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Preface

Purpose and Emphasis. Mechanics not only is the oldest branch of physics but
was and still is the basis for all of theoretical physics. Quantum mechanics can
hardly be understood, perhaps cannot even be formulated, without a good knowl-
edge of general mechanics. Field theories such as electrodynamics borrow their
formal framework and many of their building principles from mechanics. In short,
throughout the many modern developments of physics where one frequently turns
back to the principles of classical mechanics its model character is felt. For this
reason it is not surprising that the presentation of mechanics reflects to some ex-
tent the development of modern physics and that today this classical branch of
theoretical physics is taught rather differently than at the time of Arnold Som-
merfeld, in the 1920s, or even in the 1950s, when more emphasis was put on the
theory and the applications of partial-differential equations. Today, symmetries and
invariance principles, the structure of the space–time continuum, and the geomet-
rical structure of mechanics play an important role. The beginner should realize
that mechanics is not primarily the art of describing block-and-tackles, collisions
of billiard balls, constrained motions of the cylinder in a washing machine, or bi-
cycle riding. However fascinating such systems may be, mechanics is primarily
the field where one learns to develop general principles from which equations of
motion may be derived, to understand the importance of symmetries for the dy-
namics, and, last but not least, to get some practice in using theoretical tools and
concepts that are essential for all branches of physics.

Besides its role as a basis for much of theoretical physics and as a training
ground for physical concepts, mechanics is a fascinating field in itself. It is not easy
to master, for the beginner, because it has many different facets and its structure is
less homogeneous than, say, that of electrodynamics. On a first assault one usually
does not fully realize both its charm and its difficulty. Indeed, on returning to
various aspects of mechanics, in the course of one’s studies, one will be surprised
to discover again and again that it has new facets and new secrets. And finally, one
should be aware of the fact that mechanics is not a closed subject, lost forever in
the archives of the nineteenth century. As the reader will realize in Chap. 6, if he
or she has not realized it already, mechanics is an exciting field of research with
many important questions of qualitative dynamics remaining unanswered.

Structure of the Book and a Reading Guide. Although many people prefer
to skip prefaces, I suggest that the reader, if he or she is one of them, make an
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exception for once and read at least this section and the next. The short introduc-
tions at the beginning of each chapter are also recommended because they give a
summary of the chapter’s content.

Chapter 1 starts from Newton’s equations and develops the elementary dynam-
ics of one-, two-, and many-body systems for unconstrained systems. This is the
basic material that could be the subject of an introductory course on theoretical
physics or could serve as a text for an integrated (experimental and theoretical)
course.

Chapter 2 is the “classical” part of general mechanics describing the principles
of canonical mechanics following Euler, Lagrange, Hamilton, and Jacobi. Most of
the material is a MUST. Nevertheless, the sections on the symplectic structure
of mechanics (Sect. 2.28) and on perturbation theory (Sects. 2.38–2.40) may be
skipped on a first reading.

Chapter 3 describes a particularly beautiful application of classical mechanics:
the theory of spinning tops. The rigid body provides an important and highly non-
trivial example of a motion manifold that is not a simple Euclidean space R

2f ,

where f is the number of degrees of freedom. Its rotational part is the manifold of
SO(3), the rotation group in three real dimensions. Thus, the rigid body illustrates
a Lie group of great importance in physics within a framework that is simple and
transparent.

Chapter 4 deals with relativistic kinematics and dynamics of pointlike objects
and develops the elements of special relativity. This may be the most difficult part
of the book, as far as the physics is concerned, and one may wish to return to it
when studying electrodynamics.

Chapter 5 is the most challenging in terms of the mathematics. It develops
the basic tools of differential geometry that are needed to formulate mechanics in
this setting. Mechanics is then described in geometrical terms and its underlying
structure is worked out. This chapter is conceived such that it may help to bridge the
gap between the more “physical” texts on mechanics and the modern mathematical
literature on this subject. Although it may be skipped on a first reading, the tools
and the language developed here are essential if one wishes to follow the modern
literature on qualitative dynamics.

Chapter 6 provides an introduction to one of the most fascinating recent de-
velopments of classical dynamics: stability and deterministic chaos. It defines and
illustrates all important concepts that are needed to understand the onset of chaotic
motion and the quantitative analysis of unordered motions. It culminates in a few
examples of chaotic motion in celestial mechanics.

Chapter 7, finally, gives a short introduction to continuous systems, i.e. systems
with an infinite number of degrees of freedom.

Exercises and Practical Examples. In addition to the exercises that follow
Chaps. 1–6, the book contains a number of practical examples in the form of exer-
cises followed by complete solutions. Most of these are meant to be worked out on
a personal computer, thereby widening the range of problems that can be solved
with elementary means, beyond the analytically integrable ones. I have tried to
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choose examples simple enough that they can be made to work even on a pro-
grammable pocket computer and in a spirit, I hope, that will keep the reader from
getting lost in the labyrinth of computional games.

Length of this Book. Clearly there is much more material here than can be
covered in one semester. The book is designed for a two-semester course (i.e., typ-
ically, an introductory course followed by a course on general mechanics). Even
then, a certain choice of topics will have to be made. However, the text is suffi-
ciently self-contained that it may be useful for complementary reading and indi-
vidual study.

Mathematical Prerequisites. A physicist must acquire a certain flexibility in
the use of mathematics. On the one hand, it is impossible to carry out all steps in
a deduction or a proof, since otherwise one will not get very far with the physics
one wishes to study. On the other hand, it is indispensable to know analysis and
linear algebra in some depth, so as to be able to fill in the missing links in a logical
deduction. Like many other branches of physics, mechanics makes use of many
and various disciplines of mathematics, and one cannot expect to have all the tools
ready before beginning its study. In this book I adopt the following, somewhat gen-
erous attitude towards mathematics. In many places, the details are worked out to a
large extent; in others I refer to well-known material of linear algebra and analysis.
In some cases the reader might have to return to a good text in mathematics or
else, ideally, derive certain results for him- or herself. In this connection it might
also be helpful to consult the appendix at the end of the book.

General Comments and Acknowledgements. This fifth English edition fol-
lows closely the eigth German edition (volume 1 of a series of five textbooks). As
compared to the third English edition published in 1999, there are a number revi-
sions and additions. Some of these are the following. In Chap. 1 more motivation
for the introduction of phase space at this early stage is given. A paragraph on the
notion of hodograph is added which emphasizes the special nature of Keplerian
bound orbits. Chap. 2 is supplemented by some extensions and further explana-
tions, specifically in relation with Legendre transformation. Also, a new section on
a generalized version of Noether’s theorem was added, together with some enlight-
ening examples. In Chap. 3 more examples are given for inertia tensors and the use
of Steiner’s theorem. Here and in Chap. 4 the symbolic “bra” and “ket” notation
is introduced in characterizing vectors and their duals. The present, fifth edition
differs from the previous, fourth edition of 2005 by a few corrections and some
additions in response to specific questions asked by students and other readers.

The book contains the solutions to all exercises, as well as some historical notes
on scientists who made important contributions to mechanics and to the mathe-
matics on which it rests. The index of names, in addition to the subject index, may
also be helpful in locating quickly specific items in mechanics.

This book was inspired by a two-semester course on general mechanics that I
have taught on and off over the last decades at the Johannes Gutenberg University
at Mainz and by seminars on geometrical aspects of mechanics. I thank my col-
laborators, colleagues, and students for stimulating questions, helpful remarks, and
profitable discussions. I was happy to realize that the German original, since its
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first appearance in October 1988, has become a standard text at German speaking
universities and I can only hope that it will continue to be equally successful in
its English version. I am grateful for the many encouraging reactions and sugges-
tions I have received over the years. Among those to whom I owe special grati-
tude are P. Hagedorn, K. Hepp, D. Kastler, H. Leutwyler, L. Okun, N. Papadopoulos,
J.M. Richard, G. Schuster, J. Smith, M. Stingl, N. Straumann, W. Thirring, E.Vogt,
and V.Vento. Special thanks are due to my former student R. Schöpf who collab-
orated on the earlier version of the solutions to the exercises. I thank J. Wisdom
for his kind permission to use four of his figures illustrating chaotic motions in
the solar system, and P. Beckmann who provided the impressive illustrations for
the logistic equation and who advised me on what to say about them.

The excellent cooperation with the team of Springer-Verlag is gratefully ac-
knowledged. Last but not least, I owe special thanks to Dörte for her patience and
encouragement.

As with the German edition, I dedicate this book to all those students who
wish to study mechanics at some depth. If it helps to make them aware of the
fascination of this beautiful field and of physics in general then one of my goals
in writing this book is reached.

Mainz, March 2010 Florian Scheck

As in the past, I will keep track of possible errata on a page attached to my home page. The latter
can be accessed via http://wwwthep.physik.uni-mainz.de/site/.



Contents

1. Elementary Newtonian Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Newton’s Laws (1687) and Their Interpretation . . . . . . . . . . . . . . . . 1
1.2 Uniform Rectilinear Motion and Inertial Systems . . . . . . . . . . . . . . . 4
1.3 Inertial Frames in Relative Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Momentum and Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Typical Forces. A Remark About Units . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Space, Time, and Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 The Two-Body System with Internal Forces . . . . . . . . . . . . . . . . . . . 11

1.7.1 Center-of-Mass and Relative Motion . . . . . . . . . . . . . . . . . . . 11
1.7.2 Example: The Gravitational Force Between Two

Celestial Bodies (Kepler’s Problem) . . . . . . . . . . . . . . . . . . . . 13
1.7.3 Center-of-Mass and Relative Momentum

in the Two-Body System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.8 Systems of Finitely Many Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.9 The Principle of Center-of-Mass Motion . . . . . . . . . . . . . . . . . . . . . . 21
1.10 The Principle of Angular-Momentum Conservation . . . . . . . . . . . . . 21
1.11 The Principle of Energy Conservation . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.12 The Closed n-Particle System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.13 Galilei Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.14 Space and Time with Galilei Invariance . . . . . . . . . . . . . . . . . . . . . . . 27
1.15 Conservative Force Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.16 One-Dimensional Motion of a Point Particle . . . . . . . . . . . . . . . . . . . 32
1.17 Examples of Motion in One Dimension . . . . . . . . . . . . . . . . . . . . . . . 34

1.17.1 The Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.17.2 The Planar Mathematical Pendulum . . . . . . . . . . . . . . . . . . . . 36

1.18 Phase Space for the n-Particle System (in R
3) . . . . . . . . . . . . . . . . . . 37

1.19 Existence and Uniqueness of the Solutions of ẋ˜ = F̃(x˜ , t) . . . . . . . 38
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1. Elementary Newtonian Mechanics

This chapter deals with the kinematics and the dynamics of a finite number of
mass points that are subject to internal, and possibly external, forces, but whose
motions are not further constrained by additional conditions on the coordinates.
(The mathematical pendulum will be an exception). Constraints such as requiring
some mass points to follow given curves in space, to keep their relative distance
fixed, or the like, are introduced in Chap. 2. Unconstrained mechanical systems
can be studied directly by means of Newton’s equations and do not require the
introduction of new, generalized coordinates that incorporate the constraints and
are dynamically independent. This is what is meant by “elementary” in the heading
of this chapter – though some of its content is not elementary at all. In particular,
at an early stage, we shall discover an intimate relationship between invariance
properties under coordinate transformations and conservation laws of the theory,
which will turn out to be a basic, constructive element for all of mechanics and
which, for that matter, will be felt like a cantus firmus1 throughout the whole of
theoretical physics. The first, somewhat deeper analysis of these relations already
leads one to consider the nature of the spatial and temporal manifolds that carry
mechanical motions, thereby entering a discussion that is of central importance in
present-day physics at both the smallest and the largest dimensions.

We also introduce the notion of phase space, i.e. the description of physical
motions in an abstract space spanned by coordinates and corresponding momenta,
and thus prepare the ground for canonical mechanics in the formulation of Hamil-
ton and Jacobi.

We begin with Newton’s fundamental laws, which we interpret and translate
into precise analytical statements. They are then illustrated by a number of exam-
ples and some important applications.

1.1 Newton’s Laws (1687) and Their Interpretation

We begin by stating Newton’s fundamental laws in a formulation that is close to
the original one. They are as follows:

1 cantus firmus: a preexisting melody, such as a plainchant excerpt, which underlies a polyphonic
musical composition.

F. Scheck, Mechanics, Graduate Texts in Physics, 5th ed.,
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2 1. Elementary Newtonian Mechanics

I. Every body continues in its state of rest or of uniform rectilinear motion, except
if it is compelled by forces acting on it to change that state.

II. The change of motion is proportional to the applied force and takes place in
the direction of the straight line along which that force acts.

III. To every action there is always an equal and contrary reaction; or, the mutual
actions of any two bodies are always equal and oppositely directed along the
same straight line.

In order to understand these fundamental laws and to learn how to translate
them into precise analytical expressions we first need to interpret them and to go
through a number of definitions. On the one hand we must clarify what is meant
by notions such as “body”, “state of motion”, “applied force”, etc. On the other
hand we wish to collect a few (provisional) statements and assumptions about the
space-time continuum in which mechanical motions take place. This will enable
us to translate Newton’s laws into local equations, which can then be tested, in a
quantitative manner, by comparison with experiment.

Initially, “bodies” will be taken to be mass points, i.e. pointlike particles of
mass m. These are objects that have no spatial extension but do carry a finite
mass. While this idealization is certainly plausible for an elementary particle like
the electron, in studying collisions on a billiard table, or relative motions in the
planetary system, it is not clear, a priori, whether the billiard balls, the sun, or the
planets can be taken to be massive but pointlike, i.e. without spatial extension. For
the moment and in order to give at least a preliminary answer, we anticipate two
results that will be discussed and proved later.

(i) To any finite mass distribution (i.e. a mass distribution that can be completely
enclosed by a sphere of finite radius), or to any finite system of mass points, one
can assign a center of gravity to which the resultant of all external forces applies.
This center behaves like a pointlike particle of mass M , under the action of that
resultant, M being the total mass of the system (see Sects. 1.9 and 3.8).

(ii) A finite mass distribution of total mass M that looks the same in every
direction (one says it is spherically symmetric) creates a force field in the outer,
mass-free space that is identical to that of a pointlike particle of mass M located
at its center of symmetry (Sect. 1.30). A spherical sun acts on a planet that does
not penetrate it like a mass point situated at its center. In turn, the planet can be
treated as a pointlike mass, too, as long as it is spherically symmetric.

Fig. 1.1. Example of an orbit with accelerated motion.
While the orbit curve is a coordinate independent, geo-
metric object, its description by the position vector r(t)

depends on the choice of origin and coordinates
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In Law I, motion, or state of motion, refers to the trajectory r(t) of the mass
point in coordinate space R

3, where r describes its position at a given time t. Fig-
ure 1.1 shows an example for an arbitrary trajectory in three-dimensional space.
State of rest means that ṙ(t) = 0 for all times t, while uniform rectilinear motion
is that motion along a straight line with constant velocity. It is important to real-
ize that motion is always relative motion of (at least two) physical systems. For
instance, a particle moves relative to an observer (i.e. a measuring apparatus). It is
only meaningful to talk about the relative positions of particle A and particle B,
or about the position of particle A with respect to an observer, at any fixed time.

Experimental experience allows us to assume that the space in which the phys-
ical motion of a mass point takes place is homogeneous and isotropic and that it
has the structure of a three-dimensional Euclidean space E

3. Homogeneous here
means that no point of E

3 is singled out in any respect. Isotropic in turn means that
there is no preferred direction either (more on this will be said in Sect. 1.14). Thus
the space of motions of the particle is an affine space, in agreement with physical
intuition: giving the position x(t) ∈ E

3 of a particle at time t is not meaningful,
while giving this x(t) relative to the position y(t) of an observer (at the same time)
is. If we endow the affine space with an origin, e.g. by relating all positions to a
given observer, the space is made into the real three-dimensional vector space R

3.
This is a metric space on which scalar and cross products of vectors are defined
as usual and for which base systems can be chosen in a variety of ways.

In nonrelativistic physics time plays a special role. Daily experience tells us
that time appears to be universal in the sense that it runs uniformly without being
influenced by physical events. In order to sharpen this statement one may think of
any moving particle as being accompanied on its journey by its own clock, which
measures what is called the particle’s proper time τ. On his clock an observer B
then measures the time

t (B) = α(B)τ + β(B) . (1.1)

Here α(B) is a positive constant indicating the (relative) unit that B chooses in mea-
suring time, while β(B) indicates where B has chosen his origin of time, relative
to that of the moving clock.

Equation (1.1) can also be written in the form of a differential equation,

d2t (B)

dτ 2 = 0 , (1.2)

which is independent of the constants α(B) and β(B). While (1.1) relates the proper
time to that of a specific observer, (1.2) contains the statement that is of inter-
est here for all possible observers. We conclude that time is described by a one-
dimensional affine space, or, after having chosen an origin, by the real line R. For
the sake of clarity we shall sometimes also write Rt (“t” for “time”).2

2 It would be premature to conclude that the space–time of nonrelativistic physics is simply R
3×Rt

as long as one does not know the symmetry structure that is imposed on it by the dynamics. We
return to this question in Sect. 1.14. In Sect. 4.7 we analyze the analogous situation in relativistic
mechanics.
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The trajectory r(t) is often described in terms of a specific coordinate system.
It may be expressed by means of Cartesian coordinates,

r(t) = (
x(t), y(t), z(t)

)
,

or by means of spherical coordinates

r(t) : {r(t), ϕ(t), θ(t)} ,
or any other coordinates that are adapted to the system one is studying.

Examples of motions in space are:

(i) r(t) = (vxt+x0, 0, vzt+z0−gt2/2) in Cartesian coordinates. This describes,
in the x-direction, uniform motion with constant velocity vx , a state of rest
in the y-direction, and, in the z-direction, the superposition of the uniform
motion with velocity vz and free fall in the gravitational field of the earth.

(ii) r(t) = (
x(t) = R cos(ωt + φ0), y(t) = R sin(ωt + φ0), 0

)
.

(iii) r(t) : (r(t) = R, ϕ(t) = φ0 + ωt, 0
)
.

Examples (ii) and (iii) represent the same motion in different coordinates: the
trajectory is a circle of radius R in the (x, y)-plane that the particle follows with
constant angular velocity ω.

From the knowledge of the function r(t) follow the velocity

v(t)
def= d

dt
r(t) ≡ ṙ (1.3)

and the acceleration

a(t)
def= d

dt
v(t) ≡ v̇ = r̈ . (1.4)

In Example (i) above, v = (vx, 0, vz − gt) and a = (0, 0, −g). In Ex-
amples (ii) and (iii) we have v = ωR

(− sin(ωt + φ0), cos(ωt + φ0), 0
)

and
a = ω2R

(− cos(ωt + φ0), − sin(ωt + φ0), 0
)
, i.e. v has magnitude ωR and di-

rection tangent to the circle of motion. The acceleration has magnitude ω2R and
is directed towards the center of that circle.

The velocity vector is a tangent vector to the trajectory and therefore lies in
the tangent space of the manifold of position vectors, at the point r. If r ∈ R

3,
this tangent space is also an R

3 and can be identified with the space of positions.
There are cases, however, where we have to distinguish between the position space
and its tangent spaces. A similar remark applies to the acceleration vector.

1.2 Uniform Rectilinear Motion and Inertial Systems

Definition. Uniform rectilinear motion is a state of motion with constant velocity
and therefore vanishing acceleration, r̈ = 0.
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The trajectory has the general form

r(t) = r0 + v0t , (1.5)

where r0 denotes the initial position, v0 the initial velocity, r0 = r(t = 0), and
v0 = v(t = 0). The velocity is constant and the acceleration is zero at all times:

v(t) ≡ ṙ(t) = v0 ,

a(t) ≡ r̈(t) = 0 . (1.6)

We remark that (1.6) are differential equations characteristic for uniform mo-
tion. A specific solution is only defined if the initial conditions r(0) = r0,
v(0) = v0 are given. Equation (1.6) is a linear, homogeneous system of differ-
ential equations of second order; v0 and r0 are integration constants that can be
freely chosen.

Law I states that (1.5) with arbitrary constants r0 and v0 is the characteristic
state of motion of a mechanical body to which no forces are applied. This state-
ment supposes that we have already chosen a certain frame of reference, or a class
of frames, in coordinate space. Indeed, if all force-free motions are described by
the differential equation r̈ = 0 in the reference frame K0, this is not true in a
frame K that is accelerated with respect to K0, (see Sect. 1.25 for the case of ro-
tating frames). In K there will appear fictitious forces such as the centrifugal and
the Coriolis forces, and, as a consequence, force-free motion will look very com-
plicated. There exist, in fact, specific frames of reference with respect to which
force-free motion is always uniform and rectilinear. They are defined as follows.

Definition. Reference frames with respect to which Law I has the analytical form
r̈(t) = 0 are called inertial frames.

In fact, the first of Newton’s laws defines the class of inertial frames. This is
the reason why it is important in its own right and is more than just a special case
of Law II. With respect to inertial frames the second law then has the form

mr̈(t) = K ,

where K is the resultant of the forces applied to the body. Thus Newton’s second
law takes a particularly simple form in inertial systems. If one chooses to describe
the motion by means of reference frames that are accelerated themselves, this fun-
damental law will take a more complicated form although it describes the same
physical situation. Besides the resultant K there will appear additional, fictitious
forces that depend on the momentary acceleration of the noninertial system.

The inertial systems are particularly important because they single out the group
of those transformations of space and time for which the equations of motion (i.e.
the equations that follow from Newton’s laws) are form invariant (i.e. the struc-
ture of the equations remains the same). In Sect. 1.13 we shall construct the class
of all inertial frames. The following proposition is particularly important in this
connection.
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1.3 Inertial Frames in Relative Motion

Let K be an inertial frame. Any frame K′ that moves with constant velocity
w relative to K is also inertial (see Fig. 1.2).

Fig. 1.2. If K is an inertial system,
then so is every K′ whose axes are
parallel to those of K and which
moves with constant velocity w

relative to K

Proof. The position vector r(t) with respect to K becomes r′(t) = r(t)−wt with
respect to K′. Since w is constant, there follows r̈′(t) = r̈(t) = 0. All force-free
motions satisfy the same differential equation (1.6) in either reference system, both
of which are therefore inertial frames. �

The individual solution (1.5) looks different in K than in K′: if the systems
coincide at t = 0, the initial condition (r0, v0) with respect to the first is equivalent
to the initial condition (r0, v0 − w) with respect to the second.

1.4 Momentum and Force

In Law II we identify “motion” with the momentum:

p(t)
def= mṙ(t) ≡ mv , (1.7)

i.e. the product of inertial mass and momentary velocity. The second law, when
expressed as a formula, then reads3

d

dt
p(t) = K(r, ṙ, t) (1.8a)

3 We have interpreted “change of motion” as the time derivative of the momentum. Law II does
not say this so clearly.
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or, if the inertial mass is independent of the state of motion,

mr̈(t) = K(r, ṙ, t) . (1.8b)

If the second form (1.8b) applies, the proportionality factor m, the inertial mass
of the body, can be determined, with respect to a sample body of reference mass
m1, by alternatively exposing the body and the sample to the same force field and
by comparing the resultant accelerations: their ratio fulfills m/m1 = |r̈(1)|/|r̈|.

The mass of macroscopic bodies can be changed by adding or removing mat-
ter. In nonrelativistic physics at macroscopic dimensions mass is an additive quan-
tity; that is, if one joins two bodies of masses m1 and m2, their union has mass
(m1+m2). Another way of expressing this fact is to say that mass is an extensive
quantity.

In the realm of physics at microscopic dimensions one finds that mass is an in-
variant, characteristic property. Every electron has the mass me = 9.11×10−31 kg,
a hydrogen atom has a fixed mass, which is the same for any other hydrogen atom,
all photons are strictly massless, etc.

The relationship (1.7) holds only as long as the velocity is small as compared
to the speed of light c � 3 × 108 m/s. If this is not the case the momentum is
given by a more complicated formula, viz.

p(t) = m
√

1 − v2(t)/c2
v(t) , (1.9)

where c is the velocity of light (see Chap. 4). For |v| � c the expressions (1.9)
and (1.7) differ by terms of order O(|v|2/c2). For these reasons – mass being an
invariant property of elementary particles, and its role in the limit of small veloc-
ity v → 0 – one also calls the quantity m the rest mass of the particle. In the
older literature, when considering the quotient m/

√
1 − v2(t)/c2, one sometimes

talked about this as the moving, velocity dependent mass. It is advisable, how-
ever, to avoid this distinction altogether because it blurs the invariant nature of
rest mass and hides an essential difference between relativistic and nonrelavistic
kinematics. In talking about mass we will always have in mind the invariant rest
mass.

We assume the force K(r, ṙ, t) to be given a priori. More precisely we are talk-
ing about a force field, i.e. a vector-valued function over the space of coordinates
and, if the forces are velocity dependent, the space of velocities. At every point of
this six-dimensional space where K is defined this function gives the force that acts
on the mass point at time t. Such force fields, in general, stem from other physical
bodies, which act as their sources. Force fields are vector fields. This means that
different forces that are applied at the same point in space, at a given time, must
be added vectorially.

In Law III the notion “action” stands for the (internal) force that one body
exerts on another. Consider a system of finitely many mass points with masses
mi and position vectors ri (t), i = 1, 2, . . . , n. Let F ik be the force that particle
i exerts on particle k. One then has F ik = −F ki . Forces of this kind are called
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internal forces of the n-particle system. This distinction is necessary if one wishes
to describe the interaction with further, possibly very heavy, external objects by
means of external forces. This is meaningful, for instance, whenever the reaction
on the external objects is negligible. One should keep in mind that the distinction
between internal and external forces is artificial and is made only for practical
reasons. The source of an external force can always be defined to be part of the
system, thus converting the external to an internal force. Conversely, the example
discussed in Sect. 1.7 below shows that the two-body problem with internal forces
can be reduced to an effective one-body problem through separation of the center-
of-mass motion, where a fictitious particle of mass μ = m1m2/(m1 +m2) moves
in the field of an external force.

1.5 Typical Forces. A Remark About Units

The two most important fundamental forces of nature are the gravitational force
and the Coulomb force. The other fundamental forces known to us, i.e. those de-
scribing the strong and the weak interactions of elementary particles, have very
small ranges of about 10−15 m and 10−18 m, respectively. Therefore, they play no
role in mechanics at laboratory scales or in the planetary system.

The gravitational force is always attractive and has the form

F ki = −Gmimk

ri − rk

|ri − rk|3 . (1.10)

This is the force that particle k with mass mk applies to particle i whose mass
is mi . It points along the straight line that connects the two, is directed from i

to k, and is inversely proportional to the square of the distance between i and k.

G is Newton’s gravitational constant. Apart from G (1.10) contains the gravita-
tional masses (heavy masses or weights) mi and mk . These are to be understood as
parameters characterizing the strength of the interaction. Experiment tells us that
gravitational and inertial masses are proportional to one another (“all bodies fall
at the same speed”), i.e. that they are essentially of the same nature. This highly
remarkable property of gravitation is the starting point for Einstein’s equivalence
principle and for the theory of general relativity. If read as the gravitational mass,
mi determines the strength of the coupling of particle i to the force field created by
particle k. If understood as being the inertial mass, it determines the local acceler-
ation in a given force field. (The third of Newton’s laws ensures that the situation
is symmetric in i and k, so that the discussion of particle k in the field of particle
i is exactly the same.)

In the case of the Coulomb force, matters are different: here the strength is
determined by the electric charges ei and ek of the two particles,

F ki = κCeiek
ri − rk

|ri − rk|3 , (1.11)
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which are not correlated (for macroscopic bodies) to their masses. A ball made of
iron with given mass may be uncharged or may carry positive or negative charges.
The strength as well as the sign of the force are determined by the charges. For
sign ei = sign ek it is repulsive; for sign ei = −sign ek it is attractive. If one
changes the magnitude of ek , for instance, the strength varies proportionally to ek .
The accelerations induced by this force, however, are determined by the inertial
masses as before. The parameter κC is a constant that depends on the units used
(see below).

Apart from these fundamental forces we consider many more forms of forces
that may occur or may be created in the macroscopic world of the laboratory.
Specific examples are the harmonic force, which is always attractive and whose
magnitude is proportional to the distance (Hooke’s law), or those force fields which
arise from the variety of electric and magnetic fields that can be created by all kinds
of arrangements of conducting elements and coils. Therefore it is meaningful to
regard the force field on the right-hand side of (1.8) as an independent element of
the theory that can be chosen at will. The equation of motion (1.8) describes, in
differential form, how the particle of mass m will move under the influence of the
force field. If the situation is such that the particle does not disturb the source of the
force field in any noticeable way (in the case of gravitation this is true whenever
m� Msource) the particle may be taken as a probe: by measuring its accelerations
one can locally scan the force field. If this is not a good approximation, Law III
becomes important and one should proceed as in Sect. 1.7 below.

We conclude this section with a remark about units. To begin with, it is clear
that we must define units for three observable quantities: time, length in coordinate
space, and mass. We denote their dimensions by T , L, and M , respectively:

[t] = T , [r] = L , [m] = M ,

the symbol [x] meaning the physical dimension of the quantity x. The dimensions
and measuring units for all other quantities that occur in mechanics can be reduced
to these basic units and are therefore fixed once a choice is made for them. For
instance, we have

momentum : [p] = MLT −1 ,

force : [K] = MLT −2 ,

energy = force × displacement : [E] = ML2T −2 ,

pressure = force/area : [b] = ML−1T −2 .

For example, one can choose to measure time in seconds, length in centimeters,
and mass in grams. The unit of force is then 1 g cm s−2 = 1 dyn, the energy unit
is 1 g cm2 s−2 = 1 erg, etc. However, one should follow the International System
of Units (SI), which was agreed on and fixed by law for use in the engineering
sciences and for the purposes of daily life. In this system time is measured in
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seconds, length in meters, and mass in kilograms, so that one obtains the following
derived units:

force : 1 kg m s−2 = 1 Newton (= 105 dyn) ,

energy : 1 kg m2 s−2 = 1 Joule (= 107 erg) ,

pressure : 1 kg m−1 s−2 = 1 Pascal = 1 Newton/m2 .

If one identifies gravitational and inertial mass, one finds the following value
for Newton’s gravitational constant from experiment:

G = (6.67428 ± 0.00067)× 10−11 m3 kg−1 s−2 .

For the Coulomb force the factor κC in (1.11) can be chosen to be 1. (This is
the choice in the Gaussian system of electrodynamics.) With this choice electric
charge is a derived quantity and has dimension

[e] = M1/2L3/2T −1 (
κC = 1

)
.

If instead one wishes to define a unit for charge on its own, or, equivalently, a unit
for another electromagnetic quantity such as voltage or current, one must choose
the constant κC accordingly. The SI unit of current is 1 ampere. This fixes the unit
of charge, and the constant in (1.11) must then be chosen to be

κC = 1

4πε0
= c2 × 10−7 ,

where ε0 = 107/4πc2 and c is the speed of light, see Eq. (4.1) below.

1.6 Space, Time, and Forces

At this point it may be useful to give a provisional summary of our discussion of
Newton’s laws I–III. The first law shows the uniform rectilinear motion (1.5) to be
the natural form of motion of every body that is not subject to any forces. If we
send such a body from A to B it chooses the shortest connection between these
points, a straight line. As one may talk in a physically meaningful manner only
about motion relative to an observer, Law I raises the question in which frames of
reference does the law actually hold. In fact, Law I defines the important class of
inertial systems. Only with respect to these does Law II assume the simple form
(1.8b).

The space that supports the motions described by Newton’s equations is a three-
dimensional Euclidean space, i.e. a real space where we are allowed to use the
well-known Euclidean geometry. A priori this is an affine space. By choosing an
origin we make it a real vector space, here R

3. Important properties of the space
of physical motions are its homogeneity (“it looks the same everywhere”) and its
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isotropy (“all directions are equally good”). Time is one-dimensional; it is repre-
sented by points on the real line. In particular, there is an ordering relation which
classifies times into “earlier” and “later”, past and future.

Combining the momentary position of a particle and the time at which it takes
on that position, we obtain an event (x(t), t) ∈ R

3 × Rt, a point in the com-
bined space–time continuum. This definition is particularly important for relativis-
tic physics, which exhibits a deeper symmetry between space and time, as we shall
see later.

In comparing (1.2) and (1.8b) notice the asymmetry between the space and the
time variables of a particle. Let τ again be the proper time as in (1.1), and t the
time measured by an observer. For the sake of simplicity we choose the same unit
for both, i.e. we set α(B) = 1. Equation (1.2) tells us that time runs uniformly and
does not depend on the actual position of the particle nor on the forces which are
applied to it. In contrast, the equation of motion (1.8) describes as a function of time
the set of all possible trajectories that the particle can move on when it is subject
to the given force field. Another way of expressing this asymmetry is this: r(t) is
the dynamical variable. Its temporal evolution is determined by the forces, i.e. by
the dynamics. The time variable, on the other hand, plays the role of a parameter
in nonrelativistic mechanics, somewhat like the length function in the description
of a curve in space. This difference in the assignment of the variables’ roles is
characteristic of the nonrelativistic description of systems of mass points. It does
not hold for continuum mechanics or for any other field theory. It is modified also
in physics obeying special relativity, where space and time hold more symmetric
roles.

Having clarified the notions in terms of which Newton’s laws are formulated,
we now turn to an important application: the two-body problem with internal
forces.

1.7 The Two-Body System with Internal Forces

1.7.1 Center-of-Mass and Relative Motion

In terms of the coordinates r1, r2 of the two particles whose masses are m1 and
m2, the equations of motion read

m1r̈1 = F21 , m2r̈2 = F12 = −F21 . (1.12)

The force that particle “2” exerts on particle “1” is denoted by F21. We will adopt
this notation throughout: F ki is the force field that is created by particle number
k and is felt by particle number i. Taking the sum of these we obtain the equa-
tion m1r̈1 +m2r̈2 = 0, which is valid at all times. We define the center-of-mass
coordinates
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Fig. 1.3. (a) Definition of center-of-mass and rel-
ative coordinates for the two-body system. The
relative coordinate r is independent of the choice
of origin. (b) Force and reaction force in the two-
body system. These gives rise to a central force
in the equation of motion for the relative coor-
dinate

rS
def= 1

m1 +m2

(
m1r1 +m2r2

) ; (1.13)

this means that r̈S = 0, i.e. the center of mass moves at a constant velocity. The
dynamics proper is to be found in the relative motion. Define

r
def= r1 − r2 . (1.14)

By inverting (1.13) and (1.14) we have (see also Fig. 1.3)

r1 = rS + m2

m1 +m2
r , r2 = rS − m1

m1 +m2
r . (1.15)

Inserting these in (1.12) and using r̈S = 0, we find that the equation of motion in
the relative coordinates becomes

μr̈ = F21 . (1.16)

The mass parameter

μ
def= m1m2

m1 +m2

is called the reduced mass. By separating the center of mass we have reduced the
two-body problem to the motion of one particle with mass μ.
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1.7.2 Example: The Gravitational Force Between Two Celestial Bodies
(Kepler’s Problem)

In the case of the gravitational interaction (1.10), (1.12) becomes

m1r̈1 = −Gm1m2

r2

r1 − r2

r
= −Gm1m2

r2

r

r
,

(1.17)
m2r̈2 = −Gm1m2

r2

r2 − r1

r
= +Gm1m2

r2

r

r
,

where r = r1 − r2 and r = |r|, from which follow the equations of motion in
center-of-mass and relative coordinates

r̈S = 0 and μr̈ = −Gm1m2

r2

r

r
.

We can read off the behavior of the system from these equations: the center of mass
moves uniformly along a straight line (or remains at rest). The relative motion is
identical to the motion of a single, fictitious particle of mass μ under the action
of the force

−Gm1m2

r2

r

r
.

Since this is a central force, i.e. one which always points towards the origin or
away from it, it can be derived from a potential U(r) = −A/r with A = Gm1m2.
This can be seen as follows.

Central forces have the general form F (r) = f (r)r̂, where r̂ = r/r and f (r)

is a scalar function that should be (at least) continuous in the variable r = |r|.
Define then

U(r)− U
(
r0
) = −

∫ r

r0

f (r ′)dr ′ ,

where r0 is an arbitrary reference value and where U(r0) is a constant. If we take
the gradient of this expression this constant does not contribute and we obtain

∇U(r) = dU(r)

dr
∇r = −f (r)∇

√
x2 + y2 + z2

= −f (r)r/r .
Thus, F (r) = −∇U(r). In the case of central forces the orbital angular momentum

l
def= μr × ṙ

is conserved; both its magnitude and its direction are constants in time. This follows
from the observation that the acceleration is proportional to r: dl/dt = μr× r̈ = 0.

As a consequence, the motion takes place entirely in a plane perpendicular to l,
namely the one spanned by r0 and v0. Since the motion is planar, it is convenient
to introduce polar coordinates in that plane, viz.
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x(t) = r(t) cosφ(t) , y(t) = r(t) sin φ(t) , (1.18)

so that the components of the angular momentum are

lx = ly = 0 , lz = μr2φ̇ ≡ l = const ,

and, finally,

φ̇ = l/μr2 . (1.19a)

Furthermore the total energy, i.e. the sum of kinetic and potential energy, is con-
served. In order to show this start from the equation of motion for a particle in
the force field of a more general potential U(r)

μr̈ = −∇U(r) .
This is an equation relating two vector fields, the acceleration multiplied by the
reduced mass on the left-hand side, and the gradient field of the scalar function
U(r) on the right-hand side. Take the scalar product of these vector fields with
the velocity ṙ to obtain the scalar equation

μṙ · r̈ = −ṙ ·∇U(r) .
The left-hand side is the time derivative of (μ/2)ṙ2. On the right-hand side, and
with the decomposition r = {x, y, z}, one has

ṙ ·∇U(r) = dx

dt

∂U(r)

∂x
+ dy

dt

∂U(r)

∂y
+ dz

dt

∂U(r)

∂z

which is nothing but the total time derivative of the function U(r(t)) along smooth
curves r(t) in R

3. If these are solutions of the equation of motion, i.e. if they fulfill
μṙ · r̈ = −ṙ ·∇U(r), one obtains

μṙ · r̈ + ṙ ·∇U(r) = d

dt

(
1

2
μṙ2 + U(r)

)
= 0 , hence

dE

dt
= 0 , where E = 1

2
μṙ2 + U(r) .

Thus, even though in general E(r, ṙ) is a function of the position r and the velocity
ṙ, it is constant when evaluated along any solution of the equation of motion. Later
on we shall call this kind of time derivative, taken along a solution, the orbital
derivative.

For the problem that we are studying in this section this result implies that

E = 1
2μv2 + U(r) = 1

2μ
(
ṙ2 + r2φ̇2)+ U(r) = const . (1.20)

We can extract ṙ as a function of r from (1.20) and (1.19):

ṙ =
√

2
(
E − U(r)

)

μ
− l2

μ2r2 . (1.19b)
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Eqs. (1.19a) and (1.19b) form a system of two coupled ordinary differential equa-
tions of first order. They were obtained from two conservation laws, the conserva-
tion of the modulus of the angular momentum and the conservation of the total en-
ergy of the relative motion. Although this coupled system is soluble, see Sect. 1.29
and Practical Example 6 below, the procedure is somewhat cumbersome. It is sim-
pler to work out a parametric form of the solutions by obtaining the radial variable
as a function of the azimuth, r = r(φ) (thereby losing information on the evolution
of r(t) as a function of time, though).

By “dividing” (1.19b) by (1.19a) and making use of dr/dφ = (dr/dt)/(dφ/dt),
we find that

1

r2

dr

dφ
=

√
2μ

(
E − U(r)

)

l2
− 1

r2 .

This differential equation is of a type that can always be integrated. This means that
its solution is reducible to ordinary integrations. It belongs to the class of ordinary
differential equations with separable variables, cf. Sect. 1.22 below, for which
general methods of solution exist. In the present example, where U(r) = −A/r ,
there is a trick that allows to obtain solutions directly, without doing any integrals.
It goes as follows.

Setting U(r) = −A/r and replacing r(φ) by the function σ(φ) = 1/r(φ), we
obtain the differential equation

−dσ

dφ
=

√
2μ(E + Aσ)

l2
− σ 2 ,

where we have made use of dσ/dφ = −r−2dr/dφ.
It is convenient to define the following constants:

p
def= l2

Aμ
, ε

def=
√

1 + 2El2

μA2 .

The parameter p has the dimension of length, while ε is dimensionless. Indeed,
A has the same physical dimension as an energy times a length. Likewise l2 has
the dimension (energy×mass×length2). Hence, l2/(Aμ) is a length, ε is dimen-
sionless. Inserting these definitions the differential equation becomes

(
dσ

dφ

)2

+
(
σ − 1

p

)2

= ε2

p2 .

This equation is solved by substituting σ −1/p = (ε/p) cosφ. Rewritten in terms
of the original variable r(φ) the general solution of the Kepler problem is

r(φ) = p

1 + ε cosφ
. (1.21)

Before proceeding to analyze these solutions we remark that (1.19a) is a con-
sequence of the conservation of angular momentum and is therefore valid for any
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central force. The quantity r2φ̇/2 is the surface velocity at which the radius vector
moves over the plane of motion. Indeed, if r changes by the amount dr, the radius
sweeps out the area dF = |r × dr|/2. Thus, per unit of time,

dF

dt
= 1

2
|r × ṙ| = l

2μ
= 1

2
r2φ̇ = const . (1.22)

This is the content of Kepler’s second law (1609):

The radius vector from the sun to the planets sweeps out equal areas in
equal times.

We note under which conditions this statement holds true: it applies to any
central force but only in the two-body problem; for the motion of a planet it is
valid to the extent the interaction with the other planets is negligible compared to
the action of the sun.

In studying the explicit form of the solutions (1.21) it is useful to introduce
Cartesian coordinates (x, y) in the plane of the orbit. Equation (1.21) is then turned
into a quadratic form in x and y, and the nature of the Kepler orbits is made more
evident: they are conics. One sets

x = r cosφ + c , y = r sin φ ,

and chooses the constant c so that in the equation

r2 = (x − c)2 + y2 = [p − εr cosφ]2 = [p − ε(x − c)]2

the terms linear in x cancel. As long as ε 	= 1, this is achieved by the choice

c = εp

1 − ε2 .

Finally, with the definition

a
def= p

1 − ε2 ,

the function (1.21) becomes

x2

a2 +
y2

a2 − c2 = 1 , (1.21′)

i.e. an equation of second order containing only the squares of x and y. Here two
distinct cases are possible.

(i) ε > 1, i.e. c2 > a2. In this case (1.21′) describes a hyperbola. The center
of the force field lies at one of the foci. For the attractive case (A and p are
positive) the branch of the hyperbola that opens toward the force center is the
physical one. This applies to the case of gravitational interaction (cf. Fig. 1.4).
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Fig. 1.4. If in the Kepler problem the energy E (1.20) is
positive, the orbits of relative motion are branches of hy-
perbolas. The figure shows the relevant branch in the case
of an attractive force

These concave branches describe the orbits of meteorites whose total energy is
positive. Physically speaking, this means that they have enough kinetic energy to
escape from the attractive gravitational field to infinity.

The branch turning away from the force center is the relevant one when the
force is repulsive, i.e. if A and p are negative. This situation occurs in the scattering
of two electric point charges with equal signs.

(ii) ε < 1, i.e. c < a. In this case the energy E is negative. This implies that
the particle cannot escape from the force field: its orbits must be finite everywhere.
Indeed, (1.21′) now describes an ellipse (cf. Fig. 1.5) with

semimajor axis a = p

1 − ε2 = A

2(−E) ,

semiminor axis b =
√
a2 − c2 = √

pa = l√
2μ(−E) .

The orbit is a finite orbit. It is closed and therefore periodic. This is Kepler’s first
law: the planets move on ellipses with the sun at one focus. This law holds true
only for the gravitational interaction of two bodies. All finite orbits are closed and
are ellipses (or circles). In Sect. 1.24 we return to this question and illustrate it
with a few examples for interactions close to, but different from, the gravitational

Fig. 1.5. If the energy (1.20) is negative, the orbit is an
ellipse. The system is bound and cannot escape to infinity
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case. The area of the orbital ellipse is F = πab = πa
√
ap. If T denotes the

period of revolution (the time of one complete circuit of the planet on its orbit),
the area law (1.22) says that F = T l/2μ. A consequence of this is Kepler’s third
law (1615), which relates the third power of the semimajor axis to the square of
the period, viz.

a3

T 2 = A

(2π)2μ
= const = G(m1 +m2)

(2π)2
. (1.23)

If one neglects the mutual interactions of the planets compared to their interaction
with the sun and if their masses are small in comparison with the solar mass, we
obtain:

For all planets of a given planetary system the ratio of the cubes of the
semimajor axes to the squares of the periods is the same.

Of course, the special case of circular orbits is contained in (1.21′). It occurs
when ε = 0, i.e. when E = −μA2/2l2, in which case the radius of the orbit has
the constant value a = l2/μA.

The case ε = 1 is a special case which we have so far excluded. Like the cir-
cular orbit it is a singular case. The energy is exactly zero, E = 0. This means that
the particle escapes to infinity but reaches infinity with vanishing kinetic energy.
The orbit is given by

y2 + 2px − 2pc − p2 = 0 ,

where c may be chosen at will, e.g. c = 0. The orbit is a parabola.
So far we have studied the relative motion of two celestial bodies. It remains

to transcribe this motion back to the true coordinates by means of (1.15). As an
example we show this for the finite orbits (ii). Choosing the center of mass as the
origin, one has

S1 = m2

m1 +m2
r , S2 = − m1

m1 +m2
r .

The celestial bodies 1 and 2 move along ellipses that are geometrically similar to
the one along which the relative coordinate moves. They are reduced by the scale
factors m2/(m1 +m2) and m1/(m1 +m2), respectively. The center of mass S is
a common focus of these ellipses:

S1(φ) = m2

m1 +m2

p

1 + ε cosφ
, S2(φ) = m1

m1 +m2

p

1 + ε cosφ

(
Si ≡ |Si |

)
.

Figure 1.6a shows the case of equal masses; Fig. 1.6b shows the case m1 � m2.
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Fig. 1.6. Upon transformation of the rela-
tive motion of Fig. 1.5 to the real motion of
the two celestial bodies, both move on el-
lipses about the center of mass S, which is
at one of the foci. (a) shows the situation for
equal masses m1 = m2; (b) shows the case
m2 � m1. Cf. Practical Example 1.1

1.7.3 Center-of-Mass and Relative Momentum in the Two-Body System

As we have seen, the equations of motion can be separated in center-of-mass and
relative coordinates. Similarly, the sum of the momenta and the sum of the angular
momenta can be split into parts pertaining to the center-of-mass motion and parts
pertaining to the relative motion. In particular, the total kinetic energy is equal
to the sum of the kinetic energies contained in the center-of-mass and relative
motions, respectively. These facts are important in formulating conservation laws.

Let P be the momentum of the center of mass and p the momentum of the
relative motion. We then have, in more detail,

P
def= (

m1 +m2
)
ṙS = m1ṙ1 +m2ṙ2 = p1 + p2

p
def= μṙ = 1

m1 +m2

(
m2p1 −m1p2

)
,

or, by inverting these equations,

p1 = p+ m1

m1 +m2
P ; p2 = −p+ m2

m1 +m2
P .

The total kinetic energy is

T1 + T2 = p2
1

2m1
+ p2

2

2m2
= p2

2μ
+ P2

2(m1 +m2)
. (1.24)

Thus, the kinetic energy can be written as the sum of the kinetic energy of relative
motion, p2/2μ, and the kinetic energy of the center of mass, P2/2(m1+m2). We
note that there are no mixed terms in p and P .
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In a similar way we analyze the sum L of the angular momenta l1 = m1r1× ṙ1
and l2 = m2r2 × ṙ2. One finds that

L = l1 + l2= rS × ṙS
(
m1 +m2

)+ r × ṙ

[

m1
m2

2

(m1 +m2)2
+m2

m2
1

(m1 +m2)2

]

= (
m1 +m2

)
rS × ṙS + μr × ṙ ≡ lS + lrel . (1.25)

The total angular momentum splits into the sum of the angular momentum lS rel-
ative to the origin O (which can be chosen arbitrarily) and the angular momentum
of the relative motion lrel. The first of these, lS, depends on the choice of the refer-
ence system; the second, lrel, does not. Therefore, the relative angular momentum
is the relevant dynamical quantity.

1.8 Systems of Finitely Many Particles

These notions and definitions generalize to systems of an arbitrary but finite number
of particles as follows. We consider n mass points (m1, m2, . . . , mn), subject to
the internal forces F ik (acting between i and k) and to the external forces Ki . We
assume that the internal forces are central forces, i.e. that they have the form

F ik = Fik
(
rik

)rk − ri

rik

(
rik

def= |ri − rk|
)
, (1.26)

where Fik(r) = Fki(r) is a scalar and continuous function of the distance r. (In
Sect. 1.15 we shall deal with a somewhat more general case.) Central forces can
be derived from potentials

Uik(r) = −
∫ r

r0

Fik(r
′)dr ′ , (1.27)

and we have F ik = −∇kUik(r), where

r =
√(

x(i) − x(k)
)2 + (

y(i) − y(k)
)2 + (

z(i) − z(k)
)2
,

and the gradient is given by

∇k =
(

∂

∂x(k)
,

∂

∂y(k)
,

∂

∂z(k)

)
.

(Remember that Fik is the force that i exerts on k.) The equations of motion read

m1r̈1 = F21 + F31 + . . . + Fn1 +K1 ,

m2r̈2 = F12 + F32 + . . . + Fn2 +K2 ,
...

mnr̈n = F1n + F2n + . . . + Fn−1n +Kn , or (1.28)

mi r̈i =
n∑

k 	=i
F ki +Ki , with F ki = −F ik .

With these assumptions one proves the following assertions.



1.10 The Principle of Angular-Momentum Conservation 21

1.9 The Principle of Center-of-Mass Motion

The center of mass S of the n-particle system behaves like a single particle
of mass M = ∑n

i=1 mi acted upon by the resultant of the external forces:

M r̈S =
n∑

i=1

Ki , where rS
def= 1

M

n∑

i=1

miri . (1.29)

This principle is proved by summing the equations (1.28) over all particles.
The internal forces cancel in pairs because F ki = −F ik , from Newton’s third
law.

1.10 The Principle of Angular-Momentum Conservation

The time derivative of the total angular momentum equals the sum of all
external torques:

d

dt

(
n∑

i=1

li

)

=
n∑

j=1

rj ×Kj . (1.30)

Proof. For a fixed particle with index i

miri × r̈i =
∑

k 	=i
Fki

(
rki

)ri × (ri − rk)

rik
+ ri ×Ki .

The left-hand side is equal to

mi

d

dt

(
ri × ṙi

) = d

dt
li .

Taking the sum over all i yields the result (1.30). The internal forces cancel pair-
wise because the cross product is antisymmetric while the scalar function Fik(rik)
is symmetric in i and k. �
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1.11 The Principle of Energy Conservation

The time derivative of the total internal energy is equal to the total power
(work per unit time) of the external forces, viz.

d

dt
(T + U) =

n∑

i=1

(
vi ·Ki

)
, where

T = 1

2

n∑

i=1

mi ṙ
2
i ≡

∑
Ti and (1.31)

U =
n∑

i=1

n∑

k=i+1

Uik

(
rik

) ≡ U
(
r1, . . . , rn

)
.

Proof. For fixed i one has

mi r̈i = −∇i

∑

k 	=i
Uik

(
rik

)+Ki .

Taking the scalar product of this equation with ṙi yields

mi r̈i · ṙi = 1

2

d

dt

(
mi ṙ

2
i

)
= −ṙi ·∇i

∑

k 	=i
Uik

(
rik

)+ ṙi ·Ki .

Now we take the sum over all particles

d

dt

(
∑

i

1

2
mi ṙ

2
i

)

= −
n∑

i=1

n∑

k=1
k 	=i

ṙi ·∇iUik

(
rik

)+
n∑

i=1

ṙi ·Ki

and isolate the terms i = a, k = b and i = b, k = a, with b > a, of the double
sum on the right-hand side. Their sum is

ṙa ·∇aUab + ṙb ·∇bUba =
[
ṙa ·∇a + ṙb ·∇b

]
Uab = d

dt
Uab ,

because Uab = Uba. From this it follows that

d

dt

[
n∑

i=1

1

2
mi ṙ

2
i +

n∑

i=1

n∑

k=i+1

Uik

(
rik

)
]

=
n∑

j=1

ṙj ·Kj . �

We consider next an important special case: the closed n-particle system.
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1.12 The Closed n-Particle System

A system is said to be closed if all external forces vanish. Proposition 1.9 reduces
now to

M r̈S = 0 , or M ṙS =
n∑

i=1

mi ṙi
def= P = const , and

rS(t) = 1

M
P t + rS(0) with P =

n∑

i=1

pi = const .

This is the principle of conservation of momentum: the total momentum of a closed
system is conserved.

Proposition 1.10 reads

n∑

i=1

ri × pi ≡
n∑

i=1

li ≡ L = const .

The total angular momentum is also an integral of the motion.
Proposition 1.11 finally becomes

T + U =
n∑

i=1

p2
i

2mi

+
∑

k>i

Uik

(
rik

) ≡ E = const .

In summary, the closed n-particle system is characterized by 10 integrals or con-
stants of the motion, viz.

P , the total momentum; P = const Momentum Conservation

rS(t)− 1
M

P t = rS(0) Center-of-Mass Principle

E = T + U = P2

2M + Trel + U Conservation of Energy

L = ∑n
i=1 li = rS × P + lrel Conservation of

Angular Momentum

The quantities {rS(0),P , L,E} form the ten classical constants of the motion of
the closed n-particle system.

This remarkable result calls for questions and some comments:
(i) Perhaps the most obvious question is whether the existence of ten integrals of
the motion guarantees integrability of the equations of motion, and if so, for which
number n of particles it does so. The answer may seem surprising at this point:
a closed two particle system whith central forces is indeed integrable, the general
closed three particle system is not. In other terms, while the constants of the motion
guarantee integrability for n = 2, this is not true for n ≥ 3. The reason for this
observation is that, in addition to be conserved, the integrals of the motion must
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fulfill certain conditions of compatibility. We shall come back to this question in
Sect. 2.37.
(ii) Why are there just ten such integrals? The answer to this question touches upon
a profound relationship between invariance of a physical system under space-time
coordinate transformations and conservation laws. It turns out that the most general
affine transformation that relates one inertial system to another depends on the same
number ten of real parameters. This is what is worked in the next section. Here and
in Chap. 2 it will become clear that there is a one-to-one correspondence between
these parameters and the ten integrals of the motion.

1.13 Galilei Transformations

It is not difficult to verify that the most general affine transformation g that maps
inertial frames onto inertial frames must have the following form:

r →
g

r′ = Rr + wt + a with R ∈ O(3), det R = +1 or − 1 ,

t →
g
t ′ = λt + s with λ = +1 or − 1 .

(1.32)

Here R is a rotation, w a constant velocity vector, a a constant vector of dimension
length. We analyze this transformation by splitting it into several steps, as follows.

1. A shift of the origin by the constant vector a:

r′ = r + a .

2. Uniform motion of K′ relative to K, with constant velocity, such that K and
K′ coincide at time t = 0:

r′ = r + wt .

3. A rotation whereby the system K′ is rotated away from K in such a way
that their origins are the same, as shown in Fig. 1.7, r′ = Rr. Let

r = (
x ≡ r1, y ≡ r2, z ≡ r3

)
r′ = (

x′ ≡ r ′1, y′ ≡ r ′2, z′ ≡ r ′3
)
.

Fig. 1.7. Two Cartesian coordinate systems that are con-
nected by a rotation about the direction n̂ by an angle ϕ
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When written in components, r′ = Rr is equivalent to

r′i =
3∑

k=1

Rikrk , i = 1, 2, 3 .

We must have r′2 = r2 (this is the defining condition for the rotation group), i.e.

3∑

i=1

r ′i r ′i =
3∑

k=1

3∑

l=1

3∑

i=1

RikRilrkrl
!=

3∑

k=1

rkrk , and thus

(1.33)
3∑

i=1

RikRil
!= δkl , or

3∑

i=1

(RT )kiRil
!= δkl .

R is a real orthogonal 3 × 3 matrix. Equation (1.33) implies (det R)2 = 1, i.e.
det R = +1 or −1. Equation (1.33) yields 6 conditions for the 9 matrix elements
of R. Therefore R depends on 3 free parameters, for example a direction n̂ about
which K′ is rotated with respect to K and which is given by its polar angles (θ, φ)
and the angle ϕ by which K must be rotated in order to rearch K′ (see Fig. 1.7).

4. A shift of the time origin by the fixed amount s:

t ′ = t + s .

Collecting all steps we see that the general transformation
(

r

t

)
−→
g

(
r′ = Rr + wt + a

t ′ = λt + s

)
(1.34)

with, initially, det R = +1 and λ = +1, depends on 10 real parameters, viz.

g = g(ϕ, n̂︸︷︷︸
R

,w, a, s) .

There are as many parameters in the Galilei transformation as there are constants
of the motion in the closed n-particle system. The transformations g form a group,
the proper, orthochronous Galilei group G↑

+4. In order to show this, we consider
first the composition of two subsequent transformations of this kind. We have

r1 = R(1)r0 + w(1)t0 + a(1) ; t1 = t0 + s(1) ,

r2 = R(2)r1 + w(2)t1 + a(2) ; t2 = t1 + s(2) .

Writing the transformation from r0 to r2 in the same way,

r2 = R(3)r0 + w(3)t0 + a(3) , t3 = t0 + s(3) ,

we read off the following relations

4 The arrow pointing “upwards” stands for the choice λ = +1; that is, the time direction remains
unchanged. The plus sign stands for the choice det R = +1.
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R(3) = R(2) · R(1)

w(3) = R(2)w(1) + w(2) ,
(1.35)

a(3) = R(2)a(1) + s(1)w(2) + a(2) ,

s(3) = s(2) + s(1) .

One now shows explicitly that these transformations do form a group by ver-
ifying that they satisfy the group axioms:

1. There is an operation defining the composition of two Galilei transforms:

g
(
R(2),w(2), a(2), s(2)

)
g
(
R(1),w(1), a(1), s(1)

) = g
(
R(3),w(3), a(3), s(3)

)
.

This is precisely what we verified in (1.35).
2. This composition is an associative operation: g3(g2g1) = (g3g2)g1. This is so

because both addition and matrix multiplication have this property.
3. There exists a unit element, E = g(1l, 0, 0, 0), with the property giE =

Egi = gi for all gi ∈ G↑
+.

4. For every g ∈ G↑
+ there is an inverse transformation g−1 such that g ·g−1 = E.

This is seen as follows. Let g = g(R, w, a, s). From (1.35) one sees that
g−1 = g(RT, −RTw, sRTw− RTa, −s) is its inverse. Indeed, one verifies

g(RT, −RTw, sRTw− RTa, −s) g(R, w, a, s)

= g(RTR,RTw− RTw,RTa− sRTw+ sRTw− RTa,−s + s)

= g(1l, 0, 0, 0) .

It will become clear later on that there is a deeper connection between the
ten parameters of the proper, orthochronous Galilei group and the constants of
the motion of the closed n-particle system of Sect. 1.12 and that it is therefore no
accident that there are exactly ten such integrals. We shall learn that the invariance
of a mechanical system under

(i) time translations t → t ′ = t + s implies the conservation of total energy E

of the system;
(ii) space translations r → r′ = r + a implies conservation of total momentum

P of the system. The components of a correspond to the components of P in
the sense that if the system is invariant only under translations along a fixed
direction, then only the projection of P onto that direction is conserved;

(iii) rotations r → r′ = R(ϕ)r about a fixed direction implies the conservation
of the projection of the total angular momentum L onto that direction.

The assertions (i–iii) are the content of a theorem by Emmy Noether, which
will be proved and discussed in Sect. 2.19 and, in a somewhat more general form
in 2.41.

Finally, one easily convinces oneself that in the center-of-mass motion the
quantity

rS(0) = rS(t)− P

M
t
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stays invariant under the transformations r → r′ = r + wt.

We conclude this section by considering the choices det R = −1 and/or λ = −1
that we have so far excluded. In the Galilei transformation (1.34) the choice λ = −1
corresponds to a reflection of the time direction, or time reversal. Whether or not
physical phenomena are invariant under this transformation is a question whose
importance goes far beyond mechanics. One easily confirms that all examples con-
sidered until now are indeed invariant. This is so because the equations of motion
contain only the acceleration r̈, which is invariant by itself, and functions of r:

r̈ + f (r) = 0 .

By t → −t the velocity changes sign, ṙ → −ṙ. Therefore, the momentum p and
also the angular momentum l change sign. The effect of time reversal is equivalent
to reversal of motion. All physical orbits can be run over in either direction, forward
or backward.

There are examples of physical systems, however, that are not invariant under
time reversal. These are systems which contain frictional forces proportional to the
velocity and whose equations of motion have the form

r̈ +K ṙ + f (r) = 0 .

With time reversal the damping caused by the second term in this equation would
be changed to an amplification of the motion, i.e. to a different physical process.

The choice det R = −1 means that the rotation R contains a space reflection.
Indeed, every R with det R = −1 can be written as the product of space reflection
(or parity) P:

P def=
⎛

⎝
−1 0 0

0 −1 0
0 0 −1

⎞

⎠ ,

and a rotation matrix R̄ with det R̄ = +1, R = P·R̄. Note that P turns a coordinate
system with right-handed orientation into one with left-handed orientation.

1.14 Space and Time with Galilei Invariance

(i) The invariance of mechanical laws under translations (a) is a manifestation of
the homogeneity of the physical, three-dimensional space; invariance under rota-
tions (R) is an expression of its isotropy. Here we wish to discuss these relations
a little further. Imagine that we observe the motion of the sun and its planets from
an inertial frame K0. In that frame we establish the equations of motion and, by
solving them, obtain the orbits as a function of time. Another observer who uses a
frame K that is shifted and rotated compared to K0 will describe the same plane-
tary system by means of the same equations of motion. The explicit solutions will
look different in his system, though, because he sees the same physics taking place
at a different point in space and with a different spatial orientation. However, the
equations of motion that the system obeys, i.e. the basic differential equations, are
the same in either frame. Of course, the observer in K may also choose his time
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zero differently from the one in K0, without changing anything in the physics that
takes place. It is in this sense that space and time are homogeneous and space, in
addition, is isotropic. Finally, it is also admissible to let the two systems K and
K0 move with constant velocity w relative to each other. The equations of motion
depend only on differences of coordinate vectors (x(i)−x(k)) and therefore do not
change. In other words, physical motion is always relative motion.

So far we have used the passive interpretation of Galilei transformations: the
physical system (the sun and its planets) are given and we observe it from different
inertial frames. Of course, one can also choose the active interpretation, that is,
choose a fixed inertial system and ask the question whether the laws of planetary
motion are the same, independent of where the motion takes place, of how the
orbits are oriented in space, and of whether the center of mass is at rest with
respect to the observer or moves at a constant velocity w.

[Another way of expressing the passive interpretation is this: an observer lo-
cated at a point A of the universe will abstract the same fundamental laws from the
motion of celestial bodies as another observer who is located at a point B of the
universe. For the active interpretation, on the other hand, one would ask a physicist
at B to carry out the same experiments as a physicist whose laboratory is based
at A. If they obtain the same results and reach the same conclusions, under the
conditions on the relative position (or motion) of their reference frames defined
above, physics is Galilei invariant.]

(ii) Suppose we consider two physically connected events (a) and (b), the first
of which takes place at position x(a) at time ta , while the second takes place at
position x(b) at time tb. For example, we throw a stone in the gravitational field
of the earth such that at ta it departs from x(a) with a certain initial velocity and
arrives at x(b) at time tb. We parametrize the orbit x that connects x(a) and x(b)

and likewise the time variable by

x = x(τ ) with x(a) = x
(
τa
)
, x(b) = x

(
τb
)
,

t = t (τ ) with ta = t
(
τa
)
, tb = t

(
τb
)
,

where τ is a scalar parameter (the proper time). The time that a comoving clock
will show has no preferred zero. Furthermore, it can be measured in arbitrary units.
The most general relation between t and τ is then t (τ ) = ατ + β with α and β

real constants. Expressed in the form of a differential equation this means that
d2t/dτ 2 = 0. Similarly, the orbit x(τ ) obeys the differential equation

d2x

dτ 2 + f (r)

(
dt

dτ

)2

= 0 ,

with dt/dτ = α and where f is minus the force divided by the mass. The com-
parison of these differential equations shows the asymmetry between space and
time that we noted earlier. Under Galilei transformations, t (τ ) = ατ +β becomes
t ′(τ ) = ατ + β + s; that is, time differences such as (ta − tb) remain unchanged.
Time t (τ ) runs linearly in τ, independently of the inertial frame one has chosen.
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In this sense the time variable of nonrelativistic mechanics has an absolute char-
acter. No such statement applies to the spatial coordinates, as will be clear from
the following reasoning.

We follow the same physical motion as above, from two different inertial
frames K (coordinates x, t) and K′ (coordinates x′, t ′). If they have the same ori-
entation, they are related by a Galilei transformation g ∈ G↑

+, so that

t ′a − t ′b = ta − tb ,
(
x′(a) − x′(b)

)2 =
(
R
(
x(a) − x(b)

)+ w
(
ta − tb

))2

=
((

x(a) − x(b)
)+ R−1w

(
ta − tb

))2
.

(The last equation follows because the vectors z and Rz have the same length.)
In particular, the transformation law for the velocities is

v′ = R
(
v+ R−1w

)
and v2 = (v′ − w)2 .

In observing the same physical process and measuring the distance between points
(a) and (b), observers in K and K′ reach different conclusions. Thus, unlike the
time axis, orbital space does not have a universal character.

The reason for the difference in the results obtained in measuring a distance
is easy to understand: the two systems move relative to one another with constant
velocity w. From the last equation we see that the velocities at corresponding space
points differ. In particular, the initial velocities at point (a), i.e. the initial condi-
tions, are not the same. Therefore, calculating the distance between (a) and (b)

from the observed velocity and the time difference gives different answers in K
and in K′. (On the other hand, if we chose the initial velocities in (a) to be the
same with respect to K and to K′, we would indeed find the same distance. How-
ever, these would be two different processes.) The main conclusion is that, while
it is meaningful to talk about the spatial distance of two events taking place at the
same time, it is not meaningful to compare distances of events taking place at dif-
ferent times. Such distances depend on the inertial frame one is using. In Sect. 4.7
we shall establish the geometrical structure of space–time that follows from these
considerations.

1.15 Conservative Force Fields

In our discussion of the n-particle system (Sects. 1.8–1.12) we had assumed the
internal forces to be central forces and hence to be potential forces. Here we wish
to discuss the somewhat more general case of conservative forces.

Conservative forces are defined as follows. Any force field that can be represented
as the (negative) gradient field of a time-independent, potential energy U(r),

F = −∇U(r) ,
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is called conservative. This definition is equivalent to the statement that the work
done by such forces along a path from r0 to r depends only on the starting point
and on the end point but is independent of the shape of that path. More precisely,
a force field is conservative precisely when the path integral

∫ r

r0

(F · ds) = −(
U(r)− U(r0)

)

depends on r and r0 only. As already indicated, the integral can then be expressed
as the difference of the potential energies in r and r0. In particular, the balance of
the work done or gained along a closed path is zero if the force is conservative,
viz.

∮

τ

(F · ds) = 0 ,

for any closed path τ.

What are the conditions for a force field to be conservative, i.e. to be derivable
from a potential? If there is a potential U (which must be at least C2), the equal-
ity of the mixed second derivatives ∂2U/∂y∂x = ∂2U/∂x∂y (cyclic in x, y, z)

implies the relations

∂Fy

∂x
− ∂Fx

∂y
= 0 (plus cyclic permutations) .

Thus the curl of F (r), i.e.

curl F
def=

(
∂Fz

∂y
− ∂Fy

∂z
,
∂Fx

∂z
− ∂Fz

∂x
,
∂Fy

∂x
− ∂Fx

∂y

)
,

must vanish. This is a necessary condition, which is sufficient only if the domain
over which the function U(r) is defined and where curl F vanishes is singly con-
nected. Singly connected means that every closed path that lies entirely in the do-
main can be contracted to a point without ever meeting points that do not belong
to the domain. Let τ be a smooth, closed path, let S be the surface enclosed by
it, and let n̂ be the local normal to this surface. Stokes’ theorem of vector analysis
then states that the work done by the force F along the path τ equals the surface
integral over S of the normal component of its curl:

∮

τ

(F · ds) =
∫∫

S

df (curl F ) · n̂ .

This formula shows the relationship between the condition curl F = 0 and the
definition of a conservative force field: the integral on the left-hand side vanishes,
for all closed paths, only if curl F vanishes everywhere.

We consider two examples, for the sake of illustration.
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Example (i) A central force has vanishing curl, since

(
curl f (r)r

)
x
= df

dr

(
∂r

∂y
z− ∂r

∂z
y

)

= df

dr

1

r
(yz− zy) = 0 (plus cyclic permutations) .

Example (ii) The curl of the following force field does not vanish everywhere:

Fx = −B y

�2 , Fy = +B x

�2 , Fz = 0 ,

where

� = x2 + y2 and B = const .

(This is the magnetic field around a straight, conducting wire.) It vanishes only
outside the z-axis, i.e. in R

3 from which the z-axis (x = 0, y = 0) has been cut
out. Indeed, as long as (x, y) 	= (0, 0) we have

(curl F )x = (curl F )y = 0 ,

(curl F )z = B

(
1

�2 −
2x2

�4 + 1

�2 −
2y2

�4

)
= 0 .

For x = y = � = 0, however, the z-component does not vanish. An equivalent
statement is that the closed integral

∮
(F · ds) vanishes for all paths that do not

enclose the z-axis. For a path that winds around the z-axis once one finds that
∮
(F · ds) = 2πB .

This is shown as follows. Choose a circle of radius R around the origin that lies in
the (x, y)-plane. Any other path that winds around the z-axis once can be deformed
continuously to this circle without changing the value of the integral. Choose then
cylindrical coordinates (x = � cosφ, y = � sin φ, z). Then F = (B/�)êφ and

ds = � dφêφ, where êφ = −êx sin φ+ êy cosφ, and
∮
(F ·ds) = B

∫ 2π
0 dφ = 2πB.

A path winding around the z-axis n times would give the result 2πnB.
Yet, in this example one can define a potential, viz.

U(r) = −B arctan (y/x) = −Bφ .

This function is unique over any partial domain of R
3 that avoids the z-axis. How-

ever, as soon as the domain contains the z-axis this function ceases to be unique, in
spite of the fact that curl F vanishes everywhere outside the z-axis. Clearly, such
a domain is no longer singly connected.



32 1. Elementary Newtonian Mechanics

1.16 One-Dimensional Motion of a Point Particle

Let q be the coordinate, p the corresponding momentum, and F(q) the force. We
then have

q̇ = 1

m
p ; ṗ = F(q) . (1.36)

This is another way of writing the equation of motion. The first equation repeats the
definition of the momentum, F(q) on the right-hand side of the second equation
is the force field (in one dimension).

The kinetic energy is T = mq̇2/2 = p2/2m. The function F(q) is assumed
to be continuous. In one dimension there is always a potential energy U(q) =
− ∫ q

q0
F(q ′)dq ′ such that F(q) = −dU(q)/dq. The total energy E = T + U is

conserved:

dE

dt
= d(T + U)

dt
= 0 .

Indeed, calculating the derivatives of T and U one has

d(T + U)

dt
= mq̇q̈ + q̇

dU

dt
= q̇ {mq̈ − F(q)} = 0 ,

where use was made of the equation of motion mq̈ = F(q). Note that the time
derivative is not arbitrary but is taken along solutions q(t) of the equation of mo-
tion. Such solutions are also called orbits of the system and, therefore, the time
derivative which is relevant here, is called the orbital derivative.

Take as an example the harmonic force F(q) = −κp, with κ a real positive
constant, i.e. a force that is linear in the coordinate q and tends to drive the system
back to the equilibrium position q0 = 0 (Hooke’s law),

q̇ = 1

m
p , ṗ = −κq .

In this example kinetic and potential energy are

T = 1

2
mq̇2 = p2

2m
, U(q) = 1

2
κq2 .

Consider a particular solution of the equation of motion mq̈ = −κq, for instance
the one that starts at (q = −a, p = 0) at time t = 0,

q(t) = −a cos
(√

κ/m t
)
, p(t) = a

√
mκ sin

(√
κ/m t

)
.

The spatial motion which is actually seen by an observer is the oscillatory function
q(t) = −a cos(

√
κ/m t) in coordinate space. Although this is a simple function of

time, it would need many words to describe the temporal evolution of the particle’s
trajectory to a third party. Such a description could go as follows: “The particle
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starts at q = −a, where its kinetic energy is zero, its potential energy is maximal
and equal to the total energy U(q = a) = E = (1/2)κa2. It accelerates, as it
is driven to the origin, from initial momentum zero to p = a

√
mκ at the time it

passes the origin. At this moment its potential energy is zero, its kinetic energy
Tkin = E is maximal. Beyond that point the particle is slowed down until it reaches
its maximal position q = a where its momentum vanishes again. After that time
the momentum changes sign, increases in magnitude until the particle passes the
origin, then decreases until the particle reaches its initial position. From then on
the motion repeats periodically, the period being T = 2π

√
m/

√
κ .”

The physics of the particle’s motion becomes much simpler to describe if one
is ready to accept a small step of abstraction: Instead of studying the coordinate
function q(t) in its one-dimensional manifold R alone, imagine a two-dimensional
space with abscissa q and ordinate p,

{
R

2 , with coordinates (q, p)
}
,

and draw the solutions (q(t), p(t)) as curves in that space, parametrized by time
t . In the example we have chosen these are periodic motions, hence closed curves.
Now, the actual physical motion becomes obvious and, in fact, quite simple: In the
two-dimensional space spanned by q and p the particle moves on a closed curve,
reflecting the alternating behaviour of position and momentum, as well as of kinetic
and potential energies. Figures of this kind are shown below in Sect. 1.17.

These elementary considerations and the example we have given may be helpful
in motivating the following definitions.

We introduce a compact notation for the equations (1.36) by means of the
following definitions. With

x˜ =
{
x1

def= q, x2
def= p

} ; F̃ =
{
F1

def= 1

m
p, F2

def= F(q)

}
.

the equations (1.36) are packed into one single differential equation for a two-
component variable

ẋ˜ = F̃(x˜ , t) . (1.37)

The solutions x1(t) = ϕ(t) and x2(t) = mϕ̇(t) of this differential equation are
called phase portraits. The energy function E(q, p) = E(ϕ(t), ϕ̇(t)), when taken
along the phase curves, is constant.

The x˜ are points of a phase space P whose dimension is dim P = 2. One should
note that the abscissa q and the ordinate p, a priori, are independent variables
that span the phase space. The ordinate p becomes a function of q only along
solution curves of (1.36) or (1.37). The physical motion “flows” across the phase
space. To illustrate this new picture of mechanical processes we consider two more
examples.
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1.17 Examples of Motion in One Dimension

1.17.1 The Harmonic Oscillator

The harmonic oscillator is defined by its force law F(q) = −mω2q. The applied
force is proportional to the elongation and is directed so that it always drives the
particle back to the origin. The potential energy is then

U(q) = 1
2mω

2
(
q2 − q2

0

)
, (1.38)

where q0 can be chosen to be zero, without loss of generality. One has

ẋ˜ = F̃(x˜ ) with x1 = q , x2 = p , and

F1 = 1

m
p = 1

m
x2 , F2 = F(q) = −mω2x1 ,

so that the equations of motion (1.37) read explicitly

ẋ1 = 1

m
x2 , ẋ2 = −mω2x1 .

The total energy is conserved and has the form

E = x2
2

2m
+ 1

2
mω2x2

1 = const .

One can hide the constants m and ω by redefining the space, the momentum, and
time variables as follows:

z1(τ )
def= ω

√
mx1(t) , z2(τ )

def= 1√
m
x2(t) , τ

def= ωt .

This transformation makes the energy a simple quadratic form,

E = 1
2

[
z2

1 + z2
2

]
,

while time is measured in units of the inverse circular frequency ω−1 = T/2π .
One obtains the system of equations

dz1(τ )

dτ
= z2(τ ) ,

dz2(τ )

dτ
= −z1(τ ) . (1.39)

It is not difficult to guess their solution for the initial conditions z1(τ = 0) = z0
1,

z2(τ = 0) = z0
2. It is

z1(τ ) =
√(

z0
1

)2 +
(
z0

2

)2
cos(τ − ϕ) ,

z2(τ ) = −
√(

z0
1

)2 +
(
z0

2

)2
sin(τ − ϕ) , where

sin ϕ = z0
2/

√(
z0

1

)2 +
(
z0

2

)2
, cosϕ = z0

1/

√(
z0

1

)2 +
(
z0

2

)2
.
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Fig. 1.8. The harmonic oscillator in one dimension: z1 is the
(reduced) position, z2 the (reduced) momentum variable. The
upper part shows the potential energy; the lower part shows
the phase portraits for two values of the energy

The motion corresponding to a fixed value of the energy E becomes particularly
clear if followed in phase space (z1, z2). The solution curves in phase space are
called phase portraits. In our example they are circles of radius

√
2E, on which the

system moves clockwise. The example is completely symmetric in coordinate and
momentum variables. Figure 1.8 shows in its upper part the potential as a function
of z1 as well as two typical values of the energy. In the lower part it shows the
phase portraits corresponding to these energies.

Note what we have gained in describing the motion in phase space rather than
in coordinate space only. True, the coordinate space of the harmonic oscillator is
directly “visible”. However, if we try to describe the temporal evolution of a spe-
cific solution q(t) in any detail (i.e. the swinging back and forth, with alternating
accelerations and decelerations, etc.), we will need many words for a process that
is basically so simple. Adopting the phase-space description of the oscillator, on
the other hand, means a first step of abstraction because one interprets the momen-
tum as a new, independent variable, a quantity that is measurable but not directly
“visible”. The details of the motion become more transparent and are very sim-
ple to describe: the oscillation is now a closed curve (lower part of Fig. 1.8) from
which one directly reads off the time variation of the position and momentum and
therefore also that of the potential and kinetic energy.

The transformation to the new variables z1 = ω
√
mq and z2 = p/

√
m shows

that in the present example the phase portraits are topologically equivalent to circles
along which the oscillator moves with constant angular velocity ω.
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1.17.2 The Planar Mathematical Pendulum

Strictly speaking, the planar pendulum is already a constrained system: a mass
point moves on a circle of constant radius, as sketched in Fig. 1.9. However, it is
so simple that we may treat it like a free one-dimensional system and do not need
the full formalism of constrained motion yet. We denote by ϕ(t) the angle that
measures the deviation of the pendulum from the vertical and by s(t) = lϕ(t) the
length of the corresponding arc on the circle. We then have

T = 1
2mṡ

2 = 1
2ml

2ϕ̇2 ,

U =
∫ s

0
mg sin ϕ′ ds′ = mgl

∫ ϕ

0
sin ϕ′ dϕ′ , or

U = −mgl[cosϕ − 1] .

Fig. 1.9. The plane mathematical pendulum has only one degree of freedom:
the deviation ϕ from the vertical, or, equivalently, the arc s = lϕ

We introduce the constants

ε
def= E

mgl
= 1

2ω2 ϕ̇
2 + 1 − cosϕ with ω2 def= g

l
.

As in Sect. 1.17.1 we set z1 = ϕ, τ = ωt, and z2 = ϕ̇/ω. Then ε = z2
2/2 + 1 −

cos z1, while the equation of motion mlϕ̈ = −mg sin ϕ reads, in the new variables,

dz1

dτ
= z2(τ ) ,

dz2

dτ
= − sin z1(τ ) . (1.40)

In the limit of small deviations from the vertical one has sin z1 = z1 + O(z3
1)

and (1.40) reduces to the system (1.39) of the oscillator. In Fig. 1.10 we sketch
the potential U(z1) and some phase portraits. For values of ε below 2 the picture
is qualitatively similar to that of the oscillator (see Fig. 1.8). The smaller ε, the
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t]

Fig. 1.10. The potential energy U(q) = 1 − cos q of the plane pendulum, as well as a few phase
portraits p = √

2(ε − 1 + cos q), as a function of q and for several values of the reduced energy
ε = E/mgl. Note that in the text q ≡ z1, p ≡ z2. The values of ε can be read off the ordinate

closer this similarity. For ε > 2 the pendulum always swings in one direction,
either clockwise or anticlockwise. The boundary ε = 2 between these qualitatively
different domains is a singular value and corresponds to the motion where the
pendulum reaches the uppermost position but cannot swing beyond it. In Sect. 1.23
we shall show that the pendulum reaches the upper extremum, which is also an
unstable equilibrium position, only after infinite time. This singular orbit is called
the separatrix; it separates the domain of oscillatory solutions from that of rotating
solutions.

Note that in Fig. 1.10 only the interval q ∈ [−π, +π ] is physically relevant.
Beyond these points the picture repeats itself such that one should cut the figure
at the points marked B and glue the obtained strip on a cylinder.

1.18 Phase Space for the n-Particle System (in R
3)

In Sect. 1.16 we developed the representation of one-dimensional mechanical sys-
tems in phase space. It is not difficult to generalize this to higher-dimensional
systems such as the n-particle system over R

3. For this purpose we set

x1
def= x(1) , x2

def= y(1) , x3
def= z(1) , x4

def= x(2) , . . .

x3n
def= z(n) , x3n+1

def= p(1)x , x3n+2
def= p(1)y , . . . x6n

def= p(n)z .

This allows us to write the equations of motion in the same compact form (1.37)
provided one defines



38 1. Elementary Newtonian Mechanics

F1
def= 1

m1
p(1)x , F2

def= 1

m1
p(1)y , . . . , F3n

def= 1

mn

p(n)z ,

F3n+1
def= F (1)

x , F3n+2
def= F (1)

y , . . . , F6n
def= F (n)

z .

The original equations

ṗ(i) = F (i)
(
r(1), . . . , r(n), ṙ(1), . . . , ṙ(n), t

)
,

ṙ(i) = 1

mi

p(i)

then read

ẋ
˜
= F̃(x

˜
, t) . (1.41)

The variable x˜ = (x1, x2, . . . , x6n) summarizes the 3n coordinates and 3n mo-

menta

r(i) = (
x(i), y(i), z(i)

)
, p(i) = (

p(i)x , p(i)y , p(i)z
)
, i = 1, . . . , n .

The n-particle system has 3n coordinates or degrees of freedom, f = 3n. (The
number of degrees of freedom, i.e. the number of independent coordinate variables,
will always be denoted by f.)

x˜ is a point in phase space whose dimension is dim P = 2f (= 6n, here). This
compact notation is more than a formal trick: one can prove a number of important
properties for first-order differential equations such as (1.41) that do not depend
on the dimension of the system, i.e. the number of components it has.

Remark: Very much like in coordinate space alone, in treating specific prob-
lems of mechanics one should choose sets of coordinates in phase space which
are optimally adapted to the system one is studying. For instance, returning to
the n-body problem considered above, a good choice is the set of Jacobi coor-
dinates for which an interesting example may be found in Exercise 2.24 and its
solution. The idea is to introduce relative and center-of-mass coordinates and mo-
menta for subsystems of increasing particle number. Like in the two-body system
this allows to identify the physically relevant degrees of freedom and to separate
them from the center-of-mass motion. A system of relevance for celestial mechan-
ics is the three-body problem where one of the bodies is much heavier than the
other two.

1.19 Existence and Uniqueness of the Solutions of ẋ˜ = F̃(x˜ , t)

A striking feature of the phase portraits in Figs. 1.8 and 1.10 is that no two phase
curves ever intersect. (Point B of Fig. 1.10 seems an exception: the separatrix
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arriving from above, the one departing towards the bottom, and the unstable
equilibrium meet at B. In reality they do not intersect because B is reached
at different times in the three cases; see below.) This makes sense on physical
grounds: if two phase portraits did intersect, on arriving at the point of intersec-
tion the system would have the choice between two possible ways of continu-
ing its evolution. The description by means of (1.41) would be incomplete. As
phase portraits, indeed, do not intersect, a single point y

˜
∈ P together with (1.41)

fixes the whole portrait. This point y
˜
, which defines the positions and momenta

(or velocities), can be understood as the initial condition that is assumed at a
given time t = s. This condition defines how the system will continue to evolve
locally.

The theory of ordinary differential equations gives precise information about
the existence and uniqueness of solutions for (1.41), provided the function F̃(x˜ , t)
fulfills certain regularity conditions. This information is of immediate relevance for
physical orbits that are described by Newton’s equations. We quote the following
basic theorem but refer to the literature for its proof (see e.g. Arnol’d 1992).

Let F̃(x
˜
, t) with x

˜
∈ P and t ∈ R be continuous and, with respect to x

˜
,

continuously differentiable. Then, for any z
˜
∈ P and any s ∈ R there is a

neighborhood U of z
˜

and an interval I around s such that for all y
˜
∈ U

there is precisely one curve x
˜
(t, s, y

˜
) with t in I that fulfills the following

conditions:

(i)
∂

∂t
x
˜
(t, s, y

˜
) = F̃[x

˜
(t, s, y

˜
), t] ,

(ii) x
˜
(t = s, s, y

˜
) = y

˜
, (1.42)

(iii) x
˜
(t, s, y

˜
) has continuous derivatives in t, s, and y

˜
.

y
˜

is the initial point in phase space from which the system starts at time
t = s. The solution x

˜
(t, s, y

˜
) is called the integral curve of the vector field

F̃(x
˜
, t).

For later purposes (see Chap. 5) we note that F̃(x
˜
, t) ≡ F̃ t (x˜

) can be under-
stood to be a vector field that associates to any x

˜
the velocity vector ẋ

˜
= F̃ t (x˜

).

This picture is a useful tool for approximate constructions of solution curves in
phase space in those cases where one does not have closed expressions for the
solutions. This can be done by graphical means by sketching the velocity field
and drawing curves to which this field is tangent. Alternatively, one may choose
to perform a numerical integration of the equation of motion thereby obtaining
solutions as chains of small arcs in phase space.
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1.20 Physical Consequences of the Existence
and Uniqueness Theorem

Systems described by the equations of motion (1.41) have the following important
properties:

(i) They are finite dimensional, i.e. every state of the system is completely de-
termined by a point z

˜
in P. The phase space has dimension 2f, where f is

the number of degrees of freedom.
(ii) They are differential systems, i.e. the equations of motion are differential

equations of finite order.
(iii) They are deterministic, i.e. the initial positions and momenta determine the

solution locally (depending on the maximal neighborhood U and maximal
interval I ) in a unique way. In particular, this means that two phase curves
do not intersect (in U and I ).

Suppose we know all solutions corresponding to all possible initial conditions,

x
˜
(t, s, y

˜
) ≡ Φ

˜ t,s
(y
˜
) . (1.43)

This two-parameter set of solutions defines a mapping of P onto P, y
˜
→ x

˜
=

Φ
˜ t,s

(y
˜
). This mapping is unique, and both it and its inverse are differentiable.

The set Φ
˜ t,s

(y
˜
) is called the flow in phase space P.

Consider a system whose initial configuration at time s is y
˜
∈ P. The flow

describes how the system will evolve from there under the action of its dynamics.
At time t it takes on the configuration x

˜
, where t may be later or earlier than

s. In the first case we find the future evolution of the system, in the second we
reconstruct its past. As is customary in mathematics, let the symbol ◦ denote the
composition of two maps. For example,

x →
f
y = f (x) →

g
z = g(y) or x −→

g◦f z = g
(
f (x)

)
.

With the times r, s, t in the interval I we then have

Φ
˜ t,s

◦Φ
˜ s,r

= Φ
˜ t,r

, Φ
˜ s,s

= 1 ,

∂

∂t
Φ
˜ t,s

= F˜ t ◦Φ˜ t,s with F˜ t
def= ∂

∂t
Φ
˜ t,s

∣∣∣∣
s=t

.

For autonomous systems, i.e. for systems where F̃ does not depend explicitly on
time, we have

x
˜
(t + r, s + r, y

˜
) = x

˜
(t, s, y

˜
) , or Φ

˜ t+r,s+r
= Φ

˜ t,s
≡ Φ

˜ t−s
. (1.44)

In other words, such systems are invariant under time translations.
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Proof. Let t ′ = t + r, s′ = s + r. As ∂/∂t = ∂/∂t ′, we have

∂

∂t
x
˜
(t + r ≡ t ′ ; s + r ≡ s′, y

˜
) = F̃

(
x
˜
(t ′, s′, y

˜
)
)

with the initial condition

x
˜
(s′, s′, y

˜
) = x

˜
(s + r, s + r, y

˜
) = y

˜
.

Compare this with the solution of

∂

∂t
x
˜
(t, s, y

˜
) = F̃

(
x
˜
(t, s, y

˜
)
)

with x
˜
(s, s, y

˜
) = y

˜
.

From the existence and uniqueness theorem follows

x
˜
(t+r, s+r, y

˜
) = x

˜
(t, s, y

˜
) . �

In principle, for a complete description of the solutions of (1.41) we should
add the time variable as an additional, orthogonal coordinate to the phase space
P. If we do this we obtain what is called the extended phase space P×Rt , whose
dimension is (2f +1) and thus is an odd integer. As time flows monotonously and
is not influenced by the dynamics, the special solution (x˜ (t), t) in extended phase
space P × Rt contains no new information compared to its projection x˜ (t) onto
phase space P alone. Similarly, the projection of the original flow

{
φ
˜ t,s

(y
˜
), t

}
in

extended phase space P×Rt onto P is sufficient to give an almost complete image
of the mechanical system one is considering.

Figure 1.10, which shows typical phase portraits for the planar pendulum, yields
a particularly instructive illustration of the existence and uniqueness theorem.
Given an arbitrary point y

˜
= (q, p), at arbitrary time s, the entire portrait passing

through this point is fixed completely. Clearly, one should think of this figure as a
three-dimensional one, by supplementing it by a time axis. For example, a phase
curve whose portrait (i.e. its projection onto the (q, p)-plane) is approximately a
circle in this three-dimensional space will wind around the time axis like a spiral
(make your own drawing!). The point B, at first, seems an exception: the separatrix
(A) corresponding to the pendulum being tossed from its stable equilibrium posi-
tion so as to reach the highest position without “swinging through”, the separatrix
(B), which starts from the highest point essentially without initial velocity, and the
unstable equilibrium (C) seem to coincide. This is no contradiction to Theorem
1.19, though, because (A) reaches the point B only at t = +∞, (B) leaves at
t = −∞, while (C) is there at any finite t.

