducted failed to identify profits
significantly different from zero. For example, Roberts and Newton (1987) examined
five services offering advice on which specific horses to bet during the 1970s in the
UK, but all of these produced negative returns. Vaughan Williams (2000) investigated
the performance of five leading professional forecasting services in the UK in 1995 on
the basis of bookmaker starting prices. A number of different trading strategies were
explored and each of the services yielded a pre-tax profit at starting prices. It appeared
that higher profits could be earned if the staking plan and minimum odds stipulations
advised by some of the services were followed. However, only some strategies showed
a post-tax profit. These profits were not statistically significant and the results did not
account for the cost of the services, including subscriptions and/or the cost of premium-
rate telephone calls. On the other hand, as Smith (2003) observed, relevant tipsters’
information appeared to be incorporated into odds as the betting market develops. Con-
sequently, it may be possible to earn positive returns in a bookmaker-based market by
backing the professional forecasters’ selections at the odds prevailing close to the start
of the market (for further discussion of the role of professional tipsters see Deschamps
and Gergaud, 2008).
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2.3. Betting Volume

Trading volume is regarded as an important element of technical analysis in financial
markets. However, until recently, few studies have explored the role of trading volume
on horse race market efficiency. Notable exceptions include Busche and Walls (2000),
Walls and Busche (2003), and Bruce et al. (2003). Busche and Walls (2000) were the
first to observe the connection between betting volume and market efficiency (defined in
terms of the degree to which returns were equalized across horses with different odds).
In particular, they analyzed a sample of 10,000 races in pari-mutuel markets in North
America, Japan, Hong Kong, and Macau and found that returns were equalized at all
racetracks where the daily bet volumes exceeded $1.8 million. In addition, they noted
that previous papers, which had found discrepancies in pari-mutuel returns at differ-
ent odds (the favorite-longshot bias), were all conducted at racetracks where the daily
betting volume was between $0.3 million and $1.8 million. These conclusions were
reinforced by their later study (Walls and Busche, 2003) which examined 13,000 races
at 18 different racetracks across Japan, with pari-mutuel betting volumes varying from
$30,000 to $3 million. Once again, returns were equalized at the high volume tracks.
Busche and Walls (2000) argued that this results from the presence of professional bet-
tors, who are attracted to the large volume markets where their large bets will not unduly
reduce their own returns. However, at low volume tracks, they argued that casual bettors
are likely to dominate. Since these bettors largely attended for leisure and social reasons,
they tended to back horses on the basis of their own subjective preferences rather than
on objective criteria. Consequently, for example, their preference for excitement may
result in the over-betting of longshots.

Employing the ideas generated by Busche and Walls (2000), Bruce and Johnson
(2005) sought to explore whether information contained in betting volume in the pari-
mutuel market in the UK is fully discounted in the final pari-mutuel odds. Using a
sample of 2,078 races from 49 racetracks across the UK, they developed conditional
logit models incorporating (a) odds alone, and (b) both betting volume and odds. A like-
lihood ratio test revealed that information concerning betting volume was not fully
incorporated into the final pari-mutuel odds and the market could, therefore, be regarded
as semi-strong form inefficient. Bruce et al. (2003) demonstrated that the market is par-
ticularly inefficient in this regard where holders of private information are most likely to
be present. In addition, using a model proposed by Camerer (1998), they suggested that
this may result from the holders of private information manipulating the market in order
to secure the best odds on their selection. These conclusions suggested that abnormal
returns may be available by betting on horses that attract high betting volumes in races
most likely to attract the holders of private information. Bruce and Johnson (2005)
argued that in the UK these are the low class, non-handicap races where relatively
little information is available about runners’ previous history, where the prize money is
insufficient as an incentive to owners (who, therefore, seek to maximize their gains from
betting), where the race conditions (e.g., weight carried by horse) are to some extent
under the control of the horse owner/trainer, and where media scrutiny is generally low.

In summary, the few studies that have explicitly explored the impact of betting
volume in horse race markets suggest that its impact on market efficiency has been
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underestimated. It has been demonstrated that betting volume impacts on the degree
to which returns are equalized across odds and volume does not appear to be fully
incorporated into odds in races that attract the holders of privileged information.

2.4. Post Position

Horses are generally required to begin races run on the flat from starting stalls. These
devices ensure that all horses are released to start the race simultaneously. Each horse
is randomly allocated a post-position within the starting stalls, and these are normally
announced the day before the race. The post-position determines where in relation to
the inside of the racetrack the horse’s starting stall is located. Certain post-positions
may be advantageous because of track configuration (e.g., short oval racetracks with
sharp bends), or other racetrack topography (e.g., faster ground on the outside of the
track). Semi-strong form efficiency in betting markets requires that it is not possible to
construct profitable trading rules based on a horse’s post-position.

Most racing publications agree that post-position needs to be considered carefully
when assessing the chances of each horse. For example, Cotton (1990, p. 113), in
discussing racing in the UK (where most races are run on turf), advised “make no mis-
take [post-position] can be the most important component in the outcome of many flat
races.” Similarly, Beyer (1983) observed that horses with inside post-positions in races
run in North America (where most races are run on materials that incorporate sand)
often have an advantage on tracks with sharp bends and short straights. However, the
advantage gained from a shorter distance traveled by these inside runners is not guar-
anteed, since the banking of sand-based tracks can allow water to accumulate on the
inside rail in wet conditions, and this can lead to softer, slower going. Despite this
observation, Beyer’s view was confirmed by Quirin (1979). He found that in 2,516, 6
furlong races run over tracks of 1 mi circumference in North America, post-position
one was the most advantageous and positions 2–6 produced winners more often than
could be attributed to chance. Similarly, Bolton and Chapman (1986) and Chapman
(1994) both incorporated post-position in multi-variable conditional logit models to
predict winning probabilities (see Section 3 for more details). The former developed
and tested their model on 200 races run in North America and the latter on 2,000 races
run in Hong Kong (with configuration and surfaces similar to tracks in North Amer-
ica). In both cases, the lower the post-position, the greater was the predicted probability
of the horse winning. It is impossible to discern from Bolton and Chapman (1986) or
Chapman (1994) whether a profitable trading rule based purely on post-position and
odds could be constructed. However, in Quirin’s (1979) study, strategies of betting
a unit stake on most of the inner post-positions produced losses because the advan-
tage was spotted and overbet by the public. However, horses drawn in post-position
one produced a level stake profit of 8%, suggesting a degree of semi-strong form
inefficiency.

Canfield et al. (1987) investigated the efficiency of betting markets with respect
to post-position bias by examining the results of 3,345 races run at a very tight oval
track in Vancouver (Exhibition Park, circumference of about two-thirds of a mile)
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during 1982–1984. They ranked horses by post-position and observed the percentage
of horses winning and the rates of return from each post-position. Inside post-positions
produced a significantly greater percentage of winners than outside ones, and returns
from wagers on post-positions one and two were higher than other post-positions. As
might be expected, the bias was more pronounced on dry days (when the track was run-
ning fast, there was no disadvantage from slower ground conditions on the inside rail),
and in longer races with more turns. Canfield et al. (1987) constructed some profitable
win and exotic bet trading strategies for particular post-positions, under certain track
conditions, for short periods of time (up to one season). However, these positive returns
disappeared over time as bettors became aware of the advantage. In addition, taking
transaction costs into account, the positive returns were not statistically significant.

Betton (1994) also examined races run at Exhibition Park (1,062 races during 1987).
She compared the actual and expected finish position from each post-position and con-
cluded that the inside post-position held a significant advantage. Betton (1994) also
developed a probit model to explore the influence of post-position on winning proba-
bility. This analysis suggested that the accuracy of winning probabilities based on odds
rankings or odds and the number of runners could be improved by information concern-
ing post-position. However, in contrast to Canfield et al. (1987), she discovered that
knowledge of race distance did not improve the probability estimates. Results given in
her paper suggested that positive profits could be obtained by level stake win betting on
post-positions one and two in shorter races (involving one turn). Despite the fact that
these results related to only 40 bets in one season on each of the two inside positions, it
is interesting to note that the greater advantage of inside post-positions in longer races
at Exhibition park in 1982–1984 (noted by Canfield et al. 1987) appeared, by 1987, to
have been fully discounted by the betting public.

Johnson et al. (2005) employed a conditional logit model, incorporating odds and
post-position, to examine the degree to which post-position bias is accounted for in
betting decisions at a tight (circumference of approximately 1 mi) oval racetrack in
the UK (Wolverhampton) over the period 1995–2000. Their results showed that the
bias actually changed each year as track management practices changed, but that bet-
tors appeared to be able to adopt efficient heuristics to cope with the sporadically
changing information and learn to adapt their betting strategies to capture the evolving
post-position bias information.

Taken together, the post-position bias studies appear to support the notion that profits
can be earned at some racetracks, under certain conditions, for short periods. However,
in the longer term, bettors appear to be able to adapt their betting strategies to fully
discount the bias.

2.5. Pedigree

A horse’s breeding is believed by many racing enthusiasts to have a significant effect
on a horse’s speed and stamina. In an efficient market, relevant information concerning
a horse’s pedigree should be fully discounted in odds. It is surprising, given the cover-
age given to the impact of breeding in the racing press, that few academic papers have
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explored the degree to which markets incorporate this information. The one exception is
a study by Bain et al. (2006) that examined the degree to which odds for the Kentucky
Derby over the period 1946–2000 accounted for the Dosage index, a measure derived
from a horse’s pedigree to predict a horse’s stamina (over its speed). They argued that
Derby winners are likely to have a Dosage index of less than 4.0 (indicating a good
stamina/speed ratio). Consequently, they developed a model to predict winning prob-
abilities based on whether the Dosage index is less than or equal to 4.0 and whether
or not a horse meets certain quality tests based on its previous performances. Profitable
betting strategies using the model were derived for horses that met the Dosage and qual-
ity tests, suggesting that the betting public do not fully incorporate this information into
final odds. This is particularly surprising since no horses that run in the Kentucky Derby
would have already run at the distance (hence, reliance on information from pedigree
might be expected) and much publicity is given to the race, exposing previous form
and pedigree to considerable pre-race analysis (for further discussion of the market effi-
ciency implications of the Dosage Index, see Gramm and Ziemba, 2008a, 2008b), who
show that the effect is strongest in the 11/2-mile Belmont Stakes.

2.6. Distance Preference

A number of existing studies implicitly examine the impact of distance preferences
of each horse on the likely outcome of a race; most of these investigate this factor
together with other fundamental explanatory variables (e.g., Benter, 1994; Chapman,
1994). However, Edeleman (2005) focuses specifically on this variable. He develops a
regression model to determine the average velocity of a particular horse running in a
race (as a proxy, to measure a horse’s distance preference), based on a number of input
variables, such as weight carried, and variables that measure the “ability at 1,400 m,”
distance gradient, and distance convexity. However, Edelman (2005) did not develop a
forecasting model to predict winning probability of horses based on the average velocity
(computed by the regression). Consequently, the predictive ability of this information
and the degree to which it is discounted in odds remains to be resolved.

2.7. Single Variable Models: Overview

The main conclusion to emerge from single variable semi-strong form efficiency stud-
ies in horse race betting markets is that most of the variables explored contain valuable
information. However, in most cases, bettors react to this information and discount it
fully in the short run (newspaper reporters’, professional tipsters’, and betting systems’
predictions), or in the longer run (e.g., post-position), or partially (e.g., cross-track bet-
ting and parallel market discrepancies, betting volume, breeding) into final odds. Even
where the information is not fully incorporated, such as in cross-track betting and paral-
lel market discrepancies, physical and cost barriers to arbitrage make the construction of
profitable arbitrage strategies problematic. In addition, for some of the variables that are
not fully discounted in final odds (e.g., betting volume, parallel market discrepancies)
there is no published evidence for profitable betting strategies that are able to exploit
these anomalies. Furthermore, one of the studies that does demonstrate that abnormal
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returns can be earned by exploiting the failure of bettors to fully incorporate information
(i.e., concerning a horse’s pedigree), was developed for a specific race (the Kentucky
Derby). Further out of sample testing and exploration of the degree to which breeding is
discounted in other races also needs to be conducted before it can be claimed that horse
race markets are inefficient with respect to a horse’s pedigree.

It appears particularly difficult to identify semi-strong form inefficiency in pari-
mutuel betting markets, since bets are settled at the final odds prevailing in the market.
Consequently, even if the market reacts slowly to a particular piece of information
(e.g., a professional tipster’s selections), provided the market eventually incorporates
the information, abnormal returns cannot be earned. However, in bookmaker markets,
it is possible to secure the odds at the time the bet is struck and there is some evidence
that profitable trading on some information (e.g., certain newspaper and professional
tipsters’ selections) may be possible if bets are made early in the market before other
bettors have reacted to the information.

The failure of many single variable studies to provide convincing evidence for semi-
strong form inefficiency at odds prevailing at market close suggests that horse race
betting markets are good at discounting relatively simple, single variable information.
The pedigree study of Bain et al. (2006) supports this conclusion, since the betting
strategy employed in that paper relies on the combination of two disparate pieces of
information (i.e., pedigree and previous performances) and in this sense is not really a
single variable study of market efficiency. The element of complexity, therefore, appears
to be a feature that can lead to semi-strong form inefficiency. This is, again, demon-
strated by studies that show that discrepancies between parallel betting pools can be
effectively exploited (e.g., Hausch et al., 1981) using betting strategies that require
complex calculations in a short time interval.

3. SEMI-STRONG FORM EFFICIENCY IN HORSE RACE
BETTING MARKETS: MULTIPLE VARIABLE MODELS

A number of studies have sought to test more directly the ability of horse race bet-
ting markets to deal with complexity. More specifically, these papers have explored
the extent to which bettors simultaneously impound a range of information concern-
ing odds, previous performances of horses and jockeys, handicappers’ assessments, and
conditions at the racetracks, into the final odds. These studies may have been stimulated
by the success of the more complex single variable papers discussed in Section 2 and by
studies such as Tuckwell (1983). This latter study demonstrated that win probabilities
generated from Computercard, a model incorporating publicly available information,
past and present, concerning the horses competing in a race, could be used to construct
a profitable betting strategy. The manner in which Computercard combined the various
pieces of information was not made clear in Tuckwell (1983). However, subsequent
studies using multiple variables have made explicit the means by which the informa-
tion is used to make probability predictions. These studies are classified here under the
two broad modeling approaches they adopt, namely, those that make assumptions about



294 Chapter 14 • Semi-Strong Form Efficiency in Horse Race Betting

the nature of the underlying statistical distributions (distribution-based methods,
Section 3.1), and those that do not (distribution-free methods, Section 3.2). Broad
conclusions that emerge from both of these modeling approaches are explored in
Section 3.3.

3.1. Distribution-Based Methods

The majority of studies in this category employ multinomial logit or probit functions
to develop a stochastic utility model that can be used to judge the “winningness” value
of a horse. They differ in terms of the assumed distribution for the error term in the
model. The relative “winningness” values of horses in a given race are then used to pre-
dict each horse’s probability of success. These models generally incorporate a range of
publicly available information concerning the horse, its jockey, race characteristics, and
odds. One advantage of these approaches is that they, to some extent, enable the manner
and extent of a variable’s contribution (in terms of the sign, size, and significance of
the coefficient of the variable in the model and the nature of any interaction between
variables) to the winning probability to be discerned.

Bolton and Chapman (1986) were the first to employ a multinomial logit model
to predict winning probabilities in a horse race. Their model incorporated 10 inde-
pendent variables associated with previous performances of the horse and the jockey,
together with information concerning the current race, including the weight the horse
carried, the post-position, and whether the horse was running over a new distance.
Bolton and Chapman (1986) developed their model using a sample of only 200 races
drawn from five racetracks in North America. However, they employed an explosion
process, whereby they used the information concerning not only which horse won the
race but, having eliminated the winner, which horse “won” the race to finish second and,
having eliminated the first two finishers, which horse “won” the race to finish third.
Consequently, the model was developed from an exploded dataset of 600 races. The
signs of all the variables in the model were consistent with the authors’ a priori expec-
tation. Horse-related variables appeared more important than jockey-related variables
in determining winning probability and, among the horse-related variables, the average
speed rating achieved in a horse’s last four runs appeared to contribute most to winning
probability. Bolton and Chapman (1986) estimated the model using 150 races from their
sample and tested whether profitable wagering strategies could be constructed using the
predicted probabilities on a holdout sample of 50 races. Various wagering strategies
were employed, including those that did (Isaacs, 1953), and did not (Rosner, 1975),
account for the effect of the model’s suggested bets on the final odds. None of these
produced a profit. However, using a strategy that involved differential bet sizes based on
the attractiveness of the wager, constraining bets to a level that would only marginally
affect final odds (a constrained form of the the Rosner, 1975, strategy) and eliminating
bets on horses where the model produced poor estimates (i.e., on horses with a predicted
winning probability of less than 0.07) positive returns were obtained. The small dataset
employed does not allow firm conclusions to be drawn from these results but Bolton
and Chapman (1986) suggested that they did point to the fact that the horse race betting
market may not be semi-strong form efficient.
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Chapman (1994) employed a similar methodology to extend Bolton and Chapman’s
(1986) earlier study. He developed a 20-variable multinomial logit model; 13 of
these independent variables relating exclusively to the horse’s past performances (both
historical and recent performance variables), three relating to the horse’s previous per-
formances relative to runners in the current race or in the conditions of the current race,
two relating to the weight carried in the current race, and two to the jockey’s previous
performances. The model is estimated using 2,000 races run in Hong Kong between
1985 and 1991. Nineteen of the 20 variables were significant at the 5% level and, again,
the signs of all variables were in line with a priori expectations. To test the degree to
which abnormal returns could be made using the model, Chapman (1994) constructed
five holdout samples of 400 races and developed the model using the remaining 1,600
races. A strategy of betting a unit stake on the horse with the highest expected return in
a given race produced average returns of 17.2%. Bolton and Chapman (1986) demon-
strated that multinomial logit models are unreliable in predicting winning probabilities
of extreme longshots. Consequently, Chapman (1994) explored modified strategies by
eliminating longshots from consideration. When bets were restricted to horses with a
predicted winning probability greater than 0.05, mean returns increased to 29.3%.

Numerous studies across the world have demonstrated that the public’s subjective
probabilities correspond well with realized winning probabilities (e.g., U.S.: Ali, 1977;
Asch et al., 1984, 1986; McGlothlin, 1956; Snyder, 1978a; Thaler and Ziemba, 1988;
Ziemba and Hausch, 1986; Australia: Bird and McRae, 1987; Tuckwell, 1983; New
Zealand: van Zijl, 1984; Gander et al., 2001; UK: Bruce and Johnson, 2001; Dowie,
1976; Vaughan Williams and Paton, 1997). Consequently, Chapman (1994) extended
the fundamental variable model to incorporate the log of the public’s subjective proba-
bility of winning, revealed in final odds. His results showed that this variable accounted
for 21.4% of the total explanatory power of the model. No tests were conducted on
the profitability of trading on the revised model since Chapman (1994) argued that this
would be difficult to execute in practice, as final odds were not known until the race was
underway.

Benter (1994), based on his own practical experience of model building and using
it to bet in Hong Kong, outlined the conditions necessary for developing a multinomial
logit model (involving independent variables based on publicly available information)
which can be used to develop a profitable betting strategy. Benter (1994) did not pro-
vide precise details of the fundamental variables employed in his model. However, his
experience shows that, unlike the models developed by Bolton and Chapman (1986)
and Chapman (1994), a successful model often includes variables relating to horses’ or
jockeys’ previous performances for which it is difficult to develop a clear a priori expec-
tation. In fact, he indicated that several variables in his successful model were highly
correlated and several had effects that were counterintuitive. Benter (1994) combined
the log of the public’s subjective probability judgements (revealed as final odds) with
the log of the probability estimates derived from the first stage multinomial logit fun-
damental handicapping model into a second stage multinomial logit model. This was
used to predict winning probabilities. The model was developed using the 2,000 races
run in Hong Kong employed in the Chapman (1994) study. A modified Kelly betting
strategy, designed to maximize the exponential growth rate of wealth, was employed to



296 Chapter 14 • Semi-Strong Form Efficiency in Horse Race Betting

test the profitability of the model’s predictions on a further 2,500 races over a five year
period. Bets with a positive expectation in both win and exotic bet pools were identi-
fied, and bets were restricted to some fraction of the Kelly bet (e.g., 1/3 or 1/4). For
the five year holdout sample, four years produced net profits and over the whole period
wealth increased by a factor of approximately 50. Benter (1994) concluded that it is
possible to employ a model based on publicly available information to make abnormal
returns.

Sung and Johnson (2005) developed a comprehensive 70 variable multinomial logit
model for predicting the results of flat races in the UK. This model includes variables
associated with the horses’, jockeys’, and trainers’ previous performances, a variable
to capture the degree of betting by the holders of privileged information, variables to
capture current race conditions, and a number of interaction terms. The model was esti-
mated using the results of 16,836 races run across the UK between 1996 and 1999
and the model’s predictions are tested on a holdout sample of 1,929 races run in 2000.
A Kelly betting strategy yielded returns of 16.38% and Sung and Johnson (2005) con-
cluded that the betting public failed to account for a significant amount of publicly
available information; particularly that associated with complicated transformations of
variables associated with previous performances of horses, jockeys, and trainers.

Most of the studies discussed above, which have employed multinomial logit mod-
els to investigate semi-strong form efficiency, have now been in the public domain for
several years. Consequently, it might be expected that profitable trading based on these
models may no longer be possible. However, most of these studies were conducted in
pari-mutuel betting markets in North America and Hong Kong and Sung et al. (2005)
argued that conditions in UK horse race betting are so different that it might still be
possible to construct profitable betting strategies based on a multinomial logit model
incorporating a number of independent variables. In particular, they argued that in the
UK (unlike the U.S. or Hong Kong) each racetrack is idiosyncratic in terms of market
size, ground conditions, configuration, and knowledge of bettors. Consequently, differ-
ent variables may exert different influences on a horse’s winning chance at different
racetracks. As a result, the task of predicting winning probabilities may be particu-
larly difficult in the UK and this may offer scope for the construction of profitable
betting strategies on a specific racetrack-based stochastic utility model, parameterized
in the form of a multinomial logit model. Sung et al. (2005) tested their hypothesis
by developing a multinomial logit model for Goodwood racetrack, incorporating six
variables associated with the horses’ previous performances, five variables to capture
the conditions of the current race, and two variables relating to the jockeys’ previous
performances. In addition, they incorporated, unlike in previous studies, three variables
to capture information concerning missing data (e.g., if the horse has not run at least
four times before). The model is estimated using a sample of 200 races run at Good-
wood racetrack between 1995 and 1997, but this dataset is exploded using the process
described in Chapman and Staelin (1982) and used in Bolton and Chapman (1986).
Predicted probabilities from this fundamental model are then combined with the log of
the normalized winning probability implied by final bookmaker odds in a second stage
multinomial logit model. This model was estimated using a second set of 200 races
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run at Goodwood between 1997 and 1999. It was found that the fundamental model
probabilities did add important information concerning winning probabilities over and
above that contained in odds. The resulting model was then used to predict winning
probabilities for a further set of 156 races run at the same racetrack between 1999 and
2000. A Kelly wagering strategy based on these predictions resulted in wealth increas-
ing by a factor of 1.36, which compared favorably with a loss of 26.6% resulting from
placing a unit bet on each runner. Sung et al. (2005), therefore, concluded that the study
supported the view that the horse race betting market in the UK remained semi-strong
form inefficient with respect to a multivariable model. They speculated that this may
relate to the difficulties faced by bettors in understanding the different factors relevant
to success at each racecourse in the UK and to the information overload experienced by
bettors facing a choice between bookmaker and pari-mutuel odds.

One objection to the use of a multinomial logit model for predicting winning prob-
ability is that the assumed error term distribution (i.e., negative double exponential
distribution) may not be the best for modeling horse race data. It has been proposed
by Henery (1981) that the normal distribution may be a better approximation to the
error term distribution. This conclusion has been confirmed in explorations by Lo et al.
(1995) and Ali (1998). Gu et al. (2003) compared the performance of multinomial logit
and probit models (which assume a normally distributed error term) for predicting the
results of horse races in Hong Kong, using data from 1,000 races involving 12,850
horses. The models each consisted of 15 independent variables including the log of the
probability implied by the final odds, four variables to capture information concerning
the horse’s previous performance history (e.g., the number of wins in the last two years),
four to account for current race conditions (e.g., the horse’s current age, the weight car-
ried by the horse), two to capture the jockey’s previous performance history, and four
interaction terms (e.g., the horse’s age times the distance of the race). The models were
developed using 600 races. The predicted probabilities from the two models are then
tested on a holdout sample of 400 races using two betting strategies. In the first, a unit
bet is made on the horse in each race with the highest expected return. In the second,
a modified Kelly betting strategy (following Rosner, 1975; and Bolton and Chapman,
1986) was employed, where the wealth level is fixed at unit value when calculating bet
size. Betting strategies one and two, based on both the multinomial logit and probit
models, were profitable. However, the multinomial probit model was more profitable in
both cases (28.3% better under the unit bet strategy and 16.1% better under the modified
Kelly strategy).

While the models examined in this section employed a variety of variables to capture
information concerning a horse’s previous performances, they all failed to adequately
quantify changes in the class or competitiveness of previous races run by each horse.
Changes in class determine how difficult a race is to win, and without such a measure,
a comparison of previous performances is vague, at best. Edelman (2003) develops a
model to address this weakness. He first developed a model to relate the beaten lengths
for a given horse moving from race i to race j to the change in weight carried and the
change in class of the two races. A ridge regression is performed over the complete
history of races for all horses in the sample in order to estimate the model parameters
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and, subsequently, to determine the change in class from race to race. Edelman (2003)
was then able to assess the change in class from race to race and to use this to con-
struct a competitive form variable for each horse. He then developed three multinomial
logit models to include, respectively: (a) the competitive form variable only, (b) the
logarithm of the bookmakers’ final odds, and (c) the competitive form variable and
the logarithm of the bookmakers’ final odds. Edelman (2003) estimated the parame-
ters for these models using a sample of higher grade sprint races (1000–1200 m) run in
Australia between 1991 and 1998. The findings indicated that the winning probability
increased as the competitive form variable increased and the competitive form variable
added significantly to winning probability when included alongside the log of odds.
Edelman (2003) tested the effectiveness of the competitive form variable by developing
a strategy of betting enough on all runners with a favorable value of the competitive form
variable to return one unit. This produced a profit of 27% on horses with odds of 2/1 or
shorter (21% on horses longer than 2/1), compared to a loss of 18% from wagering on
horses without reference to the form variable. In conclusion, Edelman (2003) suggested
(p. 112) that the model gave rise to “apparently reliable profitable betting strategies”
and that these profits could almost certainly be improved significantly with the addition
of other class ratings variables.

3.2. Distribution-Free Methods

The distribution-based approaches discussed above suffer the potential disadvantage
that they make assumptions concerning the distribution of the error terms in the mod-
els. If these assumptions are incorrect, then poor predictions may result. In addition, the
direct modeling of win-loss outcomes using multinomial logit or probit does not use all
the information concerning a horse’s relative finish position (only whether it finishes
first or is unplaced; see below for further discussion). This failure may also damage
the accuracy of the resulting predictions. Their predictive ability can also be reduced
by their reliance on linear approximations (to a greater degree than some distribution-
free approaches); this can particularly reduce the value of their winning probability
predictions for longshots (Bolton and Chapman, 1986). In addition, distribution-based
methods, such as multinomial logit, often require considerable data for accurate estima-
tion of estimates; this is less of a problem for some distribution-free methods. Equally,
the distribution-free methods discussed below make no distribution assumptions and
find alternative means of combining information from multiple variables in order to
predict the outcomes of horse races.

One of these was developed by White et al. (1992) and involved combining fore-
casts from a number of diverse procedures to predict the outcome of a horse race. They
developed a scaling procedure whereby each horse in a given race was ranked on the
basis of a given criterion relative to the horse with the highest rating. For example, one
of the criteria employed was earnings per start. The horse with the highest earnings
per start would be assigned a score of 100 and the horse with lowest earnings per start
would be assigned a score of 0. Using these two values as the base, all intervening
earnings per start values were assigned an appropriate scaled score between 0 and 100.
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In this manner, White et al. (1992) produced scaled scores for each horse in the race
on the basis of 12 diverse approaches for distinguishing the horses’ ability; five of
these related to the horses’ class, three to the horses’ speed, two to the horses’ pace,
and two were based on subjective opinions (i.e., a consensus of handicappers’ opin-
ions and the final odds). The various scaled values for each horse are then combined
into one measure for each horse using a simple arithmetic average. White et al. (1992)
identify disadvantages associated with the scaling and averaging process, namely, that
information is lost when scaling, finishing positions used by some of the measures to
distinguish horses’ ability may only accurately determine the relative performance of
the first four or five finishers (those finishing down the field may cease to compete well
before the finish), and, finally, the different approaches used are unlikely to be inde-
pendent and may to some extent measure the same aspect of a horses’ ability. However
they also point to three important advantages of this approach. First, scaling results in
equal ranges for all the methods of distinguishing the horses’ ability; this is important
since the combined forecast includes subjective methods which often show lower vari-
ance than actual results imply. Second, the scaled scores take account of the competitive
element of a horse race. Third, the approach enables diverse types of methods for assess-
ing horses’ relative ability to be combined. The accuracy of the combined measure of
horses’ relative ability was tested on 25 sprint races run at Calder racetrack in Florida
during 1990. The accuracy increased as the number of methods of assessing a horse’s
ability increased. The best individual forecast was shown, as expected, to be the final
odds and the speed and pace variables showed the lowest mean error. Using a Kelly
betting strategy, the average return from applying the 12 different methods for assessing
horses’ ability in isolation was a loss of 7%, but when all the methods were combined
this produced a profit of 26%. Clearly, the holdout sample was very small but the results
do suggest that a distribution-free approach which combines information concerning a
horse’s prospects from a variety of sources may enable profitable trading strategies to
be developed.

The approach adopted by White et al. (1992) provides a simple distribution-free
means of combining information from various sources in order to make horse race pre-
dictions, but it does not incorporate subtle interactions between the various data sources.
Edelman (2007) sets out to develop a distribution-free approach that fills this gap. He
develops a support vector machine regression (SVR) model to generate a continuous
index value (a winningness index) for each horse based on a range of 12 input variables,
eight of these being based on the performance of the horse in its previous race, and four
on the conditions of the current race. This model is employed to predict the normalized
finish position variable used by Benter (1994; i.e., horses’ finishing position: first = 1,
second = 2, etc., scaled to an interval [–0.5,0.5]). This approach overcomes the dras-
tic information loss suffered by approaches that directly model win-loss outcomes (as
used, e.g., in Bolton and Chapman, 1986) since the relative performance of horses who
do not win the race are ignored in these latter approaches. The winningness index devel-
oped from the regression of the fundamental values is then combined with information
contained in final odds, using a standard multinomial logit model, to produce predicted
probabilities of winning. Edelman (2007) developed his model using a sample of 200
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races run in Australia in 1995 and tested the results on a holdout sample of 100 races.
One of the practical drawbacks of this approach, compared to modeling probabilities
directly using multinomial logit or probit, is that the contribution of the included inde-
pendent variables cannot be measured. However, a Kelly betting strategy applied to the
predicted probabilities resulted in an increase in wealth of 500%. However, it is argued
that modeling the later finishing positions may introduce noise information (e.g., Bolton
and Chapman, 1986; Sung and Johnson, 2007). This view challenges the reliability of
SVR models. Consequently, Lessmann et al. (2007) adopt a similar methodology to
Edelman (2007) but replace SVR with support vector machine classification (SVC).
SVC in its simple form is a supervised learning method for distinguishing between
winners and losers that maintains the merits of SVR; namely, those associated with
overcoming most of the disadvantages of distribution-based approaches, discussed in
the beginning of this section. Indeed, using a sample of 400 races run at Goodwood
in the UK, Lessmann et al. (2007) develop SVR- and SVC-based models. They then
use these two models to estimate winning probabilities for runners in a 156-race hold-
out sample. The returns produced by applying a Kelly wagering strategy using these
estimated probabilities from the two models are compared. The results indicate that
positive returns can be obtained using both SVR- and SVC-based models, but the profit
derived using the SVC-based model estimates is 1.66 times higher than that using the
SVR-based model estimates. This finding confirms the view that the noisy information
contained in the minor placings can damage the predictive ability of a horse race model.
The holdout samples in Edelman (2007) and in Lessmann et al. (2007) are small, but the
profits achieved are strongly suggestive of semi-strong form inefficiency. The variables
they employ either only account for information concerning a horse’s previous run or
they have been in the public domain for many years. Consequently, it is expected that
other more sophisticated variables, that previous research has shown to be valuable for
predicting winning probability, may well not be fully discounted in odds (e.g., a horse’s
lifetime earnings, a jockey’s previous performances). The findings of Edelman (2007)
and of Lessmann et al. (2007) also point to the existence of non-linear relationships
among a range of explanatory variables, and this may help to explain the persistence of
semi-strong form inefficiency in horse race betting markets.

3.3. Multiple Variable Models: Overview

The clear conclusion to emerge from the studies, which combine publicly available
information concerning various aspects of a horse’s and a jockey’s previous perfor-
mances with information associated with current race conditions, is that betting markets
do not fully account for this information in final odds. In addition, it appears possible
to develop profitable trading strategies based on these models’ predictions. The results
of the earliest multivariable models have been in the public domain for many years and
most of the variables employed in these models are those that bettors would consider
important in making their selections. Despite these observations, more recent attempts
to model winning probabilities using multivariable approaches have also demonstrated
profitable trading opportunities. It appears that the betting public is unable to handle
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the complexity of weighting the various criteria appropriately (which the models are
designed to do) when making their judgments concerning horses’ chance of winning.
More recent advances, such as approaches employing SVRs, capture “subtle non-linear
and interactive effects of the input variables” (Edelman, 2007, p. 335) and these are the
types of subtleties that are the least likely to be discovered and acted upon by the betting
public.

4. SEMI-STRONG FORM EFFICIENCY IN HORSE RACE
BETTING MARKETS: CONCLUSION

The broad conclusion to emerge from the studies examined in this chapter is that horse
race betting markets incorporate a significant amount of publicly available information.
Few studies examining the impact of a single type of publicly available information have
found that abnormal returns can be earned from trading strategies based on information
associated with these variables. While some studies have demonstrated that profitable
trading is possible for short periods (even up to one year), evidence suggests that the
information is discounted in odds in the longer run and the profits disappear. In this
sense, the efficient market hypothesis cannot be rejected. In fact, the ability of bet-
tors to utilize publicly available information has been well documented (e.g., Johnson
and Bruce, 2001) and there are a number of reasons, based on previous research find-
ings, to expect horse race bettors’ decisions to produce odds that calibrate well with
observed race outcomes. These include the long-term experience of bettors (see, e.g.,
Smith and Kida, 1991, on the role of experience), which means that many bettors are
well-practiced in making probability judgments (e.g., see Ferrell, 1994, for the bene-
fits of such practice), the regular and unequivocal feedback (i.e., their selection wins
or loses) that they receive (e.g., McClelland and Bolger, 1994, discuss how this can
improve judgments), they are well-motivated (monetary gains/losses) to make accurate
judgment (e.g., Ashton, 1992, provides evidence of improved judgment where appro-
priate incentives are provided), and, finally, their judgments are made in a real world
environment (cf. the laboratory, where calibration is often inferior; see, e.g., Gigerenzer
et al., 1991). The absence of long-run abnormal returns from betting strategies based
on a single variable derived from publicly available information suggests that the horse
race betting market is efficient in its use of such information. However, efficiency can
be defined in a more restrictive manner to require “that expected returns be equal across
wagering prospects” on identical outcomes, where costs and risks are equal (Sauer,
1996, p. 2,024). If this definition is used, then a different picture emerges. The single
variable studies suggest that there are a number of situations (e.g., cross-track bet-
ting, parallel bookmaker and pari-mutuel markets, parallel win and place/show markets)
where expected returns are not equal. In part, this may result from the irrational behav-
ior of horse race bettors, which has been observed in a number of studies (e.g., Johnson
et al., 1999; Bruce and Johnson, 1995; Metzger, 1985). However, in some cases, cost
and physical barriers exist to prevent arbitrage, and in others, it has been shown that
the representative bettor must be risk neutral for the observed differences to represent a
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sign of inefficiency. The latter assumption is clearly suspect, given bettors’ motivation
to continue to bet despite positive takeout rates. In most cases, therefore, the simple,
single variable models fail to provide evidence for semi-strong form inefficiency.

The single variable studies that contradict this conclusion have either been conducted
in the bookmaker market (where returns to information can be secured by accepting
odds early in the market before other market participants react), or involve more com-
plex strategies (e.g., differences between win and place/show pools exploited using
complex calculations in a short time period). The results of the latter studies suggest
the hypothesis that horse race betting markets are good at discounting simple, single
variable information, but that they do not efficiently discount more complex informa-
tion. This view is largely confirmed by the multivariable studies discussed above. In
all cases, these studies show that profitable trading strategies can be developed using
predictions from models that examine the simultaneous effect of several variables on
race outcome. A striking feature is the robustness of these results through time. This
may result from bettors’ inability to perceive and react to the subtle relationships that
exist between variables (e.g., Bruce and Johnson, 1996, 1997; Johnson and Bruce, 1997,
1998), and/or that these relationships change through time (Johnson et al., 2005).

Before dismissing the abilities of horse race bettors to discount publicly available
information, it should be noted that odds remain the most successful single predictor of
race outcome, even in comprehensive multivariable models. These results suggest that
bettors do discount a significant amount of publicly available information. In addition,
they appear to be particularly successful in discounting relatively simple, single variable
information. In conclusion, the semi-strong form inefficiency that is observed in horse
race betting markets appears to arise from bettors’ failure to adequately account for
the complex, subtle (or non-linear), and possibly changing relationships between the
variables that affect race outcome.
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Abstract

This chapter surveys the dosage breeding theory pioneered by Vuilliers, Varola, and
Roman with major emphasis on two top classic three-year-old thoroughbred races,
namely, the Kentucky Derby and the Belmont Stakes. Run at 11/4 mi and 11/2 mi respec-
tively, they typically are at least 1/8 and 1/4 mi longer than any of the horses has ever
raced before. This extra distance, combined with the large fields (especially in the
Derby), make these two races a difficult test of stamina for horses this young. Bet-
tors are also challenged because there is no direct evidence of whether a horse has
the stamina to compete effectively at these distances. The informational content of the
publicly available, pedigree-based measure of stamina, the Dosage Index, is used with
simple performance measures to identify a semi-strong-form inefficiency. Statistically
significant profits, net of transaction costs, could have been achieved during 1946–2006.
This can be compared to the middle leg of the Triple Crown, the Preakness, run at 13/16,
where the Dosage Index provided no advantage.

JEL Classifications: G10, G14

Keywords: semi-strong-form market efficiency, capital growth theory, speculative investments,
sports betting

1. INTRODUCTION

The Kentucky Derby annually gathers many of the top three-year-old thoroughbred
horses at Churchill Downs in Louisville, Kentucky on the first Saturday in May. For the
horses entered, the race is a new challenge, since its distance of 11/4 mi is typically at least
1/8 mi longer than any of them has ever raced. The extra distance of the Kentucky Derby,
usually combined with a large field that includes many top-flight contenders, presents a
significant test of stamina for these young horses. Two weeks after the Kentucky Derby,
many of the same horses plus others compete in the Preakness Stakes run at the shorter
distance of 13/16 mi at Pimlico racetrack in Baltimore, Maryland. Then three weeks later,
in early June, the 11/2 mi Belmont stakes is held at Belmont Park on Long Island, near
New York City. And like the Kentucky Derby, typically none of the Belmont Stakes
entrants has run this far this early in their careers.

Since the horses in the Kentucky Derby and the Belmont are running at longer dis-
tances than any earlier races, the public’s assessment of their stamina cannot be easily
based on their past performances. Without direct evidence of a horse’s ability to run at
the distances of these two races, bettors have looked to indirect evidence. One approach
to assessing stamina that has received wide public attention looks at whether the sires in
a horse’s pedigree have demonstrated a pattern of progeny with stamina. This approach,
called dosage theory and described in Section 3, is coupled with evidence of success
in major races as a two-year-old horse to study semi-strong-form efficiency of the
Kentucky Derby by Bain, Hausch, and Ziemba (Bain et al., 2006; hereafter BHZ), and
of the Belmont Stakes by Gramm and Ziemba (2007; hereafter GZ).
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We describe the empirical analyses in BHZ and GZ, and summarize their results
that dosage theory and success as a two-year-old horse point to semi-strong-form
inefficiency. Two categories of horses are studied: dual qualifiers and asterisk qualifiers.

Dual qualifiers are those with a speed/stamina balance consistent with the Derby
and Belmont characteristics and who were strong enough as two-year-olds to be ranked
within 10 lb of the top two-year-old. Asterisk qualifiers pass the dosage test but not
the 10 lb test. However, they showed strength by winning a major race early in their
three-year-old year.

BHZ and GZ show that both dual qualifiers and asterisk qualifiers did in fact provide
positive wagering profits in the Derby and even more so in the Belmont. Since the
dosage theory is silent on the Preakness, these strong positive results do not apply there.
The Kentucky Derby results are strongest for the pre-1996 period while the Belmont
results are strong through 2006. There were no dual or asterisk qualifiers in the 2007
Belmont.

Roberts (1967) defined a market as being weak-form, semi-strong-form, or strong-
form efficient if it is not possible to devise a profitable investment scheme net of
transactions costs based on prices (or, for the racetrack, publicly available odds), based
on all publicly available information, or based on all information, respectively. For tra-
ditional financial markets, there is considerable evidence that points to weak-form and
semi-strong-form efficiency, but little evidence for strong-form efficiency (see Fama,
1970, 1991; and Keim and Ziemba, 2000, for surveys).

Weak-form efficiency of the racetrack’s win market means that betting systems
based solely on the public’s win odds, established through pari-mutuel betting, are
not profitable. Evidence from many tracks over many years has pointed to weak-form
efficiency, for example, Ali (1977) and Asch et al. (1982).1 Weak-form efficiency of
the win-betting market is a consequence of four of its features. First, transaction costs
are high, about 13–20%, depending on track location, so a bettor needs to be con-
siderably more successful than the average bettor just to break even.2 Second, while
the challenge is substantial, the concept of the win bet is relatively simple. Thus,
bettors have no confusion about their task. Third, many racetrack bettors approach
their wagering very seriously and some are very sophisticated. Fourth, for this serious
audience, there is usually an abundance of relevant information, including records of
past performances and workouts for all the horses, breeding, earnings, jockey records,
and so on.

1An exception may be extreme favorites at odds of 3/10 or less, which have been shown historically to pro-
duce a small average profit; see Ziemba and Hausch (1986). However, data such as that shown in Ziemba
(2008) and in Snowberg and Wolfers (2008) indicates that such positive profits currently do not exist with-
out rebates. Inefficiencies in other more complex markets are more common; see Hausch et al. (1994)
and other chapters in this volume for such evidence. Weak and semi-strong market efficiencies are dis-
cussed in the chapters by Hausch and Ziemba (2008) and by Johnson and Sung (2008), respectively, in this
volume.
2Large bettors can reduce this take by betting at rebate sites that return a portion of the bet to make the actual
take about 10%. We do not deal with such bettors here nor with those outside the U.S. who wager on Betfair
or other betting exchanges against other bettors directly rather than in a pari-mutuel pool as discussed here.
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For the Kentucky Derby and the Belmont Stakes, the first two of these criteria are
satisfied for the win market. While the third criterion is met, the Kentucky Derby and
Belmont Stakes also receive much more interest in North America from casual fans
than other races. Because, typically, none of the Derby or Belmont Stakes entrants has
raced at 11/4 mi and 11/2 mi, respectively, it can be argued that the fourth criterion is not
fully met.

The objective in BHZ and GZ is to determine whether the informational content of
the Dosage Index, a pedigree-based measure of stamina that is publicly available, in
conjunction with simple performance measures, is captured in the pari-mutuel win odds
and, if not, whether it can be used to develop a profitable betting scheme.

The operation of the racetrack market is discussed in the first section. Section 3
describes the Dosage Index and performance measures, and their application to the
Kentucky Derby and Belmont Stakes. The data used by BHZ and GZ in their analy-
ses are discussed in Section 4. Section 5 describes BHZ’s scheme for estimating each
betting interest’s win probability based on the public’s odds, the Dosage Index, and the
performance measures, with an application of this technique to the Kentucky Derby.
The Kelly capital growth betting model is described in Section 6. The results from
BHZ’s joint application of their probability estimation scheme and Kelly wagering for
the Kentucky Derby appear in Section 7. Sections 8 and 9 discuss GZ’s results for the
Preakness and Belmont Stakes for 1946–2007. Conclusions appear in Section 10.

2. THE RACETRACK AS A SEQUENCE OF MARKETS

Prior to a race, bettors engage in markets that establish prices for the various betting
opportunities for that race. Betting closes immediately before the race begins, and
payouts are calculated immediately following the race. For win betting, there are N
betting interests in a race. Let Wi be the total amount bet to win on betting interest
i = 1, . . . ,N .3 The win pool is

W =
N∑
i=1

Wi. (1)

The track payback, Q (generally 0.80 to 0.87 for win bets), is the fraction of each dollar
bet that is returned to the bettors. The commission, or track take, is 1 −Q. If betting
interest k wins the race, then win bets on betting interests i �= k return zero, while each
dollar bet on betting interest k returns approximately QW/Wk. The actual profit per
dollar is rounded down to the nearest nickel or dime (this is called breakage). Together
the track take and breakage constitute the transaction costs.4

3Our notation deals with one race only. In Section 5, to deal with several races simultaneously, we add a
superscript to our notation to identify the race number.
4For each track there is a minimum payout, usually 5%, that the track must return even if there are insufficient
funds available in QW . If there is a rebate, then the track take is effectively reduced to about 10% so Q is
about 0.90.
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Typically, each horse in a race runs as a separate betting interest. However, two or
more horses in a race that have common ownership typically run as a single betting
interest known as an entry. In addition, in a race where there would be more betting
interests than a preset maximum, the horses with the least-impressive credentials are
grouped as a single betting interest known as the field. A bet to win on an entry or
the field pays off if any member of that betting interest wins the race. Both have been
common in the Kentucky Derby but not in the Belmont Stakes. However, the long-time
restrictions in Kentucky changed in 2001, so there were no entries and no field in the
Kentucky Derby from 2001 on.

3. THE DOSAGE INDEX AND PERFORMANCE MEASURES

The fact that usually no Derby (or Belmont) entrant has raced at 11/4 (11/2) mi prior to the
race has led to the search for relevant information from alternative sources, including
the horse’s pedigree. One method of evaluating a thoroughbred’s pedigree, commonly
known as dosage theory, has its roots in the work of French cavalry officer Lt. Col.
Jean-Joseph Vuillier, who studied the pedigrees of exceptional thoroughbreds of the late
nineteenth and early twentieth centuries; see Vuillier (1902, 1906, 1928). The concept
of thoroughbred dosage evolved through Varola, who developed a patented classifica-
tion of prominent stallions according to the type of offspring that they produced in a
series of articles in The British Racehorse; see also Varola (1974, 1980).

Roman’s (1981) modifications of Varola’s work are known as dosage theory. His
work was outlined in Leon Rasmussen’s Bloodlines column in the Daily Racing Form
beginning before the 1981 Kentucky Derby. One product of Roman’s pedigree analysis
is the Dosage Index (DI), which is based on the categorization of prominent stallions
in terms of whether they consistently sire offspring with distance proficiencies that are
incongruous with the dosage profiles of those offspring when that stallion is excluded.
Classified stallions are called chefs-de-race (or simply chefs);5 see Ziemba and Hausch
(1987) and Roman’s Website (http://www.chef-de-race.com) for the rationale behind
the selection of recent chefs, and Roman (2002).

There are five categories for chef classification in Roman’s system: Brilliant, Inter-
mediate, Classic, Solid, and Professional. The categorization is based on “where they
[sires] must lie on the speed-stamina spectrum to bring the figures of their descendants
back in line with those of horses in the general population exhibiting similar perfor-
mance traits” (Roman, 2001). A chef can be placed in one or two categories. Each time
a chef appears in a four-generation pedigree, points are awarded in the appropriate cat-
egory. Points are assigned on a scale of 16 for the first-generation sire, eight for each
second-generation sire, four for each third-generation sire, and two for each fourth-
generation sire. Sires that are classified in two categories have their points split. After

5Mares are not included because they are considered to have too few offspring to identify distance
proficiencies, while it is not unusual for a stallion to sire 100–200 offspring in a year.
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the 15 sires have been assigned points, the total for each category is entered into the
Dosage Index formula

DI =
Brilliant + Intermediate + 1/2 Classic

Solid + Professional + 1/2 Classic
. (2)

Horses with a high DI have a pedigree that is weighted towards Brilliant and Inter-
mediate chefs, that is, sires who tend to produce offspring with greater sprinting ability
than their pedigrees would suggest if that sire were eliminated from the pedigree. Horses
with a low DI are predicted to have stamina. Very seldom will a stakes-quality horse
have no dosage points, though some have so few that the DI is unreliable. The pedi-
gree and the dosage profile for 2005 Belmont Stakes winner Afleet Alex are shown in
Table 1. Each pedigree shows the sire and mare for each horse for four generations. For
example, Afleet Alex’s sire and mare were Afleet and Nurvette, with their respective
sires and dams shown directly to their right in the pedigree.

After the initial classification of chefs in 1981, Roman found that no Kentucky Derby
winner from 1940 to 1980 had a DI exceeding 4.0, despite about one in seven entrants
having a DI that high.

The Dosage Index is not a direct measure of the quality of a horse. One
quality measure is the experimental free handicap (EFH), an annual ranking of
two-year-old thoroughbreds that raced in select races in the United States. (see

TABLE 1 Pedigree and Dosage Index Calculation for 2005
Belmont Stakes Winner Afleet Alex

Mr. Prospector Raise a Native (B)

(B/C) Gold Digger
Afleet

Venetian Jester
Polite Lady

Friendly Ways
Northern Afleet

Northern Dancer (B/C)
Nureyev (C)

Special
Nuryette

Tentam
Stellarette

Square Angel

Roberto (C)
Silver Hawk

Gris Vitesse
Hawkster

Chieftain
Strait Lane

Level Sands
Maggy Hawk

Utrillo II
Hawaii

Ethane
Qualique

Sensitivo
Dorothy Gaylord

Gaylord’s Touch
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Generation Sire Brilliant Intermediate Classic Solid Professional

1 Northern Afleet

2 Afleet

Hawkster

3 Mr. Prospector 2 2

Nureyev 4

Silver Hawk

Hawaii

4 Raise a Native 2

Venetian Jester

Northern Dancer 1 1

Tentam

Roberto 2

Chieftain

Utrillo II

Sensitivo

Total 5 0 9 0 0

NOTE: Dosage Index = (5 + 0 + 9/2)/(0 + 0 + 9/2) = 2.11.

http://www.jockyclub.com/experimental.asp). Conducted since 1933 by the Jockey
Club, the EFH assigns the top runners a figurative weight on a scale that usually has
the two-year-old champion weighted at 126 lb.6 Exceptional horses have been weighted
up to 130 lb. Other top horses are assigned lower weights based on perceived ability
until a cutoff is reached at about 100 lb beyond which no more horses are classified.
Usually there are 15 to 30 horses classified within 10 lb of the top-weighted horse.
Roman (1981) observed that starting in 1972, most Kentucky Derby winners were rated
within 10 lb of the top-weighted horse. This observation led to the designation “dual
qualifier” for any horse that was weighted within 10 lb of the top-weighted horse on the
EFH (indicating the quality of the horse) and had a DI less than or equal to 4.0.7

Professional handicapper James Quinn offered a second measure of quality to add
late-developers to the list. He defined what we call an “asterisk qualifier” to be any
horse that: (1) won at least one of a selection of premier races prior to the Kentucky
Derby or Belmont Stakes; (2) had a DI less than or equal to 4.0; and (3) was not rated
within 10 lb on the EFH. A horse is a “dual-or-asterisk qualifier” if it qualifies for one
of these two categories.

6Ranking horses by weight is a familiar concept at the racetrack. In handicap races, the top horses carry greater
weight ( jockey + saddle + additional weights if necessary) than the less-qualified horses. Handicapping of
this sort occurs only in select races and is intended to make the race more competitive.
7Some people expand the dual qualifier category to include any horse that is declared a champion in a country
other than the U.S. and has a DI less than or equal to 4.0. In this chapter, only the first definition was used.
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The objective of BHZ and GZ was to study whether these widely publicized mea-
sures have any predictive power that is not incorporated into the public’s pari-mutuel
win odds. If not fully incorporated, then a further objective was to investigate whether
these measures could be used to determine win probability estimates that are sufficiently
superior to the public’s so that a profitable wagering scheme based on win betting could
be developed, despite the significant transaction costs.

4. DATA ACQUISITION

This section discusses the nature of the data in BHZ and GZ, while the sources of their
data are described in the Appendix.

The public’s win betting pool and results were collected for the period 1946 to 2007.
For 54 of these years, dollar amounts that the public wagered were found which yielded
precise values for qi. For the other eight years, only the final win odds for each betting
interest were available. In these cases it was possible to back out win probabilities that
were consistent with these odds.

The EFH listing and pedigree information for each Derby participant were collected
for each year from 1946 to 2007. The original list of chefs was published in 1981. For
years prior to 1981, this list was used, which means that the classification of chefs for
1946 to 1980 is not completely out of sample. The Kentucky Derby hypothetical betting
begins in 1981, so all betting is based on lists of chefs that were out of sample. For the
period 1981–1986, the 1981 list was used (see Appendix for explanation). After 1986,
an updated list of chefs was used each year. The Belmont calculations are for 1981–2006
and 1946–2006, with no dual or asterisk qualifiers in 2007.

The major races for asterisk-qualifier status, with their 2007 graded stakes clas-
sification and the years that they have been run over the interval 1946–2005, were
the Blue Grass Stakes (G1; 1946–2005), the Flamingo Stakes (currently not run;
1946–1989, 1992–2001), the Florida Derby (G1; 1952–2005), the Santa Anita Derby
(G1; 1946–2005), and the Wood Memorial Stakes (G1; 1946–2005). The Flamingo
Stakes declined in importance before being cancelled, but was included because
historically it was an important prep race.

5. APPLICATION OF BREEDING INFORMATION AND
PERFORMANCE MEASURES TO REFINE ESTIMATED
WIN PROBABILITIES FOR THE KENTUCKY DERBY

BHZ developed two models for estimating win probabilities that depended on whether
a betting interest was a dual qualifier or a dual-or-asterisk qualifier.

The 1995 Kentucky Derby is used in Table 2 to illustrate the required information.
Also evident is a complication with regard to accounting for pedigree with entries (and
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TABLE 2 Sample Input Data: 1995 Kentucky Derby Field

Qualifier status

Horse Wi/W Entry EFH Won specified DI Dual Asterisk

Jambalaya Jazz 0.044 1 115 1.15

Pyramid Peak — Flamingo 3.00 •
Serena’s Song 0.189 2 122 2.11 •
Timber Country 126 3.29 •
Mecke 107 4.50

Knockadoon — 3.57

Citadeed 0.066 Field — 1.60

In Character — 1.77

Ski Captain — 3.67

Lake George — 4.50

Thunder Gulch 0.033 116 Florida Derby 4.00 •
Tejano Run 0.087 121 2.38 •
Jumron 0.126 115 3.80

Eltish 0.070 123 3.00 •
Afternoon Deelites 0.086 124 5.00

Suave Prospect 0.059 113 4.60

Talkin Man 0.167 114 Wood Memorial 3.00 •
Dazzling Falls 0.029 111 6.20

Wild Syn 0.042 — Blue Grass 4.33

NOTE: Wi/W : Post-time fraction of win pool. Entry: Entry number or field. EFH: Experimental
free handicap weight. Blank implies not weighted. (High weight for two-year-olds from 1994 was
126 lb.) Won specified race: • Winner of a major race prior to Kentucky Derby. DI: Dosage Index: see
Equation (2). Qualifier status: • Implies meets qualifier requirements. Source: Bain et al., 2006.

the field): the horses in an entry may not have the same qualifier status. This difficulty
was handled using the following scheme:

1. If all members of an entry had the same qualifier status, then the entry was
considered as one horse with that qualification.

2. If one member of the entry was a dual qualifier plus had won any of the desig-
nated major races prior to the Kentucky Derby, the entry was considered to be a
dual qualifier regardless of the qualifications of the other member(s) (based on
the presumption that in most cases most of the public’s attention on the entry was
due to that horse).

