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Preface to the 3rd Edition

The 1st edition of this book was published in 2002 and the 2nd edition in 2008. I was surprised

when I discovered it was quite such a long time ago. Where did the time go! Anyway, over the

course of the last five years, I have received many favourable comments from readers of my

book, which of course is immensely gratifying. I must be doing something right then.

This edition contains a completely new chapter (on diagnostic tests), there is a quite a lot of

new material and most of the chapters have received an extensive re-write. I have also updated

virtually all of the examples drawn from the journals and added many new exercises. I hope

that this gives the book a fresh feel – as well as a new lease of life.

The book should appeal, as before, to everybody in health care (students and profession-

als alike) including nurses, doctors, health visitors, physiotherapists, midwives, radiographers,

dieticians, speech therapists, health educators and promoters, chiropodists and all those other

allied and auxiliary professionals. It might possibly also be of interest to veterinary surgeons,

one of whom reviewed my proposal fairly enthusiastically.

My thanks to Jon Peacock and all the others at Wiley who have shepherded me along in the

past and no doubt will do so in the future. I must also thank Barbara Noble, who patiently acted

as my first-line copyeditor. She read through my manuscript, discovered quite a few errors

of various sorts and made many valuable suggestions to improve readability. Any remaining

mistakes are of course mine.

I also want to acknowledge my great debt to Susanne, who always encourages me, enthusias-

tically, in everything I attempt.

Finally, I would like to mention another book which might be of interest to any readers who

are thinking of embarking on research for the first time – Getting Started in Health Research,
Bowers et al., Wiley, 2012. This book covers both quantitative and qualitative research. It will

guide you through the research process, from the very first idea to the interpretation of your

results and your conclusions.

David Bowers, 2013
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Preface to the 2nd Edition

This book is a ‘not-too-mathematical’ introduction to medical statistics. It should appeal to

anyone training or working in the health care arena – whatever his or her particular discipline

is – who wants either a simple introduction to the subject or a gentle reminder of stuff that

they might have forgotten. I have aimed the book at:

• students doing either a first degree or a diploma in clinical and health care courses

• students doing post-graduate clinical and health care studies

• health care professionals doing professional and membership examinations

• health care professionals who want to brush up on some medical statistics generally or who

want a simple reminder of a particular topic

• anybody else who wants to know a bit of what medical statistics is about.

The most significant change in this edition is the addition of two new chapters, one on mea-

suring survival and the other on systematic review andmeta-analysis.The ability to understand

the principles of survival analysis is important, not least because of its popularity in clinical

research and consequently in the clinical literature. Similarly, the increasing importance of

evidence-based clinical practice means that systematic review and meta-analysis also demand

a place. In addition, I have taken the opportunity to correct and freshen the text in a few places,

as well as adding a small number of new examples. My thanks to Lucy Sayer, my editor at John

Wiley & Sons, for her enthusiastic support, to Liz Renwick and Robert Hambrook and all the

other people inWiley for their invaluable help andmy special thanks tomy copyeditor Barbara

Noble for her truly excellent work and enthusiasm (of course, any remaining errors are mine).

I am happy to get any comments from you. You can e-mail me at: d.bowers@leeds.ac.uk.
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Preface to the 1st Edition

This book is intended to be an introduction to medical statistics but one which is not too

mathematical – in fact, it has the absolute minimum of maths. The exceptions however are

Chapters 17 and 18, which have maths on linear and logistic regressions. It is really impossible

to provide material on these procedures without some maths, and I hesitated about including

them at all. However, they are such useful and widely used techniques, particularly logistic

regression and its production of odds ratios, which I felt they must go in. Of course, you

do not have to read them. It should appeal to anyone training or working in the health care

arena – whatever his or her particular discipline is – who wants a simple, not-too-technical

introduction to the subject. I have aimed the book at:

• students doing either a first degree or a diploma in health care-related courses

• students doing post-graduate health care studies

• health care professionals doing professional and membership examinations

• health care professionals who want to brush up on some medical statistics generally or who

want a simple reminder of a particular topic

• anybody else who wants to know a bit of what medical statistics is about.

I intended originally to make this book as an amalgam of two previous books of mine, Statis-
tics from Scratch for Health Care Professionals and Statistics Further from Scratch. However,
although it covers a lot of the samematerial as in those two books, this is in reality a completely

new book, with a lot of extra stuff, particularly on linear and logistic regressions. I am happy

to get any comments and criticisms from you. You can e-mail me at: slothist@hotmail.com.
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Introduction

My purpose in writing this book is to offer a guide to all those health care students and pro-

fessionals out there, who either want to get started in medical statistics or who would like (or

need) to refresh their understanding of one or more medical statistics topics. I have tried to

keep the mathematics to a minimum, although this is a bit more difficult with the somewhat

challenging material on modelling in later chapters.

I have used lots of appropriate examples drawn from clinical journals to illustrate the ideas

and lots of exercises which the readers may wish to work through to consolidate their under-

standing of the material covered (the solutions are at the end of this book).

I have included some outputs from SPSS and Minitab which I hope will help the readers

interpret the results from these statistical programmes.

Finally, for any tutors who are using this book to introduce their students tomedical statistics,

I am always very pleased to receive any comments or criticisms they may have which will help

me improve the book in the future editions. My e-mail address is d.bowers@leeds.ac.uk.
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1
First things first – the nature
of data

Learning objectives

When you have finished this chapter, you should be able to:

• Explain the difference between nominal, ordinal and metric data.

• Identify the type of any given variable.

• Explain the non-numeric nature of ordinal data.

Variables and data

Let’s start with some numbers. Have a look at Figure 1.1.

These numbers are actually the birthweights of a sample of 100 babies (measured in grams).

We call these numbers sample data. These data arise from the variable birthweight. To state

the blindingly obvious, a variable is something whose value can vary. Other variables could be

blood type, age, parity and so on; the values of these variables can change from one individual

Medical Statistics from Scratch: An Introduction for Health Professionals, Third Edition. David Bowers.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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2240 4110 3590 2880 2850 2660 4040 3580 1960 3550

3050 3130 2660 3150 3220 3990 4020 3040 3460 4230

4110 2780 2840 3660 3580 2780 3560 2350 2720 2460

3200 2650 3000 3170 3500 2400 3300 3740 2760 3840

3740 2380 3300 3480 3740 3770 2520 3570 3400 3780

3040 3170 3300 3560 3180 2920 4000 2700 3680 2500

2920 2980 3780 2650 2880 4550 3570 1620 3000 3700

4080 3280 3800 2800 2560 2740 3180 3200 3120 4880

2800 3640 4020 3080 2590 3360 3630 3740 2960 3300

3090 3600 3720 2840 3320 2940 3640 2720 3220 4140

Figure 1.1 Some numbers. Actually, the birthweight (g) of a sample of 100 babies. Data from the Born

in Bradford Cohort Study. Born in Bradford, Bradford Institute for Health Research, Bradford Teaching

Hospitals NHS Foundation Trust

to the other. When we measure a variable, we get data – in this case, the variable birthweight

produces birthweight data.
Figure 1.2 contains more sample data, in this case, for the gender of the same 100 babies.

M M F F M M F F M M

M M M F M M F F M M

F F M M F F M F F F

M M F F M M M M F F

M M F F M F F F F F

F M F M M M F F M F

F F M M M F M M M F

M F M M M M M M M M

M F M M M F F M M F

M F M F M M F F M F

Figure 1.2 The gender of the sample of babies in Figure 1.1

Moreover, Figure 1.3 contains sample data for the variable smoked while pregnant.
The data in Figures 1.1, 1.2 and 1.3 are known as raw data because they have not been

organised or arranged in any way. This makes it difficult to see what interesting characteristics

or features the data might contain. The data cannot tell its story, if you like. For example, it is

not easy to observe howmany babies had a low birthweight (less than 2500 g) from Figure 1.1,

or what proportion of the babies were female from Figure 1.2. Moreover, this is for only 100

values. Imagine how much more difficult it would be for 500 or 5000 values. In the next four

chapters, we will discuss a number of different ways that we can organise data so that it can

tell its story. Then, we can see more easily what is going on.
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No No No No No No No No Yes No

No No No No No No No No Yes No

No No No No No Yes No No No No

Yes No Yes No No No No No No No

No No No No No No No No No No

No No No Yes Yes No No No No No

No No Yes No No Yes No No No No

Yes No No No Yes Yes No No Yes No

No No No No No No No No No No

No Yes No No No Yes No No Yes No

Figure 1.3 The variable ‘smoked while pregnant?’ for the mothers of the babies in Figure 1.1

Exercise 1.1. Why do you think that the data in Figures 1.1, 1.2 and 1.3 are referred to

as ‘sample data’?

Exercise 1.2. What percentage of mothers smoked during their pregnancy? How does

your value contrast with the evidence which suggests that about 20 per cent of mothers

in the United Kingdom smoked when pregnant?

Of course, we gather data not because it is nice to look at or we’ve got nothing better to do

but because we want to answer a question. A question such as ‘Do the babies of mothers who

smoked while pregnant have a different (we’re probably guessing lower) birthweight than the

babies of mothers who did not smoke?’ or ‘On average, do male babies have the same birth-

weight as female babies?’ Later in the book, we will deal with methods which you can use

to answer such questions (and ones more complex); however, for now, we need to stick with

variables and data.

Where are we going… ?

• This book is an introduction to medical statistics.

• Medical statistics is about doing things with data.

• We get data when we determine the value of a variable.

• We need data in order to answer a question.

• What we can do with data depends on what type of data it is.
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The good, the bad, and the ugly – types of variables

There are twomajor types of variable – categorical variables andmetric variables; each of them
can be further divided into two subtypes, as shown in Figure 1.4.

Categorical variables Metric variables

Nominal Ordinal Continuous Discrete

Figure 1.4 Types of variables

Each of these variable types produces a different type of data. The differences in these data
types are of great importance – some statistical methods are appropriate for some types of data
but not for others, and applying an inappropriate procedure can result in amisleading outcome.
It is therefore critical that you identify the sort of variable (and data) you are dealing with before
you begin any analysis, and we need therefore to examine the differences in data types in a bit
more detail. From now on, I will be using the word ‘data’ rather than ‘variable’ because it is the
data we will be working with – but remember that data come from variables. We’ll start with
categorical data.

Categorical data

Nominal categorical data

Consider the gender data shown in Figure 1.2. These data are nominal categorical data (or just
nominal data for short).
The data are ‘nominal’ because it usually relates to named things, such as occupation, blood

type, or ethnicity. It is particularly not numeric. It is ‘categorical’ because we allocate each value
to a specific category. Therefore, for example, we allocate each M value in Figure 1.2 to the
category Male and each F value to the category Female. If we do this for all 100 values, we get:

Male 265
Female 235

Notice two things about this data, which is typical of all nominal data:

• The data do not have any units of measurement.1

• The ordering of the categories is arbitrary. In other words, the categories cannot be ordered
in anymeaningfulway.2 We could just as easily havewritten the number ofmales and females
in the order:

1For example, cm, seconds, ccs, or kg, etc.
2We are excluding trivial arrangements such as alphabetic.
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Female 235

Male 265

By the way, allocating values to categories by hand is pretty tedious as well as error-prone, more

so if there are a lot of values. In practice, you would use a computer to do this.

Exercise 1.3. Suggest a few nominal variables.

Ordinal categorical data

Let’s now consider data from the Glasgow Coma Scale (GCS) (which some of you may be

familiar with). As the name suggests, this scale is used to assess the level of consciousness after

head injury. A patient’s GCS score is judged by the sum of responses in three areas: eye opening

response, verbal response, and motor response. Notice particularly that these responses are

assessed rather than measured (as weight, height or temperature would be).The GCS score can

vary from 3 (deeply unconscious) to 15 (fully conscious). In other words, there are 13 possible

categories of consciousness.3

Suppose that we have two motor-cyclists, let us call them Wayne and Kylie, who have been

admitted to the Emergency Department with head injuries following a road traffic accident.

Wayne has a GCS of 5 and Kylie a GCS of 10. We can say that Wayne’s level of consciousness

is less than that of Kylie (so we can order the values) but we can’t say exactly by how much.
We certainly cannot say thatWayne is exactly half as conscious as Kylie. Moreover, the levels of

consciousness between adjacent scores are not necessarily the same; for example, the difference

in the levels of consciousness between two patients with GCS scores of 10 and 11 may not be

the same as that between patients with scores of 11 and 12. It’s therefore important to recognise

that we cannot quantify these differences.

GCS data is ordinal categorical (or just ordinal) data. It is ordinal because the values can be

meaningfully ordered, and it is categorical because each value is assigned to a specific category.

Notice two things about this variable, which is typical of all ordinal variables:

• The data do not have any units of measurement (so the same as that for nominal variables).

• The ordering of the categories is not arbitrary, as it is with nominal variables.

The seemingly numeric values of ordinal data, such asGCS scores, are not in fact real numbers

but only numeric labels which we attach to category values (usually for convenience or for data
entry to a computer). The reason is of course (to re-emphasise this important point) that GCS

data, and the data generated by most other scales, are not properly measured but assessed in

3The scale is now used by first responders, paramedics and doctors, as being applicable to all acute medical and

trauma patients.
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some way by a clinician or a researcher, working with the individual concerned.4 This is a
characteristic of all ordinal data.
Because ordinal data are not real numbers, it is not appropriate to apply any of the rules of

basic arithmetic to this sort of data. You should not add, subtract, multiply or divide ordinal
values. This limitation has marked implications for the sorts of analyses that we can do with
such data – as you will see later in this book. Finally, we should note that ordinal data are
almost always integer, that is, they have whole number values.

Exercise 1.4. Suggest a few more scales with which you may be familiar from your

clinical work.

Exercise 1.5. Explain why it would not really make sense to calculate an average GCS

for a group of head injury patients.

4There are some scales which may involve some degree of proper measurement, but these still produce ordinal

values if even one part of the score is determined by a non-measured element.
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Metric data

Discrete metric data

Consider the data in Figure 1.5. This shows the parity5 of the mothers of the babies whose
birthweights are shown in Figure 1.1.

0 0 2 0 0 3 3 1 0 3

0 0 0 0 1 0 3 2 3 1

2 2 3 1 10 0 1 0 1 5

1 0 1 0 0 0 0 0 0 0

2 0 0 0 2 1 0 2 2 0

1 0 0 0 0 0 1 0 0 0

0 0 2 2 3 2 2 0 3 1

0 4 0 0 2 1 0 0 0 1

3 3 0 3 0 0 6 0 1 0

2 2 1 2 4 1 0 2 1 0

Figure 1.5 Parity data (number of viable pregnancies) for the mothers whose babies’ birthweights are

shown in Figure 1.1

Discrete metric data, such as that shown in Figure 1.5, comes from counting. Counting is a
form of measurement – hence the name ‘metric’. The data is ‘discrete’ because the values are
in discrete steps; for example, 0, 1, 2, 3 and so on. Parity data comes from counting – probably
by asking the mother or by looking at records. Other examples of discrete metric data would
include number of deaths, number of pressure sores, number of angina attacks, number of
hospital visits and so on. The data produced are real numbers, and in contrast to ordinal data,
this means that the difference between parities of 1 and 2 is exactly the same as the difference
between parities of 2 and 3, and a parity of 4 is exactly twice a parity of 2.
In short:

• Metric discrete variables can be counted and can have units of measurement – ‘numbers of
things’.

• They produce data which are real numbers and are invariably integers (i.e. whole numbers).

5Number of pregnancies carried to a viable gestational age – 24 weeks in the United Kingdom, 20 weeks in the

United States.
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Continuous metric data

Look back at Figure 1.1 – the birthweight data.

Birthweight is a metric continuous variable because it can be measured. For example, if we

want to know someone’s weight, we can use a weighing machine; we don’t have to look at the

individual and make a guess (which would be approximate) or ask them how heavy they are

(very unreliable). Similarly, if we want to know their diastolic blood pressure, we can use a

sphygmomanometer.6 Guessing or asking is not necessary. But, what do we mean by ‘continu-

ous’? Compare a digital clock with a more old-fashioned analogue clock. With a digital clock,

the seconds are indicated in discrete steps: 1, 2, 3 and so on. With the analogue clock, the hand

sweeps around the dial in a smooth, continuous movement. In the same way, weight is a con-

tinuous variable because the values form a continuum; weight does not increase in steps of 1 g.

Because they can be properly measured, these data are real numbers. In contrast to ordinal

values, the difference between any pair of adjacent values, say 4000 g and 4001 g is exactly the

same as the difference between 4001 g and 4002 g, and a baby who weighs 4000 g is exactly

twice as heavy as a baby of 2000 g. Some other examples of metric continuous data include

blood pressure (mmHg), blood cholesterol (μg/ml), waiting time (minutes), body mass index

(kg/m2), peak expiry flow (l per min) and so on. Notice that all of these variables have units of

measurement attached to them. This is a characteristic of all metric continuous data.

Because metric data values are real numbers, you can apply all of the usual mathematical

operations to them.This opens up a much wider range of analytic possibilities than is possible

with either nominal or ordinal data – as you will see later.

To sum up:

• Metric continuous data result frommeasurement and they have units of measurement.

• The data are real numbers.

These properties of both types of metric data are markedly different from the characteristics

of nominal and ordinal data.

Exercise 1.6. Suggest a few continuous metric variables which you are familiar with.

What is the difference between assessing the value of something and measuring it?

Exercise 1.7. Suggest a few discrete metric variables which you are familiar with.

Exercise 1.8. What is the difference between continuous and discrete metric data?

Somebody shows you a six-pack egg carton. List (a) the possible number of eggs that

the carton could contain; and (b) the number of possible values for the weight of the

empty carton. What do you conclude?

6We call the device that we use to obtain themeasured value, for example, a weighing scale, a sphygmomanome-

ter, or a tape measure, etc. ameasuring instrument.
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How can I tell what type of variable I am dealing with?

The easiest way to tell whether data is metric is to check whether it has units attached to it, such
as g, mm, ∘C, μg/cm3, number of pressure sores and number of deaths. If not, it may be ordinal
or nominal – the former if the values can be put in any meaningful order. Figure 1.6 is an aid
to variable-type recognition.

Has the data got units? (this includes
‘numbers of things’)

YesNo

Do the data come from
counting or measuring ?

Counting Measuring

Discrete
metric

Continuous
metric

Can the data be put
in meaningful order?

YesNo

Categorical
ordinal

Categorical
nominal

Figure 1.6 An algorithm to help identify data type

Exercise 1.9. Four migraine patients are asked to assess the severity of their migraine

pain one hour after the first symptoms of an attack by marking a point on a horizontal

line 100mm long. The line is marked ‘No pain’ at the left-hand end and ‘Worst possible

pain’ at the right-hand end. The distance of each patient’s mark from the left-hand end

is subsequently measured with an mm rule, and their scores are 25mm, 44mm, 68mm

and 85mm. What sort of data is this? Can you calculate the average pain of these four

patients? Note that this form of measurement (using a line and getting subjects to mark

it) is known as a visual analogue scale (VAS).

The baseline table

When you are reading a research report or a journal paper, you will want to know something
about the participants in the study. In most published papers, the authors will provide the
reader with a summary table describing the basic characteristics of the participants in the study.
This will contain some basic demographic information, together with relevant clinical details.
This table is called the baseline table or the table of basic characteristics. In the following three
exercises, we make use of the baseline tables provided by the authors.

Exercise 1.10. Figure 1.7 contains the basic characteristics of cases and controls from

a case–control study7 into stressful life events and the risk of breast cancer in women.

Identify the type of each variable in the table.

7Do not worry about the different types of study; I will discuss them in detail in Chapter 6.
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Variable Breast cancer group

(n= 106)

Control group

(n= 226)

p value

Age 61.6 (10.9) 51.0 (8.5) 0.000∗

Social class† (%):

I 10 (10) 20 (9)

II 38 (36) 82 (36)

III non-manual 28 (26) 72 (32) 0.094‡

III manual 13 (12) 24 (11)

IV 11 (10) 21 (9)

V 3 (3) 2 (1)

VI 3 (3) 4 (2)

No of children (%):

0 15 (14) 31 (14)

1 16 (15) 31 (13.7) 0.97

2 42 (40) 84 (37)

≥3 32 (31)† 80 (35)

Age at birth of first child 21.3 (5.6) 20.5 (4.3) 0.500*

Age at menarche 12.8 (1.4) 13.0 (1.6) 0.200*

Menopausal state (%):

Premenopausal 14 (13) 66 (29)

Perimenopausal 9 (9) 43 (19) 0.000§

Postmenopausal 83 (78) 117 (52)

Age at menopause 47.7 (4.5) 45.6 (5.2) 0.001*

Lifetime use of oral contraceptives (%) 38 61 0.000‡

No of years taking oral contraceptives 3.0 (5.4) 4.2 (5.0) 0.065§

No of months breastfeeding (n= 90) (n= 195)

7.4 (9.9) 7.4 (12.1) 0.990*

Lifetime use of hormone replacement therapy (%) 29 (27) 78 (35) 0.193§

Mean years of hormone replacement therapy 1.6 (3.7) 1.9 (4.0) 0.460*

Family history of ovarian cancer (%) 8 (8) 10 (4) 0.241§

History of benign breast disease (%) 15 (15) 105 (47) 0.000§

Family history of breast cancer¶ 16 (15) 35 (16) 0.997§

Units of alcohol/week (%):

0 38 (36) 59 (26)

0–4 26 (25) 71 (31) 0.927‡

5–9 20 (19) 52 (23)

≥10 22 (21) 44 (20)

No of cigarettes/day:

0 83 (78.3) 170 (75.2)

1–9 8 (7.6) 14 (6.2) 0.383‡

≥10 15 (14.2) 42 (18.6)

Body mass index (kg/m2) 26.8 (5.5) 24.8 (4.2) 0.001∗

∗Two sample t test.
†Data for one case missing.
‡𝜒2 test for trend.
§𝜒2 test.
¶No data for one control.

Figure 1.7 Basic characteristics of cases and controls from a case–control study into stressful life

events as risk factors for breast cancer in women. Values are mean (SD) unless stated otherwise. Source:

Protheroe et al. (1999). Reproduced by permission of BMJ Publishing Group Ltd
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Exercise 1.11. Figure 1.8 is from a cross-sectional study to determine the incidence

of pregnancy-related venous thromboembolic events and their relationship to selected

risk factors, such as maternal age, parity, smoking, and so on. Identify the type of each

variable in the table.

Exercise 1.12. Figure 1.9 is from a study to compare two lotions, malathion and

d-phenothrin, in the treatment of head lice in 193 schoolchildren. Ninety-five children

were givenmalathion and 98 d-phenothrin. Identify the type of each variable in the table.

Thrombosis cases Controls OR 95%

(n= 608) (n= 114 940)

Maternal age (y) (classification 1)

≤19 26 (4.3) 2817 (2.5) 1.9 1.3, 2.9

20–24 125 (20.6) 23,006 (20.0) 1.1 0.9, 1.4

25–29 216 (35.5) 44,763 (38.9) 1.0 Reference

30–34 151 (24.8) 30,135 (26.2) 1.0 0.8, 1.3

≥35 90 (14.8) 14,219 (12.4) 1.3 1.0, 1.7

Maternal age (y) (classification 2)

≤19 26 (4.3) 2817 (2.5) 1.8 1.2, 2.7

20–34 492 (80.9) 97,904 (85.2) 1.0 Reference

≥35 90 (14.8) 14,219 (12.4) 1.3 1.0, 1.6

Parity

Para 0 304 (50.0) 47,425 (41.3) 1.8 1.5, 2.2

Para 1 142 (23.4) 40,734 (35.4) 1.0 Reference

Para 2 93 (15.3) 18,113 (15.8) 1.5 1.1, 1.9

≥Para 3 69 (11.3) 8429 (7.3) 2.4 1.8, 3.1

Missing data 0 (0) 239 (0.2)

No. of cigarettes daily

0 423 (69.6) 87,408 (76.0) 1.0 Reference

1–9 80 (13.2) 14,295 (12.4) 1.2 0.9, 1.5

≥10 57 (9.4) 8177 (7.1) 1.4 1.1, 1.9

Missing data 48 (7.9) 5060 (4.4)

Multiple pregnancy

No 593 (97.5) 113,330 (98.6) 1.0 Reference

Yes 15 (2.5) 1610 (1.4) 1.8 1.1, 3.0

Preeclampsia

No 562 (92.4) 111,788 (97.3) 1.0 Reference

Yes 46 (7.6) 3152 (2.7) 2.9 2.1,3.9

Cesarean delivery

No 420 (69.1) 102,181 (88.9) 1.0 Reference

Yes 188 (30.9) 12,759 (11.1) 3.6 3.0,4.3

Data presented as n (%).

OR, odds ratio; CI, confidence interval.

Figure 1.8 Table of baseline characteristics from a cross-sectional study of thrombotic risk during

pregnancy. Source: Lindqvist et al. (1999). Reproduced by permission of Wolters Kluwer Health



Trim size: 170mm x 244mm Bowers c01.tex V2 - 06/11/2014 3:24 P.M. Page 14

14 CH01 FIRST THINGS FIRST – THE NATURE OF DATA

Characteristic Malathion (n= 95) d-phenothrin (n= 98)

Age at randomisation (year) 8.6 (1.6) 8.9 (1.6)

Sex – no of children (%)

Male 31 (33) 41 (42)

Female 64 (67) 57 (58)

Home no (mean)

Number of rooms 3.3 (1.2) 3.3 (1.8)

Length of hair – no of children (%)*

Long 37 (39) 20 (21)

Mid-long 23 (24) 33 (34)

Short 35 (37) 44 (46)

Colour of hair – no of children (%)

Blond 15 (16) 18 (18)

Brown 49 (52) 55 (56)

Red 4 (4) 4 (4)

Dark 27 (28) 21 (22)

Texture of hair – no of children (%)

Straight 67 (71) 69 (70)

Curly 19 (20) 25 (26)

Frizzy/kinky 9 (9) 4 (4)

Pruritus – no of children (%) 54 (57) 65 (66)

Excoriations – no of children (%) 25 (26) 39 (40)

Evaluation of infestation

Live lice-no of children (%)

0 18 (19) 24 (24)

+ 45 (47) 35 (36)

++ 9 (9) 15 (15)

+++ 12 (13) 15 (15)

++++ 11 (12) 9 (9)

Viable nits-no of children (%)*

0 19 (20) 8 (8)

+ 32 (34) 41 (45)

++ 22 (23) 24 (25)

+++ 18 (19) 20 (21)

++++ 4 (4) 4 (4)

The two groups were similar at baseline except for a significant difference for the length of hair (p= 0.02;

chi-square)
*One value missing in the d-phenothrin group square.

Figure 1.9 Baseline characteristics of the Pediculus humanus capitis-infested schoolchildren assigned

to receive either malathion or d-phenothrin lotion. Source: Chosidow et al. (1994). Reproduced by

permission of Elsevier

At the end of each chapter, you should look again at the chapter objectives and satisfy yourself

that you have achieved them.
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2
Describing data with tables

Learning objectives

When you have read this chapter, you should be able to:

• Explain what a frequency distribution is.

• Construct a frequency table from raw data.

• Construct relative frequency, cumulative frequency and relative cumulative frequency

tables.

• Construct grouped frequency tables.

• Construct a cross-tabulation table.

• Explain what a contingency table is.

• Rank data.

Descriptive statistics. What can we do with raw data?

As we saw in Chapter 1, when we have a lot of raw data, for example, as in Figure 1.1 (birth-
weight) or Figure 1.2 (gender), it is not easy for us to answer questions that we may have; for

Medical Statistics from Scratch: An Introduction for Health Professionals, Third Edition. David Bowers.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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example, the percentage of low birthweight babies or the proportion of male babies. This is

because the data have not been arranged or structured in any way. If there are any interesting

features in the data, they remain hidden from us. We said then that the data could not tell their

story, and of course, themore the data are, the harder this becomes. Samples of many hundreds

or thousands are not uncommon.

In this chapter, and the four following, we are going to describe somemethods for organising

andpresenting the data, so thatwe can answermore easily the questions of interest – essentially

to enable us to see what’s going on. Collectively, these methods are called descriptive statistics.
These methods are a set of procedures that we can apply to raw data, so that its principal char-

acteristics and main features are revealed. This might include sorting the data by size, putting

it into a table, presenting it as a chart, or summarising it numerically.

An important consideration in this process is the type of data you are working with. Some

types of data are best described with a table, some with a chart and some perhaps with both,

whereas with other types of data, a numeric summary might be more appropriate. In this

chapter, we focus on organising raw data into what is known as a frequency table. In subse-

quent chapters, we will look at the use of charts, and numeric summaries. It will be easier if we

take each data type in turn, starting with nominal data.

Frequency tables – nominal data

We have already seen a rudimentary frequency table in Chapter 1, with a count of male and

female babies from Figure 1.2.

Male 265

Female 235

We can express this information in a more conventional form of a frequency table, as in

Figure 2.1.
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Gender Frequency
(number of babies)

n = 500
Male 265
Female 235

It is good practice
and helpful to the

reader, to show the
total number in the

column.

The second, “frequency”
column, lists the number of
individuals, items, patients,
whatever, in each category.

The name of the
variable
described in the
table. 

The first
column in a
frequency table
lists the
categories.

Figure 2.1 A frequency table for gender of newborn babies (raw data from Figure 1.2)

The label at the top of the first (left-hand) column indicates the variable being described in

the table.The remainder of the first column is a list of the categories for this variable.The second

(right-hand) column is the frequency column. Frequency is another word for ‘count’ and lists,

in this example, the number of babies in each category, that is, males and females.

Exercise 2.1. Using the raw data from Figure 1.3, construct a frequency table for the

number of women who smoked while pregnant. Does it matter how you order the cate-

gories in column 1?

The frequency distribution

Consider another example. Figure 1.9 contains data from a nit lotion study that compared two

types of treatment for nits, malathion or d-phenothrin, with a sample of 95 children. For each

child, data were collected on nine variables, one being the child’s hair colour: blonde, brown,

red and dark. The frequency table (extracted from Figure 1.9) for the four colour categories is

shown in Figure 2.2.

Hair colour Frequency

(number of children)

n= 95

Brown 49

Dark 27

Blonde 15

Red 4

Figure 2.2 Frequency table showing the hair colour of each of 95 children in a study of malathion

versus d-phenothrin for the treatment of nits



Trim size: 170mm x 244mm Bowers c02.tex V2 - 06/11/2014 3:25 P.M. Page 20

20 CH02 DESCRIBING DATA WITH TABLES

As you know, the ordering of nominal categories is arbitrary, and in this example, they are

shown by the number of children in each – largest first. Notice that total frequency (n= 95)

is shown at the top of the frequency column. You should always do this – it is helpful to any

reader. Taken as a whole, Figure 2.2 tells us how the hair colour of each of the 95 children is

distributed across the four colour categories. In other words, Figure 2.2 describes the frequency
distribution of the hair colour data.We can see that themost common hair colour is brown and

the least common red. We’ll have more to say about frequency distributions later.

Relative frequency

Often of more use than the actual number of individuals in each category are the percentages.
Tables with this information are called relative or percentage frequency tables.The third column

of Figure 2.3 shows the percentage of children in each hair colour category.

Hair colour Frequency

(number of children)

n= 95

Relative frequency

(% of children in each

category)

Brown 49 51.6

Dark 27 28.4

Blonde 15 15.8

Red 4 4.2

Figure 2.3 Relative frequency table for hair colour, showing the percentage of children in each hair

colour category (see Figure 1.9)

Figure 2.3 tells us that over half of the children (51.6 per cent) had brown hair. This seems to

be more helpful than knowing that 49 out of 95 children had brown hair.

Exercise 2.2. Construct a relative frequency table for the smoking data shown in Figure

1.3. What percentage of women smoked while pregnant?

Exercise 2.3. Figure 2.4 shows the frequency distribution for cause of blunt injury to

limbs in 75 patients, taken from a study of the treatment of pain after limb injury. Cal-

culate the relative frequencies. What percentage of patients had crush injuries?

Frequency tables – ordinal data

When the data in question are ordinal, we can allocate them into ordered categories. As an

example, 475 psychiatric in-patients were questioned about their level of satisfaction with their
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Cause of injury Number of patients

(n= 75)

Falls 46

Crush 20

Motor vehicle crash 6

Other 3

Figure 2.4 Frequency table showing causes of blunt injury to limbs in 75 patients, taken from a study

of the treatment of pain after limb injury. Data from Rainer et al. (2000)

psychiatric nursing care. ‘Level of satisfaction’ is clearly an ordinal variable. ‘Satisfaction’ cannot

be properlymeasured, and has no units, but the categories can bemeaningfully ordered, as they

have been ordered here. The resulting data is shown in Figure 2.5.

Satisfaction with

nursing care

Number of patients

(n= 475)

Very satisfied 121

Satisfied 161

Neutral 90

Dissatisfied 51

Very dissatisfied 52

Figure 2.5 Frequency table for data on level of satisfaction with nursing care by 475 psychiatric

in-patients. Data from Rogers and Pilgrim (1991)

The frequency values indicate that more than half of the patients were happy with their psy-

chiatric nursing care, 282 patients (121+ 161) out of 475. Much smaller numbers expressed

dissatisfaction.

Exercise 2.4. Calculate the relative frequencies for the frequency data shown in

Figure 2.5. What percentage of patients were ‘very dissatisfied’ with their care?

Exercise 2.5. In a study comparing two treatments for a whiplash injury, one group

of patients received the usual emergency department care (normal consultation plus an

advice leaflet) and the other group received ‘active management’ care (normal consulta-

tion plus additional help). Twelvemonths after the initial contact, the patients were asked

to rate the benefits they felt from their treatment. The results are shown in Figure 2.6

for each group (the group with missing values has been omitted). What percentage of

patients felt ‘much better’ in each group? What percentage felt ‘much worse’? How do

you think that the missing values might affect the reliability of results in general?
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Self-rated benefit Usual care

group

(n= 1094)

Active management

group

(n= 1543)

Much better 288 468

Better 297 479

Same 429 491

Worse 73 98

Much worse 7 7

Figure 2.6 Self-rated benefit by two groups of whiplash injury patients receiving different care pack-

ages, 12 months after the initial contact. Data from Lamb et al. (2013)

Exercise 2.6. In a randomised controlled trial of physical activity and fitness in patients

with Parkinson’s disease, patients were randomly assigned either to the ParkFit pro-

gramme (a multifaceted behavioural change programme designed to increase physical

activity levels, which included physiotherapy) or to amatched control group (physiother-

apy only). The researchers compared the outcomes after two years, using the modified

Hoehn andYahr scale.This scale, with a range from 1 (least affected – unilateral involve-

ment only) to 5 (most severely affected – wheelchair bound or bedridden unless aided),

is designed to assess the degree of disability of patients with Parkinson’s disease. The

results are shown in Figure 2.7. (Note: this is a rare example of an ordinal scale which is

not an integer). Is there a difference between the two groups in the percentage of patients

with a modified Hoehn and Yahr scale score of 2?

Modified Hoehn and

Yahr scale score

ParkFit group

(n= 299)

Control group

(n= 287)

1 7 4

1.5 7 10

2 221 223

2.5 48 36

3 16 14

Figure 2.7 Modified Hoehn and Yahr scale scores (after two years) for two groups of patients with

Parkinson’s disease. One group randomly assigned to a physical activity programme (ParkFit, which

included physiotherapy), the other, the control group, receiving physiotherapy only. Data from van

Nimwegen et al. (2013)

Frequency tables – metric data

We have to consider two situations here, one with discrete metric data and the other continu-

ous. We will start with the discrete data case.
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Frequency tables with discrete metric data

As we saw in Chapter 1, discrete metric data result from counting.This means that the number

of possible values is limited; the number of cells in the human body may be very large, but it is

not infinite. Parity, for example, is a discrete metric variable and is counted as 0, 1, 2, 3 and so

on.The parity data shown in Figure 1.6, and reproduced below as Figure 2.8 (for convenience),

have values that range from 0 to 10 (i.e. there are 11 different possible values).
If our question is, ‘Howmany women in the sample had a parity of 0?’ or ‘Howmany a parity

of 1?’, we can very easily answer these questions, and similar questions, if we arrange these data

into a frequency table. The result is shown in Figure 2.9.

0 0 2 0 0 3 3 1 0 3

0 0 0 0 1 0 3 2 3 1

2 2 3 1 10 0 1 0 1 5

1 0 1 0 0 0 0 0 0 0

2 0 0 0 2 1 0 2 2 0

1 0 0 0 0 0 1 0 0 0

0 0 2 2 3 2 2 0 3 1

0 4 0 0 2 1 0 0 0 1

3 3 0 3 0 0 6 0 1 0

2 2 1 2 4 1 0 2 1 0

Figure 2.8 Parity (number of viable pregnancies) for the mothers whose babies’ birthweights are

shown in Figure 1.1

Parity Number of mothers

(n= 100)

0 49

1 18

2 17

3 11

4 2

5 1

6 1

7 0

8 0

9 0

10 1

Figure 2.9 Frequency table for the parity of the mothers whose babies birthweights are shown in

Figure 1.1
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Exercise 2.7. What percentage of mothers had a parity of either 1 or 2?

Exercise 2.8. In a study comparing the safety and efficacy of biolimus-eluting

(biodegradable) stents with everolimus-eluting (durable) stents, patients were randomly

allocated to receive either of the two types of stents. The number of lesions, along with

the corresponding number of stents per lesion, was recorded for the two groups of

patients, and the data are shown in Figure 2.10. What percentage of patients in each

group had lesions requiring (a) one stent and (b) two stents?

Total number

of lesions

Biolimus-eluting stent

(n= 2638 lesions)

Everolimus-eluting stent

(n= 1387 lesions)

1 stent 1805 948

2 stents 553 300

3 stents 168 79

4 stents 53 35

5 stents 13 6

6 stents 5 0

7 stents 1 0

Unknown/0 stents 40 19

Figure 2.10 The number of lesions, along with the corresponding number of stents per lesion, for

two groups of patients; one group receiving a biodegradable stent (column 2) and the other group a

durable stent (column 3). Data from Smits et al. (2013)
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Cumulative frequency

Suppose that we want to know what was the percentage of lesions among the patients receiv-

ing the biolimus-eluding stent that required fewer than three stents? A question like this is

more easily answered if we add a percentage cumulative frequency column to the respective

frequency table. The procedure, using data from Figure 2.10, is as follows:

• Step 1. Calculate the cumulative frequencies by adding up successively the values in the fre-

quency column: 1805, 1805+ 553= 2358, 2358+ 168= 2526, and so on.

• Step 2. Calculate the percentage cumulative frequencies by dividing each cumulative fre-

quency value by the total (2638) and then multiplying by 100.

The results are shown in Figure 2.11. The answer to the question, ‘What was the percentage

of patients receiving the biolimus-eluting stent that had lesions that required fewer than three

stents?’, is thus 89.38 per cent. We can also easily calculate how many patients had lesions that

required three or more stents as 100 – 89.38= 10.62%.

Total number of
lesions

Frequency
Biolimus-eluting stent

(n = 2638 lesions)

Cumulative
frequency

% Cumulative
frequency

1 stent 1805 1805 68.42
2 stents 553 2358 89.38
3 stents 168 2526 95.75
4 stents 53 2579 97.76
5 stents 13 2592 98.26
6 stents 5 2597 98.44
7 stents 1 2598 98.48
Unknown/0 stents 40 2638 100.00

(1805/2638) × 100 = 68.421805 + 553 = 2358

2358 + 168 = 2526

Figure 2.11 Calculating cumulative and percentage cumulative frequencies for patients receiving the

biolimus-eluting stent (using data in Figure 2.10)

Exercise 2.9. Use thewhiplash injury data shown in Figure 2.6 to calculate the percent-

age cumulative frequencies for each of the two groups. Use these values to determine the

total percentage of patients in the study who felt either the same, worse, or much worse

in each of the two groups.
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Frequency tables with continuous metric data – grouping the raw data

Constructing frequency tables for continuousmetric data is oftenmore of a problem than con-
structing with discrete metric data because, as we saw in Chapter 1, the number of possible
values which the data can take is infinite (recall the clock-face analogy).
Organising raw metric continuous data (such as the birthweight data shown in Figure 1.1)

into a frequency table is usually impractical because there are such a large number of possible
values. Indeed, there may well be no value that occurs more than once – particularly true if
the values have decimal places. This means that the corresponding frequency table is likely to
have a large, and thus unhelpful, number of rows. Not of much help in uncovering any pattern
in the data therefore! The most useful approach with metric continuous data is to group them
first and then construct a frequency distribution of the grouped data. Let’s see how this works.
The choice of the number of groups is arbitrary but you do not want too few groups (too

much information is lost) or too many (not much more helpful than the raw data). Experience
will help but as a very rough rule of thumb, no fewer than five groups and no more than 10.
Of course, particular circumstances may cause these values to vary. For the first 100 values
of the birthweight data in Figure 1.1, I have chosen seven groups as shown in column 1 and
determined the number of birthweights in each group – these values are shown in column 2
(see Figure 2.12).
Rather dramatically, the data in Figure 1.1 is now able to reveal its message. We can see

that the majority of babies had birthweights between 2500 g and 4000 g. Very few babies had
birthweights outside this range. This information was not easily obtained from the raw data in
Figure 1.1.
We should note that it is possible to calculate cumulative frequencies with grouped frequency

data, just as it was in Figure 2.11. If we do this for the data in Figure 2.12, we get the results
as shown in Figure 2.13. Because there are 100 birthweights in this sample, the arithmetic is
straightforward. We see, for example, that seven per cent of babies have a birthweight<2500 g.

Birthweight (g) Frequency

(number babies)

n= 100

1500–1999 2

2000–2499 5

2500–2999 27

3000–3499 28

3500–3999 27

4000–4499 9

4500–4999 2

Figure 2.12 A grouped frequency table for the birthweight data from Figure 1.1.

Exercise 2.10. Why does it make no sense to construct cumulative frequencies for

nominal data?
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Birthweight (g) Frequency

(number babies)

(n= 100)

Cumulative

frequency

% Cumulative

frequency

1500–1999 2 2 2

2000–2499 5 7 7

2500–2999 27 34 34

3000–3499 28 62 62

3500–3999 27 89 89

4000–4499 9 98 98

4500–4999 2 100 100

Figure 2.13 Cumulative frequencies for the grouped frequency table of birthweight data in Figure 2.12

(raw data in Figure 1.1)

Exercise 2.11. Thedata in Figure 2.14 is froma study to ascertain the extent of variation

in the case-mix of adult admissions to intensive care units (ICUs) in Britain and Ireland

and its impact on outcomes. The figure records the percentage mortality in 26 ICUs.

Construct a grouped frequency table of percentage mortality. What do you observe?

ICU 1 2 3 4 5 6 7 8 9 10 11 12 13

% mortality 15.2 31.3 14.9 16.3 19.3 18.2 20.2 12.8 14.7 29.4 21.1 20.4 13.6

ICU 14 15 16 17 18 19 20 21 22 23 24 25 26

% mortality 22.4 14.0 14.3 22.8 26.7 18.9 13.7 17.7 27.2 19.3 16.1 13.5 11.2

Figure 2.14 Percentage mortality in 26 intensive care units. Data from Rowan et al. (1993)

Open-ended groups

One problem arises when one or two values are a long way from the general mass of the data,

either much lower or much higher. These values are called outliers. Their presence can mean

having a lot of empty or near-empty rows at one or both ends of the frequency table.

One possible solution is to use open-ended categories. Take as an example the parity data in

Figure 2.9. We see that there are three rows with zero frequencies. The frequency table can be

re-designed to display the data more economically if we use an open-ended category as shown

in Figure 2.15.
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Parity Number of mothers
(n = 100)

0 49
1 18
2 17
3 11
4 2
5 1

≥6 2

An open-ended
category.

Figure 2.15 Frequency table for the parity of the mothers (see Figure 2.9) showing an open-ended

category

Cross-tabulation – contingency tables

Each of the frequency tables above provides us with a description of the frequency distribution

of a single variable. Sometimes, however, you will want to examine the association between

two variables, within a single group of individuals. You can do this by putting the data into

a contingency table, also called a table of cross-tabulations. In these tables, the rows repre-

sent the categories of one variable, usually an ‘outcome’ of some sort (e.g. a diagnosis of lung

cancer – Yes orNo), and the columns represent the groupswithin a second variable (e.g. smok-

ers and non-smokers).

To illustrate this idea, look at Figure 2.16.This is a contingency table of the cross-tabulation of

the variable ‘smoked while pregnant’ (Yes or No), against three categories of the variable ‘birth-

weight’: <2500 g, 2500 g–3999 g, and ≥4000 g,1 for a random sample of 500 newborn babies.

Here, the outcome (the rows) is birthweight, and the groups (the columns) are the mothers

who smoked while pregnant, and those who didn’t. This table would be called a 2× 2 table

because there are two rows and two columns, although tables with more rows and columns are

not unusual.

Exercise 2.12. What does Figure 2.16 imply (if anything) about the effect of whether

the mother smoked or not on birthweight? It might help to answer this question if the

values in the cross-tabulation were expressed as percentages of the columns. Try this and

see if it helps.

Exercise 2.13. The data in Figure 2.17 is from a sample of 30 newborn babies and

records their birthweights and their mothers’ weight at booking. Construct a 2× 2

contingency table, with columns corresponding to the mothers’ weight categories of

≤60.0 kg and>60.0 kg, and rows corresponding to the birthweight categories of≤3000 g

and >3000 g. What does the table indicate about the relationship between mothers’

weight and birthweight?

1For this sample of 500 babies, 2500 g corresponds to the 10th percentile and 4000 g to the 90th percentile.
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Smoked while pregnant?

Yes No

Birthweight (g) <2500 3 37

2500 to 3999 65 353

≥4000 9 33

Figure 2.16 Cross-tabulation of ‘Smoked while pregnant?’ (columns) versus three categories of birth-

weight (rows). Born-in-Bradford data

Mother’s weight at

booking (kg)

Baby’s birthweight

(g)

62.0 3220

74.0 4140

54.5 2220

52.0 3540

59.5 3500

90.0 3820

110.0 3330

55.0 2840

85.0 2780

55.0 2660

52.0 2170

88.0 3340

65.0 3070

70.0 3800

81.0 3300

63.0 3380

124.0 4060

66.0 2640

55.0 2460

57.0 3460

54.0 2820

64.0 3280

91.0 3740

60.0 3000

88.0 3320

84.0 3490

100.0 3920

49.0 2460

75.0 3410

41.0 2740

Figure 2.17 The birthweights of 30 newborn babies and their mothers’ weight at booking. (Born in

Bradford data)
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Exercise 2.14. Figure 2.18 is a 2× 2 contingency table, from a study of discrimination

in intimate relationships reported by people with depression. The table shows the

cross-tabulation of discrimination for two groups. The columns represent those who

anticipated discrimination and those who did not. The rows represent those who

experienced and those who did not experience discrimination. What do the percentage

figures represent? How useful are they if you want to examine any possible connection

between anticipation of discrimination and experiencing it? What percentages would

be more useful? What does the table suggest about a possible connection between the

two variables?

Discrimination? Anticipated

(n= 353)

Not anticipated

(n= 510)

Experienced 193 (22%) 156 (18%)

Not experienced 160 (19%) 354 (41%)

Figure 2.18 A 2× 2 contingency table from a study of discrimination in intimate relationships

reported by people with depression. Data from Lasalvia et al. (2013)

Ranking data

As you will see later in the book, some statistical techniques require the data to be ranked
before any analysis takes place. Ranking means first arranging the data by size and then giving
the largest value a rank of 1, the second largest value a rank of 2, and so on.2 Any values which
are the same, that is, which are tied, are given the average rank. For example, the seven values
2, 3, 5, 5, 5, 6, 8 could be ranked as 1, 2, 4=, 4=, 4=, 6, 7 because the three values of 5 have the
original ranks of 3, 4, 5, the average of which is 4.

Exercise 2.15. The data in Figure 2.19 are the birthweights (g) for the first 25 babies in

the sample in Figure 1.1. Rank them in ascending order.

2240 4110 3590 2880 2850

2660 4040 3580 1960 3550

3050 3130 2660 3150 3220

3990 4020 3040 3460 4230

4110 2780 2840 3660 3580

Figure 2.19 Birthweights for the first 25 babies in the sample

Remember to look again at the objectives at the start of the chapter and satisfy yourself that
you have achieved them.

2Or you could give the smallest a rank of 1, the next smallest a rank of 2, and so on.
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3
Every picture tells a
story – describing data
with charts

Learning objectives

When you have finished this chapter, you should be able to:

• Draw pie charts, and simple, clustered, and stacked bar charts.

• Draw histograms.

• Draw step charts and ogives.

• Draw time series charts.

• Interpret and explain what a chart reveals.

• Choose the most appropriate chart for a given data type.

Medical Statistics from Scratch: An Introduction for Health Professionals, Third Edition. David Bowers.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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Picture it!

In Chapters 2–6, we are ‘describing’ data, which means applying various statistical procedures
to raw data so that any questions we might have can be more easily answered. In the previous
chapter, you saw how tables can be used to do this. In this chapter, we want to turn to another
approach – the chart. As my grandmother would often say, ‘If you want to get ahead, get a
chart!’ To describe data, to see ‘what’s going on’, an appropriate chart is almost always a good
idea. A chart will often reveal previously unsuspected features of data. Which chart is appro-
priate depends primarily on the type of data you are dealing with, as well as on what particular
features of it you want to explore.
In addition, a chart can often be used to illustrate or explain a complex situation for which a

form of words, or a table, might be clumsy or too long. Moreover, if you are writing a report,
a chart will always give you an ‘impact’ factor, make the page more interesting and break up
blocks of possibly uninviting text. In this chapter, I amgoing to examine someof the chartsmost
commonly used to describe data. We’ll see which charts are appropriate for each type of data.

Charting nominal and ordinal data

The pie chart

You will all know what a pie chart is, so just a few comments here. Each segment (slice) of a pie
chart should be proportional to the frequency, or more helpfully the percentage of the category
it represents. As an example, the pie charts in Figure 3.1 show the incidence of burns by age, and
the causes of burns, from the first of a series of papers on burns. Notice that the first segments
start at 12 o’clock, which is a good practice, and helps if you are comparing two or more pie
charts. Unfortunately, this paper is a little short on detail, not providing information on where
this data relates to (the UK, the USA or global?) and when it was collected.
Incidentally, using the appropriate software, a good many charts can be formatted in 3D. As

an example, the authors presented the pie charts in Figure 3.1 in a 3D format, as shown in
Figure 3.2.

1–4 years
20%

5–14 years
10%

15–64
60%

≥ 65 years
10%

Incidence of 
burns by age %

Chemical &
electrical,

5%

Flame,
55%

Scalds,
40%

Causes of burns %

Figure 3.1 Pie charts (amended by the present author) showing the incidence of burns by age (left

chart) and causes of burns (right chart). Data from Hettiaratchy and Dziewulski (2004)
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5%

Chemical and
electrical

Flame

Scalds
55%

60%

10%

20%
10%

40%

≥ 65 years
old

5–14
years
old

1–4 years old

15–64 years old

Incidence of burns by ageCauses of burns

Figure 3.2 Pie charts for the burns data in Figure 3.1 as originally presented by the authors in a 3D

format. Note that this book does not show different colours, so these pie charts are not as easy to

interpret as they are in the original format. Source: Hettiaratchy and Dziewulski (2004). Reproduced

by permission of John Wiley & Sons

Exercise 3.1. Which pie charts do you think are easier to understand, those in

Figure 3.1 or those in Figure 3.2?

Some things worth noting about pie charts:

• Easy to understand.

• Can be used for either nominal or ordinal data and occasionally for discrete metric data (but

for whatever data type, see the last bullet point below).

• Limited by being able to display only one variable. You will therefore need a separate pie

chart for each variable you want to chart (as in Figure 3.1).

• When comparing two or more pie charts, the area of each pie chart should be proportional

to its frequency.

• Pie charts expressed in percentage frequency terms can all be drawn in the same size.

• A pie chart can lose clarity if it is used to represent more than a small number of categories

(four or five or thereabouts).
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Exercise 3.2. Sketch percentage pie charts (they do not have to be fantastically accu-

rate) for self-rated benefit levels, following treatment for whiplash injury, for the usual

care group and the active management group, as shown in Figure 2.6.

The simple bar chart

An alternative to pie charts for nominal or ordinal data is the simple bar chart. This is a chart

with frequency on the vertical axis and category on the horizontal axis. The simple bar chart is

appropriate if only one variable is to be shown. As an example, Figure 3.3 is a simple bar chart

of the data on causes of blunt injury as shown in Figure 2.4.

OtherMotor vehicle crashCrushFalls

50

40
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0

Cause of injury

N
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m
b

e
r 

o
f 

p
a

ti
e

n
ts

The frequency (no.
of patients in this

example) is shown
on the vertical axis.

Notice the gap
between the

category bars.

The height of each bar is
equal to the frequency

for that category.

The categories
are shown on the

horizontal axis

Figure 3.3 Simple bar chart for cause of blunt injury to limbs (data from Figure 2.4)

Exercise 3.3. Draw a simple percentage bar chart of blood group for the data in column

2 of Figure 3.4 (for those patients whose kidney was not rejected). Data is taken from a

study of kidney allograft rejection.

Exercise 3.4. Looking at the data in Figure 3.4, which blood group seems to have the

least likelihood of rejection?

Exercise 3.5. Use the percentage values you calculated in Exercise 2.4 to sketch a simple

bar chart for the satisfaction with nursing care data as shown in Figure 2.5.
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Blood group Kidney recipients without

rejection (n= 1777)

Kidney recipients with

rejection (n= 302)

Type A 742 (42%) 122 (40%)

Type B 176 (10%) 49 (16%)

Type O 730 (41%) 104 (34%)

Type AB 84 (5%) 27 (9%)

Figure 3.4 Blood group of patients in a study of kidney allograft rejection. Data from Lefaucheur

et al. (2013)

The clustered bar chart

If you have more than one group and you want to compare them, you can use the clustered
bar chart. As an example, Figure 3.5 shows the clustered bar chart for the data in Figure 3.6,
from a study of long-term calcium intake and its relationship with all-cause mortality and

cardiovascular mortality.The data are percentage leisure time activity for two groups of partic-
ipants: the first group with a daily total intake of calcium of <600mg/day, and the other with

≥1400mg/day.
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%
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Level of physical activity

<600 mg/day

≥1400 mg/day

Figure 3.5 Clustered bar chart for daily calcium intake and the level of physical activity by participants

(percentage of total for each group), with the level of physical activity on the category axis. On the

basis of the data in Figure 3.6

Exercise 3.6. Comment on what is revealed by the clustered bar chart in Figure 3.5.

Actually, there are two ways of presenting a clustered bar chart. Figure 3.5 shows one pos-
sibility, with the level of physical activity on the horizontal axis. This format is helpful if you

want to compare the percentage of participants undertaking each level of physical activity, in
each of the two levels of calcium intake.
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Leisure time physical

activity level∗
Daily total intake of calcium (mg/day)

<600 ≥1400

1 (lowest) 33.8 17.7

2 17.6 25.8

3 27.4 31.7

4 10.5 12.2

5 (highest) 10.8 12.7

∗Leisure time physical activity during the past year, with five predefined levels ranging from

one hour weekly (score 1) to more than five hours weekly (score 5).

Figure 3.6 Daily calcium intake and the level of physical activity by participants (percentage of total

for each group). Data from Michaëlsson et al. (2013)

Alternatively, the chart could have been drawn with the two levels of calcium intake on the
horizontal axis, as in Figure 3.7. This format would be more useful if you wanted to compare
the percentage of participants undertaking the various levels of physical activity for each level
of calcium intake. Which chart is more appropriate depends on what aspect of the data you
want to investigate.
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Figure 3.7 Clustered bar chart for daily calcium intake and the level of physical activity by participants

(percentage of total for each group) with calcium intake on the category axis. Data from Figure 3.6

Exercise 3.7. Draw a percentage clustered bar chart for the blood group data in

Figure 3.4 using the format which tells you most efficiently which blood group is most

likely to be associated with rejection.

Exercise 3.8. The clustered bar chart in Figure 3.8 is taken from a study of low-dose

combination therapy with rosiglitazone and metformin (versus placebo) to prevent type

2 diabetes mellitus and shows the outcomes of the treatment group.What does this chart

indicate about the relative outcomes between the placebo and treatment groups?
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Figure 3.8 Proportion of participants who developed diabetes (Diabetes), regressed to normal glucose

tolerance (NGT), or had impaired glucose tolerance (IGT) or impaired fasting glucose (IFG), or both, by

treatment group, as measured by the oral glucose tolerance test. Data from Zinman et al. (2010)

Some things worth noting about bar charts:

• Fairly easy to understand (but see the last bullet point below).

• Can be used for either nominal or ordinal data, and occasionally for discrete metric data

(but for whatever data type, see the last bullet point).

• Have the advantage over pie charts in that the clustered bar chart can show several groups at

once, enabling direct comparisons to be made.

• Be sure to leave gaps between the category bars.This emphasises the categorical (or discrete)

nature of the data.

• Bar charts are best expressed in percentage frequency terms; otherwise, comparisons can be

difficult.

• A clustered bar chart can lose clarity if it is used to represent more than a small number of

groups (five or six, or thereabouts).

The stacked bar chart

Figure 3.9 shows a stacked bar chart, with the level of calcium intake on the category (horizon-

tal) axis, for the same data used in Figures 3.5 and 3.7. However, instead of appearing side by

side, as in the clustered bar charts, the bars are now stacked on top of each other. This chart

could have been formatted with levels of physical activity rather than calcium intake on the

horizontal axis.
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Figure 3.9 Stacked bar chart, with the level of calcium intake on the category axis, showing levels

of physical activity for the same data as shown in Figures 3.5 and 3.7

Stacked bar charts are appropriate if you want to compare the percentage (or number) of

subjects in each group (each level of physical activity in this example), in each category (calcium

intake in this example). You can probably see their drawback. It can be difficult to compare the

percentages in a particular group (say, level of activity= 2) between categories.This problem is

magnified if there are more than two categories on the horizontal axis. For this reason, stacked

bar charts are not seen as often as clustered bar charts.

Exercise 3.9. The stacked bar chart in Figure 3.10 shows weight loss from an obe-

sity study. Participants were randomly allocated to one of the following programmes:

WeightWatchers, SlimmingWorld, Rosemary Conley (three commercial programmes);

Size-Down (a group weight-loss programme), a nurse-led one-to-one support in gen-

eral practice, one-to-one support by a pharmacist (three NHS primary care-led weight

reduction programmes). A final group was allowed to choose whichever programme

they wished (the Choice group). The chart shows the percentage of participants who

attended each of the seven weight-loss programmes. What does the chart indicate about

attendance at each of the programmes?

Exercise 3.10. Draw a percentage stacked bar chart for the self-rated post-whiplash

data as shown in Figure 2.6.
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Figure 3.10 Stacked bar chart from a study to compare percentage attendance at a range of commer-

cial versus primary care-led weight reduction programmes, with a minimum intervention control group

for weight loss in obesity. Source: Jolly et al. (2011). Reproduced by permission of BMJ Publishing

Group Ltd

Charting discrete metric data

We can use bar charts to graph discrete metric data in the same way as with ordinal data.

For example, Figure 3.11 shows the parity of 100 mothers,1 and it is reproduced here from

Parity Number of mothers

(n= 100)

0 49

1 18

2 17

3 11

4 2

5 1

6 1

7 0

8 0

9 0

10 1

Figure 3.11 The parity of the mothers whose babies birthweights are shown in Figure 1.1 (see also

Figure 2.9)

1Data from the Born in Bradford study.



Trim size: 170mm x 244mm Bowers c03.tex V2 - 06/09/2014 6:13 P.M. Page 40

40 CH03 EVERY PICTURE TELLS A STORY – DESCRIBING DATA WITH CHARTS

109876543210

Parity

50

40

30

20

10

0

N
u

m
b

e
r 

o
f 

m
o

th
e

rs

Note that even though the
data is metric, it is

discrete, so that we still
need a space between the

bars. 

The broad mass of parity
values lie in the left-hand
side of the bar chart . . .

. . .but there is one
value quite a long way
from the herd. This is
known as an ‘outlier’.

Figure 3.12 A simple bar chart for the parity data shown in Figure 3.11, showing a high-value outlier

Figure 2.9 for convenience. A simple bar chart for this metric discrete data is shown in

Figure 3.12. Notice the presence of a rather unusual value for one woman with a parity of 10.

Values a long way from the broad mass of the data are known as outliers.

Exercise 3.11. Comment on what the bar chart in Figure 3.12 indicates about parity.

Whichmethod of presenting the parity data do you think themost effective at conveying

the information, Figure 3.11 or Figure 3.12?

Charting continuous metric data

The histogram

As you have seen, a continuous metric variable can take a very large number of values, so it is

usually impractical to plot them without first grouping the values. The grouped data is plotted
using a frequency histogram, which has frequency plotted on the vertical axis and group size

on the horizontal axis.

A histogram looks like a bar chart but without any gaps between adjacent bars. This empha-

sises the continuous nature of the underlying variable. If the groups in the frequency table are

all of the same width, then the heights of the bars in the histogram will be proportional to
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Figure 3.13 A histogram for the grouped birthweight data in Figure 3.14

Birthweight (g) Frequency

(number babies)

(n= 100)

1500–1999 2

2000–2499 5

2500–2999 27

3000–3499 28

3500–3999 27

4000–4499 9

4500–4999 2

Figure 3.14 A grouped frequency table for the first 100 birthweights in Figure 1.1

their frequency. As an example, Figure 3.13 is a histogram of the grouped birthweight data in

Figure 3.14 (reproduced for convenience from Figure 2.12).

Exercise 3.12. Thedata in Figure 3.15 shows the weight (kg) at booking of themothers

of the first 30 babies whose birthweights are shown in Figure 1.1. Group this data and

draw a histogram of the grouped data. What does this show about mothers’ weights?

Exercise 3.13. Thegrouped age data in Figure 3.16 is from a study to identify predictive

factors for suicide, and shows the age distribution by sex of 974 subjects who attempted

suicide (unsuccessfully) and those among them who were later successful. Sketch sepa-

rate histograms of age for the percentage of male attempters and male later succeeders

(omit the categories ‘Living alone’ and ‘Employed’). Comment on what the charts show.
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64 105 50 61 63 50

84 60 56 79 48 60

50 55 50 63 80 54

120 74 60 71 43 55

78 95 46 90 47 63

Figure 3.15 The weight (kg) at booking, of the mothers of the first 30 babies whose birthweights are

shown in Figure 1.1

No. (%) attempting suicide No. (%) later successful

Men

(n= 412)

Women

(n= 562)

Men

(n= 48)

Women

(n= 55)

Age (years)

15–24 57 (13.8) 80 (14.2) 3 (6.3) 3 (5.5)

25–34 131 (31.8) 132 (23.5) 10 (20.8) 12 (21.8)

35–44 103 (25.0) 146 (26.0) 16 (33.3) 16 (29.1)

45–54 62 (15.0) 90 (16.0) 11 (22.9) 9 (16.4)

55–64 38 (9.2) 58 (10.3) 4 (8.3) 4 (7.3)

65–74 18 (4.4) 43 (7.7) 3 (6.3) 8 (14.5)

75–84 1 (0.2) 11 (2.0) 0 2 (3.6)

>85 2 (0.5) 2 (0.4) 1 (2.1) 1 (1.8)

Living alone 96 (23.3) 85 (15.1) 17 (35.4) 14 (25.5)

Employed 139 (33.7) 185 (32.9) 14 (29.2) 13 (23.6)

Figure 3.16 Grouped age data from a follow-up cohort study to identify predictive factors for suicide.

Data from Nordentoft et al. (1993)

One limitation of the histogram is that it can represent only one variable at a time (as in the

case of the pie chart), and this canmake comparisons between two histograms difficult because

if you try to plot more than one histogram on the same axes, invariably parts of one chart will

overlap the other.

The box (and whisker) plot

Figure 3.17 shows an example of what is known as a box plot, or more precisely, a box and

whisker plot. This form of chart can be used with either ordinal data (with a decent number

of data values) or metric data, but it is more common with the latter, as in this example,

which shows sperm concentration among survivors of childhood cancer and a control

(non-cancer) group.

The bottom and top of the box mark what are called the 25th and 75th percentiles, respec-
tively. The 25th percentile is the value below which 25 per cent of the values in the sample

lie (and thus 75 per cent exceed this value) – about 50× 106/ml for the control group. The

75th percentile is the value above which 25 per cent of the sample values lie (and 75 per cent

below) – about 120× 106/ml. The line across the inside of the box (not necessarily in the
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Figure 3.17 Boxplots of sperm concentration in non-azoospermic long-term survivors of childhood

cancer and in non-cancer controls. From a study of semen quality and spermatozoal DNA integrity in

survivors of childhood cancer. Source: Thomson et al. (2002). Reproduced by permission of Elsevier

middle) marks the value which divides the sample into two equal numbers of values – 50

per cent below this value and 50 per cent above it, about 85× 106/ml here, is the 50th

percentile. The bottom and top of each whisker mark the smallest and the largest values in

the sample, respectively. We will have more to say about boxplots in Chapter 6, once we have

discussed measures of location and spread.

Exercise 3.14. The box plots in Figure 3.18 are from a study of iodine concentration

in UK schoolgirls. Comment on what is revealed by these plots. The dots which extend

above the upper whiskers are large-value outliers. There are a lot of them in this case!

Different computer programs have different rules for defining outliers.
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Figure 3.18 Box plots of urinary iodine according to participating centre. Source: Vanderpump et al.

(2011). Reproduced by permission of Elsevier

Charting cumulative data

The cumulative frequency curve with discrete metric data

Cumulative frequency can be plotted for ordinal cumulative data but is more often used with

metric data so that’swhatwe’ll concentrate on.The approach for discrete and continuousmetric

data is a little different – we will start with the discrete data case. The cumulative frequency

chart with discrete data is known as the step chart, for which the most frequent application is

with survival analysis, which you will encounter in Chapter 19. Here, I will just introduce the

method fairly briefly.

Figure 3.19 shows percentage cumulative frequency for the number of lesions among

patients with a biodegradable stent. The corresponding percentage step chart (you can see

why it is called so) is shown in Figure 3.20. Hopefully, the chart is fairly easy to understand,

but basically, each time there is an increase in cumulative percentage, the step chart steps up

by the amount of that increase.

The cumulative frequency curve with continuous metric data

With continuous metric data, which is assumed to be a smooth continuum of values, you can

chart cumulative frequency with a correspondingly smooth curve, known as a cumulative
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Number of lesions Number of patients with

biodegradable stent

(n= 1229)

% cumulative number

of patients

1 903 (73.5%) 73.5

2 253 (20.6%) 94.1

3 61 (5.0%) 99.1

>3 12 (1.0%) 100.0∗

∗Allowing for small rounding error

Figure 3.19 Percentage cumulative number of lesions among patients with a biodegradable stent.

From a study to investigate the effects, in terms of stent thrombosis, of a biodegradable stent compared

to a durable stent. Data from Christiansen et al. (2013)

% cumulative number
of patients

100

90

80

70

1 2 3 > 3

Number of lesions

99.1%

94.1%

73.5%

Figure 3.20 Step chart of cumulative percentage number of patients according to the number of

lesions

frequency curve or an ogive.2 As an example, Figure 3.21 is a cumulative frequency curve

from a study of the relative efficacy of paclitaxel-eluting balloons, paclitaxel-eluting stents,

and balloon angioplasty, in the management of restenosis in patients who have received a

drug-eluting stent 6–8 months previously.

The curves show the cumulative frequency of the diameter stenosis (per cent) for each of

the three treatments. The diameter stenosis (per cent) is a measure of how much the vessel has

narrowed following the insertion of the stent – the higher the percentage is, the worse will be

2The ‘g’ in ogive is pronounced as the j in ‘jive’.
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Figure 3.21 A cumulative frequency curve of diameter stenosis, from a study of the relative efficacy

of paclitaxel-eluting balloons, paclitaxel-eluting stents and balloon angioplasty in the management of

restenosis in patients who have previously received a drug-eluting stent. Source: Byrne et al. (2013).

Reproduced by permission of Elsevier

the result. As you can see, balloon angioplasty (top curve) gave the worst result: 25 per cent of
these patients had a diameter stenosis of about 72 per cent or more, when compared to only
about 50 per cent or more for those with either paclitaxel-eluting balloons or paclitaxel-eluting
stents, and 75 per cent of balloon angioplasty patients had a diameter stenosis of about 32% or
more when compared to about 22% ormore for patients with either paclitaxel-eluting balloons
or paclitaxel-eluting stents.

Exercise 3.15. What does Figure 3.21 indicate about the approximate levels of diameter

stenosis for each of the three treatments experienced by 50 per cent of the patients?
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Exercise 3.16. Calculate percentage cumulative frequencies for the mothers’ weight

data shown in Figure 3.15 and draw the percentage cumulative frequency curve. Half

of the mothers weighed what weight (or more)? Note: If you are drawing this by hand,

you should plot each cumulative frequency value against the lower boundary of its cor-
responding group. To plot the origin point, you have to imagine a fictitious group below

your lowest group, whose cumulative frequency is 0.The largest (uppermost) cumulative

frequency value should be plotted against the upper boundary of its group.

Charting time-based data – the time series chart

If the data you have collected are from measurements made at regular intervals of time (min-
utes, weeks, etc.), you can present the data with a time series chart. Usually, these charts are
used with metric data but may also be appropriate for ordinal data. Time is always plotted on

the horizontal axis and data values on the vertical axis.
As an example, Figure 3.22 shows the rate of knee replacement for men and women in the

UK between 1991 and 2006. This chart is pretty much self-explanatory, but we can notice an

acceleration in the rate from about 2000 onwards.
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Figure 3.22 Rates of total knee replacement in the UK, 1991–2006. Note: the short vertical bars

represent the 95% confidence intervals, which we will discuss in Chapter 9. Source: Carr et al. (2012).

Reproduced by permission of Elsevier
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Figure 3.23 Annual uptake of MMR1 for England and London, 1988–2010 (note that the y-axis effec-

tively starts at 60). Data source: Health Protection Agency. Source: Cockman et al. (2011). Reproduced

by permission of BMJ Publishing Group Ltd

Exercise 3.17. Figure 3.23 is a time series chart showing (separately for England and

London) the percentage of children receiving theMMR1 vaccine between 1988 and 1989

and between 2010 and 2011. Comment on what the chart reveals. Note: AndrewWake-

field’s discredited paper on a possible link between MMR and autism was published in

1998.

Figure 3.24 may help you to decide on the most appropriate chart for any given type of data.

Data type Pie chart Bar chart Histogram (if

data grouped)

Box plot Step chart Cumulative

frequency curve

Nominal Yes Yes No No No No

Ordinal Yes∗ Yes No Yes Yes Yes

Metric discrete Yes∗ Yes∗ No Yes Yes Yes

Metric continuous No No Yes Yes Yes Yes

∗If number of values is small.

Figure 3.24 Which chart is appropriate for which type of data?
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Learning objectives

When you have finished this chapter, you should be able to:

• Explain what is meant by the ‘shape’ of a frequency distribution.

• Sketch and explain negatively skewed, symmetric, and positively skewed distribu-

tions.

• Sketch and explain a bimodal distribution.

• Describe the approximate shape of a frequency distribution from a frequency table

or chart.

• Sketch and describe a Normal distribution.

The shape of things to come

A quick recap of where we have got to:

• In Chapter 1, we saw that variables come in different flavours. I indicated then that the type
of variable, as well as how its data are distributed (its ‘shape’, if you like), would influence
which method of analysis is appropriate for that data.

Medical Statistics from Scratch: An Introduction for Health Professionals, Third Edition. David Bowers.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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• In Chapter 2, we saw howwe can ‘describe’ raw data by putting it into a tabular form, thereby
making it easier for us to answer any questions we might have and letting the data tell its
story.

• InChapter 3, we continuedwith this descriptive statistics approach by seeing howdata can be
put into one of several types of chart, once again making it easier for us to answer questions.

In this chapter, we examine what wemeanwhenwe talk about the ‘shape’ of a set of data.This
is not a ‘descriptive statistics’ method as such, but the discussion will give us the vocabulary,
the ‘words’, we need when we want to describe the way data is distributed. Later in the book,
we will see how we need to consider shape when choosing a method of analysis.
By ‘shape’ I mean:

• Are the values fairly evenly spread throughout, from small through to large? This would be
described as a uniform distribution.

• Are most of the values concentrated towards the bottom of the range (smaller values) with
progressively fewer and fewer larger values? This is a right or positively skewed distribution.
In other words, there is a long tail to the right (in the positive direction).

• Or are the values concentrated towards the top of the range (larger values), with progressively
fewer and fewer smaller values?This is a left or negatively skewed distribution.That is, a long
tail to the left (in the negative direction).

• Do most of the values clump together around one particular value, with progressively fewer
and fewer values both below and above this value? This is a symmetric or mound-shaped
distribution.

• Do most of the values clump around two or more particular values? This is a bimodal or
multimodal distribution.

One simple way to assess the shape of a frequency distribution is to plot a bar chart or a
histogram. Here are some examples of the shapes described earlier.

Negative skew1

An example of negative skew is shown by the histogram in Figure 4.1 (although the authors
have drawn their histogram more like a bar chart, with gaps between adjacent bars). This
shows the age distribution of 2454 patients with acute pulmonary embolism; the data is drawn

1Skewness is the primary measure used to describe the asymmetry of frequency distributions, and many com-

puter programs will calculate a skewness coefficient for you.This can vary from –1 (strong negative skew) to+1
(strong positive skew). Values of zero or close to it, indicate lower levels of skew, but do not necessarily mean

that the distribution is symmetric.
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In a negatively skewed
distribution most of the
values congregate in the
upper part of the range.

Age is a metric
continuous variable,
so this is a histogram
not a bar chart and
there shouldn't be
gaps between the bars.
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Figure 4.1 The age distribution of 2454 patients with acute pulmonary embolism. Source: Goldhaber

et al. (1999). Reproduced by permission of Elsevier

from 52 hospitals in seven countries. You can see that most values lie towards the top end of
the range, with progressively fewer lower values; in other words, this distribution is negatively
skewed. Notice that the authors have attached percentage values to the top of each bar, which
can be helpful.

Exercise 4.1. In Figure 4.1, which age group has (a) the highest number of patients?

and (b) the lowest number?

Positive skew

Figure 4.2 is an example of positive skew, taken from a study of the association between preg-
nancy weight gain and birthweight, and shows weight gain by mothers. Notice the long tail to
the right and the high-value outlier at about 45 kg.

Exercise 4.2. What sort of skew does the simple bar chart of data in Figure 3.12 have?

Exercise 4.3. The histogram in Figure 4.3 shows the birthweights of 500 babies.2 How

would you describe the shape of this distribution?

2Data from the Born in Bradford study.
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This positively skewed
weight gain distribution has
most values below 20 kg, but
has a long tail to the right . . .

. . . and
notice the
outlier.
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Figure 4.2 A positively skewed histogram showing weight gain by mothers from a study of the asso-

ciation between pregnancy weight gain and birthweight. Source: Ludwig and Currie (2010). Reproduced

by permission of Elsevier
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Figure 4.3 The birthweights of 500 babies. Data from the Born in Bradford study

Exercise 4.4. Plot a histogram for the percentage number of illnesses data as shown in

Figure 4.4, taken from a study to determine the accuracy of a clinical decision rule (the

traffic light system developed by theNational Institute forHealth andClinical Excellence

(NICE)) for detecting three common serious bacterial infections (urinary tract infection,

pneumonia and bacteraemia) in young febrile children. What shape is the distribution?
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Age (months) Number of illnesses (%)

<3 4.7

3–5 5.9

6–11 19.0

12–23 30.8

24–35 18.1

36–47 12.5

48–60 9.0

Figure 4.4 The percentage number of illnesses among children in a study to determine the accuracy

of a clinical decision rule for detecting serious bacterial infections. Data from De et al. (2013)

Symmetric or mound-shaped distributions

Figure 4.5 illustrates a symmetric distribution – in this case, birthweight. Notice the

equal-sized (and relatively long, in this example) tails to the left and right of the central values.