We summarize once more the most important consequences of Theorem 1.19.
At any point in time the state of the mechanical system is determined completely
by the 2f real numbers (q1, . . . , qf ; p1, . . . , pf ). We say that it is finite dimen-
sional. The differential equation (1.41) contains the whole dynamics of the system.
The flow, i.e. the set of all solutions of (1.41), transports the system from all possi-
ble initial conditions to various new positions in phase space. This transport, when
read as a map from P onto P, is bijective (i.e. it is one to one) and is differentiable
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in either direction. The flow conserves the differential structure of the dynamics.
Finally, systems described by (1.41) are deterministic: the complete knowledge
of the momentary configuration (positions and momenta) fixes uniquely all future
and past configurations, as long as the vector field is regular, as assumed for the
theorem.5

1.21 Linear Systems

Linear systems are defined by F̃ = Ax˜ +b˜
. They form a particularly simple class

of mechanical systems obeying (1.41). We distinguish them as follows.

1.21.1 Linear, Homogeneous Systems

Here the inhomogeneity b
˜

is absent, so that

ẋ
˜
= Ax

˜
, where A = {

aik
}
,

or, written in components,

ẋi =
∑

k

aikxk . (1.45)

Example. The harmonic oscillator is described by a linear, homogeneous equation
of the type (1.41), viz.

ẋ1 = 1

m
x2

ẋ2 = −mω2x1

}

or

(
ẋ1
ẋ2

)
=

(
0 1

m−mω2 0

) (
x1
x2

)
. (1.46)

The explicit solutions of Sect. 1.17.1 can also be written as follows:

x1(t) = x0
1 cos τ + x0

2/mω sin τ , x2(t) = −x0
1mω sin τ + x0

2 cos τ .

Set τ = ω(t − s) and

y
˜
=

(
y1
y2

)
≡

(
x0

1
x0

2

)
.

Then

x
˜
(t) ≡ x

˜
(t, s, y

˜
) = Φ

˜ t,s
(y
˜
) = M(t, s) · y

˜
, with

M(t, s) =
(

cosω(t − s) 1
mω

sinω(t − s)

−mω sinω(t − s) cosω(t − s)

)
. (1.47)

One confirms that φ
˜ t,s

and M(t, s) depend only on the difference (t − s). This
must be so because we are dealing with an autonomous system. It is interesting
to note that the matrix M has determinant 1. We shall return to this observation
later.

5 Note that the existence and uniqueness is guaranteed only locally (in space and time). Only in
exceptional cases does the theorem allow one to predict the long-term behavior of the system.
Global behavior of dynamical systems is discussed in Sect. 6.3. Some results can also be obtained
from energy estimates in connection with the virial, cf. Sect. 1.31 below.
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1.21.2 Linear, Inhomogeneous Systems

These have the general form

ẋ
˜
= Ax

˜
+ b

˜
. (1.48)

Example. Lorentz force with homogeneous fields. A particle of charge e in external
electric and magnetic fields is subject to the force

K = e

c
ṙ × B + eE . (1.49)

In the compact notation we have

x1 = x , x2 = y , x3 = z , x4 = px , x5 = py , x6 = pz .

Let the magnetic field point in the z-direction, B=B êz, i.e. ṙ×B = (ẏB, −ẋB, 0).
Setting K = eB/mc we then have ẋ˜ = Ax

˜
+ b

˜
, with

A =

⎛

⎜⎜⎜⎜⎜⎜
⎝

0 0 0 1/m 0 0
0 0 0 0 1/m 0
0 0 0 0 0 1/m
0 0 0 0 K 0
0 0 0 −K 0 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

, b
˜
= e

⎛

⎜⎜⎜⎜⎜⎜
⎝

0
0
0
Ex

Ey

Ez

⎞

⎟⎟⎟⎟⎟⎟
⎠

. (1.50)

For a complete treatment of linear systems we refer to the mathematical literature
(see e.g. Arnol’d 1992). Some aspects will be dealt with in Sects. 6.2.2 and 6.2.3
in the framework of linearization of vector fields. A further, important example is
contained in Practical Example 2.1 (small oscillations).

1.22 Integrating One-Dimensional Equations of Motion

The equation of motion for a one-dimensional, autonomous system reads mq̈ =
K(q). If K(q) is a continuous function it possesses a potential energy

U(q) = −
∫ q

q0

K(q ′) dq ′ ,

so that the law of energy conservation takes the form

1
2mq̇

2 + U(q) = E = const .

From this follows a first-order differential equation for q(t):

dq

dt
=

√
2

m

(
E − U(q)

)
. (1.51)
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This is a particularly simple example for a differential equation with separable
variables whose general form is

dy

dx
= g(y)

f (x)
(1.52)

and for which the following proposition holds (see e.g. Arnol’d 1992).

Theorem. Assume the functions f (x) and g(y) to be continuously differentiable
in a neighborhood of the points x0 and y0, respectively, where they do not vanish,
f (x0) 	= 0, g(y0) 	= 0. The differential equation (1.52) then has a unique solution
y = F(x) in the neighborhood of x0 that fulfills the initial condition y0 = F(x0)

as well as the relation
∫ x

x0

dx′

f (x′)
=

∫ F(x)

y0

dy′

g(y′)
. (1.53)

When applied to (1.51) this means that

t − t0 =
√
m

2

∫ q(t)

q0

dq ′
√
E − U(q ′)

; (1.54)

that is, we obtain an equation which yields the solution if the quadrature on the
right-hand side can be carried out. The fact that there was an integral of the mo-
tion (here the law of energy conservation) allowed us to reduce the second-order
equation of motion to a first-order differential equation that is solved by simple
quadrature.

Equations (1.54) and (1.51) can also be used for a qualitative discussion of the
motion: since T + U = E and since T must be T ≥ 0, we must always have
E ≥ U(q). Consider, for instance, a potential that has a local minimum at q = q0,
as sketched in Fig. 1.11. At the points A, B, and C, E = U(q). Therefore, solutions
with that energy E must lie either between A and B, or beyond C, qA ≤ q(t) ≤ qB ,
or q(t) ≥ qC .

Fig. 1.11. Example of potential energy in one di-
mension. From energy conservation the kinetic en-
ergy must vanish in A, B, and C, for a given total
energy E. The hatched areas are excluded for the
position variable q
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As an example, we consider the first case. Here we obtain finite orbits; the
points A and B are turning points where the velocity q̇ passes through zero, ac-
cording to (1.51). The motion is periodic, its period of oscillation being given by
T (E) = 2× (running time from A to B). Thus

T (E) = √
2m

∫ qB(E)

qA(E)

dq ′
√
E − U(q ′)

. (1.55)

1.23 Example: The Planar Pendulum
for Arbitrary Deviations from the Vertical

Figure 1.12 shows the maximal deviation ϕ0 ≤ π. According to Sect. 1.17.2 the
potential energy is U(ϕ) = mgl(1−cosϕ). For ϕ = ϕ0 the kinetic energy vanishes,
so that the total energy is given by

E = mgl
(
1 − cosϕ0

) = mgl(1 − cosϕ)+ 1
2ml

2ϕ̇2 .

Fig. 1.12. Plane mathematical pendulum for an arbitrary deviation
ϕ0 ∈ [0, π ]

The period is obtained from (1.55), replacing the arc s = lϕ by ϕ:

T = 2
√

2m
∫ ϕ0

0
l dϕ/

√
mgl(cosϕ − cosϕ0) . (1.56)

With cosϕ = 1 − 2 sin2(ϕ/2) this becomes

T = 2
√

2

√
l

g

∫ ϕ0

0
dϕ/

√
cosϕ − cosϕ0

= 2

√
l

g

∫ ϕ0

0
dϕ/

√
sin2

(
ϕ0/2

)− sin2(ϕ/2) . (1.56′)
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Substituting the variable ϕ as follows:

sin α
def= sin(ϕ/2)

sin(ϕ0/2)
,

one obtains

dϕ = 2 dα sin
(
ϕ0/2)

)√
1 − sin2 α

/√
1 − sin2

(
ϕ0/2) sin2 α ,

ϕ = 0 → α = 0 ,

ϕ = ϕ0 → α = π/2 ,

and therefore

T = 4

√
l

g
K
[
sin

(
ϕ0/2

)]
, (1.57)

where K(z) = ∫ π/2
0 dα/

√
1 − z2 sin2 α denotes the complete elliptic integral of

the first kind (see e.g. Abramowitz, Stegun 1965).
For small and medium-sized deviations from the vertical, one can expand in

terms of z = sin(ϕ0/2) or directly in terms of ϕ0/2:

(
1 − z2 sin2 α

)−1/2 � 1 + sin2 α
z2

2
+ sin4 α

3z4

8

� 1 + 1
2 sin2 α

(
1
4ϕ

2
0 − 1

48ϕ
4
0

)
+ 3

8 sin4 α 1
16ϕ

4
0 .

The integrals that this expansion leads to are elementary, viz.

∫ π/2

0
sin2n x dx = π

2n!
(
n− 1

2

)(
n− 3

2

)
. . .

1

2
, (n = 1, 2, . . .) .

Thus, one obtains

K(z) � π

2

[
1 + 1

4
z2 + 9

64
z4
]

� π

2

[

1 + 1

16
ϕ2

0 +
(

9

64
− 1

12

)
ϕ4

0

16

]

,

and, finally,

T � 2π

√
l

g

[
1 + 1

16
ϕ2

0 +
11

3072
ϕ4

0

]
. (1.58)

The quality of this expansion can be judged from a numerical comparison of suc-
cessive terms as shown in Table 1.1.

The behavior of T (1.57) in the neighborhood of ϕ0 = π can be studied sep-
arately. For that purpose one calculates the time tΔ that the pendulum takes to
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Table 1.1. Deviation from the harmonic approximation

ϕ0
1

16ϕ
2
0

11
3072ϕ

4
0

10◦ 0.002 3 × 10−6

20◦ 0.0076 1 × 10−4

45◦ 0.039 1.4 × 10−3

swing from ϕ = π−Δ to ϕ = ϕ0 = π−ε, where ε � Δ, cf. Fig. 1.13. Introduce
x = π − ϕ as a new variable and let T (0) = 2π

√
l/q. Then

tΔ

T (0)
= 1

π
√

2

∫ Δ

ε

dx√
cos ε − cos x

� 1

π

∫ Δ

ε

dx√
x2 − ε2

= 1

π
ln 2

Δ

ε
, (1.59)

where we have approximated cos x by 1 − x2/2. For ϕ0 → π , i.e. for ε → 0,
tΔ tends to infinity logarithmically. The pendulum reaches the upper (unstable)
equilibrium only after infinite time.

Fig. 1.13. The plane pendulum for large deviations, say ϕ0 = π − ε, where
ε is small compared to 1. In the text we calculate the time tΔ the pendulum
needs to swing from ϕ = π − Δ to the maximal value ϕ0. One finds that
tΔ goes to infinity like −lnε, as one lets ε tend to zero

It is interesting to note that the limiting case E = 2mgl (unstable equilibrium or
separatrix) can again be integrated by elementary means. Returning to the notation
of Sect. 1.17.2, the variable z1 = ϕ now obeys the differential equation

1

2

(
dz1

dτ

)2

+ (
1 − cos z1

) = 2 , or
dz1

dτ
=

√
2
(
1 + cos z1

)
.

Setting u
def= tan(z1/2), we find the following differential equation for u:

du/
√
u2 + 1 = dτ ,

which can be integrated directly. For example, the solution that starts at z1 = 0 at
time τ = 0 fulfills
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∫ u

0
du′/

√
u′2 + 1 =

∫ τ

0
dτ ′ , and hence ln

(
u+

√
u2 + 1

) = τ .

With u = (eτ − e−τ )/2, the solution for z1 is obtained as follows:

z1(τ ) = 2 arctan(sinh τ) .

If we again choose z1 = π − ε, i.e. u = cot ε/2 � 2/ε, we have u+√
u2 + 1 �

4/ε and τ(ε) � ln(4/ε). The time to swing from z1 = 0 to z1 = π diverges
logarithmically.

1.24 Example: The Two-Body System with a Central Force

Another important example is the two-body system (over R
3) with a central force,

to which we now turn. It can be analyzed in close analogy to the one-dimensional
problem of Sect. 1.22.

The general analysis of the two-body system was given in Sect. 1.7. Since the
force is supposed to be a central force (assumed to be continuous), it can be derived
from a spherically symmetric potential U(r). The equation of motion becomes

μr̈ = −∇U(r) , with μ = m1m2

m1 +m2
; (1.60)

r = r1 − r2 is again the relative coordinate and r = |r|. If the central force reads
F = F(r)r̂, the corresponding potential is U(r) = − ∫ r

r0
F(r ′)dr ′. The motion

takes place in the plane perpendicular to the conserved relative orbital angular
momentum lrel = r × p. Introducing polar coordinates in that plane, x = r cosϕ
and y = r sin ϕ, one has ṙ2 = ṙ2 + r2ϕ̇2.

The energy of relative motion is conserved because no forces apply to the center
of mass and therefore total momentum is conserved:

TS + E = P2

2M
+ μ

2

(
ṙ2 + r2ϕ̇2)+ U(r) = const . (1.61)

Thus, with l ≡ |l| = μr2ϕ̇,

E = 1

2
μṙ2 + l2

2μr2 + U(r) = const . (1.62)

Tr
def= μṙ2/2 is the kinetic energy of radial motion, whereas the term l2/2μr2 =

μr2ϕ̇2/2 can be read as the kinetic energy of the rotatory motion, or as the potential
energy pertaining to the centrifugal force,

Z = −∇
(

1

2
μr2ϕ̇2

)
= −r̂

∂

∂r

(
1

2
μr2ϕ̇2

)
= −μrϕ̇2r̂ = −μ

r
v2
r r̂ .

From angular-momentum conservation
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l = μr2ϕ̇ = const , (1.63)

and from energy conservation (1.62) one obtains differential equations for r(t) and
ϕ(t):

dr

dt
=

√
2

μ

(
E − U(r)

)− l2

μ2r2 ≡
√

2

μ

(
E − Ueff(r)

)
, (1.64)

dϕ

dt
= 1

μr2 , with (1.65)

Ueff(r)
def= U(r)+ l2

2μr2 , (1.66)

where the latter, Ueff(r), can be interpreted as an effective potential. When written
in this form the analogy to the truly one-dimensional case of (1.51) is clearly
visible. Like (1.51) the equation of motion (1.64) can be solved by separation of
variables, yielding r as a function of time t. This must then be inserted into (1.65),
whose integration yields the function ϕ(t). Another way of solving the system of
equations (1.64) and (1.65) is to eliminate the explicit time dependence by dividing
the second by the first and by solving the resulting differential equation for r as
a function of ϕ, viz.

dϕ

dr
= 1

r2
√

2μ(E − Ueff)
. (1.67)

This equation is again separable, and one has

ϕ − ϕ0 = l

∫ r(ϕ)

r0

dr

r2
√

2μ(E − Ueff)
. (1.68)

Writing E = Tr+Ueff(r), the positivity of Tr again implies that E ≥ Ueff(r). Thus,
if r(t) reaches a point r1, where E = Ueff(r1), the radial velocity ṙ(r1) vanishes.
Unlike the case of one-dimensional motion this does not mean (for l 	= 0) that the
particle really comes to rest and then returns. It rather means that it has reached a
point of greatest distance from, or of closest approach to, the force center. The first
is called perihelion or, more generally, pericenter, the second is called aphelion
or apocenter. It is true that the particle has no radial velocity at r1 but, as long as
l 	= 0, it still has a nonvanishing angular velocity.

There are various cases to be distinguished.
(i) r(t) ≥ rmin ≡ rP (“P” for “perihelion”). Here the motion is not finite;

the particle comes from infinity, passes through perihelion, and disappears again
towards infinity. For an attractive potential the orbit may look like the examples
sketched in Fig. 1.14. For a repulsive potential it will have the shape shown in
Fig. 1.15. In the former case the particle revolves about the force center once or
several times; in the latter it is repelled by the force center and will therefore be
scattered.
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Fig. 1.14. Various infinite orbits for an attractive potential
energy. P is the point of closest approach (pericenter or
perihelion)

Fig. 1.15. Typical infinite orbit for a repulsive central potential

(ii) rmin ≡ rP ≤ r(t) ≤ rmax ≡ rA (“A” for “aphelion”). In this case the
entire orbit is confined to the circular annulus between the circles with radii rP
and rA. In order to construct the whole orbit it is sufficient to know that portion of
the orbit which is comprised between an aphelion and the perihelion immediately
succeeding it (see the sketch in Fig. 1.16). Indeed, it is not difficult to realize that
the orbit is symmetric with respect to both the line SA and the line SP of Fig. 1.16.
To see this, consider two polar angles Δϕ and −Δϕ, with Δϕ = ϕ − ϕA, that
define directions symmetric with respect to SA, see Fig. 1.17, with

Δϕ = l

∫ r(ϕ)

rA

dr

r2
√

2μ(E − Ueff)
.

One has

Ueff(r) = Ueff
(
rA

)+ (
Ueff(r)− Ueff

(
rA

)) = E + (
Ueff(r)− Ueff

(
rA

))
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Fig. 1.16. Bound, or finite, orbit for an attractive central
potential. The orbit has two symmetry axes: the line SA
from the force center S to the apocenter, and the line
SP from S to the pericenter. Thus, the entire rosette or-
bit can be constructed from the branch PA of the orbit.
(The curve shown here is the example discussed below, with
α = 1.3, b = 1.5.)

Fig. 1.17. Two symmetric positions before and after passage through
the apocenter

and therefore

Δϕ = l

∫ r(ϕ)

rA

dr

r2
√

2μ
(
Ueff(rA)− Ueff(r)

) . (1.69)

Instead of moving from A to C1, by choosing the other sign of the square root in
(1.69), the system may equally well move from A to C2. From (1.67) this means
that one changes the direction of motion, or, according to (1.64) and (1.65), that
the direction of time is reversed. As r(ϕ) is the same for +Δϕ and −Δϕ, we
conclude that if C1 =

{
r(ϕ), ϕ = ϕA + Δϕ

}
is a point on the orbit, so is C2 ={

r(ϕ), ϕ = ϕA−Δϕ
}
. A similar reasoning holds for P. This proves the symmetry

stated above.
We illustrate these results by means of the following example.

Example. A central potential of the type U(r) = −a/rα. Let (r, ϕ) be the polar
coordinates in the plane of the orbit. Then

dr

dt
= ±

√
2E

μ
− 2U(r)

μ
− l2

μ2r2 , (1.70)

dϕ

dt
= l

μr2 . (1.71)
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Since we consider only finite orbits for which E is negative, we set B
def= − E.

We introduce dimensionless variables by the following definitions:

�(τ)
def=

√
μB

l
r(t) , τ

def= B

l
t .

The equations of motion (1.70) and (1.71) then read

d�

dτ
= ±

√
2b

�α
− 1

�2 − 2 , (1.70′)

dϕ

dτ
= 1

�2 , (1.71′)

where we have set

b
def= a

B

(√
μB

l

)α
.

The value α = 1 defines the Kepler problem, in which case the solutions of (1.70′)
and (1.71′) read

�(ϕ) = 1/b
(
1 + ε cos(ϕ − ϕ0)

)
with ε =

√
1 − 2/b2 .

The constant ϕ0 can be chosen at will, e.g. ϕ0 = 0. Figures 1.18–1.22 show
the orbit �(ϕ) for various values of the parameters α and b. Figure 1.18 shows two
Kepler ellipses with b = 1.5 and b = 3. Figures 1.19, 1.20 illustrate the situation

Fig. 1.18. Two Kepler ellipses (α = 1) with dif-
ferent eccentricities. Cf. Practical Example 1.4

Fig. 1.19. Rosette orbit for the potential U(r) = −a/rα
with α = 1.3 and b = 1.5
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Fig. 1.20. A rosette orbit as in Fig. 1.19 but with
α = 1.1, b = 2.0

Fig. 1.21. Example of a rosette orbit that “stays be-
hind”, with α = 0.9, b = 2

for α > 1 where the orbit “advances” compared with the Kepler ellipse. Similarly,
Figs. 1.21, 1.22, valid for α < 1, show it “staying behind” with respect to the
Kepler case. In either case, after one turn, the perihelion is shifted compared with
the Kepler case (α = 1) either forward (α > 1) or backward (α < 1). In the
former case there is more attraction at perihelion compared to the Kepler ellipse,
in the latter, less, thus causing the rosette-shaped orbit to advance or to stay behind,
respectively.

Remark: From the above exercise it seems plausible that finite orbits which
close after a finite number of revolutions about the origin are the exception rather
than the rule. For this to happen the angle ϕ between the straight lines SA and
SP of Fig. 1.16 must be a rational number times 2π , ϕ = (n/p)(2π), n, p ∈ N,
where p is the number of branches PA of the orbit needed to close it, and n is

Fig. 1.22. A rosette orbit as in Fig. 1.21 but with α = 0.8,
b = 3
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the number of turns about S. For example, in the case of the bound Kepler orbits
we have p = 2 and n = 1. This is a very special case insofar as the points A, S
and P lie on a straight line, with A and P separated by S.

The following theorem answers the even more restrictive question as to whether
all finite orbits in a given central potential close: Bertrand’s theorem6: The central
potentials U(r) = α/r with α < 0 and U(r) = br2 with b > 0 are the only ones
in which all finite (i.e. bound) orbits close.

As we know in the first case, it is the orbits with negative energy which close;
they are the well-known ellipses or circles of the Kepler problem. In the second
case all orbits are closed and elliptical.

Remarks: The examples studied in this section emphasize the special nature
of the Kepler problem whose bound orbits close after one turn around the center of
force. The rosette-like orbit represents the generic case while the ellipse (or circle)
is the exception. This property of the attractive 1/r-potential can also be seen if
instead of the plane of motion in R

3 we study the motion in terms of its momentum
p = (px, py)

T . The solution (1.21) for abitrary orientation of the perihelion

r(t) = p

1 + ε cos(φ(t)− φ0)
,

when decomposed in terms of Cartesian coordinates (x, y) in the plane of motion,
reads

x(t) = p

1 + ε cos(φ(t)− φ0)
cos(φ(t)− φ0) ,

y(t) = p

1 + ε cos(φ(t)− φ0)
sin(φ(t)− φ0) .

The derivatives of x(t) and of y(t) with respect to time are

ẋ(t) = −p sin(φ − φ0)

[1 + ε cos(φ(t)− φ0)]2 φ̇ = − 1

p
(r2φ̇) sin(φ − φ0) ,

ẏ(t) = p
cos(φ − φ0)+ ε

[1 + ε cos(φ(t)− φ0)]2 φ̇ =
1

p
(r2φ̇)

[
cos(φ − φ0)+ ε

]
.

Upon multiplication with the reduced mass μ, making use of the conservation
law (1.19a) for �, the modulus of the angular momentum, � = μr2φ̇, and inserting
the definition p = �2/(Aμ), one obtains

px = μẋ = −Aμ

�
sin(φ − φ0) ,

py = μẏ = Aμ

�

{
cos(φ − φ0)+ ε

}
.

In a two-dimensional space spanned by px and py this solution is a circle about
the point

6 J. Bertrand (1873): R. Acad. Sci. 77, p.849. The proof of the theorem is not too difficult. For
example, Arnol’d proposes a sequence of five problems from which one deduces the assertion,
(Arnol’d, 1989).
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(
0, ε(Aμ/�)

)
= (

0,
√
(Aμ/�)2 + 2μE

)
,

where we have inserted the definition of the excentricity, ε = √
1 + 2E�2/μA2.

The radius of this circle is R = Aμ/�. The bound orbits in the space spanned
by px and py are called hodographs. In the case of the Kepler problem they are
always circles.

This remarkable result is related to another constant of the motion, the Her-
mann-Bernoulli-Laplace-Lenz vector, that applies to the 1/r potential. We will
show this in the framework of canonical mechanics in Exercise 2.31.

1.25 Rotating Reference Systems:
Coriolis and Centrifugal Forces

Let K be an inertial system and K′ another system that coincides with K at time
t = 0 and rotates with angular velocity ω = |ω| about the direction ω̂ = ω/ω, as
shown in Fig. 1.23. Clearly, K′ is not an inertial system. The position vector of a
mass point is r(t) with respect to K and r′(t) with respect to K′, with r(t) = r′(t).
The velocities are related by

v′ = v− ω × r′ ,

where v′ refers to K′ and v to K. Denoting the change per unit time as it is observed
from K′ by d′/dt, this means that

d′

dt
r = d

dt
r − ω × r or

d

dt
r = d′

dt
r + ω × r ,

where

d/dt : time derivative as observed from K ,

d′/dt : time derivative as observed from K′ .

Fig. 1.23. The coordinate system K′ rotates about the sys-
tem K with angular velocity ω
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The relation between dr/dt and d′r/dt must be valid for any vector-valued function
a(t), viz.

d

dt
a = d′

dt
a+ ω × a . (1.72)

Taking ω to be constant in time, we find that the relationship (1.72) is applied to
the velocity a(t) ≡ dr/dt as follows:

d2

dt2
r(t) = d′

dt

(
dr

dt

)
+ ω × dr

dt
= d′

dt

(
d′

dt
r + ω × r

)
+ ω ×

(
d′

dt
r + ω × r

)

= d2′

dt2
r + 2ω × d′

dt
r + ω × (ω × r) . (1.73)

(If ω does depend on time, this equation contains one more term, (d′ω/dt)× r =
(dω/dt)× r = ω̇ × r.)

Newton’s equations are valid in K because K is inertial; thus

m
d2

dt2
r(t) = F .

Inserting the relation (1.73) between the acceleration d2r/dt2, as seen from K,
and the acceleration d2′r/dt2, as seen from K′, in the equation of motion, one
obtains

m
d2′

dt2
r = F − 2mω × d′

dt
r −mω × (ω × r) . (1.74)

When observed from K′, which is not inertial, the mass point is subject not only
to the original force F but also to the

Coriolis force C = −2mω × v′ (1.75)

and the

centrifugal force Z = −mω × (ω × r) , (1.76)

whose directions are easily determined from these formulae.

1.26 Examples of Rotating Reference Systems

Example (i) Any system tied to a point on the earth may serve as an example of a
rotating reference frame. Referring to the notation of Fig. 1.24, the plane tangent to
the earth at A rotates horizontally about the component ωv of ω. In addition, as a
whole, it also rotates about the component ωh (the tangent of the meridian passing
through A). If a mass point moves horizontally, i.e. in the tangent plane, only the
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Fig. 1.24. A coordinate system fixed at a point A on the
earth’s surface rotates about the south–north axis with an-
gular velocity ω = ωv + ωh

component ωv will be effective in (1.75). Thus, in the northern hemisphere the
mass point will be deviated to the right.

For vertical motion, to a first approximation, only ωh is effective. In the north-
ern hemisphere this causes an eastward deviation, which can easily be estimated
for the example of free fall. For the sake of illustration, we calculate this deviation
in two different ways.

(a) With respect to an inertial system fixed in space. We assume the mass point
m to have a fixed position above point A on the earth’s surface. This is sketched
in Fig. 1.25, which shows the view looking down on the north pole. The particle’s
tangent velocity (with reference to K!) is vT(R+h) = (R+h)ω cosϕ.At time t = 0
we let it fall freely from the top of a tower of height H. As seen from K, m moves
horizontally (eastwards) with the constant velocity vT(R+H) = (R+H)ω cosϕ,
while falling vertically with constant acceleration g. Therefore, the height H and
the time T needed to reach the ground are related by H = 1

2gT
2. If at the same

time (t = 0) the point A at the bottom of the tower left the earth’s surface along
a tangent, it would move horizontally with a constant velocity vT(R) = Rω cosϕ.
Thus, after a time T , the mass point would hit the ground at a distance

Δ0 =
(
vT(R +H)− vT(R)

)
T = HωT cosϕ ,

Fig. 1.25. A body falling down vertically is deviated towards
the east. Top view of the north pole and the parallel of latitude
of A
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east of A. In reality, during the time that m needs to fall to the earth, the tower
has continued its accelerated motion, in an easterly direction, and therefore the real
deviation Δ is smaller than Δ0. At time t, with 0 ≤ t ≤ T , the horizontal relative
velocity of the mass point and the tower is

(
vT(R +H)− vT(R +H − 1

2gt
2)
) =

1
2gωt

2 cosϕ. This must be integrated from 0 to T and the result must be subtracted
from Δ0. The real deviation is then

Δ � Δ0 − 1

2
gω cosϕ

∫ T

0
dt t2

= ω cosϕ
∫ T

0
dt

(
H − 1

2
gt2

)
= 1

3
gωT 3 cosϕ .

(b) In the accelerated system moving with the earth. We start from the equa-
tion of motion (1.74). As the empirical constant g is the sum of the gravitational
acceleration, directed towards the center of the earth, and the centrifugal accel-
eration, directed away from it, the centrifugal force (1.76) is already taken into
account. (Note that the Coriolis force is linear in ω while the centrifugal force is
quadratic in ω. In the range of distances and velocities relevant for terrestial prob-
lems both of these are small as compared to the force of attraction by the earth,
the centrifugal force being sizeably smaller than the Coriolis force.) Thus, (1.74)
reduces to

m
d′2r
dt2

= −mgêv − 2mω

(
ω̂ × d′r

dt

)
. (1.74′)

We write the solution in the form r(t) = r(0)(t) + ωu(t), where r(0)(t) = (H −
1
2gt

2)êv is the solution of (1.74′) without the Coriolis force (ω = 0). As ω =
2π/(1 day) = 7.3 × 10−5 s−1is very small, we determine the function u(t) from
(1.74′) approximately by keeping only those terms independent of ω and linear in
ω. Inserting the expression for r(t) into (1.74′), we obtain for u(t)

mω
d′2

dt2
u � 2mgtω

(
ω̂ × êv

)
.

ω̂ is parallel to the earth’s axis, êv is vertical. Therefore, (ω̂× êv) = cosϕêe, where
êe is tangent to the earth’s surface and points eastwards. One obtains

d′2

dt2
u � 2gt cosϕêe ,

and, by integrating twice,

u � 1
3gt

3 cosϕêe .

Thus, the eastward deviation is Δ � 1
3gT

3ω cosϕ, as above.
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Inserting the relation between T and H, we get

Δ � 2
√

2

3
ωg−1/2H 3/2 cosϕ � 2.189 × 10−5H 3/2 cosϕ .

For a numerical example choose H = 160m, ϕ = 50◦. This gives Δ � 2.8 cm.

Example (ii) Let a mass m be connected to a fixed point O in space and let it
rotate with constant angular velocity about that point, as shown in Fig. 1.26. Its
kinetic energy is then T = 1

2mR
2ω2. If we now cut the connection to O, m will

leave the circle (O;R) along a tangent with constant velocity Rω. How does the
same motion look in a system K′ that rotates synchronously?

Fig. 1.26. A mass point rotates uniformly about the ori-
gin O. K′ is a coordinate system in the plane that rotates
synchronously with the particle

From (1.74) one has

m
d2′

dt2
r = 2mω

d′

dt

(
x′2e′1 − x′1e′2

)+mω2r,

or, when written in components,

m
d2′

dt2
x′1 = 2mω

d′

dt
x′2 +mω2x′1 , m

d2′

dt2
x′2 = −2mω

d′

dt
x′1 +mω2x′2 .

The initial condition at t = 0 reads

t = 0

⎧
⎪⎪⎨

⎪⎪⎩

x′1 = R
d′

dt
x′1 = 0 ,

x′2 = 0
d′

dt
x′2 = 0 .

With respect to K we would then have

x1(t) = R , x2(t) = Rωt .

Therefore, the relationships
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x′1 = x1 cosωt + x2 sinωt , x′2 = −x1 sinωt + x2 cosωt

give us at once the solution of the problem, viz.

x′1(t) = R cosωt + Rωt sinωt , x′2(t) = −R sinωt + Rωt cosωt .

It is instructive to sketch this orbit, as seen from K′, and thereby realize that uni-
form rectilinear motion looks complicated when observed from a rotating, nonin-
ertial system.

Example (iii) A particularly nice example is provided by the Foucault pen-
dulum that the reader might have seen in a laboratory experiment or in a sci-
ence museum. The model is the following. In a site whose geographical latitude
is 0 ≤ ϕ ≤ π/2 a mathematical pendulum is suspended in the point with coor-
dinates (0, 0, l) above the ground, and is brought to swing in some vertical plane
through that point. Imagine the pendulum to be modeled by a point mass m sus-
tained by a massless thread whose length is l. In the rotating system K, attached to
the earth, let the unit vectors be chosen such that ê1 points southwards, ê2 points
eastwards, while ê3 denotes the upward vertical direction. A careful sketch of the
pendulum and the base vectors shows that the stress acting on the thread is given
by

Z = Z

(
−x1

l
ê1 − x2

l
ê2 + l − x3

l
ê3

)
,

where we have normalized the components such that Z is the modulus of this
vector field, Z = |Z|. Indeed, l2 = x2

1 + x2
2 + (l − x3)

2 so that the sum of the
squares of the coefficients in the parentheses is equal to 1. Inserting this expression
in the equation of motion (1.75) and denoting, for simplicity, the time derivative
d′
dt with respect to the rotating system K by a dot, the equation of motion reads

mr̈ = Z +mg− 2m(ω × ṙ)−mω × (ω × r) .

For the same reasons as before we neglect the centrifugal force. With the choice
of the reference system described above one has

g = −gê3 , ω = ω

⎛

⎝
− cosϕ

0
sin ϕ

⎞

⎠ , ω × ṙ = ω

⎛

⎝
−ẋ2 sin ϕ

ẋ1 sin ϕ + ẋ3 cosϕ
−ẋ2 cosϕ

⎞

⎠ ,

where ω is the modulus of the angular velocity, and ϕ the geographical latitude.
Writing the equation of motion in terms of its three components one has

mẍ1 = −Z

l
x1 + 2mωẋ2 sin ϕ ,

mẍ2 = −Z

l
x2 − 2mω(ẋ1 sin ϕ + ẋ3 cosϕ) ,

mẍ3 = Z

l
(l − x3)−mg + 2mωẋ2 cosϕ .
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These coupled differential equations are solved most easily in the case of small
oscillations. In this approximation set x3 � 0, ẋ3 � 0 in the third of these and
obtain the modulus of the thread stress from this equation. It is found to be

Z = mg − 2mωẋ2 cosϕ .

Next, insert this approximate expression into the first two equations. For consis-
tency with the approximation of small oscillations terms of the type xi ẋk must be
neglected. In this approximation and introducing the abbreviations

ω2
0 =

g

l
, α = ω sin ϕ ,

the first two equations become

ẍ1 = −ω2
0x1 + 2αẋ2 ,

ẍ2 = −ω2
0x2 − 2αẋ1 .

Solutions of these equations can be constructed by writing them as one complex
equation in the variable z(t) = x1(t)+ ix2(t),

z̈(t) = −ω2
0z(t)− 2iαż(t) .

The ansatz z(t) = Ceiγ t yields two solutions for the circular frequency γ , viz.

γ1 = −α +
√
α2 + ω2

0 , γ2 = −α −
√
α2 + ω2

0 .

Below we will study the solutions for these general expressions. The historical
experiment performed in 1851 by Foucault in the Panthéon in Paris, however, had
parameters such that α was very small as compared to ω0, α2 � ω2

0. Indeed,
given the latitude of Paris, ϕ = 48.50, and the parameters of the pendulum chosen
by Foucault, l = 67 m, m = 28 kg, and, from these, the period T = 16.4 s, one
obtains

ω0 = 2π

T
= 0.383 s−1 ,

α = 2π

1 day
sin ϕ = 2π

86400
sin(48.50) = 5.45 × 10−5 s−1 .

Therefore γ1/2 � −α ± ω0 and the solutions read

z(t) � (c1 + ic2)e
−i(α−ω0)t + (c3 + ic4)e

−i(α+ω0)t .

It remains to split this function into its real and imaginary parts and to adjust the
integration constants to a given initial condition. Suppose the pendulum, at time
zero, is elongated along the 1-direction by a distance a and is launched without
initial velocity, i.e.

x1(0) = a , ẋ1(0) = 0 , x2(0) = 0 , ẋ2(0) = 0 ,
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the approximate solution is found to be

x1(t) � a
[
cos(αt) cos(ω0t)+ (α/ω0) sin(αt) sin(ω0t)

]
,

x2(t) � a
[− sin(αt) cos(ω0t)+ (α/ω0) cos(αt) sin(ω0t)

]
.

As a result the pendulum still swings approximately in a plane. That plane of oscil-
lation rotates very slowly about the local vertical, in a clockwise direction on the
northern hemisphere, in a counter-clockwise direction on the southern hemisphere.
The mark that the tip of the pendulum would leave on the ground is bent slightly
to the right on the northern hemisphere, to the left on the southern hemisphere.
For a complete turn of the plane of oscillation it needs the time 24/sin ϕ hours.
Rigth on the north pole or on the south pole this time is exactly 24 hours. For
the latitude of Paris, it is approximately 32 hours, while at the equator there is no
rotation at all.

In order to better illustrate the motion of a Foucault pendulum for small am-
plitudes let us also consider the case where α is not small as compared to the
unperturbed frequency ω0. For the same initial condition as above, x1(0) = a,
ẋ1(0) = 0, x2(0) = 0 = ẋ2(0), the solution now reads

x1(t) = a
[
cos(αt) cos(ωt)+ (α/ω) sin(αt) sin(ωt)

]
,

x2(t) = a
[− sin(αt) cos(ωt)+ (α/ω) cos(αt) sin(ωt)

]
,

where ω =
√
ω2

0 + α2 .

It is useful to calculate also the components of the velocity. One finds

ẋ1 = −aω
2
0

ω
cos(αt) sin(ωt) ,

ẋ2 = a
ω2

0

ω
sin(αt) sin(ωt) .

The two components of the velocity vanish simultaneously at the times

tn = nπ

ω
= n

2
T , n = 0, 1, 2, . . . .

This means that at these points of return both components go through zero and
change signs, the projection of the pendulum motion on the horizontal plane shows
spikes. Figure 1.27 gives a qualitative top view of the motion.

For a quantitative analysis we choose the circular frequency α comparable to
ω̄. In the two examples given next these frequencies are chosen relatively rational,
α/ω̄ = 1/4. (Clearly, this choice is not realistic for the case of the earth and the
original Foucault pendulum.) For a rational ratio α/ω̄ = n/m the curve swept out
by the tip of the pendulum on the horizontal plane closes. In all other cases it will
not close. Figure 1.28 shows the solution given above for the initial condition

x1(0) = 1 , ẋ1(0) = 0 , x2(0) = 0 , ẋ2(0) = 0 ,

It closes after four oscillations and exhibits the spikes discussed above.
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m

a

S

O

V Fig. 1.27. A Foucault pendulum, seen from above, starts
at the distance a in the South, without initial velocity.
The mark it makes on the horizontal plane is bent to
the right and exhibits spikes at the turning points

0

– 0,5

1–1 0,5

0,5

1

–1

– 0,5

Fig. 1.28. Mark left on the horizontal plane by a pendulum that starts from x1(0) = 1 without initial
velocity. The ratio of circular frequencies is chosen rational, α/ω̄ = 1/4

Another solution is the following

x1(t) = a sin(αt) sin(ωt) ,

x2(t) = a cos(αt) sin(ωt) .

From this one finds the components of the velocity to be
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Fig. 1.29. Mark swept out by the pendulum when it starts from the equilibrium position and is
kicked with initial velocity ω̄ in the 2-direction. The ratio of circular frequencies is chosen rational
and has the same value as in Fig. 1.28

ẋ1 = a
[
α cos(αt) sin(ωt)+ ω sin(αt) cos(ωt)

]
,

ẋ2 = a
[−α sin(αt) sin(ωt)+ ω cos(αt) cos(ωt)

]
,

which corresponds to the initial condition

x1(0) = 0 , ẋ1(0) = 0 , x2(0) = 0 , ẋ2(0) = aω .

This solution is the one where the pendulum starts at the equilibrium position and
is being kicked in the 2-direction with initial velocity aω̄. At the points of return
x2

1+x2
2 = a2 sin2(ω̄t) is maximal. Thus, they occur at times tn = (2n+ 1)π/(2ω̄),

and one has

ẋ1(tn) = aα(−)n cos
(
(2n+ 1)(α/ω)(π/2)

)
,

ẋ2(tn) = −aα(−)n sin
(
(2n+ 1)(α/ω)(π/2)

)
.

This means that the track on the horizontal plane exhibits no more spikes but is
“rounded off” at these points. This solution is illustrated by Fig. 1.29 for the case
of the same rational ratio of α and ω̄ as in the previous example.

1.27 Scattering of Two Particles that Interact
via a Central Force: Kinematics

In our discussion of central forces acting between two particles we have touched
only briefly on the infinite orbits, i.e. those which come from and escape to infin-
ity. In this section and in the two that follow we wish to analyze these scattering
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orbits in more detail and to study the kinematics and the dynamics of the scatter-
ing process. The description of scattering processes is of central importance for
physics at the smallest dimensions. In the laboratory one can prepare and identify
free, incoming or outgoing states by means of macroscopic particle sources and
detectors. That is, one observes the scattering states long before and long after the
scattering process proper, at large distances from the interaction region, but one
cannot observe what is happening in the vicinity of the interaction region. The out-
come of such scattering processes may therefore be the only, somewhat indirect,
source of information on the dynamics at small distances. To quote an example,
the scattering of α-particles on atomic nuclei, which Rutherford calculated on the
basis of classical mechanics (see Sect. 1.28 (ii) and Sect. 1.29) was instrumental
in discovering nuclei and in measuring their sizes.

We consider two particles of masses m1 and m2 whose interaction is given by
a spherically symmetric potential U(r) (repulsive or attractive). The potential is
assumed to tend to zero at infinity at least like 1/r. In the laboratory the experiment
is usually performed in such a way that particle 2 is taken to be at rest (this is the
target) while particle 1 (the projectile) comes from infinity and scatters off particle
2 so that both escape to infinity. This is sketched in Fig. 1.30a. This type of motion
looks asymmetric in the two particles because in addition to the relative motion it
contains the motion of the center of mass, which moves along with the projectile
(to the right in the figure). If one introduces a second frame of reference whose
origin is the center of mass, the motion is restricted to the relative motion alone

Fig. 1.30. (a) Projectile 1 comes from infinity and scatters off target 2, which is initially at rest.
(b) The same scattering process seen from the center of mass of particles 1 and 2. The asymmetry
between projectile and target disappears
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(which is the relevant one dynamically) and one obtains the symmetric picture
shown in Fig. 1.30b. Both, the laboratory system and the center-of-mass system
are inertial systems. We can characterize the two particles by their momenta long
before and long after the collision, in either system, as follows:

in the laboratory system:

pi before, p′i after the collision, i = 1, 2;
in the center-of-mass system:

q∗ and −q∗ before, q′∗ and −q′∗ after the collision.

If we deal with an elastic collision, i.e. if the internal state of the particles does
not change in the collision, then p2 = 0 and energy conservation together imply
that

p2
1

2m1
= p′21

2m1
+ p′22

2m2
. (1.77)

In addition, momentum conservation gives

p1 = p′1 + p′2 . (1.78)

Decomposing in terms of center-of-mass and relative momenta, and making use
of the equations obtained in Sect. 1.7.3, one obtains for the initial state

p1 =
m1

M
P + q∗ ,

(
M

def= m1 +m2
)

p2 =
m2

M
P − q∗ = 0 ; (1.79a)

that is,

P = M

m2
q∗ and p1 = P .

Likewise, after the collision we have

p′1 =
m1

M
P + q′∗ = m1

m2
q∗ + q′∗ ,

p′2 =
m2

M
P − q′∗ = q∗ − q′∗ . (1.79b)

As the kinetic energy of the relative motion is conserved, q∗ and q′∗ have the same
magnitude,

|q∗| = |q′∗| def= q∗ .

Let θ and θ∗ denote the scattering angle in the laboratory and center-of-mass
frames, respectively. In order to convert one into the other it is convenient to con-
sider the quantities p1 · p′1 and q∗ · q′∗, which are invariant under rotations. With
p1 = q∗M/m2 and p′1 = q∗m1/m2 + q′∗ one has
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p1 · p′1 =
M

m2

(
m1

m2
q∗2 + q∗ · q′∗

)
= M

m2
q∗2

(
m1

m2
+ cos θ∗

)
.

On the other hand,

p1 · p′1 = |p1‖p′1| cos θ = M

m2
q∗

∣∣∣
m1

m2
q∗ + q′∗

∣∣∣ cos θ

= M

m2
q∗2

√√√√
[

1 + 2
m1

m2
cos θ∗ +

(
m1

m2

)2
]

cos θ .

From this follows

cos θ =
(
m1

m2
+ cos θ∗

)/
√√
√
√

[

1 + 2
m1

m2
cos θ∗ +

(
m1

m2

)2
]

,

or

sin θ = sin θ∗
/

√√
√
√

[

1 + 2
m1

m2
cos θ∗ +

(
m1

m2

)2
]

,

or, finally,

tan θ = sin θ∗
(
m1/m2

)+ cos θ∗
. (1.80)

In Fig. 1.30a the target particle escapes in the direction characterized by the
angle φ in the laboratory system. By observing that the triangle

(
p′2, q∗, q′∗

)
has

two equal sides and that q∗ has the same direction as p1 one can easily show that
φ is related to the scattering angle in the center-of-mass system by

φ = π − θ∗

2
. (1.81)

Several special cases can be read off the formulae (1.79) and (1.80).
(i) If the mass m1 of the projectile is much smaller than the mass m2 of the

target, m1 � m2, then θ∗ � θ. The difference between the laboratory and center-
of-mass frames disappears in the limit of a target that is very heavy compared to
the projectile.

(ii) If the masses are equal, m1 = m2, (1.80) and (1.81) give the relations

θ = θ∗/2 , θ + φ = π/2 .

With respect to the laboratory system the outgoing particles leave in directions
perpendicular to each other. In particular, in the case of a central collision, θ∗ = π,

and, because of q′∗ = −q∗,

p′1 = 0 , p′2 = p1 .

The projectile comes to a complete rest, while the target particle takes over the
momentum of the incoming projectile.
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1.28 Two-Particle Scattering with a Central Force: Dynamics

Consider a scattering problem in the laboratory system sketched in Fig. 1.31. The
projectile (1) comes in from infinity with initial momentum p1, while the target (2)
is initially at rest. The initial configuration is characterized by the vector p1 and
by a two-dimensional vector b, perpendicular to p1, which indicates the azimuthal
angle and the distance from the z-axis (as drawn in the figure) of the incident
particle. This impact vector is directly related to the angular momentum:

Fig. 1.31. Kinematics of a scattering process
with two particles, seen from the laboratory
system. The particle with mass m2 is at rest
before the scattering

l = r × q∗ = m2

M
r × p1 =

m2

M
b× p1 = b× q∗ . (1.82)

Its modulus b = |b| is called the impact parameter and is given by

b = M

m2|p1|
|l| = 1

q∗
|l| . (1.83)

If the interaction is spherically symmetric (as assumed here), or if it is axially
symmetric about the z-axis, the direction of b in the plane perpendicular to the z-
axis does not matter. Only its modulus, the impact parameter (1.83), is dynamically
relevant.

For a given potential U(r) we must determine the angle θ into which particle
1 will be scattered, once its momentum p1 and its relative angular momentum
are given. The general analysis presented in Sects. 1.7.1 and 1.24 tells us that we
must solve the equivalent problem of the scattering of a fictitious particle of mass
μ = m1m2/M, subject to the potential U(r). This is sketched in Fig. 1.32. We
have

E = q∗2

2μ
, l = b× q∗ . (1.84)

Let P be the pericenter, i.e. the point of closest approach. Figure 1.32 shows the
scattering process for a repulsive potential and for different values of the impact
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Fig. 1.32. Scattering orbits in the repulsive potential
U(r) = A/r (with A > 0). The impact parame-
ter is measured in units of the characteristic length

λ
def= A/E, with E the energy of the incoming parti-

cle. Cf. Practical Example 1.5

parameter. In Sect. 1.24 we showed that every orbit is symmetric with respect to
the straight line joining the force center O and the pericenter P. Therefore, the
two asymptotes to the orbit must also be symmetric with respect to OP 7. Thus,
if ϕ0 is the angle between OP and the asymptotes, we have

θ∗ = |π − 2ϕ0| .
The angle ϕ0 is obtained from (1.68), making use of the relations (1.84)

ϕ0 =
∫ ∞

rP

l dr

r2
√

2μ(E − U(r))− l2/r2

=
∫ ∞

rP

b dr

r2
√

1 − b2/r2 − 2μU(r)/q∗2
. (1.85)

For a given U(r), ϕ0, and hence the scattering angle θ∗ are calculated from this
equation as functions of q∗ (i.e. of the energy, via (1.84) and of b. However, some
care is needed depending on whether or not the connection between b and q∗ is
unique. There are potentials such as the attractive 1/r2 potential where a given
scattering angle is reached from two or more different values of the impact pa-
rameter. This happens when the orbit revolves about the force center more than
once (see Example (iii) below).

A measure for the scattering in the potential U(r) is provided by the differential
cross section dσ. It is defined as follows. Let n0 be the number of particles incident
on the unit area per unit time; dn is the number of particles per unit time that are

7 The orbit possesses asymptotes only if the potential tends to zero sufficiently fast at infinity. As
we shall learn in the next section, the relatively weak decrease 1/r is already somewhat strange.
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scattered with scattering angles that lie between θ∗ and θ∗ + dθ∗. The differential
cross section is then defined by

dσ
def= 1

n0
dn . (1.86)

Its physical dimension is [dσ ] = area.
If the relation between b(θ∗) and θ∗ is unique, then dn is proportional to n0

and to the area of the annulus with radii b and b + db,

dn = n02πb(θ∗) db ,

and therefore

dσ = 2πb(θ∗) db = 2πb(θ∗)
∣
∣
∣
∣
db(θ∗)

dθ∗

∣
∣
∣
∣dθ

∗ .

If to a fixed θ∗ there correspond several values of b(θ∗), the contributions of all
branches of this function must be added.

It is convenient to refer dσ to the infinitesimal surface element on the unit
sphere dΩ∗ = sin θ∗dθ∗dφ∗ and to integrate over the azimuth φ∗. With dω ≡
2π sin θ∗dθ∗ we then have

dσ = b(θ∗)
sin θ∗

∣∣∣∣
db(θ∗)

dθ∗

∣∣∣∣dω . (1.87)

We study three instructive examples.

Example (i) Scattering off an ideally reflecting sphere. With the notations of
Fig. 1.33

b = R sin
Δα

2
= R cos

θ∗

2
.

Here we have used the relationship Δα = π−θ∗, which follows from the equality
of the angle of incidence and the angle of reflection. Thus

Fig. 1.33. Scattering by an ideally reflecting sphere of
radius R
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db

dθ∗
= −R

2
sin

θ∗

2
and

dσ

dω
= R2

2

(cos θ∗/2)(sin θ∗/2)

sin θ∗
= R2

4
.

Integrating over dω we obtain the total elastic cross section

σtot = πR2 ,

a result that has a simple geometric interpretation: the particle sees the projection
of the sphere onto a plane perpendicular to its momentum.

Example (ii) Scattering of particles off nuclei (Rutherford scattering). The poten-
tial is U(r) = κ/r with κ = q1q2, where q1 is the charge of the α-particle (this is a
Helium nucleus, which has charge q1 = 2e), while q2 is the charge of the nucleus
that one is studying. Equation (1.85) can be integrated by elementary methods and
one finds (making use of a good table of integrals) that

ϕ0 = arctan

(
bq∗2

μκ

)
, or (1.88)

tan ϕ0 = bq∗2

μκ
, (1.88′)

from which follows

b2 = κ2μ2

q∗4 tan2ϕ0 = κ2μ2

q∗4 cot2 θ
∗

2
,

and, finally, Rutherford’s formula

dσ

dω
=

( κ

4E

)2 1

sin4(θ∗/2)
. (1.89)

This formula, which is also valid in the context of quantum mechanics, was the
key to the discovery of atomic nuclei. It gave the first hint that Coulomb’s law is
valid at least down to distances of the order of magnitude 10−12 cm.

In this example the differential cross section diverges in the forward direction,
θ∗ = 0, and the total elastic cross section σtot =

∫
dω(dσ/dω) is infinite. The

reason for this is the slow decrease of the potential at infinity. U(r) = κ/r can
be felt even at infinity, it is “long ranged”. This difficulty arises with all potentials
whose range is infinite.

Example (iii) Two-body scattering for an attractive inverse square potential. The
potential is U(r) = −α/r2, where α is a positive constant. For positive energy
E > 0 all orbits are scattering orbits. If l2 > 2μα, we have

ϕ − ϕ0 = r
(0)
P

∫ r

r0

dr ′

r ′
√
r ′2 − r2

P
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with μ the reduced mass, rP =
√
(l2 − 2μα)/2μE the distance at perihelion, and

r
(0)
P = l/

√
2μE. If the projectile comes in along the x-axis the solution is

ϕ(r) = l
√
l2 − 2μα

arcsin
(
rP/r

)
.

We verify that for α = 0 there is no scattering. In this case

ϕ(0)(r) = arcsin
(
r
(0)
P /r

)
,

which means that the projectile moves along a straight line parallel to the x-axis,
at a distance r(0)P from the scattering center. For α 	= 0 the azimuth at rP is

ϕ
(
r = rP

) = l
√
l2 − 2μα

π

2
.

Therefore, after the scattering the particle moves in the direction

l
√
l2 − 2μα

π .

It turns around the force center n times if the condition

l
√
l2 − 2μα

(
arcsin

rP

∞ − arcsin
rP

rP

)
= r

(0)
P

rP

π

2
> nπ

is fulfilled. Thus, n = r
(0)
P /2rP, independently of the energy.

For l2 < 2μα the integral above is (for the same initial condition)

ϕ(r) = r
(0)
P

b
ln
b +√

b2 + r2

r
,

where we have set b = √
(2μα − l2)/2μE. The particle revolves about the force

center, along a shrinking spiral. As the radius goes to zero, the angular velocity ϕ̇

increases beyond any limit such that the product μr2ϕ̇ = l stays constant (Kepler’s
second law.)

1.29 Example: Coulomb Scattering of Two Particles
with Equal Mass and Charge

It is instructive to study Rutherford scattering in center-of-mass and relative coordi-
nates and thereby derive the individual orbits of the projectile and target particles.
We take the masses to be equal, m1 = m2 ≡ m, and the charges to be equal,
q1 = q2 ≡ Q, for the sake of simplicity. The origin O of the laboratory system
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Fig. 1.34. Scattering of two equally
charged particles of equal masses, under
the action of the Coulomb force. The hy-
perbola branches are the orbits with re-
spect to the center of mass. The arrows
indicate the velocities at pericenter and
long after the scattering with respect to
the laboratory system

is chosen such that it coincides with the center of mass at the moment of clos-
est approach of the two particles, see Fig. 1.34. Let r1 and r2 be the coordinates
of the two particles in the laboratory system and r∗1 and r∗2 their coordinates in
the center-of-mass-system. If rS denotes the center-of-mass and r = r∗1 − r∗2 the
relative coordinate, then

r1 = rS + 1
2r , r∗1 = −r∗2 = 1

2r , r2 = rS − 1
2r . (1.90)

The total momentum is P = p1 = 2q∗; the total energy decomposes into relative
and center-of-mass motion as follows:

E = Er + ES = q∗2

2μ
+ P2

2M
.

As μ = m/2 and M = 2m, we have

Er = ES = q∗2

m
.

The orbit of the center of mass S is

rS(t) =
√
Er

m
te1 . (1.91)

For the relative motion we have from Sect. 1.7.2

r(ϕ) = p

ε cos(ϕ − ϕ0)− 1
, ϕ ∈ [

0, 2ϕ0
]
,

p = 2l2

mQ2 , ε =
√

1 + 4Erl2

mQ4 , (1.92)

and from (1.88′)
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cosϕ0 = 1

ε
, sin ϕ0 =

√
ε2 − 1

ε
.

Thus, in the center-of-mass frame r∗1 = r∗2 = r(ϕ)/2, with r(ϕ) from (1.92). Here
ϕ is the orbit parameter, its relation to the azimuth angles of particles 1 and 2
being

ϕ1 = π − ϕ , ϕ2 = 2π − ϕ .

This means, in particular, that the motion of the two particles on their hyperbolas
(Fig. 1.34) is synchronous in the parameter ϕ.

It is not difficult to derive the velocities v1(t) and v2(t) of the two particles in
the laboratory system from (1.90–92). One needs the relation dϕ/dt = 2l/mr2.

From this and from

dx1

dt
=

√
Er

m
+ 1

2

d

dt

(
r cosϕ1

) =
√
Er

m
− 1

2

d

dϕ
(r cosϕ)

dϕ

dt
, etc.

one finds the result

dx1

dt
= 2

√
Er

m
− l

mp
sin ϕ = l

mp

(
2
√
ε2 − 1 − sin ϕ

)

dy1

dt
= l

mp
(1 − cosϕ) . (1.93)

For v2(t) one obtains

dx2

dt
= l

mp
sin ϕ ,

dy2

dt
= − l

mp
(1 − cosϕ) . (1.94)

Three special cases, two of which are marked with arrows in Fig. 1.34, are read
off these formulae.

(i) At the beginning of the motion, ϕ = 0:

v1 =
(

2

√
Er

m
, 0

)

, v2 = (0, 0) .

(ii) At the pericenter, ϕ = ϕ0:

v1 = l

mpε

(
(2ε − 1)

√
ε2 − 1 , ε − 1

)
, v2 = l

mpε

(√
ε2 − 1 , −(ε − 1)

)
.

(iii) After the scattering, ϕ = 2ϕ0:

v1 = 2l(ε2 − 1)

mpε2

(√
ε2 − 1, 1

)
, v2 = 2l

mpε2

(√
ε2 − 1, −(

ε2 − 1
)
.

Thus, the slope of v1 is 1/
√
ε2 − 1 = 1/tan ϕ0, while the slope of v2 is

−√ε2 − 1 = −tan ϕ0.
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Of course, it is also possible to give the functions xi(ϕ) and yi(ϕ) in closed
form, once t (ϕ) is calculated from (1.65):

t (ϕ) = mp2

2l

∫ ϕ

ϕ0

dϕ′
(
1 − ε cos(ϕ′ − ϕ0)

)2 . (1.95)

(The reader should do this.) Figure 1.35 shows the scattering orbits in the center-
of-mass system for the case ε = 2/

√
3, i.e. for ϕ0 = 30◦, in the basis of the

dimensionless variables 2xi/p and 2yi/p. The same picture shows the positions
of the two particles in the laboratory system as a function of the dimensionless
time variable

τ
def= t

2l

mp2 .

According to (1.95) this variable is chosen so that the pericenter is reached for
τ = 0.

Fig. 1.35. Coulomb scattering of two particles
(m1 = m2, q1 = q2) with ϕ0 = 30◦. The hy-
perbola branches are the scattering orbits in the
center-of-mass system. The open points show
the positions of the two particles in the labo-
ratory system at the indicated times
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The problem considered here has a peculiar property that one meets in asking
where the target (particle 2) was at time t = −∞. The answer is not evident from
the figure and one must return to (1.92). With dx2/dϕ = r2 sin ϕ/2p one finds
from this equation that

x2
(
ϕ0

)− x2(0) = p

2

∫ ϕ0

0

sin ϕ

(1 − cosϕ −√
ε2 − 1 sin ϕ)2

dϕ .

This integral is logarithmically divergent. This means that in the laboratory system
particle 2 also came from x2 = −∞. This somewhat strange result gives a first
hint at the peculiar nature of the “long-range” potential 1/r that will be met again
in quantum mechanics and quantum field theory.

1.30 Mechanical Bodies of Finite Extension

So far we have exclusively considered pointlike mechanical objects, i.e. parti-
cles that carry a finite mass but have no finite spatial extension. In its applica-
tion to macroscopic mechanical bodies this is an idealization whose validity must
be checked in every single case. The simple systems of Newton’s point mechan-
ics that we studied in this chapter primarily serve the purpose of preparing the
ground for a systematic construction of canonical mechanics. This, in turn, allows
the development of more general principles for physical theories, after some more
abstraction and generalization. One thereby leaves the field of the mechanics of
macroscopic bodies proper but develops a set of general and powerful tools that
are useful in describing continuous systems as well as classical field theories.

This section contains a few remarks about the validity of our earlier results
for those cases where mass points are replaced with mass distributions of finite
extension.

Consider a mechanical body of finite extension. Finite extension means that
the body can always be enclosed by a sphere of finite radius. Let the body be
characterized by a time-independent (rigid) mass density �(x), and let m be its
total mass. Integrating over all space, one evidently has

∫
d3x�(x) = m . (1.96)

The dimension of � is mass/(length)3.
For example, assume the mass density to be spherically symmetric with respect

to the center O. Taking this point as the origin this means that

�(x) = �(r) , r
def= |x| .

In spherical coordinates the volume element is

d3x = sin θ dθ d φr2 dr .
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Since � does not depend on θ and φ, the integration over these variables can be
carried out, so that the condition (1.96) becomes

4π
∫ ∞

0
r2 dr �(r) = m . (1.97)

Equation (1.96) suggests the introduction of a differential mass element

dm
def= �(x)d3x . (1.98)

In a situation where the resulting differential force dK is applied to this mass ele-
ment, it is plausible to generalize the relation (1.8b) between force and acceleration
as follows:

ẍdm = dK . (1.99)

(This postulate is due to L. Euler and was published in 1750.) We are now in a
position to treat the interaction of two extended celestial bodies. We solve this
problem in several steps.

(i) Potential and force field of an extended star. Every mass element situated in x

creates a differential potential energy for a pointlike probe of mass m0 situated in
y (inside or outside the mass distribution), given by

dU(y) = −G dmm0

|x− y| = −Gm0
�(x)

|x− y|d
3x . (1.100)

The probe experiences the differential force

dK = −∇ydU = −Gm0�(x)

|x− y|2
y − x

|y − x|d
3x . (1.101)

Either formula, (1.100) or (1.101), can be integrated over the entire star. For in-
stance, the total potential energy of the mass m0 is

U(y) = −Gm0

∫
�(x)

|x− y|d
3x . (1.102)

The vector x scans the mass distribution, while y denotes the point where the
potential is to be calculated. The force field that belongs to this potential follows
from (1.102), as usual, by taking the gradient with respect to y, viz.

K(y) = −∇yU(y) . (1.103)

(ii) Celestial body with spherical symmetry. Let �(x) = �(s), with s = |x|, and
let �(s) = 0 for s ≥ R. In (1.102) we take the direction of the vector y as the
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z-axis. Denoting by r
def= |y| the modulus of y and integrating over the azimuth φ,

we find that

U = −2πGm0

∫ +1

−1
dz

∫ ∞

0
s2ds

�(s)√
r2 + s2 − 2rsz

, z
def= cos θ .

The integral over z is elementary,

∫ +1

−1
dz
(
r2+ s2−2rsz

)−1/2 = − 1

rs
[|r− s|− (r+ s)] =

{
2/r for r > s

2/s for r < s
.

One sees that U is spherically symmetric, too, and that it is given by

U(r) = −4πGm0

(
1

r

∫ r

0
s2ds�(s)+

∫ ∞

r

sds�(s)

)
. (1.104)

For r ≥ R the second integral does not contribute, because �(s) vanishes for
s ≥ R. The first integral extends from O to R and, from (1.97), gives the constant
m/4π. Thus one obtains

U(r) = −Gm0m

r
for r ≥ R . (1.105)

In the space outside its mass distribution a spherically symmetric star with
total mass m creates the same potential as a mass point m placed at its
center of symmetry.

It is obvious that this result is of great importance for the application of Kepler’s
laws to planetary motion.

(iii) Interaction of two celestial bodies of finite extension. If the probe of mass m0
has a finite extension, too, and is characterized by the mass density �0(y), (1.102)
is replaced by the differential potential

dU(y) = −G�0(y)d
3y

∫
�(x)

|x− y|d
3x .

This is the potential energy of the mass element �(y)d3y in the field of the first
star. The total potential energy is obtained from this by integrating over y:

U = −G
∫

d3x

∫
d3y

�(x)�0(y)

|x− y| . (1.106)

If both densities are spherically symmetric, their radii being R and R0, we obtain
again (1.105) whenever the distance of the two centers is larger than (R + R0).

(iv) Potential of a star with finite extension that is not spherically symmetric. As-
sume the density �(x) still to be finite (that is, �(x) = 0 for |x| ≥ R) but not
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necessarily spherically symmetric. In calculating the integral (1.102) the follow-
ing expansion of the inverse distance is particularly useful:

1

|x− y| = 4π
∞∑

l=0

1

2l + 1

rl<

rl+1
>

l∑

μ=−l
Y ∗lμ(x̂)Ylμ(ŷ) . (1.107)

Here r< = |x|, r> = |y| if |y| > |x|, and correspondingly r< = |y|, r> =
|x| if |y| < |x|. The symbols Ylμ denote well-known special functions, spherical
harmonics, whose arguments are the polar angles of x and y:

(
θx, φx

) ≡ x̂ ,
(
θy, φy

) ≡ ŷ .

These functions are normalized and orthogonal in the following sense:

∫ π

0
sin θ dθ

∫ 2π

0
dφY ∗lμ(θ, φ)Yl′μ′(θ, φ) = δll′δμμ′ (1.108)

(see e.g. Abramowitz, Stegun 1965). Inserting this expansion in (1.102) and choos-
ing |y| > R, one obtains

U(y) = −Gm0

∞∑

l=0

4π

2l + 1

+l∑

μ=−l

qlμ

rl+1 Ylμ(y) , (1.109)

where

qlμ
def=

∫
d3xY ∗lμ(x̂)sl�(x) . (1.110)

The first spherical harmonic is a constant: Yl=0μ=0 = 1/
√

4π. If �(x) is taken
to be spherically symmetric, one obtains

qlμ =
√

4π
∫ R

0
s2 dssl�(s)

∫ π

0
sin θ dθ

∫ 2π

0
dφY00Y

∗
lμ

= √
4π

∫ R

0
s2 ds�(s)δl0δμ0 = m√

4π
δl0δμ0 ,

so that (1.109) leads to the result (1.105), as expected. The coefficients qlμ are
called multipole moments of the density �(x). The potentials that they create,

Ulμ(y) = −Gm0
4πqlμ

(2l + 1)rl+1 Y
∗
lμ(ŷ) , (1.111)

are called multipole potentials. In the case of spherical symmetry only the multipole
moment with l = 0 is nonzero, while in the absence of this symmetry many or all
multipole moments will contribute.
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1.31 Time Averages and the Virial Theorem

Let us return to the n-particle system as described by the equations of motion
(1.28). We assume that the system is closed and autonomous, i.e. that there are
only internal, time-independent forces. We further assume that these are potential
forces but not necessarily central forces. For just n = 3, general solutions of the
equations of motion are known only for certain special situations. Very little is
known for more than three particles. Therefore, the following approach is useful
because it yields at least some qualitative information.

We suppose that we know the solutions ri (t), and therefore also the momenta
pi (t) = mṙi (t). We then construct the following mapping from phase space onto
the real line:

v(t)
def=

n∑

i=1

ri (t) · pi (t) . (1.112)

This function is called the virial. If a specific solution has the property that no
particle ever escapes to infinity or takes on an infinitely large momentum, then
v(t) remains bounded for all times. Defining time averages as follows:

〈f 〉 def= lim
Δ→∞

1

2Δ

∫ +Δ

−Δ
f (t)dt , (1.113)

the average of the time derivative of v(t) is then shown to vanish, viz.

〈v̇〉 = lim
Δ→∞

1

2Δ

∫ +Δ

−Δ
dt

dv(t)

dt
= lim

Δ→∞
v(Δ)− v(−Δ)

2Δ
= 0 .

Since

v̇(t) =
n∑

i=1

mi ṙ
2
i (t)−

n∑

i=1

ri (t) ·∇iU
(
r1(t), . . . , rn(t)

)
,

we obtain for the time average

2〈T 〉 −
〈 n∑

1

ri ·∇iU

〉
= 0 . (1.114)

This result is called the virial theorem. It takes a particularly simple form when U
is a homogeneous function of degree k in its arguments r1, . . . , rn. In this case∑

ri ·∇iU = kU, so that (1.114) and the principle of energy conservation give

2〈T 〉 − k〈U〉 = 0 , 〈T 〉 + 〈U〉 = E . (1.115)

Examples of interest follow.
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(i) Two-body systems with harmonic force. Transforming to center-of-mass and
relative coordinates, one has

v(t) = m1r1 · ṙ1 +m2r2 · ṙ2 = MrS · ṙS + μr · ṙ .
The function v remains bounded only if the center of mass is at rest, ṙS = 0.
However, the kinetic energy is then equal to the kinetic energy of the relative
motion so that (1.115) applies to the latter and to U(r). In this example U(r) =
αr2, i.e. k = 2. The time averages of the kinetic energy and potential energy of
relative motion are the same and are equal to half the energy,

〈T 〉 = 〈U〉 = 1
2E .

(ii) In the case of the Kepler problem the potential is U(r) = −α/r , where r de-
notes the relative coordinate. Thus k = −1. For E < 0 (only then is v(t) bounded)
one finds for the time averages of kinetic and potential energies of relative motion

〈T 〉 = −E ; 〈U〉 = 2E .

Note that this is valid only in R
3\{0} for the variable r. The origin where the force

becomes infinite should be excluded. For the two-body system this is guaranteed
whenever the relative angular momentum is nonzero.

(iii) For an n-particle system (n ≥ 3) with gravitational forces some information
can also be obtained. We first note that v(t) is the derivative of the function

w(t)
def=

n∑

i=1

1

2
mir

2
i (t) ,

which is bounded, provided that no particle ever escapes to infinity. As one can
easily show,

ẅ(t) = 2T + U = E + T .

Since T (t) is positive at all times, w(t) can be estimated by means of the general
solution of the differential equation ÿ(t) = E. Indeed

w(t) ≥ 1
2Et

2 + ẇ(0)t + w(0) .

If the total energy is positive, then limt→±∞w(t) = ∞, which means that at
least one particle will escape to infinity asymptotically (see also Thirring 1992,
Sect. 4.5).
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Appendix: Practical Examples

1. Kepler Ellipses. Study numerical examples for finite motion of two celestial
bodies in their center-of-mass frame (Sect. 1.7.2).

Solution. The relevant equations are found at the end of Sect. 1.7.2. It is convenient
to express m1 and m2 in terms of the total mass M = m1+m2 and to set M = 1.
The reduced mass is then μ = m1m2. For given masses the form of the orbits is
determined by the parameters

p = l2

Aμ
and ε =

√

1 + 2El2

μA2 , (A.1)

which in turn are determined by the energy E and the angular momentum. It is
easy to calculate and to draw the orbits on a PC. Figure 1.6a shows the example
m1 = m2 with ε = 0.5, p = 1, while Fig. 1.6b shows the case m1 = m2/9 with
ε = 0.5, p = 0.66.As the origin is the center of mass, the two stars are at opposite
positions at any time.

2. Motion of a Double Star. Calculate the two orbital ellipses of the stars of the
preceding example pointwise, as a function of time, for a given time interval Δt.

Solution. In Example 1 the figures show r(ϕ) as a function of ϕ. They do not
indicate how the stars move on their orbits as a function of time. In order to obtain
r(t), one returns to (1.19) and inserts the relative coordinate r(ϕ). Separation of
variables yields

tn+1 − tn = μp2

l

∫ φn+1

φn

dϕ

(1 + ε cosϕ)2
(A.2)

for the orbital points n and n+1. (The pericenter has φP = 0.) The quantity μp2/l

has the dimension of time. Introduce the period from (1.23) and use this as the
unit of time,

T = 2π
μ1/2a3/2

A1/2 = π
Aμ1/2

21/2(−E)3/2 .

Then

μp2

l
= (

1 − ε2)3/2 T

2π
.

The integral in (A.2) can be done exactly. Substituting

x
def=

√
1 − ε

1 + ε
tan

ϕ

2

one has
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I ≡
∫

dϕ

(1 + ε cosϕ)2
= 2√

1 − ε2

∫
dx

1 + [(1 + ε)/(1 − ε)]x2

(1 + x2)2

= 2√
1 − ε2

{∫
dx

1 + x2 +
2ε

1 − ε

∫
x2dx

(1 + x2)2

}
,

whose second term can be integrated by parts. The result is

I = 2

(1 − ε2)3/2 arctan

(√
1 − ε

1 + ε
tan

ϕ

2

)

− ε

1 − ε2

sin ϕ

1 + ε cosϕ
+ C , (A.3)

so that

tn+1 − tn

T
= 1

π

[
arctan

(√
1 − ε

1 + ε
tan

ϕ

2

)

−1

2
ε
√

1 − ε2 sin ϕ

1 + ε cosϕ

]φn+1

φn

. (A.4)

One can compute the function Δt(Δφ, φ), for a fixed increment Δφ and mark
the corresponding positions on the orbit. Alternatively, one may give a fixed time
interval Δt/T and determine succeeding orbital positions by solving the implicit
equation (A.4) in terms of ϕ.

3. Precession of Perihelion. (a) For the case of bound orbits in the Kepler problem
show that the differential equation for ϕ = ϕ(r) takes the form

dϕ

dr
= 1

r

√
rPrA

(r − rP)(rA − r)
, (A.5)

where rP and rA denote pericenter and apocenter, respectively. Integrate this equa-
tion with the boundary condition ϕ(r = rP) = 0.

(b) The potential is now modified into U(r) = −A/r + B/r2. Determine the
solution ϕ = ϕ(r) and discuss the precession of the pericenter after one turn, in
comparison with the Kepler case, as a function of B ≶ 0 where |B| � l2/2μ.

Solutions. (a) For elliptical orbits, E < 0, and one has

dϕ

dr
= 1√

2μ(−E)
1

r

1
√

−r2 − A

E
r + l2

2μE

.

Apocenter and pericenter are given by the roots of the quadratic form (−r2 −
Ar/E + l2/2μE):

rA/P = p

1 ∓ ε
= − A

2E
(1 ± ε) (A.6)
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(these are the points where dr/dt = 0). With

rPrA = A2

4E2

(
1 − ε2) = − l2

2μE

we obtain (A.5). This equation can be integrated. With the condition ϕ(rP) = 0
one obtains

ϕ(r) = arccos

[
1

rA − rP

(
2
rArP

r
− rA − rP

)]
. (A.7)

As ϕ(rA)−ϕ(rP) = π , one confirms that the pericenter, force center, and apocen-
ter lie on a straight line. Two succeeding pericenter constellations have azimuths
differing by 2π, i.e. they coincide. There is no precession of the pericenter.

(b) Let rP and rA be defined as in (A.6). The new apocenter and pericenter
positions, in the perturbed potential, are denoted by r ′A and r ′P, respectively. One
has

(
r − rP

)(
rA − r

)+ B

E
= (

r − r ′P
)(
r ′A − r

)
,

and therefore

r ′Pr ′A = rPrA − B

E
. (A.8)

Equation (A.5) is modified as follows:

dϕ

dr
= 1

r

√
rPrA

(r − r ′P)(r ′A − r)
=

√
rPrA

r ′Pr ′A

√
r ′Pr ′A

(r − r ′P)(r ′A − r)
.

This equation can be integrated as before under (a):

ϕ(r) =
√
rPrA

r ′Pr ′A
arccos

[
1

r ′A − r ′P

(
2
r ′Ar ′P
r

− r ′A − r ′P
)]

. (A.9)

From (A.8) two successive pericenter configurations differ by

2π
√
rPrA

r ′Pr ′A
= 2πl

√
l2 + 2μB

. (A.10)

This difference can be studied numerically, as a function of positive or negative B.
Positive B means that the additional potential is repulsive so that, from (A.10), the
pericenter will “stay behind”. Negative B means additional attraction and causes
the pericenter to “advance”.
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4. Rosettelike Orbits. Study the finite orbits in the attractive potential U(r) =
a/rα, for some values of the exponent α in the neighborhood of α = 1.

Solution. Use as a starting point the system (1.70′–71′) of first-order differential
equations, written in dimensionless form:

d�

dτ
= ±

√
2b�−α − �−2 − 2

def= f (�) ,
dϕ

dτ
= 1

�2 . (A.11)

From this calculate the second derivatives:

d2�

dτ 2 = d

d�

(
d�

dτ

)
d�

dτ
= 1

�3

(
1 − bα�2−α) def= g(�) ,

d2�

dτ 2 = − 2

�3 f (�) .

Equation (A.11) can be solved approximately by means of simple Taylor series:

�n+1 = �n + hf
(
�n

)+ 1
2h

2g
(
�n

)+O
(
h3) ,

ϕn+1 = ϕn + h
1

�2
n

− h2 1

�3
n

f
(
�n

)+O
(
h3) , (A.12)

for the initial conditions τ0 = 0, �(0) = R0, ϕ(0) = 0. The step size h for the
time variable can be taken to be constant. Thus, if one plots the rosette pointwise,
one can follow the temporal evolution of the motion. (In Figs. 1.18–22 we have
chosen h to be variable, instead, taking h = h0�/R0, with h0 = 0.02.)

5. Scattering Orbits for a Repulsive Potential. A particle of fixed momentum
p is scattered in the field of the potential U(r) = A/r, (with A > 0). Study the
scattering orbits as a function of the impact parameter.

Solution. The orbit is given by

r = r(ϕ) = p

1 + ε cos(ϕ − ϕ0)
(A.13)

with ε > 1. The energy E must be positive. We choose ϕ0 = 0 and introduce the

impact parameter b = l/|p| and the quantity λ
def= A/E as a characteristic length

of the problem. The equation of the hyperbola (A.13) then reads

r(ϕ)

λ
= 2b2/λ2

1 +√
1 + 4b2/λ2 cosϕ

. (A.13′)

Introducing Cartesian coordinates (see Sect. 1.7.2), we find that (A.13′) becomes

4x2

λ2 − y2

b2 = 1 .

This hyperbola takes on a symmetric position with respect to the coordinate axes,
its asymptotes having the slopes tanϕ0 and −tanϕ0, respectively, where

ϕ0 = arctan

(
2b

λ

)
. (A.14)
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We restrict the discussion to the left-hand branch of the hyperbola. We want the
particle always to come in along the same direction, say along the negative x-axis.
For a given impact parameter b this is achieved by means of a rotation about the
focus on the positive x-axis, viz.

u = (x − c) cosϕ0 + y sin ϕ0 ,

v = −(x − c) sin ϕ0 + y cosϕ0 , (A.15)

where c = √
1 + 4b2/λ2/2 is the distance of the focus from the origin, and

y = ±b√4x2/λ2 − 1. For all b, the particle comes in from −∞ along a direction
parallel to the u-axis, with respect to the coordinate system (u, v). Starting from
the pericenter (x0/λ = − 1

2 , y0 = 0), let y run upwards and downwards and use
(A.15) to calculate the corresponding values of x and y (see Fig. 1.32).

6. Temporal Evolution for Rutherford Scattering. For the example in Sect. 1.29
calculate and plot a few positions of the projectile and target as a function of time,
in the laboratory system.

Solution. In the laboratory system the orbits are given, as functions of ϕ, by (1.90–
92). With ϕ1 = π − ϕ, ϕ2 = 2π − ϕ

r1 = rS + 1

2
r =

√
Er

m
t(1, 0)+ p

2

1

ε cos(ϕ − ϕ0)− 1
(− cosϕ, sin ϕ) ,

r2 = rS − 1

2
r =

√
Er

m
t(1, 0)− p

2

1

ε cos(ϕ − ϕ0)− 1
(cosϕ, − sin ϕ) . (A.16)

The integral (1.95) that relates the variables t and ϕ is calculated as in Example 2.
Noting that here ε > 1 and making use of the formulae

arctan x = − i

2
ln

1 + ix

1 − ix
,

mp

l

√
Er

m
=

√
ε2 − 1 ,

we find that
√
Er

m
t(ϕ) = p

2

(
1

ε2 − 1
ln

1 + u

1 − u
+ ε√

ε2 − 1

sin(ϕ − ϕ0)

ε cos(ϕ − ϕ0)− 1

)
, (A.17)

where u stands for the expression

u ≡
√
ε + 1

ε − 1
tan

ϕ − ϕ0

2
.

Furthermore, we have

cosϕ0 = 1

ε
, sin ϕ0 =

√
ε2 − 1

ε
,

tan
ϕ − ϕ0

2
= sin ϕ − sin ϕ0

cosϕ + cosϕ0
= ε sin ϕ −√

ε2 − 1

1 + ε cosϕ
.
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Equation (A.17) gives the relation between ϕ and t. Using dimensionless coordi-
nates (2x/p, 2y/p), one plots points for equidistant values of ϕ and notes the
corresponding value of the dimensionless time variable

τ
def= 2

p

√
Er

m
.

Figure 1.35 shows the example ε = 0.155, ϕ0 = 30◦. Alternatively, one may
choose a fixed time interval with respect to t (ϕ0) = 0 and calculate the corre-
sponding values of ϕ from (A.17).



2. The Principles of Canonical Mechanics

Canonical mechanics is a central part of general mechanics, where one goes be-
yond the somewhat narrow framework of Newtonian mechanics with position co-
ordinates in the three-dimensional space, towards a more general formulation of
mechanical systems belonging to a much larger class. This is the first step of ab-
straction, leaving behind ballistics, satellite orbits, inclined planes, and pendulum-
clocks; it leads to a new kind of description that turns out to be useful in areas
of physics far beyond mechanics. Through d’Alembert’s principle we discover the
concept of the Lagrangian function and the framework of Lagrangian mechanics
that is built onto it. Lagrangian functions are particularly useful for studying the
role symmetries and invariances of a given system play in its description. By means
of the Legendre transformation we are then led to the Hamiltonian function, which
is central to the formulation of canonical mechanics, as developed by Hamilton
and Jacobi.

Although these two frameworks of description at first seem artificial and un-
necessarily abstract, their use pays in very many respects: the formulation of me-
chanics over the phase space yields a much deeper insight into its dynamical and
geometrical structure. At the same time, this prepares the foundation and formal
framework for other physical theories, without which, for example, quantum me-
chanics cannot be understood and perhaps could not even be formulated.

2.1 Constraints and Generalized Coordinates

2.1.1 Definition of Constraints

Whenever the mass points of a mechanical system cannot move completely in-
dependently because they are subject to certain geometrical conditions, we talk
about constraints. These must be discussed independently because they reduce the
number of degrees of freedom and therefore change the equations of motion.

(i) The constraints are said to be holonomic (from the Greek: constraints are
given by an “entire law”) if they can be described by a set of independent equations
of the form

fλ(r1, r2, . . . , rn, t) = 0 ; λ = 1, 2, . . . , Λ . (2.1)

F. Scheck, Mechanics, Graduate Texts in Physics, 5th ed.,
DOI 10.1007/978-3-642-05370-2_2, © Springer-Verlag Berlin Heidelberg 2010
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Fig. 2.1. A system of three mass points at constant distances
from one another has six degrees of freedom (instead of nine)

Independent means that at any point (r1, . . . , rn) and for all t , the rank of the
matrix {∂fλ/∂rk} is maximal, i.e. equals Λ. As an example take the three-body
system with the condition that all interparticle distances be constant (see Fig. 2.1):

f1 ≡ |r1 − r2| − a3 = 0 ,

f2 ≡ |r2 − r3| − a1 = 0 ,

f3 ≡ |r3 − r1| − a2 = 0 .

Here Λ = 3. Without these constraints the number of degrees of freedom would
be f = 3n = 9. The constraints reduce it to f = 3n−Λ = 6.

(ii) The constraints are said to be nonholonomic if they take the form

n∑

k=1

ωi
k(r1, . . . , rn) · drk = 0 , i = 1, . . . , Λ (2.2)

but cannot be integrated to the form of (2.1). Note that (2.1), by differentiation,
gives a condition of type (2.2), viz.

n∑

k=1

∇kfλ(r1, . . . , rn) · drk = 0 .

This, however, is a complete differential. In contrast, a nonholonomic constraint
(2.2) is not integrable and cannot be made so by multiplication with a function, a
so-called integrating factor. This class of conditions is the subject of the analysis
of Pfaffian systems. As we study only holonomic constraints in this book, we do
not go into this any further and refer to the mathematics literature for the theory
of Pfaffian forms.

(iii) In either case one distinguishes constraints that are (a) dependent on time
– these are called rheonomic (“running law”) constraints; and (b) independent of
time – these are called scleronomic (“rigid law”) constraints.

(iv) There are other kinds of constraints, which are expressed in the form of
inequalities. Such constraints arise, for instance, when an n-particle system (a gas,
for example) is enclosed in a vessel: the particles move freely inside the vessel but
cannot penetrate its boundaries. We do not consider such constraints in this book.
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2.1.2 Generalized Coordinates

Any set of independent coordinates that take into account the constraints are called
generalized coordinates. For example, take a particle moving on the surface of a
sphere of radius R around the origin, as sketched in Fig. 2.2. Here the constraint is
holonomic and reads x2 + y2 + z2 = R2, so that f = 3n− 1 = 3− 1 = 2. Instead
of the dependent coordinates {x, y, z} one introduces the independent coordinates
q1 = θ , q2 = ϕ.

Fig. 2.2. A particle whose motion is restricted to the surface of a sphere
has only two degrees of freedom

In general, the set of 3n space coordinates of the n-particle system will be
replaced by a set of (3n−Λ) generalized coordinates, viz.

{r1, r2, . . . rn} → {q1, q2, . . . , qf } , f = 1, 2, . . . , 3n−Λ , (2.3)

which, in fact, need not have the dimension of length. The aim is now twofold:

(i) determine the number of degrees of freedom f and find f generalized coor-
dinates that take account of the constraints automatically and that are adapted,
in an optimal way, to the system one is studying;

(ii) develop simple principles from which the equations of motion are obtained
directly, in terms of the generalized coordinates.

We begin by formulating d’Alembert’s principle, which is an important auxil-
iary construction on the way to the goal formulated above.

2.2 D’Alembert’s Principle

Consider a system of n mass points with masses {mi} and coordinates {ri},
i = 1, 2, . . . , n, subject to the holonomic constraints

fλ(r1, . . . , rn, t) = 0 , λ = 1, . . . , Λ . (2.4)

2.2.1 Definition of Virtual Displacements

A virtual displacement {δri} of the system is an arbitrary, infinitesimal change
of the coordinates that is compatible with the constraints and the applied forces1.

1 Here we make use of this somewhat archaic but very intuitive notion. Geometrically speaking,
virtual displacements are described by tangent vectors of the smooth hypersurface in R

3n that is
defined by (2.4). D’Alembert’s principle can and should be formulated in the geometric framework
of Chap. 5.
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It is performed at a fixed time and therefore has nothing to do with the actual,
infinitesimal motion {dri} of the system during the time change dt (i.e. the real
displacement).

Loosely speaking, one may visualize the mechanical system as a half-timbered
building that must fit in between the neighboring houses, on a given piece of land
(these are the constraints), and that should be stable. In order to test its stability,
one shakes the construction a little, without violating the constraints. One imagines
the elements of the building to be shifted infinitesimally in all possible, allowed
directions, and one observes how the construction responds as a whole.

2.2.2 The Static Case

To begin with, let us assume that the system is in equilibrium, i.e. F i = 0,
i = 1, . . . , n, where F i is the total force applied to particle i. Imagine that the
constraint is taken care of by applying an additional force Zi to every particle i

(such forces are called forces of constraint). Then

F i = Ki + Zi , (2.5)

where Zi is the force of constraint and Ki the real, dynamic force. Clearly, because
all the F i vanish, the total virtual work vanishes:

n∑

i=1

F i · δri = 0 =
n∑

i=1

[Ki + Zi] · δri . (2.6)

However, since the virtual displacements must be compatible with the constraints,
the total work of the forces of constraint alone vanishes, too:

∑n
1 Zi · δri = 0.

Then, from (2.6) we obtain

n∑

i=1

Ki · δri = 0 . (2.7)

In contrast to (2.6), this equation does not imply, in general, that the individual
terms vanish. This is because the δri are generally not independent.

2.2.3 The Dynamical Case

If the system is moving, then we have F i− ṗi = 0 and of course also
∑n

i=1(F i−
ṗi ) · δri = 0. As the total work of the forces of constraint vanishes,

∑n
i=1(Zi ·

δri ) = 0, we obtain the basic equation expressing d’Alembert’s principle of virtual
displacements:

n∑

i=1

(Ki − ṗi ) · δri = 0 , (2.8)
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from which all constraints have disappeared. As in the case of (2.7), the individual
terms, in general, do not vanish, because the δri depend on each other.

Equation (2.8) is the starting point for obtaining the equations of motion for
the generalized coordinates. We proceed as follows.

As the conditions (2.4) are independent they can be solved locally for the co-
ordinates ri , i.e.

ri = ri (q1, . . . , qf , t) , i = 1, . . . , n , f = 3n−Λ .

From these we can deduce the auxiliary formulae

vi ≡ ṙi =
f∑

k=1

∂ri

∂qk
q̇k + ∂ri

∂t
, (2.9)

∂vi

∂q̇k
= ∂ri

∂qk
, (2.10)

δri =
f∑

k=1

∂ri

∂qk
δqk . (2.11)

Note that there is no time derivative in (2.11), because the δri are virtual displace-
ments, i.e. are made at a fixed time. The first term on the left-hand side of (2.8)
can be written as

n∑

i=1

Ki · δri =
f∑

k=1

Qkδqk with Qk
def=

n∑

i=1

Ki · ∂ri
∂qk

. (2.12)

The quantities Qk are called generalized forces (again, they need not have the di-
mension of force). The second term also takes the form

∑f
k=1{. . .}δqk , as follows:

n∑

i=1

ṗi · δri =
n∑

i=1

mi r̈i · δri =
n∑

i=1

mi

f∑

k=1

r̈i · ∂ri
∂qk

δqk .