3. If the members of an entry did not all have the same qualifier status, but each
was either a dual qualifier or an asterisk qualifier, then the entry was viewed as a
dual-or-asterisk qualifier.

4. In all other cases the entry was considered to be neutral, that is, neither an asterisk
qualifier nor a dual-or-asterisk qualifier.



316 Chapter 15 • Dosage Breeding Theory

The qualifier status of the field was determined in the same manner. For the dual-
qualifier model there are 67, 0, 10, and 22 betting interests in the respective categories,
and for the dual-or-asterisk-qualifier model there are 57, 2, 10 and 30 betting interests
in the respective categories.

With respect to the dual-qualifier model, of the winners there are 29 that are quali-
fiers, 26 that are not qualifiers, and 3 that are part of a neutral entry. With respect to the
dual-or-asterisk-qualifier model, of the winners there are 41 qualifiers, 16 that are not
qualifiers, and 3 that are part of a neutral entry. In 1998 and 2003 there were no dual
qualifiers, so those years were ignored in the dual-qualifier modeling.

The base-case model relates a betting interest’s win probability to the public’s wager-
ing to see if looking solely at the pools without the “expert information” could lead to a
profitable betting scheme.

Let W j
i be the public’s win bet on betting interest i, W j be the win pool in race j, and

Nj be the number of betting interests in race j. For race j, define pji to be the probability
that betting interest i wins and define q

j
i ≡ W

j
i /W

j to be the fraction of the win pool
bet on betting interest i. For this base case, the following model was used for each race

p
j
i =

(qji )
�

Nj∑
m=1

(qjm)
�
. (3)

If � = 1, then p
j
i = q

j
i .

BHZ used a standard maximum-likelihood approach to estimate optimal values of
�. Consider R independent races and define K ≡ (k1, . . . , kR) to be an R-tuple repre-
senting the winners of the R races, that is, kj is the number of the betting interest that
won race j. Let pjkj represent the estimated probability based on Equation (3), evalu-
ated before race j, that betting interest kj wins race j. The probability that the vector
K corresponds to the winners of the R races is

P (K| �) =
R∏
j=1

p
j
kj
. (4)

Treating Equation (4) as a likelihood function that depends on � gives

� (� |K) �

R∏
j=1

p
j
kj
. (5)

A maximum-likelihood point estimate for �, namely �ML, can be found by maximizing
the likelihood as a function of �. The first value for �ML was calculated using the first 10
years of data, namely 1946–1955 inclusive. Thereafter, the value of �ML was updated
for each year using data from 1946 to that year. The win pool fraction for the winner
and values for �ML calculated after each year’s race are shown in Figure 1.
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FIGURE 1 Value for �ML after each year’s race and the fraction of the win pool bet on the winner,
1955–2005. Source: Bain et al., 2006.

The values for �ML are less than 1.0 for the years prior to 1974. This is a conse-
quence of the public’s more favored betting interests winning less often during this
period than would have been expected based on the public’s odds. The winners from
1972 to 1979 were dominated by favorites, culminating with Spectacular Bid in 1979, so
�ML increases over this interval, reaching a maximum value of 1.12. During the period
of 1980–2005, the public’s favorite seldom won, so �ML tends to decrease to it final
value 0.92.8

With values of �ML close to 1.0, Equation (3) generates revised win probabilities that
differ only slightly from the fraction of the win pool. The greatest ratio p

j
i /q

j
i over the

interval 1981–2005 is 1.12. This 12% edge is insufficient to offer a positive expected

8Griffith (1949), McGlothlin (1956), Ali (1977), Asch et al. (1982), and Ziemba and Hausch (1986), among
others, have demonstrated that the public’s wagering has a strong and stable bias of underbetting the favorites
and overbetting the longshots. This results in � > 1.0. Ziemba and Hausch (1987) provided evidence that
this “favorite-longshot bias” is exhibited at the Kentucky Derby but it is weaker, that is more flat, than in
these earlier studies. The recent advent of rebate and betting exchange wagering has led to a flattening of the
favorite-longshot bias in recent data since about 1998; see Ziemba (2004, 2008) and Snowberg and Wolfers
(2008).
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return on a win bet after accounting for the transaction costs; hence this simple model
points to weak-form efficiency of the win-betting market over this period.

The main objective of BHZ was to use this procedure to create models that modified
the win probability for each betting interest based on whether or not it was considered
a dual qualifier or considered a dual-or-asterisk qualifier.

For this case, BHZ viewed the probability of betting interest i winning to be

p
j
i =

(qji )
�i

Nj∑
m=1

(qjm)�m

, �i, �m = �, �, or 1. (6)

The variable �i = � if betting interest i was a dual qualifier (or dual-or-asterisk qualifier
depending on the test), �i = � if it was classified as not a dual qualifier (or not a dual-
or-asterisk qualifier if applicable), and �i = 1 if the betting interest was an entry or field
classified as being neutral.

Based on Equation (6), BHZ calculated annual maximum-likelihood values for �
and �, denoted as �ML and �ML, were calculated each year. The initial estimate for
1956 used the first 10 years of data (1946–1955). Figure 2 illustrates the progression
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of �ML and �ML values for the dual-qualifier model, and Figure 3 shows �ML and �ML

values for the dual-or-asterisk-qualifier model.
In Figures 2 and 3, the critical pattern is the relative magnitude of �ML and �ML.

In Figure 2, for nearly 20 years, �ML exceeds �ML. Consequently, for this period, the
revised win probability for each dual qualifier is less than the fraction of the money bet
on it in the win pool. This implies that betting on dual qualifiers, if they had been known,
would not have been advantageous during that period. In the mid-1970s, dual qualifiers
began to win consistently, eventually leading to �ML exceeding �ML for the remainder
of the study period. For this later period, the revised win probabilities for dual qualifiers
exceed their fraction of the win pool. Figure 3 for dual-or-asterisk qualifiers shows a
similar pattern, although �ML begins to exceed �ML after only three years. Thus, after
the third year, the model predicts win probabilities for dual-or-asterisk qualifiers that
exceed their fraction of the win pool.

The original and revised estimates of win probabilities for 1995 are in Table 3, where
a betting interest’s estimated win probability rises if it meets the qualifier criterion.
This is not necessarily the case if there are many qualifiers because the sum of the
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TABLE 3 Original and Revised Estimated Win Probabilities
for the 1995 Kentucky Derby

Betting interest Wi/W DQ pDQ DAQ pDAQ

Entry 1 0.044 −1 0.029 0 0.027

Entry 2 0.189 1 0.242 1 0.220

Field 0.066 −1 0.044 −1 0.035

Thunder Gulch 0.033 1 0.075 1 0.076

Tejano Run 0.087 1 0.144 1 0.137

Jumron 0.126 −1 0.085 −1 0.068

Eltish 0.070 1 0.125 1 0.121

Afternoon Deelites 0.086 −1 0.057 −1 0.046

Suave Prospect 0.059 −1 0.039 −1 0.031

Talkin Man 0.167 −1 0.114 1 0.204

Dazzling Falls 0.029 −1 0.019 −1 0.015

Wild Syn 0.042 −1 0.027 −1 0.022

NOTE: Wi/W : fraction of win pool bet on the betting interest. DQ:
Indicator is 1 for dual qualifiers, 0 for unclassified entries, and −1 for
non-qualifiers. pDQ: Revised estimated win probability based on dual-
qualifier model. DAQ: Indicator is 1 for dual-or-asterisk qualifiers, 0 for
unclassified entries, and −1 for non-qualifiers. pDAQ: Revised estimated
win probability based on dual-or-asterisk qualifier model. Source: Bain
et al., 2006.

probabilities is unity. The effect of considering asterisk qualifiers is demonstrated by
Talkin Man, an asterisk qualifier but not a dual qualifier. Talkin Man’s estimated win
probability varies from 0.114 to 0.204 depending on the criterion used.

The revised win probability estimates are occasionally sufficiently greater than the
fraction of the win pool to allow a positive expected return even considering transaction
costs.

The percent increase in the win probability over the fraction of the win pool for
Thunder Gulch is much greater than for Entry 2. There is a general tendency for pi/qi
to increase for qualifiers as qi decreases, which is a consequence of the power function
model in Equation (6) together with values of � < � and � < 1.

6. THE KELLY BETTING MODEL

BHZ calculated betting amounts using the Kelly-optimal capital growth model which
maximizes the expected logarithm of wealth on a race-by-race basis. This approach
was proposed by Kelly (1956), and was extended and rigorously proved by Breiman
(1961) and Algoet and Cover (1988). Among its properties are: (1) it maximizes the
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asymptotic growth rate of wealth; (2) it asymptotically minimizes the expected time to
reach any specific sufficiently large wealth level; and (3) in the long run, it outperforms
any other essentially different betting strategy almost surely and asymptotically provides
infinitely more final wealth than any other essentially different strategy. (See MacLean
et al., 1992, 2006; and Thorp, 2006, for further properties, and Ziemba and Hausch,
1986, for simulation results for shorter time horizons.)

The revised probability of betting interest i winning based on dual-qualifier or dual-
or-asterisk qualifier status is pi. Let ri be the gross return per dollar bet based on the
win odds established by the public. (As in Section 1, the superscript indicating the race
number is suppressed.) The model requires solving the following optimization problem
for each race:

maximize
f∈�N

N∑
i=1

pi log

(
1 −

N∑
m=1

fm + firi

)
s.t. fi ≥ 0 ∀ i = 1, . . . ,N and

N∑
i=1

fi ≤ 1.

(7)

The decision variable, fi, is the fraction of the current wealth to bet on betting interest
i. Suppose that the bettor’s initial wealth is w and betting interest i wins. Then wfiri is
returned to the bettor after having invested

w

N∑
m=1

fm,

for a final wealth of

w

(
1 −

N∑
m=1

fm + firi

)
.

The objective function is the logarithm of final wealth for each betting interest winning,
weighted by the probability of that betting interest winning. Initial wealth, w, can be
disregarded in the formulation with the non-negative decision variables the fraction of
wealth that is bet on each betting interest. The constraints comprise a budget constraint.

This formulation assumes that the bets are sufficiently small so that they do not influ-
ence the payout on any betting interest, that is, the bets on betting interest i do not reduce
ri. For the Kentucky Derby and the Belmont Stakes, the win betting pools are so large
that a typical bet is unlikely to influence the payouts.9 The large pools also permit this
assumption because the percent bet on each betting interest is assumed to vary little in
the final few minutes.

9See Hausch et al. (1981) for a formulation that does account for the bettor’s effect on payouts.
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7. THE KENTUCKY DERBY, 1981–2006

In BHZ’s study of semi-strong efficiency of the Kentucky Derby win market, they
started by revising win probabilities using the base-case model [Equations (3–5)].
The revisions were sufficiently close to the public’s win probabilities that expected
returns were negative for all betting interests during the period 1981–2005. Thus,
the optimization problem in Equation (7) with these revised probabilities led to no
wagers.

For the models based on Equation (6) and on status as a dual or dual-or-asterisk
qualifier, BHZ started with an initial wealth of $2,500 in 1981. Wealth was updated
each year based on the bets made and the actual outcome of the race. The wealth history
for betting from 1981 to 2005 is shown in Figure 4 for dual qualifiers and for dual-or-
asterisk qualifiers. The overall results are summarized in Table 4. For the years up to
the mid-1980s, any advantage identified by the model is small and results in small bets.
Comparing the values in Figure 4 to those in Figures 2 and 3 shows that �ML and �ML

are relatively close over that interval. As the model predicts a greater advantage, the
amount per bet, and consequently the volatility, grows.
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FIGURE 4 Wealth level history for Kelly win bets, 1981–2005. Source: Bain et al., 2006.



Marshall Gramm and William T. Ziemba 323

TABLE 4 Profits from Both Models Based on Kelly Bets
and Revised Win Probabilities

Model based on qualifier type

Dual Dual-or-asterisk

Number of bets 61 107

Total amount bet $32,828 $66,467

Number of bet that won 9 14

Initial wealth $2,500 $2,500

Final wealth $5,514 $4,889

Total profit $3,014 $2,389

Percent return on investment 9.2 3.6

Source: Bain et al., 2006.

For comparison, betting $2,500 on the favorite to win from 1981 to 2005 would
yield a loss of $41,500, betting $200 to win on each dual qualifier would yield a profit
of $12,920 on $13,200 bet, and a $200 bet to win on each dual-or-asterisk qualifier
would yield a profit of $7,780 on $23,000 bet (neutral entries excluded as qualifiers).
The improved return on investment compared to the OCGM in the short run is mostly
due to a few huge profits on qualifiers Gato del Sol in 1982, Ferdinand in 1986, and
Thunder Gulch in 1995.

For both models the betting scheme produced profits during the 1980s and up to
the mid-1990s, but the performance has been poor since. Several possibilities can be
considered for this:

1. The sample size is small. This could mean that the sequence of successes for
qualifiers for both models from 1972 to 1997 was a short-term run, so that in the
long run there is nothing to be gained from using either model developed here.
The limited sample size also implies that the final wealth is sensitive to individual
race results. To give an idea of the scope, two extreme examples are (i) if a non-
dual-qualifier had won in 1995, instead of Thunder Gulch, the final wealth for the
dual-qualifier model would be $2,221, that is, a slight loss overall, and (ii) if 2005
winner Giacomo had a favorable change of a single dosage point in any category,
Giacomo would have been a dual qualifier and the final wealth would have been
$13,877.

2. It is extremely difficult to make a proper assessment of all of the two-year-olds,
so the EFH can omit suitable horses. A pointed example occurred in 2003 where
eventual 2004 Derby winner Smarty Jones was not rated on the EFH. Yet, he
had overwhelmed a field of state-bred two-year-olds at Philadelphia Park, but
that race is not counted when determining the EFH. Roman (2005a) lists other
Derby winners such as Winning Colors and Sunday Silence who were superior
two-year-olds but were not rated on the EFH.
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3. Classification of chefs is an ongoing exercise. For example, Alydar was classified
as a chef subsequent to Strike The Gold winning the Derby in 1991, so Strike The
Gold, who won the Blue Grass Stakes, is not considered as an asterisk qualifier
here (DI = 9.00), yet when Alydar was classified, Strike The Gold’s DI was
reduced to 2.60. Ziemba (1991) wrote a column about this on April 28, 1991,
one week prior to the 1991 Derby arguing that Alydar should be a classic chef
as Alydar had numerous classic distance winners. The reclassification of Alydar,
and at what point, would possibly change other pedigrees. However, BHZ and
GZ use Roman’s classification, so Strike the Gold is neither a dual nor an asterisk
qualifier.

4. Roman (2005b) has pointed out the gradual rise in the DI of Derby winners over
time, so the failure of the system in the last few years of the study may reflect
a shift of the overall breed in North America toward speed at shorter distances.
Real Quiet in 1998, Charismatic in 1999, and Giacomo in 2005 all had DI values
greater than 4.00.

5. The Flamingo Stakes decreased in significance in the final years that it was run.
Including the Flamingo winner as an asterisk qualifier in recent years was unwar-
ranted in retrospect. Two possible solutions are to drop the Flamingo at some
point in the analysis, or switch to the Arkansas Derby as the fifth significant
prep race.

Random betting generates expected losses in excess of 16%, due to the 16% track
take plus breakage. BHZ showed both qualifier designations approximately doubling
wealth over the betting period. They also used two approaches to address the statistical
significance of these profits. The first approach treats a betting interest’s win or loss as a
binomial random variable and then uses a normal approximation. The second simulates
the set of races assuming random wagering.

Before considering their first approach, observe that the data in Figure 4 are not
ideal for addressing statistical significance. Wealth generally grows until the mid-
to-late 1990s, and then dramatically falls. This pattern of wins and losses leads to
wealth that is highly variable. Focusing on just the dual-qualifier case, Figure 5 super-
imposes on Figure 4 the wealth level history assuming that the races were run in
reverse order, that is, we started in 2005 with $2,500, then updated wealth based
on our results in 2005 and went to the 2004 race, and so on. Thus, the string of
large losses occurs early with lower wealth, after which wins are more common.
The final wealth is identical, since the optimal capital growth system simply deter-
mines the optimal fraction of wealth to bet each year. (For example, losing 10% one
year and gaining 20% the other year leads to an overall return of 8%, whatever the
order of the win and the loss.) Despite the final wealth being the same, the wealth
histories are very different, as is the appearance of any statistical significance to the
profits.

To eliminate the effect of varying wealth, which can dampen or intensify the vari-
ance in profits, BHZ’s test of statistical significance uses bets and returns in each race
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FIGURE 5 Betting wealth for Kelly win bets on dual qualifiers with races run forward (1981–2005) and
run backward (2005–1981). Source: Bain et al., 2006.

assuming an identical initial wealth each race. They do not update wealth year by year
(as in Figure 4); instead the initial wealth each year is assumed to be $2,500.

Let q be the probability of winning a bet in each trial, n be the number of trials,
c be the amount wagered each trial, and r be the gross return upon winning,10 and let
X be the random variable representing the number of wins. The probability of profits
exceeding a constant 	 is

P [rX − nc > 	]. (8)

Assume that the trials are independent. For bets in different races, this assumption is
reasonable. For multiple bets on the same race—which are common—wins are nega-
tively correlated, since if one betting interest wins then the others must lose. Negative
correlation leads to a tighter distribution of wins, so this analysis based on independent

10In practice, q, c, and r vary across races and even within races if there are multiple wagers. We approximate
the sequence of wagers by using the average values of these parameters.
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trials underestimates the statistical significance of the results. Since X is binomially
distributed, the normal distribution approximates Equation (8) as

1 − 


[
	+nc
r − nq√
nq (1 − q)

]
, (9)

where 
 is the cumulative distribution function of a standard N (0, 1) variable.
For dual qualifiers and assuming an initial wealth of $2,500 each year, there were

61 bets totaling $7,079, and of these bets, nine won for a gross return of $11,357 and a
profit of $4,278. Thus, c = 7,079/61 = 116.0 and r = 11,357/9 = 1,262. If the system
were no better than random betting, then q satisfies rq − c = −0.16c, recognizing the
16% track take, giving q = 0.07725. Then, by Equation (9), the probability of profits of
at least the observed level of $4,278 given random betting is 2.0%. Suppose instead that
the system is better than random betting but only good enough to offer zero expected
profits. Then q solves rq − c = 0, or q = 0.09192, and, by Equation (9), the probability
that such a system would produce at least the observed profits is 6.7%.

For dual-and-asterisk qualifiers, with initial wealth of $2,500 each year, there were
107 bets totaling $13,268; 14 of these bets won for a gross return of $18,253 and a
profit of $4,985. Thus, c = 124 and r = 1,304. If the system were no better than random
betting, then q = 0.07988 and the probability of profits of at least the observed level
is only 2.6%. Assuming instead that the system is better than random betting but only
good enough to offer zero expected profits, then q = 0.09509 and the probability that
such a system would produce at least the observed profits is 10.4%.

The second approach used by BHZ to address the statistical significance of the results
involved two simulations for each qualifier designation. The first simulation dealt with
the question of how likely it would be that profits at the observed level would have
been generated if their approach was vacuous and, therefore, was essentially random
wagering. The second simulation asked how likely it would be that the observed profits
would have been generated if the system was able to improve upon random wagering,
but only enough to achieve zero expected return on each wager (excluding breakage).
The algorithm for the first simulation was

1. Start with a betting wealth of $2,500 in 1981.
2. Determine the fraction of wealth to wager on each betting interest i for the current

year based on the Kelly criterion and the (wrong) assumption that our probability
estimate, pi, is correct.

3. Randomly select the winner, with the probability of winning for betting interest
i being qi.

4. Based on the simulated winner, its payout and our wagers, update wealth.
5. Repeat steps (2) to (4) for each year in order up to 2005.

The second simulation differed only in step 3, where the simulation used qi/Q as
the correct win probability for any betting interest i that received a wager in step 2. The
expected return on every wager was zero, before accounting for breakage. The collective
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TABLE 5 Results from 10,000 Betting Simulations with $2,500 Initial Wealth

Dual qualifier Dual-or-asterisk qualifier

Simulation 1 Simulation 2 Simulation 1 Simulation 2

Final wealth ≤ $1,000 (%) 54.3 37.0 73.8 49.3

Final wealth ≤ $2,500 (%) 84.2 72.6 91.5 76.1

Final wealth ≥ system’s final 3.9 9.2 3.1 11.4

wealth (Table 4) (%)

Mean final wealth $1,555 $2,449 $1,030 $2,473

Median final wealth $892 $1,371 $450 $1,022

Maximum final wealth $67,601 $161,777 $97,336 $409,294

Source: Bain et al., 2006.

win probability of the other betting interests was such that probabilities summed to
one. For example, in a three-horse race with [q1, q2, q3] = [0.42, 0.21, 0.37] and Kelly
bets having been placed on the first two horses based on [ p1, p2, p3], the probability
that the simulation would select each betting interest as the winner was [0.42, 0.21,
0.37] for Simulation 1, and was [0.5, 0.25, 0.25] for Simulation 2 after dividing the first
two fractions by 0.84. The simulations were run 10,000 times each. The results are in
Table 5.

For all simulations, losses occurred more than 70% of the time. For Simulation 2
and for both types of qualifiers, the mean final wealth was close to $2,500, which is
expected given the modification in step 3 of this simulation. For dual qualifiers, only
3.9% of the time did Simulation 1 realize profits as high as our observed profit. For
Simulation 2, the corresponding value is 9.2%. For dual-or-asterisk qualifiers, these
values for Simulations 1 and 2 are, respectively, 3.1% and 11.4%.

As a final test, the analyses were conducted using limited data. For example, if the
year being considered was 1997 and the interval was 25 years, only information from
1972 to 1996 would have been applied. For the dual-qualifer model, using the entire
dataset produced the greatest final wealth; while for the dual-or-asterisk model, using
an interval of 56 years produced a final wealth of $5,305.

8. THE PREAKNESS STAKES, 1946–2006

The Preakness Stakes, unlike the Kentucky Derby and Belmont Stakes, does not provide
a new test of stamina for its competitors. The race is run two weeks after the Kentucky
Derby and is 1/16 mi shorter in distance. The application of the dosage system would
likely be negated by the fact that entrants in the Preakness exiting the Kentucky Derby
have a quantifiable result of their ability to run longer distances. GZ find that dual quali-
fiers and asterisk qualifiers outperform non-dual qualifiers and non-asterisk qualifiers
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but have not historically earned a positive wagering return. Using a test for differences
between two population proportions given in Equation (10), we are able to show that
dual qualifiers win a statistically greater proportion of races than non-dual qualifiers
and asterisk qualifiers win a statistically greater proportion of races than non-asterisk
qualifiers. The test statistic is

z =

(
pdq − pndq

)
√

p
(
1 − p

) ( 1
ndq

+ 1
nndq

) (10)

where p is a proportion of winners from dual qualifier (dq), non-dual qualifiers (ndq),
and the pooled sample and ndq is the number of dual qualifiers and nndq non-dual
qualifiers. The 116 dual qualifiers won 28 of 61 Preaknesses between 1946 and 2006.
This translates into 24.1% (218/116) of dual qualifiers were winners versus only 7.5%
(33/440) of non-dual qualifiers which is significantly different at a 1% level (z = 5.10).
The results were similar for asterisk qualifiers (z = 5.36) with 22.0% winners (36/164)
and non-asterisk qualifiers with 6.4% winners (25/392).

While dual and asterisk qualifiers won the Preakness more than non-qualifiers, the
wagering returns were negative for flat win bets on dual and asterisk qualifiers from
1946 to 2006 (see Table B2 in the Appendix and Figure 6). Wagers on each of the
116 dual qualifiers would yield a loss of $14.90 (−12.8%). The interval from 1981 to
2006 which corresponds to the first Roman/Rasmussen publication on dosage in the
Daily Racing Form, however, does show a net positive return of $2.80 (7.6%) for dual
qualifiers (see Table B2 in the Appendix and Figure 7). Win wagers on asterisk qualifiers
lose $39.80 (24.3%) from 1946 to 2006 and $17.10 (−10.4%) from 1981 to 2006.
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9. THE BELMONT STAKES, 1946–2006

The Belmont Stakes provides a unique test of stamina where competitors run a full
1/4 mi farther than they have before. GZ find that the application of expert information
from the dosage theory does result in a significant advantage. Table B3 and Figures 8
and 9 give the wealth level histories for 1946–2006 and 1981–2006, respectively. Both
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FIGURE 9 Belmont Stakes wealth level history for $1 win bets, 1981–2006.

demonstrate considerable statistically significant positive profits. Year by year dual and
asterisk results for 1946–2006 have $1 flat win bets beginning in 1946 growing to result-
ing in $105.55 (98.6%) and $164.85 (113.7%) in profit for dual and asterisk qualifiers,
respectively. The results for 1981–2006 yield $80.85 (216.3%) and $67.95 (129.7%) in
profit for dual and asterisk qualifiers, respectively.

Using differences between two population proportions given earlier in Equation
(10), gives that the proportion of dual qualifier winners is statistically greater than
the proportion of non-dual qualifying winners at less than the 1% significance level
(z = 6.73). Indeed, the dual qualifiers won 29.9% of the time vs. 6.8% for the non-dual
qualifiers. We reject the hypothesis at Pdq = Pndq at a level well below 1% signif-
icance. The proportion of asterisk qualifier winners is also statistically greater than
the proportion of non-asterisk qualifier winners at less than the 1% significance level
(z = 6.26). The asterisk qualifiers won 25.5% of the time versus 6.2% for the
non-asterisk qualifiers.

10. CONCLUSIONS

The racetrack is a useful financial market for testing market efficiency and considerable
evidence exists in support of the track’s win market being weak-form efficient. This
chapter, however, summarizes the work of BHZ and GZ that show the win market is not
semi-strong efficient.

BHZ and GZ focused on a particular aspect of the Kentucky Derby and Belmont
Stakes, whose distances of 11/4 and 11/2 miles are typically farther than any entrant
has ever raced, and the Preakness Stakes, which is run between these two races at
13/16 mi. This lack of direct evidence of an entrant’s stamina for this race has motivated
the search for indirect evidence. Dosage theory, which analyzes a horse’s pedigree, has
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been offered as such evidence but it has also been controversial, both in general and
in its relation to the Kentucky Derby. Other evidence that has been offered includes
well-publicized rankings of horses and results from recent high-caliber races.

BHZ did not evaluate the criticisms or the justifications offered for the dosage con-
cept and for the ranking of two-year-olds, nor did they attempt to refine their application
to the Kentucky Derby. Instead, they simply merged this publicly available information
with the public’s win odds to establish “adjusted” win probabilities. They then tested
these win probabilities within a betting system based on the optimal capital growth
model and showed statistically significant profits.

GZ applied this procedure to the 11/2 mi Belmont Stakes, which is run five weeks
after the Kentucky Derby. From the 1980s to the mid-1990s when the dual qualifiers
were having very good success in the Derby, GZ’s results in the Belmont were not as
good. However, in recent years the situation has reversed with superior results in the
Belmont than the Derby. The betting systems discussed here are two of many strategies
used by bettors. In the 13/16 Preakness, the dosage breeding theory is less of a factor,
which is understandable given that the race is shorter than the Kentucky Derby, and
thus evidence of a horse’s stamina exists. Even so, a positive return on dual qualifiers
exists from 1981–2006. The procedure outlined shows that given the pools from a set of
races for which the strategy is applicable, the simple model given in Equation (6) can
be used to test the validity of the strategy.
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APPENDIX A: Data Sources

A.1. Public’s Wagering

For races from 1946 to 1991, betting data were taken from tables published in The
Courier-Journal, a Louisville, Kentucky, newspaper, usually on the Sunday after the
Kentucky Derby. The pools for 1970 could not be found. There were several discrep-
ancies in the data for which the published pools did not sum to the totals, or did not
correspond with published win odds. Adjustments were made for errors for which
an apparent revision could be made. For 1999–2002, complete pools were obtained
from the Bloodstock Research Information Services Website (http://www.bris.com). In
2001, the pools also appeared on the Website for the home of the Kentucky Derby,
Churchill Downs (http://www.churchilldowns.com). The 2003 pools were sent directly
by Churchill Downs, and the 2004 and 2005 pools were obtained courtesy of John Swe-
tye who obtained them from Philadelphia Park’s Phonebet service. From 1992 to 1998,
the pools recorded in The Courier-Journal did not have all of the bets included. While
these totals are not available, win odds based on total wagering are available. There-
fore, for 1970 and 1992–1998 we estimated the total win pool and backed out a set
of win pool fractions that are consistent with the published win odds. There were no
dual qualifiers in 1998 and 2003 so those years were excluded from the dual-qualifier
modeling.

A.2. Pedigrees

Pedigree information was taken from The Blood-Horse magazine, the American Pro-
duce Records, a software database called “The Pedigree Program,” the pedigree
query Website, http://owl.netscout.com/pedigree (no longer active), the Del Mar Turf
Club Website, http://www.dmtc.com/dmtc98/Pedigree/, thoroughbred registries, and
Roman’s Website, http://www.chef-de-race.com. The 2004 data were sent by personal
communication from Roman to John Swetye who forwarded them to us.

A.3. Chef-de-Race Listings

Classifications of chefs were taken from the original 1981 list (Roman, 2000), the
American Racing Manual for each year from 1986 (the first year that the list was
included) to 1993, and from Roman’s Website. For the period 1981–1986, the 1981
list was used. For years prior to 1981, the original list was used. For 2001 to 2003,
and 2005, Dosage Indices and EFH rankings tabulated by Roman were taken from his
Website, http://www.chef-de-race.com, and for 2004 they were sent via email from
Roman (see Section A.2, above).



334 Chapter 15 • Dosage Breeding Theory

A.4. Experimental Free Handicap Listings

The EFH listings were taken from the American Racing Manual, The Blood-Horse
magazine (print and online at http://www.bloodhorse.com), the Thoroughbred Times
Website, http://www.thoroughbredtimes.com, and Roman’s Website, http://www.chef-
de-race.com.

A.5. Results of the Kentucky Derby and Major Races Prior to the
Kentucky Derby

The results of the Kentucky Derby were taken from the Daily Racing Form, both
print and online (http://www.drf.com), press materials from Churchill Downs, and from
Chew (1974). Recent results charts were obtained from the following Websites:

About.com Inc. http://horseracing.about.com
Sportsline.com Inc. http://www.sportsline.com
CNN/Sports Illustrated http://www.sportsillustrated.cnn.com
Equibase Company, LLC http://www.equibase.com
Daily Racing Form, LLC http://www.drf.com

The results for the major races prior to the Derby were taken from the American
Racing Manual and lists from the following Websites:

Blue Grass Stakes: http://www.keeneland.com/liveracing/history.asp
Flamingo Stakes: http://hialeahpark.com/99/HallofFame/flamingo.htm
Florida Derby: http://www.thoroughbredchampions.com/library/fladerby.htm
Santa Anita Derby http://www.revistahipodromo.com/santaanita.html
Wood Memorial Stakes http://www.nyra.com/aqueduct/index2.html

and the out-of-date site, http://www.iglou.com/tbred/tc97/preps, which was run by the
Thoroughbred Times.

APPENDIX B: Kentucky Derby, Preakness, and
Belmont Winners, 1946–2006

TABLE B1 Kentucky Derby, 1946–2006

Dual
Year Winner Odds qualifiers

1946 Assault* 8.2 5

1947 Jet Pilot 5.4 4

1948 Citation 0.4 4

1949 Ponder 16 5



Marshall Gramm and William T. Ziemba 335

TABLE B1 (continued)

Dual
Year Winner Odds qualifiers

1951 Count Turf 14.6 2

1952 Hill Gail 1.1 2

1953 Dark Star 24.9 3

1954 Determine 4.3 5

1955 Swaps* 2.8 2

1956 Needles 1.6 4

1957 Iron Leige 8.4 5

1958 Tim Tam* 2.1 1

1959 Tomy Lee 3.7 8

1960 Venetian Way 6.3 5

1961 Carry Back 2.5 3

1962 Decidedly 8.7 2

1963 Chateaugay* 9.4 3

1964 Northern Dancer 3.4 6

1965 Lucky Debonair* 4.3 5

1966 Kauai King 2.4 2

1967 Proud Clarion 30.1 4

1968 Forward Pass* 2.2 4

1969 Majestic Prince* 1.4 3

1970 Dust Commander* 15.3 4

1971 Canonero II 8.7 1

1972 Riva Ridge 1.5 3

1973 Secretariat 1.5 2

1974 Cannonade 1.5 1

1975 Foolish Pleasure 1.9 1

1976 Bold Forbes 3 4

1977 Seattle Slew 0.5 4

1978 Affirmed 1.8 3

1979 Spectacular Bid 0.6 3

1980 Genuine Risk 13.3 5

1981 Pleasant Colony 3.5 4

1982 Gato del Sol 21.2 3

1983 Sunny’s Halo 2.5 3

1984 Swale 3.4 3

1985 Spend A Buck 4.1 2

1986 Ferdinand 17.7 2

1987 Alysheba 8.4 5

(continued)



336 Chapter 15 • Dosage Breeding Theory

TABLE B1 (continued)

Dual
Year Winner Odds qualfiers

1988 Winning Colors * 3.4 3

1989 Sunday Silence* 3.1 3

1990 Unbridled 10.8 4

1991 Strike The Gold* 4.8 4

1992 Lil E. Tee 16.8 3

1993 Sea Hero 12.9 3

1994 Go For Gin 9.1 5

1995 Thunder Gulch 24.5 6

1996 Grindstone 5.9 6

1997 Silver Charm 4 2

1998 Real Quiet 8.4 0

1999 Charismatic 31.3 6

2000 Fusaichi Pegasus* 2.3 5

2001 Monarchos* 10.5 3

2002 War Emblem 20.5 3

2003 Funny Cide 12.8 0

2004 Smarty Jones 4.1 5

2005 Giacomo 50.3 2

2006 Barbaro* 6.1 2

NOTE: Bold indicates dual qualifier, * indicates
asterisk qualifier.

TABLE B2 Preakness Stakes, 1946–2006

Dual qualifiers Asterisk qualifiers

Return Return Return Return
Year Winner Odds Number 46–06 81–06 Number 46–06 81–06

1946 Assault* 1.4 2 −$2.00 3 −$0.60

1947 Faultless 4.2 4 −$0.80 5 −$0.40

1948 Citation 0.1 3 −$2.70 3 −$2.30

1949 Capot 2.5 2 −$1.20 3 −$1.80

1950 Hill Prince 0.7 2 −$1.50 2 −$2.10

1951 Bold 4.1 1 −$2.50 2 −$4.10

1952 Blue Man* 1.6 3 −$5.50 4 −$5.50

1953 Native Dancer 0.2 1 −$5.30 2 −$6.30

1954 Hasty Road 5 2 −$1.30 3 −$3.30
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TABLE B2 (continued)

Dual qualifiers Asterisk qualifiers

Return Return Return Return
Year Winner Odds Number 46–06 81–06 Number 46–06 81–06

1955 Nashua 0.3 2 −$2.00 2 −$4.00

1956 Fabius 2.5 1 −$3.00 1 −$5.00

1957 Bold Ruler 1.4 3 −$3.60 3 −$5.60

1958 Tim Tam* 1.1 2 −$5.60 3 −$6.50

1959 Royal Orbit 6.6 4 −$2.00 5 −$3.90

1960 Bally Ache 1.7 3 −$2.30 3 −$4.20

1961 Carry Back 1 2 −$2.30 3 −$5.20

1962 Greek Money 10.9 2 −$4.30 3 −$8.20

1963 Candy Spots 1.5 2 −$3.80 3 −$8.70

1964 Northern Dancer 2.1 4 −$4.70 4 −$9.60

1965 Tom Rolfe 3.6 2 −$2.10 3 −$8.00

1966 Kauai King 1 3 −$5.10 3 −$11.00

1967 Damascus 1.8 3 −$8.10 3 −$14.00

1968 Forward Pass* 1.1 0 −$8.10 2 −$13.90

1969 Majestic Prince* 0.6 1 −$9.10 3 −$15.30

1970 Personality* 4.5 3 −$12.10 4 −$13.80

1971 Canonero II 3.4 3 −$15.10 4 −$17.80

1972 Bee Bee Bee 18.7 2 −$17.10 2 −$19.80

1973 Secretariat 0.3 1 −$16.80 3 −$21.50

1974 Little Current 13.1 1 −$17.80 2 −$23.50

1975 Master Derby 23.4 2 −$19.80 4 −$27.50

1976 Elocutionist 10.1 4 −$12.70 4 −$20.40

1977 Seattle Slew 0.4 1 −$12.30 1 −$20.00

1978 Affirmed 0.5 3 −$13.80 3 −$21.50

1979 Spectacular Bid 0.1 3 −$15.70 3 −$23.40

1980 Codex* 2.7 2 −$17.70 3 −$22.70

1981 Pleasant Colony 1.5 1 −$16.20 $1.50 1 −$21.20 $1.50

1982 Aloma’s Ruler 6.9 1 −$17.20 $0.50 2 −$23.20 −$0.50

1983 Deputed Testamony 14.5 0 −$17.20 $0.50 0 −$23.20 −$0.50

1984 Gate Dancer 4.8 1 −$18.20 −$0.50 1 −$24.20 −$1.50

1985 Tank’s Prospect 4.7 0 −$18.20 −$0.50 0 −$24.20 −$1.50

1986 Snow Chief 2.6 2 −$20.20 −$2.50 4 −$28.20 −$5.50

1987 Alysheba 2 2 −$19.20 −$1.50 3 −$28.20 −$5.50

1988 Risen Star 6.8 2 −$21.20 −$3.50 4 −$32.20 −$9.50

1989 Sunday Silence* 2.1 2 −$23.20 −$5.50 3 −$32.10 −$9.40

1990 Summer Squall 2.4 2 −$21.80 −$4.10 3 −$31.70 −$9.00

(continued)
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TABLE B2 (continued)

Dual qualifiers Asterisk qualifiers

Return Return Return Return
Year Winner Odds Number 46–06 81–06 Number 46–06 81–06

1991 Hansel 9.1 2 −$13.70 $4.00 2 −$23.60 −$0.90

1992 Pine Bluff 3.5 1 −$10.20 $7.50 1 −$20.10 $2.60

1993 Prairie Bayou 2.2 1 −$11.20 $6.50 2 −$22.10 $0.60

1994 Tabasco Cat 3.6 3 −$9.60 $8.10 3 −$20.50 $2.20

1995 Timber Country 1.9 2 −$11.60 $6.10 3 −$23.50 −$0.80

1996 Louis Quatorze 8.5 2 −$13.60 $4.10 3 −$26.50 −$3.80

1997 Silver Charm 3.1 1 −$10.50 $7.20 3 −$25.40 −$2.70

1998 Real Quiet 2.5 0 −$10.50 $7.20 1 −$26.40 −$3.70

1999 Charismatic 8.4 2 −$12.50 $5.20 4 −$30.40 −$7.70

2000 Red Bullet 6.2 2 −$14.50 $3.20 4 −$34.40 −$11.70

2001 Point Given 2.3 3 −$14.20 $3.50 5 −$36.10 −$13.40

2002 War Emblem 2.8 0 −$14.20 $3.50 1 −$37.10 −$14.40

2003 Funny Cide 1.9 0 −$14.20 $3.50 0 −$37.10 −$14.40

2004 Smarty Jones 0.7 1 −$15.20 $2.50 1 −$38.10 −$15.40

2005 Afleet Alex 3.3 3 −$13.90 $3.80 4 −$37.80 −$15.10

2006 Bernardini 12.9 1 −$14.90 $2.80 2 −$39.80 −$17.10

NOTE: Bold indicates dual qualifier, * indicates asterisk qualifier.

TABLE B3 Belmont Stakes, 1946–2006

Dual qualifiers Asterisk qualifiers

Return Return Return Return
Year Winner Odds Number 46–06 81–06 Number 46–06 81–06

1946 Assault* 1.4 1 −$1.00 2 $0.40

1947 Phalanx 2.3 2 $0.30 2 $1.70

1948 Citation 0.2 4 −$2.50 5 −$2.10

1949 Capot 5.6 2 $2.10 4 $0.50

1950 Middleground 2.7 3 $2.80 4 $0.20

1951 Counterpoint 5.15 3 −$0.20 4 $2.35

1952 One Count 12.8 2 −$2.20 3 −$0.65

1953 Native Dancer 0.45 1 −$1.75 1 −$0.20

1954 High Gun 3.45 2 −$3.75 3 −$3.20

1955 Nashua 0.15 1 −$3.60 1 −$3.05

1956 Needles 0.65 2 −$3.95 2 −$3.40

1957 Gallant Man 0.95 1 −$4.95 1 −$4.40

1958 Cavan 4.5 0 −$4.95 1 −$5.40
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TABLE B3 (continued)

Dual qualifiers Asterisk qualifiers

Return Return Return Return
Year Winner Odds Number 46–06 81–06 Number 46–06 81–06

1959 Sword Dancer 1.65 3 −$5.30 4 −$6.75

1960 Celtic Ash 8.4 2 −$7.30 2 −$8.75

1961 Sherluck* 65.05 4 −$11.30 5 $52.30

1962 Jaipur 2.85 1 −$8.45 2 $54.15

1963 Chateaugay* 4.5 1 −$9.45 2 $57.65

1964 Quadrangle 6.55 3 −$4.90 4 $61.20

1965 Hail to All 2.65 1 −$5.90 1 $60.20

1966 Amberoid 5.5 2 −$1.40 2 $64.70

1967 Damascus 0.8 1 −$2.40 1 $63.70

1968 Stage Door Johnny 4.4 1 −$3.40 2 $61.70

1969 Arts and Letters 1.7 1 −$4.40 2 $59.70

1970 High Echelon 4.5 2 −$0.90 2 $63.20

1971 Pass Catcher 34.5 3 $31.60 3 $95.70

1972 Riva Ridge 1.6 3 $31.20 3 $95.30

1973 Secretariat 0.1 1 $31.30 3 $93.40

1974 Little Current 1.5 1 $30.30 2 $91.40

1975 Avatar* 13.2 2 $28.30 4 $101.60

1976 Bold Forbes 0.9 1 $29.20 1 $102.50

1977 Seattle Slew 0.4 1 $29.60 1 $102.90

1978 Affirmed 0.6 3 $28.20 3 $101.50

1979 Coastal 4.4 3 $25.20 3 $98.50

1980 Temperence Hill 53.4 4 $21.20 5 $93.50

1981 Summing 7.9 1 $20.20 −$1.00 1 $92.50 −$1.00

1982 Conquistador Cielo 4.1 1 $19.20 −$2.00 2 $90.50 −$3.00

1983 Caveat 2.6 1 $21.80 $0.60 3 $91.10 −$2.40

1984 Swale 1.5 1 $23.30 $2.10 1 $92.60 −$0.90

1985 Crème Fraiche 2.5 1 $25.80 $4.60 1 $95.10 $1.60

1986 Danzig Connection 8 2 $32.80 $11.60 2 $102.10 $8.60

1987 Bet Twice 8 2 $39.80 $18.60 3 $108.10 $14.60

1988 Risen Star 2.1 1 $38.80 $17.60 3 $105.10 $11.60

1989 Easy Goer 1.6 3 $38.40 $17.20 4 $103.70 $10.20

1990 Go And Go 7.5 2 $36.40 $15.20 3 $100.70 $7.20

1991 Hansel 4.1 3 $38.50 $17.30 3 $102.80 $9.30

1992 A.P. Indy 1.1 2 $38.60 $17.40 2 $102.90 $9.40

1993 Colonial Affair 13.9 2 $36.60 $15.40 3 $99.90 $6.40

(continued)
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TABLE B3 (continued)

Dual qualifiers Asterisk qualifiers

Return Return Return Return
Year Winner Odds Number 46–06 81–06 Number 46–06 81–06

1994 Tabasco Cat 3.4 2 $39.00 $17.80 2 $102.30 $8.80

1995 Thunder Gulch 1.5 1 $40.50 $19.30 1 $103.80 $10.30

1996 Editor’s Note 5.8 3 $44.30 $23.10 4 $106.60 $13.10

1997 Touch Gold 2.65 1 $43.30 $22.10 2 $104.60 $11.10

1998 Victory Gallop 4.5 1 $42.30 $21.10 2 $102.60 $9.10

1999 Lemon Drop Kid 29.75 3 $70.05 $48.85 4 $129.35 $35.85

2000 Commendable 18.8 0 $70.05 $48.85 0 $129.35 $35.85

2001 Point Given 1.35 3 $69.40 $48.20 4 $127.70 $34.20

2002 Sarava 70.25 0 $69.40 $48.20 0 $127.70 $34.20

2003 Empire Maker* 2 0 $69.40 $48.20 1 $129.70 $36.20

2004 Birdstone 36 1 $105.40 $84.20 1 $165.70 $72.20

2005 Afleet Alex 1.15 2 $105.55 $84.35 2 $165.85 $72.35

2006 Jazil 6.2 0 $105.55 $84.35 1 $164.85 $71.35

NOTE: Bold indicates dual qualifier, ∗ indicates asterisk qualifier. Crème Fraiche was coupled with dual
qualifier Stephan’s Odyssey.
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Abstract

We use a dataset of more than 11,000 horse racing forecasts from 35 professional tip-
sters and investigate whether they make excessively original forecasts. We find that
tipsters do exaggerate and make forecasts that are excessively distant from the pub-
lic information given their private information. This result has implications for the
efficiency of betting markets.

1. INTRODUCTION

It is well established that horse race betting markets are inefficient. A large empirical
literature has documented odds inefficiencies, including the well documented favorite-
longshot bias. According to the favorite-longshot bias, betting on favorites yields a
higher return than betting on longshots. Several theoretical explanations have been
advanced, including the existence of risk-loving bettors, or the overestimation of the
longshots’ probability of winning.1

In this chapter, we investigate the role played by professional horse racing tipsters
and their influence on the odds. Our hypothesis is that career concerns lead tipsters to
make biased forecasts, which in turn induces bettors to overbet on the longshots, and
this generates odds inefficiencies. There are indeed several theoretical reasons to believe
that tipsters are induced to make biased forecasts. Since Scharfstein and Stein (1990),
numerous articles have shown that forecasters are induced either to herd (conservatism)
or anti-herd (exaggeration) the public information in order to maximize their reputa-
tion.2 Evidence of anti-herding behavior has been found among financial analysts by
Bernhardt et al. (2006) and Chen and Jiang (2006). In this chapter, we find evidence of
exaggeration among professional horse racing tipsters.

Our analysis is based on a dataset of more than 11,000 horse racing forecasts made
by 35 French professional tipsters. These tipsters participate in a famous yearly tour-
nament organized by Paris-Turf, the most influential French betting newspaper. After
each race, each tipster receives a number of points depending on the accuracy of his
or her tip and the difficulty of forecasting the race outcome. Performing well in this
tournament is good for a tipster’s career. Assessing the effects of this renowned tour-
nament on behavior is beyond the scope of this chapter, and is analyzed in Deschamps
and Gergaud (2007). The novelty of this chapter is to specifically investigate whether
tipsters are excessively original, in the sense that they deviate excessively from the
public information given their private information.

We provide two types of excessive originality evidence. First, we analyze the rela-
tionship between forecast precision and originality. We first develop a simple model
in which we compare the distance between forecasts and the public information to the
distance between the final odds and the public information. We find that the former

1See Ottaviani and Sørensen (2008) and Vaughan Williams (2005) for a survey of the literature.
2See, among others, Ottaviani and Sørensen (2006), Prendergast and Stole (1996), and Ehrbeck and
Waldmann (2001).
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distance is larger than the latter, meaning that tipsters make forecasts that are exces-
sively distant from the public information. Second, we find that tipsters include in their
forecasts horses that do not perform well compared to horses that are not included and
that are ex ante likely to perform well. Hence, forecasts would be more accurate if
tipsters decided to deviate less from the public information.

Arguably, professional tipsters have a significant impact on the final odds, given
that bettors often base their betting strategy on professional tips. If, for instance, tipsters
report that a particular horse is the favorite, we might expect bettors to bet large amounts
on that horse. Given that the odds are determined by the betting volumes, the odds
will consequently be particularly short for that horse. Hence, we believe that excessive
originality among professional tipsters partially explains the well documented favorite-
longshot bias.

The chapter is organized as follows. Section 2 presents the model. In Section 3 we
describe the data. Section 4 presents the results, and Section 5 concludes.

2. THE MODEL

We develop a model of forecasting with a testable prediction to detect exaggeration.
Consider a tipster having to predict the race order of arrival, so that his or her forecast
consists of an ordered list of horses, ranked according to their perceived quality. We call
qi the objective quality of horse i, while Q is as an ordered list of horses, from the highest
qi to the lowest. The Q vector is also the race order of arrival, so that the highest quality
horse finishes first and so on. Tipsters do not directly observe horses’ quality, so their
task is to estimate Q in order to predict the race result. We call ci the public information
(or consensus forecast) on the quality of horse i. It represents the information that is
common knowledge to all tipsters regarding that horse’s quality. This information is
available before tipsters make their forecast and is therefore the prior on qi. Specifically,
we assume that qi is normally distributed around the public information ci:

qi ∼ N (ci, 2
c ) (1)

where 2
c is the imprecision of the public information. We assume for simplicity that

2
c is independent of i. Hence, ci can be written as qi = ci + �ci, and E (ci − qi)2 = 2

c .
Note that ci is not the odds. Indeed, the odds are published only after tipsters make
their forecasts, while the public information is available before forecasts are made. In
addition to the consensus forecast, each tipster receives a private signal si on each horse.
Private signals provide additional information on horses’ quality, and its precision is
what differentiates good tipsters from bad ones. Private signals are also assumed to be
normally distributed:3

si ∼ N (qi, 2
s ) (2)

3We assume here that si − qi and ci − qi are not correlated, but allowing a positive correlation would actually
make the result stronger.
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Given that tipsters observe both si and ci before making a forecast, the standard
normal learning model implies that the belief on qi is a weighted average of the public
and the private information:

E(qi|si, ci) =
2
c

2
c + 2

s

si +
2
s

2
c + 2

s

ci (3)

This shows that the more precise the public information is (2
c low), the lower is the

weight put on the private signal. On the other hand, tipsters whose private information
is very reliable (2

s low), tend to attach less importance to public information. Based on
their information, tipsters have to tell which horses are the best and which are the worst.
We call fi the forecast that a tipster makes on qi, and F an ordered list of horses from
the highest forecast quality (high fi) to the lowest. If forecasts were truthful, we would
by definition have fi equal to the ex post belief, that is, fi = E(qi|si, ci). Note that,
under truthtelling, the distance between the forecast and the public information would
be E (fi − ci)2 = 2

c

2
c+2

s
2
c .

4 Indeed, the more precise the private signals (2
s low), the

more tipsters distance themselves from the public information.
We define ki as the quality of horse i that can be inferred from the final odds.

Given that many bettors base their betting strategy on tipsters’ recommendation, ki
is partially determined by fi. However, further information can be released between
the moment F is made public and the moment the odds are computed, so ki
is also affected by this new information. Formally, we call this new informa-
tion �i, and we consider that it is unbiased: �i ∼ N (qi, 2

�
). Then, depending

on the relative precision of fi and �i, we have that ki = ��i + (1 − �)fi, where
1 − � represents the influence of fi on ki and depends on 2

�
, 2

c , 2
s .

5 In that

case, after some algebra, we get that ki − ci = −�ci + (1 − �)
[

2
s

2
c +2

s
�ci +

2
c

2
c +2

s
�si

]
+

���i
= (1 − �) 2

c

2
c +2

s
�si +

[
(1 − �) 2

s

2
c +2

s
− 1
]

�ci + ���i
. Hence, E (ki − ci)2 = (1 −

�)2
(

2
c

2
c +2

s

)2
2
s +
[

(1 − �) 2
s

2
c +2

s
− 1
]2

2
c + �22

�
. The result of this model is thus

that, as long as the forecasts are truthful:

E (fi − ci)2 < E (ki − ci)2 (4)

4Proof: fi − ci = 2
s

2
c + 2

s
ci +

2
c

2
c +2

s
si − ci = − 2

c

2
c + 2

s
ci +

2
c

2
c +2

s
si = − 2

c

2
c + 2

s
�ci +

2
c

2
c +2

s
�si =

2
c

2
c +2

s
(�ci − �si). Hence, E(fi − ci)2 =

(
2
c

2
c +2

s

)2
(2

c + 2
s ) =

(
2
c

)2

2
c +2

s
. This assumes that �si and �ci are

not correlated. Our result would actually be stronger if they were positively correlated.
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Indeed, after simple algebra, 
E(ki−ci)2


� = 2
(

2
s2

c

2
c +2

s
+ 2

�

)
� > 0. And if � goes to 0,

Equation (4) tends to an equality. Thus Equation (4) holds for any � < 1. Said dif-
ferently, under truthtelling, the public information is on average closer to fi than
to ki. If, for instance, private signals are infinitely precise, 2

s = 0, and fi = qi = ki.
Then, |fi − ci| = |ki − ci|. If private signals become less precise, |fi − ci| decreases and
Equation (4) holds. The general intuition is that fi is determined uniquely by si and ci,
while ki also relies on an extra signal �i. Hence, ki puts less weight on ci than fi does,
which explains Equation (4).

We call C the vector that ranks the horses according to their ci, and K is the vector
that ranks horses according to the odds. Given that Equation (4) holds for each horse,
we show in the appendix that, on average, the footrule distance (i.e., the absolute dis-
tance between two rank vectors) between F and C is smaller than the distance between
K and C:

E||F − C|| < E||K − C|| (5)

Indeed, given that the fi are relatively close to ci, F will not be very distant from C.
Instead, ranking horses according to ki, given that ki are weakly related to ci, will lead to
K being more distant from C. This is the prediction in Equation (5) as long as forecasts
are truthful.

If tipsters exaggerate and put excessive weight on their private signal and deviate
excessively from the consensus forecast, we could eventually observe that the consen-
sus is closer to the odds than to the forecasts. More precisely, if a tipster tries to distance
himself or herself from the herd, he or she will bias the forecast away from the con-
sensus. In that case, the distance between Fi and C will increase. If the anti-herding
behavior is sufficiently strong, at some point the difference between the forecasts and the
consensus will be larger than the distance between the odds and the consensus, and we
will observe ||F − C|| > ||K − C||. This could occur if tipsters have strong incentives to
outperform their peers, and strategically forecast far from the public information. Sec-
tion 4 tests the prediction in Equation (5) using our professional tips data. If we find
that ||F − C|| > ||K − C||, we could argue that tipsters anti-herd the public information
and release untruthful forecasts.

3. DATA

3.1. Tips and Rewards Rules

The data come from the leading French horse racing daily newspaper, Paris-Turf. This
newspaper publishes the tips by 35 professional tipsters the day before each race. The
dataset that is used in this chapter covers all daily tips made during the 2004 tournament.
This represents a total of 318 races and more than 11,100 tips. A tip (or forecast F ) is
an ordered list of eight horses that are expected to be the most competitive during the
race. Paris-Turf keeps track of tipsters’ successive performances. The number of points
scored by a tipster is (1) positive when they win the tiercé (triple forecast), or the quarté
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TABLE 1 Paris-Turf Rewards Rules

Aggregate Race
forecast outcome Tipster 1 Tipster 2 Tipster 3

1 8 2 5 8

2 3 1 3 3

3 5 3 6 5

4 1 6 8 6

5 4 7 7 7

6

7

8

Points 0 16 32

(quadruple forecast) or the quinté (quintuple forecast), (2) doubled if the forecast is in
the exact order, and (3) higher when they outperform their peers.

The following basic example illustrates the rules. Consider a race involving eight
horses only and a set of tipsters giving rise to an aggregate forecast as in Table 1
(column 1). We consider for simplicity tips made of five horses only instead of eight. In
such a ranking, horse #1 is called the first favorite, as it was the most tipped, horse #2
the second favorite, and so on. With a race outcome as reproduced in column 2, tipster
# 1 does not get any points as his or her forecast is unsuccessful. On the contrary, tipster
# 2 (column 4) and tipster # 3 (column 5) would get 16 and 32 points for a triple fore-
cast inexact order and exact order, respectively. These results are computed as simply
as adding each horse rank found in the aggregate forecast, that is to say, 5 + 3 + 8 and
(5 + 3 + 8) × 2.

In this chapter, we analyze whether tipsters exaggerate the strength of their private
information when making forecasts. In order to analyze the tipsters’ forecasting
behavior, we need to observe the public information.

3.2. Public Information

To proxy this public information (C), we rank—per race—each registered horse
(between 15 and 20 horses, depending on the race) on the basis of their likelihood
of winning the race from a set of 12 dummy variables: whether or not the horse is suited
to the track, whether or not the horse is on form, whether the jockey/driver performed
well in the recent past, and so on. We compute the sum of these 12 dummies and rank
horses according to these statistics. This ordered list constitutes what we call consensus
forecast, or public information. The source of information for these criteria is Paris-Turf
as well.