An almost perfectly symmetric
distribution (of birthweight),
with very similar numbers of
values to the left (decreasing)
and right (increasing) of the
central values. Notice the
particularly long tails.
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Figure 4.5 A symmetric distribution of birthweight for the children of the mothers whose weight gain

is shown in Figure 4.2. From the same study of the association between pregnancy weight gain and

birthweight. Source: Ludwig and Currie (2010). Reproduced by permission of Elsevier

Exercise 4.5. What would you guess is the average birthweight for the data in

Figure 4.5? What do you think accounts for the long tails on each side of the

distribution?
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Exercise 4.6. Comment (by eyeballing the frequency distributions) on the shapes

of the age distributions shown by the data in Figure 3.17 for male and female suicide

attempters and later succeeders.

Normal-ness – the Normal distribution

There is one particular symmetric bell-shaped distribution, known as the Normal distribution,
which has a special place in the heart of statisticians.3 Many human clinical features are dis-

tributed Normally, and the Normal distribution has a very important role to play in what is to

come later in this book. A Normal distribution is characterised by having a perfectly symmet-

rical shape, although in practice, never quite perfect (we should be so lucky!).

We have already seen a Normal distribution – that in Figure 4.5 for birthweights. A second

example is shown in Figure 4.6. This shows the distribution of the cord platelet count (109/L)

in 4382 Finnish infants, from a study of the prevalence and causes of thrombocytopaenia4 in

0
25 75 125 175 225 275 325

Cord-platelet count × 109/ l

Mean = 308 × 109/ l

SD = 69 × 109/ l

N = 4382

375 425 475 525 575 625 675 725

200

400

600

800

Figure 4.6 Cord platelet counts from 4382 full-term infants showed Normal distribution. Source:

Sainio et al. (2000). Reproduced by permission of Wolters Kluwer Health

3Note the capitalised, ‘N’, to distinguish this statistical usage from that of the word ‘normal’ meaning usual,

ordinary, etc.
4Thrombocytopenia is deemed to exist when the cord platelet count is less than 150× 109/L. It is a risk factor

for intraventricular haemorrhage and contributes to the high neurological morbidity in infants affected.
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full-term infants. The authors have superimposed a Normal curve on the histogram. But, even

without the help of this curve, you can see that the distribution has the typical bell-shaped

symmetric distribution – in fact it is pretty well as Normal as it gets with real data. By the

way, we will deal with what is meant by Mean and SD, shown on the right of the histogram,

in Chapter 5.

Exercise 4.7. (a)What is the approximate range of the cord platelet counts in Figure 4.6

and (b) what is the approximate cord platelet count of most infants?

Although the Normal distribution is one of the most important in a health context, you may

also encounter the binomial and Poisson distributions. As an example of the binomial distribu-

tion, suppose you need to select a sample of 20 patients from a very large list of patients that

contains equal numbers of males and females. The chance of choosing a male patient is thus

1 in 2. Provided that the probability of picking a male patient each time remains fixed at 1 in

2, the binomial equation will tell you the probability of getting any given number of males (or

females), in your 20 selected patients. For example, the probability of getting eight males in a

sample of 20 patients is 0.1201 – about 12 chances in a 100.

The Poisson distribution is appropriate for calculating chance or probability when events

occur in a seemingly random and unpredictable fashion. It describes the probability of a given

number of events occurring in a fixed period of time. For example, suppose that the average

number of children with burns arriving at an Emergency Department in any given 24-hour

period is 12. Then, the Poisson equation indicates that the probability of one child with burns

arriving in the next hour is 30 in 100, the probability of two arriving is about 7 in 100 and so on.

Interesting as these distributions are, unfortunately we do not have the room to discuss them

in any further detail. Maybe next time!
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Bimodal distributions

A bimodal distribution is one with two distinct humps. These distributions are less common

than the shapes described earlier and are sometimes the result of two separate distributions,

which have not been disentangled. Figure 4.7 shows a bimodal distribution of the birthweights

ofMexican-American and non-Hispanic babies taken from a study intowhy there are relatively

few low-weight births amongMexican-Americans, despite their socioeconomic disadvantages.

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

2
4

0
0

Birthweight (g)

White

Mexican

28–31 Weeks

P
e

rc
e

n
t

2
2

0
0

2
6

0
0

2
8

0
0

3
0

0
0

3
2

0
0

3
4

0
0

3
6

0
0

3
8

0
0

4
0

0
0

4
2

0
0

4
4

0
0

4
6

0
0

4
8

0
0

5
0

0
0

2

4

6

8

10

12

14

16

Figure 4.7 Bimodal distribution of birthweights of Mexican-American and non-Hispanic white

pre-term babies at 28–31 weeks of gestation. Source: Buekens et al. (1999). Reproduced by permission

of John Wiley & Sons

Theauthors suggest that this, ‘bimodal distribution strongly suggests misclassification of ges-

tational age, and this finding was seen more often for the Mexican-American babies. While

errors concerning gestational age occur for only a small portion of all births, they can make up

a large fraction of pre-term births’.

Determining skew from a box plot

We can get some idea of the skewness of a distribution by looking at its box plot. Look again

at Figure 3.18, the box plot of sperm concentrations for a group of survivors of childhood

cancer and a group of controls. If we rotate this box plot through 90 degrees, as shown in
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The closer the 50th percentile
line is to the 25th percentile line,
the more the distribution is likely
to be positively skewed.

The 25th
percentile (1st
quartile).

Figure 4.8 Boxplot of sperm concentration in non-azoospermic long-term survivors of childhood

cancer, rotated through 90 degrees (from Figure 3.18)

Figure 4.8, it will help in our explanation. Let’s isolate the box plot for the survivors. What do

you see?

Youwill notice first that the 50th percentile value (the thick line across the inside of the box) is

closer to the 25th percentile value (the left-hand end of the box), than it is to the 75th percentile

value (the right-hand end of the box). Second, the whisker on the left of the box (showing the

minimum value) is much shorter than that on the right-hand side of the box (showing the

maximum value).The only distributional shape that will fit this geometry is one with a positive

skew, as you can see.

If we do the same thing with the box plot for the control group, in which the 50th percentile

is much more towards the middle of the box, we see (in Figure 4.9) that the corresponding

distributional shape is more symmetrical but still with a long tail to the right.

Figure 4.9 Boxplot of sperm concentration in controls, rotated through 90 degrees

In short, when we examine a box plot in its normal configuration (i.e. vertical), then if the

50th percentile bar is closer to the 25th percentile (the bottom of the box), than it is to the
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75th percentile (the top of the box), the distribution is most likely to be positively skewed.

(Conversely, if the 50th percentile bar is closer to the 75th percentile, then the distribution is

more likely to be negatively skewed.)

To sum up so far. You have seen that you can describe the principal features of a set of data

using tables and charts. A description of the shape of the distribution is also an important

part of the picture. In the next chapter, you will meet a way of describing data using numeric
summary values.
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Part I. Percentages, proportions and
measures of location

Learning objectives

When you have finished this chapter, you should be able to:

• Explain what a summary measure of location is. Show that you understand the mean-

ing of and the difference between the mode, the median, and the mean.

• Calculate the mode, median, and mean for a set of values.

• Demonstrate that you understand the role of data type and distributional shape in

choosing the most appropriate measure of location.

• Explain what a percentile is and calculate any given percentile value.

• Draw a boxplot using values for the median, interquartile range, and the minimum

and maximum.

Preamble

You collect data so that you can answer questions. ‘What is the prevalence of asthma in chil-
dren?’ ‘Is drugA better than drug B?’ ‘What are the risk factors for stillbirth?’ and so on. To help

Medical Statistics from Scratch: An Introduction for Health Professionals, Third Edition. David Bowers.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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you do this, you can arrange the raw data into a tabular form or chart it (and examine its shape).

These two procedures are particularly useful if you are making a presentation. In addition, you

will almost always want to summarise the data numerically. There are three ways we can do

this:

• First, most simply, for each categorical variable, provide the numbers involved in each cate-

gory, along with the percentage (or proportion) values.

• Second, (for ordinal andmetric data) find a value around which the data congregate or clus-

ter. This value is known as a summary measure of location (or central tendency).

• Third, find a value that measures the degree to which the data are (or are not) spread out.

This value is called a summary measure of spread (or dispersion).

When you know these values, you can then compare different sets of data quantitatively.
Moreover, the latter two summary statistics (as they are called) form a crucial bridge between

the sample data and the characteristics of the population fromwhich the sample was taken (we

will begin to saunter across this bridge in Chapter 7).

In this chapter, we look first at very basic stuff – counting numbers and expressing them in a

percentage form. Then, we discuss the first of the summary measures – measures of location.

In the next chapter, I will then examine the second of the summary measures – measures of

spread or dispersion.

Numbers, percentages, and proportions

One of the simplest things that you can do with raw data is count it. For example, count the

number of women andmen, or the number of individuals with a particular blood group, or, the
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number of individuals with Stage II cancer, or the number of newborn babies with an Apgar

score of 6 or less.1 When you present the results of an investigation, you will almost certainly

want to provide the reader (or audience) with this basic information, usually in the form of a

baseline table – as we saw in Chapter 1. If you look back at Figures 1.7, 1.8 and 1.9, you will see

that the authors of each of these three baseline tables have provided (where appropriate) both

numbers and percentages (percentages usually in brackets after the number) in the various

categories of each variable.

As a further example, Figure 5.1 is a table of the baseline characteristics of the participants

in a study to investigate whether the insertion of a cervical pessary in women with a short

cervix reduces the rate of early pre-term delivery. The female participants in the study were

randomly allocated either to the group receiving the pessary (the cervical pessary group)

or to the group not receiving a pessary (the expectant management group). As you can

see, the values (percentage) are given for each of the nine categorical variables (see table

footnote).

Exercise 5.1. What percentage of women in each group in Figure 5.1 smoked during

pregnancy?

Exercise 5.2. Thedata in Figure 5.2 are taken from a study of duration of breastfeeding

and arterial distensibility leading to cardiovascular disease.The table describes the basic

characteristics of two groups; 149 participants who were bottle-fed as infants, and 182

who were breastfed. What proportion (and percentage) of men were (a) breastfed, and

(b) bottle-fed?

Handling percentages – for those of us who might need a reminder

Sometimes, it is difficult to remember quite simple stuff, which you did some time ago. I think

percentage calculations can often fall into this category, so here is a reminder of some typical

problems which I hope will jog your memories (if you need it of course).

(a) Suppose that we have the following annual mortality figures for some procedure:

2011 = 12 deaths

2012 = 16 deaths

2013 = 14 deaths

1The Apgar score is a measure of the well-being of a newborn baby, and it ranges from 0 to 10 (low scores, bad;

high scores, good).
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Cervical pessary
group

(n = 190)

Expectant
management group

(n = 190)
Maternal age (years) 30·3 (5·1) 29·6 (5·4)
Body-mass index (kg/m2) 24·9 (4·6) 24·5 (4·3)
Obstetrical history

Nulliparous 94 (49%) 96 (51%)
Parous with no previous preterm births 75 (39%) 74 (39%)
Parous with at least one previous preterm
birth 21 (11%) 20 (11%)

Cigarette smoking during pregnancy 37 (??%) 38 (??%)
Ethnic origin (self reported)

White 107 (56%) 110 (58%)
Latin American 58 (31%) 56 (29%)
Other 25 (13%) 24 (13%)

Gestational age at randomisation (weeks) 22·2 (0·9) 22·4 (0·9)
Cervical length at randomisation (mm) 19·0 (4·6) 19·0 (4·9)
Funnelling at randomisation (yes) 81 (43%) 85 (45%)
Sludge at randomisation (yes) 5 (3%) 4 (2%)
Data are number (%) or mean (SD).

The number and
percentage in each

category.

Figure 5.1 Baseline characteristics of participants in the cervical pessary and expectant management

groups. I have omitted the percentages for cigarette smoking in pregnancy (see Exercise 5.1). Data

from Goya et al. (2012)

What is the percentage increase in mortality from 2011 to 2012?

Answer = the difference between the two years divided by the number in the starting

(base) year,multiplied by 100

=
[
(16 − 12)

12

]
× 100 =

[
4

12

]
× 100 = 0.3333 × 100 = 33.3 per cent

Similarly, the percentage decrease from 2012 to 2013 (2012 is now the base year):

=
[
(16 − 14)

16

]
× 100 =

[
2

16

]
× 100 = 0.1250 × 100 = 12.5per cent

(b) Hospital A has 16 intensive care deaths in a three-month period. Hospital B has 20 deaths

in the same period.
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Variable Breast fed Bottle fed

p value
for difference

between groups

No of participants

(men/women)

149 (67/82) 182 (93/89) –

Age (years) 23 (20 to 28) 23 (20 to 27) 0.07

Height (cm) 170 (10) 168 (9) 0.03

Weight (kg) 70.4 (14.5) 68.7 (13.1) 0.28

Body mass index (kg/m2) 24.2 (4.1) 24.3 (3.7) 0.83

Length of breast feeding

(months)

3.33 (0 to 18) – –

Resting arterial diameter (mm) 3.32 (0.59) 3.28 (0.59) 0.45

Distensibility coefficient

(mm/Hg–1)

0.133 (0.07) 0.140 (0.08) 0.38

Cholesterol (mmol/l) 4.43 (0.99) 4.61 (1.01) 0.11

LDL cholesterol (mmol/l) 2.71 (0.88) 2.90 (0.93) 0.07

HDL cholesterol (mmol/l) 1.18 (0.25) 1.18 (0.31) 0.96

Systolic blood pressure (mm Hg) 128 (14) 128 (14) 0.93

Diastolic blood pressure (mmHg) 70 (9) 71 (8) 0.31

Smoking history (No (%)):

Smokers 49 (33) 64 (35)

Former smokers 25 (17) 22 (12) 0.78

Non-smokers 75 (50) 96 (53)

No (%) in social class:

I 12 (8) 13 (7)

II 36 (24) 33 (18)

IIINM 51 (34) 62 (34)

IIIM 24 (16) 36 (20) 0.19

IV 22 (15) 33 (18)

V 4 (3) 5 (3)

Values are mean (SD or range) unless stated otherwise.

LDL, low density lipoprotein; HDL, high density lipoprotein

Figure 5.2 Basic characteristics of two groups of individuals, breastfed and bottle-fed, from a study

of duration of breastfeeding and arterial distensibility leading to cardiovascular disease. Source: Leeson

et al. (2001). Reproduced by permission of BMJ Publishing Group Ltd

How manymore deaths (in percentage terms) does Hospital B have than Hospital A?

Answer = difference in number of deaths divided by the number of deaths in

Hospital A,multiplied by 100

=
[
(20 − 16)

16

]
× 100 =

[
4

16

]
× 100 = 0.25 × 100

= 25 per cent more deaths.
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How many fewer deaths (in percentage terms) does Hospital A have than Hospital B?

Answer = difference in number of deaths divided by the number of deaths in

Hospital B,multiplied by 100

=
[
(20 − 16)

20

]
× 100 =

[
4

20

]
× 100 = 0.20 × 100

= 20 per cent fewer deaths.

(c) The number of individuals attending an Emergency Department during the month of

December 2012 increased by 20 per cent to 10 080 during December 2013. How many

attendances were there in 2012?

Number of attendances in 2013 = number in 2012 × 1.20 = 10080

So number in 2012= 10 080/1.2= 8400

(d) In a sample of 36 children, 8 have asthma. The proportion of children in the sample with

asthma is:
8

36
= 0.2222

To express this proportion as a percentage, just multiply by 100. So the percentage of chil-

dren with asthma is:

0.2222 × 100 = 22.22 per cent.

(e) Twenty per cent of a sample of 180 children have eczema.Howmany children have eczema?

The number of children with eczema= 180× 0.20= 36

(f) The proportion of a sample of 600 children with asthma is 0.015. Howmany children have

asthma?

The number of children with asthma = 0.015 × 600 = 9

Summary measures of location

With nominal data, we can provide readers with the numbers involved and a percentage (or a

proportion) value – as we have seen earlier. With ordinal and metric data, we can do this but

go further and provide a summary measure of location. This is a value around which most of

the data seem to congregate or centre. In descriptive statistics, we use three main measures

of location: the mode, the median, and the mean. As you will see, the choice of the most

appropriate measure depends crucially on the type of data involved. We see in this chapter

which measure(s) you can most appropriately use with which type of data. We’ll start with

the mode.
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The mode

The mode, or modal value, is the value in the data with the highest frequency (i.e. occurs the

most often). In this sense, the mode is a measure of common-ness or typical-ness. For example,

the Apgar scores of 22 infants with neonatal encephalopathy are shown in Figure 5.3.

The modal Apgar score is 8as this value occurred more than any other value (six times).

Exercise 5.3. The delivery method for the same 22 babies in Figure 5.3 is shown in

Figure 5.4. What is the modal delivery method?

When the data are grouped, the group with the highest number (the highest frequency) is

the modal category. As an example, the modal category for Smoking history in Figure 5.2 is

Smokers, amongboth breastfed andbottle-fed participants (49 and 64, respectively).Themodal

category for Social Class is IIINM in both groups (51 and 62).

0 3 4 3 8 7 5 7 9 5 3 5 6 1 8 5 8 8 8 0 8 5

Figure 5.3 The Apgar scores of 22 infants with neonatal encephalopathy

1. Spontaneous vaginal delivery

2. Spontaneous vaginal delivery

3. Elective Cesarean Section

4. Spontaneous vaginal delivery

5. Emergency Cesarean Section

6. Emergency Cesarean Section

7. Spontaneous vaginal delivery

8. Emergency Cesarean Section

9. Emergency Cesarean Section

10. Spontaneous vaginal delivery

11. Spontaneous vaginal delivery

12. Vacuum-assisted vaginal delivery

13. Emergency Cesarean Section

14. Emergency Cesarean Section

15. Forceps

16. Spontaneous vaginal delivery

17. Emergency Cesarean Section

18. Spontaneous vaginal delivery

19. Emergency Cesarean Section

20. Forceps

21. Vacuum-assisted vaginal delivery

22. Forceps

Figure 5.4 The delivery mode of the same 22 babies as shown in Figure 5.3
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As a descriptive measure, the mode has a few shortcomings:

• There may be more than one mode.

• It is not usually useful with metric continuous data, where no two values may be the
same – imagine trying to find the modal birthweight from the data in Figure 1.1. (Actually
there are three modes, each with nine values: 2840 g, 3200 g and 3300 g). It is much easier
though, to find the modal category from grouped data, such as that for birthweight in Figure
3.14.

• Themode is not useful with discrete metric data, when the number of values is large.

The mode does, however, have the virtue of being relatively easy to determine.

Exercise 5.4. Determine the modal category for: (a) Social class, for both cases and

controls, in the stress and breast cancer study shown in Figure 1.7, (b) the level of sat-

isfaction with nursing care, from the data shown in Figure 2.5, (c) the self-rated benefit

scores in each group shown in Figure 2.6, and (d) modal parity shown in Figure 2.9.

The median

If we arrange the data in ascending order of size, themedian is the middle value. Thus, half of
the values will be equal to or less than the median value and half equal to or greater than it.The
median is therefore a measure of central-ness.
As an example of the calculation of the median, suppose that you had the following data on

age (in ascending order of years), for five individuals:

30 31 𝟑𝟐 33 35

The middle value is 32, so the median age for these five people is 32 years.
If you have an even number of values, the median is the average of the two values on either

sides of the ‘middle’. So for example, with six individuals aged: 30 31 32 33 35 50, the median is
half-way between the two ‘middle’ values, 32 and 33, that is, 32.5. Notice that the median does
not have to be equal to any of the values.
Some properties of the median:

• It discards a lot of information because it ignores most of the values, apart from those in the
centre of the distribution.

• It is notmuch affected by skewness in the distribution, or by outliers, and is therefore a stable
measure.

• It is not easy to determine (by hand) unless the sample has been ordered first.
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Exercise 5.5. Whydoes it notmake any sense to try and determine themedianmethod

of delivery from the data in Figure 5.4?

Exercise 5.6. What is the median of the Apgar score data given in Figure 5.3?

There is another, quite easy, way of determining the value of themedian, whichwill also come
in useful a bit later on. If you have n values arranged in ascending order, then:

the median is the value in the 1/2 (n + 1)thposition

So, for example, if the ages of six people are: 30 31 32 33 35 50, then n= 6, and therefore:

The median is the value in the position ∶ 1/2 (n + 1) = 1/2 × (6 + 1)

= 1/2 × 7, that is, in the 3.5th position.

In other words, it is the value half way between the 3rd value of 32 and the 4th value of 33,
or 32.5 years, which is the same result as we have got before.
Incidentally, the median birthweight for the data in Figure 1.1 is 3200.0 g.

Exercise 5.7. (a) Determine the median percentage mortality of the 26 ICUs in Figure

2.14. (b) From the data in Figure 3.17, determine which age group contains the median

age for (i) men and (ii) women, both for those attempting suicide and for later successful

suicides. (c) What are the median categories for the levels of self-rated benefit for each

group in Figure 2.6?

The mean

The mean, or the arithmetic mean to give it its full name (there are other types of mean), is
more commonly known as the average. So to determine the value of the mean, we add values
together and divide this total by the number of values (as you know!). A few things about the
mean:

• It uses all of the information in the data set – every value is included.

• Because of this, it is affected by skewness in the distribution and by outliers.

• As a consequence, the mean, on occasion, might be unrepresentative of the general mass of
the data.

• It cannot be used with ordinal data (recall from Chapter 1 that ordinal data are not real
numbers, so they cannot be added or divided).
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Exercise 5.8. Comment on the likely relative sizes of the mean and median in the dis-

tributions of: (a) age, (b) weight gain and (c) birthweight, shown in the histograms in

Figures 4.1, 4.2 and 4.5, respectively.

Exercise 5.9. Determine the mean percentage mortality among the 26 ICUs in Figure

2.14 and compare with the median value you determined in Exercise 5.5.

Exercise 5.10. The histogram of red blood cell thioguanine nucleotide concentration

(RBCTNC), in pmol/8× 108 red blood cells, in 49 children, shown in Figure 5.5, is from a

study into the potential causes of high incidence of secondary brain tumours in children

after radiotherapy. (a) Using the information in the figure, calculate median and mean

RBCTNC for the 49 children. (b) Remove the two outlier values of 3300, and re-calculate

the mean and median. Compare and comment on the two sets of results.
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Figure 5.5 Frequency of maximum red blood cell thioguanine nucleotide concentrations before cranial

radiotherapy. Arrows show values for six patients who went on to develop secondary malignant brain

tumours. Source: Relling et al. (1999). Reproduced by permission of Elsevier

Percentiles

Percentiles are the values which divide an ordered set of data into 100 equal-sized groups. As an
illustration, suppose that you have birthweights of 1200 infants, which you have put in ascend-

ing order. If you identify the birthweight that has 1 per cent (i.e. 12) of the birthweight values

below it and 99 per cent (1188) above it, then this value is the 1st percentile. Similarly, the birth-

weightwhich has 2 per cent of the birthweight values below it, and 98 per cent above it is the 2nd

percentile. You could repeat this process until you reached the 99th percentile, which would

have 99 per cent (1188) of birthweight values below it and only 1 per cent above it. Notice that

this makes the median the 50th percentile as it divides the data values into two equal halves, 50
per cent above the median and 50 per cent below.
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Calculating a percentile value

Howdo you determine any particular percentile value? Take the example of the 30 birthweights
shown in Figure 2.17, which we reproduce in Figure 5.6, but now in an ascending order, along
with their position in the order:

Baby’s birthweight (g)

n= 30

Baby’s birthweight (g)

in ascending order

n= 30

Position of

each value

ascending

3220 2170 1

4140 2220 2

2220 2460 3

3540 2460 4

3500 2640 5

3820 2660 6

3330 2740 7

2840 2780 8

2780 2820 9

2660 2840 10

2170 3000 11

3340 3070 12

3070 3220 13

3800 3280 14

3300 3300 15

3380 3320 16

4060 3330 17

2640 3340 18

2460 3380 19

3460 3410 20

2820 3460 21

3280 3490 22

3740 3500 23

3000 3540 24

3320 3740 25

3490 3800 26

3920 3820 27

2460 3920 28

3410 4060 29

2740 4140 30

Figure 5.6 The 30 birthweights from Figure 2.17 but now shown also in ascending order, along with

their position in the order

The pth percentile is the value in the (p/100)× (n+ 1)th position.
For example, the 20th percentile (i.e. p= 20), is the value in the [(20/100)× (n+ 1)]th

position.
With the 30 birthweight values, n= 30 and the 20th percentile is therefore the value in the:

20

100
× (30 + 1)th position,which is the 0.2 × 31st value = 6.2th position.
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The 6th value is 2660 g and the 7th value is 2740 g, a difference of 80 g, so the 20th per-
centile is:

2660g plus 0.2of 80g, which is 2660g + 0.2 × 80g = 2660g + 16g = 2676g.

You might be thinking this all seems a bit messy, but a computer will perform these calcula-
tions effortlessly and instantly. As well as percentiles, you might also encounter deciles, which
sub-divide the data values into 10, not 100, equal divisions, and quintiles, which sub-divide the
values into five equal-sized groups. Collectively, percentiles, deciles and quintiles, are called
n-tiles.

Exercise 5.11. Use the method described earlier (or some other more cunning

method!) to calculate the 25th, 50th and 75th percentiles, for the birthweight data

shown in Figure 5.6 and interpret your results.

1

0

5

10

15

20

25

2 3 4 5 6 7 8 9 10

Number of cases per school

Number of schools (n = 37)

11 12 13 14 15 16 17 18 19 20 21 22 23

Figure 5.7 The distribution of the number of measles cases in 37 schools, Jefferson County, Kentucky.

Source: Prevots et al. (1997). Reproduced by permission of John Wiley and Sons

Summary measure of location

Type of variable Mode Median Mean

Nominal Yes No No

Ordinal Yes Yes No

Metric discrete Yes Yes, if distribution is markedly skewed Yes

Metric continuous No Yes, if distribution is markedly skewed Yes

Figure 5.8 A guide to choosing an appropriate measure of location
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What is the most appropriate measure of location?

How do you choose the most appropriate measure of location for some given set of data? The

main things to remember are that the mean cannot be used with ordinal data (because they are
not real numbers), and the median can be used for both ordinal and metric data (particularly

when the latter is skewed). As noted by the authors of a study to evaluate whether amultifaceted

behavioural change programme increases physical activities in individuals with Parkinson’s

disease:

Because the physical activity level was skewed, we present medians and interquartile

ranges and did analyses after logarithmic transformation.

van Nimwegen (2013)

(We will deal with the interquartile range in the next chapter). As an illustration of the last

point, see Figure 5.7, which shows the distribution of the number ofmeasles cases in 37 schools.

Not only is this distribution positively skewed but it also has a single high-value outlier. The

median number ofmeasles cases is 1, but themean number is 2.91, almost three times asmany!

The problem is that the long positive tail, along with the outlier, is dragging the mean to the

right. In this case, the median value of 1 seems to be more representative of the data than the

mean. I have summarised the choice of a measure of location in Figure 5.8.



Trim size: 170mm x 244mm Bowers c06.tex V3 - 06/19/2014 7:48 A.M. Page 72

6
Measures of spread

Learning objectives

When you have read this chapter, you should be able to:

• Explain what a summary measure of spread is, show that you understand the differ-

ence between and can calculate: the range, the interquartile range and the standard

deviation.

• Estimate the median and the interquartile range from a cumulative frequency curve.

• Use values for the quartiles and the maximum and minimum values to draw a boxplot.

• Explain what the area properties of the Normal distribution are.

• Outline the idea of transformation and how it can be used.

• Demonstrate that you understand the role of data type and distributional shape in

choosing the most appropriate measure of spread.

Medical Statistics from Scratch: An Introduction for Health Professionals, Third Edition. David Bowers.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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Preamble

We saw in the previous chapter that there are two important summarymeasures in the descrip-
tive statistics armoury. One of these was a measure of location and the other is a measure of
spread or dispersion. There are three main measures of spread in common use: the range, the
interquartile range (IQR) and the standard deviation. As you will see, the type of data being
described will influence which measure of spread is the most appropriate.

The range

The range is the distance from the smallest value to the largest. The range is not particularly
affected by skewness but is sensitive to the addition or removal of an outlier value. As an
example, the range of the 30 birthweights shown in Figure 5.6 is (2170.0 to 4140.0) g.The range
is best written like this, rather than as the single-valued difference, that is, as 1970 g (in this
example), which is much less informative. Another example of the use of the range is shown in
Figure 6.5.

Exercise 6.1. What is the range of the Apgar scores in Figure 5.3?

The interquartile range (IQR)

One solution to the problemof the sensitivity of the range to outliers is to chop a quarter (25 per
cent) of the values off both ends of the distribution (which removes any troublesome outliers)
and then measure the range of the remaining values.

• The value which cuts off the bottom 25 per cent of values is known as the first quartile and
denoted Q1.

• The value which cuts off the top 25 per cent of values is known as the third quartile and
denoted Q3.

The IQR is then written as (Q1−Q3).
The IQR is not affected by outliers but it can be affected by distributions, which are markedly

skewed. It does not use all of the information in the data set as it ignores the bottom and top
quarters of values.
With the birthweight data in Figure 1.1: Q1= 2840 g and Q3= 3580 g. Therefore:

interquartile range = (2840 to 3580)g.

In other words, the middle 50 per cent of infants by weight weighed between 2840 g and
3580 g.
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As an illustration of the use of the median and IQR, Figure 6.1 is from a study to compare the

basic characteristics of individuals with and without Barrett’s oesophagus, for the two groups:

those with circumferential lengths of the affected segment of ≥1 cm and ≥2 cm, respectively.

So, for example, among those with an affected oesophagus length of ≥1 cm, the median age is

64.0 years with an IQR of (59.0 to 67.0) years. This means that 25 per cent of this group were

aged 59 or less and 25 per cent aged 67 or more.

Exercise 6.2. From Figure 6.1, interpret the median and IQR values for smoking (pack

years) among those in the ≥2 cm group, with and without Barrett’s oesophagus.

Exercise 6.3. What is the IQR for the birthweight data shown in Figure 5.6? (You have

already calculated the 25th and 75th percentiles in Exercise 5.11).

Estimating the median and interquartile range from the cumulative
frequency curve

You can, if necessary, estimate the median and the IQR from the percentage cumulative fre-

quency curve. Figure 6.2 shows the percentage cumulative frequency curve for the birthweight

data shown in Figure 1.1.
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Characteristics

Circumferential length ≥1 cm Circumferential length ≥2 cm

Barrett’s

oesophagus

(n = 15)

No Barrett’s

oesophagus

(n = 486)

p

value

Barrett’s

oesophagus

(n = 10)

No Barrett’s

oesophagus

(n = 491)

p

value

Male to female ratio 1.5:1 0.84:1 0.26 1.75:1 0.84:1 0.36

Age 64.0 (59.0 to 67.0) 62.0 (56.0 to 66.0) 0.18 63.5 (58.7 to 66.2) 62.0 (56.0 to 66.0) 0.39

Body mass index 31.6 (27.5 to 33.5) 29.4 (26.2 to 32.9) 0.55 31.6 (27.8 to 33.5) 29.4 (26.2 to 32.9) 0.59

Waist to hip ratio 0.95 (0.86 to 0.99) 0.91 (0.85 to 0.96) 0.16 0.96 (0.89 to 1.02) 0.91 (0.85 to 0.96) 0.06

Smoking (pack years) 8.0 (0.0 to 31.4) 0.4 (0.0 to 19.5) 0.30 23.0 (3.0 to 31.0) 0.3 (0.0 to 19.2) 0.03

Alcohol consumption 

(units/week)
4.0 (2.0 to 10.0) 6.0 (1.0 to 14.0) 0.24 2.0 (0.0 to 10.0) 6.0 (1.0 to 14.0) 0.09

Symptoms (GERD 

score)
4.0 (2.0 to 6.0) 4.0 (2.0 to 6.5) 0.67 4.0 (2.0 to 6.0) 4.0 (1.7 to 6.1) 0.99

Acid suppressants* (%) 73.3 66.2 0.36 80.0 66.2 0.26

GERD, The Gastro-oesophageal Reflux Disease impact scale: a patient management tool for primary care.
*Proton pump inhibitors or H2 receptor antagonists, or both.

The median and IQR values  for various baseline
characteristics, among patients with a
circumferential length of affected segment ≥
1 cm, in individuals with Barrett's oesophagus . . 

. . . and among
those without.

Figure 6.1 Use of median and interquartile range values to compare the basic characteristics of patients with and without Barrett’s oesophagus,

stratified by the circumferential length cut-off point of the affected segment: ≥1 cm and ≥2 cm. Data from Kadri et al. (2010)
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Figure 6.2 The percentage cumulative frequency curve for the birthweight data in Figure 1.1

If you draw horizontal lines from the values 25 per cent, 50 per cent and 75 per cent, respec-

tively, on the vertical axis, to the percentage cumulative frequency curve and then down to the

birthweight (horizontal) axis, the points of intersection on the birthweight axis approximate

values for Q1, Q2 (the median), and Q3, of 2800 g, 3200 g and 3600 g, respectively.Thus, if you

happen to have a percentage cumulative curve handy, these approximations can be helpful.

Exercise 6.4. Using Figure 6.2, (a) what birthweight defines the first decile? (b) What

percentage of babies weighed more than 4000 g?

Exercise 6.5. For the control group, estimate the median and the IQR for total blood

cholesterol from the percentage cumulative frequency curve shown in Figure 6.3.

The discussion on measures of spread continues on the following pages, but now I want to

expand the discussion of boxplots (first mentioned in Chapter 3).

The boxplot (also known as the box and whisker plot)

Now that we have discussed the median and IQR, we can return to the boxplot. What I could

not say then (because we hadn’t dealt with them at that time) was that the boxplot is a graphical

representation of the quartile values.



Trim size: 170mm x 244mm Bowers c06.tex V3 - 06/19/2014 7:48 A.M. Page 77

THE BOXPLOT (ALSO KNOWN AS THE BOX AND WHISKER PLOT) 77

3
0

10

20

30

40

50

60

70

80

90

100

4 5 6 7

Total Cholesterol (mmol/l)

Control

Intervention

C
u

m
u

la
ti
v
e

 f
re

q
u

e
n

c
y
 (

%
)

8 9 10 11

Figure 6.3 Cumulative frequency curves of total cholesterol concentration in control and intervention

groups. From a study of the effectiveness of health checks conducted by nurses in primary care: final

results of the OXCHECK study. Source: Imperial Cancer Fund OXCHECK Study Group (1995). Reproduced

by permission of BMJ Publishing Group Ltd

Boxplots are usually plottedwith values on the vertical axis. Like the pie chart, the boxplot can

only represent one variable at a time, but a reasonable number of boxplots can be set along-

side each other for comparison purposes. To illustrate this idea, see the boxplots shown in

Figure 6.4. These boxplots are taken from a study of the effect of participatory intervention

with women’s groups on birth outcomes and maternal depression in India, and show neonatal

mortality rates (deaths per thousand live births), for three years after the start of the study.The

three boxplots on the left are for the control area (no participatory intervention) and those on

the right are for the intervention area. As amatter of interest, we can see that in the intervention

area, the median infant mortality rate falls over the three-year period, whereas as that for the

control rises.

Let’s look at the second boxplot from the left – the neonatal mortality rates in Year 2 for the

control area (no intervention):

• The bottom end of the lower ‘whisker’ (the line sticking out of the bottom of the box), cor-

responds to the minimum value – about 10 deaths per 1000 live births.

• The bottom of the box is the 1st quartile value, Q1, with a value of about 45 deaths per 1000

live births. So for about 25 per cent of the live births, the neonatal mortality rate was less

than about 45 per 1000.
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Figure 6.4 These boxplots of neonatal mortality rates are taken from a study of the effect of participa-

tory intervention with women’s groups, on birth outcomes and maternal depression in India. They show

neonatal mortality rates in control areas and intervention areas, for each of the three years following

the start of the intervention. Source: Tripathy et al. (2010). Reproduced by permission of Elsevier

• The line across the inside of the box (it won’t always be across the middle of the box unless

the distribution is symmetrical), is the median, Q2, with a value of about 55 deaths per 1000

live births. So for about half (50 per cent) of the live births, the neonatal mortality rate was

less than 55 per 1000 and for half it was greater than about 55 per 1000.

• The top of the box is the third quartile Q3. So for about 25 per cent of the live births the

neonatal mortality rate was more than about 75 per 1000.

• The top end of the upper whisker is the ‘maximum’ neonatal rate – about 95 per 1000 live

births.

Exercise 6.6. Sketch the boxplot for the birthweight data shown in Figure 5.6 using the

values you calculated in Exercise 5.11. What can you glean from the boxplot about the

shape of the distribution of the birthweights?
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Standard deviation

The limitation of IQR as a summarymeasure of spread is that (like themedian) it doesn’t use all

of the information in the data, as it omits the top and bottom quarter of values. An alternative

approach gives uswhat is known as the standard deviation, or SD.The advantage of the standard

deviation is that, unlike the IQR, it uses all of the information in the data. But remember that it

can only be used withmetric data.The standard deviation can be thought of as ameasure of the

average distance of the data values from their collective mean. If the data are widely spread, the
average distance of the values from their mean will clearly be large. If the values are narrowly

spread, the average distance will be small.

To see how this works, let’s calculate, step by step, the standard deviation of the following five

(i.e. n= 5) diastolic blood pressure values (mmHg)1:

100 60 80 70 110

Step 1. Calculate the mean:

(100 + 60 + 80 + 70 + 110)
5

= 84mmHg

1This is a very tedious procedure. If you have an SD key on your calculator, use that. In practice, you would use

a computer!
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Step 2. Subtract this mean from each of the values, to give the difference values:

(100 − 84) = 16

(60 − 84) = −24

(80 − 84) = −4

(70 − 84) = −14

(110 − 84) = 26

Step 3. In theory, we can find the average distance of these five difference values from themean

of 84 by adding them and then dividing by five. Unfortunately, the sum is 0! and always

will be, whatever numbers we start with because the even and odd values always cancel

out. What to do?

Well, we can employ what appears to be a fiddle. If we square each difference value,

this will get rid of these pesky negative values (recall that a minus times a minus is a

plus). Then, we can find the average of these squared values and finally take the square

root. After all, we don’t want blood pressures in mmHg2.

So, by squaring the difference values, summing them (to get what is called the sum
of squares) and then dividing by 5, we get the average:

(162 + −242 + −42 + −142 + 262)
5

= (256 + 576 + 16 + 196 + 676)
5

= 1720

5
= 344

Step 4. So finally (you might think), take the square root of this value to get from mmHg2 to

mmHg. This is the standard deviation – sort of:

Standard deviation (sort of) = Square root of 344 = 18.5mmHg

So the above five values of diastolic blood pressure are on an average of 18.5 from

the mean of 84mmHg.

Well not quite.

Step 5. For rather technical reasons, which we do not need to go into, this final value (of 18.5

in this example) is always a little too small. We need to correct it by dividing the sum

of squares not by n= 5, but by (n− 1), that is, 5− 1 (in this example)= 4.

This gives:

1720

4
= 430

Square root of 430 = 20.7mmHg

So the standard deviation is 20.7mmHg.

Phew!!! Not something you will want to do by hand too often.

But the basic concept, that the standard deviation can be thought of as a measure of
the average distance of the data values from their collective mean, is worth remembering.



Trim size: 170mm x 244mm Bowers c06.tex V3 - 06/19/2014 7:48 A.M. Page 81

STANDARD DEVIATION 81

Exercise 6.7. In Figure 4.6, the authors tell us that the mean cord platelet count is

308× 109/l and the standard deviation is 69× 109/l (notice that the two measures have

the same units).2 Explain what this value for the standard deviation means.

An illustration of the use of themean and standard deviation as summarymeasures is shown

in Figures 5.1 and 5.2. For convenience, I have reproduced an abbreviated version of Figure 5.2

(labelled Figure 6.5). The footnote to the table tells us that the values shown are either mean

and SD or mean and range. It is not clear why the authors have used two different measures

of spread. So you can see that the average distance of the weight values is about 14.5 kg from

the sample mean of 70.4 kg. Similarly, the diastolic blood pressure values are, on average, about

9mmHg from the mean of 70mmHg.

Variable Breast fed

No of participants (men/women) 149 (67/82)
Age (years) 23 (20 to 28)
Height (cm) 170 (10)
Weight (kg) 70.4 (14.5)
Body mass index (kg/m2) 24.2 (4.1)
Length of breast feeding (months) 3.33 (0 to 18)
Resting arterial diameter (mm) 3.32 (0.59)
Distensibility coefficient (mm/Hg−1) 0.133 (0.07)
Cholesterol (mmol/l) 4.43 (0.99)
LDL cholesterol (mmol/l) 2.71 (0.88)
HDL cholesterol (mmol/l) 1.18 (0.25)
Systolic blood pressure (mm Hg) 128 (14)
Diastolic blood pressure (mm Hg) 70 (9)
. . . . .

Values are mean (SD or range) unless stated otherwise.

Mean age (23 years),
and range of ages
(20 to 28) years

Mean weight
(70.4 kg), and

standard deviation of
weight (14.5 kg).

Mean diastolic blood
pressure (70 mmHg),

and standard
deviation (9 mmHg).

Figure 6.5 An abbreviated version of Figure 5.2, showing the first 13 rows for the Breast Fed group

only. From a study of duration of breastfeeding and arterial distensibility leading to cardiovascular

disease. Source: Leeson et al. (2001). Reproduced by permission of BMJ Publishing Group Ltd

Exercise 6.8. Look at Figure 6.5. Relatively speaking, which is further, on average, from

their respective means: the LDL cholesterol values or the HDL cholesterol values? Hint:

one possible approach would be to divide each standard deviation by its mean.This gives

a measure known as the coefficient of variation. Try it and see what you think.

2109 means 1000 000 000



Trim size: 170mm x 244mm Bowers c06.tex V3 - 06/19/2014 7:48 A.M. Page 82

82 CH06 MEASURES OF SPREAD

So which measures of spread are appropriate when?

• With ordinal data, use either the range or the IQR.The standard deviation is not appropriate

because of the non-numeric nature of ordinal data.

• With metric data, use either the standard deviation, which uses all of the information in the

data, or the IQR. The latter if the distribution is skewed, and/or you have already selected

the median as your preferred measure of location.

• Do not mix-and-match measures – standard deviation goes with the mean and IQR with

the median.

Figure 6.6 may help you to choose an appropriate measure of spread.

Type of variable Summary measure of spread

Range Interquartile range Standard deviation

Nominal No No No

Ordinal Yes Yes No

Metric Yes Yes, if skewed Yes

Figure 6.6 Choosing an appropriate measure of spread

Standard deviation and the Normal distribution

If you are working with metric data that is distributed Normally, the standard deviation can be

used to explore the area properties of the Normal distribution. These area properties are illus-

trated in Figure 6.7 for the histogram of birthweight data for a random sample of 500 babies.3

A Normal curve is superimposed on this histogram using Minitab, which also calculates these

birthweights to have a mean of 3209 g and a standard deviation of 564.4 g.

The area properties are as follows:

• About 68 per cent of the birthweight values in the sample lie within one standard deviation

on either side of the mean.

In this example, this is from (3209 g− 564.4 g) to (3209 g+ 564.4 g), or from 2644.6 g to

3773.4 g.

• About 95 per cent of the birthweights will lie within two standard deviations on either side

of the mean.

3From the Born in Bradford study.
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Figure 6.7 A symmetric distribution of birthweight for 500 babies, showing the area properties of the

Normal distribution. From the Born in Bradford study

In this example, this is from (3209 g− 1128.8 g) to (3209 g+ 1128.8 g) or from 2080.2 g to

4337.8 g.

• About 99 per cent of the birthweights will lie within three standard deviations on either side

of the mean.

In this example, this is from (3209 g− 1693.2 g) to (3209 g+ 1693.2 g) or from 1515.8 g to

4902.2 g.

So, if you have some data that you know isNormally distributed and you also know the values

of the mean and the standard deviation, then you can make statements such as, ‘I know that 95

per cent of the values must lie between so-and-so and so-and-so.’

To illustrate the usefulness of the Normal area properties, look again at the histogram of the

cord platelet count for 4382 infants shown in Figure 4.6, which appears to be reasonablyNormal

and has amean of 308× 109/l, and a standard deviation of 69× 109/l. You can therefore say that

about two-thirds (67 per cent) of the 4382 infants, that is, 2936 infants, had a cord platelet count

between 308− 69 and 308+ 69, which is between 239 and 377× 109/l.
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Exercise 6.9. Assume that the weight among breastfed men in Figure 6.5 is Normally

distributed. If this is true, what percentage of men weigh: (a) less than about 41 kg? and

(b) more than about 114 kg?

Exercise 6.10. Figure 6.8 is from a study of the effectiveness of lisinopril as a pro-

phylactic for acute migraine, in which one group of patients was given lisinopril and a

second group a placebo. Outcomemeasures included ‘Hours with headache’, ‘Days with

headache’ and ‘Days with migraine’ (all three of which are metric continuous variables)

for which the mean and standard deviation (in brackets) for both groups are shown.

(a) Can any of these variables be Normally distributed? Explain your answer. (b) What

do you think about the use of the mean and standard deviation for the measures in the

bottom half of the table?

Lisinopril Placebo Mean % reduction (95% CI)

Primary efficacy parameter
Hours with headache 129 (125) 162 (142) 20 (5 to 36)

Days with headache 19.7 (14) 23.7 (11) 17 (5 to 30)

Days with migraine 14.5 (11) 18.5 (10) 21 (9 to 34)

Secondary efficacy parameter
Headache severity index 297 (325) 370 (310) 20 (3 to 37)

Triptan doses 15.7 (15) 20.2 (17) 22 (7 to 38)

Doses of analgesics 14.5 (23) 16.2 (20) 11 (–16 to 37)

Days with sick leave 2.30 (4.32) 2.09 (2.50) −10 (−64 to 37)
Bodily pain∗ 63.7 (29) 53.8 (23) −18 (−35 to −1)
General health∗ 73.6 (20) 74.1 (21) 1 (−6 to 7)
Vitality∗ 61.1 (24) 58.2 (21) −5 (−18 to 8)
Social functioning∗ 81.4 (25) 79.5 (23) −2 (−11 to 6)

∗From SF-36.

Figure 6.8 Output measures from a study of the effectiveness of lisinopril as a prophylactic for acute

migraine. Figures are means (SD). Source: Schrader et al. (2001). Reproduced by permission of BMJ

Publishing Group Ltd

Transforming data

Later in the book, you will meet some procedures that require the data to be Normally dis-

tributed. But what if it isn’t? Happily some non-Normal data can be transformed to make the

distribution more Normal (or at least more Normal than it was to start with). I think it will

be convenient to deal with this now, while we are on the subject of the Normal distribution,

although we won’t need it until we get to Part V. The most popular approach is to take the log
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Figure 6.9 The effect of applying a log10 transformation on the shape of the distribution of the weight

of 685 women in a diet and health study



Trim size: 170mm x 244mm Bowers c06.tex V3 - 06/19/2014 7:48 A.M. Page 86

86 CH06 MEASURES OF SPREAD

of the data (to base 10), first because it works more often than other procedures and second

because the back-transformation (i.e. anti-logging the results at the end of the analysis) can be

meaningfully interpreted.

Here are some comments on transformation by authors of three research papers:

The distribution of baseline ulcer area and baseline ulcer duration was highly skewed,

so we used the logarithm of baseline ulcer area and ulcer duration in the subsequent

analysis.

Watson et al. (2011)

Because the physical activity level was skewed, we present medians and interquar-

tile ranges, and did analysis after logarithmic transformation.

Van Nimwegen et al. (2013)

We used a square-root transformation of the outcome to improve normality…
Gebre et al. (2013)

Finally, as a comment on the use of different methods of location and spread according to

the type of variable and on the use of transformation, here is a quote from a paper on the

relationship between physical activity and fat mass in 12–14-year-old children:

Means and standard deviations were calculated for continuous variables that approx-

imated a normal distribution. Medians and interquartile ranges were calculated for

skewed variables (physical activity, fat mass). Log fat mass was used throughout sub-

sequent analyses, because of its skewed distribution. Although both physical activity

variables showed some skewness, these variables were not log transformed in order

to facilitate comparisons with our previously reported cross sectional analysis.

Riddoch et al.(2009)

As an example of transformation, Figure 6.9 shows histograms for the original and trans-

formed data on the weight (kg) of 685 women in a diet and health cohort study.4 The original

data is positively skewed, Figure 6.9a. If we transform the data by taking logs10, you can see

that the transformed data has a more Normal-ish shape, Figure 6.9b.

Incidentally, if you want to compare two distributions for whatever reason, the log transfor-

mation usually makes their spreads more equal, if they were not so to start with.This is quite a

useful property of transformation as we will see in Chapter 14.

In Part II, I discussed ways of looking at sample data – with tables, with charts, from its

shape, and with numeric summarymeasures. Collectively, these various procedures are known

as descriptive statistics. I have said nothing so far about how we might collect the data to which

we can apply the methods of descriptive statistics. I will deal with this in Chapter 8. In the next

chapter, we leave descriptive statistics to discuss a very important topic in health statistics – the

problem of confounding.

4This data was kindly supplied by Professor Janet Cade of Leeds University Medical School.
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7
Confounding – like the poor,
(nearly) always with us

Learning objectives

When you have finished this chapter you should be able to:

• Explain what confounding is.

• Summarise briefly the possible consequences of confounding.

• Outline how confounding might be detected.

• Describe possible ways of overcoming confounding, including restriction, matching,

randomisation, stratification, and adjustment methods.

Preamble

This is quite a short chapter but deals with a very important concept in health statistics.
Whenever you are investigating the possible relationship between two (or more) variables, you
will need to take into account the possible (more likely the probable) existence of confounding.
Confounding can be a major problem, which if not dealt with can lead you to drawmisleading
or plainly wrong conclusions.

Medical Statistics from Scratch: An Introduction for Health Professionals, Third Edition. David Bowers.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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What is confounding?

Let me give you a simple illustration of this concept. Suppose that you are studying the possi-

ble causes of myocardial infarctions in men. You notice that men with grey (or greying) hair

have a higher incidence of myocardial infarctions than men with non-grey hair. You might

conclude that having grey hair is the probable cause of myocardial infarctions. This idea is

illustrated in Figure 7.1. But you would have to be a half-wit to entertain this idea for more

than a millisecond!

Not a lot Quite a lot 

Less likely to suffer a
myocardial infarction

More likely to suffer a
myocardial infarction

Having grey hair

Figure 7.1 What is the exposure or risk factor for myocardial infarction? You might conclude that

having grey hair is a likely cause

It is true that on the whole, men experiencing myocardial infarctions will tend to have more

grey hair than men not having myocardial infarctions, but in your bones you feel that the

amount of grey hair (which is known as the exposure variable or the risk factor) is not likely

to be the critical risk factor. When you think about it, a much more likely candidate is age. In
this example, age is a confounding variable (usually just called a confounder) – it confuses or

confounds the relationship. We are being led up the garden path in our conclusions about the

role of grey hair in causing myocardial infarctions by the confounding effect of age. To be a

confounder, a variable:

• must be associated (causally or not) with the exposure of interest (e.g. grey hair).

• must be causally related to the outcome (myocardial infarction).

• must not be a part of the exposure–outcome causal pathway.

When we say that a variable is associated with another variable, we mean that both variables

tend to increase or decrease together. We are not saying that increases (or decreases) in one

variable CAUSE increases or decreases in the other variable directly. However, when we say a

variable is causally related to another variable, wemean that changes (increases or decreases) in

one variable do CAUSE changes in the other variable. (I will have a lot more to say on associa-

tion in Chapter 19 and causality in Chapter 21). In this example, we are saying that age and grey

hair are associated (they may be causally related but they don’t have to be related to satisfy the

above first requirement for confounding). Butwe are saying that increases in age cause increases
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in the incidence of myocardial infarctions. This satisfies the above second requirement for age

to be a confounder.

Finally, to satisfy the third requirement, there is unlikely to be a causal pathway linking having

grey hair (the exposure) to age and then to the outcome (myocardial infarctions), as having grey

hair is not the cause of ageing.

Therefore, for age to be a confounder, it has to be both:

• causally related to the outcome variable (myocardial infarctions) – which it is; as men get

older, they have a high incidence of myocardial infarctions.

• and associated with the exposure variable (grey hair) – which it is; as men get older, their

hair (generally) gets greyer.

So, age has a link with both of the other two variables. This idea is illustrated in Figure 7.2.

Age

Grey hair
Myocardial
infarction

The dotted single-headed arrow
indicates the spurious causal
relationship arising from the
confounding effect of age.

. . . whereas a single-
headed arrow indicates a
causal effect, shown by the
direction of the arrow.

The double-headed
arrow indicates an
association between
variables . . .

Figure 7.2 A more likely relationship. It is increasing age that increases the frequency of myocardial

infarction (and at the same time is associated with hair becoming grey). Age is the confounding variable

here – it is causing us to make an erroneous conclusion about the role of grey hair in myocardial

infarctions

As an example from practice, researchers noticed thatmothers who smokemore (while preg-

nant) have fewer Down syndrome babies than mothers who smoke less (or do not smoke at

all) (Chi-Ling et al. 1999). So at first glance, smoking less seems to be a risk factor for Down

syndrome. It would appear that if amother wants to reduce the risk of having a babywithDown

syndrome she should smoke a lot! See Figure 7.3.
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Smoking Down syndrome

The outcome
variable.

The exposure
variable.

Smoking seems to affect (in
this case decrease) the risk

of Down syndrome.

Figure 7.3 At first glance, the data seems to suggest that women who smoke while pregnant are less

likely to have a Down syndrome baby

What is happening, however, is that younger mothers have fewer Down syndrome babies but

smoke more, whereas older mothers have more Down syndrome babies but smoke less. Thus,

the apparent connection between smoking and Down syndrome babies is a mirage. It disap-

pears when we take age into account. So age is confusing the relationship between smoking

and Down syndrome, that is, age is a confounder. The linkages are shown in Figure 7.4.

Smoking Down syndrome

Age

Figure 7.4 The relationship shown in Figure 7.3 is spurious, caused by the confounding effects of

age. This is a more credible explanation, with age as a confounder

Notice (Figure 7.4) that age satisfies the dual relationship criteria. Age is related to both expo-
sure variables – smoking – and also has an association with having a Down syndrome baby.

In this example, the presence of the confounding variable (age) leads us to believe, wrongly,

that there is a direct causal relationship between smoking and Down syndrome.

In fact, there are two types of confounding: positive confounding, which can lead to the

effect of the exposure variable being inflated, and negative confounding, which can lead to the

effect of the exposure variable being under-estimated.

It is worth noting that age is commonly found to be a confounder, as is gender.Whenwe allow

for the effects of possible confounders, we are said to be adjusting for confounders. Results

which are based on unadjusted data are said to be unadjusted or crude results.

Exercise 7.1. Suppose that you believe that obesity (BMI> 30) is a likely risk factor for

myocardial infarction.1 However, you also believe that hypertension may confound this

1Body mass index, used to measure obesity, is equal to a person’s weight (kg) divided by their height squared

(m2). A BMI of between 20 and 25 is considered ‘normal’ and 25 and 30 indicates a degree of obesity. Higher

scores indicate greater levels of obesity.
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relationship. (a) What is the exposure variable here? (b) What is the outcome variable?

(c) Sketch a diagram (along the lines of Figure 7.4) to illustrate the links between the

three variables. (d) Explain how the confounding variable satisfies the three criteria for

a confounder.

Detecting confounding

Potential confounding variables may be identified from the research literature, or from your
own research experience or fromyour colleagues.Alternatively, a particular variablemight look
like an eminently plausible candidate. For example, if you were researching the causes of low
birthweight babies and you had good reasons to believe that smoking during pregnancywas the
prime causal risk factor, then youmight feel that potential confounders would probably include
the baby’s sex, maternal age, gestational age, parity, mother’s education level, socioeconomic
status, and maybe a few more. You would want to adjust for these variables at some point in
your study – probably at the data analysis stage.
To show that a variable is actually a confounder requires an evaluation of the difference

between the comparative risk of an outcome when the confounder is controlled for (adjusted
for) and when it is not. For example, if in your study of low birthweight, you compared the
proportion of low birthweight babies among women who smoked while pregnant with the
proportion among women who did not smoke, first not adjusting for say, socioeconomic sta-
tus, and then adjusting for socioeconomic status, then if the relative proportions are the same
in both cases (adjusting and not adjusting), then you can reasonably conclude that socioeco-
nomic status is not a confounder. We will meet up with this concept in Chapter 12 when we
discuss ratios.

If confounding is such a problem, what can we do about it?

There are a number of ways of dealing with the potential for confounding among the variables
(we can refer to it as controlling for confounding). Some methods we can pursue at the design
stage and some at the data analysis stage.

At the design stage, we can use:

• restriction

• matching

• randomisation

At the data analysis stage, we can use:

• stratification

• adjustment
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Wewill come across all of these methods later in the book; however, as a taster of restriction,

matching, and stratification, consider the following scenario. Suppose that you are investigat-

ing the causes of stillbirths. You study several thousand births and notice that mothers who

were obese (BMI> 30) had a higher proportion of stillbirths than women who were not obese.

You might conclude therefore that obesity in the mother is a risk factor for stillbirth. But when

you look more closely at the data you also notice that the proportion of women who smoked

while pregnant in the stillbirth group was twice as high as that among women not having a

stillbirth. Maybe smoking is a confounder? Now what?

Using restriction

First, we could exclude from our study all women who smoked. This method of dealing with

confounding is known as restriction. It would mean that if we do find a relationship between

BMI and stillbirth, it can have nothing to dowith smoking, becausewe haven’t got any smokers!

The limitation of this approach is that because a portion of the sample is excluded, it may be

difficult to generalise the results of the study to a wider population.

Using matching

Second, we could deliberately select our sample so that the proportion of smokers among the

stillbirth group was the same as the proportion of smokers among the non-stillbirth mothers.

This approach to confounding is calledmatching.This wouldmean that if we find a relationship

between BMI and stillbirth, it can have nothing to do with smoking, because the proportion

of smokers in each group is the same. This method is largely confined to case–control studies,

which we will deal with in the next chapter.

We will encounter the idea of matching a number of times in the following chapters but now

seems to be a convenient time to say a fewmorewords about the idea beforewe end this chapter.

Matching is a process of making a number of selected features in two separate groups similar.

There are two types of matching.

Frequency matching. In this type of matching, samples are selected so that the proportions of
relevant characteristics in two groups are broadly similar. For example, the proportion of

males, smokers, those aged over 50, an ethnic minority, and so on.

One-to-one matching. The first group is selected using an appropriate sampling procedure

(we will discuss samplingmethods in Chapter 10). A second group is selected so that each

individual in the second group is of the same age, gender, degree of illness, occupation,

and so on as that of an individual in the first group.

Using stratification

Third, suppose that we examine the data even more closely and notice that the proportion

of stillborn babies is lower in social classes I, II and III (non-manual) and higher in social
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classes III (manual), IV and V. Maybe social class is a confounder? We could deal with this

possibility by dividing our sample into two, namely, the higher social classes: groups I, II and III

(non-manual), and the lower social classes: groups III, IV andV.We now consider the relation-

ship between obesity and stillbirths again but this time for each social class group separately.

If the relative proportions of stillbirths are different for the two social class groups, then this

implies that social class is a confounding variable. This method of dealing with confounding

is called stratification. It involves dividing the sample into strata or groups on the basis of the

levels of some criterion of interest.

A problem with this method is that although the original sample may be plenty big enough,

the more the sample is stratified, the smaller each stratum becomes, and it may thus become

less easy to detect any significant differences in outcome in these smaller strata.

Using adjustment

Adjustment, one of the most widely used methods of dealing with confounding, is applied at

the analysis stage. We will discuss it in the context of modelling using regression, the methods

described in Chapters 21 and 22. However, potential confounding variablesmust be identified
at the beginning of the study and the relevant data collected.

Using randomisation

This is perhaps the ideal way of dealing with confounders as it embraces both known and

unknown confounding variables. We will discuss randomisation in Chapter 9 but briefly it

involves the randomallocation of participants in the study into separate groups. For example, in

an investigation of the efficacy of a new drug for controlling nausea associated with chemother-

apy, participants would be randomly assigned to either the treatment group (the new drug) or

the placebo group.

In the next chapter, we will discuss how to design a study and we will meet confounding

again.

Exercise 7.2. Suppose that you are investigating the possible link between sudden

infant death syndrome (SID) and the sleeping arrangement for the baby: in the same

bed as that of the parents, in a separate bed in the same room, and in a separate bed in a

different room. You think that smoking by one or both parents and social class may also

be contributory factors. Explain how you would deal with the possible confounding

influences of these two variables at the design stage.

Exercise 7.3. (a) List the possible ways of dealingwith confounding. (b)Which of these

methods can be applied at the design stage? (c)What are the drawbacks of the restriction

and stratification methods? (d) What do we need to do at the beginning of the study if

we are going to control for confounding by using adjustment?
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8
Research design – Part I:
Observational study designs

‘I did it my way’ and now I wish I hadn’t!
Finding an appropriate study design

Learning objectives

When you have finished this chapter, you should be able to:

• Explain the difference between observational and experimental studies.

• Briefly describe the main features of case reports and case series.

• Briefly describe the main features of cross-sectional, cohort, and case–control

studies.

• Outline the advantages and limitations of each type of study design.

• Explain how confounding might be dealt with in observational study designs.

Medical Statistics from Scratch: An Introduction for Health Professionals, Third Edition. David Bowers.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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Preamble

We have now dealt with (but definitely not forgotten!) descriptive statistics – the various

ways in which we can uncover the principal characteristics of our sample data. We have also

examined the idea of confounding – a very important concept. We can now sit back for a few

moments, have an espresso, enjoy the sunshine and think about what we need to do next.

Remember this is all about answering a question, such as ‘Is drug A better than drug B in

the treatment of hypertension?’, ‘What are the risk factors for stillbirth?’, ‘What is the best

treatment for sore throat?’

We are going to use our sample data to help us answer our questions. But how should we

go about doing this? What is the best way to structure our analysis? There may be a number

of alternative methods to choose from.These different methods are called study designs. (Note
that I am going to assume, for now, that we have already selected an appropriate sample of

individuals. In Chapter 10, we discuss the issue of sample selection in detail).

The research question itself will, to some extent, indicate which study designwe should use to

answer it. Below are a few typical research questions, alongwith some likelymethods (designs).

We will deal with each approach in detail shortly.

Question: ‘What proportion of women smoked during pregnancy?’

Method: Interview some women who have recently given birth and ask themwhether they

smoked while pregnant. This is a cross-sectional study design.
Question: ‘Are the babies of womenwho smoked during pregnancymore likely to be stillborn

than the babies of women who did not smoke?’

Method: Measure the proportion of stillbirths among the babies of women who smoked

while pregnant and the proportion of stillbirths among the babies of women

who did not smoke. Compare these proportions. This could either be a

case–control study – we would choose a group of women who had smoked

while pregnant – these would be the cases and a group of women who had not

smoked – these would form the control or the comparison group. Then, we

would determine the proportion of stillbirths in each group and compare. Or it

could be a cohort study. We would select a group of women of child-bearing age

and follow them up for a number of years. After they give birth, we can ask all

mothers (those with both live births and stillbirths) whether they smoked while

pregnant.

Question: ‘Is the newdrugAmore efficient than an existing drug B for treating hypertension?’

Method: Select a group of individuals with hypertension. Allocate them (randomly) to

receive either drug A or drug B. Measure the average blood pressure of the

individuals in each group. Give the individuals in each group the assigned drug

for some suitable interval of time. Measure the average blood pressure of the

individuals in each group at the end of the study. Compare changes in average

blood pressures. This is a randomised controlled trial.

The above is just an outline of the possible alternatives when we choose a study design. Now,

I want to discuss each type of design in more detail.
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Hey ho! Hey ho! It’s off to work we go

Study design embraces issues such as:

• What is the research question?

• Which variables do we need to measure – what data do we need to collect to answer the

research question?

• Which is our main outcome variable (the variable we are most interested in)?

• Are we going to make some form of clinical intervention or simply observe (and measure)?

• Do we need a comparison group?

• Atwhat stage are we going to ask questions or takemeasurements? Before, during, after, etc.?

• How long will the study take? What will it cost? And so on.

Study design is a systematic way of dealing with these issues and offers a good-practice guide,

which is applicable in almost all research situations.

Types of study

Study design is divided into two main types:

Observational studies and experimental studies.
Other terms that we may come across include prospective studies, retrospective studies, and

longitudinal studies. I will explain these other terms along the way. Figure 8.1 illustrates the

study design portfolio.

Broadly speaking, an observational study is one in which researchers actively observe the

participants involved, perhaps asking questions, or taking some measurements, or looking at

clinical records, but they do not control, change or affect in any way, the selection, treatment

or care of the participants. An experimental study, on the other hand, does involve some sort

of active intervention with the participants: selection, treatment, aftercare, and so on. In this

chapter, I discuss observational study design. In the next chapter, I will discuss experimental

study design.

Exercise 8.1. What is the fundamental difference between an observational study and

an experimental study?
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Study design

Observational Experimental

Cross-sectional study

Case seriesCase reports

Cohort study Case-control study

Randomised controlled trial

Ecological study

Figure 8.1 The portfolio of study designs. Note the broad division between observational study designs

and experimental study designs. I have added case reports and case series to this array, although they

are not really study designs in the same way as the others

Observational studies

There are three principal types of observational study, to which I have added (below) the case
report and the case series. Neither of these involve ‘design’ as such, and the participants are not
chosen by some sampling method. The participants arise ‘out of the blue’ as it were – they are
there because their clinical circumstance was interesting enough to catch the eye of a health
professional for some reason. Nonetheless, they are important enough to include in our dis-
cussion. The five approaches are as follows:

• case reports

• case series

• cross-sectional studies

• cohort studies

• case–control studies

Case reports

A case report is the simplest of all observational studies. It does not arise as a result of a research
question, but may well suggest one. It will usually consist of an account of some clinical situ-
ation that the author thinks might interest journal readers, perhaps because of the unusual
circumstances or unexpected outcome.
For example, a series of case reports led to the possibility that the drug orlistat (used to treat

obesity) might be associated with an increased risk of serious liver damage. The US Food and
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Drug Administration first issued a warning about a possible link between orlistat and liver
injury in 2009, based on an analysis of 32 case reports received between 1999 and 2008.
The analysis of individual case reports often cannot provide reliable conclusions about causal-

ity, and a range of population-based studies are usually needed to help inform decisions about,
in this case, the likely risks and benefits of orlistat. A meta-analysis of clinical trial data involv-
ing around 10 000 patients found no evidence that orlistat was associated with increases in
selected variables of liver function and concluded that there was no strong evidence to deter-
mine a causal association.

Case series studies

A health professional may see a series of patients (cases) with similar but unusual symptoms
or outcomes, find something interesting and write it up as a study. This is a case series. Once
again, case series do not always arise as a result of a specific research question but may suggest
such a question.
For example, the series of case reports (see previous section) which suggested the possibility

that the drug orlistat might be a risk factor for serious liver injury, led researchers to investigate
this possibility by means of a case series study, whose objective was to measure the association
between orlistat and acute liver injury. The research was carried out using 94 695 patients
receiving orlistat and registered in the UK Clinical Practice Research Datalink and linked
with the Hospital Episode Statistics data, between 1999 and 2011. Incidentally, the analysis
showed no evidence of an increased risk of liver injury during treatment with orlistat. Douglas
et al. (2013).
In the sameway, a new variantCJDwas also first suspected fromanunusual series of deaths of

young people in the UK from an apparent dementia-like illness, a disease normally associated
with the elderly.
Case series studies often point to a need for further investigations as was the case in each one

of the quoted examples above.

Cross-sectional studies

While, in case series, ‘participants’ arise out of the blue as it were, a cross-sectional study aims to
take a ‘snapshot’ of some situation at some particular point in time.1 Researchers deliberately
decide to collect an appropriate sample of individuals whom they can then study. Typically,
data on one or more variables is collected only once from each participant. (We’ll see how they
might do this in the next chapter). These individuals will often be those who are already in
touch with the health service in some way, or they may be drawn from the general population,
or from case registers or patient records. There are two broad types of cross-sectional study,
descriptive and analytic.

Descriptive cross-sectional studies

In the descriptive cross-sectional study, research will often focus on determining a prevalence
or incidence of some condition. For example, the proportion of schoolchildren with iron

1In practice, this ‘point’ in time may in fact be a short-ish period of time.
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deficiency, or the number of new shingles cases in those aged 70 or more. Other recent
cross-sectional descriptive studies have had the following objectives:

• are children younger than 18 years still using sunbeds after the ban introduced in England
in April 2011.

• to determine the place of death of individuals with dementia (hospital, home, etc.).

• to investigate the changes in energy content in fast food restaurants following the introduc-
tion of calorie labelling.

• to measure patient satisfaction, safety, and quality of hospital care in 1105 hospitals in 12
European countries, and in the US, by measuring the views of 131 318 patients and 61 168
nurses.

It can be noticed from the above examples that no attempt is made to examine the possible
associations between variables by making comparisons between groups.

Confounding in descriptive cross-sectional studies

Confounding problems do not often arise in descriptive cross-sectional studies, particularly
those which aim to determine a prevalence. However, where more than one variable is
measured, there will be a potential for confounding. For example, in the patient satisfaction
study described earlier, the authors reported adjusting for several possible confounding
variables – particularly the composition of the nurse workforce: age, sex, employment status
(full-time or part-time) and speciality; and similar adjustments were made for differences in
the structural characteristics of hospitals. These adjustments were made at the analysis stage
for which the authors used regression analysis (which you will meet in Chapters 21 and 22).
Adjustment at the analysis stage with the use of regression models is common.

Exercise 8.2. Give two examples of the possible use of the descriptive cross-sectional

design in a clinical setting.

Analytic cross-sectional studies

The analytic cross-sectional study design will attempt to address more complex situations than
the descriptive cross-sectional design discussed earlier. Potential linkages between variables
will be investigated and comparisons made between two or more variables among groups of
individuals. Recent cross-sectional analytic studies have had the following objectives:

• To examine, in new refugees, associations betweenmental health outcomes and social deter-
minants, including among the latter the ability to understand English, frequency of con-
tact with relatives, satisfaction with accommodation, employment, moneymanagement and
so on.
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• To establish the impact of age and sex on primary preventive treatment for cardiovascu-
lar disease in primary care. Variables measured included patient demographics (age, sex,
ethnicity), cardiovascular disease risk factors (blood pressure, cholesterol, smoking) and
prescriptions for drugs to lower blood pressure and cholesterol concentration.

• To determine the trend in the association between socioeconomic status and sex, and
median age of death from cystic fibrosis, over the past 50 years. Data were collected from
national statistics sources each year from 1959 to 2000.

Note that in the last example, the cross-sectional analysis is carried out several
times – actually each year between 1959 and 2008. There is therefore a considerable
amount of extra work required when compared with the conventional one-off cross-sectional
analysis. When the cross-sectional analysis involves taking a number of measurements over
some period of time, it may be called a cross-sectional longitudinal analysis.
It is important to note that in cross-sectional studies, even though we might determine that

there is an association between variables, we cannot determine the direction of any potential
causality. Put more simply, we cannot say which variable is the cause and which the effect. In
other words, if we were doing a cross-sectional analysis involving age, sex, obesity and diabetes
and we find an association between diabetes and obesity, we cannot say whether obesity leads
to diabetes or diabetes leads to obesity. The reason for this shortcoming of the cross-sectional
design is thatmeasurements are taken (e.g. on obesity and diabetes) at the same time. To be able
to identify the direction of any causal effect, we need to refer to the study designs discussed in
the following sections.
To illustrate the idea of analytic cross-sectional study in more detail, the following is an

extract from a study carried out in 1993 on 2542 rural Chinese participants to determine
the relationship between body mass index and cardiovascular disease (explained in the 1st
paragraph below). The population of this region of China was about 6 million, and the 2542
individuals included in the sample were selected using a two-stage sampling process, as
explained in the 2nd paragraph. Each participant was then interviewed and the necessary
measurements were taken (3rd paragraph).

A total of 2542 participants aged 20–70 years from a rural area of Anqing, China,

participated in a cross-sectional survey, and 1610 provided blood samples in 1993.

Mean BMI (kg/m2) was 20.7 for men and 20.9 for women…
…These participants were selected from 20 townships in four counties based on

a two-stage sampling approach. The sampling unit is a village in the first stage and a

nuclear family in the second stage, based on the following criteria: 1) both parents are

alive; and 2) there are at least two children in the family. We limited the analysis to

2542 participants aged 20 years or older from 776 families…
…Trained interviewers administered questionnaires to gather information

on each participant’s date of birth, occupation, education level, current cigarette

smoking, and alcohol use… measurements, including height and weight, were

taken using standard protocols, with participants not wearing shoes or outer-wear.

BMI was calculated as weight (kg)/height (m2). Blood pressure measurements were

obtained by trained nurses after participants had been seated for 10 minutes by using

a mercury manometer and appropriately sized cuffs, according to standard protocols.

Hu et al. (2000)



Trim size: 170mm x 244mm Bowers c08.tex V2 - 06/06/2014 12:46 A.M. Page 106

106 CH08 RESEARCH DESIGN – PART I: OBSERVATIONAL STUDY DESIGNS

Note that there is no intervention by the researchers into any aspect of the participants’ care
or treatment – the observers only take measurements, ask some questions, or study records.
The results from the above study showed that participants in the sample with higher bodymass
index values were also likely to have higher blood pressures.

Confounding in analytic cross-sectional studies

There is a greater possibility for confounding in analytic cross-sectional models than in simple
descriptive designs. For example, in the BMI–cardiovascular disease study described earlier,
the researchers controlled for the following possible confounders: age, sex, education levels,
occupation, current smoking, and alcohol use. Once again, adjustment for the confounders
was made at the analysis stage, for which the authors used regression analysis (see Chapters 21
and 22). As explained earlier, adjustment for confounders at the analysis stage, using regression
models, is common.
Incidentally, after controlling for the confounders, the authors of the paper reported that:

We observed strong positive associations between body mass and blood pressure and

hypertension in this very lean rural Chinese population. We also observed an inverse

association of BMI with HDL cholesterol levels and direct associations with total

cholesterol/HDL cholesterol ratio, fasting glucose, and triglyceride levels.

To sum up, cross-sectional studies:

• take only onemeasurement fromone ormore variables fromeach participant at onemoment
of time

• can be used to investigate a link between two or more variables but not the direction of any
causal relationship. The Anqing study does not reveal whether a higher body mass index
leads to higher blood pressure (e.g. more strain on the heart) or whether higher blood pres-
sure lead to higher bodymass index (maybe higher blood pressure increases appetite and/or
reduces the inclination to exercise), it simply establishes some sort of association

• are not particularly helpful if the condition being investigated is rare. If, for example, only
0.1 per cent of a population has some particular illness, then a very large sample would be
needed to provide any reliable results. Too small a sample might lead you to conclude that
nobody in the population had the disease!

Cross-sectional studies that aim to uncover attitudes, opinions or behaviours, are often
referred to as surveys. For example, the views of clinical staff towards having patients’ relatives
in Emergency Department trauma rooms.

Exercise 8.3. (a) Name two of the principal shortcomings of the analytic cross-

sectional design. (b) Give two examples of the possible use of analytic cross-sectional

design in a clinical setting.
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From here to eternity – cohort studies

The main objective of a cohort study is to identify the risk factors (exposures) that lead to a
particular outcome; for example, smoking and lung cancer, or obesity and stillbirth, or calcium
intake and cardiovascular mortality, and so on.The principal structure of a cohort study is that
a group of individuals, free from disease, is selected at random from:

• the general population, for example, all women residing in Manchester

• a particular population, for example, all call-centre workers

• a clinical setting, for example, those attending a headache clinic

Then:

• At the start of the study, those participants who are exposed to some suspected risk fac-
tors (say high levels of calcium intake) are identified (as are, of course, those who are not
exposed).Thewhole group is followed up forward over a period of time and the participants
monitored. Occurrences of the outcome under consideration (say cardiovascular mortality)
are recorded.