The scalar products (r̈i · ∂ri/∂qk) can be written as

r̈i · ∂ri
∂qk

= d

dt

(
ṙi · ∂ri

∂qk

)
− ṙi · d

dt

∂ri

∂qk
.

Note further that

d

dt

∂ri

∂qk
= ∂

∂qk
ṙi = ∂vi

∂qk

and, on taking the partial derivative of (2.9) with respect to q̇k , that ∂ri/∂qk =
∂vi/∂q̇k .
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From these relations one obtains

n∑

i=1

mi r̈i · ∂ri
∂qk

=
n∑

i=1

{
mi

d

dt

(
vi · ∂vi

∂q̇k

)
−mivi · ∂vi

∂qk

}
.

The two terms in the expression in curly brackets contain the form v · ∂v/∂x =
(∂v2/∂x)/2, with x = qk or q̇k , so that we finally obtain

n∑

i=1

ṗi · δri =
f∑

k=1

{
d

dt

[
∂

∂q̇k

(
n∑

i=1

mi

2
v2
i

)]

− ∂

∂qk

(
n∑

i=1

mi

2
v2
i

)}

δqk .

(2.13)

Inserting the results (2.12) and (2.13) into (2.8) yields an equation that contains
only the quantities δqk , but not δri . The displacements δqk are independent (in
contrast to the δri , which are not). Therefore, in the equation that we obtain from
(2.8) by replacing all δri by the δqk , as described above, every term must vanish
individually. Thus we obtain the set of equations

d

dt

(
∂T

∂q̇k

)
− ∂T

∂qk
= Qk , k = 1, . . . , f , (2.14)

where T = ∑n
i=1 miv

2
i /2 is the kinetic energy. Of course, very much like Qk , T

must be expressed in terms of the variables qi and q̇i so that (2.14) really does
become a system of differential equations for the qk(t).

2.3 Lagrange’s Equations

Suppose that, in addition, the real forces Ki are potential forces, i.e.

Ki = −∇iU . (2.15)

In this situation the generalized forces Qk are potential forces, too. Indeed, from
(2.12)

Qk = −
n∑

i=1

∇iU(r1, . . . , rn) · ∂ri
∂qk

= − ∂

∂qk
U(q1, . . . , qf , t) , (2.16)

under the assumption that U is transformed to the variables qk . As U does not
depend on the q̇k , T and U can be combined to

L(qk, q̇k, t) = T (qk, q̇k)− U(qk, t) (2.17)

so that (2.14) takes the simple form

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= 0 . (2.18)
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The function L(qk, q̇k, t) is called the Lagrangian function. Equations (2.18) are
called Lagrange’s equations. They contain the function L (2.17) with

U(q1, . . . , qf , t) = U(r1(q1, . . . , qf , t), . . . rn(q1, . . . , qf , t)) ,

T (qk, q̇k) = 1

2

n∑

i=1

mi

⎛

⎝
f∑

k=1

∂ri

∂qk
q̇k + ∂ri

∂t

⎞

⎠

2

(2.19)

≡ a +
f∑

k=1

bkq̇k +
f∑

k=1

f∑

l=1

ckl q̇kq̇l ,

where

a = 1

2

n∑

i=1

mi

(
∂ri

∂t

)2

,

bk =
n∑

i=1

mi

∂ri

∂qk
· ∂ri
∂t

, (2.20)

ckl = 1

2

n∑

i=1

mi

∂ri

∂qk
· ∂ri
∂ql

.

The special form L = T − U of the Lagrangian function is called its natural
form. (For the reasons explained in Sect. 2.11 below, L is not unique.) For scle-
ronomic constraints both a and all bk vanish. In this case T is a homogeneous
function of degree 2 in the variables qk .

We note that d’Alembert’s equations (2.14) are somewhat more general than
Lagrange’s equations (2.18): the latter follow only if the forces are potential forces.
In contrast, the former also hold if the constraints are formulated in a differential
form (2.11) that cannot be integrated to holonomic equations.

2.4 Examples of the Use of Lagrange’s Equations

We study three elementary examples.

Example (i) A particle of mass m moves on a segment of a sphere in the earth’s
gravitational field. The dynamical force is K = (0, 0,−mg), the constraint is |r| =
R, and the generalized coordinates may be chosen to be q1 = θ and q2 = ϕ, as
shown in Fig. 2.3. The generalized forces are

Q1 = K · ∂r
∂q1

= −RKz sin θ = Rmg sin θ ,

Q2 = 0 .

These are potential forces, Q1 = −∂U/∂q1, Q2 = −∂U/∂q2, with U(q1, q2) =
mgR[1 + cos q1]. Furthermore, T = mR2[q̇2

1 + q̇2
2 sin2 q1]/2, and therefore

L = 1
2mR

2[q̇2
1 + q̇2

2 sin2 q1] −mg R[1 + cos q1] .
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Fig. 2.3. A small ball on a segment of a sphere
in the earth’s gravitational field. The force of
constraint Z is such that it keeps the particle
on the given surface. As such it is equivalent
to the constraint

Fig. 2.4. Two pointlike weights m1 and m2 are
connected by a massless thread, which rests on
a wheel. The motion is assumed to be friction-
less

We now calculate the derivatives ∂L/∂qi and d(∂L/∂q̇i)/dt :

∂L

∂q1
= mR2q̇2

2 sin q1 cos q1 +mg R sin q1 ,
∂L

∂q2
= 0 ,

∂L

∂q̇1
= mR2q̇1 ,

∂L

∂q̇2
= mR2q̇2 sin2 q1

to obtain the equations of motion

q̈1 −
[
q̇2

2 cos q1 + g

R

]
sin q1 = 0 , mR2 d

dt
(q̇2 sin2 q1) = 0 .

Example (ii) Atwood’s machine is sketched in Fig. 2.4. The wheel and the thread
are assumed to be massless; the wheel rotates without friction. We then have

T = 1
2 (m1 +m2)ẋ

2 ,

U = −m1gx −m2g(l − x) ,

L = T − U .

The derivatives of L are ∂L/∂x = (m1−m2)g, ∂L/∂ẋ = (m1+m2)ẋ, so that the
equation of motion d(∂L/∂ẋ)/dt = ∂L/∂x becomes

ẍ = m1 −m2

m1 +m2
g .

It can be integrated at once. If the mass of the wheel cannot be neglected, its
rotation will contribute to the kinetic energy T by the amount T = I (dθ/dt)2/2,
where I is the relevant moment of inertia and dθ/dt its angular velocity. Let R be
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the radius of the wheel. The angular velocity is proportional to ẋ, viz. R(dθ/dt) =
ẋ. Therefore, the kinetic energy is changed to T = (m1 +m2 + I/R2)ẋ2/2. (The
rotary motion of a rigid body such as this wheel is dealt with in Chap. 3.)

Example (iii) Consider a particle of mass m held by a massless thread and rotating
about the point S, as shown in Fig. 2.5. The thread is shortened at a constant rate
c per unit time. Let x and y be Cartesian coordinates in the plane of the circle,
ϕ the polar angle in that plane. The generalized coordinate is q = ϕ, and we
have x = (R0 − ct) cos q, y = (R0 − ct) sin q; thus T = m(ẋ2 + ẏ2)/2 =
m[q̇2(R0 − ct)2 + c2]/2. In this example T is not a homogeneous function of
degree 2 in q̇ (the constraint is rheonomic!). The equation of motion now reads
mq̇(R0 − ct)2 = const.

Fig. 2.5. The mass point m rotates about the point S. At the
same time, the thread holding the mass point is shortened con-
tinuously

2.5 A Digression on Variational Principles

Both conditions (2.7) and (2.8) of d’Alembert’s principle, for the static case and
dynamic case, respectively, are expressions for an equilibrium: if one “shakes”
the mechanical system one is considering, in a way that is compatible with the
constraints, the total (virtual) work is equal to zero. In this sense the state of the
system is an extremum; the physical state, i.e. the one that is actually realized,
has the distinct property, in comparison with all other possible states one might
imagine, that it is stable against small changes of the positions (in the static case)
or against small changes of the orbits (in the dynamic case). Such an observation is
familiar from geometric optics. Indeed, Fermat’s principle states that in an arbitrary
system of mirrors and refracting glasses a light ray always chooses a path that
assumes an extreme value. The light’s path is either the shortest or the longest
between its source and the point where it is detected.

D’Alembert’s principle and the experience with Fermat’s principle in optics
raise the question whether it is possible to define a functional, for a given me-
chanical system, that bears some analogy to the length of path of a light ray. The
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actual physical orbit that the system chooses (for given initial condition) would
make this function an extremum. Physical orbits would be some kind of geodesic
on a manifold determined by the forces; that is, they would usually be the shortest
(or the longest) curves connecting initial and final configurations.

There is indeed such a functional for a large class of mechanical systems: the
time integral over a Lagrangian function such as (2.17). This is what we wish to
develop, step by step, in the following sections.

In fact, in doing so one discovers a gold mine: this extremum, or variational,
principle can be generalized to field theories, i.e. systems with an infinite number
of degrees of freedom, as well as to quantized and relativistic systems. Today it
looks as though any theory of fundamental interactions can be derived from a vari-
ational principle. Consequently it is rewarding to study this new, initially somewhat
abstract, principle and to develop some feeling for its use. This effort pays in that
it allows for a deeper understanding of the rich structure of classical mechanics,
which in turn serves as a model for many theoretical developments.

One should keep in mind that philosophical and cosmological ideas and con-
cepts were essential to the development of mechanics during the seventeenth and
eighteenth centuries. It is not surprising, therefore, that the extremum principles
reflect philosophical ideas in a way that can still be felt in their modern, somewhat
axiomatic, formulation.

The mathematical basis for the discussion of extremum principles is provided
by variational calculus. In order to prepare the ground for the following sections,
but without going into too much detail, we discuss here a typical, fundamental
problem of variational calculus. It consists in finding a real function y(x) of a real
variable x such that a given functional I [y] of this function assumes an extreme
value. Let

I [y] def=
∫ x2

x1

dx f (y(x), y′(x), x) , y′(x) ≡ d

dx
y(x) (2.21)

be a functional of y, with f a given function of y, y′ (the derivative of y with
respect to x), and the variable x. x1 and x2 are arbitrary, but fixed, endpoints. The
problem is to determine those functions y(x) which take given values y1 = y(x1)

and y2 = y(x2) at the endpoints and which make the functional I [y] an extremum.
In other words, one supposes that all possible functions y(x) that assume the given
boundary values are inserted into the integral (2.21) and that its numerical value
is calculated. What we are looking for are those functions for which this value
assumes an extremal value, i.e. is a maximum or a minimum, or, possibly, a saddle
point.

As a first step we investigate the quantity

I (α)
def=

∫ x2

x1

f (y(x, α), y′(x, α), x)dx , (2.22)

where y(x, α) = y(x) + αη(x) with η(x1) = 0 = η(x2). This means that we
embed y(x) in a set of comparative curves that fulfill the same boundary conditions
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Fig. 2.6. The curve y(x) that makes the func-
tional I [y] an extremum is embedded in a
set of comparative curves assuming the same
boundary values as y(x)

as y(x). Figure 2.6 shows an example. The next step is to calculate the so-called
variation of I , that is, the quantity

δI
def= dI

dα
dα =

∫ x2

x1

dx

{
∂f

∂y

dy

dα
+ ∂f

∂y′
dy′

dα

}
dα .

Clearly, dy′/dα = (d/dx)(dy/dα). If the second term is integrated by parts,
∫ x2

x1

dx
∂f

∂y′
d

dx

(
dy

dα

)
= −

∫ x2

x1

dx
dy

dα

d

dx

(
∂f

∂y′

)
+ ∂f

∂y′
dy

dα

∣∣∣∣

x2

x1

,

the boundary terms do not contribute, because dy/dα = η(x) vanishes at x1 and
at x2. Thus

δI =
∫ x2

x1

dx

{
∂f

∂y
− d

dx

∂f

∂y′

}
dy

dα
dα . (2.23)

The expression

∂f

∂y
− d

dx

∂f

∂y′
def= δf

δy
(2.24)

is called the variational derivative of f by y. It is useful to introduce the notation

(dy/dα)dα
def= δy and to interpret δy as an infinitesimal variation of the curve y(x).

I (α) assumes an extreme value, i.e. δI = 0. As this must hold true for arbitrary
variations δy, the integrand in (2.23) must vanish:

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0 . (2.25)

This is Euler’s differential equation of variational calculus. With a substitution
of L(q, q̇, t) for f (y, y′, x), a comparison with (2.18) shows that it is identical
with Lagrange’s equation d(∂L/∂q̇)/dt − ∂L/∂q = 0 (here in one dimension).
This surprising result is the starting point for the variational principle proposed by
Hamilton.



100 2. The Principles of Canonical Mechanics

2.6 Hamilton’s Variational Principle (1834)

Postulate. To a mechanical system with f degrees of freedom q
˜

=
{q1, q2, . . . , qf } we associate a C2 function of the variables q

˜
and q̇

˜
and

of the time t ,

L(q
˜
, q̇
˜
, t) , (2.26)

called the Lagrangian function. Let

ϕ
˜ (t) = (ϕ1(t), . . . , ϕf (t))

in the interval t1 ≤ t ≤ t2 be a physical orbit (i.e. a solution of the equations
of motion) that assumes the boundary values ϕ˜ (t1) = a˜ and ϕ˜ (t2) = b˜

. This
orbit is such that the action integral

I [q
˜
] def=

∫ t2

t1

dt L(q
˜
(t), q̇

˜
(t), t) (2.27)

assumes an extreme value2.

The physical orbit, i.e. the solution of the equations of motion for the specified
boundary conditions, is singled out from all other possible orbits that the system
might choose and that have the same boundary values by the requirement that the
action integral be an extremum. For suitable choices of the boundary values (t1, a˜ )
and (t2, b˜

) this will be a minimum. However, the example worked out in Exercise
2.18 shows that it can also be a maximum. Saddle point values are possible, too.
We return to this question in Sect. 2.36 (ii) below.

2.7 The Euler–Lagrange Equations
A necessary condition for the action integral I [q

˜
] to assume an extreme value, for

q
˜
= ϕ

˜ (t), is that ϕ˜ (t) be the integral curve of the Euler–Lagrange equations

δL

δqk
= ∂L

∂qk
− d

dt

(
∂L

∂q̇k

)
= 0 , k = 1, . . . , f . (2.28)

The proof of this statement proceeds in analogy to that in Sect. 2.5. Indeed, set
q
˜
(t, α) = ϕ

˜ (t) + α ψ
˜
(t) with −1 ≤ α ≤ +1 and ψ

˜
(t1) = 0 = ψ

˜
(t2). If I is an

extremum for q
˜
= ϕ

˜ (t), then

d

dα
I (α)

∣∣∣
∣
α=0

= 0 with I (α)
def=

∫ t2

t1

dt L(q
˜
(t, α), q̇

˜
(t, α), t)

2 The name action arises because L has the dimension of energy: the product (energy × time) is
called action, and this is indeed the dimension of the action integral.
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and with

d

dα
I (α) =

∫ t2

t1

dt
f∑

k=1

{
∂L

∂qk

dqk
dα

+ ∂L

∂q̇k

dq̇k
dα

}
.

With regard to the second term of this expression we note that partial integration in
the variable t yields the difference of boundary values K(t2, α)−K(t1, α) where
K(t, α) is the function

K(t, α)
def=

f∑

1

∂L

∂q̇k

d

dα
qk(t, α) .

Now, by assumption, the end points and the values ϕ(t2) and ϕ(t1) are held fixed
so that

d

dα
qk(t, α) = ψk(t)

is zero for t = t1 and for t = t2. Therefore, the boundary values vanish, K(t1, α) =
0 = K(t2, α), integration by parts of the second term gives

∫ t2

t1

dt
∂L

∂q̇k

dq̇k
dα

= −
∫ t2

t1

dt
d

dt

(
∂L

∂q̇k

)
dqk
dα

.

Inserting this result one obtains

dI (α)

dα

∣∣∣∣
α=0

=
∫ t2

t1

dt
f∑

k=1

[
∂L

∂qk
− d

dt

(
∂L

∂q̇k

)]
ψk(t) = 0 .

The functions ψk(t) are arbitrary and independent. Therefore, the integrand must
vanish termwise. Thus, (2.28) is proved. �

Lagrange’s equations follow from the variational principle of Hamilton. They
are the same as the equations we obtained from d’Alembert’s principle in the case
where the forces were potential forces. As a result, we obtain f ordinary differential
equations of second order in the time variable, f being the number of degrees of
freedom of the system under consideration.

2.8 Further Examples of the Use of Lagrange’s Equations

The equations of motion (2.28) generalize Newton’s second law. We confirm this
statement, in a first step, by verifying that in the case of the n-particle system with-
out any constraints these equations take the Newtonian form. The second example
goes beyond the framework of “natural” Lagrangian functions and, in fact, puts
us on a new and interesting track that we follow up in the subsequent sections.

Example (i) An n-particle system with potential forces. As there are no forces of
constraint we take as coordinates the position vectors of the particles. For L we
choose the natural form
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L = T − U = 1

2

n∑

i=1

mi ṙ
2
i − U(r1, . . . , rn, t) ,

q
˜
≡ {q1, . . . , qf=3n} = {r1, . . . , rn} ,

∂L

∂qk
= − ∂U

∂qk
; d

dt

∂L

∂q̇k
= mi(k)q̈k .

The notation mi(k) is meant to indicate that in counting the qk one must insert
the correct mass of the corresponding particle, i.e. m1 for q1, q2, q3, then m2 for
q4, q5, q6, and so on. Written differently, we obtain mi r̈i = −∇iU . Thus, in this
case the Euler–Lagrange equations are nothing but the well-known equations of
Newton. Therefore, the mechanics that we studied in Chap. 1 can be derived as a
special case from the variational principle of Hamilton.

Example (ii) A charged particle in electric and magnetic fields. Here we set q ≡
q
˜
= {q1, q2, q3} = {x, y, z}. The motion of a charged, pointlike particle under the

action of time- and space-dependent electric and magnetic fields is described by
the equation

mq̈ = eE(q, t)+ e

c
q̇(t)× B(q, t) , (2.29)

where e is its charge. The expression on the right-hand side is the Lorentz force.
The electric and magnetic fields may be expressed in terms of scalar and vector
potentials as follows:

E(q, t) = −∇qΦ(q, t)− 1

c

∂

∂t
A(q, t)

B(q, t) = ∇q ×A(q, t) , (2.30)

where Φ denotes the scalar potential and A denotes the vector potential. The equa-
tion of motion (2.29) is obtained, for example, from the following Lagrangian
function (whose form we postulate at this point):

L(q, q̇, t) = 1

2
mq̇2 − eΦ(q, t)+ e

c
q̇ ·A(q, t) . (2.31)

Indeed, using the chain rule, one verifies that

∂L

∂qi
= −e ∂Φ

∂qi
+ e

c

3∑

k=1

q̇k
∂Ak

∂qi
,

d

dt

∂L

∂q̇i
= mq̈i + e

c

dAi

dt
= mq̈i + e

c

[
3∑

k=1

q̇k
∂Ai

∂qk
+ ∂Ai

∂t

]

,

so that from (2.28) there follows the correct equation of motion,

mq̈i = e

[
−∂Φ

∂qi
− 1

c

∂Ai

∂t

]
+ e

c

3∑

k=1

q̇k

[
∂Ak

∂qi
− ∂Ai

∂qk

]

= eEi + e

c
(q̇× B)i .
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Note that with respect to rotations of the frame of reference the Lagrangian
function (2.31) stays invariant, hence is a scalar while the equation of motion
(2.29) is a vectorial equation. Both sides transform like vector fields under rota-
tions. Obviously, scalar, invariant quantities are simpler than quantities that have a
specific, but nontrivial transformation behaviour. We will come back to this remark
repeatedly in subsequent sections.

2.9 A Remark About Nonuniqueness
of the Lagrangian Function

In Example (ii) of Sect. 2.8 the potentials can be chosen differently without chang-
ing the observable field strengths (2.30) nor the equations of motion (2.29). Let χ
be a scalar, differentiable function of position and time. Replace then the potentials
as follows:

A(q, t)→ A′(q, t) = A(q, t)+∇χ(q, t) ,
Φ(q, t)→ Φ ′(q, t) = Φ(q, t)− 1

c

∂

∂t
χ(q, t) . (2.32)

The effect of this transformation on the Lagrangian function is the following:

L′(q, q̇, t) def= 1

2
mq̇2 − eΦ ′ + e

c
q̇ ·A′

= L(q, q̇, t)+ e

c

[
∂χ

∂t
+ q̇ ·∇χ

]
= L(q, q̇, t)+ d

dt

(e
c
χ(q, t)

)
.

We see that L is modified by the total time derivative of a function of q
˜

and t .
The potentials are not observable and are therefore not unique. What the example
tells us is that the Lagrangian function is not unique either and therefore that it
certainly cannot be an observable. L′ leads to the same equations of motion as L.
The two differ by the total time derivative of a function M(q

˜
, t),

L′(q
˜
, q̇
˜
, t) = L(q

˜
, q̇
˜
, t)+ d

dt
M(q

˜
, t) (2.33)

(here with M = eχ/c). The statement that L′ describes the same physics as L is
quite general. As the transformation from L to L′ is induced by the gauge trans-
formation (2.32) of the potentials, we shall call transformations of the kind (2.33)
gauge transformations of the Lagrangian function. The general case is the subject
of the next section.
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2.10 Gauge Transformations of the Lagrangian Function

Proposition. Let M(q
˜
, t) be a C3 function and let

L′(q
˜
, q̇
˜
, t) = L(q

˜
, q̇
˜
, t)+

f∑

k=1

∂M

∂qk
q̇k + ∂M

∂t
.

Then q
˜
(t) is the integral curve of δL′/δqk = 0, k = 1, . . . , f , if and only

if it is solution of δL/δqk = 0, k = 1, . . . , f .

Proof. For k = 1, . . . , f calculate

δL′

δqk
= δL

δqk
+

[
∂

∂qk
− d

dt

∂

∂q̇k

]
dM

dt

= δL

δqk
+ d

dt

⎧
⎨

⎩
∂M

∂qk
− ∂

∂q̇k

⎛

⎝
f∑

i=1

∂M

∂qi
q̇i + ∂M

∂t

⎞

⎠

⎫
⎬

⎭
= δL

δqk
.

The additional terms that depend on M(q
˜
, t) cancel. So, if δL/δqk = 0, then

δL′/δqk = 0, and vice versa. �
Note that M should not depend on the q̇j . The reason for this becomes clear

from the following observation. We could have proved the proposition by means
of Hamilton’s principle. If we add the term dM(q

˜
, t)/dt to the integrand of (2.27),

we obtain simply the difference M(q
˜ 2, t2)−M(q

˜ 1, t1). As the variation leaves the
end points and the initial and final times fixed, this difference gives no contribution
to the equations of motion. These equations are therefore the same for L and for
L′. It is then clear why M should not depend on q̇

˜
: if one fixes t1, t2 as well as

q1, q2, one cannot require the derivatives q̇
˜

to be fixed at the end points as well.
This may also be read off Fig. 2.6.

The harmonic oscillator of Sect. 1.17.1 may serve as an example. The natural
form of the Lagrangian is L = T − U , i.e.

L = 1

2

[(
dz1

dτ

)2

− z2
1

]

,

and leads to the correct equations of motion (1.39). The function

L′ = 1

2

[(
dz1

dτ

)2

− z2
1

]

+ z1
dz1

dτ

leads to the same equations because we have added M = (dz2
1/dτ)/2.

Lagrange’s equations are even invariant under arbitrary, one-to-one, differen-
tiable transformations of the generalized coordinates. Such transformations are
called diffeomorphisms: they are defined to be one-to-one maps f : U → V for
which both f and its inverse f−1 are differentiable. The following proposition
deals with transformations of this class.
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2.11 Admissible Transformations
of the Generalized Coordinates

Proposition. Let G : q
˜
→ Q

˜
be a diffeomorphism (which should be at

least C2), g = G−1 its inverse,

Qi = Gi(q˜
, t) and qk = gk(Q˜

, t) , i, k = 1, . . . , f .

In particular, one then knows that

det(∂gj /∂Qk) 	= 0 . (2.34)

Then the equations δL/δqk = 0 are equivalent to δL̄/δQk = 0, k =
1, . . . , f ; i.e. Q

˜
(t) is a solution of the Lagrange equations of the trans-

formed Lagrangian function

L̄ = L ◦ g = L
(
g1(Q˜

, t), . . . , gf (Q˜
, t),

f∑

k=1

∂g1

∂Qk

Q̇k

+∂g1

∂t
, . . . ,

f∑

k=1

∂gf

∂Qk

Q̇k + ∂gf

∂t
, t
)

(2.35)

if and only if q
˜
(t) is a solution of the Lagrange equations for L(q

˜
, q̇
˜
, t).

Proof. Take the variational derivatives of L̄ by the Qk , δL̄/δQk , i.e. calculate

d

dt

(
∂L̄

∂Q̇k

)
=

f∑

l=1

d

dt

(
∂L

∂q̇l

∂q̇l

∂Q̇k

)
=

f∑

l=1

d

dt

(
∂L

∂q̇l

∂ql

∂Qk

)

=
f∑

l=1

[
∂L

∂q̇l

∂q̇l

∂Qk

+ ∂ql

∂Qk

d

dt

∂L

∂q̇l

]
. (2.36)

In the second step we have made use of q̇l = ∑
k(∂gl/∂Qk)Q̇k + ∂gl/∂t , from

which follows ∂q̇l/∂Q̇k = ∂gl/∂Qk .
Calculating

∂L̄

∂Qk

=
f∑

l=1

[
∂L

∂ql

∂ql

∂Qk

+ ∂L

∂q̇l

∂q̇l

∂Qk

]

and subtracting (2.36) yields

δL̄

δQk

=
f∑

l=1

∂gl

∂Qk

δL

δql
. (2.37)
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By assumption the transformation matrix {∂gl/∂Qk} is not singular; cf. (2.34).
This proves the proposition. �

Another way of stating this result is this: the variational derivatives δL/δqk are
covariant under diffeomorphic transformations of the generalized coordinates.

It is not correct, therefore, to state that the Lagrangian function is “T − U”.
Although this is a natural form, in those cases where kinetic and potential energies
are defined, but it is certainly not the only one that describes a given problem. In
general, L is a function of q

˜
and q̇

˜
, as well as of time t , and no more. How to con-

struct a Lagrangian function is more a question of the symmetries and invariances
of the physical system one wishes to describe. There may well be cases where
there is no kinetic energy or no potential energy, in the usual sense, but where
a Lagrangian can be found, up to gauge transformations (2.33), which gives the
correct equations of motion. This is true, in particular, in applying the variational
principle of Hamilton to theories in which fields take over the role of dynami-
cal variables. For such theories, the notion of kinetic and potential parts in the
Lagrangian must be generalized anyway, if they are defined at all.

The proposition proved above tells us that with any set of generalized coordi-
nates there is an infinity of other, equivalent sets of variables. Which set is chosen
in practice depends on the special features of the system under consideration. For
example, a clever choice will be one where as many integrals of the motion as pos-
sible will be manifest. We shall say more about this as well as about the geometric
meaning of this multiplicity later. For the moment we note that the transforma-
tions must be diffeomorphisms. In transforming to new coordinates we wish to
conserve the number of degrees of freedom as well as the differential structure
of the system. Only then can the physics be independent of the special choice of
variables.

2.12 The Hamiltonian Function and Its Relation
to the Lagrangian Function L

It is easy to convince oneself of the following fact. If the Lagrangian function L

has no explicit time dependence then the function

H̃ (q
˜
, q̇
˜
)

def=
f∑

k=1

q̇k
∂L

∂q̇k
− L(q

˜
, q̇
˜
) (2.38)

is a constant of the motion. Indeed, differentiating with respect to time and making
use of the equations δL/δqk = 0, one has

dH̃

dt
=

f∑

i=1

[
q̈i
∂L

∂q̇i
+ q̇i

d

dt

∂L

∂q̇i
− ∂L

∂qi
q̇i − ∂L

∂q̇i
q̈i

]
= 0 .

Take as an example L = mṙ2/2−U(r) ≡ T −U . Equation (2.38) gives H̃ (r, ṙ) =
2T − (T −U) = T +U = (mṙ2/2)+U(r). If we set mṙ = p, H̃ goes over into
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H(r,p) = p2/2m + U(r). In doing so, we note that the momentum p is given
by the partial derivative of L by ẋ, p = (∂L/∂ẋ, ∂L/∂ẏ, ∂L/∂ż). This leads us
to the definition in the general case3

pk
def= ∂L

∂q̇k
, (2.39)

where pk is called the momentum canonically conjugate to the coordinate qk . One
reason for this name is that, for the simple example above, the definition (2.39)
leads to the ordinary momentum. Furthermore, the Euler–Lagrange equation

δL

δqk
= ∂L

∂qk
− d

dt

(
∂L

∂q̇k

)
= 0

tells us that this momentum is an integral of the motion whenever ∂L/∂qk = 0.
In other words, if L does not depend explicitly on one (or several) of the qk ,

L = L(q1, . . . , qk−1, qk+1, . . . qf , q̇1, . . . , q̇k, . . . q̇f , t) ,

then the corresponding, conjugate momentum (momenta) is an (are) integral(s) of
the motion, pk = const. If this is the case, such generalized coordinates qk are
said to be cyclic coordinates.

The question arises under which conditions (2.38) can be transformed to the
form H(q

˜
, p
˜
, t). The answer is provided by what is called Legendre transforma-

tion, to whose analysis we now turn.

2.13 The Legendre Transformation for the Case
of One Variable

Let f (x) be a real, differentiable function (at least C2). Let y
def= f (x), z

def= df/dx
and assume that d2f/dx2 	= 0. Then, by the implicit function theorem, x = g(z),
the inverse function of z = df (x)/dx, exists. The theorem also guarantees the
existence of the Legendre transform of f , which is defined as follows:

(Lf )(x) def= x
df

dx
− f (x) = g(z)z− f (g(z))

def= Lf (z) . (2.40)

Thus, as long as d2f/dx2 	= 0, Lf (z) is well defined. It is then possible to con-
struct also LLf (z), i.e. to apply the Legendre transformation twice. One obtains

d

dz
Lf (z) = g(z)+ z

dg

dz
− df

dx

dx

dz
= x + z

dg

dz
− z

dg

dz
= x .

3 There are cases where one must take care with the position of indices: qj (superscript), but
pj = ∂L/∂q̇j (subscript). Here we do not have to distinguish between the two positions yet.
This will be important, though, in Chaps. 4 and 5.



108 2. The Principles of Canonical Mechanics

Its second derivative does not vanish, because

d 2

dz2 Lf (z) = dx

dz
= 1

d 2f/dx2 	= 0 .

Therefore, if we set Lf (z) = Φ(z) = xz− f ,

LLf (z) ≡ LΦ = z
dΦ

dz
−Φ(z) = zx − xz+ f = f .

This means that the transformation

f → Lf

is one-to-one whenever d 2f/dx2 	= 0.
For the sake of illustration we consider two examples.

Example (i) Let f (x) = mx2/2. Then z = df/dx = mx and d 2f/dx2 = m 	= 0.
Thus x = g(z) = z/m and Lf (z) = (z/m)z−m(z/m)2/2 = z2/2m.

Example (ii) Let f (x) = xα/α. Then z = xα−1, d 2f/dx2 = (α − 1)xα−2 	= 0,
provided α 	= 1, and, if α 	= 2, provided also x 	= 0. The inverse is

x = g(z) = z1/(α−1)

and therefore

Lf (z) = z1/(α−1)z− 1

α
zα/(α−1) = α − 1

α
zα/(α−1) ≡ 1

β
zβ with β ≡ α

α − 1
.

We note the relation 1/α + 1/β = 1. As a result we have

f (x) = 1

α
xα↔

L
Lf (z) = 1

β
zβ with

1

α
+ 1

β
= 1 .

If a Lagrangian function is given (here for a system with f = 1), the Legendre
transform is nothing but the passage to the Hamiltonian function that we sketched
in Sect. 2.12. Indeed, if x is taken to be the variable q̇ and f (x) the function
L(q, q̇, t) of q̇, then according to (2.40)

LL(q, q̇, t) = q̇(q, p, t) · p − L(q, q̇(q, p, t), t) = H(q, p, t) ,

where q̇(q, p, t) is the inverse function of

p = ∂L

∂q̇
(q, q̇, t) .

The inverse exists if ∂2L/∂q̇2 is nonzero. If this condition is fulfilled, q̇ can be
eliminated and is expressed by q, p, and t . In the case studied here, the initial func-
tion also depends on other variables such as q and t . Clearly their presence does
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not affect the Legendre transformation, which concerns the variable q̇. (However,
in the general case, it will be important to state with respect to which variable the
transform is taken.)

With the same condition as above one can apply the Legendre transformation to
the Hamiltonian function, replacing p by p(q, q̇, t) and obtaining the Lagrangian
function again.

The generalization to more than one degree of freedom is easy but requires a
little more writing.

2.14 The Legendre Transformation
for the Case of Several Variables

Let the function F(x1, . . . , xm; u1, . . . , un) be C2 in all xk and assume that

det

(
∂2F

∂xk∂xi

)
	= 0 . (2.41)

The equations

yk = ∂F

∂xk
(x1, . . . xm; u1, . . . un) , k = 1, 2, . . . , m (2.42)

can then be solved locally in terms of the xi , i.e.

xi = ϕi(y1, . . . , ym; u1, . . . un) , i = 1, 2, . . . , m . (2.42)

The Legendre transform of F is defined as follows:

G(y1, . . . , ym; u1, . . . un) ≡ LF =
m∑

k=1

ykϕk − F . (2.43)

We then have

∂G

∂yk
= ϕk ; ∂G

∂ui
= − ∂F

∂ui
and det

(
∂2G

∂yk∂yl

)
det

(
∂2F

∂xi∂xj

)
= 1 .

As in the one-dimensional case this transformation is then one-to-one. This result
can be applied directly to the Lagrangian function if we identify the variables
(x1 . . . xm) with (q̇1 . . . q̇f ) and (u1 . . . un) with (q1 . . . qf , t). We start from the
function L(q

˜
, q̇
˜
, t) and define the generalized momenta as in (2.39):

pk
def= ∂

∂q̇k
L(q

˜
, q̇
˜
, t) .

These equations can be solved locally and uniquely in terms of the q̇k precisely
if the condition
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det

(
∂2L

∂q̇k∂q̇i

)
	= 0 (2.44)

is fulfilled4. In this case q̇k= q̇k(q˜ , p˜ , t) and the Hamiltonian function is given by

H(q
˜
, p
˜
, t) = LL(q

˜
, p
˜
, t) =

f∑

k=1

pkq̇k(q˜
, p
˜
, t)− L(q

˜
, q̇
˜
(q
˜
, p
˜
, t), t) .

With the same condition (2.44), a two-fold application of the Legendre transfor-
mation leads back to the original Lagrangian function.

Is it possible to formulate the equations of motion by means of the Hamiltonian
instead of the Lagrangian function? The answer follows directly from our equations
above, viz.

q̇k = ∂H

∂pk
, det

(
∂2H

∂pj∂pi

)
	= 0 , and

∂H

∂qk
= − ∂L

∂qk
= −ṗk .

We obtain the following system of equations of motion:

q̇k = ∂H

∂pk
; ṗk = −∂H

∂qk
k = 1, . . . , f . (2.45)

These equations are called the canonical equations. They contain only the Hamil-
tonian function H(q

˜
, p
˜
, t) and the variables q

˜
, p
˜
, t . We note that (2.45) is a system

of 2f ordinary differential equations of first order. They replace the f differential
equations of second order that we obtained in the Lagrangian formalism. They are
completely equivalent to the Euler–Lagrange equations, provided (2.44) holds.

2.15 Canonical Systems

Definition. A mechanical system is said to be canonical if it admits a Hamiltonian
function such that its equations of motion take the form (2.45).

Proposition. Every Lagrangian system that fulfills the condition (2.44) is
canonical. The converse holds also: if det(∂2H/∂pk∂pi) 	= 0, then every
canonical system with f degrees of freedom obeys the Euler–Lagrange
equations with L(q

˜
, q̇
˜
, t) given by

L(q
˜
,q̇
˜
,t)=LH(q

˜
,q̇
˜
,t)=

f∑

k=1

q̇kpk(q˜
, q̇
˜
, t)−H(q

˜
, p
˜
(q
˜
, q̇
˜
, t), t) . (2.46)

4 In mechanics the kinetic energy and, hence, the Lagrangian are positive-definite (but not neces-
sarily homogeneous) quadratic functions of the variables q̇

˜
In this situation, solving the defining

equations for pk in terms of the qi yields a unique solution also globally.
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Remarks: One might wonder about the specific form (2.40) or (2.43) of the Leg-
endre transformation which when supplemented by the condition (2.44) on the
second derivatives, guarantees its bijective, in fact diffeomorphic nature. The fol-
lowing two remarks may be helpful in clarifying matters further.

1. For simplicity, let us write the equations for the case of one degree of free-
dom, f = 1, the generalization to more than one degree of freedom having been
clarified in Sect. 2.14. Depending on whether the Lagrangian function or the Hamil-
tonian function is given, one constructs the hybrid

H̃ (q, q̇) = q̇
∂L(q, q̇)

∂q̇
− L(q, q̇) , or

L̃(q, p) = ∂H(q, p)

∂p
ṗ −H(q, p) ,

i.e. auxiliary quantities that still depend on the “wrong” variables. If the first or
the second of the conditions

∂2L(q, q̇)

∂q̇∂q̇
	= 0 ,

∂2H(q, p)

∂p∂p
	= 0

is fulfilled then the equations

p = ∂L

∂q̇
, q̇ = ∂H

∂p

can be solved for q̇ as a function of q and p in the first case, for p as a function
of q and q̇ in the second, so that the transition from L(q, q̇) to H(q, p), or the
inverse, from H(q, p) to L(q, q̇) becomes possible. An important aspect of Leg-
endre transformation is the obvious symmetry between L and H . The condition
on the second derivatives guarantee its uniqueness.

2. The condition on the second derivative tells us that the function to be trans-
formed is either convex or concave. In this connection it might be useful to consult
exercise 2.14 and its solution. In fact, for the Legendre transformation to exist,
the weaker condition of convexity of the function (or its negative) is the essen-
tial requirement, not its differentiability. This weaker form is important for other
branches of physics, such as thermodynamics of equilibrium states, or quantum
field theory.

2.16 Examples of Canonical Systems

We illustrate the results of the previous sections by two instructive examples.

Example (i) Motion of a particle in a central field. As the angular momentum
is conserved the motion takes place in a plane perpendicular to l. We introduce
polar coordinates in that plane and write the Lagrangian function in its natural
form. With x1 = r cosϕ, x2 = r sin ϕ, one finds v2 = ṙ2 + r2ϕ̇2, and thus
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L = T − U(r) = 1
2m(ṙ

2 + r2ϕ̇2)− U(r) . (2.47)

Here q1 = r , q2 = ϕ, and p1 ≡ pr = mṙ , p2 ≡ pϕ = mr2ϕ̇. The determinant of
the matrix of second derivatives of L by the q̇j is

det

(
∂2L

∂q̇j ∂q̇i

)
= det

(
m 0
0 mr2

)
= m2r2 	= 0 for r 	= 0 .

The Hamiltonian function can be constructed uniquely and is given by

H(q
˜
, p
˜
) = p2

r

2m
+ p2

ϕ

2mr2 + U(r) . (2.48)

The canonical equations (2.45) read as follows:

ṙ = ∂H

∂pr
= 1

m
pr , ϕ̇ = ∂H

∂pϕ
= 1

m

pϕ

r2 , (2.49a)

ṗr = −∂H

∂r
= p2

ϕ

mr3 −
∂U

∂r
, ṗϕ = 0 . (2.49b)

Comparison with Example 1.24 shows that pϕ ≡ l is the modulus of angular
momentum and is conserved. Indeed, from the expression (2.47) for L, we note
that ϕ is a cyclic coordinate. The first equation (2.49b), when multiplied by pr
and then integrated once, gives (1.62) of Example 1.24. This shows that H(q

˜
, p
˜
)

is conserved when taken along a solution curve of (2.45).

Example (ii) A charged particle in electromagnetic fields. Following the method
of Example (ii) of Sect. 2.8 we have

L = 1

2
mq̇2 − eΦ(q, t)+ e

c
q̇ ·A(q, t) . (2.50)

The canonically conjugate momenta are given by

pi = ∂L

∂q̇i
= mq̇i + e

c
Ai(q, t) .

These equations can be solved for q̇i ,

q̇i = 1

m
pi − e

cm
Ai ,

so that one obtains

H =
3∑

i=1

pi

m

(
pi − e

c
Ai

)
− 1

2m

3∑

i=1

(
pi − e

c
Ai

)2

+eΦ − e

mc

3∑

i=1

(
pi − e

c
Ai

)
Ai
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or

H(q,p, t) = 1

2m

(
p− e

c
A(q, t)

)2 + eΦ(q, t) . (2.51)

Note the following difference:

mq̇ = p− e

c
A

is the kinematic momentum,

pi with pi = ∂L

∂q̇i

is the (generalized) momentum canonically conjugate to qi .

2.17 The Variational Principle
Applied to the Hamiltonian Function

It is possible to obtain the canonical equations (2.45) directly from Hamilton’s
variational principle (Sects. 2.5 and 2.6). For this we apply the principle to the
following function:

F(q
˜
, p
˜
, q̇
˜
, ṗ
˜
, t)

def=
f∑

k=1

pkq̇k −H(q
˜
, p
˜
, t) , (2.52)

taking the q
˜
, p
˜
, q̇
˜
, ṗ
˜

as four sets of independent variables. In the language of
Sect. 2.5, (q

˜
, p
˜
) corresponds to y, (q̇

˜
, ṗ
˜
) to y′, and t to x. Requiring that

δ

∫ t2

t1

Fdt = 0 (2.53)

and varying the variables qk and pk independently, we get the Euler–Lagrange
equations δF/δqk = 0, δF/δpk = 0. When written out, these are

d

dt

∂F

∂q̇k
= ∂F

∂qk
, or ṗk = −∂H

∂qk
, and

d

dt

∂F

∂ṗk
= ∂F

∂pk
, or 0 = q̇k − ∂H

∂pk
.

Thus, we again obtain the canonical equations (2.45). We shall make use of this
result below when discussing canonical transformations.



114 2. The Principles of Canonical Mechanics

2.18 Symmetries and Conservation Laws

In Sects. 1.12 and 1.13 we studied the ten classical integrals of the motion of the
closed n-particle system, as derived directly from Newton’s equations. In this sec-
tion and in the subsequent ones we wish to discuss these results, as well as general-
izations of them, in the framework of Lagrangian functions and the Euler–Lagrange
equations.

Here and below we study closed, autonomous systems with f degrees of free-
dom to which we can ascribe Lagrangian functions L(q

˜
, q̇
˜
) without explicit time

dependence. Take the natural form for L,

L = T (q
˜
, q̇
˜
)− U(q

˜
) , (2.54)

where T is a homogeneous function of degree 2 in the q̇k . According to Euler’s
theorem on homogeneous functions we have

f∑

i=1

q̇i
∂T

∂q̇i
= 2T , (2.55)

so that

f∑

i=1

piq̇i − L =
∑ ∂L

∂q̇i
q̇i − L = T + U = E .

This expression represents the energy of the system. For autonomous systems, E
is conserved along any orbit. Indeed, making use of the Euler–Lagrange equations,
one finds that

dE

dt
= d

dt

(∑
piq̇i

)
−

∑ ∂L

∂qi
q̇i −

∑ ∂L

∂q̇i
q̈i

= d

dt

(∑
piq̇i

)
− d

dt

(∑ ∂L

∂q̇i
q̇i

)
= 0 .

Note that we made use of the Euler-Lagrange equations.

Remarks: In the framework of Lagrangian mechanics a dynamical quantity such
as, for instance, the energy which is a candidate for a constant of the motion, at
first is a function E(q

˜
, q̇
˜
) on velocity space spanned by q

˜
and q̇

˜
. Likewise, in the

framework of Hamiltonian canonical mechanics it is a function E(q
˜
, p
˜
) on phase

space that is spanned by q
˜

and p
˜
. Of course, such a function on either velocity

space or phase space, in general, is not constant. It is constant only – if it represents
an integral of the motion – along solutions of the equations of motion. In other
terms, its time derivative is equal to zero only if it is evaluated along physical
orbits along which q

˜
and q̇

˜
, or q

˜
and p

˜
, respectively, are related to each other

via the equations of motion. For this reason and as discussed in Sect (1.16), this
kind of time derivative is called the orbital derivative, as a short-hand for time
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derivative taken along the orbit. The important point to note is that in order to
study the variation of a given function along physical orbits we need not know the
solutions proper. Knowledge of the differential equations that describe the motion is
sufficient for calculating the orbital derivative and to find out, for instance, whether
that function is an integral of the system.

Suppose that the mechanical system one is considering is invariant under a class
of continuous transformations of the coordinates that can be deformed smoothly
into the identical mapping. The system then possesses integrals of the motion, i.e.
there are dynamical quantities that are constant along orbits of the system. The
interesting observation is that it is sufficient to study these transformations in an
infinitesimal neighborhood of the identity. This is made explicit in the following
theorem by Emmy Noether, which applies to transformations of the space coordi-
nates.

2.19 Noether’s Theorem

Let the Lagrangian function L(q
˜
, q̇
˜
) describing an autonomous system be

invariant under the transformation q
˜
→ hs(q

˜
), where s is a real, continuous

parameter and where hs=0(q
˜
) = q

˜
is the identity (see Fig. 2.7). Then there

exists an integral of the motion, given by

I (q
˜
, q̇
˜
) =

f∑

i=1

∂L

∂q̇i

d

ds
hs(qi)

∣∣∣∣
s=0

. (2.56)

Fig. 2.7. A differentiable, one-parameter transforma-
tion of the orbits in the neighborhood of the identical
mapping. If it leaves the Lagrangian function invari-
ant, there exists a constant of the motion correspond-
ing to it

Proof. Let q
˜
= ϕ

˜ (t) be a solution of the Euler–Lagrange equations. Then, by
assumption, q

˜
(s, t) = Φ˜ (s, t) = hs(ϕ˜ (t)) is a solution too. This means that

d

dt

∂L

∂q̇i
(Φ˜ (s, t), Φ̇˜ (s, t)) =

∂L

∂qi
(Φ˜ (s, t), Φ̇˜ (s, t)) , i = 1, . . . , f . (2.57)

Furthermore, L is invariant by assumption, i.e.
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d

ds
L(Φ˜ (s, t), Φ̇˜ (s, t)) =

f∑

i=1

[
∂L

∂qi

dΦi

ds
+ ∂L

∂q̇i

dΦ̇i

ds

]
= 0 . (2.58)

Combining (2.57) and (2.58) we obtain

f∑

i=1

[
d

dt

(
∂L

∂q̇i

)
dΦi

ds
+ ∂L

∂q̇i

d

dt

(
dΦi

ds

)]
= 0 = d

dt
I. �

We study two examples; let the Lagrangian function have the form

L = 1

2

n∑

p=1

mp ṙ2
p − U(r1, . . . , rn) .

Example (i) Assume that the system is invariant under translations along the x-
axis:

hs : rp → rp + sex , p = 1, . . . , n .

We then have

d

ds
hs(rp)

∣∣
s=0= ex and I =

n∑

p=1

mpẋ
(p) = Px .

The result is the following. Invariance under translations along the x-axis implies
conservation of the projection of the total momentum onto the x-axis. Similarly,
if the Lagrangian is invariant under translations along the direction n̂, then the
component of total momentum along that direction is conserved.

Example (ii) The same system is now assumed to be invariant under rotations
about the z-axis, cf. Fig. 2.8:

rp =
(
x(p), y(p), z(p)

)
→ r′p =

(
x′(p), y′(p), z′(p)

)
with

x′(p) = x(p) cos s + y(p) sin s ,
y′(p) = −x(p) sin s + y(p) cos s ,
z′(p) = z(p)

(passive rotation)

Here one obtains

d

ds
r′p

∣∣
s=0=

(
y(p),−x(p), 0

)
= rp × ez

and

I =
n∑

p=1

mp ṙp · (rp × ez) =
∑

ez · (mp ṙp × rp) = −lz .
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Fig. 2.8. If the Lagrangian function for a mass point is invariant
by rotations about the z-axis, the projection of angular momen-
tum onto that axis is conserved

The conserved quantity is found to be the projection of the total angular momen-
tum onto the z-axis. More generally, if L is invariant under rotations about any
direction in space (the potential energy must then be spherically symmetric), then
the total angular momentum is conserved as a whole.

To which extent there exists an inverse to Noether’s theorem, that is to say under
which conditions the existence of an integral of the motion implies invariance of the
system with respect to a continuous transformation, will be clarified in Sects. 2.34
and 2.41 below.

2.20 The Generator for Infinitesimal Rotations About an Axis

In the two previous examples and, generally, in Noether’s theorem hs is a one-
parameter group of diffeomorphisms that have the special property that they can be
deformed, in a continuous manner, into the identity. The integral of the motion, I ,
only depends on the derivative of hs at s = 0, which means that the transformation
group is needed only in the neighborhood of the identity. Here we wish to pursue
the analysis of Example (ii), Sect. 2.19. This will give a first impression of the
importance of continuous groups of transformations in mechanics.

For infinitesimally small s the rotation about the z-axis of Example (ii) can be
written as follows:

hs(r) =
⎧
⎨

⎩

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠− s

⎛

⎝
0 −1 0
1 0 0
0 0 0

⎞

⎠

⎫
⎬

⎭

⎛

⎝
x

y

z

⎞

⎠+ O(s2)

≡ (1l − sJz)r + O(s2) . (2.59)

The 3 × 3 matrix Jz is said to be the generator for infinitesimal rotations about
the z-axis. In fact, one can show that the rotation about the z-axis by a finite angle

r′ =
⎛

⎝
cosϕ sin ϕ 0

− sin ϕ cosϕ 0
0 0 1

⎞

⎠ r
def= Rz(ϕ)r (2.60)
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can be constructed from the infinitesimal rotations (2.59). This is seen as follows.
For simplicity let us first study the example of 2× 2-matrices describing rotations
in a plane (the (x, y)-plane, for instance). The matrix

M def=
(

0 −1
1 0

)
.

has the properties M2 = −1l, M3 = −M, M4 = +1l, etc. or, more generally,
M2n = (−1)n1l, M2n+1 = (−1)nM.

Then, from the well-known Taylor series for the sine and cosine functions one
has

A def=
(

cosϕ sin ϕ
− sin ϕ cosϕ

)
= 1l

∞∑

n=0

(−1)n

(2n)! ϕ
2n −M

∞∑

n=0

(−1)n

(2n+ 1)!ϕ
2n+1 ,

and, inserting the formulae for the even and odd powers of the matrix M,

A =
∞∑

0

1

(2n)!M
2nϕ2n −

∞∑

0

1

(2n+ 1)!M
2n+1ϕ2n+1 = exp(−Mϕ) . (2.61)

It is then not difficult to convince oneself that the 3 × 3 matrix Rz(ϕ) of (2.60)
can also be written as an exponential series, as in (2.61), viz.

Rz(ϕ) = exp(−Jzϕ) . (2.62)

Indeed, consider the 3 × 3-matrix defined in (2.59)

Jz =
⎛

⎝
0 −1 0
1 0 0
0 0 0

⎞

⎠

and verify that its even and odd powers are

J2n
z = (−)n

⎛

⎝
1 0 0
0 1 0
0 0 0

⎞

⎠ , J2n+1
z = (−)nJz .

Inserting these formulae, one has

Rz(ϕ) =
⎛

⎝
cosϕ sin ϕ 0
− sin ϕ cosϕ 0

0 0 1

⎞

⎠ =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠+
⎛

⎝
cosϕ − 1 sin ϕ 0
− sin ϕ cosϕ − 1 0

0 0 1

⎞

⎠

= 1l3×3 +
∞∑

n=1

1

(2n)!J
2n
z ϕ

2n −
∞∑

n=0

1

(2n+ 1)!J
2n+1
z ϕ2n+1 = exp(−Jzϕ) .

The result (2.62) can be understood as follows. In (2.59) take s = ϕ/n with
n a positive integer, large compared to 1. Assume then that we perform n such
rotations in a series, i.e.

(
1l − ϕ

n
Jz

)n
,

Finally, let n go to infinity. In this limit use Euler’s formula for the exponential,
lim(1 + x/n)n = ex , to obtain
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lim
n→∞

(
1l − ϕ

n
Jz

)n = exp(−Jzϕ) .

Clearly, these results can be extended to rotations about any other direction in
space.

The appearance of finite-dimensional matrices in the argument of an exponen-
tial function is perhaps not familiar to the reader. There is nothing mysterious about
such exponentials. They are defined through the power series

exp{A} = 1 + A+ A2/2! + . . .+ Ak/k! + . . . ,

where A, like any finite power Ak in the series, is an n× n matrix. As the expo-
nential is an entire function (its Taylor expansion converges for any finite value of
the argument), there is no problem of convergence of this series.

2.21 More About the Rotation Group

Let x = (x1, x2, x3) be a point on a physical orbit x(t), x1, x2 and x3 being its
(Cartesian) coordinates with respect to the frame of reference K. The same point,
when described within the frame K′ whose origin coincides with that of K but
which is rotated by the angle ϕ about the direction ϕ̂, is represented by

x|K′ = (x′1, x′2, x′3) with x′i =
3∑

k=1

Rikxk or x′ = Rx . (2.63)

(This is a passive rotation.) By definition, rotations leave the length unchanged.
Thus x′2 = x2, or, when written out more explicitly,

(Rx) · (Rx) = xRTRx
!= x2 ,

or, in components and even more explicitly,

3∑

i=1

x′ix′i =
3∑

k=1

3∑

l=1

(
3∑

i=1

RikRil

)

xkxl
!=

3∑

k=1

3∑

l=1

δklxkxl .

One thus obtains the condition
3∑

i=1

(RT)kiRil = δkl ,

i.e. R must be a real, orthogonal matrix:

RTR = 1l . (2.64)

From (2.64) one concludes that (det R)2 = 1 or det R = ±1.
We restrict the discussion to the rotation matrices with determinant +1 and

leave aside space inversion (cf. Sect. 1.13). The matrices R with det R = +1 form
a group, the special orthogonal group in three real dimensions

SO(3) = {R : R
3 → R

3 linear| det R = +1,RTR = 1} . (2.65)

As shown in Sect. 1.13, every such R depends on 3 real parameters and can be
deformed continuously into the identity R0 = 1l. A possible parametrization is the
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following. Take a vector ϕ whose direction ϕ̂
def= ϕ/ϕ defines the axis about which

the rotation takes place and whose modulus ϕ = |ϕ| defines the angle of rotation,
as indicated in Fig. 2.9:

Fig. 2.9. Rotation of the coordinate system about the
direction ϕ̂ by the (fixed) angle ϕ

R ≡ R(ϕ) with ϕ : ϕ̂ = ϕ/ϕ , ϕ = |ϕ| , 0 ≤ ϕ ≤ 2π . (2.66)

(We shall meet other parametrizations in developing the theory of the rigid body
in Chap. 3.) The action of R(ϕ) on x can be expressed explicitly in terms of the
vectors x, ϕ̂ × x and ϕ̂ × (ϕ̂ × x), for a passive rotation, by

x′ = R(ϕ)x = (ϕ̂ · x)ϕ̂ − ϕ̂ × x sin ϕ − ϕ̂ × (ϕ̂ × x) cosϕ . (2.67)

This is shown as follows. The vectors ϕ̂, ϕ̂×x, and ϕ̂×(ϕ̂×x) are mutually orthog-
onal. For example, if the 3-axis is taken along the direction ϕ̂, i.e. if ϕ̂ = (0, 0, 1),
then x = (x1, x2, x3), ϕ̂ × x = (−x2, x1, 0), and ϕ̂ × (ϕ̂ × x) = (−x1,−x2, 0).
With respect to the new coordinate system the same vector has the components

x′1 = x1 cosϕ + x2 sin ϕ , x′2 = −x1 sin ϕ + x2 cosϕ , x′3 = x3 ,

in agreement with (2.67). One now verifies that (2.67) holds true also when ϕ̂ is
not along the 3-axis. The first term on the right-hand side of (2.67) contains the
information that the projection of x onto ϕ̂ stays invariant, while the remaining
two terms represent the rotation in the plane perpendicular to ϕ̂. Making use of
the identity a× (b× c) = b(a · c)− c(a · b), (2.67) becomes

x′ = x cosϕ − ϕ̂ × x sin ϕ + (1 − cosϕ)(ϕ̂ · x)ϕ̂ . (2.68)

We now show the following.
(i) R(ϕ) as parametrized in (2.67) belongs to SO(3):

x′2 = (ϕ̂ · x)2 + (ϕ̂ × x)2 sin2 ϕ + (ϕ̂ × (ϕ̂ × x))2 cos2 ϕ

= x2[cos2 α + sin2 α sin2 ϕ + sin2 α cos2 ϕ] = x2 .
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Fig. 2.10. Definition of the angle α between the position
vector x and the direction about which the rotation takes
place

Here α denotes the angle between the vectors ϕ̂ and x (see Fig. 2.10). If ϕ̂ and ϕ̂
′

are parallel, then R(ϕ̂′)R(ϕ̂) = R(ϕ̂+ ϕ̂
′
). This means that R(ϕ̂) can be deformed

continuously into the identity R(0) = 1l and therefore that det R(ϕ) = +1.
(ii) Every R of SO(3) can be written in the form (2.67). Consider first those

vectors x which remain unchanged under R (up to a factor), Rx = λx. This means
that

det(R− λ1l) = 0

must hold. This is a cubic polynomial with real coefficients. Therefore, it always
has at least one real eigenvalue λ, which is +1 or −1 because of the condition
(Rx)2 = x2. In the plane perpendicular to the corresponding eigenvector, R must
have the form

(
cosΨ sinΨ

− sinΨ cosΨ

)

in order to fulfill the condition (2.64). Finally, Ψ must be equal to ϕ because
det R = 1 and because R can be deformed continuously into the identity. Thus,
R(ϕ) must have the decomposition (2.67).

2.22 Infinitesimal Rotations and Their Generators

Assume now that ϕ ≡ ε � 1. Then, from (2.67) and (2.68), respectively,

x′ = (ϕ̂ ·x)ϕ̂− (ϕ̂×x)ε− ϕ̂× (ϕ̂×x)+O(ε2) = x− (ϕ̂×x)ε+O(ε2). (2.69)

Writing this out in components, one obtains

x′ = x− ε

⎛

⎝
0 −ϕ̂3 ϕ̂2
ϕ̂3 0 −ϕ̂1

−ϕ̂2 ϕ̂1 0

⎞

⎠ x+ O(ε2)

= x− ε

⎡

⎣

⎛

⎝
0 0 0
0 0 −1
0 1 0

⎞

⎠ ϕ̂1 +
⎛

⎝
0 0 1
0 0 0

−1 0 0

⎞

⎠ ϕ̂2

+
⎛

⎝
0 −1 0
1 0 0
0 0 0

⎞

⎠ ϕ̂3

⎤

⎦ x+ O(ε2) . (2.70)

This is the decomposition of the infinitesimal rotation into rotations about the three
directions ϕ̂1, ϕ̂2, and ϕ̂3. Denoting the matrices in this expression by
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J1
def=

⎛

⎝
0 0 0
0 0 −1
0 1 0

⎞

⎠ , J2
def=

⎛

⎝
0 0 1
0 0 0

−1 0 0

⎞

⎠ , J3
def=

⎛

⎝
0 −1 0
1 0 0
0 0 0

⎞

⎠ ,

(2.71)

and using the abbreviation J = (J1,J2,J3), (2.70) takes the form

x′ = [1l − εϕ̂ · J]x+ O(ε2) . (2.72)

Following Sect. 2.20 choose ε = ϕ/n and apply the same rotation n times. In the
limit n→∞ one obtains

x′ = lim
n→∞

(
1l − ϕ

n
ϕ̂ · J

)n
x = exp(−ϕ · J)x . (2.73)

Thus, the finite rotation R(ϕ) is represented by an exponential series in the matrices
J = (J1,J2,J3) and the vector ϕ. Jk is said to be the generator for infinitesimal
rotations about the axis k.

As before, the first equation of (2.73) can be visualized as n successive rota-
tions by the angle ϕ/n. In the limit of n going to infinity this becomes an infinite
product of infinitesimal rotations. By Gauss’ formula this is precisely the expo-
nential indicated in the second equation of (2.73). It is to be understood as the

well-known exponential series
∑∞

n=0(1/n!)An in the 3× 3 matrix A def= (−ϕ · J).
The matrices R(ϕ) form a compact Lie group (its parameter space is compact).

Its generators (2.71) obey the Lie algebra associated with this group. This means
that the commutator (or Lie product),

[Ji ,Jk] def= JiJk − JkJi ,

of any two of them is defined and belongs to the same set {Jk}. Indeed, from (2.71)
one finds that

[J1,J2] = J3 , [J1,J3] = −J2

together with four more relations that follow from these by cyclic permutation
of the indices. As the Lie product of any two elements of {J1,J2,J3} is again
an element of this set, one says that the algebra of the Jk closes under the Lie
product.

Via (2.72) and (2.73) the generators yield a local representation of that part of
the rotation group which contains the unit element, the identical mapping. This is
not sufficient to reconstruct the global structure of this group. We do not reach its
component containing matrices with determinant −1. It can happen, therefore, that
two groups have the same Lie algebra but are different globally. This is indeed the
case for SO(3), which has the same Lie algebra as SU(2), the group of complex
2×2 matrices, which are unitary and have determinant +1, the unitary unimodular
group in two complex dimensions. The elements of the rotation group are differ-
entiable in its parameters (the rotation angles). In this sense it is a differentiable
manifold and one may ask questions such as: Is this manifold compact? (The ro-
tation group is.) Is it simply connected? (The rotation group is doubly connected,
see Sect. 5.2.3 (iv) and Exercise 3.11.)
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2.23 Canonical Transformations

Of course, the choice of a set of generalized coordinates and of the corresponding
generalized, canonically conjugate momenta is not unique. For example, Propo-
sition 2.11 taught us that any diffeomorphic mapping of the original coordinates
q
˜

onto new coordinates Q
˜

leaves invariant Lagrange’s formalism. The new set
describes the same physics by means of a different parametrization. Such trans-
formations are useful, however, whenever one succeeds in making some or all of
the new coordinates cyclic. In this case the corresponding generalized momenta
are constants of the motion. Following Sect. 2.12, we say that a coordinate Qk is
cyclic if L does not depend explicitly on it,

∂L

∂Qk

= 0 . (2.74)

If this is the case, then also ∂H/∂Qk = 0, and

Ṗk = − ∂H

∂Qk

= 0 , (2.75)

from which we conclude that Pk = αk = const. The canonical system described
by

H(Q1, . . . ,Qk−1,Qk+1, . . . ,Qf ;P1, . . . , Pk−1, αk, Pk+1, . . . Pf , t)

is reduced to a system with f − 1 degrees of freedom. For instance, if all Qk are
cyclic, i.e. if

H = H(P1, . . . , Pf ; t) ,
the solution of the canonical equations is elementary, because

Ṗi = 0 → Pi = αi = const , i = 1, . . . , f, and

Q̇i = ∂H

∂Pi

∣∣∣∣
Pi=αi

def= vi(t) ,

from which the solutions are obtained by integration, viz.

Qi =
∫ t

t0

vi(t)dt + βi , i = 1, . . . , f .

The 2f parameters {αi, βi} are constants of integration.
This raises a general question: Is it possible to transform the coordinates and

momenta in such a way that the canonical structure of the equations of motion is
preserved and that some or all coordinates become cyclic? This question leads to
the definition of canonical transformations.
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Diffeomorphic transformations of the variables q
˜

and p
˜

and of the Hamiltonian
function H(q

˜
, p
˜
, t), generated by a smooth function of old and new variables in

the way described below

{q
˜
, p
˜
} → {Q

˜
, P˜ } ,

H(q
˜
, p
˜
, t)→ H̃ (Q

˜
, P˜ , t) , (2.76)

are said to be canonical if they preserve the structure of the canonical equations
(2.45)5. Thus, with (2.45) we shall also find that

Q̇i = ∂H̃

∂Pi
, Ṗi = − ∂H̃

∂Qi

. (2.77)

In order to satisfy this requirement the variational principle (2.53) of Sect. 2.17
must hold for the system {q

˜
, p
˜
, H } as well as for the system {Q

˜
, P˜ , H̃ }, viz.

δ

∫ t2

t1

⎡

⎣
f∑

1

piq̇i −H(q
˜
, p
˜
, t)

⎤

⎦ dt = 0 , (2.78)

δ

∫ t2

t1

⎡

⎣
f∑

1

PiQ̇i − H̃ (Q
˜
, P˜ , t)

⎤

⎦ dt = 0 . (2.79)

Proposition 2.10 tells us that this is certainly true if the integrands in (2.78) and
(2.79) do not differ by more than the total time derivative of a function M:

f∑

i=1

piq̇i −H(q
˜
, p
˜
, t) =

f∑

j=1

PjQ̇j − H̃ (Q
˜
, P˜ , t)+

d

dt
M , (2.80)

where M depends on old and new variables (but not on their time derivatives) and,
possibly, time. There are four ways of choosing M , corresponding to the possible
choices of old coordinates/momenta and new coordinates/momenta. These four
classes can be obtained from one another by Legendre transformation. They are
as follows.

(A) The choice

M(q
˜
,Q
˜
, t) ≡ Φ(q

˜
,Q
˜
, t) . (2.81)

In this case we obtain

dM

dt
≡

dΦ(q
˜
,Q
˜
, t)

dt
= ∂Φ

∂t
+

f∑

j=1

[
∂Φ

∂qj
q̇j + ∂Φ

∂Qj

Q̇j

]
. (2.82)

5 See the precise definition in Sect. 5.5.4 below
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As q
˜

and Q
˜

are independent variables, (2.80) is fulfilled if and only if the following
equations hold true:

pi = ∂Φ

∂qi
, Pj = − ∂Φ

∂Qj

, H̃ = H + ∂Φ

∂t
. (2.83)

The function Φ (and likewise any other function M) is said to be the generating
function of the canonical transformation. The first equation of (2.83) can be solved
for Qk(q˜

, p
˜
, t) if

det

(
∂2Φ

∂qi∂Qj

)
	= 0 , (2.84a)

and the second can be solved for Qk(q˜
, P˜ , t) if

det

(
∂2Φ

∂Qi∂Qj

)
	= 0 . (2.84b)

(B) The choice

M(q
˜
, P˜ , t) = S(q

˜
, P˜ , t)−

f∑

k=1

Qk(q˜
, P˜ , t)Pk . (2.85)

This is obtained by taking the Legendre transform of the generating function (2.81)
with respect to Q

˜
:

(LΦ)(Q
˜
) =

∑
Qk

∂Φ

∂Qk

−Φ(q
˜
,Q
˜
, t) = −

[∑
QkPk +Φ

]
.

We then have

S(q
˜
, P˜ , t)

def=
f∑

k=1

Qk(q˜
, P˜ , t)Pk +Φ(q

˜
,Q
˜
(q
˜
, P˜ , t), t) . (2.86)

With the condition (2.84b) Qk can be solved for q
˜

and P˜ . From (2.83) and (2.86)
we conclude that

pi = ∂S

∂qi
, Qk = ∂S

∂Pk
, H̃ = H + ∂S

∂t
. (2.87)

The same equations are obtained if the generating function (2.85) is inserted into
(2.80), taking into account that q

˜
and P˜ are independent.

(C) The choice

M(Q
˜
, p
˜
, t) = U(Q

˜
, p
˜
, t)+

f∑

k=1

qk(Q˜
, p
˜
, t)pk . (2.88)
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For this we take the Legendre transform of Φ with respect to q
˜
:

(LΦ)(q
˜
) =

∑
qi
∂Φ

∂qi
−Φ(q

˜
,Q
˜
, t)

=
∑

qipi −Φ(q
˜
,Q
˜
, t) .

We then have

U(Q
˜
, p
˜
, t)

def= −
f∑

k=1

qk(Q˜
, p
˜
, t)pk +Φ(q

˜
(Q
˜
, p
˜
, t),Q

˜
, t) (2.89)

and obtain the equations

qk = − ∂U

∂pk
, Pk = − ∂U

∂Qk

, H̃ = H + ∂U

∂t
. (2.90)

(D) The choice

M(P˜ , p˜
, t) = V (P˜ , p˜

, t)−
f∑

k=1

Qk(q˜
(P˜ , p˜

, t), P˜ , t)Pk +
f∑

k=1

qk(P˜ , p˜
, t)pk .

This fourth possibility is obtained from S, for instance, by taking its Legendre
transform with respect to q

˜
:

(LS)(q
˜
) =

∑
qi
∂S

∂qi
− S(q

˜
, P˜ , t) =

∑
qipi − S ,

so that

V (P˜ , p˜
, t)

def= −
f∑

k=1

qk(P˜ , p˜
, t)pk + S(q

˜
(P˜ , p˜

, t), P˜ , t) .

In this case one obtains the equations

qk = − ∂V

∂pk
, Qk = ∂V

∂Pk
, H̃ = H + ∂V

∂t
. (2.91)

This classification of generating functions for canonical transformations may at
first seem rather complicated. When written in this form, the general structure of
canonical transformations is not transparent. In reality, the four types (A–D) are
closely related and can be treated in a unified way. This is easy to understand if one
realizes that generalized coordinates are in no way distinguished over generalized
momenta and, in particular, that coordinates can be transformed into momenta and
vice versa. In Sects. 2.25 and 2.27 below we shall introduce a unified formulation
that clarifies these matters. Before doing this we consider two examples.
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2.24 Examples of Canonical Transformations

Example (i) Class B is distinguished from the others by the fact that it contains
the identical mapping. In order to see this let

S(q
˜
, P˜ ) =

f∑

i=1

qiPi . (2.92)

We confirm, indeed, from (2.87) that

pi = ∂S

∂qi
= Pi ; Qj = ∂S

∂Pj
= qj ; H̃ = H .

Class A, on the other hand, contains that transformation which interchanges the
role of coordinates and momenta. Indeed, taking

Φ(q
˜
,Q
˜
) =

f∑

k=1

qkQk (2.93)

we find that (2.83) gives pi = Qi , Pk = −qk , H̃ (Q
˜
, P˜ ) = H(−P˜ ,Q˜ ).

Example (ii) For the harmonic oscillator there is a simple canonical transforma-
tion that makes Q cyclic. Start from

H(q, p) = p2

2m
+ 1

2
mω2q2 (f = 1) (2.94)

and apply the canonical transformation generated by

Φ(q,Q) = 1
2mωq

2 cotQ . (2.95)

In this case the equations (2.83) are

p = ∂Φ

∂q
= mωq cotQ ,

P = −∂Φ

∂Q
= 1

2

mωq2

sin2 Q
,

or, by solving for q and p,

q =
√

2P

mω
sinQ , p = √

2mωP cosQ ,

and, finally, H̃ = ωP . Thus, Q is cyclic, and we have
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Ṗ = −∂H̃

∂Q
= 0 → P = α = const ,

(2.96)

Q̇ = ∂H̃

∂P
= ω→ Q = ωt + β .

When translated back to the original coordinates this gives the familiar solution

q(t) =
√

2α

mω
sin(ωt + β) .

As expected, the general solution depends on two integration constants whose in-
terpretation is obvious: α determines the amplitude (it is assumed to be positive)
and β the phase of the oscillation.

Whenever the new momentum P is a constant and the new coordinate Q a
linear function of time, P is said to be an action variable, Q an angle variable.
We return to action–angle variables below.

2.25 The Structure of the Canonical Equations

First, we consider a system with one degree of freedom, f = 1. We assume that
it is described by a Hamiltonian function H(q

˜
, p
˜
, t). As in Sect. 1.16 we set

x˜
def=

(
q

p

)
, or x˜ =

(
x1
x2

)
with x1 ≡ q, x2 ≡ p , (2.97a)

as well as6

H,x
def=

⎛

⎜⎜⎜
⎝

∂H

∂x1

∂H

∂x2

⎞

⎟⎟⎟
⎠
≡

⎛

⎜⎜⎜
⎝

∂H

∂q

∂H

∂p

⎞

⎟⎟⎟
⎠

and J def=
(

0 1
−1 0

)
. (2.97b)

The canonical equations then take the form

−Jẋ˜ = H,x (2.98)

or

x
˜
= JH,x . (2.99)

The second equation follows from the observation that J−1 = −J. Indeed,

J2 = −1l and JT = J−1 = −J . (2.100)

6 The derivative of H by xk is written as H,xk . More generally, the set of all derivatives of H
by x˜ is abbreviated by H,x .
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The solutions of (2.99) have the form

x˜ (t, s, y˜
) = Φ˜ t,s (y˜

) with Φ˜ s,s(y˜
) = y

˜
, (2.101)

where s and y
˜

are the initial time and initial configuration, respectively.
For an arbitrary number f of degrees of freedom we have in a similar way

(see also Sect. 1.18)

x˜
def=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q1
q2
...

qf
p1
p2
...

pf

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, H,x
def=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂H/∂q1
...

∂H/∂qf
∂H/∂p1

...

∂H/∂pf

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, J def=
(

0f×f 1lf×f
−1lf×f 0f×f

)
. (2.102)

The canonical equations have again the form (2.98) or (2.99) with

J =
(

0 1l
−1l 0

)
, (2.103)

where 1l denotes the f ×f unit matrix. Clearly, J has the same properties (2.100)
as for f = 1.

2.26 Example: Linear Autonomous Systems
in One Dimension

Before proceeding further we consider a simple example: the class of linear, au-
tonomous systems with one degree of freedom. Linear means that ẋ˜ = Ax˜ , where

A is a 2 × 2 matrix. Equation (2.98) now reads

−Jẋ˜ = −JAx˜ = H,x . (2.104)

This means in turn that H must have the general form

H = 1
2 [aq2 + 2bqp + cp2] ≡ 1

2 [ax2
1 + 2bx1x2 + cx2

2 ] . (2.105)

Thus

ẋ˜ = Ax˜ = JH,x =
(

0 1
−1 0

)(
∂H/∂x1
∂H/∂x2

)
=

(
bx1 + cx2

−ax1 − bx2

)
(2.105′)

and the matrix A is given by
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A =
(

b c

−a −b
)
.

Note that its trace vanishes, TrA = 0. It is not difficult to solve (2.105′) directly
in matrix form, viz.

x˜ = exp[(t − s)A]y
˜
≡ Φ˜ t−s(y˜

) . (2.106)

The exponential is calculated by its series expansion. The square of A is propor-
tional to the unit matrix,

A2 =
(

b c

−a −b
)(

b c

−a −b
)
= (b2 − ac)

(
1 0
0 1

)
≡ −Δ1l .

Therefore, all even powers of A are multiples of the unit matrix; all odd powers
are multiples of A:

A2n = (−1)nΔn1l , A2n+1 = (−1)nΔnA .

Δ
def= ac− b2 is the determinant of A. For the sake of illustration we assume that

Δ is positive. We then have (see also Sect. 2.20)

exp{(t − s)A} = 1l cos
(√

Δ(t − s)
)
+ A

1√
Δ

sin
(√

Δ(t − s)
)
. (2.107)

Thus, the solution (2.106) is obtained as follows, setting ω
def= √

Δ = √
ac − b2:

x˜ = Φ˜ t−s(y˜
) ≡ P(t − s)y

˜

=
⎛

⎜
⎝

cosω(t − s)+ b

ω
sinω(t − s)

c

ω
sinω(t − s)

− a

ω
sinω(t − s) cosω(t − s)− b

ω
sinω(t − s)

⎞

⎟
⎠ y

˜
.

It describes harmonic oscillations. (If, instead, we choose Δ < 0, it describes
exponential behavior.) The solution is a linear function of the initial configuration,
xi = ∑2

k=1 Pik(t − s)yk from which we obtain dxi = ∑2
k=1 Pikdyk . The volume

element dx1dx2 in phase space is invariant if det(∂xi/∂yk) = det(Pik) = 1. This
is indeed the case:

det(Pik) = cos2 ω(t − s)−
[
b2

ω2 −
ac

ω2

]
sin2 ω(t − s) = 1 .

(Recall the remark at the end of Sect. 1.21.1.) This “conservation of phase volume”
is sketched in Fig. 2.11 for the case a = c = 1, b = 0, i.e. the harmonic oscillator.
In fact, this is nothing but the content of Liouville’s theorem to which we return
below, in a more general context (Sects. 2.29 and 2.30).



2.27 Canonical Transformations in Compact Notation 131

Fig. 2.11. Phase portraits for the harmonic oscillator
(units as in Sect. 1.17.1). The hatched area wanders
about the origin with constant angular velocity and
without changing its shape

2.27 Canonical Transformations in Compact Notation

The 2f -dimensional phase space of a Hamiltonian system carries an interesting
geometrical structure which is encoded in the canonical equations

⎛

⎜
⎝
q̇
˜
ṗ
˜

⎞

⎟
⎠ =

(
∂H/∂p

˜−∂H/∂q
˜

)

and in the canonical transformations that leave these equations form invariant. This
structure becomes apparent, for the first time, if the canonical transformations (A–
D) and the conditions on their derivatives are formulated in the compact notation
of Sect. 2.25.

In Sect. 2.23 (2.84a) we saw that the condition

det

(
∂2Φ

∂qi∂Qk

)
	= 0 (2.108a)

had to be imposed on canonical transformations of class A. Only with this condition
could the equation pi = ∂Φ/∂qi be solved for Qk(q˜

, p
˜
, t). Similarly, in the other

three cases we had the requirements

det

(
∂2S

∂qi∂Pk

)
	= 0 , det

(
∂2U

∂Qk∂pi

)
	= 0 , det

(
∂2V

∂Pk∂pi

)
	= 0 . (2.108b)

From (2.83) one reads off the conditions

∂pi

∂Qk

= ∂2Φ

∂Qk∂qi
= −∂Pk

∂qi
. (2.109a)
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Similarly, from (2.87),

∂pi

∂Pk
= ∂2S

∂Pk∂qi
= ∂Qk

∂qi
. (2.109b)

From (2.90) of class C,

∂qi

∂Qk

= − ∂2U

∂Qk∂pi
= ∂Pk

∂pi
. (2.109c)

and from (2.91) of class D,

∂qi

∂Pk
= − ∂2V

∂Pk∂pi
= −∂Qk

∂pi
. (2.109d)

Returning to the compact notation of Sect. 2.25 we have

x˜
def= {q1 . . . qf ;p1 . . . pf } and y

˜
def= {Q1 . . .Qf ;P1 . . . Pf } . (2.110)

Equations (2.109a–d) all contain derivatives of the form

∂xα

∂yβ

def= Mαβ ,
∂yα

∂xβ
= (M−1)αβ , α, β = 1, . . . 2f . (2.111)

Clearly, one has

2f∑

γ=1

∂xα

∂yγ

∂yγ

∂xβ
=

2f∑

γ=1

Mαγ (M−1)γβ = δαβ .

We now show that the diversity of (2.109) can be summarized as follows:

Mαβ =
2f∑

μ=1

2f∑

ν=1

JαμJβν(M−1)νμ . (2.112)

Taking account of the relation J−1 = −J this equation is written alternatively as

−JM = (JM−1)T .

We prove it by calculating its two sides separately. The left-hand side is

−JM = −
(

0 1l
−1l 0

)(
∂q/∂Q ∂q/∂P

∂p/∂Q ∂p/∂P

)
=

(−∂p/∂Q −∂p/∂P
∂q/∂Q ∂q/∂P

)
,

while the right-hand side is

(JM−1)T =
(
∂P/∂q −∂Q/∂q
∂P/∂p −∂Q/∂p

)
.

Equations (2.109) tell us that these two matrices are in fact equal. Thus, (2.112)
is proved. This equation is rewritten as follows. Writing out the transposition on
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the right-hand side, we obtain JM = −(M−1)TJT = +(M−1)TJ. Multiplying this
equation with MT from the left, we see that M obeys the equation

MTJM = J (2.113)

no matter which type of canonical transformation is being studied.
What is the significance of this equation? According to (2.111) and (2.109a–

d), M is the matrix of second derivatives of generating functions for canonical
transformations. The matrices M obeying (2.113) form a group that imprints a
characteristic symmetry on phase space. The matrix J, on the other hand, turns
out to be invariant under canonical transformations. For this reason, it plays the
role of a metric in phase space. These statements are proved and analyzed in the
next section.

2.28 On the Symplectic Structure of Phase Space

The set of all matrices that obey (2.113) form a group, the real symplectic group
Sp2f (R) over the space R

2f . This is a group that is defined over a space with
even dimension and that is characterized by a skew-symmetric, invariant bilinear
form. As a first step we shall verify that the M indeed form a group G.

(1) There exists an operation that defines the composition of any two elements
M1 and M2, M3 = M1M2. Obviously, this is matrix multiplication here. M3 is
again an element of G, as one verifies by direct calculation:

MT
3 JM3 = (M1M2)

TJ(M1M2) = MT
2 (M

T
1 JM1)M2 = J .

(2) This operation is associative because matrix multiplication has this property.
(3) There is a unit element in G: E = 1l. Indeed, 1lTJ1l = J.
(4) For every M ∈ G there is an inverse given by

M−1 = J−1MTJ .

This is verified as follows:
(a) Equation (2.113) implies that (det M)2 = 1, i.e. M is not singular and has an

inverse.
(b) J also belongs to G since JTJJ = J−1JJ = J.
(c) One now confirms that M−1M = 1l:

M−1M = (J−1MTJ)M = J−1(MTJM) = J−1J = 1l

and, finally, that MT also belongs to G:

(MT)TJMT = (MJ)MT = (MJ)(JM−1J−1) = (MJ)(J−1M−1J) = J .
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(In the second step we have taken MT from (2.113); in the third step we have
used J−1 = −J twice.)

Thus, we have proved that the matrices M that fulfill (2.113) form a group.
The underlying space is the phase space R

2f .
There is a skew-symmetric bilinear form on this space that is invariant under

transformations pertaining to G = Sp2f and that can be understood as a generalized
scalar product of vectors over R

2f . For two arbitrary vectors x˜ and y
˜

we define

[x˜ , y˜ ]
def= x˜

TJy
˜
=

2f∑

i,k=1

xiJikyk . (2.114)

One can easily verify that this form is invariant. Let M ∈ Sp2f and let x˜
′ =

Mx˜ , y˜
′ = My

˜
. Then

[x˜
′, y
˜
′] = [Mx˜ ,My

˜
] = x˜

TMTJMy
˜
= x˜

TJy
˜
= [x˜ , y˜ ] .

The bilinear form has the following properties, which are read off (2.114).
(i) It is skew-symmetric:

[y
˜
, x˜ ] = −[x˜ , y˜ ] . (2.115a)

Proof.

[y
˜
, x˜ ] = (x˜

TJTy
˜
)T = −(x˜

TJy
˜
)T = −x˜

TJy
˜
= −[x˜ , y˜ ] . (2.115b)

�
(ii) It is linear in both arguments. For instance,

[x˜ , λ1y˜ 1 + λ2y˜ 2] = λ1[x˜ , y˜ 1] + λ2[x˜ , y˜ 2] . (2.115c)

If [x˜ , y˜ ] = 0 for all y
˜
∈ R

2f , then x˜ ≡ 0. This means that the form (2.114) is not
degenerate. Thus, it has all properties that one expects for a scalar product.

The symplectic group Sp2f is the symmetry group of R
2f , together with the

structure [x˜ , y˜ ] (2.114), in the same way as O(2f ) is the symmetry group of the
same space with the structure of the ordinary scalar product (x˜ , y˜

) = ∑2f
k=1 xkyk .

Note, however, that the symplectic structure (as a nondegenerate form) is only
defined for even dimension n = 2f , while the Euclidean structure (x˜ , y˜

) is defined
for both even and odd dimension and is nondegenerate in either case.

Consider now 2f vectors over R
2f , x˜

(1), . . . , x˜
(2f ) that are assumed to be

linearly independent. Then take the oriented volume of the parallelepiped spanned
by these vectors:

[x˜
(1), x˜

(2), . . . , x˜
(2f )] def= det

⎛

⎜⎜
⎝

x
(1)
1 . . . x

(2f )
1

...
...

x
(1)
2f . . . x

(2f )
2f

⎞

⎟⎟
⎠ . (2.116)
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Lemma. If π(1), π(2), . . . , π(2f ) denotes the permutation π of the indices
1, 2, . . . , 2f and σ(π) its signature (i.e. σ = +1 if it is even, σ = −1 if it is
odd), then

[x˜
(1), . . . , x˜

(2f )] = (−1)[f/2]

f !2f ×
∑

π

σ(π)[x˜
π(1), x˜

π(2)][x˜
π(3), x˜

π(4)] . . .

. . . [x˜
π(2f−1), x˜

π(2f )] . (2.117)

Proof. When written out explicitly, the right-hand side reads
⎛

⎝ (−1)[f/2]

f !2f
∑

n1...n2f

Jn1n2Jn3n4 . . . Jn2f−1n2f

⎞

⎠
(
∑

π

σ(π)x˜
π(1)
n1

. . . x˜
π(2f )
n2f

)

.

The second factor of this expression is precisely the determinant (2.116) if
{n1, . . . , n2f } is an even permutation of {1, 2, . . . , 2f }: it is minus that determi-
nant if it is an odd permutation. Denoting this permutation by π ′ and its signature
by σ(π ′), this last expression is equal to

[x˜
(1), . . . , x˜

(2f )]
(
(−1)[f/2]

f !2f
∑

π ′
Jπ ′(1)π ′(2) . . . Jπ ′(2f−1)π ′(2f )σ (π

′)
)

.

We now show that the factor in brackets equals 1, thus proving the lemma. This
goes as follows. We know that Ji,i+f = +1, Jj+f,j = −1, while all other elements
vanish. In calculating

∑
π σ(π)Jπ(1)π(2) . . . Jπ(2f−1)π(2f ) we have the following

possibilities,

(a) Ji1,i1+f Ji2,i2+f . . . Jif,if+f with 1 ≤ ik ≤ 2f , all ik being different from each
other. There are f ! such products and they all have the value +1 because all
of them are obtained from J1,f . . . Jf,2f by exchanging the indices pairwise.
The signature σ(π) is the same for all of them; call it σ(a).

(b) Exchange now one pair of indices, i.e. Ji1,i1+f . . . Jil+f,il . . . Jif ,if+f . There
are f ×f ! products of this type and they all have the value −1. They all have
the same signature σ(π) ≡ σ(b) and σ(b) = −σ(a).

(c) Exchange two pairs of indices to obtainJi1,i1+f . . . Jil+f,il . . .
Jik+f,ik . . . Jif ,if+f . There are [f (f − 1)/2] × f ! products of this class and
their value is again +1. Their signature is σ(c) = σ(a); etc.

Thus, with the signature factor included, all terms contribute with the same
sign and we obtain

f ![1 + f + f (f − 1)/2 + . . .+ 1] = f !2f .

It remains to determine σ(a). In J1,f+1J2,f+2 . . . Jf,2f (which is +1) the order
of the indices (1, f + 1, 2, f + 2, . . . , f, 2f ) is obtained from (1, 2, . . . f, f +
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1, . . . , 2f ) by (f − 1)+ (f − 2)+ . . .+ 1 = f (f − 1)/2 exchanges of neighbors.
Thus σ(a) = (−)f (f−1)/2. As one easily convinces oneself this is the same as
(−1)[f/2]. �

The lemma serves to prove the following proposition.

Proposition. Every M pertaining to Sp2f has determinant +1:

if M ∈ Sp2f then det M = +1 .

Proof. By the product formula for determinants we have

[Mx˜
(1), . . .Mx˜

(2f )] = (det M)[x˜
(1), . . . x˜

(2f )] .
As the vectors x˜

(1) . . . x˜
(2f ) are linearly independent, their determinant does not

vanish. Now, from the lemma (2.117),

[Mx˜
(1), . . .Mx˜

(2f )] = [x˜
(1), . . . , x˜

(2f )] .
We conclude that det M = +1. �
Remarks: In this section we have been talking about vectors on phase space P

while until now x
˜

etc. were points of P. This was justified because we assumed the
phase space to be R

2f for which every tangent space can be identified with its base
space. If P is not flat any more, but is a differentiable manifold, our description
holds in local coordinate systems (also called charts). This is worked out in more
detail in Chap. 5

2.29 Liouville’s Theorem

As in Sect. 1.19 we denote the solutions of Hamilton’s equations by

Φ˜ t,s (x) = (ϕ1
t,s (x˜ ), . . . , ϕ

2f
t,s (x˜ )) . (2.118)

Also as before we call Φ˜ t,s (x˜ ) the flow in phase space. Indeed, if x˜ denotes the
initial configuration the system assumes at the initial time s, (2.118) describes how
the system flows across phase space and goes over to the configuration y

˜
assumed

at time t . The temporal evolution of a canonical system can be visualized as the
flow of an incompressible fluid: the flow conserves volume and orientation. Given
a set of initial configurations, which, at time s fill a certain oriented domain Us of
phase space, this same ensemble will be found to lie in an oriented phase-space
domain Ut , at time t (later or earlier than s), in such a way that Us and Ut have
the same volume Vs = Vt and their orientation is the same. This is the content of
Liouville’s theorem.

In order to work out its significance we formulate and prove this theorem in
two, equivalent ways. The first formulation consists in showing that the matrix
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(2.119) of partial derivatives is symplectic. This matrix is precisely the Jacobian
of the transformation dx˜ → dy

˜
= (DΦ˜ )dx˜ . As it is symplectic, it has determinant

+1. In the second formulation (which is equivalent to the first) we show that the
flow has divergence zero, which means that there is no net flow out of Us nor into
Us .

2.29.1 The Local Form

The matrix of partial derivatives of Φ˜ being abbreviated by

DΦ˜ t,s (x)
def=

(
∂Φ˜

i
t,s(x˜ )
∂xk

)

(2.119)

the theorem reads as follows.