We assume that the public information is known by all tipsters, which implies that
all of these 12 variables are common knowledge. We strongly believe that this is the
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case. First, this information is public and most of these indicators are published in
monthly magazines6 well before tipsters make their forecasts. Second, these variables
concern the most fundamental characteristics of the horse and their dummy nature
means that they are easy to measure. Third, tipsters’ forecasts are on average much
more accurate than the consensus forecast, suggesting that they are well informed. Such
a degree of accuracy makes it unlikely that they are not informed of these fundamental
variables.

It is important to stress that C does not capture the entirety of the public information,
since it is likely that some information is common knowledge but is not captured by
our 12 dummies. This does not affect the result, since, for any tipster, the way we split
the information between si and ci does not affect fi. Hence, fi is not sensitive to what
we call public or private information. The same holds for ki, and we have shown that
Equation (4) holds for any 2

c and 2
s .

3.3. Measuring Forecast Originality

Table 2 shows an example of the way a forecast’s originality is calculated. We
compute the Spearman footrule distance between the forecast vector and the public
information vector. Imagine that the forecast is the ordered list of horses numbered
5, 6, 1, 13, 14, 12, 9, 2. The public information column shows how these eight horses are
ranked in the consensus forecast. The last column is the absolute difference between the
rank of the horse in the forecast and his or her rank in the consensus forecast. The sum
of these differences (14 in this example) measures the distance between the forecast and
the consensus forecast. We call this distance forecast originality.

TABLE 2 Measuring Forecast Originality

Absolute
Horse Rank in F Rank in C difference

5 1 3 2

6 2 4 2

1 3 5 2

13 4 1 3

14 5 2 3

12 6 6 0

9 7 8 1

2 8 7 1

Total 14

6Such as Stato Tierce.
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4. RESULTS

4.1. Results of Frequency Tests

This section tests the prediction of our forecasting model. If tipsters make truthful
forecasts, the consensus forecast should on average be closer to the forecasts than to
the odds. We find that this is not the case, meaning that the forecasts are excessively far
from the consensus and that tipsters anti-herd the public information.

Let us denote forecast originality FCij, that is the distance between the forecast
Fi of expert i for race j and the consensus forecast C. The average distance between
the forecast and the consensus for race j is FCj = Ei(FCij). Let us define OCj as the
distance between the odds and the consensus forecast for race j. We compute OCj the
same way as for FCij, that is, by summing the rank differences between the odds and
the public information as shown in Table 2. For the entire sample, we find that OCj is on
average 27.99. Crucially, we find that the forecast originality FCj is on average 30.35.
The difference is significant at 5% and this is inconsistent with truthful forecasting since
||Fi − C|| > ||K − C||. Hence, this shows that the forecasts are excessively far from
the consensus given tipsters’ private information. We also look at the number of races
for which OCj > FCj and the number of races for which FCj > OCj . We find that,
out of 318 races, FCj is higher than OCj 213 times, while OCj is higher than FCj

only 105 times. Said differently, the consensus is closer to the odds than to the most of
the forecasts for most races: Pr(OCj > FCj) = 66.98%. This is empirical evidence of
exaggeration.

We then analyze whether this behavior is widespread among all tipsters. To do so,
we compute how often F “overshoots” K for each individual tipster. The results appear
in Table 3. It shows, for each of the 35 tipsters, how often FCij > OCj and how often
OCj > FCij.7 All tipsters but three produce on average forecasts that are more distant
from the consensus than the consensus is distant from the odds. This suggests that most
tipsters deviate excessively from the public information.

The theoretical literature on strategic forecasting provides some insights on why tip-
sters may decide to exaggerate. Ottaviani and Sørensen (2006) show that forecasters
participating in a forecasting contest will be induced to take high risk, in order to differ-
entiate themselves from the other forecasters and increase their likelihood of winning.
The literature on asymmetric rank-order tournaments also makes predictions that are
consistent with our results. For instance, Gilpatric (2005) shows that, in asymmetric
tournaments (which is the case for Paris-Turf), constestants will pursue high risk strate-
gies as long as the prize from finishing first is large enough compared with the penalty
of finishing last.

4.2. Originality and Accuracy

This section provides additional evidence of excessive originality. Theoretically, tipsters
are expected to tip the eight horses they believe to have the best chance of winning the

7The reason why the total for each tipster does not add up to 318 is that for some races, OC = FC.



Bruno Deschamps and Olivier Gergaud 349

TABLE 3 Exaggeration Among Tipsters

Tipster OC >FC FC >OC Tipster OC >FC FC >OC

1 79 224 19 126 178

2 114 187 20 130 164

3 117 186 21 103 192

4 154 145 22 127 173

5 139 164 23 125 171

6 126 171 24 123 190

7 114 195 25 111 202

8 128 175 26 77 238

9 106 204 27 89 219

10 128 179 28 148 156

11 119 189 29 129 178

12 99 202 30 100 211

13 147 155 31 145 152

14 89 214 32 105 189

15 151 145 33 117 196

16 120 186 34 108 198

17 154 146 35 103 203

18 128 173

NOTE: Columns 1 and 4 include the tipster identifier. Columns 2 and 5 measure the number of
races where OCi > FCi. Columns 3 and 6 measure the number of races where OCi < FCi.

race. If tipsters minimize forecast errors, their forecasts will finely weight public and
private information. In that case, tipsters will achieve the highest possible frequency
of successful tips. If, instead, tipsters overweight private information, we would expect
the forecast success frequency to decrease. This section tests directly whether excess
originality leads to less accuracy.

If forecasts were efficient, we would expect every single difference between F and
C to be based on private information. Therefore every decision to drop a horse from
C and replace it by another one in F should on average improve accuracy. Imagine,
for instance, that the top eight horses according to C are {1,2,3,4,5,6,7,8}, and F is
{2,3,8,5,1,7,10,9}. The difference between F and C is that horses #4 and #6 have been
replaced by horses #9 and #10. Consequently, both horse #9 and #10 should be more
likely to be top five finishers than horses #4 and #6. If, instead, tipsters have a taste
for originality, horses #9 and #10 would not necessarily be more likely to be top five
finishers.

In order to establish whether tipsters distance themselves excessively from the public
information, we investigate whether the frequency of success of the horses tipped would
rise if tipsters decided to deviate less from C. For every tipster, we compare the top five
finish frequency between the lowest placed horse in F that is not included in C (#9 in
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TABLE 4 Success Frequency and Originality

#Top five for horse #Top five for horse #Top five for horse #Top five for horse
Tipster in F not in C in C not in F Tipster in F not in C in C not in F

1 79 97 19 93 112

2 95 106 20 103 106

3 93 111 21 91 110

4 99 110 22 105 105

5 104 113 23 98 112

6 101 108 24 96 109

7 91 108 25 90 102

8 107 100 26 94 110

9 97 107 27 102 107

10 85 101 28 105 106

11 101 116 29 88 116

12 97 100 30 92 111

13 89 108 31 97 110

14 89 109 32 89 114

15 106 96 33 94 112

16 94 103 34 105 94

17 101 112 35 98 103

18 90 102 Average 95.9 107

NOTE: Columns 1 and 4 include the tipster identifier. Columns 2 and 5 measure the number of times the
lowest horse included in F but not included in C finishes in the top five. Columns 3 and 6 measure the
number of times the best placed horse included in C but not included in F finishes in the top five.

our example) and the best placed horse according to C that is not included in F (#4
in our example). Table 4 shows the result for each individual tipster. Columns 2 and 5
show the number of times that the lowest placed horse in F that is not included in C
finishes in the top five. Columns 3 and 6 show the number of times that best placed
horse in C that is not included in F finishes in the top five. It is striking that for 32 of
the 35 tipsters, the frequency of tipped horses finishing in the top five would rise if they
decided to stay closer to C. Importantly, the difference is significant at 5% for just a few
individual tipsters. However, the average of columns 2 and 4 (95.9 top five finishes) is
different at the 1% level from the average of columns 3 and 6 (107 top five finishes).

4.3. Anti-Herding and Excess Originality

We have shown that tipsters exaggerate. The most natural explanation is that, in
order to win the tournament, tipsters need to tip longshots in order to differentiate
themselves from the other tipsters. However, if a tipster expects the other tipsters to
massively forecast the longshots, his or her best anti-herding strategy could be to make a
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TABLE 5 Correlation Between Originality and Distance to
the Other Tipsters

Corr
(
||Fi − C|| ,

∑ ||Fi − Fj ||
34

)

Across races for each tipster 0.44

Across tipsters for each race 0.37

conservative forecast. Therefore, excess originality is not necessarily equivalent to anti-
herding. In order to clarify the issue, we compute the correlation between originality
(as measured in Table 2) and the average distance from the other tipsters. For tipster

i, the latter distance is measured by the average footrule distance
∑

j ||Fi−Fj ||
34 , where

j = [1, . . . , i − 1, i + 1, . . . , 35] are the tipsters other than tipster i. Table 5 shows the
correlation between ||Fi − C|| and

∑ ||Fi−Fj ||
34 . Across races the correlation is on average

0.44 for individual tipsters, meaning that tipsters are more likely to anti-herd when they
are original. Note that the correlation is positive for every individual tipster. We also

compute the correlation between originality and
∑

j ||Fi−Fj ||
34 across the tipsters for each

of the 318 races. This correlation is on average 0.37, meaning that for the typical race,
the most original tipsters are indeed the most likely to anti-herd . This suggests that
most often, the best way to anti-herd the other tipsters is to make an original forecast.

5. CONCLUSION

This chapter analyzes the role played by professional tipsters in horse racing betting
markets. We find two types of direct evidence of anti-herding behavior in forecasting.
First, the distance between their forecasts and the public information is inconsistent
with truthful forecasting. Second, the negative relationship between forecast originality
and forecast precision is also a clear indication of biased forecasts. Overall, our findings
are that tipsters do tip low ability horses, that is, horses that are unlikely to win the
race. A possible explanation for such a behavior is that tipsters are careerist and want to
outperform their peers by making risky forecasts. This has potentially large implications
for the efficiency of betting markets. Indeed, the odds are determined by the betting
volumes, and punters do rely on professional tipsters to determine their bets. Hence, the
fact that tipsters favor low ability horses should also somewhat bias the odds in favor of
the longshots.
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APPENDIX: Proof of Equation (5)

To show the proof of Equation (5), let us first consider a two-horse race. Imagine that
c2 > c1, so that C = {2,1}. Hence, as in Table 2, the footrule distance is ||F − C|| = 0
if f2 > f1, and ||F − C|| = 2 if f1 > f2. Similarly, ||K − C|| = 0 if k2 > k1, and ||K −
C|| = 2 if k1 > k2. We want to show that E||F − C|| < E||K − C||, which is equivalent
to Pr(f1 > f2|c2 > c1) < Pr(k1 > k2|c2 > c1).

We can develop: Pr(f1 > f2) = Pr
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By the properties of the sum of two normal distributions,
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Since Equation (7) has a larger variance than Equation (6) and c2 − c1 > 0, it is
immediately clear that Pr( 2

c
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(s1 − s2) > (c2 − c1)) < Pr( 2
s
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2
s

(s1 − s2) >

(c2 − c1)). Therefore E||F − C|| < E||K − C||.
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The result can be generalized for more than two horses. Indeed, Equation (5) holds
for any possible pair of horses. With eight horses, C ={1,2,3,4,5,6,7,8}, the order of
the pair {3,7} or any other pair is more likely to be reversed in K than in F . It is
then immediately clear that more positions will change between C and K than between
C and F .
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Abstract

We investigate a relatively recent format developed in the UK for wagering on sports,
that is, index or spread betting. It has parallels with commodity trading, where the dif-
ference between the buy and sell prices of a market-maker indicates the margin. In
sports betting, the “commodity” may be the distance by which a racehorse is beaten, the
number of goals in a soccer match—almost anything. Returns or losses to the bettor are
defined by the difference between the traded figure and the actual outcome.

To illustrate, suppose the offered spread for the number of points scored by a bas-
ketball team is (89, 93). A bettor who expects a high score might buy (at 93) for, say,
$10 per point. If 100 points are scored, seven higher than the buy price, his profit is
$10 × 7 = $70; if 80 points are scored, his loss is $10 × 13 = $130. A bettor expect-
ing a low total might sell (at 89). At, say, $20 per point, his profit is $20 × 9 = $180
from 80 points, or his loss is $20 × 11 = $220 with 100 points. The sell bettor’s loss is
apparently unlimited, but there are ways to cap it.

We examine spread betting on sports and on financial variables. Topics include
information efficiency, decision-making under uncertainty and opportunities for insider
trading. We explore similarities and contrasts between different forms of betting, from
both the market-makers’ and the bettors’ perspectives.

For the empirical researcher, a sports betting market gives a rapid accumulation of
data through a sequence of short-lived markets with well-defined endpoints. Spread bet-
ting markets may well be populated by bettors whose motivations are similar to financial
traders, as the stake at risk is normally much higher than with conventional bookmak-
ers. Any evidence of inefficiency in betting markets may offer insights into financial
markets.

1. BACKGROUND

In addition to the well-established pari-mutuel (or Tote) system of betting, and defi-
nite odds offered by bookmakers and on betting exchanges, another method of betting
on horse racing and other sports events is UK index or spread betting. Despite the
name similarity, spread (index) betting is far removed from the notion of “betting on
the spread” for matches between two teams, common in the U.S.

In spread (index) betting in a sports context, the “commodity” that is the subject of
the “trade” may be almost anything. Obvious examples include the winning margin in a
soccer match, the number of victories in a season by a given team, the winning distance
in a horse race, or the total number of points scored in a rugby match. Less obviously, it
might be the sum of the times, in minutes, that goals are scored in a given soccer match,
the number of races in a meeting before the favorite wins for the first time, an artificial
Performance Index, with different rewards for different finishing positions in a horse
race, even wildly speculative quantities, such as the number of seconds before the first
throw-in in a soccer match.
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For stock prices or stock indices, the commodity is usually the price of a stock, or
the level of an index, at some specific time in the future, say on the third Friday of every
third month. Spread betting enables a trader to take a position on the price of a stock
without any need ever to trade the stock itself, or even to trade on an option on the stock.

Whatever the context, the market-makers set a spread interval for a specified quantity,
and their clients are invited to buy at the top end of the spread, or sell at the bottom end.
The outcome of the trade is the product of the size of the unit stake chosen by the client,
and the difference between the actual outcome of the event in question and the level at
which the trade is enacted. The width of the spread interval is set by the market-maker.
Even a narrow spread may enable insider traders, who possess superior information to
the market-maker, to make easy profits, but a wide spread will reduce trading volume,
by discouraging noise or liquidity traders.

Jackson (1994) pointed out an important contrast between sports betting and com-
modity trading. In the latter, the day to day fluctuations in prices are generally small, and
the actual commodity price, at the time of delivery, will be close to this range, catastro-
phes aside. In sports betting, outcomes far removed from the buy-sell trading range are
frequent—for example, in betting on the total goals scored in a soccer match, the spread
intervals offered are almost invariably close to (2.5, 2.8), but about 8% of matches have
no goals, and totals of seven or more happen frequently. This volatility has implications
for how firms and gamblers control their risks.

Whether in sport or in the stock market, spread betting is regulated by the Finan-
cial Services Authority. Profits are free from income or capital gains taxes, there are
no dealing or commission charges, stamp duty, or other deductions. One consequence
of the regulatory regime is that a spread betting transaction is a legally enforceable
contract; bettors may incur heavy losses if they make a large error.

A gambler wishing to participate in spread betting must normally arrange a suitable
amount of credit with a spread betting firm. Specific transactions are often conducted
by telephone, with the calls recorded to settle any dispute. The firm may decline any
bet a gambler proposes, or accept it only at a lower unit stake, or may ask the gambler
to increase his line of credit before the bet can be accepted. Clients may open or close
trades at any time in dealing hours, with instant execution.

A common use of this flexibility when trading in single shares is to make a bet that
a price will fall, or rise, at the immediate cost, as a margin call, of say, 7.5% of the
contract value. For example, if the buy price of a share is 500p, a gambler who expected
the price to rise could decide to buy at the rate of £10 for each 1p movement in the price.
His maximum loss, if the share became worthless, would be 500 × £10, but the margin
call would be only 7.5% of this, or £375. Risk-averse traders have several alternative
actions: they may consent to the quoted spread being widened, with the proviso that
the trade be closed automatically if their losses reach some predetermined level; or they
may simultaneously make a pair of trades, one which is tied to the particular share
of interest, and the other offsets this by being tied to a different future index. (This
“index combination bet” has the advantage that it has a lower margin requirement than
a standard trade on a single share and lower dealing costs. Moreover, non-standard
quantities can be traded, hence futures bets on single stocks can accurately be offset.)
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The mirror image is when a trader places a limit order, either when making the bet or
at any subsequent time, asking for the bet to be closed if profits ever reach a preordained
level. In this way, the trader guards against subsequent market falls, but at the expense
of foregoing further profits.

Index trading is also a means of hedging against a possible short-term fall in the
market, which would reduce the value of a trader’s portfolio. The trader can sell the
futures index that is linked to his portfolio as a means of avoiding brokerage charges.

2. HOW INDEX BETTING OPERATES

Denote by X the quantity (goals, time, price) that is the subject of the transaction. The
market-maker offers the spread interval (a, b) on the outcome of X, and the bettor has
the option either to buy X at a chosen unit amount 
 (
 > 0), or to sell X, again at
a chosen unit amount 
 (
 > 0). When the value of X is known, bets can be settled:
the buy trader gains 
(X − b), while the sell trader gains 
(a −X); negative values
correspond to losses.

Example 1. X is the number of minutes to the first goal in a soccer match, and the
spread is (35, 38). Barry buys X at £10/min, Sophie sells X at £5/min. If the first
goal is scored after 48 min, Barry wins £(48 − 38) × 10 = £100, while Sophie loses
£(48 − 35) × 5 = £65. Had the match ended goalless after 90 min, the value of X would
be taken as 90, so Barry would then have won £(90 − 38) × 10 = £520, while Sophie’s
loss would be £(90 − 35) × 5 = £275.

If the commodity of interest is the value at a fixed date in the future of a continu-
ously changing quantity, such as the level of a stock market index, or the price of an
individual stock, the spreads offered by the firms will naturally be updated in line with
these movements. Similarly, in many sporting events, the spreads offered will change
as the event unfolds, to reflect both the current state of the game, and the reduced
period of time left to affect the outcome. Making bets at such times is termed betting in
running.

Example 2. Consider the situation from Example 1. Suppose that, after 30 min, no
goals have been scored, and the spread now on offer for X is (58, 61).

Barry could decide to close his bet by now selling X, at the same unit stake of
£10/min, at the new sell price of 58. Whatever the eventual value of X, he would then
make a profit of £(58 − 38) × 10 = £200. Or, he might hedge his bets by selling X at
£6/min; the net effect here is a guaranteed profit of £(58 − 38) × 6 = £120, along with
whatever is the outcome of the residual £4/min at the original buy price of 38, with the
knowledge that X cannot be less than 30. He might even choose to increase his exposure
and buy further units of X at the new price of 61, at some suitable unit stake.

Unless a goal is scored soon, Sophie is in danger of suffering a large loss. She could
also close her bet by buying X at £5/min at the new buy price of 61, leading to a certain
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loss of £(61 − 35) × 5 = £130. She might prefer this to the possible loss of £(90 − 35) ×
5 = £275 if the score remained 0–0 for the rest of the game.

Some commodities, such as that in Examples 1 and 2, have natural lower and upper
bounds, so the maximum possible gains and losses are both finite. At other times, one
or other of these natural bounds is not present: for example, the total number of goals
scored in a soccer game cannot be less than zero, but has no upper limit; and the dif-
ference in the scores of two teams is unbounded in both directions. The market-makers
will wish to ensure that each bettor has the funds to meet any liability, so may introduce
a stop loss for these unbounded quantities, by treating any value of X that exceeds D
(say) as equal to D, and any value of X less than some C as equal to C. Especially
in spread betting on financial markets, the firm may offer several different stop loss
bounds, possibly with different spread intervals, to suit the tastes of different clients.

Example 3. To illustrate how the language of the stock market and the sports arena
has become integrated, a bettor may be interested in the total number of goals scored
in the soccer World Cup Finals. Perhaps the spread quoted is (80, 82), but an “80 call
option” may also be offered at (3.5, 5), and a “79 put option” at (1.5, 3).

Hugh, who thinks the number of goals will be high, has the choice of the spread
bet at £10 per point at a price of 82, or the 80 call option at £10 per point at a price
of 5. The latter would cost £10 × 5 = £50. If only 60 goals are scored, he would lose
£10 × (82 − 60) = £220 on the spread bet; but if he had bought the option, his loss is
only the £50 cost of the option—which he would not exercise. If 95 goals are scored,
he would win £130 on the spread bet; his net profit from the call option would be £100,
arising from the £150 he gains by exercising his option to buy at 80, less the £50 cost
of the option. Effectively, buying the option gives insurance against a heavy loss, at the
cost of reducing his potential profit.

Larry, who thinks the total goals will be low, has the option to sell at £10 per point
at a price of 80, or buy the put option at £10 per point at a price of 3. If 60 goals are
scored, he would make a 20 point, or £200, profit from the spread bet; if he had bought
the option, he would exercise it and make a £160 net profit, arising as 19 × £10 = £190
from the spread bet, offset by the £30 cost of the option. With 95 goals, he would lose
just the £30 cost of the option (and not exercise it), but his loss on the spread bet would
be £10 × (95 − 80) = £150.

What about the arithmetic from selling call or put options? If, in Example 3, Larry
sold an 80 call option at £10 per point at 3.5, the maximum profit he can make is the £35
cost of the option, which he hopes not to be exercised. However, his loss is unlimited,
as if more than 80 goals are scored, those who bought the call option from him will
exercise it, and get £10 for every goal in excess of 80. Similarly, if Hugh sold a 79
put option at £10 per point at 1.5, he receives the £15 cost, and has no liabilities so
long as at least 79 goals are scored; but every goal less than 79 costs him £10. From the
spread betting firm’s perspective, matching buyers and sellers of the call and put options
simply guarantees a profit proportional to the width of the spread on these options, just
as it does on trades in the original spread of (80, 82)—see below.
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3. SETTING SPREADS

A market-maker’s ideal is a large profit, with zero or minimal risk. He selects the
commodities on which to trade, and their spreads. We follow Haigh (1999). At the
simplest level, with the notation of the previous section, suppose the total of the unit
buy stakes is B, and the total of the unit sell stakes is S. The market-maker’s profit
is then

B(b −X) + S(X − a) (1)

Hence, if buy and sell contracts match exactly, so that B = S, this profit is

B(b − a) =
(B + S)(b − a)

2

whatever the outcome—the risk is zero. Market-makers have a powerful incentive to
set spreads so that buy and sell propositions are equally attractive to bettors. And if the
market-maker successfully judges the preferences of bettors as a whole in this manner,
the width of the spread, b − a, plays a central role in maximizing profit. A narrow spread
can be expected to attract higher total stakes, but the specific expression B(b − a) shows
that halving the spread width will not increase profits unless total unit stakes are more
than doubled.

Even if no information of significance to the sporting event in question arises after
spreads are first offered but before the event begins, firms will adjust their buy and sell
prices in response to bets placed. The initial choice of spread will be informed by an
assessment of the likely actions and expectations of the betting public, and also by the
firm’s objective assessment of the chances of the different outcomes. We assume that
both spread setters and punters have equal access to relevant information.

Let the quantity X in Expression (1) above have mean � and variance �2. Then, if B
and S are the total unit stakes for buy and sell at the spread (a, b), Expression (1) shows
that the mean profit to the firm is

B(b − �) + S(� − a) (2)

and hence, so long as a < � < b, the mean profit is positive. Individual punters can
be at an advantage if � > b or � < a, but so long as B and S are such as to leave
expression (2) positive, the overall advantage is with the firm. But if � is outside the
spread interval, this mean outcome could be negative. A firm may thus be expected to
set the spread interval so as to contain �. In particular, if � = (a + b)/2 so that the mean
outcome is at the center of the spread interval, the mean profit is

(B + S)(b − a)
2

(3)

Expression (3) is also the actual profit when buy and sell bets attract equal support.
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The variance of the profit, from (1), is (B − S)2�2, and so when � = (a + b)/2, the
coefficient of variation of the profit can be written as

�

b − a
× 2 |B − S|

B + S
(4)

which suggests that (b − a), the width of the spread, might be expected to be propor-
tional to �. It is often the case that a firm is prepared to offer spread bets on some
quantity both for individual sports games, and also on the total of this quantity over a
collection of n games. Then, so long as the games are independent, and the variances
in all games can reasonably be taken as equal, we might expect the spread width for
bets on the total over n games to be about

√
n times as large as the spread width for an

individual game.

Example 4. In American football, typical spreads for the total points scored in a sin-
gle game are in the range (37, 40) to (42, 45), depending on the reputations of the
teams for offense and defense capabilities. Almost invariably, spreads for a single game
are 3 points wide. When a spread is offered for the total points scored over a week-
end’s fixtures of n = 12 games, it is commonly 10 points wide; these figures fit with the
observation above, as 10 is quite close to

√
12 × 3.

Example 5. Between well-matched soccer teams at a professional level, little variation
is seen in spreads offered for the time T of the first goal, typical spreads being in the
range (34, 37) to (37, 40), suggesting an expected value of T of about 37 min. Asso-
ciated with these bets on individual matches, we find spreads offered on the time until
the first goal in any one of n specified matches (perhaps the n = 10 Premier League
games to be played over one weekend, or the n = 31 games to be played in a particular
tournament).

Empirical evidence (e.g., Dixon and Robinson, 1998) is that T can be well modeled
as having an exponential distribution E(�), whose mean and standard deviation are
both equal to 1/� (ignoring the finite length of any game). A well-known property of
the exponential distribution is that the minimum of n independent exponential variables
with parameters {�1, . . . , �n} is also exponential, with parameter �1 + · · · + �n. The
similarity of the spreads typically offered suggests that taking all values of � as equal is
a reasonable step, in which case the mean and standard deviation of the time to the first
goal across n matches are both 1/(n�). (When n is large, the finite length of the game
is no longer an issue.)

This indicates that we might expect the spread width for the time of the first goal in n
matches to be about 1/n of the width of the spread for one match, typically 3 min. Data
for the European Championship (1996), when 31 matches were played, show that the
index firms were much more cautious than this; rather than a spread of about 180/31 ∼
6 sec, the spreads were typically 15 sec wide.

As a separate point, we would also expect the mean time until the first goal in
31 matches to be about 1/31 of the mean time to the first goal in a single match,
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in this case 37/31 min, or about 72 sec. Because teams often begin matches rather
cautiously, we might expect the center of the spreads to be a little later than this. But
the actual initial spreads on offer for that tournament were centered around 240 sec,
which is so much larger than 75 sec as to suggest that the index firms were not using
this approach. (The fastest goal in that 1996 tournament actually occurred after only
115 sec.)

In betting on a pari-mutuel system, a fixed proportion of stakes is returned to the
punters, so the market-makers carry no risk, and the punters know precisely the mean
amount they would lose from random bets. In a race with n horses, in which book-
makers offer horse i at odds of 	(i) to 1, the overround is defined at that quantity m
such that ∑

i

1/ (1 + 	(i)) = 1 + m. (5)

Bookmakers ensure that m > 0. One interpretation is that 1 + m is the smallest quantity
that a punter can stake to guarantee a return of one unit, whatever the race outcome;
another is that if these odds have been so carefully judged that the total stakes on horse i
are proportional to 1/(1 + 	(i)), then m/(1 + m) is the fraction of all stakes that are
retained by the bookmakers, whatever the race outcome. Bookmakers have no expec-
tation that punters will behave as conveniently as in this ideal scenario, but the smaller
the value of m, the larger the degree of risk the collection of odds represents. In general,
there is no equivalent quantity within spread betting.

For example, if stop losses are not in operation, and a spread bet is made on a score
difference, potentially unbounded in both directions, there is no maximum loss, so no
definite sum can be said to be at stake.

However, in a two-horse race, in which X takes the values R(R > 0) or 0, according
to which horse wins, suppose the spread for one horse is (a, b). Inevitably, the spread
for the other is (R − b,R − a), as selling one horse is here exactly the same as buying
the other. Buying at price b is equivalent to betting at odds of R − b to b, and buying at
R − a is equivalent to odds of a to R − a. This spread bet is identical to a set of odds
with overround (b − a)/R.

Haigh (2000) has explored how this may extend to two-person contests in which X
may take more than two different values. Spreads (a, b) and (c, d) are offered for the two
contestants, and suppose the rewards are R = R1 > R2 ≥ · · · ≥ Rn−1 > Rn = 0, paired
so that if one contestant scores R then the other scores 0, and, if one scores Ri, the other
scores some definite value, Si, for each i = 2, 3, . . . , n − 1.

In Appendix A, we show that, under very mild conditions, there is a set of odds
corresponding to the n distinct outcomes, so that for each of the four possible spread
bets, a combination of odds bets can be constructed that has exactly the same result as
the spread bet; and these odds bets have overround (b − a)/R.

This extends the correspondence between spread bets and odds, but this second
correspondence is one way only. Given a set of odds bets, it is not always possible
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to find a collection of rewards for the different outcomes, along with spreads for the two
contestants, such that a gambler could make one or more spread bets that give results
identical to those for every odds bet.

But the correspondence does suggest how to make a comparison of the overall risks
being taken when a variety of firms offer sets of odds or collections of spread bets in
this sort of two-person contest. For any set of odds, the overround can be calculated
as in Equation (5), and for any reward structure from a spread betting firm, calculating
(b − a)/R. The smaller these quantities evaluate to, the larger the risk the firm is taking,
and the more likely it is that a gambler can find a favorable bet.

Example 6. (Cricket, South Africa vs. England, Fifth Test Match, January 2000.) The
reward structure from IG Index allocated 10 points to each team in a drawn match, other-
wise the winner scored 25 points and the loser scored zero. Initial spreads of (16, 17.5)
for South Africa and (6, 7.5) for England were offered.

Consider the set of odds 21:29 against a win for South Africa, 41:9 against a win for
England, and 7:3 against a draw. The overround for these odds is 6% = (17.5 − 16)/25,
as noted above. The four possible spread bets at unit stake could be replaced by the
combinations of odds bets listed below. In each case, the spread bets and the odds bets
give identical outcomes to the gambler, whatever the match result.

Buy South Africa, OR bet 14.5 on South Africa to win, bet 3 on a draw.
Sell South Africa, OR bet 4.5 on each of England to win, or a draw.
Buy England, OR bet 4.5 on England to win, 3 on a draw.
Sell England, OR bet 14.5 on South Africa to win, 4.5 on the draw.

Suppose a different firm offered rewards of 50 for a win, 30 for a draw, and 0 for a
loss, with spreads (35, 37) and (16, 18). The calculation (b − a)/R = 2/50 = 4% indi-
cates that this second firm has a slimmer margin than the 6% for the first—and hence
may be more likely to yield a favorable bet to a punter.

If a firm offers odds against the three results of a win for South Africa, a win for
England, or a draw, it would not be possible to construct a spread bet reward structure
that would always give the same outcome as an odds bet.

4. SPREADS IN PERFORMANCE INDICES

Spread betting firms often approach multi-team contests via some Performance Index.
In a horse race, or a team competition, rewards R1 ≥ R2 ≥ · · · ≥ Rn will be scored by
the winner, second, and so on, respectively. For example, in horse racing, rewards of
50, 30, 20, and 10 points may be associated with the first four horses, the rest scor-
ing zero. In a soccer league of 20 teams, rewards may range from 60 points to the
champions down to 5 points for the eighth placed team, zero to the rest. In knockout
competitions, decreasing rewards may be offered for the winner, losing finalist, both
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losing semi-finalists, the four losing quarter-finalists, and so on. Bets based on the ith
entrant are defined by the spread (ai, bi).

The firms must ensure that certain necessary conditions are met, to avoid the possi-
bility that a bettor can guarantee a profit, either by selling all the most expensive horses,
or by buying the cheapest ones. In symbols, this translates to the firms ensuring that, for
all i = 1, 2, . . . , n,

a(1) + a(2) + · · · + a(i) ≤ R1 + R2 + · · · + Ri (6a)

b(n) + b(n−1) + · · · + b(i) ≥ Rn + Rn−1 + · · · + Ri (6b)

where the subscript (i) denotes the order statistic. There are further restrictions in knock-
out tournaments where the complete draw is known from the outset: for example, there
are blocks of eight contestants, exactly one of whom will get through the first three
stages; the sum of the rewards for the other seven is fixed, while the one contestant gets
at least some minimum reward. Thus similar sets of conditions on these blocks of two,
four, eight, and so on, contestants are required. We assume the spread betting firms have
ensured that all these consistency conditions are met.

Using (6a) when i = n, and (6b) when i = 1, in particular we must have

n∑
i=1

ai ≤
n∑
i=1

Ri ≤
n∑
i=1

bi. (6c)

One way to ensure this is to have
∑

(ai + bi)/2 =
∑

Ri, a condition automatically sat-
isfied if the spread for each contestant is centered at the contestant’s mean reward.
We have already noted the advantages to firms of taking this precaution, but they
will also have regard to the expected weight of bets: this may incline them to offer
a spread that does not include this mean value if, by doing so, buy and sell lia-
bilities on that contestant become more closely matched. Whatever the reason, if
one contestant attracts so many buy bets that the firm moves its spread interval
upwards, it is reasonable to expect compensating downwards movements in other spread
intervals, resulting in the sum of the mid-points of all the spreads remaining fairly
close to

∑
Ri.

Suppose that this condition
∑

(ai + bi)/2 =
∑
Ri is satisfied, and that the maximum

reward R1 is given to one contestant only. In Appendix B, we show that, provided
some (usually undemanding) technical conditions are satisfied, there is a set of odds
bets against each runner winning, with an overround of m =

∑
(bi − ai)/[2(R1 − Rn)],

which correspond (in the sense described in Appendix B) to the spread bets actually
on offer. There may be many collections of odds that have this correspondence, but the
overround for each of them is the same.

Example 7. In the 1998 Super Bowl, the winner would be awarded 100 points, the
runner-up 75 points, and the losing semi-finalists 50 points each. Green Bay played
San Francisco, Denver played Pittsburgh, and the spreads were (73, 76), (70, 73), (64,
67) and (62, 65), respectively. The mid-points of these spreads do sum to 275, the
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sum of the rewards. The technical condition here is that each team’s winning chance
should exceed 3%, as should each team’s chance of elimination at the semifinal stage—
surely met! Our result is that these spreads correspond to an overround of (4 × 3)/
(2 × 50) = 12%.

For the final, Green Bay was initially quoted at (94.5, 96.5), with Denver at (78.5,
80.5), which, in this two-horse race, exactly corresponds to odds of 7:43, and 39:11.
These odds have an overround of 8%, that is, (2 × 2)/(2 × 25).

Even when some of the conditions of the argument in Appendix B are not satisfied,
we can still calculate the quantity m =

∑
(bi − ai)/[2(R1 − Rn)], and use it to compare

sets of spread bets from different Performance Indices on the same event. We outline
the circumstances where some of these conditions might not be met.

1. For obvious reasons, the firms use rounded values for the spreads [(a, b)], so they
can only be at best an approximation of more exactly calculated numbers. Even
if the firms have completely followed the steps described in Appendix B, the
quoted spreads may thus not exactly correspond to these calculations.

2. The psychology of betting means that many gamblers will wish to support one
particular runner, rather than specifically oppose that runner, and, indeed, we
frequently find that

∑
bi −

∑
Ri >

∑
Ri −

∑
ai. In such cases, the sell bets, as

a whole, offer better value to the bettor than the buy bets, and the condition∑
(ai + bi)/2 =

∑
Ri fails. However, by using an appropriate scaling, we can

justify parallel steps in the argument of Appendix B, leading to the same value
for m.

3. Appendix B requires that the winning chance for a contestant with spread (a, b)
be at least (b − a)/[2(R1 − Rn)]. This is not a stringent requirement: for exam-
ple, in a common Performance Index for a 10-horse race, R1 − Rn = 50, and the
spread for the weakest runner is often at most 1.5 units wide: this condition asks
only that its winning chance be at least 1.5%. But plainly, this condition will
sometimes fail. Note there is also the parallel requirement that the chance that
even the best horse scores minimal points shall be at least

(b − a)/[2(R1 − Rn)].

4. Suppose a contestant is so strongly fancied that the offered spread takes the form
(a,R). A firm would be in great difficulty in constructing an equivalent spread
(needed in the argument in Appendix B) for the artificial bet that this contestant
will not finish last, but would readily be able to give a corresponding spread for
a bet on whether the contestant would win, or not. Since this last consideration
is the only construction that is needed in the calculation of the overround m,
that calculation can still proceed. However, if some contestant is so weak that
its spread has the form (0, b), it will not be possible to suggest a meaningful
equivalent spread for the simple wager that the contestant will fail to win, so here
one of the steps needed in Appendix B cannot be completed. We face similar
difficulties if some spreads are very wide.
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5. ADVANTAGEOUS BETS

In the notation of Section 3 above, a buy bet is favorable when � > b, and a sell bet
is favorable when � < a. We will concentrate on the first case, noting that parallel
considerations will apply in the second. Kelly (1956) considered how much a gam-
bler should stake when a series of bets at favorable odds are on offer, and his work
has been refined by successive investigators. (The account here is based on Haigh,
2000.)

The essence of Kelly’s argument is that, in order to maximize the safe long-term
growth rate of his fortune, the gambler should stake that fraction of his current fortune
that corresponds to the size of his advantage. In spread betting, one immediate prob-
lem is to decide what is meant by the size of a stake; if the quantity of interest, X,
is unbounded below when a gambler makes a buy bet, the potential loss is unlimited.
To avoid this, we assume that X is bounded below, and we make this lower bound
essentially zero by requiring that

1. Pr(X < 0) = 0
2. For every � > 0, Pr(X < �) > 0.

Suppose a bettor has initial capital V0, and fortune Vn after n bets. These bets are
on the outcomes of a sequence of independent random variables {Xk : k ≥ 1}, all dis-
tributed as the generic variable X. The bettor must select the unit stakes, {
k : k ≥ 1},
for a sequence of buy bets. The maximum possible loss on the kth bet is 
kb, so write

k = ukVk/b, where 0 < uk ≤ 1. Then plainly

Vn

V0
=

n∏
k=1

[
1 + (Xk − b) uk/b

]
(7)

and the mean growth rate of the bettor’s fortune after n bets is Gn =
1
n

ln
(
Vn

V0

)
.

Kelly’s criterion of maximizing this long-term expected growth rate is not the only
way to reach a decision. But it has the added attraction of leading to the optimal bet
under other criteria, too. Suppose the bettor always risks the same proportion uk = u of
his current fortune, and that G(u) = E{ln[1 + (X − b)u/b]} is finite. Then the Strong
Law of Large Numbers shows that Gn → G(u), almost surely. To maximize this long-
term growth rate, we seek solutions of

G′(u) = E

[
X − b

b + u(X − b)

]
= 0. (8)

Finkelstein and Whitley (1981) showed that there is some essentially unique choice
u = u∗ that achieves this maximum. They also showed that, if V ∗

n is the fortune after
n plays using this fixed choice u∗, and Vn corresponds to any other permissible choice
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of strategy, including allowing {uk} to vary, then using u∗ each time is superior in the
following senses:

1. Vn/V
∗
n is a supermartingale, that is, E(Vn/V

∗
n |Vi/V

∗
i for i < n) ≤ Vn−1/V

∗
n−1.

Also E(Vn/V
∗
n ) ≤ 1, Vn/V

∗
n converges almost surely to some finite value, and

E[lim(Vn/V
∗
n )] ≤ 1.

2. V ∗
n /Vn is a submartingale, that is, E(V ∗

n /Vn|V ∗
i /Vi for i < n) ≥ V ∗

n−1/Vn−1. Also
E(V ∗

n /Vn) ≥ 1, V ∗
n /Vn converges almost surely to some real number (or to +�),

and E[lim(V ∗
n /Vn)] ≥ 1.

Ethier and Tavare (1983) considered the behavior of this value u∗ when the advantage
� − b = � is small. By an expansion of Equation (7), they showed that

u∗ ≈ b�/�2 (9)

and that the corresponding growth rate is then

G
(
u∗
) ≈ �2/�2 (10)

that is, the growth rate achieved by using the Kelly criterion is directly proportional
to the square of the size of the punter’s advantage, and inversely proportional to the
variance of the quantity under consideration.

When there are several apparently favorable spread bets to choose between, and the
advantages are small, the expression in Equation (10) could be a basis for selecting one
of them.

Example 8. Suppose, as Dixon and Robinson (1998) indicate, it is reasonable (to a
first approximation) to take the process of scoring goals at soccer as a homogeneous
Poisson process of rate �. Spread bets are offered on both X, the total number of goals
in the match, and on T , the time until the first goal. Let F (= 90) denote the duration, in
minutes, of the match, so that T is formally recorded as F if the match is scoreless.

Then X has a Poisson distribution with parameter �F , and T has an exponential
distribution, truncated at the value F . Then, with 	 = exp (−�F ), the mean and variance
of T are (1 − 	) /� and

(
1 − 	2

)
/�2 − 2F	/�. If the spreads offered are consistent

with the firm having underestimated �, the buy price, b, for X will be too low, and the
sell price, s, for T will be too high. On the basis of Equation (9), buying X is preferable
to selling T , if and only if

(�F − b)
√

1 − 	2 − 2F	� > (�s − 1 + 	)
√

�F . (11)

Spreads of (2.5, 2.8) for X and (35, 38) for T are common in soccer. Because goal times
are rounded to the minute in which a goal occurs, the latter spread represents a width of
four minutes. If the actual mean number of goals expected in the match is �F = 3, then
the left side of this inequality is 0.167 and the right side is 0.317. With these figures,
selling T is the more attractive bet.
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For a different consideration, suppose the distribution of X is governed by a
parameter �. We refer to BX = [�:a < E(X) < b] = (A,B), say, as the firm’s interval
for the spread (a, b). Regarding � as a random variable with distribution function H (�),
the difference H (B) −H (A) is then the probability that both buy and sell bets favor
the firms, and so measures their unwillingness to be exposed to risk of loss. If we are
ignorant of H (�), we can use the widths of the respective firm’s intervals as proxies to
compare spread bets offered on two different variables.

Example 9. In games such as basketball, American football, or rugby, the number of
points scored by a team might reasonably be modeled by a normal distribution, with
some particular mean and variance (see, e.g., Stern, 1994). Spreads are offered on both
N , the total number of points scored in a match, and on S, the points superiority of one
team over the other. Almost invariably, the widths of these two spreads are equal.

The values of N and S are governed by the scoring rates of each team, which in some
circumstances would be expected to have a positive correlation (e.g., both are affected
equally by weather and/or pitch conditions; if one team takes risks to score more points,
that usually gives point-scoring opportunities to the opponents, etc.). Here, N would
have a larger variance than S. Hence, the probability associated with an interval of given
width around the mean value of N would be smaller than that for a similar interval of
the same width for S. A punter is more likely to find a favorable bet on N .

Sackrowitz (2000) suggests that in a game of American football, there are about two
dozen possessions during a game. The more possessions one team has, the fewer the
other will have; in such circumstances, a negative correlation between the teams’ scores
might be expected. Here, S would have the larger variance, and so S would be more
likely to be a source of a favorable bet.

Within the same match, some bets may be so closely associated that a direct
comparison of the respective firms’ intervals can be made.

Example 10. (Soccer, Barnsley vs. Stockport, September 10, 1999.) The firm William
Hill offered, among other bets:

1. Total goals in the game, (2.7, 3.0).
2. Total goal minutes (i.e., sum the times at which all goals are scored), (135, 145).

Let’s analyze this bet. The ratio of the mid-points of the two spreads, 140/2.85 =
49.12 = m, is an estimate of the average time, in minutes, at which a randomly chosen
goal is scored. The firm’s interval for the scoring rate in (2) corresponds to an expected
number of goals in the range (134.5/m, 145.5/m) = (2.74, 2.96), which is contained
within the spread for (1). A bettor, buy or sell, can expect better value from bets on
(2) than on (1).

The notion of a firm’s interval easily extends to more than one parameter.

Example 11. Consider the South Africa–England test match from Example 6. Writing
p = Pr(South Africa win) and q = Pr(England win), so that 1 − p − q is the chance
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of a draw, the mean scores to each team are 10 + 15p − 10q and 10 + 15q − 10p. Let
R be the region (a parallelogram) within the set S = [(p, q) : p ≥ 0, q ≥ 0, p + q ≤ 1]
defined by 6 < 15p − 10q < 7.5 and −4 < 15q − 10p < −2.5. So long as the point (p, q)
is within R, all bets are unfavorable; thus R would be the firm’s region for the spreads
listed earlier.

At the same time, another firm, Sporting Index, offered spreads of (15, 16.5) and
(6.5, 8) with the same reward structure. That firm’s region is defined by 5 < 15p −
10q < 6.5 and −3.5 < 15q − 10p < −2 (and p ≥ 0). The small overlap in these regions
suggests that most bettors could locate some favorable bet with one firm or the other.

One striking conclusion drawn by Kelly (1956) was that the optimal overall bet on a
horse race with conventional odds might include some bets that were individually dis-
advantageous. Once this has been mathematically established, an intuitive explanation
offers itself: the inclusion of such bets raises the total amount staked, so this increased
chance of including the winning horse can enable a larger fraction of the gambler’s cur-
rent fortune to be actively used. It is thus not surprising that the same counterintuitive
result also holds for spread bets on Performance Indices, where bets specifically against
individual horses can be made.

A bettor whose current fortune is F will buy horse i at unit stake uiF/bi, and sell
horse i at unit stake viF/(R1 − ai), for i = 1, 2, . . . , n. It would be absurd to buy and
sell the same horse, so at least one of ui and vi will be zero every time. Let w = 1 −∑

i ui −
∑

i vi. The outcomes are correlated, so we need not insist that w ≥ 0 to ensure
that the bettor’s fortune cannot become negative.

Provided the mean value of the reward for some horse lies outside that horse’s spread
interval, a favorable bet will exist. Identifying the optimal combination bet in general is
described in Appendix C, which also includes an algorithm for the special case where
the winner of a race scores R, and all others score zero.

Example 12. Suppose we have the position shown in Table 1, showing possible win
probabilities and their respective spreads for a race with seven horses, with one reward
R = 100. Use the steps in Appendix 3 to follow this example.

Using the notation of Appendix C, X1 = {1, 2, 3} and Y1 = {6, 7} are both non-
empty, so that to buy any of {1, 2, 3} or to sell either of {6, 7} is a favorable bet. In
Step 2, t11 = 25/23, but Step 3.1 fails for horse 3. Taking Xu = {1, 2} and Yv = {6, 7}
leads to tuv = 15/14; here all conditions in Step 3 hold, so this is a possible optimum
and Guv = 0.069988239. With the same Xu, let Yv = {5, 6, 7}; then t = 25/23 (again),
and this time the conditions in Step 3 hold, giving Guv = 0.070045508. Several other

TABLE 1 Data for Example 12

Horse 1 2 3 4 5 6 7

Win probability 0.25 0.05 0.20 0.05 0.20 0.15 0.10

Spread (12, 14) (2, 4) (17, 19) (3, 5) (19, 21) (25, 27) (15, 17)
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choices for {Xu, Yv} satisfy Step 3, but none of them gives a higher value for Guv . The
(unique) optimal bet uses u1 = 0.0978, u2 = 0.00652, v7 = 0.3572, v6 = 0.3652, and
v5 = 0.0278. Notice that it does not include the favorable option to buy horse 3, and
does include the unfavorable option to sell horse 5.

Some commentators have pointed out that the size of stake indicated by a strict adher-
ence to Kelly’s formula may cause justifiable concern to many bettors. In Example 12,
the optimal strategy calls for a bet that uses over 85% of the available capital. Thorp
(1997, 2006) noted that although the Kelly strategy in a favorable game would maxi-
mize the probability that the gambler’s fortune ever exceeded some given level before
a given time, the probability that the gambler’s fortune ever fell below some specified
level during that time could also be uncomfortably high. He gave examples of “frac-
tional Kelly” strategies, where the bet size is a fixed fraction of what strict Kelly would
give. MacLean et al. (1992) also explored this alternative: they concluded that a gam-
bler need forego only a small part of the expected growth rate of his fortune in order to
have a greatly increased protection against substantial short-term loss.

6. REGULATION, TAXATION, AND BIASES IN SPREAD
BETTING MARKETS

Spread betting markets often operate alongside fixed odds markets, so that gamblers
may place bets about the same event in the two markets simultaneously. We have noted
that spread betting in the UK is regulated by the Financial Services Authority, and hence
is subject to the 1986 Financial Services Act, while fixed odds betting was regulated
by the 1963 Betting, Gaming, and Lotteries Act (as subsequently amended) until the
introduction of the 2005 Gambling Act.

Here we first consider the issue of the differing regulatory structures on the incidence
of insider trading in the two markets, using data from 257 soccer matches from the
1996–1997 season. To do this, Paton et al. (1999) used the model developed by Shin
(1993) to estimate the percentage of bettors with inside information in the market for
football bets. Shin’s model links the percentage of money wagered by insiders, z, to the
bookmakers margin, or overround, calculated as in Equation (5) above.

By using the nonlinear estimation technique developed by Jullien and Salanié (1994),
Paton et al. conclude that the level of insider trading is about 3.12% in the fixed odds
market, and 1.51% in the spread markets. This difference may well be attributable to the
more rigid regulatory framework applied to spread betting markets, as this may impose
a greater cost on insider activity.

There is an array of evidence, for example, Thaler and Ziemba (1988), Vaughan
Williams and Paton (1997), Sauer (1998), Vaughan Williams (1999), Cain et al. (2000),
Deschamps and Gergaud (2007), and Sung and Johnson (2007), to support the con-
tention that fixed odds markets are subject to systematic biases. The most notable of
these is the favorite-longshot bias, the observed tendency for the expected return to bets
placed at lower odds to exceed that of bets placed at higher odds.
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Paton and Vaughan Williams (1998) compared the bias in fixed odds and spread
betting markets, at different odds levels, using data from 265 soccer matches in the
English Premier League over 1996–1997. For fixed odds, each match provides three
data values, one each for a win for the favorite, a draw, and a win for the longshot.
Taking a unit stake on each bet, the return is −1 for a losing bet, or +FIXED for a
winning bet at odds FIXED:1; the best-fitting linear regression is

RETURN = −1.874 + 0.065 × FIXED

The equivalent spread bet is a supremacy bet. Returns to a unit spread bet are cal-
culated as (actual supremacy–BUY) for buy bets and as (SELL–actual supremacy) for
sell bets.

For fixed-odds bets, there are three match odds: favorite win, longshot win, and draw.
These are pooled for each match and the following regression is performed:

RETf = a + a1.FIXED + u

Because returns are truncated at −1, this will lead to biased results using OLS. For this
reason, Tobit estimation is employed.

Spread bets can be divided into BUY and SELL bets. SELL bets are multiplied
by −1, and the data are pooled to give two observation points for each match. The
following regression is now performed:

RETs = b + b1.BUY [or SELL] + v

As both returns and losses are open-ended, OLS estimation is used. The results of the
analysis confirm the conventional favorite-longshot bias for fixed-odds bets, but there is
no significant bias found for spread bets.

A possible explanation for the difference is that transaction costs (implied in the
overround) were significantly lower for spread bets than fixed-odds bets (as is the case
with person-to-person betting exchange markets, with similar results—see Smith et al.,
2006). Spread bets also faced (at that time) a lower tax incidence than fixed-odds bets.
In particular, tax on spread bets was levied only on the marginal trading unit, or tick,
and constituted a much lower proportion of the overall trading gains and losses than did
the tax on fixed-odds bets. There is a theoretical case for believing that costs of trading
may explain, at least in part, the existence of a favorite-longshot bias. To an extent, the
study supports this theory.

More recent work that considers the forecasts and efficiency of spread betting mar-
kets includes Simmons et al. (2003) for rugby league games, Twomey (2005) for horse
racing, and Vaughan Williams (2005) for political elections.

In the 2001 UK Budget, the taxation of spread betting (and fixed odds betting)
was changed from a tax on turnover to a tax on gross profits (revenue minus payout).
A switch to a rate of tax on gross profits that was, say, revenue neutral for fixed odds
would, however, have suddenly and dramatically increased the tax burden on the spread
companies. For this reason, tax rates of 10% for sports spread betting and 3% for
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financial spread betting were implemented, compared with a proposed rate of 15% for
fixed-odds betting. The lower rate for financial spreads compared to sports spreads is
related to the substantial hedging costs that are characteristic of financial spread bet-
ting. The implication of these costs is that the apparent gross profit to the company in
the financial spread sector might substantially overstate its true profit. A single tax rate
on gross profits across all sectors might therefore, have seriously disadvantaged finan-
cial spreads. These and related betting taxation issues are considered further in Paton
et al. (2000, 2003, 2004).

The potential for profitable exploitation of biases in spread markets at current tax
levels was explored by Vaughan Williams (2000b, 2000c, 2002), following on from
a study of the performance of forecasting services in fixed-odds markets (Vaughan
Williams, 2000a).

The specific area of interest in the latest analysis is those cases where the spread
offered by one market-maker is out of line with that offered by others. In particular,
where one spread deviates in its entirety from another it is possible, in theory, to trade
with both and make a risk-free profit, a so-called arbitrage. In practice, such circum-
stances are rare, or employed as a marketing exercise, and confined to small stakes.
More commonly, the top end of one spread is coincident with the lower end of another,
or the spread interval offered by at least one market-maker does not contain the mean
mid-point of the spreads offered by all market-makers collectively. Vaughan Williams
(2001) terms these two situations as quasi-arbitrages (simple quarbs and full quarbs,
respectively).

In Vaughan Williams (2000b, 2000c), the outlying position is defined as the mid-
point of the quote offered by the market-maker most out of line with the average mid-
point of quotes. A set of such quotes was collected for the eight months from August
1999 to April 2000, in the market offered about disciplinary bookings in the English
Premier League (soccer). In this market, 25 points are awarded for a red card (a player
dismissed from the field of play by the referee) and 10 points for a yellow card (a player
officially cautioned).

The results suggest that the mid-point of all quotes is a better forecast of the actual
outcome in the bookings market than is the mid-point of the spread offered by the market
outlier, a finding duplicated in Paton and Vaughan Williams (2005; see also Smith et al.
2005, for a consideration of quasi-arbitrage opportunities in fixed-odds betting markets).
Indeed, it would have been possible in these samples to have made positive profits by
trading upon a strategy based on exploiting these differentials. In view of the limited
sample size, however, these findings should be treated with caution.
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APPENDIX A

Consider a two-person contest with possible rewards R = R1 > R2 ≥ · · · ≥ Rn−1 >
Rn = 0, paired so that if one contestant scores Ri, then the other scores 0, and, if one
scores Ri, then the other scores some definite value, Si, for each i = 2, 3, . . . , n − 1.
Spreads (a, b) and (c, d) are offered for the two contestants.

Suppose that b − a = d − c, and that there exist values {
1, . . . , 
n} with 0 < 
i < 1
with

∑n−1
i=2 
iRi < b,

∑n−1
i=2 
i(R −Ri) < R − a and

∑n−1
i=2 
i(R −Ri − Si) = R − b − c.

Then there is a set of odds {(	1 : 1) : i = 1, 2, . . . , n} corresponding to the n distinct out-
comes, so that for each of the four possible spread bets, a combination of odds bets can
be constructed that have exactly the same result as the spread bet; and these odds bets
have overround (b − a)/R.

Proof

Suppose odds of 	i : 1 were to be offered against A obtaining Ri (and B obtaining
Si), for i = 1, 2, . . . , n. Then the outcome of a buy bet on A at unit stake will be the
same as a series of stakes of wi on outcome i for i = 1, 2, . . . , n − 1, provided that b =
w1 + . . . + wn−1 and, for all these values of i, (	i + 1)wi = Ri.

Similarly, stakes xi on outcome i for i = 2, 3, . . . , n, with R − a = x2 + x3 + · · · + xn
and (	i + 1)xi = R − Ri are equivalent to a unit sell bet on A. For the buy bet on B,
we need stakes yi with (	i + 1)yi = Si and d = y2 + · · · + yn. Finally, for sell bets
on B, we need stakes zi with z1 + · · · + zn−1 = R − c and (	i + 1)zi = R − Si. We
must check that these conditions can simultaneously hold, with non-negative stakes
and odds.