• At the end of the study, a comparison is made between groups exposed and not exposed
to the risk factor in terms of the relative number of outcomes of interest, for example, the
proportion of cardiovascular deaths in each group.

• A reasoned conclusion is drawn about the relationship between the outcome of interest and
the exposure to the suspected risk factor.

The cohort study (which may also be referred to as a follow-up or longitudinal study) can be
either:

• prospective – participants are followed up forward from the present

• or retrospective – participants are followed up forward from some date in the past, some-
times to the present, sometimes for some shorter period of time. Retrospective cohort studies
will usually make use of historical sources – medical records or registry data

The design of the cohort study means that we can say something about the direction of any
possible relationship. This is because the exposure (in healthy individuals) comes before the
outcome (the occurrence of the disease). So for example, healthy individuals regularly take
calcium supplements over a period of time and, eventually, somewill experience cardiovascular
mortality. Obviously, the cardiovascularmortality can’t be causing the high calcium intake. But
it could be the other way round.
An example of a (well-known) prospective cohort study is that conducted by Doll and

Hill (1956) who were able to establish a possible connection between mortality and cigarette
smoking. They recruited about 60 per cent of the doctors in the UK, determined their age
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and smoking status (among other things), and then followed them up over the ensuing years,
recording deaths as they arose. Very quickly the data began to show significantly higher
mortality among doctors who smoked.
An example of a retrospective cohort study – an investigation into the relationship between

weight during infancy and the prevalence of coronary heart disease (CHD) in adult life – used
a sample of 290 men born between 1911 and 1930 and residing in Hertfordshire, whose birth-
weights and weights at one year were on record. In 1994, various measurements were made on
the 290 men, including the presence or absence of CHD. So ‘forward’ here means from each
birth year between 1911 and 1930 up to 1994.
The researchers found that 42 men had CHD, a prevalence of 14 per cent, (42/290)× 100.

Weight at birthwas not influential on adult CHD.However, menwhoweighed 18 lbs (8.2 kg) or
less, at one year, had almost twice the risk of CHDas that ofmenwhoweighedmore than 18 lbs.
This, of course, is only the sample evidence. Whether this finding applies to the population of
all men born in Hertfordshire during this period, or today, or indeed in the UK, depends on
how representative this sample is of either of these populations.
Figure 8.2 shows this cohort study expressed as a contingency table (see Chapter 2). The

participants are grouped according to their exposure or non-exposure to the risk factor (in this
case weighing 18 lbs or less at one year is taken to be the risk factor), and these groups form the
columns of the table.The rows identify the presence or otherwise of the outcome, CHD. Clearly,
this design does suggest (but certainly does not prove) a cause and an effect – low weight at
one year seems to lead to CHD in adult life.

Exercise 8.4. Figure 8.3 is taken from a prospective cohort study of risk factors for

stillbirth. The figure shows the data for stillbirths among smokers (including passive

smokers) and non-smokers. (a) What does ‘prospective’ mean in this context? (b) What

is the risk factor here? (c) What do the results seem to indicate about a possible relation-

ship between the two variables? In Chapters 21 and 22, you will see how you can answer

this question more definitely.

Exercise 8.5. Figure 8.4 is taken from a retrospective cohort study (1990–2005) to

examine the effect of systolic and diastolic blood pressure achieved in the first year of

treatment, on all-cause mortality in patients newly diagnosed with type 2 diabetes, with

and without established cardiovascular disease. (a) What does ‘retrospective’ mean in

this context? (b) What is the risk factor here? (c) What do the results seem to indicate

about a possible relationship between the two variables?

Cohort studies have the following favourable features:

• Several outcomes (diseases) can be studied for exposure to the same risk factor.

• The time-order is clear so a relationship between exposure and outcome can be established
(i.e. if one exists).

• The design suits itself to rare exposures.

• Less potential for bias compared to case–control studies (see below).
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Group by exposure to
risk factor – weighed ≤

18 lbs at 1 year

Yes No Totals

Has CHD Yes 4 38 42
No 11 237 248
Totals 15 275 290

The exposure comes
first, followed later . . .

. . . by the
outcome.

Note that in a cohort study
participants are grouped

according to their exposure or
non-exposure to a risk factor.

Figure 8.2 The cohort study of weight at one year and its effect on the presence of CHD in adult life,

expressed in the form of a contingency table. Notice that in a cohort study, the participants are selected

according to whether they have been exposed to the supposed risk factor. Data from Fall (1995)

Smoker or passive smoker?

Yes

(n= 32 864)

No

(n= 52 639)

Stillbirth? Yes 167 166

No 32 697 52 473

Figure 8.3 The number of stillbirths among a cohort of mothers who smoked (or were passive smokers),

taken from a prospective cohort study. Data from Gardosi (2013)

Died in

study period

(1990–2005)?

Patient had cardiovascular disease at baseline?

Yes

(n= 12379)

No

(n= 113 713)

Yes 3535 21960

No 8844 91753

Figure 8.4 The number of deaths among patients newly diagnosed with type 2 diabetes, with and

without cardiovascular disease. From a retrospective cohort study (from 1990 to 2005). Data from Vamos

et al. (2012)

But cohort studies suffer shortcomings, for example:

• Selection of appropriate participants may cause difficulties. If participants are chosen using

a convenience sample, for example, attendees at a clinic, then the outcomes for these indi-

viduals may be different from those in the general population.
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• If the condition is rare in the population, that is, if it has a low prevalence, it may require
a very large cohort to capture enough cases to make the exercise worthwhile. This makes
cohort studies liable to be expensive.

• The participants will have to be followed up for a long time, possibly many years, before any
worthwhile results are obtained.This can be expensive as well as frustrating and not good if
a quick answer is needed.

• The long time period allows for considerable losses as participants drop out for a variety of
reasons – they move away, they die from other non-related causes and so on. To add to the
problem, the drop-out rate may differ between the exposed and non-exposed groups. This
drop-out problem can lead to biased results and is the principal drawback of cohort studies.

• Over a long period, a significant proportion of the participantsmay change their habits – for
example, quit smoking or take up regular exercise. However, this problem can be monitored
with frequent checks of the state of the cohort.

• The possibility for confounding (is discussed in the following a few paragraphs).

Finally, note again that the selection of the groups in the cohort design is based on whether
individuals have or have not been exposed to the risk factor; for example, weighing 18 lbs or less
at one year, smoking while pregnant, or whatever.

Confounding in the cohort study design

Consider the following illustration of confounding in cohort studies. Researchers investigating
the possible link between depressant medication (the exposure variable) and several adverse
outcomes in a cohort of older people with depression, used 60 746 patients from a primary
care research database. The authors of the study recognised the need to adjust for possible
confounding variables (and how!). I have slightly abbreviated their comments:

Confounding variables

The potential confounding variables included in the analysis were age at study entry

date; sex (male, female); year of diagnosis of depression; previous recorded diagnosis

of depression before age 65; severity of index diagnosis of depression (categorised as

mild, moderate, or severe); deprivation, based on Townsend deprivation score for the

patient’s postcode, categorised into fifths; smoking status (non-smoker, ex-smoker,

current smoker); comorbidities at baseline (coronary heart disease, diabetes,

hypertension, stroke/transient ischaemic attack, cancer, dementia, epilepsy/seizures,

Parkinson’s disease, hypothyroidism, obsessive-compulsive disorder; use of other

drugs at baseline (statins, non-steroidal anti-inflammatory drugs, antipsychotics,

lithium, aspirin, antihypertensive drugs, anticonvulsants, hypnotics/anxiolytics); and

previous falls before baseline (for the analysis of fracture).

Coupland (2011)
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The authors concluded:

This observational study found significant associations between use of antidepres-

sant drugs and several severe adverse outcomes in people aged 65 and older with

depression.

Once again, the adjustment for confounding was made at the analysis stage using regression
models (Chapters 21 and 22).

Back to the future – case–control studies

Anumber of limitations of the cohort design are addressed by the case–controldesign, although
it is itself far from perfect, as you will see. In a cohort study, a group of participants is followed
up to see if they develop an outcome (a condition) of interest. In contrast, in a case–control
study, the groups are selected on the basis of having or not having the outcome of interest.
The objective is the same in both types of study – can the outcome of interest be related to the
candidate risk factor? The structure of a case–control study is as follows:

• Two groups of participants are selected. One group (called the cases) will have the condition
of interest (e.g. depression or hypertension), the other will not have (these are the controls).

• The controls are selected to be as similar as possible (e.g. age, gender, occupation, stage of
illness, etc.).

• The past exposure of individuals in both groups to the suspected risk factor is then ascer-
tained. This may be by personal interview, from existing records or from physical measure-
ments and laboratory tests. Because the case–control design deals with exposure in the past,
case–control studies are sometimes referred to as retrospective studies.

• A reasoned conclusion is then drawn about the relationship between the outcome in ques-
tion and exposure to the suspected risk factor.
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Lung cancer?

Yes (cases)
(n = 1811)

No (controls)
(n = 1436)

Women 303 217

Men 1508 1219

The risk factor in this
example is being a women.

Notice that, in contrast to the cohort study,
the groups in a case-control study are

chosen on the basis of whether or not they
have the outcome (lung cancer here).

Figure 8.5 Table from a case–control study of lung cancer and gender. This table refers to former

and current smokers (and does not include those who had never smoked). Data from De Matteis et al.

(2013)

The general structure of the case–control design is shown in Figure 8.5, taken from an inves-
tigation of whether female smokers are more likely to contract lung cancer than male smokers.
Notice that, in contrast to the cohort study (where groups are chosen on the basis of exposure
to a risk factor), in a case–control study the groups are chosen on the basis of whether they
have the output of interest or not (in this example, lung cancer), and are or have been exposed
to the risk factor (being a woman in this example, so fairly obvious!). Commenting on their
selection of participants, the authors reported that:

The EAGLE Study2 included 2,100 incident lung cancer cases (448 women and 1,652

men) and 2,120 population controls (500 women and 1,620 men). The subjects were

enrolled in April 2002–June 2005 in 216municipalities (including the cities of Milan,

Monza, Brescia, Pavia, and Varese) in Lombardy, the most developed and populated

(over 9million inhabitants) region of Italy. Subjects were 35–79 years of age at diagno-

sis (cases) or at sampling/enrollment (controls). Response rates (participants/eligible

subjects) were 86.6% (cases) and 72.4% (controls).

Cases were personswith newly diagnosed primary cancer of the trachea, bronchus,

or lung, of any stage and morphology, verified by means of tissue pathology (67.0%),

cytology (28.0%), or review of clinical records (5.0%). They were recruited in 13 hos-

pitals which cover over 80% of the lung cancer cases from the study area. Controls

were randomly sampled from population databases of the area, frequency-matched to

cases by residence (5 areas), sex, and age (5-year categories), and contacted through

family physicians.

2The Eagle study is a population-based case–control study, the Environment and Genetics in Lung Cancer

Etiology (EAGLE) Study (Lombardy, Italy, 2002–2005).



Trim size: 170mm x 244mm Bowers c08.tex V2 - 06/06/2014 12:46 A.M. Page 113

BACK TO THE FUTURE – CASE–CONTROL STUDIES 113

After several additional modifications to their analysis (e.g. including those who had never

smoked, adjusting for depth of inhalation, and so on), the authors conclude:

In conclusion, our findings do not support the controversial hypothesis that women

have a higher relative risk of lung cancer than men from the same amount of tobacco

exposure. Thus, as far as lung cancer is concerned, equally vigorous health policy

interventions should continue to focus on eliminating smoking in both sexes.

Confounding in the case–control study design

Matching controls with cases is an inherent characteristic of case–control studies. This means

that any variables that are matched between the two groups are controlled for, that is, cannot

be confounders. Typically, age and gender will usually feature large in the matching process.

Researchers may well add other variables to these two when they are matching cases and

controls if they feel they will be significant confounders. In the lung cancer study shown

in Figure 8.5, we have seen that controls were frequency-matched to cases by residence

locality, sex and age (see the text above the figure). Further adjusting for confounders

(education, passive smoking, and degree of nicotine dependence) was undertaken at the

analysis stage by means of regression methods (Chapters 21 and 22, again!). Despite this the

authors added:

Generally speaking it becomes increasingly difficult to find matching controls for the

cases the greater the number of matching variables. As a consequence, in practice

cases and controls are not usually matched on more than three variables.

Bear inmind that variables onwhich the participants arematched cannot be used to shed any

light on the relationship between outcome and risk. For example, if we are interested in coffee

as a possible risk factor for people with pancreatic cancer (the cases), we should certainly not

match cases with controls so that both groups drink a lot of coffee.
It was the outcome from a case–control study by Doll and Hill that led them to conduct the

later cohort study described earlier. Before I discuss the case–control design in detail, there are

a couple of important ideas to be dealt with first.

Exercise 8.6. Figure 8.6 is taken from a case–control study of the role of caffeinated

stimulants in the risk of crashes by long-distance lorry drivers in New South Wales,

Australia (numbers and percentages). (a) How are the groups chosen? (b) What is the

risk factor? (c) What variables would you choose to match cases and controls? (d) Do

you think the data suggests any connection between the use of caffeinated stimulants

and the risk of crashing? (In Chapter 21, you will see how you can answer this question

more definitely).



Trim size: 170mm x 244mm Bowers c08.tex V2 - 06/06/2014 12:46 A.M. Page 114

114 CH08 RESEARCH DESIGN – PART I: OBSERVATIONAL STUDY DESIGNS

Involved in crash

Yes

Cases (n= 530)

No

Controls (n= 517)

Uses caffeinated stimulant:

Yes 162 (30.6) 290 (56.1)

No 368 (69.4) 227 (43.9)

Figure 8.6 Structure of a case–control study. Associations between use of stimulant substances and

crashes in long-distance commercial vehicle drivers who were recently involved in crash (cases) and

control drivers who had not had crashed in previous 12 months. Figures are numbers (percentage) of

participants. Data from Sharwood et al. (2013)

Another example of a case–control study

Figure 8.7 is from a frequency-matched case–control study to determine the possible connec-

tion between lifelong exercise and stroke. The researchers selected 125 cases with stroke and

198 controls, broadly matched by age and sex. Notice that the numbers of cases and controls

need not be the same (and usually are not). All participants (or their relatives if necessary) were

interviewed and asked about their history of regular vigorous exercise at various times in the

past. Figure 8.7 shows the results for those participants who had and had not taken exercise

between the ages of 15 and 25.

Cases (stroke)

(n= 125)

Controls (healthy)

(n= 198)

Exercise undertaken Yes 55 130

when aged 15–25 No 70 68

Figure 8.7 Outcome from an exercise and stroke case–control study for those participants who had

and who had not exercised between the ages of 15 and 25. Data from Shinton and Sagar (1993)

From these results, you can calculate (you will see how later) that among those who had had

a stroke, the chance that they had exercised in their youth was only about half the chance that

somebody without a stroke had exercised.

I should mention briefly a hybrid design, which combines elements of both cohort design

and case–control design. This is the nested case–control design. I can best illustrate this with

an example. Suppose we have a prospective cohort study to investigate the possible relationship

between smoking and emphysema. When an individual develops emphysema, they become

a ‘case’. For each of these cases, we select one or more individuals who have not developed

emphysema. These controls will often be matched with the case on variables such as age and

sex. The nested case–control design is less expensive in both time and money but is slightly

less efficient statistically.
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Comparing cohort and case–control designs

The case–control design has a number of advantages over the cohort design:

• With a cohort study, as you saw previously, rare diseases and conditions require large sam-

ples, but with a case–control study, the availability of potential cases is much greater and the

sample size can be smaller. So they are particularly suited to rare diseases.

• Case–control studies are cheaper and easier to conduct.

• Case–control studies give results much more quickly.

But at the same time, they have a number of limitations:

• Although cases will often be convenience samples, that is, selected from patients attend-

ing particular clinics, this may result in them not being similar to the wider population of

individuals with the same disease. Generalisation may thus be difficult.

• Problemswith the selection of suitable control participants. Youwant participantswho, apart

from not having the condition in question, are otherwise similar to the cases. But such indi-

viduals are often not easily found.

• Problems with the selection of cases. One problem is that many conditions vary in their type

and nature and it is thus difficult to decide which cases should be included.

• The problem of recall bias. In case–control studies, you are asking people to recall events

in their past. Memories are not always reliable. Moreover, cases may have a better recall of

relevant past events than controls – over the years, their illness may provide more easily

remembered signposts, and they have a better motive for remembering – to get better!

In regard to recall bias, the authors of the lung cancer study (see Figure 8.5) said:

Despite our accurate individual exposure assessment, inadequate control for con-

founders of smoking effect as well as recall bias for smoking are possible in any retro-

spective study on lung cancer, but this should not be different in males and females.

Because of these various difficulties, case–control studies often provide results, which seem

to conflict with the findings of other apparently similar case–control studies. For reliable con-

clusions, cohort studies are generally preferred but are not always a practical alternative.

Exercise 8.7. (a)What advantages does a case–control study have over a cohort study?

(b) What are the principal shortcomings of a case–control study?
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Finally, I must mention two important concepts that come out of cohort and case–control

studies, respectively. From cohort studies we can get risk ratios; from case–control studies we

can get odds ratios. Both of these ideas we’ll meet later in the book.

Ecological studies

An ecological study (sometimes called a correlation study) aims to investigate the connection

between one group level variable (such as per capita alcohol consumption in several regions

of a country or in several countries) and a second group level variable (such as mortality from

CHD in those same regions or countries).The idea of an ecological study is to make large-scale

comparisons between groups of people. So they are not about individuals but about groups of
individuals.

As an example, in a longitudinal ecological study (‘longitudinal’ because time is involved),

researchers wanted to investigate whether the uneven rise in prosperity between 1999 and 2008

(uneven because employment and incomes, for example, improved at slower rates in some

regions than in others), accounted for the observed differential increases in life expectancy in

English counties. The two variables investigated were change in life expectancy in each of 324

lower tier local authorities (the main outcome variable) and change in prosperity in the same

local authorities (prosperity beingmeasured by changes in unemployment, household income,

and educational attainment).

Taken from this same study, Figure 8.8 shows the results of plotting, for groups of local

authorities, the increase in life expectancy (months) against increase in household income

(£000 s), between 1999 and 2008, for women and men. The results showed that the life

expectancy of women increased by 26 months between 1999 and 2008 and that of men by

34 months. By the way, this sort of graph is called a scatterplot. It will be discussed again in

Chapter 19. Now, there’s something to look forward to!
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Figure 8.8 The results of plotting (for groups of local authorities) the increase in life expectancy

(months) against the increase in household income (£000 s), between 1999 and 2008, for women and

for men. The size of the blob is proportional to the population in the local authority. The graph (called

a scatterplot) indicates that as household income increases so does life expectancy. Source: Barr et al.

(2012). Reproduced by permission of BMJ Publishing Group Ltd
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The ecological fallacy

The ecological fallacy arises from the erroneous belief that the findings from the group study

can be applied to the individual. In other words, it would be wrong to assume (in the above

ecological study) that just because an individual lives in a local authority region where pros-

perity did not improve, that that person would necessarily not experience an increase in their

life expectancy. Nor can we assume that a person who has enjoyed an increase in their life

expectancy necessarily lives in a region where prosperity has increased. Even in regions where

prosperity in general did improve, there may be a considerable proportion of individuals who

would not have enjoyed a rise in their living standards during the period in question.

It is because of the ecological fallacy that the ecological study is not as highly regarded as

the other observational designs. This deficiency is compounded by the fact that the design is

unable to deal with confounding in a convincing manner. However, ecological studies are very

useful as ways of generating plausible hypotheses, which can subsequently be examined using

analytic studies of one sort or another.

Exercise 8.8. (a) Outline the principal difference between an ecological study and

other observational study designs. (b) What is meant by the ecological fallacy? Give an

example.
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9
Research design – Part II:
Getting stuck in – experimental
studies

Learning objectives

When you have finished this chapter you should be able to:

• Outline the general idea of clinical trials.

• Explain the concept of randomisation, and what is meant by block randomisation.

• Use random number tables to perform simple block randomisation.

• Describe what is meant by blinding and why it is used and say what is meant by a

double-blind randomised controlled trial.

• Describe and compare the parallel and cross-over randomised controlled trials, along

with their respective advantages and shortcomings.

• Explain intention-to-treat.

Medical Statistics from Scratch: An Introduction for Health Professionals, Third Edition. David Bowers.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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We can now turn to those types of design where, in contrast to observational studies, the

investigators are active in some aspect of the recruitment, treatment, or care (usually all of

these) of the participants in the study.

Clinical trials

Clinical trials are experiments that compare two or more clinical treatments. I use the word

‘treatment’ here tomean any sort of clinical intervention, from kind words to new drugs. Many

whole books have been written that deal solely with clinical trials, and in one chapter I can only

touch briefly upon some of the more important aspects of this design.

Consider the following imaginary scenario. A new drug, Arabarb, has been developed for

treating hypertension. You want to investigate its efficacy. Here’s what you need to do:

• Decide on an outcome measure – diastolic blood pressure seems to be a good candidate.

• Select a sample of individuals with hypertension.Divide them into two groups1 in such away

that the two groups are as similar as possible.They should be similar not only for the obvious

variables, such as sex and age, but also for other variables either whose existence you are

aware of but can’t easily measure (e.g. emotional state of mind, lifestyles, genetic differences)

or whose existence you are not even aware of! We will see how we can do this below.

• Give the new drug, Arabarb, to the first group. This is the treatment group.

• Give the other group a placebo. This is the comparison or control group. A control group is

a must. If you have only one group of people and you measure their diastolic blood pressure

before and after the administration of Arabarb, you cannot conclude that any decrease in

diastolic blood pressure is caused, necessarily, by Arabarb. Being in a calm, quiet clinical

setting, or having someone fussing over them, might reduce diastolic blood pressure.

• At the end of the trial, compare the changes in average diastolic blood pressure in the treat-

ment and comparison groups. Draw the appropriate conclusions.

Why do we want the treatment group and the group receiving the placebo to be as identical

as possible? You will remember from Chapter 7 in our discussion on confounding, that one of

the ways of dealing with the confounding problem was by matching and that this was partic-

ularly relevant in case–control studies. We also mentioned that randomisation was a way that

confounding could be tackled. Well, randomisation in clinical trials is the ultimate in match-

ing. It is like the gold standard of matching. Clearly, if the randomisation process is successful

and the two groups are identical, then all variables will be matched and no confounding will be

possible. And the real beauty of randomisation is that all the variables are matched, even the

ones we do not even know about!

1Sometimes, we will want to divide our sample into three or more groups. However, to keep things simple, we

will assume only two groups here.
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In practice, we will not be able to produce two completely identical groups, so confounding

can never be completely eliminated, but the bigger the sample size, the more probable it is that

the groups will be alike. So how does randomisation work? How do we do it?

Randomisation

Randomisation means random allocation. We allocate each participant in the sample to either

the treatment group or to the comparison group. How? One possible way would be to toss a

coin for each individual in the sample – heads, they go to the treatment group and tails, to the

comparison group. If the randomisation is successful and the original sample is large enough

then the two groups should be more or less identical in the important characteristics – those

which we canmeasure, as well as those that we cannot measure or those which we are not even

aware of. The two groups will differ only by chance. (At base-line anyway. Participants who
drop out during the course of the study may alter this balance. See intention-to-treat explained

later).

This design is therefore called the randomised controlled trial (RCT). It is ‘controlled’ because
we are controlling for all possible confounders. In other words, all potential confounding vari-

ables will exist in both groups more or less equally, thereby minimising (but never completely

eliminating) the problem of confounding. As we noted earlier, the bigger the sample size the

more effective the randomisation process will be, the more similar the groups and the less the

possibility of confounding.

Of course, coin tossing is a little impractical. Instead, a table of random numbers can be used

for the allocation process (seeAppendix). Let us see howwemight use thismethod to randomly

allocate 12 patients.

You decide to allocate a participant in the trial to the treatment group (T) if the random

number is even (we count 0 as even) and to the control group (C) if odd. You then need to

determine a starting point in the randomnumber table, maybe by sticking a pin in the table and

identifying a start number. Suppose, to keep things simple, you start at the top of column 1 and

go down the column.The first six rows contain the values: 23157, 05545, 14871, 38976, 97312,

11742. Combining these three rows and using only the first 12 values gives us the following:

The numbers 2 3 1 5 7 0 5 5 4 5 1 4

The allocations T C C C C T C C T C C T

This gives you four participants in the treatment group and eight in the control group. Prob-

lem! We want our groups to be of the same size. You can fix this with block randomisation.

Block randomisation

Here is how it works. You decide on a block size, blocks of four is fairly common, and write

down all combinations that contain equal numbers of Cs and Ts. As there are six such possible

combinations, you will have six blocks:
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Block 1 CCTT

Block 2 CTCT

Block 3 CTTC

Block 4 TCTC

Block 5 TCCT

Block 6 TTCC

With the same random numbers as before, the first number was 2, so the first four participants

are allocated according to Block 2, that is, CTCT.The next number was 3, so the next four par-

ticipants are allocated as Block 3, that is, CTTC. The next number was 1, giving the allocation

CCTT and so on depending on the number in the sample. We ignore numbers that we have

already used (blocks already allocated) as well as, in this example, numbers greater than 6. You

will end up with the allocation:

CTCT CCTT CTTC

which gives equal numbers, six, in both groups.

Stratification

Sometimes, you will feel it is important that certain sub-groups in the sample are adequately

represented; for example, a certain ethnic group, or a group of people aged over 70. To ensure

that they are not under-represented in the randomisation process, we can stratify the sample

first and take a randomised sample from each stratum.

Blinding

If at all possible, youdon’twant the participants to knowwhether you are in the treatment group

or the control group. This is to avoid the possibility of response or placebo bias. If a participant
knows, or thinks they know, that they are getting the active drug, their psychological response

to this knowledge may cause a physical, that is, a biochemical response, which conceivably

might in turn affect their diastolic blood pressure. In the Arabarb trial, you could achieve this

‘blinding’ of the participants to their treatment, for example, by giving them all identical tablets,

one containing the Arabarb and the other the placebo.

Here is an example of the effort expended to make the placebo indistinguishable from the

active ingredient. In a randomised placebo controlled trial to evaluate the efficacy of a short

course of parent-initiated oral prednisolone for acute asthma in Australian children of school

age, the authors reported that:

The prednisolone solution we used was Redipred, which contains 6.72mg/ml of

the active ingredient, prednisolone sodium phosphate. The placebo solution was

also manufactured by the makers of Redipred; however, the hospital pharmacist
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added 0.1% quinine bisulphate to the placebo mixture to mimic the bitter taste of

prednisolone. The bottles of prednisolone and placebo appeared identical.

Vuillermin et al. (2010)

Blinding of participants is not always possible. For example, in a study that assesses the

effectiveness of adenoidectomy (removal of adenoids) in childrenwith recurrent upper respira-

tory tract infection, children were randomly assigned to one of two strategies: adenoidectomy

within six weeks or initial watchful waiting. It would clearly be impossible to blind the children

(or their parents) to their treatment!

A further desirable precaution is also to blind the investigator to the allocation process. If the

investigator does not knowwhich participant is receiving the drug andwhich the placebo, their

treatment of the participants will remain impartial and even-handed. Human nature being

what it is, there may be an unconscious inclination to treat a patient who is known to be in the

treatment group differently to the one in the control group. This effect is known as treatment
bias and can be avoided by blinding the investigator.We cando this by entrusting a disinterested

third party to obtain the random numbers and to decide on the allocation rules. Only this

person will know which group any given participant is in and will not reveal this until the

treatment is complete and the results collected and analysed.

Assessment bias is also overcome when the investigator is blinded. This is important when

an assessment of some condition after treatment is required. For example, in trials of a drug to

control agitation or anxiety, where propermeasurement is not possible, an investigator, know-
ing that a participant got the active drug,might then judge their condition to bemore improved

than would an uninvolved outsider. Therefore, an uninvolved outsider should conduct the

assessment process.

When both participant and investigator are blinded, we refer to the design as a double-blind
randomised controlled trial – the gold standard among experimental designs. Without blind-

ing, the trial is referred to as being open. Compared to other designs, the RCT gives the most

robust and dependable results. Note that sometimes the wordmasking is used instead of blind-
ing. The meaning is the same.

The design described above, in which two groups received identical treatment (except for

the difference in drugs) throughout the period of the trial is known as a parallel design; this is
illustrated schematically in Figure 9.1.

Treatment group 

Random allocation EndStart Assessment

Comparison group

Time

Figure 9.1 Schematic representation of parallel group trial
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The cross-over randomised controlled trial

A variation on the parallel design is the cross-over design, shown schematically in Figure 9.2.

In this design, one group gets drug A, say, for some fixed period of time, and the second group

gets drug B (or placebo). Then, after a wash-out period to prevent the drug effect carry-over,

the groups are swopped over. The group that got drug A now gets drug B and vice versa, and

for the same period of time. Which group gets which treatment first is decided randomly.

As an example, the following extract describes the method used in a randomised cross-over

trial of regular versus as-needed salbutamol in asthma control.

If inclusion criteria were met at the first clinic visit, patients were enrolled in a

four-week randomised crossover assessment of regular vs. as-needed salbutamol.

Patients took either 2 puffs (200 mg) metered dose salbutamol from a coded inhaler

or matching placebo four times daily for two weeks. On return to the clinic, diary

cards were reviewed and patients assigned to receive the crossover treatment for two

weeks. During both treatment arms patients carried a salbutamol inhaler for relief of

episodic asthma symptoms. Thus, the placebo treatment arm constituted as-needed

salbutamol.

Patients were instructed to record their peak expiratory flow rate (PEFR) twice

daily: in the early morning and late at night, before inhaler use. Patients also recorded

in a diary the number of daytime and night-time asthma episodes suffered and the

number of as-needed salbutamol puffs used for symptom relief.

Data from the last eight days of each treatment period were analysed; the first

six acted as an active run-in or washout period. Two investigators, blinded to the

treatment assignment, examined these comparisons for each patient, and categorised

each patient as: showing no difference in asthma control between treatment periods;

greater control during the first treatment period; greater control during the second

treatment period; or differences between treatment periods that did not indicate con-

trol to be clearly better during either.

Chapman et al. (1994)

Treatment A Treatment B

Treatment B Treatment A

Random

allocation
End

Time

Wash-out period

AssessmentStart

Figure 9.2 Schematic representation of cross-over group trial
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Closed-loop delivery Closed-loop delivery

Insulin pump therapy

Optimisation of continuous
subcutaneous insulin

infusion (pump therapy) Insulin pump therapy

3–5 days

Eating in scenario Visit 1 Visit 2

1–3 weeks 1–3 weeks1 night at
research clinic

1 night at
research clinic

The pre-trial
setting up period.

The first stage of
the cross-over.

The washout period
(1–3 weeks).

The second (final) stage
of the cross-over.

Figure 9.3 Part of a cross-over study comparing closed-loop delivery of insulin with conventional

insulin pump therapy. This shows the Eating In scenario only. Source: Hovorka et al. (2011). Reproduced

by permission of BMJ Publishing Group Ltd

As an example of the cross-over design, Figure 9.3 shows the schematic representation of a

randomised cross-over trial to compare the safety and efficacy of overnight closed-loop deliv-

ery of insulin (artificial pancreas) with the conventional insulin pump therapy, in adults with

type 1 diabetes.

The advantage of the cross-over design is that each participant gets both treatments and thus

acts as his or her own control. ‘Same-participant’ matching, if you like. As a consequence of

the matched-pair feature, this design requires smaller samples to achieve the same degree of

efficiency. Unfortunately, there are a number of problems with this approach. Namely:

• A participant may undergo changes between the first treatment period and the second.

• Themethod does not work well if the drug or the treatment to be investigated requires a long

time to become effective – for practical reasons cross-over trials are generally of relatively

short duration (one reason is to avoid excessive drop-out).

• Despite a wash-out interval, there may still be a drug carry-over effect. If carry-over is

detected, the second half of the trial has to be abandoned.

• The cross-over design is also inappropriate for conditions that can be cured – most of the

participants in the active drug half of the condition might be cured by the end of the first

period!

Selection of participants

Just a brief word about selection of participants for an RCT. Essentially, you want a sample of

participants (and theywill usually be patients of some sort)who represent a cohesive and clearly
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defined population.Thus, you might want to exclude participants who, although they have the

condition of interest, have a complicated or a more advanced form of it, or have other signifi-

cant illnesses or conditions simultaneously, or are taking drugs for another condition – indeed

anything which you feel makes them untypical of the population you have in mind. If your

sample is not truly representative of the population you are investigating (a problem known as

selection bias), then any conclusions you arrive at about your target population are unlikely to

be at all reliable.

As an example of participant selection and blinding procedures, the following extract is from

anRCT to compare the efficacy of havingmidwives solelymanage the care of pregnantGlasgow

women with the more usual arrangements of care being shared among midwife, hospital doc-

tors and GPs. Outcomes were the number of interventions and complications, maternal and

foetal outcomes and maternal satisfaction with the care received. The first paragraph details

the selection criteria, the second and third paragraphs describe the random allocation and the

blinding processes, respectively.

Methods

Design and participants
The study was carried out at Glasgow Royal Maternity Hospital, a major urban teach-

ing hospital with around 5000 deliveries per year, serving a largely disadvantaged

community. Between Jan 11, 1993, and Feb 25, 1994, all women booking for rou-

tine care at hospital-based consultant clinics were screened for eligibility; the criteria

were residence within the hospital’s catchment area, booking for antenatal care within

16 completed weeks of pregnancy, and absence of medical or obstetric complications

(based on criteria developed bymembers of the clinical midwifery management team

in consultation with obstetricians; available from the MDU).

Thewomenwere randomly assigned equally between the two types of care without

stratification. A restricted randomisation scheme (random permutated blocks of ten)

by random number tables was prepared for each clinic by a clerical officer who was

not involved in determining eligibility, administering care, or assessing outcome.The

research team telephoned a clerical officer in a separate office for care allocation for

each woman.

Women in the control group had no identifyingmark on their records, and clinical

staff were unaware whether a particular woman was in the control group or was not

in the study.We decided not to identify control women… because of concern that the

identification of the control group would prompt clinical staff to treat these women

differently (i.e., the Hawthorne effect).

Turnbull et al. (1996)

Intention-to-treat

One problem that arises frequently in an RCT after treatment has begun, is the loss of partic-

ipants, principally through drop-out (moving away, refusing further treatment, dying from

non-related causes, etc.) and withdrawal for clinical reasons (perhaps they cannot tolerate
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adverse side effects of the treatment). Unfortunately, such losses can adversely affect the balance

of the two groups achieved through the initial random allocation process.

As an example, suppose for an RCT to compare the efficacy of two drugs in treating some

illness, we have randomly allocated 100 participants to receive Drug A and 100 to receive Drug

B. At the end of the trial, no one has dropped out of the Drug A group, and 60 per cent of them

have recovered. However, 95 of those receiving Drug B have dropped out but the remaining

five have all recovered. Would we want to conclude that Drug B was better? I think not. We

would want to know what happened to all of those drop-outs in group B. Why did they leave?

Was it, for instance, due to adverse side effects?

In these circumstances, it is a good practice to analyse the data as if the lost participants

were still in the study, as you originally intended – even if all of their measurements are not

complete. This is known as intention-to-treat analysis. The reasoning behind this approach is

pragmatic and reflects the degree of drop-out that frequently happens in clinical practice. It

does, however, require that you have information on the outcome variable for all participants

who were originally randomised, even if they did not complete the course of treatment in the

trial. Unfortunately, this information is not always available and in many studies therefore,

intention-to-treat may be more of an aspiration than a reality.

There are ways of trying to fill in the blanks by using methods to impute missing values.

For example, we could use the average value of all the existing values for a particular vari-

able, to provide us with a missing value for a dropped-out participant. Or we could use what

is called the last value carried forwardmethod, to fill in a missing value when sequential mea-

surements are being taken over time (e.g in either treatment or follow-up). Unfortunately, none

of the methods available are spectacularly successful, and missing values remain a problem for

researchers.

Note that if researchers analyse only those participants who complete a trial and provide full

information on outcomes, then this approach is called per protocol analysis. This form of anal-

ysis re-introduces the potential for confounding because participants who drop-out may upset

the initial balance between groups.

Exercise 9.1. What is the principal purpose of randomisation in clinical trials?

Exercise 9.2. Explain how the possibility of treatment bias, assessment bias and

response bias, may be overcome in the design of an RCT.

Exercise 9.3. Using block randomisation, with blocks of four, and a random number

table, allocate 40 participants into two groups, each with 20 individuals.

Exercise 9.4. Explain the difference between a parallel design RCT and a cross-over

design. What are the advantages and possible drawbacks of the latter design?

Exercise 9.5. What is meant by intention-to-treat analysis? How does it differ from per

protocol analysis?
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Getting the participants for your
study: ways of sampling

Learning objectives

When you have finished this chapter you should be able to:

• Explain the relationship between a sample, a study population and a target

population.

• Explain the relationship between a sample statistic and a population parameter.

• Explain the importance of getting a representative sample.

• Explain the differences among various types of samples (random samples, conve-

nience samples, cluster samples, etc.).

• Explain what is meant by inclusion and exclusion criteria.

Medical Statistics from Scratch: An Introduction for Health Professionals, Third Edition. David Bowers.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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From populations to samples – statistical inference

As you saw right at the beginning of this book, we gather data because we want to answer

questions such as what causes stillbirths?What is the best treatment for hypertension?What is

the prevalence of asthma in UK schoolchildren?1

Take the last question on asthma in schoolchildren. The seemingly obvious way to answer

it would be to interview all 5–16-year-old children in the UK and ask them (or more likely

their parents) whether they are receiving treatment for asthma. However, the population of

schoolchildren in theUK is very large – around 13million, and it would, in practice, be impos-

sible to interview all of them. It would take too long, be too expensive and besides which, we

would have to have an address for each one of them.

Let’s call this whole population (the 13 million schoolchildren) the target population. From
this target population, we can take a sample. We then assume that what is true of the sample

will also be true of the target population. We intend to generalise from the sample to the tar-

get population. This process is called statistical inference. We are making inferences (informed

guesses) about features of the population (these features are called population parameters) on
the basis of the corresponding features (called sample statistics) that we discover in the sample.

For example, the population proportion and the population mean are population parameters.

This idea is shown schematically in Figure 10.1.

But how would we do this? In practical terms, it would still be virtually impossible to access

all schoolchildren in the UK, which we would need to do before we could select our sample.

It would be better, and more feasible, to take our sample from a more accessible group. For

We can estimate this by using

the proportion with asthma in

the sample. The sample value

is called a sample statistic. 

We want to know what the

proportion with asthma is in

the population. This proportion

is a population parameter.

THE TARGET

 POPULATION

All schoolchildren in the

UK (many millions).

The sample

Interview these

Figure 10.1 The sample and the target population. We use the value of the sample proportion with

asthma to estimate the population proportion with asthma. This is called inference.

1Approximately 1.1 million children are receiving treatment for asthma in the UK. That is about one in 11 or

just below 10 per cent.
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example, all schoolchildren in Leeds, Birmingham or Glasgow, wherever you have reason-

able access to potential participants. This more restricted group is called the study population.
We hope that our study population, say all schoolchildren in Leeds, is representative of all

schoolchildren in the whole of the UK (the target population). And in addition, that our sam-

ple, taken from our study population, is representative of the target population. This idea is

illustrated in Figure 10.2.

THE TARGET

 POPULATION

All schoolchildren in the

UK (many millions)

THE STUDY

POPULATION

A smaller, more

accessible group

of schoolchildren

The sample

Get data from

these

Figure 10.2 The target population, the study population and the sample. We are generalising from

the sample statistic to the population parameter, the process of statistical inference. We hope that the

sample is representative of the study population and that the study population is representative of the

target population

In a nutshell, we are going to use the value of a sample statistic, obtained from a represntative

sample, to make an informed guess as to the value of the corresponding population parame-

ter. For example, the sample statistic might be sample mean birthweight, and the population

parameter might be populationmean birthweight. It is worth noting that Greek letters are used

to denote population parameters, for example, 𝜇 is used to denote the population mean andΠ
the population proportion.

Exercise 10.1. (a) Explain the differences between a target population, a study pop-

ulation and a sample. (b) Explain, with an example, why it is almost never possible to

study every member of a population. (c) What is a population parameter? How can we

estimate its value?

Collecting the data – types of sample

So far I have talked rather blithly about taking a sample from a population. Now, I want to talk

about howwe go about doing this, and howwe hope to ensure that out sample is representative

of the population from which it has been drawn.

Needless to say, samples are never perfect replicas of their populations; therefore, when we

draw a conclusion about a population based on a sample, there will always be what is known as

sampling error. For example, if the percentage of 5–16-year-old children in the UK population
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with asthma is 10 percent (we would not know this of course), and if a sample produces a
sample percentage of 9 percent, then the difference between these two values, 1.0 per cent, is
the sampling error. We can never completely eliminate sampling error as this is an inherent
feature of any sample. Now to the data collection question.

The simple random sample and its offspring

Themost important consideration is that any sample should be representative of the population
from which it is taken. For example, if your population has equal numbers of male and female
babies, but your sample consists of twice as manymale babies as that of female babies, then any
conclusions you draw are likely to be, at least, misleading. Generally, the most representative
sample is a simple random sample. The only way that a simple random sample will differ from
the population will be due to chance alone.
For a sample to be truly random, everymember of the populationmust have an equal chance

of being included in the sample. Unfortunately, this is rarely possible in practice as this would
require a complete and an up-to-date list (name and contact details) of, for example, every
5–16-year-old children in the UK. Such a list is called a sampling frame. In practice, compil-
ing an accurate sampling frame for any given population is hardly ever going to be feasible!
Nonetheless, the simple random sample, although in practice unachievable, provides the gold
standard, against which other sampling methods might be compared.
This same sampling frame problem applies also to two close relatives of simple random sam-

pling, as you will now see.

Exercise 10.2. What is the principal difficulty with random sampling?

The systematic random sample

With this approach, some fixed fraction of the sampling frame is selected, say every 10th or
every 50th member, until a sample of the required size is obtained. For example, suppose we
have a population size of 100,000 and we want a sample size of 500. The fraction required is
thus:

100, 000

500
= 200

Therefore, we select every 200th person from the sampling frame.The starting point is chosen
using a random number table. So if the random number is 18, we select the 218th perosn, the
418th person and so on. Provided there are no hidden patterns in the sampling frame, this
method will produce samples as representative as a random sample. Trouble is – we still need
a sampling frame to use this method.

The stratified random sample

In stratified sampling, the sampling frame is first broken down into strata relevant to the study,
for example, men and women, or non-smokers, ex-smokers and smokers. Then, each separate
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stratum is sampled using a systematic sampling approach, and finally these strata samples are

combined to provide the final amalgamated sample. As before, the limitation of this design is

the need for a sampling frame. However, the method is often employed in conjunction with

cluster sampling (see next section), which obviates the need for a sampling frame.

As an example of stratification, in a study of the effects of gestational age at birth on health

outcomes at 3 and 5 years of age, respectively, the authors stratified their sample to ensure that

children born to mothers in deprived areas and to ethnic minority mothers were adequately

represented in the final sample. They stated:

Stratified sampling at electoral ward level with over-sampling of ethnic minority and

disadvantaged areas ensured adequate representation of these populations.

Boyle et al. (2012)

The cluster sample

The cluster sampling approach overcomes the need for a comprehensive sampling frame and is

usedwhen the selection of individuals is not appropriate. In these situations, clusters of villages,

communities, schools, GP practices and so on become the sampling units. Random selection

from these clusters (sometimes more than once) is then performed to produce a representative

sample.

For example, a programme to investigate the efficacy of a programme to improve the health of

schoolchildren startedwith all 919 primary school classes (with 18 381 chilldren) in two regions

of a country. Each class thus comprises a cluster of schoolchildren. Ninety-five of these classes

satisfied the inclusion criteria. Twenty-seven of these classes were then randomly selected from

the 95 classes to give a total sample of 535 children. The researchers then randomised these

classes to treatment (additional physical activity) or control groups.

As an example frompractice, in a programmewhose objective was to see if amonetary incen-

tive to head teachers was effective in reducing the levels of anaemia in schoolchildern in China,

the authors described their method as follows:

Through a canvass survey, we first created a sampling universe of all primary schools

in 10 nationally designated poor counties spread across two provinces with high

anaemia rates – Ningxia and Qinghai. We then identified all schools having six

grades (that is, “complete” primary schools) and boarding facilities. A total of 85

schools met these criteria, and we randomly selected 72 for inclusion in our study.

Finally, we randomly selected half of fourth and fifth grade students in study schools

(sampling 3944 students in total). Fourth and fifth grade students were chosen

because they are old enough for test scores to be relevant but also young enough

not to have reached puberty (at which point nutritional requirements differ more

markedly from childhood and vary by sex).

Miller et al. (2012)

Cluster sampling is frequently used in randomised controlled trials. For example, in the

anaemia study as described earlier, the randomisation into separate treatment groups was thus

described.
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Sample schools were randomly assigned to a control group, with no intervention, or

to one of threee treatment arms: (a) an information arm (information about anemia

only), 27 schools, 1816 students; (b) a subsidy arm (information plus subsidy), 15

schools, 659 students; or (c) an incentive arm (information plus subsidy plus financial

incentive), 15 schools, 743 students.

Exercise 10.3. Explain how the cluster sample overcomes the sampling frame problem

associated with random sampling.

Consecutive samples

The need for an accurate sampling frame makes random sampling impractical in any realistic
clinical setting. One common alternative is to take individuals who are in current or recent
contact with the clinical services, such as consecutive attendees at a clinic, as a sample. Alterna-
tively, participantsmight be selected from a registry or clinical records database. As an example
of a consecutive sample, in the study of stress as a risk factor for breast cancer (Figure 1.7), the
researchers took 332 consecutive attendees as their sample for a breast lump biopsy at Leeds
General Infirmary.
Alternatively, researchers may study a group of participants in situ, for example, in a ward

or in some other setting. In the nit lotion study (Figure 1.9), researchers took as their sample
all infested children from a number of Parisian primary schools, based on the high rates of
infestation in those same schools the previous year.
If your sample is not a random sample, then the obvious question is, ‘How representative

is it of the population?’ Moreover, which population are we talking about here? In the breast
cancer study, if the researchers were confident that their sample of 332 women was reasonably
representative of all such women in the Leeds area (their study population), then they would
perhaps have felt justified in generalising their findings to this population and maybe to all
women in the UK (a possible target population). But if they knew that the women in their
sample were all from a particularly deprived (or particularly affluent) part of the city, or if some
ethnicminority formed a noticeably large proportion of the women, then such a generalisation
would be more risky.

Exercise 10.4. What is the main advantage and the main disadvantage of convenience

sampling?

How many participants should we have? Sample size

One obvious question arises when we are selecting a sample for our investigation. How many
people do we need to recruit?This question is one that all researchers need to answer.The solu-
tion is intimately tied up with the notion of ‘power’ and error, as well as the type of the study
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we are involved with. As such, it is probably best to deal with it later in the book (see Part VI).
However, I strongly advise anyone contemplating a research project to consult a medical statis-
tician about the sample size issue early in the planning stage!

Inclusion and exclusion criteria

In almost all studies, we will want to decide quite carefully not only how we are going to recruit
our participants and how many participants we will need but also whom we might want to
include in our study and equally whomwe will need to exclude. To this end, researchers decide
upon a set of inclusion and exclusion criteria.
Let us take as an example, the retrospective cohort study referred to in Exercise 8.5 to examine

the effect of systolic and diastolic blood pressure achieved in the first year of treatment on
all-cause mortality in patients newly diagnosed with type 2 diabetes. The researchers included:

All adult patients (age ≥18 years) with a new diagnosis of type 2 diabetes between 1

January 1990 and 31 December 2005, and who had been registered with participating

practices for at least 12 months.

And excluded:

… patients diagnosed under the age of 35 years who were prescribed insulin within

threemonths of diagnosis andwhowere not prescribed oral hypoglycaemic agents for

longer than three months, because these patients were likely to have type 1 diabetes.

We also excluded patients with a diagnosis of heart failure and an echocardiogram

supporting the diagnosis to avoid reverse causality, because these patients tend to have

lower blood pressure levels than those without heart failure.

Vamos et al. (2012)

We will come across further examples of inclusion and exclusion criteria later in the book.

Getting the data

Having decided on a sampling method, let us say you like the idea of a consecutive sample,
how will you get the actual data for each of your variables? Well, you could measure, or count,
observe, touch, question (face-to-face or by questionnaire), or use an establishedmeasurement
scale (e.g. the Glasgow Coma Scale, the Modified Rankin Scale, or the Health Outcomes SF36
scale). Or you could use an already assembled registry data or the data previously collected by
colleagues (with their permission).
If you are going to use a questionnaire, try to use an existing one or modify an existing one.

Always pilot a new questionnaire before you use it, preferably on those who will be responding
to it (service users) and on knowledgeable colleagues. Be aware of problems arising from low
response rates. Try to find out if the responders are different to the non-responders. The same
applies to a measurement scale. Try to use an existing scale if possible or modify one. Develop
a new scale only if absolutely necessary and always pilot it.
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V

Chance Would be
a Fine Thing
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11
The idea of probability

Learning objectives

When you have finished this chapter, you should be able to:

• Define probability, explain what an event is and calculate simple probabilities.

• Explain the proportional frequency approach to calculating probability.

• Explain how probability can be used with the area properties of the Normal

distribution.

Preamble

Probability is ameasure of the chance of getting some particular outcome of interest from some

trial or ‘experiment’. For example, the experimentmight be performing a biopsy on breast lump

tissue, or administering a drug to a patient having a heart attack, or it might be rolling a dice.

Experiments produce outcomes. For the biopsy, the outcomes will be malignant or benign.

For the patient with a heart attack, the outcomes will be to survive the first 24 hours or to die

within 24 hours. For rolling a dice, the outcomes will be 1 or 2 or 3 or 4 or 5 or 6.The particular

Medical Statistics from Scratch: An Introduction for Health Professionals, Third Edition. David Bowers.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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outcomes of interest might be the patient surviving, the biopsy being benign, the dice giving a
6 and so on.
Let us look at some basic ideas about probability:

• The probability of getting any particular outcome will always lie between zero and one. The
smaller the probability is, the lesser is the chance of the outcome and vice versa.

• The probability of an outcome that is certain to happen is equal to one. For example, the
probability that everybody dies eventually.

• The probability of an outcome that is impossible is zero. For example, throwing a seven with
a normal dice.

• If an event has as much chance of happening as of not happening (like tossing a coin and
getting a head), then it has a probability of 1∕2 or 0.5.

• If the probability of an event happening is p, then the probability of the event not happening
is 1− p. So if the probability of getting a 6 when you roll a dice is 1/6 or 0.1666, then the
probability of not getting a 6 is 1− 0.1666= 0.8333. It is common to express probabilities as
a decimal rather than as a fraction.

Calculating probability – proportional frequency

The probability of getting a head when you toss a coin is 1/2 or 0.5, because there are two
outcomes, each equally likely. In the same way, the probability of getting a 6 when you roll a
dice is 1/6 or 0.1666. These probabilities are fairly obvious. Unfortunately, situations where all
the outcomes are equally likely are rare in the clinical arena. In such cases, we use what is called
the proportional frequency approach to calculate probabitity. With this method, the probability
of a particular outcome is equal to the proportion of times that that outcomewould occur if you
were to repeat the experiment a very large number of times. Thus, we say that the probability
of a patient with a certain illness surviving for five years is 0.75; this is because in the past, this
is the proportion that several thousand patients with this illness have survived this long.
As an example, see Figure 2.4 (reproduced here for convenience as Figure 11.1), which shows

the causes of blunt injury to limbs. I have added an extra column showing the proportional
frequency (category frequency divided by total frequency). Notice that the proportional fre-
quencies sum to one.
Now ask the question, ‘What is the probability that if you chose one of these 75 patients

at random, their injury will have been caused by crushing?’. The answer is the proportional
frequency for the ‘crush’ category, that is, 20/75 or 0.267. In other words, we can interpret
proportions as equivalent to probabilities.

Exercise 11.1. Look back at Figure 2.5 showing levels of satisfaction with nursing care.

Using proportional frequencies, if a patient is chosen at random from this group, what

is the probability that the patient will be (a) very satisfied? and (b) very dissatisfied?
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Cause of injury
Frequency (number of

patients) n = 75
Proportional

frequency

Falls
Crush
Motor vehicle crash
Other

46
20

6
3

0.613
0.267
0.080
0.040

The crush injury occurs 20
times in the total of 75.

Proportional frequency, and
thus the probability of a crush

injury, is 20/75 = 0.267

Figure 11.1 Frequency table showing causes of blunt injury to limbs in 75 patients

Two useful rules for simple probability

Rule 1. The multiplication rule for independent events

Suppose that you are interpreting biopsies performedon tissue frombreast lumps.Theoutcome
can be either benign or malignant. Past results indicate that the proportion malignant will be
about 30 per cent. Assume that the figure is exactly 30 per cent. The probability that the next
result will be malignant is 0.30. The probability that the result after this is malignant is also
0.30. And the next one and so on.This is because the results are independent of each other. An
outcome in no way influences the result of the next outcome.
Now let’s ask a different question. What is the probability that two successive outcomes will

both be malignant? We can answer this question using the multiplication rule for independent
events. This states that the probabilities of successive similar events is the product of those
events. That is, we multiply the probabilities together. So the probability of two successive
malignant outcomes is:

0.30 × 0.30 = 0.09
This means that if we repeat this experiment (two biopsy results in succession) a hundred

times, on nine occasions wewould get two successivemalignant outcomes. Similarly, if we took
three biopsies, the probability that all three would be malignant is 0.30× 0.30× 0.30= 0.027.
That is, 27 times in a 1000 tries. This rule works for any number of successive independent
events.
Algebraically, if the two possible outcomes are A and B, then the probability of getting two

‘A’s in succession is given by:

P(AandA) = P(A) × P(A)

Exercise 11.2. What is the probability of getting two successive benign results?
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Rule 2. The addition rule for mutually exclusive events

Look again at Figure 3.4, which shows the blood groups of kidney recipients with and without
rejection.Without rejection, the percentage blood groups of the 1777 patientswere TypeA= 42
per cent, Type O= 41 per cent, Type B= 10 per cent, and Type AB= 5 per cent.
Suppose that we are about to determine the blood group of an individual. The possible out-

comes are A, B, O and AB, and using the proportional frequency idea and the above propor-
tions, the probabilities are 0.42, 0.41, 0.10 and 0.05, respectively. Notice that these probabilities
add up to 1.00 (allowing for some serious rounding by the authors!). In other words, a person
must be in one of these blood groups.
The question is, ‘What is the probability that the individual will have either blood group O

or A?’ We know that a person cannot be in two blood groups, so these outcomes are termed
mutually exclusive. (Just as when we toss a coin, the outcome can be either a head or a tail – the
two possible outcomes are mutually exclusive). We can answer this question using the addition
rule for mutually exclusive events. This states that if two outcomes are mutually exclusive, then

the probability of either one or the other occurring is the sum of the two individual

probabilities.

In this case:

Probability of being in either blood group O or blood group A= 0.42+ 0.41= 0.83

It follows that the probability that they are in either blood group B orABmust be 1− 0.83, that
is, 0.17.
Algebraically, we can express the addition rule for two mutually exclusive events A and B as:

P(AorB) = P(A) + P(B)

Exercise 11.3. Referring back to Figure 2.5, what is the probability of a patient chosen

at random being either satisfied or very satisfied with their nursing care?
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Conditional and Bayesian statistics

I can nomore than brieflymention two other types of probability – conditional probability and
Bayesian probability. Conditional probability is concerned with the probability of one outcome

occurring given that another outcome has already occurred. For example, given that a baby has

a birthweight less than 1500 g, what is the probability that its mother smoked while pregnant.

Bayesian probability deals with the idea of incorporating any prior knowledge that a

researcher might have about a hypothesis. Bayesian statistics calculates the probability that a

hypothesis is true by incorporating any new information (e.g. new data) about the hypothesis

as it becomes available. Most health care professionals will unwittingly practice Bayesian

statistics when confronted by a patient. They use clinical history, the existence of signs and

symptoms, new information given to them by the patient, reaction (or non-reaction) to

treatment and so on as prior knowledge when making (i.e. hypothesising) a diagnosis. If

subsequently, new information comes in – say the result of a blood test – that can also be

included in the hypothesis of what illness the patient is likely to be suffering from.

Both are important but they are more advanced topics than this book is designed to deal

with. Maybe next time.

Probability distributions

Before we leave this brief examination of simple probability, I need to mention the idea of

a probability distribution and outline three interesting probability distributions that arise in

health statistics.

What is a probability distribution? It is a table or an equation that tells you the probability of

each outcomewhen you perform some ‘experiment’. For example, suppose that the experiment

is rolling a dice, for which there are only six possible outcomes, with the probabilities shown

in Figure 11.2. This table is thus the probability distribution for this dice rolling experiment.

Outcome

X
Probability of

outcome

P(X)

1 1/6

2 1/6

3 1/6

4 1/6

5 1/6

6 1/6

Figure 11.2 Probability distribution for rolling a dice

In this example, you will notice that I have labelled the outcome from rolling the dice as X.
X is a random variable (because it can take various values), and when a variable is the outcome

from an experiment, as it is here, we call it a random variable.
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The equation of the probability distribution for this dice rolling experiment is:

P(X) = 1

6

Exercise 11.4. (a)What is a random variable? (b) Suppose that an experiment is to toss

a coin twice, write down as a table the probability distribution for the outcomes from this

experiment.

Discrete versus continuous probability distributions

The probability distribution for the dice rolling experiment is a discrete probability distribu-
tion. Discrete because the number of possible outcomes is limited, although it may be very
large. (You can revisit Chapter 1 for a reminder of the difference between discrete and contin-
uous variables). Suppose now that our ‘experiment’ is to weigh a newborn baby to determine
its birthweight. Here, birthweight is a continuous random variable (random because it is the
outcome from an experiment), and continuous variables have an unlimited or infinite num-
ber of possible values. Moreover, as there are an infinite number of values, the probability of
any particular value has to be zero. This means we can’t show the probability distribution of a
continuous random variable as a table. Instead, we have to use an equation (called a probability
density function or pdf), which gives the probability that the continuous random variable lies
between any two defined values, for example, between 2000 g and 3000 g or perhaps <1500 g.1

The binomial probability distribution

The first of the three probability distributions I want to mention is the binomial probability
distribution. Suppose that we toss a coin repeatedly. We know that there are only two possible
outcomes from this experiment – a head or a tail – and that the probability of each of these
outcomes is 0.5 and stays at 0.5 for each toss. The random variable here is the number of heads
(or the number of tails), and it has a binomial probability distribution, because it satisfies four
requirements:

• There is a series of trials (we toss the coin several times).

• The trials are independent (the outcome from one trial has no effect on the output of any
other trial).

• There are only two outcomes from each trial (head or tail).

• The probabilities of the outcomes remain the same for each trial (they do not of course have
to be 0.5, as long as they remain constant).

1The bottom value here is 0 g.
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The binomial probability distribution tells us what the probability is of getting any particular

number of either of the two outcomes in a given number of trials and is thus a discrete probabil-
ity distribution. For example, if we toss a coin 100 times, the binomial probability distribution

will tell us the probability of getting any given number of heads (and therefore the number of

tails). Because this is a discrete random variable, we can describe the probability distribution

in a tabular form, as well as an equation.

As a more realistic example, about 10 per cent of babies born to lone parents in England

and Wales are low birthweight (<2500 g). Let us assume that the proportion is constant at 10

per cent, that is, a probability of 0.1. There are two possible outcomes, low birthweight or not

low birthweight, and the births are independent, so we can use the binomial distribution to

tell us the probability of getting any given number of low birthweight babies. For example, the

probability of getting eight low birthweight babies in the next 100 deliveries is 0.115.2 And of

getting 12 low birthweight babies is 0.099.

Perhaps, more useful is the cumulative binomial probability distribution.This gives the prob-

ability of getting a particular value for the random variable or fewer. For example, a given

number of low birthweight babies or fewer. For example, the probability of getting eight low

birthweight babies or fewer in the next 100 deliveries (i.e. 8, or 7, or . . . or 1 or 0) is 0.321, and

for 12 or fewer the probability is 0.802. It follows that the probability of getting more than 12

such babies is (1− 0.802)= 0.198.

Exercise 11.5. Use a binomial calculator to determine the probability of getting: 7, 8, 9,

10, 11, 12 or 13, low birthweight babies in 100 deliveries, if the probability of this outcome

is 0.1. Arrange the values in a table. Plot these probabilities (vertical axis) against number

of low birthweight babies. Comment on the shape of this graph.

The Poisson probability distribution

The Poisson probability distribution describes the outcome of a discrete random variable. It is

a count of the number of events that we can expect to occur in a given time (or less usually, in

a given space). For example, the number of arrivals at an Emergency Department in a given

24-hour period or the number of stillbirths in a particular hospital in a given year.This expected

value can be compared to the actual value if we have reason to believe that this is unusually low

or high.

The requirements that must be satisfied for the Poisson distribution are:

• The average number of events that occur in a given time period is known.

• The events are independent.

2Type binomial calculator into a search engine (such as Google) and you will get numerous hits. I used Stattrek.

There is a binomial formula, but this is a bit complicated to use and it is much, much, easier to let someone else

do the work.
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• The events are random.

For example, suppose that we know that the average number of stillbirths in a year in a certain

hospital maternity unit averages 10 in any 12-week period. What is the probability of getting

eight stillbirths in the next 12 weeks? Using a Poisson calculator, the answer is 0.113.The cumu-
lative Poisson probability for eight stillbirths or fewer is 0.333. For 12 stillbirths or fewer, the

probability is 0.792. Because this is a discrete random variable, we can describe the probability

distribution in a tabular form, as well as an equation.

Exercise 11.6. Suppose that the average number of road accident victims arriving at

an Emergency Department per week averages 15. Use a Poisson calculator to determine

the probability of there being 20 or more such arrivals in the next week.

The Normal probability distribution

You first met the Normal distribution in Chapter 4. The Normal probability distribution
describes the outcomes from experiments whose output is a Normally distributed random

variable. It has a smooth bell-shaped curve. The distribution is continuous, which means, as

we noted earlier, that we cannot calculate the probability of any single outcome occurring

(it will always be zero) but only the probability of an outcome within some interval. Many

outcomes in the clinical arena are Normally distributed; for example, birthweight (Figure 4.5)

and cord platelet count (Figure 4.6).

Provided we know the mean and standard deviation, we can fully describe the Normal prob-

ability distribution and determine the probability that an outcome will lie between any two

specified values. In fact, you will no doubt remember what the probability is of a value lying

within one, two, or three standard deviations of the mean (see Figure 6.7).There is an equation

for the Normal probability distribution but it is much easier to use a Normal calculator sourced

from the internet.3

Exercise 11.7. Use a Normal distribution calculator and the information on cord

platelet count in Figure 4.6 to determine the probability that one infant chosen at

random from this sample will have a cord platelet count (a) equal to or less than

225× 109/l, and (b) equal to or more than 425× 109/l.

3Such as Stattrek.
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Risk and odds

Learning objectives

When you have finished this chapter, you should be able to:

• Define and explain the idea of absolute risk and its relationship with probability.

• Calculate the absolute risk and the absolute risk reduction, of some outcome from a

contingency table and interpret the result.

• Calculate and interpret the risk ratio and the reduction in the risk ratio (also known

as the relative risk reduction).

• Briefly outline methods for adjusting risk ratio to take confounding into account.

• Define the number needed to treat, explain its use and calculate NNT in a simple

example.

• Define and explain the idea of odds.

• Calculate odds from a case–control 2× 2 table and interpret the result.

• Be able to calculate probability given the odds and vice versa.

Medical Statistics from Scratch: An Introduction for Health Professionals, Third Edition. David Bowers.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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• Explain what the odds ratio for some outcome is, calculate an odds ratio and interpret

the result.

• Briefly outline methods for adjusting the odds ratio to take confounding into

account.

• Explain why it’s not possible to calculate a risk ratio in a case–control study.

Absolute risk and the absolute risk reduction

In medical statistics, we use the term absolute risk (sometimes just risk) to describe the prob-

ability of some particular outcome likely to be experienced by a group of individuals (most

often patients) who are subject to some exposure (either beneficial or not). As absolute risk

and probability are one and the same, this means that the absolute risk can vary between 0

(no risk – outcome will not happen) and 1 (certain risk – outcome is certain to happen). (See

Chapter 11 for a reminder on probability.)

Note that:

• the value of the absolute risk for an outcome can vary from 0 to 1.

• when the risk for an outcome is greater than 0.5, the risk is favourable to the outcome; the

outcome ismore likely to happen than not.

• when the risk is equal to 0.5, the outcome is as likely to happen as not.

• When the risk is less than 0.5, the risk is unfavourable to the outcome and therefore, the

outcome is less likely to happen than it is to happen.

As an example of risk, Figure 12.1 is from a study to investigate the effectiveness of

supplementing the diet of pregnant women at high risk of pre-eclampsia or eclampsia, with

L-arginine and antioxidant vitamins. The first row proper of the table shows the absolute risks

of pre-eclampsia and eclampsia for women receiving a placebo and for those women receiving

the active supplement (I will deal with the other rows of the table shortly).

As you can see the absolute risk of pre-eclampsia or eclampsia in women receiving the

placebo was 0.3018, or 30.18 per cent, whereas for women receiving the supplement the

absolute risk was only 0.1272 or 12.72 per cent. The L-arginine plus vitamin supplement

reduced the risk by 0.3018− 0.1272= 0.175 or 17.5 per cent. We call this the absolute risk
reduction.
Youmight at this point ask the question, ‘Could this result have occurred by chance or are we

looking at a real (statistically significant) reduction in risk here?’ We can answer this question

by examining what are called confidence intervals, but won’t deal with these until Chapter 15

(but not to keep you in suspense, the answer is ‘Yes’, this result is significant).
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67 29

Absolute risk 0.3018 0.1272

Pre-eclampsia or eclampsia

Placebo
n = 222

L-arganine + vitamins
n = 228

Absolute risk reduction
(95% CI)

Risk ratio
(95% CI)

0.175
(0.12–0.21)

0.42
(0.28–0.62.)

The absolute risk is
thus 67/222 = 0.3018

or 30.18%.

Out of the 222 women
receiving the placebo,

67 had eclampsia
or pre-eclampsia.

Whereas the women receiving
the active supplement had an

absolute risk of eclampsia
or pre-eclampsia of only

29/228 = 0.1272 or 12.72%.

The absolute risk
reduction is thus

0.3018–0.1272 = 0.175,
or 17.5%.

The risk ratio =
(0.1272/0.3018) = 0.4215.

(see below)

Figure 12.1 Absolute risks from a randomised controlled trial to investigate the effectiveness of

supplementation during pregnancy with L-arginine and antioxidant vitamins versus a placebo on

pre-eclampsia or eclampsia in a high-risk population. Data from Vadillo-Ortega et al. (2011)

Exercise 12.1. The contingency table in Figure 12.2 is from a study investigating the

efficacy of adding zinc to the standard antibiotic treatment for infants aged between

seven days and 120 days, with serious bacterial infection, in a developing country. The

table shows the number of deaths among a sample of these infants who were given zinc

and among those whowere not given zinc (the placebo group). (a) Calculate the absolute

risk of treatment failure among infants who were given zinc and among those who were

given the placebo. (b) What is the absolute risk reduction?

The risk ratio

As the name implies, the risk ratio1 is the risk of an outcome; for example, emphysema, for one
group (say smokers), compared to the risk of emphysema for a second group (say non-smokers).

1Because it sits well with ‘odds ratio’, I prefer to use ‘risk ratio’ rather than ‘relative risk’, although the latter

occurs more often in the literature. Where I am quoting from published research, I will use ‘relative risk’ if this

term is used by the authors in their results.
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Zinc (n= 332) Placebo (n= 323)

Treatment failure* No 298 268

Yes 34 55

∗Defined as a need to change antimicrobial treatment within 7 days of randomisation,

or a need for intensive care (mechanical ventilation or vasoactive drug infusion, or

both), or death at any time within 21 days of randomisation.

Figure 12.2 Effect of zinc given orally as an addition to antibiotics on treatment failure in infants

with serious bacterial infection. Data from Bhatnagar et al. (June 2012)

We call the comparison group (here it is the non-smokers) the reference (or referent) group.
The risk ratio is usually associated with cohort studies.

As an example, see Figure 12.1. We see that the absolute risk of pre-eclampsia or eclampsia

in the treatment group is 0.1272 and that in the placebo group is 0.3018. The ratio of these

absolute risks is the risk ratio:

risk ratio =
(
0.1272

0.3018

)
= 0.4215

This means that those women in the treatment group receiving L-arginine and antioxidant

vitamins had under half the chance (42.15 per cent) of developing pre-eclampsia or eclampsia

than did women in the placebo group. Or, to put it another way, the placebo group women had

1/0.4215= 2.37 times the chance of getting pre-eclampsia or eclampsia than the women in the

treatment group.

It is interesting to compare the absolute risk reduction of 17.5 per cent with the value for risk

ratio of 42.15 per cent. The latter gives a much rosier impression of the benefits of L-arginine

and antioxidant vitamins in reducing pre-eclampsia and eclampsia. For this reason, it is impor-

tant to give the value for the absolute risk reduction as well as for the risk ratio.This reduction in

risk of 17.5 per cent may not be large enough to be either cost effective or clinically worthwhile.

Exercise 12.2. Following on from Exercise 12.1, calculate the risk ratio and interpret

your result.

The reduction in the risk ratio (or relative risk reduction RRR)

A further useful measure in this context is the reduction in the risk ratio, perhaps, more com-

monly known as the relative risk reduction (RRR). This tells us by how much the active treat-

ment reduces the risk of an adverse outcome in the treatment group compared to the control
(placebo) group. In the eclampsia example as described earlier (see Figure 12.1), the value of

0.4216 for the risk ratio tells us that women who were treated with L-arginine and antioxi-

dant vitamins had an absolute risk of pre-eclampsia and eclampsia of 0.4216 times than that

of women in the placebo (control) group. In other words, the risk for those women in the
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treatment group was reduced by (1− 0.4216)= 0.5784 compared to those treated with the
placebo. This represents a relative risk reduction of 57.84 per cent. As you can see, risk ratio
reduction is given by:

RRR = (1 − relative risk) or (1 − risk ratio)

The large reduction in the risk ratio (relative risk) of 57.84 per cent, in actual fact represented
a comparatively small absolute change in risk (17.5 per cent, shown in Figure 12.1) as a result
of the treatment.

Exercise 12.3. Following on from Exercises 12.1 and 12.2, calculate the relative risk

reduction. What does this mean?

A general formula for the risk ratio

Figure 12.3 is a generalised contingency table for a cohort study. The formula for calculating
the risk ratio is:

risk ratio =
a∕(a + c)
b∕(b + d)

= a (b + d)
b (a + c)

Exposed to risk factor?

Yes No Totals

Outcome: has disease Yes a b (a+ b)

No c d (c+ d)

Totals (a+ c) (b+ d)

Figure 12.3 Generalised contingency table for risk ratio calculations in a cohort study

Reference value

Many tables that report risk ratios (or odds ratios – see later) will contain a reference category,
against which the risk ratios in other categories are compared.This reference category is usually
labelled ‘Reference’ or given the value ‘1’. As an example, Figure 12.4 is taken from a cohort
study to assess the main factors associated with stillbirths in a multi-ethnic English maternity
population.

Number needed to treat (NNT)

A very useful and intuitively appealing way of assessing the clinical (and economic) usefulness
of any intervention is to calculate the number needed to treat or NNT. We can interpret NNT
as follows:
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NNT= the number of patients you would need to give the active treatment to (rather

than giving them the placebo or the control group treatment) to result in one less

patient experiencing the ‘bad’ outcome.

Passive smoker Smoker

Stillbirth? 166 63 104Yes
No 52,307 14,967 17,730

Relative risk Reference 1.3 1.8

Non-smoker

“Non-smoker” is
the Reference category.

A passive smoker has 1.3
times the risk of a stillbirth
compared to a non-smoker

(i.e. 30% more).

An active smoker has 1.8
times the risk of a stillbirth

(i.e. 80% more).

Figure 12.4 The number of stillbirths among a cohort of mothers who, while pregnant smoked, were

passive smokers or were non-smokers. Taken from a prospective cohort study, showing ‘Non-smoker’ as

the reference category (see Figure 8.3). Data from Gardosi et al. (2013)

NNT is easily calculated once absolute risks are known:

NNT = 1

absolute risk reduction

In the eclampsia example described earlier, the NNT is:

NNT = 1

(0.3018 − 0.1272)
= 1

0.175
= 5.71

In other words, the treatment of six women2 with L-arginine and antioxidant vitamins will
result in one less woman experiencing pre-eclampsia or eclampsia than if the six women had
received the placebo. NNT summarises this treatment effect, being a measure of the benefit of
treatment with L-arginine and antioxidant vitamins compared with placebo.

Exercise 12.4. Following on from Exercises 12.1, 12.2 and 12.3, calculate NNT in each

case. What does your NNT value mean?

Exercise 12.5. Figure 12.5 is from an investigation to assess the role of dutasteride in

preventing the clinical progression of benign prostatic hyperplasia in asymptotic men

with larger prostate. The figure contains the NNT for several individual end outcomes.

Which outcome is most economically prevented? Which the least?

2Number needed to treat must be rounded up.
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Outcome to be prevented NNT

IPSS score increase≥ 4 points 11

Acute urinary retention 16

BPH-related surgery 26

Acute urinary retention or BPH-related surgery 13

Urinary tract infection 26

Figure 12.5 Number needed to treat for various outcomes to be prevented. From a study to assess the

role of dutasteride in preventing the clinical progression of benign prostatic hyperplasia in asymptotic

men with larger prostate. Data from Toren et al. (2013)

What happens if the initial risk is small?

If the absolute risk (without treatment) is small to begin with, then the absolute risk reduc-

tion will also be small. The relative risk reduction, however, will often stay much the same and

anyway will have less consequence. On top of which the NNT will be high.

I can illustrate this point with an example where the initial risk is low.The contingency table

in Figure 12.6 shows the values for stillbirths and smoking while pregnant. Note that this is the

same table as that shown in Figure 12.4 but the passive and active smoker categories have been

amalgamated.

Smoker or passive smoker?

Yes (n= 32,864) No (n= 52,639)

Stillbirth? Yes 167 166

No 32 697 52 473

Figure 12.6 The number of stillbirths among a cohort of mothers who smoked (or were passive smok-

ers), taken from a prospective cohort study (see Figure 8.3). Data from Gardosi et al. (2013)

We can calculate the following statistics:

• Absolute risk of stillbirth for smokers= 167/(167+ 32697)= 0.00508, which is very small.

• Absolute risk of stillbirth for non-smokers= 166/(166+ 52473)= 0.00315,which is also very

small.

• Therefore, the absolute risk reduction= 0.00193 or 0.2 per cent, which is small.

• The risk ratio= 0.00315/0.00508= 0.6200, which indicates that mothers who did not smoke

while pregnant have less than two-thirds the risk of having a stillbirth thanmothers who did

smoke. Quite impressive it seems.
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• The relative risk reduction, RRR= 1− 0.6200= 0.3800, which also seems quite reasonable

but the absolute risk reduction shows that these figures are not quite as impressive as they

might seem.

• On top of which, the number needed to treat, NNT= 1/0.00193= 519 (rounded up), which

is quite a lot of mothers to persuade not to smoke while pregnant to prevent one stillbirth,

however tragic that undoubtedly would be for the mother concerned.