Liouville’s theorem. Let Φ˜ t,s (x˜ ) be the flow of the differential equation
−Jẋ˜ = H,x . For all x˜ , t and s for which the flow is defined,

DΦ˜ t,s (x˜ ) ∈ Sp2f . (2.120)

The matrix of partial derivatives is symplectic and therefore has determinant
+1.

Before we proceed to prove this theorem we wish to interpret the consequences
of (2.120). The flux Φ˜ t,s (x˜ ) is a mapping that maps the point x˜ (assumed by the
system at time s) onto the point x˜ t = Φ˜ t,s (x˜ ) (assumed at time t). Suppose we
consider neighboring initial conditions filling the volume element dx1 . . . dx2f . The
statement (2.120) then tells us that this volume as well as its orientation is con-
served under the flow. Indeed, the matrix (2.119) is nothing but the Jacobian of
this mapping.

Proof. We have −J[∂Φ˜ t,s (x˜ )/∂t] = H,x(t) ◦ Φ˜ t,s . Taking the differential of the
equation −Jẋ˜ = H,x by x˜ , and using the chain rule, we obtain
−J[∂DΦ˜ t,s (x˜ )/∂t] = (DH,x)(Φ˜ , t)DΦ˜ t,s (x˜ ) and finally

∂

∂t
[(DΦ˜ t,s (x˜ ))

TJ(DΦ˜ t,s (x))] = −(DΦ˜ t,s )
T[DH,x − (DH,x)

T](DΦ˜ t,s ) = 0 .

(2.121)

This expression is zero because DH,x = (∂2H/∂xk∂xj ) is symmetric. Equation
(2.120) is obvious for t = s. It then follows from (2.121) that it holds for all t .
Thus, the theorem is proved. �

The following converse of Liouville’s theorem also holds. Let Φ˜ t,s be the flow
of the differential equation −Jẋ˜ = F(x˜ , t) and assume that it fulfills (2.120). Then
there exists locally a Hamiltonian function H(x˜ , t) such that H,x = F(x˜ , t). This is
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seen as follows. The equation analogous to (2.121) now says that DF−(DF)T = 0,
or that the curl of F vanishes: curlF = 0. If this is so, F can be written locally
as a gradient: F = H,x .

2.29.2 The Global Form

The statement of Liouville’s theorem can be made more transparent by the example
of a set of initial conditions that fill a finite oriented domain Us whose volume is
Vs . At time s we have

Vs =
∫

Us

dx˜ ,

the integral being taken over the domain Us of phase space. At another time t we
have

Vt =
∫

Ut

dy
˜
=

∫

Us

dx˜ det

(
∂y
˜

∂x˜

)
=

∫

Us

dx˜ det(DΦ˜ t,s ) ,

because in transforming an oriented multiple integral to new variables, the volume
element is multiplied with the determinant of the corresponding Jacobi matrix. If
we take t in the neighborhood of s we can expand in terms of (t − s):

Φ˜ t,s (x˜ ) = x˜ + F˜ (
x˜ , t) · (t − s)+ O((t − s)2) , where

F˜ (
x˜ , t) = JH,x =

(
∂H

∂p
˜
, −∂H

∂q
˜

)
.

From the definition (2.119) the derivative by x˜ is

DΦ˜ t,s (x˜ ) = 1l + DF˜ (
x˜ , t) · (t − s)+ O((t − s)2) ,

or, when written out explicitly,

∂Φ˜
i
t,s(x˜ )
∂xk

= δik + ∂F i

∂xk
(t − s)+ O((t − s)2) .

In taking the determinant, one makes use of the following formula:

det(1l + Aε) ≡ det(δik + Aikε) = 1 + εTrA+ O(ε2) ,

where TrA = ∑
i Aii denotes the trace of A and where ε is to be identified with

(t − s). We obtain

det(DΦ˜ t,s (x˜ )) = 1 + (t − s)

2f∑

i=1

∂F i

∂xi
+ O((t − s)2) .
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The trace
∑2f

i=1 ∂F
i/∂xi is a divergence in the 2f -dimensional phase space. It is

easy to see that it vanishes if F˜ = JH,x , viz.

divF˜
def=

2f∑

i=1

∂F i

∂xi
= ∂

∂q
˜

(
∂H

∂p
˜

)
+ ∂

∂p
˜

(
−∂H

∂q
˜

)
= 0 .

This shows that Vs = Vt . As long as the flow is defined, the domain Us of
initial conditions can change its position and its shape but not its volume or its
orientation.

2.30 Examples for the Use of Liouville’s Theorem

Example (i) A particularly simple example is provided by the linear, autonomous
system with f = 1 that we studied in Sect. 2.26. Here the action of the flow is
simply multiplication of the initial configuration x˜ by the matrix P(t − s) whose
determinant is +1. In the special case of the harmonic oscillator, for instance, all
phase points move on circles around the origin, with constant and universal angular
velocity. A given domain Us moves around the origin unchanged, like the hand of
a clock. This is sketched in Figs. 2.11 and 2.12.

Fig. 2.12. The harmonic oscillator. A circular domain
of initial configurations wanders uniformly about the
origin. In the units introduced in Sect. 1.17.1 the period
is τ0 = 2π . The four positions shown here correspond
to the times τ = 0, 0.2τ0, 0.4τ0, and 0.75τ0

Example (ii) The example of the mathematical pendulum is somewhat less trivial.
We note its equations of motion in the dimensionless form of Sect. 1.17.2,

dz1

dτ
= z2(τ ) ,

dz2

dτ
= − sin z1(τ ) ,
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where τ is the dimensionless time variable τ = ωt , while the reduced energy was
defined to be

ε = E/mgl = 1
2 z

2
2 + (1 − cos z1) .

The quantity ε is constant along every phase portrait (the solution of the canonical
equations).

Figure 1.10 in Sect. 1.17.2 shows the phase portraits in phase space (z1, z2)

(z1 is the same as q, z2 is the same as p). For example, a disklike domain of
initial configurations Us behaves under the flow as indicated in Figs. 2.13–15. In
dimensionless units, the period of the harmonic oscillator is τ (0) = ωT (0) = 2π .
The figures show three positions of the domain Ut into which Us has moved at
the times k · τ (0) indicated in the captions. As the motion is periodic, one should
think of these figures being glued on a cylinder of circumference 2π , such that the
lines (π, p) and (−π, p) coincide. The deformation of the initial domain is clearly
visible. It is particularly noticeable whenever one of the phase points moves along
the separatrix (cf. Sect. 1.23 (1.59)). This happens for ε = 2, i.e. for the initial
condition (q = 0, p = 2), for example. For large, positive time such a point
wanders slowly towards the point (q = π, p = 0). Neighboring points with ε > 2
“swing through”, while those with ε < 2 “oscillate”, i.e. turn around the origin
several times. The figures show very clearly that despite these deformations the
original volume and orientation are preserved.

Fig. 2.13. The mathematical pendulum. A circular do-
main of initial configurations below the separatrix (as-
sumed at time τ = 0) moves about the origin somewhat
more slowly than for the case of the oscillator, Fig. 2.12.
As the domain proceeds, it is more and more deformed.
The positions shown here correspond to the times (in a
clockwise direction): τ = 0, 0.25τ0, 0.5τ0, and τ0. (τ0

is the period of the harmonic oscillator that is obtained
approximately for small amplitudes of the pendulum)
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Fig. 2.14. Same as Fig. 2.13 but with the uppermost
point of the circular domain now moving along the sep-
aratrix. The successive positions in a clockwise direction
shown are reached at τ = 0, 0.2τ0, 0.4τ0, and 0.75τ0.
The arrows indicate the motion of the point with initial
configuration (q = 0, p = 1). The open points show the
motion of the center of the initial circle

Fig. 2.15. Same system as in Figs. 2.13, 2.14. The center
of the initial circular domain is now on the separatrix.
Points on the separatrix approach the point (q = π, p =
0) asymptotically, points below it move around the ori-
gin, and points above “swing through”. The successive
positions correspond in a clockwise direction to τ = 0,
0.1τ0, 0.25τ0, and 0.5τ0

Example (iii) Charged particles in external electromagnetic fields obey the equa-
tion of motion (2.29):

mr̈ = e

c
ṙ × B + eE .

As we saw in the Example (ii) of Sect. 2.8, this equation follows from a La-
grangian function such as the one given in (2.31). We showed in Example (ii)
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of 2.16 that the condition (2.44) for the existence of the Legendre transform of L
is fulfilled. A Hamiltonian function describing this system is given by (2.51). For
an ensemble of charged particles in external electric and magnetic fields we must
also take into account the mutual Coulomb interaction between them. This, how-
ever, can be included in the Hamiltonian function. Therefore, a system of charged
particles in external fields is canonical and obeys Liouville’s theorem. It is clear
that this theorem’s guaranteeing the conservation of phase space volume plays a
central role in the construction of accelerators and of beam lines for elementary
particles.

2.31 Poisson Brackets

The Poisson bracket is a skew-symmetric bilinear of derivatives of two dynami-
cal quantities with respect to coordinates and momenta. A dynamical quantity is
any physically relevant function of generalized coordinates and momenta such as
the kinetic energy, the Hamiltonian function, or the total angular momentum. Let
g(q

˜
, p
˜
, t) be such a dynamical quantity. The Poisson bracket of g and the Hamil-

tonian function appear in quite a natural way if we calculate the total time change
of g along a physical orbit in phase space, as follows:

dg

dt
= ∂g

∂t
+

f∑

i=1

∂g

∂qi
q̇i +

f∑

i=1

∂g

∂pi
ṗi

= ∂g

∂t
+

f∑

i=1

(
∂g

∂qi

∂H

∂pi
− ∂g

∂pi

∂H

∂qi

)
≡ ∂g

∂t
+ {H, g} .

In the second step we have made use of the canonical equations (2.45). In the
third step we introduced the bracket symbol { , } as shorthand for the sum in
the second expression. The Poisson bracket of H and g describes the temporal
evolution of the quantity g. Furthermore, as we shall discover below, the bracket
{f, g} of any two quantities is preserved under canonical transformations. We also
wish to mention that, both in form and content, the Poisson bracket finds its ana-
log in quantum mechanics: the commutator. In quantum mechanics, dynamical
quantities (which are also called observables) are represented by operators (more
precisely by self-adjoint operators over Hilbert space). The commutator of two
operators contains the information whether or not the corresponding observables
can be measured simultaneously. Therefore, the Poisson bracket is not only an
important notion of canonical mechanics but also reveals some of its underlying
structure and hints at the relationship between classical mechanics and quantum
mechanics.

Let f (x
˜
) and g(x

˜
) be two dynamical quantities, i.e. functions of coordinates

and momenta, which are at least C1. (They may also depend explicitly on time.
As this is of no importance for what follows here, we suppress this possible de-
pendence.) Their Poisson bracket {f, g} is a scalar product of the type (2.114) and
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is defined as follows7:

{f, g}(x˜ )
def=

f∑

i=1

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

)
. (2.122)

We also have

{f, g}(x˜ ) = −[f,x, g,x](x˜ )

= −
(
∂f

∂qi
. . .

∂f

∂qf

∂f

∂p1
. . .

∂f

∂pf

)(
0 1l
−1l 0

)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

∂g

∂q1
...
∂g

∂qf

∂g

∂p1
...
∂g

∂pf

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

(2.123)

This latter form reveals an important property of the Poisson bracket: it is invariant
under canonical transformations. Let Ψ be such a transformation:

x
˜
=(q1, . . . , qf, p1, . . . , pf ) −→Ψ

˜
(x
˜
)=(Q1(x), . . . ,Qf (x),P1(x), . . . ,Pf (x)).

From Sects. 2.27 and 2.28 we know that DΨ
˜
(x˜ ) ∈ Sp2f . It is important to realize

that Ψ maps the phase space onto itself, Ψ : R
2f → R

2f , while f and g map the
phase space R

2f onto the real numbers R. f and g, in other words, are prescriptions
how to form real functions of their arguments, taken from R

2f , such as f = q2,
g = (q2+p2)/2, etc. These prescriptions can be applied to the old variables (q

˜
, p
˜
)

or, alternatively, to the new ones (Q
˜
, P˜ ). We then have the following

Proposition. For all f, g, and x˜
{f ◦ Ψ, g ◦ Ψ }(x˜ ) = {f, g} ◦ Ψ (x˜ ) , (2.124)

provided Ψ (x˜ ) is a canonical transformation. In words: if one transforms
the quantities f and g to the new variables and then takes their Poisson
bracket, the result is the same as that obtained in transforming their original
Poisson bracket to the new variables.

7 We define the bracket such that it corresponds to the commutator [f, g] of quantum mechanics,
without change of sign.
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Proof. Take the derivatives

∂

∂xi
(f ◦ Ψ )(x˜ ) =

2f∑

k=1

∂f

∂yk

∣∣∣∣
y˜ =Ψ (x˜ )

· ∂Ψk
∂xi

or, in compact notation

(f ◦ Ψ ),x = (DΨ )T (x˜ ) · f,y(Ψ (x˜ )) .
By assumption, Ψ is canonical, i.e. DΨ and (DΨ )T are sympletic. Therefore

[(f ◦ Ψ ),x, (g ◦ Ψ ),x] = [(DΨ )T (x˜ )f,y(Ψ (x˜ )), (DΨ )
T (x˜ )g,y(Ψ (x˜ ))]= [f,y(Ψ (x˜ )), g,y(Ψ (x˜ ))] = −{f, g} ◦ Ψ (x˜ ) . �

The proposition has the following corollary.

Corollary. If (2.124) holds identically, or if the weaker condition

{xi ◦ Ψ, xk ◦ Ψ }(x˜ ) = {xi, xk} ◦ Ψ (x˜ ) (2.125)

holds true for all x˜ and i, k, then Ψ (x˜ ) is canonical.

Proof. From the definition (2.122) we have {xi, xk} = −Jik . By assumption, this
is invariant under the transformation Ψ , i.e.

{ym, yn}(x˜ ) = −[(DΨ )T (x˜ )êm , (DΨ )T (x˜ )ên] = −[êm, ên] = −Jmn ,
where êm and ên are unit vectors in R

2f . Thus,

(DΨ )J(DΨ )T = J . �

Note that (2.125), when written in terms of q
˜
, p
˜
,Q
˜

, and P˜ , reads

{Qi,Qj }(x˜ ) = {qi, qj }(x˜ ) = 0 ,

{Pi, Pj }(x˜ ) = {pi, pj }(x˜ ) = 0 , (2.126)

{Pi,Qj }(x˜ ) = {pi, qj }(x˜ ) = δij .

We close this section with the remark that canonical transformations can be char-
acterized in four equivalent ways. The transformation Ψ : (q

˜
, p
˜
) −→ (Q

˜
, P˜ ) is

canonical if

(a) it leaves unchanged the canonical equations (2.45), or
(b) it leaves invariant all Poisson brackets between dynamical quantities f and g,

or
(c) it just leaves invariant the set of Poisson brackets (2.126), or
(d) the matrix of its derivatives is symplectic, DΨ ∈ Sp2f .
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2.32 Properties of Poisson Brackets

It is possible to write the canonical equations (2.45) by means of Poisson brackets,
in a more symmetric form. Indeed, as one may easily verify, they read

q̇k = {H, qk} , ṗk = {H,pk} (2.127)

or in the compact notation of Sect. 2.27,

ẋk = −[H,x, xk,x] =
2f∑

i=1

Jki
∂H

∂xi
.

Let g(q
˜
, p
˜
, t) be a dynamical quantity, assumed to be at least C1 in all its variables.

As above, we calculate the total derivative of g with respect to time and make use
of the canonical equations:

d

dt
g(q

˜
, p
˜
, t) = ∂g

∂t
+

f∑

k=1

(
∂g

∂qk
q̇k + ∂g

∂pk
ṗk

)

= ∂g

∂t
+ {H, g} . (2.128)

This generalizes (2.127) to arbitrary dynamical quantities. If g is an integral of the
motion, then

∂g

∂t
+ {H, g} = 0 , (2.129a)

or, if g has no explicit time dependence,

{H, g} = 0 . (2.129b)

Obviously, the Poisson bracket (2.122) has all the properties of the symplec-
tic scalar product (2.115a, c). Besides these, it has the following properties. The
bracket of g(q

˜
, p
˜
, t) with qk is equal to the derivative of g by pk , while its bracket

with pk is minus its derivative by qk:

{g, qk} = ∂g

∂pk
, {g, pk} = − ∂g

∂qk
. (2.130)

Furthermore, for any three quantities u(q
˜
, p
˜
, t), v(q

˜
, p
˜
, t), and w(q

˜
, p
˜
, t) that are

at least C2 we can derive the following identity:

the Jacobi identity {u, {v,w}} + {v, {w, u}} + {w, {u, v}} = 0 . (2.131)

This important identity can be verified either by direct calculation, using the defini-
tion (2.122), or by expressing the brackets via (2.123) in terms of the scalar product

(2.114), as follows. For the sake of clarity we use the abbreviation ∂u/∂xi
def= ui for



146 2. The Principles of Canonical Mechanics

partial derivatives and, correspondingly, uik for the second derivatives ∂2u/∂xi∂xk .
We then have

{u, {v,w}} = −[u,x, {v,w},x] = +[u,x, [v,x, w,x],x]

=
2f∑

i=1

2f∑

k=1

2f∑

m=1

2f∑

n=1

uiJik∂/∂x
k(vmJmnwn) .

Thus, the left-hand side of (2.131) is given by

{u, {v,w}} + {v, {w, u}} + {w, {u, v}}
=

∑

ikmn

uiJikJmn(vmkwn + vmwnk)+
∑

ikmn

viJikJmn(wmkun + wmunk)

+
∑

ikmn

wiJikJmn(umkvn + umvnk) .

The six terms of this sum are pairwise equal and opposite. For example, take
the last term on the right-hand side and make the following replacement in the
indices: m → i, i → n, k → m, and n → k. As these are summation in-
dices, the value of the term is unchanged. Thus, it becomes

∑
wnJnmJikuivkm.

As vkm = vmk , but Jnm = −Jmn, it cancels the first term. In a similar fashion
one sees that the second and third terms cancel, and similarly the fourth and the
fifth.

The Jacobi identity (2.131) is used to demonstrate the following assertion.

Poisson’s theorem. The Poisson bracket of two integrals of the motion is
again an integral of the motion.

Proof. Let {u, v} = w. Then, from (2.128)

d

dt
w = ∂

∂t
w + {H,w}

and by (2.131)

d

dt
w = d

dt
{u, v}

=
{
∂u

∂t
, v

}
+

{
u,
∂v

∂t

}
− {u, {v,H }} − {v, {H, u}}

=
{
∂u

∂t
+ {H, u}, v

}
+

{
u,
∂v

∂t
+ {H, v}

}

=
{

du

dt
, v

}
+

{
u,

dv

dt

}
. (2.132)

Therefore, if (du/dt) = 0 and (dv/dt) = 0, then also (d/dt){u, v} = 0. �
Even if u, v are not conserved, (2.132) is an interesting result: the time derivative
of the Poisson bracket obeys the product rule.
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2.33 Infinitesimal Canonical Transformations

Those canonical transformations which can be deformed continuously into the
identity form a particularly important class. In this case one can construct canon-
ical transformations that differ from the identity only infinitesimally. This means
that one can study the local action of a canonical transformation – in close analogy
to the case of the rotation group we studied in Sect. 2.22.

We start from class B canonical transformations (2.85) (see Sect. 2.23) and
from the identical mapping

SE =
f∑

k=1

qkPk : (q˜ , p˜ , H) → (Q = q
˜
, P = p

˜
, H̃ = H) (2.133)

of Example (i) in Sect. 2.24. Let ε be a parameter, taken to be infinitesimally small,
and σ(q

˜
, P˜ ) a differentiable function of old coordinates and new momenta. (For

the moment we only consider transformations without explicit time dependence.)
We set

S(q
˜
, P˜ , ε) = SE + εσ (q

˜
, P˜ )+ O(ε2) . (2.134)

The function

σ(q
˜
, P˜ ) =

∂S

∂ε

∣∣∣∣
ε=0

(2.135)

is said to be the generating function of the infinitesimal transformation (2.134).
From (2.87) we obtain

Qi = ∂S

∂Pi
= qi + ε

∂σ

∂Pi
+ O(ε2) , (2.136a)

pj = ∂S

∂qj
= Pj + ε

∂σ

∂qj
+ O(ε2) . (2.136b)

Here the derivatives ∂σ/∂Pi , ∂σ/∂qi depend on the old coordinates and on the
new momenta. However, if we remain within the first order in the parameter ε,
then, for consistency, all Pj must be replaced by pj . (Pj differs from pj by terms
of order ε. If we kept it, we would in fact include some, but not all, terms of
second order ε2 in (2.136)). From (2.136) we then have

δqi = Qi − qi =
∂σ(q

˜
, p
˜
)

∂pi
ε , (2.137a)

δpj = Pj − pj = −∂σ(q
˜
, p
˜
)

∂qj
ε . (2.137b)

This can be written in a symmetric form, using (2.130),
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δqi = {σ(q
˜
, p
˜
), qi}ε , (2.138a)

δpj = {σ(q
˜
, p
˜
), pj }ε . (2.138b)

The equations (2.138) have the following interpretation. The infinitesimal canonical
transformation (2.134) shifts the generalized coordinate (momentum) proportion-
ally to ε and to the Poisson bracket of the generating function (2.135) and that
coordinate (or momentum, respectively). A case of special interest is the following.
Let

S(q
˜
, P˜ , ε = dt) = SE +H(q

˜
, p
˜
)dt . (2.139)

With dt replacing the parameter ε, (2.137), or (2.138), are nothing but the canonical
equations (taking δqi ≡ dqi , δpk ≡ dpk):

dqi = {H, qi}dt , dpj = {H,pj }dt . (2.140)

Thus, the Hamiltonian function serves to “boost” the system: H is the generat-
ing function for the infinitesimal canonical transformation that corresponds to the
actual motion (dqi, dpj ) of the system in the time interval dt .

2.34 Integrals of the Motion

We may wish to ask how a given dynamical quantity f (q
˜
, p
˜
, t) behaves under an

infinitesimal transformation of the type (2.134). Formal calculation gives us the
anwer:

δσ f (q˜
, p
˜
) =

f∑

k=1

(
∂f

∂qk
δqk + ∂f

∂pk
δpk

)

=
f∑

k=1

(
∂f

∂qk

∂σ

∂pk
− ∂f

∂pk

∂σ

∂qk

)
ε

= {σ, f }ε . (2.141)

For example, choosing ε = dt , σ = H , (2.141) yields with ∂f/∂t = 0

df

dt
= {H, f } , (2.142)

i.e. we recover (2.128) for the time change of f . In turn, we may ask how the
Hamiltonian function H behaves under an infinitesimal canonical transformation
generated by the function f (q

˜
, p
˜
). The answer is given in (2.141), viz.

δfH = {f,H }ε . (2.143)
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In particular, the vanishing of the bracket {f,H } means that H stays invariant
under this transformation. If this is indeed the case, then, with {f,H } = −{H, f }
and (2.142), we conclude that f is an integral of the motion. To work out more
clearly this reciprocity we write (2.142) in the notation

δHf = {H, f }dt (2.142′)

and compare it with (2.143). One sees that δfH vanishes if and only if δHf van-
ishes. The infinitesimal canonical transformation generated by f (q

˜
, p
˜
) leaves the

Hamiltonian function invariant if and only if f is constant along physical orbits.
We note the close analogy to the Noether’s theorem for Lagrangian systems

(Sect. 2.19). We wish to illustrate this by two examples.

Example (i) Consider an n-particle system described by

H =
n∑

i=1

p2
i

2mi

+ U(r1, . . . , rn) (2.144)

that is invariant under translations in the direction â. Thus the canonical transfor-
mation

S(r1, . . . , rn;p′1, . . . ,p′n) =
n∑

i=1

ri · p′i + a ·
n∑

i=1

p′i (2.145)

leaves H invariant, a being a constant vector whose modulus is a and which points
in the direction â. (The unprimed variables ri ,pi are to be identified with the old
variables qk, pk , while the primed ones are to be identified with Qk, Pk .) From
(2.136) we have

Qk = ∂S

∂Pk
,

which is r′i = ri + a here, with (k = 1, . . . , f = 3n), (i = 1, . . . , n), and

pk = ∂S

∂qk
, which is pi = p′i .

In fact it is sufficient to choose the modulus of the translation vector a infinitesi-
mally small. The infinitesimal translation is then generated by

σ = ∂S

∂a

∣∣∣
∣
a=0

= â ·
n∑

i=1

pi .

As H is invariant, we have {σ,H } = 0 and, from (2.142), dσ/dt = 0. We conclude
that σ , the projection of total momentum onto the direction â, is an integral of the
motion.
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Example (ii) Assume now that the same system (2.144) is invariant under arbi-
trary rotations of the coordinate system. If we consider an infinitesimal rotation
characterized by ϕ = εϕ̂, then, from (2.72),

r′i = [1l − (ϕ · J)]ri + O(ε2)

p′i = [1l − (ϕ · J)]pi + O(ε2)

}
(i = 1, . . . , n) .

The generating function S(ri ,p
′
k) is given by

S =
n∑

i=1

ri · p′i −
n∑

i=1

p′i · (ϕ · J)ri . (2.146)

The notation is as follows: (ϕ · J) is a shorthand for the 3 × 3 matrix

(ϕ · J)ab = ε[ϕ̂1(J1)ab + ϕ̂2(J2)ab + ϕ̂3(J3)ab] .
The second term on the right-hand side of (2.146) contains the scalar product of
the vectors (ϕ · J)ri and pi . First we verify that the generating function (2.146)
does indeed describe a rotation. We have

Qk = ∂S

∂Pk
, and thus r′i = ri − (ϕ · J)ri ,

and

pk = ∂S

∂qk
, and thus pi = p′i − p′i (ϕ · J) .

Ji being antisymmetric, the second equation becomes pi = [1l+ (ϕ ·J)]p′i . If this
is multiplied with [1l− (ϕ · J)] from the left we obtain the correct transformation
rule p′i = [1l − (ϕ · J)]pi up to the terms of second order in ε (which must be
omitted, for the sake of consistency). Equation (2.146) now yields

σ = ∂S

∂ε

∣∣∣∣
ε=0

= −
n∑

i=1

pi (ϕ̂ · J)ri .

From (2.69) and (2.72) this can be expressed as the cross product of ϕ̂ and ri ,

(ϕ̂ · J)ri = ϕ̂ × ri ,

so that, finally

pi · (ϕ̂ · J)ri = pi · (ϕ̂ × ri ) = ϕ̂(ri × pi ) = ϕ̂ · li .
The integral of the motion is seen to be the projection of total angular momentum
l = ∑n

i=1 l(i) onto the direction ϕ̂. As H was assumed to be invariant for all
directions, we conclude that the whole vector l = (l1, l2, l3) is conserved and that

{H, la} = 0 , a = 1, 2, 3 . (2.147)
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2.35 The Hamilton–Jacobi Differential Equation

As we saw in Sect. 2.23, the solution of the equations of motion of a canonical
system becomes elementary if we succeed in making all coordinates cyclic ones. A
special situation where this is obviously the case is met when H , the transformed
Hamiltonian function, is zero. The question then is whether one can find a time-
dependent, canonical transformation by which H vanishes, viz.

{q
˜
, p
˜
, H(q

˜
, p
˜
, t)} −→

S∗(q
˜
,P˜ ,t)

{
Q
˜
, P˜ , H̃ = H + ∂S∗

∂t
= 0

}
. (2.148)

Let us denote this special class of generating functions by S∗(q
˜
, P˜ , t). For H to

vanish we obtain the requirement

H̃ = H

(
qi, pk = ∂S∗

∂qk
, t

)
+ ∂S∗

∂t
= 0 . (2.149)

This equation is called the differential equation of Hamilton and Jacobi. It is
a partial differential equation, of first order in time, for the unknown function
S∗(q

˜
, α˜ , t), where α˜ = (α1, . . . , αf ) are constants. Indeed, as H̃ = 0, we have

Ṗk = 0, so that the new momenta are constants, Pk = αk . Therefore, S∗ is a
function of the (f + 1) variables (q1, . . . , qf , t) and of the (constant) parameters
(α1, . . . , αf ). S∗(q˜

, α˜ , t) is called the action function.
The new coordinates Qk are also constants. They are given by

Qk = ∂S∗(q
˜
, α˜ , t)

∂αk
= βk . (2.150)

Equation (2.150) can be solved for

qk = qk(α˜ , β˜
, t) (2.151)

precisely if

det

(
∂2S∗

∂αk∂ql

)
	= 0 . (2.152)

If the function S∗(q
˜
, α˜ , t) fulfills this condition it is said to be a complete solution

of (2.149). In this sense, the partial differential equation (2.149) is equivalent to
the system (2.45) of canonical equations. Equation (2.149) is an important topic
in the theory of partial differential equations; its detailed discussion is beyond the
scope of this book.

If the Hamiltonian function does not depend explicitly on time, H(q
˜
, p
˜
) is

constant along solution curves and is equal to the energy E. It is then sufficient
to study the function
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S(q
˜
, α˜ )

def= S∗(q
˜
, α˜ , t)− Et , (2.153)

called the reduced action. It obeys a time-independent partial-differential equation
that follows from (2.149), viz.

H

(
qi,

∂S

∂qk

)
= E . (2.154)

This is known as the characteristic equation of Hamilton and Jacobi.

2.36 Examples for the Use of the Hamilton–Jacobi Equation

Example (i) Consider the motion of a free particle for which H = p2/2m. The
Hamilton–Jacobi differential equation now reads

1

2m
(∇rS

∗(r,α, t))2 + ∂S∗

∂t
= 0 .

Its solution is easy to guess. It is

S∗(r,α, t) = α · r − α2

2m
t + c .

From (2.150) we obtain

β = ∇αS
∗ = r − α

m
t ,

which is the expected solution r(t) = β + αt/m. β and α are integration con-
stants; they are seen to represent the initial position and momentum, respec-
tively. The solution as obtained from (2.149) reveals an interesting property. Let
r(t) = (r1(t), r2(t), r3(t)). Then

ṙi = 1

m

∂S∗

∂ri
, i = 1, 2, 3 .

This means that the trajectories r(t) of the particle are everywhere perpendicular
to the surfaces S∗(r,α, t) = const. The relation between these surfaces and the
particle’s trajectories (which are orthogonal to them) receives a new interpretation
in quantum mechanics. A quantum particle does not follow a classical trajectory. It
is described by waves whose wave fronts are the analog of the surfaces S∗ = const.

Example (ii) Consider the case of the Hamiltonian function H = p2/2m+U(r).
In this case we turn directly to the reduced action function (2.153) for which
(2.154) reads

1

2m
(∇S)2 + U(r) = E . (2.155)
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As E = p2/2m+ U(r) is constant along solutions, this equation reduces to

(∇S)2 = p2 .

Its general solution can be written as an integral

S =
∫ r1

r0

(p · dr)+ S0 , (2.156)

provided the integral is taken along the trajectory with energy E.

Remarks:

(i) The generating function S∗(q
˜
, α˜ , t) is closely related to the action inte-

gral (2.27). We assume that the Hamiltonian function H is such that the Legendre
transformation between H and the Lagrangian function L exists. Taking the time
derivative of S∗ and making use of (2.149), we find

dS∗

dt
= ∂S∗

∂t
+

∑

i

∂S∗

∂q̇i
q̇i =

[

−H(q
˜
, p
˜
, t)+

∑

i

pi q̇i

]

p
˜
=∂S∗/∂q

˜

As the variables p
˜

can be eliminated (by the assumption we made), the right-hand
side of this equation can be read as the Lagrangian function L(q

˜
, q̇
˜
, t). Integrating

over time from t0 to t , we have

S∗(q
˜
(t), α

˜
, t) =

∫ t

t0

dt ′L(q
˜
, q̇
˜
, t ′) . (2.157)

In contrast to the general action integral (2.27), where q
˜

and q̇
˜

are independent,
we must insert the solution curves into L in the integrand on the right-hand side
of (2.157). Thus, the action integral, if it is taken for the physical solutions q

˜
(t),

is the generating function for canonical transformations that “boost” the system
from time t0 to time t .

(ii) Consider the integral on the right-hand side of (2.157), taken between t1 and
t2, and evaluated for the physical trajectory ϕ˜ (t) which goes through the boundary
values a˜ at time t1, and b˜

at time t2. This function is called Hamilton’s principal
function. We assume that the Lagrangian does not depend explicitly on time. The
principal function, which we denote by I0, then depends on the time difference
τ := t2 − t1 only,

I0 ≡ I0(a˜
, b
˜
, τ ) =

∫ t2

t1

dt L (ϕ̇
˜
(t), ϕ˜ (t)) .

It is instructive to compare this function with the action integral (2.27): In (2.27)
I [q

˜
] is a smooth functional, q

˜
being an arbitrary smooth function of time that

connects the boundary values given there. In contrast to this, I0 is calculated from
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a solution ϕ˜ (t) of the equations of motion which goes through the boundary values
(t1, a˜ ) and (t2, b˜

) and, hence, is a smooth function of a˜ , b˜
, and (t2 − t1).

We consider now a smooth change of the initial and final values of the (gen-
eralized) coordinates and of the running time τ . This means that we replace the
solution ϕ

˜ (t) by another solution φ
˜
(s, t) which meets the following conditions.

φ
˜
(s, t) is differentiable in the parameter s. For s → 0 it goes over into the orig-

inal solution, φ
˜
(s = 0, t) = ϕ

˜ (t). During the time τ ′ = τ + δτ it runs from
a˜
′ = a˜ + δa˜ to b˜

′ = b˜
+ δb˜

. How does I0 respond to these smooth changes? The
answer is worked out in Exercise 2.30 and is as follows.

Let p
˜
a and p

˜
b denote the values of the momenta canonically conjugate to q

˜
,

at times t1 and t2, respectively. One finds

∂I0

∂τ
= −E ,

∂I0

∂ai
= −pai ,

∂I0

∂bk
= pbk ,

or, written as a variation,

δI0 = −E δτ −
f∑

i=1

pai δai +
f∑

k=1

pbk δbk .

The function I0 and these results can be used to determine the nature of the ex-
tremum (2.27): maximum, minimum, or saddle point. For that purpose we consider
a set of neighboring physical trajectories which all go through the same initial posi-
tions a˜ but differ in their initial momenta p

˜
a . We follow each one of these trajecto-

ries over a fixed time τ = t2−t1 and compare the final positions as functions of the
initial momenta b˜

(p
˜
a), that is we determine the partial derivatives Mik = ∂bi/∂p

a
k .

The inverse of this matrix M is the matrix of mixed second partial derivatives of
I0 with respect to a˜ and b˜

,

(M−1)ik ≡ ∂pai

∂bk
= − ∂2I0

∂ai ∂bk
.

In general, we expect M to have maximal rank. Then its inverse exists and I0 is
a minimum or maximum. However, for certain values of the running time τ , it
may happen that one or several of the bi remain unchanged by variations of the
initial momenta. In this case the matrix M has rank smaller than maximal. Such
final positions b˜

for which M becomes singular, together with the corresponding
initial positions a˜ , are called conjugate points. If, in computing I0, we happened
to choose conjugate points for the boundary values, I0 is no longer a minimum
(or maximum).

A simple example is provided by force-free motion on S2
R , the surface of the

sphere with radius R in R
3. Obviously, the physical orbits are the great circles

through the initial position a˜ . If b˜
is not the antipode of a˜ , then there is a longest

and a shortest arc of great circle joining a˜ and b˜
. If, however, a˜ and b˜

are antipodes
then all trajectories starting from a˜ with momenta p

˜
a which have the same absolute



2.36 Examples for the Use of the Hamilton–Jacobi Equation 155

value but different directions, reach b˜
all at the same time. The point b˜

is conjugate
to a˜ , I0 is a saddle point of the action integral (2.27).

As a second example, let us study the one-dimensional harmonic oscillator.
We use the reduced variables defined in Sect. 1.17.1. With (a, pa) and (b, pb) de-
noting the boundary values in phase space, τ the running time from a to b, the
corresponding solution of the equations of motion reads

ϕ(t) = 1

sin τ
[a sin(t2 − t)+ b sin(t − t1)] .

This trajectory is periodic. In the units used here the period is T = 2π . The bound-
ary values of the momentum are

pa = ϕ̇(t1) = −a cos τ + b

sin τ
, pb = ϕ̇(t2) = −a + b cos τ

sin τ
,

while the energy is given by

E = 1

2

[
ϕ̇2(t)+ ϕ2(t)

]
= a2 + b2 − 2ab cos τ

2 sin2 τ

= 1

2

[
a2 + (pa)2

]
= 1

2

[
b2 + (

p(b)
)2
]
.

In a similar fashion one calculates the Lagrangian L = 1
2

[
ϕ̇2(t)− ϕ2(t)

]
as well

as the function I0 along the given trajectory

I0(a, b, τ ) =
∫ t2

t1

dt L(ϕ̇(t), ϕ(t)) = (a2 + b2) cos τ − 2ab

2 sin τ
.

One confirms that, indeed, ∂I0/∂τ = −E, ∂I0/∂a = −pa , ∂I0/∂b = pb.
The matrix M , which in this example is one-dimensional, and its inverse are
seen to be

M = ∂b

∂pa
= sin τ , M−1 = − ∂2I0

∂b ∂a
= 1

sin τ
.

M−1 becomes singular at τ = π and at τ = 2π , i.e. after half a period T/2 and
after one full period T , respectively.

Keeping the initial position a fixed, but varying the initial momentum pa , the
final position is given by b(pa, τ ) = pa sin τ + a cos τ . Expressed in terms of a,
pa and τ the integral I0 becomes

I0(a, p
a, τ ) = 1

2
sin τ

[(
(pa)2 − a2

)
cos τ − 2apa sin τ

]
.

It is instructive to plot b(pa, τ ) as a function of the running time τ , for different
values of the initial momentum pa . As long as 0 ≤ τ < π these curves do not
intersect (except for the point a). When τ = π they all meet in b(pa, π) = −a,
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independently of pa . At this point M−1 becomes singular. Thus, the points a and
−a are conjugate points. As long as τ stays smaller than π , the action integral I is
a minimum. For τ = π all trajectories with given initial position a, but different
initial momenta pa , go through the point b = −a – as required by Hamilton’s
principle. As I0(a, p

a, τ = π) is always zero, the extremum of I is a saddle
point.

2.37 The Hamilton–Jacobi Equation and Integrable Systems

There are several general methods of solving the Hamilton–Jacobi differential
equation (2.149) for situations of practical interest (see e.g. Goldstein 1984). In-
stead of going into these, we address the general question of the existence of local,
or even global, solutions of the canonical equations. We shall discuss the class of
completely integrable Hamiltonian systems and give a few examples. The general
definition of angle and action variables is then followed by a short description of
perturbation theory for quasiperiodic Hamiltonian systems, which is of relevance
for celestial mechanics.

2.37.1 Local Rectification of Hamiltonian Systems

Locally the Hamilton–Jacobi equation (2.149) possesses complete solutions, i.e. in
a neighborhood of an arbitrary point x˜ 0 = (q

˜ 0, p˜ 0) of phase space one can always
find a canonical transformation whose generating function S∗(q

˜
, p
˜
, t) obeys the

condition (2.152), det(∂2S∗/∂qi∂αk) 	= 0, and which transforms the Hamiltonian
function to H̃ = 0. This follows, for example, from the explicit solution (2.157)
or a generalization thereof,

S∗(q
˜
(t), α˜ , t) = S∗0 (q˜ 0)+

∫ (q
˜
,t)

(q
˜

0,t0)

dt ′ L(q
˜
, q̇
˜
, t ′) . (2.158)

Here S∗0 (q˜ 0) is a function that represents a given initial condition for S∗ such that
p
˜ 0 = ∂S∗0 (q˜

)/∂q
˜
|q
˜ 0 . In the second term we have to insert the physical solution that

connects (q
˜ 0, t0) with (q

˜
, t) and is obtained from the Euler–Lagrange equations

(2.28). Finally, t and t0 must be close enough to each other so that physical orbits
q
˜
(t), which, at t = t0, pass in a neighborhood of q

˜ 0, do not intersect. (Note that we
talk here about intersection of the graphs (t, q

˜
(t)).) This is the reason the existence

of complete solutions is guaranteed only locally. Of course, this is no more than a
statement about existence of solutions for the equations of motion: it says nothing
about their construction in practice. To find explicit solutions it may be equally
difficult to solve the equations of motion (i.e. either the Euler–Lagrange equations
or the canonical equations) or to find complete solutions of the Hamilton–Jacobi
differential equation. However, without knowing the solutions explicitly, one can
derive fairly general, interesting properties for the case of autonomous systems. We
consider an autonomous Hamiltonian system, defined by the Hamiltonian function
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H(q
˜
, p
˜
). H is chosen such that the condition det(∂2H/∂pi∂pk) 	= 0 is fulfilled,

i.e. such that the Legendre transformation exists and is bijective. At first we note
that instead of (2.153) we can choose the more general form

S∗(q
˜
, α˜ , t) = S(q

˜
, α˜ )−Σ(α˜ )t , (2.159)

where Σ(α˜ ) is an arbitrary differentiable function of the new momenta (which are
conserved). Equation (2.154) is then replaced by

H

(
q
˜
,
∂S

∂q
˜

)
= Σ(α˜ ) . (2.160)

As we transform to the new coordinates (Q
˜
, P˜ = α˜ ), with all Qj cyclic, (2.160)

means that

Ĥ (α˜ ) ≡ H(q
˜
(Q
˜
, α˜ ), α˜ ) = Σ(α˜ ) . (2.160′)

For example, we could choose Σ(α˜ ) = αf = E, thus returning to (2.154), with the
prescription that Pf ≡ αf be equal to the energy E. Without restriction of general-
ity we assume that, locally, the derivative ∂H/∂pf is not zero (otherwise one must
reorder the phase-space variables). The equation H(q1 . . . qf , p1 . . . pf ) = Σ can
then be solved locally for pf , viz.

pf = −h(q1 . . . qf−1, qf ;p1 . . . pf−1,Σ) .

Taking qf to be a formal time variable, τ ≡ qf , the function h can be understood to
be the Hamiltonian function of a time-dependent system that has (f−1) degrees of
freedom and depends on the constant Σ . Indeed, one can show that the following
canonical equations of motion hold true:

dqi

dτ
= ∂h

∂pi
,

dpi

dτ
= − ∂h

∂qi
, for i = 1, 2, . . . , f − 1 .

To see this, take the derivative of the equation

H(q1 . . . qf−1, τ ;p1 . . . pf−1,−h(q1 . . . qf−1, τ ;p1 . . . pf−1,Σ)) = Σ

with respect to pi , with i = 1, 2, . . . , f − 1,

∂H

∂pi
+ ∂H

∂pf

∂pf

∂pi
= 0 .

However, ∂H/∂pi = q̇i , ∂H/∂pf = q̇f , and ∂pf /∂pi = −∂h/∂pi , and hence
dqi/dτ = q̇i/q̇f = ∂h/∂pi . In a similar fashion, taking the derivative with respect
to qi , one obtains

∂H

∂qi
+ ∂H

∂pf

(
− ∂h

∂qi

)
= 0 ,
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from which the second canonical equation is obtained, with h the Hamiltonian
function. The Hamilton–Jacobi differential equation for this formally time-depend-
ent system

∂S∗

∂τ
+ h

(
q1 . . . qf−1, τ ; ∂S

∗

∂q1
. . .

∂S∗

∂qf−1
,Σ

)
= 0

locally always possesses a complete integral S∗(q1 . . . qf−1, α1 . . . αf−1,Σ, τ). S∗
being a complete solution means that

det

(
∂2S∗

∂qj ∂αi

)
	= 0 (i, j = 1, 2, . . . , f − 1)

Assuming that Σ(α˜ ) in (2.160) depends explicitly on αf , one can show that the
above condition is fulfilled also for i and j running through 1 to f (hint: take the
derivative of (2.160) by αf ). This then proves the following rectification theorem
for autonomous Hamiltonian systems.

Rectification Theorem. Let (q
˜
, p
˜
) be a point of phase space where not all

of the derivatives ∂H/∂qi and ∂H/∂pj vanish,

(q
˜
, p
˜
) =

(
∂H

∂p
˜
, −∂H

∂q
˜

)
	= (0, 0) .

(In other words, this point should not be an equilibrium position of the
system.) Then the reduced equation (2.160) locally has a complete integral
S(q

˜
, α˜ ), i.e. condition (2.152) is fulfilled.

The new coordinates Qi are cyclic and are given by Qi = ∂S∗/∂αi . Their time
derivatives follow from (2.160′) and the canonical equations. They are

Q̇i = ∂Ĥ

∂αi
= ∂

∂αi
Σ(α

˜
) .

With the special choice Σ(α
˜
) = αf = E, for instance, we obtain

Q̇i = 0 for i = 1, 2, . . . , f − 1

Q̇f = 1 (2.161)

Ṗk = 0 for k = 1, 2, . . . , f

and therefore

Qi ≡ βi = const. , i = 1, 2, . . . , f − 1; Qf = t − t0 =
∂S∗(q

˜
, α
˜
)

∂αf
,

Pk ≡ αk = const. k = 1, 2, . . . , f .
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The significance of this theorem is the following: the flow of an autonomous sys-
tem can be rectified as shown in Fig. 2.16, in the neighborhood of every point of
phase space that is not an equilibrium position. Viewed locally, a transformation of
phase space variables smoothes the flux to a uniform, rectilinear flow, (e.g.) paral-
lel to the Qf -axis. Outside their equilibrium positions all autonomous Hamiltonian
systems are locally equivalent8. Therefore, interesting properties specific to a given
Hamiltonian (or more general) dynamical systems concern the global structure of
its flow and its equilibrium positions. We shall return to these questions in Chap. 6.

Fig. 2.16. Locally and outside of an equi-
librium position a dynamical system can
be rectified

Example. The harmonic oscillator in one dimension. We shall study the harmonic
oscillator using the reduced variables defined in Sect. 1.17.1. For the sake of clarity
we write q instead of z1, p instead of z2, and t instead of τ . (Thus q ≡ z1 and
p ≡ z2 carry the dimension (energy)1/2, while t is measured in units of ω−1.) In
these units H = (p2 + q2)/2. Choosing the function on the right-hand side of
(2.159) as follows: Σ(α) = P > 0, the corresponding Hamilton–Jacobi equation
(2.160) reads

1

2

(
∂S

∂q

)2

+ 1

2
q2 = P .

Its integration is straightforward. Because ∂S/∂q = √
2P − q2,

S(q, P ) =
∫ q

0

√
2P − q ′2 dq ′ with |q| < √

2P .

We have

∂2S

∂q∂P
= 1

√
2P − q2

	= 0

8 This is a special case of the more general rectification theorem for general, autonomous, differ-
entiable systems: in the neighborhood of any point x˜ 0 that is not an equilibrium position (i.e.
where F(x˜ 0) 	= 0), the system ẋ˜ = F(x˜ ) of first-order differential equations can be transformed
to the form ż˜ = (1, 0, . . . , 0), i.e. ż1 = 1, ż2 = 0 = . . . = żf . For a proof see e.g. Arnol’d
(1973).
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and

p = ∂S

∂q
=

√
2P − q2 ,

Q = ∂S

∂P
=

∫ q

0

1
√

2P − q ′2
dq ′ = arcsin

q√
2P

.

Because of the arcsin function, Q should be restricted to the interval (−π
2 ,

π
2 ).

However, solving for q and p one obtains

q = √
2P sinQ , p = √

2P cosQ ,

so that this restriction can be dropped. It is easy to confirm that the transformation
(q, p) → (Q, P ) is canonical, e.g. by verifying that M = ∂(q, p)/∂(Q,P ) is sym-
plectic, or else that (PdQ−pdq) is a total differential given by d(P sinQ cosQ).
Of course, the result is already known to us from Example (ii) of Sect. 2.24. In
the present case the rectification is even a global one, cf. Fig. 2.17. With units as
chosen here, the phase point runs along circles with radius

√
2P in the (q, p)-

plane, with angular velocity 1. In the (Q, P )-plane the same point moves with
uniform velocity 1 along a straight line parallel to the Q-axis. As the frequency
is independent of the amplitude, the velocities on all phase orbits are the same in
either representation (this is typical for the harmonic oscillator).

Fig. 2.17. For an oscillator the rec-
tification is global

2.37.2 Integrable Systems

Mechanical systems that can be integrated completely and globally are the excep-
tion in the many varieties of dynamical systems. In this section we wish to collect
a few general properties and propositions and to give some examples of integrable
systems.

The chances of finding complete solutions for a given system, loosely speaking,
are the greater the more integrals of the motion are known.
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Example (i) Motion of a particle in one dimension, under the influence of a po-
tential U(q) (see Sect. 1.16). The system has one degree of freedom f = 1, the
dimension of phase space is dim P = 2, and there is one integral of the motion:
that of the energy.

Example (ii) Motion of a particle in three dimensions, with a central potential
U(r) (see Sect. 1.24). Here f = 3 and dim P = 6. Integrals of the motion are
provided by the energy E, the three components li of angular momentum, and, as
a consequence, the square of angular momentum l2.

Generally, the dynamical quantities g2(q˜
, p
˜
), . . . , gm(q˜

, p
˜
) are integrals of the

motion if the Poisson brackets of the Hamiltonian function H and gi vanish,
{H, gi} = 0, for i = 2, 3, . . . , m. Each one of these functions gi(q˜

, p
˜
) may

serve as the generating function for an infinitesimal canonical transformation (cf.
Sect. 2.33). By the reciprocity discussed in Sect. 2.33, H is left invariant by this
transformation. The question remains, however, in which way the other integrals of
the motion transform under the infinitesimal transformation generated by a specific
gi . In Example (ii) above, l3 generates an infinitesimal rotation about the 3-axis,
and we have

{l3, H } = 0 , {l3, l2} = 0 , {l3, l1} = −l2 , {l3, l2} = l1 .

In other words, while the values of the energy E and the modulus of the angular
momentum l = √

l2 are invariant, the rotation about the 3-axis changes the values
of l1 and l2. A solution with fixed values of (E, l2, l3, l1, l2) becomes a solution
with the values (E, l2, l3, l

′
1 � l1 − εl2, l

′
2 � l2 + εl1).

Thus, there are integrals of the motion that “commute” (i.e. whose Poisson
bracket {gi, gk} vanishes), as well as others that do not. These two groups must be
distinguished because only the former is relevant for the question of integrability.
This leads us to the following.

Definition. The linearly independent dynamical quantities g1(q˜
, p
˜
) ≡ H(q

˜
, p
˜
),

g2(q˜
, p
˜
), . . . , gm(q˜

, p
˜
) are said to be in involution if the Poisson bracket for any

pair of them vanishes,

{gi(q˜ , p˜ ), gk(q˜ , p˜ )} = 0 , i, k = 1, 2, . . . , m . (2.162)

In Example (ii) above, H , l2, and l3 (or any other fixed component lj ) are in
involution. Let us consider a few more examples.

Example (iii) Among the ten integrals of the motion of the two-body system with
central force (cf. Sect. 1.12), the following six are in involution

Hrel = p2

2μ
+ U(r) ,P , l2 , l3 , (2.163)

Hrel being the energy of the relative motion, P the momentum of the center of
mass, and l the relative angular momentum.
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Example (iv) (This anticipates Chap. 3). In the case of a force-free rigid body
(which has f = 6), the kinetic energy Hrel = ω · L/2, the momentum of the
center of mass P , and L2 and L3 are in involution (cf. Sect. 3.13).

All quoted examples are globally integrable (in fact, they are integrable by
quadratures only). Their striking common feature is that the number of integrals
of the motion equals the number, f , of degrees of freedom. For instance, the two-
body problem of Example (iii) has f = 6 and possesses the six integrals (2.163)
in involution. If we consider the three-body system with central forces instead,
the number of degrees of freedom is f = 9, while the number of integrals of
the motion that are in involution remains the same as in the case of two bodies,
namely 6. Indeed, the three-body problem is not generally integrable.

Example (v) If, in turn, we manage to integrate a canonical system by means of
the Hamilton–Jacobi differential equation (2.149), we obtain the f integrals of the
motion (2.150): Qk = S∗(q

˜
, α˜ , t)/∂αk , k = 1, 2, . . . , f , which trivially have the

property {Qi,Qk} = 0.

In conclusion, it seems as though the existence of f independent integrals of
the motion is sufficient to render the system of 2f canonical equations integrable.
These matters are clarified by the following theorem of Liouville.

Theorem on Integrable Systems. Let {g1 ≡ H, g2, . . . , gf } be dynamical quan-
tities defined on the 2f -dimensional phase space P of an autonomous, canonical
system described by the Hamiltonian function H . The gi(x) are assumed to be in
involution,

{gi, gk} = 0 , i, k = 1, . . . , f , (2.164)

and to be independent in the following sense: at each point of the hypersurface

S = {x˜ ∈ P|gi(x˜ ) = ci, i = 1, . . . , f } (2.165)

the differentials dg1, . . . , dgf are linearly independent. Then:

(a) S is a smooth hypersurface that stays invariant under the flow corresponding
to H . If, in addition, S is compact and connected, then it can be mapped
diffeomorphically onto an f -dimensional torus

T f = S1 × . . .× S1 (f factors) . (2.165′)

(Here S1 is the circle with radius 1, cf. also Sect. 5.2.3, Example (iii) below).
(b) Every S1 can be described by means of an angle coordinate θi ∈ [0, 2π). The

most general motion on S is a quasiperiodic motion, which is a solution of
the transformed equations of motion

dθi
dt

= ω(i) , i = 1, . . . , f . (2.166)
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(c) The canonical equations can be solved by quadratures (i.e. by ordinary inte-
gration).

The proof is clearest if one makes use of the elegant tools of Chap. 5. As the reader
is probably not yet familiar with them at this point, we skip the proof and refer to
Arnol’d (1988, Sect. 49) where it is given in quite some detail. A motion Φ in P is

said to be quasiperiodic, with base frequencies ω(1), . . ., ω(f ), if all components
of Φ(t, s, y

˜
) are periodic (the periods being 2π/ω(i)) and if these frequencies are

rationally independent, i.e. with ri ∈ Z, we have

f∑

i=1

riω
(i) = 0 only if ri = . . . = rf = 0 . (2.167)

Let us study two more examples.

Example (vi) Two coupled linear oscillators (cf. Practical Example 2.1). Here f =
2, the Hamiltonian function being given by

H = 1

2m
(p2

1 + p2
2)+

1

2
mω2

0(q
2
1 + q2

2 )+
1

2
mω2

1(q1 − q2)
2 .

The following are two integrals of the motion in involution related to H by
g1 + g2 = H :

g1 = 1

4m
(p1 + p2)

2 + 1

4
mω2

0(q1 + q2)
2 ,

g2 = 1

4m
(p1 − p2)

2 + 1

4
m(ω2

0 + 2ω2
1)(q1 − q2)

2 ,

This decomposition of H corresponds to the transformation to the two normal-
mode oscillations of the system, z1/2 = (q1±q2)/

√
2, g1 and g2 being the energies

of these decoupled oscillations. Following Example (ii) of Sect. 2.24, we introduce
new canonical coordinates {Qi = θi, Pj ≡ Ij } such that

H = g1 + g2 = ω0I1 +
√
ω2

0 + 2ω2
1 I2 .

Then θ1 = ω0t + β1, θ2 =
√
ω2

0 + 2ω2
1 t + β2. For fixed values of I1 and I2

the surface S (2.165) is the torus T 2. If the two frequencies ω(1) = ω0, ω(2) =√
ω2

0 + 2ω2
1 are rationally dependent, i.e. if n1ω

(1) = n2ω
(2) with n1, n2 positive

integers, then the motion is periodic with period T = 2π/n1ω
(1) = 2π/n2ω

(2).
Any orbit on the torus T 2 closes. If, on the contrary, the frequencies are rationally
independent, the orbits never close. In this case any orbit is dense on the torus.
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Fig. 2.18. Coordinates used to describe the spherical pendulum

Example (vii) The spherical mathematical pendulum. Let R be the length of the
pendulum, θ the deviation from the vertical, and φ the azimuth in the horizontal
plane (see Fig. 2.18). We have

H = p2
θ

2mR2 +
p2
φ

2mR2 sin2 θ
+mgR(1 − cos θ) ,

where pθ = mR2dθ/dt , pφ = mR2 sin2 θdφ/dt . The coordinate φ is cyclic.
Hence, pφ ≡ l = const. There are two integrals of the motion g1 = H , g2 = pφ ,
and we can verify that they are in involution, {g1, g2} = 0. Therefore, according
to the theorem above, the system is completely integrable by quadratures. Indeed,
taking q1 = θ , q2 = φ, τ = ωt , p1 = dq1/dτ , and p2 = sin2 q1dq2/dτ , and
introducing the parameters

ε ≡ E

mgR
, ω2 ≡ g

R
, a2 ≡ l2

m2gR3 ,

we obtain

ε = 1

2
p2

1 +
a2

2 sin2 q1
+ (1 − cos q1) ≡ 1

2
p2

1 + U(q1) .

The equations of motion read

dq1

dτ
= p1 = ±√

2(ε − U(q1)) ,

dp1

dτ
= a2 cos q1

sin3 q1
− sin q1 ,

dq2

dτ
= a

sin2 q1
.

They are completely integrable. From the first equation we obtain

τ =
∫

dq1√
2(ε − U(q1))

.
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Combining the first and the third yields

q2 = a

∫
dq1

sin2 q1
√

2(ε − U(q1))
.

2.37.3 Angle and Action Variables

Suppose we are given an autonomous Hamiltonian system with (for the moment)
f = 1 that has periodic solutions for energies E belonging to a certain interval
[E0, E1]. Let ΓE be a periodic orbit with energy E. Then the period T (E) of the
orbit ΓE is equal to the derivative dF(E)/dE of the surface F(E) that is enclosed
by this orbit in phase space (see Exercises 2.1 and 2.27),

T (E) = d

dE

∮

ΓE

p dq ≡ dF(E)

dE
.

The period T (E) being related to the circular frequency by ω(E) = 2π/T (E) we
define the quantity

I (E)
def= 1

2π
F(E) = 1

2π

∮

ΓE

p dq . (2.168)

I (E) is called the action variable. Except for equilibrium positions, T (E) =
2πdI (E)/dE is nonzero. Hence, the inverse function E = E(I) exists. Therefore,
it is meaningful to construct a canonical transformation {q, p} → {θ, I } such that
the transformed Hamiltonian function is just E(I) and I is the new momentum.
From (2.154) and (2.87) this means that

p = ∂S(q, I )

∂q
, θ = ∂S(q, I )

∂I
, H

(
q,

∂S

∂q

)
= E(I) . (2.169)

The new generalized coordinate θ is called the angle variable. We then have I =
const ∈ Δ, where the interval Δ follows from the interval [E0, E1] for E. The
equation of motion for θ takes the simple form

θ̇ = ∂E(I)

∂I
≡ ω(I) = const .

With the (Q ≡ θ, P ≡ I ) description of phase space, the orbits lie in a strip
parallel to the θ axis, whose width is Δ. Each periodic orbit has the representation
(θ = ω(I)t+θ0, I = const), i.e. in the new variables it runs parallel to the abscissa.
However, as θ is to be understood modulo 2π , the phase space is bent to form part
of a cylinder with radius 1 and height Δ. The periodic orbits lie on the manifold
Δ× S1 in P.

For a system with more than one degree of freedom, f > 1, for which there are
f integrals in involution, the angle variables are taken to be the angular coordinates
that describe the torus (2.165′). The corresponding action variables are
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Ik(c1, . . . , cf ) = 1

2π

∮

Γk

∑
pidqi ,

where one integrates over the curve in P that is the image of (θi = const for i 	= k,
θk ∈ S1). The manifold on which the motion takes place then has the form

Δ1 × . . . Δf × (S1)f = Δ1 × . . .×Δf × T f . (2.170)

Example (vi) illustrates the case f = 2 for two decoupled oscillators. In Example
(vii) the quantities ε (energy) and a (azimuthal angular momentum) are constants
of the motion, and we have

I1(ε, a) = 1

2π

∮
p1 dq1 = 1

2π

∮ √
2(ε − U(q1)) dq1 ,

I2(ε, a) = 1

2π

∮
p2 dq2 = a .

Solving the first equation for ε, ε = ε(I1, a), we obtain the frequency for the
motion in θ (the deviation from the vertical),

θ̇ = ∂ε(I1, a)

∂I1
≡ ω1 .

2.38 Perturbing Quasiperiodic Hamiltonian Systems

The theory of perturbations of integrable quasiperiodic Hamiltonian systems is
obviously fundamental for celestial mechanics and for Hamiltonian dynamics in
general. This is an important and extensive branch of mathematics that we cannot
deal with in detail for lack of space. We can only sketch the basic questions ad-
dressed in perturbation theory and must refer to the literature for a more adequate
account.

Consider an autonomous, integrable system for which there is a set of action-
angle variables. Let the system be described by H0(I ). We now add to it a small
Hamiltonian perturbation so that the Hamiltonian function of the perturbed system
reads

H(θ˜ , I˜ , μ) = H0(I˜ )+ μH1(θ˜ , I˜ , μ) . (2.171)

Here H1 is assumed to be 2π -periodic in the angle variables θ˜ , while μ is a real
parameter that controls the strength of the perturbation.

To quote an example, let us consider the restricted three-body problem, which
is defined as follows. Two mass points P1 and P2 whose masses are m1 and m2,
respectively, move on circular orbits about their center of mass, under the action
of gravitation. A third mass point P is added that moves in the orbit plane of
P1 and P2, and whose mass is negligible compared to m1 and m2 so that it does



2.38 Perturbing Quasiperiodic Hamiltonian Systems 167

not perturb the motion of the original two-body system. The problem consists in
finding the motion of P . Obviously, this is a model for the motion of the moon in
the field of the sun and the earth, of the motion of an asteroid with respect to the
system of the sun and Jupiter (the heaviest of the planets in our planetary system),
or of the motion of satellites in the neighborhood of the earth and the moon.

Thus, the general problem is defined as follows:

(a) H(θ˜ , I˜ , μ) is a real analytic function of θ˜ ∈ T f , of I˜ ∈ Δ1 × . . .×Δf , as in
(2.170), and of μ ∈ I ⊂ R, where the interval I includes the origin.

(b) H is periodic in the variables θi , i.e.

H(θ˜ + 2π êi , I˜ , μ) = H(θ˜ , I˜ , μ) , i = 1, 2, . . . , f ,

where êi is the ith unit vector.
(c) For μ = 0 the problem has a form that is integrable directly and completely.

The condition det(∂2H/∂Ik∂Ij ) 	= 0 holds. The unperturbed solutions read

θ
(0)
i (t) = ∂H0(I˜ )

∂Ii
t + β

(0)
i ,

(2.172)
I
(0)
i = α

(0)
i , i = 1, 2, . . . , f , with α

(0)
i ∈ Δi .

The aim of perturbation theory is to construct solutions of the perturbed system
for small values of μ. We assumed H to be real and analytic in μ. Therefore, any
solution (2.172) can be continued in any finite time interval It and for small values
of μ with, say, |μ| < μ0(It ), where μ0 is suitably chosen and is a function of the
interval It . Unfortunately, the question that is of real physical interest is much more
difficult: it is the question whether there exist solutions of the perturbed system
that are defined for all times. Only if one succeeds in constructing such solutions is
there a chance to decide, for instance, whether the periodic motion of our planetary
system is stable at large time scales. In fact, this question still has no final answer9.

Perturbation theory makes use of two basic ideas. The first is to do a systematic
expansion in terms of the parameter μ and to solve the equations generated in this
way, order by order. Let

θk = θ
(0)
k + μθ

(1)
k + μ2θ

(2)
k + . . . ; θ

(0)
k = ωkt + βk ,

(2.173)
Ik = I

(0)
k + μI

(1)
k + μ2I

(2)
k + . . . ; I

(0)
k = αk ,

and then insert these expansions in the canonical equations,

θ̇k = {H, θk} , İk = {H, Ik} ,
and compare terms of the same order μn. For instance, at first order μ1 one finds

9 There is evidence, from numerical studies, that the motion of the planet Pluto is chaotic, i.e. that
it is intrinsically unstable over large time scales (G.J. Sussman and J. Wisdom, Science 241(1988)
433). Because Pluto couples to the other planets, though weakly, this irregular behavior eventually
spreads to the whole system.
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θ̇
(1)
k = {H1, θ

(0)
k } � ∂H1(θ˜

(0), I˜
(0))

∂I
(0)
k

,

(2.174)

İ
(1)
k = {H1, I

(0)
k } � −∂H1(θ˜

(0), I˜
(0))

∂θ(0)
.

We have to insert the unperturbed solutions θ˜
(0) and I˜

(0) on the right-hand side,
for consistency, because otherwise there would appear terms of higher order in μ.
As H1 was assumed to be periodic, it can be written as a Fourier series,

H1(θ˜
(0), I˜

(0)) =
∑

m1...mf

Cm1...mf
(α˜ ) exp

⎧
⎨

⎩
i
f∑

k=1

mkθ
(0)
k

⎫
⎬

⎭

=
∑

Cm1...mf
(α˜ ) exp

{
i
∑

mk(ωkt + βk)
}
.

Equations (2.174) can then be integrated. The solutions contain terms whose time
dependence is given by

1
∑

mkωk
exp

{
i
∑

mkωkt
}
.

Such terms will remain small, for small perturbations, unless their denominator
vanishes. If, in turn,

∑
mkωk = 0, θ(1) and I (1) will grow linearly in time. This

kind of perturbation is said to be a secular perturbation.
The simplest case is the one where the frequencies ωk are rationally indepen-

dent, cf. (2.167). The time average of a continuous function F over the quasiperi-
odic flow θ(0)(t) = ωt + β is equal to the space average of F on the torus T f 10,

lim
1

T

∫ T

0
F(θ˜ (t)) dt = 1

(2π)f

∫

T f

dθ1 . . . dθf F (θ˜ )
def= 〈F 〉 . (2.175)

Taking account of the secular term alone, one then obtains from (2.174) the ap-
proximate equations

θ̇
(1)
k = ∂

∂I
(0)
k

〈H1〉 , İ
(1)
k = 0 . (2.176)

The second idea is to transform the initial system (2.171) by means of successive
canonical transformations in such a way that the transformed Hamiltonian function
H̃ depends only on the action variables I˜ , up to terms of increasingly high order in
the parameter μ. This program requires a detailed discussion and needs advanced
and refined tools of analysis. Here we can only quote the main result, which is
relevant for questions of stability of Hamiltonian systems.

10 Equation (2.175) holds for functions fk = exp{i∑ kiθi (t)} with θi (t) = ωi t+βi , where it gives,
in fact, 〈fk〉 = 0, except for k1 = . . . = kf = 0. Any continuous F can be approximated by a
finite linear combination F = ∑

Ckfk .
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2.39 Autonomous, Nondegenerate Hamiltonian Systems
in the Neighborhood of Integrable Systems

The manifold on which the motions of an autonomous integrable system H0(I˜ ) take
place is the one given in (2.170). We assume that the frequencies {ωi} are rationally
independent (see (2.167)). For fixed values of the action variables Ik = αk every
solution curve runs around the torus T f and covers it densely. One says that the
quasiperiodic motion is ergodic. After a sufficiently long time the orbit returns
to an arbitrarily small neighborhood of its starting point but does not close. This
situation is decribed by the term nonresonant torus11.

We now add a small Hamiltonian perturbation to this system so that it is de-
scribed by

H(θ˜ , I˜ , μ) = H0(I˜ )+ μH1(θ˜ , I˜ , μ) . (2.177)

The question then is in which sense this system is stable. Does the perturbation
modify only slightly the manifold of motions of the system H0(I˜ ), or does it de-
stroy it completely?

The most important result that to a large extent answers this question is pro-
vided by a theorem of Kolmogorov, Arnol’d and Moser that we wish to state here
without proof in admittedly somewhat qualitative terms.

Theorem (KAM). If the frequencies of an integrable, Hamiltonian sys-
tem H0 are rationally independent and if, in addition, these frequencies
are sufficiently irrational, then, for small values of μ, the perturbed system
H = H0+μH1 has solutions that are predominantly quasiperiodic, too, and
that differ only slightly from those of the unperturbed system H0. Most of
the nonresonant tori of H0 are deformed, but only slightly. Thus, the per-
turbed system possesses nonresonant tori as well, on which the orbits are
dense.

Here, sufficiently irrational means the following. A single frequency is sufficiently
irrational if there are positive real numbers γ and α such that

∣∣∣ω − n

m

∣∣∣ ≥ γm−α (2.178a)

for all integers m and n. Similarly, f rationally independent frequencies are suf-
ficiently irrational if there are positive constants γ and α such that

∣∣
∑

riωi
∣
∣ ≥ γ |r|−α , ri ∈ Z . (2.178b)

It is instructive to study the special case of systems with two degrees of freedom,
f = 2, because they exhibit many interesting properties that can be analyzed in

11 If, in turn, the frequencies are rationally dependent, the tori are said to be resonant tori, cf.
Example (vi) of Sect. 2.37.2. In this case the motion is quasiperiodic with a number of frequencies
that is smaller than f .
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detail (see e.g. Guckenheimer, Holmes 1986, Sect. 4.8). The general case is treated,
e.g., by Thirring (1989) and Rüssmann (1979).

The KAM theorem was a decisive step forward in our understanding of the dy-
namics of quasiperiodic, Hamiltonian systems. It yields good results on long-term
stability, although with certain, and somewhat restrictive, assumptions. Therefore,
the qualitative behavior of only a restricted class of systems can be derived from
it. An example is provided by the restricted three-body problem sketched above
(Rüssmann 1979). Unfortunately, our planetary system falls outside the range of
applicability of the theorem. Also, the theorem says nothing about what happens
when the frequencies {ωi} are not rationally independent, i.e. when there are res-
onances. We shall return to this question in Sect. 6.5.

2.40 Examples. The Averaging Principle

2.40.1 The Anharmonic Oscillator

Consider a perturbed oscillator in one dimension, the perturbation being propor-
tional to the fourth power of the coordinate. The Hamiltonian function is

H = p2

2m
+ 1

2
mω2

0q
2 + μq4 , (2.179)

or, in the notation of (2.177),

H0 = p2

2m
+ 1

2
mω2

0q
2 , H1 = q4 .

In the absence of the anharmonic perturbation, the energy E(0) of a periodic orbit
is related to the maximal amplitude qmax by (qmax)

2 = 2E(0)/mω2
0. We take

x
def= q

qmax
and ε

def= μ
4E(0)

m2ω4
0

,

so that the potential energy becomes

U(q) = 1

2
mω2

0q
2 + μq4 = E(0)(1 + εx2)x2 .

We study this system using two different approaches.
(i) If we want the perturbed oscillation to have the same maximal amplitude

qmax, i.e. xmax = 1, the energy must be chosen to be E = E(0)(1+ ε). The aim is
to compute the period of the perturbed solution to order ε. From (1.55) we have

T =
√

2m

E

∫ qmax

−qmax

dq

(

1 − mω2
0

2E
q2 + μ

E
q4

)−1/2

= 2

ω0
√

1 + ε

∫ +1

−1
dx

(
1 − x2

1 + ε
− ε

1 + ε
x4

)−1/2

.
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In the neighborhood of ε = 0 one has

T (ε = 0) = 2

ω0

∫ +1

−1

dx√
1 − x2

= 2π

ω0
,

dT

dε

∣∣∣∣
ε=0

= − 1

ω0

{∫ +1

−1

dx√
1 − x2

+
∫ +1

−1

x2dx√
1 − x2

}
= −3

4

2π

ω0
.

Thus, the perturbed solution with the same maximal amplitude has the frequency
ω = ω0(1 + 3ε/4)+ O(ε2). It reads

q(t) � qmax sin ((1 + 3ε/4)ω0t + ϕ0) . (2.180)

Comparing this with the unperturbed solution q(0)(t) = qmax sin(ω0t + ϕ0), we
see that q(t) is in opposite phase to q(0)(t) after the time Δ = 4π/(3εω0). Thus,
with increasing time, the perturbed solution moves far away from the unperturbed
one.

(ii) Let us analyze the same system but this time making use of the methods
of Sect. 2.38. The action variable (2.168) of the unperturbed oscillator is given by

I (0) = 1

2π
2
∫ qmax

−qmax

dq
√

2m(E(0) −mω2
0q

2/2)

= 2E(0)

πω0

∫ +1

−1
dx

√
1 − x2 = E(0)

ω0
,

and therefore we have H0(I
(0)) = E(0) = I (0)ω0. The angle variable θ(0) was

determined in the example of Sect. 2.37.1 (cf. also Sect. 2.24, Example (ii)). We
have

q(0)(t) = qmax sin θ(0)

with

qmax =
√

2I (0)

mω0
and θ(0) = ω0t + ϕ0 .

Inserting this into the perturbation yields

H1(θ
(0), I (0)) = 4I (0)2

m2ω2
0

sin4 θ(0) .

We now calculate the average of sin4 θ(0) over the torus T 1 = S1:

∫ 2π

0
sin4 θ(0)dθ(0) = 3

8
2π = 3π

4
.

The average of H1 (2.175) is then 〈H1〉 = 3I (0)2/2m2ω2
0. Inserting this into (2.176)

we get



172 2. The Principles of Canonical Mechanics

θ̇ (1)(t) = ∂

∂I (0)
〈H1〉 = 3I (0)

m2ω2
0

, İ (1)(t) = 0 . (2.181)

To first order in the parameter μ, which measures the strength of the perturbation,
we obtain according to (2.173)

1

t
θ(t) � ω0 + 3μI(0)

m2ω2
0

= ω0

(
1 + 3

4
ε

)
,

I (T ) � I (0) , (2.182)

with ε as defined above. Clearly (2.182) is precisely our earlier result (2.180): the
frequency increases a little, but the action variable stays constant.

2.40.2 Averaging of Perturbations

The result (2.176) for the motion in first-order perturbation theory contains the
average of H1 over the torus (2.175). This average is the same as the time average
(if the frequencies are rationally independent). This is a special case of a more
general situation that may be described as follows. For the sake of simplicity we
consider the case f = 1. The unperturbed system has the period T0 = 2π/ω0.
Take t to be a time large compared to T0, but still small compared to Δ � T0/μ,
where μ again measures the strength of the perturbation. It is instructive to consider
the example of Sect. 2.40.1, where Δ = 4π/(3εω0) is the time after which the
perturbed system is completely out of phase. Taking, for example, the solution
(2.180) with ϕ0 = 0, we have

q(t) � sin

(
2π

T0
t

)
cos

(
2π

Δ
t

)
+ cos

(
2π

T0
t

)
sin

(
2π

Δ
t

)
,

which, for T0 < t � Δ, is approximately

q(t) � sin

(
2π

T0
t

)
+ 2π

Δ
t cos

(
2π

T0
t

)
= sin

(
2π

T0
t

)
+ 3

2
εω0t cos

(
2π

T0
t

)
.

Thus, the unperturbed solution is modified by a small term that is the product of a
term proportional to t and of cos(2πt/T0), the latter being of comparatively rapid
oscillation. During the same time the action variable does not change, or changes
only to second order in the perturbation.

More generally, if the equations θ̇ (0) = θ(0)(I (0)), İ (0) = 0 are subject to a
perturbation such that the perturbed equations of motion read

θ̇ = θ(0)(I (0))+ μf (θ, I ) ,

İ = μg(θ, I ) , (2.183)

where f and g are periodic functions in θ , then the change of the action variable
over time t will be approximately
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δI � μt

{
1

t

∫ t

0
g(θ(0)(t ′), I (0))dt ′

}
.

As t > T0, the term in curly brackets is approximately the time average, taken over
the unperturbed motion. Here, this is equal to the average over the torus T 1. There-
fore, one expects the average behavior of I (t) to be described by the differential
equation

˙̄I = μ〈g〉 = μ

2π

∫ 2π

0
dθg(θ, I ) . (2.184)

Returning to the special case of a Hamiltonian perturbation,

H = H0(I )+ μH1(θ, I ) ,

the second equation (2.183) reads

İ = −μ∂H1

∂θ
.

As H1 was assumed to be periodic, the average of ∂H1/∂θ over the torus vanishes
and we obtain the averaged equation (2.184),

˙̄I = 0 ,

in agreement with the results of perturbation theory. These results tell us that the
action variable does not change over time intervals of the order of t , with T0 < t <

Δ. Dynamical quantities that have this property are said to be adiabatic invariants.
The characteristic time interval that enters the definition of such invariants is t , with
t < Δ � T0/μ. Therefore, it is meaningful to make the replacement μ = ηt in the
perturbed system H(θ˜ , I˜ , μ). For times 0 ≤ t < 1/η the system changes slowly,
or adiabatically. A dynamical quantity F(θ˜ , I˜ , μ) : P → R is called adiabatic
invariant if for every positive constant c there is an η0 such that for η < η0 and
0 < t < 1/η

|F(θ˜ (t), I˜ (t), ηt)− F(θ˜ (0), I˜ (0), 0)| < c (2.185)

(see e.g. Arnol’d 1978, 1983).
Note that the perturbation on the right-hand side of (2.183) need not be Hamil-

tonian. Thus, we can also study more general dynamical systems of the form

ẋ˜ = μf
˜
(x˜ , t, μ) , (2.186)

where x˜ ∈ P, 0 ≤ μ � 1, and where f
˜

is periodic with period T0 in the time
variable t . Defining

〈f
˜
〉(x˜ )

def= 1

T0

∫ T0

0
f
˜
(x˜ , t, 0)dt ,
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we may decompose f
˜

into its average and an oscillatory part,

f
˜
= 〈f

˜
〉(x)+ g

˜
(x˜ , t, μ) .

Substituting

x˜ = y
˜
+ μS

˜
(y
˜
, t, μ)

and taking the differential with respect to t gives

∂yk

∂t
+ μ

∑

i

∂Sk

∂yi

∂yi

∂t
=

∑

i

(
δik + μ

∂Sk

∂yi

)
∂yi

∂t
= ẋk − μ

∂Sk

∂t

= μ〈fk〉(x˜ )+ μgk(x˜ , t, μ)− μ
∂Sk

∂t
.

If S is chosen such that ∂Sk/∂t = gk(y˜
, t, 0), and if terms of higher than first

order in μ are neglected, then (2.186) becomes the average, autonomous system

ẏ
˜
= μ〈f

˜
〉(y
˜
) , (2.187)

(see Guckenheimer, Holmes 1986, Sect. 4.1). Let us return once more to the ex-
ample of Sect. 2.40.1. In the first approach we had asked for that solution of the
perturbed system which had the same maximal amplitude as the unperturbed one.
Now we have learnt to “switch on” the perturbation, in a time-dependent fash-
ion, by letting μ = ηt increase slowly (adiabatically) from t = 0 to t . Our result
tells us that the adiabatically increasing perturbation deforms the solution with
energy E(0) and amplitude qmax smoothly into the perturbed solution with energy
E = E(0)(1 + ε) that has the same amplitude as the unperturbed one.

A final word of caution is in order. The effects of small perturbations are by
no means always smooth and adiabatic – in contrast to what the simple examples
above seem to suggest. For example, if the time dependence of the perturbation
is in resonance with one of the frequencies of the unperturbed system, then even
a small perturbing term will upset the system dramatically.

2.41 Generalized Theorem of Noether

In the original form of Noether’s theorem, Sect. 2.19, the Lagrangian function
was assumed to be strictly invariant under continuous transformations containing
the identity. Invariance of L(q1, . . . , qf , q̇1, . . . , q̇f ) with respect to one-parameter
symmetry transformations of the variables qi implied that the equations of motion
were covariant, that is were form invariant under such transformations. This is one
of the reasons why the notion of Lagrangian function is of central importance:
in many situations it is far simpler to construct invariants rather than covariant
differential equations. The theorem in its strict form was illustrated by the closed
n-particle system with central forces. It was shown that
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– its invariance under space translations yielded conservation of total momentum,
– its invariance under rotations in R

3, yielded conservation of total angular mo-
mentum.

– By extending the definition of independent generalized coordinates it was also
possible to demonstrate the relationship between invariance under translations
in time and conservation of energy, s. Exercise 2.17 and its solution.

Throughout this section, for simplicity, we drop the “under-tilda” on points of
velocity space or phase space and write q for (q1, . . . , qf ), q̇ for (q̇1, . . . , q̇f ),
and p for (p1, . . . , pf ).

In this section we discuss further versions of Noether’s theorem which gen-
eralize the previous case in two respects. First we recall that covariance of the
equations of motion is also guaranteed if the Lagrangian function is not strictly
invariant but is modified by an additive time differential of a function of qi and t ,

L(q, q̇, t) → L′(q, q̇, t) = L(q, q̇, t)+ d

dt
M(t, q) . (2.188)

The function M should be a smooth function (or, at least, a C2 function) of the
coordinates qi and possibly time but otherwise is arbitrary. As an example consider
the Lagrangian function of n freely moving particles,

L(x1, . . . , xn, ẋ1, . . . , ẋn) = Tkin = 1

2

n∑

i=1

mi ẋ
2
i .

Obviously, L is invariant under arbitrary Galilei transformations, the corresponding
Euler-Lagrange equations are covariant, i.e. if one of the two following equations
holds then also the other holds,

d2xi (t)

dt2
= 0 ⇐⇒ d2x′i (t ′)

dt ′ 2
= 0 , i = 1, 2, . . . , n .

Thus, a general Galilei transformation (1.32) (barring time reversal and space re-
flections)

t → t ′ = t + s , s ∈ R , (2.189a)

x → x′ = Rx+ wt + a , R ∈ SO(3) , w, a real, (2.189b)

does not change the form of the equations of motion. However, it does change the
Lagrangian function, viz.

L′(x′i , ẋ′) = L(xi , ẋi )+
n∑

i=1

mi

(
Rẋi

)
· w+ 1

2

n∑

i=1

miw
2

= L(xi , ẋi )+
n∑

i=1

mi ẋi ·
(
R−1w

)
+ 1

2

n∑

i=1

miw
2 .

The new function L′ differs from L by the time differential of the function
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M(x1, . . . , xn, t) =
n∑

i=1

mixi ·
(
R−1w

)
+ 1

2 t
( n∑

i=1

mi

)
w2 .

This is seen to be a gauge transformation in the sense of Sect. 2.10 which leaves
the equations of motion unchanged. The example shows that Noether’s theorem
can be extended to cases where the Lagrangian function is modified by the gauge
terms introduced in Sect. 2.10.

A further generalization of the theorem consists in admitting gauge functions
in (2.188) which depend on the variables t , qi , as well as on q̇i provided a supple-
mentary condition is introduced which guarantees that any new acceleration terms
q̈i caused by the symmetry transformation vanish identically12.

Given a mechanical system with f degrees of freedom, to which one can asso-
ciate a Lagrangian function L(q, q̇, t) and coordinates (t, q1, . . . , qf , q̇1, . . . , q̇f )

on Rt ×P (direct product of time axis and phase space), consider transformations
of the coordinates

t ′ = g(t, q, q̇, s) , (2.190a)

q ′ i = hi(t, q, q̇, s) . (2.190b)

The functions g and hi should be (at least) twice differentiable in their 2f + 2
arguments. The real parameter s varies within an interval that includes zero, and
for s = 0 (2.190a) and (2.190b) are the identity transformations

g(t, q, q̇, s = 0) = t , hi(t, q, q̇, s = 0) = qi , i = 1, 2, . . . , f .

As for the case of strict invariance of the Lagrangian function only the neighbour-
hood of s = 0 matters for our purposes. This means that g and hi may be expanded
up to first order in s,

δt := t ′ − t = ∂g

∂s

∣∣∣∣
s=0

s +O(s2) ≡ τ(t, q, q̇)s +O(s2) , (2.191a)

δqi := q ′ i − qi = ∂hi

∂s

∣∣∣∣
s=0

s +O(s2) ≡ κi(t, q, q̇)s +O(s2) , (2.191b)

terms of order s2 and higher being neglected. The first derivatives defined in
(2.191a) and in (2.191b),

τ(t, q, q̇) = ∂g(t, q, q̇, s)

∂s

∣∣∣∣
s=0

, κi(t, q, q̇) = ∂hi(t, q, q̇, s)

∂s

∣∣∣∣
s=0

,

are the generators for infinitesimal transformations g and hi .
An arbitrary smooth curve t → q(t) is mapped by g and hi to a curve t ′ →

q ′(t ′). To first order in s, their time derivatives fulfill the relation

dq ′ i

dt ′
= dq ′ i

dt

dt

dt ′
= q̇i + sκ̇i

1 + sτ̇
= q̇i + s(κ̇i − q̇i τ̇ ) . (2.192)

12 W. Sarlet, F. Cantrijn; SIAM Review 23 (1981) 467.
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The action functional on which Hamilton’s principle rests, stays invariant, up to
gauge terms, if there is a function M(t, q, q̇) such that

∫ t ′2

t ′1
dt ′ L

(
q ′(t ′), d

dt ′
q ′(t ′), t ′

)

=
∫ t2

t1

dt L
(
q(t),

d

dt
q(t), t

)
+ s

∫ t2

t1

dt
dM(t, q, q̇)

dt
+O(s2)

for every smooth curve t → q(t). The integral on the left-hand side can be trans-
formed to an integral over t from t1 to t2,

∫ t ′2

t ′1
dt ′ · · · =

∫ t2

t1

dt
(dt ′

dt

)
· · · .

Then, for every smooth curve we must have

L
(
q ′(t ′), d

dt ′
q ′(t ′), t ′

)dt ′

dt

= L
(
q(t),

d

dt
q(t), t

)
+ s

dM(t, q, q̇)

dt
, (2.193a)

this being an identity in the variables t , q, and q̇. To first order in s and with
dt ′
dt = 1 + sτ̇ this equation yields

∂L

∂t
δt +

∑

i

∂L

∂qi
δqi +

∑

i

∂L

∂q̇i
δq̇i + sL(t, q, q̇)τ̇ = s

dM(t, q, q̇)

dt
. (2.193b)

What we have to do next is to insert (2.192) and to calculate the total time deriva-
tives τ̇ , κ̇ i , and Ṁ(t, q, q̇), obtaining

δq̇i = s(κ̇i − q̇i τ̇ ) ,

τ̇ = ∂τ

∂t
+

∑

i

∂τ

∂qi
q̇i +

∑

i

∂τ

∂q̇i
q̈i ,

κ̇ i = ∂κi

∂t
+

∑

k

∂κi

∂qk
q̇k +

∑

k

∂κi

∂q̇k
q̈k ,

Ṁ = ∂M

∂t
+

∑

i

∂M

∂qi
q̇i +

∑

i

∂M

∂q̇i
q̈i .

Collecting all terms in (2.193b) which are proportional to s, inserting the auxiliary
formulae just given, comparison of coefficients in (2.193b) gives the somewhat
lengthy expression
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∂L

∂t
τ +

∑

i

∂L

∂qi
κi

+
∑

i

∂L

∂q̇i

{(∂κi

∂t
+

∑

j

∂κi

∂qj
q̇j +

∑

j

∂κi

∂q̇j
q̈j

)

−q̇i
(∂τ
∂t

+
∑

j

∂τ

∂qj
q̇j +

∑

j

∂τ

∂q̇j
q̈j

)}

+L(t, q, q̇)
(∂τ
∂t

+
∑

j

∂τ

∂qj
q̇j +

∑

j

∂τ

∂q̇j
q̈j

)

=
(∂M
∂t

+
∑

i

∂M

∂qi
q̇i +

∑

i

∂M

∂q̇i
q̈i
)
. (2.193c)

At this point one imposes the condition on the terms containing accelerations q̈j

that was formulated above. This yields a first set of f equations. Indeed, collecting
all such terms for every value of the index j , one obtains

L(t, q, q̇)
∂τ

∂q̇j
+

∑

i

∂L

∂q̇i

( ∂κi

∂q̇j
− q̇i

∂τ

∂q̇j

)
= ∂M

∂q̇j
, (2.194a)

j = 1, . . . , f .

If these equations are fulfilled the lengthy equation (2.193c) reduces to one further
equation that will be important for identifying integrals of the motion. It reads

∂L

∂t
τ +

∑

i

∂L

∂qi
κi +

∑

i

∂L

∂q̇i

{
∂κi

∂t
+

∑

j

∂κi

∂qj
q̇j − q̇i

(∂τ
∂t

+
∑

j

∂τ

∂qj
q̇j

)}

+L(t, q, q̇)
(∂τ
∂t

+
∑

j

∂τ

∂qj
q̇j

)
= ∂M

∂t
+

∑

i

∂M

∂qi
q̇i . (2.194b)

Thus, one obtains in total (f +1) equations which hold for arbitrary smooth curves
t → q(t). These equations simplify when q(t) = ϕ(t) is a solution of the Euler-
Lagrange equations for L,

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 , i = 1, 2, . . . , f , q(t) = ϕ(t) .

The strategy aiming at uncovering integrals of the motion is the following:
Write eq. (2.193c), as far as possible, as a sum of terms which contain only total
time derivatives, and make use of the equations of motion, to replace where ever
this is necessary, ∂L

∂qi
by d

dt (
∂L
∂q̇i

). Note that those expressions in (2.193c) that are
contained in round brackets are already in the form of total time derivatives. Only
the first two terms on the left-hand side still contain partial derivatives. Repeating
(2.193c), inserting the equations of motion in the second term, it becomes
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∂L

∂t
τ +

∑

i

( d

dt

∂L

∂q̇i

)
κi +

∑

i

∂L

∂q̇i

dκi

dt

−
∑

i

∂L

∂q̇i
q̇i

dτ

dt
+ L

dτ

dt
− dM

dt
= 0 . (2.195a)

The sum of the second and third terms of this equation is a total differential. Col-
lecting the first and the fourth terms, and making use once more of the equations
of motion, one has

∂L

∂t
τ −

∑

i

∂L

∂q̇i
q̇i

dτ

dt

= dL

dt
τ −

∑

i

( d

dt

∂L

∂q̇i

)
q̇iτ −

∑

i

∂L

∂q̇i

( d

dt
q̇i
)
τ −

∑

i

∂L

∂q̇i
q̇i

dτ

dt

= dL

dt
τ − d

dt

∑

i

( ∂L
∂q̇i

q̇iτ
)
. (2.195b)

Inserting this in (2.195a) transforms this equation into one that contains indeed
only total derivatives with respect to t ,

d

dt

(
Lτ

)+ d

dt

∑

i

[
∂L

∂q̇i

(
κi − q̇iτ

)]
− d

dt
M = 0 . (2.195c)

This shows that the dynamical quantity I : Rt × TQ→ R,

I (t, q, q̇) = L(t, q, q̇)τ (t, q, q̇)

+
∑

i

∂L

∂q̇i

[
κi(t, q, q̇)− q̇iτ (t, q, q̇)

]
−M(t, q, q̇)

(2.196)

is constant when taken along solutions q(t) = ϕ(t) of the equations of motions.
We call I , eq. (2.196), the Noether invariant.