Write 
i = 1/(	i + 1). Given positive values for 
2, . . . , 
n−1, choose wi = 
iRi

for i = 2, 3, . . . , n − 1, and then let w1 = b − (
2R2 + · · · + 
n−1Rn−1). Let 
1 =
w1/R1. Since z1 = 
1R1, we must take z1 = w1 and then, for i = 2, . . . , n − 1, we
have zi = 
i(R − Si). With these choices,

∑n−1
i=1 zi = b +

∑n−1
i=2 
i(R −Ri − Si), so

we shall require
∑n−1

i=2 
i(R −Ri − Si) = R − b − c. Thus we need 
n = [R − a −∑n−1
i=2 
i(R −Ri)]/R and, for i = 2, 3, . . . , n, write xi = 
i(R −Ri). For i = 2, . . . , n,

let yi = 
iSi; we need d =
∑n

i=2 yi =
∑n

i=2 
iSi, which means that

n−1∑
i=2


i(R −Ri − Si) = R − a − d.

These conditions can be met simultaneously for genuine odds bets so long as b − a =
d − c,

∑n−1
i=2 
i(R −Ri − Si) = R − b − c = R − a − d, and the inequalities

n−1∑
i=2


iRi < b

n−1∑
i=2


i(R −Ri) < R − a
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can both be satisfied. When this occurs, the overround of this set of odds is

n∑
i=1


i − 1 =
n−1∑
i=2


i +

{
b −

n−1∑
i=2


iRi

}/
R

+

{
R − a −

n−1∑
i=2


i(R −Ri)

}/
R − 1 = (b − a)/R.

There may be many sets of odds that yield bet combinations that can be exactly
matched with the four spread bets on offer, but all have this same overround.

APPENDIX B

Suppose a race with n horses has a Performance Index with K distinct rewards R1 >
R2 > · · · > RK , where R1 is awarded to the winning horse only. Denote the sum of all
the rewards by R, and suppose the spread on horse i is (ai, bi), where

∑
(ai + bi)/2 = R.

Then, provided the values of {bi − ai} are sufficiently small, a collection of win odds
for each horse can be constructed with the properties

1. the bookies’ margin on these win odds is m = 0.5
∑

(bi − ai)/(R1 − RK )
2. these win odds are derived to be consistent with the actual spreads on offer.

Proof

Fix attention on one particular horse, Alpha. To construct the spread (a, b) for Alpha,
a firm may believe that the probabilities that Alpha achieves the different rewards are
{pj : j = 1, 2, . . . ,K}, and so its mean reward is u =

∑
j Rjpj . We have argued that we

can expect (a, b) to take the form (u − w, u + w).
For any j = 1, 2, . . . ,K − 1, the firm could consider offering spreads where the

reward is either Rj or Rj+1, according as Alpha would have scored at least Rj , or at
most Rj+1, respectively, on the original Performance Index. On this new scale, Alpha’s
mean reward is

�j = Rj

j∑
k=1

pk +Rj+1

K∑
k=j+1

pk (B1)

By continuity considerations, there will be some spread (cj , dj) so that the firm is
indifferent whether a punter would buy or sell at this new spread, or at the original
spread (a, b). Similarly, a punter would be indifferent between buying the original
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spread at unit amount 
, or buying the jth new spread at unit amount xj , for each j,
provided that

L−1∑
j=1

xj(Rj+1 − dj) +
K−1∑
j=L

xj(Rj − dj) = 
(RL − b) (B2)

for each distinct reward L.
Subtracting Equation (B2) when L = M + 1 from that when L = M leads to

xM (RM − RM+1) = 
(RM − RM+1) (B3)

and so, since the rewards are distinct, xM = 
 for all M . But then Equation (B2)
collapses to

K−1∑
j=1

dj = b +
K−1∑
j=2

Rj (B4)

whatever the value of L.
Similarly, by considering the equivalence of a single sell bet to a series of sell bets

on these new spreads, the same outcome can arise for the punter so long as

K−1∑
j=1

cj = a +
K−1∑
j=2

Rj (B5)

But in a two-horse race with spread (cj , dj) for rewards Rj or Rj+1, there is an equiv-
alent odds bet with overround �j = (dj − cj)/(Rj − Rj+1). As all these new spreads are
to be seen as equally attractive, set this ratio equal to � for all j. Equations (B4) and
(B5) lead to

b − a =
K−1∑
j=1

(dj − cj) =
K−1∑
j=1

�(Rj − Rj+1) = �(R1 − RK ) (B6)

Thus

dj − cj = �(Rj − Rj+1) = (b − a)(Rj − Rj+1)/(R1 − RK ) = 2wj (B7)

and we expect cj = �j − wj , dj = �j + wj .
For this spread to be sensible, we require that

Rj+1 < �j − wj and �j + wj < Rj ,
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that is, that both

wj < (Rj − Rj+1)
j∑

k=1

pk and wj < (Rj − Rj+1)
K∑

k=j+1

pk.

Using Equation (B7), these are satisfied for all j if and only if

b − a < 2(R1 − RK ) Min{p1, pK} (B8)

Suppose this condition is satisfied, so that the firm would be able to construct spreads
(cj , dj) for rewards Rj and Rj+1, that are equivalent for all choices of j, and also to
the actual spread (a, b) on offer. A punter who buys the spread on (R2, R1) is betting
that Alpha will win, so a buy bet is the same as a win bet at odds of R1 − �1 − w1 :
�1 + w1 − R2, where 2w1 = (b − a)(R1 − R2)/(R1 − RK ).

Repeat this procedure for every horse in the race, assuming that the condition in
Equation (B8) holds each time. The condition in Equation (B1) can hold for every
horse only if

∑
(ai + bi)/2 = R, so we make this assumption. Let (ti − vi, ti + vi) be

the equivalent spread over (R2, R1) for horse i so that 2vi = (bi − ai)(R1 − R2)/(R1 −
RK ). Then the overround for the full collection of win odds is

n∑
i=1

ti + vi − R2

R1 − R2
− 1 (B9)

Now ti = qiR1 + (1 − qi)R2, where qi is the probability that horse i wins the race, so that∑
i qi = 1; hence, expression (B9) reduces to 0.5

∑
(bi − ai)/(R1 − RK ), as claimed.

APPENDIX C

Let � be some permutation of the labels {1, 2, . . . , n}. If � corresponds to the finishing
order of the horses, the bettor’s fortune after the race will be

F 1 = F +
∑
i

F (R�i
− bi)ui
bi

+
∑
i

F (ai − R�i
)vi

R1 − ai

which simplifies to

F 1

F
= w +

∑
i

R�i
ui

bi
+
∑
i

(R1 − R�i
)vi

R1 − ai
= D�.

Writing t = w +
∑

j R1vj/(R1 − aj), we have

D� = t +
∑
i

uiR�i
/bi −

∑
i

viR�i
/(R1 − ai).
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If a series of such bets are available, and p� is the probability of this outcome, the
Kelly strategy is to maximize

G =
∑

�

p� ln(D�)

under the constraints that ui ≥ 0, vi ≥ 0 and
∑

ui +
∑

vi + w = 1. Write

H = G + �(1 −
∑

ui −
∑

vi − w),

where � is a Lagrange multiplier. Then

�H

�ui
=
∑

�

p�R�i

D�bi
− � (C1)

�H

�vi
=
∑

�

p�(R1 − R�i
)

D�(R1 − ai)
− � (C2)

�H

�w
=
∑

�

p�

D�
− � (C3)

For an optimum, we require �H
�w = 0, and �H

��
= 0 when � > 0, �H

��
≤ 0 when � = 0,

for � = ui, vi. Hence w �H
�w +

∑
i

(
ui

�H
�ui

+ vi
�H
�vi

)
= 0, from which � = 1. After some

simplification, we find that, at a possible optimum:

if ui > 0, then
∑

�

p�R�i
/D� = bi (C4)

if vi > 0, then
∑

�

p�R�i
/D� = ai (C5)

if ui = 0 and vi = 0, then ai ≤
∑

�

p�R�i
/D� ≤ bi (C6)

Solving Equations (C4)–(C6) for a general set of rewards normally requires an iter-
ative process based on (C1) and (C2). But consider the special case when the winner
scores R (R > 0) and all others score zero. Write pi = Pr(Horse i wins), �i = Rpi and
Di = t + Rui/bi − Rvi/(R − ai). Then Equations (C4) and (C5) simplify to pi/Di =
bi/R and pi/Di = ai/R. Thus, at an optimum,

when ui > 0, we have ui = pi − tbi/R; (C7)

when vi > 0, we have vi = (R − ai)(tai/R − pi)/ai (C8)
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Write X = {i:ui > 0}, Y = {i:vi > 0} and Z = {i:ui = 0, vi = 0}. For all i ∈ Z,
Di = t is constant. Using Equation (C3) at a possible optimum we have

1 =
∑

pi/Di =

{∑
i∈X

+
∑
i∈Y

+
∑
i∈Z

}
pi/Di =

∑
i∈X

bi/R +
∑
i∈Y

ai/R +
∑
i∈Z

pi/t

so that

t

{
1 −

∑
i∈X

bi/R −
∑
i∈Y

ai/R

}
=
∑
i∈Z

pi. (C9)

We argue that if a favorable bet exists, there will always be an optimal bet that does
not use every horse, that is, where Z is nonempty. To show this is the case, suppose that
some optimal bet does use every horse. The “no arbitrage” condition ensures that neither
X nor Y can consist of all the runners, hence both are nonempty. Equation (C9) shows
that either

∑
i∈X bi +

∑
i∈Y ai = R, and the value of t is indeterminate, or t = 0. The

latter is impossible, since Y is nonempty and if i ∈ Y , then vi = (R − ai)(tai/R − pi)/ai
would always be negative. If the former holds, select j ∈ X, and replace bj by bj − �,
where � > 0 is so small that the “no arbitrage” condition still holds, and favorable bets
still exist. At an optimum here, if the new Z, Z�, were empty, then Equation (C9) shows
i�Y that t� = 0. Hence, as before, Y� is empty, X� would consist of all the horses and
the “no arbitrage” condition is violated. Thus Z� is nonempty, and there is an optimum
that does not use every horse. By continuity considerations, as � → 0, the optimum that
uses {X�, Y�} converges to an optimum for our problem, that indeed does not use every
horse.

Thus an algorithm for this special case can be given. For any s ≥ 0, write XS =
{i:Rpi/bi > s}, YS = {i:Rpi/ai < s}. Then follow the steps:

Step 1 If both X1 and Y1 are empty, there is no favorable bet. Otherwise,
Step 2 Select u > 0, v > 0 so that Xu ∩ Yv = �, and with Xu ∪ Yv a proper subset

of {1, 2, . . . , n}. Calculate tuv =
{

1 −∑i∈Xu
pi −

∑
i∈Yv pi

}
/
{

1 −∑i∈Xu
bi/

R −∑i∈Yv ai/R
}

Step 3 Check the conditions

1. if i ∈ Xu, then Rpi/bi > tuv .
2. if i ∈ Yv , then Rpi/ai < tuv .
3. if i /∈ Xu ∪ Yv , then Rpi/ai ≥ tuv ≥ Rpi/bi.

If any of these fail, this choice of {Xu, Yv} does not lead to the opti-
mal bet. But if all of them hold, calculate Guv =

∑
i∈Xu

piln(Rpi/bi) +∑
i∈Yv piln(Rpi/ai) + (ln(tuv)){1 −∑i∈Xu∪Yv pi}.
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Step 4 Repeat Step 2 for all possible choices of {Xu, Yv}, and identify the choice
that gives the maximum value of Guv . For this choice, let t = tuv . Then ui =
pi − tbi/R, vi = (R − ai){tai/R − pi}/ai, determine the buy and sell stakes
in an optimal bet. The corresponding optimal growth rate is then

G =
∑
i∈X

pi ln(Rpi/bi) +
∑
i∈Y

pi ln(Rpi/ai) +

{∑
i∈Z

pi

}
ln(t).
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Abstract

Prediction markets are the subject of a growing body of scholarly literature, and growing
attention from the business community. These recent trends are often discussed with-
out reference to the long history of these markets. Prediction markets started as simple
wagers on political contests and have expanded through laboratory and field experi-
ments. We survey this history, detailing the past and current uses of prediction markets.
We conclude by examining some potential challenges that will need to be addressed as
the uses of prediction markets expand.

1. OVERVIEW

In recent years, prediction markets have been used to accurately predict the outcome
of political contests, sales figures of products, and the outcomes of policy decisions.
The recent explosion in the utilization of these markets among leading corporations,
policymakers, and academics often obscures their long history and humble roots. In this
chapter, we trace the known arc of prediction markets from simple wagers on political
contests to a promising business and policy tool. Along the way, we explore the accuracy
and information aggregating properties of these markets, as well as potential problems.

We begin by surveying the basic concepts and design of prediction markets. As noted
above, such markets began as organized gambling markets, but before they were recog-
nizable as prediction markets they adopted many of the qualities of traditional financial
markets. Indeed, the line between prediction markets and gambling or financial markets
is often fuzzy, as all three types of markets deal with contingent claims on uncertain
future events.

Loose distinctions are possible, however. Prediction markets, unlike financial mar-
kets, are not explicitly concerned with the diversification or pooling of risk.1 Moreover,
prediction market securities tend to be concerned with at most a small number of uncer-
tain events, such as whether the Senate will change partisan hands in a given election,
whereas the value of financial commodities are linked to a potentially infinite series of
events, such as profits over an infinite time horizon.

The distinction between prediction and gambling markets is not in terms of structure,
since traders in both are playing a negative sum game. Rather, prediction markets are
distinct from gambling markets in that the former produce information externalities that
can inform business and policy decisions.2

1For a vision of how prediction markets, if they develop sufficient liquidity, may also prove useful for those
wishing to hedge against specific risks, see the discussions in Athanasoulis et al. (1999) and Shiller (2003).
2Another distinction that has been proposed is that the holding of prediction market securities is not inherently
enjoyable, as it is in sports betting and other gambling contests. However, since prediction market securities
have negative expected returns as well, rational traders must have some outside utility benefit to buying and
selling these securities. Another possibility is that prediction markets have a large number of noise traders so
that trading is profitable for rational investors. For more on this point see Wolfers and Zitzewitz (2006).
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The simplest, and most common, form of prediction market security is one that pays
a fixed amount if a certain event, such as the election of a particular politician, occurs,
and nothing otherwise. These “winner-take-all” securities reflect prediction markets’
early history as gambling markets featuring simple wagers. If the marginal trader in
such a market is rational and risk-neutral, then the price at any given time (divided by
the size of the fixed payoff ) reflects the market’s perceived probability of that event
occurring. Thus, if we observe a security that pays a dollar if a Republican candidate
wins trading for $0.57, we would infer that the market’s assessment of the probability
of this event is 57%.

By modifying this simple contract slightly so that the payoff is linked to some con-
tinuous variable, such as a candidate’s vote share, we can instead gain the market’s
estimate of the expected value of that variable. If such an “index” contract pays the
Republican candidate’s vote share and the price of the contract is $0.46, the market
expects the Republican candidate to carry 46% of the popular vote.

A final type of contract is similar to spread betting on sports. Just as a spread bet in
basketball asks the bettor to take a position on whether one team will beat the other by
a specified number of points, in a prediction market contract it would ask a trader to
take a position on whether a candidate will garner a particular share of the vote. If bets
pay twice as much as they cost, then the spread that equalizes the amount of money
on either side will reflect the median of the uncertain variable—as each side must win
half the time. So, for example, if a contract costs $1 and pays $2 if the Republican’s
vote share exceeds 52% (and there is equal money on each side of the wager) then the
median of the market’s distribution of beliefs about the vote share is 52% accruing to
the Republican candidate. These three types of contracts are summarized in Table 1.

These simple contracts reveal simple facts about the distribution of the market’s
belief about a particular event. By using variants of these contracts, we can recover
higher order moments. For example, an index contract on the vote share of a candidate,

TABLE 1 Contract Types: Estimating Uncertain Quantities or Probabilities

Reveals market
Contract Example Details expectation of . . .

Winner-take-all Event y: Bush wins the
popular vote.

Contract costs $p. Pays
$1 if and only if event y
occurs. Bid according to
value of $p.

Probability that
event y occurs,
p(y)

Index Contract pays $1 for
every percentage point of
the popular vote won by
Bush.

Contract pays $y. Mean value of
outcome y: E[y]

Spread Contract pays even
money if Bush wins more
than y∗% of the popular
vote.

Contract costs $1. Pays
$2 if y > y∗. Pays $0
otherwise. Bid according
to the value of y∗.

Median value of y.

Source: Wolfers and Zitzewitz, 2004a.
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squared (y2) yields the markets expectation of this variable (E[y2]). When coupled with
an index contract on the vote share itself (y) we can infer the variance of the distribution
of the market’s belief of a candidate’s vote share: E[y2] − E[y]2. Likewise, a series of
index contracts designed to elicit the 48, 49, 50, 51, . . . percentile of the distribution, can
recover nearly the entire probability distribution of the market’s belief. Of course, hav-
ing liquid markets for such a large variety of contracts might be a challenge, since it is
unlikely that there are many people who would be interested in trading (or understand)
a contract on the 48th percentile of the market’s belief.3

With the basic design of prediction market contracts in hand, we proceed with our
stated task of investigating the history of prediction markets.

2. THE FIRST PREDICTION MARKETS

The earliest data we have from prediction markets are those from organized markets
for betting on the presidential election between 1868 and 1940. Data from these large
and often well-organized markets have been collected and extensively studied by Rhode
and Strumpf (2004, 2005) and much of the following section relies on their work. These
markets are said to date back to the election of Washington, and in all likelihood wager-
ing on political contests precedes historical records. However, the market in 1868 seems
to be the first market we would call a prediction market in that its data was used to
inform the public about the likelihood of a particular candidate winning and possibly
used by financial asset traders.

Although many cities had prediction markets of this type in operation during the
period from the Civil War to World War II, the most prominent were those operating
out of New York. A rough estimate has the New York market accounting for half of
all the money wagered on the presidential contest nationwide. From the 1880s to the
1910s, these markets were centered on the Curb Exchange, the informally organized
predecessor to the AMEX. In closely contested races, such as those in 1916, the New
York Times, Sun, and World provided nearly daily price quotations from early October
until Election Day (Rhode and Strumpf, 2004). Indeed, 1916 provides a particularly
astonishing example of the size and importance of these markets. Two days after the
election there was still no sure winner, and large sums continued to be wagered on the
smallest piece of information. The New York Times reported that between $500,000
and $1,000,000 were wagered at the curb that day (November 9, 1916—two days after
the election) and that “oil stocks were almost forgotten.”4 Moreover, the total amount
wagered in these markets in 1916 was $165 million (in 2002 dollars), which is twice as
much as both candidates combined spent on their election campaigns.

Figure 1 shows the betting odds from 1916 taken from Rhode and Strumpf (2004).
These odds reflect a great deal of trading and a rapid incorporation of information

3Such a contract would be an index contract that costs $29, and pays $50 if the realized value of the variable
(y) is greater than the proposed spread (y∗) and $0 otherwise. The bet on the other side would cost $31 and pay
$50 if y < y∗. See Wolfers and Zitzewitz (2006) for more on the trade-off between interest and contractibility.
4Election Doubts Stimulate Betting, the New York Times, November 10, 1916, p. 22.
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FIGURE 1 Prediction markets move quickly with new information. Source: Rhode and
Strumpf, 2004.

as the election drew near and then afterwards as the votes were being counted. This
rapid incorporation of information is a trait of prediction markets that has been noted
elsewhere (see, e.g., Snowberg et al., 2005).

The data from these prediction markets allowed for accurate predictions about the
outcome of elections long before the advent of scientific polling. While such data was
clearly of use to the voting public at the time, these assessments are still useful to us
today. Snowberg et al. (2006) use each presidential candidate’s probability of victory
the night before the election to describe the amount of partisan shock generated by
a candidate’s election. If, for example, the night before the election the Republican
candidate had a 90% chance of winning, then his or her election would cause only a
10% partisan shock. This is clearly different than if the Republican candidate only had
a 40% chance of winning—in which case the level of shock would be much higher:
60%. If a Democratic candidate wins, the shock would be in the opposite direction.
Thus, if the Republican candidate had a 30% chance of winning and the Democratic
won, then the shock would be −30%.

Snowberg et al. (2006) look at equity returns over the same period that the election
was resolved (the entire period over which a given year’s partisan shock accrued) and
found that it was robustly correlated with partisan shock during the period 1880–2004.
These results are different from an earlier study by Santa-Clara and Valkanov (2003)
who found no correlation between the party that won and changes in equity prices on
election night. The difference comes from Santa-Clara and Valkanov’s assumption that
the magnitude of the partisan shock was always the same, regardless of the market’s
expected pre-election probability of victory of each candidate. Table 2 shows the results
of these regressions, and Figure 2 shows these results graphically.
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TABLE 2 The Effect of a Republican on Value-Weighted Equity Returns

Dependent variable: stock returns from election-eve close to
post-election close

Sample 1928–1996 1928–1996 1880–2004 1880–2004

I(GOP President) 0.0129

(As in Santa-Clara and Valkanov) (0.0089)

Prob(GOP President) 0.0297∗∗ 0.0255∗∗∗ 0.0248∗∗∗

(0.118) (0.0082) (0.0084)

Prob(Incumbent party elected) −0.0046

(0.0084)

Constant −0.0038 −0.0027 −0.0015 0.0014

(0.0044) (0.0040) (0.0028) (0.0028)

NOTE: ∗∗∗ and ∗∗ denote statistically significant at 1%, 5%, and 10%. (White standard errors in
parentheses.) Source: Snowberg, Wolfers, and Zitzewitz, 2007.
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Knowing the market’s assessment of pre-election probabilities of victory was
key for estimating an accurate partisan effect on equity prices. It is likely that
data from these first prediction markets will yield more valuable insights in the
future.
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3. MARKETS IN THE LAB

The first prediction markets faded as scientific polling became available and gambling
on sports was legalized in New York State (Rhode and Strumpf, 2004). As these mar-
kets slipped into history, studies run by experimental economists laid the groundwork
for modern prediction markets. The basic theory of prediction markets—that mar-
kets efficiently aggregate dispersed information—comes from the rational expectations
(RE) model of Lucas (1972). Early laboratory tests of this theory laid the groundwork
for prediction markets by demonstrating the feasibility of using markets to aggregate
information.

Plott and Sunder (1982) tested the RE model in a laboratory setting. In their exper-
imental market, participants traded a single-period security. The value of the security
was determined by the realization of a single event. In each experimental design, traders
differed in the marginal value of the security and the information they possessed about
the state underlying the security’s value. Plott and Sunder found that market prices could
indeed convey information to uninformed traders. Further, they found that the RE model
fit many other features of the data—such as the final allocation of securities among traders
and the relative profits of informed and uninformed traders—better than other models.

This study was extended by Plott and Sunder (1988) by allowing for heterogeneity
in the information possessed by the informed traders. Once again, they found support
for the RE model. Specifically, they found that the market could aggregate the differ-
ent types of information possessed by traders into an accurate representation of the
underlying state.

Beyond the overall strong results that markets could both aggregate and convey infor-
mation to traders, these studies contain warnings for would-be prediction market design-
ers. In each, there was an experimental setup in which RE theories predicted poorly both
in an absolute sense and when compared with theories that stipulated that market prices
would contain no information other than ex ante supply and demand. These experimen-
tal designs tended to be the most complex markets tested—in one case the information
revealed to subjects was not easily interpreted, and in another there was wide divergence
in the marginal value of the underlying securities. This suggests that more complex pre-
diction markets may not work as well as the simpler ones that are generally the subject
of study, a point echoed by Wolfers and Zitzewitz (2006). We will return to the subject
of potential pitfalls of prediction market design in our penultimate section.

The Iowa Electronic Market (IEM), arguably the most famous prediction market,
was launched in 1988 to study market dynamics in a quasi-experimental setting.5 Started
as the Iowa Presidential Stock Market, the first set of contracts traded were index con-
tracts with payoffs tied to the major presidential candidates in 1988 (Forsythe et al.,
1992). The experiment was continued with contracts linked to vote shares in guber-
natorial and congressional elections, as well as elections in countries other than the
U.S. (Berg et al., 2001). In addition, winner-take-all contracts tied to the outcome of

5Participation in the IEM is open to anyone who opens an account—but there are still provisions that one
might expect in an experimental setting, such as a cap on the total amount of assets any one trader is allowed
to have.
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a particular race were introduced. The importance of such contracts, in addition to the
index contracts already traded, became clear in the 2000 Presidential election where
different candidates won the popular vote and the Electoral College.

The IEM received substantial notice for the accuracy of its predictions. The predic-
tion error in IEM vote share markets between 1988 and 2000 has been 1.5%, compared
with 1.9% for scientific polls (Berg et al., 2001). The accuracy of these markets is illus-
trated in Figure 3, which compares the prediction of the IEM with those from the Gallup
poll. While the margin of error of final prices is impressive, the forecasting advantage
of markets over the polls is probably even larger over long horizons, as polling numbers
tend to be excessively volatile through the electoral cycle (Berg et al., 2003).

Once again, there is intrinsic interest in predicting election outcomes, but the infor-
mation from these markets can be used to answer more complex economic questions.
For example, Herron et al. (1999) and Knight (2005) analyze the correlation of indus-
try stock indices and individual stocks with movements in the 1992 and 2000 IEM
U.S. Presidential election markets. This allows them to ascertain the relative impacts of
the two candidates on various stocks and industries in the U.S. economy. Slemrod and
Greimel (1999) use IEM data to examine the effect on municipal bond prices of changes
in the probability of the Republicans nominating Steve Forbes, whose flat tax would
have eliminated the tax exemption for municipal bond interest. Finally, Roberts (1990)
analyzes changes in the betting odds posted by Ladbrokes, a British bookmaker, on
Ronald Reagan’s re-election and the returns to holding stocks in defense firms, inferring
that Reagan led to more robust defense spending.
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FIGURE 4 The S&P 500 is higher under a Bush vs. Kerry presidency. Source: Snowberg,
Wolfers, and Zitzewitz, 2007.

Unfortunately, the methodology employed in the above studies cannot measure the
impact of candidates on economic aggregates, such as the S&P 500, since changing eco-
nomic aggregates reflect changes in economic fundamentals that have a direct effect on
the probability of re-election of the incumbent party.6 Snowberg et al. (2007) sidestep
this problem by examining the correlation between changes in the re-election proba-
bilities inferred from prediction market prices and aggregates for the 2004 election, as
illustrated in Figure 4. They find that a Bush Presidency led equity prices to be 1.5–2%
higher versus a Kerry Presidency.

4. CURRENT USES OF PREDICTION MARKETS: BUSINESS
AND POLICY

Having traced the history of prediction markets, we can focus on their current uses.
Two characteristics typify the current state of prediction market usage. The first is their

6The findings in these studies may also be biased by unobserved factors affecting both the pricing of these
portfolios and re-election prospects. For instance, suppose that an election features a pro- and anti-war can-
didate, and the pro-war candidate is viewed as being more capable of executing a war, should the need arise.
If we observe prices of shares in defense contractors increasing in value when the pro-war candidate’s elec-
toral prospects increase, one might be tempted to conclude that the defense contractor’s stocks are worth more
because there is a higher chance of the pro-war candidate will be elected. However there may be that a third
factor—such as threatening actions from a terrorist group or another nation—that have led both numbers to
appreciate: the defense contractor’s from their increased sales in an increasingly likely war, and the pro-war
candidate’s from his country’s increased need of his leadership in wartime.
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increasing application to understanding critical questions for the conduct of business
and the making of policy. The second is the large scale of these markets enabled by the
internet.

There are a growing number of web-based prediction markets, often run by compa-
nies that provide a range of trading and gambling services. Some prominent examples
include Tradesports.com and Betfair.com, and pseudomarkets (in which participants
trade virtual currency) such as Newsfutures.com and Ideosphere.com. The use of real
money versus a virtual currency that can be redeemed for prizes seems to be of
secondary concern as reported in Servan-Schreiber et al. (2004). The most popular
emerging prediction markets are summarized in Table 3, which is reprinted from
Wolfers and Zitzewitz (2004a).

The use of prediction markets in a business context began with Chen and Plott
(2002). In this study, researchers constructed small prediction markets with 20–60

TABLE 3 Popular Prediction Markets

Market Focus Typical turnover on an event ($US)

Iowa Electronic Markets
http://www.biz.iowa.edu/iem
run by the University of
Iowa

Small-scale election markets.
Similar markets are run by:
UBC (Canada), http://www
.esm.buc.ca, and TUW
(Austria) http://ebweb.tuwien
.ac.at/apsm/.

Tens of thousands of dollars (traders
limited to $500 positions).

TradeSports
http://www.tradesports.com
run by for profit company

Trade in a rich set of political
futures, financial contracts,
current events, sports and
entertainment.

Hundreds of thousands of dollars.

Economic Derivatives
http://www.economicderi
vatives.com run by
Goldman Sachs and
Deutsche Bank

Large-scale financial market
trading in the likely
outcome of future economic
data releases.

Hundreds of millions.

Newsfutures
http://www.newsfutures.com
run by for profit company

Political, finance, current
events, and sports markets.
Also technology and
pharmaceutical futures for
specific clients.

Virtual currency redeemable for
monthly prizes (such as a TV).

Foresight Exchange
http://www.ideosphere.com
run by non-profit research
group

Political, finance, current
events, science, and
technology events suggested
by clients.

Virtual currency.

Hollywood Stock Exchange
http://www.hsx.com run by
Cantor Fitzgerald

Success of movies, movie
stars, awards, including a
related set of complex
derivatives and futures.

Virtual currency.

Data used for market research.

Source: Wolfers and Zitzewitz, 2004a.
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employees from Hewlett-Packard (HP). The contracts in these markets were designed
to capture information about uncertain events that had a direct impact on HP profits,
such as the future sales of a given product. As can be seen from Figure 5, these mar-
kets outperformed the existing methodologies HP used to predict the same uncertain
quantities.

Since this initial study, prediction markets have been used in a wide array of corpo-
rate and policy related contexts. Ortner (1998) reports that an internal market correctly
predicted that a firm under study would definitely fail to deliver a software project on
time, even when traditional planning tools suggested that the deadline could be met.
The Hollywood Stock Exchange has generated forecasts of box office success and of
Oscar winners, which have been more accurate than expert opinions (Pennock et al.,
2001). Both real and play-money markets have generated more accurate forecasts of the
likely winners of NFL football games than all but a handful among 2,000 self-professed
experts (Servan-Schreiber et al., 2004).

In the public sector, the Pentagon attempted to use markets designed to predict
geopolitical risks, although negative publicity stopped the project (Hanson, 2006).
An intriguing attempt to apply prediction markets to forecasting influenza outbreaks
is detailed in Nelson et al. (2006). In a similar context of policy prediction, Wolfers and
Zitzewitz (2005b) report on an ex-ante analysis of the co-movement of oil and equity
prices with a contract tracking the probability of a U.S. attack on Iraq in 2002–2003
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FIGURE 5 Chen and Plott’s experimental market had better forecasts than HP’s traditional.
Source: Chen and Plott, 2002.
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FIGURE 6 The Saddam security closely tracked other measures of Saddam’s demise.
Source: Wolfers and Zitzewitz, 2005b.

(Figure 6). The results suggest that a substantial war premium was built into oil prices
(and a discount built into equities).

Figure 6 also shows the high correlation between prediction market prices and
other indicators of the probability of the same event. The figure contains the “Saddam
Security,” which was a contract offered on TradeSports paying $100 if Saddam Hussein
were ousted from power by the end of June 2003. The figure further shows that
the price of this contract moved in lockstep with two other measures of the end of
Hussein’s tenure: expert opinion as shown by an expert journalist’s estimate of the
probability of the United States going to war with Iraq; and oil prices, an obvious
barometer of political strife in the Middle East. The prices of all these securities move in
lockstep.

This point is reinforced by Figure 7, which shows evidence collected by Gürkaynak
and Wolfers (2005) on the relative performance of a prediction market (the Economic
Derivatives market established by Goldman Sachs and Deutsche Bank), and a survey
of economists, in predicting economic outcomes. They show that the market-based
forecast encompasses the information in the survey-based forecasts. Moreover, the
behavioral anomalies that have been noted in survey-based forecasts are not evident
in the market-based forecasts.
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5. FUTURE DIRECTIONS: DECISION MARKETS

The contracts we have described thus far have depended on only one outcome. The same
principles can be applied to contracts tied to the outcomes of more than one event. These
contingent contracts potentially provide insight into the correlation between events. For
instance, Wolfers and Zitzewitz (2004b) ran experimental markets on the online bet-
ting exchange Tradesports.com in the run-up to the 2004 presidential election. In one
example, they ran markets linked to whether George W. Bush would be re-elected,
whether Osama bin Laden would be captured prior to the election, and whether both
events would occur. At a given point in time, these markets suggested a 91% chance of
Bush being re-elected if Osama had been found, but a 67% unconditional probability.
Berg and Reitz (2003) report on contracts whose payoff was linked to 1996 Demo-
cratic vote shares conditional on different potential Republican nominees; on the basis
of these prices they argue that alternative nominees, such as Colin Powell, would have
outperformed Bob Dole.

The potential to apply these markets to determine the consequences of a range of con-
tingencies has led Hanson (1999) to term these “Decision Markets.” Indeed, Hanson
(2000) has suggested that such markets could be used to remove technocratic pol-
icy implementation issues from the bureaucracy, a suggestion endorsed in Hahn and
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Tetlock (2006). Moreover, while the previous example involves only one contingency,
Hanson (2003) suggests that market scoring rules can allow traders to simultaneously
predict many combinations of outcomes. The basic intuition of his proposal is that
rather than betting on each contingency, traders bet that the sum of their errors over
all predictions will be lower.

6. POTENTIAL PITFALLS

While we remain strongly optimistic about the current and future potential of prediction
markets, we would like to draw attention to what we regard as issues that could poten-
tially impede their development path. For example, in the discussion of contracts tied to
more than one event immediately above, it is worth cautioning the reader that the stan-
dard econometric problem of separating correlation and causation remains. Taking the
example of the 1996 Republican nomination one step further, it might be that, holding
everything else the same, nominating Colin Powell would have garnered the Republi-
cans a larger vote share than nominating Bob Dole. However, if everything else were
the same, Colin Powell would not have been nominated. In order to win the nomination,
Powell would have had to create a campaign organization and win primaries, which, in
turn, would have revealed information about his political abilities. In a state of the world
where Powell’s abilities are good enough to win the Republican nomination, they might
also be good enough to garner a large vote share against Bill Clinton, the Democratic
nominee.

Although we have seen that prediction markets work quite well in practice, there are
still theoretical gaps in our understanding of the dynamics of these markets. We know
from the observation of markets in the real world and in the laboratory that they are
prone to bubbles, information traps, false equilibria, and excess volatility (Plott, 2000;
Camerer et al., 1999). Without a theory of the microstructure of these markets, it is
difficult to predict when such undesirable properties will appear. Rather, we will only
be able to come up with a list of one-off situations in which they have appeared. This
makes the task of designing prediction markets more difficult and risky.

Theorists are slowly beginning to understand prediction markets. Manski (2004)
notes an example where prediction market prices fail to aggregate information appropri-
ately. In his model all traders are willing to risk exactly $100. Thus if a contract paying
$1 if an event occurs, is selling for $0.667, then buyers each purchase 150 contracts,
while sellers can afford to sell 300 contracts (at a price of $0.333). This can only be
in equilibrium if there are twice as many buyers as sellers, implying that the market
price must fall at the 33rd percentile of the belief distribution, rather than the mean. The
same logic suggests that a prediction market price of � implies that (1 − �)% of the
population believes that the event has less than a �% chance of occurring. Clearly, the
driving force in this example is the assumption that all traders are willing to risk a fixed
amount.

Wolfers and Zitzewitz (2005a) provide sufficient conditions under which prediction
market prices coincide with average beliefs among traders (and hence aggregate all
information). They consider individuals with log utility and initial wealth, y, who must
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choose how many prediction market securities, x, to purchase at a price, �, given that
they believe that the probability of winning their bet is q:

Max EUj = qj Log[y + xj(1 − �)] + (1 − qj)Log[y − xj�]

yielding

x∗j = y
qj − �

�(1 − �)
.

The prediction market is in equilibrium when supply equals demand:

∫�

−�

y
q − �

�(1 − �)
f (q)dq =

∫�

�

y
� − q

�(1 − �)
f (q)dq.

If beliefs (q) and wealth (y) are independent, then this implies:

� =
∫�

−�

qf (q)dq = q̄.

Thus under log utility, the prediction market price equals the mean belief among
traders. If wealth is correlated with beliefs, then the prediction market price is equal to a
wealth-weighted average belief. This finding is general in the sense that no assumptions
are required about the distribution of beliefs, but it is also quite specific, in that it holds
only under log utility. Experimenting with a range of alternative utility functions and
distributions of beliefs typically yields prediction market prices that diverge from the
mean of beliefs by only a small amount.

A particularly well-documented feature of issue in small markets should be familiar
to those who study gambling. This so-called favorite-longshot bias, describes a tendency
to overprice low probability events. Figure 8, from Snowberg and Wolfers (this volume),
shows that the favorite-longshot bias is robust in gambling on horse races. A similar
tendency has been documented in a range of other market contexts, suggesting that
some caution is in order in interpreting the prices of low probability events.

A final potential issue that has garnered concern, especially in markets designed to
inform policy, is the possibility of market manipulation. Camerer (1998) addresses this
question in pure gambling markets by making and canceling large bets at a racetrack.
He finds that his actions had little effect on the final odds after a brief transitory period.

Rhode and Strumpf (2005) study the possibility for manipulation in prediction
markets and find little cause for concern. They document episodes in early prediction
markets where agents of parties and candidates placed large wagers in order to try to
build political momentum. These wagers were often reported in the press due to the
public and often nonanonymous nature of early prediction markets. They find that these
wagers had a transient effect on prices, but that they quickly returned to their pre-attack
level. Rhode and Strumpf also study more recent attempts at market manipulation. For
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Favorite-Longshot Bias: Rate-of-Return at Different Odds

Sample includes 5,608,280 horse race starts in the U.S. from 1992 to 2001
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FIGURE 8 The favorite-longshot bias is caused by bettors misestimating small probabilities.
Source: Snowberg and Wolfers, 2008.

example, in 2000 they placed large random bets on the IEM accounting for 2% of the
total volume and once again found small transient effects.

Finally, Rhode and Strumpf document the speculative attacks on TradeSports during
the 2004 elections. These attacks are illustrated in Figure 9. These attacks intended to
drive the price of the Bush security down, possibly in an effort to create panic selling
and a lower perceived probability of Bush winning. As should be clear from the figure,
these attacks had no long-term effects on the price of the security.

7. CONCLUSION

Prediction markets have proven extremely capable at eliciting simple features of the
market’s assessment of uncertain events. These capabilities were initially noted out-
side of academic circles. Laboratory and other experimental markets have brought new
understanding of prediction markets, and have allowed for a robust academic agenda to
improve their scope and precision. While innovations such as decision markets may be
prone to some of the problems outlined in this essay, current research has already shown
that some of our concerns, such as manipulation and a lack of a strong theoretical foun-
dation, are not likely to be hindrances to future development of prediction markets. This
gives us hope that whatever issues or limitations prediction markets may encounter in
the future will be quickly solved by the large and expanding group of scholars working
with these markets.
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Abstract

This chapter offers an introduction to person-to-person betting exchanges, a relatively
new market format in sports betting. There is currently a debate concerning the integrity
of exchanges, which has elicited a variety of policy responses in different countries,
ranging from regulation to outright prohibition. To enable the debate to be conducted
on a more informed basis, there is a role for economists in the measurement of the
economic costs and benefits of this new type of betting.

The chapter is primarily concerned with the information efficiency of exchanges.
Their operation and functionality are discussed, along with some of the initial impacts
they have had on betting markets, including the hostile response from some traditional
bookmakers. Previous empirical studies concerning information efficiency in exchanges
are outlined, although they are few at this relatively early stage of the development of
the exchanges. New evidence about the degree of odds bias in exchange horse race
markets is then presented. This evidence is found to be consistent with previous studies
showing a much smaller degree of favorite-longshot bias in the exchanges than exists in
traditional bookmaker markets.

1. INTRODUCTION

We examine a relatively new and rapidly growing market format in sports betting,
namely the betting exchange. The discussion is confined to horse race betting mar-
kets, as the number of events and turnover is greater than in other sports, enabling more
reliable measurement of the impact of information relevant to outcomes.

An outline of the concept and operation of betting exchanges is given in Section 2.
Section 3 reviews the previous empirical studies concerned with the information effi-
ciency of betting exchanges, which are scant at this relatively early stage of their
development. Section 4 presents some new evidence on the degree of bias exhibited
by betting exchange markets, employing a trade weighted regression of objective
probabilities on subjective probabilities. Section 5 concludes.

2. THE OPERATION OF BETTING EXCHANGES

It is now widely accepted that the technologies associated with the internet have
spawned radical new business models and formats, with potentially far-reaching impli-
cations for market structures, behavior, and performance (Kim and Mauborgne, 1999,
Amit and Zott, 2001). Aspects of the gambling industry are being transformed by these
pervasive technologies, with the internet prompting the innovation of new retail formats
and technological platforms to facilitate betting markets (Jones et al., 2006).

Arguably the most notable recent internet innovation in this respect came with the
advent of the betting exchange, an interactive web-based platform for placing and laying
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bets on sporting events. The commercial expertise required to create this business format
was imported from the City (London’s financial district).

Betting exchanges exist to match people who want to bet on the outcome of an
event at a given price with others who are willing to offer that price. The advantage
of this form of betting for the bettor is that, by allowing anyone with access to a bet-
ting exchange to offer or lay odds, it serves to reduce margins in the odds compared to
the best odds on offer with traditional bookmakers. Exchanges allow clients to act as a
backer (accepting odds) or layer (offering odds) at will, and indeed to back and lay the
same outcome at different times during the course of the market.

The major betting exchanges present clients with the three best odds and stakes
which other members of the exchange are offering or asking for. For example, for Take
The Stand to win the Grand National, the best odds on offer might be 14 to 1, to a
maximum stake of £80, 13.5 to 1, to a further stake of £100, and 12 to 1, to a further
stake of £500. These odds, and the staking levels available, may have been offered
by one or more other clients who believe that the true odds are longer than they have
offered, or who are trying to hedge existing liabilities.

An alternative option available to potential backers is to enter the odds at which they
would be willing to place a bet, together with the stake they are willing to wager at that
odds level. This request (say £50 at 15 to 1) will then be shown on the request side of
the exchange, and may be accommodated by a layer at any time until the event takes
place. Every runner in the race will similarly have prices offered, prices requested, and
explicit bet limits.

Table 1 illustrates an extract from a Betfair horse race market, as accessed via the
internet.

TABLE 1 Partial Reproduction of Betfair Odds and Bet Limits for a UK Horse
Race Betting Market

BACK LAY

Air Wave 3.4 3.45 3.55 3.6 3.65 3.7

£368 £87 £714 £84 £338 £930

Ratio 6.6 6.8 7 7.2 7.4 7.6

£854 £623 £373 £312 £350 £5

Crystal Castle 6 6.2 6.4 6.8 7

£303 £300 £409 £195 £275

Fayr Jag 9.2 9.4 9.6 10 10.5 11

£295 £444 £693 £586 £284 £193

Acclamation 12 12.5 13 13.5 14 14.5

£34 £115 £531 £811 £315 £196

Rudi’s Pet 16 17.5 18 19 19.5 20.5

£200 £140 £156 £249 £188 £150

Source: http://www.Betfair.com.
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The “Back” side of the market indicates the best three odds available for runners,
to stakes limits advised in each case. These have been offered by Betfair clients acting
as layers; odds are expressed including stake, therefore the best odds against Air Wave
are 3.55/1, or 2.55/1, to a maximum stake of £714. The “Lay” side of Table 1 shows
odds which have been requested by traders, with similar interpretation of odds and limits
as above. The margin between the best odds on offer and the best odds sought tends to
narrow as more clients offer and lay bets, so that in popular markets the real margin
against the bettor (or layer) tends toward the commission levied by the exchange. This
commission varies up to 5% on a customer’s net winnings on a market, the exact rate
depending on the history and volume of business conducted by the trader.

Clients can monitor price changes, which are frequent, on the internet Website pages
of the betting exchange, and execute bets, lay bets, or request a price, instantly and
interactively. It is also now routinely possible for members of major exchanges to
monitor prices and place wagers from a mobile phone.

Exchanges also operate “in running” markets, characterized by rapid and frequent
price changes as races progress. Such markets are facilitated by the ability of clients
to employ joint technologies, observing televised races on the internet or by means of
conventional television, with simultaneous access to the interactive internet based mar-
kets. The remainder of this chapter is concerned with the more conventional pre-event
markets, as in running markets are largely unexplored in terms of empirical analysis.

There are a number of key differences between the betting exchanges and book-
maker markets, principal of which is that whereas the bookmaker sets nominal odds, the
betting exchange operator acts merely as a broker and offers an information platform,
whereby third parties can offer odds or accept odds, in return for which the exchange
charges a commission. The exchange assumes no risk of its own and merely brings
together bettors and layers. Odds offers are displayed by value and are anonymous
and pooled for similar odds values—individual bettors and layers are not specifically
matched.

Exchanges avoid settlement risk by transferring funds from the parties to a bet, for
the amount of their respective potential liabilities, into a secure holding account at the
time the bet is struck. This system ensures that confidence is maintained in the integrity
of settlement arrangements.

Unlike the bookmaker markets, exchanges display bet limits for all horses, which are
determined not by the exchange, but by the amounts clients who are acting as layers are
prepared to stand at the various odds. The ability to lay odds, which also enables bettors
to extinguish existing back (bet to win) liabilities, and to request prices, are also features
of the exchange markets not available from bookmakers (for further commentary and
details of betting exchange functionality see Vaughan Williams, 2002, 2005). A client
may also pursue arbitrage activities, for example, backing at a high price early in the
market and laying the same horse at a lower price later in the market, should its general
price contract, thus locking in value.

A further attraction of the betting exchanges is their low rate commission structure
relative to the profit margin implicit in bookmaker odds. For example, Betfair charges
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a standard commission on net race winnings, not individual horse winnings—an
important factor for bettors who wager on more than one horse in a race. Exchange
commissions compare favorably with bookmakers’ margins; although the latter make
no explicit deductions for either their operation of the market, or for taxation (no tax on
winning bets has been paid at the point of sale in the UK since October, 2001), a profit
margin is implicit in nominal odds, as the associated sum of probabilities in a race
typically exceeds one. The extent of this margin or overround varies from race to race
and will typically increase directly with field size, and inversely with liquidity of the
market and the extent of race specific competition with other bookmakers. To give an
idea of the magnitude of the margin, bookmaker markets analyzed in one recent study
(Smith et al., 2006) averaged approximately 20% overround. While betting exchange
markets rarely lead to a “Dutch Book” (sum of odds probabilities less than unity), the
degree of overround is usually much lower than in book odds.

By 2004–2005, betting exchanges accounted for £4,352,000,000 in sports betting
turnover, arising from exponential market growth since their inception at the turn of
the Millenium (Mintel, 2005). Approximately 90% of this turnover was attributable to
Betfair, who by 2005 had 300,000 users and claimed to process over 1,000,000 bets per
day at peak betting periods (Jones et al., 2006). An embryonic early major player in the
industry, Flutter, was taken over by Betfair in 2002, consolidating its early position as
market leader (The Economist, May 8, 2003). Betfair’s principal marketing pitch is that
it claims the best odds it displays to be 20% better than bookmaker odds on average.1

The remaining fragmented competition comes from a number of smaller exchanges
such as Betdaq, WBX (World Bet Exchange), and Betsson. None of Betfair’s com-
petitors currently have the market liquidity to seriously challenge the market leader,
although the alternative exchange model of Intrade and Tradesports, for example, based
on buying and selling of contracts in a binary framework (outcome = 0 and 100), is an
interesting addition to the marketplace (see Oliver, 2007, for a fuller consideration of
binary betting). Bookmakers have challenged the legitimacy of the operations of betting
exchanges, claiming them to be illegal and representing unfair competition on a number
of grounds, which were examined at some length by the Joint Committee on the Draft
Gambling Bill (United Kingdom Parliament, 2004).

The arguments put forward to the Committee revolved around issues of integrity,
equity, transparency, and market stability (Jones et al., 2006). The integrity of betting
exchanges was called into question by bookmakers, who claimed that following a num-
ber of high-profile instances of betting irregularities relating to specific races, betting
exchanges were subject to an unacceptable degree of insider activity, notably where sta-
ble connections can lay horses, then manipulate the result by taking steps to restrain
the relevant runner(s) in the race. Betfair responded by establishing a code of prac-
tice that commits it to full cooperation with the Police, the Fraud Squad, and the racing

1The odds in the Betfair dataset utilized in Smith et al. (2006) actually exceeded the mean of an array of
matching bookmaker odds by 18.12%, close enough to make the claim credible. In relation to bookmaker
outlier odds, however, the corresponding differential was only 5.39%, approximately equal to the commission
rate charged by the exchange, suggesting that bookmaker outlier and exchange odds are mutual benchmarks.
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authorities in sharing information that might lead to a subsequent arrest for manipulation
of markets through insider activity (Betfair, 2007), a criminal offense in the UK.2 This
code breaches the client confidentiality that is also part of the betting exchange pro-
fessional code, but only by exception in the interest of the public and where criminal
activity is suspected. Betting exchange operators were able to turn the argument against
bookmakers, claiming the same duty of care standards were not currently applied by
bookmakers themselves.

The equity or fairness issue concerned the tax treatment of bookmakers and betting
exchanges, and the related issue of the Racing Levy by which the sport of horse racing
is funded in the UK. Since 2001, bookmakers pay a gross profits tax, whereas betting
exchanges pay tax on their commission. Bookmakers claimed this to be unequal treat-
ment; layers on the exchanges are effectively acting as bookmakers, they argued, yet pay
only commission. The counter-argument from the exchanges was that the tax applied
to the gross profits (commission) of the exchange and not to individual clients of the
exchange, whether they were backers or layers.

The exchanges claim to contribute more to consumer (bettor) welfare than
bookmakers, with greater market transparency. For example, volumes traded for all
horses in a race are explicitly stated on betting exchanges, unlike bookmaker markets.
They also claim to offer flexibility to clients by giving them the opportunity in part or
in whole to negate betting decisions by facilitating offsetting or hedging opportunities.
Other benefits suggested by the exchanges in their evidence to the Joint Committee
include some of those already discussed above: namely, that they (the exchanges) offer
more generous odds, and a level of commission that is more modest than the bookmaker
overround, and which is reduced for those bettors executing a high volume of wagers.
Moreover, the commission structure is based on winnings per race rather than the win-
ning horse. In short, the betting exchanges implied that bookmakers’ objections were
really an attempt to prevent further loss of market share to the exchanges (Jones et al.,
2006).

On the grounds of greater flexibility, lower transaction costs, and the injection of new
competition from the exchanges, the economist might hold an a priori expectation of
greater market efficiency in the betting exchanges than in bookmaker markets, perhaps
followed by convergence of the two over time (Carlton and Perloff, 2005, pp. 259–267).
If this is the case, governments might be well advised to create a favorable regulatory
and fiscal climate for the exchanges to develop, in the interests of consumer welfare.
However, the influences leading to an expectation of greater efficiency must be seen in
the context of the claims ( justified or otherwise) of increased insider trading inspired
by exchange betting, and the issue of funding the sport of horse racing in the UK needs
to be addressed.

2A recent UK court case, in which a number of jockeys (including ex-champion Kieren Fallon) were accused
of race fixing to facilitate insider bets on the exchanges, collapsed in December, 2007.
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3. EMPIRICAL MODELS AND EVIDENCE CONCERNING
WEAK-FORM INFORMATION EFFICIENCY IN BETTING
EXCHANGES

This section is limited to a discussion of the extent and sources of the favorite-longshot
bias in betting exchanges. There have been few published studies of this type, as betting
exchanges have only existed since 2000 as a significant market format.

In a recent empirical analysis using matched data for 700 UK horse races from bet-
ting exchanges and from traditional betting media, evidence of the favorite-longshot
bias in exchange markets was found, but significantly less so than in the corresponding
bookmaker odds (Smith et al., 2006). We further suggested that, based on an application
of the methodology of Sobel and Raines (2003), an information-based model explains
the favorite-longshot bias more convincingly than earlier explanations based on bettors’
risk preferences.

Smith et al. (2006) set out to test the Hurley and McDonough (1995) cost-based
explanation for the bias, which states that the higher are transactions costs, the greater
will be the favorite-longshot bias. As transactions costs are observed to be lower in
exchange markets than those implicit in the overround characteristic of bookmaker
markets, the favorite-longshot bias should be less pronounced in exchanges than in
bookmaker markets.

Information costs are integral to the Hurley and McDonough explanation of odds
bias. High transaction costs imply that better information is required to achieve positive
returns; this is a variation on the assertion that where transaction costs exist, it is impos-
sible to discount all information, since a financial incentive must exist for information
search (Grossman and Stiglitz, 1990). A further implication in the current market con-
text is therefore that for races where there is less public information one would expect
a higher proportion of “casual bettors” and a greater degree of favorite-longshot bias.
Vaughan Williams and Paton (1997) and Sobel and Raines (2003) independently found
empirical evidence to this effect.

Smith et al. measured the degree of bias employing the Shin’s z measure of insider
trading, a proxy for bias (Shin, 1991, 1992, 1993). Shin explains the favorite-longshot
bias observed in bookmaking markets as the consequence of bookmakers’ response to
asymmetric information, where some bettors have privileged information concerning
the true probability of one or more horses winning a race. The bookmaker response
is modeled by Shin as an adverse selection problem, with the empirical consequence
that bookmaker odds are depressed below true odds to preserve margins in the face of
insider activity.

Shin derives a functional relationship between the sum of odds probabilities, D,
associated with a race, such that:

D = z (n − 1) +
K∑
k=0

akn
kVar(p) +

K∑
k=0

bkn
k[Var(p)]2 (1)
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where Var(p) is the variance of true probabilities of runners in the race,3 n is the number
of runners, and k is the order to which the expression is expanded as a polynomial;
for Shin’s sample the best fit was achieved by a quadratic function. The coefficient z
in Equation (1) is Shin’s measure of the proportion of turnover attributable to insider
trading, and given the nature of the model, can also be interpreted as a proxy for the
degree of odds bias. Shin’s estimate of z was 2.46% (calculated as z × 100 to give a
percentage) for his sample. Comparable values have subsequently been found for much
larger samples of UK races, using bookmaker SP data. Vaughan Williams and Paton
(1997) and Law and Peel (2002), for example, estimated values of 2.03% (481 races)
and 2.7% (971 races), respectively. Coleman (2007) uses an alternative methodology to
suggest that at the Melbourne racetrack about 2% of betting is by insiders.

In Smith et al. (2006), we employed Shin’s z measure of bias in relation to our betting
exchange and bookmaker data. We were interested to establish the relative bias across
the two datasets and to test the Hurley and McDonough hypothesis. Our sampled races
were categorized by information levels or “classes.” Class 1 races were those where
publicly available information concerning runners was least, and at the other extreme
Class 4 races were those where a great deal of race specific information was available.
The results are reproduced in Figure 1.

Figure 1 shows that odds bias, proxied by Shin’s z, was lower in the betting exchange
odds than in bookmaker markets, a result consistent with the Hurley and McDonough
contention that the regular favorite-longshot bias will be greater in those markets where
transaction costs are greatest. Further, in both exchange and traditional betting markets,
the level of bias was lower the greater the amount of public information that is available
to traders, again consistent with the Hurley and McDonough theoretical model. The
Shin’s z coefficients were confirmed to be significant and independent using the Breusch
Pagan test. These results are therefore consistent with an information based model of
the favorite-longshot bias, explaining the structural characteristics within and between
the two markets in terms of available information and transaction costs.

Aside from identifying bias, a further question of interest is whether the struc-
tural differences in odds between betting exchanges and bookmaker or other market
odds can be exploited by employing arbitrage or quasi-arbitrage strategies (Paton and
Vaughan Williams, 2005; see also Smith et al., 2005; Vaughan Williams, 2000, 2001).
Exploitability is important since if a trading profit cannot be made in relation to an
imperfection, then markets are operating efficiently to the point where the benefits of
further arbitrage are offset by transaction costs, reflecting the Grossman and Stiglitz
hypothesis.

Studies conducted prior to the advent of widespread bettor access to the internet show
mixed evidence concerning the possibility of profitable arbitrage between markets.