Confounding with the risk ratio

How can we ensure, when we calculate a risk ratio, that its value is adjusted to take into account

any possible confounders? I discussed ways in which we might deal with confounding in

Chapter 7, and these included some methods, which we can carry out at the design stage (e.g.

matching, restrictions, and stratification) and some at the analysis stage (mainly adjustment,

using regression methods). All of these methods are used with cohort studies to adjust the risk

ratio, but the use of regression models is possibly the most common (see Chapters 21 and 22).

As an example of adjustment for confounders, Figure 12.7 is taken from a cohort study to

investigate the frequency and risk factors for carcinogenic human papillomavirus (HPV) in

2185 sexually active young women.The adjustment for confounders in this study was achieved

using regression methods.The factors adjusted for included all of those listed in the table, plus

Characteristic Relative risk (95% CI) of HPV infection

Crude Adjusted*

*Controlled for all significant variables from the unadjusted analysis and for age <20 and
age <16 at first sex.

No (%) of
women with
characteristic

Age <20 years
Black ethnicity
Smoker
≥2 sexual partners in
previous year
Age <16 years at first sex
Use of condoms

939/2185 (43)
579/2172 (27)
682/2175 (31)
932/2172 (43)

612/2148 (28)
1160/2164 (54)

1.12 (0.94 to 1.34)
1.28 (1.06 to 1.54)
1.28 (1.07 to 1.54)
2.09 (1.74 to 2.51)

1.05 (0.86 to 1.27)
1.28 (1.07 to 1.53)

0.97 (0.81 to 1.17)
1.20 (0.98 to 1.47)
1.07 (0.88 to 1.30)
1.87 (1.54 to 2.26)

0.97 (0.79 to 1.18)
1.11 (0.93 to 1.34)

The risk factor ‘being aged less than 20’
has a crude risk ratio (i.e. unadjusted

for possible confounders) of 1.12. 
This means that being <20 carries a
12% greater risk of HPV than being

aged 20 or over . . .

. . . but when this risk factor
is adjusted for confounders,

the relative risk (the risk ratio)
falls to 0.97 (3% less).

Figure 12.7 Risk factors for prevalent carcinogenic HPV infection (n= 404) in 2185 women at baseline
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sexually transmitted infections (i.e. concurrent Chlamydia trachomatis, Mycoplasma genital-
ium, Neisseria gonorrhoeae or bacterial vaginosis). Note that the table includes the 95 per cent
confidence intervals which I will deal with in Chapter 15.

As you can see, the difference between the crude risk ratios (relative risks in the table)

and those adjusted for the various potential confounding factors differ, in some cases quite

markedly. For example, young women aged <20 years old have a crude relative risk of HPV of

1.12 (12 per cent greater than those not<20 years old). But the adjusted risk ratio (relative risk)

is only 0.97. We have no idea whether these values, derived from this sample of individuals,

are also true of the more general population from which this sample was taken or whether it

has occurred simply by chance (see Chapter 10). We need confidence intervals to answer this

question – once again you will have to wait until we deal with these in Chapter 15.

Odds

We can think of the odds for some outcome as an alternative way of expressing probability (or

risk, which we have seen is the same as probability), although it is not quite the same thing,

and odds are perhaps a more difficult concept to take on board than is risk. As you have seen

earlier, the probability (or risk) of a particular outcome is the number of outcomeswhich favour

that particular outcome divided by the total number of outcomes. But the odds of a particular
outcome are equal to the number of outcomes favourable to the particular outcome divided by

the number of outcomes not favourable to the outcome.

To give a simple example, the probability of picking a picture card (Jack, Queen or King) from

a pack of cards is 12/52 because there are 12 outcomes that favour getting a picture card3 and

52 outcomes in total. However, the odds of picking a picture card is 12/40 because the number

of outcomes favourable to getting a picture card is still 12, but the number of outcomes not

favouring getting a picture card is 40.

Note that:

• the value of the odds for an outcome can vary from zero to infinity.

• when the odds for an outcome are less than one, the odds are unfavourable to the outcome;

the outcome is less likely to happen than it is to happen.

• when the odds are equal to one, the outcome is as likely to happen as not.

• when the odds are greater than one, the odds are favourable to the outcome; the outcome is

more likely to happen than not.

As an example, we can calculate the odds from a table such as that for the exercise and stroke

case–control study as shown in Figure 12.8 (Figure 8.7 reproduced here to save you the effort

of turning back many pages).

3There are 12 picture cards in a normal pack of 52 cards.
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Cases

(stroke (n= 125))

Controls

(healthy) (n= 198)

Exercise undertaken when Yes 55 130

aged 15–25 No 70 68

Figure 12.8 Contingency table showing data for a sample of individuals who had or had not exercised

between the ages of 15 and 25 and subsequent stroke when adult

For instance:

• Among those patients who’d had a stroke (the cases), 55 had exercised (been exposed to the

‘risk’ of exercising) and 70 had not, so the odds that those with a stroke had exercised is

55/70= 0.7857.

• Among those patients who hadn’t had a stroke (the controls), 130 had exercised and 68 had
not, so the odds that those who had not had a stroke had exercised is 130/68= 1.9118.

In other words, among those who’d had a stroke, the odds that they had exercised was 0.411

(0.7857/1.9118) – less than half the odds of those who had not had a stroke. We can conclude

on the basis of this sample that exercise when young seems to confer protection against a stroke

later in life. Of course we don’t know if this result could have occurred just by chance or if it is

real. We will need confidence intervals to answer this question (see Chapter 15).

Exercise 12.6. Thecontingency table in Figure 12.9 is from a study exploring a possible

relationship betweenwomen taking antidepressantswhile pregnant (some ofwhomwere

depressed and some who were not depressed4) and autism spectrum disorder (without

intellectual disability) in their offspring. Calculate (a) the odds for depression in moth-

ers among the cases (autism spectrum disorder), and (b) the odds among the controls.

Interpret your results.

Exercise 12.7. Figure 12.10 is from amatched case–control study intomaternal smok-

ing during pregnancy and Down syndrome (Chi-Ling et al. 1999). It shows the basic
characteristics of mothers giving birth to babies with Down syndrome (cases) and with-

outDown syndrome (controls). Use the information in the table to construct appropriate

separate 2× 2 contingency tables for women (a) aged under 35, and (b) aged 35 and over.

In each case, calculate the odds (ignoring the Unknown category) that they had smoked

during pregnancy for mothers giving birth to: (i) a Down syndrome baby, and (ii) a

healthy baby. What do you conclude?

4I am not sure why someone who wasn’t depressed would be taking anti-depressants.
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Number of cases

(autism spectrum disorder)

Number of

controls

Mother depressed Yes 7 14

during pregnancy? No 9 36

Figure 12.9 Contingency table showing mothers who had used antidepressant medication while

pregnant, who were depressed and who were not depressed, and autistic spectrum disorder (without

intellectual disability) in their offspring. Data from Rai et al. (2013)

Cases (n= 775) Controls (n= 7750)

Smoking during pregnancy? Age< 35 years

Yes 112 (20.0) 1411 (20.2)

No 421 (75.0) 5214 (74.6)

Unknown 28 (5.0) 363 (5.2)

Aged≥ 35 years

Yes 15 (7.0) 108 (14.2)

No 186 (86.9) 611 (80.2)

Unknown 13 (6.1) 43 (5.6)

Figure 12.10 Basic characteristics of mothers in a case-control study of maternal smoking and Down

syndrome. Data from Chi-Ling et al. (1999)

Why you can’t calculate risk in a case–control study

For most people, the risk of some particular outcome, being akin to probability, makes more

sense and is easier to interpret than the odds for that same outcome. That being so, maybe

it would be more helpful to express the stroke/exercise result in the case–control study in

Figure 12.8 as a risk rather than as odds. Unfortunately, we can’t and here is why.

To calculate the risk that those with a stroke had exercised, you need to know two things: the

total number who’d had a stroke and the number of those who had been exposed to the risk (of

exercise). You would then divide the latter by the former. In a cohort study on the other hand,

you start with healthy individuals and follow them to measure the proportion exposed to the

risk factor who subsequently developed the illness. This proportion would be an estimate of

the risk in the population.

However, in a case–control study, you select on the basis of whether people have some illness

or condition or not. So you have one group composed of individuals who’ve had a stroke, and

one group who have not had stroke, but both groups will contain individuals who were, and

who were not, exposed to the risk. Moreover, you can select whatever number of cases and

controls you want. You could, for example, halve the number of cases and double the number

of controls. This means that the column totals, which you would otherwise need for your risk

calculation, aremeaningless.The result of this is that the population at risk cannot be estimated

using a case–control study and so risks and risk ratios cannot be calculated. However, there is

a way round this problem, as you will see shortly, when we come to calculate the odds ratio.
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The link between probability and odds

Theconnection between probability (risk) and oddsmeans that it is possible to derive one from
another:

risk or probablity = odds

(1 + odds)

odds =
probablity

1 − probablity

Exercise 12.8. Following on from Exercise 12.7, what is the probability that a mother

chosen at random from those aged ≥35, will have smoked during pregnancy if they are,

(a) mothers of Down syndrome babies, and (b) mothers of healthy babies?

The odds ratio

With a case–control study, you can compare the odds that those with an illness will have been
exposed to the risk factor, with the odds that those who do not have the illness will have been
exposed. If you divide the former by the latter, you get the odds ratio. In other words, an odds
ratio compares the odds of acquiring the illness if exposed to the risk, with the odds of the
illness if not exposed to the risk.
With Figure 12.8, you calculated the odds for the stroke and exercise study (where we are

treating exercise as the risk factor) as follows:

• the odds that those with a stroke had exercised= 55/70= 0.7857.

• the odds that those without a stroke had exercised= 130/68= 1.9118.

• the odds ratio= 0.7857/1.9118= 0.4110.

This result suggests that those with a stroke are less than half as likely to have exercised when
young as the healthy controls – about 41%of the odds. It would seem that exercise is a beneficial
‘risk’ factor.
As it happens, there is a different, more useful way, of looking at the odds ratio. Let us illus-

trate this alternative approach with a new example. Researchers used a case–control design to
investigate the odds for admission to hospital with hyperkalaemia (excessive blood potassium
levels, which can be fatal) among elderly patients using spironolactone (for systolic heart fail-
ure) who were additionally prescribed either amoxicillin or trimethroprim-sulfamethoxazole
(TMP-SMX) for urinary tract infection. The finger of suspicion pointed at TMP-SMX as a
possible causal factor for hyperkalaemia.
Figure 12.11 shows the numbers involved in the study. The cases were patients using

spironolactone plus either amoxicillin or TMP-SMX, who were admitted to hospital with
hyperkalaemia. The controls were patients using spironolactone plus either amoxicillin or
TMP-SMX but who were not admitted to hospital with hyperkalaemia.
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Drug received Cases (admitted

with hyperkalaemia)

(n= 248)

Controls (not admitted

with hyperkalaemia)

(n= 783)

TMP-SMX 161 162

Amoxicillin 36 325

Figure 12.11 Contingency table showing values for admission to hospital with hyperkalaemia

(excessive blood potassium levels, which can be fatal) among elderly patients using spironolac-

tone (for systolic heart failure) who were additionally prescribed either amoxicillin or trimethroprim-

sulfamethoxazole (TMP-SMX). Data from Antoniou et al. (2011)

Odds for admission with hyperkalaemia when using TMP-SMX (rather than amoxicillin)

among cases= 161/36= 4.4722

Odds for admission with hyperkalaemia when using TMP-SMX (rather than amoxicillin)

among controls= 162/325= 0.4985

Thus, the odds ratio for admissionwith hyperkalaemia (the cases) among users of TMP-SMX

compared to users of amoxicillin (the controls) was:

Odds ratio = 4.4722

0.4985
= 8.9720

So patients admitted with hyperkalaemia (the cases) had nearly nine times the odds that they

had used TMP-SMX rather than amoxicillin.

Now, we come to an alternative way of looking at these study results. Let us face it, as health
practitioners, it would be more useful if we knew the odds that a patient would develop hyper-

kalaemia if they were treated with SMP-TMX and not amoxicillin rather than what they might

have been treated with if they have hyperkalaemia. If we know that TMP-SMX is likely to cause

hyperkalaemia in patients already using spironolactone then we will not give it to them! But

we would use amoxicillin instead (or some other safe antibiotic).

This alternative approach requires us to look at the contingency table ‘the other way round’,

as you will now see.

The odds that a patient using TMP-SMX develops hyperkalaemia= 161/162= 0.9938

The odds that a patient using amoxicillin develops hyperkalaemia= 36/325= 0.1108

So the odds ratio = 0.9939

0.1108
= 8.9720.

The same result as before! So a patient using TMP-SMX has nearly nine times the odds of

developing hyperkalaemia than a patient using amoxicillin. We would thus be extremely cir-

cumspect about using it. Therapeutically, this is a more useful approach. We can add that this

result is statistically significant and remains so when adjusted for potential confounders (in

fact, the odds increase to 12.4 times).

We can generalise the odds ratio calculation with the help of the 2× 2 table shown in

Figure 12.12.

The odds of exposure to the risk factor among those with the disease = a

c
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The odds of exposure to the risk factor among the healthy controls = b

d

Therefore, odds ratio =
a∕c
b∕d

= ad

bc

Cases (ill) Controls (healthy)

Exposed Yes a b

to risk? No c d

Figure 12.12 Generalised 2× 2 contingency table for calculation of odds ratio

Or the ‘other way round’:

The odds of being a case if exposed to the risk factor = a

b

The odds of being a control (not being a case) if exposed to the risk factor = c

d

Therefore, the odds ratio =
a∕b
c∕d

= ad

bc

The same result as before but therapeutically more useful.

Exercise 12.9. Using the data in Figure 12.8, calculate the odds of having a stroke

among those who had exercised compared to those who had not.

Exercise 12.10. Use the results from Exercise 12.8 to calculate: (a) the odds ratio for

smoking among the mothers of Down syndrome babies compared to mothers of healthy

babies for: (i) mothers aged under 35, (ii) mothers aged 35 and over. (b) Now, do it the

other way round, that is, calculate the odds ratio of a mother having a Down syndrome

baby if she smoked while pregnant. (c)Interpret your results in both approaches.

Confounding with the odds ratio

How can we adjust for confounders when we calculate odds ratios? I discussed ways in which

we might deal with confounding in Chapter 7, both at the design stage (e.g. matching, restric-

tion, and stratification) and at the analysis stage (mainly adjustment, using regression meth-

ods). All of thesemethods can be used, but the use of logistic regression is a particularly popular

method to calculate the odds ratios from case–control studies because it is a comparatively easy

way of adjusting odds ratios for confounders – easier than adjusting risk ratios in a cohort

study. (I will discuss logistic regression in Chapter 22).
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Approximating the risk ratio from the odds ratio

I had mentioned earlier that the population at risk cannot be estimated using a case–control

study, and so risks and risk ratios cannot be calculated. However, there is a happy ending. The

sample odds ratio in a case–control study is an estimator of the population odds ratio, which

in turn is a reasonably good estimator of the equivalent population risk ratio but only if the
illness or condition is rare, usually taken to be less than 10 per cent. In these circumstances, this

means that odds ratios can be adjusted for confounders using logistic regression and the results

interpreted as adjusted risk ratios. This is a bit of a back door way of using the comparatively

easy logistic regression approach for the adjustment of risk ratios for which other methods,

although available, are less straightforward.

Exercise 12.11. Using the formulae for risk ratio and odds ratio given earlier, can you

show that they are approximately the same when the condition (illness) is rare?

Remember that the risk ratios and odds ratios referred to in this chapter are sample values.
We need to knowwhether these values are true reflections of the situation in the corresponding

populations. I will address this problem when we discuss confidence intervals for the ratios in

Chapter 15.
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13
Estimating the value of a single
population parameter – the idea
of confidence intervals

Learning objectives

When you have finished this chapter, you should be able to:

• Describe the sampling distribution of the sample mean and the characteristics of its

distribution.

• Explain what the standard error of the sample mean is and calculate its value.

• Explain how you can use the probability properties of the Normal distribution to

measure the preciseness of the sample mean as an estimator of the population mean.

• Derive an expression for the confidence interval of the population mean.

• Calculate and interpret a 95 per cent confidence interval for a population mean.

• Calculate and interpret a 95 per cent confidence interval for a population proportion.

• Explain and interpret a 95 per cent confidence interval for a population median.

Medical Statistics from Scratch: An Introduction for Health Professionals, Third Edition. David Bowers.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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Confidence interval estimation for a population mean

To give you an idea what a confidence interval is, suppose, contemplating a trip to Iran, you
ask your travel agent, ‘How hot is it at this time of year in Tehran?’ She answers, ‘I’m pretty
certain that it’s going to be between 30∘C and 40∘C’. She is providing you with a confidence
interval. She is estimatingwhat the the actual temperature will be, based on her knowledge and
experience. And she is ‘pretty certain’. This is her level of confidence, although you cannot be
too sure exactly what this means. Does it mean she is 50 per cent sure? or 90 per cent sure? If a
doctor tells a terminally ill patient that in her experience nine out of 10 patients do not survive
more than a year, she can say that she is 90 per cent confident that the patient will not survive
a year. The doctor is 90 per cent confident. The doctor is also making an estimate based on her
experience and knowledge.
You saw at the beginning of Chapter 10 that we can use a sample statistic tomake an informed

guess, or estimate, of the value of the corresponding population parameter. For example, the
sample mean birthweight for the 100 babies in Figure 1.1 is 3251.8 g, so we can estimate that
the population mean birthweight of all infants of whom this sample is representative, will also
will be about 3251.8 g, plus or minus some (hopefully) small random or sampling, error (see
Chapter 10 for a reminder of sampling error). The value of the sample mean of 3251.8 g is
known as the point estimate of the population mean. It is the single best guess you could make
as to the value of the population mean. The crucial questions seem to be:

• How small is this ‘plus or minus’ bit? Can it be quantified?

• Can we establish how precise our sample mean birthweight is as an estimate of population
mean birthweight?

• How close to the population mean can you expect any given sample mean to be?

As you can see, these are all essentially the same question, ‘How big an error might we be
making when we use the sample mean as an estimate of the population mean?’ This question
can be answeredwithwhat is known as a confidence interval, which is a numeric expression that
quantifies the likely size of the sampling error. But to be able to calculate a confidence interval,
we need first to introduce an important concept in statistical inference – the standard error.
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The standard error of the mean

Standard error comes with a health warning. From over 20 years of teaching medical statis-
tics to medical students, doctors, nurses and other health professionals, I have discovered that
many people find the concept difficult (not you of course!). Here goes. We can use a computer
program (SPSS,Minitab, Stata, etc.) to calculate themean birthweight of a sample of 100 babies’
birthweights as shown in Figure 1.1 to be 3251.8 g. This value is our point estimate of the cor-
responding population mean. Remember, we do not actually know what the population mean
is, but we hope that the value of our sample mean is close to the population mean value (it is
unlikely to be exactly the same except by a remarkable coincidence).
As we noted in Chapter 10, any difference between our point estimate of 3251.8 g and the

unknown population mean will be due to sampling error, that is, the error introduced because
we are working with a sample and not the population itself. We can judge (quantify) the accu-
racy of our sample mean as an estimate of the population mean with the help of the value of
the standard error of the mean, usually abbreviated to standard error, and we do this by using
the standard error to calculate a confidence interval (which we will come to shortly). But what
is the standard error?
To explain, suppose that you could take a second sample of 100 infants from the same popu-

lation. This sample would produce a different value for the sample mean birthweight than the
first sample (coincidentally it could be the same – possible but unlikely). And a third sample,
and a fourth and so on, would each give you a different sample mean value. In fact, from any
realistic population you could (in theory), take a huge number of different same-size samples,
each of which would produce a different sample mean. Now, imagine that you took all possible
samples of a given size from a population and calculated the sample mean for each sample, you
would find that the distribution of all of these sample means:

• is Normal. This Normal-ness of the distribution of sample means is a very useful quality (to
say the least); we will depend on it a lot in what is to come.

• is centred around the true population mean. In other words, the mean of all possible sample
means is the same as the population mean.

This is very reassuring because it means that, on average, the sample mean estimates the
population mean exactly. But note the ‘on average’. All of the above is completely theoretical.
You do not get to take all possible samples; in fact, you normally get to take only one. Whether
its sample mean value is close to the population mean, or further away, you have no way of
knowing because you do not knowwhat the value of the populationmean actually is.The good
news is that your samplemean ismore likely to be closer to themiddle of the distribution rather
than further away simply because there are are more values closer to the centre. However, the
confidence interval (coming shortly!) will give you some indication of how close your sample
mean is to the population mean.
Figure 13.1 illustrates the scenario mentioned earlier. This shows a hypothetical distribution

of the sample means of a large number of samples taken from some population (so not all pos-
sible sample means but a large number anyway). It has a Normal curve superimposed upon it
to give an indication of how close the distribution is to Normal (and if it was all possible sample
means of a given size, the distribution would be perfectly Normal). The distribution is centred
around the (unknown) population mean. Because the distribution is Normal, three standard
errors on either side of the central value will include approximately 99 per cent of all sample
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Sample means

Standard error Population mean

We can fit three of these
standard errors either side of the
centre, which will include about
99% of all sample mean values.

You may be unlucky when
you take your sample and get
a sample mean quite a long
way from the true population

mean . . .

. . . or you might be lucky
and get a sample mean
close to the population

mean.

But you won't know
either way because you
don't know the value of
the population mean.

However, the confidence
interval will give you

some indiction as to the
accuracy of your

particular sample mean.

Figure 13.1 Sampling distribution of the sample mean

means (just as there are three standard deviations on either side of a Normally distributed sin-

gle sample). This means that when you take a sample and calculate the sample mean, there is

only a one per cent chance that your sample mean will be further than three standard errors

(on either side) from the population mean.

The standard error is usually abbreviated as s.e.(x), where the symbol x stands for the sample

mean. Remember that the standard deviation is a measure of the spread of the data in a single
sample, whereas the standard error is ameasure of the spread in all (same-size) possible sample

means from a population. We can estimate the standard error with the equation:

s.e.(x) = s√
n
.
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where s is the sample standard deviation and n is the sample size. Notice that as the sample size

n increases, the estimated standard error decreases. In other words, the bigger the sample, the

smaller is the error in our estimate of population mean. Intuitively, this feels right.

As the distribution of sample means is Normal, we can make use of the area properties of the

Normal distribution (see Figure 6.7). If the sample standard deviation is 550 g and the sample

size n= 100, then the standard error= (550/
√
100)g= 55 g. Because the distribution of sample

means is Normal, this means that about 95 per cent of sample means will lie within plus or

minus two standard errors of the population mean. That is within plus or minus 2× 55 g or

110 g of the population mean. In other words, there is a pretty good chance (a probability of

0.95 in fact) that any single sample mean will be no further than 110 g from the (unknown)

population mean.

The earlier discussion about taking lots of different samples from a population is entirely

theoretical. In practice, as we noted previously, you will usually only get to take one sample

from a population, the value of whose mean you will never know. To sum up, the standard

error is the measure of the preciseness of the sample mean as an estimator of the population

mean. Smaller is better. If you are comparing the precision of two different sample means as

estimates of a population mean, the sample mean with the smallest standard error is likely to

be the more precise.

Exercise 13.1. A team of researchers used a cohort study to investigate the intake of

vitamins E and C, and the risk of lung cancer, Yong et al. (1997). Nineteen years into the

study, they calculated the mean (and the standard error) intake of vitamins E and C, of

the individuals with and without lung cancer. These were:

Vitamin E: Lung cancer 6.03mg (0.35mg). Not lung cancer 6.30mg (0.05mg)

Vitamin C: Lung cancer 64.18mg (5.06mg). Not lung cancer 82.21mg (0.80mg).

How would you interpret these results in terms of the likely precision of each of the

sample means as estimators of their respective population means?

How we use the standard error of the mean to calculate a
confidence interval for a population mean

With the standard error under our belt, we can now get to grips with the confidence interval.
Just as a reminder (think back to the holiday in Iran mentioned earlier), a confidence interval

is a range of values within which you can have a certain level of confidence (invariably 95 per

cent) that some population parameter (the population mean in this case) is to be found.

You have seen that we can be 95 per cent confident that any samplemean is going to be within

plus or minus two standard errors of the population mean. With some arithmetical manipula-

tion, we can use this fact to show that:
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• we can be 95 per cent confident that the interval from the sample mean− (2× standard

error) to the sample mean+ (2× standard error) will include the population mean.

• or in probability terms, there is a probability of 0.95 that the interval from the sample

mean− (2× standard error) to the sample mean+ (2× standard error) will contain the

population mean.

In other words, if you pick one out of all the possible sample means at random, there is a

probability of 0.95 that it will lie within two standard errors of the population mean. In other

words, the 95 per cent confidence interval for the population mean is given by the expression:

[x − 2 × s.e.(x)] to [x + 2 × s.e.(x)]

where x is the sample mean and s.e.(x) is the standard error of the sample mean (see above).

Note that in practice, instead of the value 2, computers will use an appropriate value from the

t distribution. The t distribution is similar to the Normal distribution (but slightly flatter and

wider), and the similarity increases as sample size increases. In most situations, this value will

be very close to 2,1 so the above approximation is not too far out.

The above result means that you now quantify just how close a sample mean is likely to be

to the population mean. A 95 per cent confidence level is most common, but 99 per cent confi-

dence intervals are also used on occasion. Note that the confidence interval is sometimes said

to represent a plausible range of values for the population parameter.

An example from practice

In the histogram in Figure 4.6, the mean cord platelet count in a sample of 4382 infants is

306× 109/l, and the standard deviation is 69× 109/l, so the standard error of the mean is:

s.e.(x) = 69 × 109√
4382

= 1.042 × 109 per litre

Therefore, the 95 per cent confidence interval for the population mean cord platelet count is:

(306 − 2 × 1.042) × 109∕l to (306 + 2 × 1.042) × 109∕l

or

(303.92 to 308.08) × 109∕l

which we can interpret as follows: we can be 95 per cent confident that the interval from

303.92× 109/l to 308.08× 109/l, will contain the population mean cord platelet count. Alter-

natively, there is a probability of 0.95 that the interval from 303.92 to 308.08 will contain the

1For example, when n= 50, t= 2.009; when n= 100, t= 1.984; when n= 200, t= 1.972 and when n= 1000,

t= 1.962.
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population mean value. Of course there is also a 5 per cent chance (or a 0.05 probability) that

it will not!

Alternatively, we can say that the interval (303.916–308.084)× 109/l represents a plausible
range of values for the populationmean cord platelet count.The narrower the confidence inter-

val, the more precise is the estimator. In the cord platelet example, the small width, and there-

fore high precision of the confidence interval, is because of the large sample. By the way, it is

a good practice to put the confidence interval in brackets and to use the ‘to’ in the middle and

not a ‘−’ sign or a hyphen as this may be confusing if the confidence interval has a negative

value.

Exercise 13.2. Use the summary age measures given in Figure 1.7 for the life events

and breast cancer study to calculate the standard error and the 95 per cent confidence

intervals for the populationmean age of (a) the cases, and (b) the controls. Interpret your

confidence intervals. What do you make of the fact that the two confidence intervals do

not overlap?

An example from practice

The results shown in Figure 13.2 are from a randomised trial to evaluate the use of an inte-

grated care scheme for asthma patients, in which care is shared between the GP and a specialist

chest physician (ignore the last column for now – we will discuss the ratio of the means in

Chapter 15).The treatment group patients each received this integrated care, the control group

received conventional care – from their GP only.The researchers were interested in the differ-

ences between the groups, if any, in a number of outcomes shown in the figure (ignore the last

column for now). The target population they have in mind is, perhaps, all asthma patients in

the UK.

You can see that in the integrated care group of 296 subjects, the sample mean number of

bronchodilators prescribed over 12 months was 10.1, with a 95 per cent confidence interval

for the population mean of (9.2–11.1). So you can be 95 per cent confident that somewhere

between 9.2 and 11.1 is to be found the populationmean number of bronchodilators prescribed

for this group. In the control group, the sample mean is 10.6 with a 95 per cent confidence

interval for the population mean (9.7–11.7), which can be similarly interpreted.

Exercise 13.3. Interpret and compare the samplemean number of hospital admissions

and their corresponding confidence intervals for the two groups in Figure 13.2.

Exercise 13.4. For the 100 birthweights shown in Figure 1.1, the mean birthweight

is 3251.8 g and the standard deviation is 564.2 g. Calculate the 95 per cent confidence

interval for the population mean birthweight. How would you interpret this?
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Clinical outcome Integrated care

(n≥ 296)

Conventional care

(n≥ 277)

Ratio of means

No. of bronchodilators

prescribed

10.1 (9.2 to 11.1) 10.6 (9.7 to 11.7) 0.95 (0.83 to 1.09)

No. of inhaled steroids

prescribed

6.4 (5.9 to 6.9) 6.5 (6.1 to 7.1) 0.98 (0.88 to 1.09)

No. of courses of oral steroids

used

1.6 (1.4 to 1.8) 1.6 (1.4 to 1.9) 0.97 (0.79 to 1.20)

No. of general practice

asthma consultations

2.7 (2.4 to 3.1) 2.5 (2.2 to 2.8) 1.11 (0.95 to 1.31)

No. of hospital admissions for

asthma

0.15 (0.11 to 0.19) 0.11 (0.08 to 0.15) 1.31 (0.87 to 1.96)

Figure 13.2 Means and 95 per cent confidence intervals for a number of clinical outcomes over 12

months, for asthma patients. The treatment group patients received integrated care, the control group

conventional GP care. Data from Grampian Asthma Study of Integrated Care (1994)

Confidence intervals as described before can also be applied to a population percentage, pro-
vided that the values are percentages of a metric variable (e.g. percentage mortality across a

number of ICUs, see Figure 2.14). However, if the proportion in question is a response to

a question such as alive or dead, malignant or benign, pre-menopausal, peri-menopausal or

post-menopausal. Then the approach described below is appropriate.

Confidence interval for a population proportion

Suppose that we administer a drug to a sample of 100 patients with suspected myocardial

infarction and 80 respond positively; then, the sample proportion, p, of positive responses is:

p = 80

100
= 0.80

In general, if the sample size is n and there are r positive responses, then, the sample propor-
tion p, is:

p = r
n

We want to know what the 95 per cent confidence interval is for a population proportion.

The sampling distribution of the sample proportion has a binomial distribution (see Chapter

11 for a brief mention of the binomial distribution) and so the approach that we need to get a

confidence interval for a population proportion would be based on the binomial distribution,

which is quite complicated. However, provided that the proportion is not too close to 0.1 or to

0.9, and the sample size not too small,2 as will usually be the case, then we can use the Normal

2As a rule of thumb, np and n(1− p) should both exceed 5.
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approximation to the binomial distribution to address this question – which makes things a
lot easier. In these circumstances, the standard error of the sample proportion is:

s.e.(p) =
√

p(1 − p)
n

where p is the sample proportion and n is sample size.
The 95 per cent confidence interval for the population proportion has a similar structure

to that for the population mean and it is equal to the sample proportion plus or minus 1.963

standard errors:
[p–1.96 × s.e.(p)] to [p + 1.96 × s.e.(p)]

For example, as shown in Figure 1.7, 14 of the 106 women with a malignant diagnosis were
pre-menopausal giving a sample proportion p of 14/106 or 0.13.The standard error of p is thus:

s.e.(p) =
√

0.13 (1 − 0.13)
106

= 0.0327

Therefore, the 95 per cent confidence interval for the population proportion who are
pre-menopausal is:

(0.13–1.96 × 0.0327) to (0.13 + 1.96 × 0.0327) = (0.0659 to 0.1941)

In other words, you can be 95 per cent confident that the proportion of cases in this popula-
tion who are pre-menopausal lies somewhere between 0.066 and 0.194 or between 6.6 per cent
and 19.4 per cent.

Exercise 13.5. From Figure 1.3, we can discover that the number of mothers who

smoked while pregnant was 77 out of 500. Calculate the 95 per cent confidence interval

for the population proportion of mothers who smoked. Comment on your result.

As a further example, Figure 13.3 shows an example of the use of 95 per cent confidence
intervals with percentages.This is from a study investigating the efficacy of a recently approved
drug (etanercept) as a treatment option for patients with psoriasis and active psoriatic arthritis.
The participants in this trial were suffering from psoriasis and were randomly allocated to

receive etanercept either biweekly in a blinded randomised controlled trial, then once weekly
in an open-label trial, for 12weeks, or onceweekly in a blindedRCT, followed by onceweekly in
an open-label trial.The table shows the percentage of patients achieving various ACR criteria,4

along with 95 per cent confidence intervals, for both arms of the trial.

3When we deal with proportions, we use, not the t distribution but the z or Standard Normal distribution. The

95 per cent value for z is 1.96.
4American College of Rheumatology (ACR) Criteria. This is a scale to count the number of tender or swollen

joints, with scores of ACR20, ACR50 and ACR70. For example, if 55 per cent of patients scored ACR20, then
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Etanercept 50mg.

Twice weekly then once weekly

(n= 379)

Etanercept 50mg

Once weekly then once weekly

(n= 373)

Participants achieving ACR response

ACR 20 week 12 239/360 (66.4, 61.3 to 71.3) 219/360 (60.8, 55.6 to 65.9)

ACR 20 week 24 249/361 (69.0, 63.9 to 73.7) 258/360 (71.7, 66.7 to 76.3)

ACR 50 week 12 161/360 (44.7, 39.5 to 50.0) 146/360 (40.6, 35.4 to 45.8)

ACR 50 week 24 187/361 (51.8, 46.5 to 57.1) 193/360 (53.6, 48.3 to 58.9)

ACR 70 week 12 73/360 (20.3, 16.2 to 24.8) 79/360 (21.9, 17.8 to 26.6)

ACR 70 week 24 125/361 (34.6, 29.7 to 39.8) 132/360 (36.7, 31.7 to 41.9)

Figure 13.3 The table is an abbreviated extract from a study to compare the efficacy of two different

etanercept regimens in the treatmentof skin manifestations of psoriasis. It shows the percentage of

patients achieving American College of Rheumatology (ACR) criteria in both arms of the trial. In one

arm, patients received biweekly treatment for 12 weeks with etanercept in a randomised controlled trial,

followed by weekly treatment for 12 weeks in an open-label trial. In the other arm patients received

once weekly treatment for 12 weeks in both periods. Data from Sterry et al. (2010)

Exercise 13.6. What are the point estimates of the percenatge of patients achieving

ACR 20 in week 12 in each of the two groups? Which treatment regimen therefore

appears to be the most successful for this criterion?

Exercise 13.7. Figure 13.4 is from a study to determine the association between the

concentration of prostate specific antigen (PSA) at an age of 40–55 and the subsequent

risk of prostate cancer metastasis and mortality in an unscreened population, in order

to evaluate when to start screening for prostate cancer and whether rescreening could

be risk stratified. The figure shows the proportion of deaths or metastases from prostate

cancer captured by respective categories of increased concentrations of PSA for the same

individuals at age 45–49 and 51–55. Compare the proportions and the precision of

the confidence intervals for death and metastases for the highest tenth of PSA in each

age group.

Estimating a confidence interval for the median of a single
population

If your data is ordinal then the median rather than the mean is the appropriate measure of
location (review Chapter 5 if you are not sure why). Alternatively, if your data is metric but

that means 55 per cent of the patients in the study achieved a 20 per cent improvement in tender or swollen

joint counts as well as a 20 per cent improvement in three of the other five criteria. If a clinical trial reports that

40 per cent of patients scored ACR50, then that means 40 per cent of the patients in the study achieved a 50 per

cent improvement in tender or swollen joint counts as well as 50 per cent improvement in three of the other

five criteria.
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PSA concentration (μg/l) Proportion (95% CI)

Deaths

(n= 245)

Metastases

(n= 235)

Age 45–49 at baseline screen

Highest 10th ≥1.6 44 (34 to 53) 40 (33 to 48)

Highest quarter ≥1.06 54 (45 to 63) 51 (44 to 59)

Below median <0.68 28 (20 to 37) 28 (22 to 35)

Age 51–55 at second screen

Highest 10th ≥2.4 44 (32 to 56) 42 (32 to 52)

Highest quarter ≥1.4 59 (47 to 71) 56 (46 to 66)

Below median <0.85 16 (7 to 25) 18 (10 to 26)

Figure 13.4 The proportion of deaths or metastases from prostate cancer captured by respective

categories of increased concentrations of PSA at age 45–49 or 51–55. Data from Vickers et al. (2013)

skewed (or your sample is too small to check the distributional shape), you might also prefer

the median as a more representative measure. Either way, a confidence interval will enable you

to assess the likely range of values for the population median.

Calculation of a confidence interval for a single median is not as straightforward as that for a

mean or a proportion.Methods, such as bootstrapping,5 are available, although not overwhelm-

ingly common in mainstream journals. As far as my knowledge goes, SPSS does not calculate

a confidence interval for a single median but Minitab does and bases its calculation on the

Wilcoxon signed-rank test6 (I will discuss this test in Chapter 16).

As an example, Figure 13.5 shows the sample median and 95 per cent confidence interval

for mothers’ weight at booking, among the mothers of a sample of 500 infants from the Born

in Bradford study, reproduced fromMinitab and derived from the Wilcoxon signed-rank test.

As you can see, the 95 per cent confidence interval for the population median mothers’ weight

at booking was (65.00–68.00) kg. Examples of confidence intervals for single medians are not

easy to find among the more common clinical papers.

Wilcoxon Signed Rank CI: mum bkg wt

Confidence Interval
Achieved

N Median Confidence Lower Upper

mum bkg wt 500 66.50 95.0 65.00 68.00

Figure 13.5 Median and 95 per cent confidence interval for mothers’ weight at booking for a sample

of 500 infants. Produced by Minitab using data from the Born in Bradford study (2012)

5Bootstrapping involves the repeated sampling (with replacement) of the original sample to produce a great

many samples. The required statistic is computed for each sample and the results amalgamated.
6We will not deal with hypothesis tests until we get to Chapter 16, but the confidence intervals, which I discuss

in this chapter and in the next chapter, are based on a number of such tests. The alternative would have been

for me to introduce hypothesis tests before I deal with confidence intervals. However, for various pedagogic

reasons I did not think this was appropriate.
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Randomised∗ (n= 48) Declined† (n= 31)

Registered patients 7142 (4372 to 8830) 5524 (3014 to 8211)

Female doctors within a practice (%) 45.3 (10.6 to 53.5) 47.9 (32.5 to 66.5)

Postgraduate training practice

Yes 29 (60%) 14 (50%)

No 19 (40%) 14 (50%)

Registered patients on low income (%) 32 (13 to 34) 20 (9 to 30)

Data are median (interquartile range) or n (%).
∗The randomised group excludes three practices that were opted out.
†Three results missing for teaching practice and list size. Six missing for income, seven missing for

percentage of female doctors.

Figure 13.6 Characteristics of practices randomised compared with those of practices that declined.

From a study to test the effectiveness of a programme to identify victims of domestic violence in general

practice. Data from Feder et al. (2011)

Exercise 13.8. Figure 13.6 is taken from a cluster randomised controlled trial in the

introduction to which the researchers stated:

Most clinicians have no training about domestic violence, fail to identify

patients experiencing abuse, and are uncertain about management after dis-

closure. We tested the effectiveness of a programme of training and support in

primary health-care practices to increase identification of women experiencing

domestic violence and their referral to specialist advocacy services.

Feder et al. (2011)

General practices were randomly allocated to intervention (which included practice-

based training sessions, a prompt within the medical record to ask about abuse and a

referral pathway to a named domestic violence advocate). The table shows the charac-

teristics of those practices that were included in the study and those that were declined.

Interpret and compare the median and interquartile range values for the number of reg-

istered patients and the percentage of female doctors in the included and the declined

practices. If you feel so inclined, draw boxplots of the percentage of female doctors (I

know that the minimum and maximum values are missing, but the boxes are quite illu-

minating on their own). What is the relative skew of the two distributions?
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14
Using confidence intervals
to compare two population
parameters

Learning objectives

When you have finished this chapter, you should be able to:

• Give some examples of situations where there is a need to estimate the difference

between two population parameters.

• Briefly outline the basis for the estimation of the difference between two popula-

tion means, first with two independent populations and second with two matched

populations.

• Briefly outline the basis of estimation of the difference between two population

medians using methods based on the Mann–Whitney test (for independent popula-

tions) and the Wilcoxon test (for matched populations).

• Interpret results from studies that estimate the difference between two population

means, two proportions or two medians.

• Demonstrate an awareness of any assumptions that must be satisfied when estimat-

ing the difference between two population parameters.

Medical Statistics from Scratch: An Introduction for Health Professionals, Third Edition. David Bowers.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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What’s the difference?

As you saw in the previous chapter, we can calculate a confidence interval for any single pop-
ulation parameter; for example, a population mean, a median and a proportion. However, a
more frequent use of confidence intervals is to compare two population parameters to see if
they are the same. For example, whether two populationmeans or two population proportions
are the same.
I will start with the difference between two population means, and we have two situations to

deal with: first when the two populations are independent and second when they are matched
or paired (see Chapter 5 to review matching). Let us begin with independent populations.

Comparing two independent population means

Suppose that the mean of one population is 𝜇A and of another population is 𝜇B. To calculate
a confidence interval for the difference between two population means (𝜇A −𝜇B), we again, as
we did with the confidence interval for a singlemean in Chapter 13, use the t distribution along
with the associated standard error. However, with two populations it is the standard error of
the difference between two means. The formula for the 95 per cent confidence interval for the
difference between the means of two independent populations looks like this:

[(x1 − x2)–2 × s.e.(x1 − x2)] to [(x1 − x2) + 2 × s.e.(x1 − x2)]

where x1 is the sample mean from the first population and x2 is the sample mean from the
second population and s.e.(x1 − x2) is the standard error of the sampling distribution of the
difference in the two sample means.1 The formula for s.e.(x1 − x2) is a bit too complex for us
to deal with here, and in any case you will not be calculating it by hand.
To use a t distribution-based confidence interval for the difference in the two independent

population means, we need to satisfy the following three requirements:

• Data for both populations must be metric. As you know from Chapter 5, the mean is only
appropriate with metric data anyway.

• The distribution of the relevant variable in each population must be reasonablyNormal. You
can check this assumption from the sample data using a histogram, although with small
sample sizes this can be difficult.

• The population standard deviations of the two variables concerned should be approximately
the same, but this requirement becomes less important as sample sizes get larger. You can
check this by examining the values of the two sample standard deviations.2

What do we do if these requirements are not met? We will deal with this later in this chapter
when we discuss the Mann–Whitney procedure.

1Note that a computer will use a value from the t distribution rather than the value 2 (see Chapter 13 for a note

on this).
2This condition is usually stated in terms of the two variancesbeing approximately the same.Variance is standard

deviation squared.
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An example using birthweights

Suppose that your question is, for the babies in the Born in Bradford study, ‘Is there any

difference in the mean birthweight between babies born to mothers who smoked while

pregnant and babies whose mothers did not smoke?’ We first need to establish if these two

populations (smokers and non-smokers) satisfy the three criteria.

• First: the two populations are independent because all of the participants started out in the

same group in this cohort study, and smoking status was only determined subsequently.

• Second: both distributions appear to be approximately Normal if the shapes of the two his-

tograms are anything to go by (see Figure 14.1, produced using Minitab).

• Third: the spreads of the two populations appear to be similar, judging by the values of

the two sample standard deviations, which Minitab calulates as 552 g (smokers) and 567 g

(non-smokers), respectively.

Therefore, we can use themethod based on the t distribution.Minitab produces the results as

shown in Figure 14.2. You can see that the difference in samplemeans is 33.3 g, but bear inmind

that just because the two samplemeans are not the same (and they invariably are not), it doesn’t
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Figure 14.1 Histograms of birthweight for babies born to mothers who smoked while pregnant

(left-hand panel) and those who did not. The distributions are both approximately Normal – Normal

enough anyway to satisfy the distributional requirements of the t distribution. Data from 500 babies

in the Born in Bradford study
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The point estimate of
the difference in
population birthweights,
based on the two sample
means . . .

Sample mean
birthweights (g).

The sample standard
deviations are

similar.

The standard error of
the mean for each

population.

. . . and the 95% CI
for the difference in
population birthweights. 

N Mean StDev SE Mean

Smkd while
pregnant

Yes 77 3237 552 63
No  423  3203 567 28

Difference = mu (1) – mu (2)
Estimate for difference:  33.3
95% CI for difference:  (–102.9, 169.5)

Figure 14.2 Output (edited slightly) from Minitab, showing the 95 per cent confidence interval for the

difference in population mean birthweights between the babies of mothers who smoked while pregnant

and those who did not. Minitab uses ‘mu’ to represent the population mean (usually denoted by 𝜇)

follow that the population means are also not the same. This is because a sample is inevitably
an imperfect representation of the population it was drawn from. The two population means
could be the same and any difference in the sample means could just be due to chance. This is
why we need to calculate a confidence interval to rule out this possibility.
Minitab calculates the 95 per cent confidence interval for the difference in population mean

birthweights to be (−102.9 to 169.5) g. SPSS produces the results as shown in Figure 14.3.Notice
the slight difference in the values given for the confidence interval. This difference arises from
the slightly different computational methods used by the two programs.

Exercise 14.1. Can you think of one reason why the standard error of the smokers (in

Figure 14.2) is considerably greater than that of the non-smokers.

Now, we come to a very important rule. If two populationmeans are identical and if we are to

subtract one from the other, the result would be 0. If the twomeans are not the same, the result
would not be 0. We can use this idea to give us a rule for interpreting a confidence interval for
the difference between two population parameters, thus:

If the 95 per cent confidence interval for the difference between two population

parameters includes zero, then you can be 95 per cent confident that there is no
difference in the two parameter values. If the interval doesn’t contain zero, then you

can be 95 per cent confident that there is a statistically significant difference in the

parameters.

In other words, if you want to know if there is a statistically significant difference between
two populationmeans, calculate the 95 per cent confidence interval for the difference and see if
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Group Statistics

smoker N Mean Std. Deviation Std. Error Mean

brthwght smoker 77 3236.75 552.050 62.912

non-smoker 423 3203.46 567.131 27.575

Sig. (2-tailed) Mean Difference Std. Error
Difference

95% Confidence Interval of the
Difference

Lower Upper

.635 33.290 69.985 −104.213 170.793

SPSS also provides a value for the
standard error for the difference in
sample means. 

The 95% CI for
the difference in
population
birthweights. 

Figure 14.3 Output (edited slightly) from SPSS, showing the 95 per cent confidence interval for the

difference in population mean birthweights between the babies of mothers who smoked while pregnant

and those who did not. Source: McCreadie et al. (1998). Reproduced by permission of BMJ Publishing

Group Ltd

it contains zero. If it does, the means are most probably the same. But bear in mind that there is

a five per cent chance that the means are not the same. In our birthweights example, and using

Minitab’s results, the confidence interval from (−102.9 to 169.5) g includes 0, so we can be 95

per cent confident that the population mean birthweight of the babies whose mothers smoked

while pregnant is the same as that of the babies whose mothers did not smoke.

Assessing the evidence using the confidence interval (and was the
sample size large enough?)

There are two other important points that I must mention. First, even though this confidence

interval includes 0, the most likely value for the difference in populationmeans is still the point
estimate of the difference in sample birthweights, that is, 33 g. Or to interpret the confidence

interval in a slightly different way, there probably is a difference in birthweights, and it is likely

to be closer to 33 g than it is to either −102.9 g or 169.5 g.
The second point relates to the way we assess the evidence contained in the confidence inter-

val about the likely difference in the population means (and what it tells us about the adequacy

of the sample size). I can best illustrate this idea with Figure 14.4. This shows four 95 per cent

confidence intervals, each represented by a Normal curve.The height of the Normal curve any-

where in its range corresponds to the probability that the true difference in population means

is likely to be found. Somost likely under themiddle bit of the curve, less likely as wemove into

the tails of the curve. The confidence intervals are for the percentage decrease in systolic blood

pressure (SBP) from each of the four hypothetical trials of a new drug to reduce hypertension

(compared to an established drug). The horizontal axes show the change in SBP (decreases
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B

C

–40 –35 –30 –25 –20 –15 –10 –5 0 5 10 15 20 % change in SBP 

–40 –35 –30 –25 –20 –15 –10 –5 0 5 10 15 20 % change in SBP 

–40 –35 –30 –25 –20 –15 –10 –5 0 5 10 15 20 % change in SBP 

–40 –35 –30 –25 –20 –15 –10 –5 0 5 10 15 20 % change in SBP 

A

Minimal useful clinical %
change in SBP (= –5%)

D
Minimal useful clinical %
change in SBP (= –5%)

Figure 14.4 Four 95 percent confidence intervals (shown as Normal curves) for four hypothetical trials

of a new drug to treat hypertension. The horizontal axes show the change in systolic blood pressure for

each trial. Also shown is the percentage minimal useful clinical change (of −5 percent)
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to the right). Let us assume that to make the introduction of the new drug worthwhile, the
minimal clinical useful percentage decrease has to be 5 per cent.
In trial A, the point estimate of the decrease in SBP is −20mmHg (under the peak of the

confidence interval curve), and this represents the most likely true value for the decrease in
percentage SBP. As we move away, both to left and to right from this value, there is less and
less likelihood that values reflect the true decrease in SBP, as is reflected in the declining height
(i.e. the probability) of the Normal curve. The confidence interval, (−28 to −12)%, does not
include 0, and the top end exceeds the minimal useful clinical percentage decrease. As these
two conditions are satisfied, we can say that trial A is both positive (statistically significant) and
definitive (conclusive).
In trial B, with a smaller sample size than trial A, and thus a wider confidence interval of (−30

to −10)%, the point estimate of the decrease in SBP is again 20 per cent, and the confidence
interval (as in trial A) does not include 0, so the trial is significant (positive). But the upper
limit of the confidence interval is less than the clinically useful decrease in SBP of 5 per cent,
so this result is positive but not conclusive (not definitive). This implies that the sample size was
possibly too small. If the sample had been larger, it would have produced a narrower confidence
interval, and the top end of the confidence interval might shift enough to the left, to exceed the
minimal clinically useful decrease of 5 per cent.
In trial C (with a small sample size), the point estimate of the decrease in SBPwas+10mmHg,

so this is themost likely value for the difference in SBPs.The confidence interval of (−2 to 22)%,
includes 0, so the trial is not significant (i.e. is deemed negative). And because the lower value
is less than the clinically useful decrease in SBP of 5 per cent, the trial is both negative and
definitive – there is no point in an increased sample size as this would produce a narrower
confidence interval, which would shift both ends of the curve inwards, and the left-hand end
would be even further away from the mimimal clinically useful decrease.
The sample size in trial D is smaller than in trial C. The point estimate of the decrease in

SBP was +10mmHg as in trial C. The confidence interval includes 0 so the trial is negative.
But because the lower limit of the confidence interval exceeds the clinically useful decrease in
SBP of 5 per cent, the trial does not completely exclude a patient–benefit effect and therefore
cannot be considered definitive. So trial D is negative but not definitive (or not significant and
also inconclusive). A trial with a larger sample is required to provide amore definite conclusion.
In general, when you are interpreting the result from a study giving a negative, non- signif-

icant, result (as in C), you should look at the lower value of the confidence interval. Would a
larger trial improve things? This is unlikely because with a 95 per cent confidence interval, a
larger trial can only decrease the lower value by 2.5 per cent (the other 2.5 per cent lies above
the upper limit of the confidence interval), so there is only a 1 in 40 chance that the true differ-
ence will be as much as the upper value or more. Would this extra bit be enough to make the
upper value of the confidence interval exceed the minimal clinically useful value?
The point I am (perhaps) labouring to make is that we should view confidence intervals as a

continuum rather than as a definite Yes/No result (as a hypothesis test does – we will see how
in Chapter 16). We should interpret them as offering various levels of evidence as to whether
two population parameters are equal or not. Ultimately, to reach a more reliable conclusion,
we really need to turn to meta-analysis, which amalgamates a large number of studies. We will
discuss this approach in Chapter 24.
I should acknowledge my debt for the above treatment of confidence interval interpretation

to Guyatt et al. (1995) and Greenhalgh (1997).
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Exercise 14.2. Figure 14.5 is from a randomised placebo controlled trial to assess the

effect of continuous positive airway pressure (CPAP) on 24 hour ambulatory blood pres-

sure monitoring in patients (with untreated systemic hypertension) with new onset and

obstructive sleep apnea. It shows 95 per cent confidence intervals for the difference in

various blood pressure measurements between the treatment group (n= 169) receiving

continuous positive airway pressure (CPAP), and the placebo (sham) group (n= 171).

Ignore the ‘p value’ column for now. (a) Which confidence intervals indicate strong evi-

dence for a true difference in blood pressures between the CPAP and the sham groups?

(b) What is the best guess for the true difference between the CPAP and sham groups in

diurnal systolic and diurnal diastolic blood pressures? (c) If the minimal clinical worth-

while difference in blood pressure is plus 2mmHg, which confidence intervals indicate

a potentially patient-useful difference between the CPAP and the sham groups?

Difference∗ (95% CI) p value†

Diurnal systolic blood pressure 1.6 (−0.2 to 3.3) 0.07

Diurnal diastolic blood pressure 1.1 (−0.1 to 2.3) 0.07

Diurnal mean blood pressure 1.3 (−0.1 to 2.5) 0.06

Nocturnal systolic blood pressure 3.1 (0.9 to 5.2) 0.005

Nocturnal diastolic blood pressure 1.5 (0.1 to 3.0) 0.03

Nocturnal mean blood pressure 2.1 (0.5 to 3.6) 0.01

Mean systolic blood pressure 2.1 (0.4 to 3.7) 0.01

Mean diastolic blood pressure 1.3 (0.2 to 2.3) 0.02

Mean blood pressure 1.5 (0.4 to 2.7) 0.01

∗Differences in blood pressure (mm Hg) between continuous positive airway pressure

(CPAP) and sham groups.
†Calculated by t test; compares treatment effects.

Figure 14.5 95 per cent confidence intervals for the difference at 12 weeks in various blood pressure

measures between the treatment group receiving continuous positive airway pressure (CPAP) and the

placebo (or sham) group, for the treatment of patients with new onset untreated systemic hypertension

and obstructive sleep apnea. Data from Durán-Cantolla et al. (2010)



Trim size: 170mm x 244mm Bowers c14.tex V3 - 06/19/2014 12:17 A.M. Page 183

COMPARING TWO PAIRED POPULATION MEANS 183

Exercise 14.3. Figure 14.6 is from a randomised placebo controlled trial to determine

the efficacy of intraoperative treatment with low-dose tranexamic acid in reducing the

rate of perioperative transfusions in patients undergoing radical prostatectomy. (a)What

are the single best guesses for the difference in blood loss for each of the three outcomes?

(b) For each of the three confidence intervals draw a figure like that in Figure 14.4. If the

minimumclinicallyworthwhile blood loss reduction is 50ml,which confidence intervals

are indicative of both a positive and a definitive outcome (significant and conclusive, if

you prefer)?

Volume (ml) Placebo group

(n= 100)

Tranexamic acid

group (n= 100)

p Difference

(95% CI)

Suctioned blood 1012 (608.1) 810 (390.2) 0.009 202 (59 to 345)

Blood absorbed in gauzes 322 (151.8) 293 (188.6) 0.053 29 (−19 to 78)
Total intraoperative blood loss 1335 (686.5) 1103 (500.8) 0.01 232 (30 to 371)

Data are mean values (standard deviation) unless stated otherwise.

Figure 14.6 Confidence intervals for intraoperative blood loss (ml). Data from Crescenti et al. (2011)

Comparing two paired population means

When we are dealing with paired data, we again use a confidence interval based on the t dis-
tribution but adapted for the paired samples situation. Before we look at an example, we need
to examine the idea of within-subject and between-subject variations.

Within-subject and between-subject variations

Cast an eye on the values for heart rate (beats perminute) in four groups of individuals shown in
Figure 14.7. Taking Groups A and B first.The spread (or variation) in the values for individuals

Heart rate (beats/min)
Group

A B C D
45 45 53 46
47 49 56 49
44 42 55 49
56 52 54 47
59 50 54 48
57 51 54 48
60 40 55 48
49 48 53 47
62 48 53 48
65 55 56 49

The spread or
variation in the
values for the
individuals in each
of these groups is
called the
between-subjects
variation.

Figure 14.7 Heart rate (beats per minute) in four groups of individuals
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in both groups is quite wide, although the variation in Group A is wider than it is for Group B.

In fact the standard deviations are 7.55 beats per minute (Group A) and 4.57 beats per minute

(Group B). We call the variation in each group, the between-subject variation.
The mean heart rates for the two groups are 54.40 beats per minute and 48.00 beats per

minute, and these are significantly different – the 95 per cent confidence interval is (0.4167

to 12.3832) beats per minute, which does not include 0. However, it is not easy to spot this

by looking at the heart rate data because it is quite widely spread in both groups. Because of

this wide spread nature, we need a bigger sample size than we would if these variations were

smaller. Which is not good news.

If the variationwas smaller, as it is forGroupsC andD in Figure 14.7, (standard deviations are

1.160 and 0.994, respectively) it is much easier to spot that the means are significantly different

(the 95 per cent confidence interval is (5.38086 to 7.41914) beats per minute). Other things

being equal, smaller sample sizes would be sufficient to discover that the means are different.

Which is better news.

Now see Figure 14.8. Suppose that the heart rates in the ‘Before’ column were those of 10

individuals who were experiencing anxiety, and we had given them some appropriate treat-

ment to deal with this. After 30 minutes, their heart rate values were as shown in the ‘After’

column. So we are taking two measurements on each individual: a ‘before’ measurement and

an ‘after’ measurement. These observations are essentially paired or matched. The variation in

this measurement for the 10 individuals is called the within-subject variation.

Heart rate (b/m)
Before After Difference

56 49 7
56 49 7
55 49 6
55 48 7
54 48 6
54 48 6
54 48 6
53 47 6
53 47 6
53 46 7

The spread or variation in
the values for the same
person, each measured
before and after, is called
the within-subject
variation.

Figure 14.8 Heart rates for 10 individuals before and after the administration of an appropriate

treatment for anxiety. The spread in the values in the Difference column are known as within-subject

variation

The between-subject variation is usually larger than the within-subject variation. In this

example, the between-subject variations (as measured by the standard deviation) for the before

and after values are 1.160 beats per minute and 0.994 beats per minute, respectively, while that

for the within-subject variation is 0.516 beats per minute.We are usually more interested in the

within-subject variation than we are in the between-subject variation, which as we saw earlier

can hamper our investigations.

The advantage of the paired sample approach (which we are discussing in this section) is

that by looking only at the within-subject differences, we can get rid of the between-subjects

variability. This means that we end up with a simpler analysis of a single sample. Importantly,

because the twomeasurements are on the same person, we eliminate the individual differences



Trim size: 170mm x 244mm Bowers c14.tex V3 - 06/19/2014 12:17 A.M. Page 185

COMPARING TWO PAIRED POPULATION MEANS 185

that inevitably arise between people. This means that the anaysis becomes more powerful, and

we are likely to need fewer participants to achieve the same power as the two-sample t analysis.
As a consequence, you can achieve better precision (narrower confidence intervals) without

having to increase sample size. This is an attractive feature as finding appropriate participants

can sometimes be difficult.

Why, youmay be asking yourself, with these advantages, paired analyses do not appear more

often in the literature? Well, the main reason is that not as many situations are suitable for the

paired design as those for which we can use the two-sample t approach.

Exercise 14.4. Explain the difference between within-subject and between-subject

variations. What advantage(s) does the within-subject design have over the

between-subject design?

As an example of the paired design, Figure 14.9 is taken from a cohort study to investigate the

effectiveness of combining statin treatment and fitness on all-cause mortality in a cohort of US

veterans. The figure shows the 95 per cent confidence intervals for a number of lipid concen-

trations in participants before and after treatment with statins (ignore the ‘p value’ column). In

other words, this is paired data.

Exercise 14.5. Interpret the 95 per cent confidence intervals in Figure 14.9.

Patients treated with statins

Before statin

treatment

(n= 2959)

After statin

treatment

(n= 2959)

Mean difference

(95% CI)

p value

Total cholesterol (mmol/l) 6.1 (0.8) 4.4 (1.2) 1.7 (1.6–1.7) <0.0001

Triglycerides (mmol/l) 1.6 (0.9) 1.5 (1.0) 0.2 (0.1–0.2) <0.0001

HDL cholesterol (mmol/l) 1.2 (0.3) 1.2 (0.3) 0.1 (0.0–0.1) <0.0001

LDL cholesterol (mmol/l) 4.2 (0.7) 2.6 (1.0) 1.6 (1.5–1.6) <0.0001

Data are mean (SD) unless stated otherwise. p values calculated by paired t test.

Figure 14.9 An example of the paired design. Lipid and lipoprotein concentrations in patients before

and after treatment with statins. Data from Kokkinos et al. (2013)

You can also calculate a confidence interval for the difference in two population percentages
provided they derive from two metric variables, such as percentage mortality or percentage

change in cholesterol. However, if the variable in question is nominal, for example, the pro-

portion or percentage of females or the proportion of schoolchildren who have asthma, then

a different approach is needed. This is an extension of the single proportion case discussed in

Chapter 13, as you will now see.
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Comparing two independent population proportions

When we want to calculate the 95 per cent confidence interval for the difference in two popu-

lation proportions, then provided neither proportion is close to 0 or 1, and the sample size is

not too small, we can use theNormal approximation to the binomial distribution (as we did for

the single proportion in Chapter 13). Under these assumptions, the formula for the confidence

interval for the difference in two proportions is:

[(p1 –p2)–2 × s.e.(p1 –p2)] to [(p1 –p2) + 2 × s.e.(p1 –p2)]

where p1 and p2 are the sample proportions and s.e (p1 − p2) is the standard error of the sam-

pling distribution of the difference in two sample proportions. Once again, I am using the value

2 for convenience in place of the proper value, which in any case will be close to 2, and anyway

you will not, in practice, be calculating this expression by hand. I am not including the formula

for s.e.(p1-p2) as it is rather cumbersome (although not difficult).

As an example, suppose that you want to calculate a 95 per cent confidence interval for the

difference between the population proportion of white women who smoked during pregnancy

and the population proportion of non-white womenwho smoked, among the Born in Bradford

sample. The smoking data is in Figure 1.3 (the study also contains eithnicity information on

the 500 mothers). Minitab produces the following results.

White Percent Non-white Percent

Smoking 68 31.78 9 3.15

Not smoking 146 68.22 277 96.85

As you can see, the proportion smoking among white mothers was 0.3178, and among

non-white mothers, the proportion was only 0.0315, the difference being 0.2863, which is

the point estimate (the single best guess) of the difference in the two proportions. Although

common sense tells us that these proportions are significantly different, we still need a formal

test to confirm this. Minitab produces the following result for the confidence interval:

Difference= p (1)− p (2)

Estimate for difference: −0.286288
95% CI for difference: (−0.351870, −0.220707)

The confidence interval does not include 0 so this confirms what we thought. The fact that

the confidence interval goes from a negative to a negative is simply because of the way I had

arranged the columns of data in Minitab’s worksheet.The confidence interval could equally be

expressed as (0.2207 to 0.3519).

An example from practice

Figure 14.10 is from a randomised controlled trial to test the hypothesis that individuals

would be motivated to change their smoking habits, if they knew that the risk of developing

Crohn’s disease among smokers at familial risk can be reduced by stopping smoking. One
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Outcomes DNA arm

(n= 251)

Non-DNA arm

(n= 246)

% difference in

proportion

(95% CI)

Primary outcome

≥One 24 hour quit attempts,

measured at six months

35 (73/209) 36 (78/217) −1 (−10 to 8)

Secondary outcomes

7 day abstinence:

Measured at one week (self report) 11 (27/251) 8 (20/246) 3 (−3 to 8)
Measured at six months: (self

report)

17 (42/251) 20 (48/246) −3 (−10 to 4)

Biochemical validation 4 (9/251) 5 (12/246) −1 (−5 to 2)

Figure 14.10 Confidence intervals for difference in proportions of individuals at familial risk of Crohn’s

disease quitting smoking between two groups. One group was advised that quitting smoking would

reduce the risk of developing Crohn’s disease, along with information on predictive genetic testing (the

DNA arm) and the other group was informed only of the smoking cessation information (the non-DNA

arm). Data from Hollands et al. (2012)

group was given this smoking cessation information along with additional predictive genetic

testing (the DNA arm) and the other group was given the smoking cessation information only

(the non-DNA arm).

All the confidence intervals include 0 so there is no difference in the proportions between

the two groups changing their smoking habits. Giving those at familial risk the extra DNA

evidence seemed to make no difference to their smoking habits.

Exercise 14.6. Interpret the point estimates in Figure 14.10, for the differences in the

proportion for each outcome.

Comparing two independent population medians – the
Mann–Whitney rank sums method

It will be useful to start with an explanation of the difference between parametric and

non-parametric methods. A parametric method requires not only that the data are metric

but also that it has some particular distribution, most commonly the Normal distribution.

A non-parametric method does not make these distributional requirements (and in conse-

quence, they are sometimes referred to as distribution-free methods) and are mostly rank

based, that is, they involve ranking the data.

So if you are analysing data that are metric andNormally distributed, you can use parametric

methods based on the t distribution, as we did at the beginning of this chapter to compare two

population means. You would want to use a parametric method if possible beccause they are

more powerful than non-parametric methods. That is, for samples of the same size, they are
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more likely to detect an effect or a difference if there is one. But if your data are metric but not
Normal, or are ordinal, then it’ is appropriate to use a non-parametric approach and compare
medians rather than means. How?
Well, in place of a method which uses the t distribution, you can use the Mann–Whitney

test,3 which is the non-parametric equivalent of the two-sample t approach discussed earlier. I
know that we are not discussing tests until we get to Chapter 16, but some statistics computer
programswill produce a confidence interval for the difference in themedians of the two groups
concerned.
Here is a quote from a recent paper:

To compare the distributions of data between the two study groups, we used the t

test for continuous variables if the data were normally distributed, and the Mann–

Whitney U test for data that were not normally distributed.

Kobayashi et al. (2012)

However, there is a bit of a problem, because the Mann–Whitney test is not in fact a method
for seeing if the population medians of two groups are equal but whether the two groups come
from the same population (two groups can have the same mean or median but not necessarily
the same distribution). The Mann–Whitney test does not produce a confidence interval for
the difference in two population medians directly, but many computer programs (including
Minitab, Stata and so on) will produce an associated confidence interval using what are known
as bootstrapping methods.4 In practice, the Mann–Whitney test is commonly used to compare
two population medians.
I will give a brief expalnation of how the Mann–Whitney test works in Chapter 16, when we

come to discuss hypothesis tests, but suffice to say here that it is a method based on the ranks
of the sample data.

An example from practice

Figure 14.11 is from a randomised controlled trial in an emergency department to compare
the cost effectiveness of two treatments (ketorolac versus morphine) in relieving pain after a
blunt instrument injury. The figure shows the median times spent by two groups of patients
in various clinical situations. The last column contains the 95 per cent confidence intervals for
the difference in these median treatment times (minutes), between the groups, derived from a
Mann–Whitney procedure.
The confidence interval for the difference in median ‘Interval between receiving analgesia

and leaving emergency department’ is (4 to 39) mins, and this is the only confidence interval
which does not include 0, so it offers strong evidence that there is a difference in the population
median times for the ketorolac and morphine groups, for this outcome.

3Also known as the Mann–Whitney U test. The procedure produces a statistic called the U statistic. In the old

days (before computers) tables of the values of U were available which could be used to decide if there was a

significant result.
4Briefly, bootstrapping means taking repeated (different) sub-samples each of the same size from the original

sample. So if you take 1000 samples, then order them, then the 95 percent confidence interval would be the

25th value to the 975th value.
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Ketorolac group

(n= 75)

Morphine group

(n= 73)

Median difference

(95% confidence

interval)

Interval between arrival in

emergency department and

doctor prescribing analgesia

38.0 (30.0 to 54.0) 39.0 (29.0 to 53.0) 1.0 (−5.0 to 7.0)

Preparation for analgesia 5.0 (5.0 to 10.0) 10.0 (5.5 to 12.5) 2.0 (0 to 5.0)

Undergoing radiography 5.0 (5.0 to 10.0) 5.0 (4.0 to 10.0) 0 (−1.0 to 0)
Total time spent in emergency

department

155.0 (112.0 to 198.0) 171.0 (126.0 to 208.5) 15.0 (−4.0 to 33.0)

Interval between receiving

analgesia and leaving

emergency department

115.0 (75.0 to 149.0) 130.0 (95.0 to 170.0) 20.0 (4.0 to 39.0)

Figure 14.11 95 per cent confidence intervals for the median time spent by two groups of patients

(one group received ketorolac, the other morphine) in various clinical situations, and the differences

in these median times. Results from a Mann–Whitney test. From a randomised controlled trial in an

emergency department to compare the cost effectiveness, of two treatments in relieving pain after

blunt instrument injury. Data from Rainer et al. (2000)

Comparing two matched population medians – the Wilcoxon
signed-ranks method

Once again, we will not discuss tests until we get to Chapter 16, but if you have two groups of

paired or matched data, and the data are either ordinal or metric, and if the metric is notice-

ably skewed, you can obtain a confidence interval for the difference in population medians

using the non-parametric Wilcoxon signed-ranks test. Like the Mann–Whitney test, this is a

rank-based procedure and comes with a similar warning. Strictly speaking, the null hypothe-

sis is that there is no tendency for the outcome under one set of conditions (say a treatment

group) to be higher or lower than under a comparitive set of conditions (say a placebo group)

but if you choose this method in Minitab, for example, you will be provided with a confidence

interval for the difference in medians.This confidence interval does not stem directly from the

Wilcoxon procedure but it is produced by the computer program using various assumptions

about large sample aproximations to the binomial and/or Normal distributions.

TheWilcoxon approach is the non-parametric equivalent of the parametric matched-pairs t
method described earlier. The matching will reduce the variation within groups, so narrower

(and therefore more precise) confidence intervals are available for a given sample size.

Briefly, theWilcoxon method starts by calculating the difference between each pair of values

(these differences should be symmetrically distributed), and these differences are then ranked

(ignoring any minus signs). Any minus signs are then restored to the rank values, and the

negative and positive ranks are separately summed. If the medians in the two groups are the

same, then these two rank sums should be similar. If different, the Wilcoxon method provides

a way of determining whether this is due to chance or it represents a statistically significant

difference in the population medians.
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Intake/day Patients (cases)

(n= 30)

Controls

(n= 30)

Median difference

(95% Cl)∗
p

Energy (MJ) 9.71 11.98 2.06 (0.26–4.23) 0.04

(5.07–17.94) (5.25–23.22)

Protein (g) 84.5 96.0 15.9 (−1.1–32.8) 0.07

(38.4–157.4) (40.5–633.0)

Total fibre (g) 12.6 (7.3–20.8) 18.9 (8.7–86.2) 7.0 (3.6–10.6) 0.0001

Retinol (μg) 590 817 310 (93–1269) 0.02

(288–7556) (134–12 341)

Carotene (μg) 1443 2798 1376 (549–2452) 0.004

(219–4657) (523–11 313)

Vitamin C (mg) 40.5 (3.0–204) 80.5 (14.0–219) 33.5 (2.0–64.0) 0.03

Vitamin E (mg) 4.7 (2.3–18.0) 7.8 (2.2–32.0) 2.9 (1.45–5.35) 0.0002

Alcohol (g) 0 (0–19.4) 5.7 (0–80) 5.4 (1.2–9.9) 0.009

∗Wilcoxon signed ranks test

Figure 14.12 95 per cent confidence intervals from the Wilcoxon signed-ranks method for the dif-

ference in population food intakes per day, for a number of substances, from a study of the dietary

habits of schizophrenics. Values are median (range). Reproduced from BMJ, 317, 784–5, courtesy of

BMJ Publishing Group. McCreadie et al. (1998). Reproduced by permission of BMJ Publishing Group Ltd

An example from practice

Figure 14.12 contains the results of a case–control study into the dietary intake of

schizophrenic patients residing in the community in Scotland. It shows the daily energy

intake of eight dietary substances for the cases (17 men and 13 women diagnosed with

schizophrenia) and the controls, each individually matched on sex, age, smoking status and

employment status (ignore the last column). If you focus on the penultimate column, you

can see that only the confidence interval for daily protein intake, (−1.1 to 32.8) g, contains

zero, which implies that there is no difference in population median protein intake between

schizophrenics and normal individuals. For all other substances, the difference is statistically

significant.

Exercise 14.7. Explain themeaning of the 95 per cent confidence interval for difference

between the two groups in (a) median protein intake, and (b) median alcohol intake, for

the two groups in Figure 14.12.
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Confidence intervals for the ratio
of two population parameters

Learning objectives

When you have finished this chapter, you should be able to:

• Explain what is meant by the ratio of two population parameters and give some

examples of situations where there is a need to estimate such a ratio.

• Explain and interpret a confidence interval for a risk ratio.

• Explain and interpret a confidence interval for an odds ratio.

• Explain the difference between crude and adjusted risk, and odds ratios.

• Explain briefly what a hazard is and how to interpret a confidence interval for a

hazard ratio.

Medical Statistics from Scratch: An Introduction for Health Professionals, Third Edition. David Bowers.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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Using confidence intervals for ratios

Getting a confidence interval for the ratio of two independent
population means

When you compare two population means, you usually would want to know if they are the

same or not, and if not, get some idea on how big the difference between them is. Sometimes

though, you might want to know how many times bigger one population mean is than another.

The ratio of the two means will tell you that. The ratio of the sample means might be 1 or close

to 1, suggesting that one population mean is no bigger (or smaller) than the other population

mean. If the ratio differs from 1, this suggests that one population mean might be bigger than

the other. The bigger the ratio of sample means is (the further away from 1), the more likely it

is that one population mean is bigger than the other, but you need to eliminate the possibility

that the result is just due to chance.

You can do this if you look at a 95 per cent confidence interval for the ratio of population
means. This will help you decide whether one population mean is bigger than the other. And

here is the rule:

If the confidence interval for the ratio of two population parameters contain the value

1, then you can be 95 per cent confident that one population mean is no bigger (or

smaller) than the other population mean.

Compare this with the rule for the difference between two population parameters, where the

rule is that if the confidence interval contains 0, then we can be 95 per cent confident that the

two population means are the same.

Clinical outcome Integrated care

(n≥ 296)

Conventional care

(n≥ 277)

Ratio of means

No. of bronchodilators prescribed 10.1 (9.2 to 11.1) 10.6 (9.7 to 11.7) 0.95 (0.83 to 1.09)

No. of inhaled steroids prescribed 6.4 (5.9 to 6.9) 6.5 (6.1 to 7.1) 0.98 (0.88 to 1.09)

No. of courses of oral steroids

used

1.6 (1.4 to 1.8) 1.6 (1.4 to 1.9) 0.97 (0.79 to 1.20)

No. of general practice asthma

consultations

2.7 (2.4 to 3.1) 2.5 (2.2 to 2.8) 1.11 (0.95 to 1.31)

No. of hospital admissions for

asthma

0.15 (0.11 to 0.19) 0.11 (0.08 to 0.15) 1.31 (0.87 to 1.96)

Means and 95% confidence interval are estimated from Poisson regression models after controlling

for initial peak flow, forced expiratory volume (as % of predicted), and duration af asthma.

Figure 15.1 95 per cent confidence intervals for the ratio of integrated care to conventional care,

for a number of clinical outcomes over 12 months for asthma patients. The treatment group patients

received integrated care and the control group received conventional GP care. Data from Grampian

Asthma Study of Integrated Care (1994)
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An example from practice

See the last column in Figure 15.1 (this is Figure 13.2 reproduced for convenience), which

shows a number of outcomes from a randomised trial to compare integrated versus conven-
tional care for asthmapatients.The last column contains the 95 per cent confidence intervals for

the ratio of population means for the treatment and control groups. You will see that all of the
confidence intervals contain 1, indicating that the populationmean number of bronchodilators

used, the number of inhaled steroids prescribed, and so on was no larger (or smaller) in one
population than in the other.