The following examples serve the purpose of illustrating the nature of the
Noether invariant and its relationship to the symmetries of the mechanical sys-
tem described by the Lagrangian function.

Example (i) If the generating function τ as well as the gauge function M vanish
identically,

τ(t, q, q̇) ≡ 0 , M(t, q, q̇) ≡ 0 , (2.197)

then one is back to the case of strict invariance, Sect. 2.19. The invariant (2.196)
then is identical with the expression (2.56) for which several examples were given
in Sect. 2.19.

Example (ii) Consider the closed n-particle system described by the Lagrangian
function
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L = 1

2

n∑

k=1

mkẋ
(k) 2 − U(x(1), . . . , x(k)) . (2.198)

Obviously, this function is invariant under translations in time. By choosing, ac-
cordingly,

τ(t, q, q̇) = −1 , κi(t, q, q̇) = 0 , M(t, q, q̇) = 0 (2.199)

the Noether invariant (2.196) is found to be

I = −L+
∑

i

q̇i
∂L

∂q̇i
= −(Tkin − U)+ 2Tkin = Tkin + U = E . (2.200)

Thus, invariance under time translations implies conservation of the total energy.

Example (iii) For the same system (2.198) choose the generating functions and
the gauge function as follows,

τ(t, q, q̇) = 0 , κ(k)1(t, q, q̇) = t , M(t, q, q̇) =
n∑

k=1

mkx
(k)1 , (2.201)

with k numbering the particles from 1 to n. The number of degrees of freedom
being f = 3n the functions κi are numbered by that index k and the three cartesian
directions. Inserting (2.201) into (2.196) the Noether invariant is found to be

I = t

n∑

k=1

mkẋ
(k)1 −

n∑

k=1

mkx
(k)1 . (2.202)

This is seen to be the 1-component of the linear combination

tMvS −MrS(t) = tP −MrS(t) , (M =
n∑

k=1

mk)

of the center-of-mass’s momentum P and of its orbit rS(t) and is equal to the
1-component of Mr(0). This is the center-of-mass principle obtained earlier in
Sect. 1.12.

Remarks:
1. There are more examples for the use of the generalized version of Noether’s

theorem which apply to specific forms of the interaction. For instance, in the case
of the Kepler problem with its characteristic 1/r-potential, one can derive the con-
servation of the Hermann-Bernoulli-Laplace vector (usually called Lenz-Runge
vector) (see also exercise 2.22 and its solution). This example is worked out in
Boccaletti and Pucacco (1998).

2. The theorem of E. Noether has a converse in the following sense. Taking
the derivative of the function I (q, q̇, t), eq. (2.196), with respect to q̇j and using
the equations (2.194a) and (2.194b) one sees that
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∂I

∂q̇j
=

∑

k

∂2L

∂q̇j ∂q̇k

(
κk − q̇kτ

)
.

The matrix of second, mixed partial derivatives that multiplies the right hand side,

A = {
Ajk

} :=
{ ∂2L

∂q̇j ∂q̇k

}

is well-known from the Legendre transformation from L to H . Assume its deter-
minant to be different from zero,

D = det A 	= 0 ,

(which is the condition for the Legendre transformation to exist!) so that A pos-
sesses an inverse. Denoting the entries of the inverse by

A−1 = {
Akl

}
, i.e.

∑

k

AjkA
kl = δlj ,

the initial equation can be solved for κk ,

κk(t, q, q̇) =
∑

l

Akl ∂I

∂q̇l
+ q̇kτ (t, q, q̇) . (2.203a)

Inserting this expression in (2.196) and solving for τ one obtains

τ(t, q, q̇) = 1

L

{
I (t, q, q̇)+M(t, q, q̇)−

∑

l

Akl ∂I

∂q̇l

∂L

∂q̇k

}
. (2.203b)

Thus, to every integral of the motion I (q, q̇, t) of the dynamical system described
by the Lagrangian function L(q, q̇, t) there correspond the infinitesimal transfor-
mations (2.203a) and (2.203b). For all solutions t → ϕ(t) of the equations of
motion these generating functions leave Hamilton’s action integral invariant.

Note, however, that M(q, q̇, t), to a large extent, is an arbitrary function and
that, as a consequence, the function τ(q, q̇, t) ist not unique. For a given integral
of the motion there are infinitely many symmetry transformations.

3. There is a corollary to the statement given in the previous remark. Given
an integral I (q, q̇, t) = I (0)(q, q̇, t) of the motion for the mechanical system de-
scribed by L(q, q̇, t), an integral that corresponds to the transformation generated
by

τ (0) ≡ 0 , κi = κ(0)i (t, q, q̇) , with M = M(0)(t, q, q̇) .

Then the following transformations

τ = τ(t, q, q̇) , κi = κ(0)i (t, q, q̇)+ τ(t, q, q̇)q̇i ,

together with the choice

M = M(0)(t, q, q̇)+ L(t, q, q̇)τ (t, q, q̇)

lead to the same integral of the motion. The verification of this is left as an exercise.
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Appendix: Practical Examples

1. Small Oscillations. Let a Lagrangian system be described in terms of f gen-
eralized coordinates {qi}, each of which can oscillate around an equilibrium posi-
tion q0

i . The potential energy U(q1, . . . , qf ) having an absolute minimum U0 at
(q0

1 , . . . , q
0
f ) one may visualize this system as a lattice defined by the equilibrium

positions (q0
1 , . . . , q

0
f ), the edges of which can oscillate around this configuration.

The limit of small oscillations is realized if the potential energy can be approxi-
mated by a quadratic form in the neighborhood of its minimum, viz.

U(q1, . . . , qf ) � 1

2

f∑

i,k=1

uik(qi − q0
i )(qk − q0

k ) . (A.1)

Note that for the mathematical pendulum (which has f = 1) this is identical with
the limit of small deviations from the vertical, i.e. the limit of harmonic oscillation.
For f > 1 this is a system of coupled harmonic oscillators.

Derive the equations of motion and find the normal modes of this system.

Solution. It is clear that only the symmetric part of the coefficients uik is dynam-

ically relevant, aik
def= (uik + uki)/2. As U has a minimum, the matrix

A = {aik}
is not only real and symmetric but also positive. This means that all its eigenvalues
are real and positive-semidefinite. It is useful to replace the variables qi by the
deviations from equilibrium, zi = qi − q0

i . The kinetic energy is a quadratic form
of the time derivatives of qi or, equivalently of zi , with symmetric coefficients:

T = 1

2

∑

i,k

tik żi żk .

The matrix {tik} is not singular and is positive as well. Therefore, one can choose
the natural form for the Lagrangian function

L = 1

2

∑

i,k

(tik żi żk − aikzizk) , (A.2)

from which follows the system of coupled equations

f∑

k=1

tik z̈k +
f∑

j=1

aij zj = 0 , i = 1, . . . , f . (A.3)

For f = 1 this is the equation of the harmonic oscillator. This suggests solving
the general case by means of the substitution

zi = ai eiΩt .
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The complex form is chosen in order to simplify the calculations. In the end we
shall have to take the real part of the eigenmodes. Inserting this expression for z
into the equations of motion (A.3) yields the following system of coupled linear
equations:

f∑

j=1

(−Ω2tij + aij )aj = 0 . (A.4)

This has a nontrivial solutions if and only if the determinant of its coefficient van-
ishes,

det(aij −Ω2tij )
!= 0 . (A.5)

This equation has f positive-semidefinite solutions

Ω2
l , l = 1, . . . , f ,

which are said to be the eigenfrequencies of the system.
As an example we consider two identical harmonic oscillators (frequency ω0)

that are coupled by means of a harmonic spring. The spring is not active when
both oscillators are at rest (or, more generally, whenever the difference of their
positions is the same as at rest). It is not difficult to guess the eigenfrequencies
of this system: (i) the two oscillators swing in phase, the spring remains inactive;
(ii) the oscillators swing in opposite phase. Let us verify this behavior within the
general analysis. We have

T = 1
2m(ż

2
1 + ż2

2) ,

U = 1
2mω

2
0(z

2
1 + z2

2)+ 1
2mω

2
1(z1 − z2)

2 .

Taking out the common factor m, the system (A.4) reads
(
(ω2

0 + ω2
1)−Ω2 −ω2

1−ω2
1 (ω2

0 − ω2
1)−Ω2

)(
a1
a2

)
= 0 . (A.4′)

The condition (A.5) yields a quadratic equation whose solutions are

Ω2
1 = ω2

0 , Ω2
2 = ω2

0 + 2ω2
1 .

Inserting these, one by one, into the system of equations (A.4′), one finds

for Ω1 = ω0 , a
(1)
2 = a

(1)
1 ,

for Ω2 =
√
ω2

0 + 2ω2
1 , a

(2)
2 = −a(2)1 .

(The normalization is free. We choose a
(i)
1 = 1/

√
2, i = 1, 2). Thus, we indeed

obtain the expected solutions. The linear combinations above, i.e.
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Q1
def= √

m
∑

i

a
(1)
i zi = (z1 + z2)

√
m/2 ,

Q2
def= √

m
∑

i

a
(2)
i zi = (z1 − z2)

√
m/2

decouple the system completely. The Lagrangian function becomes

L = 1

2

2∑

l=1

(Q̇2
l −Ω2

l Q
2
l ) .

It describes two independent linear oscillators. The new variables Qi are said to
be normal coordinates of the system. They are defined by the eigenvectors of the
matrix (aij −Ω2

l tij ) and correspond to the eigenvalues Ω2
l .

In the general case (f > 2) one proceeds in an analogous fashion. Determine
the frequencies from (A.5) and insert them, one by one, into (A.4). Solve this
system and determine the eigenvectors (a(l)1 , . . . , a

(l)
f ) (up to normalization) that

pertain to the eigenvalues Ω2
l .

If all eigenvalues are different, the eigenvectors are uniquely determined up to
normalization. We write (A.4) for two different eigenvalues,

∑

j

(−Ω2
q tij + aij )a

(q)
j = 0 , (A.6a)

∑

i

(−Ω2
ptij + aij )a

(p)
i = 0 , (A.6b)

and multiply the first equation by a
(p)
i from the left, the second by a

(q)
j from the

left. We sum the first over i and the second over j and take their difference. Both
tij and aij are symmetric. Therefore, we obtain

(Ω2
p −Ω2

q )
∑

i,j

a
(p)
i tij a

(q)
j = 0 .

As Ω2
p 	= Ω2

q , the double sum must vanish if p 	= q. For p = q, we can normalize
the eigenvectors such that the double sum gives 1. We conclude that

∑

i,j

a
(p)
i tij a

(q)
j = δpq .

Equation (A.6a) and the result above can be combined to obtain
∑

i,j

a
(p)
i aij a

(q)
j = Ω2

p

∑
a
(p)
i tij a

(q)
j = Ω2

pδpq .

This result tells us that the matrices tij and aij are diagonalized simultaneously.
We then set
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zi =
∑

p

a
(p)
i Qp (A.7)

and insert this into the Lagrangian function to obtain

L = 1

2

f∑

p=1

(Q̇2
p −Ω2

pQ
2
p) . (A.8)

Thus, we have achieved the transformation to normal coordinates.
If some of the frequencies are degenerate, the corresponding eigenvectors are

no longer uniquely determined. It is always possible, however, to choose s linearly
independent vectors in the subspace that belongs to Ωr1 = Ωr2 = . . . = Ωrs (s
denotes the degree of degeneracy). This construction is given in courses on linear
algebra.

One can go further and try several examples on a PC: a linear chain of n oscil-
lators with harmonic couplings, a planar lattice of mass points joined by harmonic
springs, etc., for which the matrices tik and aik are easily constructed. If one has at
one’s disposal routines for matrix calculations, it is not difficult to find the eigen-
frequencies and the normal coordinates.

2. The Planar Mathematical Pendulum and Liouville’s Theorem. Work out (nu-
merically) Example (ii) of Sect. 2.30 and illustrate it with some figures.

Solution. We follow the notation of Sect. 1.17.2, i.e. we take z1 = ϕ as the gener-
alized coordinate and z2 = ϕ̇/ω as the generalized momentum, where ω = √

g/l

is the frequency of the corresponding harmonic oscillator and τ = ωt . Thus, time
is measured in units of (ω)−1, The energy is measured in units of mgl, i.e.

ε = E

mgl
= 1

2
z2

2 + (1 − cos z1) . (A.9)

ε is positive-semidefinite. ε < 2 pertains to the oscillating solutions, ε = 2 is the
separatrix, and ε > 2 pertains to the rotating solutions. The equations of motion
(1.40) yield the second-order differential equation for z1

d2z1

dτ 2 = − sin z1(τ ) . (A.10)

First, one verifies that z1 and z2 are indeed conjugate variables, provided one uses
τ as time variable. In order to see this start from the dimensionless Lagrangian
function

λ
def= L

mgl
= 1

2ω2

(
dϕ

dt

)2

− (1 − cosϕ) = 1

2

(
dz1

dτ

)2

− (1 − cos z1)

and take its derivative with respect to ż1 = (dz1/dτ). This gives z2 = (dz1/dτ) =
(dϕ/dt)/ω, as expected.
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For drawing the phase portraits, Fig. 1.10, it is sufficient to plot z2 as a function
of z1, as obtained from (A.9). This is not sufficient, however, if we wish to follow
the motion along the phase curves, as a function of time. As we wish to study the
time evolution of an ensemble of initial conditions, we must integrate the differ-
ential equation (A.10). This integration can be done numerically, e.g. by means of
a Runge–Kutta procedure (cf. Abramowitz, Stegun 1965, Sect. 25.5.22). Equation
(A.9) has the form y′′ = − sin y. Let h be the step size and yn and y′n the values
of the function and its derivative respectively at τn. Their values at τn+1 = τn+h

are obtained by the following series of steps. Let

k1 = −h sin yn ,

k2 = −h sin

(
yn + h

2
y′n +

h

8
k1

)
, (A.11)

k3 = −h sin

(
yn + hy′n +

h

2
k2

)
.

Then

yn+1 = yn + h[y′n + 1
6 (k1 + 2k2)] + O(h4) ,

y′n+1 = y′n + 1
6k1 + 2

3k2 + 1
6k3 + O(h4) . (A.12)

Note that y is our z1 while y′ is z2 and that the two are related by (A.9) to the
reduced energy ε. Equations (A.12) are easy to implement on a computer. Choose
an initial configuration (y0 = z1(0), y′0 = z2(0)), take h = π/30, for example,
and run the program until the time variable has reached a given endpoint τ . Using
the dimensionless variable τ , the harmonic oscillator (corresponding to small os-
cillations of the pendulum) has the period T (0) = 2π . It is convenient, therefore,
to choose the end point to be T (0) or fractions thereof. This shows very clearly
the retardation of the pendulum motion as compared to the oscillator: points on
pendulum phase portraits with 0 < ε � 2 move almost as fast as points on the os-
cillator portrait; the closer ε approaches 2 from below, the more they are retarded
compared to the oscillator. Points on the separatrix (ε = 2) that start from, say,
(z1 = 0, z2 = 2) can never move beyond the first quadrant of the (z1, z2)-plane.
They approach the point (π, 0) asymptotically, as τ goes to infinity.

In the examples shown in Figs. 2.13–15 we study the flow of an initial ensemble
of 32 points on a circle with radius r = 0.5 and the center of that circle, for the
time intervals indicated in the figures. This allows one to follow the motion of
each individual point. As an example, in Fig. 2.14 we have marked with arrows
the consecutive positions of the point that started from the configuration (0, 1).

Of course, one may try other shapes for the initial ensemble (instead of the
circle) and follow its flow through phase space. A good test of the program is to
replace the right-hand side of (A.10) with −z1. This should give the picture shown
in Fig. 2.12.



3. The Mechanics of Rigid Bodies

The theory of rigid bodies is a particularly important part of general mechanics.
Firstly, next to the spherically symmetric mass distributions that we studied in
Sect. 1.30, the top is the simplest example of a body with finite extension. Sec-
ondly, its dynamics is a particularly beautiful model case to which one can apply
the general principles of canonical mechanics and where one can study the con-
sequences of the various space symmetries in an especially transparent manner.
Thirdly, its equations of motion (Euler’s equations) provide an interesting exam-
ple of nonlinear dynamics. Fourthly, the description of the rigid body leads again
to the compact Lie group SO(3) that we studied in connection with the invari-
ance of equations of motion with respect to rotations. The configuration space of
a nondegenerate top is the direct product of the three-dimensional space R

3 and of
the group SO(3), in the following sense. The momentary configuration of a rigid
body is determined if we know (i) the position of its center of mass, and (ii) the
orientation of the body relative to a given inertial system. The center of mass is
described by a position vector rS(t) in R

3, the orientation is described by three,
time-dependent angles which span the parameter manifold of SO(3).

Finally, there are special cases of the theory of rigid bodies which can be in-
tegrated analytically, or can be analyzed by geometrical means. Thus, one meets
further nontrivial examples of integrable systems.

3.1 Definition of Rigid Body

A rigid body can be visualized in two ways:

(A) A system of n mass points, with masses m1, . . . , mn, which are joined by
rigid links, is a rigid body. Figure 3.1 shows the example n = 4.

(B) A body with a given continuous mass distribution �(r) whose shape does
not change, is also a rigid body. The hatched volume shown in Fig. 3.2 is an
example.

In case (A) the total mass is given by

M =
n∑

i=1

mi (3.1)

F. Scheck, Mechanics, Graduate Texts in Physics, 5th ed.,
DOI 10.1007/978-3-642-05370-2_3, © Springer-Verlag Berlin Heidelberg 2010
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Fig. 3.1. A finite number of mass points whose
distances are fixed at all times form a rigid
body. The figure shows the example n = 4

Fig. 3.2. A rigid body consisting of a fixed,
invariable mass distribution

while for case (B) it is

M =
∫

d3r�(r) , (3.2)

(cf. Sect. 1.30).
The two definitions lead to the same type of mechanical system. This observa-

tion depends in an essential way on the assumption that the body has no internal
degrees of freedom whatsoever. If, to the contrary, the shape of the distribution
�(r) of case (B) is allowed to change in the course of time, there will be inter-
nal forces. One expects the dynamics of an extended object with continuous mass
distribution to be quite different from that of the system shown in Fig. 3.1 when
that object is not rigid. This is the subject of the mechanics of continua, not dealt
with here.

It is useful to introduce two classes of coordinate system for the description
of rigid bodies and their motion:

(i) a coordinate system K that is fixed in space and is assumed to be an inertial
system;

(ii) an intrinsic (or body-fixed) coordinate system K which is fixed in the body
and therefore follows its motion actively.

Figure 3.3 shows examples of these two types of reference system. The inertial
system K (which we may also call the observer’s or “laboratory” system) is useful
for a simple description of the motion. The intrinsic, body-fixed system K in gen-
eral is not an inertial system because its origin follows the motion of the body as a
whole and, hence, may be an accelerated frame. It is useful because, with respect
to this system, the mass distribution and all static properties derived from it are
described in the most simple way. Take for example the mass density. If looked
at from K, �̄(r) is a given function, fixed once and for ever, irrespective of the
motion of the body. With respect to K, on the other hand, it is a time-dependent
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Fig. 3.3. Coordinate system K fixed in space and intrin-
sic system K, which is fixed in the body and follows its
motion

function �(r, t) that depends on how the body moves in space. (For an example
see Exercise 3.9.)

The origin S of K is an arbitrary but fixed point in the body; (it will often be
useful to choose the center of mass for S). Let rS(t) be the position vector of S
with respect to the inertial system K. Another point P of the body has position
vector r(t) with respect to K, and x with respect to K. As it describes P relative
to S, x is independent of time, by construction.

The number of degrees of freedom of a rigid body can be read off Fig. 3.3.
Its position in space is completely determined by the following data: the position
rS(t) of S and the orientation of the intrinsic system K with respect to another
system centered on S whose axes are parallel to those of K. For this we need six
quantities: the three components of rS, as well as three angles that fix the relative
orientation of K. Therefore, a nondegenerate rigid body has six degrees of freedom.

(The degenerate case of the rod is an exception. The rod is a rigid body whose
mass points all lie on a line. It has only five degrees of freedom.) It is essential
to distinguish carefully the (space-fixed) inertial system K from the (body-fixed)
system K. Once one has understood the difference between these two reference
systems and the role they play in the description of the rigid body, the theory of
the top becomes simple and clear.

3.2 Infinitesimal Displacement of a Rigid Body

If we shift and rotate the rigid body infinitesimally, a point P of the body is dis-
placed as follows:

dr = drS + dϕ × x , (3.3)

where we have used the notation of Fig. 3.3. The displacement drS of the point
S is the parallel shift of the body as a whole. The direction n̂ = dϕ/|dϕ| and
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the angle |dϕ| characterize the rotation of the body, for a fixed position of S. The
translational part of (3.3) is immediately clear. The second term, which is due
to the rotation, follows from (2.68) of Sect. 2.21 and takes account of the fact
that here we are dealing with an active rotation, while the rotation discussed in
Sect. 2.21 was a passive one – hence the difference in sign. Alternatively, the action
of this infinitesimal rotation can also be understood from Fig. 3.4. We have |dx| =
|x| · |dϕ| sin α, (n̂, x, dx) forming a right-hand system. Therefore, as claimed in
(3.3), dx = dϕ × x.

Fig. 3.4. Drawing of the action of a small rotation of the rigid body
and from which relation (3.3) can be read off

From (3.3) follows an important relation between the velocities of the points
P and S,

v
def= dr

dt
and V

def= drS

dt
, (3.4a)

respectively, and the angular velocity

ω
def= dϕ

dt
. (3.4b)

It reads

v = V + ω × x . (3.5)

Thus, the velocity of P is the sum of the translation velocity of the body as a whole
and of a term linear in the angular velocity ω. We now show that this angular
velocity is universal in the sense that it characterizes the rotational motion of the
body but does not depend on the choice of S, the origin of K. In order to see
this, choose another point S′ with coordinate r′S = rS + a. The relation (3.5) also
applies to this choice,

v = V ′ + ω′ × x′ .

On the other hand we have r = r′S + x′ = rS + a+ x′, and hence x = x′ + a and
v = V + ω × a + ω × x′. These two expressions for the same velocity hold for
any x or x′. From this we conclude that
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V ′ = V + ω × a , (3.6a)

ω′ = ω . (3.6b)

This shows the universality of the angular velocity.

3.3 Kinetic Energy and the Inertia Tensor

From now on we place S, the origin of the intrinsic system K, at the center of mass
of the body. (Exceptions to this will be mentioned explicitly.) With the definition
(1.29) of the center of mass, this implies in case (A) that

n∑

i=1

mix
(i) = 0 (3.7a)

and in case (B) that
∫

d3xx�(x) = 0 . (3.7b)

We calculate the kinetic energy for both cases (A) and (B), for the sake of
illustration.

(i) In the discrete model of the rigid body and making use of (3.5) we find

T = 1

2

n∑

i=1

miv
(i)2 = 1

2

∑
mi

(
V + ω × x(i)

)2

= 1

2

(∑
mi

)
V 2 + V ·

∑
mi

(
ω × x(i)

)+ 1

2

∑
mi

(
ω × x(i)

)2
. (3.8)

In the second term of this expression one may use the identity

V · (ω × x(i)
) = x(i) · (V × ω)

to obtain

V ·
∑

mi

(
ω × x(i)

) = (V × ω) ·
∑

mix
(i) = 0 .

This term vanishes because of the condition (3.7a).
The third term on the right-hand side of (3.8) contains the square of the vector

ω×x(i). Omitting for a moment the particle index, we can transform this as follows:

(ω × x)2 = ω2x2 sin2 α = ω2x2(1 − cos2 α
)

= ω2x2 − (ω · x)2 =
3∑

μ=1

3∑

ν=1

ωμ
(
x2δμν − xμxν

)
ων .

The decomposition of this last expression in Cartesian coordinates serves the
purpose of separating the coordinates x(i) from the components of the angular
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velocity ω. The former scan the rigid body, while the latter are universal and hence
independent of the body. Inserting these auxiliary results into (3.8) we obtain a
simple form for the kinetic energy,

T = 1

2
MV 2 + 1

2

3∑

μ=1

3∑

ν=1

ωμJμνω
ν (3.9)

where we have set

Jμν
def=

n∑

i=1

mi

[
x(i)

2
δμν − x(i)μ x(i)ν

]
. (3.10a)

(ii) The calculation is completely analogous for the continuous model of the rigid
body,

T = 1

2

∫
d3x�(x)(V + ω × x)2

= 1

2
V 2

∫
d3x�(x)+ (V × ω)

∫
d3x�(x)x

+1

2

∫
d3x�(x)ωμ

[
x2δμν − xμxν

]
ων .

The integral in the first term is the total mass. The second term vanishes because
of the condition (3.7b). Thus, the kinetic energy takes the same form (3.9), with
Jμν now given by1

Jμν
def=

∫
d3x�(x)

[
x2δμν − xμxν

]
. (3.10b)

As a result, the kinetic energy of a rigid body (3.9) has the general decomposition

T = Ttrans + Trot , (3.11)

whose first term is the translational kinetic energy

Ttrans = 1
2MV 2 (3.12)

and whose second term is the rotational kinetic energy

Trot = 1
2ωJω . (3.13)

J = {
Jμν

}
is a tensor of rank two, i.e. it transforms under rotations as follows. If

xμ → x′μ =
3∑

ν=1

Rμνxν

1 In general, Jμν depends on time, whenever the xi refer to a fixed reference frame in space and
when the body rotates with respect to that frame (see Sect. 3.11).
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with R ∈ SO(3), then

Jμν → J ′μν =
3∑

λ=1

3∑

�=1

RμλRν�Jλ� . (3.14)

Being completely determined by the mass distribution, this tensor is characteristic
for the rigid body. It is called the inertia tensor. This name reflects its formal
similarity to the inertial mass (which is a scalar, though).

The tensor J is defined over a three-dimensional Euclidean vector space V.
Generally speaking, second-rank tensors are bilinear forms over V. Inertia tensors
belong to the subset of real, symmetric, (and as we shall see below) positive tensors
over V. We shall not go into the precise mathematical definitions here. What is
important for what follows is the transformation behavior (3.14); that is, omitting
indices J′ = RJ RT.

3.4 Properties of the Inertia Tensor

In this and the two subsequent sections we study the inertia tensor as a static prop-
erty of the rigid body. This means we assume the body to be at rest or, equivalently,
make use of a coordinate system that is rigidly linked to the body and follows its
motion. The inertia tensor contains an invariant term that is already diagonal,

∫
d3x�(x)x2δμν ,

and a term that depends on the specific choice of the intrinsic reference system,

−
∫

d3x�(x)xμxν ,

and that in general is not diagonal. The following properties of the inertia tensor
can be derived from its definition (3.10).

(i) J is linear and therefore additive in the mass density �(x). This means that
the inertia tensor of a body obtained by joining two rigid bodies equals the sum
of the inertia tensors of its components. Quantities that have this additive property
are also said to be extensive.

(ii) J is represented by a real, symmetric matrix that reads explicitly

J =
∫

d3x�(x)

⎛

⎝
x2

2 + x2
3 −x1x2 −x1x3

−x2x1 x2
3 + x2

1 −x2x3

−x3x1 −x3x2 x2
1 + x2

2

⎞

⎠ . (3.15)

Every real and symmetric matrix can be brought to diagonal form by means
of an orthogonal transformation R0 ∈ SO(3)
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R0JR−1
0 =

◦
J =

⎛

⎝
I1 0 0
0 I2 0
0 0 I3

⎞

⎠ , (3.16)

where I1, I − 2, and I3 are the eigenvalues of J. Thus, by a suitable choice of
the body-fixed system of reference the inertia tensor becomes diagonal. Reference
systems that have this property are again orthogonal systems and are said to be
principal-axes systems. Of course, the same representation (3.15) holds also in a
system of principal axes. As the inertia tensor J is then diagonal, its off-diagonal
entries vanish and it reads

◦
J =

∫
d3y�(y)

⎛

⎝
y2

2 + y2
3 0 0

0 y2
3 + y2

1 0
0 0 y2

1 + y2
2

⎞

⎠ . (3.17)

This formula is useful in calculating the moments of inertia. But, more generally
and without doing such a calculation, it allows to derive the following general
properties and inequalities for the eigenvalues:

Ii ≥ 0 , i = 1, 2, 3 , (3.18a)

I1 + I2 ≥ I3 , I2 + I3 ≥ I1 , I3 + I1 ≥ I2 . (3.18b)

Thus, the matrix J is indeed positive. Its eigenvalues Ii are called (principal) mo-
ments of inertia.

Diagonalization of the inertia tensor is a typical eigenvalue problem of linear
algebra. The problem is to find those directions ω̂

(i)
, i = 1, 2, 3, for which

Jω̂
(i) = Iiω̂

(i)
. (3.19)

This linear system of equations has a nontrivial solution provided its determinant
vanishes,

det
(
J− Ii1l

) = 0 . (3.20)

Equation (3.20) is a cubic equation for the unknown Ii . According to (3.17) and
(3.18a) it has three real, positive semidefinite solutions. The eigenvector ω̂

(k) that
belongs to the eigenvalue Ik is obtained from (3.19), which is to be solved three
times, for k = 1, 2, and 3. The matrix R0 in (3.16) is then given by

R0 =
⎛

⎜
⎝
ω̂
(1)
1 ω̂

(1)
2 ω̂

(1)
3

ω̂
(2)
1 ω̂

(2)
2 ω̂

(2)
3

ω̂
(3)
1 ω̂

(3)
2 ω̂

(3)
3

⎞

⎟
⎠ . (3.21)

It is not difficult to show that two eigenvectors ω̂
(i)
, ω̂

(k), which belong to distinct
eigenvalues Ii and Ik, respectively, are orthogonal. For this take the difference
ω̂
(i)Jω̂

(k) − ω̂
(k)Jω̂

(i)
. With (3.19) this becomes

ω̂
(i)Jω̂

(k) − ω̂
(k)Jω̂

(i) = (
Ik − Ii

)(
ω̂
(k) · ω̂(i)

)
.

The left-hand side vanishes because J is symmetric. Therefore, if Ik 	= Ii, then
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ω̂
(k) · ω̂(i) = 0 . (3.22)

It may happen that two (or more) eigenvalues are equal, Ii = Ik, in which case
we cannot prove the above orthogonality. However, as the system (3.19) is linear,
any linear combination of ω̂

(i) and of ω̂
(k), say ω̂

(i) cosα + ω̂
(k) sin α, is also an

eigenvector of J, with eigenvalue Ii = Ik. It is then clear that we can always
choose, by hand, two orthogonal linear combinations. The degeneracy just tells
us that there is no preferred choice of principal axes. We illustrate this by means
of the following model. Suppose the inertia tensor, after diagonalization, has the
form

◦
J =

⎛

⎝
A 0 0
0 A 0
0 0 B

⎞

⎠

with A 	= B. Any further rotation about the 3-axis has the form

R =
⎛

⎝
cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞

⎠

and leaves J invariant. Thus any direction in the (1, 2)-plane is a principal axis,
too, and corresponds to the moment of inertia A. In this plane we choose two
orthogonal axes. Because B 	= A the third principal axis is perpendicular to these.

(iii) The inertia tensor and specifically its eigenvalues (the moments of inertia)
are static properties of the body, very much like its mass. As we shall see below,
the angular momentum and the kinetic energy are proportional to Ik when the body
rotates about the corresponding eigenvector ω̂

(k)
.

A body whose moments of inertia are all different, I1 	= I2 	= I3, is said to be
an asymmetric, or triaxial, top. If two of the moments are equal, I1 = I2 	= I3,

we talk about the symmetric top. If all three moments are equal, I1 = I2 = I3,

we call it a spherical top2.
(iv) If the rigid body has a certain amount of symmetry in shape and mass

distribution, the determination of its center of mass and its principal axes is a lot
easier. For instance, we have the following proposition:

Proposition: If the shape and mass distribution of a rigid body is symmet-
ric with respect to reflection in a plane (see Fig. 3.5), its center of mass
and two of its principal axes lie in that plane. The third principal axis is
perpendicular to it.

Proof. As a first trial choose an orthogonal frame of reference whose 1- and 2-axes
are in the plane and whose 3-axis is perpendicular to it. For symmetry reasons, to
any mass element with positive x3 there corresponds an equal mass element with

2 This does not necessarily mean that the rigid body has a spherical shape.
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Fig. 3.5. A rigid body that is symmetric under reflection in the plane shown in the figure

negative x3. Therefore,
∫

d3xx3�(x) = 0. Comparison with (3.7b) shows that the
first part of the proposition is true: S lies in the plane of symmetry. Suppose now
S is found and the system (x1, x2, x3) is centered in S. In the expression (3.15)
for J the following integrals vanish:

∫
d3x�(x)x1x3 = 0 ,

∫
d3�(x)x2x3 = 0 .

This is so because, for fixed x1 (or x2, respectively), the positive values of x3
and the corresponding negative values −x3 give equal and opposite contributions.
What remains is

J =
⎛

⎝
J11 J12 0
J12 J22 0
0 0 I3

⎞

⎠ .

However, this matrix is diagonalizable by a rotation in the plane of symmetry (i.e.
one about the 3-axis). This proves the second part of the proposition. �

Similar arguments apply to the case when the body possesses axial symmetry,
i.e. if it is symmetric under rotations about a certain axis. In this case the center of
mass S lies on the symmetry axis and that axis is a principal axis. The remaining
two are perpendicular to it. The corresponding moments of inertia being degener-
ate, they must be chosen by hand in the plane through S that is perpendicular to
the symmetry axis.

Remark: In calculations involving the inertia tensor the following symbolic no-
tations can be very useful.

Let any vector or vector field a over R
3 be written as |a〉. Its dual which when

acting on any other vector (field) |c〉 is denoted 〈a| and so looks like a kind of
mirror image of |a〉. With this notation an expression such as 〈a|c〉 is nothing but
the ordinary scalar product a · c. On the other hand, an object such as |b〉〈a| is
a tensor which acts on other vectors c by |b〉〈a|c〉 = (a · c)b, thus yielding new
vectors parallel to b. This is to say that |a〉 = (a1, a2, a3)

T is a column vector
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while its dual 〈a| = (a1, a2, a3) is a row vector. Applying standard rules of matrix
calculus, one has

〈b|a〉 = (
b1 b2 b3

)
⎛

⎝
a1
a2
a3

⎞

⎠ =
3∑

k=1

bkak = b · a ,

|b〉〈a| =
⎛

⎝
b1
b2
b3

⎞

⎠(
a1 a2 a3

) =
⎛

⎝
b1a1 b1a2 b1a3
b2a1 b2a2 b2a3
b3a1 b3a2 b3a3

⎞

⎠ .

For example the definition (3.10b) written in this notation, becomes

J =
∫

d3x �(x)
[〈x|x〉1l3 − |x〉〈x|] ,

where 1l3 is the 3 × 3 unit matrix. This notation emphasizes the fact that J is an
object that acts on vectors (or vector fields) and yields as the result another vector
(or vector field).

In fact, this notation is the same as Dirac’s “ket” and “bra” notation that the
reader will encounter in quantum theory. In the older literature on vector analysis
the tensor |b〉〈a| was called dyadic product of b and a.

3.5 Steiner’s Theorem

Let J be the inertia tensor as calculated according to (3.15) in a body-fixed
system K with origin S, the center of mass. Let K

′
be another body-fixed

system which is obtained by shifting K by a given translation vector a, as
shown in Fig. 3.6. Let J′ be the inertia tensor as calculated in the second
system,

J ′μν =
∫

d3x′�(x′)
[
x′2δμν − x′μx′ν

]

with x′ = x+ a. Then J′ and J are related by

J ′μν = Jμν +M
[
a2δμν − aμaν

]
. (3.23)

In the compact “bracket” notation introduced above, it reads J′ = J+ Ja ,
with Ja = M [〈a|a〉1l3 − |a〉〈a|].

The proof is not difficult. Insert x′ = x+a into the first equation and take account
of the fact that all integrals with integrands that are linear in x vanish because of
the center-of-mass condition (3.7b). In Fig. 3.6 K

′
has axes parallel to those of K.
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Fig. 3.6. The system K is attached to the center of mass
S. One wishes to determine the inertia tensor with respect
to another body-fixed system K

′
, which is centered on

the point S′

If K
′

is rotated from K by the rotation R, in addition to the shift, (3.23) generalizes
to

J ′μν =
3∑

σ,τ=1

RμσRντ

(
Jστ +M

[
a2δστ − aσ aτ

])
, or (3.24)

J′ = R(J+ Ja)R−1 .

The content of this formula is the following. First, K
′
is rotated by R−1 to a position

where its axes are parallel to those of K.At this point, Steiner’s theorem is applied,
in the form of (3.23). Finally, the rotation is undone by applying R.

3.6 Examples of the Use of Steiner’s Theorem

Example (i) For a ball of radius R and with spherically symmetric mass distri-
bution �(x) = �(r) and for any system attached to its center, the inertia tensor is
diagonal. In addition, the three moments of inertia are equal, I1 = I2 = I3 ≡ I.

Adding them up and using (3.17), we find that

3I = 2
∫
�(r)r2d3x = 8π

∫ R

0
�(r)r4dr

and therefore

I = 8π

3

∫ R

0
�(r)r4dr .

We also have the relation

M = 4π
∫ R

0
�(r)r2dr

for the total mass of the ball. If, furthermore, its mass distribution is homoge-
neous, then
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�(r) = 3M

4πR3 , for r ≤ R , and I = 2

5
MR2 .

Example (ii) Consider a body composed of two identical, homogeneous balls of
radius R which are soldered at their point of contact T . This point is the center
of mass and, obviously, the (primed) axes drawn in Fig. 3.7 are principal axes.
We make use of the additivity of the inertia tensor and apply Steiner’s theorem.
The individual ball carries half the total mass. Hence its moment of inertia is I0 =
MR2/5. In a system centered in T whose 1- and 3-axes are tangent, one ball would
have the moments of inertia, by Steiner’s theorem,

I ′1 = I ′3 = I0 + M

2
R2 ; I ′2 = I0 .

The same axes are principal axes for the system of two balls and we have

I1 = I3 = 2

(
I0 + M

2
R2

)
= 7

5
MR2 ,

I2 = 2I0 = 2

5
MR2 .

Example (iii) The homogeneous children’s top of Fig. 3.8 is another example for
Steiner’s theorem, in its form (3.23), because its point of support O does not coin-
cide with the center of mass S. The mass density is homogeneous. It is not difficult
to show that the center of mass is at a distance 3h/4 from O on the symmetry
axis. The inertia tensor is diagonal in the unprimed system (centered in S) as well
as in the primed system (centered in O). The volume is V = πR2h/3, and the
density is � = 3M/πR2h. Using cylindrical coordinates,

x′1 = r cosϕ , x′2 = r sin ϕ , x′3 = z ,

Fig. 3.7. A rigid body consisting of two iden-
tical balls that are tangent to each other. The
primed axes are principal axes

Fig. 3.8. The children’s top is an example of
the application of Steiner’s theorem
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the moments of inertia are easily calculated within the primed system. One finds
that

I ′1 = I ′2 = �

∫
d3x′

(
x′22 + x′23

)
= 3

5M
(

1
4R

2 + h2
)

I ′3 = �

∫
d3x′

(
x′21 + x′22

)
= 3

10MR2 .

The moments of inertia in the unprimed system are obtained from Steiner’s theo-
rem, viz.

I1 = I2 = I ′1 −Ma2 , with a = 3
4h ,

and thus

I1 = I2 = 3
20M

(
R2 + 1

4h
2
)

and I3 = I ′3 = 3
10MR2 .

Example (iv) Inside an originally homogeneous ball of mass M and radius R a
pointlike mass m is placed at a distance d from the ball’s center, 0 < d < R.
The inertia tensor is an extensive quantity, hence the inertia tensors of the ball and
of the point mass add. Let a be the distance of the ball’s center to the center of
mass S, and b be the distance from the point mass to S. With these notations also
shown in Fig. 3.9a and making use of the center of mass condition mb−Ma = 0
one finds

a = md/(m+M) , b = Md/(m+M) = (M/m)a .

A sytem of principal axes is obvious: Let the line joining the ball’s center and the
point mass be the 3-axis (symmetry axis), then choose two orthogonal directions
in the plane orthogonal to the 3-axis through the center. Using Steiner’s theorem
one has

I3 = 2

5
MR2 ,

I1 = I2 = 2

5
MR2 +Ma2 +mb2

= 2

5
MR2 +M

(
1 + M

m

)
a2 .

In view of an application to a toy model to be discussed in Sect. 3.18, we add the
following remark. Define the ratios

α = a

R
, δ = d

R
= m+M

m
α .

A condition that will be of relevance for the analysis of that model will be

(1 − α)I3 < I1 = I2 < (1 + α)I3 . (∗)
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In the example worked out here this condition reads

−2

5
<
m+M

m
α <

2

5

which says, when expressed in terms of δ, that this parameter should be less than
2/5. Note that it is the upper limit in (∗) which gives this bound.

sa

b

m

(a) (b)

B

d Fig. 3.9. (a): A point mass is added
to a ball of homogeneous mass
density thus changing the original
spherical top into a symmetric top
(b): In the same homegeneous ball
a hole is cut out that makes the top
a symmetric but no more a spher-
ical one

Example (v) Consider the same ball (M,R) as in the previous example but suppose
that this time a small hollow sphere is cut out of it whose center B is at a distance
d from the ball’s center and whose radius is r , cf. Fig. 3.9b. Referring to that
figure the center of mass now lies below the center of the ball. The mass of the
ball which is cut out is

m =
( r
R

)3
M .

As in example (iv) let a and b denote the distances from the ball’s center to the
center of mass S, and from the center of the hollow sphere to S, respectively. Then
d = b − a, and the center of mass condition reads

Ma + (−m)b = 0 .

(Remember that the mass and the inertia tensor are extensive quantities. The minus
sign stems from the fact that one has taken away the mass of the hole!) Choosing
principal axes like in the previous case the moments of inertia are

I3 = 2

5
MR2 − 2

5
mr2 ,

I1 = I2 = 2

5
MR2 +Ma2 − 2

5
mr2 −mb2 .

It is interesting to follow up the inequality (∗) also in this example. Inserting the
formulae for the moments of inertia it reads

−α 2

5

(
MR2 −mr2) < Ma2 −mb2 < α

2

5

(
MR2 −mr2) .
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The middle part is seen to be negative,

Ma2 −mb2 = −Ma2M −m

m
,

so that the inequality should be multiplied by (−1). This yields

2

5

(
1 − mr2

MR2

)
>
M −m

m
α > −2

5

(
1 − mr2

MR2

)
.

Comparison to example (iv) shows that here the lower bound of (∗) gives the
essential restriction. Converting again to δ = d/R one finds

δ < 2/5
(

1 − r5/R5
)
.

This result will be useful in discussing the toy model of Sect. 3.18 below.

Example (vi) As a last example we consider a brick with a quadratic cross section
(side length a1) and height a3 whose mass density is assumed to be homogeneous.
If one chooses the coordinate system K shown in Fig. 3.10, the inertia tensor is
already diagonal. With �0 = M/a1a2a3 one finds I1 = M(a2

2 + a2
3)/12, cyclic in

1, 2, 3. The aim is now to compute the inertia tensor in the body-fixed system K
′
,

whose 3-axis lies along one of the main diagonals of the brick. As a1 = a2, we
find I1 = I2. Therefore, as a first step, one can rotate the 1-axis about the initial
x3-axis by an arbitrary amount. For example, one can choose it along a diagonal
of the cross section, without changing the inertia tensor (which is diagonal). In

Fig. 3.10. A brick with homogeneous mass density, as an
example of a symmetric rigid body
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a second step, K
′

is reached by a rotation about the x′2-axis by the angle φ =
arctan(a1

√
2/a3)

K̄−→
Rφ

K̄′ , Rφ =
⎛

⎝
cosφ 0 − sin φ

0 1 0
sin φ 0 cosφ

⎞

⎠ .

According to (3.24) the relation between the inertia tensors is J′ = RJRT· J′
is not diagonal. One finds that

J ′11 = I1 cos2 φ + I3 sin2 φ = M

12

4a4
1 + a2

1a
2
3 + a4

3

2a2
1 + a2

3

,

J ′22 = I2 = M

12

(
a2

1 + a2
3

)
,

J ′33 = I1 sin2 φ + I3 cos2 φ = M

12

2a4
1 + 4a2

1a
2
3

2a2
1 + a2

3

,

J ′12 = 0 = J ′21 = J ′23 = J ′32 ,

J ′13 = J ′31 =
(
I1 − I3

)
sin φ cosφ = M

12

(a2
3 − a2

1)a1a3
√

2

2a2
1 + a2

3

.

The x′2-axis is a principal axis; the x′1- and x′3-axes are not, with one exception:
if the body is a cube, i.e. if a1 = a3, J

′
13 and J ′31 vanish. Thus, for a homogeneous

cube, any orthogonal system attached to its center of gravity is a system of principal
axes. For equal (and homogeneous) mass densities a cube of height a behaves like
a ball with radius R = a 5

√
5/16π � 0.630a. In turn, if we require the moments

of inertia to be equal, for a cube and a ball of the same mass M, we must have
R = a

√
5/2

√
3 � 0.645a.

3.7 Angular Momentum of a Rigid Body

The angular momentum of a rigid body can be decomposed into the angular
momentum of its center of mass and the relative (internal) angular momentum.
This follows from the general analysis of the mechanical systems we studied in
Sects. 1.8–1.12. As we learnt there, the relative angular momentum is independent
of the choice of the laboratory system and therefore is the dynamically relevant
quantity.

The relative angular momentum of a rigid body, i.e. the angular momentum
with respect to its center of mass, is given by

L =
n∑

i=1

miri × ṙi (3.25a)

if we choose to describe the body by the discrete model (A). For case (B) it is,
likewise,
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L =
∫

d3x�(x)x× ẋ . (3.25b)

From (3.5) we have ẋ = ω × x. Adopting the continuous version (B) from now
on, this becomes

L =
∫

d3x�(x)x× (ω × x) =
∫

d3x�(x)
[
x2ω − (x · ω)x] .

The last expression on the right-hand side is just the product of the inertia tensor
and the angular velocity ω, viz.

L = Jω . (3.26)

Indeed, writing this in components and making use of (3.10b), we have

Lμ =
3∑

ν=1

∫
d3x�(x)

[
x2δμν − xμxν

]
ων . (3.26′)

Fig. 3.11. The momentary angular velocity ω and the angular momentum
L of a rigid body, in general, do not point in the same direction

The relation (3.26) tells us that the angular momentum is obtained by applying
the inertia tensor to the angular velocity. We note that L does not point in the same
direction as ω, cf. Fig. 3.11, unless ω is one of the eigenvectors of the inertia tensor.
In this case

L = Iiω ,
(
ω‖ω(i)

)
. (3.27)

Thereby, the eigenvalue problem (3.19) receives a further physical interpretation: it
defines those directions of the angular velocity ω for which the angular momentum
L is parallel to ω. In this case, if L is conserved (i.e. fixed in space), the top rotates
about this direction with constant angular velocity.

The expression (3.13) for the rotational energy can be rewritten by means of
relation (3.26):

Trot = 1
2 ω · L (3.28)

i.e. 2Trot is equal to the projection of ω onto L. If ω points along one of the
principal axes, (3.28) becomes, by (3.27),
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Trot = 1
2Iiω

2 ,
(
ω‖ω(i)

)
. (3.29)

This expression for Trot shows very clearly the analogy to the kinetic energy of
the translational motion, (3.12).

To conclude let us write the relationship between angular momentum and an-
gular velocity by means of the “bracket” notation,

∣∣L
〉 =

∫
d3x

[〈x|x〉1l3 −
∣∣x
〉〈
x
∣∣]∣∣ω

〉 = J
∣∣ω

〉
.

This formula shows very clearly the action of the 3 × 3-matrix J on the column
vector

∣
∣ω

〉
and may be more transparent than the expression (3.26′) in terms of

coordinates.

3.8 Force-Free Motion of Rigid Bodies

If there are no external forces, the center of mass moves uniformly along a straight
line (Sect. 1.9). The angular momentum L is conserved (Sects. 1.10–11),

d

dt
L = 0 . (3.30)

Similarly the kinetic energy of the rotational motion is conserved,

d

dt
Trot = 1

2

d

dt
(ωJω) = 1

2

d

dt
(ω · L) = 0 . (3.31)

(This follows from conservation of the total energy (Sect. 1.11) and of the total mo-
mentum. The kinetic energy of translational motion is then conserved separately.)
We study three special cases.

(i) The spherical top. The inertia tensor is diagonal, its eigenvalues are degen-
erate, I1 = I2 = I3 ≡ I. We have L = Iiω. As L is constant, this implies that ω

is constant too,

L = const ⇒ ω = 1

I
L = const .

The top rotates uniformly about a fixed axis.
(ii) The rigid rod. This is a degenerate top. It is a linear, i.e. one-dimensional,

rigid body for which

I1 = I2 ≡ I ,

I3 = 0 ,

where the moments of inertia refer to the axes shown in Fig. 3.12. As it has no
mass outside the 3-axis, the rod cannot rotate about that axis. From (3.27) we
have L1 = Iω1, L2 = Iω2, L3 = 0. Therefore, leaving aside the center-of-mass
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Fig. 3.12. The rigid rod as an example of a
degenerate rigid body

Fig. 3.13. Example of a symmetric body;
I1 = I2 	= I3

motion, force-free motion of the rod can only be uniform rotation about any axis
perpendicular to the 3-axis.

(iii) The (nondegenerate) symmetric top. This is an important special case and
we shall analyze its motion in some detail, here and below, using different ap-
proaches. Taking the 3-axis along the symmetry axis, we have I1 = I2 	= I3.

Suppose L, the angular momentum, is given. We choose the 1-axis in the plane
spanned by L and the 3-axis. The 2-axis being perpendicular to that plane, we
have L2 = 0 and hence ω2 = 0. In other words, ω is also in the (1,3)-plane, as
shown in Fig. 3.13. It is then easy to analyze the motion of the symmetric top for
the case of no external forces. The velocity ẋ = ω×x of all points on the symme-
try axis is perpendicular to the (1,3)-plane (it points “backwards” in the figure).
Therefore, the symmetry axis rotates uniformly about L, which is a fixed vector
in space. This part of the motion is called regular precession. It is convenient to
write ω as the sum of components along L and along the 3-axis,

ω = ωl + ωpr . (3.32)

Clearly, the longitudinal component ωl is irrelevant for the precession. The compo-
nent ωpr is easily calculated from Fig. 3.14a. With ωpr = |ωpr| and ω1 = ωpr sin θ,
as well as ω1 = L1/I1 and L1 = |L| sin θ , one obtains

ωpr = |L|
I1

. (3.33)

Because the symmetry axis (i.e. the 3-axis) precesses about L (which is fixed
in space) and because at all times L, ω, and the 3-axis lie in a plane, the angu-
lar velocity ω also precesses about L. In other words, ω and the symmetry axis
rotate uniformly and synchronously about the angular momentum L, as shown in
Fig. 3.14b. The cone traced out by ω is called the space cone, while the one traced
out by the symmetry axis is called the nutation cone.
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Fig. 3.14a. The angular velocity ω is written
as the sum of its component ωl along the sym-
metry axis and its component ωpr along the
angular momentum

Fig. 3.14b. The symmetry axis (x3) of the sym-
metric top and the momentary angular velocity
precess uniformly about the angular momen-
tum, which is fixed in space

In addition to its precession as a whole, the body also rotates uniformly about
its symmetry axis. The angular velocity for this part of the motion is

ω3 = L3

I3
= |L| cos θ

I3
. (3.34)

Note that the analysis given above describes the motion of the symmetric rigid
body as it is seen by an observer in the space-fixed laboratory system, i.e. the
system where L is constant. It is instructive to ask how the same motion appears
to an observer fixed in the body for whom the 3-axis is constant. We shall return
to this question in Sect. 3.13 below.

3.9 Another Parametrization of Rotations: The Euler Angles

Our aim is to derive the equations of motion for the rigid body. As we stressed in the
introduction (Sect. 3.1), it is essential to identify the various reference systems that
are needed for the description of the rigid body and its motion and to distinguish
them clearly, at any point of the discussion. We shall proceed as follows. At time
t = 0, let the body have the position shown in Fig. 3.15. Its system of principal
axes (below, we use the abbreviation PA for ‘principal axes’) K, at t = 0, then
assumes the position shown in the left-hand part of the figure. We make a copy of
this system, call it K, keep that copy fixed, and use this as the inertial system of
reference. Thus, at t = 0, the body-fixed system and the inertial system coincide.
At a later time t let the body have the position shown in the right-hand part of
Fig. 3.15. Its center-of-mass, by the action of the external forces, has moved along
the trajectory drawn in the figure (if there are no external forces, its motion is
uniform and along a straight line). In addition, the body as a whole is rotated
away from its original orientation.
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Fig. 3.15. Two positions of a rigid body, at time t = 0
and at t 	= 0. The coordinate system K, which is fixed
in the body, is translated and rotated

Choose now one more reference system, denoted K0, that is attached to S, its
axes being parallel, at all times, to the axes of the inertial system K. The actual
position of the rigid body at time t is then completely determined once we know
the position rS(t) of the center of mass and the relative position of the PA system
with respect to the auxiliary system K0. The first part, the knowledge of rS(t), is
nothing but the separation of center-of-mass motion that we studied earlier, in a
more general context. Therefore, the problem of describing the motion of a rigid
body is reduced to the description of its motion relative to a reference system
centered in S, the center of mass, and whose axes have fixed directions in space.

The relative rotation from K0 to K can be parametrized in different ways. We
may adopt the parametrization that we studied in Sect. 2.22, i.e. write the rotation
matrix in the form R(ϕ(t)), where the vector ϕ is now a function of time. We
shall do so in Sects. 3.12 and 3.13 below.

An alternative, and equivalent, parametrization is the one in terms of Eulerian
angles. It is useful, for example, when describing rigid bodies in the framework of
canonical mechanics, and we shall use it below, in Sects. 3.15–3.16. It is defined as
follows. Write the general rotation R(t) ∈ SO(3) as a product of three successive
rotations in the way sketched in Fig. 3.16,

R(t) = R3(γ )Rη(β)R30(α) . (3.35)

The coordinate system is rotated first about the initial 3-axis by an angle α. In a
second step it is rotated about the intermediate 2-axis by an angle β, and lastly it
is rotated about the new (and final) 3-axis by an angle γ.

With this choice, the general motion of a rigid body is described by six func-
tions of time, {rS(t), α(t), β(t), γ (t)}, in accordance with the fact that it has six
degrees of freedom. Both parametrizations, i.e. by means of

{
rS(t), R(ϕ(t))

}
with ϕ(t) = {

ϕ1(t), ϕ2(t), ϕ3(t)
}
, (3.36)
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Fig. 3.16. Definition of Eulerian an-
gles as in (3.35). The second rotation
is about the intermediate position of
the 2-axis

which is the one developed in Sect. 2.21 (2.67), and the one just described, i.e. by
means of

{
rS(t), θi(t)

}
with θ1(t) ≡ α(t), θ2(t) ≡ β(t), θ3(t) ≡ γ (t) , (3.37)

are useful and will be used below. We remark, further, that the definition of the
Eulerian angles described above is the one used in quantum mechanics.

3.10 Definition of Eulerian Angles

Traditionally, the dynamics of rigid bodies makes use of a somewhat different
definition of Eulerian angles. This definition is distinguished from the previous
one by the choice of the axis for the second rotation in (3.35). Instead of (the
intermediate position of) the 2-axis η, the coordinate frame is rotated about the
intermediate position of the 1-axis ξ,

R(t) = R3(Ψ )Rξ (θ)R30(Φ) . (3.38)

Figure 3.17 illustrates this choice of successive rotations. For the sake of clarity,
we have suppressed the two intermediate positions of the 2-axis. The transforma-
tion from one definition to the other can be read off Figs. 3.16 and 3.17, which
were drawn such that K0 and K have the same relative position. It is sufficient to
exchange 1- and 2-axes in these figures as follows:

Fig. 3.16 Fig. 3.17

(20-axis) −→ (10-axis)

(10-axis) −→ −(20-axis)

keeping the 3-axes the same. This comparison yields the relations
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Fig. 3.17. Another definition of Eulerian an-
gles, following (3.38). Here the second rota-
tion is about the intermediate position of the
1-axis

Φ = α + π
2 (mod 2π) , θ = β , Ψ = γ − π

2 (mod 2π) . (3.39)

It is easy to convince oneself that the intervals of definition for the Eulerian angles

0 ≤ α ≤ 2π , 0 ≤ β ≤ π , and 0 ≤ γ ≤ 2π (3.40)

allow us to describe every rotation from K0 to K. If one chooses intervals for
Φ, θ, and Ψ,

0 ≤ Φ ≤ 2π , 0 ≤ θ ≤ π , and 0 ≤ Ψ ≤ 2π , (3.40′)

it is clear that the additive terms 2π in (3.39), must be adjusted so as not to leave
these intervals (see the Appendix on some mathematical notions).

3.11 Equations of Motion of Rigid Bodies

When the rigid body is represented by a finite number of mass points (with fixed
links between them), the formulation of center-of-mass motion and relative mo-
tion follows directly from the principles of Sects. 1.9 and 1.10. If one chooses a
representation in terms of a continuous mass distribution this is not true a priori.
Strictly speaking, we leave here the field of mechanics of (finitely many) particles.
Indeed, the principle of center-of-mass motion follows only with Euler’s general-
ization (1.99), Sect. 1.30, of (1.8b). Similarly, for finitely many point particles the
principle of angular momentum is a consequence of the equations of motion (1.28).
Here it follows only if the additional assumption is made that the stress tensor (to
be defined in the mechanics of continua) is symmetric. Alternatively, one may in-
troduce this principle as an independent law. It seems that this postulate goes back
to L. Euler (1775).
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Let P = MV denote the total momentum, with V = ṙS(t), and let F be the
resultant of the external forces. The principle of center-of-mass motion reads

d

dt
P = F , where F =

n∑

i=1

F (i) . (3.41)

If, in addition, F is a potential force, F = −∇U(rS), we can define a Lagrangian,

L = 1
2M ṙ2

S + Trot − U
(
rS
)
. (3.42)

Here, it is important to keep in mind the system of reference with respect to which
one writes down the rotational kinetic energy. Choosing K0 (the system attached
to S and parallel to the inertial system fixed in space), we have

Trot = 1
2ω(t)J̃(t)ω(t) . (3.43a)

Note that the inertia tensor depends on time. This is so because the body rotates
with respect to K0. Clearly, Trot is an invariant form. When expressed with respect
to the PA system (or any other body-fixed system), it is

Trot = 1
2 ω̄(t)Jω̄(t) . (3.43b)

J is now constant; if we choose the PA system, it is diagonal, Jmn = Imδmn. In
(3.43a) the angular velocity ω(t) is seen from K0, and hence from the laboratory,
while in (3.43b) it refers to a system fixed in the body. As we learnt in studying
the free motion of the symmetric top, the time evolution of the angular velocity
looks different in a frame with axes of fixed direction in space than in a frame
fixed in the body.

Fig. 3.18. Rotation of the body-fixed system about the
3-axis

In order to clarify the situation with the two kinds of system of reference, we
consider first the simplified case of a rotation about the 3-axis. Here we have to
study only the transformation behavior in the (1,2)-plane. Consider first a given
point A, with fixed coordinates (x1, x2 , x3) with respect to K0. If described with
respect to K, cf. Fig. 3.18, the same point has the coordinates

x̄1 = x1 cosϕ + x2 sin ϕ ,

x̄2 = −x1 sin ϕ + x2 cosϕ , (3.44a)

x̄3 = x3 .
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These equations express the passive form of rotation that we studied in Sects.2.21
and 2.22. Take now a point P, fixed on the 1-axis of K, and assume that this latter
system rotates uniformly with respect to K0. We then have

ϕ ≡ ϕ(t) = ωt ; P : x̄1 = a , x̄2 = 0 = x̄3 ;
and, by inverting the formulae (3.44a),

x1 = x̄1 cosωt − x̄2 sinωt ,

x2 = x̄1 sinωt + x̄2 cosωt , (3.44b)

x3 = x̄3 ,

so that the point P moves according to (P : x1 = a cosωt, x2 = a sinωt, x3 = 0).
This is the active form of rotation. Turning now to an arbitrary rotation, we replace
(3.44a) by

R(ϕ) = exp

(

−
3∑

i=1

ϕiJi

)

, (3.45a)

where J = {J1, J2, J3} are the generators for infinitesimal rotations about the
corresponding axes (cf. (2.73) in Sect. 2.22). Equation (3.44b) is the inverse of
(3.44a). Hence, in the general case,

(R(ϕ))−1 = (R(ϕ))T = R(−ϕ) = exp

(
3∑

i=1

ϕiJi

)

. (3.45b)

The vectors ω (angular velocity) and L (angular momentum) are physical quanti-
ties. They obey the (passive) transformation law

ω̄ = Rω , L̄ = RL , (3.46)

ω and L referring to K0, ω̄ and L̄ referring to K. The inertia tensor J with respect
to K (where it is constant) and the same tensor taken with respect to K0 (where
it depends on time) are related by

J = RJ̃RT , J̃(t) = RT(t)JR(t) . (3.47)

This follows from the proposition (3.24), with a = 0. Clearly, Trot is a scalar and
hence is invariant. Indeed, inserting (3.46) into (3.43b), we obtain (3.43a),

Trot = 1
2 (Rω)J(Rω) = 1

2ω
(
RTJR

)
ω = 1

2ωJ̃ω .

The equation of motion describing the rotation is obtained from the principle of an-
gular momentum. With reference to the system K0, it tells us that the time change
of the angular momentum equals the resultant external torque,

d

dt
L = D . (3.48)
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Thus, adopting the discrete model (A) for the rigid body, we have

L =
n∑

i=1

mix
(i) × ẋ(i) , (3.49)

D =
n∑

i=1

x(i) × F (i) . (3.50)

In summary, the equations of motion (3.41) and (3.48) have the general form

M r̈S(t) = F
(
rS, ṙS, θi, θ̇i , t

)
, (3.51)

L̇ = D
(
rS, ṙS, θi, θ̇i , t

)
, (3.52)

where (3.51) refers to the inertial system of reference and (3.52) refers to the sys-
tem K0, which is centered in S and has its axes parallel to those of the inertial
system.

3.12 Euler’s Equations of Motion

In this section we apply the equation of motion (3.52) to the rigid body and, in
particular, work out its specific form for this case. Inverting the second equation
of (3.46) we have

L = RT(t)L̄ = J̃(t)ω(t) .

Differentiating with respect to time, we obtain

L̇ = ˙̃Jω + J̃ω̇

and, by means of (3.47), also

˙̃J(t) = d

dt

[
RT(t)JR(t)

] = ṘTJR+ RTJṘ .

If we again replace J by J̃ in this last expression, this becomes

˙̃J(t) = (
ṘTR

)
J̃+ J̃

(
RTṘ

)
.

We now study the specific combination of the rotation matrix and the time
derivative of its transpose that appears in the time derivative of J(t). Let us define

Ω(t)
def= ṘT(t)R(t) ≡ Ṙ

−1
(t)R(t) . (3.53)

The transpose of this matrix, ΩT = RTṘ, is equal to −Ω. This follows by taking
the time derivative of the orthogonality condition RTR = 1l, whereby



214 3. The Mechanics of Rigid Bodies

ṘTR+ RTṘ = 0 ,

and hence

Ω+ΩT = 0 .

Thus, we obtain

˙̃J = ΩJ̃+ J̃ΩT = ΩJ̃− J̃Ω = [Ω, J̃] , (3.54)

where [ , ] denotes the commutator, [A, B] def= AB −BA. In order to compute the
action of Ω on an arbitrary vector, one must first calculate the time derivative of
the rotation matrix (3.45a). The exponential is to be understood as a shorthand for
its series expansion, cf. Sect. 2.20. Differentiating termwise and assuming ϕ̇ to be
parallel to ϕ̂, one obtains

d

dt
R(ϕ(t)) = −

[
3∑

i=1

ϕ̇i (t)Ji

]

R(ϕ(t)) = −
[

3∑

i=1

ωiJi

]

R . (3.55)

From Sect. 2.22 we know that the action of (
∑3

i=1 ωiJ) on an arbitrary vector b

of R
3 can be expressed by means of the cross product, viz.
(

3∑

i=1

ωiJi

)

b = ω × b .

Obviously, an analogous formula applies to the inverse of R,

d

dt
RT(ϕ(t)) =

(
3∑

i=1

ωiJi

)

RT(ϕ(t)) .

Therefore, taking b = RTa, we have

ṘT(t)a = ω × (
RTa

)
, (3.56a)

and from this

Ω(t)a = ṘTRa = ω × (
RTRa

) = ω × a . (3.56b)

This gives us

L̇ = ˙̃Jω + J̃ω̇ = (ΩJ̃− J̃Ω)ω + J̃ω̇

= ΩJ̃ω + J̃ω̇ = ω × (J̃ω)+ J̃ω̇ = ω × L+ J̃ω̇ , (3.57)

where we have used the equation Ωω = 0, which follows from (3.56b). It remains
to compute ω̇,

ω̇ = d

dt

(
RTω̄

) = RT ˙̄ω + ṘTω̄ .
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The second term vanishes because, by (3.56a),

ṘTω̄ = ω × (
RTω̄

) = ω × ω = 0 .

Thus, ω̇ = RT ˙̄ω. Inserting (3.57) into the equation of motion (3.52), we obtain

L̇ = ω × L+ J̃RT ˙̄ω = D .

This form of the equations of motion has the drawback that it contains both quan-
tities referring to a system of reference with space-fixed directions and quantities
referring to a body-fixed system. However, it is not difficult to convert them com-
pletely to the system fixed in the body: multiply these equations with R from the
left and note that R(ω×L) = Rω×RL = ω̄× L̄. In this way we obtain Euler’s
equations in their final form,

J ˙̄ω + ω̄ × L̄ = D̄ . (3.58)

All quantities now refer to the body-fixed system K. In particular, J is the
(constant) inertia tensor as computed in Sect. 3.4 above. If the intrinsic system
K is chosen to be a PA system, J is diagonal. Finally, we note that L̄ = Jω̄.

This shows that the equations of motion (3.58) for the unknown functions ω̄(t)

are nonlinear.

Remark: Because of its antisymmetry, the action of the matrix Ω on any vector
a is always the one given in (3.56b), with ω to be calculated from the rotation
R(t) = exp{−S}, with S = ∑

ϕi(t)Ji . We have

Ω = Ṙ
T
(t)R(t) =

(
d

dt
eS

)
e−S

=
(

Ṡ + 1

2
ṠS + 1

2
SṠ + . . .

)
(1l − S + . . .)

= Ṡ + 1

2
[S, Ṡ] +O(ϕ2) .

Making use of the commutators [Ji , Jj ] = ∑
k εijkJk one derives the identity

[S, Ṡ] ≡ [S(ϕ), Ṡ(ϕ)] = S(ϕ × ϕ̇) ,

from which one computes ω. If we make the assumption (as we did in Sect. 2.22
and also in this section above) that ϕ = ϕ n̂ and ϕ̇ have the same direction, then
S commutes with Ṡ so that ω and ϕ̇ coincide.

One may, of course, also consider a situation where both the modulus and the
direction of ϕ change with time. In this case ϕ and ϕ̇ are no longer parallel, and
S and Ṡ no longer commute. It then follows from (3.56b), from Sa = ϕ× a, and
from the calculation above that

ω = ϕ̇ + 1

2
ϕ × ϕ̇ +O(ϕ2) .



216 3. The Mechanics of Rigid Bodies

In very much the same way one shows that

ω = ϕ̇ − 1

2
ϕ × ϕ̇ +O(ϕ2) .

In deriving Euler’s equations the difference to the situation where ϕ̇ and ϕ are
taken to be parallel is irrelevant because we may always add a constant rotation
such that the modulus ϕ of ϕ is small, and ω ≈ ϕ̇ (see also Sect. 5.7.4).

3.13 Euler’s Equations Applied to a Force-Free Top

As a first illustration of Euler’s equations we study the force-free motion of rigid
bodies. If no external forces are present, the center of mass, by (3.51), moves with
constant velocity along a straight line. The right-hand side of Euler’s equations
(3.58) vanishes, D = 0. If K is chosen to be the PA system, then Jik = Iiδik and
L̄i = Iiω̄i , so that (3.58) reads

Ii ˙̄ωi + (ω̄ × L̄)i = 0 .

More explicitly, because (ω̄ × L̄)1 = I3ω̄2 ω̄3 − I2ω̄3 ω̄2 = (I3 − I2)ω̄2 ω̄3 (with
cyclic permutation of the indices), the equations of motion read

I1 ˙̄ω1 =
(
I2 − I3

)
ω̄2ω̄3 ,

I2 ˙̄ω2 =
(
I3 − I1

)
ω̄3ω̄1 ,

I3 ˙̄ω3 =
(
I1 − I2

)
ω̄1ω̄2 . (3.59)

(i) The asymmetric or triaxial top. Here I1 	= I2 	= I3 	= I1. The equations (3.59)
being nonlinear, their solution in the general case is certainly not obvious. Yet, as
we shall see below, their solution can be reduced to quadratures by making use of
the conservation of energy and angular momentum. Before turning to this analysis,
we discuss a qualitative feature of its motion that can be read off (3.59). Without
loss of generality we assume the ordering

I1 < I2 < I3 . (3.60)

Indeed, the principle axes can always be chosen and numbered in such a way
that the 1-axis is the axis of the smallest moment of inertia, the 3-axis that of
the largest. The right-hand sides of the first and third equations of (3.59) then
have negative coefficients, while the right-hand side of the second equation has a
positive coefficient. Thus, the stability behavior of a rotation about the 2-axis (the
one with the intermediate moment of inertia) will be different, under the effect of
a small perturbation, from that of rotations about the 1- or 3-axes. Indeed, in the
latter cases the rotation is found to be stable, while in the former it is unstable,
(see Sect. 6.2.5).

We now set x(t)
def= ω̄3(t) and make use of the two conservation laws that hold

for free motion:
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2Trot =
3∑

i=1

Iiω̄
2
i = const , (3.61)

L2 =
3∑

i=1

(
Iiω̄i

)2 = const . (3.62)

Taking the combinations

L2 − 2TrotI1 = I2
(
I2 − I1

)
ω̄2

2 + I3
(
I3 − I1

)
x2 ,

L2 − 2TrotI2 = −I1
(
I2 − I1

)
ω̄2

1 + I3
(
I3 − I2

)
x2 ,

we deduce the following equations:

ω̄2
1 = − 1

I1(I2 − I1)

[
L2 − 2TrotI2 − I3

(
I3 − I2

)
x2

]
≡ −α0 + α2x

2 ,

ω̄2
2 =

1

I2(I2 − I1)

[
L2 − 2TrotI1 − I3

(
I3 − I1

)
x2

]
≡ β0 − β2x

2 .

With the convention (3.60), all differences of moments of inertia are written so as
to make the coefficients α0, α2, β0, β2 positive. Inserting these auxiliary relations
into the third equation of (3.59) yields the differential equation

I3ẋ(t) =
(
I1 − I2

)√(
β0 − β2x2

) (−α0 + α2x2
)

(3.63)

for x(t). It can be solved by separation of variables and hence by ordinary integra-
tion (quadrature). Clearly, ω̄1(t) and ω̄2(t) obey analogous differential equations
that are obtained from (3.63) by cyclic permutation.

(ii) The symmetric top. Without loss of generality we assume

I1 = I2 	= I3 and I1 	= 0 , I3 	= 0 . (3.64)

The solution of the equations (3.59) is elementary in this case. First, we note that

I3 ˙̄ω3 = 0 , i.e. ω̄3 = const .

Introducing the notation

ω0
def= ω̄3

I3 − I1

I1
(= const) (3.65)

we see that the first two equations of (3.59) become

˙̄ω1 = −ω0ω̄2 and ˙̄ω2 = ω0ω̄1 ,

their solutions being

ω̄1(t) = ω⊥ cos
(
ω0t + τ

)
, ω̄2(t) = ω⊥ sin

(
ω0t + τ

)
. (3.66)
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Here ω⊥ and τ are integration constants that are chosen at will. ω0, in turn, is
already fixed by the choice of the integration constant ω̄3 in (3.65). As a result,
one obtains

ω̄ = (
ω⊥ cos

(
ω0t + τ

)
, ω⊥ sin

(
ω0t + τ

)
, ω̄3

)

and ω̄2 = ω2⊥ + ω̄2
3. The vector ω̄ has constant length: it rotates uniformly about

the 3-axis of the PA system. This is the symmetry axis of the top.
As to the angular momentum with respect to the intrinsic system, one has

L̄1 = I1ω⊥ cos
(
ω0t + τ

)
,

L̄2 = I1ω⊥ sin
(
ω0t + τ

)
,

(3.67)
L̄3 = I3ω̄3 ,

L̄
2 = I 2

1ω
2⊥ + I 2

3 ω̄3 .

This shows that L̄ rotates uniformly about the symmetry axis, too. Furthermore,

at any time the symmetry axis ˆ̄f , ω̄ and L̄ lie in one plane.
It is not difficult to work out the relation of the constants of integration ω⊥,

ω̄3 (or ω0) to the integrals of the motion that are characteristic for motion without
external forces: the kinetic energy Trot and the modulus of angular momentum.
One has

2Trot =
3∑

i=1

Iiω̄
2
i = I1ω

2⊥ + I3ω̄
2
3 = I1

[
ω2⊥ +

I1I3

(I3 − I1)2
ω2

0

]
,

L2 = L̄
2 = I 2

1ω
2⊥ + I 2

3 ω̄
2
3 = I 2

1

[

ω2⊥ +
I 2

3

(I3 − I1)2
ω2

0

]

,

from which one obtains

ω2⊥ = 1

I1(I1 − I3)

[
L2 − 2I3Trot

]
, (3.68)

ω2
0 =

I1 − I3

I 2
1 I3

[
2I1Trot − L2

]
. (3.69)

Finally, one may wish to translate these results to a description of the same motion
with respect to the system K0 of Fig. 3.15. Because there are no external forces,
this is an inertial system. Denoting the symmetry axis of the top byf̂ (this is the
3-axis of K), the same unit vector, with respect to K0, depends on time and is
given by

f̂ (t) = RT(t) ˆ̄f .

Since L̄, ω̄, and ˆ̄f are always in a plane, so are L = RTL̄, ω = RTω̄,f̂ . Being
conserved, the angular momentum L is a constant vector in space, while ω andf̂

rotate uniformly and synchronously about this direction.
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Fig. 3.19. For a free symmetric top the angular momentum L is conserved and
hence fixed in space. The axis of symmetry f̂ , the angular velocity ω, and L

always lie in a plane. f̂ and ω perform a uniform precession about L

As shown in Fig. 3.19, we call θ1, θ2 the angles between L and ω and between
ω andf̂ , respectively, and let

θ
def= θ1 + θ2 .

We show that cos θ and cos θ2 must always have the same sign. This will help us
to find the possible types of motion. We have

2Trot = L · ω and cos θ1 = 2Trot

|L||ω| .

As Trot is conserved and positive, cos θ1 is constant and positive. Thus

−π
2 ≤ θ1 ≤ π

2 .

Furthermore, making use of the invariance of the scalar product, we have

ω ·f̂ = ω̄ · ˆ̄f = |ω| cos θ2 = ω̄3 = L̄3/I3

= L̄ · ˆ̄f/I3 = L ·f̂/I3 = |L| cos θ/I3 .

It follows, indeed, that cos θ and cos θ2 have the same sign, at any moment of the
motion. As a consequence, there can be only two types of motion, one where this
sign is positive (Fig. 3.20a) and one where the sign is negative (Fig. 3.20b), θ1 being
constrained as shown above, −π

2 ≤ θ1 ≤ π
2 . Figure 3.20 shows the situation for

I3 > I1 = I2, i.e. for a body that is elongated like an egg or a cigar. If I3 < I1 = I2,

i.e. for a body that has the shape of a disc or a pancake, the angular momentum
lies between ω and the symmetry axis of the top. Finally, we can write down one
more relation between the angles θ and θ2. Take the 1-axis of the intrinsic system
in the plane spanned by L andf̂ (as in Sect. 3.8 (iii)). Then we have

L̄1/L̄3 = tan θ = I1ω̄1/(I3ω̄3) =
(
I1/I3

)
tan θ2 .

(iii) A practical example: the Earth. To a good approximation the Earth can be
regarded as a slightly flattened, disklike, symmetric top. Its symmetry axis is de-
fined by the geographic poles. Because its axis of rotation is slightly inclined, by
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Fig. 3.20. The two types of motion of the axis of symmetry f̂ and the angular velocity ω about
the angular momentum L

about 0.2′′, with respect to the symmetry axis, it performs a precession motion.
Neglecting the external forces acting on the Earth, we can estimate the period of
this precession as follows. We have

I1 = I2 < I3 with
(
I3 − I1

)
/I1 � 1/300 . (3.70)

The frequency of precession is given by (3.65). Thus, the period is

T = 2π

ω0
= 2πI1

(I3 − I1)ω̄3
.

Inserting 2π/ω̄3 = 1 day and the ratio (3.70) one gets T � 300 days. Experimen-
tally, one finds a period of about 430 days and an amplitude of a few meters. The
deviation of the measured period from the estimate is probably due to the fact that
the Earth is not really rigid.

In fact, the Earth is not free and is subject to external forces and torques exerted
on it by the Sun and the Moon. The precession estimated above is superimposed
upon a much longer precession with a mean period of 25 800 years (the so-called
Platonic year). However, the fact that the free precession estimated above is so
much faster than this extremely slow gyroscopic precession justifies the assumption
of force-free motion on which we based our estimate.

3.14 The Motion of a Free Top and Geometric Constructions

The essential features of the motion of a free, asymmetric rigid body can be un-
derstood qualitatively, without actually solving the equations (3.63), by means of
the following constructions. The first of these refers to a reference system fixed
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in space; the second refers to the intrinsic PA system and both make use of the
conservation laws for energy and angular momentum.

(i) Poinsot’s construction (with respect to a space-fixed system). The conservation
law (3.61) can be written in two equivalent ways in terms of quantities in the
reference system fixed in space,

2Trot = ω(t) · L = ω(t)J̃(t)ω(t) = const . (3.71)

As L is fixed, (3.71) tells us that the projection of ω(t) onto L is constant. Thus,
the tip of the vector ω(t) always lies in a plane perpendicular to L. This plane is
said to be the invariant plane. The second equality in (3.71) tells us, on the other
hand, that the tip of ω(t) must also lie on an ellipsoid, whose position in space
changes with time, viz.

3∑

i,k=1

J̃ik(t)ωi(t)ωk(t) = 2Trot .

These two surfaces are shown in Fig. 3.21. As we also know that

2Trot =
3∑

i=1

Iiω̄
2
i ,

the principal diameters ai of this ellipsoid are given by ai = √
2Trot/Ii . For fixed

energy, the ellipsoid has a fixed shape,

3∑

i=1

ω̄2
i

2Trot/Ii
= 1 . (3.72)

When looked at from the laboratory system, however, the ellipsoid moves as a
whole. To understand this motion, we note the relation

∂Trot

∂ωi
= 1

2

∂

∂ωi

⎛

⎝
3∑

k,l=1

ωkJ̃klωl

⎞

⎠ =
3∑

m=1

J̃imωm = Li ,

Fig. 3.21. The tip of ω(t) wanders on the invariant plane and
on a time-dependent ellipsoid tangent to that plane
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which tells us that L = ∇ωTrot. Thus, at any moment, L is perpendicular to the
tangent plane to the ellipsoid at the point P. In other words, the invariant plane
is tangent to the ellipsoid. The momentary axis of rotation is just ω(t). Therefore,
the motion of the ellipsoid is such that it rolls over the invariant plane without
gliding. In the course of the motion, the point P traces out two curves, one on the
invariant plane and one on the ellipsoid. These curves are somewhat complicated
in the general case. In the case of a symmetric body with, say, I1 = I2 > I3, they
are seen to be circles.

(ii) General construction within a principal-axes system. Using a PA system, we
have L̄i = Iiω̄i , so that the conserved quantities (3.61–3.62) can be written as
follows:

2Trot =
3∑

i=1

L̄2
i

Ii
, (3.73)

L2 =
3∑

i=1

L̄2
i . (3.74)

The first of these, when read as an equation for the variables L̄1, L̄2, L̄3, describes
an ellipsoid with principal axes

ai =
√

2TrotIi , i = 1, 2, 3 . (3.75)

With the convention (3.60) they obey the inequalities a1 < a2 < a3. From (3.60)
one also notes that

2TrotI1 ≤ L̄
2 = L2 ≤ 2TrotI3 . (3.76)

The second equation, (3.74) is a sphere with radius

R =
√

L2 and a1 ≤ R ≤ a3 . (3.77)

Taking both equations together, we conclude that the extremity of L̄ (this is the
angular momentum as seen from the body-fixed PA system) moves on the curves
of intersection of the ellipsoid (3.73) and the sphere (3.74). As follows from the
inequalities (3.76), or equivalently from (3.77), these two surfaces do indeed inter-
sect. This yields the picture shown in Fig. 3.22. As the figure shows, the vector L̄

performs periodic motions in all cases. One also sees that rotations in the neigh-
borhood of the 1-axis (principal axis with the smallest moment of inertia), as well
rotations in the neighborhood of the 3-axis (principal axis with the largest moment
of inertia) are stable. Rotations with L̄ close to the 2-axis, on the other hand, look
unstable. One is led to suspect that even a small perturbation will completely upset
the motion. That this is indeed so will be shown in Sect. 6.2.5.



3.15 The Rigid Body in the Framework of Canonical Mechanics 223

Fig. 3.22. The angular momentum L̄, as seen from a reference system fixed in the body, moves
along the curves of intersection of the spheres (3.74) and of the ellipsoids (3.73)

3.15 The Rigid Body in the Framework
of Canonical Mechanics

The aim of this section is to derive once more the equations of motion of rigid
bodies, this time by means of a Lagrangian function that is expressed in terms of
Eulerian angles. In a second step we wish to find the generalized momenta that are
canonically conjugate to these variables. Finally, via a Legendre transformation,
we wish to construct a Hamiltonian function for the rigid body.

(i) Angular velocity and Eulerian angles. In a first step we must calculate the
components of the angular velocity ω̄ with respect to a PA system, following (3.35),
and express them in terms of Eulerian angles as defined in Sect. 3.10. A simple,
geometric way of doing this is to start from Fig. 3.16 or 3.23. To the three time-
dependent rotations in (3.35) there correspond the angular velocities ωα, ωβ, and
ωγ . Here, ωα points along the 30-axis, ωβ along the axis Sη, and ωγ along the
3-axis. If 1, 2, and 3 denote the principal axes, as before, and if (ωα)i denotes
the component of ωα along the axis i, the following decompositions are obtained
from Fig. 3.23:

(
ωβ

)
1 = β̇ sin γ ,

(
ωβ

)
2 = β̇ cos γ ,

(
ωβ

)
3 = 0 , (3.78)

(
ωα

)
3 = α̇ cosβ ,

(
ωα

)
ξ2
= −α̇ sin β , (3.79a)

from which follows
(
ωα

)
1 = −α̇ sin β cos γ ,

(
ωα

)
2 = α̇ sin β sin γ , (3.79b)

and finally

(
ωγ

)
1 = 0 ,

(
ωγ

)
2 = 0 ,

(
ωγ

)
3 = γ̇ . (3.80)

Thus, the angular velocity ω̄ = ωα+ωβ +ωγ is given by ω̄ = (ω̄1, ω̄2, ω̄3)
T with
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Fig. 3.23. Construction that helps to express ω by the time derivatives of the Eulerian angles.
Definition as in Fig. 3.16

ω̄1 = β̇ sin γ − α̇ sin β cos γ ,

ω̄2 = β̇ cos γ + α̇ sin β sin γ , (3.81)

ω̄3 = α̇ cosβ + γ̇ .

It is easy to translate these results to the definition of Eulerian angles as given
in Sect. 3.10. The transformation rules (3.39) tell us that in (3.81) cos γ must be
replaced by − sinΨ and sin γ by cosΨ, giving

ω̄1 = θ̇ cosΨ + Φ̇ sin θ sinΨ ,

ω̄2 = −θ̇ sinΨ + Φ̇ sin θ cosΨ , (3.82)

ω̄3 = Φ̇ cos θ + Ψ̇ .

The functions ω̄i(t) obey the system of differential equations (3.58), Euler’s equa-
tions. Once they are known, by inverting (3.82) and solving for Φ̇, θ̇ , and Ψ̇ , one
obtains the following system of coupled differential equations

Φ̇ = [
ω̄1 sinΨ + ω̄2 cosΨ

]
/ sin θ ,

θ̇ = ω̄1 cosΨ − ω̄2 sinΨ , (3.83)

Ψ̇ = ω̄3 −
[
ω̄1 sinΨ + ω̄2 cosΨ

]
cot θ .

The solutions of this system {Φ(t), θ(t), Ψ (t)} describe the actual motion com-
pletely.

Making use of (3.82) we can construct a Lagrangian function in terms of Eu-
lerian angles. Its natural form is

L = T − U , (3.84)
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where the kinetic energy is given by

T ≡ Trot = 1

2

3∑

i=1

Iiω̄
2
i =

1

2
I1(θ̇ cosΨ + Φ̇ sin θ sinΨ )2

+1

2
I2(−θ̇ sinΨ + Φ̇ sin θ cosΨ )2 + 1

2
I3(Ψ̇ + Φ̇ cos θ)2 . (3.85)

Note that we use the second definition of Eulerian angles (see Sect. 3.10 and
Fig. 3.17) and that we assume that the center-of-mass motion is already separated
off.

The first test is to verify that L, as given by (3.84), yields Euler’s equations
in the form (3.59) when there are no external forces (U = 0). We calculate

∂L

∂Ψ̇
= ∂T

∂ω̄3

∂ω̄3

∂Ψ̇
= I3ω̄3 ,

∂L

∂Ψ
= ∂T

∂ω̄1

∂ω̄1

∂Ψ
+ ∂T

∂ω̄2

∂ω̄2

∂Ψ
= (

I1 − I2
)
ω̄1ω̄2 .

Indeed, the Euler–Lagrange equation (d/dt)(∂L/∂Ψ̇ ) = ∂L/∂Ψ is identical with
the third of equations (3.59). The remaining two follow by cyclic permutation.

(ii) Canonical momenta and the Hamiltonian function. The momenta canonically
conjugate to the Eulerian angles are found by taking the partial derivatives of L
with respect to Φ̇, θ̇ , and Ψ̇ . The momentum pΨ is the easiest to determine:

pΨ
def= ∂L

∂Ψ̇
= I3(Ψ̇ + Φ̇ cos θ) = L̄3 = L · ê3

= L1 sin θ sinΦ − L2 sin θ cosΦ + L3 cos θ . (3.86)

In the last step, ê3, the unit vector along the 3-axis, is written in components with
respect to K0 (whose axes are fixed in space). The momentum pΦ is a little more
complicated to calculate,

pΦ
def= ∂L

∂Φ̇
=

3∑

i=1

∂T

∂ω̄i

∂ω̄i

∂Φ̇
= I1ω̄1 sin θ sinΨ + I2ω̄2 sin θ cosΨ + I3ω̄3 cos θ

= L · ê30 = L3 . (3.87)

Here, we made use of the equation L̄i = Iiω̄i and of the fact that (sin θ sinΨ, sin θ
cosΨ, cos θ) is the decomposition of the unit vector ê30 along the principal axes.
Finally, the third generalized momentum is given by

pθ
def= ∂L

∂θ̇
= L̄1 cosΨ − L̄2 sinΨ = L · êξ , (3.88)

where êξ is the unit vector along the line Sξ of Fig. 3.17. One verifies that

det

(
∂2T

∂θ̇i∂θ̇k

)
	= 0 ,
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which means that (3.86–3.88) can be solved for the ω̄i , or, equivalently, for the
L̄i . After a little algebra one finds

L̄1 = 1

sin θ

(
pΦ − pΨ cos θ

)
sinΨ + pθ cosΨ ,

L̄2 = 1

sin θ

(
pΦ − pΨ cos θ

)
cosΨ − pθ sinΨ , (3.89)

L̄3 = pΨ .

With T = (
∑

L̄2
i /Ii)/2 this allows us to construct the Hamiltonian function. One

obtains the expression

H = 1

2 sin2 θ

(
pΦ − pΨ cos θ

)2
(

sin2 Ψ

I1
+ cos2 Ψ

I2

)

+1

2
p2
θ

(
cos2 Ψ

I1
+ sin2 Ψ

I2

)
(3.90)

+ sinΨ cosΨ

2 sin θ
pθ

(
pΦ − pΨ cos θ

)
(

1

I1
− 1

I2

)
+ 1

2I3
p2
Ψ + U .

We note that pΦ is the projection of the angular momentum onto the space-fixed 30
axis, while pΨ is its projection onto the body-fixed 3-axis. If the potential energy
U does not depend on Φ, this variable is cyclic, so that pΦ is constant, as expected.
The expression (3.90) simplifies considerably in the case of a symmetric top for
which we can again take I1 = I2, without loss of generality. If U vanishes, or
does not depend on Ψ, then Ψ is also cyclic and pΨ is conserved as well.