In a study of parlay4 markets, Ali (1979) found that returns to the parlay were not
significantly different from those in the win markets of the constituent races, suggesting

3Shin’s term Var(p) is a measure of distance of vector p from the vector 1/n, as opposed to variance in the
normal statistical sense.
4A parlay is a double win bet that succeeds only if the two nominated runners, competing in separate races,
both win.
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FIGURE 1 Degree of bias for mean, outlier, and Betfair prices for matched data in relation to 700 horse
races run in the UK during 2002.
NOTE: (i) The y axis shows the coefficient of n − 1, or Shin’s z, multiplied by 100. The interpretation of
this value is that it indicates the percentage of insider trading volume in the market concerned, and also acts
as a direct proxy measure of the degree of bias. (ii) Odds were derived from internet arrays of competitive
bookmaker prices for 700 races acquired at 10:30 AM on race days, yielding mean odds and outlier odds
values for each horse. Matching Betfair prices were acquired at the same time, being the best price available
to non-trivial stakes. (iii) Class 1 = least public information; Class 4 = most public information. (iv) Mean =
mean bookmaker odds from a competitive array of prices per horse per race; outlier = the corresponding
bookmaker outlier odds per horse per race; Betfair = the corresponding best odds to non-trivial bet limits on
the exchange; all matched data. Source: Smith et al. (2006).

weak-form efficiency. Hausch and Ziemba (1985), on the other hand, found persistent
weak-form inefficiencies in North American place, show, and exotic betting markets,
which are related to win betting markets in complex ways. They were able to demon-
strate profits to an arbitrage strategy in these pools, known as “Dr. Z’s system,” based
on estimations of true probabilities from win odds, with wagers subsequently made in
the place and show pools.

Pope and Peel (1989) conducted the first study of efficiency in betting markets char-
acterized by an array of odds rather than singular values, in relation to bookmaker odds
on English football (called soccer in America). They found that more efficient forecasts
could be made by pooling competing odds values, but not to the extent that positive
returns could be generated.

Smith et al. (2007) measured the relative accuracy of exchange relative to bookmaker
odds for all horses in the 700 race sample outlined above, applying conditional logistic
regression to establish which set of odds were the best predictors of race outcomes.

Our principal finding was that, after adjusting for the favorite-longshot bias in both
sets of odds, and with the exception of low liquidity markets, exchange odds were
significantly better predictors than bookmaker odds. This may be because betting
exchanges offer opportunities for the most skilled or informed bettors not available in
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bookmaker markets. For example, skilled traders, insiders, and bettors seeking hedging
opportunities are all able to lay odds on the exchanges that may as a result reflect the
chances of the horses concerned more accurately than those offered by bookmakers. In
the main, therefore, this result would suggest that an arbitrage strategy based on diff-
erences in parallel odds between the two markets should employ exchange odds as a
proxy for true odds, with the exception of low liquidity races.

4. NEW EVIDENCE ON THE DEGREE OF BIAS IN BETTING
EXCHANGE ODDS

An alternative to the Shin method of identifying odds bias is the regression of objec-
tive probabilities (derived from results) on subjective probabilities (as contained in the
odds), or the equivalent analysis of returns distribution by odds value (e.g., Snyder,
1978, Bruce and Johnson, 2000). The virtue of this method is that it allows clear exposi-
tion of odds bias through a comparison of results or returns against their expected values
across the full range of odds. It further permits comparison of results with empirical
studies conducted prior to the advent of the Shin methodology.

Regression of objective on subjective probabilities was adopted for the current study
using trade weighted betting exchange data to shed further light on the degree of bias
implied by the Shin methodology employed in Smith et al. (2006) in relation to nominal
exchange odds.

The specific estimation procedure adopted here is that used by Bruce and Johnson
(2000). For their dataset of starting prices (SP) for 2,109 races run in 1996, Bruce and
Johnson estimated a polynomial function:

ln(pre b) = � + � ln(ob) + �[ln(ob)]2 + · · · + �[ln(ob)]n (2)

where the dependent variable pre b is the predicted or expected value of the objective
probability of winning for an odds class, and the independent variable ob is a vector of
odds. Weighted least squares regression was used to estimate the values of coefficients
�, �, �, and so on, such that all terms in the polynomial expression were significant. The
log of subjective probabilities corresponding to ob was used as a reference class, against
which ln(pre b) could be compared to establish the existence of any bias. Bruce and
Johnson found that a quadratic function best fitted their SP data, while a cubic function
fitted a separate Tote dataset.

For our study of exchanges, price-volume data for approximately 6,000 UK horse
races run between August 2001 and April 2002 were acquired from the market leading
betting exchange, Betfair. The number of winners and total runners in each category
was not available.

The betting exchange prices are expressed on a decimal odds scale calibrated to as
little as 0.01 odds points at the short end of the odds scale, 0.1 intervals in the middle
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TABLE 2 Extract of Betfair Trading Data

Odds Total traded Profit/loss

1.01 261, 262.86 −61, 371.715

1.02 192, 049.4 −54, 493.033

1.03 131, 869.3 −24, 464.527

1.04 125, 528.3 −1, 706.982

1.05 102, 851.83 −12, 420.479

1.06 14, 553.03 −1, 010.142

1.07 7, 058.38 371.59

1.08 4, 132.4 −157.563

1.09 7, 593.95 398.615

1.1 104, 705.51 −21, 670.373

1.11 72, 559.54 701.648

1.12 225, 130.48 −368.582

1.13 254, 993.53 22, 609.789

1.14 311, 237.27 37, 526.379

1.15 334, 900.49 25, 356.147

1.16 404, 864.35 23, 850.829

1.17 439, 536.15 51, 681.652

1.18 380, 297.83 34, 160.065

1.19 347, 850.95 48, 919.749

1.2 446, 096.03 17, 301.557

Source: Betfair, 2003.

odds, and 1 point intervals at long odds. Thus, categories exist not only for 2.0 to 1, but
also 2.1, 2.2, and so on.

The betting exchange data contained fields for odds, total traded, and profit/loss
before commission (aggregated across all races for which there were markets in the
eight month period covered). An extract from the Betfair trading information is in
Table 2.

The data continues in this way for 7,954 odds ticks, with increases of 0.01, until the
odds become large, when the ticks frequently increase with odds intervals of 1 or more,
for all values at which bets were struck, up to an odds value of 1,000.

As prices on the exchanges include a unit stake, the initial step in preparing the
data for use was to subtract one from the advertised price to obtain an odds value. For
example, the odds of 1.01 are actually odds of 0.01.

Objective odds probabilities, the dependent variable, were derived for a range of
odds categories from the observed values of exchange “Total traded” and “Profit/loss”
as follows.

As the distribution of bet sizes, the incidence and proportion of winners and losers
within each odds category were all unknown, an initial assumption that all bets within
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each odds category are of equal value was made; the alternative assumption that winners
at a given level of odds are distributed evenly among bets of different sizes is equivalent.
Either assumption enables the following procedure to be employed to estimate true
probabilities.

Let pnv be the probability corresponding to a Betfair nominal odds value, ov , less
an adjustment for the exchange operator’s rate of commission on net winnings, c, here
applied at Betfair’s standard rate of 5%, so that c = 0.05. This adjustment is made to
ensure comparability with starting prices, where bookmakers’ margins are implicit in
the odds. Then

pnv =
1

ov (1 − c) + 1
. (3)

For example, for the odds of 1.01 above, the actual odds value was recorded as 0.01,
and by substitution in Equation (3), pnv = 0.9906.

Now let ptv be the probability corresponding to an odds value that would yield zero
profits; this is a proxy for the true probability of a horse winning at the nominal odds
corresponding to pnv .

Let �v = profit/loss at the Betfair odds value, for example, −£61, 371 at odds
of 0.01.

Let �v = total traded at the Betfair odds value, for example, £261, 262.86 at odds of
0.01. Then

ptv = pnv

(
1 +

�v

�v

)
(4)

Equation (4) derives the probability equivalent to odds that would adjust actual
profit/loss to zero. These odds are by implication the true probability of a horse winning
in the odds category v.

The next step is to compute a weighted average of ptv for a range of odds categories to
enable a regression, as specified in Equation (2) above, of these computed values against
average nominal odds probabilities associated with specified odds categories. The pre-
cise method of odds classification used is traceable to Weitzman (1965), whereby
normalized odds probabilities are categorized according to a measure of the monetary
return to a nominal winner at given odds to a unit bet, with categories increasing in
one unit increments. This largely solves the problem of classes having an insignificant
number of runners, especially in the shortest odds categories, and gives a rational basis
for choice of odds boundaries.

Monetary returns, as defined by Weitzman, in the range 1–120 (inclusive of unit
stake) were adopted for the purpose of the regression. Let j be the Weitzman category
and n = 120.
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Then the weighted true odds probability values, Ptj for Weitzman categories are
computed as:

Ptj =

n∑
j=1

�vptv

n∑
j=1

�v

(5)

Ptj becomes the dependent variable in Equation (2) for the betting exchange data. Aver-
age nominal odds corresponding to the Weitzman categories, adjusted for commission,
are generated in the same way to give values of the independent variable. Let Oj be the
weighted average nominal odds for Weitzman category j. Then:

Oj =

n∑
j=1

�vov

n∑
j=1

�v

(6)

The results of the ensuing regression are shown in Table 3 and Figure 2. In Figure 2
the betting exchange odds suggested by the reference curve of log subjective proba-
bilities closely matches the expected values of the objective probabilities. There does
not appear to be an appreciable bias in the exchange across the range of odds values,
with the possible exception of the highest prices, where the odds are more generous
than is warranted by the true chances of such horses. This bias at long odds is modeled
by the cubic term in the estimation of Equation (2) with respect to the exchange data.
Subjective and objective probabilities converge at about 3/1.

These results, based on exchange odds data weighted by trading volume, are largely
consistent with the earlier findings in Smith et al. (2006) based on nominal odds for a
much smaller sample of races; if anything, the current result indicates a lower degree of
bias than that based on Shin methodology in our previous study.

TABLE 3 Coefficient Estimates for Equation (2)

Coefficient Value Standard error t Significance

� −0.6838 0.0056 −122.4803 0.0000

� −0.5360 0.0069 −77.6772 0.0000

� −0.1480 0.0072 −20.6242 0.0000

� 0.0189 0.0028 6.8530 0.0000

R 0.9990

R2 0.9980

Durbin-Watson 1.962
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5. CONCLUSIONS

Established gambling operators have argued that person-to-person wagering on inter-
net betting exchanges represents unfair competition, on the grounds of differential
treatment of the two media for tax purposes, because the exchanges undermine the book-
maker licensing system and because exchange clients are allegedly often exploited by
insiders. Prior empirical results and the new evidence presented here suggest that bet-
ting exchanges have brought about significant efficiency gains by lowering transaction
costs for consumers. In contrast to traditional betting media, it was found that bet-
ting exchanges exhibited significantly lower levels of bias and therefore approximated
more closely the conditions of weak-form market efficiency. Exchanges contribute to
reducing the information barrier; they increase the incentive to process and act on race
relevant information by reducing transaction costs and increasing bet flexibility.

The low value of Shin’s z found by Smith et al. (2006) in relation to exchange data
suggests that only a small proportion of turnover is attributable to “bet to win” insiders.
The main controversies surrounding the extent of insider trading in the exchanges, how-
ever, relate to “lay” type insider betting. Whether the Shin measure adequately captures
such activity is debatable and further research is required in this respect.

Whatever the truth of the inequities and insider abuse claimed by bookmakers to be
the result of the exchanges, policy makers contemplating intervention in the industry
need to weigh the ensuing economic costs (so far unproven) against the empirically
demonstrated welfare gains derived from the exchanges. Betting exchanges are clearly
vulnerable to insider activity, especially where laying of “non-triers” or “performance
retarded” horses are concerned; the nature of the bet and lay formats would make it
incredible for them not to be subject to such influences. Ironically it is the very features
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that make the exchanges relatively efficient markets that make them subject to potential
abuse from insiders. This is not, however, an argument for the prohibition of exchanges,
a policy adopted in some countries; rather it is an argument for adequate policing of
exchange client activities, and a strong regulatory framework, in order to preserve the
welfare gains accruing to mainstream bettors.
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Abstract

A distinctive feature of soccer is that odds remain fixed throughout the (lengthy) betting
period. Any apparent advantage this offers to bettors has, until recently, been offset
by exceptionally high transactions costs. These have fallen substantially since 1999.
Nevertheless, partly because of increased efficiency in odds setting, opportunities for
bettors to earn reliable positive returns from application of fundamental or technical
analysis remain elusive. Some anomalies have been noted, for example, less unfair odds
are quoted for more popular teams, but none has been marked enough to be exploited
for betting gain. Future research is likely to be oriented away from bookmaker markets
to betting exchanges where in-play betting offers opportunities to assess how efficiently
prices move in response to fast breaking news.

1. INTRODUCTION

This chapter reviews the surprisingly small, though growing, academic literature on
soccer betting. In the past, the themes of the literature have been those most heavily
emphasized in studies of the efficiency of sports betting markets in the U.S. principally
the questions asked have centered on whether technical and/or fundamental analysis
can suggest successful trading strategies for bettors (success being defined variously
by positive profits before tax, positive profits after tax, or smaller losses than those
that accrue to random wagering). Issues covered under these headings include bias in
odds in the favorite-longshot and home/away dimensions, sentiment bias where odds are
distorted to reflect the popularity or glamor of particular teams, the ability of statistical
models to exploit team strength and form variables to select good value bets, and the
usefulness (if any) of professional tipsters. More novel current research exploits the
increasing popularity of in-play betting via betting exchanges to evaluate the response
of the market to fast breaking news as incidents in a game unfold.

That soccer betting has been relatively little studied compared with the NFL betting
market is surprising on a number of counts. First, soccer appears to be the most uni-
versally popular of spectator sports. Second, the wagering market is large and growing.
Third, betting is organized in an intriguingly different way compared with much stud-
ied horse and dog betting markets (worldwide) and team sports betting markets in the
U.S. in that bookmakers offer literally fixed-odds betting. Odds on match outcomes are
announced several days in advance and remain available throughout the betting period
to the start of the game regardless of the emergence of fresh information and regard-
less of betting volumes. This novel feature seems likely to make the achievement of
market efficiency more problematic, since, in contrast to pari-mutuel and conventional
bookmaker markets, prices (odds) are not allowed to be influenced by the behavior of
large numbers of bettors who may bring to the market fresh information unavailable to
odds-setters.

Section 2 briefly examines the history of betting on soccer. Section 3 outlines how
and why transaction costs have varied over time and implications for the likelihood of
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market efficiency being achieved. Sections 4–8 embody a critical literature survey and
discuss how the literature might develop in the future. Section 9 concludes by looking
forward to a new generation of studies that will employ betting exchange rather than
bookmaker data.

2. DEVELOPMENT OF SOCCER BETTING

Officially tolerated betting on soccer developed in the inter-war period despite the high
costs of circumventing legal restrictions (e.g., the companies could not collect stakes
prior to the event on which the wager was based) and despite hostility from the sport’s
governing body (Munting, 1996). Obstructionism by the latter, based on fears that
betting might taint the integrity of the competition on the field, was indeed so extreme
that, for a short period, Football League fixtures were not published in advance: the
idea was that, while this was inconvenient to fans, the betting industry would be pre-
vented from compiling and printing lists of matches on which their customers could bet
(Sharpe, 1997).

The approximately 250 firms in the market by the mid-1940s were not, strictly, book-
makers but operated football pools, that is, the product was pari-mutuel and involved
betting on outcomes within small groups of games with low stakes and low prizes. The
industry was, however, refashioned as a result of the innovation of a new long odds/high
prize game, The Treble Chance. This required, and still requires, bettors to select eight
matches from a list of some fifty (currently 49) fixtures; to secure a share of the grand
prize, the eight games all had to end in draws (ties). This game rapidly became syn-
onymous with the term Football Pools and caught the public imagination as the first
long odds/high prize gambling opportunity made available in Britain since the aban-
donment of public lotteries in 1826. In fact, this game was essentially a lottery itself.
Draws appear to be close to random events in soccer (bookmaker odds on the draw
show little variance across matches) and no amount of skill was likely to be of assis-
tance in selecting as many as eight matches on one day that would end with this result.
So the companies were essentially offering an 8/50 numbers game and there is evidence
(Forrest, 1999) that most bettors treated it as such by entering the same sets of numbers
each week, regardless of which games corresponded to these numbers.

There is an element of natural monopoly in games like lotto to the extent that bettors
are unlikely to support smaller operators who can, for a given takeout, offer a much
less attractive grand prize. Hence, the invention of the treble choice format, which is so
similar to lotto, initiated a rapid dynamic process that permitted the ultimate survival of
only three firms.

If bettors treated the Football Pools like a lottery game, so too did the government,
which steadily increased the tax rate to 42.5% of turnover, comparable to the govern-
ment take-out from state lotteries elsewhere. The total take-out, in excess of 70%, made
the pools a conspicuously unfair bet for clients; but this was not due particularly to high
profits but rather to the extraordinarily high operating costs (about 30% of turnover;
Munting, 1996, p. 228) of the pools companies that failed to embrace new technology
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and still, by the 1990s, employed 96,000 agents to collect entries from clients’ homes
each week (Munting, 1996, p. 135).

In its heyday, the Football Pools was a prominent feature of British culture with
over one-third of all adults playing (Sharpe, 1997, p. 72). However, the introduction
of an official state lottery in 1994 began a period of rapid decline (documented in For-
rest, 1999). The new lotto game employed on-line technology whose low operating
costs permitted significantly larger jackpots than the Football Pools. Despite several
government tax concessions to the Football Pools industry in the face of declining
employment, there is no sign that this type of betting on football can ever recover the
mass-market appeal it once held. By the time of the 2007 British Gambling Prevalence
Survey (National Centre for Social Research, 2007), only 3% of adults reported having
played the Football Pools at all in the preceding year.1

Conventional bookmaker betting was legalized in Britain in 1960.2 The soccer bet-
ting this new sector offered probably appealed to a significantly different market than
the Football Pools to the extent that it invited bettors to assess the value implicit in
quoted odds on each of the three possible outcomes in a soccer game. It was therefore
skills-based and appealed especially to soccer fans. Nevertheless, the bookmakers evi-
dently saw themselves in competition with the Football Pools because they organized
betting around entry forms, known as coupons just as in the Football Pools sector. It
is possible that the distinctive feature of offering fixed odds with respect to soccer was
merely the result of wagers having to be made on printed forms and the odds needing
to appear on these forms. Whatever the reason, the British system of fixed-odds betting
on soccer has been imitated by the betting industries of other European countries.

The new licensed betting offices were initially very restricted in number and location
and their main business was horse and dog betting. But easing of regulation, com-
bined with the marked upturn in the popularity of soccer as a spectator sport from 1986
(Dobson and Goddard, 2001, Chap. 7), led to a period of rapid expansion in bookmaker
betting on soccer. Global Betting and Gaming Consultants (2001) cited market research
findings that, by 2000, nearly 4,000,000 adults in the United Kingdom were betting on
sports on a weekly basis and claimed annual UK turnover in sports betting at that time
of about £2 billion; they noted that soccer accounted for the huge majority of this mar-
ket. These findings were consistent with more recent data from the British Gambling
Prevalence Survey (National Centre for Social Research, 2007) in which 10% of adult
males said they bet with a bookmaker on events other than horse and dog racing and
7% responded positively to a question on whether they had bet on the last World Cup
(participation was, however, much lower for females). In addition to domestic demand,

1An intriguing feature of the Football Pools industry since 1963 has been that, when soccer games are called
off (typically due to adverse weather), it does not declare bets void. Rather it bases payouts on the decisions
of its own “Pools Panel,” a group of experts who predict what the outcome of postponed matches would
have been had they taken place. The decision-making process of the Pools Panel is analyzed in Forrest and
Simmons (2000a). It appears unlikely that such a process will become widespread in sports wagering markets!
2The new legislation permitted bookmakers to operate retail premises. Previously, only telephone/mail betting
on credit was lawful, though there was an extensive illegal sector devoted mainly to horse betting (Miers,
2004, chap. 11).
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there is worldwide interest in betting on English matches and much of this is channeled
through UK bookmakers.

At bookmakers, product diversification is a notable trend with increased promotion,
for high profile matches, of bets on aspects of the game other than the outcome; for
example, a double bet involving the prediction of both the exact final score and the
identity of the individual player scoring the first goal is reported to be the fastest growing
product at bookmakers’ shops. Except for Cain et al. (2000) who considered exact score
betting (for season 1990–1991), no academic study has yet analyzed the market in these
more exotic bets but their emergence appears significant and their operation a topic for
useful future research. Classical favorite-longshot bias has almost never been detected in
team sports betting markets (though it is documented for individual sports such as golf,
Shmanske, 2005, and tennis, Forrest and McHale, 2007) and this is possibly because,
given that there are only three possible results (two in some sports) and given that
leagues are consciously organized to preserve relatively close balance between teams,
the range of odds is almost always very narrow in a set of sports matches compared
with a card of horse or dog races. The exotic types of bet may appeal to a new market
of relatively risk-loving bettors who can now choose from a wide array of odds with
respect to, for example, the identity of the first scorer in a game. The width of odds
could be such as to permit classical favorite-longshot bias to emerge and indeed Cain
et al. found such a bias in the exact score market. The issue is further addressed below.

The most important development in British betting since the 1990s has been a large
fall in transactions costs. This is linked directly and indirectly to the dramatic increase
in remote betting opportunities, principally accessed through the internet. The mar-
ket has become much more competitive because it has effectively been globalized
as bettors have gained access to bookmakers located in other countries. Further, the
internet has facilitated the emergence of betting exchanges as an alternative to book-
makers; effectively, since an exchange permits traders to lay as well as to back betting
propositions, it allows new entry into bookmaking without the barriers of having to
secure premises and comply with licensing requirements. The resulting greater com-
petition has been reflected in falls in bookmaker overround on soccer (Deschamps and
Gergaud, 2007) and also led to the gradual abandonment of restrictions against wager-
ing on single matches that had effectively kept transaction costs very high. Finally, and
most dramatically, the betting tax payable from stakes by bettors with UK bookmak-
ers was abolished in 2001. Eager to compete more effectively in the worldwide market
for betting on English Premier League soccer, major UK bookmakers had exploited
the emergence of the internet by establishing offshore arms in jurisdictions such as
Gibraltar and Guernsey in time for the 1999 soccer season, and these offered the same
odds as in the domestic market without the disadvantage of tax deducted from the stake.
Tax became essentially optional for bettors at home and abroad as access to the offshore
offices of familiar High Street bookmakers was readily available by internet (or tele-
phone). The majority of bookmakers repatriated these offshore operations in October,
2001, when betting duty was abolished following an agreement with the government
that the industry would accept a new style of tax, termed a profits tax but essentially a
tax on take-out. Competitive forces appear to have prevented bookmakers from passing
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on the new tax to clients as overround has decreased rather than increased since the tax
on stakes ended.

The fall in transaction costs is of course likely to have strong implications for the
achievement of efficiency in betting odds. There is now much more scope for pro-
fessional bettors to discipline the odds to serve as near unbiased predictors of game
outcomes.

3. TRANSACTIONS COSTS IN THE FIXED ODDS MARKET

The British domestic bookmaking market is served by three large national firms with
a significant number of regional chains and local one-shop operations. Each of the
national bookmakers determines its own set of odds for soccer games and virtually
all the independents purchase odds from an odds-setting service, Super Soccer. In all
cases, odds for the following weekend’s matches are determined on Monday or Tuesday
(Sharpe, 1997) and published by midweek. The odds of the largest firms, and of Super
Soccer, are printed in the specialist daily betting newspaper, The Racing Post, and are
also available on the internet. Coupons can be collected from shops in midweek and bets
placed any time up to the start of whichever matches are chosen by the client (matches
are mainly on Saturday but with a small number of games scheduled for Friday or
Monday evenings or Sunday afternoon). Naturally, the sets of odds are highly correlated
with each other.

Fixed odds are therefore available on all professional games in England and Scot-
land (typically 60 matches each weekend) during a betting period of three to six days.
That bookmakers are willing to fix odds in this way is, according to Crafts (1985), evi-
dence that soccer is a sport with inherently little scope for useful insider information
to exist. Kuypers (2000) argues similarly that the large audiences for soccer and its
widespread media coverage make it unlikely that significant information will remain
private. However, U.S. professional basketball (for example) enjoys at least as high a
profile as soccer, yet Gandar et al. (1998) still find evidence (as Crafts had for British
horse racing) that, where odds are permitted to move, those movements are strong pre-
dictors of event outcomes. This may be interpreted as demonstration that insider trading
has a relevant role even in high profile team sports (and over half of all British soccer
leagues on which fixed odds bets are offered are decidedly less than high profile) or,
alternatively, that the average assessment of thousands of bettors is likely to be more
accurate than even the most skilled of individual odds-setters.

In any case, British bookmakers for long took care to protect themselves against
the exploitation of the fixity of odds by those possessing information unavailable to
odds-setters at the time odds were set. Traditionally, they did not accept wagers on
the outcome of an individual match but rather insisted on a combination bet on three,
or even five, fixtures. Bookmakers pointed to Football Association regulations as the
origin of this arrangement (the football authorities were concerned about the danger of
match-fixing) but variation in the rules over time and across bookmakers suggest that
they were just part of a business strategy rather than something imposed exogenously.
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Rules against singles bets constituted an important protective device against those
with private information. Suppose one had known, as if with certainty, the outcome
of a particular match. If the bookmaker accepted only “treble and upwards” bets, one
would have been sure to win only if one had chosen two other games and made a series
of six treble bets across which the known result from one’s own match was linked
to each of the six possible pairs of results from the other two games. Given multiple
bookmaker commissions, a positive expected return was unlikely to be available despite
the possession of sure insider information.

An alternative and cheaper way of wagering on a single fixture emerged, however.
Bookmakers permitted a double bet on any individual match where the two parts of the
bet related to the outcome (home lead, draw, or away lead) at half-time and at full-time.
The odds for this sort of combination bet were not individually set on a match-by-
match basis, but were linked to the odds offered in the main coupon on the team one
was backing to win. For example, suppose the main coupon quoted odds of 6/4 against
team A defeating team B3 and one wished to support team A. A bookmaker offered the
following odds with respect to combinations of half/full-time outcomes:

• A leads at half-time, A leads at full-time—7/2
• Sides level at half-time, A leads at full-time—9/2
• B leads at half-time, A leads at full-time—22/1

Had a single bet been permitted on A at 6/4, one would have needed to have spent £0.40
to be able to collect £1 following an A victory. In the absence of singles being permitted,
one could instead have made three double bets as above, investing respectively £0.222,
£0.182, and £0.044, so as to cover all combinations ending in an A victory. But this
would have meant spending £0.447 to achieve the end of receiving £1 at the bookmaker
window in the event of success. The true odds were therefore not the quoted 6/4 (1.5
to 1) but only 1.24 to 1. This shading of the odds was of very similar size for all possible
odds of an A win and could be understood as an insurance premium to protect book-
makers against insider dealing: one could bet on a single match but had then to accept
odds approximately 17.7% less favorable than published odds.

Restrictions against singles betting that existed until well after 2000 were often men-
tioned by writers on market efficiency in soccer betting but were then generally ignored.
Published odds were always employed in evaluations of possible profitable wagering
strategies in this period even though these were not actually available on a single game.
Dobson and Goddard (2001, p. 414) justified this by pointing out that “the requirement
to place bets on several matches simultaneously does not affect the expected return
on any bet.” While this is true, the rule did raise the transaction cost of placing a bet

3In the British domestic market, odds are always quoted in the form a/b which signifies that a successful
wager of b on an event occurring will win the better a (and in addition the stake of b is returned to the suc-
cessful bettor). Odds may, of course, be expressed in alternative ways. Decimal odds, used in the international
soccer betting market, quote the return (including stake) paid to the bettor for a unit stake. Hence, the odds 6/4
would be quoted in the decimal system as 2.5. Probability-odds corresponding to a/b would be b/(a + b); for
example, 6/4 becomes 0.40, signifying that an expenditure of £0.40 is required to receive a £1 payout (return
of stake included) if the event occurs.
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with respect to the one fixture for which one may have had specialist knowledge, either
because of access to private information or because one supported (and therefore readily
absorbed public information concerning) a particular team. It also reduced, of course,
the feasibility of bettors enjoying a positive expected return if they simply spotted a
mistake by odds setters regarding the outcome of one particular match.

The rules against singles could, then, be circumvented, but only at high cost. These
rules raised transaction costs to very high levels relative to sports betting markets in
other parts of the world or at least did so until increased competition emerged in about
1999. Transaction costs had three elements. First was the bookmaker take, 10.5% of
match handle, assuming a perfectly balanced book (i.e., the same payout in a given
match regardless of its outcome).4 Second was the 17.7% premium for betting on a
single match. Third was the tax of 9%. The total take-out rate from all three deductions
was {[1− (0.91× 0.823)]+ 0.105} or 35.6%. This level of transaction cost was so high
(not far short of the 50% take-out on the National Lottery) that one could envision
considerable biases in odds on individual games existing but failing to generate profit-
able trading opportunities. The role for professional bettors must have been severely
circumscribed at this level of transaction costs.

Terrell and Farmer (1996) present a model exploring the roles of professional and
pleasure bettors in a pari-mutuel market. They use it to account for the well-documented
favorite-longshot bias in dog and horse racing. In isolation, pleasure bettors generate
bias in the array of odds because of lack of knowledge of the true win probabilities
attached to each runner (one could suggest that their wagers are influenced by random
extraneous factors such as the name or color of the horse or dog). The professional
bettors wager whenever the expected value of a bet is positive and, in the absence of
transaction costs, their activity will eliminate biases in the array of odds. However,
given positive transaction costs, correction of odds will remain incomplete and ineffi-
ciency will be preserved in the market in the sense of some bets offering less bad returns
than other bets. High transaction costs therefore spawn inefficiency in the odds. It can
be argued similarly that, in a bookmaker market, bookmakers may quote prices that take
account of bettor preferences as well as underlying true probabilities and that system-
atic inefficiency is sustainable if transaction costs are sufficiently high that professional
bettors can still not identify any strategies that would generate positive returns.

However, as noted above, transactions costs fell substantially about soccer season
1999–2000. There was downward pressure on bookmaker overround; the government
removed betting duty; and restrictions against singles bets were relaxed so that it became
possible, first for Premier League games and then for any professional match, to place
singles bets. These falls in all the elements of transaction cost should have induced a
reduction in, or elimination of, biases in the betting odds because they opened up pos-
sibilities for professional bettors to earn positive returns at the expense of bookmakers
if the odds were biased even to a relatively small extent.

4The calculation of take-out is based on the size of overround. In a typical game, the sum of probability-odds
was 1.115, which implies that bettors would have to spend £111.50 to generate a certain payout of £100 after
the result was known. Take-out was thus £11.50/£111.50 or 10.5%. An interesting feature of the market but
one unexplained in the literature is the very low variance in the overroundness of the book across matches.
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4. EARLY STUDY OF MARKET EFFICIENCY

For some years, Peel and Pope (1989) remained the only published analysis of
efficiency in the fixed odds market. While the literature review here is generally orga-
nized thematically, this paper is considered first because it covered a number of aspects
of efficiency and, to some extent, provided the template for subsequent studies. Despite
its date of publication, the analysis relates to odds for matches played in the season of
1981–1982 when betting volumes and regulatory background were substantially differ-
ent from even 1989. Peel and Pope note that their study of the odds actually revealed
one match where, even accounting for the tax on stakes, a risk-free arbitrage return had
been possible because of differences across bookmakers in relative odds on each out-
come. Generally, they established in a series of regressions that there were systematic
differences in the patterns of odds set by each of four bookmakers such that pure arbi-
trage opportunities would have been numerous in the absence of a (then) 10% tax. By
contrast, later writers found a close relationship between the odds of different book-
makers and (Dixon and Pope, 1996) no arbitrage possibilities. This is to be expected
given that every High Street now has several competing betting offices and prices are
readily compared on internet sites. In 1981, regulation of the gambling industry per-
mitted only one bookmaker shop in a given location and even telephone betting was
underdeveloped; hence there was little competitive pressure on bookmakers.

Nevertheless, Pope and Peel found little evidence of inefficiency in individual book-
maker odds. Their lead result reports estimation of a linear probability model which
investigates the relationship between the incidence of a named outcome in a game (e.g.,
home win) and the probability that that outcome will occur according to the published
bookmaker odds. As was standard in subsequent articles, the implicit probability of a
home win (bookprobH) was obtained from the ratio of the probability-odds of a home
win to the sum of the probability-odds of all three outcomes (i.e., published odds were
scaled to account for overround).5 Their full model is thus:

prob (home win) = a0 + b0 bookprobH (1)

prob (draw) = a1 + b1 bookprobD (2)

prob (away win) = a2 + b2 bookprobA (3)

Weighted least squares was employed to account for heteroscedascity. Strictly, the
three equations comprised a system in that the observed dependent variable was binary
and the three events were mutually exclusive in respect of each observation. Neverthe-
less, Peel and Pope estimated the three equations singly. They used 1,066 observations.
The null hypothesis of efficiency required a0, a1, a2 = 0 and b0, b1, b2 = 1.

In fact, for home and away equations at each of the four bookmakers, estimates of a
and b were never significantly different from zero and one, respectively, indicating no

5The notation throughout what follows (e.g., bookprobH to signify implied bookmaker probability of a home
win) is my own rather than that used in the original, so as to preserve consistency of notation throughout the
chapter.
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evidence of inefficiency. For draws, b was never significantly different from zero. The
last result is explainable by very low variance in bookmaker odds with respect to the
draw. To Pope and Peel, and to subsequent authors, it was anticipated that profits would
accrue to anyone who could produce a model that explained draws (since bookmakers
treat the probability of a draw as a near constant) but it may of course actually be the
case that draws are close to being truly random events.

The species of model employed to test for efficiency was to be adopted or adapted
by later analysts of soccer betting and was very similar to the model typically used in
early studies of betting on America’s National Football League. However, the choice of
model is problematic in two respects.

First, U.S. studies related to a point spread betting market where the test for efficiency
focused on estimated coefficients in the regression of the actual margin of victory for
a team on that predicted by the bookmaker spread. In that context, linear regression is
entirely appropriate. However, in the soccer market, the outcome of a match is defined
by a binary variable (the team wins or not). So a straightforward linear model in the
American literature is translated to a linear probability model by analysts of the British
market. But the linear probability model described by Greene (2000, p. 813) is rarely
used, not the least of its problems being that fitted values for probability may be outside
the unit interval. It might seem more natural, therefore, to adopt non-linear estimation,
such as probit. However, the legitimacy of employing probit here could be disputed.
In our context, and unusually in economics, the null hypothesis is defined not only by
the significance, or the value of the marginal effect, of an independent variable but also
by the functional form of the relationship. Specifically, if bookprob is measured on the
one axis and true probability on the other, the relationship between the two should be
linear (and described by a 45◦ line). A probit model imposes a specified non-linear
relationship and cannot therefore be used to test a null hypothesis that includes linear-
ity. Presumably (though no one ever discussed it) this is why many subsequent authors
continued to imitate the Pope-Peel testing procedure and used linear probability for esti-
mation. Of course, competitive balance in soccer is quite high, and probabilities close
to zero or one for any match outcome are therefore so rare that it is not very practi-
cally relevant that linear probability models could, in principle, fit values outside these
boundaries.

The second limitation of the test employed in Pope and Peel is that it has low power
in that it essentially fails to test for specific biases (that may offset each other). For
example, suppose one suspected that, of two possible biases (home team/away team,
favorite/outsider), either or both may exist here. A non-zero constant would result from
either bias being present and the test cannot therefore distinguish between them. Worse,
both biases may be present but, because home/away and favorite/outsider status are
correlated (home advantage is very strong in soccer and home teams are therefore much
more often than not the shorter odds team) they may be sufficiently offsetting for the
efficiency test still to be satisfied. Possible solutions to this problem are discussed in
Section 7 below.

As a supplement to their principal results, Pope and Peel present estimation of sim-
ilar regressions in which a logit model is employed and the values for bookprob as a
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regressor are given by the geometric mean of the bookprob values at each of the four
bookmakers. While the non-linearity of the model would make it inappropriate for test-
ing efficiency directly, they in fact use it to generate fitted values that are then compared
with the bookmaker odds themselves to identify bets offering superior value. The results
are erratic but at two of the bookmakers a strategy based on the model appears to yield
improved returns (though at one it worsened returns by a huge amount). What is being
picked up in these findings is unclear but may be related to a possibility that there
would be a reward to betting at bookmakers that offer odds in a particular game that are
relatively far from the consensual odds on that game: when a bookmaker offers best
value odds on a particular result, those odds may be liable to be too generous.

Deschamps and Gergaud (2007) pursued this idea for a later period by measuring the
return to a strategy of betting at best odds on matches between 2002 and 2006 where
the variance in odds across bookmakers was particularly large. They report that the
strategy was capable of improving returns but these remained negative; and there was
no out-of-sample testing.

Finally, Pope and Peel examine another familiar issue, whether tipsters can provide
useful guidance to bettors. If they can, odds must be inefficient in failing to incorporate
whatever information underlies tipsters’ calls. The testing method is to assess returns to
placing bets according to whatever is the majority verdict among six tipsters in national
newspapers. In the main sample period, there is no evidence that such a strategy can
reduce bettor losses. However, in a sample of 225 games in the final five weeks of the
season, following the tipsters would have yielded a positive (pre-tax) return at three of
the four bookmakers. This finding finds an echo much later in that an elaborate statisti-
cal model for forecasting match results (Dobson and Goddard, 2001, and Goddard and
Asimakopoulos, 2004) was found to provide successful guidance to bettors only in the
concluding weeks of the season (April/May). These are only two isolated pieces of evi-
dence, but could suggest that bookmakers do not sufficiently modify their odds to take
account of factors relevant at the end of the season such as whether or not a particular
game has championship, promotion, or relegation significance for one team in a match
(but not for the other team).

The most serious weakness of Pope and Peel was that their data related to one season
only. This was forgivable in a pioneering contribution but it was not as excusable that
most subsequent authors continued to base analysis on only one or two seasons of data.
Sauer (1998) documents how unstable findings can be in team sports betting markets
over time and it is unfortunate that it has, until recently, been common in the soccer
literature to base efficiency tests on one or two seasons only rather than on a run of
seasons as in several NFL studies.

5. TIPSTERS

Subsequent to Pope and Peel, there have been no further direct tests of the ability of
soccer tipsters to point bettors in the direction of superior returns. However, Forrest and
Simmons (2000) compare tipsters’ performances with that of a very simple forecasting
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model based on a small number of team strengths and form variables. Generally, they
confirm the low information content embodied in newspaper tips.

Their testing methodology was based on an ordered logit model in which the three
possible outcomes of a match were presumed to have a natural ordering from home win
though draw to away win. Three equations employed as regressors (1) team strength
and form indicators alone, (2) tipsters’ forecasts alone, and (3) team strength and
form indicators and tipsters’ forecasts together. A series of nested hypothesis tests
demonstrated that when team strength and form variables were added to the model
including only tipsters’ forecasts, the performance of that model improved. Hence,
tipsters appeared not to take proper account of even the very obvious indicators used
in the particular, and crude, statistical model. When each tipster’s forecasts were
added to the statistical model, its performance failed to improve (except in the case
of one newspaper). Tipsters appeared therefore generally not to possess any useful
information extraneous to the very basic statistical model. The resoundingly negative
assessment of tipsters’ capabilities was qualified only by the finding that some small
improvement in the performance of the statistical model was evident when it was sup-
plemented by an indicator variable signifying that the tipsters displayed consensus in
their forecasts. Ordered logit analysis designed to explain tipsters’ decisions was used
to explore why tipsters perform poorly. A comparison of models that determine tip-
ster and real results indicated that tipsters place undue weight on recent match results
relative to season-long indicators of strength and so perhaps tend to mistake noise for
signal.

The lack of insight displayed by newspaper tipsters and commentators is a result
familiar from studies for other sports (see, e.g., Song et al., 2007). But it is not neces-
sarily an indication that expertise cannot exist in forecasting soccer results. It appears
unlikely that newspapers will find it worthwhile to hire high grade talent, because foot-
ball tips probably comprise a trivial part of their output. However, high grade talent, if it
exists, will be very valuable to bookmakers, since mistakes in odds-setting can have seri-
ous financial consequences, especially under a regime where odds are fixed through the
betting period. Testing the professionalism of odds-setters by examining whether sta-
tistical models can help bettors secure positive returns has yielded very different results
from tests of the professionalism of tipsters.

6. FUNDAMENTAL ANALYSIS AS AN AID
TO SOCCER BETTING

Several attempts have been made to model the process by which soccer match results
are determined to test whether fundamental information on teams can be used to raise
bettor returns. Their potential for success depends either on odds being set by reference
to an implicit model that is inferior to the authors’ statistical model or on bookmakers
deliberately building biases into the odds for commercial reasons (for example to exploit
cognitive biases among the generality of bettors or to take account of preferences for
betting on particular teams). Generally these exercises have tended to yield only limited
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potential for bettor profit. The implication is that bookmaker odds do not depart from
efficient odds by a sufficient amount to allow informed bettors to overcome transactions
costs.

The first studies were based on a strand in the statistical literature (traceable to
Maher, 1982) which proposes that the scores of two teams in a soccer game may be
modeled as independent Poisson distributions with means reflecting the goal-scoring
record of the team and the goal-conceding record of its opponent. Dixon and Coles
(1997) and Rue and Salvesen (2000) operationalized the model to allow it to generate
estimated ex ante probabilities of match outcomes that may be compared with book-
maker odds. If the statistical model can thereby identify a set of bets that will earn
superior returns, the market may be termed inefficient with respect to fundamental
information (the goal-scoring and conceding records of the teams in a game).

Dixon and Coles tested for efficiency by evaluating the returns to strategies based
on placing a bet on an outcome in a game whenever the ratio of the model probabil-
ity to bookprob exceeded some predetermined figure. With a filter setting the required
ratio at 1.2, the return to such betting was reported as “borderline significantly different
from −0.11, the expected return to a random betting strategy.” This is evidence against
efficiency in the odds to the extent that some bets appear to yield higher returns than
others. Whether there was any possibility to find a potentially profitable betting strategy
is much more open to question. From the authors’ Figure 4, allowing for the extra com-
mission charged at that time for betting on a single match via the half-time/full-time
route would have required the filter-ratio to be set at approximately 1.3 for returns to
become positive. Dixon and Coles did not present details of the number of bets iden-
tified at different values of the filter-ratio but it is a familiar feature of horse betting
that winning strategies require considerable effort and data analysis while identifying
frustratingly few occasions on which a bet should be placed (Crafts, 1994).

Rue and Salvesen employed their variant of Poisson modeling to assess whether they
could have made positive returns from a strategy which sought to place a number of bets
such that expected profit was maximized subject to a constraint on its level of variance.
The experiment was for the top two divisions of the English leagues in the season of
1997–1998 and betting was presumed to be with a large internet bookmaker based in the
Caribbean. The model is applied only in the second half of the season to permit adequate
current season data to be available for the statistical model to exploit. Claimed profits
were emphatically and startlingly positive for both the Premier Leagues (39.6%) and
Division One (54%) though the number of bets made in the simulation was small (112
in the two divisions in the season) and the return in the Premier League case depended
substantially on a single winning bet on a team with exceptionally long odds (12.8/1).
The experiment on its own was therefore unconvincing as a formal test of efficiency
but it would be interesting if it were to be implemented for a longer period. It would
also be of interest to compare returns from a less restrictive strategy that incorporated
risk-neutrality in the bettor’s utility function.

From the economic rather than the statistical tradition has emerged a computation-
ally less demanding methodology for modeling match outcomes, that of discrete choice
models, ordered logit or probit. These techniques model match outcomes directly rather
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than indirectly according to the probability distributions of the scores by each team.
Ordered logit or probit models are employed by Forrest and Simmons (2000b) in a
study of the efficiency of tipsters and by Koning (2000) in a paper on competitive bal-
ance while Kuypers (1999), Dobson and Goddard (2001), Goddard and Asimakopolous
(2004), and Graham and Stott (2008) develop ordered probit models to assess their
efficacy as a source of profitable betting strategies. Goddard (2005) demonstrates that
the approach of modeling results directly through such regression models yields very
similar results when compared with the older tradition of deriving probabilistic forecasts
of outcome from estimates of probability distributions of goals scored by each team.

Kuypers (2000) used an ordered probit model6 based on 1,773 matches in sea-
son 1993–1994. Unfortunately, presumably because of space limitations, he does not
present estimates of the model itself but only a list of variables, which are obvious team
strengths and form indicators. He used his estimates to select bets in the following sea-
son according to whether the ratio of model probability of success to the probability
implicit in bookmaker odds exceeded 1.1, 1.2, and so on. He comments that this pro-
cedure yielded neither evidence of inefficiency nor of potential profits for the bettors.
However, when the model was stripped down to include only one team strength indicator
(difference in league position) and supplemented by the inclusion of odds as a regressor
(specifically the odds of an away win), positive post-tax returns were obtained in the
hold-out sample season, 1994–1995. Moreover, large numbers of bets were identified
(over 1,000, even with the filter set at 1.3). The author remarks that implementation
would have been complicated, and returns compromised, by the restriction against sin-
gle bets but does not calculate returns actually available given the then bookmaker rules.
Nonetheless, it would appear from his raw results that the application of a 1.2 filter
would have generated at least a break-even outcome for a set of 1,681 bets. This is an
impressive result as evidence of inefficiency in the market. My reservation is that the
final simplified model uses only a small proportion of the variables included initially:
the degree of ad hocery in selecting one from the many possible combinations of vari-
ables implies that a longer-run test of the efficiency of the specified model would be
desirable. This is particularly true since the final model includes not only fundamen-
tals but also odds data and examples of inefficiency derived from patterns in the odds
themselves have frequently been noted (Sauer, 1998) as merely transitory phenomena
in sports betting markets.

Dobson and Goddard (2001) and Goddard and Asimakopoulos (2004) present an
ordered probit forecasting model estimated from over 50,000 matches in a 10 year
period. The variety of data captured by the regressors is impressively wide and includes,
for each team, league points won in the previous 12 months and the year before that
(adjusted according to the division in which it was playing) and the result of the most
recent home match (or away match as appropriate), the second most recent home (away)
match and so on (the number of lags being determined by statistical significance).
A necessarily ad hoc but influential variable captures whether the game had been sig-
nificant to one (but not the other) of the teams in terms of championship, promotion,

6He remarked that estimation by ordered logit had yielded very similar results to those he reports.
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or relegation issues. The estimated model appears successful in identifying key indica-
tors to take into account in predicting likely results. Formal tests of whether the model
yields forecasts (defined as the outcome—home win, draw, or away win—with the
highest model probability) superior to random forecasts (constrained to have the same
home-draw-away frequency distribution as the model’s forecasts) confirm its infor-
mational content. Nevertheless, the inherent difficulty of forecasting soccer games is
underlined if one calculates, from the table on p. 183 of the Dobson–Goddard pre-
sentation, that the model yields only a 43.06% success rate. Simply calling a home
win every single match would have converted the success rate to 46.66%! Explaining
draws appears a particular difficulty for the model (as it is indeed for bookmakers) and
these are remarked by the authors to be “near-random” events.7 Of course, for betting
purposes, the key output of the model is not which outcome has the highest probabil-
ity but which offers the best value bet when model and bookmaker probabilities are
compared.

Goddard and Asimakopoulos offer both “regression” and “economic” tests of bet-
ting market efficiency based on the results of their model estimated over 10 years
and then applied to games in seasons 1999–2000 and 2000–2001. They estimate the
Pope-Peel (weighted least squares, linear probability) model, adding a variable as
follows:

prob (home win) = a0 + b0 bookprobH + c0 (modelprobH − bookprobH ) (4)

prob (draw) = a1 + b1 bookprobD + c1 (modelprobD − bookprobD) (5)

prob (away win) = a2 + b2 bookprobA + c2 (modelprobA − bookprobA) (6)

where modelprob is the probability of a particular outcome (H , D, or A) according to
their estimated forecasting model. Efficiency conditions are now a0, a1, a2 = 0, b0, b1,
b2 = 1, c0, c1, c2 = 0. The coefficients c0, c1, and c2 will be zero if the bookmaker
odds (of which bookprob is a transformation) already take proper account of all the
fundamental information exploited in the statistical model. That the estimate of c is sig-
nificantly positive in all three equations is prima facie evidence of inefficiency. However,
on splitting the sample into four segments by month (August–October, etc.) c retains its
significance only for the last quarter of the season. The failure of bookmakers to prop-
erly use the information in the model is therefore restricted to the period from March
onwards, the closing weeks of the season. Results of economic tests where returns to a
betting strategy (in this case based on the statistical model) are calculated directly, point
in the same direction. Placing a bet on every match according to whether a home, draw,
or away bet has the highest expected value (according to the forecasting model) delivers
mixed results across the two seasons though returns appear superior to those that would
be associated with random betting. However, in April and May of each season, pre-tax
returns of 8% would have followed from the strategy. This is fairly convincing evidence
of market inefficiency in the late season. One can but speculate as to the source of the

7If it is true that draws are random events, this undermines the claim that ordered, rather than multinominal,
probit is the appropriate modeling technique.
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inefficiency. One possibility is that the model is more effective late in the season because
it has a larger volume of relevant current season data to process. Another is that many
games at that time of year have particular significance for one team but not the other;
this situation of asymmetric incentives is represented in the statistical model but may
not be given due weight in odds-setting. It would be interesting to repeat the experiment
while omitting the significance variable from the ordered probit to see whether or not
superior returns were still associated with model-based betting late in the season.

Notwithstanding the apparent potential for employing a statistical model to secure
positive returns late in the season, the literature reviewed so far has tended to find
difficulty in establishing potential for using statistical modeling to secure positive as
opposed to merely less negative returns. However, all these contributions relate to a
period when transactions costs in soccer betting were very high compared with most
forms of wagering. As noted above, transaction costs have fallen markedly in the cur-
rent decade and this would appear to open up the possibility that less negative returns
could now be converted to positive returns with an adequately data rich statistical model.
However, bookmakers themselves now have greater incentive to set efficient odds given
that transaction costs are less of an impediment to professional bettors.

Forrest et al. (2005) investigate whether odds were in fact set more efficiently as
transaction costs fell. For the five seasons leading to 2003, they compare the forecast-
ing performance of a richer version of the model used by Goddard and Asimakopoulos
(2004) to that of a model where the only predictor variable is bookmaker odds. Results
(consistent across tests for five different bookmakers) are that, based on standard evalu-
ation criteria such as Brier scores, the fundamentals model is superior early in the period
but inferior late in the period. In a series of likelihood-ratio tests, adding probabilities
generated from the fundamentals model to the model that utilized only odds improved
its performance but only in the first three seasons: by 2003, odds appeared to incorporate
all relevant statistical information. In further likelihood-ratio tests, adding bookmaker
odds to the fundamentals model improved its forecasting performance, demonstrating
that odds-setters made effective use of information not available to the fundamentals
model.

The set of results indicates that bookmakers responded to greater pressure to set
efficient odds by adopting approaches that enabled them to do so (e.g., by them-
selves employing statistical modeling, to supplement their intuition). When Forrest et al.
assessed the rate of return from using the statistical model to identify value bets, they
found that, by placing such bets at the best odds offered across the five bookmakers, they
could generate a superior outcome to random betting but this was never better than close
to break-even. Graham and Stott (2008) analyzed matches from 2001 to 2006 and use of
their model also failed to generate positive returns (indeed losses were large from their
strategy: they speculate that identifying any biases in odds-setting cannot be exploited
for betting gain because bookmakers have the offsetting advantage of incorporating
information, on injuries and so on, not in a statistical model). The fall in transactions
costs has therefore failed to transform the prospects for employing statistical model-
ing to beat the bookie. This appears to be because odds-setting itself has become more
refined.
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It is a common finding in the study of sports and non-sports prediction markets that
betting odds better forecast events than experts or statistical models. But this is usually
explained by the fact that closing odds reflect diverse information from large numbers
of participants, induced by the prospect of financial gain to reveal their assessment of
a future event. However, soccer betting is different because odds do not change as new
money arrives in the market. The accuracy of odds here depends solely on the exper-
tise of odds-setters. Nevertheless, the standard result roughly holds (employment of
statistical modeling does not yield reliable positive returns), presumably because book-
makers have a sufficiently strong financial incentive to gather and process information
accurately into the odds they post. This incentive has increased over time as transaction
costs have fallen and odds have consequently become more efficient.

7. TECHNICAL ANALYSIS

The authors who have examined efficiency with respect to fundamental information on
teams’ playing records have also tended to present analysis designed to test whether
historical patterns in the odds themselves, and the success of corresponding bets, can
be exploited to generate superior returns to wagering. Themes emphasized have been
potential inefficiency in the favorite-longshot and home/away dimensions. The issue of
favorite-longshot bias is perhaps of particular interest given that the direction of bias
has been reported to be opposite in American team sports compared with horse and dog
racing (Woodland and Woodland, 1994, 2001, 2003).

The extent of any favorite-longshot bias in team sports markets in fact proves difficult
to disentangle from any home/away bias that may be present. American studies (e.g.,
Golec and Tamarkin, 1991, and Vergin and Sosik, 1999) have claimed betting on home
teams to be a superior or even profitable betting strategy in the case of football.8 Various
commentators on the soccer market have also recommended placing bets in favor of
home teams. But the evidence offered often conflates favorite-longshot and home/away
bias and is based on statistical analysis of relatively short periods.

Cain et al. (2000) consider just one season, 1991–1992, and point to superior (but
still negative) returns to bets on teams that are strong favorites; but, since strong
favorites are almost always playing at home,9 any bias they capture could in fact result
from how bookmakers choose to price home advantage into the odds. By contrast, Dixon
and Pope (1996) employ data from two bookmakers over 1992–1996 and find that back-
ing longer odds teams yielded better results; they also report that backing home teams
(or draws) yielded lower losses than betting on away teams. Their results are suggestive
but any findings of systematically different returns as between either home and away
bets or short-odds and long-odds bets could result from the presence of either or both

8Gandar et al. (2001) find no such evidence for betting on basketball over the period of 1981–1997 or baseball
over the period of 1989–1999.
9Home advantage is very strong in English soccer with about twice as many wins recorded by home as by
visiting teams.
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types of bias as discussed above. Multivariate analysis is required if the goal is to test
for the presence or size of those two distinct biases.

Kuypers’ (2000) summary statistics (his Tables 2 and 4) of returns to possible bets
on a sample of over 3,000 English games in seasons 1993–1994 and 1994–1995 give no
indication of systematically different returns from betting in different parts of the odds
distribution though overall losses were smaller for home/draw than for away bets. His
formal analysis regresses implied probability (i.e., bookprob) on outcome probability
(proportion of successes in each of 24 odds categories) for home wins, draws, and away
wins separately and reports slope coefficients never significantly different from one.
This is, though, fragile evidence of his weak efficiency finding because the omission
of a constant from the regression equations biases the slope coefficients towards one.
From his summary data, bias, particularly in the home/away dimension, requires further
evaluation as to statistical significance.

Dobson and Goddard (2001, pp. 407–410) replicate the regression test proposed by
Peel and Pope [1989, Equations (1–3) above] for data from a single season (1998–1999,
1,568 matches) with odds from one leading bookmaker. Estimates of the coefficients on
bookprob are insignificantly different from one in the home and draw equations but the
point estimate of the coefficient on bookprob A is 0.81, which is significantly different
from one at the 10% level (two-tailed test).10 This could be taken as indicative of reverse
favorite-longshot bias within the subset of possible bets, away. The significance for
betting is illustrated by a calculation that betting on the 500 away teams with the longest
odds (31.9% of the sample) would have generated a positive pre-tax return of 8% (in
sample). Betting long on away teams was therefore recommended and the authors noted
optimistically that, subsequent to the season to which their analysis was applied, tax-free
betting had in fact become feasible on the internet.

Unfortunately, the exhortation to bet long on away teams turned out to be one of
those strategy rules which, once spotted, promptly disappear (Sauer, 1998). In a sample
of 1,489 matches from the following season (with odds from Super Soccer), I calculated
the return to betting on the 30% of cases where away odds exceeded 3/1. The loss was
more than what would have accrued due to random betting! Further checks confirmed
that the trading rule would have yielded a profit with Super Soccer odds in the season
to which the Dobson-Goddard results pertained. Presumably, if profitable trading rules
tend, in general, to be ephemeral, this is because there is some learning process within
markets. However, in this case, the availability of tax-free betting would have neces-
sitated the removal of the bias if bookmakers were not to face large losses from the
activities of alert professional bettors.