The sample ratio furthest away from 1 is 1.31 (this is the point estimate of the ratio – the best
guess as to its value), for the ratio of mean number of hospital admissions, that is, the sample of
integrated care group patients had 31 per centmore admissions than the conventionally treated
control group patients. However, the 95 per cent confidence interval of (0.87 to 1.96) includes

1, which implies that this is generally not the case in the populations.

Exercise 15.1. Figure 15.2 is from a randomised controlled trial to study the effect

of screening for mosquito control. One group of houses (the controls) had no screening,

the second group had total screening and the third group had screened ceilings only.The

table shows the ratio of the mean number of mosquitos trapped for the total screening

group compared to the controls, and for the screened ceilings group compared to the

controls. Interpret the 95 per cent confidence interval for the ratio of mean number of

mosqquitos trapped in each case.

Anopheles gambiae sensu lato mosquitos

n* Mean number

of mosquitoes

Ratio of means

(95% CI)

p value

Control 731 37.5 .. ..

Full screening 1463 15.2 0.41 (0.31–0.54) <0.0001

Screened ceilings 1376 19.1 0.53 (0.40–0.70) <0.0001

∗Total number of house visits for analysis of mosquitoes caught per trap per night and number of houses

for analysis of mosquitoes caught per house.

Figure 15.2 Comparison of mosquito densities between intervention and control groups. Ratios of

means are for intervention versus control. Intention to treat analysis. (Table abbreviated by current

author). Source: Adapted from Kirby et al. (2009). Reproduced by permission of Elsevier

Confidence interval for a population risk ratio

Look again at Figure 8.2, which is a contingency table from a cohort study showing the risk of

coronary heart disease (CHD) as an adult, amongmenwhoweighed 18 lbs or less at 12months
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old (the risk factor).The risk ratio of CHD among the sample of men who weighed≤18 lbs at 1

year compared to men who weighed more than this is (using the formula above Figure 12.3):

risk ratio =
4∕15
38∕275

= 0.2667

0.1382
= 1.9298

So the sample data indicates that men who weighed less than 18 lbs at one year have nearly

twice the risk of CHD as adults as those weighing more than 18 lbs. But is this true in the

population of such men, or no more than a chance departure from a population ratio of 1? You

now know that you can answer this question by examining the 95 per cent confidence interval

for this risk ratio.

As it happens, the 95 per cent confidence interval for the CHD risk ratio turns out to be

(0.793 to 4.697).1 As this interval contains 1, you can conclude, that despite a sample risk ratio
of nearly 2, weighing 18 lbs or less at one year is not a significant risk factor for coronary heart
disease in adult life in the population. Notice that, in general, the value of a sample risk (or

odds) ratio, as in this example, does not lie in the centre of its confidence interval, but it is

usually closer to the lower value.

An example from practice

Figure 15.3 is from a cohort study of 552 men surviving acute myocardial infarction, in which

each participant was assessed for depression at the beginning of the study and after six months.

The six-month levels of depression were 13.3 per cent severely depressed, 22.5 per cent mod-

erately depressed and 64.2 per cent had low levels of depression. A number of participant

outcomes were measured, including suffering angina, returning to work, emotional stability,

and smoking. The researchers were interested in examining the role of moderate and severe

depression (compared to low depression), as risk factors for each of these outcomes.

The results show the crude and adjusted relative risks (risk ratios) for each outcome. The

crude relative risks are not adjusted for any confounding factors, whereas the adjusted relative

risks are adjusted for those factors listed in the table footnote, namely, age, social class, recurrent

infarction, rehabilitation, cardiac events and helplessness. (see Chapter 7 for a reminder of

confounding and adjustment).

Let’s interpret the 95 per cent risk ratios for ‘Return to work’. The crude risk ratios for return
to work indicate lower rates of return to work for men both moderately depressed (relative

risk= 0.41) and severely depressed (relative risk= 0.39) compared to men with low levels of

depression. In other words, compared to those participants with low depression, moderately

depressed men had only 41 per cent chance of returning to work and severley depressed men

only a 39 per cent chance of returning to work. Neither of the confidence intervals, (0.22 to

0.77) and (0.18 to 0.88), include 1, indicating statistical significance. However, after adjusting

for possible confounding variables, the adjusted relative risks are 0.58 and 0.54, respectively

and are no longer statistically significant because both confidence intervals now include 1 – for

moderate depression (0.28 to 1.17), and severe depression (0.22 to 1.31).

1The calculation of confidence intervals for risk ratios and odds ratios is a step too far for this book. Those

interested in doing the calculation by hand can consult Altman (1991) who gives the necessary formulae.
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Relative risk (95% CI)

Depression level Crude Adjusted∗

Angina pectoris

Moderate 1.36 (0.83 to 2.23) 0.97 (0.55 to 1.70)

Severe 3.12 (1.58 to 6.16) 2.31 (1.11 to 4.80)

Return to work

Moderate 0.41 (0.22 to 0.77) 0.58 (0.28 to 1.17)

Severe 0.39 (0.18 to 0.88) 0.54 (0.22 to 1.31)

Emotional Instability

Moderate 2.21 (1.33 to 3.69) 1.87 (1.07 to 3.27)

Severe 5.55 (2.87 to 10.71) 4.61 (2.32 to 9.18)

Smoking

Moderate 1.39 (0.71 to 2.73) 1.19 (0.56 to 2.51)

Severe 2.63 (1.23 to 5.60) 2.84 (1.22 to 6.63)

Late potentials

Moderate 1.30 (0.76 to 2.22) 1.54 (0.86 to 2.74)

Severe 0.70 (0.33 to 1.47) 0.75 (0.35 to 2.17)

∗Adjusted for age, social class, recurrent infarction, rehabilitation, cardiac

events, and helplessness

Figure 15.3 The crude and adjusted relative risks (risk ratios) for a number of outcomes related to

the risk factors: experiencing moderate and severe levels of depression compared to low depression.

Data from Ladwig et al. (1994)

Exercise 15.2. Intepret the confidence intervals in Figure 15.3 for the relative risks

associated with angina pectoris.

An example from practice

Figure 15.4 is from a cohort study to investigate frequency and risk factors for prevalent, inci-

dent and persistent carcinogenic human papillomavirus (HPV) in young women before the

introduction of immunisation against HPV types 16 and 18 for schoolgirls. The table gives

crude and adjusted relative risks (risk ratios) and their 95 per cent confidence intervals for

participantswith the characteristics listed (the risk factors) compared to thosewithout the char-

acteristic. As you can see, although a number of the crude (unadjusted) relative risks appear to

be significant (the confidence interval does not include 1), having had only 2 or more sexual

partners in the previous 12 months remains significant after adjustment.2 In this case, having

two or more sexual partners means that the individual is nearly twice as likely to contract HPV

compared to a participant who has had less than two sexual partners.

2And co-infection with C trachomatis or concurrent bacterial vaginosis was also independent predictors of

carcinogenic HPV infection.
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Characteristic No (%) of women

with characteristic

Relative risk

(95% CI) of HPV infection

Crude Adjusted*

Age< 20 years† 292/821 (36) 1.51 (1.13 to 2.03) 1.20 (0.89 to 1.63)

Black ethnicity 148/820 (18) 1.44 (1.03 to 2.02) 1.37 (0.96 to 1.94)

Smoker† 216/819 (26) 1.18 (0.85 to 1.62) 0.98 (0.70 to 1.37)

≥2 sexual partners in

previous year‡
297/819 (36) 2.10 (1.57 to 2.82) 1.99 (1.46 to 2.72)

Age <16 years at first sex 228/812 (28) 1.24 (0.91 to 1.70) 1.20 (0.86 to 1.65)

Use of oral contraception‡ 448/819 (55) 1.10 (0.81 to 1.48) –

Use of condoms‡ 439/800 (55) 1.56 (1.34 to 2.14) 1.25 (0.91 to 1.72)

∗Controlled for all significant variables from the unadjusted analysis and for age <20 and age <16 at

first sex.
†Reported at baseline.
‡Reported at follow-up. No data on frequency of condom use.

Figure 15.4 Crude and adjusted relative risks (risk ratios) for risk factors for incident carcinogenic

HPV infection (n= 145) in 821 women who provided follow-up samples after a median of 16 months.

Data from Oakeshott et al. (2012)

Exercise 15.3. Figure 15.5 is from the study referred to in Figure 12.1, a randomised

placebo controlled trial whose objective was to test the hypothesis that a relative defi-

ciency in L-arginine may be associated with the development of pre-eclampsia in a pop-

ulation at high risk.

The participants were pregnant womenwith a history of pre-eclampsia. A total of 222 women

were allocated to the placebo group; 228 received L-arginine plus antioxidant vitamins and 222

recieved antioxidant vitamins only. The upper table shows the relative risks (and 95 per cent

confidence intervals) of treatment comparisons and the lower table the absolute risk reductions

(and their 95 per cent confidence intervals). Ignore the (𝜒2 and p) row. Interpret and compare

the relative risk and the absolute risk reduction results (you may want to refer to Chapter 12 to

refresh your understanding of absolute risk reduction).

Confidence intervals for a population odds ratio

Figure 8.7 shows the data for the case–control study into exercise between the ages of 15 and

25, and stroke later in life. The risk factor was ‘not exercising’, and in Chapter 12 (see Figure

12.8 and Exercise 12.9), you calculated the sample crude odds ratio of 0.411 for a stroke in those
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Relative risk (95% CI)

L-arginine+ vitamins

vs placebo

Vitamins alone

vs placebo

L-arginine+ vitamins

vs vitamins alone

Pre-eclampsia

or eclampsia

0.42 (0.28 to 0.62)

(𝜒2: p< 0.001)

0.74 (0.54 to 1.02)

(𝜒2: p= 0.052)

0.56 (0.37 to 0.85)

(𝜒2: p= 0.004)

Absolute risk reduction (95% CI)

L-arginine+ vitamins

vs placebo

Vitamins alone

vs placebo

L-arginine+ vitamins vs

vitamins alone

Pre-eclampsia

or eclampsia

0.17 (0.12 to 0.21) 0.07 (0.005 to 0.15) 0.09 (0.05 to 0.14)

Figure 15.5 Relative risks (top table) and absolute risk reduction (bottom table), for three groups of

women participating in a randomized placebo controlled trial of L-arginine and antioxidant treatment

for the reduction of pre-eclampsia or eclampsia. One group of women (n= 222) were given a placebo, the

second group (n= 228) were given L-arginine plus antioxidant vitamins and the third group (n= 222)

antioxidant vitamins only. Data from Vadillo-Ortega et al. (2011)

who had exercised compared to those who had not. So the exercising group appear to have only

about 40 per cent of the odds for a stroke as the non-exercising group. However, you need to

examine the confidence interval for this odds ratio to see if it contains 1 or not, before you can

come to a conclusion about the statistical significance of the population odds ratio.

The 95 per cent confidence interval is (0.2597 to 0.6536). This does not contain 1, so you

can be 95 per cent confident that the odds ratio for a stroke in the population of those who

did exercise compared to the population of those who did not exercise is somewhere between

0.2597 and 0.6536. It seems that early-life exercise does appear to reduce the odds for a stroke

later on in life. Of course, this is a crude, unadjusted odds ratio, which takes no account of the

contribution, positive or negative, of any other relevant variables.

An example from practice

Figure 15.6 shows the results from this same exercise/stroke study, where the authors provide

both crude odds ratios and ratios adjusted for age and sex, stratified by age when exercising.

We have been looking at exercise between the ages of 15 and 25, the first row of the table.

Compared to the crude odds ratio calculated above of 0.411, the authors report an odds ratio

for stroke, adjusted for age and sex, among those who exercised compared to those who did

not exercise, as 0.33, with a 95 per cent confidence interval of (0.20 to 0.60). So even after the

effects of any differences in age and sex between the two groups have been adjusted for, there

is good evidence that exercising between the ages of 15 and 25 reduces the odds for a stroke in

later life.
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Exercise not undertaken Exercise undertaken

No of cases: Odds ratio No of cases:

Odds ratio no of controls (95% CI) no of controls

Age when exercise undertaken (years):

15–25 1.0 70:68 0.33 (0.2 to 0.6) 55:130

25–40 1.0 103:136 0.43 (0.2 to 0.8) 21:57

40–55 1.0 101:139 0.63 (0.3 to 1.5) 10:22

Figure 15.6 Odds ratios (and 95% CIs) for stroke, according to whether, and at what age, exercise was

undertaken, by cases (those with stroke), compared to controls (without stroke). Data from Shinton

and Sagar (1993)

Adjustment for possible confounders is crucial if your results are to be of any use, and we

discussed this topic in Chapter 8, but I will return to adjustment in Chapters 21 and 22.

Exercise 15.4. (a) Explain briefly why age and sex differences between the groups are

usually adjusted for. (b) What do the results in Figure 15.6 indicate about not exercising

as a risk factor for stroke among the three age groups?

Exercise 15.5. Returning to the randomised controlled trial on the use of a cervical

pessary in women with a short cervix to prevent pre-term births (see Exercise 5.1),

Figure 15.7 contains odds ratios and their 95 per cent confidence intervals for a number

of outcomes for women in the treatment group (cervical pessary) and in the expectant

management group (ignore the p value column). For each outcome, do you think the

evidence supports the use of a cervical pessary to reduce pre-term births? What about

the last two outcomes?

Confidence intervals for hazard ratios

Odds ratios and risk ratios (relative risks) are the ratios that you will often see in the literature,

but the hazard ratio (HR) is also important, mainly in the context of survival analysis, which I

will discuss in detail in Chapter 23. Put simply, the hazard ratio is the probability of death (or

some other end point) in one group compared to that in another group, measured over some

period of time (the study period). More in Chapter 23!

But as an example of the interpretation of the confidence intervals for hazard ratios, the table

in Figure 15.8 is from a chort study to examine all cause and disease-specific mortality in

patients with osteoarthritis of the knee or hip and shows the hazard ratios for a number of

demographic and clinical characteristic of the patients in the study, along with the 95 per cent

confidence intervals.
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Pregnancy outcome Cervical

pessary group

Expectant

management

group

Odds ratio

(95% CI)

p value

Spontaneous delivery before

28 weeks

4 (2%) 16 (8%) 0.23(0.06 to 0.74) 0.0058

Spontaneous delivery before

34 weeks

12 (6%) 51 (27%) 0.18(0.08 to 0.37) < 0.0001

Any delivery before 34 weeks 14 (7%) 53 (28%) 0.21(0.10 to 0.40) < 0.0001

Spontaneous delivery before

37 weeks

41 (22%) 113 (59%) 0.19(0.12 to 0.30) < 0.0001

Chorioamnionitis∗ 5 (3%) 6 (3%) 0.82 (0.20 to 3.32) 0.76

Pregnancy bleeding 7 (4%) 9 (5%) 0.77(0.24 to 2.38) 0.61

∗Chorioamnionitis is the inflammation of the foetal membranes due to a bacterial infection. It typically

results from bacteria ascending into the uterus from the vagina.

Figure 15.7 Odds ratios (and 95% CIs) for pregnancy outcomes. From a randomised controlled trial

on the use of a cervical pessary in women with a short cervix to prevent pre-term births. Data from

Goya et al. (2012)

Characteristic at baseline Patients died Crude hazard ratio∗(95% CI)

Yes (n= 438) No (n= 725)

Age (years) at baseline:

35–54 6 (1) 169 (23) 1.00 (reference)

55–74 273 (62) 503 (69) 12.4 (5.53 to 27.9)

≥ 75 159 (36) 53 (7) 40.7 (18.0 to 92.0)

Male sex 204 (47) 299 (41) 1.21 (1.00 to 1.46)

Lower social class (IIIM to V) 228 (52) 342 (47) 1.21 (1.00 to 1.46)

Smoking 70 (16) 115 (16) 0.94 (0.74 to 1.19)

Previous joint replacement 42 (10) 38 (5) 1.61 (1.17 to 2.22)

Type of osteoarthritis:

Knee only 130 (30) 233 (32) 1.00 (reference)

Hip only 120 (27) 222 (31) 0.98 (0.77 to 1.26)

Knee and hip 188 (43) 270 (37) 1.20 (0.96 to 1.50)

Knee or hip pain 289 (66) 477 (66) 1.00 (0.82 to 1.22)

Walking disability 152 (35) 136 (19) 1.93 (1.59 to 2.36)

Values are numbers (percentages) unless stated otherwise.
∗Univariable hazard ratios, 95% confidence intervals, and p values were derived from Cox regression mod-

els after multiple imputation of missing covariate data; hazard ratios >1 indicate lower mortality in the

reference category.

Figure 15.8 Crude (unadjusted) hazard ratios and 95 per cent confidence intervals, for a number of

demographic and clinical characteristic of the patients, from a cohort study to examine all cause, and

disease-specific, mortality in patients with osteoarthritis of the knee or hip (abbreviated by author).

Source: Adapted from Nüesch et al. (2011). Reproduced by permission of BMJ Publishing Group Ltd
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Exercise 15.6. Which characteristics of the patients in Figure 15.8, represent a signifi-

cant hazard of death?

You may be wondering where all these odds ratios and risk ratios come from (and you will

see more of both in Chapter 18), in other words how are they calculated? With two-by-two

contingency tables, the calculations are easy enough (although calculation of the confidence

intervals is not so easy), but when the problem becomes one of adjusting for confounders,

and there may be many of these, we have to use regression models to get odds ratios and risk

ratios – we will deal with these models in Chapters 21, 22 and 23.
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Putting it to the Test
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16
Testing hypotheses about the
difference between two
population parameters

Learning objectives

When you have finished this chapter, you should be able to:

• Explain how a research question can be expressed in the form of a testable

hypothesis.

• Explain what a null hypothesis is.

• Summarise the hypothesis test procedure.

• Explain what a p-value is.

• Explain what the significance level of a test is.

• Use the p-value to appropriately reject or not reject a null hypothesis.

• Summarise the principal tests described in this chapter, along with their most appro-

priate application, and any distributional and other requirements.

Medical Statistics from Scratch: An Introduction for Health Professionals, Third Edition. David Bowers.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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• Explain types of error.

• Describe what is meant by the power of a test and how it relates to a particular type

of error.

• Be able to calculate an appropriate sample size for testing the difference between

two means or two proportions.

Answering the question

As we have seen, almost all clinical investigations begin with a question. For example, is
malathion a more effective drug for treating head lice than d-phenothrin? Is there a difference
in the mean birthweight of babies born to mothers who smoked while pregnant and those
who did not? Does a cervical pessary reduce pre-term births in women with a short cervix?
And so on. In the preceding three chapters, we answered questions of this sort by calculating
a confidence interval and seeing if it contains 0 (in the case of a difference) or 1 (in the case of
a ratio).
We could then make statements like, ‘We are 95 per cent confident that the range of values

defined by the confidence interval will include the value of the population parameter,’ or ‘The
confidence interval represents a plausible range of values for the population parameter.’

The hypothesis

But there is an alternative approach, which I want to discuss in this chapter, which is to trans-
form the research question into a testable, working, or research hypothesis (also called the null
hypothesis).
Hypothesis testing, which uses exactly the same sample data as the confidence interval

approach, focuses not on using a confidence interval to answer the research question but on
testing whether a value (e.g. a difference or a ratio) is the same as a previously hypothesised
value. In recent years, the confidence interval approach has become more generally favoured,
primarily because the results from a confidence interval provide more information than the
results of a hypothesis test (as you see later in this chapter).
However, hypothesis testing is still common in research publications as confidence intervals

are not always appropriate (as we saw with the difference between twomedians in Chapter 14),
and therefore later in this chapter I describe a few of the more common tests.
Here are three examples from the literature where authors declare their interest in testing

hypotheses (my italics and bolding):

We hypothesised that long term intake of low or high calcium increases the risk of

cardiovascular mortality.

Michaëlsson et al. (2013)
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To test the hypothesis that a relative deficiency in L-arginine, the substitue for syn-

thesis of the vasidilatory gas nitric oxide, may be associated with the development of

pre-eclampsia in a population at high risk.

Vadillo-Ortega et al. (2011)

There have been claims that statins might be more beneficial in people with raised

C-reactive protein (CRP) concentrations and might even be ineffective in people

with low concentrations of CRP and LDL cholesterol. This study aimed to test this

hypothesis.
Heart Protection Study Collaborative Group (2011)

Before we go any further, bear in mind that not all investigations lend themselves to being

expressed as a hypothesis, typically those to do with determining a prevalence or a rate.

For example, ‘what is the prevalence and incidence of genital carcinogenic human papillo-

mavirus infection in sexually active women?’ ‘What is the hospital mortality rate following an

infarction?’ And so on.

The null hypothesis

The hypothesis is often expressed as a null hypothesis, denoted as H0, which we (usually) hope

to disprove. For example:

Null hypothesis, H0: Long-term intake of low or high calcium has no effect on the risk of

cardiovascular mortality.

Null hypothesis, H0: A relative deficiency in L-arginine is not associated with the develop-

ment of pre-eclampsia in a population at high risk.

Notice that both of these null hypotheses reflect the conservative position of no difference,
no effect, no association, and so on; hence the ‘null’. Notice also that these null hypotheses con-
tradict the research hypotheses as stated by the authors above. There is a good reason why we

express our hypothesis in this null form because it is impossible to prove a hypothesis. Suppose
our hypothesis is that all men aged 70 ormore have grey hair.We could see 1000 or 100 000 or a

millionmen, ormore, and find that they all had grey hair, but this hasn’t proved our hypothesis.

However, if we come across just one 70+manwith black hair, we have disproved the hypothesis.
To test a null hypothesis, researchers take samples andmeasure outcomes and decidewhether

the sample data provides strong enough evidence to be able to refute or reject the hypothesis
or not. If the evidence against the null hypothesis is strong enough for us to be able to reject it,

then we implicitly accept that some specified alternative hypothesis, usually labelled as H1, is

probably true. We’ll see in a moment how we can judge whether the evidence from the sam-

ple supports or refutes the null hypothesis, but first let me summarise the hypothesis testing

procedure.
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The hypothesis testing process

The hypothesis testing process can be summarised thus:

• Select a suitable outcome variable.

• Use your research question to define a testable null hypothesis involving this outcome

variable.

• Collect the appropriate sample data and determine the relevant sample statistic. For example,

the difference in sample means, or in sample proportions, or in a risk ratio or an odds ratio.

• Use a decision rule that will enable you to judge whether the sample evidence supports or

does not support your null hypothesis.

• Thus, on the strength of this evidence, either reject or do not reject your null hypothesis.

Let’s illustrate this process with a simple example. Imagine that you are approached by a shady

character on a train. He suggests playing a simple coin tossing game. For every tail, he will give

you a euro; for every head, you give him a euro. Being sceptical by nature (you are a statistician

after all), you want to test whether the coin is fair, that is, not weighted to produce more heads

than it should, before you agree to play. Your null hypothesis is that the coin is fair, that is, it

will produce as many heads as tails, so that the population proportion, which is denoted as 𝜋,

is 50 per cent, that is, the probability is 0.5. That is:

H0 ∶ 𝜋 = 0.5 (coin is fair)

Your outcome variable is the sample proportion of heads, p. You toss the coin 100 times and

get 42 heads, so p= 0.42. Is this outcome compatible with your hypothesised value of 0.5? Does

the difference between 0.5 and 0.42 reflect a real difference or could it be due to chance, that

is, is it just sampling error? If you had to bet on it, you would probably think that this value of

0.42 is reasonably compatible with your null hypothesis H0: 𝜋 = 0.5, so it appears that the coin

is fair.

But suppose that you get 30 heads from 100 tosses of the coin, so that now p= 0.30. Is this
value compatible with your null hypothesis of a fair coin? More difficult to judge now. You

probably would not want to bet a large amount of money on it.

You can see the problem. How do we decide on how far the sample proportion p has to be

from 0.5 before we begin to doubt that our null hypothesis is true? What is the critical value

of p? Our line in the sand, as it were. As it happens, there is a generally accepted rule, which

involves something known as the p-value.

The p-value and the decision rule

The hypothesis test decision rule is:

Supposing the null hypothesis is true. If you now get a certain number of heads when you
toss the coin, and if the probability of getting this number of heads (or even fewer) is less
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than 0.05,1 then this is strong enough evidence against the null hypothesis, and it can be
rejected.

Again supposing that the null hypothesis is true, then the probability of getting the outcome
observed (e.g. some particular number of heads or fewer), is called the p-value.

In other words, if the p-value is less than 0.05, then the evidence against the null hypothesis is
strong enough for you to be able to reject it.

You will get your p-value from a computer. The beauty of this rule is that you can apply it

in any situation where the probability of an outcome can be calculated and not just to coin

tossing.

As a matter of interest, the probability of getting say 42 or fewer heads if the coin is fair,

is 0.0666, which is not less than 0.05. This is not strong enough evidence against the null

hypothesis.

However, if you had got 41 heads or fewer, the probability of which is 0.0443, this is less than
0.05, and so now the evidence against H0 is strong enough and it can be rejected. The coin is

not fair. This crucial threshold outcome probability, the p-value, is 0.0443 in this example.

So, in the end, the decision rule is simple:

• Determine the p-value for the output you have obtained (using a computer).

• Compare it with the critical value, usually 0.05.

• If the p-value is less than 0.05, reject the null hypothesis; otherwise, do not reject it.

Note that the critical value, usually 0.05 or 0.01, is called the significance level of the hypothesis
test and is denoted as 𝛼 (alpha). We will return to 𝛼 again shortly. It is important to note that if

the p-value is ≥0.05, you can neither reject the null hypothesis nor can you say that it is true;

it is only that there is insufficient evidence to reject it. Maybe, H0 is not true but your sample

size was not big enough to find the evidence!

When you reject a null hypothesis, it’s worth remembering that although there is a prob-

ability of 0.95 that you are making the correct decision, there is a corresponding probabil-

ity of 0.05 that your decision is incorrect. In fact, you never know whether your decision is

correct or not,2 but there are 95 chances in 100 that it is. Compare this with the conclusion

drawn from a confidence interval where you can be 95 per cent confident that a confidence

interval will include the population parameter, but there is still a 5 per cent chance that it

will not.

It is important to stress that the p-value is not the probability that the null hypothesis is true
(or not true). It is a measure of the strength of the evidence against the null hypothesis. The

smaller the p-value, the stronger the evidence (the less likely it is that the outcome you got

occurred by chance, that is, it was due to sampling error).

1Or 0.01. There is nothing magical about these values, they are quite arbitrary, but 0.05 is most often used and

is compatible with the 95 per cent confidence interval.
2Because you will never know what the actual value of any population parameter is.
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Exercise 16.1. Suppose youwant to check your belief that asmanymales as females use

your genito-urinary clinic. (a) Frame your belief as a research question. (b) Write down

an appropriate null hypothesis. (c) You take a sample of 100 patients onMonday and find

that 40 are males. The p-value for 40 or fewer males from a sample of 100 individuals

is 0.028. Do you reject the null hypothesis? (d) Your colleague takes a sample of 100

patients on the following Friday and gets 43 males, the p-value for which is 0.097. Does

your colleague come to the same decision as you did? Explain your answer.

A brief summary of a few of the commonest tests

Some hypothesis tests are suitable only for metric data, some for metric and ordinal data and

some for ordinal and nominal data. Some require data to have a particular distribution (often

Normal); these are parametric tests. Some have no (or less strict) distributional requirements;

the non-parametric tests. Before I discuss a few tests in any detail, I have listed in Figure 16.1

a brief summary of the more commonly used tests, along with their data and distributional

requirements if any (I am ignoring tests of single population parameters as these are not

required often enough to justify any discussion).

In this chapter, I want to talk about the first five tests listed in Figure 16.1 (so I will!). In

Chapter 17, I will provide some insights into the chi-squared test – what it is and how it is

calculated. In Chapter 18, I will give a few examples from the literature to illustrate the various

applications of the chi-squared test. Let’s kick offwith a look at the use of p-values in comparing

independent population means.

Using the p-value to compare the means of two independent
populations

When we are using the two-sample t test to compare two independent population means, we

can write the null hypothesis as:

H0 ∶ 𝜇A = 𝜇B

The alternative hypothesis is:

H1 ∶ 𝜇A ≠ 𝜇B

where, 𝜇A = themean of one population and 𝜇B = themean of the second population.We then

calculate the appropriate p-value to see if the sample evidence is, or is not, strong enough for

us to reject H0 in favour of H1.

As an example, look at Figure 16.2 (if it looks vaguely familiar it’s because it’s Figure 14.5

again). The table is from a randomised placebo controlled trial to assess the effect of continu-

ous positive airway pressure (CPAP) on 24 hour ambulatory blood pressure monitoring values

in patients with new onset untreated systemic hypertension and obstructive sleep apnea. The

table shows the difference in mean blood pressures between the groups for a number of blood



Trim size: 170mm x 244mm Bowers c16.tex V3 - 06/19/2014 11:55 A.M. Page 209

USING THE P-VALUE TO COMPARE THE MEANS OF TWO INDEPENDENT POPULATIONS 209

Two-sample t test. Used to test whether or not the difference between the means of two

independent populations is zero (i.e. the two means are equal). The null hypothesis is that it is.

Both variables must be metric and Normally distributed (this is a parametric test). In addition, the

two population standard deviations should be similar (but for larger sample sizes, this becomes

less important).

Matched-pairs t test. Used to test whether the difference between themeans of two paired popula-
tions is zero. The null assumption is that it is, that is, the two means are equal. Both variables must

be metric and the differences between the two must be Normally distributed (this is a parametric

test).

Mann–Whitney rank sums test. Often used to test whether the difference between the medians

of two independent populations is zero. The null assumption is that the two medians are equal.

Variables can be either metric or ordinal. More accurately this is a test of whether the two groups

come from the same population. This is the non-parametric equivalent of the two-sample t test.
Kruskal–Wallis test. Used to test whether the medians of three or more independent groups are
the same. Variables can be either ordinal or metric. Distributions can be of any shape but all need

to be similar. This non-parametric test is an extension of the Mann–Whitney test.

Wilcoxon signed ranks test. Often used to test whether the difference between the medians of

two paired populations is zero. The null assumption is that it is, that is, the two medians are equal.

Strictly speaking, the null hypothesis is that there is no tendency for the outcome under one set of

conditions (say a treatment group) to be higher or lower than under a comparative set of conditions

(say a placebo group). Variables can be either metric or ordinal. Distributions can be of any shape,

but the differences should be distributed symmetrically. This is the non-parametric equivalent of

the matched-pairs t test.
Chi-squared test. (𝜒2). Used to test whether the proportions across a number of categories of two

or more independent groups are the same. The null hypothesis is that they are. Variables must be

categorical.∗The chi-squared test is also a test of the independence of the two variables (and has a

number of other applications). We will deal with the chi-squared test in Chapter 17.

Chi-squared test (𝜒2) for trend. Used as a test for a trend in the proportions or percentages across
categories, when the categories can be ordered. The ordinary chi-squared test is much less pow-

erful than the chi-squared test for trend. Note that establishing a linear trend across categories

implies a relationship between the two variables in question. Variables must be categorical. The

null hypothesis is that there is no trend, that is, no relationship.

Chi-squared test with odds ratios, relative risk, etc. Used as a measure of the statistical signifi-

cance of odds and risk ratios, and the like. The null hypothesis is that the ratio is not significant.

Fisher’s exact test. Used to test whether the proportions in two categories of two independent
groups are the same.The null hypothesis is that they are. Variables must be categorical. This test is

an alternative to the 2× 2 chi-squared test, when cell sizes are too small (I will explain this later).

McNemar’s test. Used to test whether the proportions in two categories of twomatched groups are
the same. The null hypothesis is that they are. Variables must be categorical.

∗Categorical will normally be nominal or ordinal, but metric discrete or grouped metric continuous might

be used provided the number of values or groups is small. For example: aged less than 50, or 50 or more; an

Apgar score of less than 7, or 7 or more.

Figure 16.1 Some of the more common hypothesis tests
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Difference∗ (95% CI) p value†

Diurnal systolic blood pressure 1.6 (−0.2 to 3.3) 0.07

Diurnal diastolic blood pressure 1.1 (−0.1 to 2.3) 0.07

Diurnal mean blood pressure 1.3 (−0.1 to 2.5) 0.06

Nocturnal systolic blood pressure 3.1 (0.9 to 5.2) 0.005

Nocturnal diastolic blood pressure 1.5 (0.1 to 3.0) 0.03

Nocturnal mean blood pressure 2.1 (0.5 to 3.6) 0.01

Mean systolic blood pressure 2.1 (0.4 to 3.7) 0.01

Mean diastolic blood pressure 1.3 (0.2 to 2.3) 0.02

Mean blood pressure 1.5 (0.4 to 2.7) 0.01

∗Differences in blood pressure (mmHg) between continuous positive airway pressure (CPAP) and sham

groups.
†Calculated by t test; compares treatment effects.

Figure 16.2 p-values and 95 per cent confidence intervals for the difference at 12 weeks, in various

mean blood pressure outcomes, between the treatment group receiving continuous positive airway pres-

sure (CPAP) and the placebo (sham) group. Taken from a randomised controlled trial of the effectiveness

of continuous positive airway pressure for the treatment of patients with new onset and obstructive

sleep apnea, who have untreated systemic hypertension. Durán-Cantolla et al. (2010)

pressure outcomes.The last column shows the p-values derived using the two-sample t test (see
the table footnote).

As you can see, the first three p-values are >0.05 (and the 95 per cent confidence intervals

include 0), so there is not enough evidence to reject the null hypothesis of no difference between

the two groups in these three outcomes. The remaining p-values are all <0.05, so the evidence
against the null hypothesis is strong enough for us to reject it.

Exercise 16.2. Figure 16.3 (Figure 14.6 again) is from a randomised placebo controlled

trial to determine the efficacy of intraoperative treatment with low-dose tranexamic acid

in reducing the rate of perioperative transfusions in patients undergoing radical prosta-

tectomy. For which outcomes do the p-values indicate sufficient evidence for us to reject

the null hypothesis (of no difference in the blood loss between the placebo and tranex-

amic groups)?

Interpreting computer hypothesis test results for the
difference in two independent population means – the
two-sample t test

As the two-sample t test is one of the more commonly used hypothesis tests, it will be helpful

to have a look at the computer output. As an example, we can test the hypothesis that the mean

birthweight of babies (in a random sample of 500 from the Born in Bradford cohort) born to
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Volume (ml) Placebo group (n= 100) Tranexamic acid group (n= 100) p

Suctioned blood 1012 (608.1) 810 (390.2) 0.009

Blood absorbed in gauzes 322 (151.8) 293 (188.6) 0.053

Total intraoperative blood loss 1335 (686.5) 1103 (500.8) 0.01

Data are mean values (standard deviation) unless stated otherwise.

Figure 16.3 p-values for differences in mean blood loss between placebo and tranexamic groups.

From a randomised controlled trial into the effectiveness of intraoperative treatment with low-dose

tranexamic acid in reducing the rate of perioperative transfusions in patients undergoing radical prosta-

tectomy. Crescenti et al. (2011)

White mothers (𝜇White) is the same as babies born to non-White mothers (𝜇non-White). Notice

that if 𝜇White =𝜇non-White, then 𝜇White -𝜇non-White = 0.

Output from Minitab – two-sample t test of difference in
mean birthweights of babies born to White mothers and to
non-White mothers

The output from Minitab for the two-sample t test of the null hypothsis that the population
mean birthweights are the same as is shown in Figure 16.4. This is a test that 𝜇White -

𝜇non-White = 0.

SE
Mean

White mother (coded 1) 214 554        38
Non-white mother (coded 2) 286 530        31

Difference  =  mu  White (1) - mu Non-white (2)
Estimate  for  difference:  329.690
95% CI for difference:  (233.006, 426.374)
T-Test of difference = 0 (vs not =):  T-Value = 6.70  P-Value = 0.000

The difference in
sample mean

birthweights . . . 

The sample data (notice
the similarity of the

sample S.D.s). . . . and the 95% CI for
the difference in the

population mean
birthweights.

The p-value, is < 0.05, so we can
reject the null hypothesis of equal

population mean birthweights.

StDevMeanN
3397
3067

Figure 16.4 Minitab output for the hypothesis test that the population mean birthweights of babies

born to White mothers is the same as babies born to non-White mothers. In fact the null hypothesis

that 𝜇White -𝜇non-White = 0
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You will see that the p-value, given as 0.000 is <0.05, so there is enough evidence for us to
reject the null hypothesis of equal population mean birthweights of babies born to White and
non-Whitemothers.Note that the p-value is not 0, it is just thatMinitab (and SPSS – see below)
only gives three decimal values in the p-value result.We can only say that the p-value is<0.000.
It might be 0.0009 or 0.00001, we have no way of knowing.

Output from SPSS: two-sample t test of difference in mean
birthweights of babies born to White mothers and to
non-White mothers

Figure 16.5 shows the output from SPPS for the two-sample t test of the null hypothesis that
the mean birthweight of babies of White mothers is the same as the mean birthweight of

Group Statistics
coded_ethnicity N Mean Std. Deviation Std. Error Mean

birthweight
1 (White) 214 3397.17 554.463 37.902
2 (Non-white) 286 3067.48 530.399 31.363

t test for equality  of means
Levene’s test of
equality of
variances

95% CI of difference

Sig Sig. (2-
tailed)

Mean
difference

Std error
difference Lower Upper

Equal variances
assumed .547 0.000 329.69 48.882 233.650 425.731

Equal variances
not assumed 0.000 329.69 49.196 233.007 426.374

The sample s.d.s
are similar. 

The sample mean
birthweights are

different.

The p-value for the
hypothesis of equal
population mean

birthweights is < 0.05,
so we can reject this

hypothesis.

And the p-value of 0.547
for this test of is > 0.05 so

we can’t reject the
hypothesis of equal

variances. Which is good!

Levene’s test is a test of the
requirement that the

variances of both
populations birthweight

distributions are the same
(or similar). The null

hypothesis is that they are
the same.

Figure 16.5 SPSS output for the hypothesis test that the population mean birthweights of babies

born to white mothers is the same as that of babies born to non-white mothers (slightly abbreviated

by present author)



Trim size: 170mm x 244mm Bowers c16.tex V3 - 06/19/2014 11:55 A.M. Page 213

COMPARING THE MEANS OF TWO PAIRED POPULATIONS – THE MATCHED-PAIRS T TEST 213

babies born to non-White mothers. The SPPS output is slightly more complicated than that
of Minitab for the same problem.
As you will recall, one of the requirements for the t test is that the variances (which are the

squares of the standard deviations) are approximately the same.3 SPSS gives two complete sets
of results: one where equality of variances is assumed and the other where it is not assumed.
Levene’s test is a test of this equality, the null hypothesis being that the variances are equal.
As you can see, the p-value for Levene’s test is 0.547, which is >0.05, so we can’t reject the
hypothesis of equal variances. Thus, this requirement for using the two-sample t test appears
to be satisfied.
The p-values (shown in the Sig. (two-tailed column)) are both <0.05, so the hypothesis of

equal birthweights can be rejected.

Exercise 16.3. Refer back to Figure 1.7, showing the basic characteristics of women in

the breast cancer and stressful life events case–control study. Comment on what the

p-values tell you about the equality or otherwise, between cases and controls, of the

means of the seven metric variables (shown with an* – see the table footnote).

Comparing the means of two paired populations – the
matched-pairs t test

You will remember that for pairs to be treated as being properly matched or paired, each indi-
vidual in one group had to be matched with an individual in the second group. Frequency
matching, where percentages in each group are about the same, for example, same percent-
age of individuals over 60, or similar percentages of males, and so on does not achieve this.
Often, this matching can take the form of before and after designs, where the same individual
is involved, thus being the perfect match.Whenmatching exists, we can use the matched-pairs

3Just a reminder that the other two requirements are, first that the data are metric and second that both popu-

lation distributions are Normal.
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t test to test the hypotheses of equal population means. We will illustrate this situation with

an exercise.

Exercise 16.4. In Figure 14.9, we looked at the 95 per cent confidence intervals (derived

from the paired t test) for the difference in themean lipid and lipoprotein concentrations

for a number of outcomes, before and after patients were treated with statins. The data

were from a cohort study of the interactive effects of fitness and statin treatment onmor-

tality risk in veterans with dyslipidaemia. If you look back at that figure, you will see that

the differences between the mean values in the before and after groups were all signif-

icant for all of the lipid outcomes. That is, we were able to reject the null hypothesis of

no difference between the before and after mean lipid values – none of the confidence

intervals included 1.

Figure 16.6 is from the same study and shows the initial and follow-up lipid levels for the

same outcomes. What do the p-values, derived from the paired t test, tell you about the

strength of the evidence against the null hypothesis of no difference between the lipid

values intially and at follow-up?

Using p-values to compare the medians of two independent
populations: the Mann–Whitney rank-sums test

As you saw in Chapter 14, if your data is ordinal or skewed metric, the Mann–Whitney

approach, which compares population medians and not means, is appropriate. The null

hypothesis is that the two medians are the same.4 As we noted briefly in Chapter 14, the

Patients not treated with statins

Initial At follow-up Mean difference p value
(n= 1433) (n= 1433) (95% CI)

Total cholesterol (mmol/l) 6.0 (0.8) 5.1 (1.1) 0.9 (0.8 to 0.9) <0.0001

Triglycerides (mmol/l) 1.5 (0.9) 1.5 (0.8) 0.1 (0.0 to 0.2) 0.03

HDL cholesterol (mmol/l) 1.2 (0.4) 1.2 (0.4) 0.0 (0.0 to 0.0) 0.22

LDL cholesterol (mmol/l) 4.0 (0.8) 3.6 (0.9) 0.4 (0.4 to 0.5) <0.0001

Data are mean (SD) unless stated otherwise. p values calculated by paired t test.

Figure 16.6 p-values for the initial and follow-up values for a number of lipid and lipoprotein con-

centration outcomes for a group of patients not treated with statins. You need to compare this table

with Figure 14. 9 taken from the same study for before and after values for patients treated with statins.

Data is from a cohort study of the interactive effects of fitness and statin treatment on mortality risk

in veterans with dyslipidaemia (Kokkinos et al., 2013).

4As you saw in Chapter 14, the Mann–Whitney approach is not strictly speaking, a test of the equality of two

population medians, but of whether the two groups come from the same population. However, it is popularly

used to compare medians.
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Mann–Whitney test is a rank-based method. You need to know whether any observed differ-

ence in the rank sums is because there really is a significant difference in the two population

medians or is it simply due to chance (sampling error). The p-value from the Mann–Whitney

test will help you decide between these alternatives.

How the Mann–Whitney test works

TheMann–Whitney test is a rank-basedmethod.As the testwill often be usedwith ordinal data

(as well as non-Normal metric data), and we know that ordinal numbers are not real numbers

(see Chapter 1) which thus prevents us from applying the common numeric operators (+, −,
× and ÷) to the data, we have to rank the data first.
As a very simple illustration of the rankmethod underlying theMann–Whitney test, suppose

that we have sample Injury Severity Scores (ISS),5 for two groups of individuals and we want

to know if their population ISS median scores are the same. ISS being a scale produces ordinal

values. The data and working are shown in Figure 16.7.

The procedure is relatively simple:

Step 1. Amalgamate the two sets of scores, making sure you can identify which group each

score came from.

Step 2. Rank these amalgamated scores from the smallest to the largest.

Step 3. Separate the ranks into their respective groups and sum each set of ranks.

Step 4. Compare the rank sums. Are they same (or similar) or different?

Group A ISS Group B ISS Joined Values Ranks

score score
A B

60 50 50 (B) 1 1

55 65 55 (A) 2 2

71 68 58 (A) 3 3

58 75 60 (A) 4 4

62 70 62 (A) 5 5

65 (B) 6 6

68 (B) 7 7

70 (B) 8 8

71 (A) 9 9

75 (B) 10 10

Rank sums 23 32

Figure 16.7 The ranking procedure of the Mann–Whitney rank-sums test for comparing the population

median Injury Severity Scores (ISS) of two independent groups

5The Injury Severity Score is a measure of anatomical injury. It ranges from 1 to 75; higher scores indicate more

severe injury.
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As you can see, the rank sums are 23 and 32 for groups A and B, respectively. Even if the pop-
ulation medians were the same, we would not expect these rank sums to be identical because
of sampling error. But how far apart do they have to be before we can feel that the evidence
is strong enough for us to reject the null hypothesis of equal population medians? This is a
decision that the p-value will help us make. If it is <0.05, we can reject the null hypothesis,
otherwise we cannot.

Interpreting computer output for the Mann–Whitney test

With Minitab

Suppose that we want to compare the median booking weight (kg) of White and non-White
mothers from the Born in Bradford data. Although weight is a metric variable, it is not Nor-
mally distributed in either population, as you can see from Figure 16.8, so theMann–Whitney
test seems appropriate.
The output from Minitab for the Mann–Whitney test is shown in Figure 16.9. As you can

see, the sample median weights are different, 70 kg and 61 kg for the White and non-White
mothers, respectively. The Mann–Whitney test results indicate that the evidence against the
null hypothesis of equal median population booking weights ofWhite and non-Whitemothers
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Figure 16.8 Distribution of booking weight (kg) of white and non-white mothers, for a random sample

from the Born in Bradford cohort. As you can see, neither distribution is Normal (both positively skewed)

N    Median
weight White mothers           214    70.000
weight non-White mothers  286    61.000

Point estimate for ETA1–ETA2 is  8.000
95.0 Percent CI for ETA1–ETA2 is (6.000,10.998)
W = 63711.5
Test of ETA1 = ETA2 vs ETA1 not = ETA2 is significant at 0.0000

The test is significant at 0.0000 (adjusted for ties)

The null hypothesis
that the population
medians are equal . . 

. . .the alternate
hypothesis that the
population medians
are not equal.

The p-value. Since this is
<0.05 we can reject the null
hypothesis of equal median
booking weights for white
and non-white mothers.

Figure 16.9 Output from Minitab for the Mann–Whitney test of the null hypothesis that the pop-

ulation medians of booking weight for white mothers and non-white mothers are equal. Data from a

random sample drawn from the Born in Bradford cohort
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is strong enough for us to reject it, the p-value is<0.05. (Note that Minitab uses ETA to denote
the population median).

With SPSS

The output for the Mann–Whitney test of equal population booking weights is shown in
Figure 16.10. As you can see, the result is the same as for Minitab – we can reject the null
hypothesis of equal population median booking weights in White and non-White mothers.

Exercise 16.5. Interpret the p-values in Figure 16.11 for the differences in the medians

of six procedure characteristics between two groups of patients, one group receiving a

biodegradable stent and the other group a durable stent. (We first encountered this study

in Figure 3.19).

Two matched medians – the Wilcoxon signed-ranks test

In the same circumstances as that for the Mann–Whitney test described earlier, but with
matched populations, the non-parametric Wilcoxon signed-ranks test is appropriate. (see
Chapter 14 for a brief explanation of the procedure). Look back at Figure 14.12, which is from
a matched case–control study into the dietary intake of schizophrenic patients living in the
community in Scotland. Here, the authors have used the Wilcoxon matched-pairs to test the
null hypothesis that there is no difference in population median daily intakes of a number of
substances between ‘All Patients’ and ‘All Controls’. The p-values are in the column headed ‘P’.
As you can see, the only p-value not less than 0.05 is that for protein (p-value= 0.07), so this

is the only substance whose median daily intake for which the evidence is not strong enough
for us to reject the null hypothesis that median intakes are the same (which is confirmed by the
confidence intervals).

Confidence intervals versus hypothesis testing

I said at the beginning of this chapter that confidence intervals are preferred to hypothesis
tests.Why is this? Because the confidence intervals aremore informative. To illustrate this, look

Hypothesis Test Summary

Null Hypothesis

The medians of Weight are the
same across categories of
coded_ethnicity.

1

Asymptotic significances are displayed. The significance level is .05.

Independent
Samples
Median Test

.000
Reject the
null
hypothesis.

Test Sig. Decision

p-value; and
the decision.

Figure 16.10 Output from SPSS for Mann–Whitney test of equal population median booking weights

of White and non-White mothers from a sample drawn from the Born in Bradford cohort
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Biolimus-eluting stent Sirolimus-eluting stent p value
(n= 1229) (n= 1239)

More than one stent

Per patient 448 (36.5%) 450 (36.3%) 0.56

Per lesion 279 (18.3%) 300 (19.2%) 0.79

Total stent length (mm)

Per patient 22.0 (14.0 to 32.0) 23.0 (13.0 to 33.0) 0.22

Per lesion 15.0 (10.0 to 20.0) 15.0 (10.0 to 20.0) 0.51

Direct stenting 329 (21.6%) 345 (22.4%) 0.60

Stent delivery failure 26 (1.7%) 31 (2.0%) 0.54

Maximum pressure (atm) 16.0 (14.0 to 20.0) 18.0 (15.0 to 20.0) <0.0001

Length of procedure (min) 24.0 (16.0 to 38.0) 24.0 (15.0 to 38.0) 0.94

Fluoroscopy time (min) 6.5 (4.0 to 12.0) 6.9 (4.0 to 12.2) 0.27

Contrast (ml) 100.0 (60.0 to 130.0) 100.0 (60.0 to 140.0) 0.64

Use of glycoprotein IIb/IIIa inhibitors 195 (15.9%) 209 (16.9%) 0.50

Data are number (%) or median (IQR).

Figure 16.11 Use of the Mann–Whitney test to determine if there is a difference in the medians

of six procedure characteristics. From a study to investigate the effects of a biodegradable polymer

biolimus-eluting stent compared with a durable polymer-coated sirolimus-eluting stent. Data from

Christiansen et al. (2013)

again at theMinitab output for theMann–Whitney test of the difference in populationmedian

booking weights of White and non-White mothers Figure 16.9. The 95 per cent confidence

interval for the difference in median weights is (6.000 to 10.998) kg and the p-value= 0.0000.

What do these two pieces of information tell us? The p-value (being <0.05) tells us that the
evidence is plenty strong enough to reject the null hypothesis of equal population median

weights. And that is all. But the confidence interval not only tells us that the median weights

are different because the confidence interval does not include 0, but in addition, it also tells us

that the difference in median weights is probably somewhere between 6.000 kg and 10.998 kg.

This useful extra information comes completely free of charge!

So the confidence interval does everything that the hypothesis test does – it tells us if the

medians are equal or not, but it also gives us extra information – on the likely range of values

for this difference.Moreover, unlike a p-value, the confidence interval is in clinicallymeaningful
units (in this case kg), which helps with the interpretation. So whenever possible, it is a good

practice to use confidence intervals in preference to p-values. Although, of course, you can

present both and many authors do.

There is one final and important point to make before we leave this discussion on p-values. It
is very important not to be blinded by the<0.05 decision rule. A p-value just above 0.05 (e.g. for
the difference in mean diurnal mean blood pressure in Figure 14.5) does not mean that there is

no effect, that is, say no difference in the twomeans. Itmight be that a bigger sample would have

given a p-value<0.05.When you come to interpret a p-value (in conjunction with a confidence
interval), do not feel too restricted by the 0.05 threshhold. Don’t forget that the point estimate

of a difference is the single best guess of its value (1.3mmHg in the diurnal blood pressure

example). You should re-read the discussion on the interpretation of confidence intervals in
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Chapter 14. And a useful discussion on the interpretation of p-values can be found in the study
by Hackshaw and Kirkwood (2011).

Exercise 16.6. Explain why it is better to present a confidence interval rather than a

p-value.

What could possibly go wrong?

Again see Figure 16.2, from a randomised placebo controlled trial of the effectiveness of
CPAP for the treatment of patients with new onset and obstructive sleep apnea, who also have
untreated systemic hypertension. Your null hypothesis is that there is no difference in various
blood pressure outcomes between the CPAP group and the sham (placebo) group.
If you consider the results for the difference in Diurnal mean blood pressure, the 95 per

cent confidence interval is (−0.1 to 2.5) mmHg and the p-value= 0.06. Both of these measures
indicate that the evidence against the null hypothesis is not strong enough for it to be rejected.
So you don’t reject it. But what if you have made the wrong decision and there is in fact a
significant effect but you do not detect it.
How can this be? Well, your sample size might not be large enough, and the consequence is

that your two-sample t test is not powerful enough to detect the differences between the CPAP
and the sham groups, which smaller than 2mmHg.
Now consider the results in Figure 16.2 for Nocturnal diastolic blood pressure. The 95 per

cent confidence interval is (0.1 to 0.3) mmHg and the p-value= 0.03. Both of these measures
indicate that the evidence against the null hypothesis is strong enough for it to be rejected. But
suppose that this is also the wrong decision! It is possible that sampling error has given us a
sample which is not representative of the populations (don’t forget that we are only 95 per cent
confident not 100 per cent), and there is actually no difference in Nocturnal blood pressure
between the two groups in the population.
These two different types of failure to make the correct decision about the null hypothesis

raises three interesting questions. First, what exactly is the power of a test and how can we
measure it? Second, how can we increase the power of the test we are using? Third, is there a
more powerful test that we can use instead? Before I address these questions, a few words on
types of error.

Types of error

Whenever you decide either to reject or not reject a null hypothesis, you could be making a
mistake. After all, you are basing your decision on sample evidence. Even if you have done
everything right, your sample could still, by chance, not be very representative of the popula-
tion, or it might be too small, and as a consequence your test might not be powerful enough to
detect an effect if there is one. There are two possible errors:

• Type I error: Rejecting a null hypothesis when it is true. Also known as a false positive. In
other words, concluding there is an effect when there isn’t. The probability of committing a
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type I error is denoted as 𝛼 (alpha), and it is the same 𝛼 as that of the significance level of a
test (see above).

• Type II error: Not rejecting a null hypothesis when it is false. Also known as a false negative.
That is, concluding there is no effect when there is. The probability of committing a type II
error is denoted as 𝛽 (beta).

Ideally, you would like a test procedure which minimises the probability of a type I error
because in many clinical situations such an error is potentially serious – judging some proce-
dure to be effective when it is not. When you set the significance level of a test at 𝛼 = 0.05, it is
because you want the probability of a type I error to be no more than 0.05.
Nonetheless, if there is a real effect you would certainly like to detect it, so you also want to

minimise the probability of 𝛽, a type II error, or put another way, you want to make (1 - 𝛽) as
large as possible.

Exercise 16.7. Explain, with examples, what is meant in hypothesis testing by: (a) a

false positive, (b) a false negative. (c) How do we denote the probability of committing

each type of error?

The power of a test

We can now come back to the three questions above.
What is meant by the power of a test? To answer the first question – the power of a test is a

measure of the capacity of the test to reject the null hypothesis when it is false. In other words,
the power to detect what is called the smallest effect of clinical interest if one is present in the
population.This the smallest beneficial effect that clinicians would consider worthwhile in any
intervention. Power is defined as (1− probability of a type II error), that is, (1− 𝛽).
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In practice, 𝛽 is typically set at 0.2 (or sometimes 0.1). This provides a power value of 0.80
(or 80 per cent). So if there is an effect, then the probability of the test detecting it is 0.80.
To answer the second question. How can you increase the power of the test you are using?

Although you would like to minimise both 𝛼 and 𝛽, unfortunately, they are, for a given sample
size, interconnected.Youcan’tmake𝛽 smallerwithoutmaking𝛼 largerandviceversa.Therefore,
when you decide a value for 𝛼, you are also inevitably fixing the value for 𝛽. The only way
to reduce both values simultaneously (and increase the power of a test) is to increase the
sample size.
To answer the third question. Is there a more powerful test? Briefly, parametric tests are

more powerful than non-parametric tests (see Figure 16.1 on the meaning of these terms). For
example, a Mann–Whitney test has 95 per cent of the power of the two-sample t test.6 The
Wilcoxon matched-pairs test similarly has 95 per cent of the power of the matched-pairs t test.
As for the chi-squared test, there is usually no obvious alternative when used for categorical
data, so comparisons of power are less relevant, but it is known to be a powerful test. Generally,
you should of course use the most powerful test that the type of data, and its distributional
shape, will allow.

An example from practice

The following is an extract from the randomised controlled trial of epidural analgesic in the
prevention of stump and phantom pain after amputation.The authors of the study outline their
thinking on power thus:

The natural history of phantom pain after amputation shows rates of about 70%, and

in most patients the pain is not severe. Since epidural treatment is an invasive proce-

dure, we decided that a clinically relevant treatment should reduce the incidence of

phantom pain to less than 30% at week 1 and then at 3, 6, and 12 months after ampu-

tation. Before the start of the study, we estimated that a sample size of 27 patients per

group would be required to detect a between-group difference of 40% in the rate of

phantom pain (type I error rate 0.05; type II error rate 0.2; power = 0.8).

Exercise 16.8. (a) Explain, with the help of a few clinical examples, why you would

normallywant tominimise 𝛼while testing a hypothesis. (b) 𝛼 is conventionally set at 0.05

or 0.01.Why, if you want to minimise it, do you not set it at 0.001 or 0.000001, or even 0?

Maximising power – calculating sample size

Before I say anything about calculating how big a sample you will need to answer your research
question, the strongest possible advice I can give you is to consult a medical statistician for

6In view of the restrictions associated with the 2-sample t test, the Mann–Whitney test seems an excellent

alternative!
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help with this question. It is disastrous to embark on a piece of research, collect the data, then

discover – too late – that your sample is not big enough to answer your research question!!!

What follows is nomore than a fairly superficial coverage of the topic – really to give you some

idea of the numbers involved. If you are embarking on some clinical research project, I would

strongly advise you to consult a statistician who will offer you reliable advice on sample size.

Generally, the bigger the sample, the more powerful the test.7 Theminimum size of a sample

for a given power is determined both by the chosen level of 𝛼 and the smallest effect of clinical

interest. The sample size calculation can be summarised thus:

• Decide on the smallest effect of clinical interest.

• Decide the significance level of 𝛼, usually 0.05.

• Decide the power required, usually 80 per cent.

• Do the sample size calculation, using some appropriate software, or the rule of thumb

described below.

Minitab has an easy-to-use sample size calculator for the most commonly used tests. Machin

et al. (1987) is a comprehensive collection of sample size calculations for a large number of

different test situations.

Rule of thumb 1. Comparing the means of two independent populations
(metric data)

Assuming a significance level of 0.05 and a power of 0.8, the required sample size n is given by

the following expression:

n = 16 × s.d.2

E2

where s.d. is the population standard deviation (assumed equal in both populations) in the out-

come variable concerned. This can be estimated using the sample standard deviations, if they

are available from a pilot study say. Otherwise the s.d. will have to be guessed using whatever

information is available. E is the minimum difference in the means that would be clinically

useful or otherwise interesting.

For example, suppose that you propose to use a case–control study to examine the efficacy of

a programof regular exercise as an alternative to your current drug of choice in treatingmoder-

ately hypertensive patients.The smallest effect of clinical interest is a difference of 10mmHg in

mean systolic blood pressures between the cases (given the exercise program) and the controls

(given the existing drug). Youwill have tomake an intelligent guess as to the standard deviation

of systolic blood pressure (assumed the same in both groups – see above). Let’s assume that the

7These sample-size calculations also apply if you are calculating confidence intervals. Samples that are too small

produce wide confidence intervals, sometimes too wide to enable a real effect to be identified.
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systolic blood pressure standard deviation is 15mmHg (information on this, and many other

measures, can be found in reference sources, from the research literature, from colleagues, etc.)

If power required is 80 per cent, with a significance level of 0.05, then the sample size required

per group is:

n = 16 × 152

102
= 36

So you will need at least 36 subjects in each of the two groups (always round up to next

highest integer) to detect a difference of 10mmHg between the means. In addition, you should

add more participants to this sample size to allow for drop-outs from the study (you will have

to make some sort of sensible asssessment of this number). Note that these sample sizes will

also be large enough for two matched populations since these require smaller sample sizes for

the same power.

Rule of thumb 2. Comparing the proportions of two independent
populations (binary data)

The required sample size, n, for a significance level of 0.05, is given by:

[Pa(1 − Pa)] + [Pb × (1 − Pb)]
(Pa − Pb)2

× 8

where Pa is the proportion with treatment a, Pb is proportion with treatment b, so (Pa − Pb) is
the smallest effect of clinical interest.

For example, suppose that the percentage of elderly patients in a large district hospital with

pressure sores is currently around 40 per cent or 0.40. SoPa = 0.40 and (1− Pa)= 0.60. Youwant

to test a new pressure-sore-reducingmattress, and you would like the percentage with pressure

sores to decrease to at least 20 per cent or 0.20, so Pb = 0.20, and (1−Pb)= 0.80. Therefore,

(Pa − Pb)= (0.40− 0.20)= 0.20. If power required is 80 per cent and significance level 𝛼 = 0.05,

then required sample size per group is:

(0.40 × 0.60) + (0.20 × 0.80) × 8

(0.4 − 0.2)2
= 80

Thus, you would need at least 80 subjects in each group, which would also be big enough for

the matched samples case.

An interesting view on sample size calculation is found in a paper by Norman et al. (2012).
To finish, here are two extracts from recent papers on the calculation of sample size.

Sample size

The original sample size was revised because fewer patients meeting the eligibility

criteria were available for recruitment within practices than had been anticipated. For

80% power at 5% significance level (two sided test), 464 eligible patients (average of

eight per practice) from 58 general practices were required to detect an absolute 0.5%

reduction in mean HbA1c between the intervention and control groups at 18 months.
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Sample size was based on a two sample t test, a standard deviation of 1.44. This value

was then inflated by 1.3 to allow for the correlation of outcomes of patients within the

same practice, assuming an intracluster correlation of 0.05 and variation in sample

cluster size, and a further 20% for attrition over 18 months.

Blackberry et al. (2013)

The sample size calculation was based on our primary outcome (disability). On

the basis of a power of 80% and an 𝛼 of 0.05 (two tailed testing), and an expected

treatment difference of at least 2.0 points on the Groningen Activity Restriction Scale,

the required sample size was 80 per group (160 in total). Accounting for a dropout rate

of 30% and a cluster effect of 1.73 (intraclass correlation coefficient 0.05), assuming

equal cluster sizes, the final sample size had to be 180 per group (360 in total).

Metzelthin et al. (2013)
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17
The chi-squared (𝝌2)
test – what, why, and how?

Learning objectives

When you have finished this chapter, you should be able to:

• Describe the rationale underlying the chi-squared hypothesis test.

• Explain the difference between observed and expected values.

• Calculate expected values and the test statistic.

• Outline the procedure for the chi-squared test for the independence of two variables

in a population.

• Outline the procedure for the chi-squared test for the equality of two population

proportions and show that this is equivalent to the test of the independence of two

variables.

• Perform a chi-squared test in 2× 2, 2× 3, 2× 4, and 3× 4 cases.

Medical Statistics from Scratch: An Introduction for Health Professionals, Third Edition. David Bowers.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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• Interpret SPSS and Minitab chi-squared test results.

• Interpret the published results of chi-squared tests.

• Outline the procedure for a chi-squared test for trend.

Of all the tests in all the world – you had to walk into my
hypothesis testing procedure

As we discuss the use of the chi-squared (𝜒2) test, quite a lot in the next chapter, it seems like
a good idea to say something about the chi-squared test itself; what it is and how it works?
As we noted in Chapter 16, three hypothesis tests are quite common in clinical research.

The first is the two-sample t test (see Chapter 14) which, as you have seen, is used with metric
data to compare the means of two independent populations.The second is the Mann-Whitney
test, which is used with ordinal or non-Normal metric data to compare the medians of two
independent populations (Chapter 14). The third is the chi-squared test1 (𝜒2, pronounced as
the first syllable in Kylie Minogue). The chi-squared test is probably the most common of the
three.
The chi-squared test has three common applications: first, as a test of whether the proportions

of a categorical variable are the same across two or more groups; second, to test whether two
variables are related (i.e. dependent) or not (as you will see these tests are in fact equivalent),
and third, to test the significance of relative risks (risk ratios), odds ratios, and other ratios
(hazard ratios and incidence ratios immediately spring to mind).

Using chi-squared to test for related-ness or the equality
of proportions

The chi-squared test is used with frequency data2 in the form of a contingency table (i.e. a
table of cross-tabulations), with the rows representing groups or categories of one variable and
the columns representing the groups or categories of the second variable. The groups must be
independent – this is an essential requirement of the chi-squared test.3 The null hypothesis is
that the two variables are unrelated.
Letme illustrate the idea of a chi-squared test with an example from the literature. Figure 17.1

is from a cohort study to assess whether mild iodine deficiency during early pregnancy was

1So called because it uses what is called the chi-squared distribution. If a variable X is Normally distributed,

then X2 has a chi-squared distribution. The chi-squared distribution is very skewed for small samples but

becomes more and more like the Normal distribution as the sample size increases.
2The method works only with counts (i.e. numbers of persons or things); it does not work with proportions or

percentage values.
3If the groups are matched then McNemar’s test is appropriate.
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Outcome

Sub-optimum reading speed?

No Yes Total

Urinary iodine-to-creatinine ratio <150 μ/mg 441 170 611

≥150 μ/mg 231 62 293

Total 672 232 904

Figure 17.1 The numbers of children aged nine years (out of the total sample of 904 children) with

a sub-optimum reading speed, by maternal iodine status (urinary iodine-to-creatinine ratio). From a

cohort study to assess whether mild iodine deficiency during early pregnancy is associated with an

adverse effect on child cognitive development. Data from Bath et al. (2013)

associated with an adverse effect on child cognitive development. The table shows the num-
bers of children with a sub-optimum reading speed at nine years (out of the total sample of
904 children) by maternal iodine status: urinary iodine-to-creatinine ratio of <150 μ/mg and
≥150 μ/mg.
The rows of this table represent the two groups of the variable: urinary iodine-to-creatinine

ratio, that is, <150 μ/mg and ≥150 μ/mg. The columns of the table represent two groups of
the variable sub-optimum reading speed (no and yes). These groups are clearly independent.
Notice that both variables are categorical.4

The question is: is there a relationship between mild iodine deficiency during early preg-
nancy and child cognitive development in the population? In other words, are the two variables
related? The null hypothesis is that there is no relationship, that is, the two variables are inde-
pendent of each other. That is:

H0: Urinary iodine-to-creatinine ratio and sub-optimum reading speed at nine years

are not related in the population (i.e. are independent).

We can use the chi-squared test and its associated p-value to provide us with a measure of
the evidence against the null hypothesis.
Here is the important bit. If the two variables are unrelated, then there is no reason why

the proportion of children with sub-optimum reading speed should be any different among
mothers with a urinary iodine-to-creatinine ratio of <150 μ/mg compared to the proportion
among children of mothers with a ratio of ≥150 μ/mg.
However, if the two variables were related, that is, if mild iodine deficiency during early preg-

nancy did adversely affect child cognitive development, then we would expect to find that the
proportion of children with a sub-optimum reading speed would be different in the two cate-
gories of iodine levels.
In this example, the sample proportions of nine-year-old childrenwith sub-optimum reading

speeds are 170/611= 0.2782 in the< 150 μ/mg group and 62/293= 0.2116 in the ≥150 μ/mg
group, respectively. These proportions are different, but (the usual question) are they different

4Urinary iodine-to-creatinine ratio is a metric variable but has been ordinalised by dividing it into these two

groups.
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Outcome

Sub-optimum reading speed?

No Yes Total

Urinary iodine-to-creatinine ratio <150 μ/mg 454 157 611

≥150 μ/mg 218 75 293

Total 672 232 904

Figure 17.2 Expected values (in italics for emphasis) assuming the null hypothesis between the uri-

nary iodine-to-creatinine ratio and sub-optimum reading speed is true, that is, there is no relationship

between these two variables

enough for us to think that the null hypothesis should be rejected? Is this difference due to
a true difference in the proportions in the population or is it due to sampling error, and the
population proportions are in fact the same?We need a way of answering this question, which
we’ll come to it shortly.
As it happens, we have already discussed amethod for deciding whether two proportions are

the same – by calculating a confidence interval for the difference in two population proportions
(see Chapter 14). In fact, the two methods – asking if two variables are independent or if two
proportions are the same, are equivalent whenever one of the variables has only two categories.
However, although we can calculate the confidence interval in the two proportions approach,
as we saw in Chapter 14, we can’t with a chi-squared approach.
The crucial question is this, ‘what proportions would we expect to find if the null hypothesis

of unrelated variables was true?’ The answer is that as we have got a total of 232 children with
sub-optimumreading speed in the total sample of 904, that is, a proportion of 232/904= 0.2566,
we would expect to find 0.2566 or 25.66 per cent of the total in each category.That is, 25.66 per
cent of the 611 in the<150 μ/mg category and 25.66 per cent of the 293 in the≥150 μ/mg.This
gives us 0.2566× 611= 157 and 0.2566× 293= 75 respectively. So you would expect about 157
nine-year-old children with a sub-optimum reading speed in the <150 μ/mg category and 75
in the ≥150 μ/mg category, rather than the observed values of 170 and 62.
The table in Figure 17.2 is what we would expect to find if the null hypothesis of no relation

between the variables was true (rounded to the nearest whole number).
So the table in Figure 17.1 contains the values we actually observe in the sample, and the

values in the table in Figure 17.2 are the values we would expect to find if the null hypothesis
was true.We are back to the crucial question. How close are the observed and expected values?
Are they close enough for us to put the difference down to sampling error and accept the null
hypothesis of no relationship between the two variables, or is the difference between them too
great to put down to mere sampling error and thus cause us to reject the null hypothesis. I will
deal with this question in a moment.
Incidentally, if you do this calculation by hand (particularly as the number of rows and

columns gets larger) an easier way to calculate expected frequencies is to use the expression:

Expected cell frequency = total of row that cell is in × total column that cell is in

overall total frequency
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So, for example, for the top left-hand cell, expected value= (611× 232)/904= 157, which is

correct!

Exercise 17.1. From the same study as that of the data in Figure 17.1, the IQ of the

children at eight years old was measured. The results were in the <150 μ/mg group, 177

of 646 children had sub-optimum IQ; in the ≥150 μ/mg group, 65 of 312 children had

sub-optimum IQ. Set this data out in the form of a contingency table as in Figure 17.1.

Assuming a null hypothesis of no relationship between the two variables, calculate a table

of expected values.

The chi-squared test can be used with more than two categories in each variable but with

small sample sizes, the maximum number of either is limited by the proviso that none of the

expected values should be less than 1 and that 80 per cent of expected values should be greater

than 5.There are twoways round the problem of low expected values. First, increase the sample

size – usually impractical. Second, amalgamate two or more rows or columns, if this can be

done and still make sense.

Applying the chi-squared test

As you know, even if the null hypothesis is true and if there is no relationship between the

variables, you would not expect the difference between each observed (O) value and each

expected (E) value to be exactly zero, because of sampling error. But how far away does this

difference have to be from zero before you accept that the sample results are indicative of

a true difference in the proportions in the population rather than being due to sampling

error?

You can use the chi-squared test to answer this question: if the p-value associated with the

chi-squared test is less than 0.05 (or 0.01), you can reject the null hypothesis and conclude that

the two variables are not independent or, put another way, there is a statistically significant

difference in the proportions.

But anyway we can’t use the value of
∑

(O − E)5 because it is always zero, so we have to do
some cunning arithmetical manipulation to overcome this problem, as you will now see. The

procedure (perhaps tedious but not difficult to do by hand if the number of categories is small)

is as follows:

• Calculate the expected value, E, for each cell in the table.

• For each cell, calculate the value of (O−E), where O is the observed value.

• Square each (O−E) value, to get a set of (O−E)2 values.

5Using the Greek letter
∑
, which means the sum of the values.
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• Divide each (O−E)2 value by the E value for that cell, to get a set of (O−E)2/E values.

• Add all of the (O−E)2/E values. This gives the value of
∑{

(O − E)2

E

}

This final result is called the chi-squared statistic.

When all the observed values (the Os) are equal to their respective expected values (the Es),
the chi-squared statistic will be equal to 0, so, for significance, we are looking for the value of

chi-squared to be large. This chi-squared statistic has a chi-squared distribution when the null

hypothesis is true: a property that we can use in our decision as to whether to reject or not

the null hypothesis. Essentially, if the chi-squared statistic exceeds a critical value, we can take

this as showing sufficient evidence against the null hypothesis of no relationship between the

variables, and reject it.

For this purpose, we use critical values, the values of the chi-squared statistic at a 0.05 level of

significance as shown in the table of Figure 17.3.The first column of this table is the number of

degrees of freedom (d.f.) that the table has,6 which is equal to the (number of rows - 1)× (the

number of columns - 1). So, for example, a 2× 2 table has (2 - 1)× (2 - 1)= 1 d.f. For any given

table size (numbers of rows and columns), the value of the chi-squared statistic must exceed

the value in the table for us to reject the null hypothesis.

For example, the chi-squared statistic must exceed 3.84 for a 2× 2 table for us to reject the

null hypothesis that the two variables are independent, that is, the proportions are equal across

categories. In practice, you will, no doubt, use a computer program to supply the p-value for
the chi-squared test and thus to reject or not reject the null hypothesis.

6You do not need to know what degrees of freedom (d.f.) means for the purposes of reading this book. But I am

sure that if you wish, you can find good explanations using a search engine.
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Degrees of freedom

(No. rows - 1) × (No. cols - 1)

Critical values, when 𝛼 = 0.05.

The value to be exceeded if the

null hypothesis of unrelated variables,

(or equal proportions) is

to be rejected

1 3.84

2 5.99

4 9.49

6 12.59

9 16.92

Figure 17.3 Table of critical p-values for the 𝜒2 test with statistical significance of 0.05. To reject

the null hypothesis of unrelated, that is, independent variables (or equal proportions) the value of the

test statistic must exceed the value in column two for the given table sizes in column one

Let’s apply the chi-squared test to the data in Figure 17.1 to see if there is a relationship

in the population between maternal iodine status and the sub-optimum reading speed of

nine-year-old children.

Step 1. The (O−E) terms from Figures 17.1 and 17.2, are:

(441 − 454), (170 − 157), (231 − 218)and (62 − 75), i.e. −13, 13, 13,−137

Step 2. Squaring each of these values gives: 169, 169, 169 and 169

Step 3. Dividing each of these by its E value, gives:

169

454
= 0.372,

169

157
= 1.076,

169

218
= 0.7752 and

169

75
= 2.253.

Step 4. Sum all of the values in the previous step. This gives:

(0.372 + 1.076 + 0.7752 + 2.253) = 4.476

So the chi-squared statistic= 4.476.

A 2× 2 table has (2− 1)× (2− 1)= 1× 1= 1 d.f. So fromFigure 17.3, the critical value is 3.84.

As our chi-squared statistic of 4.476 comfortably exceeds this critical value, we can reject the

null hypothesis.Therefore, there does appear to be a relationship betweenmaternalmild iodine

deficiency during early pregnancy and a sub-optimum reading speed in the children of these

mothers at nine years.

7The differences in the (O−E)s are all the same, apart from the sign, in all four cells. This is true for all 2× 2

tables.
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Yate’s correction (continuity correction)

The way the chi-squared test works is by approximating the discrete count (frequency) data in
the contingency table with the continuous chi-squared distribution. If your sample size is small,

however, even if more than 20 per cent of the expected values are greater than 5, or if any of
the expected values is less than 1, this approximation is not satisfactory. The effect is to inflate
the value of the chi-squared statistic. With a 2× 2 table, we can use a continuity correction to
improve the fit, by correcting this upwards bias. This sort of correction is called a continuity

correction and in the 2× 2 case, it is known as Yate’s correction. This involves subtracting a
value of 1/2 from each of the (O−E) terms, ignoring its sign, thereby bringing the values closer
to zero. You will not need to do this by hand.