(iii) Some Poisson brackets. If the Eulerian angles are denoted generically by
{Θi(t)}, the Poisson brackets over the phase space (with coordinates Θi and pΘi

)

are given by

{f, g}(Θi, pΘi

) =
3∑

i=1

(
∂f

∂pΘi

∂g

∂Θi

− ∂f

∂Θi

∂g

∂pΘi

)
. (3.91)

The components of the angular momentum with respect to the systems K and K0
have interesting Poisson brackets, both within each system and between them. One
finds

{
L1, L2

} = −L3 (cyclic) , (3.92)

{
L̄1, L̄2

} = +L̄3 (cyclic) , (3.93)
{
Li, L̄j

} = 0 for all i and j . (3.94)

Note the remarkable signs in (3.92) and (3.93). Finally, one verifies that the brack-
ets of the kinetic energy with all Li, as well as with all L̄i , vanish,

{
Li, T

} = 0 = {
L̄i , T

}
, i = 1, 2, 3 . (3.95)
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3.16 Example: The Symmetric Children’s Top
in a Gravitational Field

The point of support O does not coincide with the center of mass S, their distance
being

OS = l .

Therefore, if I1 (= I2) is the moment of inertia for rotations about an axis through
S that is perpendicular to the symmetry axis (the 3-axis in Fig. 3.24), then Steiner’s
theorem, Sect. 3.5, tells us that

I ′1 = I ′2 = I1 +Ml2

is the relevant moment of inertia for rotations about an axis through O that is
also perpendicular to the symmetry axis. I1 and I ′1 were calculated in Sect. 3.6
(iii) above. Since I ′1 = I ′2, the first two terms in Trot (3.85) simplify, so that the
Lagrangian function for the spinning top in the earth’s gravitational field is given
by

L = 1
2

(
I1 +Ml2

) (
θ̇2+ Φ̇2 sin2 θ

)+ 1
2I3(Ψ̇ + Φ̇ cos θ)2−Mgl cos θ . (3.96)

The variables Φ and Ψ are cyclic, the momenta conjugate to them are conserved,

pΨ = L̄3 = I3(Ψ̇ + Φ̇ cos θ) = const , (3.97a)

pΦ = L3 =
(
I ′1 sin2 θ + I3 cos2 θ

)
Φ̇ + I3Ψ̇ cos θ = const . (3.97b)

As long as we neglect frictional forces, the energy is also conserved,

E = 1
2I

′
1

(
θ̇2 + Φ̇2 sin2 θ

)+ 1
2I3(Ψ̇ + Φ̇ cos θ

)2 +Mgl cos θ = const . (3.98)

Fig. 3.24. The symmetric children’s top in a gravitational field
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From (3.97) we can isolate Φ̇ and Ψ̇ , viz.

Φ̇ = L3 − L̄3 cos θ

I ′1 sin2 θ
, Ψ̇ = L̄3

I3
− Φ̇ cos θ . (3.99)

Inserting these expressions into (3.98) we obtain an equation of motion that con-
tains only the variable θ(t). With the new abbreviations

E′ def= E − L̄2
3

2I3
−Mgl , (3.100)

Ueff(θ)
def= (L3 − L̄3 cos θ)2

2I ′1 sin2 θ
−Mgl(1 − cos θ) , (3.101)

(3.98) becomes the effective equation

E′ = 1
2I

′
1θ̇

2 + Ueff(θ) = const , (3.102)

to which one can apply the methods that we developed in the first chapter. Here,
we shall restrict the discussion to a qualitative analysis.

From the positivity of the kinetic energy, the physically admissible domain of
variation of the angle is determined by the condition E′ ≥ Ueff(θ). Whenever L3
differs from L̄3, Ueff tends to plus infinity both for θ → 0 and for θ → π. Let

u(t)
def= cos θ(t) (3.103)

and therefore θ̇2 = u̇2/
(
1−u2

)
. Equation (3.102) is then equivalent to the following

differential equation for u(t):

u̇2 = f (u) , (3.104)

where

f (u)
def= (

1 − u2)[(2E′/I ′1
)+ 2Mgl(1 − u)/I ′1

]− (
L3 − L̄3u

)2
/I ′21 . (3.105)

Only those values of u(t) are physical which lie in the interval [−1, +1] and for
which f (u) ≥ 0. The boundaries u = 1 or u = −1 can only be physical if in the
expression (3.105) L3 = L̄3 or L3 = −L̄3. Both conditions of motion (the top
standing vertically in the first case and being suspended vertically in the second
case) are called sleeping. In all other cases the symmetry axis is oblique compared
to the vertical.

The function f (u) has the behavior shown in Fig. 3.25. It has two zeros, u1
and u2, in the interval [−1, +1]. For u1 ≤ u ≤ u2, f (u) ≥ 0. The case u1 = u2
is possible but arises only for very special initial conditions. The motion in the
general case u1 < u2 can be described qualitatively quite well by following the

motion of the symmetry axis on a sphere. Setting u0
def= L3/L̄3, the first equation
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Fig. 3.25. Graph of the function f (u)

(3.105) with u = cos θ(t). See also
Practical Example 1 of the Appendix

(3.99) gives

Φ̇ = L̄3

I ′1
u0 − u

1 − u2 . (3.106)

Thus, whenever u1 	= u2, the extremity of f̂ moves on the unit sphere between
the parallels of latitude defined by

θi = arccos ui , i = 1, 2 .

Depending on the position of u0 relative to u1 and u2, we must distinguish three
cases.

(i) u0 > u2 (or u0 < u1). From (3.106) we see that Φ̇ always has the same
sign. Therefore, the motion looks like the one sketched in Fig. 3.26a.

(ii) u1 < u0 < u2. In this case Φ̇ has different signs at the upper and lower
parallels. The motion of the symmetry axisf̂ looks as sketched in Fig. 3.26b.

(iii) u0 = u1 or u0 = u2. Here Φ̇ vanishes at the lower or upper parallel, respec-
tively. In the second case, for example, the motion off̂ is the one sketched
in Fig. 3.26c.

The motion of the extremity off̂ on the sphere is called nutation.

3.17 More About the Spinning Top

The analysis of the previous section can be pushed a little further. For example,
one may ask under which condition the rotation about the vertical is stable. This
is indeed the aim when one plays with a children’s top: one wants to have it spin,
if possible vertically, and for as long as possible. In particular, one wishes to know
to what extent friction at the point of support disturbs the game.

(i) Vertical rotation (standing top). For θ = 0 we have L3 = L̄3. From (3.101)
one finds that Ueff(0) = 0 and therefore E′ = 0 or E = L̄2

3/(2I3) +Mgl. The
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Fig. 3.26. Symmetric children’s top in the gravitational field. The
figure shows the nutation of the extremity of the symmetry axis f̂

rotation is stable only if Ueff(θ) has a minimum at θ = 0. In the neighborhood of
θ = 0 we have

Ueff �
[
L̄2

3/8I ′1 −Mgl/2
]
θ2 .

The second derivative of Ueff is positive only if L̄2
3 > 4MglI ′1 or

ω̄2
3 > 4MglI ′1/I 2

3 . (3.107)

(ii) Including friction. The motion in the presence of frictional forces can be
described qualitatively as follows. Consider a top in an oblique position with
pΨ = L̄3 > pΦ = L3. The action of friction results in slowing down pΨ
continuously, while leaving pΦ practically unchanged until the two are equal,
pΨ = pΦ. At this moment the top spins vertically. From then on both pΦ and
pΨ decrease synchronously. The top remains vertical until the lower limit of the
stability condition (3.107) is reached. For ω̄3 below that limit the motion is unsta-
ble. Even a small perturbation will cause the top to rock and eventually to topple
over.
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3.18 Spherical Top with Friction: The “Tippe Top”

The tippe top is a symmetric, almost spherical rigid body whose moments of in-
ertia I1 = I2 and I3 	= I1 fulfill a certain inequality, see (3.112) below. It differs
from a homogeneous ball essentially only in that its center of mass does not coin-
cide with its geometrical center. If one lets this top spin on a horizontal plane in
the earth’s gravitational field and includes friction between the top and the plane
of support, it behaves in an astounding way. Initially it spins about the symmetry
axis of its equilibrium position such that its center of mass is below the center
of symmetry. The angular momentum points in an almost vertical direction and,
hence, is nearly perpendicular to the plane. By the action of gliding friction, how-
ever, the top quickly inverts its position so that, in a second stage, it rotates in
an “upside-down” position before eventually coming to rest again. After this rapid
inversion the angular momentum is again vertical. This means that the sense of
rotation with respect to a body-fixed system has changed during inversion. As the
center of mass is lifted in the gravitational field, the rotational energy and therefore
the angular momentum have decreased during inversion. When the top has reached
its upside-down position, it continues spinning while its center of mass is at rest
with respect to the laboratory system. During this stage only rotational friction is
at work. As this frictional force is small, the top remains in the inverted position
for a long time before it slows down and returns to the state of no motion.

Although this toy was apparently already known at the end of the nineteenth
century, it was thought for a long time that its strange behavior was too complicated
to be understood analytically and that it could only be simulated by numerically
solving Euler’s equations. This, as we shall see, is not true. Indeed, as was shown
recently, the salient features of this top can be described by means of the analytic
tools of this chapter and a satisfactory and transparent prediction of its strange
behavior is possible. This is the reason why I wish to add it to the traditional list
of examples in the theory of spinning rigid bodies.

The analysis is done in two steps: In a first step we prove by a simple geometric
argument that in the presence of gliding friction on the plane of support, a specific
linear combination of L3, i.e. the projection of the angular momentum onto the
vertical, and of L3, its projection onto the top’s symmetry axis, is a constant of the
motion. On the basis of this conservation law and of the inequality for the moments
of inertia, see (3.112) below, one shows that the inverted (spinning) position is
energetically favorable compared to the upright position.

In a second step one writes the equations of motion in a specific set of variables
which is particularly well adapted to the problem and one analyzes the dynamical
behavior as a function of time and the stability or instability of the solutions.

We make the following assumptions: Let the top be a sphere whose mass distri-
bution is inhomogeneous in such a way that the center of mass S does not coincide
with its geometrical center Z. The mass distribution is axially symmetric, but not
spherically symmetric, so that the moments of inertia referring to the axes perpen-
dicular to the symmetry axis are equal, but differ from the third, I1 = I2 	= I3. By
a suitable choice of the unit of length, the radius of the sphere is R = 1. The center
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Fig. 3.27.

of mass is situated at a distance α from the center Z, with 0 ≤ α < 1, as sketched
in Fig. 3.27. There are three types of frictional force that act on the instantaneous
point of support A in the plane: rolling friction which is active whenever the top
rolls over the plane without gliding; rotational friction which acts when the top
is spinning about a vertical axis about a fixed point in the plane; and gliding fric-
tion which acts whenever the top glides over the plane of support. We assume
that the support is such that the force due to gliding friction is much larger than
those due to the other two kinds of friction. Indeed, it turns out that it is the glid-
ing friction that is responsible for the inversion of the spinning top. Finally, for
the sake of simplicity, we assume that during the initial phase in which we are
interested the rotational energy Trot is much larger than the gravitational energy
U = mg(1 − cos θ).

3.18.1 Conservation Law and Energy Considerations

The instantaneous velocity of the point of support A is the sum of the center of
mass’s horizontal velocity (ṡ1, ṡ2) (i.e. the component parallel to the plane) and of
the relative velocities which stem from changes of the Euler angles. From Fig. 3.27
we deduce that a change of Ψ , i.e. a rotation about the body-fixed 3-axis, causes a
linear velocity of A in the plane whose magnitude is vΨ = Ψ̇ sin θ , while a change
of the angle Φ, i.e. a rotation about the space-fixed 30-axis, causes a velocity whose
magnitude is vΦ = Φ̇ α sin θ . Both act along the same direction in the plane, say
n̂. In contrast, a change in the angle θ gives rise to a velocity with magnitude
vθ = θ̇ (1−α cos θ) in the direction t̂ perpendicular to n̂. Although it is not difficult
to identify these directions in Fig. 3.27 it is sufficient for our discussion to know
that the velocities related to Ψ̇ and to Φ̇ have the same direction, while that due
to θ̇ is perpendicular to this direction.
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The effect of friction is described phenomenologically as in (6.28) below by
introducing dissipative terms RΦ , RΨ such that

ṗΦ = −RΦ , ṗΨ = −RΨ , (3.108)

(and an analogous equation for ṗθ ). As we know the canonical momenta pΦ and
pΨ are the projections L3 and L3, respectively, of the angular momentum onto the
30-axis and the 3-axis, respectively. Therefore, RΦ and RΨ are external torques,
equal to the cross product of the distance to the corresponding axis of rotation and
the frictional force. As the force is the same in both of them, independently of its
detailed functional dependence on the velocity, and as these torques are parallel,
their ratio is equal to the ratio of the distances,

RΦ/RΨ = α sin θ/ sin θ = α . (3.109)

As a consequence, while both pΦ ≡ L3 and pΨ ≡ L3 decrease with time, the

specific linear combination L̇3−αL̇3 = 0 vanishes. This yields the integral of the
motion

λ := L3 − αL3 = constant. (3.110)

We note in passing that this conservation law, which provides the key to an un-
derstanding of the tippe top, has an amusing history that can be traced back3 to
1872! In fact, the quantity λ is the projection of the angular momentum L onto

the vector σ =−→
AS. Indeed, from (3.86) and (3.87) we have

λ = L · (ê30 − αη̂
) = L · σ , where η̂ = R−1(t)ê3̄ .

Suppose the top is launched such that the conserved quantity (3.110) is large
in the following sense

λ� √
mgI1 , (3.111)

with m the mass of the top. Suppose, furthermore, that the mass distribution is
chosen so that the moments of inertia fulfill the inequalities

(1 − α)I3 < I1 < (1 + α)I3 . (3.112)

The first of these means that the gravitational energy can be neglected in compar-
ison to the rotational energy; the second assumption (3.112) implies that the top
has lower energy when it rotates in a completely inverted position (S above Z)
than when it rotates in its normal, upright position.

When the top has stopped gliding, its center of mass having come to rest, but
rotates about a vertical axis in a (quasi) stationary state, we can conclude that

3 St. Ebenfeld, F. Scheck: Ann. Phys. (New York) 243, 195 (1995). Note that the vector σ equals
−a in this reference and that the choice of convention for the rotation R(t), while consistent
with earlier sections of this chapter, is the inverse of the one employed there.
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ṡ1 = ṡ2 = 0 , θ̇ = 0 , Ψ̇ + αΦ̇ = 0 ; (3.113)

with s(t) denoting the trajectory of the center of mass.
Inserting I1 = I2 	= I3 into the expression (3.85) for the kinetic energy of

rotation one finds

Trot = 1

2
I1

(
θ̇2 + Φ̇2 sin2 θ

)
+ 1

2
I3

(
Ψ̇ + Φ̇ cos θ

)2
.

From this follow the generalized momenta

L3 ≡ pΦ = ∂L

∂Φ̇
= Φ̇

(
I1 sin2 θ + I3 cos2 θ

)
+ I3Ψ̇ cos θ , (3.114a)

L3 ≡ pΨ = ∂L

∂Ψ̇
= I3

(
Ψ̇ + Φ̇ cos θ

)
. (3.114b)

Inserting here the second and third of conditions (3.113), the rotational energy
becomes

Trot = 1

2
F(z)Φ̇2 with F(z ≡ cos θ) = I1(1 − z2)+ I3(z− α)2 .

The third of conditions (3.113), when inserted in (3.114a) and (3.114b), allows
one to re-express the constant of the motion λ in terms of the same function, viz

λ = Φ̇
(
I1 sin2 θ + I3(cos θ − α)2

)
= Φ̇F (z) ,

so that the kinetic energy can be written in terms of λ and the function F ,

Trot = λ2

2F(z)
. (3.115)

The rotational energy assumes its smallest value when F(z) takes its largest
value. With the assumption (3.112) this happens, in the physical range of θ , for
z = −1, i.e. θ = π . As the function F(z) increases monotonically in the interval
[1,−1], the top’s rotation in the completely inverted position is favored energeti-
cally over rotation in the upright position.

3.18.2 Equations of Motion and Solutions with Constant Energy

Assuming that the forces due to rotational and rolling friction can be neglected,
the possible asymptotic states of the spinning top are clearly those in which glid-
ing friction has ceased to be active. These asymptotic states have constant energy.
Except for the trivial state of rest, they can only be one of the following: Rotation
in the upright or in the completely inverted position, or rotation about a nonver-
tical direction, changing with time, whereby the top rolls over the plane without
gliding. Let us call the former two rotational, and the latter tumbling motion.

The simple energy consideration of Sect. 3.18.1 leaves unanswered a number of
important questions. Given the moments of inertia I1 and I3, which of the allowed
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asymptotic states are stable? In the case where an asymptotic state is stable, which
initial conditions (i.e. when launching the top) will develop into that state under
the action of gliding friction? Finally, in what way will simple criteria such as
(3.112) be modified when the gravitational force is taken into account?

In fact, these questions touch upon the field of qualitative dynamics, which
is the subject of Chap. 6 (cf. in particular, the notion of Liapunov stability). A
complete analysis of this dynamical problem can be found in the reference just
given in footnote 3, an article that should be accessible after having studied Chap. 6.
Here we confine ourselves to constructing the equations of motion in a form that
is well adapted to the problem, and to report the most important results of the
analysis.

As described in Sect. 3.9 it is useful to introduce three frames of reference:
the space-fixed inertial system K, the system K0 which is centered on the center
of mass and whose axes are parallel, at all times, to those of K, and a body-fixed
system K whose 3-axis is the symmetry axis of the top. In writing down the inertia
tensor we make use of the following symbolic notation: We write any vector a as
|a〉 and the object which is dual to it as

〈
a|. An expression of the form

〈
b|a〉 is then

just another way of writing the scalar product b · a, while |b〉〈a| is a tensor which,
when applied to a third vector c yields a vector again, viz.

|b〉〈a|c〉 = (a · c) b .

In this notation the inertia tensor with respect to the system K reads

J = I1

{
1l + I3 − I1

I1
|ê3̄

〉〈
ê3̄|

}
,

while its inverse reads4

J−1 = 1

I1

{
1l − I3 − I1

I3
|ê3̄

〉〈
ê3̄|

}
.

Hence, in the frame of reference K0 it has the form

J̃(t) = I1

{
1l + I3 − I1

I1
|η̂〉〈η̂|

}
, (3.116a)

where η̂ is the representation of the unit vector ê3̄ with respect to K0, i.e.

η̂ = R−1(t)ê3̄ = RT (t)ê3̄ .

An analogous formula holds for its inverse

J̃
−1
(t) = 1

I1

{
1l − I3 − I1

I3
|η̂〉〈η̂|

}
. (3.116b)

4 In order to become familiar with this notation and calculus the reader should verify that
〈
êī |J|êk̄

〉 =
diag (I1, I1, I3), and that J−1 is indeed the inverse of J.
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The angular velocity ω may be taken from (3.56b). Alternatively, making use
of (3.116b), it may be expressed in terms of the angular momentum L = J̃ · ω:

ω(t) = 1

I1

{
L(t)− I3 − I1

I3
|η̂〉〈η̂|L〉}

. (3.117)

The time derivative of η̂ follows from (3.56a), the time derivative of L is given
by the external torque N (with respect to the system K0), and the acceleration s̈(t)

of the center of mass is given by the resulting external force F (in the system K).
Therefore, the equations of motion are

d

dt
η̂ = ω × η̂ = 1

I1
L× η̂ , (3.118a)

d

dt
L = N(η̂,L, ṡ) , (3.118b)

ms̈ = F (η̂,L, ṡ) . (3.118c)

(We recall that s(t) is the trajectory of the center of mass and ṡ its velocity in the
space-fixed system K.)

If we demand that the top remain on the plane at all times (no bouncing),
then the 3-component s3 of the center of mass coordinate is not an independent
variable. Indeed, the condition is that both the 3-coordinate of the point A and the
3-component of its velocity v = ṡ−ω× σ are zero at all times. One easily shows
that this implies the condition

ṡ3 + α

I1

〈
ê3̄0

|L× η̂
〉 = 0 , (3.119)

which in turn expresses ṡ3 in terms of η̂ and L. The third equation of motion
(3.118c) must be replaced with

ms̈1,2 = Pr1,2 F ,

where the right-hand side denotes the projection of the external force F onto a
horizontal plane parallel to the plane of support.

The external force F acting on the center of mass S is the sum of the grav-
itational force Fg = −mgê3̄0

, the normal force Fn = gnê3̄0
, and the frictional

force F fr = −gfr v̂. In contrast, the point A, being supported by the plane, expe-
riences only the normal force and the frictional force, F (A) = Fn + F fr, so that
the external torque is given by

N = −σ × F (A) = (αη̂− ê3̄0
)× (gnê3̄0

− gfr v̂) .

This leads immediately to the final form of the equations of motion

d

dt
η̂ = ω × η̂ = 1

I1
L× η̂ , (3.120a)

d

dt
L = (αη̂− ê3̄0

)× (gnê3̄0
− gfr v̂) , (3.120b)

ms̈1,2 = −gfr v̂ . (3.120c)
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The coefficient gn in the normal force follows from the equation s̈3 = −g +
gn/m if one calculates the left-hand side by means of (3.119). For this one must
take the orbital derivative of (3.119) which means replacing the time derivatives
of L and of η̂ by (3.120b) and (3.120a), respectively. The result reads

gn = mgI1
[
1 + α(η3L

2 − L3L3)/(gI
2
1 )
]

I1 +mα2(1 − η2
3)+mαμ

[
(η3 − α)ê3̄0

− (1 − αη3)η̂
] · v̂ . (3.121)

Here η3 = η̂ · ê3̄0
is the projection onto the vertical. Regarding the frictional force

we have assumed gfr = μgn, with μ a (positive) coefficient of friction.
Equations (3.120a–c) provide a good starting point for a complete analysis of

the tippe top. One the one hand they are useful for studying analytic properties of
the various types of solutions; on the other hand they may be used for a numerical
treatment of specific solutions (cf. practical example 2 below). Here we report on
some of the results, taken from the work quoted in footnote 3, and refer to that
article for further details.

(i) Conservation law: It is easy to verify that the conservation law (3.110) also
follows from the equations of motion (3.120a). The orbital derivative of λ (i.e. the
time derivative taken along orbits of the system by making use of the equations
of motion) is given by

dλ

dt
= dL

dt
· σ + L · dσ

dt
.

The second term vanishes because, on account of (3.120a), dσ/dt = −αdη̂/dt is
perpendicular to L. The first term vanishes because the torque N is perpendicular
to σ.

(ii) Asymptotic states: The asymptotic states with constant energy obey the equa-
tions of motion (3.120a) with v̂ = 0, the second and the third equation being
replaced by

dL

dt
= αgnη̂× ê3̄0

, ms̈1,2 = 0 ,

while (3.121) simplifies to

gn = mg
1 + α(η3L

2 − L3L3)/(gI
2
1 )

1 +mα2(1 − η2
3)/I1

.

The solutions of constant energy have the following general properties:

(a) The projections L3 and L3 of the angular momentum L onto the vertical and
the symmetry axes, respectively, are conserved.

(b) The square of the angular momentum L2 as well as the projection η̂ · ê3̄0
= η3

of η̂ onto the vertical are conserved.
(c) At all times the vectors ê3̄0

, η̂, and L lie in a plane.
(d) The center of mass remains fixed in space, ṡ = 0.
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The types of motion that have constant energy have either η3 = +1 (rotation in
the upright position), or η3 = −1 (rotation with complete inversion), or, possibly,
−1 < η3 < +1 if these are allowed. The latter are tumbling motions whereby the
top simultaneously rotates in an oblique (time dependent) orientation and rolls over
the plane without gliding. Whether or not tumbling motion is possible depends on
the choice of the moments of inertia.

(iii) When does the spinning top turn upside-down? The general and complete
answer to the question of which asymptotic state is reached from a given initial
condition would occupy too much space. Here, we restrict ourselves to an example
which corroborates the results of Sect. 3.18.1. For a given value of the constant
of the motion (3.110) we define the following auxiliary quantities

A := I3(1 − α)− I1 + mgαI 2
3

λ2 (1 − α)4 ,

B := I3(1 + α)− I1 − mgαI 2
3

λ2 (1 + α)4 .

A detailed analysis of orbital stability (a so-called Liapunov analysis) for this exam-
ple yields the following results: If A > 0 the state with η3 = +1 is asymptotically
stable and the top will rotate in the upright position. If, however, A < 0 this state is
unstable. Furthermore, if B > 0 then a state with η3 = −1 is asymptotically stable;
if B < 0 then it is unstable. Whenever λ is sufficiently large, cf. (3.111), the third
terms in A and B can be neglected. The two conditions A < 0 and B > 0, taken
together, then yield the inequalities (3.112). In this situation rotation in the upright
position is unstable, whereas rotation in a completely inverted position is stable.
No matter how the top is launched initially, it will always turn upside-down. This
is the genuine “tippe top”. In the examples (iv) and (v) of Sect. 3.6 two simple
models for such a top were described.

The other possible cases can be found in the reference quoted above. Here is
what one finds in case the initial rotation is chosen sufficiently fast (i.e. if λ is
large in the sense of (3.111)):

(a) For I1 < I3(1 − α) both, rotation in the upright position and rotation in the
inverted position, are stable. There also exists a tumbling motion (with constant
energy) but it is unstable. This top could be called indifferent because, depending
on the initial condition, it can tend either to the upright or to the inverted position.

(b) For I1 > I3(1 + α) the two vertical positions are unstable. There is exactly
one state of tumbling motion (i.e. rotating and rolling without gliding) which is
asymptotically stable. Every initial condition will quickly lead to it.

Appendix: Practical Examples

1. Symmetric Top in a Gravitational Field. Study quantitatively the motion of a
symmetric spinning top in the earth’s gravitational field (a qualitative description
is given in Sect. 3.16).
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Solution. It is convenient to introduce dimensionless variables as follows. For the
energy E′ (3.100) take

ε
def= E′/Mgl . (A.1)

Instead of the projections L3 and L̄3 introduce

λ
def= L3√

I ′1Mgl
, λ̄

def= L̄3√
I ′1Mgl

. (A.2)

The function f (u) on the right-hand side of (3.104) is replaced with the dimen-
sionless function

ϕ(u)
def= I ′1

Mgl
f (u) = 2

(
1 − u2)(ε + 1 − u)− (λ− λ̄u)2 . (A.3)

As one may easily verify, the ratio I ′1/Mgl has dimension (time)2. Thus,

ω
def= √

Mgl/I ′1 is a frequency. Finally, using the dimensionless time variable

τ
def= ωt, (3.104) becomes

(
du

dτ

)2

= ϕ(u) . (A.4)

Vertical rotation is stable if L̄2
3 > 4MglI ′1, i.e. if λ̄ > 2. The top is vertical if λ = λ̄.

With u→ 1, the critical energy, with regard to stability, is then εcrit.(λ = λ̄) = 0.
For the suspended top we have λ = −λ̄, u→ 1, and the critical energy is

εcrit.(λ = −λ̄) = −2 .

The equations of motion now read

(
du

dτ

)2

= ϕ(u) or

(
dθ

dτ

)2

= ϕ(u)

1 − u2 (A.5)

and

dΦ

dτ
= λ̄

u0 − u

1 − u2 , with u0 = L3

L̄3
= λ

λ̄
. (A.6)

Curve A of Fig. 3.25 corresponds to the case of a suspended top, i.e. λ = −λ̄ and
u0 = −1. We have chosen ε = 0, λ = 3.0. Curve C corresponds to the vertical top,
and we have chosen ε = 2, λ = λ̄ = 5. Curve B, finally, describes an intermediate
situation. Here we have taken ε = 2, λ = 4, λ̄ = 6.

The differential equations (A.5) and (A.6) can be integrated numerically, e.g.
by means of the Runge–Kutta procedure described in Practical Example 2.2. For
this purpose let
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y =
⎛

⎜
⎝

dθ

dτ
dΦ

dτ

⎞

⎟
⎠

and read (A.11) and (A.12) of the Appendix to Chapter 2 as equations with two
components each. This allows us to represent the motion of the axis of symmetry in
terms of angular coordinates (θ,Φ) in the strip between the two parallels defined
by u1 and u2. It requires a little more effort to transcribe the results onto the unit
sphere and to represent them, by a suitable projection, as in Fig. 3.26.

2. The Tippe Top. Under the assumption that the coefficient of gliding friction
is proportional to gn, the coefficient that appears in the normal force, numerically
integrate the equations of motion (3.120a–c) with the three possible choices for
the moments of inertia.

Solution. The assumption is that gfr = μgn. Let v = ‖v‖ be the modulus of the
velocity. In order to avoid the discontinuity at v = 0 on the right-hand side of
(3.120c) one can replace v̂ by

v̂ −→ tanh(M‖v‖) v

‖v‖ ,

where M is a large postive number. Indeed, the factor tanh(M‖v‖) vanishes at
zero and tends quickly, yet in a continuous fashion, to 1. It is useful to introduce
appropriate units of length, mass, and time such that R = 1, m = 1 and g = 1.
Furthermore, the coefficient of friction μ should be chosen sufficiently large, say
μ = 0.75, so that the numerical solutions quickly reach the asymptotic state(s).
Compare your results with the examples given by Ebenfeld and Scheck (1995)
footnote 3.



4. Relativistic Mechanics

Mechanics, as we studied it in the first three chapters, is based on two fundamental
principles. On the one hand one makes use of simple functions such as the La-
grangian function and of functionals such as the action integral whose properties
are clear and easy to grasp. In general, Lagrangian and Hamiltonian functions do
not represent quantities that are directly measurable. However, they allow us to
derive the equations of motion in a general and simple way. Also, they exhibit
the specific symmetries of a given dynamical system more clearly than the equa-
tions of motion themselves, whose form and transformation properties are usually
complicated.

On the other hand, one assumes a very special structure for the space-time
manifold that supports mechanical motion. In the cases discussed up until now
the equations of motion were assumed to be form-invariant with regard to general
Galilei transformations (Sect. 1.13; see also the discussion in Sect. 1.14). This im-
plied, in particular, that Lagrangian functions, kinetic and potential energies, had
to be invariant under these transformations.

While the first “building principle” is valid far beyond nonrelativistic point
mechanics (provided one is prepared to generalize it to some extent, if necessary),
the validity of the principle of Galilei invariance of kinematics and dynamics is
far more restricted. True, celestial mechanics as well as the mechanics that we
encounter in daily life when playing billiards, riding a bicycle, working with a
block-and-tackle, etc., is described by the Galilei-invariant theory of gravitation to
a very high accuracy. However, this is not true, in general, for microscopic objects
such as elementary particles, and it is never true for nonmechanical theories such
as Maxwell’s theory of electromagnetic phenomena. Without actually having to
give up the general, formal framework altogether, one must replace the principle of
Galilei invariance by the more general principle of Lorentz or Poincaré invariance.
While in a hypothetical Galilei-invariant world, particles can have arbitrarily large
velocities, Poincaré transformations contain an upper limit for physical velocities:
the (universal) speed of light. Galilei-invariant dynamics then appears as a limiting
case, applicable whenever velocities are small compared to the speed of light.

In this chapter we learn why the velocity of light plays such a special role, in
what way the Lorentz transformations follow from the universality of the speed
of light, and how to derive the main properties of these transformations. Today,
basing our conclusions on a great amount of experience and increasingly precise

F. Scheck, Mechanics, Graduate Texts in Physics, 5th ed.,
DOI 10.1007/978-3-642-05370-2_4, © Springer-Verlag Berlin Heidelberg 2010
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experimental information, we believe that any physical theory is (at least locally)
Lorentz invariant1. Therefore, in studying the special theory of relativity, within the
example of mechanics, we meet another pillar on which physics rests and whose
importance stretches far beyond classical mechanics.

4.1 Failures of Nonrelativistic Mechanics

We wish to demonstrate, by means of three examples, why Galilei invariant me-
chanics cannot be universally valid.

(i) Universality of the speed of light. Experiment tells us that the speed of light,
with respect to inertial systems of reference, is a universal constant. Its value is

c = 2.997 924 58 × 108 ms−1 . (4.1)

Our arguments of Sect. 1.14 show clearly that in Galilei-invariant mechanics a uni-
versal velocity and, in particular, an upper limit for velocities cannot exist. This
is so because any process with characteristic velocity v, with respect to an inertial
system of reference K1, can be observed from another inertial system K2, moving
with constant velocity w relative to K1. With respect to K2, the process then has
the velocity

v′ = v+ w , (4.2)

in other words, velocities add linearly and therefore can be made arbitrarily large.

(ii) Particles without mass carry energy and momentum. In nonrelativistic mechan-
ics the kinetic energy and momentum of a free particle are related by

E = T = 1

2m
p2 . (4.3)

In nature there are particles whose mass vanishes. For instance, the photon (or light
quantum), which is the carrier of electromagnetic interactions, is a particle whose
mass vanishes. Nevertheless, a photon carries energy and momentum (as proved by
the photoelectric effect, for example), even though relation (4.3) is meaningless in
this case: neither is the energy E infinite when |p| is finite nor does the momentum
vanish when E has a finite value. In the simplest situation a photon is characterized
by a circular frequency ω and a wavelenght λ that are related by ωλ = 2πc. If
the energy Eγ of the photon is proportional to ω and if its momentum is inversely
proportional to λ, then (4.3) is replaced with a relation of the form

Tγ ≡ Eγ = α|p|c , (4.4)

1 Space inversion P and time reversal T are excepted because there are interactions in nature that
are Lorentz invariant but not invariant under P and under T.
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where the index γ is meant to refer to a photon and where α is a dimensonless
number (it will be found to be equal to 1 below). Furthermore, the photon has
only kinetic energy, hence Eγ (total energy) = Tγ (kinetic energy).

Further, there are even processes where a massive particle decays into several
massless particles so that its mass is completely converted into kinetic energy. For
example, an electrically neutral π meson decays spontaneously into two photons:

π0 (massive) → γ + γ (massless) ,

where m(π0) = 2.4×10−28 kg. If the π0 is at rest before the decay, the momenta
of the two photons are found to add up to zero,

p(1)γ + p(2)γ = 0 ,

while the sum of their energies is equal to m(π0) times the square of the speed
of light,

T (1)
γ + T (2)

γ = c(|p(1)γ | + |p(2)γ |) = m(π0)c2 .

Apparently, a massive particle has a finite nonvanishing energy, even when it
is at rest:

E(p = 0) = mc2 , (4.5)

This energy is said to be its rest energy. Its total energy, at finite momentum, is
then

E(p) = mc2 + T (p) , (4.6)

where T (p), at least for small velocities |p|/m� c, is given by (4.3), while for
massles particles (m = 0) it is given by (4.4) with α = 1.

Of course, one is curious to know how these two statements can be reconciled.
As we shall soon learn, the answer is provided by the relativistic energy-momentum
relation

E(p) =
√
(mc2)2 + p2c2 , (4.7)

which is generally valid for a free particle of any mass and which contains both
(4.3) and (4.4), with α = 1. If this is so the kinetic energy is given by

T (p) = E(p)−mc2 =
√
(mc2)2 + p2c2 −mc2 . (4.8)

Indeed, for m = 0 this gives T = E = |p|c, while for m 	= 0 and for small
momenta |p|/m� c

T (p) � mc2
{

1 + 1

2

p2c2

(mc2)2
− 1

}
= p2

2m
, (4.9)

which is independent of the speed of light c!
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(iii) Radioactive decay of moving particles. There are elementary particles that are
unstable but decay relatively “slowly” (quantum mechanics teaches us that this is
realized when their lifetime is very much larger than Planck’s constant divided by
the rest energy, τ � h/2πmc2). Their decay can then be studied under various
experimental conditions. As an example take the muon μ, which is a kind of heavy,
and unstable, electron. Its mass is about 207 times larger than the mass of the
electron2,

m(μ)c2 = 206.77m(e)c2 . (4.10)

The muon decays spontaneously into an electron and two neutrinos (nearly mass-
less particles that have only weak interactions),

μ→ e + ν1 + ν2 . (4.11)

If one stops a large number of muons in the laboratory and measures their lifetime,
one gets3

τ (0)(μ) = (2.197019 ± 0.000021)× 10−6 s . (4.12)

If one performs the same measurement on a beam of muons that move at constant
velocity v in the laboratory, one gets

τ (v)(μ) = γ τ (0)(μ) , where γ = E/mc2 = (1 − v2/c2)−1/2 . (4.13)

For example, a measurement at γ = 29.33 gave the value

τ (v)(μ) = 64.39 × 10−6 s � 29.3τ (0)(μ) .

This is an astounding effect: the instability of a muon is an internal property of the
muon and has nothing to do with its state of motion. Its mean lifetime is something
like a clock built into the muon. Experiment tells us that this clock ticks more
slowly when the clock and the observer who reads it are in relative motion than
when they are at rest. Relation (4.13) even tells us that the lifetime, as measured
by an observer at rest, tends to infinity when the velocity |v| approaches the speed
of light.

If, instead, we had applied Galilei-invariant kinematics to this problem, the
lifetime in motion would be the same as at rest. Again, there is no contradiction
with the relativistic relationship (4.13) because γ � 1 + v2/2c2. For |v| � c the
nonrelativistic situation is realized.

2 These results as well as references to the original literature are to be found in the Review of
Particle Properties, Physics Letters B592 (2004) 1 and (on the web) http://pdg.lbl.gov.

3 J. Bailey et al., Nucl. Phys. B 150 (1979) 1.
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4.2 Constancy of the Speed of Light

The starting point and essential basis of the special theory of relativity is the fol-
lowing experimental observation that we formulate in terms of a postulate:

Postulate I. In vacuum, light propagates, with respect to any inertial system
and in all directions, with the universal velocity c (4.1). This velocity is a
constant of nature.

As the value of the speed of light c is fixed at 299 792 458 ms−1 and as there are
extremely precise methods for measuring frequencies, and hence time, the meter is
defined by the distance that a light ray traverses in the fraction 1/299 792 458 of a
second. (This replaces the standard meter, i.e. the measuring rod that is deposited
in Paris.)

The postulate is in clear contradiction to the Galilei invariance studied in
Sect. 1.13. In the nonrelativistic limit, two arbitrary inertial systems are related
by the transformation law (see (1.32))

x′ = Rx+ wt + a ,

t ′ = λt + s , (λ = ±1) , (4.14)

according to which the velocities of a given process, measured with respect to
two different intertial systems, are related by v′ = v+w. If Postulate I is correct,
(4.14) must be replaced with another relation, which must be such that it leaves
the velocity of light invariant from one inertial frame to another and that (4.14)
holds whenever |v| � c holds.

In order to grasp the consequences of this postulate more precisely, imagine the
following experiment of principle. We are given two inertial systems K and K′. Let
a light source at position xA emit a signal at time tA, position and time coordinates
referring to K. In vacuum, this signal propagates in all directions with constant
velocity c and hence lies on a sphere with its center at xA. If we measure this signal
at a later time tB > tA, at a point xB in space, then obviously |xB−xA| = c(tB−tA),
or, if we take the squares,

(xB − xA)
2 − c2(tB − tA)

2 = 0 . (4.15)

Points with coordinates (x, t) for which one indicates the three spatial coordi-
nates as well as the time at which something happens at x (emission or detection
of a signal, for instance) are called world points or events. Accordingly, the prop-
agation of a signal described by a parametrized curve (x(t), t) is called a world
line.

Suppose the world points (xA, tA), (xB, tB) have the coordinates (x′A, t ′A) and
(x′B, t ′B), respectively, with regard to the system K′. Postulate I implies that these
points must be connected by the same relation (4.15), i.e.

(x′B − x′A)2 − c2(t ′B − t ′A)2 = 0
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with the same, universal constant c. In other words the special form

z2 − (z0)2 = 0 , (4.16)

relating the spatial distance |z| = |xB − xA| of two world points A and B to the
difference of their time coordinates z0 = c(tB − tA), must be invariant under all
transformations that map inertial systems onto inertial systems. In fact, we confirm
immediately that there are indeed subgroups of the Galilei group that leave this
form invariant. These are

(i) translations t ′ = t + s and x′ = x+ a, and
(ii) rotations t ′ = t and x′ = Rx.

This is not true, however, for special Galilei transformations, i.e. in the case where
the two inertial systems move relative to each other. In this case (4.14) reads t ′ = t ,
x′ = x+ wt , so that (x′A − x′B)2 = (xA − xB + w(tA − tB))

2, which is evidently
not equal to (xA − xB)

2. What is the most general transformation

(t, x)→
Λ
(t ′, x′) (4.17)

that replaces (4.14) and is such that the invariance of the form (4.16) is guaranteed?

4.3 The Lorentz Transformations

In order to unify the notation let us introduce the following definitions:

x0 def= ct ,

(x1, x2, x3)
def= x .

It is customary to denote indices referring to space components only by Latin
letters i, j, k, . . . . If one refers to space and time components, without distinction,
one uses Greek letters μ, ν, �, . . . instead. Thus

xμ : μ = 0, 1, 2, 3 denotes the world point (x0 = ct, x1, x2, x3) , and

xi : i = 1, 2, 3 denotes its spatial components.

One also writes x for a world point and x for its spatial part so that

xμ = (x0, x) .

Using this notation (4.15) reads

(x0
B − x0

A)
2 − (xB − xA)

2 = 0 .

This form bears some analogy to the squared norm of a vector in n-dimensional
Euclidean space R

n, which is written in various ways:

x2
E =

n∑

i=1

(xi)2 =
n∑

i=1

n∑

k=1

xiδikx
k = (x, x)E . (4.18)
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(The index E stands for Euclidean.) The Kronecker symbol δik is a metric tensor
here. As such it is invariant under rotations in R

n, i.e.

RT δR = δ .

A well-known example is provided by R
3, the three-dimensional Euclidean space

with the metric

δik =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ .

In four space-time dimensions, following the analogy with the example above,
we introduce the following metric tensor:

gμν = gμν =

⎛

⎜
⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟
⎟
⎠ . (4.19)

This enables us to write the invariant form (4.15) as follows:

3∑

μ=0

3∑

ν=0

(x
μ
B − x

μ
A)gμν(x

ν
B − xνA) = 0 . (4.20)

Before we move on, we wish to stress that the position of (Greek) indices
matters: one must distinguish upper (or contravariant) indices from lower (or co-
variant) indices. For instance, we have

xμ = (x0, x) , (4.21a)

(by definition), but

xλ
def=

3∑

μ=0

gλμx
μ = (x0,−x) . (4.21b)

For example, the generalized scalar product that appears in (4.20) can be written
in several ways, viz.

(z, z) = (z0)2 − z2 =
∑

μν

zμgμνz
ν =

∑

μ

zμzμ =
∑

ν

zνz
ν . (4.22)

Note that the indices to be summed always appear in pairs, one being an upper
index and one a lower index. As one can sum only a covariant and a contravariant
index, it is useful to introduce Einstein’s summation convention, which says that
expressions such as AαB

α should be understood to be

3∑

α=0

AαB
α .
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Remarks: The bra and ket notation that we used in Chap. 3 is very useful in the
present context, too. A point x of R

4, or likewise a tangent vector a = (a0, a)
T ,

is represented by a four-component column,

|x〉 = (
x0, x

)T
, |a〉 = (

a0, a
)T

.

Objects which are dual to them are written as row vectors but contain the minus
sign that follows from the metric tensor g = diag (1,−1),

〈y| = (
y0,−y

)
, 〈b| = (

b0,−b
)
.

Taking scalar product in the sense of multiplying a 1×3-matrix and a 3×1-matrix
yields the correct answers

〈y|x〉 = y0x0 − y · x ,

〈b|a〉 = b0a0 − b · a ,
for the Lorentz invariants which can be formed out of them. The “bra-ket” notation
emphasizes that 〈b| is the dual object that acts on |a〉, very much in the spirit of
linear algebra.

The metric tensor defined in (4.19) has the following properties:

(i) It is invariant under the transformations (4.17).
(ii) It fulfills the relations gαβgβγ = δ

γ
α , where δ

γ
α is the Kronecker symbol,

and gαβ = gαμg
μνgνβ = gαβ .

(iii) Its determinant is det g = −1.
(iv) Its inverse and its transpose are g−1 = g = gT.

The problem posed in (4.17) consists in constructing the most general affine trans-
formation

xμ −→
(Λ,a)

x′μ : x′μ = Λμ
σx

σ + aμ (4.23)

that guarantees the invariance of the form (4.15). Any such transformation maps
inertial frames onto inertial frames because any uniform motion along a straight
line is transformed into a state of motion of the same type.

Inserting the general form (4.23) into the form (4.15) or (4.20), and in either
system of reference K or K′:

(x
μ
B − x

μ
A)gμν(x

ν
B − xνA) = 0 = (x′αB − x′αA )gαβ(x

′β
B − x

′β
A ) ,

we note that the translational part cancels out. As to the homogeneous part Λ,
which is a 4 × 4 matrix, we obtain the condition

Λσ
μgστΛ

τ
ν
!=αgμν (4.24)

where α is a real positive number that remains undetermined for the moment. In
fact, if we decide to write x as a shorthand notation for the contravariant vector
xμ and Λ instead of Λμ

ν ,
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x ≡ {xμ} , Λ ≡ {Λμ
ν} ,

then (4.23) and (4.24) can be written in the compact form

x′ = Λx + a , (4.23′)

ΛTgΛ = αg . (4.24′)

Here x is a column vector and Λ is a 4× 4 matrix, and we use the standard rules
for matrix multiplication. For example, let us determine the inverse Λ−1 of Λ,
anticipating that α = 1. It is obtained from (4.24′) by multiplying this equation
with g−1 = g from the left:

Λ−1 = gΛTg . (4.25)

Writing this out in components, we have

(Λ−1)αβ = gαμΛν
μ gνβ(

def= Λ α
β ) ,

a matrix that is sometimes also denoted by Λ α
β .

Because g is not singular, (4.24) implies that Λ is not singular. Indeed, from
(4.24),

(detΛ)2 = α4 .

What do we know about the real number α from experience in physics? To answer
this question let us consider two world points (or events) A and O whose difference

z
def= xA−xO does not necessarily fulfill (4.15) or (4.16). Defining their generalized

distance to be d
def= (z0)2 − (z)2, we calculate this distance with respect to the

inertial system K′:

d ′ def= (z′0)2 − (z′)2 = α[(z0)− (z)2] = αd .

Taking, for example, rotations in R
3 that certainly fulfill (4.15), we see that this

means that the spatial distance
√

z2, as measured from the second system of refer-
ence, appears stretched or compressed by the factor

√
α. More generally, any spa-

tial distance and any time interval are changed by the factor
√
α, when measured

with respect to K′, compared to their value with respect to K. This means either that
any dynamics and any equation of motion that depend on spatial distances and on
time differences differ in a measurable way in different frames of reference or that
the laws of nature are invariant under scale transformations xμ → x′μ = √

αxμ.
The first possibility is in contradiction with the Galilei invariance of mechanics.

This invariance, which is well confirmed by experiment, must hold in the limit of
small velocities. The second possibility contradicts our experience, too: the laws
governing the forces of nature, as far as they are known to us, contain parame-
ters with dimension and are by no means invariant under scale transformations of
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spatial and/or time differences. In fact, this is the main reason we choose the trans-
formation (4.23) (which is still to be determined) to be an affine transformation.
In conclusion, experience in physics suggests we take the constant α to be equal
to 1,

α = 1 . (4.26)

Another way of formulating this conclusion is by the following:

Postulate II. The most general affine transformation x → x′ = Λx + a,
y → y′ = Λy + a must leave invariant the generalized distance z2 =
(z0)2 − z2 (where z = y − x), independent of whether z2 is zero or not.

This postulate, which is based on experience, can be obtained in still another way.
Our starting point was the notion of inertial frame of reference, with respect to
which free motion (i.e. motion without external forces) proceeds along a straight
line and with constant velocity. In other words, such a frame has the special prop-
erty that dynamics, i.e. the equations of motion, take a particularly simple fom. The
class of all inertial frames is the class of reference frames with respect to which
the equations of motion have the same form. By definition and by construction
the transformation x′ = Λx + a (4.23) maps inertial frames onto inertial frames.
As the dynamics is characterized by quantities and parameters with dimensions
and as it is certainly not scale invariant, since, furthermore, Postulate I must hold
true, transformations (4.23) must leave the squared norm z2 = zμgμνz

ν invariant.
Postulate II already contains some empirical information: very much as in nonrela-
tivistic mechanics, lengths and times are relevant, as well as the units that are used
to measure them and that are compared at different world points. The following
postulate is more general and much stronger than this.

Postulate of Special Relativity. The laws of nature are invariant under the
group of transformations (Λ, a).

This postulate contains Postulate II. It goes far beyond it, however, because it
says that all physical theories, not only mechanics, are invariant under the transfor-
mations (Λ, a). Clearly, this is a very strong statement, which reaches far beyond
mechanics. It holds true, indeed, also in the physics of elementary particles (space
reflection and time reversal being excepted), at spatial dimensions of the order of
10−15 m and below. In fact, special relativity belongs to those theoretical founda-
tions of physics whose validity is best established.

According of Postulate II the generalized distance of two world points x and
y is invariant, with respect to transformations (4.23), even when it is nonzero:

(y − x)2 = (yα − xα)gαβ(y
β − xβ) = invariant .
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Fig. 4.1. Schematic representation of four-dimensional
space–time. z0 is the time axis, z symbolizes the three
space directions

Note that this quantity can be positive, negative, or zero. This can be visualized
by plotting the vector z = y−x in such a way that the spatial part z is represented,
symbolically, by one axis (the abscissa in Fig. 4.1), while the time component z0 is
represented by a second axis, perpendicular to the first (the ordinate in the figure).
The surfaces z2 = const are axially symmetric hyperboloids, or if z2 vanishes,
a double cone, embedded in the space-time continuum. The double cone that is
tangent, at infinity, to the hyperboloids, is called the light cone. Vectors on this
cone are said to be lightlike; vectors for which z2 > 0, i.e. (z0)2 > z2, are said
to be timelike; vectors for which z2 < 0, i.e. (z0)2 < z2, are said to be spacelike.
(These definitions are important because they are independent of the signature of
the metric tensor g. We have chosen the signature (+,−,−,−) but we could have
chosen (−,+,+,+) as well.) In Fig. 4.1 the point A is timelike, B is lightlike,
and C is spacelike. Considering the action of the transformation (Λ, a), we see
that the translation (1l, a) has no effect, since a cancels out in the difference y −
x. The homogeneous part (Λ, 0) shifts the points A and C on their respective
paraboloids shown in the figure, while it shifts B on the light cone. We give here
typical examples for the three cases:

timelike vector (z0, 0) with z0 =
√
z2 , (4.27a)

spacelike vector (0, z1, 0, 0) with z1 =
√
−z2 , (4.27b)

lightlike vector (1, 1, 0, 0) (4.27c)

These three cases can be taken to be the normal forms for timelike, spacelike,
and lightlike vectors, respectively. Indeed, every timelike vector can be mapped, by
Lorentz transformations, onto the special form (4.27a). Similarly, every spacelike
vector can be mapped onto (4.27b), and every lightlike vector can be transformed
into (4.27c). This will be shown below in Sect. 4.5.2.

The world points x and y lie in a four-dimensional affine space. Fixing an
origin (by choosing a coordinate system, for example) makes this the vector space
R

4. The differences (y − x) of world points are elements of this vector space.
If we endow this space with the metric structure gμν (4.19) we obtain what is
called the flat Minkowski space-time manifold M4. This manifold is different, in



252 4. Relativistic Mechanics

an essential way, from Galilei space–time. In the Galileian space-time manifold the
statement that two events took place simultaneously is a meaningful one because
simultaneity is preserved by Galilei transformations (however, it is not meaningful
to claim that two events had happened at the same point in space, but at different
times.) Absolute simultaneity i.e. the absolute character of time, as opposed to
space, no longer holds with regard to Lorentz transformations. We return to this
question in more detail in Sect. 4.7.

4.4 Analysis of Lorentz and Poincaré Transformations

By definition, the transformations (Λ, a) leave invariant the generalized distance
(x − y)2 = (x0 − y0)2 − (x − y)2 of two world points. They form a group,
the inhomogeneous Lorentz group (iL), or Poincaré group. Before turning to their
detailed analysis we verify that these transformations indeed form a group.

1. The composition of two Poincaré transformations is again a Poincaré trans-
formation:

(Λ2, a2)(Λ1, a1) = (Λ2Λ1,Λ2a1 + a2) .

The homogeneous parts are formed by matrix multiplication, the translational
part is obtained by applying Λ2 to a1 and adding a2. It is easy to verify that
the product (Λ2Λ1) obeys (4.24) with α = 1.

2. The composition of more than two transformations is associative:

(Λ3, a3)[(Λ2, a2)(Λ1, a1)] = [(Λ3, a3)(Λ2, a2)](Λ1, a1) ,

because both the homogeneous part Λ3Λ2Λ1 and the translational part
Λ3Λ2a1 +Λ3a2 + a3 of this product are associative.

3. There exists a unit element, the identical transformation, which is given by
E = (Λ = 1l, a = 0).

4. As g is not singular, by (4.24), every transformation (Λ, a) has an inverse. It is
not difficult to verify that the inverse is given by (Λ, a)−1 = (Λ−1,−Λ−1a).

By taking the translational part to be zero, we see that the matrices Λ form
a group by themselves. This group is said to be the homogeneous Lorentz group
(L). The specific properties of the homogeneous Lorentz group follow from (4.24)
(with α = 1). They are:

1. (detΛ)2 = 1. Because Λ is real, this implies that either detΛ = +1 or
detΛ = −1. The transformations with determinant +1 are called proper
Lorentz transformations.

2. (Λ0
0)

2 ≥ 1. Hence, either Λ0
0 ≥ +1 or Λ0

0 ≤ −1. This inequality is obtained
from (4.24) by taking the special values μ = ν = 0, viz.

Λσ
0gστΛ

τ
0 = (Λ0

0)
2 −

3∑

i=1

(Λi
0)

2 = 1 , or (Λ0
0)

2 = 1 +
3∑

i=1

(Λi
0)

2 .
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Transformations with Λ0
0 ≥ +1 are said to be orthochronous. They yield a

“forward” mapping of time, in contrast to the transformations with Λ0
0 ≤ −1,

which relate future and past.

Thus, there are four types of homogeneous Lorentz transformations, which are
denoted as follows: L↑+, L

↓
+, L

↑
−, L

↓
−. The index + or − refers to the property

detΛ = +1 and detΛ = −1, respectively; the arrow pointing upwards means Λ0
0 ≥+1, while the arrow pointing downwards means Λ0

0 ≤ −1. Special examples for
the four types are the following.
(i) The identity belongs to the branch L

↑
+:

E =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ ∈ L

↑
+ . (4.28)

(ii) Reflection of the space axes (parity) belongs to the branch L
↑
−:

P =

⎛

⎜⎜
⎝

1
−1
−1
−1

⎞

⎟⎟
⎠ ∈ L

↑
− . (4.29)

(iii) Reversal of the time direction (time reversal) belongs to L
↓
−:

T =

⎛

⎜⎜
⎝

−1
1

1
1

⎞

⎟⎟
⎠ ∈ L

↓
− . (4.30)

(iv) The product PT of time reversal and space reflection belongs to L
↓
+:

PT =

⎛

⎜⎜
⎝

−1
−1
−1
−1

⎞

⎟⎟
⎠ ∈ L

↓
+ . (4.31)

At this point, we wish to make a few remarks relevant to what follows. The four
discrete transformations (4.28–31) themselves form what is called Klein’s group,

{E,P,T,PT} . (4.32)

Indeed, one can easily verify that the product of any two of them is an element
of the group.

It is also clear that two arbitrary transformations belonging to different branches
cannot be made to coincide by continuous deformation. Indeed, as long as Λ is real,
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transformations with determinant +1 and those with determinant −1 are separated
discontinuously from each other. (Likewise, transformations with Λ0

0 ≥ +1 and

with Λ0
0 ≤ −1 cannot be related by continuity). However, for given Λ ∈ L

↑
+,

we note that the product ΛP is in L
↑
−, the product ΛT is in L

↓
−, and the product

Λ(PT) is in L↓+. Thus, if we know the transformations belonging to L↑+ (the proper,
orthochronous Lorentz transformations), those pertaining to the other branches can
be generated from them by multiplication with P,T, and (PT). These relations are
summarized in Table 4.1.

Table 4.1. The four disjoint branches of the homogeneous Lorentz group

L
↑
+(det Λ = 1,Λ0

0 ≥ 1) L
↓
+(det Λ = 1,Λ0

0 ≤ −1)
Examples: E, rotations, special Examples: PT, as well as all Λ(PT)

Lorentz transformations with Λ ∈ L
↑
+

L
↑
−(det Λ = −1,Λ0

0 ≥ 1) L
↓
−(det Λ = −1,Λ0

0 ≤ −1)

Examples: P, as well as all ΛP with Λ ∈ L
↑
+ Examples: T, as well as all ΛT with Λ ∈ L

↑
+

Finally, we conclude that the branch L
↑
+ is a subgroup of the homogeneous

Lorentz group. Indeed, the composition of two transformations of L↑+ is again

element of L↑+. Furthermore, it contains the unit element as well as the inverse of

any of its elements. This subgroup L↑+ is called the proper, orthochronous Lorentz

group. (In contrast to L
↑
+, the remaining three branches are not subgroups.)

4.4.1 Rotations and Special Lorentz Tranformations (“Boosts”)

The rotations in three-dimensional space, well-known to us from Sect. 2.22, leave
the spatial distance |x− y| invariant. As they do not change the time component
of any four-vector, the transformations

Λ(R) ≡ R def=

⎛

⎜⎜
⎝

1 0 0 0
0

R
0

⎞

⎟⎟
⎠ (4.33)

with R ∈ SO(3) leave invariant the form (z0)2 − (z)2. Thus, they are Lorentz
transformations. Now, obviously R0

0 = +1, and detR = detR = +1, so they

belong to the branch L↑+. Thus, extending the rotations in three-dimensional space
by adding a 1 in the time–time component, and zeros in the time–space and the
space–time components, as shown in (4.33), we obtain a subgroup of L↑+.

We now turn to the relativistic generalization of the special Galilei transfor-
mations

x′ = x− vt , t ′ = t . (4.34)
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Their relativistic counterparts are called special Lorentz transformations, or boosts.
They are obtained as follows.

As we know, boosts describe the situation where two inertial systems of ref-
erence K and K′ move relative to each other with constant velocity v. Figure 4.2
shows the example of uniform motion along the spatial 1-axis, v = vê1. The space
components that are transverse to the 1-axis are certainly not changed, i.e.

z′2 = z2 , z′3 = z3 .

Regarding the remaining components of the four-vector z, this implies that the
form (z0)2 − (z1)2 must be invariant.

(z0)2 − (z1)2 = (z0 + z1)(z0 − z1) = invariant .

Thus, we must have

z′0 + z′1 = f (v)(z0 + z1) , (z′0 − z′1) = 1

f (v)
(z0 − z1)

with the conditions f (v) > 0 and lim
v→0

f (v) = 1. Furthermore, the origin O′ of K′

moves with velocity v, relative to K. Thus, the primed and unprimed 1-component
of O′ are, respectively,

z′1 = 1

2

(
f − 1

f

)
z0 + 1

2

(
f + 1

f

)
z1 = 0 , z1 = v

c
z0 ,

from which follow

(f 2 − 1)+ v

c
(f 2 + 1) = 0 ,

Fig. 4.2. K and K′ are inertial systems that move at a constant velocity
relative to each other. At t = 0 or, v = 0, the two systems coincide
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and, finally,

f (v) =
√

1 − (v/c)

1 + (v/c)
. (4.35)

At this point let us introduce the following (universally accepted) abbreviations:

β
def= |v|

c
, γ

def= 1
√

1 − β2
. (4.36)

Using this notation, z1 and z0 are seen to transform as follows:
(
z′0
z′1

)
= 1

2

(
f + 1/f f − 1/f
f − 1/f f + 1/f

)(
z0

z1

)

=
(

γ −γβ
−γβ γ

)(
z0

z1

)
,

where 0 ≤ β ≤ 1, γ ≥ 1. Including the 2- and 3-components, the special Lorentz
transformation (boost) that we are out to construct reads

Λ(−v) ≡ L(−v)v=vê1 =

⎛

⎜⎜
⎝

γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠ . (4.37)

It has the properties L0
0 ≥ +1 and detL = +1, and therefore it belongs to L

↑
+.

Without loss of generality we could have parametrized the function f (v) (4.35)
by

f (v) = exp(−λ(v)) . (4.38)

As we shall show below (Sect. 4.6), the parameter λ is a relativistic generalization
of the (modulus of the) velocity. For this reason it is called rapidity. Using this
parametrization, the transformation (4.37) takes the form

L(−vê1) =

⎛

⎜⎜
⎝

cosh λ −sinh λ 0 0
−sinh λ cosh λ 0 0

0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠ , (4.39)

where λ and |v| are related by

tanh λ = |v|
c
= β . (4.40)

If the velocitiy v does not point along the direction of the 1-axis, the transformation
(4.37) takes the form
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L(−v) =

⎛

⎜⎜
⎝

γ −γ v
k

c

−γ v
i

c
δik + γ 2

1 + γ

vivk

c2

⎞

⎟⎟
⎠ . (4.41)

This more general expression is derived by means of the following steps. The ma-
trix (4.37) that describes the case v = vê1 is symmetric. It transforms the time
and the 1-coordinates in a nontrivial way but leaves unchanged the directions per-
pendicular to v. In particular, we have

z′0 = γ [z0 − βz1] = γ

[
z0 − 1

c
v · z

]
,

z′1 = γ [−βz0 + z1] = γ

[
−v1

c
z0 + z1

]
.

If v has an arbitrary direction in space, one could, of course, rotate the coordinate
system by means of a rotation R in such a way that the new 1-axis points along v.
The boost L would then have precisely the form of (4.37). Finally, one could undo
the rotation. As L is symmetric, so is the product R−1LR. Without calculating this
rotation explicitly, we can use the following form for the boost that we wish to
construct:

L(−v) =
⎛

⎜
⎝

γ −γ v
k

c

−γ v
i

c
T ik

⎞

⎟
⎠ with T ik = T ki .

For vanishing velocity T ik becomes the unit matrix. Therefore, we can write T ik

as follows:

T ik = δik + a
vivk

c2 .

We determine the coefficient a by making use of our knowledge of the coordinates
of O′, the origin of K′, in either system of reference. With respect to K′ we have

z′i = −γ 1

c
viz0 +

3∑

k=1

T ikzk = 0 .

As seen from K, O′ moves at a constant velocity v, i.e. zk = vkz0/c. From these
equations follows the requirement

∑

k

T ik v
k

c
= 1

c

[
1 + a

v2

c2

]
vi

!= γ
vi

c
,

or 1+ aβ2 = γ , and, finally, a = γ 2/(γ + 1). This completes the construction of
(4.41).
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4.4.2 Interpretation of Special Lorentz Transformations

First, we verify that the transformation (4.41) becomes the special Galilei trans-
formation (4.34) whenever the velocity is small compared to c. We develop matrix
(4.41) in terms of β = |v|/c, up to first order, viz.

L(−v) =
(

1 −vk/c
−vi/c δik

)
+ O(β2) .

Neglecting the terms of order O(β2), we indeed obtain t ′ = t and z = −vt + z.
Thus, the transformation rule (4.34) holds approximately for (v/c)2 � 1. This is
an excellent approximation for the planets of our solar system. For example, the
earth’s orbital velocity is about 30 km s−1, and therefore (v/c)2 � 10−8. Elemen-
tary particles, on the other hand, can be accelerated to velocities very close to the
speed of light. In this case transformation (4.41) is very different from (4.34).

An instructive way of visualizing the special Lorentz transformation (4.41) is
to think of K′ as being fixed in an elementary particle that moves at a constant
velocity v with respect to the inertial system K. K′ is then said to be the rest system
of the particle, while K could be the laboratory system.

Transformation (4.41) describes the transition between laboratory and rest sys-
tem; it “boosts” the particle from its state of rest to the state with velocity v. To
make this clear, we anticipate a little by defining the following four-vector:

ω
def= (γ c, γ v)T . (4.42)

(A more detailed reasoning will be given in Sect. 4.8 below.) The generalized,
squared norm of this vector is ω2 = γ 2c2(1−v2/c2) = c2. If we apply the matrix
(4.41) to ω, we obtain

L(−v)ω = ω(0) (4.43)

with ω(0) = (c, 0). Thus, this vector must be related to the relativistic generaliza-
tion of velocity or of momentum. We see that L(−v) transforms something moving
with velocity v to something at rest (velocity 0), hence the minus sign in the def-
inition above. We shall say more about the interpretation of ω later and return to
the analysis of the Lorentz transformations.
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4.5 Decomposition of Lorentz Transformations
into Their Components

4.5.1 Proposition on Orthochronous, Proper Lorentz Transformations

The structure of the homogeneous, proper, orthochronous Lorentz group L
↑
+ is

clarified by the following theorem.

Decomposition Theorem. Every transformation Λ of L↑+ can be written,
in a unique way, as the product of a rotation and a special Lorentz trans-
formation following the rotation:

Λ = L(v)R with R =
(

1 0
0 R

)
, R ∈ SO(3) . (4.44)

The parameters of the two transformations are given by the following ex-
pressions:

vi/c = Λi
0/Λ

0
0 , (4.45)

Rik = Λi
k −

1

1 +Λ0
0

Λi
0Λ

0
k . (4.46)

Proof. As a first step one verifies that the velocity defined by (4.45) is an admissible
velocity, i.e. that it does not exceed the speed of light. This follows from (4.24)
(with α = 1):

ΛTgΛ = g (4.47)

or Λμ
σgμνΛ

ν
τ = gστ . (4.47′)

Choosing σ = τ = 0, then σ = i, τ = k, and then σ = 0, τ = i, we find that
(4.47) yields the following equations, respectively,

(Λ0
0)

2 −
3∑

i=1

(Λi
0)

2 = 1 , (4.48a)

Λ0
iΛ

0
k −

3∑

j=1

Λ
j
iΛ

j
k = −δik , (4.48b)

Λ0
0Λ

0
i −

3∑

j=1

Λ
j
0Λ

j
i = 0 . (4.48c)
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Now, from (4.48a) we indeed find that

v2

c2 =
∑
(Λi

0)
2

(Λ0
0)

2
= (Λ0

0)
2 − 1

(Λ0
0)

2
≤ 1 .

Comparison with the general expression (4.41) for a boost then gives

L0
0(v) = Λ0

0 ; L0
i (v) = Li0(v) = Λi

0 ,

Lik(v) = δik + 1

1 +Λ0
0

Λi
0Λ

k
0 . (4.49)

As a second step we define

R def= L−1(v)Λ = L(−v)Λ (4.50)

and show that R is a rotation. This follows by means of (4.48a) and (4.48c) and
by doing the multiplication on the right-hand side of (4.50), viz.

R0
0 = (Λ0

0)
2 −

∑

i

(Λi
0)

2 = 1 ,

R0
i = Λ0

0Λ
0
i −

∑

j

Λ
j
0Λ

j
i = 0 .

At the same time we calculate the space–space components of the rotation,

Ri
k = Λi

k −Λi
0Λ

0
k +

1

1 +Λ0
0

Λi
0

∑

j

Λ
j
0Λ

j
k .

Inserting (4.48c) in the right-hand side yields assertion (4.46).
As a third and last step it remains to show that the decomposition (4.44) is

unique. For this purpose assume that there are two different velocities v and v̄, as
well as two different rotations R and R̄ of SO(3), such that

Λ = L(v)R = L(v̄)R̄

holds true. From this we would conclude that

L(−v)ΛR−1 = 1l = L(−v)L(v̄)R̄R−1 .

Taking the time–time component of this expression, for example, we would obtain

1 =
3∑

ν=0

L0
ν(−v)Lν0(v) =

[
1 − 1

c2 v · v̄
]
/

√
(1 − v2/c2)(1 − v̄2/c2) .

This equation can be correct only if v = v̄. If this is so then also R = R̄. Thus
the theorem is proved. �
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4.5.2 Corollary of the Decomposition Theorem and Some Consequences

Note the order of the factors of the decomposition (4.44): the rotation R is applied
first and is followed by the boost L(v). One could prove the decomposition of
Λ ∈ L

↑
+, with a different order of its factors, as well, viz.

Λ = RL(w) with R =
(

1 0
0 R

)
, R ∈ SO(3) , (4.51)

where the vector w is given by

wi

c

def= Λ0
i

Λ0
0

(4.52)

and where R is the same rotation as in (4.46). The proof starts from the relation

ΛgΛT = g , (4.53)

Λσ
μg

μνΛτ
ν = gστ , (4.53′)

which is the analog of (4.47) and which says no more than that if Λ belongs
to L

↑
+, then its inverse Λ−1 = gΛTg also belongs to L

↑
+. Otherwise the steps

of the proof are the same as in Sect. 4.5.1. One verifies, by direct calculation,
that v = Rw. This is not surprising because, by comparing (4.44) and (4.51),
we find

L(v) = RL(w)R−1 = L(Rw) . (4.54)

The decomposition theorem has several important consequences.
(i) The decomposition is useful in proving that every timelike four vector can

be mapped to the normal form (4.27a), every spacelike vector to the normal form
(4.27b), and every lightlike vector to the form (4.27c). We choose the example of
a timelike vector, z = (z0, z) with z2 = (z0)2− (z)2 > 0. By a rotation it assumes
the form (z0, z1, 0, 0). If z0 is negative, apply PT to z so that z0 becomes positive
and hence z0 > |z1|. As one verifies by explicit calculation, the boost along the
1-axis, with the parameter λ as obtained from

eλ =
√
(z0 − z1)/(z0 + z1) ,

takes the vector to the form of (4.27a).
(ii) The group L

↑
+ is a Lie group and contains the rotation group SO(3) as a

subgroup. The decomposition theorem tells us that L↑+ depends on six real param-
eters: the three angles of the rotation and the three components of the velocity.
Thus, its Lie algebra is made up of six generators. More precisely, to the real an-
gles characterizing the rotations there correspond the directions of the boosts and
the rapidity parameter λ. This parameter has its value in the interval [0,∞]. While
the manifold of the rotation angles is compact, that of λ is not. Indeed, the Lorentz
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group is found to be noncompact. Therefore, its structure and its representations
are not simple and must be studied separately. This is beyond the scope of this
book.

(iii) It is not difficult, though, to construct the six generators of L↑+. We already
know the generators for rotations, see Sect. 2.22. Adding the time–time and space–
time components they are

Ji =

⎛

⎜
⎜
⎜
⎝

0 0 0 0

0

0 (Ji )
0

⎞

⎟
⎟
⎟
⎠

, (4.55)

where (Ji ) are the 3 × 3 matrices given in (2.71). The generators for infinitesi-
mal boosts are derived in an analogous manner. The example of a special Lorentz
transformation along the 1-axis (4.39) contains the submatrix

A def=
(

cosh λ sinh λ
sinh λ cosh λ

)
= 1l

∞∑

n=0

λ2n

(2n)! + K
∞∑

n=0

λ2n+1

(2n+ 1)!

with K =
(

0 1
1 0

)
.

The latter matrix (it is the Pauli matrix σ (1)) has the following properties:

K2n = 1l , K2n+1 = K .

Therefore, we have

A =
∞∑

n=0

{
λ2n

(2n)!K
2n + λ2n+1

(2n+ 1)!K
2n+1

}
= exp(λK) .

Alternatively, writing this exponential series by means of Gauss’s formula for the
exponential,

A = lim
k→∞

(
1l + λ

k
K
)k

,

we see that the finite boost is generated by successive application of very many
infinitesimal ones. From this argument we deduce the generator for infinitesimal
boosts along the 1-axis:

K1 =

⎛

⎜⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟
⎠ . (4.56)
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It is then easy to guess the analogous expressions for the generators K2 and K3
for infinitesimal boosts along the 2-axis and the 3-axis, respectively:

K2 =

⎛

⎜⎜
⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞

⎟⎟
⎠ , K3 =

⎛

⎜⎜
⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞

⎟⎟
⎠ . (4.57)

By the decomposition theorem every Λ of L↑+ can be written as follows:

Λ = exp(−ϕ · J) exp(λŵ · K) , (4.58)

where J = (J1,J2,J3) , K = (K1,K2,K3) , and λ = arctanh |w|/c.

(iv) It is instructive to compute the commutators of the matrices Ji and Kk as given
by (4.56), (4.57), and (2.71). One finds that

[J1,J2] ≡ J1J2 − J2J1 = J3 , (4.59a)

[J1,K1] = 0 , (4.59b)

[J1,K2] = K3 [K1,J2] = K3 , (4.59c)

[K1,K2] = −J3 . (4.59d)

All other commutators are obtained from these by cyclic permutation of the indices.
One can visualize the meaning of relations (4.59a–d) to some extent by recall-

ing that the Ji and Kk generate infinitesimal transformations. For instance, (4.59a)
tells us that two infinitesimal rotations by the angle ε1 about the 1-axis and by the
angle ε2 about the 2-axis, when inverted in different order, give a net rotation about
the 3-axis, by the angle ε1ε2,

R−1(0, ε2, 0)R−1(ε1, 0, 0)R(0, ε2, 0)R(ε1, 0, 0) = R(0, 0, ε1 · ε2)+ O(ε3
i )

(The reader should work this out).
Equation (4.59b) states that a boost along a given direction is unchanged by

a rotation about the same direction. Equation (4.59c) expresses the fact that the
three matrices (K1,K2,K2) transform under rotations like an ordinary vector in
R

3 (hence the notation in (4.58)).
The commutation relation (4.59d) is the most interesting. If one applies a boost

along the 1-axis, followed by a boost along the 2-axis, and then inverts these trans-
formations in the “wrong” order, there results a pure rotation about the 3-axis. In
order to see this clearly, let us consider

L1 � 1l + λ1K1 + 1
2λ

2
1K2

1 , L2 � 1l + λ2K2 + 1
2λ

2
2K2

2

with λi � 1. To second order in the λi we then obtain

L−1
2 L−1

1 L2L1 � 1l − λ1λ2[K1,K2] = 1l + λ1λ2J3 . (4.60)
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Here is an example that illustrates this result. An elementary particle, say the elec-
tron, carries an intrinsic angular momentum, called spin. Let this particle have the
momentum p0 = 0. The series of Lorentz transformations described above eventu-
ally bring the momentum back to the value p0 = 0. However, the spin is rotated a
little about the 3-axis. This observation is the basis of the so-called Thomas preces-
sion, which is discussed in treatises on special relativity and which has a number
of interesting applications.

4.6 Addition of Relativistic Velocities

The special Galilei transformation (4.34), or the special Lorentz transformation
(4.41), relates the inertial systems K0 and K′, the parameter v being the relative
velocity of the two systems of reference. For example, one may think of K′ as
being fixed in a particle that moves with velocity v relative to an observer who is
placed at the origin of K0. We assume that the absolute value of this velocity is
smaller than the velocity of light, c. Of course, the system of reference K0 can be
replaced with any other one, K1, moving with constant velocity w relative to K0
(|w| being assumed smaller than c, too). What, then, is the special transformation
(the boost) that describes the motion of K′, the particle’s rest system, as observed
from K1?

In the case of the Galilei transformation (4.34) the answer is obvious: K′ moves
relative to K1 with the constant velocity u = v+w. In particular, if v and w are
parallel and if both |v| and |w| exceed c/2, then the magnitude of u exceeds c.

In the relativistic case the law of addition for velocities is different. Without
restriction of generality let us take v along the 1-axis. Let λ be the corresponding
rapidity parameter,

tanh λ = |v|
c
≡ v

c
, or eλ =

√
1 + v/c

1 − v/c
,

so that the transformation between K0 and K′ reads

L(v = vê1) =

⎛

⎜⎜
⎝

cosh λ sinh λ 0 0
sinh λ cosh λ 0 0

0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠ . (4.61)

A case of special interest is certainly the one where w is parallel to v and points
in the same direction, i.e. the one where one boosts twice along the same direction.
L(w = wê1) has the form (4.61), with λ being replaced by the parameter μ, which
fulfills

tanhμ = w

c
, or eμ =

√
1 + w/c

1 − w/c
.
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The product L(wê1)L(vê1) is again a special Lorentz transformation along the 1-
direction. Making use of the addition theorems for hyperbolic functions one finds

L(wê1)L(vê1) =

⎛

⎜⎜
⎝

cosh(λ+ μ) sinh (λ+ μ) 0 0
sinh (λ+ μ) cosh(λ+ μ) 0 0

0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠ ≡ L(uê1) .

From this follows the relation

eλ+μ =
√

1 + u/c

1 − u/c
=

√
(1 + v/c)(1 + w/c)

(1 − v/c)(1 − w/c)
,

which, in turn, yields the rule for addition of (parallel) velocities, viz.

u

c
= v/c + w/c

1 + vw/c2 . (4.62)

This formula has two interesting properties.
(i) If both velocities v and w are small compared to the speed of light, then

u = v + w + O(vw/c2) . (4.63)

Thus, (4.62) reduces to the nonrelativistic addition rule, as expected. The first rel-
ativistic corrections are of order 1/c2.

(ii) As long as v and w are both smaller than c, this holds also for u. If one
of them is equal to c, the other one being still smaller than c, or, if both are equal
to c, then u is equal to c. In no case does u ever exceed c.

When v and w do not point in the same direction matters become a little more
complicated, but the conclusion remains unchanged. As an example, let us consider
a boost along the 1-axis, followed by a boost along the 2-axis. This time we choose
the form (4.37), or (4.41), noting that the parameters γ and β are related by

γi = 1/
√

1 − β2
i or βiγi =

√
γ 2
i − 1 , i = 1, 2 . (4.64)

Multiplying the matrices L(v2ê2) and L(v1ê1) one finds that

Λ ≡ L(v2ê2)L(v1ê1) =

⎛

⎜⎜
⎝

γ1γ2 γ1γ2β1 γ2β2 0
γ1β1 γ1 0 0
γ1γ2β2 γ1γ2β1β2 γ2 0

0 0 0 1

⎞

⎟⎟
⎠ . (4.65)

This transformation is neither a boost (because it is not symmetric) nor a pure
rotation (because Λ0

0 is not 1). Being the product of two boosts it is an element

of L↑+. Therefore, it must be a product of the two kinds of transformations, one
boost and one rotation. The decomposition theorem (Sect. 4.5.1) in the form of
(4.44), when applied to Λ, gives
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Λ = L(u)R(ϕ)

with ui/c = Λi
0/Λ

0
0 = (β1/γ2, β2, 0), while the equations (4.46) for the rotation

give, making use of (4.64),

R11 = R22 = (γ1 + γ2)/(1 + γ1γ2) , R33 = 1 ,

R12 = −R21=−
√
(γ 2

1 − 1)(γ 2
2 − 1)/(1 + γ1γ2) , R

13=R23=0=R31=R32.

Thus, the rotation is about the 3-axis, ϕ̂ = ê3, the angle being

ϕ = − arctan
√
(γ 2

1 − 1)(γ 2
2 − 1)/(γ1 + γ2)

= − arctan

[
β1β2/

(√
1 − β2

1 +
√

1 − β2
2

)]
. (4.66a)

For the velocity u one finds

(u

c

)2 = β2
1 + β2

2 − β2
1β

2
2 =

γ 2
1 γ

2
2 − 1

γ 2
1 γ

2
2

, (4.66b)

so that, indeed, |u| ≤ c. We note that if v and w have arbitrary relative directions
the parameter γ pertaining to u is equal to the product of γ1, γ2, and (1+v·w/c2).
Whenever both γi are larger than 1, then γ is also larger than or equal to 1, and
hence the parameter β pertaining to u is smaller than 1. In other words, |u| never
exceeds c.

These somewhat complicated relationships simplify considerably when all ve-
locities are small compared to the speed of light. In Sect. 4.4.2 we already checked
that the nonrelativistic limit of a special Lorentz transformation L(v) yields pre-
cisely the corresponding special Galilei transformation. If in (4.65) both v1 and v2
are small compared to c, we obtain

u � v1ê1 + v2ê2 ,

ϕ = − arctan

[
v1v2

c2

(

1 + O

(
v2
i

c2

))]

� 0 .

The two velocities add like vectors; the rotation about the 3-axis is the identity. The
induced rotation in (4.66a) is a purely relativistic phenomenon. Locally, i.e. when
expressed infinitesimally, it is due to the commutator (4.59d) that we discussed in
Sect. 4.5.2 (iv).

4.7 Galilean and Lorentzian Space–Time Manifolds

While translations (in space and in time) and rotations (in space) are the same
within the Galilei and Lorentz groups, the special transformations are different, in
an essential way, in the two cases. As a consequence, the space–time manifolds
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equipped with the Galilei group as the invariance group, or alternatively the Lorentz
group, inherit a very different structure. This is what we wish to show in this
section.

We start with the example of a special (or boost) transformation with velocity
w = βc along the 1-axis, understood to be a passive transformation. In the case
of the Galilei group it reads, setting x0 = ct ,

x′0 = x0 , x′2 = x2 ,

x′1 = x1 − βx0 , x′3 = x3 .
(4.67)

(Of course, (4.67) is independent of the speed of light. c is introduced here in view
of the comparison with the relativistic case.) In the case of the Lorentz group it
reads

x′0 = γ [x0 − βx1] , x′2 = x2 ,

x′1 = γ [−βx0 + x1] , x′3 = x3 .
(4.68)

The coordinates xμ refer to the inertial system K; the coordinates x′μ refer to K′,
which moves, relative to K, with the velocity w = βcê1. Suppose we are given
three mass points A,B,C, to which no forces are applied and whose coordinates
at time t = 0 are x(A) = (0, 0, 0), x(B) = x(C) = (Δ, 0, 0), with respect to the
system K. A is assumed to be at rest; B moves with the velocity v = 0.1 cê1;
C moves with the velocity w = βcê1 in the same direction as B. We choose
β = 1/

√
3 � 0.58. All three of them move uniformly along straight lines in the

(x1, t)-plane. After time t = Δ/c, for example, they have reached the positions
A1, B1, C1, respectively, indicated in Figs. 4.3a and b. If one follows the same
motions by placing an observer in the system of reference K′, then in a Lorentz
invariant world the picture will be very different from the one in a Galilei invariant
world.

(i) According to the nonrelativistic equations (4.67), the positions of the three
mass points with respect to K′ and at t ′ = 0 coincide with those with respect to K.
After the time t = Δ/c they have reached the positions A′1, B ′

1, C
′
1, respectively,

shown in Fig. 4.3a. The figure shows very clearly that time plays a special role,
compared to space. Events that are simultaneous with respect to K are observed
by an observer in K′ at the same times, too. As was explained in Sect. 1.14 (ii)
it is not possible to compare spatial positions of points at different times without
knowing the relation (4.67) between the two systems (e.g. comparing A0 with
A1, A′0 = A0 with A′1). However, the comparison of positions taken on at equal
times, is independent of the system of reference one has chosen, and therefore it
is physically meaningful. To give an example, if an observer in K and another
observer in K′ measure the spatial positions of A and C at time t = t ′ = 0, as
well as at any other time t = t ′, they will find that A and C move uniformly along
straight lines and that the difference of their velocities is w = βcê1.

(ii) If the two systems of reference are related by the Lorentz transformation
(4.68), instead of the Galilei transformation (4.67), the observer in K′ sees the or-
bits A′0A′1, B ′

0B
′
1, C′

0C
′
1 as shown in Fig. 4.3b. This figure leads to two important
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Fig. 4.3. Three mass points moving
uniformly, but with different velocities,
along straight lines. They are observed
from two different inertial systems K and
K′. (a) K and K′ are related by a special
Galilei transformation. (b) K and K′ are
related by a special Lorentz transforma-
tion

observations. Firstly, simultaneity of events is now dependent on the system of
reference. The events A0 and B0 = C0, which are simultaneous with respect to
K, lie on the straight line x′0 = −βx′1, when observed from K′, and hence oc-
cur at different times. (Similarly, the events A1, B1 and C1 are simultaneous with
respect to K. In K′ they fall onto the straight line x′0 = −βx′1+γ (1−β2).) Sec-
ondly, Fig. 4.3b shows a new symmetry between x0 and x1, which is not present
in the corresponding nonrelativistic figure (4.3a). The images of the lines t = 0
and x1 = 0, in K′, are symmetric with respect to the bisector of the first quad-
rant. (As we assigned the coordinates (Δ, 0) to B0, (0,Δ) to A1, their images B ′

0
and A′1, respectively, have symmetric positions with respect to the same straight
line, too.)

More generally, what can we say about the structure of Galilean space–time
and of Minkowskian space–time? Both are smooth manifolds with the topology
of R

4. The choice of a coordinate system is usually made with regard to the local
physical processes one wishes to describe and may be understood as the choice
of a “chart” taken from an “atlas” that describes the manifold. (These notions are
given precise definitions and interpretations in Chap. 5.)
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(i) Galilei invariant space–time. In a world where physics is invariant under Galilei
transformations, time has an absolute nature: the statement that two events take
place at the same time is independent of their spatial distance and of the coordi-
nate system one has chosen. Call PG the (four-dimensional) Galilean space–time;
M = Rt the (one-dimensional) time manifold. Suppose first that we choose an ar-
bitrary coordinate system K with respect to which the orbits of physical particles
are described by world lines (t, x(t)). Consider the projection

π : PG → M : (t, x) → t , (4.69)

which assigns its time coordinate t to every point of the world line (t, x) ∈ PG.
Keeping t fixed, the projection π in (4.69) collects all x that are simultaneous. If
x′ and t ′ are the images of these x and the fixed t , respectively, under a general
Galilei transformation

t ′ = t + s , x′ = Rx+ wt + a , (4.70)

then the projection defined in (4.69) again collects all simultaneous events,

π : (t ′, x′) → t ′ .

Thus, the projection has a well-defined meaning, independent of the specific co-
ordinate system one chooses. Consider now an interval I of Rt that contains the
time t . The preimage of I with respect to π has the structure (time interval) ×
(three-dimensional affine space),

π−1 : I → π−1(I ) ∈ PG , isomorphic to I × E
3 . (4.71)

In the terminology of differential geometry this statement and the properties that
π has mean that PG is an affine fibre bundle over the base manifold M = Rt , with
typical fibre E

3. (We do not give the precise definitions here.)
The world line in (4.69) refers to a specific (though arbitrary) observer’s system

K, the observer taking his own position as a point of reference. This corresponds
to the statement that one always compares two (or more) physical events in PG.
The projection (4.69) asks for events, say A and B, which are simultaneous, i.e.
for which tA = tB . This suggests defining the projection in a truly coordinate-free
manner as follows. Let xA = (tA, xA) and xB = (tB, xB) be points of PG. The
projection declares all those points to be equivalent, xA ∼ xB , for which tA = tB .

What else can we say about the structure of PG? If in (4.70) we exlude the
special transformations, by taking w = 0, then there would exist a canonical pro-
jection onto three-dimensional space that would be the same for any choice of
the coordinate system. In this case PG would have the global product structure
Rt × E

3. A fibre bundle that has this global product structure is said to be triv-
ial. However, if we admit the special transformations (w 	= 0) in (4.70), then our
example discussed earlier and the more general case illustrated by Fig. 4.4 show
that the realization of the projection is not independent of the system of reference
one has chosen. Although the bundle
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Fig. 4.4. In Galilean space–time PG, time has an
absolute character. However, the projection onto
the spatial part of PG depends on the system of
reference one chooses

PG(π : PG → M = Rt ,FibreF = E
3) (4.72)

has the local structure Rt × E
3, it is not trivial in the sense defined above.

(ii) Lorentz invariant space–time. The example given by (4.68) and Fig. 4.3b shows
clearly that the space–time endowed with the Lorentz transformations does not
have the bundle structure of Galilean space–time. Neither the projection onto the
time axis nor that onto three-dimensional space can be defined in a canonical way,
i.e. independently of a coordinate system. On the contrary, space and time now
appear as truly equivalent, Lorentz transformations mixing space and time in a
symmetric way.

Not only spatial distances but also time differences now depend on the inertial
system one chooses. (There is a correlation between spatial and time distances,
though, because (x(1)−x(2))

2−(x0
(1)−x0

(2))
2 must be invariant.) As a consequence,

moving scales look shorter, while moving clocks tick more slowly. These are new
and important phenomena to which we now turn.

4.8 Orbital Curves and Proper Time

The example illustrated by Fig. 4.3b reveals a surprising, and at first somewhat
strange, property: a given process of physical motion takes different times, from its
beginning to its end, if it is observed from different systems of reference. In order
to get rid of this dependence on the system of reference, it is helpful to think of the
moving objects A, B, and C as being equipped with their own clocks and, if they
are extended objects, with their own measuring scales. This is useful because then
we can compare their intrinsic data with the data in other systems of reference. In
particular, if the motion is uniform and along a straight line, the comoving systems
of reference are inertial and the comparison becomes particularly simple.

In the case of arbitrary, accelerated motion, the best approach is to describe
the orbit curve in a geometrical, invariant manner, by means of a Lorentz-invariant
orbital parameter. In other words one writes the world line of a mass point in the
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form x(τ), where τ is the arc length of this world line. τ is an orbital parameter
that is independent of any system of reference. Of course, instead of the dimen-
sion length, we could give it the dimension time, by multiplication with 1/c. The
function x(τ) describes the spatial and temporal evolution of the motion, in a ge-
ometrically invariant way. If τ is given the dimension of time, by multiplication
with an appropriate constant with dimensions, one can understand τ to be the time
shown by a clock that is taken along in the motion. For this reason, τ is called
the proper time.

Note, however, that the world line x(τ) cannot be completely arbitrary. The
particle can only move at velocities that do not exceed the speed of light. This
is equivalent to the requirement that there must exist a momentary rest system
at any point of the orbit. If we choose an arbitrary inertial system of reference,
x(τ) has the representation x(τ) = (x0(τ ), x(τ )). Given x(τ) the velocity vector
ẋ = (ẋ0, ẋ)T is defined by

ẋμ
def= d

dτ
xμ(τ) . (4.73)

In order to satisfy the requirement stated above, this vector must always be time-
like (or lightlike), i.e. (ẋ0)2 ≥ ẋ2. If this is fulfilled, then the following statement
also holds true: if ẋ0 = dx0/dτ > 0 holds in one point of the orbit, then this holds
everywhere along the whole orbit. (Figure 4.5 shows an example of a physically
possible orbital curve in space–time.) Finally, one can parametrize the orbital pa-
rameter τ in such a way that the (invariant) norm of the vector (4.73) always has
the value c:

ẋ2 ≡ ẋμgμνẋ
ν = c2 . (4.74)

For a given value of the parameter τ = τ0, ẋ at the world point (τ0, x(τ0)) can be
brought to the form ẋ = (c, 0, 0, 0) by means of a Lorentz transformation. Thus,

Fig. 4.5. Example of a physically allowed world
line. At any point of the orbit the velocity vector
is timelike or lightlike (i.e. in the diagram its
slope is greater than or equal to 45◦)
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this transformation leads to the momentary rest system of the particle, and we have

dx0

dτ
= c , i.e. dτ = 1

c
dx0 = dt (at τ = τ0) . (4.75)

Note that ẋ is precisely the vector ω of (4.42) and that the transformation to the
rest system is precisely the one given in (4.43).