A limitation of the Pope-Peel/Dobson-Goddard model is that, while the data are par-
titioned to consider home, draw, and away bets separately, any inefficiency in either the
favorite-longshot or home/away dimensions will tend to shift both the constant and the
slope coefficient away from the null hypothesis values of zero and one, respectively.
Golec and Tamarkin (1991) recommended in the context of handicap (point spread)

10When Dobson and Goddard adapted the Pope-Peel equations to include information from their forecasting
model, Equations (4), (5), and (6) above, slope coefficients were never significantly different from one.
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betting that favorite-longshot and home team bias could be evaluated separately by
selecting randomly from each match a focus team i so that the observed value of the
dependent variable (point spread achieved in their context, win or not in our soccer
market) is defined from the perspective of i. This permits an indicator variable for home
advantage to be employed as a regressor and permits in principle the separate evaluation
of home/away bias. This would lead to the following specification of a Pope-Peel type
model:

prob (wini) = a + b1 bookprobi + d homei (7)

where bookprobi is the probability of a win for i implied by the odds and homei is a
dummy variable set equal to one if team i enjoys home advantage.11

Yet this procedure raises a problem of its own because, in addition to sampling
matches from a population, it further samples a subset of bets (i.e., those picked out
in the randomization). This makes the standard errors unreliable for hypothesis testing.

Forrest and Simmons (2001) therefore specify an equation similar to Equation (7)
but estimate it in repeated trials (in their case 20 trials). The statistical significance
of the variable may then be assessed by counting the number of individual trials in
which the coefficient appears as significant and comparing the figure with a critical value
determined as in Snedecor and Cochran (1967). This methodology has been followed by
Kossmeier and Weinberger (this volume) in their study of odds available from Austrian-
based internet bookmakers.

Compared with Equation (7), Forrest and Simmons’ equation added an interaction
term between bookprob and home and they also included a variable to capture any sen-
timent bias. Their analysis pertains to four seasons from 1997–1998 to 2000–2001.
There was no evidence of either favorite-longshot or home/away bias except in one sea-
son, 1998–1999, where they identified the same apparent advantage to backing away
longshots as was noted by Dobson and Goddard.

Deschamps and Gergaud (2007) offer economic rather than regression testing. They
tabulate returns to betting in different odds categories for matches between 2002 and
2006, partitioned into home, draw, and away bets. For home and away bets, they claim
classic favorite-longshot bias as in horse and dog racing but the opposite result is noted
for draw bets (where, however, they omit to mention that the variance in odds across
matches is very low). Their findings are not subject to significance tests but it is clear
from their charts of returns on home and away win bets across 20 odds categories (with
equal numbers of observations) that there is no clear relationship between odds and
returns except for there being very poor returns in the two most extreme categories
at the longshot end of the scale. This is similar to Cain et al. (2000) where a con-
clusion of favorite-longshot bias is based only on returns in matches with extreme
odds. Deschamps and Gergaud also find no evidence of differential returns as between
home and away bets, though they note superior (but still negative) returns to draw

11Bias over the home/draw/away dimension could equally be tested by randomizing between home team,
draw, and away team in choice of focus for each observation and adding a draw dummy variable as a further
regressor.
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bets in their final two seasons. This was because of an increase in the number of
draws generated in English football (i.e., soccer) in those seasons. It is hard to see
how this could have been foreseen, so this should not be interpreted as evidence of
inefficiency.

The literature on favorite-longshot and home/away bias has benefited from authors
using longer runs of data in more recent contributions. Collectively, the studies cover
seasons over a wide range of time. They continue to find very limited evidence of sys-
tematic bias that could be employed to secure superior, let alone positive, returns even
with much lower transaction costs than in the past.

8. SENTIMENT

The language and approach of the literature on sports betting reflects the extent to which
its paradigm has been provided by the disciplines of finance and financial economics.
There is almost a presumption that prices (odds) ought to be efficient.12 Pope and Peel
(1989), who originated the literature on soccer betting, stated it to be “a reasonable
assumption that the bookmakers’ posted odds reflect their expectations” (p. 323) and
go on to motivate their study of odds as an opportunity to evaluate rationality through
“directly observed expectations of expert agents.”

But one cannot take it for granted that odds reveal bookmaker expectations as to
event probabilities.13 Bookmakers in our particular market are solely responsible for
setting (fixed) odds but their behavior is likely to be motivated by expected profit; and
efficient odds do not necessarily follow from profit maximization.

The bulk of the literature in sports betting markets fails to acknowledge a key defin-
ing feature of team sports (as opposed to horse racing or individual sports). Those who
take an interest in a team sport almost always identify with a particular club as “their”
team. Part of the market for betting on team sports events will comprise stakeholders,
that is, those who care (often very passionately in the case of soccer) about the out-
come of the event. In principle, fan bettors could typically wager against their team as
an insurance against the disappointment of the team losing the match. However, I will
proceed on the assumption that typical fans would bet, if at all, only on their own team
because betting on the team permits them to become stakeholders to a greater degree
and is a way of displaying loyalty, just as might be the purchase of other, more tangible
items of club-related merchandise.

The presence of such bettors in the market will have to be taken into account by a
profit-maximizing bookmaker. This is a striking difference from horse betting where
(a horse’s connections apart) it is rare for many bettors to have a non-financial interest
in the outcome of a race. This difference could underlie contrasts in findings between

12In another context (that of his “Critique of Welfare Economics”), Little (1957) discussed how a condition
defined by the word “efficient” comes to be viewed as a desirable goal just because efficient is a loaded word
with positive connotations. He identifies a problem in economics of using terms with “persuasive definitions.”
13Shin (1991) demonstrated in a theoretical model of horse betting that favorite-longshot bias may be a
rational response by bookmakers to risks posed by insider trading.



David Forrest 441

the team sports and horse betting markets.14 So long as transaction costs are sufficiently
high to inhibit participation by professional bettors, persistent bias in sports betting odds
may be explained by reference to demand from fan bettors.

How will the presence of fan bettors in the market modify odds-setting? Kuypers
(2000) was the first to try to build a model where a profit-maximizing bookmaker would
set inefficient odds. The context is a market where one group of bettors is neutral and,
like the bookmaker, has an objectively correct assessment of outcome probabilities.
A second group of bettors is committed to one particular team in the match; in his exam-
ple they are all supporters of Manchester United but the model could just as well specify
that there is a level of net support in favor of Manchester United because it happens to
be the larger club. Committed bettors are assumed to be over-optimistic with regard to
their own team’s chances. To maximize expected profit, the bookmaker exploits their
naiveté by moving the odds such that backing Manchester United is (objectively) a less
fair bet than backing their opponents. Hence, Kuypers claims, inefficiency in odds is to
be expected in the market.

Four comments may be made on Kuypers’ contribution. First, it was novel and wel-
come, in the context of the previous literature, to put price setting in a profit-maximizing
framework. Second, it is not necessary to assume a failure of rationality by Manchester
United supporters; the model would be unaffected by assuming committed fans to have
objectively correct expectations about a game but to derive additional utility from bets
on their particular team because such bets are an expression of loyalty. Third, the model
is highly restrictive in that the number of bettors on an event is predetermined and it
is only the distribution of betting turnover between outcomes that is affected by rela-
tive movements in odds; according to the model, committed bettors would switch to
betting on their opponent if the odds varied sufficiently. Fourth, Kuypers, in an arti-
cle which reports many statistical tests (discussed above), presents no empirical testing
whatsoever of this particular hypothesis.

Forrest and Simmons (2001) raise the possibility that fan sentiment will have the
opposite effect from that in Kuyper’s model. Suppose fan bettors would only ever bet in
favor of their particular team but that whether or not they would bet depends on the odds
offered. Essentially, they are purchasing a consumer good (akin to club merchandise) for
which the price is the expected loss from the bet. If the demand curve is downward slop-
ing, the particular bet on team A winning will sell more as it becomes cheaper. There is
a separate product, a bet on “their” team, sold to fans of opposing club B. As a practical
matter, the prices set in the two markets are constrained to equal a constant (given by the
bookmaker overround).15 If team A has more fans than team B, and if demand is elastic
at efficient odds, the bookmaker will maximize profit by offering a cheaper product in
the larger market, that is, superior returns to those backing the bigger club. Whether

14More studies of betting on individual sports such as running would be a useful addition to the literature.
Those for which analysis has been reported, golf and tennis, appear to be characterized by similar bias as in
horse and dog racing (Shmanske, 2005; Forrest and McHale, 2007).
15All authors note the near constancy of the overround across matches but none accounts for why this constant
appears to have been binding over many years. One possibility is that it is an expression of informal collusive
understanding between bookmakers.
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this happens in practice is testable as relative levels of support for different clubs can be
readily measured, for example, by typical home-game attendances.

American evidence for the influence of sentiment in a sports betting market has been
provided by Avery and Chevalier (1999) and Strumpf (2003). Avery and Chevalier
found inferior returns on bets in favor of glamorous teams in the National Football
League, glamour being proxied by recent championship success and the division in
which the team played. This suggests that Las Vegas sports books act as if they were
running a pari-mutuel betting process: relatively large numbers of bettors wish to bet
on high profile teams and the casino-bookmakers balance their books by offering less
fair bets in respect of success by those teams (i.e., point spreads are moved to be more
challenging to the high profile teams). Avery and Chevalier recognize that this may not
be (expected) profit-maximizing but explore regulatory reasons why sports books may
feel the need to hold a fully rounded book on each individual match.16 However, there
is no evidence that this is how Las Vegas in fact behaves and the apparent influence of
club popularity on odds is more plausibly interpreted as monopolistic price discrimina-
tion. Of course there are several sports books in Las Vegas but all save one contract their
odds-setting to the same agency.

Strumpf’s innovative (2003) paper examines the behavior of the large illegal book-
making sector in the U.S. by analyzing records seized by the police in the New York
area. The industry is characterized by local monopolies and Strumpf provides convinc-
ing evidence that unfavorable odds are offered on local teams and to particular clients
with a record of regularly backing the same club. As in Avery and Chevalier, this can
be interpreted as evidence of price discrimination that works to the disadvantage of
those wishing to place bets on popular outcomes. The result is consistent with the the-
oretical contribution by Levitt (2004) who demonstrates that a bookmaker maximizing
expected client losses may offer inefficient odds to take account of bettor preferences
(in his illustration, a preference for betting on favorites rather than underdogs leads to
less fair terms being offered for favorite bets).

As noted, Forrest and Simmons thought the opposite result possible in soccer where
the market is more competitive than in the contexts examined by Avery and Chevalier
and Strumpf. They estimate the repeat trials model specified as follows:

prob (wini) = a + b bookprobi + c homei + d (bookprobi) (homei)

+ e diffattend (8)

Here, diffattend is the mean attendance, in thousands, at team i home games in the
preceding season minus the corresponding statistic for the opposing team. The inter-
action term takes note of the possibility that the degree of longshot bias may differ
as between home and away teams. Efficiency requires b = 1 and all other coefficient
estimates to be zero.

While they found no evidence for other types of inefficiency across the period, they
found diffattend to be positive and significant in the whole period estimation and in

16For example, there may be concern from the viewpoint of avoiding suspicion of corruption, that a betting
firm should have no particular interest in the outcome of a sporting contest.
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three of the four seasons considered individually. So there was a clear tendency for
bettors to be offered superior value when wagering on whichever was the bigger club in
a match.17

Forrest and Simmons (2008) returned to the issue of sentiment bias to evaluate
whether it was present more recently and in an internet betting market. They chose
to examine betting on matches in two European leagues, those of Spain and Scotland.
The former enjoys a much higher international profile than the latter but the two share
the characteristic that the competition is contested by clubs with very different levels of
support (i.e., the variance of diffattend is high). Working with data from four seasons,
they found that, as before, there was significant sentiment bias (in each league) with
less unfair odds tending to be quoted for more popular teams. Whether awareness of
this bias could be converted to a profitable betting rule was problematic, however. Out
of sample betting based on allowing for the big team effect on odds proved profitable;
but this could not have been predicted from the in-sample results where the strategy
would have yielded superior but still negative returns. Nevertheless, it is of interest that
a degree of sentiment bias remains in a globalized betting market. International bettors
may of course be swayed by club popularity and reputation just as domestic bettors
are. Indeed premier league clubs in Europe have worldwide support and this may be
reflected in the demand to bet on certain teams.

9. THE FUTURE OF RESEARCH ON SOCCER BETTING

Notwithstanding the introduction of sentiment bias to the debate, the themes of the
published literature on soccer betting have remained fairly stable since its inception
nearly 20 years ago. Despite falls in transactions costs, findings also continue to be simi-
lar: odds are efficient enough that it is hard to formulate any strategy, whether through
fundamental or technical analysis, that yields reliable positive returns.

The literature as it has been constituted has perhaps run its course. But new oppor-
tunities present themselves and will potentially generate findings that can offer new
insights into the behavior of conventional financial markets. One promising opportunity
is that provided by the growth of betting exchanges where in-play trading continues
throughout a game. These markets generate rich datasets in a context that is more simi-
lar to other types of financial market (than bookmaking) in that it is possible for any par-
ticipant to take a position on either side of a question by choosing to buy (back) or sell
(lay) a particular proposition. Transaction costs are low relative to bookmaker markets.
News arrives during a game, most dramatically in soccer in the form of goals. The news

17The variable diffattend is also used in Forrest and Simmons (2002b). They test for biases in soccer odds in a
single English season (1997–1998) employing a three-equation linear probability model as proposed by Pope
and Peel but with estimation by seemingly unrelated regression. They include the difference between home
and away club mean attendance as an additional regressor and find it strongly significant in the home- and
away-win equations. Their paper goes on to employ bias-corrected odds to proxy the degree of uncertainty
of outcome in soccer games and examines the impact of this uncertainty of outcome on individual match
attendances.
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reaches all participants simultaneously through television relay, and it is then possible
to assess the speed and accuracy with which the price responds. Moreover, archives for
some exchanges identify which traders are making which offers, permitting an unusual
opportunity for analysts to gain understanding of how prices move toward new equi-
libria. The principal practical difficulty for researchers is relating the time recorded for
incidents in the sporting record for a match to the time recorded in the trading records.

Studies of this sort have already appeared for cricket (Easton and Ulyangco, 2007)
and American football (Borghesi, 2007) markets. An early contribution for soccer is
Gil and Levitt (2007). They set out a compelling agenda for research but their own
evidence is inadequate because they have a small dataset and it pertains to a somewhat
illiquid market. Their sample relates to matches played in the 2002 World Cup. The
tournament featured 64 games but the analysis is based on only 50 since the remainder
generated no trades at all on the particular exchange. Moreover, matches included in
the sample stimulated trading volumes as low as $2,000; and $50,000 was reached in
only three of them. This limits what can be learned from analysis of minute-by-minute
trading since the market will typically have been very thin even following news such as
a goal. Future researchers will, however, have access to archives from exchanges such
as http://www.betfair.com, where the number of matches available for study is high as
is the level of liquidity.

Gil and Levitt pursue highly interesting issues. One is how the market responds to a
goal. There is no indication that the market anticipates the event (as it appears to do for
events in cricket and American football where the nature of the sports is that the contest
is divided into discrete plays rather than based on continuous action) but price of course
moves strongly when it occurs. Gil and Levitt focus on their finding that the price of a
contract on the team scoring does not typically change in a single step but drifts upward
for 10–15 min. This should not be taken as evidence of inefficiency in itself, since the
initial price movement may merely take into account that a significant minority of goals
in soccer are matched by a quick counter goal by the other team. However, it would be
evidence of inefficiency if their proposition, that it would be a profitable strategy to buy
on a goal and sell a few minutes later, were to be supported in larger datasets from more
liquid markets. Among their other interesting questions is whether market makers who
engage in a high proportion of trades earn positive returns. Surprisingly, perhaps, they
lost money in this particular market.

At the time of writing, several researchers are engaged in analysis of newly released
archives recording exchange transactions during English Premier League games, for
many of which the volume of transactions is high. The findings from this analysis will
make up the next generation of studies of betting on soccer.
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Abstract

We analyze the efficiency of soccer betting odds quoted by several Austrian internet
bookmakers. Due to tax and legal issues, Austria has become a major market place
for online betting. Quoted odds cover all major European soccer leagues as well as
international games. We use regression analysis and simulations of betting strategies
to examine weak-form market efficiency. Similar to other betting markets, we find
evidence for a home bias as well as a favorite-longshot bias.

JEL Classification: L83

1. INTRODUCTION

A bet can be considered a derivative security with a payoff depending on the uncer-
tain occurrence of a future event. It is, for instance, similar to an option on a stock in
the sense that both contracts have a fixed point of termination. However, while the dis-
tribution of the stock price at maturity is likely to be influenced by expectations and
beliefs of market participants, the probability law governing the outcome of a soccer
match can be safely assumed to be independent of bettors’ beliefs. This makes betting
markets a convenient model economy with reduced complexity to study market par-
ticipants’ information processing abilities and risk preferences. Consequently, betting
markets have been widely studied in the literature on finance and economics.

The contribution of this chapter is twofold: First, to our best knowledge it is the first
empirical analysis of an online-betting market. Analysis of traditional brick-and-mortar
bookmakers has revealed two major biases in odds: the favorite-longshot bias, which
refers to the phenomenon that favorites are overpriced relative to underdogs, and the
home bias, that is, the home advantage is not sufficiently reflected in quoted odds. One
could expect that these biases were reduced or even nonexistent in an electronic betting
market, because of its electronic nature, in that odds are available to a large and possibly
well informed public. Moreover, comparing odds of different bookmakers is virtually
costless via the internet. The second contribution of the chapter is that it represents the
first study of continental European soccer betting markets. In that respect, it helps to
make the empirical evidence on betting market efficiency more complete.

Most work on the subject of efficiency of betting markets has been done on
horse racing and to a lesser extent on major sports in the U.S., such as baseball, foot-
ball, or basketball. However, in Europe, soccer clearly exceeds the previously mentioned
sports in popularity. Consequently, the market for betting on soccer games provides an
interesting platform to analyze market efficiency. Nevertheless, examinations of soc-
cer betting markets are scarce. All of the previous studies work with odds from British
bookmakers quoted for matches from the English and Scottish leagues. Pope and Peel
(1989) analyze odds from the 1981–1982 season. They cannot reject weak-form effi-
ciency and also do not find profitable gambling strategies. Dixon and Pope (1996) use
odds from 1992 through 1996. Their findings indicate that odds-implied-probabilities
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for home wins are too low (home bias) and they also find a reverse favorite-longshot
bias (probabilities for the win of the underdog are underestimated). In contrast to this,
Cain et al. (2000), using data from the 1991–1992 season, identify a favorite-longshot
bias. In a recent paper, Forrest and Simmons (2001) examine the odds from 1997–1998
through 2000–2001. Odds in the first two seasons reveal a reverse favorite-longshot bias
and a home bias as well as an additional bias, which relates to differences in fan support.
However, the authors find no evidence for inefficiency in the last season of the sample
period, which they attribute to increased competition by offshore bookmakers.

Our sample is made of odds quoted by 12 Austrian bookmakers and outcomes
of roughly 1,800 games played in major European leagues and international cups.
Our findings suggest that weak-form efficiency of the market in question can be
rejected. We provide evidence that biases that have been reported for the traditional
betting markets for various sports around the world are also prevalent in this elec-
tronic market. First, quoted odds show the typical favorite-longshot bias and home
bias for all bookmakers. Accordingly, odds-implied probabilities of favorite and home
wins are significantly biased downwards. Second, while one single bookmaker does
not allow profitable betting strategies this changes when we look at all of them
simultaneously.

The chapter proceeds in the following way. Section 2 introduces the soccer betting
market. Section 3 describes the sample data and the conversion of odds into correspond-
ing probabilities. The subsequent two sections test the efficiency of the soccer betting
market, first statistically and then economically. Finally, Section 6 concludes.

2. THE SOCCER BETTING MARKET

Apart from numerous bricks-and-mortar bookmakers, recent years are characterized by
the emergence of new firms entering the market for sports betting, in particular via the
internet. These young firms often do not provide in-house betting anymore, but are com-
pletely focused on the electronic market. The market is very transparent as everybody is
able to compare odds over various bookmakers by browsing the internet. Furthermore,
firms have been founded that provide clients with an odds comparison service.

Due to legal and tax issues, Austria has become a major market in the business
of online betting, attracting clients from all over the world. Contrary to many other
jurisdictions, there is no betting tax, and the bettor can place bets on single matches.1

Austrian bookmakers offer a wide range of games, including all major national leagues
and international games. Accordingly, one would assume that this market is highly
competitive and also not necessarily restricted to single countries, as anyone, without
nationality restriction, can open up an account with the bookmaker and participate in
the market. We have identified 12 bookmakers based in Austria providing odds for soc-
cer games of the major European leagues. The business of online sports betting had

1In the UK, for example, bettors are restricted to combining bets on different matches or half-time and full-
time results. Presumably, this is about to change due to increased competition from offshore bookmakers.
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a turnover of 110,000,000 Euro in the year 2000 in Austria and has taken a share of
approximately one-third of the total betting business. This share, as well as the industry
as a whole, are expected to further increase significantly over the next years.

Sports betting is organized either as a pari-mutuel (e.g., horse races) or a fixed-odds
market. With the latter, the bookmaker fixes odds a few days prior to the match and
therefore faces an uncertain profit margin. European soccer betting is organized in a
special form of fixed-odds market. Once bookmakers have posted the odds, they stick
with them until the end of the betting period.2 Therefore bookmakers bear the additional
risk of an unbalanced book. Furthermore, bettors may utilize new information that arises
during the betting period. Consequently, it is all the more important for bookmakers to
accurately assess match outcome probabilities and anticipate bettors’ behavior.

3. DATA DESCRIPTION

We have collected odds for games of six European national leagues (Austria, England,
France, Germany, Italy, and Spain) as well as of international games (World Cup quali-
fying, Champions League, and UEFA-Cup). Overall our database comprises odds on the
outcomes win of home team, win of away team and tie for about 1,800 games, played
in the season 2000–2001. The sample was chosen according to the range supplied by
most of the bookmakers. While some additional leagues are sometimes also available,
they often only allow bets combining at least three games. In order to facilitate further
analysis these games were not considered.

In a first step, the odds are used to compute implied probabilities of the three possible
outcomes and the take-out rate in the following way. Assuming an equal margin for the
three outcomes, we arrive at a system of four equations with four unknowns.

Pi =
(1 − h)
Qi

(1)∑
i

Pi = 1 (2)

In the equations above, h denotes the take-out rate and Qi(Pi) the odds (implied
probability) of outcome i (win home, win away, or tie) for the respective game. There-
fore we hold the take-out rate constant over the three outcomes, but not over the series
of games.

The average game offers an odds system of 2.0/3.2/3.8 for the outcomes win home
team, tie, and win away team, respectively. The average take-out rate over all games and
all bookmakers amounts to about 14.9%, but a large variation among the firms can be
observed, ranging from 10.9% to 18.0% (see column two in Table 1). We can observe a
clear tendency to underestimate the probability of a home win, because while the aver-
age implied probability amounts to 0.463, a win for the home team occurred in 50.6

2Betting rules give the bookmaker the option to change quoted odds afterwards, but this is hardly ever done.
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TABLE 1 Descriptive Statistics

Bookmaker h P1 PX P2

Bookmaker A 0.145 0.458 (0.117) 0.269 (0.028) 0.273 (0.098)

Bookmaker B 0.109 0.470 (0.131) 0.267 (0.032) 0.263 (0.112)

Bookmaker C 0.156 0.462 (0.122) 0.273 (0.029) 0.266 (0.105)

Bookmaker D 0.148 0.460 (0.121) 0.272 (0.030) 0.268 (0.102)

Bookmaker E 0.144 0.476 (0.130) 0.261 (0.029) 0.263 (0.113)

Bookmaker F 0.123 0.467 (0.129) 0.271 (0.032) 0.262 (0.110)

Bookmaker G 0.148 0.459 (0.119) 0.274 (0.032) 0.266 (0.097)

Bookmaker H 0.160 0.462 (0.114) 0.270 (0.026) 0.268 (0.098)

Bookmaker I 0.180 0.450 (0.108) 0.276 (0.022) 0.274 (0.093)

Bookmaker J 0.150 0.469 (0.124) 0.268 (0.029) 0.263 (0.106)

Bookmaker K 0.162 0.463 (0.123) 0.272 (0.032) 0.265 (0.104)

Bookmaker L 0.151 0.460 (0.117) 0.274 (0.029) 0.265 (0.099)

Ex-post 0.506 0.260 0.233

NOTE: The numbers represent the average odds-implied probability of a home win, a tie,
and an away win. In parentheses we quote the corresponding standard deviation.

out of 100 games. On the other hand, probabilities of a win for the away team and a
tie are overestimated (0.267 vs. 23.3 away wins and 0.270 vs. 26 draws). This finding
provides first evidence for the stylized fact of home bias, observed in other betting mar-
kets as well. The standard deviation of the implied probabilities varies over the possible
outcomes and is remarkably lower for tie probabilities. While the standard deviation
for tie probabilities is about 0.03, the variability of home and away probabilities is
roughly four and three times larger, respectively. Subsuming, all considered bookmakers
exhibit similar patterns concerning probability estimates, but differ significantly in the
take-out rate.

4. EFFICIENCY TESTS

4.1. Statistical Tests

The classical rational expectations test involves a regression of the forecasting vari-
able on the forecasted variable. If the intercept of this linear regression is significantly
different from zero, then the prediction is biased, that is, the prediction is on aver-
age too high or too low. If the slope significantly differs from one then the variance
of the prediction is too high or too low relative to the variance of the predicted vari-
able. In the context of soccer betting, the forecasting variable is the bookmaker’s
odds implied probability and the forecasted variable is a binary variable indicating if
team one has actually won the game. Due to the fact that the dependent variable is
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discrete with only two possible outcomes, the linear model seems to be inappropriate.
Instead, binary choice models seem to be more suitable. For instance, Lo (1994)
applies such a model to test efficiency. In these models, the fitted values are trans-
formed by a nonlinear function to ensure that they are in the interval between zero
and one (see e.g., Greene, 2000). The usual choice for this function is the normal or
the logistic probability function, corresponding to the probit or logit model. However,
the nonlinear functional form of the probit or logit model causes another problem. Our
hypothesis is formulated as a linear relationship between forecast and forecasted vari-
able. Therefore, the relevant null-hypothesis cannot be formulated in terms of a non-
linear model. Probit/logit parameters are usually converted to marginal effects and test
statistics are computed based on the average marginal effects. It can be shown in sim-
ulation experiments that the average marginal effect is biased downward even for an
efficient forecast. Intuitively, the reason for this is that the tails of the normal and
logistic distribution function flatten out at very low and very high probabilities, which
is not necessarily supported by the data, but enforced by the functional form of the
model.

Given the drawbacks of alternative specifications, we choose to use a linear model.
We believe that the mis-specification does not do much harm, given that bookmakers’
odds are capped at some minimum and maximum and therefore we do not have
data points at the extreme ends of the unit interval. This view is supported by the
observation that fitted values for our models never fall outside of the unit interval.

Another problem associated with odds for team sport events as pointed out by Golec
and Tamarkin (1991) is that in team sports the home team is more often the favorite than
the away team (due to the home advantage) and therefore both effects are correlated.
At the same time, odds are usually quoted with the home team being team 1. To control
for this effect, we apply the test strategy of Forrest and Simmons (2001). First, we
randomly select the focus team for each game. Then in this random sample we estimate
the following equation:

IWi
= �0 + �1 × PW INi + �2 × IHi

(3)

In Equation (3), IWi
denotes a dummy variable indicating the win of the focus team, IHi

refers to a dummy variable indicating whether the selected team is actually the home
team, and PWINi refers to the probability of the home team winning as implied by the
bookmaker’s odds in game i. We account for heteroscedasticity by using robust stan-
dard errors (White, 1980). We test the parameter restrictions �1 = 1 and �2 = 0 using
t-tests and compute an F -test statistic for the joint hypothesis of �0 = 0, �1 = 1 and
�2 = 0.

Now, the question remains if the results of the hypothesis tests are artifacts of the
particular random sample. To test for that, we perform the random selection 80 times
and record the proportion of significant relationships at the 5% significance level. Under
the null hypothesis that the true relationship is marginally significant at the 5% level,
we should find not significantly more than 5% significant relationships. The observed
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TABLE 2 Regression Results

Bookmaker ��1 ��2 �F -Statistic

Bookmaker A 1.138∗∗ 0.055∗∗ 6.15∗∗∗

Bookmaker B 1.161∗∗ 0.052∗∗ 6.56∗∗∗

Bookmaker C 1.129∗ 0.043∗∗ 4.44∗∗

Bookmaker D 1.160∗∗ 0.045∗∗ 5.82∗∗∗

Bookmaker E 1.157∗∗ 0.050∗∗ 6.05∗∗∗

Bookmaker F 1.144∗∗ 0.048∗∗ 5.59∗∗∗

Bookmaker G 1.195∗∗∗ 0.043∗∗ 6.53∗∗∗

Bookmaker H 1.149∗∗ 0.050∗∗ 5.95∗∗∗

Bookmaker I 1.170∗∗ 0.044∗ 5.81∗∗∗

Bookmaker J 1.151∗∗ 0.035∗ 4.05∗∗

Bookmaker K 1.150∗∗ 0.054∗∗∗ 6.45∗∗∗

Bookmaker L 1.142∗∗ 0.046∗∗ 5.23∗∗∗

NOTE: ***/**/*, significant on 1%/5%/10% level.

proportion of significant relationships, �, is normally distributed and therefore we
compute the following test statistic.

t =
|� − 0.05| − 1

2n√
�× (1−�)

n

(4)

Table 2 shows the result for all bookmakers vis-à-vis Equation (3) and corresponding
statistical tests. The numbers denote the average coefficient over the 80 trials and the
significance refers to the test statistic corresponding to Equation (4). We find strong
evidence of a home bias, because the average coefficient of the home indicator variable
is significantly greater than zero for all but one bookmaker on a 5% significance level.
Furthermore, we observe a favorite-longshot bias, since the average �1 is significantly
greater than one for all bookmakers on a 5% significance level. As expected from these
results, the joint hypothesis of overall market efficiency can also be rejected for all
bookmakers at a 5% significance level.

Our findings are not in line with the results of Forrest and Simmons (2001), who
observe a trend toward efficiency from 1996–1997 to 2000–2001. They attribute this
to the rise of offshore bookmakers, which offer odds mainly over the internet. On the
contrary, we find that major biases reported in the betting literature are present and
highly significant also in this market. However, the question remains whether these
inefficiencies are evenly distributed over the various leagues in our sample. Preliminary
analysis of subsamples by leagues suggests that odds for those leagues that are likely to
receive more attention from international betting clientele (e.g., England) are less biased
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than leagues that are more of national rather than global importance (e.g., Austria).
Furthermore, competitive balance might be of importance as in some leagues strength
is distributed more evenly over the teams. Unfortunately, the subsamples corresponding
to national leagues are still too small to perform statistical tests on the disaggregated
data. Therefore, this question is postponed to future research when more data becomes
available.

4.2. Economic Tests

A different approach to test for market efficiency is to examine various betting strategies.
First, we are interested in differences in the performance of various strategies in general,
and second we search for technical rules yielding positive returns. If the latter occur in
the dataset, this would be a strong indication of inefficiency.

In a first step, we test, for each bookmaker separately, whether some predefined
strategy would have yielded abnormal returns. Bettors with absolutely no relevant infor-
mation will select randomly, which can be captured by a strategy involving all possible
bets. This would have lead to a loss between 0.145 and 0.220, depending on the book-
maker (see column two in Table 3). Simply playing home wins, ties, or away wins,
every single game yielded very different performances. While home teams offered an
above average rate of return, odds on away teams bore high losses (see columns three
to five). This result is not surprising, since the previous section showed that a home bias
is prevalent in odds-implied probabilities. Furthermore, we classify favorites and under-
dogs as teams with an average odds-implied probability of greater/less than 0.5/0.2 over

TABLE 3 Betting Strategies I

Bookmaker All H T A F U

Bookmaker A –0.182 –0.063 –0.177 –0.305 –0.027 –0.434

Bookmaker B –0.145 –0.044 –0.150 –0.241 –0.023 –0.351

Bookmaker C –0.181 –0.085 –0.196 –0.263 –0.066 –0.370

Bookmaker D –0.183 –0.069 –0.189 –0.289 –0.033 –0.431

Bookmaker E –0.168 –0.082 –0.159 –0.264 –0.076 –0.316

Bookmaker F –0.152 –0.050 –0.164 –0.243 –0.043 –0.355

Bookmaker G –0.187 –0.066 –0.206 –0.289 –0.019 –0.458

Bookmaker H –0.198 –0.088 –0.199 –0.309 –0.052 –0.445

Bookmaker I –0.220 –0.085 –0.244 –0.331 –0.045 –0.473

Bookmaker J –0.176 –0.092 –0.181 –0.253 –0.057 –0.376

Bookmaker K –0.196 –0.081 –0.204 –0.303 –0.061 –0.419

Bookmaker L –0.185 –0.076 –0.196 –0.283 –0.047 –0.403

NOTE: The numbers refer to the rate of return, which could have been achieved by playing
all outcomes every game (All), only home wins (H), only ties (T), only away wins (A), only
favorites (F), and only underdogs (U).
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TABLE 4 Strategies Over All Bookmakers

Strategy Games Rate of return

Home win 1,790 –0.0004

Tie 1,790 –0.1146

Away win 1,790 –0.1740

All 5,370 –0.0963

Favorite 661 0.0080

Underdog 514 –0.2661

Favorite-home 634 0.0051

Favorite-away 27 0.0763

Underdog-home 15 –0.0667

Underdog-away 499 –0.2720

NOTE: The numbers refer to the rate of return, which
could have been achieved by playing all outcomes every
game (All), only home wins, only ties, only away wins,
only favorites, and only underdogs.

the bookmakers, respectively. We find huge differences in the performance of these two
betting strategies, which again confirms the favorite-longshot bias in our dataset (see
the last two columns in Table 3). In any case, when restricting ourselves to a single
bookmaker, we were not able to observe strategies yielding a positive rate of return.

In a second step, we simulate the strategy of a bettor maximizing expected return,
who always searches for the highest odds on the respective game (see Table 4).
Hence, this approach exploits interfirm differences in combination with the simple bet-
ting strategies presented above. Accordingly, we could have achieved a positive rate
of return, betting on favorites (0.80%) and an even position betting on home teams
(–0.04%). This once again highlights the home bias and favorite-longshot bias implicit
in the bookmakers’ odds. The positive rate of return corresponding to betting on
favorites originates from games where the home team is the favorite. Interestingly,
favorites playing away seem to offer an even higher potential for successful strategies,
but this constellation does not appear very often in our data. On the other hand, in most
cases, the underdog coincides with the away team and therefore these teams offer the
worst rates of return.

5. CONCLUSION

We have empirically investigated the efficiency of the online soccer betting market in
Austria, one of the major betting markets in Europe. Our results indicate the existence
of a statistically significant home bias as well as a favorite-longshot bias. Literature on
traditional betting markets offers various explanations for the existence of these biases
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(see Hausch and Ziemba, 1995; Sauer 1998; and Vaughan Williams, 1999). Still, it is
surprising that they are also present in this highly transparent and competitive market.
While one single bookmaker does not allow profitable betting strategies, this changes
when we look at all of them simultaneously. Out-of-sample data will show whether these
results are stable over time. Nevertheless, with respect to data on the season 2000–2001,
we conclude that the Austrian online soccer betting market is not weak-form efficient.
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Abstract

This chapter provides an outline to the statistical, economic, and practical considerations
relevant to designing lottery games. The focus is on lotto but some of the issues apply
more generally.

We illustrate the analysis using an estimated statistical model of the determinants
of lotto sales, that builds on recent research on horsetrack betting, to simulate the way
in which changing the design of lotto games might affect their sales using data for the
UK. The research complements recent lottery research that models the proximate deter-
minants of sales, such as jackpot size, by exploiting changes induced by rollovers as a
source of natural experiments. The approach pursued here assumes that what matters
for sales is the shape of the prize distribution and this shape is summarized by the first
three moments of the prize distribution (mean, variance, and skewness). The method-
ology builds on the characteristics approach to demand analysis that was pioneered by
Lancaster. The approach has the advantage that it can be used to simulate the effects
of hypothetical changes in the shape of the prize distribution that come about because
of game design variation. We estimate the model, taking account of the endogeneity of
the moments, and use the estimates to simulate how sales would evolve if game design
were changed.

1. INTRODUCTION

The traditional economist’s toolbox is not well equipped to understand why risk-averse
individuals would participate in gambles that are actuarially unfair bets. Thus, under-
standing gambling has been something of a problem for economists. However, gambling
is a pervasive feature of most economies, and a number of simple departures from
traditional economic thinking have been suggested in the literature to attempt to rec-
oncile gambling with the idea that individuals are risk-averse. One recent phenomenon
in betting markets has been the worldwide growth of sales in lottery products over the
last 40 years. The scale and scope of lotteries has expanded considerably over recent
decades and there has been considerable controversy over their increasing use by gov-
ernments as sources of revenue. In most economies, lottery operators are charged with
raising revenue that can then be used either to support general government expenditure
or is earmarked for particular purposes. Indeed, operators are generally expected, within
bounds, to maximize the revenue that they raise.

We will take it for granted that such gambles are not (or, rather, are not just) finan-
cial assets that have no intrinsic value in themselves. Rather, we view a lottery ticket as
a product within which is embedded a number of characteristics, some of which con-
sumers like and some they don’t, but that, at least for some individuals, the attractive
characteristics outweigh the unattractive ones. Some of these characteristics are fixed,
and while these might contribute to the average level of sales, because they are fixed,
they cannot explain variation in sales over time. For example, the number of lottery sales
outlets is usually relatively static over time and so cannot explain sales variation over
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time. However, we would like to know how sensitive sales are to the design parameters
of games—in particular, those parameters that are constant because they are embedded
in the design of the game. For example, we are interested in the take-out rate (the pro-
portion of revenue staked that is not returned as prizes through the various prize pools).
Usually, a certain share, sn, of the total prize money is reserved for the jackpot prize
[claimed by the winner(s) who have “matched” all of the n numbered balls that are
drawn from the N that are available] and the rest is allocated into separate prize pools,
in predetermined shares sn−1, sn−2, and so on, to those who match n − 1, n − 2, and
so on, balls. N and n determine the probabilities, pn, pn−1, and so on, of winning the
n-ball, n − 1-ball, and so on, prize pools.

Occasionally, games will change in design and, in principle, one might then inves-
tigate the effect of such a change on sales revenue. However, such changes in game
design usually occur for reasons that are correlated with sales—for example, sales may
be flagging and what was once a sensible design may now be deemed to be less suit-
able. So, to arrest the sales decline it may be sensible to change the design. Thus, it is
not generally appropriate to use such events to show how some change in general game
design, that was not correlated with previous sales, would affect sales. For example,
policymakers may be interested in knowing how variations in the take-out rate will
affect sales revenue of a given game. To cast light on such questions, we need to see the
effects on sales of changes that are not chosen by the operator. Of course, there are no
such changes in practice. However, a peculiar feature of many lottery games is that they
are pari-mutuel bets where the number of winners of each prize pool in any particular
draw is a random variable. This leads to a probability that there will be no winner in any
draw (a rollover). Lottery games that have this feature are usually referred to as lotto
games and are designed so that when a rollover occurs, the jackpot prize pool is trans-
ferred to the jackpot pool of the next draw. Rollovers change the prize distribution of the
game. This chapter exploits the effects of rollover-induced changes in the shape of the
distribution of prizes to make inferences about how design-induced changes in the dis-
tribution would affect sales. That is, even though we do not have any changes in game
design in our data that could be informative, we do have rollovers that, in principle, are
informative about design effects.

In this chapter, we explore how the sales of lottery tickets are affected by the shape
of the prize distribution that is ultimately determined by the way in which the lottery
game has been designed. By shape, we mean the distribution of the prize fund across
the winners of different prize pools. The size of the overall fund is determined by the
take-out rate (which is used to pay for the operator’s costs or is given to the government
or its agent to be spent), and the level of sales. Most lotto games feature a jackpot prize
pool that is reserved for winners of the hardest to win jackpot prize (usually matching
all n of the balls drawn), another for those that fulfill the easier task of matching n – 1
balls, and so on. Each prize pool will consist of a given proportion of the overall prize
fund. Thus, in lotto games, there is random variation in the number of winners of each
prize pool from draw to draw. And, in particular, the number of jackpot winners varies
so that there will sometimes be no jackpot winners in a given draw. The rules of lotto
then usually dictate that the unclaimed jackpot pool gets transferred to the following
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draw and added to that draw’s jackpot pool. Casual empiricism shows that rollovers are
associated with higher sales in the subsequent draw because they increase its jackpot
prize pool.

Thus, the distribution of possible winnings is determined by: game design parame-
ters, such as the take-out rate and the given proportions of the overall funding going to
each prize pool; random fluctuation in the number of winners in each prize pool; and the
size of any rollover amount from the previous draw. The design parameters are known
to players and are fixed; the rollover amount varies from draw to draw but is known one
draw in advance; the number of winners of each prize pool depends on the number of
players and on the numbers that are drawn in that draw (if popular numbers1 are drawn
there will be many winners), which are not known in advance.

In practice, there are many complications that have to be faced, but the essence
of our analysis is based on exploiting the variation in the shape of the prize distribu-
tion to explain sales variation over time. In particular, we examine how variation in
the prize distribution affects sales to test the hypothesis that players are motivated, in
part, by the skewness of the prize distribution. Lotto prize distributions are highly left
skewed because almost all players lose their stakes, with a small proportion winning
small prizes, and a very small proportion winning very large prizes. But when a rollover
occurs, the size of the largest prize rises and so the degree of left skewness falls because
the largest prize suddenly got larger.

In addition to examining the proposition that skewness motivates gambling,2 our
analysis has a practical purpose: we use this estimated model to try to make counter-
factual inferences about how changes in the design of the lottery game that generates
our data might affect the level of sales. While the dataset we use does not contain
any changes in the design parameters of the game, we exploit the fact that there is
a deterministic relationship between the mean, variance, and skewness of the prize
distribution (the prize distribution’s first three moments) and there is a deterministic
relationship between the design parameters and the level of the rollover from the pre-
vious draw. Since we know how the moments depend on both of the game design
parameters, and on the size of the jackpot pool, and since we can estimate how sales
depend on these moments, we can combine these to infer how sales depend on the
design parameters, even though there has been no variation in those parameters across
the sample.

This chapter builds on earlier research in Walker and Young (2001). The major
empirical difficulty with that earlier work is that it failed to resolve satisfactorily the
fact that, although sales will depend on the moments of the prize distribution, the
moments of the prize distribution themselves depend on sales. Thus the relationship
between sales and the moments of the prize distribution is a simultaneous one—so
the major empirical difficulty we face is to estimate the extent to which variations

1Ziemba (1986) and MacLean et al. (1992) provide extensive evidence on such conscious selection—that
players’ choice of numbers is not random so that different numbers, while each having the same probability
of being drawn, will generate different numbers of winners, and so can be exploited to improve one’s expected
winnings. See also Thaler and Ziemba (1988), Hartley et al. (2000), and Ziemba (this volume).
2In horse race betting, the idea that punters favor longshots unduly is a related phenomenon.
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in the moments cause variations in sales. The usual way of resolving simultaneity in
the relationship between two variables is to exploit factors that affect one relation-
ship but not the other. A possible candidate factor is the size of the rollover—this
affects sales in the next draw via the effect on the moments of the prize distribution
and Walker and Young (2001) use rollovers as an instrumental variable. However, the
current jackpot size includes any rollover from the previous draw, which will be a
deterministic proportion of the sales in the previous draw. Unfortunately, sales in one
draw may be correlated with sales in the next, even in the absence of rollovers. For
example, this correlation might arise because a temporary factor that boosts sales in
one draw may bring a few new individuals into the game who then gain (or regain)
the habit of playing and so subsequent sales are affected. This serial correlation in
sales implies that we cannot use sales in a previous draw. Unfortunately, this rules
out exploiting the rollover size, because this is a given fraction of the sales in the
previous draw.

Moreover, the moments are not known until the draw is closed and sales can be
tallied. Thus, it seems plausible that individuals form expectations of the moments
based on sales in the current draw and that these expectations are driven, in part, by
any observed rollover from the previous draw. A large rollover will lead potential play-
ers to expect larger sales in this draw so that the expectation of the expected value will
be larger, the expected variance will be larger, and the expected level of skewness will
be less left skewed, than would be the case with no rollover.

Here, we exploit a peculiar feature of the game whereby the proportion of winners
in each prize draw is a random variable that depends on the winning numbers that are
actually drawn. Some numbers are more popular than others. In draws where unpopular
numbers are drawn, there are few winners of prizes below the jackpot level (as well as
few winners of the jackpot). One purpose of these smaller prizes in lotto design is that
many small winners might encourage many players to think that winning big is more
likely than it really is. Moreover, many players participate through consortia—groups
of workplace colleagues or family members who agree (explicitly or not) to share their
winnings. When such consortia win small prizes, they are thought to often reinvest their
winnings, rather than take the trouble of dividing the winnings into very small amounts
per consortium member. Thus, for a given level of sales in a particular draw, the number
of small prize winners (which is a random variable, conditional on overall sales) does
affect the level of sales in the subsequent draw. This will be true irrespective of any
serial correlation in sales. Our modeling strategy is to use this property to isolate the
effect of moments on sales. Once we allow for this endogeneity of the moments of the
prize distribution, we find quite conclusive evidence that skewness is an important factor
in driving lottery sales.

The rest of the chapter is organized as follows. Section 2 explains lotto games and
how to calculate their prize distributions, which is fundamental to understanding lotto
design. Section 3 builds on this to workout the expected value of a lottery ticket, and
Section 4 extends this to include higher moments of the prize distribution. Section 5
explains the econometric methodology that provides unbiased estimates of the effects
of exogenous variation in the moments. Section 6 presents some tentative simulations
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of how sales would be affected by variation in the major parameters in the design of the
game. Section 7 concludes with some directions for future research.

2. THE ODDS OF WINNING A (PARI-MUTUEL) LOTTERY

Lotteries have traditionally featured selection mechanisms that have numbered tickets
drawn at random from an urn. While the details differ from game to game, modern
incarnations of the mechanism usually feature N numbered balls bouncing in a trans-
parent, often rotating, container, from which n are drawn (usually without replacement).
Individuals buy tickets by marking n numbers on a printed matrix of N numbers on an
entry form. The form is scanned electronically and a ticket is printed out and given to
the customer as a record. Each combination of n numbers has the same chance of win-
ning given by p = N!/n!(N − n)!. For example, in the commonly used n = 6, N = 49
design, p = 1/13,983,816. Thus, if sales are 40,000,000, then we would expect, on
average, the number of winners to be approximately 3. The probability that a given
ticket does not win is 1 − p. If two tickets are sold, then the probability that neither
are winning tickets is (1 − p)2, and so on, for three tickets, four, and on and on. Thus
the probability that there are no winners (that is, that there is a rollover) in draw
t when sales are St is given by (1 − p)St . Thus, suppose sales are around 40 (20)
million and p is 1 in 14 million, then the probability of a rollover is approximately
6% (25%).

The figures correspond approximately to UK figures for the Saturday and Wednes-
day lotto games. In practice, we observe many more rollovers in lottery games than
would be implied by the observed level of sales and the discrepancy are due to the
extent to which there are similarities in the way players choose their numbers—a phe-
nomenon known as conscious selection. This can be accommodated into the analysis by
allowing the rollover probability to be (1 − p)�St with � ≤ 1, such that � = 1 implies no
conscious selection (i.e., completely random choice) and � = 0 implies that all players
have chosen exactly the same combination of numbers.3

In practice, the tedium of lotto games causes sales to typically exhibit a long run sec-
ular decline. Thus, rollovers are doubly important if there is serial correlation in sales.
Rollovers cause sales to rise in the next draw and the serial correlation then causes
sales to rise in the draw after that (and after that . . .), albeit by to a lesser extent, in
all subsequent draws. Thus rollovers, of the appropriate frequency and size, can offset
the tendency for sales to decline because of tedium. However, more rollovers are not
necessarily better. If rollovers have high frequency, then players will come to expect
them and will engage in intertemporal substitution—reserving their lottery spend until
a rollover (or several) has already occurred before playing. The optimal frequency of

3See Hartley et al. (2000) for an analysis of the form of conscious selection and its extent, where we estimate
the extent to which the distribution of the number of winners of each prize pool departs from the theoretical
distribution when there is no conscious selection.
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rollovers will depend on the relative strengths of the trend decline, the intertemporal
elasticity of substitution, and the degree of serial correlation.

3. THE EXPECTED VALUE CALCULATION

In raffles, the expected value of a ticket falls with sales since the prizes are fixed. At low
levels of sales, tickets are valuable, and as sales rise their value falls to zero. The operator
faces the risk that sales revenue will not exceed the cost of prizes and the players face the
risk that they have to compete with many other players for the prizes. In lotto games, the
design is pari-mutuel and players compete for shares of the prize pool(s) as opposed to
fixed prizes. Thus, as sales rise, the prize pool expands, and the expected winnings (and
losses) remain the same. However, the possibility of a rollover implies that the (top)
prize pool might not be won at all in this draw, and this depresses the expected value of
participating in the current draw. Thus, sales have an additional effect on the expected
value of participating in any given draw—higher sales cause the rollover probability
to fall which raises the expected value. Thus, the expected value of a ticket in a given
draw depends on the size of the prize fund, which is the proportion of sales that is not
taken out as tax and operator costs (i.e., [1 − �]St where � is the take-out rate) plus any
rollover from the previous draw. But this is multiplied by the probability that there is at
least one winner, that is, 1 − (1 − p)St .

Further details of the algebra of the calculation of the expected value are in the
Appendix, but Figures 1 and 2 capture the important intuition. Figure 1 shows how the
expected value or mean return, call this m1t, of a lottery ticket that costs $1 for common
types of design in a regular (non-rollover) draw. In the figure the take-out rate � is set at
0.55, which is a typical value. The shape of this figure has given rise to what has been
called lotto’s peculiar economies of scale,4 since it shows that the game gets cheaper to
play (in the sense that the expected value gets higher) the higher are the sales. This is
because the higher sales are, the smaller is the chance of a rollover occurring, because
more of the possible combinations are sold. This makes the return higher in the current
draw because rollovers take money from the current draw and add it to the next draw;
and your ticket in this draw gives you a possible claim on prizes in this draw but not the
next. So the higher the chances that a jackpot rolls over, the less a ticket for the current
draw is worth. Indeed, from an individual player’s perspective, it doesn’t matter if the
money is rolled over or given to another player in this draw, only that he or she does
not win.

At very large levels of sales, all game designs have the same mean return, which
simply equals the 1 − �, because the chance of a rollover is very small when ticket
sales are very large since most possible combinations will be sold. At any given level
of sales, easier games offer better value in regular draws since the rollover chance is
smaller.

4See Cook and Clotfelter (1993).
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When a rollover of size Jt−1 has taken place, the expected value function shifts
upwards by an amount equal to Jt−1/St (because everyone has the same chance of
getting the rollover amount) and this diminishes as St rises. Thus, the function shifts
upward more at low sales than at high sales and the shifted function will, in general,
have a single maximum. Figure 2 shows the shape of the m1t function for regular and
rollover cases. The effects of rollover on expected value, and thence on sales, will be
small: when sales are high, and when Jt−1 is small because sn is small or because �
is high.

A double rollover, when the jackpot had not been won for two earlier draws, would
shift the m1t even higher upward. In principle, with multiple rollovers the expected value
could exceed the cost of the ticket (see Ziemba et al., 1986)—although we would expect
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sales to rise with the expected value and consequently we would be unlikely to observe
tickets being worth more than their cost.

4. HIGHER MOMENTS OF THE PRIZE DISTRIBUTION

It seems likely that sales are affected by higher moments of the prize distribution as well
as by the first moment (i.e., the expected value of the prize distribution)—in particular,
sales are likely to be affected by the variance and skewness of the prize distribution.
Indeed, if only the first moment mattered, then we would find it difficult to reconcile
gambling with aversion to risk. Individuals who are risk-averse would not be expected
to participate in lotto games that offered expected values that were less than the cost
of participation. There is accumulating evidence that gambling is affected by the skew-
ness in the prize distribution.5 That is, lotteries offer the possibility of a huge change in
lifestyle. Lottery prize distributions are highly left skewed—the vast majority of play-
ers lose a small amount (the stake), a small number win small prizes, and a very small
number win large prizes. However, the existing studies neglect the fact that the observed
moments in prize distributions are themselves a function of the bets that are placed.
For example, as sales rise in lotto, the expected value rises, and this makes participat-
ing more attractive. Moreover, lottery operators have chosen the design of the game to
deliver a particular vector of moments, taking into account the likely size of the market.
If the market is expected to be small, then we might expect the operator to choose a
different design (one that is easier to win) than if the market were large. Similarly, as
well as the expected value, the higher moments of the prize distribution will be affected
by sales. Thus, the mechanical relationship between sales and the moments of the prize
distribution may contaminate the response of sales to variation in the moments that are
due to chance.

The distribution of winnings implied by the n/N design typically has a large spike at
zero, since most players lose altogether, and successive peaks corresponding to match-
ing more of the n winning numbers until a final peak occurs for matching the n-ball
and winning (a share in) the jackpot prize pool. The distribution at these further local
maxima associated with more difficult-to-win prizes arises because the amount won
depends on the number of people who also win a share in each prize pool. Thus,
instead of a spike, there is a small peak with a (local) maximum in the distribution
for each prize type, which corresponds to the most probable number of winners for
that type, but around this is a distribution that arises because there may be fewer
winners each getting a larger share of the pool or more winners than expected each
getting a smaller share. Successive peaks, corresponding to the mean winnings of big-
ger prizes, are lower (as the chance of winning is smaller) and narrower (because the
variance in the number of prize winners is lower for the more difficult to win prizes).
The overall distribution is thus left skewed (by the large majority of losers) but a

5See Golec and Tamarkin (1998) for U.S. racetrack betting, and Garrett and Sobel (1999) and Kearney (2005)
for U.S. lotteries.
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rollover decreases the left skew since it increases the size of the jackpot pool. The for-
mulae for the variance and skewness are rather complicated functions of the rollover
size and the game design parameters and can be seen in the Appendix to Walker and
Young (2001).6

The characteristics approach to demand due to Lancaster (1971) is useful for think-
ing about sales of closely related products.7 The essence of the approach is that, in
contrast to conventional microeconomic theory, goods are not valued for their good-
ness but rather for the bundle of characteristics that they contain. So goods that are
good substitutes for each other are likely to contain similar combinations of character-
istics. In the context of the lottery market, the products sold effectively differ in their
prize distributions and a convenient way of summarizing these distributions is via their
first three moments. The first moment, the expected value m1t, is effectively the price
variable since the expected cost of participating is the face price (usually one unit of
currency) minus the expected value. Therefore, each lottery ticket costs 1 − m1t and the
larger is the expected value of a ticket the better the bet is. Apart from this mean return
to a ticket, a ticket is characterized by design parameters that imply specific variance
(m2t), which is a characteristic that is disliked, and specific skewness (m3t), which is
liked.

Suppose a market is characterized by two lottery games, labeled W and S, both with
the same take-out rate for convenience. The position is illustrated in Figure 3 where each

6That paper makes clear that there is a strong correlation between each of the moments of the prize distribu-
tion. In particular, locally at least, they each respond in similar ways to a variation in sales. What is required
to break this multicollinearity is data that contains sufficient variation in sales.
7The first application was by Gorman (1991) that modeled egg sales in the UK. More recently, the approach
has been used for thinking about “brands” of goods (see Hausman, 1997; and Putrin, 2002).
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product is portrayed as a ray in characteristics space. The lengths of the rays are given
by multiples of 1 − m1t to indicate their cost. Both games have specific combinations
of −m2t (variance is disliked, so it is measured negatively in the figure) and m3t (skew-
ness) with the W game being less skewed, at given variance, than the S game. Each
ray indicates a ticket type and movements along the ray away indicate higher levels of
sales.