Fisher’s exact test

The chi-squared test is basically a test used with large samples, but when all the expected values

are less than 5 (usually when the sample size is small) and we have a 2× 2 table, we can turn to
an alternative test called the Fisher’s exact test. Most computer statistics programs perform this
test, some by default if they find that the expected values are too small for the chi-squared test.
As an example of both Yate’s correction and Fisher’s exact test, Figure 17.4 shows the

early (before hospital admission) and late deaths (after hospital admission) of children who

Early death group Late death group p value
(n= 19) (n= 51)

Median age (years; IQR) 6 (2–14) 7 (2.5–12) 0.9761∗

Ethnic origin

White British 12 (63%) 25 (49%) 0.7547†

Asian or Asian British (any) 6 (32%) 21 (41%)

Black or Black British (any) 1 (5%) 3 (6%)

Healthy or mild pre-existing disorders 9 (47%) 8 (16%) 0.0109‡

Presumed or confirmed bacterial sepsis 9 (47%) 19 (37%) 0.5842‡

Pre-hospital antivirals 2 (10%) 1 (2%) 0.1770‡

Duration from symptom onset to death

(days; median, IQR)

2 (1–2.5) 10 (5.5–16.5) <0.0001∗

Duration from symptom onset to first

medical consult (days; median, IQR)

1 (0.25–2) 2 (0–3.75) 0.4533∗

Data are number of patients (%) unless otherwise stated.
∗Mann–Whitney U test.
†𝜒2 with Yates correction.
‡Fisher’s test.

Figure 17.4 Examples of the use of the chi-squared test with Yate’s correction and Fisher’s exact test

(as well the Mann–Whitney test of equal population medians – see Chapter 16). The table shows the

characteristics of children presenting with rapid deterioration leading to death before, or at the point

of, hospital admission (early death) and of those who died after hospital admission (late death). Data

from Sachedina and Donaldson (2011)
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died from AH1N1 influenza between June 2009 and March 2010, with a number of basic

demographic and clinical characteristics. The table shows p-values for both tests (as well as

for the Mann–Whitney test – see Chapter 16) and is taken from a study to analyse paediatric

mortality to inform clinical and public health policies for future influenza seasons and

pandemics.

Exercise 17.2. (a) Why do you think the authors of the study in Figure 17.4 used both

the chi-squared test with Yate’s correction and Fisher’s exact test? (b) Assess the evidence

for the rejection (or not) of the null hypothesis that there is no relationship between being

White British (or not) and early or late death.

The chi-squared test with Minitab

Suppose that we want to know, using the Born in Bradford data (n= 500), if there is a relation-

ship between ethnicity (two categories – White, and Non-White) and smoking while pregnant

(Yes or No). The null hypothesis is that there is no relationship. Minitab produces the output

shown in Figure 17.5. Both Minitab and SPSS (see below) produce more than one version of

the chi-squared test. We are only interested in Pearson’s chi-squared test.

Tabulated statistics: smk_preg, coded ethnicity 

Rows: smk_preg   Columns: coded ethnicity

1 (White)     2 (Non-White)       All

1 (Yes)        68                               9                       77
  33.0                          44.0                   77.0

2 (No)      146                            277                   423
181.0                         242.0                423.0

All            214                            286                    500
   214.0                         286.0                 500.0

Cell Contents:               Count
Expected count

Pearson Chi-Square = 77.006, DF = 1, p-Value = 0.000
Likelihood Ratio Chi-Square = 82.042, DF = 1, p-Value = 0.000

Observed values.
(Top values in each pair).

Expected values.
(Bottom values).

Value of Pearson’s
chi-squared statistic.

The p-value is less than 0.05,
so we can reject null

hypothesis of no relationship
between ethnicity and smoking

while pregnant.

Figure 17.5 Output from Minitab for chi-squared test of relationship betwen ethnicity (White and

Non-White mothers) and smoking while pregnant (Yes or No). Data is a random sample (n= 500) from

the Born in Bradford cohort
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As you can see, the value for the chi-squared statistic is large (77.006) and the p-value is
<0.05, so we can reject the null hypothesis. Smoking while pregnant and ethnicity (White ver-
sus Non-White) appear to be related.

The chi-squared test with SPSS

SPSS produces the output as shown in Figure 17.6. The null hypothesis is the same as that
shown for Minitab as described earlier, that is, there is no relationship between ethnicity of
the mothers (White and Non-White) and smoking while pregnant. You will see that SPSS also
provides a value for the chi-squared statistic with a continuity correction and the results for
the Fisher’s exact test. Notice also that at the foot of the results table, SPSS gives information
on the number (and percentage) of expected value cells with a value less than 5.

Smoking * coded_ethnicity Crosstabulation
Count

coded_ethnicity
Total

1 2

Smoking
1.00 68 9 77

2.00 146 277 423
Total 214 286 500

Chi-Square Tests

Value df Asymp. Sig.
(2-sided)

Exact Sig.
(2-sided)

Exact Sig.
(1-sided)

Pearson Chi-Square 77.006a 1 .000
Continuity Correctionb 74.825 1 .000
Likelihood Ratio 82.042 1 .000
Fisher's Exact Test .000 .000
Linear-by-Linear 
Association

76.852 1 .000

N of Valid Cases 500

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 32.96.
b. Computed only for a 2×2 table

Table of observed
values.

Value of Pearson’s chi-
squared statistic . . .

. . .and its p-value, which is
<0.05, so we can reject the null

hypothesis of no relation
between the two variables.

Figure 17.6 SPSS output for the null hypothesis that there is no relationship between the ethnicity

of the mothers (White and Non-White) and smoking while pregnant
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Exercise 17.3. Following your calculation of expected values in Exercise 17.1, calculate

the value of the corresponding chi-squared statistic and use the table of critical values

(Figure 17.3) to reject or not reject the null hypothesis of no relationship betweenmater-

nal mild iodine deficiency during early pregnancy and a sub-optimum IQ in children

aged nine years.

Exercise 17.4. Figure 17.7 is from a study to examine the associations between hos-

pital volume and outcomes following cholecystectomy. Low volume is <173 cholecys-

tectomies per year; medium volume is 173–244 cholecystectomies per year, and high

volume is >244 cholecystectomies per year. The null hypothesis is that there is no rela-

tionship between each of the outcomes shown and hospital volume. Do you think that

there is enough evidence to support the hypothesis of no relationship between each of

the outcomes and hospital volume?

The chi-squared test for trend

An important extension of the chi-squared test is the chi-squared test for trend. This is a test

of whether there is a systematic increase (or decrease) in proportions across categories when

the categories in one of the variables can be ordered. For example, the categories might be

hospital volume as in Figure 17.7 (low, medium or high), which are obviously ordered, against

for example, the outcome mortality (died or not). The chi-squared test for trend can then be

used to discover if there is a systematic trend in the proportion of deaths as volume increases.

Note that this test is usually applied to 2× ‘something’ contingency tables, for example, 2× 3,

2× 4 and 2× 5. In the chi-squared test for trend, the null hypothesis is that there is no trend,
and the p-value is used in the usual way.

The chi-squared test statistic for the trend test will always be less than that for the ordinary

chi-squared test described earlier. However, because this is more powerful than the ordinary

Hospital volume p
Low (n= 20 959) Medium (n= 20 534) High (n= 18 425)

Mortality∗ 107 (0.51) 112 (0.55) 73 (0.40) 0.09†

Reoperation at 30 days 677 (3.23) 954 (4.65) 607 (3.29) <0.001†

Readmission at 30 days 1583 (7.55) 1676 (8.16) 1403 (7.61) 0.024†

Data are number (%).
∗Inpatient mortality and 30 day mortality combined.
†Pearson’s 𝜒2 test.

Figure 17.7 Use of the chi-squared test to examine the equality of proportions across categories.

Unadjusted outcomes after cholecystectomy. From a study to examine the associations between hospital

volume and outcomes following cholecystectomy. (abbreviated by present author). Source: Adapted from

Harrison et al. (2012). Reproduced by permission of BMJ Publishing Group Ltd
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Proportion of resistant isolates

Low Medium High Chi-squared Chi-squared for

prescribing prescribing prescribing and p-value trend and p-value

Prescribing of

erythromycin

7/164 24/441 19/223 3.60; 0.17 3.27; 0.07

Figure 17.8 Example of chi-squared for trend. From a study to quantify the relation between three

levels of community-based antibacterial prescribing of erythromycin and antibacterial resistance in

community acquired disease. Data from Priest et al. (2001)

chi-squared test, the trend test may produce a statistically significant result even when the ordi-

nary chi-squared test does not (i.e. it is more likely to detect an effect if there is one). For this

reason the chi-squared test for trend should always be used if categories can be ordered.

Note that establishing a linear trend across categories implies a relationship between the two

variables in question.

As an example, of the use of the chi-squared test for trend, Figure 17.8 shows the results froma

study to quantify the relation between three levels of community-based antibacterial prescrib-

ing of erythromycin and antibacterial resistance in community-acquired disease. The values

of the chi-squared statistic and of the chi-squared test for trend, along with their respective

p-values are shown. You can see that the p-value for the chi-squared test for trend is lower than
that for the simple chi-squared statistic, and although neither is significant (both are >0.05),

nontheless, the p-value of 0.07 for the trend test perhaps hints at a greater likelihood of the

trend across the prescribing categories. As I noted in Chapter 16, you should not be too rigid

in the interpretation of p-values.

SPSS output for chi-squared trend test

Minitab does not perform a chi-squared trend test but SPSS does, and does so automatically

whenever the simple chi-squared test is requested. Figure 17.9 contains the output from SPSS

for a chi-squared test of the education level of the mothers in the sample from the Born

in Bradford cohort (1 is lowest) and whether they smoked during their pregnancy. SPSS

refers to the trend test as the Linear-by-Linear Association, as you see in the figure. The null

hypothesis for the trend test is that the proportion smoking decreases as education levels

increase, that is, there is a consistent downward trend in the proportions smoking while

pregnant.

You can see that the chi-squared statistic and the trend statistic are much the same, and

they both have p-values less than 0.05, so we can reject the null hypotheses of no relation-

ship between the variable and no trend across column categories. Note though, that in some

circumstances, the trend test will pick up a significant result where the simple chi-squared test

does not, since, as I mentioned earlier, the trend test is more powerful. In this case, the trend

statistic will be larger than the chi-squared statistic.

The chi-squared test is a very versatile procedure and has other important applications, for

example, in meta-analysis (see Chapter 24) and in logistic regression (see Chapter 22).
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Mothers’ education level
Total

1 (lowest) 2 3 4 (highest)

Smoking
Yes 23 31 13 3 70

No 61 128 68 138 395
Total 84 159 81 141 465

Chi-Square Tests

Value df Asymp. Sig.
(2-sided)

Pearson Chi-Square 30.923a 3 .000
Likelihood Ratio 38.088 3 .000
Linear-by-Linear 
Association

29.401 1
.000

N of Valid Cases 465
a. 0 cells (0.0%) have expected count less than 5. The minimum
    expected count is 12.19.

The chi-squared
statistic . . .

. . . and the  chi-
squared test for trend

statistic.

Table of
cross-

tabulations.

Chi-squared test
for trend p-value.

Simple chi-squared
test p-value.

Figure 17.9 SPSS output for chi-squared test for trend of the educational levels of mothers and

whether they smoked while pregnant. Data from the Born in Bradford cohort study

Exercise 17.5. Refer back to Figure 1.7, the breast cancer and stress case–control study.

The table footnote indicates four chi-squared trend tests. Comment onwhat each p-value
reveals about the existence of a trend in the categories of each of the variables concerned.
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18
Testing hypotheses about the
ratio of two population
parameters

Learning objectives

When you have read this chapter, you should be able to:

• Describe the usual form of the null hypothesis in the context of testing the ratio of

two population parameters.

• Outline the differences between tests of ratios and tests of differences.

• Interpret published results on tests of risk, odds and hazard ratios.

Preamble

In the previous chapter, I introduced the basic idea of the chi-squared test. What it is? How it is

calculated? How it is interpreted? I also discussed Yate’s correction for the chi-squared test, the

Medical Statistics from Scratch: An Introduction for Health Professionals, Third Edition. David Bowers.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.



Trim size: 170mm x 244mm Bowers c18.tex V3 - 06/23/2014 7:37 A.M. Page 240

240 CH18 TESTING HYPOTHESES ABOUT THE RATIO OF TWO POPULATION PARAMETERS

chi-squared test for trend and I briefly mentioned the Fisher’s exact test for use in 2× 2 tables

when the sample size was small.

Another important use of the chi-squared test is to test for the significance of ratios,

particularly the risk ratio and the odds ratio. In a later chapter, we will see how it has been

used with the hazard ratio (Chapter 23).

The chi-squared test with the risk ratio

As an example of the use of the chi-squared test with risk ratios, see Figure 15.5, which I

have very kindly reproduced here as Figure 18.1, taken from the investigation into whether

a relative deficiency in L-arginine is associated with the development of pre-eclampsia in a

population of high-risk women. The null hypothesis is that the risk ratio in the population is

equal to 1. You can see that the supplementation with L-arginine plus vitamins reduces the risk

of pre-eclampsia to 42 per cent compared to women receiving the placebo. This is significant

because the confidence interval does not include 1, and this is confirmed by the p-value of
<0.001, derived using the chi-squared test.

In other words, the probability of getting this result (a risk ratio of 0.42, referred to by the

authors here as ‘relative risk’) by chance if the null hypothesis of no difference from the placebo

group is true, is so small (much less than our critical value of 0.05) that we can be reasonably be

confident in rejecting this null hypothesis. The same is true for the group receiving L-arginine

plus vitamins versus vitamins alone. Here, the risk ratio is 0.56, and the p-value is again<0.001,
that is, less than 0.05.

However, the result for the group receiving vitamins alone compared to the placebo group is

not significant.The confidence interval includes 1, and the p-value of 0.052 exceeds 0.05, so the
evidence is not strong enough for us to reject the null hypothesis of no difference between the

Relative risk (95% CI)

L-arginine + vitamins v
placebo

Vitamins alone v
placebo

L-arginine + vitamins v
vitamins alone

Pre-eclampsia
or eclampsia

0.42 (0.28 to 0.62)
(χ2: P<0.001)

0.74 (0.54 to 1.02)
(χ2: P = 0.052)

0.56 (0.37 to 0.85)
(χ2: P = 0.004)

For this group, the p-value
is <0.05, so we can reject
the null hypothesis of no
difference between the

groups.

For this group, the p-value is
>0.05, so we cannot

reject the hypothesis of no
difference between the

groups.

For this group, the p-value
is <0.05, so we can reject
the null hypothesis of no
difference between the

groups.

Figure 18.1 Relative risks (risk ratios), 95 per cent confidence intervals and p-values for three groups

of women participating in a randomised placebo controlled trial of L-arginine and antioxidant treatment

for the reduction of pre-eclampsia or eclampsia. Data from Vadillo-Ortega et al. (2011)
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groups in terms of getting pre-eclampsia. Butwe need to be careful not to be completely blinded

by the p-value rule. The single best guess as to the risk ratio in this case is 0.74, which means

that the group receiving vitamins were 26 per cent less likely to suffer from pre-eclampsia than

those on a placebo. Besides, the confidence interval only just includes 1, and the p-value only
just exceeds 0.05, implying, at least, that the effect of supplementation with vitamins versus

placebo might be effective. A larger sample might confirm this.

Exercise 18.1. From the results in Figure 18.1, by howmuch is the risk of pre-eclampsia

reduced in the group receiving L-arginine+ vitamins compared to those in the group

receiving the placebo?

Exercise 18.2. Figure 18.2 (fromwhich I showed a small segment as Figure 8.3), is from

a study to assess the main risk factors associated with stillbirth in a multi-ethnic English

maternity population.Using the p-values, which characteristics appear to be significantly
associated with stillbirth in the population?

Variables Adjusted relative risk (95% CI) p value

Parity:

0 1.8 (1.3 to 2.5) <0.01

≥3 1.6 (1.0 to 2.5) 0.05

Ethnic origin, place of birth:

African∗ 2.4 (1.2 to 4.6) 0.01

African-Caribbean∗ 2.3 (1.3 to 4.1) 0.01

Indian∗ 2.1 (1.3 to 3.5) <0.01

Pakistani, non-UK 3.0 (1.9 to 4.8) <0.01

Body mass index:

30–34.9 1.4 (1.0 to 2.0) 0.07

≥35 1.6 (1.1 to 2.4) 0.03

Mental health history 1.4 (1.0 to 1.9) 0.06

Pre-existing diabetes 3.9 (1.7 to 8.9) <0.01

Antepartum haemorrhage 3.4 (2.6 to 4.5) <0.01

Maternal smoking, no foetal growth restriction†

Active smoker 2.5 (1.7 to 3.6) <0.01

Passive smoker 1.3 (0.8 to 2.0) 0.28

Maternal smoking, foetal growth restriction†:

Active smoker 5.7 (3.6 to 8.9) <0.01

Passive smoker 10.0 (6.6 to 15.8) <0.01

Foetal growth restriction†, non-smoker 7.8 (5.6 to 10.9) <0.01

Reference group: para 1, UK born, non-smoking, European mother; body mass index 18.5–24.9.
∗UK and non-UK groups combined because of small numbers.
†Birth weight <10th gestation related optimal weight centile.

Figure 18.2 Adjusted relative risks (risk ratios), confidence intervals and p-values for risk factors for

stillbirth. Source: Gardosi et al. (2013). Reproduced by permission of BMJ Publishing Group Ltd
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The chi-squared test with odds ratios

As an example of the use of p-values with odds ratios, Figure 18.3 is from a cohort study

to determine whether the use of paracetamol in early life is an independent risk factor for

childhood allergic disease.The odds ratios reflect the increase in odds arising from an increase

in the number of days of paracetamol use in early life (in fact a doubling). The null hypothesis

is that the odds ratio is equal to 1, that is, there is no increase in of any of the allergic diseases

shown in the table if days of paracetamol use increases (doubles).

As you can see, for the unadjusted odds ratios, only infantile wheeze and allergic rhinitis

are significant (neither of the confidence interval contains 1 and both p-values are <0.05), and
we can reject the null hypothesis for both outcomes. However, once the results are adjusted for

possible confounders, allergic rhinitis becomes insignificant (we cannot reject the null hypoth-

esis), but infantile wheeze remains significant, the evidence against the null hypothesis is still

strong enough for us to reject it.

Exercise 18.3. Figure 18.4 is from a randomised controlled trial to examine whether

the effect of tranexamic acid on the risk of death and thrombotic events in patients with

traumatic bleeding varies according to baseline risk of death. It shows odds ratios, 95 per

cent confidence intervals and p-values for a number of outcomes. Comment on what is

revealed by the p-values for each event.

Unadjusted Adjusted∗

Odds ratio (95% CI) p value Odds ratio (95% CI) p value

Infantile wheeze 1.45 (1.23 to 1.71) <0.01 1.44 (1.17 to 1.77) <0.01

Infantile eczema 1.13 (0.99 to 1.30) 0.08 1.13 (0.97 to 1.31) 0.11

Positive skin prick test† 0.97 (0.82 to 1.14) 0.68 0.98 (0.82 to 1.18) 0.86

Asthma 1.18 (1.00 to 1.39) 0.05 1.08 (0.91 to 1.29) 0.39

Allergic rhinitis 1.21 (1.01 to 1.46) 0.04 1.17 (0.96 to 1.43) 0.12

Eczema 1.05 (0.90 to 1.22) 0.52 1.10 (0.93 to 1.29) 0.26

∗Infant’s sex, parental history of asthma, presence of older siblings at time of birth and frequency of infections

(upper and lower respiratory tract infections, otitismedia, and gastrointestinal infections) during first 2 years

of life.
†≥3mm to at least one of six allergens at 2 year test.

Figure 18.3 Unadjusted and adjusted odds ratios, 95 per cent confidence intervals and p-values for

associations between total days of paracetamol use during early life and risk of allergic disease. The odds

ratios reflect the risk when doubling the total number of days of paracetamol use. Table abbreviated by

present author. Source: Adapted from Lowe et al. (2010). Reproduced by permission of BMJ Publishing

Group Ltd
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Tranexamic acid Placebo Odds ratio p value
(n= 6684) (n= 6589) (95% CI)

Any event 98 (1.5) 140 (2.1) 0.69 (0.53 to 0.89) 0.005

Any arterial event 47 (0.7) 80 (1.2) 0.58 (0.40 to 0.83) 0.003

Myocardial infarction 23 (0.3) 46 (0.7) 0.49 (0.30 to 0.81) 0.005

Stroke 28 (0.4) 40 (0.6) 0.69 (0.43 to 1.11) 0.128

Any venous event 60 (0.9) 71 (1.1) 0.83 (0.59 to 1.17) 0.295

Pulmonary embolism 42 (0.6) 47 (0.7) 0.88 (0.58 to 1.33) 0.548

Deep vein thrombosis 25 (0.4) 28 (0.4) 0.88 (0.52 to 1.50) 0.641

Figure 18.4 Odd ratios, 95 per cent confidence intervals and p-values, for a number of events. From

the study of the effect of tranexamic acid on fatal and non-fatal thrombotic events in patients with

traumatic bleeding. Figures are numbers (percentages) of patients experiencing each event. Data from

Roberts et al. (2012)

Exercise 18.4. Figure 18.5 is from an unmatched case–control study into the effect of

passive smoking as a risk factor for coronary heart disease (CHD) in Chinese women

who had never smoked. The cases were patients with CHD, the control women without

CHD.The study considered both passive smoking at home from husbands who smoked

and at work from smoking co-workers. The null hypotheses were that the population

odds ratio was equal to 1, both at home and at work, that is, passive smoking had no

effect on the odds for CHD. The table contains the adjusted odds ratios for CHD for a

number of risk factors, with 95 per cent confidence intervals and p-values.Which factors

do you think would increase the odds of coronary heart disease in the population of

such women?

Adjusted odds ratio p value
(95% confidence interval)*

Age (years) 1.13 (1.04 to 1.22) 0.003

History of hypertension 2.47 (1.14 to 5.36) 0.022

Type A personality 2.83 (1.31 to 6.37) 0.008

Total cholesterol (mg/dl) 1.02 (1.01 to 1.03) <0.000

High density lipoprotein cholesterol (mg/dl) 0.94 (0.90 to 0.98) 0.0030

Passive smoking from husband 1.24 (0.56 to 2.72) 0.600

Passive smoking at work 1.85 (0.86 to 4.00) 0.120

∗Adjusted for the other variables in the final model.

Figure 18.5 Odds ratios, 95 per cent confidence intervals and p-values, from an unmatched

case-control study into the effect of passive smoking as a risk factor for coronary heart disease (CHD).

The cases were patients with CHD, the control individuals without CHD. (Table is abridged by present

author). Source: He et al. (1994). Reproduced by permission of BMJ Publishing Group Ltd
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The chi-squared test with hazard ratios

Remember Figure 15.8?This contained a table of hazard ratios from a cohort study to examine

all cause and disease-specific mortality in patients with osteoarthritis of the knee or hip. I have

reproduced the figure below (see Figure 18.6)with p-values (which I suppressed in Figure 15.8).
If I asked you to say which characteristics were significant hazards using the p-values, you
would no doubt identify the same characteristics as you did in Exercise 15.6. I will have more

to say on hazard ratios in Chapter 23 when I will discuss survival analysis.

Characteristic at baseline Patients died Crude hazard ratio∗ (95% CI) p-value*

Yes (n= 438) No (n= 725)

Age (years) at baseline:

35–54 6 (1) 169 (23) 1.00 (reference) <0.001

55–74 273 (62) 503 (69) 12.4 (5.53 to 27.9)

≥75 159 (36) 53 (7) 40.7 (18.0 to 92.0)

Male sex 204 (47) 299 (41) 1.21 (1.00 to 1.46) 0.048

Lower social class (IIIM to V) 228 (52) 342 (47) 1.21 (1.00 to 1.46) 0.050

Smoking 70 (16) 115 (16) 0.94 (0.74 to 1.19) 0.60

Previous joint replacement 42 (10) 38 (5) 1.61 (1.17 to 2.22) 0.003

Type of osteoarthritis:

Knee only 130 (30) 233 (32) 1.00 (reference) 0.14

Hip only 120 (27) 222 (31) 0.98 (0.77 to 1.26)

Knee and hip 188 (43) 270 (37) 1.20 (0.96 to 1.50)

Knee or hip pain 289 (66) 477 (66) 1.00 (0.82 to 1.22) 0.97

Walking disability 152 (35) 136 (19) 1.93 (1.59 to 2.36) <0.001

Values are numbers (percentages) unless stated otherwise.
∗Univariable hazard ratios, 95% confidence intervals and p values were derived from Cox regression models

after multiple imputation of missing covariate data; hazard ratios >1 indicate lower mortality in reference

category.

Figure 18.6 Hazard ratios, 95 per cent confidence intervals and p-values, from a cohort study to

examine all cause and disease-specific mortality in patients with osteoarthritis of the knee or hip

(abbreviated by present author). Source: Adapted from Nüesch et al. (2011). Reproduced by permission

of BMJ Publishing Group Ltd
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19
Measuring the association
between two variables

Learning objectives

When you have finished this chapter, you should be able to:

• Explain the meaning of association.

• Draw and interpret a scatterplot and from it assess the linearity, direction and

strength of an association.

• Distinguish between negative and positive association.

• Explain what a correlation coefficient is.

• Describe Pearson’s correlation coefficient r, its distributional requirements and inter-

pret the given value of r.

• Describe Spearman’s correlation coefficient rs and interpret the given value of rs.

• Describe the circumstances under which Pearson’s r or Spearman’s rs is appropriate.

Medical Statistics from Scratch: An Introduction for Health Professionals, Third Edition. David Bowers.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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Preamble – plotting data

Suppose that you measure systolic blood pressure (SBP) in mmHg and waist circumference

(waist) in cm in three patients. You get the following data:

SBP Waist

Patient A 120 75

Patient B 170 150

Patient C 150 100

Now, you plot the data, as in Figure 19.1, plotting values of SBP on the vertical axis and

values of waist on the horizontal axis.1 This plot is called a scatterplot. Note that it does not
matter which axis you use for SBP and which for Waist. However, if you have a suspicion that

changes in one of the variables causes changes in the other variable (in this example you might

think that changes in Waist cause changes in SBP, that is, the larger your waist measurement,

the higher will be your SBP in consequence) then you should put the causing variable on the

horizontal axis, as I have here.

Waist

S
B

P

150140130120110100908070

170

160

150

140

130

120

C

B

A

Patient A: low
SBP value

coincides with
low Waist

value.

Patient B: High
SBP value

coincides with
high Waist

value.

Patient C:
Middling SBP

value coincides
with middling
Waist value.

Figure 19.1 A scatterplot of systolic blood pressure (mmHg) against waist circumference (cm). Shows

a positive association between the two variables

What do you see in the scatterplot? Well, for Patient A, a low SBP coincides with a lowWaist

measurement; for Patient B, a high SBP coincides with a high Waist measurement; for Patient

C, a middling SBP coincides with a middling Waist measurement. In other words, the two

variables seems to be associated in some way. Let’s now discuss what we mean by association.

1For the three of you out there who may have forgotten how to draw a graph, the value for Patient A is drawn

where the SBP of 120 on the vertical axis meets the value of 75 on the horizontal axis. And similarly for the

other two points.



Trim size: 170mm x 244mm Bowers c19.tex V2 - 06/12/2014 7:36 A.M. Page 249

THE SCATTERPLOT 249

Association

When we say that two ordinal or metric variables are associated, we mean that they behave in
a way that makes them appear ‘interconnected’ – changes in either variable seem to coincide
with changes in the other variable. It is important to note (at this point anyway) that we are
not suggesting that the change in either variable is causing the change in the other variable,
simply that they exhibit this commonality. As you will see, association, if it exists, may take the
form of:

• Positive association – low values of one variable tend to coincide with low values of the other
variable, and high values with high values. If the value of one variable increases, we find that
the value of the other variable also tends to increase. If the value of one variable decreases,
we find that the value of the other variable also tends to decrease.

• Negative association – low values of one variable tend to coincide with high values of the
other variable, and vice versa. If the value of one variable increases, we find that the value of
the other variable also tends to decrease. If the value of one variable decreases, the value
of the other variable tends to increase.

In this chapter, I want to discuss two alternativemethods of finding out if an association exists
between two variables. The first method relies on a plot of the sample data, the scatterplot (like
that in Figure 19.1) in which the values of one variable are plotted on the vertical axis and the
values of the other variable on the horizontal axis. The second approach is numeric, making
both comparison and inference possible.

The scatterplot

A scatterplot will enable you to see if there is an association between the variables, and if there
is, its strength and direction. It is always a good idea to draw a scatterplot before youmove onto
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a numerical approach. This will often reveal interesting patterns, which may not be otherwise

obvious. A weakness of the scatterplot is that it provides only a qualitative assessment, and thus

has obvious limitations. First, it is not always easy to say which of the two sample scatterplots

indicates a stronger association and second, it doesn’t allow us to make inferences about pos-
sible associations in the population. Before I deal with the numeric approach to measuring

association, let us have a look at a couple of scatterplots from the literature.

Figure 19.2 is from a cross-sectional study of the satisfaction by both patients and nurses

with a particular hospital among a number of hospitals, in one of a number of countries. The

measures captured by the researchers included what percentage of patients would recommend
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Figure 19.2 Scatterplots of the percentage of patients who would recommend a hospital and the

percentage of nurses who would recommend the same hospital. Outcome for hospitals in Ireland (top

chart), Finland (middle chart) and Spain (bottom chart – see overleaf). Source: Aiken et al. (2012).

Reproduced by permission of BMJ Publishing Group Ltd
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Figure 19.2 (continued)

each of the hospitals, and what corresponding percentage of nurses would recommend the
same hospitals. The figure shows the results for hospitals in Ireland, Finland and Spain. What
can we say about any possible associations indicated by the scatterplots?
If we look at the scatterplot for Ireland, we see no obvious association, apart from that cor-

responding to the lowest and highest patient percentages, which coincide with the lowest and
highest percentages for nurses. Otherwise, the scatter seems completely random. The scatter-
plot for Finland shows a little more association. If it wasn’t for the two values at the bottom
middle of the plot, we would be able to say that higher and lower values for patients and nurses
seem to coincide to some extent.
The scatterplot for Spain shows much clearer association. Lower values for patients coincide

more or less with the lower values for nurses, and higher values with higher values. Later on,
we will re-examine these conclusions when we look at numeric measures of association.

Exercise 19.1. The scatterplot in Figure 19.3 is from a cross-sectional study to describe

variations in the incidence of ulcerative colitis (UC) and Crohn’s disease (CD) in 52

postal areas inManitoba.What does the scatterplot indicate about a possible association

between the two illnesses?

I said earlier that when you set out to investigate a possible association between two vari-
ables, a scatterplot is almost always worthwhile, and will often produce an insight into the way
the two variables co-behave. In particular, it may reveal whether an association between them
is linear. Put simply, a linear association is one in which the points in the scatterplot seem to
cluster around a straight line – the closer the clustering to the straight line, the more linear
is the association. The Normality of the distributions can also be assessed visually – normally
distributed variables produce a cigar-shaped or an elliptical scatter. When I talk about associ-
ation in this chapter, I am talking about linear association. When you look at a scatterplot, you
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Figure 19.3 Scatterplot of incidence of ulcerative colitis (UC) and Crohn’s disease (CD), in 52 postal

areas in Manitoba. Source: Blanchard et al. (2001). Reproduced by permission of Oxford University Press

should ask yourself, do the points lie (even roughly) around an imaginary straight line? Is the

scatter elliptical-ish?

Exercise 19.2. Look at the two scatterplots in Figure 19.4. These plots are taken from

a retrospective examination of hospital records, as part of a study into the relationship

between hospital volume (number of cases dealt with per year) and hospital percentage

mortality. Do you think these scatterplots show any association between the variables?

If so, is it a linear association?

Exercise 19.3. (a)Why is it always a good idea to draw a scatterplot when investigating

a possible association between two variables? (b) What is the main shortcoming of a

scatterplot?

The correlation coefficient

Despite being invaluable for looking at the shape of the scatter, a limitation of the scatterplot

in assessing association is that it does not provide us with a numeric measure of the strength
of the association. For this, we have to turn to the correlation coefficient. Loosely speaking,

the correlation coefficient is a measure of the average distance of all of the points in the scatter

from an imaginary straight line drawn through the scatter (analogous to the standard deviation

measuring the average distance of each value from the mean). Two correlation coefficients are

widely used: Pearson’s and Spearman’s. We will start with Pearson’s.

Pearson’s correlation coefficient

Pearson’s correlation coefficient is denoted as 𝜌 (Greek ‘rho’) in the population and r in the

sample. It provides ameasure of the strength of the linear association between the two variables.
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Figure 19.4 Scatterplots for the association between hospital volume (cases per year) and hospital

percentage mortality. Top plot is for aortic aneurism and bottom plot is for carcinoma of the colon.

Source: McKee and Hunter (1995). Reproduced by permission of BMJ Publishing Group Ltd

If you plan to use Pearson’s correlation coefficient then both variables must bemetric contin-
uous, and at least one of the variables should be approximately Normally distributed. However,

if a confidence interval is to be determined, both variables should be Normal. It is worth noting

that, even with approximately Normal distributions, Pearson’s correlation coefficient is sensi-

tive to the presence of outliers. If you have outliers in either data set, you should interpret any

results with suspicion, as these outliners can distort the results or you should consider using

Spearman’s correlation coefficient (see below).

The value of Pearson’s correlation coefficient can vary as follows:

• From −1, indicating a perfect negative association. All the points lie exactly on a straight

line sloping down from left to right.

• Through 0, indicating no association.
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• To +1, indicating a perfect positive association. All the points lie exactly on a line sloping

upwards from left to right.

In practice, with real sample data, you will never see values of −1, 0 or +1. The value of r
can be found in a flash with a computer statistics program, such as SPSS or Minitab.These will

usually provide the associated p-value as well.

Is the correlation coefficient statistically significant in the population?

Just because we get a non-zero sample correlation coefficient (as we invariably will) does not

necessarily mean that the population correlation coefficient is also non-zero (this is the old

familiar question). To discover whether the population correlation coefficient is non-zero or

not, and hence decide whether there is a linear association between the two variables, means a

hypothesis test of the hypotheses:

H0 ∶ 𝜌 = 0

H1 ∶ 𝜌 ≠ 0

With the usual decision rule: if the p-value is <0.05, we can reject H0, otherwise we can’t.

For example, for the data shown in the scatterplot in Figure 19.3, the authors report a sample

r= 0.577, with a p-value less than 0.000.This indicates a significant positive2 linear association

in the population between incidence rate of Crohn’s disease and ulcerative colitis.

In contrast, for the scatterplot in Figure 19.2, for the percentage of patients and nurses rec-

ommending their hospital in Ireland (which we have already noticed gave little indication of

any association), r= 0.304 and the p-value= 0.393, much bigger than 0.05, so it is unlikely that

there is any linear association in the population between these two variables. Calculation of a

confidence interval for the population correlation coefficient is more complicated and many

statistics programs do not provide one.

Finally, it is important to note that the statistical significance of r is related to the size of the

sample. Very large samples can have a very small value for r, which is nonetheless significant,

despite the linear association being possibly weak, whereas very small samples will require a

large value for r before it is significant. That is why a close look of the scatterplot is critical in

assessing the linearity of the association.

A useful rule of thumb, if you have a value for r but no confidence interval or p-value, for
it to be statistically significant, r must be greater than 2∕

√
n, where n is the sample size. For

example, if n= 100, then r has to be greater than 2/10= 0.200 to be statistically significant.

Exercise 19.4. What conditions must the data satisfy for Pearson’s correlation coeffi-

cient to be used?

2Positive because the value of r (0.577) is positive.
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An example from practice

Figure 19.5 is from a study in which the authors investigated the role of the intrauterine

environment in childhood adiposity (fatness), in 17 284 infants. Using Pearson’s correlation

coefficients, they calculated the maternal versus offspring body mass index (BMI) assciation

and the paternal versus offspring BMI association, at birth and when the offsprings were one

year and three years old, using the parental pre-pregnancy BMI. The null hypothesis was that

there is no difference in the correlation of the maternal–offspring BMI association and the

paternal–offspring BMI association.

Offspring BMI (age of offspring)

At birth At 1 year At 3 years

r
95% CI

p-value r
95% CI

p-value r
95% CI

p-value

Maternal BMI

0.10

0.09, 0.12

0.11

0.09, 0.12

0.10

0.09, 0.12

Paternal BMI

0.04

0.02, 0.05

0.08

0.07, 0.10

0.09

0.08, 0.11

Statistical difference between

maternal-offspring BMI

r value, and paternal-offspring

BMI r-value

<0.001 0.010 0.327

Figure 19.5 Pearson’s correlations between parental pre-pregnancy body mass index (BMI) for both

mother and father, and offspring BMI, among 17 284 Norwegian parent–offspring trios. (I have omitted

the results of the two-year-old offsprings, which were not in any case significant). Data from Fleten

et al. (2012)

In other words, is a mother’s BMI related to her baby’s BMI (is r significant), and is a father’s
BMI related to his baby’s BMI (is r significant)? And is there a significant difference between

the two correlation coefficients?

The table contains values for Pearson’s correlation coefficient r, between maternal BMI and

offspring BMI, and paternal BMI and offspring BMI, along with 95 per cent confidence inter-

vals for each r, and in the last row, a p-value for the difference between the r values.
As you can see, maternal BMI and paternal BMI are associated with the baby’s BMI at birth,

at one year and at three years because none of the confidence intervals contains 0. However,

the correlation coefficients beween maternal–offspring BMI and paternal–offspring BMI are

only significantly different at birth (p-value <0.05).
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Exercise 19.5. The table of correlation coefficients in Figure 19.6 is from a study whose

objective was:

To examine the geographical relation between mortality and deprivation in

England and Wales at the start of the 20th and 21st centuries, and explore the

evidence for a strengthening or weakening of this relation over the century, and

test for relations between the mortality and deprivation patterns of a century

ago and modern mortality and causes of death.

The table shows, for five common causes of death in 2001, the Pearson correlation

coefficient between each cause of death and the standardised mortality rate (SMR) and

deprivation, in 2001 and in the 1900s. Comment, for each cause of death, on what is

revealed by the values in the table about the association between deprivation and the

SMR between the start and end of the 20th century.

Cause of death 2001 1990s

SMR Deprivation SMR Deprivation

Stomach cancer 0.474** 0.379** 0.299** 0.231**

Bowel cancer 0.378** 0.061 0.138** 0.076

Lung cancer 0.750** 0.584** 0.481** 0.407**

Breast cancer 0.273** −0.013 −0.068 −0.019
Prostate cancer 0.284** 0.009 −0.014 −0.014

SMR, standardised mortality ratio
**p< 0.01.

Figure 19.6 Pearson’s correlations (for five common causes of death) between deprivation and mortal-

ity (SMR) in 2001 and between deprivation and mortality in 2001 and in the 1900s. All data have been

standardised on 1900s registration districts unless otherwise stated. (Abbreviated by present author).

Source: Gregory (2009). Reproduced by permission of BMJ Publishing Group Ltd

Spearman’s rank correlation coefficient

You have seen that to use Pearson’s correlation coefficient as a measure of linear association,

both variables must be metric and at least one should be approximately Normally distributed

(or both should be Normal if you want a confidence interval). But if either (or both) of the
variables is ordinal, or metric but not Normally distributed, then Spearman’s rank correlation
coefficient is appropriate.This is a non-parametricmeasure, which assesses amore general asso-

ciation rather than specifically a linear one.

As with Pearson’s correlation coefficient, Spearman’s correlation coefficient varies from −1,
through 0, to +1, and its statistical significance can again be assessed with a p-value, or less
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Descriptive variables Measured temperatures Spearman’s rank

correlation coefficient

(p-value)<65∘C 65–69∘C ≥70∘C

Tea temperature:

Warm or lukewarm 32 414 3749 467

0.46 (<0.001)Hot 5385 4246 1757

Very hot 37 48 421

Interval between tea being

poured and drunk

(minutes)

≥4 30 259 4678 675

0.32 (<0.001)2–3 6836 2691 859

<2 741 674 1111

Table shows numbers of participants.

Figure 19.7 Spearman’s correlation coefficients between tea temperature variables among 48 582

participants in Golestan Cohort Study, Golestan, northern Iran, 2004–2008. Thefirst column shows the

estimated temperatures and times. Data from Islami et al. (2009)

often, a confidence interval. It is usually denoted as 𝜌s in the population and rs in the sample.

The null hypothesis is that the population correlation coefficient 𝜌s = 0.

Note that if your data are metric for both variables but you are uncertain about how Normal

the distributions are, you should use Spearman’s correlation coefficient. If the data are Normal,

then the values for Pearson’s r and Spearman’s rs will be more or less the same.Themore differ-

ent the two values are, the less Normally distributed are the variables. In fact, if you calculate

a Pearson’s correlation coefficient for some ranked data, it will be the same as a Spearman’s

correlation coefficient on the same data.

Exercise 19.6. Explain the circumstanceswhichwould persuade you to use Spearman’s

correlation coefficient rather than Pearson’s.

An example from practice

Figure 19.7 is from a study to investigate the association between tea drinking habits in

Golestan province, northern Iran, and risk of oesophageal squamous cell carcinoma. The

table shows the Spearman correlation coefficients between the actual temperature at which

tea was drunk and its temperature as estimated by the participants, as well as the correlations

between the interval between tea being poured and being drunk, among healthy participants

in a cohort study.

As you can see, the correlation between actual tea temperature and estimated temperature

was high and significant (p-value <0.05). So we can reject the null hypothesis of no linear

association between the two variables in the population.The same is true of the tea temperature

and the interval between it being poured and drunk.
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Exercise 19.7. The Spearman correlation coefficients in Figure 19.8 are from a

cross-sectional study to investigate the relationship between community-based antibac-

terial prescribing and antibacterial resistance (to ampicillin or amoxicillan and to

trimethoprim) in community-acquired disease. Data was collected for individual prac-

tices (from microbiological specimens sent to seven Public Health Laboratories) and

from 10 primary care groups (each with 10–15 general practices). The correlations for

these two groups are shown separately. Comment on what the correlation coefficients

indicate.

Exercise 19.8. Figure 19.9 is from a time trend analysis study comparing the actual

number of suicides in 2009 with the number that would be expected based on trends

before the financial crisis (2000–2007). The object was to investigate the impact of the

2008 global economic crisis on international trends in suicide and to identify sex/age

groups and countries most affected.The table shows Spearman’s correlation coefficients,

95 per cent confidence intervals and p-values, between changes in unemployment rate

and suicide rate between 2007 and 2009 in 50 countries, stratified by unemployment rate

before the financial crisis in 2007. What do these results suggest about the association

between changes in unemployment and suicide rates?

One other correlation coefficient can only be mentioned briefly. Kendall’s rank-order corre-

lation coefficient, denoted as 𝜏 (tau), is a non-parametric measure of association, appropriate

in the same circumstances as that of Spearman’s rs, that is, with ranked categorical data. Inmost
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Antibacterial

resistance∗
Antibacterial

prescribing†
Primary care group Practice

No rs‡ p value No rs‡ p value

Ampicillin or

amoxicillin

All 𝛽 lactams 20 0.57 0.009 262 0.18 0.003

Ampicillin and

amoxicillin

20 0.44 0.05 262 0.20 0.001

Trimethoprim Trimethoprim 32 0.31 0.09 371 0.24 0.0001

∗Resistant isolates per 100 isolates.
†Prescriptions per 1000 patients a year.
‡Spearman’s correlation coefficient.

Figure 19.8 Spearman correlations between antibacterial resistance and prescribing, at primary care

group and practice level. Data from Priest et al. (2001)

No of countries Spearman’s rs (95% CI) p value

All countries

Men 50 0.25 (−0.03 to 0.50) 0.075

Women 50 0.10 (−0.18 to 0.37) 0.49

Countries with low unemployment level (<6.2%) before crisis

Men 25 0.48 (0.10 to 0.73) 0.016

Women 25 0.13 (−0.28 to 0.50) 0.55

Countries with high unemployment level (≥6.2%) before crisis

Men 25 0.31 (−0.10 to 0.63) 0.13

Women 25 0.20 (−0.21 to 0.55) 0.34

Figure 19.9 Spearman’s correlation coefficients, 95 per cent confidence intervals and p-values

between unemployment rate and suicide rate between 2007 and 2009, in 50 countries, stratified by

unemployment rate before the financial crisis in 2007. Data from Chang et al. (2013)

cases, their values will be very similar, but when they differ, it is probably safer to use the value

closest to 0. Kendall’s tau and Spearman’s rho have a different basis. Spearman’s rho is the same

as Pearson’s r applied to the data when it has been ranked. However, Kendall’s tau represents

a probability, that is, the difference between the probability that the observed data are in the

same order versus the probability that the observed data are not in the same order. Some statis-

ticians consider Kendall’s tau to be under-rated and under-represented in the general research

literature. Tau is available in SPSS but not (as far as I know) in Minitab.

Finally, it must be emphasised that just because two variables are significantly associated does

notmean that there is a cause–effect relationship between them. I will have more to say on this

in Chapter 21.
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20
Measuring agreement

Learning objectives

When you have finished this chapter, you should be able to:

• Explain the difference between association and agreement.

• Describe Cohen’s kappa, calculate its value and assess the level of agreement.

• Interpret the published values for kappa.

• Describe the idea behind ordinal kappa.

• Outline the Bland–Altman approach to measuring agreement between metric

variables.

To agree or not agree: that is the question

As you have seen in Chapter 19, association is a measure of the inter-connectedness of two
variables: the degree to which they tend to change together, either positively or negatively.
Agreement, in contrast, is the degree to which the values in two sets of data actually agree,
that is, are the same.We commonly want to measure the degree of agreement in two situations:

• When two (or more) health practitioners, who, in this context, may also be referred to as
raters (or observers) are assessing some clinical characteristic in a number of patients. In this
context, the degree of agreement of the raters is known as inter-rater agreement.

Medical Statistics from Scratch: An Introduction for Health Professionals, Third Edition. David Bowers.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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• When a single health practitioner is making repeated assessments of some characteristics

in a number of patients. The degree of agreement in this context is called intra-rater
agreement.

We often need a measure of agreement in the context of diagnosis or in examining the

properties of a new measurement scale. To illustrate this idea, see the hypothetical data in

Figure 20.1, which shows the decision by a psychiatrist and by a psychiatric social worker

(PSW) whether to section (Y) or not section (N), each of 10 individuals with mental ill-health.

We would say that the two variables were in perfect agreement if every pair of values were the
same. In practical situations, this will not happen, and in this case, you can see that only seven

out of the 10 decisions are the same, so the observed level of proportional agreement is 0.70
(70 per cent).

Note however, that if you had asked each clinician simply to toss a coin to make the decision

(heads= section, tails= don’t section), some of their decisions would probably still have been

in agreement – by chance alone. We need a method of measuring agreement which takes this

random agreement into account. Cohen’s kappa does this.

Patient 1 2 3 4 5 6 7 8 9 10

Psychiatrist Y Y N Y N N N Y Y Y

PSW Y N N Y N N Y Y Y N

Figure 20.1 Decision by a psychiatrist and a psychiatric social worker whether to section 10 individ-

uals suffering from mental ill-health
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Exercise 20.1. What is the difference between association and agreement?Do variables

that are associated also have high levels of agreement?

Cohen’s kappa (𝜿)

We can adjust the observed level of agreement for the proportion you would have expected to
occur by chance alone using a method due to Cohen and appropriate for categorical data. This
adjustment gives us the chance-corrected proportional agreement statistic, known as Cohen’s
kappa, 𝜅:

𝜅 =
(proportion of observed agreement − proportion of expected agreement)

(1 − proportion of expected agreement)

We can calculate the expected values for each cell in the contingency table in exactly the
same way as we did for chi-squared (row total× column total/overall total – see Chapter 17).
Figure 20.2 shows the data shown in Figure 20.1 expressed in the form of a contingency table,

with the psychiatrist’s scores in the rows, the PSW’s scores in the columns and with the row
and the column totals added. The expected values are shown in brackets in each cell.
We have seen that the observed agreement is 0.70, and we can expect the two clinicians to

agree on ‘Yes’ three times and ‘No’ two times, making five agreements in total. So the expected
agreement is five out of 10 or 0.50. Therefore:

𝜅 = (0.70 − 0.50)
(1 − 0.50)

= 0.20

0.50
= 0.40

So after allowing for chance agreement is reduced from 70 per cent to 40 per cent.
Kappa can vary between zero (agreement no better than chance) and 1 (perfect agreement),

and you can use the table in Figure 20.3 to assess the quality of agreement (although this table
has no theoretical basis). It is possible to calculate a confidence interval for kappa, but these
intervals will usually be too narrow to add much insight to your result (except for quite small
samples).

As an example of both inter-rated and intra-rated agreement, the following extract is from a
paperwhich used video recording to investigate the causes of falls in elderly people in long-term
care.The authors aimed to provide evidence of causes of falls by analysing real-life falls captured
on video. They assessed inter-rater reliability of a questionnaire which probed the cause of

Psychiatric social worker

Yes No Totals

Psychiatrist Yes 4 (3) 2 (3) 6

No 1 (2) 3 (2) 4

Totals 5 5 10

Figure 20.2 Contingency table showing observed (and expected) decisions by a psychiatrist and a

psychiatric social worker on whether to section 10 patients (data from Figure 20.1)
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Kappa Strength of agreement

≤0.20 Poor

0.21–0.40 Fair

0.41–0.60 Moderate

0.61–0.80 Good

0.81–1.00 Very good

Figure 20.3 How good is the agreement? Assessing kappa

imbalance and activity at the time of falling by comparing responses from two teams, each
consisting of three members, who analysed 15 randomly selected videos.

We assessed inter-rater reliability of the questionnaire by comparing responses from

two teams, each consisting of three members, who analysed 15 randomly selected

videos. For cause of fall, percentage agreement between teams was 87%. Correspond-

ing Cohen’s 𝜅 was 0.79 (95% CI 0.53–1.0), showing strong internal consistency. For

activity at time of fall, the teams agreed in 93% of cases, with corresponding 𝜅 of 0.91

(0.73–1.0). We also examined intra-rater reliability by having one team reanalyse the

same 15 videos 12 months after their first assessment. For cause of fall, percentage

agreement was 93%, and 𝜅 was 0.90 (0.72–1.0). For activity at the time of the fall,

percentage agreement was 93%, with a corresponding 𝜅 of 0.91 (0.74–1.0).

Robinovitch et al. (2013)

As a further example from practice, Figure 20.4 is from a study into the development of a new
quality-of-life scale for patients with advanced cancer and their families – the Palliative Care
Outcome Scale (POS). It shows agreement between the patient and staff (who also completed
the scale questionnaires) for a number of items on the POS scale.The table also contains values
of Spearman’s rs and the proportion of agreements within one point on the POS scale.The level
of agreement between staff and patient is either fair or moderate for all items and agreement
within one point is either good or very good.

Exercise 20.2. Do the highest and the lowest levels of agreement in Figure 20.4 coin-

cide with the highest and lowest levels of correlation? Will this always be the case?

Exercise 20.3. Figure 20.5 is from a study conducted in a major trauma unit into the

variation between two experienced trauma clinicians in assessing the degree of injury of

16 patients from their case notes.The table shows the Injury Severity Score (ISS) awarded

to each patient.1 Categorise the scores into two groups: ISS scores of less than 16, and of

16 or more. Express the results in a contingency table and calculate (a) the observed and

expected proportional agreement, and (b) kappa. Comment on the level of agreement.

1The ISS is used for the assessment of severity of injury, with a range from 0 to 75. ISS scores of 16 or above

indicate potentially life threatening injury, and survival with ISS scores above 51 is considered unlikely.
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Kappa No of Patient score Staff score 𝜅 Spearman Proportion agreement

patients (% severe) (% severe) correlation within 1 score

At first assessment: 145 matched assessments

Pain 140 24.3 20.0 0.56 0.67 0.87

Other symptoms 140 27.2 26.4 0.43 0.60 0.86

Patient anxiety 140 23.6 30.0 0.37 0.56 0.83

Family anxiety 137 49.6 46.0 0.28 0.37 0.72

Information 135 12.6 13.4 0.39 0.36 0.79

Support 135 10.4 14.1 0.22 0.32 0.79

Life worthwhile 133 13.6 16.5 0.43 0.54 0.82

Self worth 132 15.9 23.5 0.37 0.53 0.82

Wasted time 135 5.9 6.7 0.33 0.32 0.95

Personal affairs 129 7.8 13.2 0.42 0.49 0.96

Figure 20.4 Values of kappa from a Palliative Care Outcome Scale (POS) study showing levels of

agreement between the patient and staff assessment for a number of items on the POS scale. Source:

Hearn and Higinson (1999). Reproduced by permission of BMJ Publishing Group Ltd

Case no.

Observer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 9 14 29 17 34 17 38 13 29 4 29 25 4 16 25 45

2 9 13 29 17 22 14 45 10 29 4 25 34 9 25 8 50

Figure 20.5 Injury Severity Score (ISS) values allocated to 16 patients by two experienced trauma

clinicians in a major trauma unit from the evidence in case notes. Source: Zoltie and de Dombal (1993).

Reproduced by permission of BMJ Publishing Group Ltd

Weighted kappa

The idea behind weighted kappa is best illustrated by referring back to the data in Figure 20.5.
The two clinician’s ISS scores agree for only five patients, so the proportional observed agree-
ment is only 5/16= 0.3125 (31.25 per cent). However, in several cases, the scores have a ‘near
miss’; patient 2 for example, with scores of 14 and 13. Other pairs of scores are further apart,
patient 15 is given scores of 25 and 8! Weighted kappa gives credit for near misses, but its
calculation is too complex for this book.

A limitation of kappa is that it is sensitive to the proportion of subjects in each category (i.e. to
prevalence), so caution is needed when comparing kappa values from different studies – these
are only helpful if prevalences are similar. Bear inmind also the fairly arbitrary scale for judging
the quality of any kappa value (Figure 20.3). Furthermore, kappa is not universally popular
among clinicians andmedical statisticians; see for example, the discussion indeVet et al. (2013).

Measuring the agreement between two metric
continuous variables

When it comes to measuring agreement between twometric continuous variables, the obvious
problem is the large number of possible values – it is quite likely that none of them will be
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Figure 20.6 Bland–Altman plot of difference between doctor’s measurement of systolic blood pressure

and ambulatory systolic blood pressure. Source: Little et al. (3 August 2002). Reproduced by permission

of BMJ Publishing Group Ltd

the same. One solution is to use a Bland–Altman chart (Bland andAltman 1986).This involves

plotting, for each pair of measurements, the differences between the two scores on the vertical

axis, against themean of the two scores on the horizontal axis.

If the two methods of measurement are in exact agreement, all of the points will lie on a

horizontal line drawn through the zero point on the difference (vertical) axis. If there is a dif-

ference in the results produced by the twomethods, the horizontal difference line will be above

or below the zero line (depending on which measure gives the higher values), and the points

will form a cloud around this line.

A pair of tramlines, called the 95 per cent limits of agreement, are drawn at a distance of two

standard deviations above and below the horizontal difference line. If all of the points on the

graph fall between the tramlines, then this suggests that the agreement is ‘acceptable’, but the

more points there are outside the tramlines, the less good the agreement. Moreover, the spread

of the points should be reasonably horizontal, indicating that differences are not increasing (or

decreasing) as the values of the mean of the two variables increase. A difference (bias) in the

agreement between the two measures is shown by the plots having a tendency to be above or

below the 0 line.

The idea is illustrated in Figure 20.6. This Bland–Altman plot is from a study to assess alter-

native ways of measuring systolic blood pressure in 200 hypertensive patients. The aim was

to determine the level of agreement between the doctor-measured blood pressure and the

ambulatory blood pressure; 24 hour ambulatory measurement – readings taken at half hourly

intervals during the day (0700–2300) and hourly at night (2300–0700).

The horizontal line through 0 corresponds to no difference between the twomethods, that is,

doctor measurement minus ambulatory measurement equals zero. As you can see, most of the

points were above this line, indicating that the measurement by the doctors was greater than

the ambulatory measure. This upward bias (the mean of the difference in the two methods of

measurement) was +18.9mmHg, as shown on the graph by the horizontal dotted line drawn
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at 18.9. It is possible that the increased blood pressures when measured by the doctor might be

due to the ‘white coat effect’.

The standard deviation of the difference inmeasurements was 19mmHg.Thismeans that for

95 per cent of the patients, the difference in their systolic blood pressures is between plus and

minus two standard deviations, that is, 2× 19= 38.0 from themean of 18.9.That is, 18.9− 38.0

to 18.9+ 38.0 or from −19.1mmHg to 56.9mmHg. These values, the limits of agreement, are

shown on the graph; you can see that most of the points lie between the lines, so agreement

seems acceptable.The larger discrepancies for high systolic blood pressures are worrying, how-

ever, and an indication of poor agreement in the higher ranges. The authors conclude:

Readings made by doctors were much higher than ambulatory systolic pressure.

Notice that the authors provide a value for Spearman’s correlation coefficient of +0.39,
indicating that the difference between measures increases as the mean of the two measures

increases.

Exercise 20.4. What is the problem when trying to measure agreement between the

values of two continuous variables?

Exercise 20.5. The Bland–Altman plot in Figure 20.7 is taken from a study to investi-

gate whether birthweight is associated with depression in young women.The horizontal

axis shows the mean of recalled birthweight (by the woman or parents) and recorded

birthweight from local hospital obstetric records The vertical axis shows the difference
between the two measurements. What does the chart suggest about the level of agree-

ment and possible bias?
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Figure 20.7 Bland–Altman plot of mean reported and recalled birthweight (on the horizontal axis)

against the difference between the two measurements (vertical axis). From a study to investigate if

birthweight is associated with depression among 1729 young women. Source: Inskip et al. (2008).

Reproduced by permission of Oxford University Press
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Getting into a Relationship
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21
Straight line models: linear
regression

Learning objectives

When you have finished this chapter, you should be able to:

• Describe the difference between an association and a cause-and-effect relationship.

• Estimate the equation of a straight line from a graph and draw a straight line knowing

its equation.

• Describe what is meant by a linear relationship and how the linear regression

equation can be used to model it.

• Identify the constant and slope parameters, and the dependent and independent

variables.

• Explain the role of the residual term.

• Summarise the model building process.

• Provide a brief explanation of the idea behind the method of ordinary least squares

estimation.

Medical Statistics from Scratch: An Introduction for Health Professionals, Third Edition. David Bowers.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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• List the basic assumptions of the simple linear regression model.

• Interpret computer-generated linear regression results.

• Explain what goodness-of-fit is and how it is measured in the simple linear regression

model.

• Explain the role of R2 in the context of multiple linear regression.

• Interpret published multiple linear regression results.

• Explain the adjustment properties of the regression model.

• Outline how the basic assumptions can be checked graphically.

Health warning!

Although the maths underlying the idea of linear regression is a little complicated, some expla-

nation of the concept is necessary if you are to gain some understanding of the procedure and

be able to interpret regression computer outputs sensibly. I have tried to keep the discussion

as brief and as non-technical as possible. If you have an aversion to maths you might want to

skim the material in the next few pages.

Relationship and association

In Chapter 19, I emphasised the fact that an association between two variables does notmean

that there is a cause-and-effect relationship between them. For example, birthweight and sys-

tolic blood pressure (SBP) among a group of individuals may appear to be closely associated

(i.e. those people with a high birthweight tend to have a high SBP), but this does not necessarily
mean that an increase in birthweight will cause a corresponding increase in SBP (or indeed

that an increase in SBP will cause an increase in birthweight). This association is illustrated as

follows:

Birthweight
Systolic blood

pressure

In this chapter and in the following chapter, I am going to deal with the idea of a causal
relationship between variables. By causal relationship, I mean that a change in the value of one

variable will bring about or cause a change in the value of some other variable. For example,
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variation in salt intake among a group of individuals causes variation in the blood pressure
in those individuals – higher levels of salt intake lead to, that is, cause, higher levels of blood
pressure (and vice versa). This causal action is illustrated as follows:

Salt intake
Blood

pressure

In the clinical world, demonstrating a cause–effect relationship is not easy and requires a
number of conditions to be satisfied. Hill (1965), a Britishmedical statistician, set out a number
of criteria that should be satisfied if a relationship is to be defined as causal. These include:

Chronology (temporality). The effect has to occur after the cause. If factor Y is believed to
cause disease Z, then factor Ymust necessarily always precede the occurrence of the dis-
ease. This is the only absolutely essential criterion.

Dose–response relationship. An increasing amount of exposure increases the risk. If a
dose–response relationship is present, it is a strong evidence for a causal relationship.
However, the absence of a dose–response relationship does not rule out a causal
relationship.

Consistency. The association is consistent when the results are replicated in studies in differ-
ent settings using different methods and among different populations.

Plausibility. The association agrees with currently accepted understanding of pathological
processes.

Coherence. The association should be compatible with existing theory and knowledge
(although of course, existing theory and knowledge may be wrong).

I will assume fromnowon that a cause–effect relationship between the variables has been sat-
isfactorily demonstrated, and that this relationship is linear (see Chapter 19, for an explanation
of linearity).

A causal relationship – explaining variation

As a reminder, youmay remember from your schooldays that the equation of a straight line can
be written as:

y = mx + c

or
y = c +mx
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where the y are the measurements on the vertical axis, the x are the measurements on the

horizontal axis andm is the slope of the line.m will be positive if the line slopes up from left to

right or negative if the line slopes down from left to right. c is called the constant of intersection;
it is the point where the line crosses the y axis (c can be positive or negative).

Let us beginwith a simple example. Suppose that the changes in systolic blood pressure (SBP),

in mmHg, are caused by changes in body mass index (BMI) in kg/m2, and the two variables

are related by the following expression:

SBP equals 110 plus 3∕4 of BMI

As an equation this is:

SBP = 110 + 0.75 × BMI

So, for example, when BMI= 40, SBP equals 110 plus 0.75 times 40, or 140mmHg. This

equation is a linear equation. If you plot it with pairs of values of BMI and SBP, you will see a

straight line. For instance:

when BMI = 20, SBP = 125

when BMI = 28, SBP = 131.

We already know that when BMI= 40, SBP= 140, and if we plot these three pairs of values,

and draw a line through them, we get Figure 21.1. This is clearly a straight line.

The equationmentioned earlier explains the variation in SBP fromperson to person, in terms

of corresponding variation from person to person in bodymass index (BMI). I have referred to

this relationship as an equation, but I could also have described it as amodel. We aremodelling
a relationship; that between the variation in SBP and the variation in BMI.

We can write this equation in a more general form in terms of two variables Y and X, thus:

Y = b0 + b1 × X

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50

S
B

P

BMI

Figure 21.1 Linear relationship of systolic blood pressure (SBP) against body mass index (BMI). Note

that when we are dealing with a causal relationship we talk about “a scatterplot of Y (in this case SBP)

against X (in this case BMI)”, and not the other way round.
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The term b0 is the usual coefficient of intersection, or constant coefficient – it’s where the line

cuts the Y axis (110 in Figure 20.1). The term b1 is the slope coefficient, 0.75 in our equation,

and will be positive if the line slopes upwards from left to right (as it does in Figure 20.1), and

negative if the line slopes down from left to right (as in the top graph in Figure 19.4). Higher

values of b1 means more steeply sloped lines.

One important point: the value of b1 (+0.75 in the example) is the amount by which SBP

would increase if the value of BMI increased by 1 unit (BMI is measured in units of kg/m2).

I will come back to this later.

Refresher – finding the equation of a straight line from a graph

See Figure 21.2. Draw a right-angled triangle against the line with the line forming the

hypoteneuse. The slope is equal to the length of the vertical side of this triangle divided by the

length of the horizontal side. If the line slopes down from left to right, then the slope takes a

negative sign. The constant of intersection c, is where the line cuts the vertical axis. Be careful

if either or both axes are not shown going through the origin.

Exercise 21.1. Figure 21.3 is taken from a study of the effectiveness of health poli-

cies and shows the male smoking prevalence (per cent of males smoking) against level

of tobacco control in a number of European countries. Tobacco control includes such

measures as price increases, restriction on smoking in public places, advertising bans

and so on. What is the equation of the regression line in Figure 21.3

Exercise 21.2. Plot the values in Figure 21.4 for the birthweight of baby (g) against

weight of mother (kg) on a scatter plot. Draw a straight line through the points. What is

the equation of this line?

The linear regression model

In Figure 21.1, all of the points lie exactly on the straight line. In practice, this will not happen

of course, and the scatterplot in Figure 21.5 is more typical of what you might see. Here, we

have birthweight (g) against mother’s weight at booking, among a random sample of 500 babies

slope = a/b

a

bc

Figure 21.2 Calculating the slope of a straight line
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Figure 21.3 A regression line for the relationship between male smoking prevalence (per cent of

males smoking) against the level of tobacco control in a number of European countries. Tobacco control

includes such measures as price increases, restriction on smoking in public places, advertising bans,

and so on Source: Mackenbach et al. (2013). Reproduced by permission of Elsevier

Birthweight (g) 2900 3120 3450 3780

Mother’s weight (kg) 40.0 60.0 90.0 120.0

Figure 21.4 Birthweight (g) and mother’s weight (kg) for four babies, based very roughly on values

in the random sample of 500 babies from the Born in Bradford cohort study
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Figure 21.5 A scatterplot of birthweight against mother’s weight at booking, among a random sample

of 500 babies from the Born in Bradford cohort. The scatter of values appears to be distributed around

a straight line. That is, the relationship between these two variables appears to be broadly linear (I will

deal with the error term e shortly)
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from the Born in Bradford cohort. Suppose that we believe that there is a causal relationship
between mother’s weight and baby’s birthweight, that is, a variation in mother’s weight causes
variation in birthweight. If we want to investigate the nature of this relationship then we need
to do three things:

• Make sure that the relationship is linear.1

• Find a way to determine the equation linking the variables, that is, get the values of b0 and b1.

• See if the relationship is statistically significant, that is, it is present in the population.

I will deal with these issues one at a time.

First, is the relationship linear?

One way of investigating the linearity of the relationship is to examine the scatterplot, such as
that in Figure 21.5.
The points in the scatterplot do seem to cluster (albeit loosely) along a straight line through

the scatter.This suggests a linear relationship between birthweight and mother’s weight. So far,
so good. We can write the equation of this straight line as:

birthweight = b0 + b1 ×mother’s weight

This equation is known as the sample regression equation.The variable on the left-hand side of
the equation, birthweight, is known variously as the outcome, response or dependent variable. I
am going to refer to this as the dependent variable in this chapter. It must bemetric continuous.
The value of this dependent variable is equal to themean value of birthweight for any specified
value of mother’s weight. In other words, it would tell us (if we knew b0 and b1) what the mean
birthweight would be for all those babies whose mothers had some particular booking weight.
The variable on the right-hand side of the equation,mother’s weight, is known variously as the

predictor, explanatory or independent variable, or the covariate. I will use the term independent
variable here. This can be of any type: nominal, ordinal or metric. This is the variable that is
doing the ‘causing’. It is the changes in mother’s weight that cause birthweight to change in
response but not the other way round.
Incidentally, my ‘by eye’ line has the equation:

birthweight = 1950 + 17.1 ×mother’s weight

This means that themean birthweight of all those babies whose mothers weighed 70 kg is:

birthweight = 1950 + 17.1 × 70 = 3147g.

Clearly, drawing a line by eye through a scatter is not satisfactory – 10 people would get 10
different (although probably similar) lines. So the obvious question arises, ‘What is the ‘best’

1Because in this chapter, we are dealing only with linear relationships.
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straight line that can be ‘drawn’ through a scatter of sample values, and how do I find out

what it is?’

Exercise 21.3. (a) Draw by eye the best straight line you can through the scatterplot

shown in Figure 19.3, and write down the regression equation. Assuming that there

is a causal relationship between the two variables, that is, variation in the incidence

of Crohn’s disease (CD) brings about variation in ulerative colitis (UC), by how much

would the mean incidence rate of ulcerative colitis change if the rate of Crohn’s disease

is changed by one unit? (b) Draw, by eye, the best straight line you can draw through the

scatterplot shown in Figure 19.4 (top graph), and write down the regression equation.

What change in mean percentage mortality would you expect if the mean number of

episodes per year increased by 1?

Estimating b0 and b1 – the method of ordinary least squares (OLS)

The second problem is to find a method of getting the values of the sample coefficients b0 and
b1, which will give us a line that fits the scatter of points better than any other line, and which

will then enable us to write down the equation linking the variables. One of the most popular

methods used for this calculation is called ordinary least squares, or OLS. This gives us the

values of b0 and b1, and the straight line that best fits the sample data.

Roughly speaking, ‘best’ means the line that is, on average, closer to all of the points than any

other line. How does OLS do this? See Figure 21.5. The distance of each point in the scatter

from the regression line is known as the residual, or error, denoted as e. I have shown the e for
just one of the observations. If all of these residuals are squared and then added together, to

give the term
∑

e2,2 then the ‘best’ straight line is the one for which the sum,
∑

e2, is smallest.

Hence, the name ordinary ‘least squares’.

The calculations involved with OLS are too tedious to do by hand, but you can use a suitable

computer program to derive their values quite easily (both SPSS and Minitab will do this).

It is important to note that the sample regression coefficients b0 and b1 are estimates of the
population regression coefficients 𝛽0 and 𝛽1. In other words, we are using the sample regression

equation:

Y = b0 + b1X

to estimate the population regression equation:

Y = 𝛽0 + 𝛽1X

Wewill need to see if this line is significant in the population – I will deal with this important

issue shortly.

2Known as the sum of squares.
∑

is the Greek ‘sigma’, which means sum all the values.
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Basic assumptions of the ordinary least squares procedure

The ordinary least squares procedure is only guaranteed to produce the line that best fits the
data if the following assumptions are satisfied:

• The relationship between Y and X is linear.

• The dependent variable Y is metric continuous.

• The residual term, e, is Normally distributed, with a mean of zero – that is, it is centred on
the regression line, for each value of the independent variable, X.

• The spread of the residual terms should be the same, whatever the value ofX. In other words,
e should not spread out more (or less) when X increases.

Let me explain the last two assumptions. These explanations are a bit technical and if you
have difficulty understanding them, do not worry – you won’t be alone! Besides which, an

understanding is not essential to the basic idea of regression. Feel free to skip the next couple
of paragraphs. Anyway, here goes.
Let us consider only those women in Figure 21.5 whoweighed 80 kg. Suppose that there were

25 of them.As the scatterplot in Figure 21.5 indicates, most of these womenwill have a different
birthweight baby. As you have seen, the difference between each observation and the regression
line is the residual e. So we have 25 residual values (25 values of e). If you have arranged these 25
values into a frequency distribution, then the third assumption stipulates that this distribution
should be Normal and centred on the regression line. And this should be true for the set of the
residuals for each value of mothers weight. I have tried to illustrate this in Figure 21.6 (with a

shaky hand – too much coffee!) for mothers who weighed 40, 60, 80 and 100 kg.
The fourth assumption demands that if you have repeated the exercise shown earlier

for each separate value of mother’s weight, then the spreads (the standard deviations) of

each distribution of residual values should be the same for all mother’s weights (as they

40 60 80 100

Mothers weight (kg)

The error terms e for each
value of mothers weight

(there will be a number of
mothers at each weight)

should be Normal and centred
around the regression line, i.e.

have a mean of 0.

Figure 21.6 Showing how the error terms (the es) for the mothers weighing 40, 60, 80 and 100 kg,

should be Normally distributed, and have a mean of 0, that is, should be centred on the regression line
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are in Figure 21.6). If the residual terms have this latter property then they are said to be

homoskedastic.
These assumptions may seem complicated, but the consequences for the accuracy of the

ordinary least squares estimators may be serious if they are violated. Needless to say, these
assumptions need to be checked. I will return to this later.

Exercise 21.4. In linear regression, what is the relationship between b0 and b1 and 𝛽0
and 𝛽1?

Exercise 21.5. What requirement does the dependent variable have to satisfy in a linear

regression equation?

Back to the example – is the relationship statistically
significant?

Having calculated b1 and b2, we now need to address the third question: is the relationship

between birthweight and mother’s weight statistically significant in the population? I want to
say straight away that we are not much interested in whether 𝛽0 is significant – it is only there

to make up the numbers and basically we can ignore it.3 The crucial parameter is 𝛽1, and we
can check whether this is significant by calculating a confidence interval for it and seeing if this

confidence interval includes zero, and/or by performing a hypothesis test – the null hypothesis

is that 𝛽1 = 0 and seeing if the p-value is <0.05.
If the confidence interval for 𝛽1 includes zero (or is its p-value> 0.05), then we cannot reject

the null hypothesis that 𝛽1 is equal to zero, whichmeans that the relationship is not statistically
significant. Whatever the value of mother’s weight, once multiplied by a 𝛽1 equal to zero, it

disappears from the regression equation and can have no effect on birthweight.
Thus, the focus in linear regression analysis is to use b1 to estimate 𝛽1 and then examine its

statistical significance. If 𝛽1 is statistically significant, then the relationship is established (well,

at least with a confidence level of 95 per cent).

Using SPSS to regress birthweight on mother’s weight

Theoutput from SPSS is shown in Figure 21.7. Ignore the top table for themoment.The bottom
table gives us the sample regression equation:

birthweight = 2459.873 + 11.010 ×mother′s weight

The 95 per cent confidence interval for 𝛽1 is (8.084 to 13.935), which does not include 0

so the relationship between birthweight and mother’s weight is significant in the population
(confirmed by the p-value being< 0.05).

3Besides, in reality it has no sensible interpretation. For example, in the current example, 𝛽0 would equal birth-

weight if a mother’s weight was equal to zero!
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Model Summary

Model R R Square Adjusted R
Square

Std. Error of
the Estimate

1 .315a .099 .097 536.307

Model Unstandardized Coefficients Sig. 95.0% Confidence Interval for B

B Std. Error Lower Bound Upper Bound

1
(Constant) 2459.873 104.054 .000 2255.434 2664.313

Mothers_weight 11.010 1.489 .000 8.084 13.935

The p-values.

This table shows the
goodness-of-fit

measures. I will deal
with these later.

a. Predictors: (Constant), Mothers_weight

The lower and upper bounds
of the 95% confidence

interval for β1. 

The estimated
sample values for

β0 and β1.

Figure 21.7 Output from SPSS for regression of birthweight on mother’s booking weight for a random

sample of 500 babies from the Born in Bradford cohort study

Using Minitab

WithMinitab you get the output shown in Figure 21.8 (ignore the bottom line beginning S= for

the moment). Minitab calculates only the p-value, otherwise the results are virtually the same

as for SPSS (allowing for a bit of rounding). As you can see the p-value for 𝛽1 is< 0.05, which

means we can reject the hypothesis that 𝛽1 = 0. Minitab actually supplies the sample regression

equation – which is nice. Pity though about the lack of confidence intervals.

The value of +11.010 for b1 means that for every unit (1 kg) increase in mother’s weight,

the mean birthweight will increase by 11.010 g. Knowing the equation, you can, if you wish,

draw this best OLS estimated regression line onto the scatterplot. I hesitate to draw your

attention to it, but my best straight line by eye (birthweight= 1950+ 17.1×mother’s weight),

was not impressive!

The regression equation is
birthweight (g) = 2460 + 11.0 mothers weight (kg)

Predictor                         Coef        SE Coef             T               P
Constant                      2459.9             104.1      23.64        0.000
mothers weight (kg)  11.010             1.489        7.39         0.000

S = 536.307   R-Sq = 9.9%      R-Sq(adj) = 9.7%

The sample
regression equation.

The sample
regression

coefficients.

The p-values.

Figure 21.8 Output from Minitab for regression of birthweight on mother’s booking weight for a

random sample of 500 babies from the Born in Bradford cohort study
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The regression equation also enables us to predict the value of the mean birthweight,

for any value of mother’s weight, within the range of the sample mother’s weight values

(30.0 kg–140.0 kg). For example, for babies whose mothers weighed 70 kg at booking, their

predicted mean birthweight is:

birthweight = 2460 + 11.010 × 70 = 3230.7g

Prediction of birthweight for mother’s weight values outside the original sample data range

requires a more complex procedure, and will not be discussed here.