The result (4.75) can be interpreted in the following way. If the particle carries a
clock along its orbit, this clock measures the proper time τ . Read as a geometrical

variable, τ is proportional to the length of arc, s
def= cτ . This is so because the

invariant (squared) line element ds2 is given by

ds2 = c2dτ 2 = dxμgμνdxν = c2(dt)2 − (dx)2 . (4.76)

This expression emphasizes again the role of gμν as the metric tensor.

4.9 Relativistic Dynamics

4.9.1 Newton’s Equation

Let K be an inertial system of reference and let a particle move with (momentary)
velocity v relative to K. Further, let K0 be the rest system of the particle, the
axes of K0 being chosen parallel to those of K. The relation between the two
systems is then given by the special Lorentz transformation (4.41), with velocity
v, as indicated in the following:

K0
L(−v)
�
L(v)

K . (4.77)

In trying to generalize Newton’s second law (1.8) to relativistic dynamics, we must
take care of two conditions.

(i) The postulated relation between the generalized acceleration d2x(τ)/dτ 2 and
the relativistic analog of the applied force must be form invariant with respect
to every proper, orthochronous Lorentz transformation. An equation of mo-
tion that is form invariant (i.e., loosely speaking, both sides of the equation
transform in the same way), is also said to be covariant. Only if it obeys this
condition will the equation of motion describe the same physics, independent
of the reference system in which it is formulated.

(ii) In the rest system of the particle, as well as in cases where the velocities are
small compared to the speed of light, |v| � c, the equation of motion becomes
Newton’s equation (1.8).

Let m be the mass of the particle as one knows it from nonrelativistic mechanics.
The observation that this quantity refers to the rest system of the particle suggests
that we should regard it as an intrinsic property of the particle that has nothing to
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do with its momentary state of motion. For this reason, this quantity is said to be
the rest mass of the particle. In the case of elementary particles the rest mass is
one of the fundamental properties characteristic of the particle. For example, the
electron has the rest mass

me = (9.109 382 15 ± 0.000 00045)× 10−31 kg ,

while the muon, which otherwise has all the properties of the electron, is charac-
terized by its rest mass being heavier, viz.

mμ � 206.77me .

Very much like proper time τ , the rest mass m is a Lorentz scalar. Therefore, with
the following form for the generalized equation of motion:

m
d 2

dτ 2 x
μ(τ) = f μ , (4.78)

the left-hand side is a four-vector under Lorentz transformations. Condition (i)
states that f μ must be a four-vector as well. If this is so, we can write down
the equation of motion (4.78) in the rest system K0, where we can make use of
the second condition (ii). With respect to K0 and by (4.75), dτ = dt . Hence the
left-hand side of (4.78) reads

m
d 2

dτ 2 x
μ(τ)

∣∣∣∣
K0

= m

(
d

dt
c,

d 2

dt2
x

)
= m(0, ẍ) .

Condition (ii) imposes the requirement

f μ|K0 = (0,K) ,

where K is the Newtonian force. We calculate f μ with respect to the inertial system
K, as indicated in (4.77):

f μ|K =
3∑

ν=0

Lμν(v)f
ν |K0 . (4.79)

Writing this out in space and time components, we have

f = K + γ 2

1 + γ

1

c2 (v ·K)v ,

f 0 = γ
1

c
(v ·K) = 1

c
(v · f ) , (4.80)

where we have used the relationship β2 = (γ 2 − 1)/γ 2. Thus, the covariant force
f μ is nothing but the Newtonian force (0,K), boosted from the rest system to K.
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4.9.2 The Energy–Momentum Vector

The equation of motion (4.78) obtained above suggests defining the following rel-
ativistic analog of the momentum p:

pμ
def= m

d

dτ
xμ(τ) . (4.81)

When evaluated in the rest system this takes the form

pμ|K0 = (mc, 0) .

If it is boosted to the system K, as in (4.79), it becomes

pμ|K = (γmc, γmv) . (4.82)

The same result can be obtained in an alternative way. From (4.76) we see that
dτ along an orbit is given by

dτ =
√
(dt)2 − (dx)2/c2 =

√
1 − β2dt = dt/γ .

Equation (4.81), on the other hand, when evaluated in K, gives

p0 = mγ
d

dt
(ct) = mcγ , (4.82a)

p = mγ
d

dt
x = mγ v . (4.82b)

The Lorentz scalar parameter m is the rest mass of the particle. It takes over the
role of the well-known mass parameter of nonrelativistic mechanics whenever the
particle is at rest or moves at small velocities. Note that the nonrelativistic relation
p = mv is replaced by (4.82b), i.e. the mass is replaced by the product of the rest
mass m and γ . For this reason the product

m(v)
def= mγ = 1

√
1 − v2/c2

m

is sometimes interpreted as the moving, velocity-dependent mass. It is equal to the
rest mass for v = 0 but tends to (plus) infinity when |v| approaches the speed of
light, c. As stated in Sect. 1.4 it is advisable to avoid this interpretation.

The time component of the four-vector pμ, when multiplied with c, has the
dimension of energy. Therefore, we write

pμ =
(

1

c
E,p

)
with E = γmc2 , p = γmv . (4.83)

This four-vector is said to be the energy–momentum vector. Clearly, its squared
norm is invariant under Lorentz transformations. It is found to have the value
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p2 ≡ (p, p) = (p0)2 − p2 = 1

c2E
2 − p2 = m2c2 .

This last equation yields the important relativistic relationship

E =
√

p2c2 + (mc2)2 (4.84)

between the energy E and the momentum p of a free particle. This is the relativistic
generalization of the energy–momentum relation we anticipated in (4.7). If p = 0,
then E = mc2. The quantity mc2 is called the rest energy of the particle with mass
m. Thus, E always contains this contribution, even when the momentum vanishes.
Consequently, the kinetic energy must be defined as follows:

T
def= E −mc2 . (4.85)

The first test, of course, is to verify that the well-known relation T = p2/2m is
obtained from (4.85) for small velocities. Indeed, for β � 1,

T � p2

2m

(
1 − p2

4m2c2

)
= Tnonrel − (p2)2

8m3c2 .

Clearly, only a complete dynamical theory can answer the questions raised in
Sect. 4.1. Nevertheless, the relativistic equation opens up possibilities that were not
accessible in nonrelativistic mechanics, and that we wish at least to sketch. Any
theory of interactions between particles that is invariant under Lorentz transforma-
tions contains the equation (4.84) for free particles. The following consequences
can be deduced from this relation between energy and momentum.

(i) Even a particle at rest has energy, E(v = 0) = mc2, proportional to its mass.
This is the key to understanding why a massive elementary particle can decay into
other particles such that its rest energy is converted, partially or entirely, into kinetic
energy of the decay products. For example, in the spontaneous decay of a positively
charged pion into a positively charged muon and a neutrino,

π+(mπ = 273.13me)→ μ+(mμ = 206.77me)+ ν(mν � 0) ,

about one fourth of its rest mass, namely ((mπ − mμ)/mπ)mπc
2, is found in

the form of kinetic energy of the μ+ and the ν. This is calculated as follows.
Let (Eq/c, q), (Ep/c,p), and (Ek/c, k) denote the four-momenta of the pion, the
muon, and the neutrino, respectively. The pion being at rest before the decay (cf.
Fig. 4.6) we have

qμ =
(
Eq

c
, q

)
= (mπc, 0) , Ep =

√
(mμc2)2 + p2c2 ; Ek = |k|c .

Fig. 4.6. A positively charged pion at rest decays into
a (positively charged) muon and an (electrically neutral)
neutrino
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By conservation of energy and momentum

qμ = pμ + kμ , k = −p , and

mπc
2 =

√
(mμc2)2 + p2c2 + |p|c .

This allows us to compute the absolute value of the momentum p or k, viz.

|p| = |k| = m2
π −m2

μ

2mπ

c = 58.30mec .

Therefore, the kinetic energy of the neutrino is T (ν) = Ek = 58.30mec
2, while

that of the muon is

T (μ) = Ep −mμc
2 = 8.06mec

2 .

Thus, T (μ) + T (ν) = 66.36mec
2 � 0.243mπc

2, as asserted above. The lion’s
share of this kinetic energy is carried away by the neutrino, in spite of the fact
that muon and neutrino have equal and opposite momenta. On the other hand, the
muon shares the major part of the total energy, namely Ep = 214.8mec

2, because
it is massive.

(ii) In contrast to nonrelativistic mechanics, the transition to vanishing rest mass
poses no problems. For m = 0 we have E = |p|c and pμ = (|p|,p). A particle
without mass nevertheless carries both energy and momentum. Its velocity always
has magnitude c, cf. (4.82), no matter how small p is. However, it does not have
a rest system. There is no causal way of following the particle and of “catching
it up” because the boosts diverge for |v| → c.

We already know an example of massless elementary particles: the photons.
Photons correspond to the elementary excitations of the radiation field. As they are
massless, one is led to conjecture that the theory of the electromagnetic radiation
field cannot be based on nonrelativistic mechanics. Rather, this theory (which is the
subject of electrodynamics) must be formulated within a framework that contains
the speed of light as a natural limit for velocities. Indeed, Maxwell’s theory of
electromagnetic phenomena is invariant under Lorentz transformations. Neutrinos
some of which have nonvanishing though very small masses, can often be treated
as being massless.

We now summarize the findings of this section. The state of a free particle of
rest mass m is characterized by the energy–momentum four-vector pμ = (E/c,p),
whose norm is invariant and for which

p2 = 1

c2E
2 − p2 = m2c2 .

We note that this four-vector is always timelike, or lightlike if m = 0. If, as shown
in Fig. 4.7, we plot the time component p0 as the ordinate, the space components
(symbolically) as the abscissa, pμ is found to lie on a hyperboloid. As the energy
E must be positive, only the upper part of this hyperboloid is relevant. The sur-
face obtained in this way is said to be the mass shell of the particle with mass
m. It describes either all physically possible states of the free particle, or, alter-
natively, a fixed state with energy–momentum pμ as observed from all possible
inertial systems of references.
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Fig. 4.7. Schematic representation of energy and momen-
tum of a particle. The points (p0 = E/c,p) lie on the
upper half of the hyperboloid

4.9.3 The Lorentz Force

A charged particle traversing external electric and magnetic fields at velocity v

experiences the Lorentz force (2.29) or (1.49) that we discussed in the context
of nonrelativistic dynamics. Here we wish to derive the corresponding relativistic
equation of motion (4.78) in a covariant formulation.

With respect to an inertial system of reference, where ẋ = (γ c, γ v)T and
d/dτ = γ d/dt , the spatial part of (4.78) reads

γ
d

dt
p = mγ

d

dt
(γ v) = γ e

(
E + 1

c
v× B

)
. (4.86)

First we show that its time component follows from (4.86) and is given by

mγ
d

dt
(γ c) = γ

e

c
E · v . (4.87)

This is seen as follows. Calculating the scalar product of (4.86) and v/c, its right-
hand side becomes γ e/cE · v. Thus, one obtains

γ
e

c
E · v = mγ

v

c

d

dt
(γ v) = mcγβ

d

dt
(γβ)

= mc
1

2

d

dt
(γβ)2 = mc

1

2

d

dt
(γ 2β2) ,

where we set β = v/c. As

γ 2β2 = β2

1 − β2 = γ 2 − 1 ,

we find

γ
e

c
E · v = mc

1

2

d

dt
γ 2 = mcγ

d

dt
γ
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which proves (4.87). Next we show that (4.86) and (4.87) can be combined to a
covariant equation of motion, with u ≡ ẋ:

m
d

dτ
uμ = e

c
Fμνuν . (4.88)

This means that the relativistic form of the Lorentz force is

Kμ = e

c
Fμνuν . (4.89)

Here, Fμν is a tensor with respect to Lorentz transformations. It is antisymmetric,
Fνμ = −Fμν , because, with uμu

μ = const., (4.88) implies that uμFμνuν = 0.
In an arbitrary inertial system it is given by

Fμν =

⎛

⎜
⎜
⎝

0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

⎞

⎟
⎟
⎠ . (4.90)

The requirement that Fμν yield the Lorentz force fixes this tensor uniquely. To
prove this, we note that uν (with a lower index) is uν = gνσ u

σ = (γ c,−γ v) and
work out the multiplication on the right-hand side of (4.89). This indeed gives
(4.86) and (4.87).

The relativistic Lorentz force has a form that differs from the Newtonian force
of Sect. 4.9.1. It is not generated by “boosting” a Newtonian, velocity-independent
force but is the result of applying the tensor (4.90) to the velocity uμ. This tensor,
which is antisymmetric, is said to be the tensor of field strenghts. Its time–space
and space–time components are the components of the electric field,

F i0 = −F 0i = Ei , (4.91a)

while its space–space components contain the magnetic field according to

F 21 = −F 12 = B3 (and cyclic permutations). (4.91b)

The covariant form (4.88) of the equation of motion for a charged particle in elec-
tric and magnetic fields shows that these fields cannot be the space components
of four-vectors. Instead, they are components of a tensor over Minkowski space
M4, as indicated in (4.90) or (4.91). This means, in particular, that electric and
magnetic fields are transformed into each other by special Lorentz transformations.
For example, a charged particle that is at rest with respect to an observer gener-
ates a static (i.e. time-independent), spherically symmetric electric field. If, on the
other hand, the particle and the observer move at a constant velocity v relative to
each other, the observer will measure both electric and magnetic fields. (See e.g.
Jackson 1998, Sect. 11.10.)
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4.10 Time Dilatation and Scale Contraction

Suppose we are given a clock that ticks at regular and fixed time intervals Δt

and that we wish to read from different inertial systems. This idea is meaningful
because precise measurements of time are done by measuring atomic or molecu-
lar frequencies and comparing them with reference frequencies. Such frequencies
are internal properties of the atomic or molecular system one is using and do not
depend on the state of motion of the system.

For an observer who sees the clock at rest with respect to his inertial system,
two consecutive ticks are separated by the space–time interval {dx = 0, dt = Δt}.
Using this data, he calculates the invariant interval of proper time with the result

dτ =
√
(dt)2 − (dx)2/c2 = Δt .

Another observer who moves with constant velocity relative to the first observer,
and therefore also relative to the clock, sees that consecutive ticks are separated
by the space–time interval {Δt ′,Δx′ = vΔt ′}. From his data he calculates the
invariant interval of proper time to be

dτ ′ =
√
(Δt ′)2 − (Δx′)2/c2 =

√
1 − β2Δt ′ .

As proper time is Lorentz invariant, we have dτ ′ = dτ . This means that the sec-
ond observer (for whom the clock is in motion) sees the clock tick with a longer
period, given by

Δt ′ = Δt
√

1 − β2
= γΔt . (4.92)

This is the important phenomenon of time dilatation: for an observer who sees
the clock in motion, it is slower than at rest, i.e. it ticks at time intervals that are
dilated by a factor γ . In Example (iii) of Sect. 4.1 we discussed a situation where
time dilatation was actually observed. The experiment quoted there confirms the
effect predicted in (4.92) with the following accuracy: the difference Δt −Δt ′/γ
is zero within the experimental error bar

τ (0)(μ)− τ (v)(μ)/γ

τ (0)(μ)
= (0.2 ± 0.9)× 10−3 .

Another, closely related effect of special Lorentz transformations is the scale
or Fitzgerald–Lorentz contraction that we now discuss. It is somewhat more dif-
ficult to describe than time dilatation because the determination of the length of a
scale requires, strictly speaking, the measurement of two space points at the same
time. As such points are separated by a spacelike distance, this cannot be a causal,
and hence physical, measurement. A way out of this problem would be to let two
scales of equal length move towards each other and to compare their positions at
the moment they overlap. Alternatively, we may use the following simple argument.
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Suppose there are two landmarks at the space points

x(A) = (0, 0, 0) and x(B) = (L0, 0, 0) ,

where the coordinates refer to the inertial system K0. Because we want to mea-
sure their spatial distance, we ask an observer to make a journey from A to B,
as shown in Fig. 4.8, with constant velocity v = (v, 0, 0), and, of course, v < c.
As seen from K0 he departs from A at time t = 0 and reaches the landmark B

at time t = T0, B having moved to C during this time in our space–time diagram
(Fig. 4.8). In the case of Galilei transformations, i.e. for nonrelativistic motion, we
would conclude that the distance is

L0 ≡ |x(B) − x(A)| = vT0 .

Fig. 4.8. An observer traveling at constant velocity deter-
mines the distance from A to B. He finds L = L0/γ

In the relativistic, Lorentz-invariant world we find a different result. When the
traveler reaches C, his own, comoving clock shows the time T = T0/γ , with
γ = (1 − v2/c2)−1/2. Thus, he concludes that the length separating A and B is

L = vT = vT0/γ = L0/γ . (4.93)

In other words, the scale AB that moves relative to the traveling observer (with
velocity −v) appears to him contracted by the factor 1/γ . This is the phenomenon
of scale contraction, or Fitzgerald–Lorentz contraction.

One easily understands that scales oriented along the 2-axis or the 3-axis, or
any other direction in the (2,3)-plane, remain unchanged and do not appear con-
tracted. Therefore, the phenomenon of scale contraction means, more precisely,
that an extended body that moves relative to an inertial system appears contracted



4.11 More About the Motion of Free Particles 281

in the direction of its velocity v only. The spatial dimensions perpendicular to v

remain unmodified.
The book by Ellis and Williams (1994) contains an elementary but well il-

lustrated discussion of time dilatation and scale contraction as well as the appar-
ent paradoxes of special relativity. Although it was written for laymen, as Ruth
Williams told me, it seems to me that this book is not only entertaining but also
useful for the reader who wishes to get a better feeling for time and space in special
relativity.

4.11 More About the Motion of Free Particles

By definition, the state of motion of a free particle is characterized by its relativistic
energy–momentum vector (4.83) being on its mass shell,

p2 = E2/c2 − p2 = m2c2 . (4.94)

We wish to describe this relativistic motion without external forces by means of
the methods of canonical mechanics. As we are dealing with free motion in a flat
space, the solutions of Hamilton’s variational principle will be just straight lines
in the space–time continuum. Therefore, we assume the action integral (2.27) to
be given by the path integral between two points A and B in space–time, where
A and B are timelike relative to each other:

I [x] = K

∫ B

A

ds , with (x(B) − x(A))2 > 0 . (4.95)

As we showed in Sect. 2.36, the action integral is closely related to the generating
function S∗, which satisfies the equation of Hamilton and Jacobi. Assuming the
solutions to be inserted in (4.95), we have

S∗ = K

∫ B

A

ds . (4.96)

Here the quantity K is a constant whose dimension is easy to determine: the action
has the dimension (energy × time) and s has the dimension (length). Therefore,
K must have the dimension (energy/velocity), or, equivalently, (mass × velocity).
On the other hand, I or S∗ must be Lorentz invariant. The only invariant param-
eters, but those with dimension, are the rest mass of the particle and the velocity
of light. Thus, up to a sign, K is the product mc. In fact, as we show below, the
correct choice is K = −mc.

With respect to an arbitrary, but fixed, inertial system we have ds = c dτ =√
1 − v2/c2c dt , with v = dx/dt . Thus,

I = −mc2
∫ t (B)

t(A)

√
1 − v2/c2dt ≡

∫ t (B)

t(A)
L dt .
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This yields the (natural form of) the Lagrangian function whose Euler–Lagrange
equations describe relativistic free motion. Expanding this Lagrangian function in
terms of v/c, we find the expected nonrelativistic form

L = −mc2
√

1 − v2/c2 � −mc2 + 1
2mv2 , (4.97)

to which the term −mc2 is added. The form (4.97) for the Lagrangian function is
not quite satisfactory because it refers to a fixed inertial system and therefore is not
manifestly invariant. The reason for this is that we introduced a time coordinate.
The time variable, being the time component of a four-vector, is not invariant. If
instead we introduce some other, Lorentz-invariant parameter τ (we give it the
dimension of time), then (4.95) reads

I = −mc
∫ t (B)

t(A)
dτ

√
dxα

dτ

dxα
dτ

, (4.98)

so that the invariant Lagrangian function reads

Linv = −mc
√

dxα

dτ

dxα
dτ

= −mc
√
ẋ2 , (4.99)

where ẋα = dxα/dτ . One realizes again the ẋ2 must be positive, i.e. that ẋ must
be timelike. The Euler–Lagrange equations that follow from the action (4.98) are

∂Linv

∂xα
− d

dτ

∂Linv

∂ẋα
= 0 ,

and hence

d

dτ

mcẋα√
ẋ2

= 0 .

Here the momentum canonically conjugate to xα is

pα = ∂Linv

∂ẋα
= −mc ẋα√

ẋ2
. (4.100)

It satisfies the constraint

p2 −m2c2 = 0 . (4.101)

If we now attempt to construct the Hamiltonian function, following the rules of
Chap. 2, we find that

H = ẋαpα − Linv = mc
[
−ẋ2/

√
ẋ2 +

√
ẋ2

]
= 0 .

The essential reason the Hamiltonian function vanishes is that the description of
the motion as given here contains a redundant degree of freedom, namely the time
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coordinate of ẋ. The dynamics is contained in the constraint (4.101). One also re-
alizes that the Legendre transformation from Linv to H cannot be performed: the
condition for this transformation to exist,

det

(
∂2Linv

∂ẋβ∂ẋα

)
	= 0 ,

is not fulfilled. Indeed, calculating the matrix of second derivatives, one obtains

∂2Linv

∂ẋβ∂ẋα
= − mc

(ẋ2)3/2 [ẋ2gαβ − ẋαẋβ ] .

The following argument shows that the determinant of this matrix vanishes. Define

Aαβ
def= ẋ2gαβ − ẋαẋβ .

The homogeneous system of linear equations Aαβu
β = 0 has a nontrivial solution

precisely if det A = 0. Therefore, if we can find a nonvanishing uβ 	= (0, 0, 0, 0)
that is solution of this system, then the determinant of A vanishes. There is indeed
such a solution, namely uβ = cẋβ , because for any ẋβ 	= 0

Aαβẋ
β = ẋ2ẋα − ẋ2ẋα = 0 .

For the first time we meet here a Lagrangian system that is not equivalent to a
Hamiltonian system, in a canonical way. In fact, this is an example for a Lagrangian
(or Hamiltonian) system with constraints whose analysis must be discussed sepa-
rately.

In the example discussed above, one could proceed as follows. At first one
ignores the constraint (4.101) but introduces it into the Hamiltonian function by
means of a so-called Lagrangian multiplier. With H as given above, we take

H ′ = H + λΨ (p) , with Ψ (p)
def= p2 −m2c2 ;

λ denoting the multiplier. The coordinates and momenta satisfy the canonical Pois-
son brackets

{xα, xβ} = 0 = {pα, pβ} ; {pα, xβ} = δαβ .

The canonical equations read

ẋα = {H ′, xα} = {λ, xα}Ψ (p)+ λ{Ψ (p), xα}
= λ{p2 −m2c2, xα} = λ{p2, xα} = 2λpα ,

ṗα = {H ′, pα} = {λ, pα}Ψ (p) = 0 ,

where we made use of the constraint Ψ (p) = 0. With pα and ẋα being related by
(4.100), we deduce λ = −√ẋ2/2mc. The equation of the motion is the same as
above, ṗα = 0.
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4.12 The Conformal Group

In Sect. 4.3 we argued that the laws of nature that apply to massive particles al-
ways involve quantities with dimensions and therefore cannot be scale invariant.
As a consequence, the transformation law (4.23) must hold with condition (4.24)
and the choice α = 1. In a world in which there is only radiation, this restric-
tion does not apply because radiation fields are mediated by massless particles
(quanta). Therefore, it is interesting to ask about the most general transformations
that guarantee the invariance of the form

z2 = 0 with z = xA − xB and xA, xB ∈ M4 .

The Poincaré transformations that we had constructed for the case α = 1 certainly
belong to this class. As we learnt in Sect. 4.4, the Poincaré transformations form
a group that has 10 parameters. If only the invariance of z2 = 0 is required, then
there are two more classes of transformations. These are the dilatations

x′μ = λxμ with λ ∈ R ,

which depend on one parameter and which form a subgroup by themselves. Ob-
viously, they are linear.

One can show that there is still another class of (nonlinear) transformations
that leave the light cone invariant. They read (see Exercise 4.15)

xμ → x′μ = xμ + x2cμ

1 + 2(c · x)+ c2x2 . (4.102)

They depend on four real parameters and are said to be special conformal transfor-
mations. They form a subgroup, too: the unit is given by cμ = 0; the composition
of two transformations of the type (4.102) is again of the same type, because

x′μ = xμ + x2cμ

σ(c, x)
with σ(c, x)

def= 1 + 2(c · x)+ c2x2 ,

x′2 = x2

σ(c, x)
,

and

x′′μ = x′μ + x′2dμ

σ(d, x′)
= xμ + x2(cμ + dμ)

σ (c + d, x)
.

Finally, the inverse of (4.102) is given by the choice dμ = −cμ. Thus, one dis-
covers the conformal group over Minkowski space M4. This group has

10 + 1 + 4 = 15

parameters. It plays an important role in field theories that do not contain any
massive particle.



5. Geometric Aspects of Mechanics

In many respects, mechanics carries geometrical structures. This could be felt very
clearly at various places in the first four chapters. The most important examples
are the structures of the space–time continua that support the dynamics of non-
relativistic and relativistic mechanics, respectively. The formulation of Lagrangian
mechanics over the space of generalized coordinates and their time derivatives,
as well as of Hamilton–Jacobi canonical mechanics over the phase space, reveals
strong geometrical features of these manifolds. (Recall, for instance, the symplec-
tic structure of phase space and Liouville’s theorem.) To what extent mechanics
is of geometric nature is illustrated by the fact that, historically, it gave important
impulses to the development of differential geometry. In turn, the modern formula-
tion of differential geometry and of some related mathematical disciplines provided
the necessary tools for the treatment of problems in qualitative mechanics that are
the topic of present-day research. This provides another impressive example of
cross-fertilization of pure mathematics and theoretical physics.

In this chapter we show that canonical mechanics quite naturally leads to a
description in terms of differential geometric notions. We develop some of the ele-
ments of differential geometry and formulate mechanics by means of this language.
For lack of space, however, this chapter cannot cover all aspects of the mathemat-
ical foundations of mechanics. Instead, it offers an introduction with the primary
aim of motivating the necessity of the geometric language and of developing the
elements up to a point from where the transition to the mathematical literature on
mechanics (see the list of references) should be relatively smooth. This may help
to reduce the disparity between texts written in a more physics-oriented language
and the modern mathematical literature and thus to encourage the beginner who
has to bridge the gap between the two. At the same time this provides a starting
point for catching up with recent research developments in modern mechanics.

As a final remark, we note that studying the geometric structure of mechanics,
over the last decades, has become important far beyond this discipline. Indeed,
we know today that all fundamental interactions of nature carry strong geomet-
ric features. Once again, mechanics is the door to, and basis of, all of theoretical
physics. In studying these geometric aspects of the fundamental interactions, we
will, at times, turn back to mechanics where many of the essential building blocks
are developed in a concrete and well understood framework.

F. Scheck, Mechanics, Graduate Texts in Physics, 5th ed.,
DOI 10.1007/978-3-642-05370-2_5, © Springer-Verlag Berlin Heidelberg 2010
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5.1 Manifolds of Generalized Coordinates

In Sect. 2.11 we showed that every diffeomorphic mapping of coordinates {q
˜
} onto

new coordinates {q
˜
′}

G : {q
˜
} → {q

˜
′} : qi = gi(q˜

′, t), q̇
˜
=

f∑

k=1

∂gi

∂q ′k
q̇ ′k +

∂gi

∂t
(5.1)

leaves the equations of motion form invariant. This means, except for purely prac-
tical aspects, any choice of a set of generalized coordinates {q

˜
} is as good as any

other that is related to the first in a one-to-one and differentiable manner. The phys-
ical system one wishes to describe is independent of the specific choice one makes,
or, more loosely speaking, “the physics is the same”, no matter which coordinates
one employs. It is obvious that the transformation must be uniquely invertible, or
one-to-one, as one should not loose information in either direction. The number
of independent degrees of freedom must be the same. Similarly, it is meaningful
to require the mapping to be differentiable because we do not want to destroy or
to change the differential structure of the equations of motion.

Any such choice of coordinates provides a possible, specific realization of the
mechanical system. Of course, from a practical point of view, there are appropri-
ate and inappropriate choices, in the sense that the coordinates may be optimally
adapted to the problem because they contain as many cyclic coordinates as possi-
ble, or, on the contrary, may be such that they inhibit the solution of the equations
of motion. This comment concerns the actual solution of the equations of motion
but not the structure of the coordinate manifold into which the mechanical system
is embedded.

In mechanics a set of f generalized coordinates arises by constraining an ini-
tial set of degrees of freedom by a number of independent, holonomic constraints.
For instance, the coordinates of a system of N particles that are initially elements
of an R

3N are constrained by Λ = 3N − f equations, in such a way that the f

independent, generalized coordinates, in general, are not elements of an R
f . Let

us recall two examples for the sake of illustration.
(i) The plane mathematical pendulum that we studied in Sects. 1.17.2 and 2.30,

Example (ii) has one degree of freedom. The natural choice for a generalized co-
ordinate is the angle measuring the deviation from the vertical, q ≡ ϕ. As this
coordinate takes values in the interval [−π,+π ], with q = π and q = −π to be
identified, it is an element of the unit circle S1. The coordinate manifold is the S1,
independent of how we choose q. (For instance, if we choose the arc q = s = lϕ, s
is defined on the circle with radius l. This circle is topologically equivalent to S1.)

(ii) The coordinate manifold of the rigid body (Chap. 3) provides another ex-
ample. Three of the six generalized coordinates describe the unconstrained motion
of the center of mass and are therefore elements of a space R

3. The remaining
three describe the spatial orientation of the top with respect to a system of ref-
erence whose axes have fixed directions in space. They are angles and belong
to the manifold of the rotation group SO(3). As we learnt earlier, this manifold
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can be parametrized in different ways: for instance, by the direction about which
the rotation takes place and by the angle of rotation (n̂, ϕ), or, alternatively, by
three Eulerian angles (θ1, θ2, θ3), using one or the other of the definitions given in
Sects. 3.9 and 3.10. We shall analyze the structure of this manifold in more detail
below, in Sect. 5.2.3. Already at this point it seems plausible that it will turn out
to be rather different from a three-dimensional Euclidean space and that we shall
need further tools of geometry for its description.

Fig. 5.1. Velocity field in the space of coordinates
and their time derivatives for the one-dimensional
harmonic oscillator

Actual solutions of the equations of motion q
˜
(t, t0, q˜ 0) = Φt,t0(q˜ 0) (cf.

Sect. 1.20) are curves in the manifold Q of coordinates. In this sense Q is the
physical space that carries the real motion. However, in order to set up the equa-
tions of motion and to construct their solutions, we also need the time derivatives
dq
˜
/dt ≡ q̇

˜
of the coordinates as well als Lagrangian functions L(q

˜
, q̇
˜
, t) over

the space M of the q
˜

and the q̇
˜
. The Lagrangian function is to be inserted into

the action integral I [q
˜
], functional of q

˜
(t), from which differential equations of

second order in time follow via Hamilton’s variational principle (or some other
extremum principle). For example, for f = 1 the physical solutions can be con-
structed piecewise if one knows the velocity field. Figure 5.1 shows the example
of the harmonic oscillator and its velocity field (cf. also Sect. 1.17.1). More gen-
erally, this means that we shall have to study vector fields over M , and hence the
tangent spaces TxQ of the manifold Q, for all elements x of Q.

A similar remark applies to the case where, instead of the variables (q
˜
, q̇
˜
), we

wish to make use of the phase-space variables (q
˜
, p
˜
). We recall that p

˜
was defined

to be the partial derivative of the Lagrangian function by q
˜
,

pi
def= ∂L

∂q̇i
. (5.2)

L being a (scalar) function on the space of the q
˜

and the q̇
˜

(it maps this space
onto the real number), i.e. on the union of tangent spaces TxQ, definition (5.2)
leads to the corresponding dual spaces T ∗x Q, the so-called cotangent spaces.
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These remarks suggest detaching the mechanical system one is considering
from a specific choice of generalized coordinates {q

˜
} and to choose a more ab-

stract formulation by defining and describing the manifold Q of physical motions
in a coordinate-free language. The choice of sets of coordinates {q

˜
} or {q

˜
′} is

equivalent to describing Q in terms of local coordinates, or, as one also says, in
terms of charts. Furthermore, one is led to study various geometric objects living
on the manifold Q, as well as on its tangent spaces TxQ and cotangent spaces
T ∗x Q. Examples are Lagrangian functions that are defined on the tangent spaces
and Hamiltonian functions that are defined on the cotangent spaces, both of which
give real numbers.

Fig. 5.2. Physical motion takes place in
the coordinate manifold Q. The Lagrangian
function and the Hamiltonian function
are defined on the tangent and cotangent
spaces, respectively

Figure 5.2 shows a first sketch of these interrelationships. As we shall learn
below, there are many more geometric objects on manifolds other than functions
(which are mappings to the reals). An example that we met earlier is vector fields
such as the velocity field of a flow in phase space. In order to awake the reader’s
curiosity, we just remind him of the Poisson brackets, defined on T ∗x Q, and of the
volume form that appears in Liouville’s theorem.

An example of a smooth manifold, well known from linear algebra and from
analysis, is provided by the n-dimensional Euclidean space R

n. However, Eu-
clidean spaces are not sufficient to describe general and nontrivial mechanical sys-
tems, as is demonstrated by the examples of the coordinate manifolds of the plane
pendulum and of the rigid body. As we shall see, the union of all tangent spaces

TQ
def= {TxQ|x ∈ Q} (5.3)

and the union of all cotangent spaces

T ∗Q def= {T ∗x Q|x ∈ Q} (5.4)

are smooth manifolds. The former is said to be the tangent bundle, the latter the
cotangent bundle. Suppose then that we are given a conservative mechanical sys-
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tem, or a system with some symmetry. The set of all solutions lie on hypersurfaces
in 2f -dimensional space that belong to fixed values of the energy or are charac-
terized by the conserved quantities pertaining to the symmetry. In general, these
hypersurfaces are smooth manifolds, too, but cannot always be embedded in R

2f .
Thus, we must learn to describe such physical manifolds by mapping them, at
least locally, onto Euclidean spaces of the same dimension. Or, when expressed
in a more pictorial way, whatever happens on the manifold M is projected onto a
set of charts, each of which represents a local neighborhood of M . If one knows
how to join neighboring charts and if one has at one’s disposal a complete set of
charts, then one obtains a true image of the whole manifold, however complicated
it may look globally.

The following sections (5.2–4) serve to define and discuss the notions sketched
above and to illustrate them by means of a number of examples. From Sect. 5.5
on we return to mechanics by formulating it in terms of a geometric language,
preparing the ground for new insights and results. In what follows (Sects. 5.2–5.4)
we shall use the following notation:

Q denotes the manifold of generalized coordinates; its dimension is equal to f ,
the number of degrees of freedom of the mechanical system one is considering.

M denotes a general smooth (and finite dimensional) manifold of dimension
dim M = n.

5.2 Differentiable Manifolds

5.2.1 The Euclidean Space R
n

The definition of a differentiable manifold relates directly to our knowledge of
the n-dimensional Euclidean space R

n. This space is a topological space. This
means that it can be covered by means of a set of open neighborhoods that fulfills
some quite natural conditions. For any two distinct points of R

n one can define
neighborhoods of these points that do not overlap: one says the R

n is a Haus-
dorff space. Furthermore, one can always find a collection B of open sets such
that every open subset of R

n is represented as the union of elements of B. Such
a collection B is said to be a basis. It is even possible to construct a countable set
of neighborhoods {Ui} of any point p of R

n such that for any neighborhood U

of p there is an i for which Ui is contained in U . These {Ui} can also be made
a basis, in the sense defined above: thus the space R

n certainly has a countable
basis. All this is summarized by the statement that R

n is a topological, Hausdorff
space with a countable basis.

It is precisely these requirements that are incorporated in the definition of a
manifold. Even if they look somewhat complicated at first sight, these properties
are very natural in all important branches of mechanics. Therefore, as a physi-
cist one has a tendency to take them for granted and to assume tacitly that the
spaces and manifolds of mechanics have these properties. The reader who wishes
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to define matters very precisely from the start is consequently advised to consult,
for example, the mathematical literature quoted in the Appendix and to study the
elements of topology and set theory.

The space R
n has more structure than that. It is an n-dimensional real vec-

tor space on which there exists a natural inner product and hence a norm. If
p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn) are two elements of R

n, the inner
product and the norm are defined by

p · q def=
n∑

i=1

piqi and |p| def= √
p · p , (5.5)

respectively. Thus R
n is a metric space. The distance function

d(p, q)
def= |p − q| (5.6)

following from (5.5) has all properties that a metric should have: it is nondegener-
ate, i.e. d(p, q) vanishes if and only if p = q; it is symmetric d(q, p) = d(p, q);
and it obeys Schwarz’ inequality

d(p, r) ≤ d(p, q)+ d(q, r) .

Finally, we know that on R
n one can define smooth functions,

f : U ⊂ R
n → R ,

which map open subsets U of R
n onto the real numbers. The smoothness, or C∞

property, of a function f means that at every point u ∈ U all mixed partial deriva-
tives of f exist and are continuous. As an example consider the function f i which
associates to every element p ∈ R

n its ith coordinate pi , as shown in Fig. 5.3,

f i : R
n → R : p = (p1, . . . , pi, . . . , pn) → pi , i = 1, 2, . . . , n . (5.7)

These functions f i(p) = pi are said to be the natural coordinate functions of R
n.

Fig. 5.3. The coordinate functions f i and f j assign to each
point p of R

n its coordinates pi and pj , respectively
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5.2.2 Smooth or Differentiable Manifolds

Physical manifolds like the ones we sketched in Sect. 5.1 often are not Euclidean
spaces but topological spaces (Hausdorff with countable basis) that carry differen-
tiable structures. Qualitatively speaking, they resemble Euclidean spaces locally,
i.e. open subsets of them can be mapped onto Euclidean spaces and these “patches”
can be joined like the charts of an atlas.

Fig. 5.4. The chart mapping ϕ maps
an open domain U of the manifold
M homeomorphically onto a domain
ϕ(U) of R

n, where n = dimM

Let M be such a topological space and let its dimension be dimM = n. By
definition, a chart or local coordinate system on M is a homeomorphism,

ϕ : U ⊂ M → ϕ(U) ⊂ R
n , (5.8)

of an open set U of M onto an open set ϕ(U) of R
n, in the way sketched in

Fig. 5.4. Indeed, applying the mapping (5.8) followed by the coordinate functions
(5.7) yields a coordinate representation in R

n

xi = f i ◦ ϕ or ϕ(p) = (x1(p), . . . , xn(p)) ∈ R
n (5.9)

for every point p ∈ U ⊂ M . This provides the possibility of defining a diversity
of geometrical objects on U ⊂ M (i.e. locally on the manifold M), such as curves,
vector fields, etc. Note, however, that this will not be enough, in general: since these
objects are to represent physical quantities, one wishes to study them, if possible,
on the whole of M . Furthermore, relationships between physical quantities must be
independent of the choice of local coordinate systems (one says that the physical
equations are covariant). This leads rather naturally to the following construction.

Cover the manifold M by means of open subsets U , V , W , . . . , such that every
point p ∈ M is contained in at least one of them. For every subset U , V , . . . choose
a homeomorphism ϕ, ψ , . . ., respectively, such that U is mapped onto ϕ(U) in R

n,
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Fig. 5.5. Two overlapping, open domains U and V on M , by the mappings ϕ and ψ , respectively,
are mapped onto the open domains ϕ(U) and ψ(V ) in two copies of R

n. Their region of overlap on
M is mapped onto the hatched areas. The latter are related diffeomorphically through the transition
mappings (ϕ ◦ ψ−1) or (ψ ◦ ϕ−1)

V onto ψ(V ) in R
n, etc. If U and V overlap partially on M , then also their images

ϕ(U) and ψ(V ) in R
n will overlap partially, as shown in Fig. 5.5. The composed

mapping ϕ ◦ψ−1 and its inverse ψ ◦ ϕ−1 relate the corresponding portions of the
images ϕ(U) and ψ(V ) (the hatched areas in Fig. 5.5) and therefore map an open
subset of one R

n onto an open subset of another R
n. If these mappings (ϕ ◦ψ−1)

and (ψ◦ϕ−1) are smooth, the two charts, or coordinate systems, (ϕ, U) and (ψ, V )
are said to have smooth overlap. Obviously, this change of chart allows one to join
U and V like two patches of M . Assuming this condition of smooth overlap to
be trivially true, in the case where U and V do not overlap at all, provides the
possibility of describing the entire manifold M by means of an atlas of charts.

An atlas is a collection of charts on the manifold M such that

A1. Every point of M is contained in the domain of at least one chart.

A2. Any pair of two charts overlap smoothly (in the sense defined above).

Before we go on let us ask what we have gained so far. Given such an atlas,
we can differentiate geometric objects defined on M . This is done in the follow-
ing way. One projects the objects onto the charts of the atlas and differentiates
their images, which are now contained in spaces R

n, using the well-known rules
of analysis. As all charts of the atlas are related diffeomorphically, this procedure
extends to the whole of M . In this sense an atlas defines a differentiable structure
on the manifold M . In other words, with an atlas at hand, it is possible to introduce
a mathematically consistent calculus on the manifold M .

There remains a technical difficulty, which, however, can be resolved easily.
With the definition given above, it may happen that two formally different atlases
yield the same calculus on M . In order to eliminate this possibility one adds the
following to definitions A1 and A2:

A3. Each chart that has smooth overlap with all other charts shall be contained in
the atlas.
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In this case the atlas is said to be complete (or maximal). It is denoted by A.
This completes the framework we need for the description of physical relationships
and physical laws on spaces that are not Euclidean R

n spaces. The objects, defined
on the manifold M , can be visualized by mapping them onto charts. In this way,
they can be subject to a consistent calculus as we know it from analysis in R

n.
In summary, the topological structure is given by the definition of the mani-

fold M , equipped with an atlas; the differential structure on M is fixed by giving
a complete, differentiable atlas A of charts on M . Thus, a smooth, or differen-
tiable, manifold is defined by the pair (M,A). We remark, in passing, that there
are manifolds on which there exist different differentiable structures that are not
equivalent.

5.2.3 Examples of Smooth Manifolds

Let us consider a few examples of differentiable manifolds of relevance for me-
chanics.

(i) The space R
n is a differentiable manifold. The coordinate functions

(f 1, f 2, . . . , f n) induce the identical mapping

id : R
n → R

n

of R
n onto itself. Therefore they yield an atlas on R

n that contains a single chart.
To make it a complete atlas, we must add the set ϑ of all charts on R

n compatible
with the identity id. These are the diffeomorphisms Φ : U → Φ(U) ⊂ R

n on R
n.

The differentiable structure obtained in this way is said to be canonical.
(ii) A sphere of radius R in R

3. Consider the sphere

S2
R

def= {x = (x1, x2, x3) ∈ R
3|x2 = (x1)2 + (x2)2 + (x3)2 = R2} .

We may (but need not) think of it as being embedded in a space R
3. An atlas that

describes this two-dimensional smooth manifold in spaces R
2 must contain at least

two charts. Here we wish to construct an example for them. Call the points

N = (0, 0, R) , S = (0, 0,−R)
the north pole and south pole, respectively. On the sphere S2

R define the open sub-
sets

U : S2
R − {N} and V

def= S2
R − {S} .

Define the mappings ϕ : U → R
2, ψ : V → R

2 onto the charts as follows: ϕ
projects the domain U from the north pole onto the plane x3 = 0 through the
equator, while ψ projects the domain V from the south pole onto the same plane
(more precisely, a copy thereof), cf. Fig. 5.6. If p = (x1, x2, x3) is a point of U
on the sphere, its projection is given by
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Fig. 5.6. One needs at least two charts for
the description of the surface of a sphere.
Here these charts are obtained by stere-
ographic projection from the north and
south poles, respectively

ϕ(p) = R

R − x3 (x
1, x2) .

Taking the same point to be an element of the domain V , we see that its projection
onto R

2 is given by

Ψ (p) = R

R + x3 (x
1, x2) .

Let us then verify that (ψ ◦ ϕ−1) is a diffeomorphism on the intersection of the
domains U and V . We have

ϕ(U ∩ V ) = R
2 − {0} = Ψ (U ∩ V ) .

Let y = (y1, y2) be a point on the plane through the equator without origin
y ∈ R

2 − {0}. Its pre-image on the manifold is

p = ϕ−1(y) = (x1 = λy1, x2 = λy2, x3) ,

where λ = (R−x3)/R, x3 being obtained from the condition λ2u2+ (x3)2 = R2,
and where we have set u2 = (y1)2 + (y2)2. From this one finds

x3 = u2 − R2

u2 + R2R

and λ = 2R2/(u2 + R2), from which one obtains, in turn,

p = ϕ−1(y) = 1

u2 + R2 (2R
2y1, 2R2y2, R(u2 − R2)) .

Applying the mapping ψ to this point and taking account of the relation
R/(R + x3) = (u2 + R2)/2u2, we find on R

2 − {0}

Ψ ◦ ϕ−1(y) = R2

u2 (y
1, y2) .
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Clearly, this is a diffeomorphism from R
2 − {0} onto R

2 − {0}. The origin, which
is the projection of the south pole by the first mapping, and is the projection of the
north pole by the second, must be excluded. Hence the necessity of two charts.

(iii) The torus T m. m-dimensional tori are the natural manifolds of integrable
mechanical systems (see Sect. 2.37.2). The torus T m is defined as the product of
m copies of the unit circle,

T m = S1 × S1 × . . .× S1 (m factors) .

For m = 2, for instance, it has the shape of the inner tube of a bicycle. The first S1

goes around the tube, the second describes its cross section. The torus T 2 is also
homeomorphic to the space obtained from the square {x, y|0 ≤ x ≤ 1, 0 ≤ y ≤ 1}
by pairwise identification of the points (0, y) and (1, y), and (x, 0) and (x, 1). An
atlas for T 2 is provided, for example, by three charts defined as follows:

ϕ−1
k (αk, βk) = (eiαk , eiβk ) ∈ T 2 , k = 1, 2, 3 ,

where α1, β1 ∈ (0, 2π), α2, β2 ∈ (−π,+π), α3, β3 ∈ (−π/2, 3π/2).
Readers are invited to make a sketch of the torus and to convince themselves

thereby that T 2 is indeed covered completely by the charts given above.
(iv) The parameter manifold of the rotation group SO(3), which is the essen-

tial part of the physical coordinate manifold of the rigid body, is a differentiable
manifold. Here we wish to describe it in somewhat more detail. For this purpose
let us first consider the group SU(2) of unitary (complex) 2 × 2 matrices U with
determinant 1:

{U complex 2 × 2 matrices |U†U = 1l , det U = 1} .
These matrices form a group, the unitary unimodular group in two complex di-
mensions. U† denotes the complex conjugate of the transposed matrix, (U†)pq =
(Uqp)

∗. It is not difficult to convince oneself that any such matrix can be written
as follows:

U =
(

a b

−b∗ a∗
)

provided |a|2 + |b|2 = 1 .

With the complex numbers a and b written as a = x1 + ix2 and b = x3 + ix4,
the condition det U = 1 becomes

(x1)2 + (x2)2 + (x3)2 + (x4)2 = 1 .

If the xi are interpreted as coordinates in a space R
4, this condition describes

the unit sphere S3 embedded in that space. Let us parametrize the coordinates by
means of angles u, v and w, as follows:

x1 = cos u cos v
x2 = cos u sin v u ∈ [0, π/2]
x3 = sin u cosw v,w ∈ [0, 2π)
x4 = sin u sinw
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such as to fulfill the condition on their squares automatically. Clearly, the sphere
S3 is a smooth manifold. Every closed curve on it can be contracted to a point,
so it is singly connected. We now wish to work out its relation to SO(3).

For this purpose we return to the representation of rotation matrices R ∈ SO(3)
by means of Eulerian angles, as defined in (3.35) of Sect. 3.9. Inserting the expres-
sions (2.71) for the generators and multiplying the three matrices in (3.35), one
obtains

R(α, β, γ ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

cos γ cosβ cosα cos γ cosβ sin α − cos γ sin β
− sin γ sin α + sin γ cosα

− sin γ cosβ cosα − sin γ cosβ sin α sin γ sin β
− cos γ sin α + cos γ cosα

sin β cosα sin β sin α cosβ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

In the next step we define the following map from S3 onto SO(3):

f : S3 → SO(3)

by
⎧
⎨

⎩

γ = v + w (mod 2π)
β = 2u
α = v − w (mod 2π)

As α and γ take values in [0, 2π) and β takes values in [0, π ], the mapping is
surjective. We note the following relations between matrix elements of R and the
angles u, v,w:

R33 = cos(2u) ,

R31 =
√

1 − R2
33 cos(v − w) ,

R32 =
√

1 − R2
33 sin(v − w) ,

R13 = −
√

1 − R2
33 cos(v + w) ,

R23 =
√

1 − R2
33 sin(v + w) .

(The ramaining entries, not shown here, are easily derived.)
Consider a point x ∈ S3, x(u, v,w) and its antipodal point x′ = −x, which

is obtained by the choice of parameters u′ = u, v′ = v + π(mod 2π), w′ =
w + π(mod 2π). These two points have the same image in SO(3) because γ ′ =
v′ + w′ = v + w + 2π(mod 2π) = γ + 2π(mod 2π); similarly, α′ = α +
2π(mod 2π), while β ′ = β. Thus, the manifold of SO(3) is the image of S3,
but x and −x are mapped onto the same element of SO(3). In other words, the
manifold of the rotation group is S3 with antipodal points identified. If oppo-
site points on the sphere are to be identified then there are two distinct classes
of closed curves: (i) those which return to the same point and which can be
contracted to a point, and (ii) those which start in x and end in −x and which
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cannot be contracted to a point. This is equivalent to saying that the manifold of
SO(3) is doubly connected.

As a side remark we point out that we have touched here on a close relationship
between the groups SU(2) and SO(3) that will turn out to be important in describ-
ing intrinsic angular momentum (spin) in quantum mechanics. The manifold of
the former is the (singly connected) unit sphere S3.

5.3 Geometrical Objects on Manifolds

Next, let us introduce various geometrical objects that are defined on smooth man-
ifolds and are of relevance for mechanics. There are many examples: functions
such as the Lagrangian and Hamiltonian functions, curves on manifolds such as
solution curves of equations of motion, vector fields such as the velocity field of a
given dynamical system, forms such as the volume form that appears in Liouville’s
theorem, and many more.

We start with a rather general notion: mappings from a smooth manifold M with
atlas A onto another manifold N with atlas B (where N may be identical with M):

F : (M,A)→ (N,B) . (5.10)

The point p, which is contained in an open subset U of M , is mapped onto the
point F(p) in N , which, of course, is contained in the image F(U) of U .

Let m and n be the dimensions of M and N , respectively. Assume that (ϕ, U)
is a chart from the atlas A, and (ψ, V ) a chart from B such that F(U) is contained
in V . The following composition is then a mapping between the Euclidean spaces
R
m and R

n:

ψ ◦ F ◦ ϕ−1 : ϕ(U) ⊂ R
m → ψ(V ) ⊂ R

n . (5.11)

At this level it is meaningful to ask the question whether this mapping is continu-
ous or even differentiable. This suggests the following definition: the mapping F

(5.10) is said to be smooth, or differentiable, if the mapping (5.11) has this property
for every point p ∈ U ⊂ M , every chart (ϕ, U) ∈ A, and every chart (ψ, V ) ∈ B,
the image F(U) being contained in V .

As we shall soon see, we have already met mappings of the kind (5.10) on
several occasions in earlier chapters, although we did not formulate them in this
compact and general manner. This may be clearer if we notice the following spe-
cial cases of (5.10). (i) The manifold from which F starts is the one-dimensional
Euclidean space (R, ϑ), e.g. the time axis Rt . The chart mapping ϕ is then simply
the identity on R. In this case the mapping F (5.10) is a smooth curve on the
manifold (N,B), e.g. physical orbits. (ii) The manifold to which F leads is R, i.e.
now the chart mapping ψ is the identity. In this case F is a smooth function on M ,
an example being provided by the Lagrangian function. (iii) Initial and final man-
ifolds are identical. This is the case, for example, for F being a diffeomorphism
of M .
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5.3.1 Functions and Curves on Manifolds

A smooth function on a manifold M is a mapping from M to the real numbers,

f : M → R : p ∈ M → f (p) ∈ R , (5.12)

which is differentiable, in the sense defined above.
An example is provided by the Hamiltonian function H , which assigns a real

number to each point of phase space P, assmuming H to be independent of time.
If H has an explicit time dependence, it assigns a real number to each point of
P×Rt , the direct product of phase space and time axis. As another example con-
sider the charts introduced in Sect. 5.2.2. The mapping xi = f i ◦ ϕ of (5.9), with
the function f i as defined in (5.7), is a function on M . To each point p ∈ U ⊂ M

it assigns its ith coordinate in the chart (ϕ, U).
The set of all smooth functions on M is denoted by F(M).
In Euclidean space R

n the notion of a smooth curve γ (τ) is a familiar one.
When understood as a mapping, it leads from an open interval I of the real axis
R (this can be the time axis Rt , for instance) to the R

n,

γ : I ⊂ R → R
n : τ ∈ I → γ (τ) ∈ R

n . (5.13a)

Here, the interval may start at −∞ and/or may end at +∞. If {ei} is a basis of
R
n, then γ (τ) has the decomposition

γ (τ) =
n∑

i=1

γ i(τ )ei . (5.13b)

On an arbitrary smooth manifold N smooth curves are defined following the gen-
eral case (5.10), by considering their image in local charts as in (5.11),

γ : I ⊂ R → N : τ ∈ I → γ (τ) ∈ N . (5.14)

Let (ψ, V ) be a chart on N . For the portion of the curve contained in V , the com-
position ψ ◦γ is a smooth curve in R

n (take (5.11) with ϕ = id). As N is equipped
with a complete atlas, we can follow the curve everywhere on N , by following it
from one chart to the next.

We wish to add two remarks concerning curves and functions that are impor-
tant for the sequel. For the sake of simplicity we return to the simpler case (5.13a)
of curves on Euclidean space R

n.
(i) Smooth curves are often obtained as solutions of first-order differential equa-

tions. Let τ0 be contained in the interval I , and let p0 = γ (τ0) ∈ R
n be the point

on the curve reached at “time” τ0. If we take the derivative

γ̇ (τ ) = dγ (τ)

dτ
,

then
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γ̇ (τ0) =
n∑

i=1

γ̇ i (τ0)ei
def= vp0

is the vector tangent to the curve in p0. Now, suppose we draw all tangent vectors
vp in all points p ∈ γ (τ) of the curve. Clearly, this reminds us of the stepwise con-
struction of solutions of mechanical equations of motion. However, we need more
than that: the tangent vectors must be known in all points of an open domain in
R
n, not just along one curve γ (τ). Furthermore, the field of vectors obtained in this

way must be smooth everywhere where it is defined, not just along the curve. γ (τ)
is then one representative of a set of solutions of the first-order differential equation

α̇(τ ) = vα(τ) . (5.15)

As an example, consider a mechanical system with one degree of freedom: the
one-dimensional harmonic oscillator. From Sect. 1.17.1, let

x
˜
=

(
q

p

)
, H = 1

2
(p2 + q2) .

The equation of motion reads ẋ
˜
= JH,x ≡ X

˜ H, with

X
˜ H =

(
∂H/∂p

−∂H/∂q
)
=

(
p

−q
)
.

x
˜

is a point in the two-dimensional manifold N = R
2; the vector field X

˜ H is said to
be the Hamiltonian vector field. The solutions of the differential equation ẋ

˜
= X

˜ H
(5.15)

x
˜
(τ ) ≡ Φ

˜ τ−τ0(
x
˜ 0) =

(
q0 cos(τ − τ0)+ p0 sin(τ − τ0)

−q0 sin(τ − τ0)+ p0 cos(τ − τ0)

)

are curves on N , each of which is fixed by the initial condition

x
˜
(τ0) = x

˜ 0 =
(
q0

p0

)
.

(ii) Let y be an arbitrary, but fixed, point of R
n. We consider the set TyRn of all

tangent vectors at the point (i.e. vectors that are tangent to all possible curves going
through y), as shown in Fig. 5.7. As one can add these vectors and can multiply
them with real numbers, they form a real vector space. (In fact, one can show that
this vector space TyRn is isomorphic to R

n, the manifold that we consider. There-
fore, in this case, we are justified in drawing the vectors v in the same space as
the curves themselves, see Fig. 5.7.)

Consider a smooth function f (x) on R
n (or on some neighborhood of the

point y) and a vector v = ∑
viei of TyRn, and take the derivative of f (x) at the

point y, in the direction of the tangent vector v. This is given by



300 5. Geometric Aspects of Mechanics

Fig. 5.7. The vectors tangent to all possible smooth curves
through a given point y of R

n span a vector space, the tangent
space TyR

n

v(f )
def=

n∑

i=1

vi
∂f

∂xi

∣
∣
∣
∣
x=y

. (5.16)

This directional derivative assigns to each function f (x) ∈ F(Rn) a real number
given by (5.16),

v : F(Rn)→ R : f → v(f ) .

This derivative has the following properties: if f (x) and g(x) are two smooth
functions on R

n, and a and b two real numbers, then

V1. v(af + bg) = av(f )+ bv(g) (R-linearity) , (5.17)

V2. v(fg) = v(f )g(y)+ f (y)v(g) (Leibniz’ rule) . (5.18)

5.3.2 Tangent Vectors on a Smooth Manifold

Thinking of a smooth, two-dimensional manifold M as a surface embedded in R
3,

we can see that the tangent vectors at the point y of M are contained in the plane
through y tangent to M . This tangent space TyM is the Euclidean space R

2. This is
true more generally. Let M be an n-dimensional hypersurface embedded in R

n+1.
TyM is a vector space of dimension n, isomorphic to R

n. Any element of TyM
can be used to form a directional derivative of functions on M . These derivatives
have properties V1 and V2.

In the case of an arbitrary, abstractly defined, smooth manifold, it is precisely
these properties which are used in the definition of tangent vectors: a tangent vector
v in the point p ∈ M is a real-valued function

v : F(M)→ R (5.19)

that has properties V1 and V2, i.e.

v(af + bg) = av(f )+ bv(g) , (V1)

v(fg) = v(f )g(p)+ f (p)v(g) , (V2)
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where f, g ∈ F(M) and a, b ∈ R. The second property, in particular, shows that
v acts like a derivative. This is what we expect from the concrete example of Eu-
clidean space R

n. The space TpM of all tangent vectors in p ∈ M is a vector
space over R, provided addition of vectors and multiplication with real numbers
are defined as usual, viz.

(v1 + v2)(f ) = v1(f )+ v2(f ) ,
(5.20)

(av)(f ) = av(f ) ,

for all functions f on M and all real numbers a. This vector space has the same
dimension as M .

In general, one cannot take a partial derivative of a function g ∈ F(M) on M

itself. However, this is possible for the image of g in local charts. Let (ϕ, U) be
a chart, p ∈ U a point on M , and g a smooth function on M . The derivative of
g ◦ϕ−1 with respect to the natural coordinate function f i (5.7), which is taken at
the image ϕ(p) in R

n, is well defined. It is

∂i

∣
∣∣∣
p

(g) ≡ ∂g

∂xi

∣
∣∣∣
p

def= ∂(g ◦ ϕ−1)

∂f i
(ϕ(p)) . (5.21)

The functions

∂i

∣∣∣∣
p

≡ ∂

∂xi

∣∣∣∣
p

: F(M)→ R : g → ∂g

∂xi

∣∣∣∣
p

, i = 1, 2, . . . , n , (5.22)

have properties V1 and V2 and hence are tangent vectors to M , at the point
p ∈ U ⊂ M .

The objects defined in (5.22) are useful in two respects. Firstly, they are used
to define partial derivatives of smooth functions g on M , by projecting g onto a
Euclidean space by means of local charts. Secondly, one can show that the vectors

∂1|p, ∂2|p, . . . , ∂n|p
form a basis of the tangent space TpM (see e.g. O’Neill 1983), so that any vector
of TpM has the representation

v =
n∑

i=1

v(xi)∂i |p (5.23)

in local charts, xi being the coordinates defined in (5.9).
We now summarize our findings. A vector space TpM is pinned to each point

p of a smooth, but otherwise arbitrary, manifold M . It has the same dimension
as M and its elements are the tangent vectors to M at the point p. If (ϕ, U) is a
chart on M that contains p, the vectors ∂i |p, i = 1, . . . , n, defined in (5.22), form
a basis of TpM , i.e. they are linearly independent and any vector v of TpM can
be represented as a linear combination of them.
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5.3.3 The Tangent Bundle of a Manifold

All points p, q, r, . . . of a smooth manifold M possess their own tangent spaces
TpM , TqM , TrM , . . . Although these spaces all have the same dimension they are
different from each other. For this reason one usually draws them, symbolically,
as shown in Fig. 5.8, in such a way that they do not intersect. (Had they been like
tangents to M , they would seem to intersect.)

Fig. 5.8. The set of all tangent spaces
at the points p, q, . . . of the manifold
M , is the tangent bundle TM of M

One can show, without too much difficulty, that the (disjoint) union of all tan-
gent spaces

TM
def=

⋃

p∈M
TpM (5.24)

is again a smooth manifold. This manifold TM is said to be the tangent bundle,
M being the base space and the tangent spaces TpM being the fibres. If M has
dimension dimM = n, the tangent bundle has dimension

dim TM = 2n .

Figure 5.8 exhibits symbolically this fibre structure of TM . Very much like the
basis itself, the manifold TM is described by means of local charts and by means
of a complete atlas of charts. In fact, the differentiable structure on M induces
in a natural way a differentiable structure on TM . Without going into the pre-
cise definitions at this point, qualitatively we may say this: each chart (ϕ, U) is a
differentiable mapping from a neighborhood U of M onto the R

n. Consider then

T U
def= ∪p∈U TpM , i.e. the open subset T U of TM , which is defined once U is

given. The mapping ϕ from U to R
n induces a mapping of the tangent vectors in

p onto tangent vectors in ϕ(p), the image of p ;

T ϕ
def= T U → ϕ(U)× R

n .

This mapping is linear and it has all the properties of a chart (we do not show
this here, but refer to Sect. 5.4.1 below, which gives the definition of the tangent
mapping). As a result, each chart (ϕ, U) from the atlas for M induces a chart
(T ϕ, T U) for TM . This chart is said to be the bundle chart associated with (ϕ, U).
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A point of TM is characterized by two entries

(p, v) with p ∈ M and v ∈ TpM ,

i.e. by the base point p of the fibre TpM and by the vector v, an element of this vec-
tor space. Furthermore, there is a natural projection from TM to the base space M ,

π : TM → M : (p, v) → p , p ∈ M, v ∈ TpM . (5.25)

To each element in the fibre TpM it assigns its base point p.
Lagrangian mechanics provides a particularly beautiful example for the concept

of the tangent bundle. Let Q be the manifold of physical motions of a mechani-
cal system and let u be a point of Q, which is represented by coordinates {q

˜
} in

local charts. Consider all possible smooth curves γ (τ) going through this point,
with the orbit parameter always being chosen such that u = γ (0). The tangent
vectors vu = γ̇ (0), which appear as {q̇

˜
} in charts, span the vector space TuQ.

The Lagrangian function of an autonomous system is defined locally as a function
L(q

˜
, q̇
˜
), where q

˜
is an arbitrary point in the physical manifold Q, while q̇

˜
is the

set of all tangent vectors at that point, both being written in local charts of TQ.
It is then clear that the Lagrangian function is a function on the tangent bundle,
as anticipated in Fig. 5.2,

L : TQ→ R .

It is defined in points (p, v) of the tangent bundle TQ, i.e. locally it is a function of
the generalized coordinates q

˜
and the velocities q̇

˜
. It is the postulate of Hamilton’s

principle that determines the physical orbits q
˜
(t) = Φ

˜
(t) via differential equations

obtained by means of the Lagrangian function. We return to this in Sect. 5.5.
As a final remark in this subsection, we point out that TM locally has the

product structure M×R
n. However, its global structure can be more complicated.

5.3.4 Vector Fields on Smooth Manifolds

Vector fields of the kind sketched in Fig. 5.9 are met everywhere in physics. For a
physicist they are examples of an intuitively familiar concept: flow fields of a liq-
uid, velocity fields of swarms of particles, force fields, or more specifically within
canonical mechanics, Hamiltonian vector fields. In the preceding two sections we
considered all possible tangent vectors vp ∈ TpM in a point p of M . The concept
of a vector field concerns something else: it is a prescription that assigns to each
point p of M precisely one tangent vector Vp taken from TpM

1. For example,
given the stationary flow of a liquid in a vessel, the flow velocity at each point
inside the vessel is uniquely determined. At the same time it is an element of the

1 In what follows we shall often call Vp , i.e. the restriction of the vector field to TpM , a repre-
sentative of the vector field.
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Fig. 5.9. Sketch of a smooth vector field on the
manifold M

tangent space that belongs to this point. In other words, at every point the flow
field chooses a specific vector from the vector space pertaining to that point.

These general considerations are cast into a precise form by the following def-
inition.

VF1. A vector field V on the smooth manifold M is a function that assigns
to every point p of M a specific tangent vector Vp taken from the vector
space TpM:

V : M → TM : p ∈ M → Vp ∈ TpM . (5.26)

According to (5.19) tangent vectors are applied to smooth functions on M

and yield their generalized directional derivatives. In a similar fashion, vec-
tor fields act on smooth functions,

V : F(M)→ F(M) ,

by the following rule: at every point p ∈ M the representative Vp of the
vector field V is applied to the function, viz.

(Vf )(p)
def= Vp(f ) , f ∈ F(M) . (5.27)

This rule allows us to define smoothness of vector fields, as follows.
VF2. The vector field V is said to be smooth if Vf is smooth, for all smooth
functions f on M .

The vector field V leads from M to TM by assigning to each p ∈ M the
element (p, Vp) of TM . Applying the projection π , as defined in (5.25), to this
element yields the identity on M . Any such mapping

σ : M → TM

that has the property π ◦ σ = idM is said to be a section in TM . Hence, smooth
vector fields are differentiable sections.
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In a chart (ϕ, U), i.e. in local coordinates, a vector field can be represented
locally by means of coordinate vector fields, or base fields. For every point p of
an open neighborhood U ⊂ M , the base field ∂i |p, according to (5.22), is defined
as a vector field on U :

∂i : U → T U : p ∈ U → ∂i |p . (5.28)

As the functions (g◦ϕ−1), which appear in (5.21), are differentiable, it is clear that
∂i is a smooth vector field on U . As in Sect. 5.2.2 let us denote the chart mapping
by ϕ(p) = (x1(p), . . . , xn(p)). Any smooth vector field V defined on U ⊂ M

has the local representation

V =
n∑

i=1

(V xi)∂i (5.29)

on U . Finally, by joining together these local representations on the domains of
charts U , V , . . . of a complete atlas, we obtain a patchwise representation of the
vector field that extends over the manifold as a whole. The base fields on two
contiguous, overlapping domains U and V of the charts (ϕ, U) and (ψ, V ), re-
spectively, are related as follows. Returning to (5.21) and making use of the chain
rule, one has

∂(g ◦ ϕ−1)

∂f i
=

n∑

k=1

∂(g ◦ ψ−1)

∂f k

∂(ψk ◦ ϕ−1)

∂f i
.

Denoting the derivatives (5.21) by ∂ϕi
∣∣
p

and ∂ψi
∣∣
p

, i.e. by indicating the chart map-
ping ϕ or ψ as a superscript, we find in the overlap of U and V

∂
ϕ
i

∣∣
p
(g) =

n∑

k=1

∂
ψ
k

∣∣
p
(g)

∂(ψk ◦ ϕ−1)

∂f i
. (5.30)

The matrix appearing on the right-hand side is the Jacobi matrix Jψ◦ϕ−1 of the
transition mapping (ψ ◦ ϕ−1).

The set of all smooth vector fields on M is usually denoted by X (M) or V(M).
We already know an example from Sect.5.3.1: the Hamiltonian vector field on a
two-dimensional phase space. If x1 = q and x2 = p denote local coordinates, then

XH = ∂H

∂p
∂1 − ∂H

∂q
∂2 ,

so that vi = XH(x
i) gives the vector field of that example.

According to (5.19) a tangent vector v of TpM assigns to each smooth function
f a real number. In the case of a vector field this statement applies to every point
p of M , cf. (5.27). When we consider this equation as a function of p, we see



306 5. Geometric Aspects of Mechanics

that the action of the field V on the function f yields another smooth function on
M ,

V ∈ V(M) : f ∈ F(M)→ Vf ∈ F(M)

: f (p) → Vp(f ) . (5.31)

This action of V on functions in F(M) has the properties V1 and V2 of Sect. 5.3.2,
i.e. V acts on f like a derivative. Therefore, vector fields can equivalently be un-
derstood as derivatives on the set F(M) of smooth functions on M2.

Starting from this interpretation of vector fields one can define the commutator
of two vector fields X and Y of V(M),

Z = [X, Y ] def= XY − YX . (5.32)

X or Y , when applied to smooth functions, yield again smooth functions. Therefore,
as X(Yf ) and Y (Xf ) are functions, the action of the commutator on f is given
by

Zf = X(Yf )− Y (Xf ) .

One verifies by explicit calculation that Z fulfills V1 and V2, and, in particular,
that Z(fg) = (Zf )g + f (Zg). In doing this calculation one notices that it is
important to take the commutator in (5.32). Indeed, the mixed terms (Xf )(Yg)
and (Yf )(Xg) only cancel by taking the difference (XY − YX). As a result, the
commutator is again a derivative for smooth functions on M , or, equivalently, the
commutator is a smooth vector field on M . (This is not true for the products XY
and YX.) For each point p ∈ M (5.32) defines a tangent vector Zp in TpM given
by Zp(f ) = Xp(Yf )− Yp(Xf ).

The commutator of the base fields in the domain of a given chart vanishes,
[∂i, ∂k] = 0. This is an expression of the well-known fact that the mixed, second
partial derivatives of smooth functions are symmetric. Without going into the de-
tails, we close this subsection with the remark that [X, Y ] can also be interpreted
as the so-called Lie derivative of the vector field Y by the vector field X. What this
means can be described in a qualitative manner as follows: a vector field X defines
a flow, through the collection of solutions of the differential equation α̇(τ ) = Xα(τ),
as in (5.15). One can ask the question, given certain differential-geometric objects
such as functions, vector fields, etc., how these objects change along the flow of
X. In other words, one takes their derivative along the flow of a given vector field
X. This special type of derivative is said to be the Lie derivative; in the general
case it is denoted by LX. If acting on vector fields, it is LX = [X, Y ]. It has the
following property: L[X,Y ] = [LX,LY ], to which we shall return in Sect. 5.5.5.

2 The precise statement is this: the real vector space of R-linear derivations on F(M) is isomorphic
to the real vector space V(M).
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5.3.5 Exterior Forms

Let γ be a smooth curve on the manifold M ,

γ = {γ 1, . . . , γ n} : I ⊂ R → M ,

that goes through the point p ∈ M such that p = γ (τ = 0). Let f be a smooth
function on M . The directional derivative of this function in p, along the tangent
vector vp = γ̇ (0), is given by

dfp(vp) = d

dτ
f (γ (τ ))

∣
∣
∣
∣
τ=0

. (5.33)

This provides an example for a differentiable mapping of the tangent space TpM
onto the real numbers. Indeed,

dfp : TpM → R

assigns to every vp the real number df (γ (τ))/dτ |τ=0. This mapping is linear. As
is well known from linear algebra, the linear mappings from TpM to R span the
vector space dual to TpM . This vector space is denoted by T ∗pM and is said to
be the cotangent space (cotangent to M) at the point p. The disjoint union of the
cotangent spaces over all points p of M ,

⋃

p∈M
T ∗pM

def= T ∗M , (5.34)

finally, is called the cotangent bundle, in analogy to the tangent bundle (5.24). Let
us denote the elements of T ∗pM by ωp. Of course, in the example (5.33) we may
take the point p to be running along a curve γ (τ), or, more generally, if there is
a set of curves that cover the whole manifold, we may take it to be wandering ev-
erywhere on M . This generates something like a “field” of directional derivatives
everywhere on M that is linear and differentiable. Such a geometric object, which
is, in a way, dual to the vector fields defined previously, is said to be a differential
form of degree 1, or simply a one-form. Its precise definition goes as follows.

DF1. A one-form is a function

ω : M → T ∗M : p → ωp ∈ T ∗pM (5.35)

that assigns to every point p ∈ M an element ωp in the cotangent space
T ∗pM . Here, the form ωp is a linear mapping of the tangent space TpM

onto the reals, i.e. ωp(vp) is a real number.

Since ω acts on tangent vectors vp at every point p, we can apply this one-
form to smooth vector fields X: the result ω(X) is then a real function whose
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value in p is given by ωp(Xp). Therefore, definition DF1 can be supplemented
by a criterion that tests whether the function obtained in this way is differentiable,
viz. the following.

DF2. The one-form ω is said to be smooth if the function ω(X) is smooth
for any vector field X ∈ V(M).

The set of all smooth one-forms over M is often denoted by X ∗(M), the no-
tation stressing the fact that it consists of objects that are dual to the vector fields,
denoted by X (M) or V(M).

An example of a smooth differential form of degree 1 is provided by the dif-
ferential of a smooth function on M ,

df : TM → R , (5.36)

which is defined such that (df )(X) = X(f ). For instance, consider the chart map-
ping (5.9),

ϕ(p) = (
x1(p), . . . , xn(p)

)
,

where the xi(p) are smooth functions on M . The differential (5.36) of xi in the
neighborhood U ⊂ M , for which the chart is valid, is

dxi : T U → R .

Let v = (v(x1), . . . , v(xn)) be a tangent vector taken from the tangent space TpM
at a point p of M . Applying the one-form dxi to v yields a real number that is
just the component v(xi) of the tangent vector,

dxi(v) = v(xi) .

This is easily understood if one recalls the representation (5.23) of v in a local
chart and if one calculates the action of dxi on the base vector ∂j |p (5.22). One
finds, indeed, that

dxi(∂j |p) = ∂

∂xj

∣∣∣∣
p

dxi = δij .

With this result in mind one readily understands that the one-forms dxi form a
basis of the cotangent space T ∗pM at each point p of M . The basis {dxi |p} of
T ∗pM is the dual of the basis {∂i |p} of TpM . The one-forms dx1, . . . , dxn are said
to be base differential forms of degree 1 on U . This means, in particular, that any
smooth one-form can be written locally as

ω =
n∑

i=1

ω(∂i)dx
i . (5.37)
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Here ω(∂i) at each point p is the real number obtained when applying the one-
form ω onto the base field ∂i ; see DF1 and DF2. The representation is valid on
the domain U of a given chart. As the manifold M can be covered by means of
the charts of a complete atlas and as neighboring charts are joined together dif-
feomorphically, one can continue the representation (5.37) patchwise on the charts
(ϕ, U), (ψ, V ), etc. everywhere on M .

As an example, consider the total differential of a smooth function g on M ,
where M is a smooth manifold described by a complete atlas of, say, two charts.
On the domain U of the first chart (ϕ, U) we have dg(∂i) = ∂g/∂xi , and hence
dg = ∑n

i=1(∂g/∂x
i)dxi . Similarly, on the domain V of the second chart (ψ, V ),

dg(∂i) = ∂g/∂yi and dg = ∑n
i=1(∂g/∂y

i)dyi . On the overlap of U and V either
of the two local representations is valid. The base fields on U and those on V are
related by the Jacobi matrix, cf. (5.30), while the base forms are related by the
inverse of that matrix.

Let us summarize the dual concepts of vector fields and one-forms. As indi-
cated in VF1 the vector field X chooses one specific tangent vector Xp from each
tangent space TpM at the point p of M . This representative Xp acts on smooth
functions in a differentiable manner, according to the rules V1 and V2. The base
fields {∂i} are special vector fields that are defined locally, i.e. chartwise. The one-
form ω, on the other hand, assigns to each point p a specific element ωp from
the cotangent space T ∗pM . Thus, ωp is a linear mapping acting on elements Xp of
TpM . As a whole, ω(X) is a smooth function of the base point p. The set of dif-
ferentials dxi are special cases of one-forms in the domains of local charts. They
can be continued all over the manifold M , by going from one chart to the next.
The set {dxi |p} is a basis of the cotangent space T ∗pM that is dual to the basis
{∂i |p} of the tangent space TpM .

5.4 Calculus on Manifolds

In this last of the preparatory sections we show how to generate new geometrical
objects from those studied in Sect. 5.3 and how to do calculations with them. We
introduce the exterior product of forms, which generalizes the vector product in
R

3, as well as the exterior derivative, which provides a systematic generalization
of the notions gradient, curl, and divergence, familiar from calculus in the space
R

3. We also briefly discuss integral curves of vector fields and, thereby, return to
some of the results of Chap. 1. In this context, the central concepts are again those
of smooth mapping of a manifold onto another (or itself) and the linear transfor-
mations of the tangent and cotangent spaces induced by the mapping.

5.4.1 Differentiable Mappings of Manifolds

In Sect. 5.3 we defined smooth mappings

F : (M,A)→ (N,B) (5.38)
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from the manifold M with differentiable structure A onto the manifold N with
differentiable structure B. Differentiability was defined by means of charts and in
Euclidean spaces, as indicated in (5.11). It is not difficult to work out the trans-
formation behavior of geometrical objects on M , under the mapping (5.38). For
functions this is easy. Let f be a smooth function on the target manifold N ,

f : N → R : q ∈ N → f (q) ∈ R .

If q is the image of the point p ∈ M by the mapping F , i.e. q = F(p), then the
composition (f ◦ F) is a smooth function on the starting manifold M . It is said
to be the pull-back of the function f , i.e. the function f on N is “pulled back”
to the manifold M , where it becomes (f ◦ F). This pull-back by the mapping F

is denoted by F ∗,

F ∗f = f ◦ F : p ∈ M → f (F (p)) ∈ R . (5.39)

Thus, any smooth function that is given on N can be carried over to M . The con-
verse, i.e. the push-forward of a function from the starting manifold M to the target
manifold N is possible only if F is invertible and if F−1 is smooth as well. For
example, this is the case if F is a diffeomorphism.

By (5.38), vector fields on M are mapped onto vector fields on N . This is seen
as follows. Vector fields act on functions, as described in Sect. 5.3.4. Let X be a
vector field on M , Xp its representative in TpM , the tangent space in p ∈ M , and
g a smooth function on the target manifold N . As the composition (g ◦ F) is a
smooth function on M , we can apply Xp to it, Xp(g ◦ F). If this is understood
as an assignment

(XF )q : g ∈ F(N) → Xp(g ◦ F) ∈ R ,

then (XF )q is seen to be a tangent vector at the point q = F(p) on the target mani-
fold. For this to be true, conditions V1 and V2 must be fulfilled. V1 being obvious,
we only have to verify the Leibniz rule V2. For two functions f and g on N the
following equation holds at the points p ∈ M and q = F(p) ∈ N , respectively,

XF (fg) = X((f ◦ F)(g ◦ F))
= X(f ◦ F)g(F (p))+ f (F (p))X(g ◦ F)
= XF (f )g(q)+ f (q)XF (g) .

This shows that (XF )q is indeed a tangent vector belonging to TqN . In this way,
the differentiable mapping F induces a linear mapping of the tangent spaces, which
is said to be the differential mapping dF corresponding to F . The mapping

dF : TM → TN : X → XF (5.40a)

is defined at every point p and its image q by3

3 Below we shall also use the notation T F , instead of dF , a notation which is customary in the
mathematical literature.
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dFp : TpM → TqN : Xp → (XF )q , q = F(p) . (5.40b)

Its action on functions f ∈ F(N) is

dFp(X)(f ) = X(f ◦ F),X ∈ V(M), f ∈ F(N) .

In Fig. 5.10 we illustrate the mapping F and the induced mapping dF . As a
matter of exception, we have drawn the tangent spaces in p and in the image point
q = F(p) as genuine tangent planes to M and N , respectively. We note that if F
is a diffeomorphism, in particular, then the corresponding differential mapping is
a linear isomorphism of the tangent spaces. (For an example see Sect. 6.2.2.)

Fig. 5.10. The smooth mapping F from M to N induces a linear mapping dF (or T F ) of the
tangent space TpM onto the tangent space TqN in the image q = F(p) of p

Given the transformation behavior of vector fields, we can deduce the trans-
formation behavior of exterior differential forms as follows. Let ω ∈ X ∗(N) be
a one-form on N . As we learnt earlier, it acts on vector fields defined on N . As
the latter are related to vector fields on M via the mapping (5.40a), one can “pull
back” the form ω on N to the starting manifold M . The pull-back of the form ω,
by the mapping F , is denoted by F ∗ω. It is defined by

(F ∗ω)(X) = ω(dF(X)) , X ∈ V(M) . (5.41)

Thus, on the manifold M the form F ∗ω acts on X and yields a real function on
M whose value in p ∈ M is given by the value of the function ω(dF(X)) in
q = F(p).

5.4.2 Integral Curves of Vector Fields

In Sects. 1.16, 1.18–20, we studied the set of solutions of systems of first-order
differential equations, for all possible initial conditions. In canonical mechanics,
these equations are the equations of Hamilton and Jacobi, in which case the right-
hand side of (1.41) contains the Hamiltonian vector field. Smooth vector fields
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and integral curves of vector fields are geometrical concepts that occur in many
areas of physics. We start by defining the tangent field of a curve α on a manifold
M . The curve α maps an interval I of the real τ -axis Rτ onto M . The tangent
vector field on Rτ is simply given by the derivative d/dτ . From (5.40a), the linear
mapping dα maps this field onto the tangent vectors to the curve α on M . This
generates the vector field

α̇
def= dα ◦ d

dτ
,

tangent to the curve α : I → M . On the other hand, for an arbitrary smooth vector
field X on M , we may consider its representatives in the tangent spaces Tα(τ)M
over the points on the curve. In other words, we consider the vector field Xα(τ)

along the curve. Suppose now that the curve α is such that its tangent vector field
α̇ coincides with Xα(τ). If this happens, the curve α is said to be an integral curve
of the vector field X. In this case we obtain a differential equation for α(τ), viz.

α̇ = X ◦ α or α̇(τ ) = Xα(τ) for all τ ∈ I . (5.42)

When written out in terms of local coordinates, this is a system of differential
equations of first order,

d

dτ
(xi ◦ α) = Xi(x1 ◦ α, . . . , xn ◦ α) , (5.43)

which is of the type studied in Chap. 1; cf. (1.41). (Note, however, that the right-
hand side of (5.43) does not depend explicitly on τ . This means that the flow of
this system is always stationary.) In particular, the theorem of Sect. 1.19 on the
existence and uniqueness of solutions is applicable to the system (5.43).

Let us consider an example: the Hamiltonian vector field for a system with one
degree of freedom, i.e. on a two-dimensional phase space (see also Sects. 5.3.1 and
5.3.4),

XH = ∂H

∂p
∂q − ∂H

∂q
∂p .

The curve {x1 ◦ α, x2 ◦ α}(τ ) = {q(τ), p(τ)} is an integral curve of XH if and
only if the equations

dq

dτ
= ∂H

∂p
and

dp

dτ
= −∂H

∂q

are fulfilled. If the phase space is the Euclidean space R
2, its representation

in terms of charts is trivial (it is the identity on R
2) and we can simply write

α(τ) = {q(τ), p(τ)}.
The theorem of Sect. 1.19 guarantees that for each p on M there is precisely

one integral curve α for which p is the initial point (or initial configuration, as
we said there) p = α(0). Clearly, one will try to continue that curve on M as far
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as this is possible. By this procedure one obtains the maximal integral curve αp
through p. The theorem of Sect. 1.19 tells us that it is uniquely determined. One
says that the vector field X is complete if everyone of its maximal integral curves
is defined on the entire real axis R.

For a complete vector field the set of all maximal integral curves

Φ(p, τ)
def= αp(τ)

yields the flow of the vector field. If one keeps the time parameter τ fixed, then
Φ(p, τ) gives the position of the orbit point in M to which p has moved under
the action of the flow, for every point p on M . If in turn one keeps p fixed and
varies τ , the flow yields the maximal integral curve going through p. We return
to this in Sect. 6.2.1.

In Chap. 1 we studied examples of flows of complete vector fields. The flows
of Hamiltonian vector fields have the specific property of preserving volume and
orientation. As such, they can be compared to the flow of a frictionless, incom-
pressible fluid.

5.4.3 Exterior Product of One-Forms

We start with two simple examples of forms on the manifold M = R
3. Let

K = (K1,K2,K3) be a force field and let v be the velocity field of a given physi-
cal motion in R

3. The work per unit time is given by the scalar product K ·v. This

can be written as the action of the one-form ωK
def= ∑3

i=1 K
idxi onto the tangent

vector v, viz.

ωK(v) =
∑

Kivi = K · v .
In the second example let v be the velocity field of a flow in the oriented space
R

3. We wish to study the flux across some smooth surface in R
3. Consider two

tangent vectors t and s at the point x of this surface. The flux (including its sign)
across the parallelogram spanned by t and s is given by the scalar product of v

with the cross product t × s,

Φv(t, s) = v1(t2s3 − t3s2)+ v2(t3s1 − t1s3)+ v3(t1s2 − t2s1) .

This quantity can be understood as an exterior form that acts on two tangent vec-
tors. It has the following properties: the form Φv is linear in both of its arguments.
Furthermore, it is skew-symmetric because, as we interchange t and s, the paral-
lelogram changes its orientation, and the flux changes sign. A form with these
properties is said to be an exterior two-form on R

3.
Two-forms can be obtained from two exterior one-forms, for instance by defin-

ing a product of forms that is bilinear and skew-symmetric. This product is called
the exterior product. It is defined as follows. The exterior product of two base
forms dxi and dxk is denoted by dxi ∧ dxk . It is defined by its action on two
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arbitrary tangent vectors s and t belonging to TpM ,

(dxi ∧ dxk)(s, t) = si tk − skt i . (5.44)

The symbol ∧ denotes the “wedge” product. As any one-form can be written as
a linear combination of base one-forms, the exterior product of two one-forms ω
and θ , in each point p of a manifold M , is given by

(ω ∧ θ)p(v,w) = ωp(v)θp(w)− ωp(w)θp(v)

= det

(
ωp(v) ωp(w)

θp(v) θp(w)

)
. (5.45)

Here v and w are elements of TpM . To each point p the one-forms ω and θ as-
sign the elements ωp and θp of T ∗pM , respectively. The exterior product ω ∧ θ is
defined at each point p, according to (5.45), and hence everywhere on M .

In much the same way as the coordinate one-forms dxi serve as a basis for all

one-forms, every two-form
2
ω can be represented by a linear combination of base

two-forms dxi ∧ dxk (with i < k),

2
ω =

n∑

i<k=1

ωikdxi ∧ dxk , (5.46)

the restriction i < k taking account of the relation dxk ∧ dxi = −dxi ∧ dxk . The

coefficients in (5.46) are obtained from the action of
2
ω onto the corresponding

base vector fields,

ωik = 2
ω(∂i, ∂k) . (5.47)

The exterior product can be extended to three-forms, four-forms, and forms of
higher degree. For example, the k-fold exterior product is given by

(ω1 ∧ ω2 ∧ . . . ∧ ωk)(v
(1), v(2), . . . , v(k)) = det(ωi(v

(j))) . (5.48)

It is linear in its k arguments and it is totally antisymmetric. Any k-form can be
expressed as a linear combination of base k-forms

dxi1 ∧ dxi2 ∧ . . . ∧ dxik , with i1 < i2 < . . . < ik . (5.49)

There are
(
n
k

)
such base forms. In particular, if k = 1 or k = n, there is precisely

one such base form. On the other hand, for k > n, at least two one-forms in (5.49)
must be equal. By the antisymmetry of the base forms (5.49), any form of degree
higher than n vanishes. Thus, the highest degree a form on an n-dimensional mani-
fold M can have is k = n. For k = n the form (5.49) is proportional to the oriented
volume element of an n-dimensional vector space.

The examples show that the exterior product is a generalization of the vector
product in R

3. In a certain sense, it is even simpler than that because multiple
products such as (5.48) or (5.49) pose no problems of where to put parantheses.
The exterior product is associative.
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5.4.4 The Exterior Derivative

In the preceding paragraph it was shown that one can generate two-forms as well
as forms of higher degree by taking exterior products of one-forms. Here we shall
learn that there is another possibility of obtaining smooth forms of higher degree:
by means of the exterior derivative, or Cartan derivative.

Let us first summarize, in the form of a definition, what the preceding section
taught us about smooth differential forms of degree k.

DF3. A k-form is a function

k
ω : M → (T ∗M)k : p → k

ωp , (5.50)

that assigns to each point p ∈ M an element of (T ∗pM)k , the k-fold di-

rect product of the cotangent space.
k
ωp is a multilinear, skew-symmetric

mapping from (TpM)k onto the real numbers, i.e. it acts on k vector fields

k
ωp(X1, . . . , Xk) ∈ R (5.51)

and is antisymmetric in all k arguments.

The real number (5.51) is a function of the base point p. Therefore, in analogy
to DF2 of Sect. 5.3.5, one defines smoothness for exterior forms as follows.

DF4. The k-form
k
ω is said to be smooth if the function

k
ω(X1, . . . , Xk)

is differentiable, for all sets of smooth vector fields Xi ∈ V(M). Locally
(i.e. in charts) any such k-form can be written, in a unique way, as a linear
combination of the base forms (5.49),

k
ω =

∑

i1<i2<...<ik

ωi1...ikdxi1 ∧ . . . ∧ dxik . (5.52)

The coefficients are given by the action of
k
ω onto the corresponding base

vector fields ∂i1 , . . . , ∂ik .