We could envisage the population having a distribution of preferences between −m2t

and m3t with many preferring the heavily skewed S game but, nonetheless, some pre-
ferring the W game. Aggregate sales of the two products can be described by a position
along the line WS. Imagine that the position E is chosen where the market has a slightly
higher proportion of S-type tickets than W-type tickets (as seen by their distances along
the respective rays from the origin). Now consider what happens when the W game
experiences a design change that results in a price fall so the line OW gets longer since
more W-type tickets can be afforded. And suppose that the skewness in W’s prize distri-
bution, at any level of variance, gets larger, so OW gets less steep. Thus, W′ has become
a more attractive bet and the frontier for the aggregate market changes to W′S. Now that
W has become both cheaper and more similar in the combination of characteristics that
it offers to S, we would expect E to move to a position like E′ where many more W-type
tickets are bought and somewhat fewer S-type. Note that if only S existed, sales would
be OS. If W is now introduced, then sales of S slump, but this is more than compen-
sated for by the extra W sales. Thus, diversification of the game portfolio can increase
aggregate sales because two products better cater to the distribution of preferences for
the characteristics in the population.8

5. ECONOMETRIC METHODOLOGY, DATA,
AND ESTIMATES

One way of summarizing the complications of how all the various aspects of game
design impacts on sales is through the mean, variance, and skewness of the prize
distribution.9 for example, one might allow St = s(m1t,m2t,m3t,Xt) + �t bychoosing
some parametric form for S(.).10 The term �t captures the effects of all unobservable
factors (and may be correlated with the same factors in previous draws—serial cor-
relation) on sales; while Xt is a vector of observable factors that, independently of

8Note that m2t and m3t are not, in general, independent of each other—it may be difficult to have more of
one without having more of the other also. While it will not be possible to have any combination of the two,
one may be able to expand the set of possible combinations through more a complex design—such as a bonus
ball.
9Note that each moment depends in a known and deterministic way on n,N , �, s (the vector of s’s), and on St

and Jt−1. That is, mkt = mkt(n,N , �, s,St,Rt−1Jt−1), for k = 1, 2, 3, and so it is clear that, while sales depend
on the moments, the values of the moments also depend on sales. Thus, when estimating the causal effects of
the moments on sales, account needs to be taken of their endogeneity.
10For a simple example, Farrell et al. (2000) assumed that S(.) was a linear function of m1t and did not depend
on higher moments at all.
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the parameters of the game, affect sales. Most other research has focused on the role
of such Xt’s in determining sales.11 One modeling approach would be to substitute
the formulas that show how the moments are related to the game design variables into
S(.) to obtain a reduced form model of sales whereby St = F (n,N , �, �,RtJt−1) + ut
where Rt = 1 if there was no jackpot winner in t − 1. This F (.) function is a com-
plicated, highly nonlinear function, and it is not practical to estimate the structural
model coefficients from this reduced form. A special case of F (.) arises when all of
the game design parameters are fixed in the time series being modeled, so that only
the rollovers determine sales variation across time, although this will still be highly
nonlinear.12

A fundamental issue is that while RtJt−1 affects St in F(.), it also depends on St−1,
because lagged sales affect the rollover probability and also determine the size of the
previous jackpot. Thus, the presence of serial correlation is sufficient to undermine
the assumption that rollovers occur randomly, since it implies that St depends on St−1

directly, as well as indirectly via any rollover.
However, conscious selection is a strong phenomenon in lotto markets. Operators

encourage it since having a sense of ownership over the numbers that one bets on makes
playing more persistent—individuals are more likely to play in every draw if they feel
that they are playing their own numbers. That is, conscious selection induces serial
correlation in sales. Moreover, it is thought that allowing players to choose their own
numbers has a large impact on sales.

If players consciously select their numbers when they bet, then there is more likely
to be large variation in the number of prize winners in each prize pool than if there were
no conscious selection. In particular, in 6/49 the number of three-ball matches is likely
to vary considerably from draw to draw. The number of winners of the higher prize
pools will also vary for the same reason. With sales of 40 million in 6/49, we would
expect the number of three-ball winners to be approximately 700,000 with a standard
deviation of approximately 100,000. Three-ball winners usually win a modest prize13

and it is common for players to reinvest these modest levels of winnings in more lottery
tickets in the next draw.14 Moreover, a substantial minority of sales is accounted for

11Notice also that the specification treats rollover-driven temporary variation in the moments as equivalent to
design-induced permanent variation in moments. Nonetheless, it is useful, for the moment, to think of S(.)
as capturing the structural determinants of sales—that is, the variation in sales that is due to variation in the
moments that arise for any reason.
12Moreover, F (.) is only the reduced form of S(.) if �t exhibits no serial correlation. If it does, then the rollover
size would be determined by previous sales and by the level of sales two draws previously. The reduced form
would then have to substitute RtJt−1, Rt−1Jt−2, and so on, out of the model recursively. Moreover, a further
problem arises because total sales, and hence the moments, are not known when individuals are making
purchase decisions, so players have to estimate the moments from the information that is known prior to the
draw—and this information set will include the value of Rt−1Jt−1.
13In the UK game, the three-ball prize is not pari-mutuel. Rather it is a fixed prize of £10.
14Retailers are empowered to pay out the small prizes. This, in itself, will encourage players to spend their
winnings on tickets for the next draw, when they collect their winnings. Indeed Guryan and Kearney (2005)
identify a lucky store phenomenon that arises because of habit persistence in players’ expenditures.
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by syndicates15 who are thought to reinvest such small dividends to save the trouble
of distributing them to syndicate members. Thus, in practice, the number of three-ball
winners affects subsequent sales.16 Thus, we use an approach that uses the proportion
of three-ball winners in the t − 2 draw to explain the variation in RtJt−1 and then use
the predicted value of this instead of the actual value. The assumption here is that three-
ball (and four, five, five+bonus, and six) winners in draw t − 2 affect sales in t − 1, and
hence the probability and size of any rollover, but they are assumed not to directly affect
sales in t. This seems like a reasonable assumption.

The data is the sales and rollover information, winning number, and number of
winners of each prize pool that Camelot, the UK operator, is obliged to publish for
every draw. The data is sales in the Saturday and Wednesday online lotto games in the
UK from the first draw, though the introduction of the Wednesday game was introduced
in early 1997, to draw 310 in mid-1999 just before the start of the Thunderball game was
introduced.17 This spans the period when the portfolio of games consisted of the Satur-
day lotto game, then the Wednesday and Saturday 6/49 lotto games, then scratchcards,
which were introduced in early 1998,18 as well as the two lotto draws.

Figure 4 shows the history of sales over this period and for some time subsequent
to this. The estimation period covered a time when there was rapid growth in sales
fueled, in part, by several large rollovers which are indicated by the sharp spikes in
sales; followed by the introduction of the Wednesday lotto draw; and then the period,
after the introduction of scratchcards, that saw a rapid decline in scratchcard sales, a
slow decline in Saturday sales, and an even slower decline in Wednesday sales.19

We assume that the parametric form for Saturday and Wednesday sales, Ss(.) and
Sw (.), are log-linear. That is, the log sales in each draw is assumed to be a linear function
of the log of the moments.20 We include only the moments relating to the current draw
in each equation. We allowed for serial correlation and estimation was conducted using
seemingly unrelated regression methods to allow for the correlation in the residuals
across draws. That is, we allow the residual from the sales on a Wednesday (Saturday) to
affect both the coming Saturday’s sales as well as the following Wednesday’s.21 That is,
we estimate

15These are consortia of players who agree to contribute to the stakes each week and share the winnings. They
are commonly organized at the workplace.
16A simple correlation in our data for our two draws suggests that an additional 100,000 three-ball winners
in the large game draw at t will increase sales in t + 1 by a statistically significant 178,000 in the large game,
while the same for the small draw raises subsequent sales by 128,000.
17We reserve the data beyond draw 310 as a hold-out sample that allows us to conduct forecasting tests.
18The results were very similar when the dataset was extended to later periods when further portfolio
diversification took place.
19One of the peculiar features of the two games in the UK is that they were linked via their rollovers. That is,
if there are no winners, then the jackpot from Wednesday (Saturday) is added to the jackpot on the following
Saturday (Wednesday).
20When computing the moments, we allowed for conscious selection by calibrating � for each game so that
the level of sales was consistent with the correct number of rollovers across the estimation period. We use a
log specification to avoid negative predictions in simulation.
21We ignore scratchcard sales in our analysis and some very small games—the Extra games which were
extremely unpopular with players.



472 Chapter 22 • How to Design a Lottery

0

20

40

60

80

100

120

140

160

1 27 53 79 105 131 157 183 209 235 261 287 313 339 365 391

Draws

£ 
m

ill
io

ns
/w

ee
k

Scratch

Sat Regular

Weds Regular

FIGURE 4 UK sales (million pounds per week).

Sw
t = �wXw

t + �w
1m1t + �w

2m2t + �w
3m3t + �wt where �w

t = �ww�w
t−1 + �ws�s

t−1

Ss
t = �sXs

t + �s
1m1t + �s

2m2t + �s
3m3t + �st where �s

t = �sw�w
t−1 + �ss�s

t−1

Our vector X includes data on daytime maximum temperature and rainfall (the aver-
ages over the week of sale prior to the draw, averaged over all UK weather stations);
seasonal (month) control variables; a cubic trend; and the sales of scratchcards in the
week of sale. Further control variables were included in experiments and checks for
robustness, but even when they were statistically significant, they failed to change the
coefficients on the moments. Indeed, the estimated coefficients hardly change at all even
when all of the control variables (except the cubic trend) are excluded.

An important innovation in this research is that our estimation method treats the
dataset as an unbalanced panel (of two games)—it is unbalanced because the Wednes-
day game was not introduced until 15 months after the establishment of the Saturday
draw. The specification is a logical one but explicitly excludes any dynamic effects
apart from via the residuals. This is quite restrictive in this context, but relaxing this
specification gives rise to significant estimation difficulties.22

The results are presented in Table 1. We compare results with OLS (where the
m’s are treated as exogenous but we still allow for serial correlation). The standard
errors are robust to heteroskedasticity and a variety of tests of specification, parameter

22Estimation was conducted using GMM provided by the xtabond facility in STATA 10.
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TABLE 1 Estimated Parameters of Log Sales Equations

OLS using actual jackpot to determine m’s GMM using t − 2 winners of each prize pool

Wednesday Saturday Wednesday Saturday

m1 0.344 0.211 0.462 0.442

(0.090) (0.076) (0.111) (0.187)

m2 −0.042 −0.072 −0.062 −0.098

(0.009) (0.007) (0.016) (0.036)

m3 0.062 0.111 0.204 0.160

(0.024) (0.023) (0.080) (0.042)

�.w 0.057 0.003 0.050 0.010

(0.019) (0.022) (0.017) (0.021)

�.s −0.001 0.123 −0.002 0.273

(0.009) (0.020) (0.008) (0.081)

R2 0.932 0.800 0.938 0.821

NOTE: All equations contain control variables listed in the text. First stage results for the estimates show
that the moments are significantly positively affected by the number of three-ball and four-ball winners, and
significantly negatively affected by the number of jackpot winners. The results above were not sensitive to
the exclusion of the number of jackpot winners, which was heavily dominated by one draw where, because
popular numbers were drawn, there were more than 100 winners.

stability, and forecasting power, were employed.23 The OLS results show that sales are
a statistically significant increasing function of the mean of the prize distribution—so
better bets are more attractive ones; sales are a statistically significant but decreasing
function of the variance in the prize distribution—so riskier bets are less attractive; and
sales are a statistically significant and increasing function of the skewness of the prize

23A number of specification tests fail in the OLS forecast, suggesting that the endogeneity of the moments
is an important factor. Tests of their endogeneity strongly suggest that this is a problem—especially in the
Wednesday game. This is to be expected, since when sales are small, the moments are considerably more sen-
sitive to sales variation and jackpot size than when sales are low. In the GMM model we find that the AR test
is passed, indicating absence of higher order autocorrelation than the first order allowed here, although this is
sensitive to the inclusion of the cross-correlation between the two games. The ARCH test for heteroscedastic-
ity also passes, which is surprising given how the variance of sales seems larger in rollover weeks compared
to regular weeks. The normality test passes, although this failed when we tried to include earlier data in the
analysis—possibly because of the large outliers associated with early double rollovers. The parameter con-
stancy tests for both models (which were carried out on the remaining observations up to draw 395) narrowly
passed. The RESET test, however fails (albeit marginally) for Wednesday suggesting that there is some fur-
ther specification problem. It seems likely that this is associated with the use of a fixed degree of conscious
selection across draws. This implies that rollover frequency, conditional on sales, should be constant across
draws. In fact, there is some suggestion that rollover frequency is falling. Moreover, it seems likely that the
degree of conscious selection is lower in rollover draws, because players often wish to purchase more then
their usual number of tickets and may be more likely to use the random number generator built in to the
retailers’ tills for this purpose. These nuances will be explored in subsequent research.
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distribution—so players appear to exhibit a preference for skewness. The GMM esti-
mates are also similar, although the Wednesday results, in this case, show somewhat
higher sensitivity to all three moments which is consistent with endogeneity being a
bigger problem in the Wednesday game because at lower level of sales, in 6/49, the
moments are more sensitive to the level of sales, and to the jackpot size than is the case
at higher level of sales.

Although the qualitative results support our original vision—that sales depend pos-
itively on the mean of the prize distribution, negatively on its variance, and positively
on its skewness—the quantitative importance of the results are less straightforward to
comprehend. To give a feel for what the results mean in quantitative terms, imagine a
(large) rollover that adds £5,000,000 to the Saturday jackpot, where Saturday sales are
approximately 40,000,000. This bonus would increase the expected value by approxi-
mately 25%, given the UK lotto design parameters, and would cause a modest rise in
variance, and a large increase in skewness (of about 10%). Thus, according to the GMM
estimates in the final column of Table 1, this would raise sales by about 13% though the
effect on the expected value and a further 2.5% because of its effect on skewness, offset
by an effect of more variance of slightly less than 1%. There would be a jump in sales of
about 13%. But note that the serial correlation would raise sales the following Saturday
by about 4% over what would have happened (with a small effect on Wednesday, too).
Cumulating the effects over time, and across both games, the effect of a £5,000,000
rollover would be to raise sales by approximately £8,000,000.24

6. GAME DESIGN SIMULATIONS

Making inferences from the observed estimated relationships between sales and the
moments requires that we solve the estimated equations for sales as a function of the
design parameters. This is complicated because these equations are highly nonlinear
and do not admit an analytical solution.25 Throughout, we use the estimates from the
GMM estimation procedure—note that these estimates tended to imply that sales were
more sensitive to the moments than was the case for OLS. The simulation strategy was
to draw an initial value for �t for each game, solve the model for initial sales for given
values of the design parameters, then use this solution to generate a rollover probability

24The operator might be tempted to lace the jackpot in order to improve sales. However, even with the
large estimated sensitivity to the jackpot implied by these results, this is unlikely to be profitable for the
operator. This is for two reasons. First, the operator retains only 55% of the additional sales (i.e., a little
over £4,000,000). Secondly, the assumption has been that this £5,000,000 arises from a randomly occurring
rollover—if the operator were to try to make such bonuses occur on a regular basis, players would come to
expect them, and the model would cease to be a valid description of sales behavior. In fact, in many cases,
operators do have some discretion over adding bonuses to the jackpot pool (in the UK this is referred to as a
Superdraw). In practice, they are used sparingly, and largely just to offset the effects of a temporary drought
of rollovers.
25The findroot command in Mathematica, which solves nonpolynomial expressions using the Jenkins-Traub
algorithm was used and applied to simplified expressions for the moments. In practice, this proved very
time-consuming, which limited the range of simulations that could be conducted to those with Sn = 1.
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and a level of the rollover conditional on one occurring in the next draw. Whether or
not a rollover occurred was chosen at random from the distribution with the mean given
by the predicted rollover probability. This then generated a subsequent sales prediction
and the rollover probability and conditional sales were solved, and so on. This exer-
cise was repeated for 1,000 draws and the average sales computed. This process was
looped a further 1,000 times, drawing a new initial �t on each occasion. The figures
report the average sales from these 1,000 simulated 1,000-draw histories. Our simula-
tions are entirely illustrative. To simplify the calculations, the � vector is fixed so that
�n = 1 and all �’s for lower prize pools were set to zero. The lack of lower level prizes
implies that we are analyzing hypothetical games with a very high variance and high
skewness. We concentrate here on the effects of � and of n on revenue (N is fixed
at 49). Figures 5 and 6 show the effects of varying � and of n where we have added
together the sales figures from Wednesday and Saturday games to compute the pre-
dicted sales and revenue (R) for an average week over the 250 draw period. In Figure 5
� = 0.5 while in Figure 6 N = 49. Figure 5 suggests that a harder to win game, such
as 6/53 would raise higher revenue—almost 20% higher than 6/49. It also suggests that
making the game very hard to win, beyond 53, would cause sales and revenue to fall
steeply. Figure 6 shows the effects of the take-out rate—in this case revenue is fairly
insensitive to the take-out over a wide range although the revenue maximizing rate
approximately 0.4.26
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26Unfortunately, it has not been possible to compute standard errors around these forecasts, so it is difficult to
say how precise these forecasts are likely to be.
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7. CONCLUSION

Our analysis has considered some of the important questions relevant to running a lot-
tery. Our methodology for analyzing the implications of game design is analytically
rigorous and yet it reflects the informal received wisdom that dominate industry debate.
Thus, it probably captures many of the important features of realities of the game but
provides a degree of abstraction from reality to allow counterfactual changes to be
analyzed in a formal and quantitative way.

However, our results need to be qualified. The simulations assume that sales respond
to variations in mean, variance, and skewness from design changes in the same way
as they respond to these variables when rollovers occur. However, it is plausible that
people may respond differently to these two types of changes. First, changes induced by
occasional rollovers allow for the possibility of substitution between draws, but this pos-
sibility does not exist for changes coming through the game design rather than rollovers.
This suggests that ticket sales are higher when changes come from rollovers than from
game design. Rollovers are rather like sales promotions—they induce people to change
their behavior quite differently to a temporary difference in the offer compared to how
they would change their behavior for a permanent change. This failure to come to grips
with intertemporal substitution is an important shortcoming on the present research. It
would be difficult to overcome this in the UK data because, so far, there have been no
clean and simple game changes that would allow us to challenge the implicit assumption
that sales respond to temporary changes in moments in the same way as to permanent
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ones. However, some preliminary work using Irish time series data, which contains
several simple game design changes, suggests that, despite the large incentives to engage
in this, intertemporal substitution does not seem to be statistically important.27

There are several avenues for further research. The econometric analysis needs to
be extended to incorporate newer games if we are going to be able to exploit a longer
run of data. There are some practical difficulties in doing this because their introduction
is potentially endogenous and because the newer games have typically involved rather
low levels of sales. Second, hypothecation of the lottery revenue may play in determin-
ing sales. This is an interesting suggestion and could be incorporated into a time series
analysis such as the present one providing there is sufficient variation in how the hypoth-
ecation is done. In the UK, there have only been limited changes. U.S. data offers better
prospects for this kind of exploration because there have been changes in the hypotheca-
tion across states and across time. Third, we have not incorporated conscious selection
into the moments of the prize distribution—Hartley et al. (2000) suggest that the first
moment was largely unaffected by the considerable conscious selection that they found
in the early sales data. However, we do not know if this generalizes to higher moments.
Finally, this essentially time series work could usefully be complemented by a micro-
econometric analysis of the effects of income using cross section data in order to com-
pute the regressivity of the take-out. The share of income spent on lotteries declines
steeply across the income distribution and very high income shares seem to be confined
to quite low income households. Such a microeconometric analysis could also incor-
porate the effects of rollovers if panel data were available. Ultimately, such an analysis
could enable researchers to simulate the effects of game design on the size distribution
of individual levels of play, as well as on aggregate sales, and hence offer the prospect
of designing out so-called problem gambling.
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APPENDIX: The Expected Value Formula

The expected value of a ticket is the first moment of the prize distribution—which is
the product of the probability of it being won and the size of the prize if it is won. That
is, it is given by m1t = [1 − (1 − p)St ] [(1 − �) St + Rt × Jt−1], where Jt−1 is the jackpot
from the previous draw (which equals (1 − �) × St−1 in the case where the only prize
is the jackpot) and Rt is an indicator for whether the previous draw was a rollover or
not and is assumed to be known at the time that draw t tickets are purchased.28 The first
term in square brackets is the probability of no rollover (i.e., the probability that the
jackpot is won) while the second term in square brackets is the expected size of prize.

The level of m1t is unaffected by the nature of the prize distribution29—in the absence
of a rollover it depends only on the take-out rate and sales revenue, irrespective of how
that fund of revenue is distributed across prize pools. In practice, it is only ever the
jackpot prize pool that has no winner and is rolled over—the easier to win prize pools
are usually sufficiently easy to win that there are always many winners. Thus, when a
rollover from the previous draw occurs, it is only the jackpot n-ball prize pool that is
rolled over. Thus, in practice, Jt−1 = Sn(1 − �) × St−1 where Sn is the proportion of the
overall prize pool going to the n-ball matches (i.e., shared by those who have chosen all
n of the winning numbers).

28In most lotto games, it is possible to commit to buying a ticket before it is known whether the previous draw
is a rollover or not. For example, one can place an order to buy a ticket for every future draw. In practice, only
a small proportion of tickets are bought in this way.
29In practice, lotto games are designed so that the prize fund is spread, in predetermined shares, between those
that match all n balls (the jackpot fund), those that match n − 1 balls, n − 2 balls, and so on. Let these shares
be defined by � = (�n, �n−1, �n−2 . . .) which are usually set such that the expected prize in the n-ball pool
exceeds that in the n − 1 pool, and so on. Some designs are more complex and feature additional bonus balls.
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Abstract

Lotteries have been a source of state revenue intermittently through the ages. Modern
lotteries, where desktop computers in widespread retail outlets can process sales swiftly
and efficiently, are seen as a means of extending the tax base without offending voters.
The science of statistics is relevant to lotteries in at least four ways.

The prize structure of a lottery might be set to maximize revenue. This involves a
balance between the proportion of stake money returned to gamblers, its distribution
among several prize levels, the expenses of running the lottery, and the tax take.

Lotteries are usually based around “select X numbers from this list of Y numbers,”
with the values of X and Y chosen by reference to the expected sales. Simple proba-
bility, resting on counting the numbers of winning outcomes at a given level, enables
the winning chances to be calculated.

The organizers intend that numbers are selected at random, and may televise draws
live, with independent scrutineers, to give assurance on this point. However, many
gamblers continue to seek patterns in the data. Statistics alone can never prove that
the draws are free from fraud or bias, but tests of randomness can indicate whether the
results are consistent with the organizers’ aims.

Gamblers may seek to use the data on the numbers of prize-winners in pari-mutuel
lotteries to make inferences on the choices other gamblers are making, as the sizes of
prizes depend on how many share them. Thus, even though using less popular choices
should make no difference to the chances of winning, a gambler using this information
can expect any prizes won to be larger than average.

1. INTRODUCTION

In Chapter 26 of the Book of Numbers, Moses is said to have used a lottery to award
land west of the river Jordan. Morton (1990) notes references to lotteries in Roman
times, and in the Han Dynasty in China almost 2,000 years ago; van Eyck’s widow
used a raffle to dispose of his remaining paintings in 1446. According to Farebrother
(1999), the first English state lottery was promoted by Elizabeth I in 1567, but the
draw date was postponed to early 1569 to enable more of the 400,000 tickets to be sold.
Sporadically, further lotteries to raise money for specific purposes were permitted under
Royal Warrant for the next 125 years, and British state lotteries became regular events
after 1694.

To give an assurance that all tickets bought had a chance to win a prize, some lot-
teries used two drums: copies of the tickets sold were selected from Drum A, and the
corresponding prize then drawn from Drum B. This was a very slow process. The draw
in 1569 took four months to complete. Later lotteries had winners determined instan-
taneously by devices based on the roulette principle, or by randomly opening a book
which had many blank pages, but some with prize sums written in.
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For about 30 years from 1694, prizes were paid out as annuities, then later in
government stock. Worries about corruption and the morality of the State sponsoring
lotteries led to a recommendation in 1808 that they be ended; the last UK lottery in this
series took place in 1826. Small lotteries were not legal in Britain again until the 1920s.
The Royal Commissions on Gambling in 1951 and 1978 considered their merits, and
the present UK National Lottery was set up under an Act of 1993.

Colleges at Harvard, Yale, and Princeton were partly funded by lotteries from the
time of American Independence to the Civil War, but a reaction against lotteries dur-
ing the nineteenth century led to all states, except Louisiana, banning their operation.
In 1912, the Totalizator became the only legal means of betting on Canadian horse
races. The first modern lottery in the U.S. began in New Hampshire in 1964, and
lotteries reentered Canada from 1970. Currently, some form of lottery runs in every
Canadian province, and in a large majority of the U.S. states. No inhabited continent is
lottery-free.

Even in very recent times, respectable organizations have set up lotteries that had
embarrassing flaws in their design. Bellhouse (1982a,b) describes Canadian lotteries
in 1978 and 1979 in which some of the tickets sold had significantly higher chances
of winning than others. In a separate game in 1981, the organizers of the Scramble
Prize would generate a six-digit number as the winning number, and ticket-holders
could win prizes if their tickets matched this number, or any permutation of the
digits; the organizers apparently thought that the ticket (111111) had the same chance
as (123456)!

We shall not look at scratchcard-type games (first played in 1974 in Massachusetts).
Nor do we do other than mention in passing supplementary games (spiel features) such
as the Kicker: players for one game pay an extra sum that brings a random number
printed on the ticket into play. In essence, there are four main lottery formats.

The first of these is the so-called Genoese lottery, with symbol m /M . Gamblers
select m distinct numbers, with no regard to their order, from a list of M numbers, and
win prizes if they match m,m − 1, . . . ,m − r from a collection of m numbers drawn
by the organizers (with small variations). Bellhouse (1991) draws attention to incon-
sistencies in the written accounts, and to a lack of contemporary evidence to support
the specific contention that from about 1620 Genoa used such a 5/90 lottery to select
five new senators annually from a list of 90 eligible citizens. However, it is clear that
some such method was used in Genoa and other Italian city states, and that gambling
on the names or numbers drawn in these lotteries took place. In 1709, Nicolas Bernoulli
suggested that the value of a prize should be inversely proportional to the chances
of winning, and calculated what values would give a fair game. In 1749, Frederick
II of Prussia asked Euler to make some calculations for the chances of winning in a
5/90 lottery.

The second format is a small elaboration, in which as well as selecting m numbers
from M , players make a separate selection of one number from N; we write m /M (N)
as shorthand. The North American multi-state games Powerball and Mega Millions are
examples, as is Thunderball in the UK. The top prize comes from matching all the
numbers drawn in both selections.
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Third, Keno. Here the central organizers select m numbers from a list of M , but
gamblers make a selection of n of these M numbers, with n < m. In some formats, only
one value of n is available, and prizes may be given for matching n, n − 1, . . . , n − r
(and sometimes zero) of the m drawn; in other formats, the gambler has a choice of
different values of n.

Finally, Numbers Games. The lottery organizers select m digits (typically m = 3 or 4)
from the list {0, 1, . . . , 9}, in a particular order. A gambler hopes to match all of these,
or a specified subset.

In all four formats, the prizes offered may be a definite amount (fixed odds) or
through a pari-mutuel payout, in which all prize-winning tickets at a particular level
share in the prize money allocated to that level. Frequently, a mixture of these methods
is used: the lower prizes get a fixed amount, the residue goes to the higher prizes in
definite proportions for a pari-mutuel payout. But even when the main publicity for a
game asserts that the sizes of the prizes are fixed, the small print normally contains a
clause to the effect that, if the number of prize-winners of a stated fixed amount exceeds
some unexpectedly large level, then the prize money will be less than advertised, and
paid out in pari-mutuel format.

Moore (1997) gives a brief account of the purposes for which lottery proceeds are
used. Some lotteries have aimed at raising funds for particular projects—the Sydney
Opera House and the 1976 Summer Olympics in Montreal, for example. Provincial lot-
teries in Canada tend to raise funds both for general purposes, and also specifically for
sport, recreation, and culture. Many of the State lotteries in the U.S. name education as
an intended prime beneficiary, and other popular causes include support for the environ-
ment, State parks, and senior citizens. Indiana subsidizes motorists, Nevada pays part
of net proceeds into a compulsive gamblers assistance fund. Lottery profits are shared
between government and voluntary organizations in Ireland and in some of the German
Lände, lotteries in Switzerland and New Zealand support a variety of good causes. The
UK government takes 40% of gross lottery sales, some as general funds, and the rest
to the Department of Culture, Media, and Sport. Finney (1997) regards the lottery as
“an ingenious device for channelling the surplus funds of citizens into good causes with
most of which I sympathise.”

The gross proceeds of lotteries are allocated to (a) prize money, (b) central funds
(i.e., available to national or local government to spend), (c) retailers of tickets, and
(d) administrative costs (including advertising). But the tax treatment of lottery win-
nings in different countries means that comparisons are not simple. In the UK, the
winner of even a £10,000,000 prize is paid the whole sum, immediately, in cash, with no
deductions. In the U.S., similar winnings would be taxed as income, so the actual take
by central funds is significantly higher than the quoted figure. When the same organizer
runs different lotteries, there may be cross-subsidy from one format to another: the over-
all payback in the UK is set at 50%, but the typical payback on the main pari-mutuel
game is normally 45%, with scratchcard paybacks at a higher rate. With these caveats,
a fairly typical distribution of the gross ticket sales returns about 50% in prize money,
provides 35–40% to central funds, allows retailers some 5–8%, while administrative
costs and profits to the organizers account for 5–10%.
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2. PRIZE STRUCTURE AND WINNING CHANCES

Lotteries intend that every ticket bought have the same winning chance. In the next
section, we describe how this might be tested statistically, but here we assume that this
ideal is met. Working out the winning chances for a single ticket in a lottery is then an
elementary exercise in counting.

In the Numbers Game format, a player selects up to three (or four) digits from the
list {0, 1, 2, . . . , 9} in order, with possible repetitions, hoping to match those drawn by
the lottery organizers. This is frequently played as a fixed odds game: plainly, in the
three-number version, there are 103 = 1,000 possible outcomes. The bets available in
the Florida version, and the mean returns, are shown in Table 1a and Table 1b. (There is
a simple explanation of the apparently peculiar payout of $1,198 for winning the four-
way box in Table 1a: the return to a 50 cent stake would then be $599, the maximum
amount that the player can collect direct from the retail outlet in which the machine is
located!) The maximum payback is at the rate of 4999:1 (with a winning chance of one
in 10,000), so life-changing winnings are not possible with modest stakes. But when the
payout is pari-mutuel, as Chernoff (1981) pointed out, a different analysis is required:

TABLE 1a The Bets Available, the Chances, and the Winning Payouts to a Stake of
$1, in the Florida Play 4 Numbers Game

Name of Bet Winning chance Return to $1 Payback %

Straight 1/10,000 5,000 50

Four-way box aaab 1/2,500 1,198 47.9

Six-way box aabb 3/5,000 800 48

12-way box aabc 3/2,500 400 48

24-way box abcd 3/1,250 200 48

NOTE: To “box” a set of four digits is to ask that all different permutations of those digits should
win the prize: digits such as 2223 thus give four bets, 2233 gives six, 2234 has 12 bets, and 2345
has 24 bets.

TABLE 1b The Bets Available, the Chances, and the Winning Payouts to a Stake of
$1 in the Florida Cash 3 Numbers Game

Name of Bet Winning chance Return to $1 Payback %

Straight 1/1,000 500 50

Three-way box aab 3/1,000 160 48

Six-way box abc 6/1,000 80 48

Front Pair 1/100 50 50

Back Pair 1/100 50 50

NOTE: (There are other bets listed, but they are combinations of the above.) See Table 1a for
the explanation of box.
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the winning chances are the same, but observations of the correlation between the size
of the prize and the winning numbers can help a player select number combinations that
are likely to lead to higher than average winnings. We develop this point later.

(Chernoff also noted a peculiarity of the payout system that meant that players
betting on just three of the four numbers drawn had an average payout that was larger
than that for players betting on all four digits!)

In the Genoese, Powerball, or Keno lottery formats, the basic tool is the hypergeo-
metric distribution. There is a field of M numbers which, after the lottery draw, can
be split into m winning numbers and M − m losing numbers. When a player selects n
numbers, the chance they contain exactly k of the winning numbers is

Cm
k × CM−m

n−k
CM
n

,

where

Cb
a =

b!
a!(b − a)!

.

When a lottery has this format, and the prizes are of fixed size, irrespective of the
number of winners, the analysis is very simple. For example, in the 49’s game as oper-
ated by the bookmakers in the UK, the Genoese format of selecting six numbers from
49 is used, but gamblers do not themselves select six numbers: they have the choice of
selecting 1, 2, 3, 4, or 5 numbers, and win only when ALL the numbers they choose
are among the six winning numbers. Table 2 shows the payout odds from Ladbrokes
in September 2007. Notice how the mean return decreases as the odds against winning
increase—exactly as in the well-known favorite-longshot bias found in betting on horse
races.

Ziemba et al. (1986) describe various North American lotteries of Genoese type,
noting the values of m and M then in use, the price of tickets, the payback per-
centage, the proportion of prize money allocated to the jackpot prize, frequency of
draws, the size of the relevant population, and typical sales. The North American Asso-
ciation of State and Provincial Lotteries maintains a Website (http://www.naspl.org)
that outlines what games are currently available in the U.S. and Canada. Even

TABLE 2 The Bets Available, the Chances of Winning, Payout Odds from Ladbrokes in
September 2007, and the Rates of Return for the 49’s Game, as Played in the UK

Number chosen Winning chance Payout odds Payback %

1 6/49 ∼ 0.122 6:1 85.7

2 5/392 ∼ 0.013 53:1 68.9

3 5/4,606 ∼ 0.00109 600:1 65.2

4 15/211,876 ∼ 0.00007 8,000:1 56.6

5 1/317,814 ∼ 0.000003 150,000:1 47.2
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restricting attention to North America, and without any claim that the list is
exhaustive, the following combinations were noted as being on offer: m = 4,M =
100;m = 5,M = any of 26, 30, 31, 32, 33, 35, 36, 37, 38, 39, 42, 52;m = 6,M = any of
30, 35, 36, 39, 41, 42, 44, 46, 48, 49, 51, 53, 54, 69; and m = 7,M = 47.

The 4/100 games are frequently of a special type: the gambler selects four num-
bers from the list {00, 01, 02, . . . , 99}, and then a computer-generated selection of six,
14, or even 20 further sets of four numbers are allocated to the gambler. These extra
combinations may be grouped into two, three, or four subsets, and not more than one
combination in a subset can win a prize. Prizes usually arise if two, three, or all four
of the winning numbers drawn occur on a single ticket—merging of tickets is not
permitted.

In the 5/M lotteries, prizes are usually given for matching five, four, three, or occa-
sionally just two of the winning numbers; with 6/M , normally matching six, five,
four, or three wins a prize. A common variation is that one or two supplementary or
bonus numbers are drawn by the lottery organizers; gamblers who match m − r winning
numbers (r = 1, sometimes also r ≥ 2) and one of the bonus numbers then qualifies for
a prize tier. Occasionally, lotteries reward higher spenders by offers such as six entries
for the price of five.

Where any form of pari-mutuel prize structure is in place, lotteries have rules about
the consequences of there being no prize-winners at a particular level. In the Michigan
5/33 Rolldown, which ran for four years, if there were no jackpot winners, the unwon
prize money “rolled down” to be shared by the winners in the next lower tier, but it is far
more common for the unwon sums to roll over to the next lottery in sequence. The UK
lottery allows up to three rollovers; if the jackpot were unwon for a fourth successive
time, the prize money would roll down to the next tier, but many lotteries have no such
restrictions. (The UK rules also state that if there are jackpot winners, but no winners
in the second tier, the second tier prize money rolls up and is added to the jackpot
prize! “Unto every one that hath shall be given,” St. Matthew 25:29.) Thus the payback
ratio in rollover lotteries can be far higher than normal, theoretically in excess of 100%,
and gamblers or syndicates may be tempted to try to buy large numbers of tickets, in
the hope of a certain profit. But the evidence at the end of this section suggests that
the increased demand at rollover times varies fairly consistently with the size of the
rollover: increasing the average return above, say, 70% from its normal 45%, seems
very difficult to achieve.

The use of a second drawing in the Powerball-type m/M (N) enables the lottery orga-
nizers to tweak the winning chances even more finely. In September 2007, Powerball
itself was 5/55(42), Mega Millions was 5/56(46), California’s Super Lotto Plus was
5/47(27), the UK’s Thunderball was 5/34(14), and 5/45(45) was played in Australia.

Keno is frequently played continuously, with fresh draws every 4–5 min. for over
20 hr each day. In the most common format, the lottery will select 20 numbers from 80,
and players select either 1, 2, or up to 10 (occasionally 11 or 12) of the 80 numbers,
winning prizes at fixed odds according to how many selections match the winning
numbers. (Kansas adds the glitch of a progressive jackpot, paid pari-mutuel, to those
who make selections of 6, 7, or 8 numbers.) Players of modest ambition can attempt to
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match just one number (chance of success 1 in 4, payout usually $2 or $2.50 to a $1
stake); optimists may attempt to match 10 numbers, having a chance of about one in
9,000,000 of winning the top prize of $100,000, and better chances of lower prizes
(e.g., getting a return of $1 or $2 for matching five numbers, at odds of about 1/20).

Tables 3a–f illustrate the variability in the prize structure by comparing four Keno
games, identical in play except for the existence of the Kansas progressive jackpot noted
earlier. Within a single U.S. state, the mean paybacks across the games offered are
reasonably constant, but overall the payback across states varies from 48% to 70%.
Massachusetts is consistently the most generous!

Given the overall payback proportion, lottery operators fix the number of prize levels,
and how much should be allocated to each. Lotteries are in competition with each
other, and with other forms of gambling, such as casinos, horse racing, and other sports
events. Any particular lottery, in a given location, faces a different mixture of rivals.
In New York, even aside from scratchcard and multi-state games, a resident could play
Keno every 4 min. from 5:30 AM to midnight; three-digit or four-digit Numbers Games
drawn twice a day; daily 10/80 and 5/39 games; and New York’s own 6/59 Lotto on
Wednesdays and Saturdays.

TABLE 3a The Paybacks (in Dollars) to a $1 Stake in Keno in Four Different States
When Gamblers Select 10 Numbers

Match Odds (1 in) Georgia Kansas Massachusetts Washington

10 8,911,711 100,000 100,000 100,000 100,000

9 163,381 5,000 2,000 10,000 5,000

8 7,384.5 500 250 500 500

7 620.7 50 50 80 50

6 87.1 10 10 20 5

5 19.4 2 1 2 2

0 21.8 5 5 2 3

NOTE: The mean returns are, respectively, 63.7%, 53.4%, 69.3%, and 48.8%.

TABLE 3b The Paybacks (in Dollars) to a $1 Stake in Keno in Four Different States
When Gamblers Select Nine Numbers

Match Odds (1 in) Georgia Kansas Massachusetts Washington

9 1,380,688 30,000 25,000 40,000 25,000

8 30,682 3,000 2,000 4,000 2,500

7 1,690.1 150 100 200 100

6 174.8 25 20 25 10

5 30.7 5 5 5 5

4 8.8 1 1 1 1

NOTE: The mean returns are, respectively, 62.8%, 53.3%, 69.7%, and 49.2%.
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TABLE 3c The Paybacks (in Dollars) to a $1 Stake in Keno in Four Different States
When Gamblers Select Eight Numbers

Match Odds (1 in) Georgia Kansas Massachusetts Washington

8 230,115 10,000 10,000 15,000 10,000

7 6,232.3 500 250 1,000 500

6 422.5 75 50 50 50

5 54.6 10 10 10 5

4 12.3 2 2 2 2

NOTE: The mean returns are, respectively, 64.7%, 54.8%, 69.0%, and 49.6%.

TABLE 3d The Paybacks (in Dollars) to a $1 Stake in Keno in Four Different States
When Gamblers Select Seven or Six Numbers

Select Match Odds (1 in) Georgia Kansas Massachusetts Washington

7 7 40,979.3 4,000 2,000 5,000 2,500

6 1,366 125 100 100 100

5 115.8 15 10 20 10

4 19.2 3 3 3 2

3 5.7 1 1 1 1

6 6 7,752.8 1,200 1,000 1,600 1,000

5 323 50 50 50 40

4 35 7 5 7 4

3 7.7 1 1 1 1

NOTE: The mean returns are, respectively, 65.0%, 54.0%, 70.0%, and 50.0% for seven numbers, and
63.9%, 55.7%, 69.1%, and 49.7% for six numbers.

TABLE 3e The Paybacks (in Dollars) to a $1 Stake in Keno in Four Different States
When Gamblers Select Five or Four Numbers

Select Match Odds (1 in) Georgia Kansas Massachusetts Washington

5 5 1,550.6 400 400 450 200

4 82.7 17 10 20 17

3 11.9 2 2 2 2

4 4 326.4 70 50 100 24

3 23.1 5 4 4 5

2 4.7 1 1 1 1

NOTE: The mean returns are, respectively, 63.2%, 54.7%, 70.0%, and 50.3% for five numbers, and
64.4%, 53.9%, 69.2%, and 50.3% for four numbers.
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TABLE 3f The Paybacks (in Dollars) to a $1 Stake in Keno in Four Different States When
Gamblers Select Three, Two, or One Numbers

Select Match Odds (1 in) Georgia Kansas Massachusetts Washington

3 3 72 25 20 25 16

2 7.2 2 2 2.5 2

2 2 16.6 10 9 5 8

1 2.63 — — 1 —

1 1 4 2 2 2.5 2

NOTE: The mean returns are, respectively, 62.5%, 55.6%, 69.4%, and 50% for three numbers, and
60.2%, 54.2%, 68.1%, and 48.2% for two numbers. For one number, the return is 50%, except in
Massachusetts where it is 62.5%.

Factors that influence whether a potential lottery player buys a ticket, and if so how
many tickets, can be expected to include:

1. The maximum prize possible.
2. The typical value of the maximum prize.
3. The chances of winning a very large prize.1

4. The chances of winning a moderately large prize.2

5. The chances of winning some prize.
6. The average rate of return (the payback).
7. To what uses the State or Government take are put.

The work of Walker and his colleagues (see, e.g., Farrell et al., 1996) shows how
the existence of “free money” rolled over from a previous unwon jackpot can greatly
increase sales. This is reinforced by the experience of enormous jackpots in the Power-
ball and Mega Millions lotteries in the U.S., when gamblers have driven hundreds of
miles to a different state, in order to buy the chance to participate in the draw. How-
ever, usually only the size of the jackpot is affected, with the chances of winning and
the sizes of all the other prizes completely unchanged. It is not easy to disentangle
the effects on a gambler’s actions of an increase in the mean return, and an increase
in the potential jackpot return. Morton (1990) noted a curious phenomenon: when the
jackpot is boosted by a given amount from a rollover, the increase in sales is much
larger than when a similar boost to the jackpot is given by an artificial addition of
funds!

The extent to which sales increase at times of rollovers is illustrated by the UK expe-
rience. In the period 1999–2000, typical sales for a normal midweek draw were around

1Enough for a person of modest lifestyle to retire permanently at a significantly higher living standard.
2Enough to be able to indulge an extravagant dream.
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25–28 million, implying a prize fund of £11–12.5 million, including a jackpot fund of
about £4,000,000; normal weekend sales were about £50–52 million, with a prize fund
of about £23,000,000, including about £7,500,000 in the jackpot. The expected jackpot
prize for a winning ticket was £2,000,000.

When the weekend jackpot rolled over during that time, subsequent midweek
sales increased by about 40% to 36–40 million. Thus the expected total prize fund
increased to over £20,000,000, including some £13,000,000 in the jackpot, and the
expected jackpot winnings for a single ticket increased to some £4,500,000. On the
two midweek draws with a double rollover, sales were 49,000,000 and 64,000,000.
At the average of these two figures, the total prize pool would be about £38,000,000,
and the jackpot pool of about £20,000,000 would be expected to be shared among
four winners. The mean payback in midweek rollovers increased from 45% to
around 65%.

When the smaller midweek jackpot rolled over to the weekend, sales edged up only
about 15% to some 58–60 million. The jackpot pool increased to about £12,500,000,
thereby increasing the expected winnings/ticket to around £3,000,000, and the mean
payback increased only to some 52%.

In the UK in early 1996, before the midweek draw was introduced, there were two
double rollovers: sales at the first double rollover reached nearly £128 million, and £106
million at the second, at a time when normal sales were about £70 million. But even in
these two double rollovers, the mean payback was about 65%; for single rollovers at
that time, the payback was about 57%.

By 2007, overall sales were substantially less; typical midweek sales were below
£20,000,000, typical weekend sales not much over £30,000,000, but the same phe-
nomenon at rollovers occurred: the increased jackpot pool attracted sufficient extra
sales to keep the overall mean payback under 70%. Attempting to buy all possible
combinations to guarantee a jackpot share still made no sense.

3. TESTS OF RANDOMNESS

Whatever the lottery format, randomness has two components: the first is that, in any
draw, all possible outcomes should have the same probability, and the second is that
the outcomes of draws should be independent. It is built into the structure of most m/M
lotteries that the number of possible outcomes is far larger than the number of outcomes
that will be attained during the life span of the lottery game, so statistical testing of equal
frequencies of all outcomes is a practical impossibility. We have to be far less ambitious.
Similarly, testing for full independence of draws is not realistic, So we confine our
attention to the independence of pairs of draws, or triples.

The most obvious requirement in a m/M lottery is to test for equality of individ-
ual numbers. Suppose that in D draws, the number k is selected X(k) times. Under
the null hypothesis of equal frequencies, the mean number of times each number is
selected is E = mD/M; each draw selects m numbers without replacement, so, as
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Stern and Cover (1989) pointed out, the usual �2 goodness-of-fit statistic needs a small
modification to take account of that. It reduces to

W =
M (M − 1)

(∑
X (k)2 − m2D2/M

)
(M − m) Dm

Asymptotically, for large D, W has a �2 distribution on M − 1 degrees of freedom, and
the hypothesis of equal frequency is cast into doubt at large values of W .

This test is not particularly sensitive. For example, suppose one (unknown) number
has probability m/M + � of selection in any draw, while the other M − 1 numbers all
have probability m/M − �/(M − 1). Then the mean value of W can be calculated as

M − 1 +
�2M2 (D − 1)
m (M − m)

.

For a 6/49 lottery, the conventional 5% significance level asks that W should exceed 65:
for � = 0.01—large enough to be a significant flaw—the mean value of W is about 48 +
0.00093D, hence this mean value will not exceed the critical value until over 18,000
draws have been made! Detecting unequal frequencies among the numbers drawn is
hard, unless there are substantial inequalities. (In a 6/49 lottery, suppose one number
would actually occur at double its expected frequency: even then, it would take 120
draws for the mean value of W to exceed its 5% critical value.)

Joe (1993) extended this test to look for equal frequencies of pairs, and of triples, of
numbers within draws. Here, account has to be taken not only of the nonreplacement
of numbers within a draw, but also of the overlap between pairs and triples in the same
draw [e.g., given that the pair (8,13) have both been selected, this increases the chance
that (8,10) were both selected]. Let X� denote how often the pair � are selected in D
draws. Joe gave test statistics that again have distributions that are asymptotically �2: to
test for equality of frequencies of pairs within the same draw, use

W =
[
a
∑

�

(X� − E)2 − b
∑

m(�,�)=1

(X� − E)(X� − E)
]/

D

on M (M − 1)/(2 − 1) degrees of freedom. Here E = m(m − 1)D/(M (M − 1)), the
second sum is over all pairs (�, �) that have exactly one member in common, and the
constants (a, b) are given by

a = [(m − 1)M − 5m + 7]C, b = (m − 2)C

where

C =
M (M − 1)(M − 2)

m(m − 1)2(M − m)(M − m − 1)
.
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However, the amount of data required to detect even modest association among pairs
of numbers using this statistic is considerable. We omit Joe’s corresponding formula for
triples.

Genest et al. (2002) described a different way of using the usual goodness-of-fit
statistic to test for equal frequencies of subsets of size c, for 1 ≤ c ≤ m. Rather than
modifying that statistic to give a quantity that would be asymptotically distributed as
�2, as above, they showed that its asymptotic distribution is the sum of c appropriately
weighted independent �2 variables. For example, when c = 2, let X� and E be as above,
and define

W =
∑

�

(X� − E)2

E
.

Then the asymptotic distribution of W is that of the sum a�2
M−1 + b�2

M (M−3)/2, where
a = (m − 1) (M − m) / (M − 2) and b = (M − m) (M − m − 1) / [(M − 2) (M − 3)] .
For testing equal frequencies for pairs of numbers in a 6/49 lottery, this approach com-
pares the actual values of W with those from a variable having the same distribution as
the sum

215
47

U +
903

1,081
V ,

where U has the �2
48 distribution, and, independently, V is distributed as �2

1127. For
some alternatives, Joe’s statistic is more powerful, for other alternatives, this version has
the edge.

Joe (1993) also developed a test for independence of pairs of successive draws.
Here let X� denote how often the pair � has appeared in consecutive draws, for
� = (1, 1), (1, 2), . . . , (M − 1,M), (M ,M). The test statistic is

W =
[
c
∑

�

(X� − E)2 − d
∑

m(�,�)=1

(X� − E)(X� − E)
]/

D

on M2 − 1 degrees of freedom, with E = m2(D − 1)/M2. The second sum is over those
ordered pairs (�, �) in which either the first or the second (but not both) members of �
and � are the same, and

c = (mM − 3m + 2)B, d = (m − 1)B

where

B =
M2(M − 1)
m3(M − m)2

.
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Even though the amount of data needed to use these tests on the output of the actual
draws may exceed the lifetime of the game, the tests could be applied both to dummy
data that the lottery companies generate in testing their machines, and to the output of
the Quick Pick generators for every game.

Johnson and Klotz (1993) took account of the order in which the numbers were
drawn. They supposed that ball i had probability pi of being selected first, and that
the probabilities on second and subsequent draws were obtained by simply rescaling
the remaining values. Their data on more than 200 draws gave a mild suggestion,
via the log likelihood statistic, that the hypothesis of equal frequency was questionable
(p = 0.084). They linked this with the observation that the balls are fed into the mixing
machine in the same order each draw.

There are plainly many statistical tests that can be used to seek to identify particular
ways in which the data may be nonrandom. Since the same data are used in each of
these tests, they are far from independent of each other; and when (as often happens)
the data are subjected to a large number of tests, the public may need to be reminded
that genuinely random data will fail a 5% significance test 5% of the time! The tests
used for the UK 6/49 Lottery may be representative: they are listed in Haigh (1997),
and some of the test statistics, based on the seven numbers drawn (including the bonus
number) are:

1. The sum S of the numbers drawn, so that 28 ≤ S ≤ 322, and its null distribution
is symmetrical about 175.

2. The number of even numbers selected, which should follow a hypergeometric
distribution.

3. As well as the overall frequencies with which individual numbers are drawn, the
frequencies with which those numbers are drawn in the nth position, 1 ≤ n ≤ 7.

4. The maximum number of contiguous values among those drawn.
5. Define a success to be a draw in which at least one of the numbers selected also

arose in the first draw; look at the gap between successes. Alternatively, instead
of using the first draw as the permanent baseline, use the last draw that yielded a
success.

6. Split the numbers into seven blocks of seven; then ask how many draws are
needed until at least one (or two, or three) representatives of each block have
been drawn.

For keno-type games, tests of randomness can follow this same pattern, while for
powerball-type games, the separate sets of numbers drawn should be subject to similar
tests—and for independence from each other.

Matters are easier with the numbers game format. In each position just one number
is to be drawn, so the extra scaling factors needed in conventional �2 tests for equal
frequencies are not needed. Moreover, with typically 10 possible digits in each position,
and frequent draws, enough data for meaningful tests are quickly accumulated.

For a general numbers game format, with K positions, at each of which one of
N digits is to be selected at random, suppose digit i has been selected X(i) times
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in D draws at a given position. Then the test statistic for equal frequencies at that
position is

W =

∑
(X(i) −D/N)2

D/N

which, asymptotically, has a �2
N−1 distribution under the null hypothesis, which would

be thrown into doubt by high values of W .
For independence of the digits drawn at a pair of positions, let Y (i, j) be the number

of times digit i has been in the first position and digit j has been in the second. Then,
under the null hypothesis that the digits are equally frequent, and there is independence
between the two positions, the test statistic

W =

∑
(Y (i, j) −D/N2)2

D/N2

has a �2
N2−1 distribution.

Both these tests will, eventually, detect any departure from equal frequencies or from
pairwise independence. If there is good reason to suspect a specific problem—for exam-
ple, that particular digit i is appearing too seldom—then a test can be tailored to detect
that. It ought not to be necessary to issue the standard reminder that it would be com-
pletely invalid to use the same data that suggested such a problem to make a statistical
test for its occurrence: however, this point is not well appreciated by members of the
public who may notice an apparent anomaly, and then find it hard to accept that data
collection to test for the existence of that anomaly should begin afresh.

Lottery players can have a role in ensuring the integrity of a lottery by publicizing
apparent anomalies, but the vast majority of such anomalies turn out to be false alarms.
One reason is the great incentive by lottery corporations, who must retain the trust of the
public, to keep their house in order. Another is that probabilistic intuition about what
should, or should not, be expected is frequently misplaced. Here are two examples of
calculations for a 6/49 lottery.

First, since any number has six chances in 49 to be drawn, the mean number of draws
between consecutive appearances is 49/6 = 8.17. The chance for any particular number
not to appear in 50 consecutive draws is (43/49)50 ∼ 0.0014; but the chance that some
number makes no appearance in 50 given draws is about 7%, not at all small.

Second, bunching of numbers. Say that a bunch has occurred if at least four of the
numbers drawn occur within six consecutive numbers; thus the winning combination
(13 15 16 19 26 28) has no bunch, while (13 15 16 17 26 28) has two bunches (both
the intervals (12,17) and (13,18), each with six numbers, contain four of the numbers
drawn). Because each of the numbers 1 to 44 is a potential start point for a bunch to
occur, it turns out that the mean number of bunches in D honest draws is about D/23,
which is much more frequent than the layman anticipates. Just as surprising to many is
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the fact that over 49% of the possible combinations in a 6/49 lottery contain a pair of
consecutive numbers.

An incident reported by Chernoff (1981) illustrates this lack of intuition, and serves
as a warning to consult the actual data, and not rely on press statements issued by the
lottery corporations. A lottery representative asserted that, in the first 500 plays of the
Massachusetts Numbers Game, there had been no exact repetitions of the winning num-
bers. As there are only 10,000 different four-digit numbers, the chance of no repetitions
in 500 properly conducted draws (a variant on the birthday problem) is about 3 × 10−6,
so if the statement had been correct, there was a prima facie case of tampering with
the outcomes! It turned out that the lottery representative had just assumed no dupli-
cations (on his own intuition), but that there had been several—close to the number
expected.

4. GAMBLER CHOICES

The amount of information made public about what choices gamblers make varies con-
siderably between lotteries. At one extreme, Riedwyl (1990) had access to the complete
data for the draw in week six, 1990, of the Swiss 6/45 lottery. At the other extreme, in
the UK 6/49 lottery, only snippets of information, such as the number of gamblers who
tend to buy the combination {1 2 3 4 5 6}, and that {7 14 21 28 35 42} is the single
most popular combination, have been generally released, although Simon (1997) was
given access to more detailed data for one draw in 1996. For the Canadian 6/49 lottery,
the relative frequencies with which gamblers select individual numbers are regularly
published.

Many lotteries offer a Quick Pick = Easy Pick = Lucky Dip option, whereby a
gambler allows a computer to use a built-in random number generator to make the
selection. In the New Zealand 6/40 lottery, over 60% of tickets are bought using this
facility, in the UK the figure is about 20%. In the Powerball game in the U.S., as many
as 70% of tickets are sold using Easy Pick. Experiments show that, left to their own
devices, humans asked to make random choices spread their selections much too evenly
over the permitted range, so it is very likely that the actual number of tickets sold that
genuinely are random selections differs little from the number who use Quick Pick.

The main points from Riedwyl’s (1990) Swiss data are:

1. Some combinations are bought far more often than others. (A consequence, of
course, is that other combinations are bought less frequently, and gamblers who
can identify members of this latter category can expect any winnings to be above
average.)

2. These popular combinations can be classified as

a. Previous winning combinations in the same lottery.
b. Winning combinations from other lotteries, in the same or neighboring

countries.



John Haigh 497

c. Combinations that make patterns on the lottery ticket—horizontal,
vertical, or diagonal straight lines, zig-zag patterns, blocks, evenly spaced
around the perimeter, or other systematic combinations.

d. Small modifications of the above.

For example, although the 16,862,596 tickets bought in Riedwyl’s dataset had an
average of 2.07 for each of the 8,145,060 different combinations, over 5,000 of these
combinations were bought at least 50 times! Two tickets whose numbers formed a diag-
onal straight line were bought over 24,000 times each, and the winning combination
from the previous draw was bought over 12,000 times. The two combinations that dif-
fered from that last winning combination, either through adding, or through subtracting,
unity from each number had 2,342 and 1,623 buyers, respectively. The winning com-
binations from the previous week’s lotteries in France, Germany, and another Swiss
Lotto all had over 1,400 buyers. Every winning combination in the same Lotto, for
more than a year previously, was bought hundreds, sometimes thousands, of times. In
all, 7% of total sales were spread among just 0.07% of the available combinations. In
June 1999, draw 366 of the UK Lottery saw an astonishing 46 ticket-buyers share the
jackpot, against the 3.5 or so expected from the sales figures; the winning combina-
tion {2, 17, 18, 23, 30, 40} was nothing remarkable—except that it had also arisen
as the winning combination in the UK bookmakers’ 49’s game a few days earlier! As
another illustration of unusually frequent selection, Morton (1990) reported that 14,697
punters had chosen the diagonal (8 15 22 29 36 43) in the New York State Lotto on
June 7, 1986.