Exercise 21.6. What does themodel described earlier predict formean birthweight for

the babies of women with a booking weight of 80 kg?

As an example from practice, Figure 21.9 is taken from a Norwegian study into the rela-

tionship between parent pre-pregnancy BMI and offspring BMI at three years of age.4 The

figure shows the results of a linear regression analysis of infant BMI against maternal BMI and

separately against paternal BMI.

As you can see, neither confidence interval contains 0, so the relationship between both

maternal and paternal BMI is significant in the population.

Exercise 21.7. Which do you think has a greater effect on the variation in offspring

BMI, maternal BMI or paternal BMI?

Goodness-of-fit, R2

Figures 21.6 and 21.7 contain values for something called R2 and R2 (SPSS calls them R Square

and Adjusted R Square; Minitab calls them R-Sq and R-Sq(adj)). What are these? Suppose

Offspring BMI

𝛽1 95% CI

Maternal BMI 0.035 (0.031–0.039)

Paternal BMI 0.040 (0.040–0.051)

Figure 21.9 Results of a linear regression analysis of infant BMI against maternal BMI and separately

against paternal BMI

4We first encountered this study in Figure 19.5 in the context of correlation.
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that you think that mother’s heightmight be causally related to birthweight, so you repeat the

procedure mentioned above but use mother’s height as your independent variable instead of

mother’s weight. Your results indicate that 𝛽1 is again statistically significant. Now, you have

two models, in both of which the independent variable has a statistically significant linear

relationship with birthweight. But which model is best? The one with mother’s weight or the

one with mother’s height?

In fact, the best model is the one whose independent variable ‘explains’ the greatest pro-

portion of the observed variation in birthweight from subject to subject, that is, has the best

goodness-of-fit. One suchmeasure of this explanatory power is known as the coefficient of deter-
mination and is denoted as R2.

As a matter of interest, when the mother’s weight was used as the independent variable,

R2 = 0.099 (or 9.9 per cent). When mother’s height was used, R2 = 0.075 (or 7.5 per cent).

So the variation in mother’s weight explains almost 10 per cent of the observed variation in

birthweight, while variation in mother’s height explains only 7.5 per cent of the variation in

birthweight. So using mother’s weight as your independent variable gives you a better fitting

model. However, the explanatory power of neither model is much to shout about. What about

the other 90 per cent, or 75 per cent, of the variation in birthweight – what explains that?

One possibility is that the rest is due to chance – to random effects. A more likely possibility

is that, as well as mother’s weight, there are other variables that contribute something to the

variation in birthweight from subject to subject. It would be naïve to believe that variation

in birthweight, or any clinical variable, can be largely explained by only one variable. Which

brings us neatly to themultiple linear regression model.
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Multiple linear regression

A simple linear regression model is one with only one independent variable on the right-hand

side. When you have more than one independent variable, the regression model is called a

multiple linear regression model. For example, having noticed that both mother’s weight and

mother’s height are each significantly related to birthweight, you might include them both as

independent variables. Minitab gives the output shown in Figure 21.10.

So the estimated sample regression equation is:

Birthweight (g) = 147 + 15.3 ×mothers height(cm) + 8.61 ×mothers weight(kg)

This means that one unit (1 cm) increase in mother’s weight will increase the mean

birthweight by 15.3 g, and an increase of one unit (1 kg) in mother’s weight will increase the

birthweight by 8.61 g. Crucially, you can see that the goodness-of-fit has improved: R2 = 12.6

per cent (compared to R2 = 9.9 per cent for mother’s weight alone or R2 = 7.5 per cent when

mother’s height alone was used). Adding the extra variable seems to have improved the

explanatory power of the model (although there is still a lot of variation in birthweight which

is still unexplained).

SPSS produces a virtually identical output but includes 95 per cent confidence intervals (see

Figure 21.11. I have omitted the table containing these values, but R2 = 12.6 per cent and R2 =
12.3 per cent (I will come to R2 shortly). Note that in the multiple linear regression model, R2

measures the explanatory power with all of the variables currently in themodel acting together.
Note that when wemove from the simple to the multiple linear regression model, we need to

add a further basic assumption to the list in this chapter.That is, that there should be no perfect

The regression equation is
Birthweight (g) = 147 + 15.3 Mothers height (cm) + 8.61 Mothers weight (kg)

Predictor                            Coef       SE Coef               T               P
Constant                           146.8            595.6           0.25         0.805
Mothers height (cm)    15.304             3.882          3.94         0.000
Mothers weight (kg)       8.613             1.589          5.42         0.000

S = 528.643   R-Sq = 12.6%   R-Sq(adj) = 12.3%

The multiple regression
equation with two independent
variables, Mother’s weight and

Mother’s height.

The value of the
sample regression

coefficients b1 and b2. The p-values for
coefficients b1and

b2. Both < 0.05.

The goodness of fit
R2 value.

Figure 21.10 Output from Minitab for the regression of birthweight on mother’s booking weight and

mother’s height. From a random sample of 500 babies from the Born in Bradford cohort study
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Model Unstandardized coefficients Sig. 95.0% Confidence interval for B

B Std. Error Lower bound Upper bound

1 (Constant) 146.794 595.582 .805 −1023.374 1316.962

Mothers_weight 8.613 1.589 .000 5.491 11.734

Height 15.304 3.882 .000 7.678 22.931

Figure 21.11 Output from SPSS for regression of birthweight on mother’s booking weight and mother’s

height, for a random sample of 500 babies from the Born in Bradford cohort study

association or collinearity between any of the independent variables. When this assumption is

not met (or only partially met), we refer to the model as having multicollinearity. The conse-

quence of this condition is that the confidence intervals are wide and thus imprecise.

Exercise 21.8. If we add mother’s age (years) as a third independent variable to the

birthweight model, then SPSS produces the results shown in Figure 21.12. (a) Comment

on the statistical significance of the three independent variables. (b) How does an

increase in mother’s age affect mean birthweight values? (c) Has goodness-of-fit

improved compared to the model with only mother’s weight and mother’s height

included? (d) What is the mean birthweight of all of those babies in the sample with a

mother’s weight of 60 kg, height of 150 cm and age of 30?

As an example from practice, the following multiple regression equation is from a longitu-

dinal ecological study to investigate whether the uneven rise in prosperity between 1999 and

2008 accounted for differential increases in life expectancy in English local authorities (we first

encountered this study in connection with Figure 8.8). The authors measured trends in pros-

perity (the explanatory variables) in terms of changes in unemployment, in household income

(GDHI), and in educational achievement (EDUC). A deprivation variable was also added to

the model. The multiple linear regression model was5:

ΔLife expectancy = 𝛽0 + 𝛽1 × ΔUnemp + 𝛽2 × ΔGDHI + 𝛽3 × ΔEDUC + 𝛽4 × IMD + +𝜖

Model R R square Adjusted R square

1 .359a .129 .124

Figure 21.12 Output from SPSS with three independent variables: mother’s weight, height and age

5I have amended this equation slightly, but not fundamentally, for pedagogic reasons.
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whereΔ is the 10 year difference in life expectancy, unemployment (Unemp),GDHI andEDUC,

respectively. IMD is the level of deprivation in 1998. 𝜖 is the residual (or error) term.

The dependent variable is the 10 year change in life expectancy across a number of English

local authorities. As you can see, there are four independent variables. The results of the

linear regression analyses, for men and women separately, are shown in Figure 21.13. All

variables are significant (none of the confidence intervals include zero nor are any of the

p-values> 0.05).

Factor influencing life expectancy Increase in life expectancy p value
months (95% CI)

Men (R2 = 0.27)
Additional increase in life expectancy with each 1%

decline in unemployment rate

2.2 (0.5 to 3.8) 0.009

Additional increase in life expectancy with each £1000

increase in disposable household income per head

1.4 (0.3 to 2.5) 0.01

Additional increase in life expectancy for each point that

LA’s initial level of deprivation (IMD2000) is lower

than average

0.2 (0.1 to 0.3) <0.001

Women (R2 = 0.28)
Additional increase in life expectancy with each 1%

decline in unemployment rate

1.7 (0.4 to 3.1) 0.013

Additional increase in life expectancy with each £1000

increase in disposable household income per head

1.1 (0.2 to 1.9) 0.016

Additional increase in life expectancy for each point that

LA’s initial level of deprivation (IMD2000) is lower

than average

0.3 (0.2 to 0.4) <0.001

Figure 21.13 Effect of baseline deprivation, decrease in unemployment and increase in average house-

hold income on increase in life expectancy. Data from Barr et al. (2012)

Exercise 21.9. Using the results in Figure 2.12: (a) Do you think the model has a better

fit (greater explanatory power) formenor forwomen? (b)Whose life expectancy changes

themostwhenunemployment decreases – menorwomen?Does it increase or decrease?

How can you tell?

Adjusted goodness-of-fit: R2

When you add an extra variable to an existing model and want to compare goodness-of-fit

of the augmented model with the old model, you need to compare not R2, but adjusted R2,

denoted as R2. The reasons do not need to concern us here, but R2 will increase when an

extra independent variable is added to the model, without there necessarily being any increase

in explanatory power (its ability to explain more of the variation in the dependent variable).
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However, if R2 increases, then you know that the explanatory power of the model has properly
increased.
From Figures 21.7 or 21.8, R2 = 0.097 (9.7 per cent) in the simple regressionmodel with only

mother’s weight as an independent variable. From Figures 21.9 or 21.12, with both mother’s

weight and height included, R2 increases to 0.123 (12.3 per cent), so this multiple regression
model does show a small but real improvement in goodness-of-fit, and would be preferred to
either of the simple regression models. Of course, you might decide to explore the possibil-
ity that other independent variables might also have a significant role to play in explaining
variation in birthweight; age is one obvious contender, as is the sex of baby, and should be
included in the model.

Exercise 21.10. If the sex of the baby is added to themodel containingmother’s weight

and height, the output fromMinitab is as shown in Figure 21.14. Comment on what the

addition of sex to the model implies for the goodness-of-fit.

The regression equation is
Birthweight (g) = 190 + 15.2 Mothers height (cm) + 8.6 Mothers weight (kg)
                               –20.7 sex               

Predictor                          Coef        SE Coef             T               P
Constant 190.2 604.4 0.31 0.753

15.228 3.889 3.92 0.000
8.603 1.590 5.41 0.000

Mothers height (cm)
Mothers weight (kg)

–20.68 47.48 –0.44 0.663Sex

S = 529.075   R-Sq = 12.7%      R-Sq(adj) = 12.1%

Figure 21.14 Mintab output for model of birthweight against mother’s weight, mother’s height and

sex of baby (1=male, 2= female)

Exercise 21.11. Researchers suggested that the value of the carbon isotope 𝛿13C in

human serum might reflect dietary consumption of corn-based and cane-based sweet-

eners. This might then offer a measure that objectively reflects intake of sweets and

could thus replace unreliable self-reported dietary assessments. They investigated this

possibility among a sample of 186 participants by using a linear regression model with

the level of 𝛿13C in serum as the dependent variable and the level of the consumption

of sweetened drinks (estimated number of cans consumed per day) as the indepen-

dent variable. They then successively added to the basic model: first, corn consump-

tion then male gender and then consumption of animal fat (% total calories/day). For

each model, they measured R2. The results are shown in Figure 21.15. Comment on

what these successive R2 values suggest about goodness-of-fit for each addition to the

simple model.
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Model 𝛽 Coefficient for sweetened 95% CI p-value Adjusted r-squared
beverage consumption value

1: Univariate (sweetened

beverage alone)

0.21 0.09, 0.32 <0.001 0.06

2: +Corn consumption

(≥1/week)

0.20 0.08, 0.31 0.001 0.08

3: +Male gender 0.13 0.02, 0.25 0.02 0.13

4: +Animal fat (% total

calories/day)

0.18 0.08, 0.29 0.001 0.29

Figure 21.15 Simple regression and multiple regressions of serum 𝛿13C values (dependent variable)

against sweetened beverage alone (Model 1), plus corn consumption (Model 2), plus male gender (Model

3), plus animal fat consumption (Model 4). Data from Yeung et al. (2010)

Including nominal independent variables in the regression
model: design variables and coding

In linear regression,many of the independent variables are likely to bemetric, or at least ordinal.

However, any independent variable that is nominal must be coded into a so-called design (or

dummy) variable, before being entered into a model. There is only space for a brief description

of the process here.

As an example, suppose that in a study of hypertension, you have SBP as your dependent

variable and age (AGE) and smoking status (SMK), as your independent variables. Assume

that SMK is a nominal variable, having the categories: non-smoker, ex-smoker and current

smoker. This gives the model:

SBP = b0 + b1AGE + b2SMK

To enter SMK into your computer, you would have to score the three smoking categories

in some way – but how? As 1, 2, 3, or as 0, 1, 2 or what? As you can imagine, the scores you

attribute to each category will affect your results. The answer is to code these three categories
into two design variables. In this example, we set out the coding design as in Figure 21.16. Note

that the number of design variables is always one less than the number of categories in the

variable being coded.

Design variable values

Smoking status D1 D2

Non-smoker 0 0

Ex-smoker 0 1

Current smoker 1 0

Figure 21.16 Coding design for a nominal variable with three categories
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So you replace smoking status (with its dodgy numbering), with two new design variables,

D1 andD2, which take the values in Figure 21.16, according to smoking status.Themodel now
becomes:

SBP = b0 + b1Age + b2D1 + b3D2.

For example, if the subject is a current smoker,D1 = 1 andD2 = 0; if an ex-smoker,D1 = 0 and
D2 = 1; if a non-smoker, D1 = 0 and D2 = 0. Notice that in the last situation that the smoking

status variable effectively disappears from the model.
This coding scheme can be extended to dealwith nominal variableswith any reasonable num-

ber of categories, depending on the sample size.6 The simplest situation is a nominal variable
with only two categories, such as sex, which can be represented by one design variable with

values 0 (if male) or 1 (if female).

Exercise 21.12. Suppose that the first three subjects in the study of SBP and its relation-

ship with age and smoking habit are, a 50-year old smoker, a 55-year-old non-smoker

and a 35-year-old ex-smoker, respectively. Fill in the first three rows of the data sheet

shown in Figure 21.17 as appropriate.

Building your model. Which variables to include?

At the beginning of this chapter, we chose mother’s weight and/or mother’s height to explain
birthweight. In practice, researchers may or may not have an idea about which independent

variables they think are relevant in explaining the variation in their dependent variable.

Whether they do or they don’t will influence their decision as to which variables to include in
their model, that is, their variable selection procedure. There are two main approaches to the

model-building process:

• First, automated variable selection – the computer does it for you.This approach is perhaps
more appropriate if you have little idea about which variables are likely to be relevant in the

relationship.

Subject Age D1 D2

1

2

3

Figure 21.17 Data sheet for systolic blood pressure against age and smoking status

6As a rule of thumb, you need at the very least 15 subjects for each independent variable in your model. If you

have got, say, five ordinal and/or metric independent variables in your model, you would need a minimum of

75 subjects. If you want also to include a single nominal variable with five categories (i.e. four design variables),

you would need another 60 subjects. In these circumstances, it might help to amalgamate some categories.



Trim size: 170mm x 244mm Bowers c21.tex V3 - 06/19/2014 10:04 A.M. Page 288

288 CH21 STRAIGHT LINE MODELS: LINEAR REGRESSION

• Second, manual selection – you do it! This approach is more appropriate if you have
a particular hypothesis to test, in which case you will have a pretty good idea which
independent variable is likely to be the most relevant in explaining your dependent
variable. However, you will almost certainly want to include other variables to control for
confounding (more on confounding in regression models below)

Both of these methods have a common starting procedure, as follows7:

• Identify a list of independent variables that you think might possibly have some role in
explaining the variation in your dependent variable. Be as broad-minded as possible here.

• Draw a scatterplot of each of these candidate variables (if it is not a nominal variable), against
the dependent variable. Examine for linearity. If any of the scatterplots show a strong, but
not a linear relationship with the dependent variable, you will need to code them first before
entering them into the computer data sheet. For example, you might find that the relation-
ship between the dependent variable and ‘age’ is strong but not linear. One approach is to
group the age values into four groups, using its three quartile values to define the group
boundaries and then code the groups with three design variables.

• Perform a series of univariate regressions, that is, regress each candidate independent vari-
able in turn against the dependent variable. Note the p-value in each case.

• At this stage, all variables that have a p-value of ≤0.25 should be considered for inclusion in
themodel. Using a p-value less than thismay fail to identify variables that could subsequently
turn out to be important in the final model.

With this common starting procedure out of the way, we can briefly describe the two variable
selection approaches, starting with automated methods.

Automated variable selection methods

• Forwards selection: The program starts with the variable that has the lowest p-value from the
univariate regressions. It then adds the other variables one at a time, in lowest p-value order,
regressing each time, retaining all variables with p-values<0.05 in the model.

• Backwards selection: The reverse of forwards selection. The program starts with all of the
candidate variables in the model, then the variable that has the highest p-value>0.05, is
removed. Then, the next highest p-value variable and so on, until only those variables with
a p-value<0.05 are left in the model and all other variables have been discarded.

• Forwards or backwards stepwise selection: After each variable is added (or removed), the vari-
ables which were already (or are left) in the model are re-checked for statistical significance;
if no longer significant they are removed. The end result is a model where all variables have
a p-value<0.05.

7Note that the criteria used by the different computer regression programs to select and de-select variables differ.
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These automated procedures have a number of disadvantages, includingmisleadingly narrow
confidence intervals and exaggerated coefficient values (and thus their effect size), although
they may be useful when researchers have little idea about which variables are likely to be rele-
vant. As an example of the automated approach, the authors of a study into the role of arginase
in sickle cell disease, in which the outcome variable was log10 arginase activity comment:

This modelling used a stepwise procedure to add independent variables, beginning

with the variables most strongly associated with log10 arginase with P≤0.15. Deletion

of variables after initial inclusion in the model was allowed. The procedure contin-

ued until all independent variables in the final model had P ≤0.05, adjusted for other

independent variables, and no additional variables had P ≤0.05.

Morris et al. (2005)

Manual variable selection methods

Manual, DIY methods, are often more appropriate if the investigators know in advance which
is likely to be their principal independent variable.They will include this variable in the model,
together with any other variables that they think may be potential confounders.The identity of
potential confounders will have been established by experience, a literature search, discussions
with colleagues and patients and so on (see more below on confounders).
Manual variable selection will sometimes offer insights into variable behaviour and impor-

tance as the model building process develops, which the automatic selection of variables can-
not. Besides which, there is a feeling of being more in control of the process. There are two
alternative manual selection procedures:

• Backward elimination: The main variable plus all of the potentially confounding variables
are entered into the model at the start. A regresion analysis will then reveal which variables
are statistically significant (p-value<0.05). Non-significant variables can then be dropped
from the model, one at a time, in decreasing p-value order, with a fresh regression analysis
after each variable exit. However, if the coefficient of any of the remaining variables changes
markedly8 when a variable is dropped, the variable should be retained as this may indicate
that it is a confounder.

• Forward elimination: The main explanatory variable of interest is put in the model, and the
other (confounding) variables are added one at a time in order of (lowest) p-value (from the
univariate regressions).

The regression analysis is repeated each time a variable is added. If the added variable is
statistically significant, it is retained, if not it is dropped, unless any of the coefficients of the
existing variables change noticeably, suggesting that the new variable may be a confounder.
The end result of either of these manual approaches should be a model containing the same

8There is no rule about how big a change in a coefficient should be considered noteworthy. A value of 10 per

cent has been suggested, but this seems on the small side.
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variables (although this model may differ from a model derived using one of the automated
procedures).
In any case, the overall objective is parsimony, that is, having as few explanatory variables

in the model as possible, while at the same time explaining the maximum amount of varia-
tion in the dependent variable. Parsimony is particularly important when sample size is on the
small side. As a rule of thumb, researchers will need at least 15 observations for each indepen-
dent variable to ensuremathematical stability, and at least 20 observations to obtain reasonable
statistical reliability (e.g. narrow-ish confidence intervals).
As an example of the manual backwards selection approach, the authors of a study of birth-

weight and cord serum EPA concentration knew that cord serum EPA was their principal
independent variable, but they wanted to include possible confounders in their model. They
commented:

Multiple regression analysis was used to determine the relevant importance of pre-

dictors of the outcome (variable). Potential confounders were identified on the basis

of previous studies, and included maternal height and weight, smoking during preg-

nancy, diabetes, parity, gestational length, and sex of the child. Covariates9 were kept

in the final regression equation if statistically significant (p < 0.01) after backwards

elimination.

Grandjean et al. (2000)

Incidentally, the main independent variable, cord serum concentration, was found to be sta-
tistically significant (p-value= 0.037), as were all of the confounding variables.

Exercise 21.13. Briefly outline the two main approaches to variable selection in

multiple linear regression models. What are the advantages and shortcomings of each

approach?

Adjustment and confounding

One of the most attractive features of the multiple regression model is its ability to adjust for
the effects of possible association between the independent variables. It is quite possible that
two or more of the independent variables will be associated. For example, mother’s weight
and mother’s height (used in the example mentioned earlier) are significantly positively asso-
ciated (r= 0.383 and p-value<0.000). The consequence of such association is that increases
in mother’s weight are likely to be accompanied by increases in mother’s height. The increase
in mother’s weight will cause birthweight to increase directly, but also indirectly via mother’s
height. In these circumstances, it is difficult to tell how much of the increase in birthweight is
due directly to an increase in mother’s weight and how much to the indirect effect of an associ-
ated increase in mother’s height.

9That is, independent variables.
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The beauty of the multiple regression model is that each regression coefficient measures only
the direct effect of its independent variable on the dependent variable and controls or adjusts
for any possible interaction from any of the other variables in the model. In terms of the results
in Figures 21.10 and 21.11, an increase in mother’s weight of 1 kg will cause mean birthweight
to increase by 8.6 g (the value of b1), and all of this increase is caused by the change in mother’s
weight (plus the inevitable random error). Any effect that a concomitant change in mother’s
height might have is discounted.
We can use the adjustment property to deal with confounders in just the same way. You

will recall that a confounding variable has to be associated with one of the independent
variables as well as the dependent variable (see the discussion in Chapter 7). Notice that when
mother’s weight was the only independent variable in the model, the coefficient b1 was 11.010
but decreases to 8.613 with two independent variables. A marked change like this in the
coefficient of a variable already in the model when a new variable is added, is an indication
that one of the variables is a potential confounder. As you have already seen in the model
building section described earlier, in these circumstances both variables should be retained in
the model.

An example from practice

Figure 21.18 is from a cross-sectional study into the relationship between bone lead and blood
lead levels and the development of hypertension in 512 individuals selected from a cohort
study (Cheng et al. 2001). The table shows the outcome from three multiple linear regres-
sion models with SBP as the dependent variable. The first model includes blood lead as an
independent variable, along with six possible confounding variables.10 The second and third
models were the same as the first model, except tibia and patella lead, respectively, were sub-
stituted for blood lead. The results include 95 per cent confidence intervals and the R2 for
each model.
As the table shows, the tibia lead model has the best goodness-of-fit (R2 = 0.1015) but even

this model only explains 10 per cent of the observed variation in SBP. However, this is the only
model that supports the relationship between hypertension and lead levels; the 95 per cent
confidence interval for tibia lead (0.02 to 2.73) does not include zero. The only confounders
statistically significant in all three models are age, family history of hypertension and calcium
intake.

Exercise 21.14. From the results shown in Figure 21.18 (a) which independent vari-

ables are statistically significant in all three models? (b) Explain the 95 per cent confi-

dence interval of (0.28 to 0.64) for age in the blood lead model. (c) In which model does

a unit increase in age (age is measured in units of 1 year) change SBP the most?

10The inclusion of Age2 in themodel is probably an attempt to establish the linearity of the relationship between

systolic blood pressure and age. If the coefficient for Age2 is not statistically significant then the relationship is

probably linear.
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Baseline model+ Baseline model+ Baseline model+
blood lead tibia lead patella lead

Variable Parameter 95% CI Parameter 95% CI Parameter 95% CI

estimate estimate estimate

Intercept 128.34 125.90 127.23

Age (years) 0.46* 0.28, 0.64 0.39* 0.20, 0.58 0.44* 0.26, 0.63

Age squared

(years2)

−0.02* −0.04, −0.00 −0.02* −0.04, −0.00 −0.02* −0.04, −0.00

Body mass index 0.36* 0.01, 0.72 0.33 −0.02, 0.69 0.35 −0.00, 0.71
Family history of

hypertension

(yes/no)

4.36* 1.42, 7.30 4.36* 1.47, 7.25 4.32* 1.42, 7.22

Alcohol intake

(g/day)

0.08* 0.00, 0.149 0.07 −0.00, 0.14 0.07 −0.00, 0.14

Calcium intake

(10mg/day)

−0.04* −0.08, −0.00 −0.04* 0.07, −0.00 −0.04* −0.07, −0.00

Blood lead (SD)† −0.13 −1.35, 1.09
Tibia lead (SD)† 1.37* 0.02, 2.73

Patella lead (SD)† 0.57 −0.71, 1.84

Model R2 0.0956 0.1015 0.0950

∗p< 0.05
†based on one standard deviation (SD) in lead levels

Figure 21.18 Multiple regression results from a cross-section study into the relationship between

bone lead and blood lead levels and the development of hypertension in 512 individuals selected from

a cohort study. The figure shows the outcome from three multiple linear regression models, with systolic

blood pressure as the dependent variable. Source: Cheng et al. (2001). Reproduced by permission of

Oxford University Press

Diagnostics – checking the basic assumptions of the multiple
linear regression model

The ordinary least squares method of coefficient estimation will only produce the best estima-

tors if the basic assumptions of the model are satisfied.That is, a metric continuous dependent

variable, a linear relationship between the dependent and each independent variable, error

terms with constant spread and Normally distributed, and the independent variables not per-

fectly correlated with each other. Checking that the first two assumptions are satisfied is rea-

sonably straightforward (see below) but checking the others is too complicated to cover in this

book. The first two assumptions can be checked as follows:

• Ametric continuous dependent variable. Refer to Chapter 1 if you are unsure how to identify

a metric continuous variable.
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• A linear relationship between the dependent variable and each independent variable. Easiest
to investigate by plotting the dependent variable against each of the independent variables;

the scatter should lie approximately around a straight line.11

Multiple linear regression is popular in clinical research. Much more popular though, for

reasons which will become clear in the next chapter, is logistic regression.

Analysis of variance

Analysis of variance (ANOVA) is a procedure that aims to deal with the same problems as that

of linear regression analysis, and many medical statistics books contain at least one chapter

describing ANOVA. It has a history in the social sciences, particularly psychology. However,

regression and ANOVA are simply two sides of the same coin – the generalised linear model.
As Field (2013) says:

Anova is fine for simple designs, but becomes impossibly cumbersome in more com-

plex situations. The regression model extends very logically to these more complex

designs, without getting bogged down in mathematics. Finally, the method (Anova)

becomes extremely unmanageable in some circumstances, such as unequal sample

sizes. The regression method makes these situations considerably more simple.

In view of the fact that anything ANOVA can do, regression can also do, and for me anyway,

do it in a way that is conceptually easier, I am not going to discuss ANOVA in this book. If you

are interested in exploring ANOVA in more detail, you could do worse than read Andy Field’s

book or that of Altman (1991).

11Notice that we only have to establish this property of linearity for the metric-independent variables in the

model. Any binary variables are linear by default – they only have two points, which can be joined with a

straight line. Any ordinal independent variables will have to be expressed as binary dummies – again linear by

default for the same reason.
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22
Curvy models: Logistic regression

Learning objectives

When you have finished this chapter, you should be able to:

• Explain why a linear regression model is not appropriate if the dependent variable

is binary.

• Write down the logic regression equation.

• Explain how estimates of the odds ratios can be derived directly from the regression

parameters.

• Describe how the statistical significance of the population odds ratio is determined.

• Interpret output from SPSS and Minitab logistic regression programs.

A second health warning!

The logistic regression model is much more popular and appears much more frequently in
research papers than the linear regression model. The reason for this will become apparent as
we work through the chapter. Although the maths underlying the logistic regression model is
perhaps more complicated than that in linear regression, once more a brief description of the

Medical Statistics from Scratch: An Introduction for Health Professionals, Third Edition. David Bowers.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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underlying idea is necessary if you are to gain some understanding of the procedure and be
able to sensibly interpret logistic computer outputs.

Binary-dependent variables

In linear regression, the dependent or outcome variable must be metric continuous. In clinical
research, however, the outcome variable will more often be dichotomous (or binary), that is,
it is able to take only two different values: alive or dead, malignant or benign, stillborn or not
stillborn, and so on. In addition, variables that are not naturally binary can oftenbemade so. For
example, birthweight might be coded ‘less than 2500 g’ and ‘2500 g or more’, and Apgar scores
coded ‘less than 7’ and ‘7 or more’. In this chapter, I want to describe the logistic regression
model and how it is suited to a binary-dependent variable and how it can take the place of the
inappropriate linear regression model.

Finding an appropriate model when the outcome variable is binary

If you are trying to find an appropriate model to describe the relationship between two vari-
ables, let us say hypertension (the metric-dependent variable) and salt intake, you can draw a
scatterplot of the two variables (Figure 21.5 is a good example) and if this has a linear shape,
you can model the relationship with a linear regression model. However, when the outcome
variable is binary, this graphical approach is not particularly helpful.
For example, suppose you are interested in using the breast cancer/stress data from the study

referred to in Figure 1.7 to investigate the relationship between the outcome variable ‘Diag-
nosis’, and the independent variable ‘Age’. Diagnosis is, of course, a binary variable with two
values: Y= 1 (malignant) or Y= 0 (benign). If we plot Diagnosis against Age, we get the scat-
terplot as shown in Figure 22.1, from which it is pretty well impossible to draw any definite
conclusions about the nature of the relationship.
The problem is that the large variability in age, in both the malignant and benign groups,

obscures the difference in age (if any) between them (see the discussion in Chapter 14 on
within-subject and between-subject variation). However, if you group the age data: 40–49,
50–59, and so on and then calculate the proportion of women with a malignant diagnosis (i.e.
with Y= 1) in each group, this will reduce the variability but preserve the underlying relation-
ship between the two variables. The results of doing this are shown in Figure 22.2.
Notice that I have labelled the first column as the probability that Y= 1 (the lump is malig-

nant), written as p(Y= 1). Here is why. In linear regression, you will recall that the dependent
variable is the mean of the Y values for a given X value. But what about a binary-dependent
variable? Can we find something analogous to the mean? As it happens, the mean of a set of
binary (zero or one) values is the same as the proportion of ones,1 so an appropriate equivalent
version of the binary-dependent variable would seem to be the proportion of (Y= 1)s.
But proportions can be interpreted as probabilities (see Chapter 11). So the dependent vari-

able becomes the ‘Probability that Y= 1’, or p(Y= 1), for a given value of X. For example, we

1For example, the mean of the five values: 0, 1, 1, 0, 0 is 2/5= 0.4, which is the same as the proportion of 1s, that

is, 2 in 5.
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Figure 22.1 Scatter plot of Diagnosis against age for the 332 women in the stress and breast cancer

study referred to in Table 1.1

Probability of malignant

lump in each age

group, i.e. p(Y= 1)

Midpoint of

age group

0.140 45

0.226 55

0.635 65

0.727 75

Figure 22.2 Proportion of women with malignant lump in each age group

can write the probability of a malignant diagnosis (Y= 1) for all of those women aged 40, as

p(Y= 1) given X= 402.

You can see in the table of Figure 22.2 that the proportion with malignant breast lumps (the

probability that Y= 1) increases with age, but does it increase linearly? A scatterplot of the

proportion with malignant lumps, Y= 1, against group age midpoints is shown in Figure 22.3,

which does suggest some sort of relationship between the two variables. But it is definitely not
linear, so a linear regression model will not work. In fact, the curve has more of an elongated S

shape, so what we need is a mathematical equation that will give such an S-shaped curve.

2Statisticians would write this as: p(Y= 1|X= 40). The|sign means ‘given that’.
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Figure 22.3 Scatter plot of the proportion of women with a malignant diagnosis, that is, the pro-

portion for whom Y= 1, or the probability that Y= 1, against mid-points of age groups (data from

Figure 1.7). The curve is certainly not linear but perhaps more like a very stretched ‘S’

There are several possibilities, but the logisticmodel is the model of choice. Not only because

it produces an S-shaped curve, which we want, but, critically, it has a meaningful clinical inter-

pretation. Moreover, the value of p(Y= 1) is restricted by the maths of the logistic model to lie

between zero and one, which is also what we must have, because it is a probability. Although

the linear regression model is based on a continuous metric-dependent variable, the binary

logistic model is based on a dependent variable, which has a binomial distribution.

The logistic regression model

I know that not all of my readers will want to know the mathematical details of the logistic

regression model, and if you are one of those, you might want to skip the next page. If you are

still with me . . . the simple3 population logistic regression equation is:

p(Y = 1) = (e𝛽0+𝛽1X)
1 + e𝛽0+𝛽1X

(22.1)

where the dependent variable is the probability thatY= 1,X is the independent variable, which

may be nominal, ordinal or metric, and 𝛽0 and 𝛽1 are the population regression constant and

slope parameters, respectively. Note that e is the exponential operator, equal to 2.7183, and has
nothing to do with the residual term in linear regression. You use a suitable computer program

(with your data) to get the values of the sample regression coefficients b0 and b1, and hence the
sample logistic regression equation:

p(Y = 1) = (eb0+b1X)
1 + eb0+b1X

(22.2)

3‘Simple’ because there is only one independent variable – so far.
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We will come back to getting values for the sample coefficients shortly. As you can see, the

logistic regression model is mathematically a bit more complicated than the linear regression

model.

Exercise 22.1. In linear regression we can plot Y against X to determine whether the

relationship between the two variables is linear. Explain why this approach is not partic-

ularly helpful when Y is a binary variable. What approach might be more useful?

To illustrate the idea, let us return to our stress and breast cancer study (Figure 1.7). We want

to know whether the use of the oral contraceptive pill (OCP is a risk factor for breast cancer,

i.e. getting a malignant diagnosis. Our outcome variable is diagnosis, where Y= 1 (malignant)

or Y= 0 (benign). We will start with one independent variable – Ever used an oral contracep-
tive pill (OCP), Yes= 1 or No= 0. We are going to treat OCP use as a possible risk factor for

receiving a malignant diagnosis. This gives us the sample regression model:

P(Y = 1) = (eb0+b1×OCP)
1 + eb0+b1×OCP

(22.3)

So all we have got to do to determine the probability that a woman picked at random from

the sample will get a malignant diagnosis (Y= 1), with and without OCP use, is to determine

the values of b0 and b1 and then put them in the logistic regression equation, with OCP= 0 or

OCP= 1.

Estimating the parameter values

Although the linear regression models commonly use the method of ordinary least squares

(OLS) to estimate the regression parameters 𝛽0 and 𝛽1, logistic regression models use what is

called maximum likelihood estimation. Essentially, this means choosing the population which

ismost likely to have generated the sample results observed. Figures 22.4 and 22.5, respectively,

show the output from SPSS’s and Minitab’s logistic regression program for the above OCP

model.

Note that SPSS uses something called theWald statistic and its associated p-value to measure

the significance of the parameters, whereas Minitab uses what is known as the z distribution (I
have omitted this from Figure 22.4).

You will also see a term called the Log-Likelihood in the Minitab output in Figure 22.4. (The

log-likelihood is also provided in the SPSS output but I have not shown it here).The likelihood

is the probability that you will get the observed results given the parameter estimates. Any fur-

ther explanation of the log-likelihood would be a step too far for this book, so I will simply

say that the closer the value of the log-likelihood to 0, the better is the model. The initial value

for the log-likelihood is for a model in which only the constant is included. This is used as

the baseline against which models with independent variables are judged. As we successively

add independent variables to the initial model, we hope to see the log-likelihood value get
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Binary Logistic Regression: Diagnosis(1 = malignant) versus Ever OCP? 

Response Information

Variable                           Value   Count
Diagnosis (0 = benign)  1               106         (Event)

0               226
Total        332

Logistic Regression Table

Odds          95%   CI
Predictor                Coef         SE Coef              P              Ratio      Lower      Upper
Constant       −0.287682      0.162835           0.077

Ever OCP?   −0.950692       0.242408          0.000           0.39        0.24            0.62

Log-Likelihood = −200.009

Sample regression
coefficients.

95% confidence
interval for β1.

p-value for β1.

Summary of cases,
showing 106 malignant

and 226 benign.

The odds ratio
(see discussion

below).

See discussion
below.

Figure 22.4 Output (abridged) from Minitab for logistic regression of diagnosis, p(Y= 1), lump is

malignant, against Ever used the oral contraceptive pill (OCP). Data from Figure 1.7

Logistic Regression

Classification Tablea,b

Observed Predicted

1 = malign Percentage

Correct0 1

Step 0

Step 1a

1 = malign
0 226 0 100.0

1 106 0 .0

Overall Percentage 68.1

a. Constant is included in the model.
b. The cut value is .500

Variables in the Equation
B S.E. Wald df Sig. Exp(B) 95% C.I. for EXP(B)

Lower Upper

Ever_OCP −.951 .242 15.381 1 .000 .386 .240 .622

Constant −.288 .163 3.121 1 .077 .750

a. Variable(s) entered on step 1: Ever_OCP.

Value of sample
coefficient β1.

p-value for
β1.

Summary of
cases, showing
106 malignant

and 226 benign.

The odds ratio
(eb1). (See
discussion

below).
95% CI
for β1.

Figure 22.5 Output (abridged) from SPSS for logistic regression of diagnosis p(Y= 1), lump is malig-

nant, against Ever used the oral contraceptive pill (OCP). Data from Figure 1.7
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progressively closer to zero (i.e. less and less negative). You can see from Figure 22.4 that with

just OCP use in the model, the log-likelihood value is -200.009.

SPSS’s and Minitab’s logistic regression program both give b0 = – 0.288 and b1 = –0.951. If

we substitute these values into the logistic regression model of Equation (22.3), we get:

P(Y = 1) = (e−0.288+−0.951×OCP)
(1 + e−0.288+−0.951×OCP)

(22.4)

If you now substitute the two values for oral contraceptive use, OCP= 0 and OCP= 1, we

get4:

if OCP = 0 (has never used OCP), then P(Y = 1) = 0.4286

if OCP = 1 (has used OCP), then P(Y = 1) = 0.2247

So a woman who has never used an oral contraceptive pill has a probability of getting a

malignant diagnosis nearly twice than that of a woman who has used an oral contraceptive

pill. Rather than being a risk factor for a malignant diagnosis, in this sample the use of oral

contraceptives seems to confer some protection against a breast lump being malignant.

The odds ratio

Thegreat and glowing attraction of the logistic regressionmodel is that it readily produces odds

ratios. But how?There’s quite a lot of maths involved, but eventually we can get to the following

result5

Odds ratio = eb0+b1

eb0
= eb1

Thus to find the odds ratio for any variable on the right-hand side of the equation all you

need to do is raise e to the power b1, or b2, or b3 and so on, which is easily done on a decent

calculator, but SPSS and Minitab do it for you anyway. It is this ability to produce odds ratios

that has made the logistic regression model so popular in clinical studies.

For example, in our Diagnosis/OCP model, b1 = –0.9507, so the odds ratio for a malignant

diagnosis for woman using OCP compared to women not using OCP is:

Odds ratio = e–0.9507 = 0.386

In other words, a woman who has used OCP has only about a third of the odds of getting a

malignant diagnosis as awomanwhohas not usedOCP.This result seems to confirmour earlier

result that use of OCP provides some protection against a malignancy. Minitab and SPSS both

4You’ll first need to work out the values of (b0 + b1 ×OCP), then (b0 + b1 ×OCP), then raise e to each of these

powers. Then, divide the former by the latter, first adding 1 to the denominator. And do this for OCP= 0 and

OCP= 1. Phew!
5Making use of the rule that Xa/Xb =Xa-b.
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produce the odds ratio for OCP as a risk factor for a malign diagnosis – I have pointed them
out in both Figures 22.4 and 22.5.
Of course, we do not know whether this result is due to chance or whether this represents

a real statistically significant relationship in the population. To answer this question, we will
need either a confidence interval for 𝛽1 or a p-value, and I will deal with this significance issue
very shortly.

Exercise 22.2. Explain why, in terms of the risk of using OCP and the probability

of getting a malignant diagnosis, that the values p(Y= 1)= 0.4286 when OCP= 0 and

p(Y= 1)= 0.2247, whenOCP= 1, are compatible with an odds ratio= 0.386 for amalig-

nant diagnosis, among women using OCP compared to women not using OCP.

Interpreting the regression coefficient

In linear regression, the coefficient b1 represents the increase in Y for a unit increase in X. In
the logistic regression model, we are not so much interested in the meaning of b1, except to
note that if the independent variable is ordinal or metric, then youmight be more interested in
the effect on the odds ratio of changes of greater than one unit. For example, if the independent
variable is age, then the effect on the odds ratio of an increase in age of one year may not be as
interesting as say a change of 10 years. In these circumstances, if the change in age is c years,
then the change in the odds ratio is ecb1 . In addition, note that antiloge of the coefficient of
b1 is equal to the odds ratio. So in the OCP example seen earlier, b1 = -0.9507, so the odds
ratio= antiloge (-0.9507)= 0.386.

Exercise 22.3. If we use Minitab to regress Diagnosis against Age for the data in

Figure 1.7 we get the output shown in Figure 22.6. (a) Is age significant? (b) Use the

Minitab values to write down the estimated logistic regression model. (c) Calculate the

probability that the diagnosis will be malignant, that is, p(Y= 1), for women aged: (i) 45

and (ii) 50. (d) Calculate [1 - p(Y= 1)] in each case, and hence calculate the odds ratio

for a malignant diagnosis in women aged 45 compared to women aged 50. Explain your

result. (e) Confirm that the antiloge of the coefficient on Age is equal to the odds ratio.

(f) What effect does an increase in Age of 10 years have on the odds ratio?

Statistical inference in the logistic regression model

As you saw in Chapter 15, if the population odds ratio is equal to 1, then the risk factor in
question has no effect on the odds for any particular outcome; that is, the variable concerned
is not a statistically significant risk (or benefit). We can use either the p-value or the confidence
interval to decide whether any departures from a value of 1 for the odds ratio is merely due to
chance or is it an indication of statistical significance.
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Logistic Regression

Odds

Ratio

95% CI

Lower Upper

Predictor Coef SE Coef P

Constant −6.46725 0.763193 0.000

Age 0.102306 0.0132579 0.000 1.11 1.08 1.14

Figure 22.6 Output from Minitab for the logistic regression of Diagnosis on Age, using the data from

Figure 1.7

In fact, in Figure 22.4, the 95 per cent confidence interval for the odds ratio of 0.39 for OCP
use (the odds of a malignant diagnosis for women who had used an oral contraceptive com-
pared to the odds for women who had not used an oral contraceptive) is (0.24 to 0.62), and
as this does not include 1, the odds ratio is statistically significant. In addition, the p-value is
<0.000 (so a lot less than 0.05). However, we still need to be cautious about this result because
it represents only a crude odds ratio, which, in reality, would need to be adjusted for other pos-
sible confounding variables, such as age. We can make this adjustment in logistic regression
just as easily as in the linear regression model, simply by including the variables we want to
adjust for on the right-hand side of the model.

Exercise 22.4. Figure 22.7 shows the output from SPSS for the regression of Diagnosis

on Body Mass Index (BMI) using the data from Figure 1.7. Comment on the statistical

significance of BMI as a risk factor for receiving a malignant diagnosis.

Variables in the EQUATION

B S.E. Wald df Sig. Exp(B) 95% C.I. for EXP(B)

Lower Upper

Step 1a BMI .085 .024 12.268 1 .000 1.089 1.038 1.141

Constant −2.924 .635 21.169 1 .000 .054

aVariable(s) entered on step 1: BMI.

Figure 22.7 Output from SPSS for the regression of Diagnosis on Body Mass Index (BMI) (Data from

Figure 1.7.)

The multiple logistic regression model

In my explanation of the odds ratio above, I used a simple logistic regression model, that is,
one with a single independent variable (OCP), because this offers the simplest explanation.
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However, the result we got, that the odds ratio is equal to eb1 , applies to each coefficient if there
is more than one independent variable, that is, eb2 , eb3 and so on. The usual situation is to
have a risk factor variable plus a number of confounder variables (the usual suspects – age,
sex, etc.). Suppose, for example, that you decided to include age and BMI along with OCP as
independent variables. Equation (22.3) would then become:

p(Y = 1) = (e𝛽0+𝛽1×OCP+𝛽2×age+𝛽3×BMI)
(1 + e𝛽0+𝛽1×OCP+𝛽2×age+𝛽3×BMI)

p(Y= 1) is still, of course, the probability that the woman will receive a malignant diagnosis,
Y= 1.The odds ratio for age is eb2; the odds ratio for BMI is eb3.Moreover, as with linear regres-
sion, each of these odds ratios is adjusted for any possible interaction between the independent
variables.
As an example, output from Minitab for the above multiple regression model of Diagnosis

against use of oral contraceptives (OCP), Age and BMI, is shown in Figure 22.8.

Exercise 22.5. Comment on what is revealed in the output in Figure 22.8 about the

relationship between the probability of a malignant diagnosis [p(Y= 1)] and the three

potential risk factor variables shown. What does the value of log-likelihood, compared

to its value in the model with only OCP use, (see Figure 22.4) tell you?

Logistic Regression Table

Odds

Ratio

95% CI

Predictor Coef SE Coef P Lower Upper

Constant −9.24814 1.30391 0.000

Ever OCP? 0.356767 0.329147 0.278 1.43 0.75 2.72

Age 0.111670 0.0164348 0.000 1.12 1.08 1.15

BMI 0.0812739 0.0275908 0.003 1.08 1.03 1.14

Log-Likelihood = −165.645

Figure 22.8 Output (abridged) from Minitab for multiple logistic regression of Diagnosis against oral

contraceptive use (OCP), Age, and body mass index (BMI). Data from Figure 1.7

Building the model

The strategy for model building in the logistic regression model is similar in many respects
to that for linear regression (see the section on variable selection in Chapter 21). Once again,
there are two possible approaches, automatic or manual variable selection. And within these
two approaches, we can use either forwards or backwards variable elimination. I would favour
manual selection for the reasons I gave in Chapter 21.
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As a reminder, in the forwards elimination approach, themain independent variable of inter-
est is entered into the model, and the other variables (potential confounders) are then entered
one at a time in the order of the p-value obtained from a preliminary series of univarate regres-
sions or other statistical tests (lowest p-value variable first).This is the best approach if you have
a good candidate for themain relationship with your chosen dependent variable. You enter this
into the model first and then add the likely confounders.
The backwards elimination approach starts with all of the variables included in the model

(including the main independent variable). Variables are then dropped one at a time if not
significant. In both approaches you need to watch out for changes in a variable coefficient when
a variable is added or subtracted from the model – this indicates possible confounding. The
variable selection process can be summed up as follows:

• Make a list of candidate-independent variables.

• For any nominal or ordinal variables in the list, construct a contingency table and perform
a chi-squared test.6 Make a note of the p-value.

• For any metric variables, perform either a two-sample t test or a univariate logistic regres-
sion; note the p-value in either case.

• Identify those variables in the list whose p-value is 0.25 or less.7 Then, either start with all
of the variables on this list included in the model and drop them one at a time (backwards
elimination) or select your prime candidate variable (forwards elimination) then add the
other variables (potential confounders) one at a time.

6Provided the number of categories is not too big for the size of your sample: you do not want any empty cells

or low expected values (see Chapter 17).
7Remember from Chapter 21 that using a p-value less than this may fail to identify variables that could subse-

quently turn out to be important in the final model
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As an example of a backwards stepwise approach, the following extract is from a

cross-sectional study to develop and validate a prognostic model for early death in patients

with traumatic bleeding. The authors write:

We used a backward stepwise approach. Firstly, we included all potential prognos-

tic factors and interaction terms that users considered plausible. These interactions

included all potential predictors with type of injury, time since injury, and age. We

then removed, one at a time, terms for which we found no strong evidence of an asso-

ciation, judged according to the P values (<0.05) from the Wald test. Each time, we

calculated a log likelihood ratio test to check that the term removed did not have a big

effect in themodel. Eventually, we reached amodel inwhich all termswere statistically

significant.

Perel et al. (2012)

A second example, this time using the forward variable selection process, is from a study to

assess the risk of adverse perinatal events of vaccination of pregnant women with an MF59

adjuvanted vaccine:

Logistic regression analysis

After assessing the association of several covariates with both the exposure of inter-

est and the outcome, we entered those potential confounders one by one into the

model already containing the monovalent MF59 vaccine. We retained variables that

changed the crude estimated effect of the vaccine on the outcome by at least 10% in the

final model as confounders (number of antenatal visits, maternal age, and smoking).

We considered others, such as educational and income level and parity, although the

change was between 5% and 10%, on the basis of the bivariate association with both

exposure and outcome and their clinical and or epidemiological significance.

Rubinstein et al. (2013)

The results shown in Figure 22.9 are from the same study and show the crude and adjusted

odds ratios from the logistic regression of three separate outcomes, and a composite outcome,

on vaccination (yes or no) and seven possible confounding variables (see table footnote). As

you can see, the crude odds ratios for vaccination compared to non-vaccination are significant

for all three separate outcomes, as well as for the the composite outcome and only perinatal

mortality becomes non-significant when the odds ratios are adjusted for the variables shown

in the table footnote.

Exercise 22.6. What does Figure 22.9 tell you about the odds (adjusted) for vaccinated

women compared to non-vaccinated women, of delivering pre-term or having babies

with low birthweight?

Exercise 22.7. Summarise briefly the alternative methods available for variable

selection in logistic regression.
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Outcome No (%) Odds ratio (95% CI)

Vaccinated

H1N1

(n= 7293)

Non-vaccinated

H1N1

(n= 23 195)

Crude Multiple logistic

regression

adjusted*

Preterm+ low birth

weight+ perinatal

mortality

513 (7.0) 2160 (9.3) 0.74 (0.67 to 0.81) 0.80 (0.72 to 0.89)

Preterm (<37 weeks) 354 (4.9) 1505 (6.5) 0.73 (0.65 to 0.83) 0.79 (0.69 to 0.90)

Low birth weight 357 (4.9) 1606 (6.9) 0.69 (0.61 to 0.78) 0.74 (0.65 to 0.83)

Perinatal mortality 54 (7.4) 257 (11.0) 0.63 (0.46 to 0.86) 0.68 (0.42 to 1.06)

∗Adjusted for number of antenatal visits, level of education, maternal age, income, parity, smoking, and

history of pregnancy-induced hypertension.

Figure 22.9 Crude and adjusted perinatal outcomes in vaccinated and non-vaccinated women. The

table shows the results from the logistic regression of three separate outcomes, and a composite out-

come, on vaccination (yes or no), together with seven possible confounding variables. Data from a

study to assess the risk of adverse perinatal events of vaccination of pregnant women with an MF59

adjuvanted vaccine (Rubinstein et al. 2013).

Goodness-of-fit

In the linear regressionmodel, we can use R2 to measure goodness-of-fit. In the logistic regres-

sionmodel, measuring goodness-of-fit ismore complicated and can involve graphical as well as

numeric measures. Minitab presents three goodness-of-fit measures (all based on chi-square):

Pearson, Deviance, and Hosmer-Lemeshow. The null hypothesis is that the model provides a
good fit, andwe canuse the resulting p-value to reject or not reject this hypothesis.The graphical

methods are quite complex and you should consult more specialist sources for further infor-

mation on this and other aspects of this complex procedure. Hosmer and Lemeshow (2013) is

an excellent source.

As an example, Figure 22.10 shows the output fromMinitab for amultiple regression ofDiag-

nosis on OCP use, Age and BMI, giving the three goodness-of-fit statistics. As you can see, all

three have p-values >0.05, so we cannot reject the good fit hypothesis. Good fit= good news!

SPSS provides a Hosmer-Lemeshow value.

Poisson regression (just to say ’Hello’)

I do not intend to discuss Poisson regression in this book (at least not in this edition anyway)

other than very briefly. To summarise the method, Poisson regression is appropriate when the

data is a count of events, particularly rare events. For example, the number of stillbirths in a

year in a particular hospital or region, or the number of road traffic accident victims presenting

at an Emergency Department in amonth, or the number of new cases of HIV in a city in a year.

The data is thus clearly discrete.
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Binary Logistic Regression: Diagnosis(1=malignant) versus Ever OCP?, Age, BMI

Odds 95% CI

Predictor Coef SE Coef P Ratio Lower Upper

Constant −9.24814 1.30391 0.000

Ever OCP? 0.356767 0.329147 0.278 1.43 0.75 2.72

Age 0.111670 0.0164348 0.000 1.12 1.08 1.15

BMI 0.0812739 0.0275908 0.003 1.08 1.03 1.14

Log-Likelihood = −165.645

Goodness-of-Fit Tests

Method Chi-Square DF P

Pearson 329.603 321 0.358

Deviance 328.516 321 0.374

Hosmer-Lemeshow 2.581 8 0.958

Figure 22.10 Output from Minitab for a multiple regression of Diagnosis on OCP use, Age and BMI,

showing the three goodness-of-fit statistics. As you can see, all three have p-values >0.05, so we

cannot reject the good-fit hypothesis

The Poisson model takes the form:

logeY = 𝛽0 + 𝛽1X1 + 𝛽2X2 + …

which means that:

Y = (e𝛽0) (e𝛽1X1) (e𝛽2X2) … etc

Incidentally, if the counts are categorical (i.e. you have a contingency table with counts in the

cells), the convention is to call this approach log-linear modelling, whereas, if the counts are

numerical/continuous, it is usual to refer to the method as a Poisson regression.

Estimation of the parameter values (𝛽0, 𝛽1, 𝛽2, etc) is done using maximum likelihood, as
with the logistic regression.Most statistical computer programmeswill do a Poisson regression,

including Stata, SPSS and Minitab.

And that’s all I intend to say on Poisson (thin rations!!!)

However, we are not finished with regression just yet. In the next chapter, I will discuss the

application of another regression technique – in the context of survival analysis.
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23
Measuring survival

Learning objectives

When you have finished this chapter, you should be able to:

• Explain what censoring means.

• Calculate Kaplan–Meier survival probabilities.

• Draw a Kaplan–Meier survival curve.

• Use the Kaplan–Meier curve to estimate median survival time.

• Explain the use of the log-rank test to determine whether the survival experience of

two or more groups is significantly different.

• Explain the role of the hazard ratio in comparing the relative survival experience of

two groups.

• Outline the general idea behind Cox proportional hazards regression and interpret

the results from such a regression.

Medical Statistics from Scratch: An Introduction for Health Professionals, Third Edition. David Bowers.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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Preamble

Imagine that you have a patient who has overdosed on paracetamol. Their partner asks you

what their chances of ‘coming through it’ are. Or suppose a patient with breast cancer wants to

knowwhich of two possible treatments offers them the best chance of survival. You can answer

questions like these with the help of a procedure known as survival analysis. The basis of this

method is the measurement of the time from some intervention or procedure to some event of
interest.
For example, if you were studying survival after mastectomy for breast cancer (the ‘proce-

dure’), you would want to know how long each woman survived following surgery. Here, the

event of ‘interest’ would be death. For practical reasons, you usually have to limit the duration

of the study, for example, to six months, or a year or whatever.

Very often you will want to compare the survival experiences of two groups of patients; for

example, women having a mastectomy with women having a lumpectomy. I should emphasise

that ‘survival’ in this context does not necessarily mean not dying. The event of interest can be

death, but it can also be one of a number of things; for example, cancer-free survival, relapse,

re-admission to hospital, return to work, or giving birth. Survival is the useful portmanteau

word we use.

Censored data

One particular problemwhichmakes this type of analysis tricky is that you often don’t observe

the event of interest in all of the subjects. For example, if you are looking at long-term survival

after mastectomy and your study period is five years, many of the women involved will still be

alive at the five-year point. We do not know how long these women will live after the end of the

study period, only that they are still alivewhen the study period ends. In addition, somepatients

may withdraw from the study during the study period; they may move away, or simply refuse

further participation, or die from a cause unrelated to the study.These types of incomplete data

are said to be censored.
A final problem is that not all patients may enter the study at the same time. So all in all,

analysis of survival in these circumstances is tricky. Fortunately, methods have been developed

to deal with these difficulties. One of these, the Kaplan–Meier method, gives us a table of sur-
vival probabilities, which can be charted as the Kaplan–Meier chart. The two questions that

are often of the greatest interest are:

• What is the probability of a patient surviving for some given period of time?

• What is the comparative survival experience of two or more groups of patients?

A simple example of survival in a single group

See the data in Figure 23.1. This shows survival data (in months) for a group of 12 patients

diagnosed with a brain tumour, who were followed up for 12 months. You can see that seven
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Patient Month of entry to study

(0 indicates present at

beginning of study)

Time after study start

date to death or

censoring (months)

Outcomes: Died (D),

Survived (S) or left

study prematurely (P)

Survival

times

1 0 12 S* 12

2 0 12 S* 12

3 0 11 D 11

4 0 8 D 8

5 1 6 P* 5

6 2 12 S* 10

7 2 4 D 2

8 2 5 D 3

9 2 9 D 7

10 3 9 P* 6

11 3 8 D 5

12 3 7 D 4

Figure 23.1 Survival times (months) over a 12-month study period, of 12 patients diagnosed with

brain tumour. *Indicates censored data – patient survived (S) or left study prematurely (P). The actual

survival time for these patients is not known

patients died, two left the study prematurely and three survived. This means that you have
seven definite and five censored survival times. We can represent the survival times in the
last column graphically, as in Figure 23.2, where the survival times are arranged in ascending
order.

Calculating survival probabilities and the proportion
surviving: the Kaplan–Meier table

TheKaplan–Meiermethod requires aKaplan–Meier table like Figure 23.3, with, strictly speak-
ing, rows only for time periods when a death occurs (shown in bold in the table). However, I
have included all 12 rows in the table to help illustrate the method more clearly.

• The first column indicates the time period (t)

• The second column tells us how many people (n), were still alive at the beginning of each
month t.

• Column 3 (w) is the number of premature withdrawals during month t.

• Column 4 is the number of deaths (d) in month t.

• Column 5 is the total number at risk (r) during the month.
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0 2 4 6 8 10 12 14

Survival time (months)

Patient number

1

2

3

6

5

4

7

8

9

10

11

12

Figure 23.2 Chart of survival times (in ascending order) from table in Figure 23.1

• Column 6 is the result of dividing column 4 by column 5, to get d/r. This is the probability

that a patient still alive at the beginning of the month will die during that month (which is

equivalent to the proportion of patients dying in that month).

As d/r is the probability of dying during a time period, then (1− d/r) must be the probability

of surviving to the end of the time period. This survival probability is shown in column 7. To

calculate the probability of surviving all of the preceding time periods and the current time

period, you must successively multiply the probabilities in column 7 together. The resultant

cumulative probabilities, labelled S, are shown in column 8. For example, the value for S of

0.818 in row5 is 1× 1× 1× 0.909× 0.900.These column8 values are theKaplan–Meier survival
probabilities.
The results in Figure 23.3 indicate that the probability of a patient surviving to the end of the

third month is 1, to the end of the fourth month is 0.909 and so on, and for the full 12 months

after the diagnosis is 0.239.

We can also interpret these values as proportions. For example, 0.909 of the patients (or 90.9

per cent) will survive to the end of the fourth month. About a quarter (23.9 per cent) will

survive the full 12 months. We can generalise these results to the population of patients of

whom this sample is representative, and who have the same type of brain tumour, at the same
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1 2 3 4 5 6 7 8

Month Number still

in study

at start of

month t

Withdrawn

prematurely

during

month t

Deaths in

month t
Number

at risk in

month t

Probability

of death

in month t

Probability

of surviving

month t

Cumulative

probability of

surviving to

month t
t n w d r d/r p= 1− d/r S

1 12 0 0 12 0 1 1

2 12 0 0 12 0 1 1

3 12 0 0 12 0 1 1

4 12 0 1 11 1/11= 0.091 0.909 0.909
5 11 0 1 10 1/10= 0.100 0.900 0.818
6 10 1 0 9 0 1 0.818

7 9 0 1 8 1/8= 0.125 0.875 0.716
8 8 0 2 6 2/6= 0.333 0.667 0.478
9 6 1 1 4 1/4= 0.250 0.750 0.358
10 4 0 0 4 0 1 0.358

11 4 0 1 3 1/3= 0.333 0.667 0.239
12 3 0 0 3 0 1 0.239

Figure 23.3 Calculation of Kaplan–Meier survival probabilities

stage of development, and receive the same level of care. In addition, we may want to adjust for
possible confounding variables such as age, sex and so on. We will deal with this later.

The Kaplan–Meier curve

If you plot the cumulative survival probabilities in the last column of Figure 23.3 against time,
you get the Kaplan–Meier curve, as shown in Figure 23.4. Notice that the survival ‘curve’ looks
like a staircase, albeit with uneven steps. Every time there is a death, the curve steps down. As
there are seven deaths, there are seven steps down.1

Exercise 23.1. The data in Figure 23.5 shows the survival times (in days) of eight

patients with acute myocardial infarction, treated with a new reperfusion drug Explase

as part of a fibrinolytic regimen. Patients were followed up for 14 days. Calculate

the survival probabilities and plot Kaplan–Meier survival curves. Comment on your

results.

1Notice there is a double step down at period 8 because of the two deaths.
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until month 4. 
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month 8, so a
double step
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The probability
of surviving 12

months is 0.239.

Figure 23.4 The Kaplan–Meier survival curve drawn from the data in Figure 23.3 (the dotted line

indicates median proportion surviving – see text below)

Patient Day of entry to study

(0 indicates present at

beginning of study)

Time after study start

date to death or

censoring (days)

Outcomes: Died (D),

Survived (S) or Left

study prematurely (P)

1 0 3 D

2 0 14 S

3 0 8 D

4 0 12 P

5 1 14 S

6 2 13 D

7 2 14 S

8 2 14 S

Figure 23.5 The survival times (in days) of eight patients with acute myocardial infarction. Patients

were followed up for 14 days

Determining median survival time

One of the consequences of not knowing the actual survival times of all of those subjects who

survive beyond the end of the study period is that we cannot calculate the mean survival

time of the whole group. However, if you interpret the probabilities on the vertical axis of a

Kaplan–Meier chart as proportions or percentages, you can often determine median survival

times. It is that value which corresponds to a probability of 0.5 (i.e. 50 per cent). In Figure 23.4,

themedian survival time is eight months (at this time, the probability is that half of the patients
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still survived). Obviously, the survival time of any proportion of the sample can be determined

in this same way, including the interquartile range values, provided that the Kaplan–Meier

curve goes down far enough (unfortunately, it often does not).

Exercise 23.2. TheKaplan–Meier curve in Figure 23.6 is from a cohort study in which

the authors stated, ‘We aimed to establish the natural history of oral HPV infection in

men.’ The curve shows the cumulative probability of the time to clearance of infection

of incident oncogenic oral HPV. What is the median time to clearance of infection?

0
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Figure 23.6 Kaplan–Meier curve of the cumulative incidence and time to clearance of incident onco-

genic oral HPV. Source: Kreimer et al. (2013). Reproduced by permission of Elsevier

Comparing survival with two groups

Although the survival curve for a single group may sometimes be of interest, we are usu-

ally much more interested in comparing the ‘survival experience’ of two or more groups. For

example, Figure 23.7 is from a randomized controlled trial to investigate whether the insertion

of a cervical pessary in women with a short cervix reduces the rate of early pre-term delivery.

One group of women were randomly allocated to either the cervical pessary or expectant man-

agement group (no cervical pessary). (We encountered this study in connection with Figures

5.1 and 15.7.)

As you can see, the cumulative percentage of women who did not give birth spontaneously

before 34 weeks (238 days) was higher in the pessary group than in the non-pessary (expectant

management) group. In fact, the authors provide information in their paper, that this difference

was significant: six per cent of women in the pessary group had a spontaneous delivery before
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0
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Duration of pregnancy (days)

Hazard ratio 0.50 (95% Cl 0.41 − 0.62); p = 0.0002

Number at risk
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Figure 23.7 Kaplan–Meier plot of the probability of continued pregnancy without delivery in the cervical pessary group (top curve) and expectant

management group (bottom curve). Source: Goya et al. (2012). Reproduced by permission of Elsevier
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34 weeks compared to 27 per cent in the non-pessary group: odds ratio 0.18, with a 95 per cent
confidence interval of (0.08–0.37).
Notice that the authors have provided information under their figure showing the numbers

at risk at each time interval.This is to remind us that the smaller numbers of ‘survivors’ towards
the end of a trial produce less reliable results. As a direct consequence of this effect, you should
not assume that just because the gap between two survival curves gets progressively larger (as it
is often seen to do, but not in this example) that this is necessarily due to an actual divergence in
the survival experiences in the two groups. It might well be caused simply by the low numbers
of subjects still at risk. This can make the ends of the curves unreliable.

Exercise 23.3. Using Figure 23.7, half of the women in each group gave birth sponta-

neously before how many days?

The log-rank test

If you want to compare the overall survival experience of two (or more) groups of patients
rather than, say, comparing just the median survival times as we did above, then one possible
approach is to use the non-parametric log-rank test. The log-rank test assesses if any difference
exists between the two groups of patients in survival times at any point during the study period.
Essentially, the null hypothesis to be tested is that the two samples (the two groups) are from
the same population as far as their survival experience is concerned. In other words, there is
no difference in the survival experiences.
The log-rank test of this hypothesis uses a comparison of observed with expected events (say,

deaths), given that the null hypothesis is true.2 If the p-value is less than 0.05, you can reject
the null hypothesis and conclude that there is a statistically significant difference between the
survival experiences of the groups. You can then use the Kaplan–Meier curves to decide which
group had the significantly better survival. A limitation of the log-rank test is that it cannot be
used to explore the influence on survival of more than one variable, that is, the possibility of
confounders – for this you need Cox’s proportional regression, which we will come to shortly.

An example of the log-rank test in practice

Figure 23.8 is from a randomised trial to compare early surgery with initial conservative treat-
ment in patients with spontaneous supratentorial lobar intracerebral haematomas.

2You may have spotted the similarity with the chi-squared test considered earlier in the book. In fact, the cal-

culations are exactly the same.
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The log-rank test p-value
of 0.073 is >0.05,

meaning that we cannot
reject the hypothesis that

both groups had the
same survival
experience.
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Figure 23.8 Kaplan–Meier curves of percentage surviving early surgery (top curve) versus Initial

conservative treatment (bottom curve). Note that the log-rank p-value of 0.073 is >0.05, meaning

that we cannot reject the hypothesis of equal survival experience between the two groups. Source:

Mendelow et al. (2013). Reproduced by permission of Elsevier

Exercise 23.4. In women with a multiple pregnancy, spontaneous pre-term delivery is

the leading cause of perinatal morbidity andmortality. Interventions to reduce pre-term

birth in these women have not been successful.The Kaplan–Meier curves in Figure 23.9

are from a randomised controlled trial to assess whether a cervical pessary could effec-

tively prevent poor perinatal outcomes.The women, with a multiple pregnancy between

12 weeks’ and 20 weeks’ gestation, were randomly assigned to pessary or control groups.

The top curves are for women with a cervical length of less than 38mm, the bottom

curves for women with a cervical length of at least 38mm. What does the log-rank test

indicate about the comparable survival experience of the womenwith shorter and longer

cervixes?

The hazard ratio

You may remember that I only introduced the hazard ratio quite briefly in Chapter 15. Now, I

want to deal with it in a bit more detail. Essentially, the hazard is a risk (or probability); the risk
of some particular clinical outcome (e.g. death), at any point in some specified time, usually

during a follow-up period. The hazard ratio is typically used to compare the experience of two

(or more) groups in terms of their time to the outcome in question, for example, a treatment

group and a placebo group.
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Figure 23.9 Kaplan–Meier curves of proportion of continued pregnancies in: women with a cervical

length of less than 38mm (top graph) and women with a cervical length of at least 38mm (bottom

graph). The women, with a multiple pregnancy between 12 and 20 weeks’ gestation, were randomly

assigned to pessary or control groups. All curves censored at 37 weeks’ gestation. 38mm is the 25th

percentile of cervical length. Source: Liem et al. (2013). Reproduced by permission of Elsevier

As you saw in Chapter 15, the interpretation of confidence intervals for the hazard ratios is

the same as that for odds and risk ratios. If the interval contains 1, the risk factor concerned

is not a statistically significant hazard in the population. If it does not contain 1, the factor

is a statistically significant hazard. If a hazard ratio is less than 1, it means that the hazard is

decreased and if greater than 1, it means that the hazard is increased. For example, if, in a

comparison of death in a treatment group compared to a placebo group, the hazard ratio is

0.80, this means that the hazard (the risk) of death in the treatment group was 0.80 times than

that in the placebo group. In other words, there was a reduction in the risk of 0.20 or 20 per

cent.Whether this was significant would depend onwhether the confidence interval contained

1 or not.
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The proportional hazards (Cox’s) regression model

Although researchers can use the log-rank test to distinguish survival between two groups,

the test only provides a p-value: it will tell you if there is a significant difference between the

survival experiences of two groups, but it does not quantify any difference, that is, it does not tell
us how big that difference might be. It would be more useful to have an estimate of a difference

in survival (if any), along with the corresponding confidence interval.

For example, a hazard ratio of 0.50, with a 95 per cent confidence interval of (0.41 to 0.62),

is shown in Figure 23.7. As this confidence interval does not include 1, the hazard ratio is

significant in the population. We can interpret this as meaning that the women in the cervical

pessary group have a hazard (a risk) of only 0.50 of pre-termdelivery compared to the expectant

management (non-pessary) group.

The hazard ratio mentioned above provides the confidence interval, but neither the log-rank

test nor the simple hazard ratio allow for adjustment for possible confounding variables which

may significantly affect survival. For this, we can use an approach known as proportional haz-
ards (or Cox’s) regression. This procedure will provide both estimates and confidence intervals

for variables that affect survival and enable researchers to adjust for confounders. I will discuss,

briefly, the principle underlying themethod and themeaning of some of the terms used, before

giving a few examples.

The focus of proportional hazards regression is the hazard. The hazard is akin to a failure rate.

For example, if the end-point is death, then the hazard is the rate at which individuals die at

some point during the course of a study. The hazard can go up or down over time, and the

distribution of hazards over the length of a study is known as the hazard function. You will not
see authors quote the hazard regression function or equation but for those interested it looks

like this:

Hazard = h0 + e(𝛽1X1+𝛽2X2+…)

h0 is the baseline hazard and is of little importance – like the constant coefficient 𝛽0 in linear

and logistic regressions.The explanatory or independent variables can be any mixture of nom-

inal, ordinal or metric, and nominal variables can be ‘dummied’, as described in Chapters 21

and 22. The same variable selection procedures as in linear or logistic regression models can

also be used, that is, either automated or by hand.

Themost interesting property of this model is that e𝛽1 , e𝛽2 and so on give us the hazard ratios
(or HRs) for the variables X1, X2 and so on (notice the obvious similarity with the odds ratios

in logistic regression).The hazard ratios are essentially risk ratios but called hazard ratios in the
context of survival studies. For example, in a study of the survival of women with breast cancer,

the variable X1 might be ‘micrometastases present (Y/N)’. In which case, the hazard ratio HR1,

represents the risk of death for a patient when micrometastases are present compared to that

for a patient when they are absent and is equal to eb1.
All of this is true only if the relative effect (essentially the ratio) of the hazard in the two groups

remains constant over the whole course of the study. Note that the hazard rate for either group

may not be constant throughout the whole study period, but the ratio of the hazard rates in the
two groups is assumed to be constant throughout. For example, if a person has a risk of death

at some initial time point that is twice as high as that of another person, then at all subsequent

points, the risk of death remains twice as high. In other words, they are proportional.
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An example of proportional hazards regression

Figure 23.10 is from a randomized controlled trial in which the authors stated, ‘Enteral nutri-

tion (EN) is recommended for patients in the intensive-care unit (ICU), but it does not con-

sistently achieve nutritional goals. We assessed whether delivery of 100% of the energy target

from days 4–8 in the ICU with EN plus supplemental parenteral nutrition (SPN) could opti-

mise clinical outcome.’ Patients were randomly assigned to receive EN or SPN. The primary

outcome was the occurrence of nosocomial infection after cessation of intervention (day 8),

measured until the end of follow-up (day 28). The figure shows the hazard ratios derived from

a Cox regression (crude and adjusted) for a number of demographic and clinical risk factors.

As you can see, only two of the univariable crude hazard ratios had p-values <0.05 (SAPS

II score and Study intervention) and were thus likely to be significant in the population. Note

however that the 95 per cent confidence interval for the SAPS II score included 1. This may

be due to some sort of rounding error. The remaining confidence intervals contained 1 (and

Univariable analysis Multivariable analysis∗

Hazard ratio

(95% CI)

p-
value

Hazard ratio

(95% CI)

p-
value

Sex (women vs men) 1.02 (0.66–1.58) 0.9265 .. ..

Age (1-year increase) 0.99 (0.98–1.00) 0.1934 .. ..

SAPS II score (1-point

increase)

1.01 (1.00–1.03) 0.0491 .. ..

Body-mass index

(1-kg/m2 increase)

1.04 (0.99–1.08) 0.1205 .. ..

Hospital (Geneva vs

Lausanne)

1.18 (0.78–1.78) 0.4377 .. ..

Study intervention (SPN

vs EN)

0.62 (0.42–0.93) 0.0200 0.65 (0.43–0.97) 0.0338†

Admission category

(surgery vs medicine)

1.01 (0.68–1.50) 0.9488 .. ..

Antibiotics before day 9

(yes vs no)

1.20 (0.70–2.05) 0.5048 .. ..

Infections before day 9

(yes vs no)

0.84 (0.56–1.26) 0.3958 .. ..

Mechanical ventilation

before day 9 (yes vs no)

1.53 (0.94–2.50) 0.0897 .. ..

SPN, supplemental parenteral nutrition; EN, enteral nutrition.
∗Variables in themultivariable analysis were SAPS II score, hospital, study intervention, admission category,

previous antibiotic use before day 9, and mechanical ventilation before day 9.
†Statistically significant with Benjamini–Hochberg correction.

Figure 23.10 Univariable and multivariable hazard ratios from a Cox regression model for first noso-

comial infection during follow-up (primary end-point). Taken from a randomized controlled trial to

compare enteral nutrition (EN) versus EN plus supplemental parenteral nutrition (SPN) in patients in

ICU. Data from Heidegger et al. (2013)
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the p-values were all >0.05). However, the multivariable regression (adjusted for the variables

listed in the table footnote) was significant, and the hazard ratio was 0.65 with a 95 per cent

confidence interval of (0.43 to 0.97). This implies that patients fed with EN plus SPN had only

a 65 per cent chance of acquiring a nosocomial infection compared to the EN only patients.

Exercise 23.5. Figure 23.11 is from a study into the relative survival of two groups of

patients with non-metastatic colon cancer; one group having open colectomy (OC) and

the other laparoscopy-assisted colectomy (LAC). The table shows the hazard ratios and

their confidence intervals after the patients were stratified according to tumour stage for

the probability: of being free of recurrence, for overall survival, and for cancer-related

survival. What do you conclude from these results about the survivability with OC

surgery versus LAC surgery?

Hazard ratio

(95% CI)

p

Probability of being free of recurrence
Lymph-node metastasis (presence vs absence) 0.31 (0.16–0.60) 0.0006

Surgical procedure (OC vs LAC) 0.39 (0.19–0.82) 0.012

Preoperative serum CEA concentrations

(≥4 ng/ml vs <4 ng/ml)

0.43 (0.22–0.87) 0.018

Overall survival
Surgical procedure (OC vs LAC) 0.48 (0.23–1.01) 0.052

Lymph-node metastasis (presence vs absence) 0.49 (0.25–0.98) 0.044

Cancer-related survival
Lymph-node metastasis (presence vs absence) 0.29 (0.12–0.67) 0.004

Surgical procedure (OC vs LAC) 0.38 (0.16–0.91) 0.029

OC, open colectomy; LAC, laparoscopy-assisted colectomy; CEA, carcinoembryonic antigen.