The Canadian information on the popularity of individual numbers is interesting, but
the huge lack of independence between a gambler’s choices makes it of very limited
value in inferring the popularity of combinations. For example, it seems quite likely
that particular combinations consisting of only the least popular numbers will be far
more popular than average: as with the types of combinations described for the Swiss
data above, buying these least popular numbers is a systematic way of constructing a
combination, and so liable to be used by uncomfortably many gamblers. For what it is
worth, the Canadian data for a 6/49 lottery (November 1995) show that the most popular
individual numbers, in descending order of popularity, are 7, 11, 3, 9, 5, 27, 31, 8, and
17, while the least popular numbers, rarest first, are 40, 39, 48, 41, 20, 45, 38, 46 and
30. In rough summary, low odd numbers are most popular, high numbers, and round
numbers, rather less so.

On the Australian 6/45 lottery, with the numbers displayed in rows of eight, Damien
Broderick (personal communication) obtained similar data for a series of draws. The
most popular choices were 19, 13, 20, 7, 11, and 27 (here 20 is a comparative surprise,
perhaps explained by it being in the center of the ticket), and the least popular were 41,
42, 32, 44, 39, and 33. The frequencies were remarkably similar from draw to draw,
with two caveats: the frequencies for the less popular midweek draws showed some
significant differences from those in the weekend draws; and when sales were boosted
by a rollover, the frequencies also altered. Overall, the constancy of choice outweighed
these (small but noticeable) variations.
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Information on the numbers selected by 17,001 people in one state for the Powerball
draw on May 3, 1996 is given on the chance Website, maintained by Laurie Snell and
others at Dartmouth College (http://www.dartmouth.edu/∼chance). Five numbers were
to be chosen from the list {1, 2, . . . , 45}: the most popular were 7, 9, 5, 3, 11, 12, 8,
4, and 10, while 37, 38, 43, 45, 39, 44, 41, 36, and 42 were least popular. Data on the
full combinations of five numbers are also reported: aside from two people who each
bought over 20 tickets with the same five numbers, but made different choices for the
Powerball, the most popular combination was the 13-times choice of {3, 13, 23, 33, 43},
a combination making a diagonal line down the center of the ticket! It is plain that it is
not only the numbers themselves, but also where they fall on the ticket, that influences
punters.

A number of authors have attempted to use the data on the number of prize winners
at the different levels, correlated with the winning combinations, to infer what choices
gamblers are making. One of the earliest was Chernoff (1981), who observed that in
the early days of the four-digit Massachusetts Numbers Game, zeros and nines were
plainly unpopular, while other small digits were popular. At that time, the mean return
was 60% of stakes. Chernoff considered the circumstances under which betting on
unpopular numbers would give reasonable certainty of being ahead. Drawing on the
Gambler’s Ruin problem, he noted that betting on the 10% least popular numbers
every day for a year, the advantage would need to be another 30% or so, on top of
the 40% lost to the state’s take, to be virtually certain of being ahead. He also noted
that the phenomenon of regression to the mean would tend to depress expected win-
nings, if they are calculated on how much those numbers would have won in past
draws.

Ziemba et al. (1986) used the data on the first 207 draws of the Canadian 6/49 lot-
tery to infer gambler choice. Their basic model was that the mean return for a random
ticket had the form K

∏
�i, the product being over the actual numbers drawn, and they

estimated the values of the 49 parameters {�i}. The results suggested that many combi-
nations including the numbers 32, 29, 10, 30, and 40 would lead to a profit, on average,
but that the combinations based on 5, 3, 13, 33, 28, and 7 would return only some
20% of the stake. (The standard deviations associated with these estimates are very
large.)

The additive model proposed by Zaman and Marsaglia (1990) for the m/M lottery
suggested that the probability of the combination t,P (t), be given by

P (t) =
1
M∗ +K

∑
i∈t

(
�i

m
− 1

M

)

where K = m/CM−2
m−1 and M∗ = CM

m . The values of {�i} would relate to the relative
popularity of the individual numbers in the combination t. Attractive though this model
may be at first sight, it suffers the deficiency that it demands a negative frequency for
those combinations of m numbers that all have low popularity. This model demands a
more even choice of numbers than is observed.
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Zaman and Marsaglia (1990) also offered the multiplicative model

P (t) =
∏
i∈t

�i (1)

that had been suggested by Stern and Cover (1989). On this model, Stern and Cover
estimated the most popular choices in a 6/49 lottery were 3, 7, 9, 11, 25, and 27, while
20, 30, 39, 40, 41, and 48 were least popular.

Joe (1987) used ideas from majorization to estimate the frequencies of combinations;
his work suggested that the most popular combination was {3 5 7 24 25 27}, about
14.5 times as popular as average. Later, Joe (1990) suggested another class of models
leading to

P (t) =
{∑

i∈t
�i

}1/�

+
, for some � > 0

which, in the limit as � → 0, reduces to the multiplicative model. Joe tested his model
by comparing its predictions with the actual numbers of winners of prizes in the various
categories; although these predictions were often several standard deviations out, they
did not show systematic bias.

Finkelstein (1995) sought to estimate the frequencies of gambler choice of the indi-
vidual numbers in a California 6/51 lottery. Let W (d) be the winning combination in
draw d, and let combination t be chosen X(d, t) times. Then

�j =
∑
t:j∈t

E(X(d, t))
/∑

t

E(X(d, t))

is the frequency with which j is chosen by gamblers, supposed constant across draws.
Hence, using the number of jackpot winners among D draws, we have

�∗
j =

∑
d

X[d,W (d)]I[j ∈ W (d)]∑
d

X[d,W (d)]

∑
d

I[j ∈ W (d)]

mD/M

as an estimate of the individual popularity of j. For any finite D, these values do not
necessarily sum to m, as they should, but Finkelstein proved the almost sure convergence
of the estimate to its correct value (assuming, of course, the popularity of numbers is
fixed). The rate of convergence depends on how many jackpot winners there are; in
practice, convergence is very slow.

Finkelstein also used similar methods, based on the numbers of winners of the lesser
prizes. Write

�∗
j (r) =

⎧⎪⎨
⎪⎩
∑
d

∑
t∈M (W (d),r)

X(d, t)I[j ∈ W (d)]

∑
d

∑
t∈M (W (d),r)

X(d, t)

⎫⎪⎬
⎪⎭

⎧⎨
⎩
∑
d

I[j ∈ W (d)]

mD/M

⎫⎬
⎭
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where M (t, r) denotes those combinations that have exactly r elements in common with
t. He showed that

�∗
j (r) → Mr − m2

m(M − m)
�j +

m − r

M − m

almost surely. For his data, based on 176 draws, all these estimates turned out to be
compatible with a uniform choice of the M numbers.

He also offered an estimator based on the multiplicative model [Equation (1)]. In
draw d, suppose N (d) tickets are sold, there are Y (d) winners of Match 3 prizes, and
p(d) is the probability, based on the model and the winning combination, that any ticket
wins a Match 3 prize. The parameter estimates are chosen so as to minimize∑

d

[Y (d) −N (d)p(d)]2/{N (d)p(d)[1 − p(d)]}.

Finkelstein’s estimate of the order of popularity was

9 3 7 8 11 6...............51 43 49 48 46 50.

This sequence is plainly compatible with a birthdays model, in which the months
1 to 12 and the days 1 to 31 are much more popular than higher numbers.

Henze and Riedwyl (1998) built on Riedwyl’s (1990) data to suggest a feasible way
of selecting a combination that has a good chance of leading to a better than average
prize (if it wins) in an m/M lottery. Their method is essentially one of seeking to elim-
inate large classes of combinations that can reasonably be taken as more popular than
average, and then to choose at random from those that remain. To this end, for each
combination compute

(a) The sum of all the numbers.
(b) The edge number, that is, how many of the numbers are on the edge of the ticket

on which the gambler marks the selection.
(c) The cluster number, that is, into how many clusters the numbers fall, if two that

are adjacent (horizontally, vertically or diagonally) belong to the same cluster.
(d) The arithmetic complexity, that is, count how many different numbers there are

among the set of (positive) differences of pairs of numbers, and subtract (m − 1).

The main ideas are that, for popular combinations, (a) tends to be low, (b) tends to
be low, (c) is often unity or m, while (d) is also often low (e.g., geometric patterns are
evenly spaced, and the sets of differences of pairs of numbers have many duplicates).
Thus, for example, with a 6/49 lottery, they recommend selecting a combination at
random, but then rejecting it unless:

(i) The sum of the numbers is at least 177 (the mean and standard deviation of
this sum, in a fair lottery, are 150 and 32.8, so this eliminates about 80% of all
combinations, and ensures a bias toward higher numbers).

(ii) The edge number is 3, 4, or 5.
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(iii) The cluster number is 2, 3, 4, or 5 (so eliminating combinations that are evenly
and widely spread, which have a cluster number of 6; and the deliberate bunching
of contiguous numbers, with a cluster number of unity).

(iv) The arithmetic complexity is at least 8 (which eliminates many geometric
patterns).

There are 1,521,650 combinations that remain, just over 10% of the entire list. (Any
strategy based on eliminating swathes of combinations is doomed to become self-
defeating if sufficiently many gamblers use it; it is thus important that the strategy retains
a large number of combinations.)

Henze and Riedwyl tested the effectiveness of their suggestion by taking the data
from two years’ play in the UK and Florida 6/49 lotteries, and generating 10 sets of
5,000 tickets at random, according to this strategy. They then fictitiously added these
5,000 extra tickets to every draw for two years, and compared their average payoffs for
the Match 4 and Match 5 prizes with the actual prize levels. In all cases, there was a
significant increase in the average payoff (for Florida, about 20% on Match 4 and 35%
on Match 5, even higher in the UK data).

Henze and Riedwyl also fitted a regression model for the dependent variable,
y = ln(U ), where U is the Match 5 payout, against dependent variables based on the
criteria (1) to (4) above. Their model gave the best fit as

y = 3.4113 + 0.0238(d) + 0.7255S∗ + 0.0771(b) − 0.0403(c)

where (d) is arithmetic complexity, S∗ is the logarithm of the sum of all the numbers,
(b) is the edge number, and (c) is the cluster number. The signs of the coefficients are
consistent with their earlier recommendation. They noted that 25 of the 200 winning
combinations in the Florida Lottery over 1993–1996 satisfied the conditions

1. The arithmetic complexity was at least five,
2. The cluster number was 2, 3, 4, or 5,
3. The predicted value of y was at least 7.5,

while 24 of them satisfied conditions (i) to (iv) above. The mean Match 5 prize for these
25 combinations was slightly higher even than the mean Match 5 prize from the 24
combinations that fit the earlier recommendations. Until lottery players’ habits change
substantially, it is clear that careful choice of combinations can lead to outcomes that
are significantly better than average.

Suppose a gambler on a lottery with huge prizes is successful in identifying
unpopular combinations, and is willing to make bets at times the prize funds are boosted
by a rollover. MacLean et al. (1992; see also MacLean and Ziemba, 1999) considered
two plausible scenarios. Case A has a medium-sized rollover, and the winning combi-
nation is fairly unpopular; Case B has a large rollover, and the winning combination is
very unpopular. They use the Kelly criterion (Kelly, 1956) to find the optimal fraction
of wealth to use to buy tickets, and reach gloomy conclusions.

Because the bulk of the expected winnings comes from an event with very low proba-
bility, the Kelly strategy advises a very low bet: in Case A, you need at least $1,000,000
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in capital to justify buying even one ticket! And if your aim is to have at least a 50%
chance of turning your initial $1,000,000 into $10,000,000 before you lose half the
initial capital, it will take on average some 22,000,000 years! With Case B, matters are
slightly more optimistic: you can afford to purchase more tickets per draw, and if you
are satisfied with a 95% chance of reaching $10,000,000 before falling to $25,000, the
average time to wait is down to 2,500,000 years.

No lotto game has yet lasted 100 years without change.
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Abstract

Lotteries as sources of public funding are of particular interest because they combine
elements of both public finance and gambling in an often controversial mix. Proponents
of lotteries point to the popularity of such games and justify their use because of the
voluntary nature of participation rather than the reliance on compulsory taxation.
Whether lotteries are efficient or not can have the usual concerns related to public
finance and providing support for public spending, but there are also concerns about
the efficiency of the market for the lottery products as well, especially if the voluntary
participants are not behaving rationally.

These concerns can be addressed through an examination of the U.S. experience with
lotteries as sources of government revenues. State lotteries in the U.S. are compared to
those in Europe to provide context on the use of such funding and the diversity of options
available to public officials. While the efficiency of lotteries in raising funds for public
programs can be addressed in a number of ways, one method is to consider whether
the funds that are raised are supplementing other sources of funding or substituting for
them. If lottery profits are fungible or substituting for other sources that would have
been used in the absence of such profits, then the issues of equity and efficiency of
lotteries relative to other sources are certainly heightened. The literature suggests that
some degree of fungibility does exist, bringing these very concerns into question.

Whether the lottery markets are efficient can be addressed, in part, by examining the
rationality of its participants. This can be done by considering how consumers partici-
pate in the market, how they respond to changing prices (or effective prices in the case
of lotteries), and whether the market ever provides its participants with a “fair bet,” a
gamble in which there is a positive expected value from participating. While empirical
studies provide somewhat mixed results, there are indications that consumers of lottery
products are relatively rational and that lottery markets seldom provide “fair bets,” both
indicators of efficient markets.

1. INTRODUCTION

Lotteries have been commonplace in America from the earliest days of colonialism.
Many public works, including Boston’s famous Fanieul Hall, as well as projects at
illustrious universities such as Harvard and Princeton, were partly funded by lotter-
ies, which remained popular throughout the country until the American Civil War.
A nationwide backlash against gambling led to the decline of state-sponsored lotteries,
however, and by the 1890s only Louisiana still operated a lottery game. Interestingly,
as was seen again over a century later, the Louisiana Lottery Corporation’s monopoly
on legalized gambling led to demand far outside the state’s borders with only 7% of the
company’s revenues being generated within Louisiana (Louisiana Lottery Corporation,
2007). Allegations of corruption led to the collapse of the Louisiana Lottery in 1894
and left the U.S. without any state-sponsored games for 70 years.
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In 1964, New Hampshire became the first state to reinstate a lottery game and other
states soon followed suit. The first Canadian provinces restarted lotteries in 1970. By
2007, 42 states and the District of Columbia, as well as every Canadian province,
sponsored lotteries. In the mid-1970s, state and provincial lottery associations began to
join together to offer lotto games beginning with the formation of the Western Canada
Lottery Corporation in 1974, the Tri-State Lotto, joining Maine, New Hampshire, and
Vermont, in 1985, the Multistate Lottery Corporation (now more commonly known as
Powerball) in 1988, and the Big Game/Mega-Millions Association in 1996 (Grote and
Matheson, 2006a). Table 1 provides a list of every state lottery in the U.S. along with
its year of initiation, the year that it joined a multistate lottery, as well as the multistate
association it joined, the annual sales and profits of each lottery association, and the per
capita sales of lottery tickets in each state.

The expansion of legalized gambling through state lotteries has proven popular for
at least two reasons that will be explored in depth in this chapter. First, as more states
legalized lottery games or other types of gambling, bordering states felt increasingly
pressured to legalize lotteries within their own states. If gambling opportunities were
widely available across state lines, a prohibition on gambling within the state may not
result in a lower incidence of gambling, but could instead simply lead to gambling
dollars being spent in neighboring jurisdictions. The potential loss of local revenues to
lotteries or casinos in other nearby states has been a prime argument for legalizing and
expanding gambling in the U.S.

Second, lottery associations typically designate all or a portion of the funds collected
to “good works.” In the UK, for example, 40% of the sales price of each ticket is
retained by the government with a significant percentage of this amount designated
for the Department of Culture, Media, and Sport. In the U.S., more often than not,
lottery funds are also designated for special purposes with education being the most
common recipient of lottery proceeds. Thus, lottery tickets, like church bingo or other
charitable gambing, may be perceived as a more conscientious choice by gamblers than
privately run casinos or racetracks. Critics of lotteries, however, argue that all govern-
ment revenues are fungible, and that by designating lottery proceeds toward education,
for example, government officials simply find it easier to reduce other funding sources
for education.

States typically offer a wide variety of gambling products through their lottery asso-
ciations that can be placed in a variety of categories. The most popular lottery products
in the U.S. are instant win scratchcard games. These lottery tickets sell for between
$1 and $20 and allow gamblers to instantly win small to medium sized prizes. These
games have the advantage of providing instant gratification (or despair) to players, but
instant games cannot award large prizes without placing significant risk on the lottery
association. For example, suppose a scratchcard game offers a single $1 million prize
to the lucky winner and suppose the lottery association distributes 2,000,000 $1 tickets.
On the surface it appears that this game will return a 50% payout to players and 50% to
the lottery association. If players find out immediately whether they have won the grand
prize, however, the lottery association will only be able to sell tickets to this game until
the prize is won, which on average will occur at the 1,000,000th ticket. Thus, a game
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TABLE 1 Descriptive Statistics for State Lottery Associations

State Start date Multistate
2006 Revenues
(million dollars)

2006 Profit
(million dollars)

2006 Per capita
sales (dollars)

Alabama None — — —

Alaska None — — —

Arizona 1981 Powerball (1994) 468.70 141.12 76.01

Arkansas ballot
2008

— —

California 1985 MegaMillions (2005) 3,585.00 1,240.57 98.33

Colorado 1983 Powerball (2001) 468.80 125.60 98.62

Connecticut 1972 Powerball (1995) 970.33 284.87 276.86

Delaware 1975 Powerball (1991) 727.99 248.80 852.97

Florida 1988 None 4,030.00 1,230.00 222.78

Georgia 1993 Powerball (1995)
MegaMillions (1996)

3,177.59 822.40 339.34

Hawaii None — — —

Idaho 1989 Powerball (1990) 131.13 33.00 89.42

Illinois 1974 MegaMillions (1996) 1,964.83 637.67 153.12

Indiana 1989 Powerball (1990) 816.40 218.00 129.31

Iowa 1985 Powerball (1988) 339.52 80.88 113.85

Kansas 1987 Powerball (1988) 236.05 67.09 85.40

Kentucky 1989 Powerball (1991) 742.30 204.30 176.48
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Louisiana 1991 Powerball (1995) 332.12 118.76 77.46

Maine 1974 Tri-State Lotto (1985)
Powerball (1990–1992)
Powerball (2004)

229.69 51.70 173.80

Maryland 1973 MegaMillions (1996) 1,560.91 500.97 277.95

Massachusetts 1972 MegaMillions (1996) 4,534.12 951.24 704.36

Michigan 1972 MegaMillions (1996) 2,212.37 688.02 219.14

Minnesota 1990 Powerball (1992) 450.00 121.30 87.09

Mississippi None — —

Missouri 1986 Powerball (1988) 913.52 260.67 156.35

Montana 1987 Powerball (1988) 39.92 9.11 42.26

Nebraska 1993 Powerball (1994) 113.11 30.32 63.96

Nevada None — — —

New Hampshire 1964 Tri-State Lotto (1985)
Powerball (1996)

262.74 80.32 199.82

New Jersey 1970 MegaMillions (1999) 2,406.57 849.25 275.84

New Mexico 1996 Powerball (1996) 154.71 36.86 79.15

New York 1967 MegaMillions (2002) 6,803.00 2,203.00 352.37

North Carolina 2006 Powerball (2006) 229.53 64.59 25.92

North Dakota 2004 Powerball (2004) 22.33 6.92 35.12

Ohio 1974 MegaMillions (2002) 2,221.00 646.30 193.50

(continued)
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TABLE 1 (continued)

State Start date Multistate
2006 Revenues
(million dollars)

2006 Profit
(million dollars)

2006 Per capita
sales (dollars)

Oklahoma 2005 Powerball (2006) 204.84 68.95 57.23

Oregon 1985 Powerball (1988) 1,104.00 483.00 298.32

Pennsylvania 1972 Powerball (2002) 3,070.00 975.85 246.77

Rhode Island 1974 Powerball (1988) 1,731.47 323.90 1,621.82

South Carolina 2002 Powerball (2002) 1,144.60 319.40 264.88

South Dakota 1987 Powerball (1990) 686.16 118.99 877.53

Tennessee 2004 Powerball (2004) 996.27 277.66 164.98

Texas 1992 MegaMillions (2003) 3,774.69 1,036.11 160.57

Utah None — — —

Vermont 1978 Tri-State Lotto (1985)
Powerball (2003)

104.88 22.88 168.10

Virgina 1988 MegaMillions (1996) 1,365.00 454.90 178.60

Washington 1982 MegaMillions (2002) 477.89 116.95 74.72

Washington, DC 1982 Powerball (1988) 266.20 73.40 457.76

West Virginia 1986 Powerball (1988) 1,522.00 610.00 836.97

Wisconsin 1988 Powerball (1989) 508.90 150.60 91.59

Wyoming None — — —

Sources: National Association of State and Provincial Lotteries; Grote and Matheson (2007b).
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that initially appears to have a 50% payoff to the lottery association will actually have
zero net expected return to the seller. For this reason, instant win games generally award
many modest prizes rather than a small number of larger prizes.

The other type of games are on-line or drawing games such as lotto, numbers, or
keno. These games involve players selecting numbers from a set of possibilities. Players
are issued a ticket with their choices, and these numbers are checked against numbers
selected at a designated drawing. Players who match more of the numbers win increas-
ingly larger prizes. Lotto games in particular have the interesting feature that when no
player wins the grand prize by matching all of the numbers in a particular drawing, the
money allocated to the jackpot pool is typically rolled over into the jackpot pool for
the next drawing, raising the potential jackpot for the subsequent drawing. Because the
jackpot prize fund is allowed to roll over in this manner, the jackpot prize can become
quite large if no one hits the jackpot in a number of successive periods. Indeed, adver-
tised jackpots exceeding $50,000,000 are quite common in both the U.S. and Europe,
and occasionally lotto jackpots have been known to exceed $250 million.

In some states, on-line instant win games and video lottery are available. On-line
instant win games are a hybrid of scratchcards and on-line games that provide the instant
satisfaction of scratchcards with the ability to win larger prizes. Video lottery is simply
a state-sponsored gaming machine more akin to slot machines or other casino gaming
than traditional lottery games. The availability of video lottery explains at least some of
the variation in state-by-state per capita lottery sales shown in Table 1.

2. DIFFERENCES BETWEEN AMERICAN AND
EUROPEAN LOTTERIES

While in many aspects European and American lotteries tend to be quite similar, there
are noticeable differences between the two continents. First, the share of tickets sales
accruing to the government is typically larger in Europe than in the U.S. The UK
National Lottery keeps 40% of ticket proceeds as government revenue and returns 50%
as prize money with the remainder going to pay for retailer commissions and admin-
istrative costs. In the U.S., only Oregon and West Virginia exceed a 40% government
take with the average association receiving only 28% of ticket sales. Two states, Rhode
Island and South Dakota, retain less than 20% of revenues as profits. As administrative
expenses and commissions are similar in the U.S. and the UK the portion of ticket
sales designated to prize money is correspondingly higher in the U.S. It must be noted,
however, that lottery winnings are subject to income taxes in the U.S. while they are
exempt in Britain and Canada, at least, significantly reducing net returns in the U.S. and
raising the government’s share of the total ticket price.

Next, lotto jackpot prizes in Europe are paid in cash while lotto jackpots in the U.S.
are paid in annuities usually over 20–30 years. The advertised prize in the U.S. is the
undiscounted sum of the annuity payments. Lottery winners can choose to take their
lottery winnings in a lump sum instead of the annuity payments, but the lump sum
is typically 50–60% of the size of the advertised jackpot, depending on the length of
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the annuity and the prevailing interest rates. Thus, while the large American multistate
lotteries, Powerball and Mega-Millions, like to advertise that as of 2007 between the
two games they have awarded the 15 largest jackpots in the history of gambling, in
fact, at least three advertised jackpots in the EuroMillions lottery would rank among the
five largest jackpots in history in terms of cash value rather than advertised value. (See
Grote and Matheson, 2003, for an analysis of the effects of annuity payments on gambler
behavior.) Combining the effects of annuities and the taxability of prize winnings, the
net present after-tax value of the advertised jackpots of American lotteries tend to be
roughly one-third the size of their advertised values.

The most popular European lotteries also tend to be much more egalitarian in their
distribution of prizes than the most frequently played games in the U.S. In Europe, lower
tier prizes are awarded larger shares of the prize pool and game matrices are set so that
rollover jackpots are relatively less common. For example, the UK National Lottery
sells tickets for £1, and players choose six numbers from a field of 49. Players who
match three of the six numbers correctly win £10, the smallest prize that can be won.
At least 11 state lottery games in the U.S. have offered an identical play matrix. In these
games, the prize for a $1 ticket for matching three of six numbers averaged roughly
$3.50 and ranged from $0 to $6, generally less than half that offered by the UK Lottery
for its smallest prize. Similarly, while the UK Lottery and Euromillions each allocate
16–17% of every euro or pound wagered to the jackpot prize pool, a random survey of
roughly 40 American lotto games finds the corresponding percentages allocated to the
grand prize ranges from 19% to 43% of each dollar wagered with the average lottery
providing slightly more than 30% of the funds collected to the jackpot, nearly double
the percentage of the two European lotteries.

Finally, the jackpot prize pool tends not to roll over as much in European lotteries
as compared to those in the U.S. Lottery associations face a trade-off in determining
the optimal odds for a lotto game. By offering games with longer odds but bigger grand
prizes, they could potentially attract more buyers. Numerous authors including Garrettt
and Sobel (1999, 2004) and Forrest et al. (2002) have suggested that lotto players are
attracted by the high jackpots and not the expected return, and lotto is popular due to
the “skewness” of the bet rather than its expected return. Lottery associations realize,
however, that if the odds are too high, jackpots will be won very infrequently, and,
therefore, the games will not benefit from frequent media exposure surrounding jackpot
winners. Indeed, Britiain’s Lotto Extra game was discontinued in 2006 after several long
stretches without a winner (Forrest and Alagic, 2007). Lottery officials are, therefore,
forced to choose between offering games with high jackpots and ones with frequent
winners.

To this end, in the mid-1970s, state and provincial lottery associations began to
join together to offer lotto games beginning with the formation of the Western Canada
Lottery Corporation in 1974, the Tri-State Lotto, joining Maine, New Hampshire, and
Vermont, in 1985, the Multistate Lottery Corporation (now more commonly known as
Powerball) in 1988, and the Big Game/Mega-Millions Association in 1996. By merg-
ing games, states could offer larger jackpots, but the increased number of players would
ensure that the grand prize was won on a regular basis.
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Until the early 2000s, states with smaller populations generally offered lotto by being
a member of one of the two major multistate games (Powerball and Big Game/Mega-
Millions) while more populous states could offer high prizes through independent lotto
games. For example, as of January 2000, eight states (California, Texas, New York,
Florida, Pennsylvania, Ohio, Washington, and Colorado) operated lotto games but did
not belong to a multistate game. Of these eight states, six ranked among the seven largest
states by population. By the early 2000s, however, perhaps due to the record $250 mil-
lion advertised jackpots offered during several Powerball and Mega-Millions drawings,
even these hold-out states began to join in the multistate associations so that by July
2005, only Florida remained independent from any multistate lotto game. Similarly, in
2004 the national lottery associations of the UK, France, Spain, and six other coun-
tries joined together to offer EuroMillions, which offers among the highest jackpots in
Europe. See Table 1 for a list of state lotteries and the multistate lottery to which they
belong.

Because of the larger number of ticket buyers, both the Mega-Millions and Power-
ball multistate games can offer substantially higher advertised jackpots than most state
games. While the odds of winning these games are also lower than those of the state
lotto games, there is not as much sacrifice in terms of the frequency of jackpot winners
as there is in single state games. The relationship between population of potential ticket
buyers and the structure of the game can be more precisely explained through an odds
to population ratio.

Clotfelter and Cook (1993) note that the most frequent odds to population ratio for
lotto games in the U.S. in the early 1990s was roughly one. That is, a lottery associa-
tion serving a population base of 13,000,000 could offer a game with odds of roughly
1/13,000,000 and maintain a reasonable frequency of jackpot winners. The UK National
Lottery, on the other hand, serves roughly 60,000,000 people with a game that offers
odds of 1/14,000,000 for a 0.25 odds to population ratio. The EuroMillions game offers
odds of 1/76,000,000 to a population base of just over 200,000,000 or a 0.38 ratio. The
National Lottery ratio is less than half that of the lowest ratio reported by Clotfelter and
Cook for state lotteries in 1990, and the EuroMillions lottery’s ratio is less than one-third
that of either of the two large multistate games in the U.S., Powerball (1/146,000,000
odds and 126,000,000 population for a ratio of 1.15) and MegaMillions (1/175,000,000
odds and 137,000,000 population for a ratio of 1.27).

Table 2 provides comparisons of two American lotto games in Florida and Texas, the
two large U.S. multistate games, Mega-Millions and Powerball, as well as two European
games, the UK National Lotto and EuroMillions. The time frames for each game are
periods over which the prize structure in each game remained unchanged. Column 3
in Table 2 lists the average jackpot pool for each drawing of the games converted to
net present value in the case of the American games and to dollar values using average
annual exchange rates in the case of the European games. Column 4 lists the average
number of times per year that the jackpot is won by at least one ticket in each game.
Column 5 lists the average number of rollovers before the jackpot is finally won in each
game. The final column lists the average number of winners when the jackpot is actually
awarded.
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TABLE 2 Jackpot Statistics

Average
jackpot pool

(million
dollars)

Average
number of

times jackpot
won per year

Average
number of
rollovers

Average
number of
winnersGame Period

Florida 1/1/03–12/30/06 6.05∗ 28.75 2.65 1.27

Texas 5/7/03–4/22/06 14.72∗ 6.08 15.28 1.06

MegaMillions 5/17/02–12/29/06 32.56∗ 12.67 7.93 1.05

Powerball 10/9/02–8/27/05 27.50∗ 12.28 7.65 1.20

UK Lottery 11/19/04–12/29/07 10.77∗∗ 85.34 0.21 3.35

EuroMillions 2/13/04–12/28/07 31.28∗∗ 32.79 2.17 1.72

NOTE: ∗Value of cash option. ∗∗Pound and euro values converted to dollars.

As can be seen, the American games offer larger jackpots that are less frequently
won than their European counterparts. Note that EuroMillions has weekly rather than
biweekly drawings, as did the UK National Lottery for roughly its first two years of
existence, so the figures in Column 4 actually understate the relative frequency at which
American games are won in comparison to European games. The data also show that
the UK lotto only infrequently rolls over, and EuroMillions rolls over at a rate less than
one-third that of its big American counterparts. Even when a jackpot is won, it is much
more likely to be shared among multiple winners in Europe than in the U.S.

3. FUNGIBILITY OF LOTTERY REVENUES

As stated previously, one possible reason for the popularity of state (and multistate,
national, and multinational) lottery games is that the revenues from such games can
be used to enhance funding of particular state programs. This earmarking of funds for
a designated purpose appears to be important to both the successful passage of and
the ongoing support for state lottery games. Of the 42 U.S. states (plus the District
of Columbia) that provide lottery games, only 17 allow for the revenues from those
games to go directly into that state’s general fund.1 Ten of those states earmark at least
a portion of lottery revenues for a designated purpose. The remaining 25 states earmark
all revenues from lottery games for specific government programs, with education being
the primary beneficiary. Table 3 provides a more detailed summary of the legislated use
of lottery revenues by state.2

1Some states designate that excess lottery revenues will be available for general funds if a threshold level of
revenues for earmarked spending is met.
2Note that “revenues” are more accurately designated as “profits” in Table 3 since it is assumed that
administrative costs and prize money are already removed by the time the money is used to fund state
expenditures.
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TABLE 3 Use of Lottery Profits by State

State Education
General

fund
Environment /
conservation Development

Gambling
treatment

Tax
relief Other

Arizona x x x x

California x

Colorado x x

Connecticut x

Delaware x

Florida x

Georgia x

Idaho x x

Illinois x

Indiana x x

Iowa x x x

Kansas x x x

Kentucky x

Louisiana x x

Maine x x

Maryland x x

Massachusetts x

Michigan x

Minnesota x x

Missouri x

Montana x

Nebraska x x x x

New Hampshire x

New Jersey x x

New Mexico x

New York x

North Carolina x

North Dakota x

Ohio x

Oklahoma x

Oregon x x x x

Pennsylvania x

Rhode Island x

South Carolina x

South Dakota x x x

Tennessee x

(continued)
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TABLE 3 (continued)

State Education
General

fund
Environment /
conservation Development

Gambling
treatment

Tax
relief Other

Texas x

Vermont x

Virginia x

Washington x

Washington, DC x

West Virginia x x x

Wisconsin x

Total: 23 17 7 3 3 3 12

Sources: Novarro (2005) and the Web sites of state lottery associations.

A question that has arisen in the literature on lotteries as a source of state finances
is whether these earmarked funds actually enhance spending dollar-for-dollar for the
designated programs or if state legislators substitute earmarked dollars for dollars that
would have come from the state’s general funds had earmarking not occurred. The
latter concept of substitution of state funds is referred to as fungibility, and the fun-
gibility of funds can either be partial or total depending on the degree of substitution
that occurs.

Several published studies have tested for the fungibility of government revenues from
lotteries in U.S. states using different variables and statistical techniques, but most tend
to agree that fungibility, at least to some degree, is present when funds are earmarked
for specific state and local programs.

Mikesell and Zorn (1986) construct a time-series for government expenditures on
education in a state as a percent of overall state and local government spending. They
find that this percentage increases in only one of the three states examined after the
introduction of earmarked funding from a state lottery game. In the other two states,
there was actually a decrease in the percentage of funding to education immediately
following the introduction of earmarked lottery revenues. While the authors note that
this is not the best test of fungibility, since other factors may also be influencing the
change in relative spending on education, it is an indicator that there was not a greater
relative emphasis on education spending after the introduction of earmarked funding for
that specified purpose.

Borg and Mason (1988, 1990) provided two studies of fungibility. The 1988 con-
tribution considers the state of Illinois and its expenditures on education both before
and after the introduction of a state lottery with profits earmarked for education. Using
regression analysis and a Chow test, there is shown to be a statistically signifant change
in the trend for expenditures on education, with education expenditures rising at a lower
rate after the introduction of the lottery, in spite of the lottery revenues available for
such spending.
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The 1990 contribution by Borg and Mason includes analysis of state expenditures
on education in five states with lotteries that earmark profits for education and in seven
states without lotteries. While there are mixed results for nominal spending on educa-
tion in the five lottery states, real spending on education declines in all five of those
states. Taken alone, this may indicate that fungibility of real spending on education is
occurring; however, the seven non-lottery states also experienced a decline in real edu-
cation spending over the same time period. Similar to Mikesell and Zorn (1986), this
is not necessarily direct evidence of fungibility, but it certainly brings into question the
commitment of funding to education after the introduction of lottery games that pledge
the commitment of funds for that purpose.

Borg et al. (1991) performed a cross-sectional analysis of states to detect the impact
of lottery funding on per-student expenditures on education. A dummy variable is
included in the regression analysis to indicate if a state provides for earmarked funding
to education via a state lottery. Their findings indicate that states with such funding have
a statistically significantly lower level of spending per student, providing an indirect
indication of fungibility.

Spindler (1995) tests for the fungibility of lottery revenues in seven states that
earmark such revenues for educational programs. Using the ratio of education expen-
ditures to general expenditures for each state as the dependent variable, Spindler
constructs time-series ARIMA models to provide statistical evidence of fungibility in
varying degrees in all seven states. Even more conclusively, however, there is evidence
that the ratio of education to general expenditures actually declines significantly in four
of those states after the introduction of a lottery game.

Three studies consider the impact of earmarked funding on state education expen-
ditures in the state of Florida. Stark et al. (1993) provide evidence that there is not
enough of an increase in per-student funding for education in Florida to account for the
added state revenues from its lottery. They estimate that over 55% of the funds devoted
to education from lottery revenues were, in fact, substituting for funding that would
have come from the state if the lottery were not present. Summers et al. (1995) pro-
vide some support for the fungibility of education spending in Florida by considering
the impact of lottery revenues on total allocations to community colleges in the state.
They find that the combined allocation to community colleges from both the lottery and
general funds from the state account for a smaller share of total funding sources avail-
able to community colleges after the state lottery began. Similarly, Land and Alsikafi
(1999) find that there is a statistically significant decline in the growth rate of per-student
(FTE) expenditures in community colleges in Florida after the introduction of the lot-
tery. This is due, in large part, to the significant decline in per-student allocations from
the state to community colleges in the post-lottery years. Part of this decline is due to
a substantial increase in community college enrollments in the post-lottery years. How-
ever, the authors note that rather than providing additional funding to maintain current
levels of per-student revenues to community colleges, the legislature opted to substi-
tute lottery revenues for the necessary general funds. Garrett (2001) also focuses his
empirical study of fungibility on a single state, Ohio, that like the state of Florida also
earmarks its profits from the state lottery to education. Similar to the study by Spindler,
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Garrett also uses an ARIMA model for his regression analysis, although real education
expenditures per student are used as the dependent variable. Garrett also attempts to
measure the degree of fungibility in lottery funding that occurs. His study finds that the
earmarking of lottery funds in Ohio does not lead to a significant increase in per-student
expenditures on education by the state, concluding that the funds are, to a large degree,
fungible.

Erekson et al. (2002) conduct both a cross-sectional and time-series analysis of all
50 states over a five-year period to provide for a more complete study of fungibility.
The models regress the expenditures on education as a percentage of general revenues
for each state on a variety of theoretically important economic variables as well as a
dummy variable for states that introduce a lottery and a variable for lottery revenues
per capita. The estimation on the coefficient for lottery revenues per capita is negative
and significant, indicating that fungibility does occur when lottery revenues are used to
finance state expenditures, regardless of whether they are earmarked or not. Additional
results indicate that for every $1 per capita in lottery revenues generated as funding for
a state, there is a loss of approximately 1–1.5% of education funding available.

Novarro (2005), similar to Erekson et al., also theorizes the importance of including
both cross-sectional and time-series analysis to address the fungibility issue. The depen-
dent variable used in the analysis is similar to previous studies, however, in that she
utilizes state expenditures on education per student. She also uses lottery profits per-
student as one of the independent variables in the model; however, she separates the
effects of lottery profits depending on whether the profits are earmarked for educational
purposes or are used as general funds by the state. By separating out the two types of
earmarking, Novarro is able to conclude that while earmarking funds does indeed result
in fungibility, earmarking provides relatively more revenues to a designated program
than if the lottery revenues are not earmarked. Her model estimates that earmarked
lottery profits for education tend to increase spending on education by approximately
79 cents for every $1 in lottery profits, while $1 in nonearmarked lottery profits tend to
increase education spending by only 43 cents on average.

Given the statistical evidence, both direct and indirect, on the presence of fungibility
of earmarked lottery revenues in these studies, it should bring into question the practice
of earmarking lottery revenues if it merely allows for substitution of state dollars for
legislative programs rather than supplementing those dollars. Obviously, the degree of
fungibility that occurs is highly important, as is the issue of whether earmarking lottery
revenues is relatively better than allowing state legislatures more discretion regarding
their use.

4. EFFICIENCY OF LOTTERY MARKETS—PART 1

Since the price of a lotto ticket and the odds of winning remain fixed regardless of the
size of the jackpot, the expected return from the purchase of a lottery ticket continu-
ously changes along with the size of the jackpot. This varying return from a repeated
game with fixed odds makes lotto almost unique among games of chance. Craps, slots,
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roulette, bingo, keno, instant win lottery tickets, and lotto games without a rollover
component all have fixed odds but also constant expected returns. Horse racing pro-
vides varying rates of return but is not a repeated game with fixed odds. Perhaps the
only other similar gamble is blackjack when played by an expert card-counter where the
game exhibits fixed payoffs but varying odds of winning depending upon which cards
have already been played. The non-constant nature of the expected return of lotto has
made the game the subject of extensive academic research and provides for interesting
opportunities to explore the efficiency of betting markets and the rationality of gamblers.

Of course, some may question whether one can ever consider rational any gambling
activity with a negative expected return. While this is a valid concern, gambling clearly
offers non-pecuniary benefits to players in the form of thrills or excitement. In the words
of one Big Game ticket buyer during the record $363,000,000, May 2000 drawing, “One
dollar is a small price to pay to be able to dream about winning $300,000,000.”

Accepting the idea of gambling itself as rational behavior, one may address more
detailed concepts of rationality and market efficiency. At least three notions of ratio-
nality can be explored using lotto games. First, rationality requires that individual
bettors choose the gamble with the highest expected return per dollar played. Second,
as expected return rises, more bettors should enter into the market and existing bet-
tors should gamble more. Finally, lotto games should never provide a positive expected
return.

It is generally conceded that state lotteries have among the worst average expected
payoffs among games of chance. While sports betting returns 91%, slot machines return
89%, bingo returns 74%, and blackjack returns 97%, state lotteries generally return only
50–60% of gross revenues to players in the form of prizes. Several theories explain the
popularity of lottery tickets in the face of such low expected returns.

First, lottery tickets are an extremely convenient form of gambling. While horse rac-
ing and dog racing are offered at roughly 150 and 45 tracks around the U.S., respectively,
and casino gambling is legal in about 1,200 American casinos (roughly two-thirds of
which are in just five states: Nevada, Montana, California, Washington, and Oklahoma),
lottery tickets are sold at over 150,000 retailers across the country. Furthermore, unlike
casinos and racetracks, which are specialized gambling institutions, most lottery tickets
are sold in gas stations and convenience stores and can be purchased along with other
items.

Second, as noted previously, lottery associations more often than not designate pro-
ceeds to specific “good works” such as education or sport and recreation. Similarly,
bingo, which is often offered by churches or other non-profit organizations, also offers
a relatively low return.

Finally, the skewness of the bet and the high potential winnings offer one of the few
gambling opportunities that present the possibility of a truly “life-changing” event. Few
gamblers are likely to dream about what their life would be like if they won $100 in
their weekly local football pool, but thoughts of instantly becoming a multi-millionaire
are another thing entirely. Indeed, the handful of lotteries known to return even less than
half of revenues to prizes have offered very high jackpots. High maximum prizes tend
to reduce the importance of expected value in lotteries.
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Once the decision to play lotto over other games of chance is made, the question
becomes whether or not bettors play the game in a way that reflects rationality in terms
of maximizing expected return subject to the conditions of the game. The evidence of
rationality on the part of lotto players is mixed, but tends to reflect at least some degree
of rational decision-making on the part of lotto players.

Since the jackpot and often the lower tier prizes are paid in a pari-mutuel fashion in
lotto games, players can increase their expected returns by playing “rare” numbers. On
the reasonable assumption that every number combination is equally likely to be chosen,
by selecting rarely played numbers, bettors can decrease the number of fellow players
with whom they have to share the prize pool if they win. Most lotto games either allow
a computer to randomly select numbers or allow players to choose their own numbers.
When players select their own numbers, certain combinations, such as multiples of 7,
birthdays, or vertical or diagonal columns on the play slip, are more commonly played
than others.

For example, an examination of the first 801 drawings in the Texas Lotto shows
that the average payout for choosing five out of six numbers correctly was $1,656 and
$105 for choosing four of six correctly. However, in the six drawings where the smallest
number drawn was 29 or higher, the average payouts were $2,040 and $141 respectively
while in the 13 drawings where the highest number drawn was 28 or lower, the average
payouts were $922 and $67 on average. Playing rare numbers, in this case numbers that
did not correspond with dates, resulted in roughly a 25% increase in return above the
average and over a 100% increase over the “common” numbers. Similarly, the January
14, 1995 drawing of the UK Lotto resulted in 133 grand prize winners, approximately
25 times the expected number, due to the selection of a set of numbers corresponding to
an interesting pattern on the lotto play slip. The resulting jackpot prize of £122,510 per
winner was the lowest in the history of the National Lottery and roughly 5% of the size
of the typical grand prize.

The extent to which the distribution of numbers played deviates from a uniform
distribution, and hence the ability that players have to earn above normal returns, is
examined in depth elsewhere in this volume (Haigh, 2008) as well as by others (Farrell
et al., 2000; Papachristou and Karamanis, 1998). As an approximation, however, since
roughly 70% of all lotto tickets sold in the U.S. use computer generated numbers, which
can be reasonably assumed to follow a uniform distribution, any supernormal expected
returns are limited to the deviation from uniformity by the 30% of tickets that are sold to
players who select their own numbers. Furthermore, as lotto jackpots grow, the percent-
age of players selecting their own numbers falls, further reducing any ability of players
to select advantageous numbers during periods of high jackpots. Still, this phenomenon
is a clear violation of rationality and has been examined by Clotfelter and Cook (1989),
MacLean et al. (1992), Thaler and Ziemba (1988), and MacLean and Ziemba (1999),
among others. The observed deviation in existing lotteries has been shown to frequently
be large enough to allow some lotteries to provide positive net expected returns to bet-
tors playing the rarest combinations. While mean returns exceeding $2.00 per dollar
played have been reported, due to the long odds involved, the player would have to
play hundreds of thousands of draws before the strategy would, on average, have a
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good chance of winning (Ziemba et al., 1986, MacLean et al., 1992, and MacLean and
Ziemba, 1999).

5. EFFICIENCY OF LOTTERY MARKETS—PART 2

Another possible definition of rationality is that ticket sales will always increase when
the expected return rises and will always fall when expected returns fall. An examination
of the correlation between advertised jackpots and ticket sales shows a clear increase in
ticket sales in response to higher expected returns as would be expected in efficient
markets.

Violations of rationality that occur when ticket sales rise despite a decrease in the
expected return can occur during rollovers when the number of ticket buyers rises at
a faster rate than the advertised jackpot and have been named “Lottomania” or “Lotto
Fever” by Beenstock and Haitovsky (2001) and Grote and Matheson (2004).

Testing whether lotto fever exists in actual lottery ticket markets requires an estimate
of the expected return from the purchase of a lottery ticket. Several researchers have
presented estimates of this expected return, starting with Clotfelter and Cook (1989)
and including DeBoer (1990), Shapira and Venezia (1992), Gulley and Scott (1993)
and Matheson (2001). Matheson (2001) presents the most detailed equation for the
expected return, ERt, from the purchase of a single lottery ticket.

ERt =

[
i∑
wiVit +

(
AVjt/dvrt

) (
1 − e−Btwj

)
/Bt

]
(1 − �) +

(
i∑
wi + wj

)
�� (1)

where wi is the probability of winning lower-tier prize i, Vit is the cash value of lower-
tier prize i at time t,wj is the probability of winning the jackpot prize, AVjt is the
advertised jackpot prize at time t, dvrt is a divisor used to convert the advertised annu-
itized jackpot into a net present value, Bt is the number of other ticket buyers for the
drawing in period t, � is the tax rate, and � is the price of a ticket.

Lottery ticket sales almost always increase from drawing to drawing if the jackpot is
not won, so rationality requires the expected return from the purchase of a lottery ticket
to also be strictly increasing from drawing to drawing in order to explain the increasing
ticket sales. This requires ERt > ER(t−1) for all drawings within a jackpot cycle. Setting
ERt > ER(t−1) and canceling like terms, assuming that the conversion factor from the
advertised jackpot to the net present value of the jackpot remains unchanged between
drawings, leaves Equation (2).

Vjt(1 − e−Btwj )/Bt > Vj(t−1)(1 − e−Bt−1wj/Bt−1) (2)

This arrangement is convenient because it eliminates problematic issues such as the
appropriate tax rates to use as well as avoiding the problem of determining the size of the
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lower-tier prizes when these prizes are determined in a pari-mutuel fashion. Equation
(2) can be further rearranged to leave equation (3).

Vjt/Vj(t−1) > Bt(1 − e−Bt−1wj )/Bt−1(1 − eBtwj ) (3)

If equation (3) does not hold as the jackpot rises, then the purchase of a lottery
ticket becomes an increasingly worse investment as the jackpot rises. In practice, how-
ever, Grote and Matheson (2004, 2005) have shown that lotto fever is exceedingly rare,
occurring in only 12 cases out of over 23,000 American lottery drawings examined.
Such instances are concentrated in record-size jackpots in large games and have become
less common over time.

Violations of rationality that occur when ticket sales do not rise despite an increase
in expected return are known in the literature as “lottery apathy” or “jackpot fatigue”
and have been investigated by DeBoer (1990), and Grote and Matheson (2005, 2007a).
It is an observed fact that lottery sales for most individual games have fallen over time.
This decline is explained in part by the rise of recently legalized forms of non-lottery
gambling or the introduction of new lottery products. For example, the expansion of
casino gaming or the adoption of lotteries by neighboring states may have significant
effects on lotto sales within a state.

The effects of casino gaming on lottery sales in the U.S. have not been well explored
because of the difficulty in obtaining gaming revenue data from Native American casi-
nos, which operate in roughly half of the states. The effects of neighboring lottery games
have been well explored, however, as have the effects of the introduction of new games
on existing games within a state. Researchers including Stover (1990) and Garrett and
Marsh (2002) have clearly identified significant cross-border effects for lottery gam-
bling. The expansion of lotteries to nearly every state has led to a decline in lotto play
for states that had state lotteries previously as a decrease in cross-border play occurs.
Some cross-border gambling still exists, particularly between states that are members
of different multistate games. Advertised jackpots exceeding $250 million are attractive
lures for neighboring states. Border counties have been shown to experience dispro-
portionately large increases in ticket sales during large multistate jackpots when the
neighboring state is not a member of their particular multistate game (Oster, 2004).

Forrest et al. (2004) find that within-country competition between lotto games
appears quite limited in the UK, but Grote and Matheson (2006a, 2007b) suggest a
significant degree of cannibalism between games in American states that offer multi-
ple lotto games. The degree of substitutability appears to be particularly high in states
where two or more lotto games have similar characteristics in terms of average jackpots.
Forrest et al. discovered no such evidence in the UK Lottery, attributing this result to
the fact that the UK lottery association, Camelot, “has successfully designed and mar-
keted games that each appeal to bettors in different ways.” Forrest et al. also find little
evidence that the different lotto games in the UK are complements of one another, while
Grote and Matheson find that while the presence of a multistate lottery game decreases
sales overall for an existing state lotto game, during periods of large multistate jackpots,
ticket sales for other lotto games within states that are members of the multistate lottery
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association increase modestly as well. Grote and Matheson attribute this increase to a
reduction in transaction costs.

A final anomaly identified in lotto sales is the the halo effect, that is, an increase
in lottery ticket sales in the periods immediately following a large jackpot being won.
Various researchers have attributed this bump in sales to irrational bettors influenced
by increased media attention surrounding the recent large jackpot. Grote and Mathe-
son (2007), however, suggest that the anomaly may be explained as simply as bettors
cashing in tickets winning smaller prizes and reinvesting the proceeds in new tickets.

6. EFFICIENCY OF LOTTERY MARKETS—PART 3

A final definition of rationality in lottery markets, first proposed by Scott and Gulley
(1995), is that lottery games should never, or at least quite rarely, provide their partici-
pants with a bet with a positive expected value. Several papers have identified specific
instances of fair bets in lotto drawings including Krautmann and Ciecka (1993) and
Matheson (2001). Grote and Matheson (2005, 2006b) present the most ambitious tests
of this definition of rationality by examining nearly 23,000 drawings of American lot-
tery games. Using the expected return found in Equation (1), they find 290 instances
where the purchase of a single randomly selected lottery ticket would have provided
an after-tax expected return exceeding the cost of the ticket. The returns here exclude
any additional money that could be earned by playing rare combinations as described
previously. Examples of fair bets tend to be concentrated in smaller state lotteries that
advertise relatively low jackpots but with substantially better odds of winning than the
biggest state and multistate games. The smaller games do not attract as many addi-
tional ticket buyers when their jackpots become relatively large, and therefore the higher
returns they offer are not as diluted by the prospect of potentially having to share the
jackpot among multiple winners.

With less than 1.3% of drawings providing a positive expected return, it can rea-
sonably be concluded that lottery games are generally efficient. Even those drawings
providing positive returns subject the player to substantial risk, and only provide a fair
bet if the player is assumed to be risk neutral. Investment strategies based on buying sin-
gle tickets during draws with the “best” jackpots would only provide positive median
returns with investment horizons that, literally, exceed 100,000 years in length.

Haigh (2008), supposes a gambler utilizes a strategy that considers both large jack-
pots and the playing of unpopular number combinations as examined by MacLean et
al. (1992) and MacLean and Ziemba (1999). Under scenario A, the lotto game has a
medium-sized rollover, and the winning combination is fairly unpopular, while under
scenario B the game has a large rollover, and the winning combination is very unpopu-
lar. Because the bulk of the expected winnings in either case comes from an event with
very low probability, in scenario A if an investor aims to have at least a 50% chance
of turning an initial $1,000,000 into $10,000,000 before losing half the initial capital, it
will take on average some 22,000,000 years for this to occur playing an optimal Kelly
betting strategy. Scenario B offers only a slightly better investment opportunities. If an
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investor is satisfied with a 95% chance of reaching $10,000,000 before falling to $25,
the average time to wait is down to a “mere” 2,500,000 years. But Ziemba, in a private
communication, notes that you could win on the first draw and that several very high,
not-shared jackpots were won using unpopular numbers from the 1986 guidebook, but
not by him (unfortunately).

Matheson (2001) and Grote and Matheson (2005, 2006b) note, however, that while
the purchase of individual lottery tickets rarely provide a fair bet, the purchase of every
number combination is much more likely to result in a positive net expected return at
a significantly reduced level of risk. First, the purchase of every combination, denoted
as the “Trump Ticket” by Krautmann and Ciecka (1993), guarantees the purchaser at
least a portion of the jackpot, reducing the risk simply to how many other tickets have
the winning combination as opposed to whether or not the jackpot is won in the first
place. Second, the purchase of a Trump Ticket results in a higher jackpot payoff due to
the large number of tickets purchased and the allocation of the proceeds to the jackpot
pool. Third, the purchase of the Trump Ticket has certain tax advantages as described
by Matheson (2001). See Ziemba et al. (1986) for an example of when it was optimal
to buy the pot, as he calls it, in six consecutive draws. Sales fell despite the rollover
increasing because buyers thought the prize could not be won.

Grote and Matheson (2005, 2006b) find that nearly 12% of the almost 23,000 draw-
ings they examine would have provided a positive net return for the purchase of a Trump
Ticket with many drawings providing an expected return in excess of 50%. The fact that
few attempts to corner a lottery drawing have been attempted is likely due to two fac-
tors. First, even the purchase of a Trump Ticket may involve significant risk. While the
Trump Ticket guarantees a share of the jackpot, it does not preclude other tickets from
winning. In most of the cases identified by Grote and Matheson, the return from the
Trump Ticket is only positive if no other tickets share the jackpot prize.

Furthermore, the act of physically purchasing the every possible combination for a
particular lottery drawing is a daunting task. In fact, in February 1992, an Australian
consortium attempted to corner a $25,000,000 advertised jackpot in the Virginia Lotto.
Despite a massive effort that included enlisting the aid of a major lottery ticket retailer,
the consortium was only able to purchase 2,400,000 of the 7,059,052 possible combi-
nations before time ran out. Luckily, they had the winning ticket and so made a profit.
Cornering one of the larger games, such as Powerball, MegaMillions, or EuroMillions,
would be even more difficult. Such a strategy is likely to be possible only for the small-
est state games. However, with smaller games, while the rate of return might be high,
the small size of the jackpot would limit the total return from such an effort.

7. CONCLUSIONS

Lottery games have considerable appeal as sources of public revenues. The diversity of
products available as well as the adaptability of lotto structures, allow government offi-
cials to choose games that appeal to their consitutents as well as provide for appropriate
levels of public funding. However, as sources of public funding, the literature suggests
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that fungibility of lottery revenues does exist, providing for lesser gains to public
programs than might be expected. In fact, if the funds are completely fungible, programs
designated as beneficiaries of lottery profits may receive just as much revenue after this
designation as before.

The evidence on fungibility as an argument against the efficiency of state-run
lotteries is both consistent and stronger than the arguments that the market for the lot-
tery products are not efficient. Particularly in the instance of state-run lotto games in
the U.S., consumers tend to exhibit rational behavior and the markets themselves do not
tend to exhibit positive net expected returns on a general basis. However, individual vio-
lations of market efficiency do appear to occur in the form of positive expected returns
from certain number combinations, the presence of lottery fatigue, and the potential
positive expected returns from a Trump ticket.
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