Figure 23.11 Results of a Cox proportional hazards regression analysis comparing the survival

of patients with open colectomy versus laparoscopy-assisted colectomy, for the treatment of

non-metastatic colon cancer. Source: Lacy et al. (2002). Reproduced by permission of Elsevier

Checking the proportional hazards assumption

The proportional hazards assumption can be checked graphically using what is known as the

log–log plot. However, a description of this procedure is again a step too far for an introduc-

tory book.
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24
Systematic review and
meta-analysis

Learning objectives

When you have finished this chapter you should be able to:

• Provide a broad outline of the idea of systematic review.

• Outline a typical search procedure.

• Describe what is meant by publication bias and its implications.

• Describe how we can use the funnel plot to examine for the presence of publication

bias.

• Explain the importance of heterogeneity across studies and how the I2 statistic can

be used to detect this condition.

• Explain the meaning of meta-analysis.

• Outline the role of the Mantel-Haenszel procedure in combining studies.

• Describe what a forest plot is and how it is used.

Medical Statistics from Scratch: An Introduction for Health Professionals, Third Edition. David Bowers.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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Introduction

If you have a patient with atrial fibrillation and you want to know the current consensus on

the most effective treatment, then you could perhaps ask the opinions of colleagues (although

they may know no more than you) or maybe look through some pharmaceutical promotional

materials, or read all the relevant journals lying around your clinic or office. Better still,

if you have access to one of the clinical databases such as PubMed, then the job will be

that much easier; in fact, anything like an adequate search is almost impossible otherwise.

If you want your search to capture everything written on your topic then you will need a

systematic approach. This process of searching for all relevant studies (or trials) is known as a

systematic review.
However, when you do your systematic review, you are likely to encounter some difficulties:

• Many of the studies you turn up will be based on smallish samples. As you know, small

samples may well produce unreliable results.

• Partly as a consequence of the above problem, many of the studies come to different and

conflicting conclusions.

• There will be some studies that you simply do not find. Perhaps because they are published

in obscure and/or non-English-language journals or are not published at all (e.g. internal

pharmaceutical company reports or research dissertations). This shortfall may lead to what

is known as publication bias (I will come back to publication bias again shortly).

To some extent, you can address the first two of these problems by combining all of these

individual studies into one large study, a process called meta-analysis (as you will see later),

and you will also want to deal with the potential for publication bias. But let’s start with a brief

description of systematic review.

Systematic review

The basis of a systematic review is a comprehensive search that aims to identify all similar and

relevant studies that satisfy a pre-defined set of inclusion and exclusion criteria. As an example,

the authors, Chopra et al. (2013), of a study into the possible risk of venous thromboembolism

from peripherally inserted catheters, first stated the background of their study:

Background
Peripherally inserted central catheters (PICCs) are associated with an increased risk

of venous thromboembolism. However, the size of this risk relative to that associated

with other central venous catheters (CVCs) is unknown. We did a systematic review

and meta-analysis to compare the risk of venous thromboembolism associated with

PICCs versus that associated with other CVCs.
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They then described their search strategy as follows:

Methods

Search strategy and selection criteria
We followed thePreferredReporting Items for Systematic Reviews andMeta-Analyses

(PRISMA) recommendations for this meta-analysis. With the assistance of a medical

research librarian, we did serial literature searches for English and non-English arti-

cles (between Jan 12, 2012, and Dec 31, 2012). We searched Medline (1950–present,

via Ovid), Embase (1946–present), Biosis (1926–present), the Cochrane Cen-

tral Register of Controlled Trials (1960–present, via Ovid), and Evidence-Based

Medicine Reviews (various coverage dates, via Ovid). We used Boolean logic with

search terms including “peripherally inserted central catheter”, “PICC”, “deep vein

thrombosis”, “pulmonary embolism”, and “venous thromboembolism”. Controlled

vocabularies (eg, Medical Subject Heading terms) were used to identify synonyms.

The appendix provides a more detailed search strategy. All studies in human

beings that were published in full text, abstract, or poster form were eligible for

inclusion, with no restrictions on publication date, language, or status. Conference

posters and abstracts were electronically searched through the Conference Papers

Index provided by ProQuest (1982–present), Biosis (1926–present), and Scopus

(1996–present). Ongoing clinical trials were identified from the clinicaltrials.gov

website, and additional studies of interest were found through internet searches and

hand searches of bibliographies.

The authors thus described their inclusion and exclusion:

Three authors (VC, SA, and AH) independently established study eligibility; any dif-

ference in opinion about eligibility was resolved by consensus. We included stud-

ies if they included participants 18 years of age or older; included patients with a

PICC placed in the arm; and reported the development of deep vein thrombosis, pul-

monary embolism, or both after PICC insertion.We excluded studies if they involved
neonates or patients younger than 18 years; compared complications between dif-

ferent types of PICCs (eg, varying PICC gauge or lumens); reported catheter lumen

thrombosis, superficial phlebitis, or thrombophlebitis but not venous thromboem-

bolism; involved PICCs inserted into the leg; or were case reports of unusual compli-

cations.

The end result of a systematic review then, is a list of studies, each one of which provides a

value for the specified outcome measure. In the above example, this outcome measure was the

occurrence of venous thromboembolism (deep vein thrombosis or pulmonary embolism) after

peripherally inserted central catheter (PICC) insertion. Examination of this list of outcome

values may provide the required insights into treatment effectiveness.
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Exercise 24.1. What is the purpose of a systematic review? Briefly outline the proce-

dure and some of the problems that may arise.

The forest plot

The list of studies produced by the systematic review is often accompanied by what is known

as a forest plot. This plot has study outcome on the vertical axis, usually arranged by the size

of study (i.e. by sample size) and the outcome measure on the horizontal axis. The outcome

measure might be odds or risk ratios, means or proportions, or their differences and so on.

There are a number of ways of displaying the data. For example, by using a box-shape or a

lozenge-shape, with a horizontal line through it whose length represents the width of the 95

per cent confidence interval for whatever outcome measure is being used. Or with a diamond

shape, whose width represents the 95 per cent confidence interval. The area of each box or

diamond should be proportional to its sample size.

As an example, the sytematic review for the catheter study referred to earlier discovered 11

suitable studies, and the forest plot for these studies is shown in Figure 24.1. Each study is rep-

resented by a black diamond (not proportional in size to the study sample size in this example)

with a horizontal black line through it indicating the extent of its 95 per cent confidence inter-

val. The overall result is shown by a large open diamond shape at the bottom of the plot. I will

return to the meaning of this in the meta-analysis section.

As you can see, for eight of the studies, the 95 per cent confidence interval line crosses the

odds ratio= 1 vertical axis, implying that the PICC offers no greater or lesser odds of venous

thromboembolism than a central venous catheter. But three of the studies have significant odds

OR (95% CI)Total patients
(n)

Al Raiy et al23 (2010)

Alhimyary et al24 (1996)

Bonizzoli et al28 (2011)

Catalano et al32 (2011)

Cortelezzia et al37 (2003)

Fearonce et al43 (2010)

Paz−Fumagalli et al61 (1997)

Smith et al70 (1998)

Snelling et al71 (2001)

Wilson et al78 (2012)

Worth et al81 (2009)

Overall (I2 = 27·7%, p = 0·181)

1260

105

239

481

126

29

44

838

28

572

66

14

2

43

17

32

1

0

16

4

38

16

Total VTE
(n)

0·77 (0·26–2·22)

11·18 (0·53–235·01)

3·52 (1·70–7·26)

2·16 (0·47–9·92)

3·04 (1·41–6·57)

8·68 (0·34–219·27)

0·38 (0·01–19·98)

3·64 (0·82–16·11)

0·24 (0·02–2·64)

6·33 (1·51–26·65)

3·33 (0·71–15·62) 

2·55 (1·54–4·23)

20·50·1 1 105 100

Greater risk with PICCLesser risk with PICC

50

Figure 24.1 Forest plot of risk (measured by odds ratio and 95 per cent confidence intervals) of

venous thromboembolism (VTE) between peripherally inserted central catheters (PICC) and central

venous catheters (CVT) in studies with a comparison group. Source: Chopra et al. (2013). Reproduced

by permission of Elsevier
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ratios, all showing a greater risk with a PICC, odds ratios of: 3.52, 3.04 and 6.33. All with con-
fidence intervals that do not contain 1.

Exercise 24.2. The results shown in Figure 24.2 show the outcomes (relative risk for

proportion of subjects with side effects) from each of six randomised trials comparing

antibiotic with placebo for treating acute cough in adults (Fahey et al. 1998). Draw a

forest plot of this data and comment briefly on what it shows. Note: relative risks greater

than 1 favour the placebo (i.e. fewer side effects).

Study Sample size Relative risk (95 % CI)

Briskfield et al. 50 0.51 (0.20 to 1.32)

Dunlay et al. 57 7.59 (0.43 to 134.81)

Franks and Gleiner 54 3.48 (0.39 to 31.38)

King et al. 71 2.30 (0.93 to 5.70)

Stott and West 207 1.49 (0.63 to 3.48)

Verheij et al. 158 1.71 (0.80 to 3.67)

Total 597 1.51 (0.86 to 2.64)

Figure 24.2 The outcomes (relative risk for proportion of subjects with side effects), from each of six

randomised trials comparing antibiotic with placebo for treating acute cough in adults. Source: Fahey

et al. (1998). Reproduced by permission of BMJ Publishing Group Ltd

Publication and other biases

The success of any systematic review depends critically on how thorough and wide-ranging the
search for relevant studies is. One frequently quoted difficulty is that of publication bias, which
can arise from a number of sources:

• The tendency for journals to favour the acceptance of studies showing positive outcomes at
the expense of those with negative outcomes.

• The tendency for authors to favour the submission of studies to journals showing positive
outcomes at the expense of those with negative outcomes.

• Studies with positive results are more likely to be published in English language journals
giving them a better chance of capture in the search process.

• Studies with positive results aremore likely to be cited, giving them a better chance of capture
in the search process.

• Studies with positive results are more likely to be published in more than one journal, giving
them a better chance of capture in the search process.
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• Some studies are never submitted for publication. For example, those that fail to show a pos-
itive result, those by pharmaceutical companies (particularly if the results are unfavourable),
graduate dissertations and so on.

In addition to these biases, a number of other potential biases exist. For example, inclusion
bias is the consequence of setting inclusion and exclusion criteria so that the studieswith partic-
ularly ‘helpful’ outcomes are favoured over non-helpful studies. Furthermore, smaller studies
can be methodologically less sound, with wider variability in their outcomes, and are thus less
reliable. Besides which, studies of lower quality have a tendency to show larger effects. These
issues need to be addressed.
With respect to the quality of the studies identified by the search process, the authors of the

catheter study mentioned earlier state:

Two authors (VC and MB) assessed the risk of bias independently. Since all the

included studies were non-randomised and had a cohort or case-control design,

the Newcastle–Ottawa scale was used to judge study quality, as recommended by

the Cochrane Collaboration. This scale uses a star system to assess the quality of

a study in three domains: selection of study groups; comparability of groups; and

ascertainment of outcomes. Studies that received a star in every domain were judged

to be of high quality.

The possible presence of publication bias can be investigated with what is known as a
funnel plot.

The funnel plot

A funnel plot is a scatter plot, with the estimates of the effect from individual studies on the
horizontal axis (e.g. as measured by an odds or risk ratio or a difference inmeans) against some
measure of the size of the study (e.g. number of patients or standard error) on the vertical axis,
which is usually plottedwith a reversed scale that puts the larger,most powerful studies towards
the top. Larger studies shown at the top of the funnel will be more precise (their results will not
be so spread out); smaller studies, shown towards the bottom will be less precise and therefore
more spread out.
In the absence of bias, the funnel plot should have the shape of a symmetric upturned cone

or funnel. (Note that sometimes funnel plots are drawn horizontally) However, if the funnel is
asymmetrical, for example, if its parts are missing or poorly represented – and this will usually
be near the bottom of the funnel where the smaller studies are located – then this is suggestive
of bias of one form or another.1

As an example, Figure 24.3 is a funnel plot from a systematic review of the effectiveness of
topically applied non-steroidal anti-inflammatory drugs in acute and chronic pain conditions.

1There are a number of other possible causes of bias in systematic reviews. Those interested should look, for

example, at Egger and Davey Smith (1998), where other possible biases are discussed.
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Figure 24.3 Funnel plot used to check for publication bias in a systematic review of the effectiveness

of topically applied non-steroidal anti-inflammatory drugs. The asymmetry of the funnel is an indication

of publication bias. Reproduced from BMJ, Jan 1998; 316: 333–338, courtesy of BMJ Publishing Group

Relative benefit (risk ratio) is shown on the horizontal axis (Moore et al. 1998) and the num-

ber of patients in the studies on the vertical axis. Each point in the figure represents one of the

studies. Values to the left of the value of 1 on the horizontal axis show negative ‘benefit’ and

values to the right show positive benefit.

The asymmetry in the funnel is quite marked, with a noticeable absence of small studies

showing negative ‘benefit’ (risk ratio less than 1). The authors comment:

The funnel plot might be interpreted as showing publication bias. The tendency for

smaller trials to produce a larger analgesic effectmight be construed as supporting the

absence of trials showing no difference between topical non-steroidal and placebo.We

made strenuous efforts to unearth unpublished data and contacted all pharmaceuti-

cal companies in the United Kingdom that we identified as producing non-steroidal

products. One companymade unpublished data available to us, but the others did not

feel able to do so.

Exercise 24.3. (a) Outline the major sources of publication bias. (b) Figure 24.4 shows

a funnel plot from a systematic review of trials to investigate the link between a low

estimated glomerular filtration rate (eGFR) at baseline and risk of future stroke.The plot

has odds ratio (horizontal axis) against the standard error of the log RR. Comment on

the evidence for publication bias.
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Figure 24.4 Funnel plot from a systematic review of trials to investigate the link between a low

estimated glomerular filtration rate (eGFR <60ml/min/1.73m2) at baseline and risk of future stroke.

The horizontal axis shows relative risk (RR). High relative risks indicate a greater chance of stroke. The

vertical dotted line represents the aggregate relative risk. Source: Lee et al. (2010). Reproduced by

permission of BMJ Publishing Group Ltd

Combining the studies: meta-analysis

Meta-analysis is the process of combining a number of separate studies to produce one
‘super-study’. So, for example, we might have three separate studies, with sample sizes of 40,
80 and 150. When combined, we get a super-study with a sample size of 270. The assumption
of the meta-analysis is that this super-study will provide a more reliable and a precise overall
result for the output variable in question than any of the smaller individual studies. The
underlying assumption (i.e. the null hypothesis) of meta-analysis is that all of the studies
measure the same effect in the same population, and that any differences between them is due
to chance alone. When the results are combined the chance element cancels out, and we are
left with the true effect.
How do we combine the studies? By using theMantel–Haenszel procedure2 (which I am not

going to describe). However, before studies can be combined, theymust satisfy the homogeneity
criterion. A few words about that first, before we look at an example of meta-analysis.

The problem of heterogeneity

Evenwhen a set of apparently similar studies has been identified, researchers have tomake sure
that they are similar enough to be combined. We call this property of being ‘similar enough’,

2Note that this is not to be confused with the Mantel–Haenszel test for heterogeneity – of which more in a

moment.
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homogeneity. For example, they should have similar subjects, have the same type and level of

intervention, the same outputmeasure and the same treatment effect. It is safe to combine them

only if studies are homogeneous in this way.

For example, the forest plot shown in Figure 24.4 shows studies for which the outcome is

relative risk (RR). If these studies were homogenous then these relative risk values would all

be similar in size – any variation in these values would be no more than you might expect

when you take repeated samples from a population – differences due to sampling error. Studies

which donot have this quality of homogeneity are said to suffer from heterogeneity. Needlesss to
say, we should test for heterogeneity. Two tests are commonly used – the Cochrane Q test and

the I2 statistic, both of which are based on the chi-squared distribution.3 The null hypothesis

for both tests is that the studies are homogeneous. p-values <0.05 would cause us to reject the

null hypothesis and conclude that the studies suffered from heterogeneity and thus were not

similar enough to be combined.

Because Cochrane’s Q test is not always successful at detecting heterogeneity when the num-

ber of studies is small (often the case) and because it has a tendency to overestimate hetero-

geneity when the number of studies is small, Higgins I2 statistic is often used as well. I2, which

can vary between 0 per cent (no heterogeneity) and 100 per cent (complete heterogeneity),

represents the percentage of variation between the sample estimates. If I2 has a value above 50

per cent, then heterogeneity is considered significant.

The homogeneity assumption can also be tested graphically using what is known as a L’Abbé
plot, but this is not often seen these days to justify any further discussion.

An example of the tests for heterogeneity is shown in the forest plot of Figure 24.5 which

compares outcome from trials using the Peto odds ratios.4 The authors of this study stated:

The balance of risk and benefit from early neurosurgical intervention for conscious

patients with superficial lobar intracerebral haemorrhage of 10–100mL and no

intraventricular haemorrhage admitted within 48 h of ictus is unclear. We therefore

tested the hypothesis that early surgery compared with initial conservative treatment

could improve outcome in these patients.

As you can see, the overall outcome has a p-value= 0.0002, so we can reject the null hypoth-

esis of outcomes for not being significantly better with early surgery. The overall odds of 0.74

confirm this result. However, there is evidence of significant heterogeneity among the trials as

the p-value of 0.002 for the Q statistic and the value of I2 = 66.9 per cent strongly suggest that

heterogeneity is present. The authors of this study concluded:

The result shows a significant advantage of surgery with an odds ratio of 0.74 (95% CI

0.64–0.86; p< 0.001), although there is significant heterogeneity (p= 0.002) because the

studies included different patient groups and different types of surgery.

3The I2 statistic is due to Higgins andThompson (2002).
4Peto odds ratios are better than the other approaches at estimating odds ratios in trials where treatment effects

are small. It was developed for use in trials in cancer and heart disease where small effects are likely, yet very

important.
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Figure 24.5 Forest plot of trials measuring Peto odds for improved outcome with early surgery com-

pared with initial conservative treatment in patients with superficial lobar intracerebral haemorrhage.

The I2 test for heterogeneity among the trials has a value of 66.9 per cent, indicative of heterogeneity.

Source: Mendelow et al. (2013). Reproduced by permission of Elsevier

Exercise 24.4. (a) Outline the problem with heterogeneity among samples in a

meta-analysis. (b) Do you think there is evidence of heterogeneity in the forest plot of

Figure 24.1?
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Finally I must mention theCochrane Library.This is an electronic database of a huge number

of published systematic reviews. It is an excellent source of information on best (and not so

good) treatments for a wide variety of illnesses and conditions. It is also a very useful source if

you are contemplating a systematic review of your own as it provides a comprehensive guidance

as to the best ways of searching, reviewing, combining and appraising research.
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25
Diagnostic testing

Learning objectives

When you have finished this chapter, you should be able to:

• Explain sensitivity, specificity, positive predictive value, and negative predictive

value.

• Explain the necessity for a trade-off between sensitivity and specificity.

• Interpret a receiver operating characteristic (ROC) curve.

Preamble

Making an accurate diagnosis is crucial in health care. The measures used to attempt a cor-

rect diagnosis vary, ranging from simple observation to quite complex procedures or tests. In

this chapter, we are going to discuss some of the important characteristics of these diagnostic

measures as an aid to understanding what you may see in clinical papers.

Medical Statistics from Scratch: An Introduction for Health Professionals, Third Edition. David Bowers.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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The measures

Researchers generally use four separate but interconnected measures when they examine the

accuracy of a diagnostic test:

• Sensitivity: the percentage of those patientswith the condition whom the test correctly iden-

tifies as having it. In other words, the percentage of true positives.

• Specificity: the percentage of those patients without the condition whom the test correctly

identifies as not having it. In other words, the percentage of true negatives.

• Positive predictive value (PPV): the percentage of patients whom the test identifies as having

the condition who do have it.

• Negative predictive value (NPV): the percentage of patients whom the test does not identify

as having the condition who do not have it.

For example, suppose that you were using fasting plasma glucose (FPG) as a test for diagnos-

ing diabetes and using a cut-off value of 7.0mmol/l. Let us say that in a sample of 80 individuals,

10 have diabetes of whom two had an FPG below 7mmol/l and 70 do not have diabetes, of

whom five have an FPG> 7mmol/l. From this, we can say that:

The sensitivity of the test= 8/10= 0.80 or 80 per cent. So eight true positives. But two

individuals are incorrectly diagnosed as not having diabetes. In other words, two false

negatives.

The specificity of the test= 65/70= 0.93 or 93 per cent. So 65 true negatives. But five indi-

viduals are identified as having diabetes when they do not have, that is, five false positives.

We can display this situation schematically in Figure 25.1.

Calculation of the PPV and the NPV is a little bit complicated. Expressed in probabilities, the

formulae are:

PPV =
(sensitivity × prevalence)

[(sensitivity × prevalence) + (1–specificity) × (1–prevalence)]

NPV =
[specificity × (1–prevalence)]

[specificity × (1–prevalence) + prevalence × (1–sensitivity)]

So, in our diabetes/FPG example, eight individuals have diabetes out of a total of 80; therefore,

the prevalence is 8/80= 0.10. Thus:

PPV = (0.80 × 0.10)
[(0.80 × 0.10) + (1–0.93) × (1–0.10)]

= 0.08

(0.08 + 0.07 × 0.90)
= 0.56
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FPG (mmol/l)

cut-off  7.0

Without
diabetes
(n = 70)

8 individuals
above the cut-

off.

2 individuals
below the

cut-off.

65 individuals
below the cut-

off.

5 individuals
above the cut-

off.

With
diabetes
(n = 10)

Figure 25.1 Schematic diagram of individuals with and without diabetes with fasting plasma glucose

(FPG) using 7.0mmpl/l as a cut-off for a diagnosis of diabetes. Bear in mind that the numbers with

and without diabetes is unknown to the diagnoser

Thismeans that 56 per cent of those who test positive (FPG> 7.0mmol/l) will have diabetes.

Note that the calculation of PPV and NPV depends on knowing the prevalence of the con-

dition in question. In this example, with a single group, we can work out the prevalence of

diabetes, but this will not always be the case.

Clearly, the positive and negative predictive diagnostics are clinically more useful. As a clin-

ician, you want to know, typically, the chances of a patient having the condition if they return

a positive test result (PPV), rather than whether they will give a positive test result if they are

known to have the condition (sensitivity). Notice that as the sensitivity of a test depends on the

condition being present, and the specificity depends on the condition being absent then both

of these measures are unaffected by the prevalence of the condition. This is not true for PPV

and NPV which, as you have seen earlier, is affected by prevalence.

In an ideal world, we would like a test which had 100% sensitivity and 100% specificity, but

sadly this is not possible in practice.There is an optimal (but never perfect) value for the cut-off

between sensitivity and specificity, which gives the best results for bothmeasures, although this

will also be influenced by the nature of the condition. For example, a diagnostic test for acute

myocardial infarction (AMI) using serum CK-BB concentration needs as high a sensitivity

as possible so that immediate thrombolytic action can be taken for those individuals actually

experiencing an AMI.1 A high specificity is not so crucial, as counter-measures are not likely

to harm those not having an AMI (although it might alarm them). Choosing an appropriate

cut-off value of CK-BB is thus fairly crucial.

1You have a better chance of surviving and recovering from a heart attack if you receive a thrombolytic drug

within 12 hours after the heart attack starts, but ideally, you should receive thrombolytic medications within

the first 90 minutes after arriving at the hospital for treatment.
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Exercise 25.1. In a four-week period, 28 patients arrive at an emergency department

with chest pain. Each has their serum CK-BB (μg/l) level measured as a diagnostic test

for a possible acute myocardial infarction (AMI). Twenty of these individuals are in fact

experiencing an AMI but eight are not (although the clinicians do not know who is and

who is not). As an indicator of probable AMI, the clinicians decide to use as a cut-off, a

particular value of serum CK-BB. Above this cut-off, the individual concerned is judged

likely to be experiencing an AMI and will be treated accordingly, and below this value,

it is not.

The levels of serum CK-BB among the 28 individuals are shown in Figure 25.2. What is

the sensitivity and specificity of the test, if the cut-off value is (a) 12 μg/l and (b) 8 μg/l?

With AMI (n= 20) 7.5, 7.7, 11.0, 14.0, 21.0, 24.0, 26.0, 32.0, 41.0, 47.0, 62.0, 71.0, 83.0, 85.0,

91.0, 105.0, 145.0, 172.0, 195.0, 310.0

Without AMI (n= 8) 1.0, 3.0, 5.0, 6.0, 6.5, 7.5, 21.0, 32.0

Figure 25.2 Serum CK-BB levels (μg/l) among 35 individuals attending an emergency department

with chest pain. Unknown to the clinicians, but known to us, 20 of the individuals are experiencing an

acute myocardial infarction (AMI) but eight are not

The sensitivity versus specificity trade-off: the ROC curve

I now want to return to the sensitivity versus specificity trade-off question. As I said earlier,

what we would really like is a test which gives only true positives, that is, no false negatives,

implying a sensitivity of 1 (or 100%), and only true negatives, that is, no false positives; in

other words (1− specificity)= 0.

One common method for finding the optimum cut-off point is to draw a receiver operating
characteristic curve or ROC curve. For each cut-off point, this plot has sensitivity (i.e. the true

positive rate) on the vertical axis and on the horizontal axis plots (1− specificity) – the false

positive rate. The only plot of cut-off points which will give us a sensitivity of 1 (no false nega-

tives) and no false positives (1− specificity= 0), is a line which goes up the vertical axis to the

top left-hand corner (corresponding to a sensitivity of 1) and then across the top of the graph

to where (1− specificity)= 1.

The total area of this rectangular shape is then 1× 1= 1.We call this the area under the curve,
or AUC for short. Note that a test which produces as many false positives as true positives, that

is, a test with no discriminatory power would give a ROC curve which lay on the 45 degree

diagonal from the origin.

The optimal cut-off thus corresponds to that point on the curve which lies closest to the

top left corner because this is the cut-off value with a sensitivity of 1 (no false negatives) and

for which (1− specificity)= 0 – no false positives. This is also the value which maximises the

AUC. If we are choosing between more than one available test (e.g. we might want to compare

the performance of a new test with a ‘gold standard’ test which is assumed to give the correct
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result), we will be looking for the test with the largest AUC. When you are reading a paper

which contains one or more ROC curves, you will want to see a value for each AUC, together

with its confidence interval.

To see how this works, in practice, consider the ROC curves in Figure 25.3. This is from a

study to validate the Glasgow-Blatchford Bleeding Scale (GBS) as a possible instrument for

deciding whether a patient with upper-gastrointestinal haemorrhage should be admitted to

hospital or might be suitable for outpatient management.
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1-specificity
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(pre-endoscopy) score

0 0.2 0.4 0.6 0.8 1

The ROC
curve for the

GBS.

The ROC curve
for the Rockall
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The area under the
top curve is clearly

bigger than the area
under the bottom

curve.

This ROC curve
has equal false positive
and true positive rates,
and would thus have no

discriminatory power
whatsoever.

Figure 25.3 ROC curve comparison of Glasgow-Blatchford Bleeding Scale (GBS) and admission Rock-

all score, for the prediction of the need for intervention or death for 647 patients suffering from

upper-gastrointestinal haemorrhage. Source: Stanley et al. (2009). Reproduced by permission of Elsevier

Theauthors proposed to compare theGBSwith thewidely usedRockall score, which includes

endoscopic findings. The problem with this is that many patients are kept in hospital until this

procedure is undertaken. Although many hospitals in the UK have an emergency endoscopy

rota, this facility is usually for individuals with major haemorrhage only, with others waiting

until the next day or longer for a semi-elective procedure. The advantage of the GBS does not

depend on endoscopy findings, so decisions can be made more quickly, without a possible

unnecessary admission.

The authors conclude that the ROC curve comparison of the 647 patients with full data for

both scores, showed that GBS was superior to the admission Rockall score for the prediction

of intervention or death. The respective AOC (and their 95 per cent confidence intervals) are

GBS, 0.92, (0.88 to 0.93); Rockall, 0.72 (0.65 to 0.75).

Exercise 25.2. Using the data in Figure 25.4, draw a ROC curve for cut-offs for prostate

specific antigen (PSA). What is the optimal cut-off value?
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PSA cut-off (ng/ml) Sensitivity Specificity

0.5 0.99 0.13

1.0 0.96 0.44

2.0 0.78 0.75

3.0 0.59 0.87

4.0 0.44 0.92

5.0 0.33 0.95

10.0 0.13 0.99

20.0 0.05 1.00

Figure 25.4 Cut-off values for prostate specific antigen (PSA). Holmström et al. (2009)

As a final point, note that if a test uses a nominal (yes/no) measure – for example, blood in

stool (Y/N), pain when urinating (Y/N), then there can be no trade-off between sensitivity and

specificity.
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Appendix
Table of random numbers

23157 54859 01837 25993 76249 70886 95230 36744

05545 55043 10537 43508 90611 83744 10962 21343

14871 60350 32404 36223 50051 00322 11543 80834

38976 74951 94051 75853 78805 90194 32428 71695

97312 61718 99755 30870 94251 25841 54882 10513

11742 69381 44339 30872 32797 33118 22647 06850

43361 28859 11016 45623 93009 00499 43640 74036

93806 20478 38268 04491 55751 18932 58475 52571

49540 13181 08429 84187 69538 29661 77738 09527

36768 72633 37948 21569 41959 68670 45274 83880

07092 52392 24627 12067 06558 45344 67338 45320

43310 01081 44863 80307 52555 16148 89742 94647

61570 06360 06173 63775 63148 95123 35017 46993

31352 83799 10779 18941 31579 76448 62584 86919

57048 86526 27795 93692 90529 56546 35065 32254

09243 44200 68721 07137 30729 75756 09298 27650

97957 35018 40894 88329 52230 82521 22532 61587

93732 59570 43781 98885 56671 66826 95996 44569

72621 11225 00922 68264 35666 59434 71687 58167

61020 74418 45371 20794 95917 37866 99536 19378

97839 85474 33055 91718 45473 54144 22034 23000

89160 97192 22232 90637 35055 45489 88438 16361

25966 88220 62871 79265 02823 52862 84919 54883

81443 31719 05049 54806 74690 07567 65017 16543

11322 54931 42362 34386 08624 97687 46245 23245

Medical Statistics from Scratch: An Introduction for Health Professionals, Third Edition. David Bowers.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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Solutions to Exercises

Note: Although I have provided complete solutions to the calculating parts of the exercises, I
have provided only brief comments (if at all) where a commentary is required.This is deliberate,
firstly, because I do not want to write the book again in terms of the solutions and secondly,
because tutors might want to tease these answers from the students themselves, perhaps as part
of a wider discussion.

Chapter 1

1.1 Because the values are taken from a larger population (from the Born in Bradford cohort
study).

1.2 16%

1.3 Ethnicity, sex, marital status, type of operation, smoking status, etc.

1.4 Apgar, Waterlow, Edinburgh Post-natal Depressions, Rankin, SF36, Beck Depression
Inventory, etc.

1.5 GCS produces ordinal data, which are not real numbers, so cannot be added or divided.

1.6 Height, temp., cholesterol, body mass index, age, time, etc.

1.7 Number of deaths, number of angina attacks, number of operations performed, number
of stillbirths, etc.

1.8 A continuousmetric variable has an infinite or an uncountable number of possible values.
A discrete metric variable has a limited, countable number of possible values. (a) 7 (0, 1, 2, …
6). (b) Not possible to do this as the number of possible weights is infinite.

1.9 VAS data is ordinal because these data are subjective judgements, which are notmeasured
but assessed and will probably vary from patient to patient and from moment to moment. So
it’s not possible to calculate average if by this is meant adding up four values and dividing by
four because ordinal data are not real numbers.

1.10 Age, MC. Social class, O. No. of children, MD. Age at 1st child, MC. Age at menarche,
MC. Menopausal state, O. Age at menopause, MC. Lifetime use of oral contraceptives, N. No.

Medical Statistics from Scratch: An Introduction for Health Professionals, Third Edition. David Bowers.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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years taking oral contraceptives, MC. No. months breastfeeding, MC. Lifetime use of hrt, MC.
Years of hrt, MC. Family history of ovarian cancer, N. Family history of breast cancer, N. Units
of alcohol, MD. No. cigs per day, MD. Body mass index, MC. (key: N= nominal, O= ordinal,
MD=metric discrete, MC=metric cont.).

1.11 Maternal age, MC, but given here in ordinal groups. Parity, MD. No. cigs daily, MD.Mul-
tiple pregnancy, N. Pre-eclampsia, N. Caesarean, N.

1.12 Age, MC. Sex, N. Number of rooms in home, MD. Length of hair, O. Colour of hair, N.
Texture of hair, N. Pruritus, N. Excoriations, N. Live lice, O. Viable nits, O.

Chapter 2

2.1 a
Smoked? Frequency

Yes 16

No 84

Order not important with nominal variables.

2.2 a
Smoked? Frequency Per cent

Yes 16 16.00

No 84 84.00

2.3 a
Cause of injury Number of patients

n= 75

Relative (%) frequency

Falls 46 61.3

Crush 20 26.7

Motor vehicle crash 6 8.0

Other 3 4.0

% Crush= (20/75)× 100= 26.67

2.4 a
Satisfaction with

nursing care

Number of

patients(n= 475)

Relative (%)

frequency

Very satisfied 121 25.5

Satisfied 161 33.9

Neutral 90 18.9

Dissatisfied 51 10.7

Very dissatisfied 52 10.9

Very dissatisfied= 10.9%
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2.5 Much better: 26.3 and 30.3

Much worse: 0.6 and 0.5

Missing values, if there are a sizeable number can lead to inaccurate conclusions. There are a
number of methods to deal with them.

2.6 ParkFit= 73.9, Control= 77.7. So not the same.

2.7 67%.

2.8 B-e stent: 1 stent= 68.4. 2 stents= 20.9.

E-e stent: 1 stent= 68.3. 2 stents= 21.6

2.9 a
Self-rated

benefit

Usual care

group n= 1094

% freq % cum

freq

Active

management

group

n= 1543

% freq % cum

freq

Much better 288 26.3 26.3 468 30.3 30.3

Better 297 27.1 53.4 479 31.0 61.3

Same 429 39.2 92.6 491 31.8 93.1

Worse 73 6.7 99.3 98 6.4 99.5

Much worse 7 0.6 100.0 7 0.5 100.0

Same or Worse, or Much worse. Usual care group= 1− 53.4= 46.6%.

Same or Worse, or Much worse. Active management group= 1− 61.3= 38.7%.

2.10 Because ordering is arbitrary.

2.11 a
Mortality No. ICUs

10.0–14.9 9

15–19.9 8

20–24.9 5

25–29.9 3

30–34.9 1

Most ICUs have %mortality between 10 and 20, then progressively fewer and fewer. Minimum
mortality is >10% and maximum is <35%.

2.12 a
Smoked while pregnant?

Yes

(n= 77)

No

(n= 423)

Birthweight (g) <2500 3 (3.9) 37 (8.7)

2500 g–3999 65 (84.4) 353 (83.5)

≥4000 9 (11.7) 33 (7.8)

No significant differences in birthweights.
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2.13 a
Mother’s weight

≤60 kg >60 kg All

≤3000 g 9 2 11

81.82 18.18 100.00

75.00 11.11 36.67

Birthweight

>3000 g 3 16 19

15.79 84.21 100.00

25.00 88.89 63.33

All 12 18 30

It looks like heavier mothers have heavier babies and lighter mothers lighter babies.

2.14 Thepercentage figures in each cell are the percentage of the whole table, which is not very

helpful. More helpful would be the percentage that each cell is of that cell’s column total.

Those who anticipate discrimination are likely to experience it and those who don’t, don’t.

2.15 Ranks

a
2240 2 4110 3.5 3590 10 2880 20 2850 23.5

2660 23.5 4040 22 3580 11 1960 21 3550 5

3050 18 3130 16.5 2660 3.5 3150 9 3220 6

3990 8 4020 1 3040 12 3460 14 4230 19

4110 7 2780 15 2840 13 3660 25 3580 16.5

Chapter 3

3.1 Those in Figure 3.2, but completely a personal choice I think.

3.2 a

Usual care*Benefit Active management*Benefit

Much better

Category

Better

Same

Worse

Much worse
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3.3 a
Blood group Kidney recipients

without rejection

(n= 1777)

Kidney recipients

with rejection

(n= 302)

Type A 42 40

Type B 10 16

Type O 41 34

Type AB 5 9

40

30
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0

Type A Type B

Blood group

R
e
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c
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o

n
 (

%
)

Type O Type AB

3.4 Type AB.

3.5 a

35

30

25

20

15

10

5

0

Very satisfied Satisfied Neutral Dissatisfied Very 

dissatisfied
Satisfaction

%
fr

e
q

3.6 Level of physical activity is generally higher in those groups taking≥1400mg/day

calcium, except for the lowest.
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3.7 Two possible formats depending on what you want to focus on.

Chart of Without rejection, With rejection vs Blood type

D
a

ta

Blood type
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e
 O

T
y
p

e
 A

B

Without rejection With rejection

3.8 More developed diabetes in placebo group, more developed NGT with treatment group.

No difference for IGT, IFG or both.

3.9 Attendance was highest (≥50%) in the free Choice group and lowest in the General Prac-

tice and Pharmacy groups (<25%)

3.10 a

1600

N
u

m
b

e
r 

o
f 

p
a
ti

e
n

ts

Usual care group Active management

group

1400

1200

1000

800

600

400

200

0

Much better

Sel-rated benefit

Better

Same

Worse

Much worse

3.12 a
Weight (kg) Frequency % frequency Cumulative % frequency

40–59.9 12 40.0 40.0

60–79.9 12 40.0 80.0

80–99.9 4 13.3 93.3

100–119.9 1 3.3 96.9

120–190 1 3.3 100.0
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15–24 25–34 35–44 45–54 55–64 65–74 75–84 >85

Percent within all data. Age
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3.14 Median iodine levels are similar across centres – a bit less than 100 (μg/l), but the spread
varies widely.

3.15 Median level of diameter stenosis with balloon angioplasty is about 57%. With

paclitaxel-eluting stent and balloon, the diameter stenoses are about 30% and 32%,

respectively.

3.16 a

0 40–59.9

100

80

60

40

20

0

60–79.9 80–99.9

Weight

%
 c

u
m

 f
re

q

100–119.9 120–190

About 55 kg.
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3.17 3.17. There appears to be a notable falling off from 1997 to 1998 (what a coincidence!).

Numbers did not start to recover until 2003–2004.

Chapter 4

4.1 70–79; <15.

4.2 Positive

4.3 Slightly negatively skewed.

4.4 Almost symmetrical.

< 3 3–5
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%
)

4.5 About 3300 g. Long tails possible because of small numbers of very low and very high

birthweight babies.

4.6 All appear to be positively skewed.

4.7 From about 25× 106/l to 575× 106/l, although there appears to be an outlier at about

725× 106/l.

Chapter 5

5.1 19.5%. 20.0%.

5.2 (a) 67/149= 0.4496 or 44.96%; (b) 93/182= 0.5110 or 51.1%.

5.3 Spontaneous vaginal delivery and Emergency Caesarean Section both have eight occur-

rences. So two modes.
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5.4 (a) Social class: cases mode= II; control mode= II; (b) level of satisfaction mode=
‘Satisfied’; (c) self-rated benefit scores mode= ‘Same’, in both groups. (d) Parity mode= 0 (49
mothers).

5.5 Because it is nominal data and ordering is arbitrary.

5.6 5

5.7 (a) median mortality =17.95%. (b) All 35–44. (c) both ‘Better’.

5.8 (a) Mean>median. (b) Mean>median. (c) The same.

5.9 Mean mortality= 18.66%, which is>median of 17.95%.

5.10 (a) With outliers, mean= 720.4, median= 500. Without outliers, mean= 610.6,
median= 500.

5.11 25th percentile is value in (25/100)× (30+ 1)th position= 0.25× 31= 7.75th position.
The 7th value is 2740, the 8th is 2780, so the 7.75th value is 3/4 of the way from 2740 to 2780,
which is 2770 g.

The 75th percentile is the value in the 75/100× 31th position, that is, the 23.25th position.The
23rd position value is 3500, the 24th value is 3540, so the 23.25th value is 3510 g. Half the babies
weighed between 2770 g and 3510 g. A quarter weighed<2770 g and a quarter>3510 g.

Chapter 6

6.1 (0–9)

6.2 With Barrett’s oesophagus: median pack-years= 23; a quarter had<3 pack-years, a quar-
ter had >31 pack-years. A half between 3 and 31 pack-years.

Without Barrett’s oesophagus: median= 0.3 pack-years; a quarter had<0 (actually =)
pack-years; a quarter>19.2 pack-years. Half between 0 and 19.2 pack-years.

6.3 IQR= (2770–3510)g

6.4 (a) about 2600 g. (b) about 8%.

6.5 Median is about 6.2; IQR is about (5.3 to 7.0).

6.6 Minimum birthweight= 2170 g; maximum birthweight= 4140 g;Q1= 2770 g; median=
3310 g; Q3= 3510 g.a

4500
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3500

3000

2500

2000
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6.7 It means (approx) that the values of cord platelet count are on average 69 away from the
mean of 308.

6.8 Values of LDL cholesterol are on average 0.88 from themean of 2.71. C of V= 0.88/2.71=
0.325.

Values for HDL cholesterol are on average 0.25 from their mean of 1.18. C of V= 0.25/1.18=
0.219.

So, relatively speaking, LDL values are further away.

6.9 2.5%. 0.5%.

6.10 (a) For a variable to be Normally distributed, it should be possible to fit three standard
deviations on either side of the mean; in particular, without straying into negative values. For
none of these variables would it be possible to fit three standard deviations less than the mean
without getting a negative value. For example, for days with headache: 19.7− 3× 14=−22.3
hours. So none of them can be Normally distributed.

Chapter 7

7.1 (a) Exposure variable is BMI. (b) Outcome variable is myocardial infarction. (c) See below.
(d)Hypertension (the confounder) is associatedwith obesity and causally related tomyocardial
infarction.a

Hypertension

BMI
Myocardial

infarction

7.2 Could randomly allocate babies (and parents) into three groups according to sleeping
arrangements, then follow-up to see outcomes and compare.

Chapter 8

8.4 (a) Participants were followed up from ‘Today’ into the future. (b) Risk factor is
smoke (active or passive). (c) The proportion of stillbirths among those inhaling smoke
is 167/32864= 0.00508 and among no smoke= 166/52473= 0.00316. So there is smaller
proportion of stillbirths among the non-smoke inhalers.

8.5 (a) Retrospective means forward from a start point sometime in the past. (b) Car-
diovascular disease. (c) Proportion of deaths in the study period among those with
cardiovascular disease was 3535/12379= 0.286, among the no cardiovascular disease
proportion= 21 906/113 713= 0.193, which is (as you might expect), smaller.

8.6 (a) The cases were chosen from those drivers who had had a crash. The controls were
drivers with similar characteristics except that they had not had a crash. (b) Caffeine. (c) Age,
gender, years driving, etc. (d) Thirty per cent of those who crashed used caffeine compared to
56% who did not had a crash. Looks like caffeine helps avoid crashes.
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Chapter 9

9.1 To share out the known and unknown characteristics (including potential confounders)
between the groups, thereby making the groups much the same – except for the treatment.

9.3 (b) Any solution to this problem will of course depend on the particular set of random
numbers used. My random numbers were 2 3 1 5 (7) 5 4 (8) 5 (9) (0) 1 (8) 3 (7) 2. Since we
have only six blocks, we can’t use the random numbers in ( ). With blocks of four:

Block 1, CCTT; Block 2, CTCT; Block 3, CTTC;

Block 4, TCTC; Block 5, TCCT; Block 6, TTCC

The first number is 2, so the first four subjects are allocated as block 2: C, T, C and T. The
next number is 3, so the next four subjects are allocated as: C, T, T and C. Continue this same
procedure until there are 20 in each group.

Chapter 10

10.2 Needs a sampling frame.

Chapter 11

11.1 (a) Probability= 121/475= 0.255; (b) 52/475= 0.109

a
Satisfaction with nursing care Number of patients n= 475

Very satisfied 121

Satisfied 161

Neutral 90

Dissatisfied 51

Very dissatisfied 52

11.2 0.7× 0.7= 0.49 or 49 in 100.

11.3 P (satisfied or very satisfied)= (161/475+ 121/475)= 0.339+ 0.255= 0.593.

11.4 a
Outcome Probability

HH 0.25

HT 0.25

TH 0.25

TT 0.25
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11.5 Looks a bit like a Normal curve.

a
7 0.0888952

8 0.114823

9 0.130416

10 0.131865

11 0.119878

12 0.0987880

13 0.0743021

0.13

0.12

0.11

0.10

0.09

0.08

0.07

7 8 9 10

No. lbwt

Scatterplot of Prob vs No. lbwt

P
ro

b

11 12 13

11.6 0.0418103

11.7 ≤225 0.115

≥425 (1–0.955)= 0.045

Chapter 12

12.1 (a) Zinc: absolute risk of failure= 34/332= 0.1024. Placebo: absolute risk of fail-
ure= 0.2052.

(b) absolute risk reduction= 0.2052− 0.1024= 0.1028 or 10.28%.

12.2 Relative risk= 0.1024/0.2052= 0.499. So risk of failure in zinc group is almost half of
what it is in the placebo group.

12.3 Relative risk reduction= (1−RR)= (1−0.499)= 0.501. So the zinc treatment reduces
the risk of treatment failure compared to the placebo group by 50.1%.
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12.4 NNT= 1/absolute risk reduction= 1/0.1028= 9.73 or 8 (always round up). So we would

need to treat nine children with zinc to avoid one child experiencing treatment failure.

12.5 The most economic is an IPSS score increase by>4 pts. The least economic is urinary

tract infection.

12.6 (a) Odds for depression of mothers of cases= 7/9= 0.7778. Odds for con-

trols= 14/360= 0.3889. Odds for depression among mothers of cases are twice the odds

for mothers of controls.

12.7 a(a) Under 35.

Down syndrome baby

Smoked Yes No

Yes 112 1411

No 421 5214

Totals 533 6625

(i) The odds that a woman having a Down syndrome baby, smoked= 112/421= 0.2660.

(ii) The odds that a woman having a healthy baby, smoked= 1411/5214= 0.2706.

(b) ≥35

Down syndrome baby

Smoked Yes No

Yes 15 108

No 186 611

Totals 201 719

(i) The odds that a woman having a Down syndrome baby, smoked= 15/186= 0.0806. (ii)The

odds that a woman having a healthy baby, smoked= 108/611= 0.1768.

Interpretation. Among the under 35 mothers, there is little difference in the odds for Down

syndrome between smoking and non-smoking mothers (0.2660 vs. 0.2706). Among moth-

ers≥35, the odds for Down syndrome among smoking mothers is about a half the odds for

non-smoking mothers (0.0806 vs. 0.1768).

12.8 Age≥35. (a) p= 0.0806/(1+ 0.806)= 0.0746; (ii) p= 0.1768/(1+ 0.1768)= 0.1502.

12.9 Odds of having stroke among those who had exercised= 55/130= 0.4231. Odds among

the non-exercisers= 70/68= 1.0294.

12.10 (a) Mothers<35. Odds ratio for a woman with a Down syndrome baby having smoked,

compared to a woman with a healthy baby= 0.2660/0.2706= 0.9830. (b) Mothers≥35. Odds

ratio= 0.0806/0.1768= 0.4558.
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Interpretation. In younger mothers, the odds ratio close to 1 (0.9830) implies that smoking

neither increases nor decreases the odds ratio for Down syndrome. In older mothers, the odds

ratio of 0.4558 implies that mothers who smoked during pregnancy have under half the odds

of having a Down syndrome baby compared to non-smoking mothers.

12.11 Hint: if a is small (a rare disease) then (a+ c)≈ c

Chapter 13

13.1 The smaller the s.e. of the sample mean, the more precise the estimate of the population

mean. In this case, the sample mean vitamin E intake of 6.30mg (non-cases), has an s.e. of

0.05mg, so we can be 95% confident that the populationmean vitamin E intake (non-cases) is

no further than 2 s.e.s from this mean, that is, within± 0.10mg. The largest s.e., 5.06mg, and

therefore the least precise estimate of the population mean, is that for vitamin C (cases).

13.2 (a) Cases. Sample mean age= 61.6 years, sample s.d.= 10.9 years, n= 106. Thus,

s.e.(x)= 10.9/
√
106= 1.059. The 95% confidence interval is therefore (61.6± 2× 1.059)

or (59.582 to 63.718) years. (b) Controls. Sample mean age= 51.0 years, sample s.d.= 8.5

years, n= 226. Thus, s.e.(x)= 8.5/
√
226= 0.565. The 95% confidence interval is therefore

(51.0± 2× 0.565) or (49.870 to 52.13) years. The fact that the two CIs do not overlap

means that we can be 95% confident that the two population mean ages are significantly

different.

13.3 For the integrated care group, over 12 months the sample mean number of admissions is

0.15. The 95% confidence interval means we can be 95% confident that the interval from 0.11

to 0.19 will contain the population mean number of visits for the population of which this is

a representative sample. For the conventional care group, the sample mean number of visits

is lower, 0.11 and the 95% confidence interval implies that we can be 95% confident that the

interval from 0.08 to 0.15 will contain the population mean number of visits.

13.4
s.e.(x) = s.d.∕

√
n = 564.2∕

√
3251.8 = 9.8940

95%CI for populationmean (𝜇), is (3251.8− 2× 9.8940 to 3251.8+ 2× 9.8940)g= (3232.01 to

3271.59)g

13.5 p= 77/500= 0.154. s.e.(p) =
√

0.154 (1−0.154)
500

= 0.0161

95% CI for 𝜋 is: (0.154− 1.96× 0.0161 to 0.154+ 1.96× 0.0161)= (0.1224 to 0.1856) or (12.24

to 18.56)%

13.6 66.4% and 60.8%. Etanercept 50mg. Once weekly then once weekly.

13.7 Age 45–49.

For death ∶ proportion = 44%, 95% CI is (34 to 53)%

For metastases ∶ proportion = 40%; 95% CI is (33 to 48)
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Age 51–55.

For death ∶ proportion = 44%, 95%CI is (32 to 56)%

For metastases ∶ proportion = 42%; 95%CI is (32 to 52)

Not much difference in widths (therefore precision) of confidence intervals.

13.8 Included practices have (a) a noticeably larger average number of patients (median of

7142 vs 5524) with a slightly narrower interquartile range, than declined practices; (b) slightly

smaller percentage of median numbers of female doctors (median 45.3 vs 47.9) but wider, and

lower, interquartile ranges. From box plots, distribution of percentage of female doctors in

randomised practices is quite negatively skewed. Among Declined practices it is very slightly

positively skewed.

No. female doctors

in practice

70

60

50

40

30

20

10

0

Randomised Declined

Chapter 14

14.1 Much smaller sample.

14.2 (a) All except diurnal systolic, diurnal diastolic and diurnal mean. (b) 1.6, 1.1. (c) See

figure below.The upper limit of all the confidence intervals cross the clinically useful 2mmHg

line, so all are potentially useful.
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–1 0 61 2 3

Difference in blood pressures

4 5

Confidence intervals
shown as horizontal
lines, starting with

diurnal sbp and working
upwards from Figure 14.5. 

Zero difference in
blood pressures. Clinically minimal

useful difference

14.3 (a) 202, 29, 232. (b) Too difficult for me to draw Normal curves I am afraid. Suctioned

blood loss is positive and definitive (significant and conclusive). Gauze blood loss is negative

but not definitive (not significant and inconclusive). Intraoperative blood loss is positive and

not definitive (significant but inconclusive).

–50 0 50 100 150 200 250 300 350 400

Difference in blood loss

Gauze blood loss

Suctioned blood loss 

Intraoperative

blood loss 

Zero difference
in blood loss. 

Minimal clinically
worthwhile difference

in blood loss. 

14.4 When repeated measurements (of say heart rate) are made on the same person, the vari-

ation in these measurements is called within-subject variation. When a single measurement is

made on each of a number of people, the variation in these values is called between-subject vari-

ation.The between-subject variability can cloud differences of the within-subject variation.We

would like to be rid of between-subject variation, which we can do with paired measurements

(e.g. before and after on the same individual).

14.5 All differences are significant in the population because none of the confidence intervals

include 0.

14.6 For the primary outcome (number of quit attempts at 6 months), the difference in the

number of quit attempts is given as−1.Thismeans that the knowledge of the DNA risk reduced
the number of quit attempts by 1. Not what we might have hoped for. For the three secondary

outcomes, the number of seven-day abstinences was more by 3 when measured at one week
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but less at six months by 3. The biochemical validation confirmed that the situation was worse

among the group who were given information on their DNA, by -1 7-day abstinence.

14.7 Of the five procedures, the only significant difference in median times between the two

groups is that between receiving the analgesia and leaving the emergency department. The

median difference is 20 minutes with a 95% confidence interval of (4.0 to 39.0) minutes. The

confidence intervals for median difference for the other four procedures all include 0.

14.8 (a)This confidence interval includes 0, so we can be 95% confident that there is no differ-

ence between the patients and controls in the population. But note the point estimate value of

15.9, which is the best guess for the difference. (b) But we can be 95% confident that is there is

a difference in the population for alcohol intake as the confidence interval does not contain 0.

Chapter 15

15.1 With full screening, the mean number of mosquitoes caught was 41% of the number

caught compared to the control houses (no screens). With screened ceilings, the mean number

of mosquitoes caught was 53% compared to those caught in the control houses.

15.2 With moderate depression, the crude and adjusted relative risks for angina pectoris were

not significant in the population because the confidence interval contained 1. With severe

depression, both the crude and adjusted relative risks were significant in the population – the

confidence interval did not contain 1. The adjusted RR implies that the risk of angina pectoris

was 2.3 times than that of patients who were not depressed.

15.3 Relative risk. With L-arginine+ vitamins, RR= 0.42 and the confidence interval does not

include 1; therefore, it is significant. We can be 95% confident that women in this group have

42% of the risk of eclampsia compared to women in the placebo group. With vitamins alone,

the confidence interval includes zero so it is not significant (but note that the best guess, point

estimate, of 0.74). With L-arginine+ vitamins compared to vitamins alone, the RR= 0.56 and

is significant because the confidence interval does not include 1. We can be 95% confident that

the women in this group have 56% the risk of eclampsia compared to women in vitamin-only

group.

Absolute risk reduction. All three absolute risk reductions are significant in the popula-

tion – none of the confidence intervals include 1. Notice how much smaller the absolute risk

reductions are compared to the relative risks: 0.17 compared to 0.42, 0.07 compared to 0.74

and 0.09 compared to 0.56.

15.4 (a)They are very often confounding variables. (b) Exercise has greater benefits (reduction

in odds for stroke) the earlier in life it is taken. Between 15 and 25, it reduces odds to 33%

compared to the non-exercisers and is significant in the population (confidence interval does

not contain 1). Also significant when taken between 25 and 40; reduces the odds for stroke to

43%. Exercise is not significant in reducing odds for stroke when taken between 40 and 55.

Confidence interval includes 1 (but once again note best guess value of 0.63).

15.5 All outcomes, except last two, have confidence intervals that don’t include 1, so we can be

95%confident that they are significant in the population.Odds for each outcome vary from0.18
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to 0.23, so about 20% of the odds for these four outcomes in cervical pessary group compared
to expectantmanagement (control) group.The odds for the last two outcomes, chorioamnioni-
tis and pregnancy bleeding, are not significant as the confidence intervals include 1 but note
the best guess point estimates of 0.82 and 0.77, each showing a reduction in odds for these two
outcomes.

15.6 Being older than 54.Having had a previous joint replacement.Having awalking disability.

Chapter 16

16.1 (a) Is the proportion of males and females who use my genito-urinary clinic the same?;
(b) H0: 𝜋male =𝜋female?; (c) reject, p-value<0.05. (d) Do not reject, p-value≥0.05.

16.2 Suctioned blood, and total intraoperative blood, both p-values<0.05.

16.3 Significantly different: Age; Age at menopause; BMI. Not significantly different: age at
birth of 1st child; age at menarche; months breastfeeding; mean years of HRT.

16.4 All differences significant except HDL cholesterol (p-value>0.05)

16.5 None of the differences in the medians appear to be significant (all of the p-values are
>0.05) except the Maximum pressure procedure where the p-value is considerably <0.05.

16.6 A confidence interval tells you not only about significance but also gives you some idea as
to the value of any difference, and is in units which can be easily interpreted, whereas a p-value
tells you only about significance.

16.7 (c) False positive with 𝛼. False negative with 𝛽.

16.8 (b) Because if you decrease 𝛼, you inevitably increase 𝛽.

Chapter 17

17.1 Observed values (expected values)

a
Outcome

Sub-optimum IQ?

No Yes Totals

Urinary iodine-to- <150 μ/mg 469 (482.8) 177 (163.2) 646

creatinine ratio ≥150 μ/mg 247 (233.2) 65 (78.8) 312

Totals 716 242 958

17.2 (a) Because sample size was small. Same reason and can use with 2× 2 tables. (b) Cannot
reject the hypothesis of no difference among White British between early and late deaths as
p-value in not <0.05.
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17.3

Step 1. The (O−E) terms from Figures 17.1 and 17.2, are as follows:
(469− 482.8), (177–163.2), (247–233.2) and (65–78.8), that is, −13.8, 13.8, 13.8 and
−13.8

Step 2. Squaring each of these values gives: 190.44, 190.44, 190.44 and 190.44
Step 3. Dividing each of these values by its E value, gives:

190.44/482.8= 0.394, 190.44/163.2= 1.167, 190.44/233.3= 0.816 and 190.44/78.8
= 2.417

Step 4. Sum all of the values in the previous step= 4.794
So the chi-squared statistic= 4.794, which exceeds the critical value for a 2× 2 table
of 3.84 so that we can reject the hypothesis of no relationship between maternal mild
iodine deficiency during early pregnancy and a sub-optimum IQ in children aged 8
years.

17.5 (i) No relationship between social class and whether lump is malignant or not, p-value
is >0.05. (ii) There is a relationship between lifetime use of contraceptives, p-value <0.05. (iii)
No relationship with amount of alcohol consumed, p-value >0.05. (iv) No relationship with
cigarettes smoked, p-value >0.05.

Chapter 18

18.1 Reduced by 58%–42%.

18.2 See table footnote for reference categories. Parity= 0; born anywhere but UK; BMI>35;
pre-existing diabetes; antepartum haemorrhage; active smoker, no foetal growth restriction;
active and passive smoker, foetal growth restriction; non-smoker, foetal growth restriction.

18.3 For the first three outcomes, we can be 95% confident in rejecting the hypothesis that
there is a no significant difference between the tranexamic acid group and the placebo group;
p-values are all <0.05. None of the remaining outcomes are significantly different.

18.4 We can be 95% confident in rejecting the hypothesis of no increase (or decrease) in risk
from smoking or passive smoking compared to no exposure to smoke, for all factors (p-values
<0.05), except for passive smoking from husband, passive smoking at work, both p-values
>0.05.

Chapter 19

19.1 The scatter indicates a positive linear association between CD and UCD.

19.2 Top scatter shows negative linear association between the two variables, although there is
an outlier on the horizontal axis, which spoils the party a little. The bottom scatter is negative
but definitely not linear.

19.3 A scatterplot can help to reveal the shape of an association.

19.4 Both variables must be metric continuous and at least one Normally distributed.
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19.5 Starting with stomach cancer, we see a strong and significant correlation in 2001 between
stomach cancer and deprivation (r= 0.379, p-value <0.01 – see table footnote) and not sur-
prisingly between deaths from stomach cancer and the SMR. Deaths from stomach cancer in
2001 are also significantly associated with mortality and deprivation in the 1900s (r= 0.299
and r= 0.231, respectively). So there appears to be some carry-over effect (epigenetics?). The
causes of deaths that do not show an association between 2001 and the 1900s are (i) breast can-
cer (not associated with either mortality or deprivation; r=−0.068 and r=−0.019; p-values of
both are >0.05.) and (ii) prostate cancer, similar r and p-values).

19.6 If either variable was ordinal or both metric but I was not sure about linearity.

19.7 The correlation between antibacterial resistance and antibacterial prescribing (i) is
significant for all 𝛽 lactans, both p-values <0.05, at both primary care group and practice
levels (rs = 0.57 and rs = 0.18, respectively). (ii) For ampicillin and amoxicillin, it is not
significant at primary care group level (p-value not <0.05), but it is significant at practice level
(p-value<0.05). (iii) For trimethrim, it is not significant at primary care group level (p-value
is not <0.05), but it is significant at practice level (p-value <0.05).

19.8 Only significant correlation is among men in countries with low unemployment levels
before the crisis (p-value<0.05).

Chapter 20

20.1 Association is about the values of two variables tending to move together; agreement is
about the values of two variables being the same. Not necessarily, although variables that agree
will be associated.

20.2 Yes. No.

20.3 Contingency table:

a
Observer 1

<16 ≥16

Observer 2 <16 5 2 7

≥16 0 9 9

totals 5 11 16

(a) Observed proportional agreement= (6+ 9)/16= 0.938.

(b) Expected values are as follows:

a
Observer 1

<16 ≥16

Observer 2 <16 2.19 4.81

≥16 2.81 6.19
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Expected agreement= (2.19+ 6.19)/16= 0.523.

So kappa= (0.938− 0.523)/(1− 0.523)= 0.870. From Figure 20.3, chance adjusted agreement

is very good.

20.4 There may be no two values which are the same.

20.5 There appears to be a very small amount of negative bias (not easy to see). The spread of

values increases as the mean birthweight increases. Incidentally, the authors reported a Spear-

man’s rank correlation coefficient for the two assessments of 0.87.

Chapter 21

21.1 Extending the line back to the vertical axis gives b0 = 43 approx. For slope: vertical dis-

tance is from 22 to 43= 21. Horizontal distance= 78. So slope b1 =−21/78=−0.269. Slope is
negative because line slopes down from left to right. So equation is:

Male smoking prevalence = 43 − 0.269 × Score on tobacco control scale.

21.2 Bthwt= 2460+ 11.0×Mothers’ wt

Mothers wt (n = 4)
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21.3 (a) Best straight line by eye:a
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Equation is approx: UCD= 4+ 25/30×CD or UCD= 4+ 0.833×CD. So if CD increases by 1

unit (1 per 100 000), UCD will increase by 0.833 units (0.833 per 100 000).
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Equation is approx %M= 55− 55/65×E or %M= 55− 0.85×E.

A decrease in % mortality of 0.85%.

21.4 b0 is the sample estimate of the parameter 𝛽0 and b1 of 𝛽1.

21.5 It has to be metric continuous.

21.6 birthweight= 2460+ 11.01× 80= 3340.8 kg

21.7 Paternal BMI (its coefficient is bigger).

21.8 (a) Mothers’ weight and height are significant – confidence intervals do not include

0 (and p-values are both <0.05). Age is not significant – confidence interval includes 1 (and

p-value>0.05). (b) It does not because it is not significant. (c)R2 is now 0.129.With only height

and weight, adjusted R2 was 0.126 (Figure 21.10), fit has improved very little. But see section
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on adjusted R2 further in this book. (d) Mean birthweight is:

mean birthweight = −77.346 + 8.311 × 60 + 15.887 × 150 + 5.487 × 30 = 2968.974g

21.9 (a)R2 formen= 0.27, for womenR2 = 0.28 somen – marginally. (b)Men. 2.2 compared
to 1.7 for women. Increases because sign on coefficient is positive.

21.10 Without sex, adjusted R2 = 0.123 (Figure 21.10). With sex, adjusted R2 = 0.121. So fit is
slightly worse.

21.11 For each variable added to the simple model, adjusted R2 increases so goodness-of-fit
improves each time.

21.12 a
Subject Age D1 D2

1 50 1 0

2 55 0 0

3 35 0 1

21.13 Manual and automatic. Manual is preferred if you have an idea as to your main explana-
tory variable.

21.14 (a) Age; Age2; Family history of hypertension; Calcium intake. (b) We can be 95% con-
fident that the population parameter on age is between 0.28 and 0.64 (so does not include 0).
(c) The blood lead model (largest age coefficient).

Chapter 22

22.1 Because the relationship with a binary model is not linear. And the dependent variable is
a probability so has to be between 0 and 1. Logistic regression.

22.2 Using the formula (given in Chapter12): odds= prob/(1-prob), when Prob(Y= 1)=
0.4286 when OCP= 0, then odds= 0.7501. When Prob(Y= 1)= 0.227 when OCP= 1, then
odds= 0.2898. So odds ratio= 0.2898/0.7501= 0.386.

22.3 a(a) Yes. Confidence interval does not include 1 (and p-value<0.05).

(b) P(Y = 1) = −6.467 + 0.102 × Age

(c) When age = 45 ∶ P(Y = 1) = e−6.647+0.102×45 = e−2.057 = 0.1278.

Similarly, when Age = 50, P(Y = 1) = 0.2548.

(d) Age = 45 ∶ [1 − P(Y = 1)] = 1–0.1278 = 0.8722. So odds (using formula in Chapter 12)
= 0.8722∕(1 − 0.8722) = 6.825.

Age = 50 ∶ [1 − P(Y = 1)] = 1–0.2548 = 0.7452. Similarly odds= 2.925.

Odds ratio = 2.925∕6.825 = 0.429. So awoman aged 45 has just under half the odds of amalig-
nant diagnosis as does a woman aged 50.
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(e) Antiloge 0.1023= 0.431 (same as OR, allowing for rounding of values)

(f) change in the odds ratio = e10×b1 = e10×0.102 = 2.77.

22.4 Significant (CI does not include 1), with OR= 1.089. So each unit increase in BMI

increases odds for a malignant diagnosis by 0.089.

22.5 ‘Ever used OCP’ is not significant (CI includes 1). Age and BMI are both significant (con-

fidence intervals do not include 1).With onlyOCP used in themodel, the LL=−200.009.With

Age and BMI added to the model, LL=−165.645, so closer to 0, so better model.

22.6 0.74 the odds.

22.7 As for linear regression, choice is between automatic selection and manual selection.

Chapter 23
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23.3 252 days and 266 days.

23.4 The log-rank test tests the hypothesis that there is no difference in the survival experience
of the two groups over the whole period of the study. The p-value in this case is 0.0139, which
is <0.05, so we can reject the hypothesis. There is a difference in total survival experiences.

23.5 Significant difference between OC and LAC surgery in probability of being free of recur-
rence. Not a significant difference for overall survival (but p-value only just exceeds 0.05).
Significant difference in probability of cancer-related survival.

Chapter 24

24.1 To find all relevant studies. Some may not be in English. Some may be published in
obscure journals. Somemay not be published (PhDs, conference reports, pharmaceutical com-
pany reports, etc.).

24.2 Risk ratio (relative risk) shown by . Size of sample not indicated in this figure.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 

Risk ratio (relative risk)
Favours

antibiotic
Favours
placebo

to 134.8
to 31.4

24.3 (a) See text. (b) The authors comment that the plot ‘suggests a small degree of publica-
tion bias, with a slight under-representation of small studies showing neutral or unexpected
protective effects.

24.4 (a) We cannot combine the studies if they are not sufficiently similar. (b) No, I2 = 27.7%
which is indicative of only moderate heterogeneicty.
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Chapter 25

25.1 aa

12

8

Without AMI With AMI
Without AMI With AMI

n = 5 n = 2

n = 6

n = 3

n = 17

n = 18n = 3

n = 2

With cut-off= 8, sensitivity= 18/20= 0.90 or 90%. Specifitity= 5/8= 0.625 or 62.5%

When cut-off= 12, sensitivity= 17/20= 0.85 or 85%. Specificity= 6/8= 0.750 or 75.0%

25.2 a

PSA cut-off

(ng/ml)

Sensitivity Specificity (1− spec)

0.5 0.99 0.13 0.87

1.0 0.96 0.44 0.56

2.0 0.78 0.75 0.25

3.0 0.59 0.87 0.13

4.0 0.44 0.92 0.08

5.0 0.33 0.95 0.05

10.0 0.13 0.99 0.01

20.0 0.05 1.00 0.0
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controlling for confounders 93
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descriptive 103–4
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dependent variables 282, 295–7
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charts 32–48
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deviance coefficient 306
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Normal distribution 54–5, 54–5
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skew 51–3, 52–3, 56–8, 57
symmetric 50, 53, 53
transformed data 84, 85, 86
uniform 50

double-blind randomised controlled trial 122
drop-out 125
dummy variables 286

ecological fallacy 117
ecological study 116, 116
errors
drop-out 125
hypothesis test 220–221
linear regression 276, 277
sampling 129–130, 165–6, 166
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exclusion criteria 326
expected values 229–30, 262
experimental studies 101
clinical trials 119–20
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Fisher’s exact test 209, 233, 233–4
forest plot 328, 328–9, 329
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ranking data 14, 14
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GCS see Glasgow Coma Scale
generalised linear model 293
Glasgow-Blatchford Bleeding Scale (GBS), 340
Glasgow Coma Scale (GCS), 7
goodness-of-fit 280–281, 284–6, 306, 307
grouped data 26–7, 26–7, 40–42, 41–2
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difference between population parameters 210–213
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Fisher’s exact test 209
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null hypothesis 205
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procedure 206
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rules of thumb 223–5
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linear regression 282
logistic regression 298, 303–4
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interquartile range (IQR) 73–6, 74–6, 317
inter-rater agreement 260

journals 329

Kaplan–Meier curve 315–17, 316–17
Kaplan–Meier table 313–15
Kendall’s rank-order correlation coefficient 258–9
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design variables 286–7
diagnostics 292–3
goodness-of-fit 280–281, 284–6
Minitab 279–80
model building 273–6, 287–8
multiple 282, 282–4
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SPSS 278–9, 279
statistical significance 278–80
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logistic regression 294–307
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goodness-of-fit 306
maximum likelihood estimation 298–300
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odds ratios 300–301
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regression coefficient 301, 302
SPSS 298
statistical inference 301–2

log–log plot 324
log-rank test 319–20, 320
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standard error 165–70
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meta-analysis 332–5

charts 39–42, 39–42
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agreement 264–6
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outcomes 329
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nested case-control design 114
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charts 32–7, 32–7
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non-parametric tests 187–8, 208, 209, 218
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probability 144
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number needed to treat 149–50
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systematic review 329

one-to-one matching 94
open-ended groups 27, 28
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ordinal categorical data 7–8, 10
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distribution 51
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parallel design 122
parametric tests 187, 208, 209, 222
parsimony 290
Pearson’s correlation coefficient 256, 256
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cumulative frequency 44–7, 45
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percentiles 68–70
perfect agreement 261
pie charts 32–4, 33–4
placebo bias 121–2
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Poisson regression 306–7
population
correlation coefficient 254
difference between parameters 173–89
logistic regression 297
mean 164–70, 166, 170, 208–11
median 172–3, 173, 189, 190, 214–15, 218
odds ratios 196–8, 198, 243, 243
parameters 128
proportions 170–171, 172
ratio of two parameters 192–200, 239–44
regression equation 278
risk ratios 193–6, 195–7, 240, 240–241
single parameter 164–74
statistical inference 128–130
survival 314

positive
confounding 92
outcomes 329
skew 51–3, 52–3

positive predictive value (PPV) 337
power of a test 221–2
prediction 280
probability

binomial probability distribution 142–3
calculation 138, 139
case-control studies 138
conditional and Bayesian statistics 141
definition 138
dice rolling experiment 141, 141–2
discrete versus. continuous 142
logistic regression 298, 299
Normal distribution 144
number needed to treat 149–50
odds 156
Poisson distribution 55, 143–4
proportional frequency 138–9
simple probability

addition rule 140
multiplication rule 139

survival 314
proportional agreement 261
proportional frequency 138–9
proportional hazards 324
proportions

confidence intervals 170–171, 172, 186–7, 187
hypothesis test 227–30
numeric summary values 60–61
populations 227

publication bias 329–30

quintiles 70

randomised controlled trial (RCT)
hypothesis tests 211, 220
study design 120, 123–5

random number tables 120
range 73
ranked data

frequency tables 14, 14
log-rank test 319–20
Mann-Whitney rank-sums test 209, 214–19
Spearman’s rank correlation coefficient 256–9
Wilcoxon signed-rank test 173, 189, 190, 209, 218

receiver operating characteristic curve (ROC) 339, 340
reference value 149–51, 150, 151
regression coefficient 301, 302
relative frequency 20, 20, 45, 76
relative risk reduction 148–9
residuals 276–7
response bias 121–2
risk 298
risk ratios 147–8

case–control study 155
confidence intervals 193–6, 195–7
confounding 152, 151–2
formula 149
hypothesis tests 240–241
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risk ratios (continued)
relative risk reduction 148–9
survival 322
systematic review 331

rules of thumb 223–5

sample
consecutive 132
logistic regression 297
mean 165–6, 166
percentage 129–30
regression equation 275
simple random 130
statistics 128, 129
stratified random 130–131
survival 314
systematic random 130

sampling
errors 129–30, 165
inclusion and exclusion criteria 133
sample size 132–3
sampling error 129–30
statistical inference 128–30
target population 128–9, 130–131
types 129–32

scatterplots
limitations 250
linear regression 276
logistic regression 295–6

sensitivity 337
significance level 207, 223–4
simple bar chart 34, 34–5
simple random sample 130
skew 51–3, 52–3, 67, 71, 86
slope coefficient 273
Spearman’s rank correlation coefficient 256–9, 257, 259
specificity 337
spread measures 60, 73–86
stacked bar chart 37, 38–9
standard deviation 79–84, 81, 83–4
agreement 266
confidence intervals 174, 184

standard error 165–70
statistical inference 128–9, 301–2
step charts 44, 45
stepwise selection 288–9
straight line model see linear regression
stratified random sample 130–131
study design

blinding 121–2, 122
case-control studies 111–16, 112, 114
case series studies 103
clinical trials 119–20
cohort studies 108–11, 109
confounders 94–5
cross-sectional studies 103–6
experimental studies 119–26
intention-to-treat analysis 125–6
matching 94
randomisation 120–126, 122–4
randomised controlled trial 120, 123–5

study populations 128–130

sum of squares 80
survival

censored data 312–13
comparison between groups 317–18
Cox’s regression model 322–4
hazard ratio 320–321
Kaplan–Meier curve 315–17, 316–17
Kaplan–Meier table 313–15
log–log plot 324
log-rank test 318–20
median 316–17
probability 314
proportional hazards 324
single groups 312–13, 313

symmetric distribution 50, 53, 53
systematic random sample 130
systematic review

exclusion criteria 326
forest plot 328, 328–9, 329
funnel plot 330–332
inclusion criteria 326
meta-analysis 332–5
methods 327
publication bias 329–30
search strategy 327
selection criteria 327

t distribution 168, 174, 187–8
target population 128–9
test statistic 236
time series chart 47–8, 47–8
transformed data 84, 85, 86
treatment bias 122
treatment group 122
trend 209, 236–8, 238
two-sample t test 209–11, 304

Minitab output 211, 211–12
SPSS output 212, 212–13

typeI/II errors 220–221

uniform distributions 50
units 11
univariate logistic regression 304

variables
characteristics 11–14
definition 3–4
selection 289–90
types 6, 6
see also categorical; continuous; discrete metric;

nominal; ordinal data
variation 271–3
visual analogue scale (VAS) 11

Wald statistic 298
weighted kappa 263, 264
Whitney rank sums method 187–8, 189
Wilcoxon signed-rank test 173, 189–90, 190, 209, 218

Yahr scale scores 22, 22
Yate’s correction 233

z distribution 298
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