Functions on M can be understood as forms of degree zero. As we showed
in Sect. 5.3.5, the well-known total derivative converts a function into a one-form.
Indeed, in a local representation we had

dg =
n∑

i=1

∂g

∂xi
dxi , (5.53)
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where ∂g/∂xi are the partial derivatives, i.e. the result of the action of the one-form
dg onto the base fields ∂i , while the dxi are the base one-forms.

The Cartan or exterior derivative generalizes this step to smooth forms of arbi-
trary degree. It maps smooth k-forms onto (k+1)-forms, this mapping being linear,

d : kω→ k+1
ω . (5.54)

It is defined uniquely and has the following properties:

CD1. For functions g on M , dg is the usual total derivative.
CD2. The action of d on the exterior (or wedge) product of two forms of
degree k and l is

d(
k
ω∧ l

ω) = (d
k
ω) ∧ l

ω+(−)k k
ω∧(d l

ω) .

CD3. The form
k
ω being represented locally as in (5.52), the action of the

exterior derivative on this form is

d
k
ω =

∑

i1<...<ik

dωi1...ik (x
1, . . . , xn) ∧ dxi1 ∧ . . . ∧ dxik .

Here, dωi1...ik (x
1, . . . , xn) is the total differential and is expressed in terms

of base one-forms, as in (5.53).

This exterior derivative is a local and linear operator. Property CD2 can also be
described by saying that d is an antiderivation (with respect to the exterior product
∧), in the sense that it obeys the Leibniz rule CD2 with extra signs that depend
on the degree of the first form. A remarkable property of the exterior derivative is
that the composition of d with itself gives zero,

d ◦ d = 0 . (5.55)

We prove this assertion for the case of smooth functions g ∈ F(M). We have
dg = ∑n

i=1(∂g/∂x
i)dxi and, according to CD3,

(d ◦ d)g = d(dg) =
∑

i

d(∂g/∂xi) ∧ dxi

=
∑

i

(
∑

k<i

+
∑

k>i

)
∂2g

∂xk∂xi
dxk ∧ dxi .

If we exchange dxk and dxi in the second sum in the brackets on the right-hand
side, and if we relabel the indices by exchanging k and i, we obtain, using the
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antisymmetry of the wedge product,

(d ◦ d)g =
∑

k<i

(
∂2g

∂xk∂xi
− ∂2g

∂xi∂xk

)
dxk ∧ dxi = 0 .

This vanishes because the second, mixed partial derivatives of smooth functions
are equal. The fact that (5.55) holds for any k-form follows from this result and
from the product rule CD2.

5.4.5 Exterior Derivative and Vectors in R
3

To illustrate the general and somewhat abstract definitions of the preceding sec-
tions, we consider the manifold M = R

3, i.e. the three-dimensional Euclidean
space of physics. For a smooth function f (x) the exterior derivative gives

df =
3∑

i=1

(∂f/∂xi)dxi .

This is the well-known total differential of f . When applied to the base field ∂k ,
it gives

df (∂k) = ∂f/∂xk .

This generates the triple {∂f/∂x1, ∂f/∂x2, ∂f/∂x3} = ∇f , which represents the
gradient of f in R

3.

The exterior product of two forms
k
ω and

l
ω is an exterior form of degree (k+l).

Functions have to be understood as zero-forms. Thus, the exterior product of two
functions f and g is the ordinary product. In this case, rule CD2 is nothing but
the product rule for differentiation:

∇(fg) = (∇f )g + f (∇g) .
Consider now the one-form

1
ωa =

3∑

i=1

ai(x)dx
i . (5.56)

Its exterior derivative is

d
1
ωa =

(
− ∂a1

∂x2 +
∂a2

∂x1

)
dx1 ∧ dx2 +

(
− ∂a1

∂x3 +
∂a3

∂x1

)
dx1 ∧ dx3

+
(
− ∂a2

∂x3 +
∂a3

∂x2

)
dx2 ∧ dx3 . (5.57)

If {a1(x), a2(x), a3(x)} are understood to be the components of a vector field a(x),

the coefficients of the two-form d
1
ωa are seen to be the coefficients of the curl of
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a(x). These identifications are specific for the dimension 3 of the space M = R
3

and do not hold in general.
The three-dimensional Euclidean space admits a metric (see Sect.5.2.1). Fur-

thermore, it is orientable because three linearly independent vectors define an ori-
ented volume of the parallelepiped they span. Therefore, if (ê1, ê2, ê3) is a set of
orthonormal vectors in the tangent space TxR

3, we can assign to each k-form ω

an (n− k)-form, i.e. a (3 − k)-form, denoted ∗ω, through the definition

(∗ω)(ek+1, . . . , e3)
def= ω(e1, . . . , ek) , 0 ≤ k ≤ n = 3 . (5.58)

This assignment is said to be the Hodge star operation. In R
3 it assigns to every

three-form a zero-form (a function), to every two-form a one-form, and vice versa.
For example, we obtain

∗dx1 = dx2 ∧ dx3

∗dx2 ∧ dx3 = dx1 = ∗(∗dx1)

∗dx1 ∧ dx2 ∧ dx3 = 1

(cyclic permutations) (two-form),
(cyclic permutations) (one-form),

(zero-form).

Assigning the one-form (5.56) to the vector field a(x), its exterior derivative is
given by (5.57). Applying the star operation to this two-form yields the one-form

1
ωb

def= ∗ d
1
ωa ≡

3∑

i=1

bi(x)dx
1 =

(
∂a2

∂x1 −
∂a1

∂x2

)
dx3 + cyclic permutations ,

where we have set b1 = ∂a3/∂x
2 − ∂a2/∂x

3 (and cyclic permutations). Thus, we
obtain again a form of the type (5.56) whose coefficients are the components of
curl a(x). This result is due to the dimension of the space R

3: the star operation
turns a two-form into a one-form, and vice versa. The space of one-forms has
dimension

(
n
1

)
, the space of two-forms has dimension

(
n
2

)
. For n = 3 we have(

n
1

) = (
n
2

) = 3, i.e. these dimensions are equal and the two spaces are isomorphic.
On the basis of this observation let us work out the relation between the exterior
product of Sect. 5.4.3 and the vector product in R

3. For two vectors a and b con-
struct the one-forms ωa and ωb, respectively, following the pattern of (5.56). Take
their exterior product and apply the star operation to it. This gives the one-form

∗( 1
ωa ∧ 1

ωb) = (a1b2 − a2b1)
∗(dx1 ∧ dx2)+ (cyclic permutations)

= (a1b2 − a2b1)dx
3 + (cyclic permutations)

= 1
ωa×b . (5.59)

This formula explains in which sense the ∧-product generalizes the ordinary vector
product.

Finally, to a given vector field a(x) we can also associate the following two-
form:

2
ωa

def= a1dx2 ∧ dx3 + (cyclic permutations). (5.60)
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Taking its exterior derivative, we obtain a three-form whose coefficient is the di-
vergence of a,

d
2
ωa =

(
∂a1

∂x1 +
∂a2

∂x2 +
∂a3

∂x3

)
dx1 ∧ dx2 ∧ dx3 . (5.61)

Of course, the star operation can be applied to the two expressions (5.60) and
(5.61), giving the results

∗ 2
ωa = 1

ωa and ∗ (d 2
ωa) = div a .

The dimension n = 3 is essential if one wishes to interpret the vector product
a×b as another vector. This isomorphism does not hold in dimensions other than
3. Note, however, that the cross product a×b in R

3 is a vector of a different nature
than a or b. For example, a ≡ r (position vector) and b ≡ p (momentum vector)
are odd with respect to space reflection, while their vector product l = r×p (an-
gular momentum vector) is even. A vector that is even under space reflection is
said to be an axial vector.

A final remark: one may be surprised that the one-form (5.56) can be used to
describe a vector field, even though vector fields have the coordinate representa-
tion

∑
ai(x)∂i . The reason for this is that R

3 admits a metric that acts on vector
fields: g(v,w) with g(∂i, ∂k) = gik . Interpreting the metric g(v,w) as a mapping
from w to v shows that it generates an isomorphism between X ∗(M) and X (M).

5.5 Hamilton–Jacobi and Lagrangian Mechanics

In Sects. 5.1 and 5.3.3 we described qualitatively the manifolds of generalized co-
ordinates as well as their tangent and cotangent bundles on which the Lagrangian
function and the Hamiltonian function are respectively defined (cf. Fig. 5.2). In
this section we examine these relations in more detailed and precise terms. We
study geometric objects that live on the manifolds sketched in Fig. 5.2 and most
of which are already known to us from Chap. 2. In particular, we define and study
the so-called canonical two-form on phase space, which describes the symplectic
structure of phase space (cf. Sect. 2.28), as well as all consequences following from
this structure (such as Liouville’s theorem, Poisson brackets, etc.). We study the
Hamiltonian vector fields, (i.e. the canonical equations in a geometric language),
and the geometric formulation of Lagrangian mechanics, as well as the relation
between these two descriptions.

5.5.1 Coordinate Manifold Q, Velocity Space TQ,
and Phase Space T ∗Q

In Sect. 5.3.3 we remarked that Lagrangian functions L(q
˜
, q̇
˜
, t) are functions on

the tangent bundle TQ of the coordinate manifold Q, i.e. L ∈ F(TQ),

L : TQ→ R . (5.62)
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In writing this down we have used a local coordinate expression. Indeed, {q
˜
} =

{q1, . . . , qf } represents the point u ∈ Q in a chart, f = dimQ being the num-
ber of degrees of freedom, while {q̇

˜
} = {q̇1, . . . , q̇f } gives the local components

of an arbitrary tangent vector vu = ∑
q̇i∂i ∈ TuQ. One should not be confused

by the notation: the {q̇
˜
} are the tangent vectors to all possible curves γ (t) pass-

ing through u ∈ Q. Only if we are given the solutions q
˜
= Φ(t, t0, q˜ 0) of the

equations of motion (which follow from the Lagrangian function) do their tangent
vectors generate the velocity field corresponding to real physical motion.

According to (5.62) L is to be understood really as a function on the manifold
TQ. It is not a mapping of the kind studied in Sect.5.3.5, which assigns to each
tangent vector, an element of TQ, a real number (in other words, it is not a one-
form). Let us analyze this in a little more detail. First, we confirm that TQ, the
tangent bundle of the smooth manifold Q, is again a smooth manifold of dimen-
sion dim TQ = 2dimQ. Therefore, it is possible to define smooth functions on
TQ. (The general prescription is this. Let M be a smooth manifold of dimension
m. With (ϕ, U), a local chart of (M,A) belonging to the complete atlas A, we
construct the corresponding differential, or tangent, mapping T ϕ, following the
definition (5.40a). With U ⊂ M , T ϕ maps the domain T U = U × TuM , u ∈ U ,
of TM onto ϕ(U)× R

m. One then shows that TA = {(T ϕ, T U)} is a complete
atlas for the manifold TM .)

In the simplest case a Lagrangian function has the local form (the so-called
natural form)

L = Tkin(q˜
, q̇
˜
)− V (q

˜
) , (5.63)

where V is a potential, while Tkin is the kinetic energy whose general form could
be

Tkin = 1

2

f∑

i,k=1

q̇igik(q˜
)q̇k (5.64)

Here, the tensor gik(q˜
) is the matrix representation of a metric and may depend on

the base point q
˜
. For a single particle in R

3 we have gik = δik , with i, k = 1, 2, 3.
Of course, a potential that does not depend on velocities, say V (u), is initially
defined to be a function on Q. However, from Sect.5.4.1, it can easily be trans-
ported to TQ. Indeed, if π : TQ → Q is the natural projection (5.25), then
the pull-back of the function V (u)

π∗V = V ◦ π
is a function on TQ. The action of π∗V on elements vu of TuQ is very simple:
π projects onto the base point u, i.e. just cuts out the vector component of vu.

The kinetic energy (5.64), in turn, is defined on TQ from the start, in a nontriv-
ial way. To understand this better, we first give a precise definition of the metric.
So far we have dealt with the set of smooth vector fields X (M) and with the set
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of smooth one-forms X ∗(M), cf. Sects. 5.3.4–5.3.5. The former are also called
contravariant tensors of rank 1 and one may write equivalently

X (M) ≡ T 1
0 (M) . (5.65a)

The latter are also said to be covariant tensors of rank 1 and one writes corre-
spondingly

X ∗(M) = T 0
1 (M) . (5.65b)

We have further considered geometric objects that can be understood to be
tensors of higher rank. For example, the two-forms we generated by taking the

exterior product of two one-forms,
2
ω = 1

ωa ∧ 1
ωb, are smooth, bilinear mappings

from the product TM×TM to R. Therefore, they are contravariant tensors of rank
2 that, in addition, are antisymmetric. In general, a tensor T r

s with r contravariant
indices and s covariant indices is defined to be a multilinear mapping of r copies
of T ∗M times s copies of TM onto the real numbers, viz.

(T r
s )p : (T ∗pM)r(TpM)s → R . (5.66)

A tensor field of type
(
r
s

)
assigns to each point p ∈ M a tensor (5.66), in much the

same way as the vector fields (5.26) and the one-forms (5.35) did, both of which
are special cases of this general definition. The set of all smooth tensor fields of
type is denoted by T r

s (M).
Here we wish to define the metric, which is another special tensor field. Loosely

speaking, a metric serves to define the norm of vectors and the scalar product of
vectors (thereby specifying, in particular, orthogonality of vectors). Furthermore,
by means of the metric tensor a vector (which is a contravariant rank-1 tensor)
is turned into a covariant object (i.e. a covariant tensor of rank 1). In either case,
the metric acts on vectors, i.e. on elements of the tangent space. Keeping this in
mind, the following definition will be plausible.

ME. Definition of metric. A metric on a smooth manifold M is a tensor
field g from T 0

2 (M) (the smooth covariant tensor fields of rank 2), whose
representative at every point p of M is symmetric and nondegenerate. This
means that
(i) gp(vp,wp) = gp(wp, vp) for all vp,wp ∈ TpM and at each point
p ∈ M , and
(ii) if gp(vp,wp) = 0 for a fixed vp ∈ TpM , but all wp ∈ TpM , then
vp = 0, at every point p ∈ M .

We can treat the metric as a mapping. In analogy to (5.26) and (5.35) we have

g ∈ T 0
2 (M) : M → T ∗M × T ∗M : p → gp , where (5.67a)

gp : TpM × TpM → R : v,w → gp(v,w) . (5.67b)
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Locally, i.e. in local charts, the metric can be applied to base fields, yielding the
so-called metric tensor

gp(∂i, ∂k)
def= gik(p) . (5.68)

The requirements ME(i) and ME(ii) then imply that (i) gik(p) = gki(p), and (ii)
the matrix {gik(p)} is nonsingular. Its inverse is denoted by gik . Using the decom-
position (5.29) of vector fields in terms of base fields, we have

gp(v,w) =
n∑

i,k=1

vigik(p)w
k , (5.69)

where vi and wk are the components of vp and wp, respectively, in a local rep-
resentation of TpM . The same statement can be phrased differently: locally the
metric tensor can be written as a linear combination of tensor products of base
one-forms as follows4:

g =
∑

i,k

gik(p)dx
i ⊗ dxk . (5.70)

Equipped with this knowledge we readily understand the structure of the form
(5.64) of the kinetic energy, which is a function on TQ. Let vu ∈ TuQ be rep-
resented locally by vu = ∑

q̇i∂i . Then, obviously, Tkin = gu(vu, vu). In fact, we
may say much more than that. If gp, (5.67a), is applied to only one vector field,
a mapping from TM to T ∗M is obtained,

gp : TM → T ∗M : w → gp(•, w) (dot denotes vacancy) .

In other words, gp(•, w) is a one-form and gp(•, w) def= ωw, which, upon appli-
cation to a vector v ∈ TpM , yields the real number gp(v,w). Thus, the metric
assigns to each vector field X ∈ X (M) the smooth one form g(•, X) ∈ X ∗(M),
and vice versa. This is precisely what happens when one introduces (in charts) the
generalized momenta pi = ∂L/∂q̇i , which are canonically conjugate to the qi .
Using (5.63) and (5.64) one obtains

pi = ∂T

∂q̇i
=

∑

k

gik(p)q̇
k ≡ gp

(
•,

∑
q̇k∂k

)
. (5.71)

The transition from the variables {q
˜
i , q̇

˜
j } to the variables {q

˜
i , p

˜ j
} that we studied

in Chap. 2 in reality means that one goes over from a description of mechanics
on the tangent bundle TQ to a description on the cotangent bundle T ∗Q. If there
exists a metric on Q then there is the isomorphism sketched above, which allows

4 Using well-known techniques of linear algebra one can show that at each point p ∈ M one can
find a basis such that gik is diagonal, i.e. g = ∑n

i=1 εidx
i⊗dxi , with εi = ±1. If all εi are equal

to +1, the metric is said to be Riemannian. In all other cases it is said to be semi-Riemannian.
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one to identify the two pictures. In general, however, this canonical identification is
not guaranteed. In any case, whether or not a metric exists, TQ and T ∗Q are two
different spaces. Therefore, the transition from the Lagrangian formulation of me-
chanics to the Hamiltonian formulation is more than a simple change of variables.
Very much like Q and TQ, the cotangent bundle T ∗Q is a smooth manifold. In
mechanics T ∗Q is the phase space. In local charts it is described by coordinates
{qi, pk}, where pk has the character of a one-form, see (5.71). The Lagrangian
function is defined on TQ, the Hamiltonian function on T ∗Q (cf. Fig. 5.2). The
two representations of mechanics are related by the Legendre transformation L,
as explained in Chap. 2.

The general case (without assuming a metric on Q) is treated by Abraham and
Marsden (1981): mechanics on TQ and its formulation on T ∗Q are related by
means of the so-called fibre derivative. We cannot go into this more general treat-
ment without introducing further mathematical tools. We point out, however, that
the restricted case discussed above exhibits all essential features.

5.5.2 The Canonical One-Form on Phase Space

The Hamiltonian function is defined on the manifold M
def= T ∗Q, which plays a

central role in mechanics. Figure 5.11 shows in more detail the manifolds Q, TQ,
T ∗Q, and, in addition, the tangent bundle TM of the phase space. We shall return
briefly to Lagrangian mechanis (on TQ) in Sect. 5.6 below. Here, our goal is to
work out more clearly the geometric-symplectic structure of mechanics in phase
space, well known to us from Chap. 2, and to understand it from a higher level.
One possible approach is provided by what is called the canonical one-form θ0 on
phase space,

Fig. 5.11. The cotangent bundle

M
def= T ∗Q is the phase space.

M being a smooth manifold it-
self, it possesses a tangent bun-
dle TM = T (T ∗Q). τQ and τ∗

Q
are the canonical projections from
TQ and T ∗Q to Q, respectively,
while τM is the projection from
TM to M . TM and TQ, in turn,
are related by the tangent map-
ping corresponding to τ∗

Q
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θ0 : M → T ∗M : m ∈ M → (θ0)m ∈ T ∗mM , (5.72)

which is defined as follows. Let α be an arbitrary smooth one-form on the coor-
dinate manifold Q:

α : Q→ T ∗Q : u ∈ Q → αu ∈ T ∗u Q . (5.73)

The form θ0 is to be defined on M = T ∗Q. As α provides a mapping from Q to
M , we can use it to pull back θ0 from M to Q. This yields the one-form (α∗θ0),
which lives on the base manifold Q. With this remark in mind we state the fol-
lowing definition.

C1F. The canonical one-form θ0 is the unique form on M = T ∗Q whose
pull-back onto Q by means of an arbitrary one-form α (5.73) yields pre-
cisely this α. Expressed in a formula, the canonical one-form θ0 fulfills

(α∗θ0) = α for all α ∈ X ∗(Q) . (5.74)

This requirement fixes θ0 uniquely.

Remark: In view of its specific role as defined by the rule (5.74) the one-
form θ0 is also called the tautological form.

As shown in Fig. 5.11, a chart (ϕ, U) of the domain U ⊂ Q induces a chart
(T ϕ, T U) for T U ⊂ TQ, as well as a chart (T ∗ϕ, T ∗U) for T ∗U ⊂ M = T ∗Q.
A point u ∈ U has the image {qi} = {ϕi(u)}, which belongs to the neighborhood
U ′ = ϕ(U) in R

f . A tangent vector vu ∈ TuQ, with base point u, has the image
{qi = ϕi(u), vi = T ϕi(v) ≡ q̇i} in U ′ ×R

f . Similarly, each one-form ωu ∈ T ∗u Q
has the image {qi, αi ≡ pi} in U ′ × (Rf )∗. Thus, the local representation of αu
(5.37) reads

αu =
f∑

j=1

αj (q˜
)dqj ≡

f∑

j=1

pjdqj . (5.75)

When expressed in local form, the defining equation (5.74) is in fact very simple:
(θ0)m being a one-form belonging to T ∗mM = T ∗m(T ∗Q) it must have the general
local form

(θ0)m =
∑

i

σidq
i +

∑

k

τ kdpk ,

where σi and τ k are smooth functions of (q
˜
, p
˜
). The condition (5.74) requires that

these functions be

σi(q˜
, α
˜
(q
˜
)) = σi(q˜

, p
˜
)

!= pi ,

τ k(q
˜
, α
˜
(q
˜
)) = τ k(q

˜
, p
˜
)

!= 0 .
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Thus, the local form of the canonical one-form is the same as αu (5.75)

(θ0)m =
f∑

i=1

pidq
i m ∈ M = T ∗Q . (5.76)

Note, however, that θ0 is defined on the phase space M = T ∗Q, i.e. that (θ0)m
is an element of T ∗mM , in contrast to the arbitrary one-form α, which lives “one
storey below”.

Remark. The canonical one-form is the key to the geometric formulation of
mechanics on phase space. Starting from the definition given above and making
use of Fig. 5.11, one can work out the following pattern. Let u be a fixed point
on the base manifold Q, vu a tangent vector from TuQ, and αu a one-form from

T ∗u Q. Then r
def= αu(vu) is a real number. Using the definition (5.74) we can write

it alternatively as r = (α∗θ0)u(vu). Now, as α maps the basis Q onto T ∗Q, the cor-
responding tangent mapping T α maps TQ onto TM , the base point u being fixed.
Let wu ∈ TαuM be the preimage of αu by the projection τM , i.e. wu = τ−1

M (αu).
Then we have wu = T α(vu), while the same real number r is also given by

r = (θ0)m=αu(wu) = αu ◦ T τ ∗Q(wu) .

This last equation can be used to define θ0, (Abraham, Marsden 1981, Sect. 3.2.10).
With this alternative but equivalent definition the derivation of the local form (5.76)
is a bit more tedious.

One can understand that θ0 is indeed unique by noting that condition C1F is
to be fulfilled for all αu. These forms span the space T ∗u Q completely. As the vu
are arbitrary, too, their preimages wu span the complete space TαuM .

Loosely speaking, C1F is a prescription that says that arbitrary one-forms on
Q should be interpreted as a specific one-form on T ∗Q. It is canonical and charac-
teristic for the cotangent bundle insofar as one-forms live on T ∗Q and are pulled
back by mappings (in contrast to vector fields, which are mapped “forward”). The
local representation (5.76) is sufficient because one can always join together the
charts of a complete atlas and describe θ0 in this way, on the whole of M = T ∗Q.
Of course, the definition given in (5.74), or the one described briefly in the remark
above, are completely free of coordinates.

Let F = ψ ◦ϕ−1 be the transition mapping from the chart (ϕ, U) to the chart
(ψ, V ). In the overlap of the images of U and of V , F maps the point {q

˜
} = ϕ(u)

to the point {Q} = ψ(u). This is the same point in R
f , but it is expressed in terms

of different coordinates. A tangent vector vu ∈ TuQ whose coordinate image is
{q̇
˜
} in the first case and {Q̇} in the second is transformed by means of the tan-

gent mapping T F , while one-forms are pulled back according to (5.41). As to the
canonical one-form, we note that it keeps its local form (5.76). Indeed, we have

pi =
f∑

k=1

∂Qk

∂qi
Pk ,
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and therefore

∑

i

pidq
i =

∑

i

∑

k

Pk
∂Qk

∂qi
dqi =

∑

k

PkdQk . (5.77)

This result is obvious because the definition (5.74) fixes θ0 on the whole of T ∗Q
and because the local form (5.76) holds in each chart. The following assertion is
somewhat less obvious.

Proposition. Let F : Q → Q be a diffeomorphism on the base manifold
Q. With α a one-form on Q the pull-back of αu ∈ T ∗u Q is then defined in
either direction, so that F induces a diffeomorphism T ∗F : T ∗Q→ T ∗Q.
The pull-back of the canonical one-form is given by

(T ∗F)∗θ0 = θ0 . (5.78)

In this sense it is invariant.

Abraham and Marsden (1981, Theorem 3.2.12) provide a proof that does not
make use of coordinates. In coordinates, the proof, in essence, follows from the
calculation done in (5.77).

5.5.3 The Canonical, Symplectic Two-Form on M

The canonical two-form is defined to be (minus) the exterior derivative of the
canonical one-form θ0 of C1F (5.74), viz.

C2F. ω0
def= − dθ0 . (5.79)

This is a closed form, dω0 = −d ◦ dθ0 = 0. Its representation in local coordinates
follows from the local form (5.76) of θ0. It reads

(ω0)m =
f∑

i=1

dqi ∧ dpi , m ∈ M . (5.80)

This form is of special importance because it exhibits the symplectic structure of
phase space. This will be clear from the following observations and propositions.

As a two-form on M , ω0 is a bilinear mapping from TM × TM to the real
numbers. It acts on pairs (w(a), w(b)) of vector fields on M , i.e. (ω0)m is applied
to pairs (w(a)

m ,w
(b)
m ) of tangent vectors from TmM , where w

(a)
m and w

(b)
m are the

representatives in TmM of w(a) and w(b), respectively. In charts any such vector
field has the form

w =
f∑

i=1

wi ∂

∂qi
+

f∑

k=1

w̄k

∂

∂pk
, (5.81)
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so that

(ω0)m(w
(a)
m ,w(b)

m ) =
f∑

i=1

(w(a)iw̄
(b)
i − w̄

(a)
i w(b)i) . (5.82)

If we agree on ordering coordinates such that ηi = dqi , with i = 1, . . . , f , form
the first set of base forms, and ηi+f = dpi , i = 1, . . . , f , form the second set,
and if we write (ω0) in the general form

(ω0)m =
∑

i,k

ωikη
i ∧ ηk , (5.82′)

it is easy to see that its coefficients ωik are given by

ωik =
(

0f×f 1lf×f
−1lf×f 0f×f

)
.

This matrix is nothing but the matrix J of (2.102). As J is regular, one sees that
(ω0)m is nondegenerate and skew-symmetric. As this holds at each point m ∈ M ,
the canonical two-form ω0 is nondegenerate and skew-symmetric on the whole of
M . Thus, the form ω0 must be closely related to the canonical equations (2.99).
Before we turn to this relationship we wish to point out an interesting property of
the cotangent bundle M = T ∗Q.

Taking the k-fold exterior products of (ω0)m with itself yields forms of degree
2k. For example, for k = 2 and k = 3, respectively,

(ω0)m ∧ (ω0)m =
f∑

i1,i2=1

dqi1 ∧ dpi1 ∧ dqi2 ∧ dpi2

= −2!
∑

i1<i2

dqi1 ∧ dqi2 ∧ dpi1 ∧ dpi2

(ω0)m ∧ (ω0)m ∧ (ω0)m = −3!
∑

i1<i2<i3

dqi1 ∧ dqi2 ∧ dqi3 ∧ dpi1 ∧ dpi2 ∧ dpi3 .

The form of highest degree that can be constructed in this way has degree 2f . It
reads

(ω0)m ∧ . . . ∧ (ω0)m︸ ︷︷ ︸
f−fold

= f !(−)[f/2]dq1 ∧ dq2 ∧ . . . ∧ dqf ∧ dp1 ∧ . . . ∧ dpf ,

(5.83a)

where [f/2] is the largest integer smaller than or equal to f/2. This f -fold product
generates the oriented volume form

Ω
def= (−1)[f/2]

f ! ω0 ∧ . . . ∧ ω0 (f factors) (5.83b)
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on T ∗Q, whose value in the point m is proportional to the expression (5.83a). This
is an important result. On the cotangent bundle of a smooth manifold there always
exist the canonical forms θ0 and ω0 and thus also the volume form (5.83a). The
cotangent bundle of a manifold Q is always orientable, even if its base manifold Q
is not. At the same time, we have established the basis for Liouville’s theorem. Only
the result (5.83a) enables us to talk about flows on phase space that preserve vol-
ume and orientation. As a consequence, the specific properties of phase space that
we studied by means of the canonical equation (2.99), in the more “pedestrian” ap-
proach of Chap. 2, rest on an underlying, deeper geometric structure. The following
subsection is devoted to a short discussion of this structure. (As this is a digression,
the reader may wish to skip it on a first reading and move on directly to Sect. 5.5.5.)

5.5.4 Symplectic Two-Form and Darboux’s Theorem

Very much like the metric on a Riemannian or semi-Riemannian manifold the
canonical two-form is a covariant tensor of rank 2 on the manifold M . Like the
metric it is nondegenerate. While the metric pertains to the set of symmetric ten-
sors, ω0 belongs to the set of antisymmetric forms of degree two.

Let M be a smooth manifold of dimension dimM = n, and let ω be a covariant
tensor (a general one, at first),

ω ∈ T 0
2 (M) : M → T ∗M × T ∗M : p → (ω)p . (5.84)

ω is said to be nondegenerate if (ω)p has this property at every point p ∈ M .
TpM is a vector space of dimension n, TpM × TpM has dimension 2n, and (ω)p
maps TpM × TpM onto the real numbers.

One proves the following assertions.
(a) If (ω)p is symmetric and nondegenerate, i.e. if the matrix ωik = (ω)p(∂i, ∂k)

is regular, then there is an ordered basis of TpM and an ordered basis of T ∗pM ,
dual to the former, such that this matrix is diagonal, its eigenvalues being εi = ±1
(cf Footnote 4 to (5.70)).

(b) If (ω)p is antisymmetric and if the matrix {ωik} has rank r , then r is an
even integer and there is an ordered basis of TpM and its dual in T ∗pM such that

(ω)p =
r/2∑

i=1

dxi ∧ dxi+r/2 ,

i.e. such that the matrix {ωik} has the form

{ωik} =
⎛

⎝
0 1l 0

−1l 0 0
0 0 0

⎞

⎠

with 1l being the unit matrix of dimension r/2. In this case ω can be nondegenerate
only if the dimension n of M is even; the rank r is then equal to r = 2n.
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This latter assertion is followed up by the following proposition.

Proposition. Let ω be an antisymmetric two-form on the manifold M (fol-
lowing the pattern of (5.84)). The form ω is nondegenerate if and only if M
has even dimension, n = 2k, and if the k-fold exterior product ω∧ . . .∧ω
is a volume form on M .

Expressed differently, this says that if there exists a nondegenerate, skew-
symmetric two-form on M , then M is orientable. If this is true, (5.83b) provides
an oriented volume form, viz.

Ωω = (−1)[k]

(2k)! ω ∧ . . . ∧ ω (k-fold) (5.85)

with k given by dimM = n = 2k.
The relation to the symplectic group that we studied in Sect. 2.28 becomes clear

by way of the following definitions and assertions.

SYF. Every nondegenerate, skew-symmetric two-form σ on a vector space V of
even dimension n = 2k is called a symplectic form. In the case treated
above, we had σ ≡ (ω)p and V ≡ TpM .

SYV. The pair (V , σ ) is said to be a symplectic vector space if dim V = 2k and
if σ has the property SYF.

SYT. Symplectic transformations are defined to be transformations between vector
spaces that preserve the symplectic structure SYV, i.e. if (V , σ ) and (W, τ)

are symplectic vector spaces, then

F : V → W

is symplectic precisely if the pull-back of τ onto V equals σ , F ∗τ = σ .

The vector spaces V and W need not have the same dimension. However, if
they do have the same dimension n = 2k, F preserves the oriented volume. This
is seen by showing that F ∗Ωτ = Ωσ , where Ωτ and Ωσ are the standard n-forms
(5.85) on W and V , respectively. Symplectic transformations have the following
property. The symplectic mappings of a symplectic vector space (V , σ ) onto itself,

F : (V , σ )→ (V , σ ) , F ∗σ = σ ,

form the symplectic group Sp2f (R). In order to show this, let us choose that basis
{ei} of V for which σ has the canonical form

{σik} =
(

0 1l
−1l 0

)
≡ J .

In this basis the transformation F is represented by the matrix {F i
k }, i.e. e′i =∑n

k=1 F
i
ke

k . The condition F ∗σ = σ says that σ(e′i , e′j ) must be equal to
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σ(ei, ej ), i.e. that FTJF = J. This is precisely (2.113) and tells us that the matrix
F pertains to Sp2f (R).

Note that the definitions and assertions given above apply to the representative
(ω)p of ω over the base point p ∈ M . They are extended to ω, and thus to the
whole of M , by means of the following theorem.

Darboux’s Theorem. Let ω be a nondegenerate two-form on the manifold
M whose dimension is therefore even, dimM = n = 2k. The form ω is
closed, i.e. dω = 0, precisely if for each point p ∈ M there exists a chart
(ϕ, U) such that ϕ(p) = 0 and such that in every point p′ ∈ U ⊂ M with

ϕ(p′) = (x1(p′), . . . , xk(p′), . . . x2k(p′))

ω admits the local representation

ω =
k∑

i=1

dxi ∧ dxi+k (5.86)

on the neighborhood U .

For the proof of this theorem, as well as of the other assertions of this section,
we refer to Abraham and Marsden (1981).

We close this digression with some definitions and remarks that serve the pur-
pose of generalizing definitions SYF, SYV, and SYT to arbitrary manifolds.

S1. A symplectic form on a manifold M of even dimension dimM = n = 2k
is a nondegenerate, skew-symmetric, closed two-form ω,

dω = 0 . (5.87)

S2. A pair (M,ω), with ω having property S1, is said to be a symplectic
manifold.
S3. Those charts where (5.86) holds true (whose existence is guaranteed by
Darboux’s theorem) are said to be symplectic charts. Their local coordinates
are called canonical coordinates.
S4. A smooth mapping F that relates two symplectic manifolds (M, σ) and
(N, τ) is said to be symplectic if F ∗τ = σ . The symplectic mappings are
the canonical transformations of mechanics if the starting and the target
manifolds are identical.

These notions belong to what is called symplectic geometry. As far as mechan-
ics is concerned, the importance of symplectic geometry should be clear from our
discussion. In fact, it seems to be relevant for many more parts of physics and there-
fore leads directly into modern research. In this connection we refer the reader to
Guillemin and Sternberg (1986).
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5.5.5 The Canonical Equations

In Chap.2, Sect. 2.25, we showed that the canonical equations (2.45) could be writ-
ten in the form (2.99), viz.

ẋ
˜
= JH,x ≡ (XH)x (5.88)

Here, x
˜

is a point in phase space, while H,x and J are defined as in (2.102). We
realize that (5.88) is a local representation in charts. As indicated by the subscript
x, the Hamiltonian vector field on the right-hand side of (5.88) (cf. the definition
in Sect.5.3.1) is a coordinate expression in charts. On the basis of the results ob-
tained in Sect. 5.5.3 it is clear that the canonical two-form will serve the purpose
of formulating the canonical equations of motion in a coordinate-free manner, i.e.
directly on T ∗Q, the cotangent bundle of the coordinate manifold Q.

Let M = T ∗Q, as before. Vector fields on M assign to each p ∈ M an element
of the tangent space TpM at that point,

X ∈ X (M) : M → TM : p → Xp .

In charts Xp has the local form (5.81). Equation (5.88) defines the Hamiltonian
vector fields in charts, i.e. componentwise. Thus, in the notation of (5.88),

(XH)
i = ∂H

∂pi
, (XH)k = − ∂H

∂qk
. (5.89)

These partial derivatives of H also appear in the exterior derivative dH . As H

is a function on M , its exterior derivative is equal to the total differential. When
expressed locally, we have

dH =
f∑

i=1

∂H

∂qi
dqi +

f∑

j=1

∂H

∂pj
dpj . (5.90)

As we know, the Hamiltonian vector field is

(
(XH)

i

(XH)k

)
=

(
0 1l

−1l 0

)
⎛

⎜⎜⎜
⎝

∂H

∂qi

∂H

∂pj

⎞

⎟⎟⎟
⎠
,

or (XH)x = J(dH)x , where the subscript x is meant to indicate that we still com-
pare coordinate expressions.

As J−1 = −J, we can also write −J(XH)x = (dH)x . From this we can ab-
stract the coordinate-free definition of the Hamiltonian vector field as follows. J
is nothing but the local matrix representation (5.82′) of the canonical two-form
ω0. Such a two-form ω acts on pairs of vector fields. In analogy to the case of
the metric, one may instead take ω to act on only one vector field, e.g. ω(V, •)
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with the dot denoting a vacancy (it stands for the missing second argument). As
such it maps the tangent bundle TM onto R, i.e. it operates like an exterior form
of degree 1. With this remark in mind, the following definition becomes readily
understandable.

HVF. Let (M,ω) be a symplectic manifold, i.e. dimM = 2f is even and
ω has properties S1. The Hamiltonian function H is assumed to be given
as a smooth function on M = T ∗Q. The Hamiltonian vector field XH is
defined through the condition

ω(XH, •) = dH . (5.91)

The triple (M,ω,XH) is said to be a Hamiltonian system.

With Y ∈ X (M) an arbitrary vector field on M , we have from (5.91)

ω(XH, Y ) = dH(Y) .

As ω is nondegenerate, this equation fixes XH uniquely. Indeed, if there were two
different vector fields XH and X′

H for the same function H , then ω(XH−X′
H, Y ) =

0 for all Y . This is possible only if XH − X′
H vanishes identically. On the other

hand, dH(Y) cannot be zero for all Y , unless H = 0. Hence, for each H there
is a unique XH. In local coordinates the defining equation (5.91) yields precisely
the expressions (5.89). This is verified by direct calculation,

ωp(XH, •) =
f∑

i=1

(XH)
idpi −

f∑

k=1

(XH)k dqk .

Comparing with dH (5.90) yields (5.89). The definition (5.91) is independent of
coordinates, however, and it is not restricted to the case of finite dimension.

The integral curves of the vector field XH, i.e. the solutions of the differential
equation

γ̇ (t) = (XH)γ (t) , (5.92)

describe the possible physical motions of the system defined by the Hamiltonian
function H . When expressed in local coordinates, (5.92) becomes (5.88) and hence
the local form of the canonical equations of motion (2.45).

If H has no explicit time dependence and if γ (t) is a solution of (5.92), then

d

dt
H(γ (t)) = dH(γ̇ ) = dH(XH(γ (t))) = ω(XH(γ ),XH(γ )) = 0 .

This is the well-known fact that H is constant along solutions of the equations of
motion.
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It is not difficult to formulate once more Liouville’s theorem, Sect.2.29, using
the tools and results developed so far. When phrased in geometric terms it reads
as follows.

Liouville’s Theorem. Let (M,ω,XH) be a Hamiltonian system, i.e. let the
nondegenerate, closed two-form ω and the Hamiltonian vector field XH be
given on a manifold with even dimension. Denote by Φt the flow of the
vector field XH (this is the set of all integral curves corresponding to all
possible initial conditions). For all t the flow Φt is symplectic, i.e. Φ∗

t ω =
ω. As a consequence, the oriented volume Ωω (5.85) is conserved.

In Sect. 2.29 we proved this theorem in two equivalent ways. The proof in terms
of geometry is instructive in several respects. The reader who wishes to skip it,
on a first reading, should move on immediately to Sect. 5.5.6. The proof makes
use of the Lie derivative and of the fact that the symplectic form ω is closed. The
Lie derivative LX, which refers to a smooth vector field X, is obtained from the
following geometric picture. The vector field X defines (at least locally on M) the
flow Φτ , i.e. the set of all solutions of the differential equation (5.42). Consider
an arbitrary differentiable geometric object T on M such as a function, another
vector field, a k-form or an

(
r
s

)
-tensor field. We ask the question in which way

the object T changes differentially, along the lines of the flow Φτ of the vector
field X. For a function the answer is very simple. At the point p ∈ M this is just
the directional derivative

dfp(Xp)
def= (LXf )p ,

described in (5.33). The same derivative can also be written as

d

dτ
f (Φτ (p))

∣∣∣∣
τ=0

= d

dτ
Φ∗
τ f (p)

∣∣∣∣
τ=0

,

where Φτ=0(p) = p and where the right-hand side is to be understood as in (5.39).
If T is another vector field T ≡ Y , its Lie derivative is given by the commutator

[X, Y ] def= LXY , as explained in Sect. 5.3.4. (One may define LX to be a differen-
tial operator on the smooth tensor fields on M , with the condition that it operate
on functions and on vector fields as described above, see Abraham and Marsden
(1981). The following definition is equivalent to this.)

By the existence and uniqueness theorem for differential equations of the type
(5.42) the flow Φτ of X is a (local) diffeomorphism of M . Therefore, the geometric
object T can be transported forward or backward along that flow (cf. Sect. 5.4.1).
In particular, it can be differentiated along the flux lines of Φτ

5.

5 For this reason V.I. Arnol’d (1978) calls the Lie derivative the fisherman’s derivative. The fisherman
sees only the river in front of him. He sees all kinds of objects floating by on the river and
takes their differential along the lines of the river’s flow.
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Consider now the special case T ≡ α being an exterior k-form on M , X a
vector field, and Φτ its (local) flow. According to what we said above, the Lie
derivative fulfills the identity

d

dτ
Φ∗
τ α = Φ∗

τ LXα . (5.93)

The Lie derivative LX, at the point q = Φτ (p), pulled back to the point p, is
the derivative with respect to the orbit parameter τ of the pull-back of the form α.
Like α, LXα is a k-form. Functions are to be read as zero-forms for which LXf =
df (X). One can show that the Lie derivative can be expressed by means of the ex-
terior derivative. If the vector field X is inserted in the position of the first argument
of the form α, then α(X, •(k−1)•) is a (k−1)-form (positions 2 to k are vacant).
Taking the exterior derivative of the latter yields again a k-form, d(α(X, •(k−1)•)).
If, in turn, we differentiate α first we obtain the (k+1)-form dα. Inserting X into
this (k+ 1)-form leads again to a k-form, namely (dα)(X, •(k)•).6 We then have

LXα = (dα)(X, •(k)•)+ d(α(X, •(k − 1)•)) . (5.94)

(The proof goes by induction, see e.g. Abraham and Marsden (1981).) With the
identities (5.93) and (5.94) Liouville’s theorem follows immediately. Inserting the
symplectic form ω, as well as the Hamiltonian vector field XH, we obtain

d

dt
Φ∗
t ω = Φ∗

t LXHω

= Φ∗
t [(dω)(XH, •, •)+ d(ω(XH, •))] .

The first term vanishes because ω is closed. The second vanishes, too, because
d(ω(XH, •)) = d ◦ dH = 0, by the definition (5.91). Finally, as Φt=0 is the iden-
tity, we obtain Φ∗

t ω = ω, for all t for which the flow is defined. This proves the
theorem.

5.5.6 The Poisson Bracket

An essential ingredient in the proof of Liouville’s theorem is the fact that the sym-
plectic two-form ω is closed. In this section we establish (once more) the relation-
ship between this form and the Poisson bracket, with the aim of understanding
better the significance of dω = 0. (In Sect.2.32 we showed that the Poisson bracket
of two dynamical quantities is identical to the symplectic, skew-symmetric scalar
product of their derivatives, hence the comment “once more”.)

The dynamical quantities f and g that are to be inserted in the Poisson bracket
(2.122) are smooth function on the phase space M = T ∗Q. M is a symplectic
manifold. Following the example of the Hamiltonian function (which is a smooth

6 This prescription is called the inner product: iXα(Y1, . . . , Yk)
def= α(X, Y1, . . . , Yk) is said to be

the inner product of X with α. The indentity (5.94) then reads LXα = iX(dα)+ d(iXα).
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function on M , too), we can assign to f and g vector fields Xf and Xg , respec-
tively, by means of the definition (5.91). As ω is nondegenerate, the vector fields
are uniquely fixed by the equations

ω(Xf , •) = df and ω(Xg, •) = dg . (5.95)

The Poisson bracket of f and g is nothing but the expression

{f, g} def= ω(Xg,Xf ) . (5.96)

To see this, let us interpret (5.96) as a definition and let us verify that locally (i.e.
in charts) it is the same as (2.122). From (5.95) we have the local representation
of Xf ,

Xf =
(
∂f

∂p
˜
,−∂f

∂q
˜

)
,

and an analogous one for Xg . Inserting these into ω, we find, according to (5.82),
that

ω(Xg,Xf ) = ∂g

∂p
˜

(
−∂f

∂q
˜

)
−

(
− ∂g

∂q
˜

)
∂f

∂p
˜
= {f, g} ,

i.e. precisely the expression (2.122). While the latter form is formulated in charts,
the definition (5.96) is free of coordinates on M .

The properties of Poisson brackets, well known to us from Chap. 2, can also
be formulated and proved in a manner that is independent of coordinates. One has
the following.

(i) The Poisson bracket can be expressed in terms of Lie derivatives, viz.

{f, g} = LXf
g = dg(Xf ) = −LXgf = −df (Xg) . (5.97)

(The reader should verify this in local form.)
Comparing this with the definition (5.93) of the Lie derivative yields assertions

(ii) and (iii).
(ii) The quantity f is constant along the flow of Xg if and only if {f, g} = 0.

The same statement holds with f and g interchanged. For example, let ψτ be the
flow of Xg . Then, from (5.93)

d

dτ
(Ψ ∗

τ f ) =
d

dτ
(f ◦ Ψτ ) = Ψ ∗

τ LXgf = −Ψ ∗
τ {f, g} .

This is zero if and only if the Poisson bracket vanishes.
(iii) Let Φt be the flow of the Hamiltonian vector field XH, g being a dynamical

quantity as above. In the same manner as in (ii) one shows that

d

dt
(g ◦Φt) = {H, g ◦Φt } . (5.98)
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If g does not depend explicitly on time, this is identical with (2.128). As we
know, the canonical equations themselves can be written in the form of (5.98), cf.
(2.127). What we have gained compared to Chap. 2 is this: the definition (5.96),
the expressions (5.97), and the equations of motion (5.98) are formulated in a way
independent of coordinates (without charts). Furthermore, they are not restricted
to finite dimensions.

There are many more properties of Poisson brackets that can be derived using
the geometric formulation. As we studied them in some detail in Chap. 2, though
using a local representation, we restrict the discussion to a few characteristic ex-
amples.

The smooth functions F(M) on the phase space (which form a real vector
space), together with the Poisson brackets, generate a Lie algebra. In order to see
this, we must verify that {f, g} is bilinear, that {f, f } vanishes, and that the Jacobi
identity holds true, viz.

{f, {g, h}} + {g, {h, f }} + {h, {f, g}} = 0 . (5.99)

In local form, this identity was obtained by direct calculation, cf. Sect. 2.32 (2.131).
In a coordinate-free framework one proceeds as follows. Define a Poisson bracket
for one-forms df , dg (instead of functions, as above), by

{df, dg} def= ω([Xf ,Xg], •) . (5.100)

This Poisson bracket is again a one-form and we have d{f, g} = {df, dg}. The last
equation establishes the relation to the Poisson bracket of functions. (Abraham and
Marsden (1981) provide a proof.) With this result, and on the basis of the defini-
tion (5.100) as well as (5.95), we conclude that the vector field X{f,g} defined by
ω(X{f,g}, •) = d{f, g} equals the commutator of Xf and Xg , X{f,g} = [Xf ,Xg].

In a second step we write out the individual terms of (5.99), making use of
(5.97):

{f, {g, h}} = LXf
(LXgh) ,

{g, {h, f }} = −LXg(LXf
h) ,

{h, {f, g}} = −LX{f,g}h = −[LXf
, LXg ]h .

In the last expression we made use of the property L[v,w] = [Lv,Lw] of the Lie
derivative. Adding the three terms indeed yields the identity (5.99). We have only
sketched this proof here, because we had something else in mind: for the defini-
tion (5.96) of the Poisson bracket, together with the definition (5.95) of the vector
fields corresponding to the functions f and g, it was essential that the canonical
two-form was closed. Finally, then, this is the reason the algebra of the smooth
functions F(M), with the composition {, }, is a Lie algebra.

The following proposition is of interest in the light of the discussion in
Sect. 2.32.

Proposition. Let (ϕ, U) be a chart taken from the atlas for the symplectic manifold
(M,ω), chosen such that points u ∈ U are represented by q1, . . . , qf , p1, . . . , pf .
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This chart is symplectic (i.e. the canonical two-form becomes ω = ∑f
i=1 dqi∧dpi)

if and only if the following Poisson brackets are fulfilled:

{qi, qj } = 0 = {pi, pj }, {pj , qi} = δij . (5.101)

Proof. (a) If the chart is symplectic one verifies (5.101) by direct calculation.
(b) We assume these equations to hold and determine the matrix representation
Ω ≡ (ωik) of ω in the domain of this chart (ϕ, U). Ω is regular and hence has
an inverse (σ ik) ≡ Σ . From (5.97) and (5.96) we have

{qi, qk} = dqi(Xqk ) = (Xqk )
i = σ ik , i, k = 1, . . . , f .

In a similar fashion one shows that {pi, pk} = σ i+f,k+f and {qi, pk} = σ i,k+f =
−σk+f,i . By assumption

Σ =
(

0 −1l
1l 0

)
= −J = J−1 ,

where J is defined as in (2.102). We conclude that Ω = J and hence that the chart
is symplectic. �

Finally, the invariance of Poisson brackets under canonical transformations
(2.124) is rediscovered in the following form. Let F be a diffeomorphism connect-
ing two symplectic manifolds, F : (M,ω)→ (N, �). This mapping is symplectic
precisely if it preserves the Poisson brackets of functions and/or one-forms, i.e.

{F ∗f, F ∗g} = F ∗{f, g} for all f, g ∈ F(N) .

In this case F ∗ preserves the Lie algebra structure on the vector space of the smooth
function.

5.5.7 Time-Dependent Hamiltonian Systems

The preceding sections 5.5.1–6 gave an introduction to the mathematical founda-
tions of the theory of Hamiltonian and Jacobi. They should be sufficient to study
the theory of time-dependent systems as well, without any major difficulties. We
restrict our discussion to a few remarks and refer to the more specialized, math-
ematical literature on mechanics for more details.

If the Hamiltonian function depends explicitly on time, H : M × Rt → R,
then also the corresponding Hamiltonian vector field depends on time, i.e. assigns
to each point (m, t) of the direct product of phase space and time axis, a tan-
gent vector in TmM × R. The manifold M × Rt cannot be symplectic because
its dimension is odd. However, the canonical two-form ω has maximal rank on
M×Rt , namely 2f , where f = dimQ. In a local chart representation of (m, t) ∈
U × Rt , U ⊂ M , viz. (q1, . . . qf , p1, . . . , pf , τ ), the canonical two-form reads
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ω|U =
∑

dqi ∧ dpi

according to Darboux’s theorem, provided the chart is a symplectic one. As ω was
given by ω = −dθ , we have locally

d(θ −
∑

pidq
i) = 0 .

The form in parentheses is closed. Hence, locally, according to Poincaré’s lemma,
it can be written as the exterior derivative of a function, i.e.

θ =
∑

pidq
i + dτ .

Note that the exterior product θ ∧ dθ ∧ . . . ∧ dθ , with f factors dθ , is a volume
form on M × Rt .

It is not difficult to generalize the time-independent situation discussed in the
previous sections to the case of time-dependent Hamiltonian vector fields. For ev-
ery fixed t ∈ R, such a vector field

X : M × R → TM

is a vector field on M . One associates with it a vector field X̃ on M × R,

X̃ : M × R → T (M × R) ∼= TM × TR ,

(∼= means isomorphic) through the assignment

(m, t)→ (X(m, t), (t, 1)) .

Regarding the integral curves of X̃, we can say the following. Let γ : I → M be
an integral curve of X going through the point m. Then γ̃ : I → M × R is the
integral curve of X̃, passing through the point (m, 0), precisely if γ̃ (t) = (γ (t), t).
This is easily verified. Write

γ̃ (t) = (γ (t), τ (t)) .

This is an integral curve of X̃ provided

γ̃ ′(t) = (γ ′(t), τ ′(t)) = X̃(γ̃ (t)) ,

i.e. provided

γ ′(t) = X(γ (t), t) and τ ′(t) = 1 .

However, as τ(0) should be equal to 0, we conclude that τ(t) = t . The flux of X̃
is expressed in terms of the flux of X, viz.

Φ̃t (m, s) = ((t + s),Φt,s(m)) .
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Let M be the phase space and let H be a time-dependent Hamiltonian function
on M × R. Then H(m, t), for fixed t , is a function on M ,

Ht(m)
def= H(m, t) : M → R ,

whose vector field XH is determined as before. Define the vector field

XH : M × R → TM : (m, t) → XHt (m)

as well as the corresponding vector field X̃H, to be constructed as above. The cor-
responding integral curves of X̃H move across M ×R, those of XH move across
M . The latter are identical with the phase portraits introduced in Chap. 1.

The canonical equations of motion hold in every symplectic chart. So γ : I →
U , with I ⊂ R and U ⊂ M , is an integral curve of XH if and only if the equations

d

dt
[qi(γ (t))] = ∂H(γ (t), t)/∂pi

d

dt
[pi(γ (t))] = −∂H(γ (t), t)/∂qi

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

i = 1, . . . f

are fulfilled.

5.6 Lagrangian Mechanics and Lagrange Equations

On the one hand, the Lagrangian function is defined as a smooth function on the
tangent bundle TQ of the coordinate manifold Q, L : TQ→ R. As we know from
Chap. 2, on the other hand, it appears in the expressions for the Legendre transfor-
mation from Lagrangian mechanics, formulated on TQ, to Hamilton–Jacobi me-
chanics, which lives on T ∗Q, and vice versa. The geometric approach shows very
clearly that this is more than just a simple transformation of variables. The formu-
lation of Hamilton and Jacobi is characteristic for the cotangent bundle T ∗Q. The
aim of this section is to show that Lagrangian mechanics is rather different from
this, also as far as its geometric interpretation is concerned. The main difference
is that on the tangent bundle one can define differential equations of second order
(i.e. the Euler–Lagrange equations well known to us), in a natural way, while this
is not possible on T ∗Q.

5.6.1 The Relation Between the Two Formulations of Mechanics

When expressed in local coordinates, the first step of the Legendre transformation
is the assignment

ΦL : {qi, q̇j } →
{
qi,

∂L

∂q̇j
def= pj

}
. (5.102)
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Going back from the charts to the original manifolds TQ and T ∗Q, (5.102) says
that we assign to an element of TuQ, for fixed base point u ∈ Q, an element of
T ∗u Q by means of derivatives of the Lagrangian function. In other words, the fibre
TuQ over u ∈ Q of the tangent bundle TQ is mapped to the fibre T ∗u Q of the
cotangent bundle over the same base point. This mapping is linear and makes use
of the partial derivatives of the Lagrangian function within the fiber TuQ (in charts:
q
˜

is fixed, the derivatives are taken with respect to q̇
˜
). Thus, let vu be an element

of TuQ, the fibre of TQ in u. Denoting the restriction of the Lagrangian function
to this fiber by Lu, the mapping ΦL (5.102) corresponds to the assignment

ΦL : TuQ→ T ∗u Q : vu → DLu(vu) , (5.103)

where D denotes the derivatives of L. The precise definition of D on manifolds
would lead us too far from our main subject. Therefore, the following, somewhat
qualitative remarks that clarify matters in charts may be sufficient. Let (ϕ, U) be
a chart taken from the atlas for Q and (T ϕ, T U) the induced chart for TQ. L(ϕ)

denotes the restriction of the Lagrangian function to the domains of these charts.
Then L(ϕ) ◦T ϕ−1 is a function on R

f ×R
f , as shown schematically in Fig. 5.12.

Fig. 5.12. The Lagrangian function is defined
on the tangent bundle TQ (velocity space).
Its representation in charts L(ϕ) ◦ T ϕ−1 is
the local form that one knows from Chap. 2

Denoting the derivatives with respect to the first and the second arguments by
D1 and D2, respectively, we have

D1L
(ϕ) ◦ T ϕ−1 =

{
∂L

∂qi

}
, (5.104a)

D2L
(ϕ) ◦ T ϕ−1 =

{
∂L

∂q̇i

}
. (5.104b)

The derivative DLu of (5.103) leaves the base point u unchanged. Hence it is of
the type (5.104b).

ΦL being a mapping from TQ to T ∗Q that is induced by the Lagrangian func-
tion, the canonical forms C1F (5.74) and C2F (5.79) can be pulled back from T ∗Q
to TQ. If ΦL is a regular mapping7, it is symplectic, so that canonical mechanics
on T ∗Q can be pulled back to TQ. If, furthermore, ΦL is a diffeomorphism, then
the two formulations of mechanics are completely equivalent. As we know from

7 A mapping Φ : M → N is said to be regular in the point p ∈ M if the corresponding differential,
or tangent, mapping from TpM to TΦ(p)N is surjective.
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Chap. 2, this is true if and only if (in charts) the matrix of the second derivatives
of L with respect to q̇

˜
is nowhere singular, i.e. if

det

(
∂2L

∂q̇k∂q̇i

)
	= 0 (5.105)

holds on the domain of definition of the problem. Strictly speaking, one should
distinguish the cases where ΦL is regular from those where, in addition, it is a
diffeomorphism. In the first case, the condition (5.105) holds only locally while
in the second it holds on the domain of all charts. For what follows we assume
that L is chosen such that ΦL is a diffeomorphism.

5.6.2 The Lagrangian Two-Form

The canonical two-form ω0, defined by (5.79), can be pulled back to TQ by means
of ΦL. This yields what is called the Lagrangian two-form

ωL
def= Φ∗

Lω0 . (5.106)

The pull-back of ω0, the canonical two-form on T ∗Q, to ωL on TQ is defined as
described in Sect. 5.4.1 (5.41). Very much like ω0 the form ωL is closed,

dωL = 0 .

This follows because the exterior derivative of the pull-back of a form d(F ∗ω) is
equal to the pull-back F ∗(dω) of the exterior derivative of the original form (see
also Exercise 5.11).

Furthermore, the operation of pull-back commutes with the restriction to open
neighborhoods on the manifold, on which a given form is defined. For F : M → N

and
k
ω an exterior k-form on N , one has

(F ∗ k
ω)|U⊂M = F ∗( kω |F(U)⊂N) .

Therefore, the expression of ωL in charts can be computed from the local represen-
tation (5.80) of ω0. Let U be the domain of a chart on Q and T U the corresponding
domain on TQ. Then we have in the domain of the chart (ϕ, U)

ωL|T U = (Φ∗
Lω0)|T U = Φ∗

L(ω0|T ∗U)
= Φ∗

L

(∑
dqi ∧ dpi

)

=
∑

d(Φ∗
Lq

i) ∧ d(Φ∗
Lpi) .

Here we have used the equality F ∗(σ ∧ τ) = (F ∗σ) ∧ (F ∗τ) for two exterior
forms σ and τ , as well as the fact that the exterior derivative commutes with F ∗.
The last expression for ωL contains the functions qi and pk , pulled back to TQ,
for which we have
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Φ∗
Lq

i = qi , Φ∗
Lpk =

∂L

∂q̇k
.

Thus we find

ωL|T U =
∑

i

dqi ∧ d
∂L

∂q̇i
.

The exterior derivative of the function ∂L/∂q̇k is easily calculated with the rules
of Sect. 5.4.4. Thus, we obtain

ωL|T U =
∑

i,k

(
∂2L

∂qk∂q̇i
dqi ∧ dqk + ∂2L

∂q̇i∂q̇k
dqi ∧ dq̇k

)
. (5.107)

The same result is obtained from the pull-back to TQ of the canonical one-form

(5.74), θL
def= Φ∗

Lθ0. In charts it reads

θL|T U =
∑ ∂L

∂q̇i
dqi .

Taking the negative exterior derivative, ωL = −dθL, yields again the expression
(5.107).

Thus, if the mapping ΦL is regular, or even a diffeomorphism, then ΦL is sym-
plectic: it maps the symplectic manifold (T ∗Q,ω0) onto the symplectic manifold
(TQ,ωL).

5.6.3 Energy Function on TQ and Lagrangian Vector Field

In discussing the Legendre transformation in Chap. 2, we considered the function

E(q
˜
, q̇
˜
, t) =

∑
q̇i
∂L

∂q̇i
− L(q

˜
, q̇
˜
, t) , (5.108)

which led to the Hamiltonian function, after transformation to the variables q
˜

and
p
˜

(taking account of the condition (5.105)). For autonomous systems this was the
expression for the energy, the energy then being a constant of the motion. Given
the Hamiltonian function and the canonical two-form ω0, the Hamiltonian vector
field was constructed following the definition HVF (5.91). A similar construction
can be performed on TQ. For that purpose we first define the function E on the
manifold TQ, its chart representation being given by (5.108) above. With u ∈ Q,
vu ∈ TQ, the first term on the right-hand side of (5.108) is given a coordinate-free
meaning by the definition

W : TQ→ R : vu → ΦL(vu) · vu (5.109a)

According to (5.103), ΦL(vu) is a linear mapping from TuQ to R, i.e. it is an
element of T ∗u Q, which acts on vu ∈ TQ. One verifies easily that, in charts, W is
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indeed given by the first term on the right-hand side of (5.108). W is said to be
the action.

The energy function, understood to be a smooth function on TQ, is then de-
fined by

E
def= W − L . (5.109b)

We follow the analogous construction on phase space, Sect. 5.5.5. We take the
exterior derivative of E and define the Lagrangian vector field by means of the
Lagrangian two-form ωL, as follows.

LVF. Given the function E = W − L on TQ, as well as the two-form
ωL = Φ∗

Lω0, with ΦL being a regular mapping (or even a diffeomorphism),
the Lagrangian vector field XE is defined uniquely by

ωL(XE, •) = dE . (5.110)

In local form E is given by (5.108) and therefore

dE|T U =
∑

i,k

(
∂L

∂q̇i
δik + q̇i

∂2L

∂q̇k∂q̇i

)
dq̇k +

∑

i,k

q̇i
∂2L

∂qk∂q̇i
dqk

−
∑

k

∂L

∂qk
dqk −

∑

k

∂L

∂q̇k
dq̇k

=
∑

i,k

q̇i
∂2L

∂q̇k∂q̇i
dq̇k +

∑

i,k

(
q̇i

∂2L

∂qk∂q̇i
− ∂L

∂qi
δik

)
dqk .

It is instructive to write out explicitly the local form of (5.110) as well as the vec-
tor field XE. For the sake of simplicity, we do this for the case of one degree of
freedom, f = 1. The general case is no more difficult and will be dealt with in
the next section. Let ∂ and ∂̄ denote the base fields ∂/∂qi and ∂/∂q̇i , respectively.
Then, in coordinates, the Lagrangian vector field is XE = v∂ + v̄∂̄ , while another,
arbitrary vector field reads Y = w∂ + w̄∂̄ . From (5.107) we have

ωL(XE, Y ) = ∂2L

∂q̇2 (vw̄ − v̄w) ,

while the action of dE on Y gives the local result

dE(Y ) =
(
q̇
∂2L

∂q∂q̇
− ∂L

∂q

)
w + q̇

∂2L

∂q̇2 w̄ .

Inserting these expressions into the equation ωL(XE, Y ) = dE(Y ) and comparing
the coefficients of w and w̄, we obtain

v = q̇, v̄ =
(
∂L

∂q
− q̇

∂

∂q

∂L

∂q̇

)/∂2L

∂q̇2 .

It is seen that the condition (5.105) is essential.
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We now follow the pattern of (5.92) and try to determine the integral curve of
the Lagrangian vector field XE,

ċ(t) = (XE)c(t) .

Here c : I → R is a curve on TQ. In charts c(t) is
(
q(t)
q̇(t)

)
and obeys the differential

equations

q̇(t) = v = q̇ ,

q̈(t) = v̄ =
(
∂L

∂q
− q̇

∂

∂q

∂L

∂q̇

)/
∂2L

∂q̇2 .

While the first of these just tells us that the time derivative of the first coordinate
is equal to the second, the second equation has a somewhat surprising form. True,
it is obtained from the Euler–Lagrange equation

∂L

∂q
− d

dt

∂L

∂q̇
= 0 ,

by taking the derivative with respect to t and by solving for q̈. However, it is a
differential equation of second order and therefore, geometrically speaking, it is
different from the canonical equations (5.92). Let us consider this new feature in
more detail.

5.6.4 Vector Fields on Velocity Space TQ and Lagrange Equations

A smooth vector field X that is defined on the tangent bundle TQ of a manifold
Q leads from TQ to T (TQ), the tangent bundle of the tangent bundle,

X : TQ→ T (TQ) .

Let τQ denote the projection from TQ to Q and T τQ the corresponding tangent
mapping. The composition T τQ ◦ X maps TQ onto TQ, as shown in Fig. 5.13.
If this composition produces just the identity on TQ, i.e. if T τQ ◦X = idTQ, the

Fig. 5.13. A vector field on TQ generates an equation of second order if
it fulfills the condition (5.111)
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vector field X defines a differential equation of second order. This follows from
the following proposition.

Proposition. The smooth vector field X has the property

T τQ ◦X = idTQ (5.111)

if and only if each integral curve c : I → TQ of X obeys the differential
equation

(τQ ◦ c)• = c . (5.112)

Proof. For each point vu ∈ TQ there is a curve going through that point such
that ċ(τ ) = X(c(τ)), with τ ∈ I . T τQ ◦ X is the identity on TQ precisely if
T τQ ◦ ċ(τ ) = c(τ ) holds true. Working out the left-hand side, we obtain

T τQ ◦ ċ(τ ) = T τQ ◦ T c(τ, 1) = T (τQ ◦ c)(τ, 1) = (τQ ◦ c)•(τ ) ,
which proves (5.112). �

From a physicist’s point of view the integral curves c of X are not exactly
the solutions one is looking for. Rather, we are interested in the orbits γ on the
base manifold Q itself. These are the physical orbits in the manifold of gener-
alized coordinates (the ones one can “see”), i.e. the orbits that we denoted by
Φ
˜ s,t

(q
˜ 0) in earlier sections. It is not difficult, however, to obtain these curves from

c (integral curve of X on TQ) and from τQ (projection of TQ on Q). Indeed,

γ
def= τQ ◦ c : I → Q is a curve on Q, since c : I → TQ and τQ : TQ → Q.

A curve of this kind that is associated to the vector field X is said to be a base
integral curve. The condition (5.112) can be written as γ̇ = c, which means the
following: the vector field X defines a differential equation of second order if and
only if each of its integral curves is equal to the derivative of its corresponding
base integral curve γ = τQ ◦ c.

In charts the Lagrangian vector field XE reads

XE =
∑

vi∂i +
∑

v̄i ∂̄i

with ∂i
def= ∂/∂qi , ∂̄i

def= ∂/∂q̇i , cf. Sect. 5.6.3. Then vi = q̇i , while the components
v̄i = v̄i (q

˜
, q̇
˜
) fulfill the differential equations

d 2

dt2
qi(t) = v̄i (q

˜
(t)), q̇

˜
(t)) . (5.113)

As before,
(
qi

q̇i

)
is the local representation of the point c(t) or γ̇ (t). Of course,

in charts one obtains the well-known Euler–Lagrange equations. In order to show
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this for the general case (f > 1), calculate ωL(XE, Y ) as well as dE(Y ), for an
arbitrary vector field

Y =
∑

wi∂i +
∑

w̄i ∂̄i .

One finds that

ωL(XE, Y ) =
∑

i,k

∂2L

∂qk∂q̇i
(viwk − vkwi)

+
∑

i,k

∂2L

∂q̇k∂q̇i
(viw̄k − v̄kwi) (5.114)

and, similarly,

dE(Y ) =
∑

i,k

q̇i
∂2L

∂q̇k∂q̇i
w̄k +

∑

i,k

(
q̇i

∂2L

∂qk∂q̇i
− ∂L

∂qi
δik

)
wk . (5.115)

We insert vi = q̇i in (5.114) and set it equal to (5.115). The terms in w̄k cancel,
while the comparison of the coefficients of wk yields the equations

∂L

∂qk
−

∑

i

∂2L

∂qi∂q̇k
q̇i −

∑

i

∂2L

∂q̇i∂q̇k
v̄i = 0 .

Finally, inserting the result (5.113), these equations become

∂L

∂qk
− d

dt

∂L

∂q̇k
= 0 ,

i.e. the set of Euler–Lagrange equations, as expected.

5.6.5 The Legendre Transformation and the Correspondence
of Lagrangian and Hamiltonian Functions

We had assumed the mapping ΦL (5.103) from TuQ to T ∗u Q to be a diffeomor-
phism. Locally this means that the condition (5.105) is satisfied everywhere. As
we learnt in Chap. 2, Sect.2.15, we can then go over from Lagrangian mechanics
to Hamilton–Jacobi mechanics and vice versa, as we wish. In this section we want
to clarify this relationship using the geometric language.

With ΦL a diffeomorphism, geometric objects can be transported between TQ
and T ∗Q at will. For example, if X : TQ→ T (TQ) is a vector field on TQ, then

Y
def= TΦL ◦X ◦Φ−1

L : T ∗Q→ T (T ∗Q)

is a vector field on the manifold T ∗Q. Here, TΦL is the tangent mapping cor-
responding to ΦL. It relates T (TQ) with T (T ∗Q). As ΦL is a diffeomorphism,
TΦL is an isomorphism. In this case one has the following results.
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(i) Proposition. Let the Lagrangian function be such that ΦL is a diffeomor-
phism. Let E be the function on TQ defined by (5.109b). Finally, define
the function

H
def= E ◦Φ−1

L : T ∗Q→ R

on T ∗Q. Then the Lagrangian vector field XE and the vector field XH,
which corresponds to H , by the definition (5.91), are related by

TΦL ◦XE ◦Φ−1
L = XH . (5.116)

ΦL maps the integral curves of XE onto those of XH. The two vector fields,
XE on TQ and XH on T ∗Q, have the same base integral curves (i.e. the
same physical solutions on Q).

Proof. It is sufficient to establish the relation (5.116) because the remaining as-
sertions all follow from it. Let v ∈ TQ, w ∈ Tv(TQ), let v∗ be the image of v by
ΦL, and w∗ the image of w by the tangent mapping TΦL, i.e. w∗ = TvΦL(w).
At the point v we then have

ω0(T ΦL(XE), w
∗) = ωL(XE, w) = dE(w) = d(H ◦ΦL)(w) .

On the other hand, at the point v∗ = ΦL(v), we know that

ω0(T ΦL(XE), w
∗) = dH(w∗) = ω0(XH, w

∗) .

The assertion (5.116) now follows because w∗ is arbitrary, TΦL is an isomorphism,
and ω0 is not degenerate. It is then also clear that the integral curves of XE and
XH are related by ΦL. Finally, denoting the projections from TQ and from T ∗Q
to Q by τQ and by τ ∗Q, respectively, we know that τQ = τ ∗Q ◦ΦL. Hence, the base
integral curves are the same. �

(ii) The canonical one-form ω0 (5.74) is closely related to the action W ,
(5.109a). With H = E ◦Φ−1

L , one has

θ0(XH) = W ◦Φ−1
L . (5.117a)

Conversely, if θL
def= Φ∗

Lθ0 is the pull-back of the canonical one-form on TQ,
then

θ0(XE) = W . (5.117b)

In charts this is easy to verify. For example, (5.117a) is equivalent to the statement
that θ0(XH) ◦ΦL is equal to W . We have

θ0(XH) =
∑

i

pi
∂H

∂pi

so that, indeed
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θ0(XH) ◦ΦL =
∑

i

∂L

∂q̇i
q̇i = W .

(iii) A transformation analogous to (5.103) can also be defined for the inverse
direction, i.e. going from T ∗Q to TQ. Let H be a smooth function on T ∗Q. In
analogy to the definition (5.103) let us define the transformation

ΦH : T ∗Q→ T ∗∗Q ∼= TQ . (5.118)

If this mapping ΦH is a diffeomorphism8, one can define the quantities

E
def= H ◦Φ−1

H , W
def= θ0(XH) ◦Φ−1

H , L
def= W − E (5.119)

in analogy to (ii) above. This yields a Lagrangian system on TQ with L the La-
grangian function. For this L we again construct the mapping ΦL (5.103). It then
follows that ΦL = Φ−1

H , or ΦL ◦ ΦH = idT ∗Q and ΦH ◦ ΦL = idTQ. This leads
to the following theorem.

Theorem. The Lagrangian functions on TQ for which the correspond-
ing mappings ΦL are diffeomorphisms, and the Hamiltonian functions for
which the corresponding ΦH are diffeomorphisms, correspond to each other
in a bijective manner.

The proof, which is simple, makes use of the tools introduced above, see e.g.
Abraham and Marsden (1981). Thus, under the assumptions stated above, there
is a one-to-one correspondence between the two descriptions of mechanics. The
relationship between them is illustrated once more in Fig. 5.14.

Fig. 5.14. If the condition (5.105) is fulfilled, the mapping
ΦL is a diffeomorphism. Its inverse ΦH is defined by
(5.118). A Lagrangian formulation of mechanics on TQ

and a Hamiltonian formulation on T ∗Q then correspond
bijectively

8 As is easy to guess, this is true if det(∂2H/∂pk∂pi) vanishes nowhere.
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Note that most systems studied in nonrelativistic mechanics have this property.
As a counterexample, however, we remind the reader of the relativistic description
of a free particle, Sect. 4.11: in this case the Lagrangian function did not have the
regularity required for ΦL to be a diffeomorphism.

5.7 Riemannian Manifolds in Mechanics

A Riemannian manifold (M, g) is a differential manifold M equipped with a met-
ric g. Differential or smooth manifolds are defined in Sect. 5.2.2; the metric is
a smooth tensor field of type T 0

2 (M), and its properties are summarized in def-
inition (ME) in Sect. 5.5.1. As can be seen from (5.67b), or from (5.69), the
metric defines a scalar product on TpM , the tangent space attached to the point
p ∈ M . This scalar product is often written in the “bra” and “ket” notation, i.e. by
making use of the symbols

〈
. . . | and | . . .〉, such that

gp(v,w) ≡
〈
v|w〉

, v, w ∈ TpM . (5.120)

The phase space of a Hamiltonian system is a symplectic manifold, cf. the defini-
tion (S2) in Sect. 5.5.4. Symplectic manifolds are very different from Riemannian
manifolds: While all symplectic manifolds look the same locally, this is not true
for Riemannian manifolds. The first statement is the content of Darboux’ theorem
(Sect. 5.5.4) which may be expressed in more physical terms by the statement that
locally and outside of equilibrium positions, any Hamiltonian vector field can be
rectified (cf. Sect. 2.37.1)9.

In this section we show that for certain systems of Lagrangian mechanics the
coordinate manifold Q can be interpreted as a Riemannian manifold with the metric
as defined by the kinetic energy; and that solutions of the Euler–Lagrange equations
are nothing but geodesics of Q. In this way we discover another illustration and
example of the geometrical nature of mechanics; at the same time we prepare the
ground for general relativity, which is a geometrical theory, in an even deeper sense.

In what follows we first introduce the notions of parallel transport and affine
connection that one needs in order to define parallel vector fields and to write
down the geodesic equation. We then show that geodesics are solutions of Euler–
Lagrange equations and conclude with a beautiful application of this somewhat
formal chapter.

9 The global properties of symplectic manifolds are the subject of an important research field of
mathematics. The present state of the art is described in the book by Hofer and Zehnder (1994).
This book should be readily accessible for the mathematically minded reader.
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5.7.1 Affine Connection and Parallel Transport

To begin with, let M simply be a Euclidean space R
n, equipped with the metric

defined in (5.5) and (5.6). Let W = ∑
Wi∂i and V = ∑

V i∂i be smooth vector
fields on M , Vp ∈ TpM the local representative of V at the point p. We now
ask the question of how W at p will change in the direction of Vp. The answer
is simple in this case: At the point p we let V act on the functions (the compo-
nents) Wi(p) and use the result to construct the vector field

∑
V (Wi)∂i . This is

the local and natural expression for the covariant derivative of W with respect
to V

DV (W) =
n∑

i=1

V (Wi)∂i

=
n∑

i,k=1

V k ∂W
i

∂xk
∂i . (5.121)

Obviously this expression is linear in W . Regarding its dependence on V it is also
possible to calculate the covariant derivative along the sum of two vector fields,
viz DV1+V2W = DV1W + DV2W , as well as along the vector field f · V , where
f is a smooth function on M , viz DfVW = f (DVW). However, letting DV act
on the vector field (f ·W) is a different matter; one finds

DV (fW) =
n∑

i=1

V (fWi)∂i = (Vf )

n∑

i=1

Wi∂i + f

n∑

i=1

V (Wi)∂i

= (Vf )W + fDVW .

This formula expresses a generalized product rule, or Leibniz rule.
In case of a smooth manifold M which is not R

n the formula (5.121) no longer
holds, and there is no obvious and natural definition of a covariant derivative. Ask-
ing the question of how a vector field W changes along the direction of another
vector field means that we have to compare elements of two distinct tangent spaces,
say Wp ∈ TpM with Wq ∈ TqM . In order to make such a comparison possible we
first need to know how to transport Wp in a parallel fashion from TpM to TqM

(by means of a vector space isomorphism). Only then can one compare the result
of the parallel transport with Wq . As parallel transport, in general, is not given
in a canonical way, an explicit rule is necessary. It needs to be constructed in a
manner consistent with what we know from the flat space R

n. Fixing the rule of
parallel transport on a smooth manifold means choosing what is called a connec-
tion. The example studied above suggests the following defining properties of a
connection D:
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CONN. A connection D on a smooth manifold M is a mapping

D : V(M)× V(M) −→ V(M) , (5.122)

which has the following properties:

(i) It is F(M)-linear in the first argument, that is to say

DV1+V2W = DV1W +DV2W , (5.123a)

DfVW = f (DVW) ; (5.123b)

(ii) it is R-linear in its second argument, that is

DV (λ1W1 + λ2W2) = λ1DV (W1)+ λ2DV (W2) ,

λ1, λ2 ∈ R ; (5.124)

(iii) it obeys the Leibniz rule

DV (fW) = (Vf )W + fDVW , f ∈ F(M) . (5.125)

The vector field DVW is called the covariant derivative of W along V and with
reference to the connection D.

Clearly, the parallel transport is fixed if its action on all base vectors is known.
Therefore, if in a local chart we choose V = ∂i and W = ∂j , the result is again
a vector field which can be expanded along base fields,

D∂i (∂j ) =
n∑

k=1

Γ k
ij ∂k . (5.126)

This equation defines the Christoffel symbols Γ k
ij of the connection D. For exam-

ple, if one computes the covariant derivative of a vector field W along the base
field ∂i , equations (5.125) and (5.126) yield the following local expression

D∂i

(
∑

k

Wk∂k

)

=
∑

k

⎧
⎨

⎩
∂Wk

∂xi
+

∑

j

Γ k
ijW

j

⎫
⎬

⎭
∂k . (5.127)

One of the central theorems of Riemannian geometry is the following: Among
the set of connections on a Riemannian manifold M there is a special, uniquely
determined connection which, in addition to (5.123–125) has the properties

[V,W ] = DVW −DWV , (5.128)

X
〈
V |W 〉 = 〈

DX|W
〉+ 〈

V |DXW
〉

for all X,V,W ∈ V(M) . (5.129)

This special connection is called the Levi–Civita connection.
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The first of the additional properties (5.128) says that the commutator (5.32)
of the vector fields V and W equals the difference of the covariant derivative of
W along V and of V along W . By applying (5.128) to two base fields ∂i and ∂j
we see that the Christoffel symbols are symmetric in their lower indices,

Γ k
ij = Γ k

ji . (5.130)

Indeed the left-hand side vanishes because the base fields commute; the right-hand
side, according to (5.126), gives (5.130)10.

As it also possesses the property (5.129) the Levi–Civita connection is said to
be metric. Indeed, the covariant derivative can also be applied to other smooth ob-
jects defined on M such as the metric g. One can show that (5.129) is equivalent
to the condition Dg = 0, which says that the covariant derivative of the metric
along any smooth vector field vanishes.

In local coordinates the Christoffel symbols can be expressed in terms of deriva-
tives of the metric tensor gik as well as by its inverse gkm. We skip this calculation
and simply quote the result

Γ k
ij =

1

2

∑

m

gkm
(
∂gjm

∂xi
+ ∂gmi

∂xj
− ∂gij

∂xm

)
. (5.131)

The symmetry (5.130) is obvious in this explicit formula.

5.7.2 Parallel Vector Fields and Geodesics

A smooth curve α : I ⊂ Rτ → M on the manifold M is itself a smooth, one-
dimensional manifold. Consider a smooth vector field Z ∈ V(α) on this subman-
ifold of M . Let τ be the parameter describing the curve, let the dot denote the
derivative with respect to τ and let α̇ be its tangent vector field. The derivative of
Z with respect to τ can then be computed as follows,

Ż =
∑

k

dZk

dτ
∂k +

∑

k

ZkDα̇(∂k) =
∑

k

{
dZk

dτ
+

∑

lm

Γ k
lm

d(xl ◦ α)
dτ

Zm

}

∂k .

This is the rate of change of Z as one moves along the curve. In particular, if Ż = 0
the vector field Z is said to be parallel. Given a tangent vector z ∈ Tα(τ0)M to
the point α(τ0) on the curve we can now state precisely how to perform parallel
transport of a given vector along the curve α. In particular, for every smooth curve
α : I → M there is a unique parallel vector field Z such that at τ = τ0 it equals
a given tangent vector, say Z(τ0) = z.

A case of special interest is when Z = α̇, i.e. where Z is the tangent vector field
of a curve α. Obviously, Ż is then none other than the acceleration α̈. Geodesics,
from the point of view of physics, describe motion of free fall on the manifold,

10 The condition (5.128) expresses the fact that the Levi–Civita connection has vanishing torsion.
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i.e. motion with vanishing acceleration. Geometrically speaking they are curves on
the manifold which link arbitrary points p and q such that the length of the arc pq
is extremal. An elementary example is provided by the unit sphere in three dimen-
sions, M = S2, where the geodesics are the great circles. The geodesic distance
between any two points A,B ∈ S2 is either a minimum (if the smaller segment
of the great circle joining them is chosen), or a maximum (if the larger segment
is chosen). If A and B are antipodes, the geodesic length corresponds to a saddle
point (cf. Sect. 2.36).

These remarks illustrate the geometrical definition of geodesics.
Geodesics on a smooth Riemannian manifold are smooth curves γ : I → M whose
tangent vector field γ̇ is parallel.

This definition and our previous remarks allow us to write down a differential
equation for geodesics in local coordinates. It reads

d2

dτ 2 (x
l ◦ γ )+

∑

jk

Γ l
jk(γ )

d

dτ
(xj ◦ γ ) d

dτ
(xk ◦ γ ) = 0 . (5.132a)

Here, the functions (xi ◦γ ) are coordinate functions on the curve γ . As their mean-
ing is obvious and as there is no real danger of confusion one simplifies the notation
by writing just xi for short. The geodesic equation then takes the simpler form

ẍl +
∑

jk

Γ l
jk(γ )ẋ

j ẋk = 0 . (5.132b)

5.7.3 Geodesics as Solutions of Euler–Lagrange Equations

As we have seen, geodesics describe force-free, unaccelerated motion on a given
manifold. They are curves whose length is an extremum and, therefore, they are
solutions of Euler–Lagrange equations. This is the content of the following theorem

Theorem on geodesics. Let (Q, g) be a Riemannian manifold and

L : TQ −→ R , L(v) = 1

2

〈
v|v〉

a Lagrangian function. A curve γ is a solution of the Euler–Lagrange equa-
tions if and only if it is geodesic on Q.

Proof: In local coordinates the Lagrangian function reads

L(v) = 1

2

∑

ij

gij (q)v
ivj ≡ 1

2

∑

ij

gij (q)q̇
i q̇j .

Lagrange’s equations (2.18) yield
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d

dt

⎛

⎝
∑

j

gij q̇
j

⎞

⎠− 1

2

∑

jk

∂gjk

∂qi
q̇j q̇k = 0 . (5.133)

We calculate the time derivative in the first term

d

dt

⎛

⎝
∑

j

gij q̇
j

⎞

⎠ =
∑

j

gij q̈
j +

∑

ij

∂gij

∂qk
q̇j q̇k ,

multiply the entire equation from the left with the inverse gli of the metric tensor,
and sum over i to obtain the differential equation

q̈ l +
∑

ijk

gli
(
∂gij

∂qk
− 1

2

∂gjk

∂qi

)
q̇j q̇k =

q̈ l + 1

2

∑

ijk

gli
(
∂gij

∂qk
+ ∂gik

∂qj
− ∂gjk

∂qi

)
q̇j q̇k = 0 .

In the second step we have written the first term of the expression within brackets
twice by making use of its symmetry in j and k. In its second form, upon inserting
the formula (5.131) for the Christoffel symbols, the differential equation becomes
precisely the geodesic equation (5.132b). This proves the theorem.

Remark: With L = T = gikq̇
i q̇k/2 and with T the kinetic energy, (5.133) shows

that the geodesic equation has the form of (2.18). The integral

λ :=
∫ τ2

τ1

dτ

√∑

ik

gik(q(τ ))q̇i q̇k =
∫ τ2

τ1

dτ
√

2T (5.134)

is the length of the curve with boundary values γ (τ1) = a and γ (τ2) = b. As
long as T does not vanish these geodesics are curves whose length λ is extremal
because as T 	= 0

d

dt

∂
√
T

∂q̇i
− ∂

√
T

∂qi
= 0 = 1

2
√
T

(
d

dt

∂T

∂q̇i
− ∂T

∂qi

)
.

5.7.4 Example: Force-Free Asymmetric Top

We wish to conclude this chapter by illustrating these general results by means
of a particularly beautiful example11: We show that Euler’s equations (3.59) are
geodesic equations on the Riemannian manifold M = SO(3), with the metric being
determined by the inertia tensor J.

We start by recalling that by using S(ϕ) = ∑3
i=1 ϕiJi the rotation matrix

(3.45a) can be written as an exponential series in S and that the action of the

11 V.I. Arnol’d: Ann. Inst. Fourier 16, 319 (1966)
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latter on any vector equals the cross product of ϕ with that vector (cf. Sect. 2.22).
Thus, in symbols

R(ϕ) = exp{−S(ϕ)} and S(ϕ)x = ϕ × x .

The action of the matrix Ω(τ ) = Ṙ
T
(τ )R(τ ), eq. (3.53), on a vector in the

laboratory system is that given in (3.56b). Clearly, these formulas can be rotated
to the body-fixed system,

Ω x = ω × x , where ω = Rω , Ω = RΩRT . (5.135)

The Lagrangian function is equal to the kinetic energy expressed in the body-fixed
system,

L = T = 1

2
ω · J · ω . (5.136)

Let R(τ ) be a smooth curve on the manifold M = SO(3) which assumes the
boundary values R(τ1) = R1 and R(τ2) = R2 and which is such that the length
(5.134) is an extremum. We show that any such geodesic obeys Euler’s equations
(3.58) for vanishing external torque.

Let R(τ ) be a geodesic, R0 ∈ SO(3) a constant, fixed rotation. We compute

[
d

dt
(R0R(τ ))T

]
(R0R(τ )) =

[
d

dt
R(τ )

]T

RT
0 R0R(τ ) = Ṙ

T
(τ )R(τ ) .

From this we conclude that Ω, and hence also ω as well as ω remain unchanged.
This means that if R(τ ) is a geodesic, so is (R0R(τ )). Therefore, it is sufficient
to discuss the special geodesic which goes through R(τ = 0) = 1l. In this case
Ṙ(0) = Ω(0). We compute Ω in the neighborhood of ϕ = 0 as follows

Ω = RΩR−1 = R(τ )Ṙ
T
(τ )

= (1l − S + . . .)

(
Ṡ + 1

2
ṠS + 1

2
SṠ + . . .

)

= Ṡ − 1

2
[S, Ṡ] +O(ϕ2) ,

and use the identity (cf. Sect. 3.12)

[S, Ṡ] ≡ [S(ϕ), Ṡ(ϕ)] = S(ϕ × ϕ̇) .

Note that ϕ and ϕ̇ here are independent variables and need not have the same
direction. We conclude that

Ω = S(ϕ̇)− 1

2
S(ϕ × ϕ̇)+O(ϕ2) .

On the other hand (5.135) implies that Ω = S(ω) and we conclude that
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ω = ϕ̇ − 1

2
ϕ × ϕ̇ +O(ϕ2) . (5.137)

Inserting (5.137) into (5.136) and keeping track of the symmetry of the inertia
tensor we have

T = 1

2
ϕ̇ · J · ϕ̇ − 1

2
ϕ̇ · J · (ϕ × ϕ̇)+O(ϕ2) .

In calculating, in a next step, the derivatives with respect to ϕ and to ϕ̇ it is
useful to rewrite the second term of T by using the identities a·(b×c) = b·(c×a) =
c · (a× b) with a = (ϕ̇ · J)T = J · ϕ̇, b = ϕ, and c = ϕ̇. To first order we find

∂T

∂ϕ
= −1

2
ϕ̇ × (Jϕ̇)+O(ϕ) = −1

2
ω × (J ω)+O(ω) .

In much the same way one finds

d

dτ

∂T

∂ϕ̇
= Jϕ̈ − 1

2
(Jϕ̇)× ϕ̇ +O(ϕ) = J ω̇ + 1

2
ω × (J ω)+O(ϕ) .

Thus, taking ϕ = 0 one recovers the geodesic equation

d

dτ

∂T

∂ϕ̇
− ∂T

∂ϕ
= J ω̇ + ω × (J ω) = 0 . (5.138)

This equation is identical to Euler’s equations (3.58), with D = 0. Thus, Euler’s
equations of motion have a simple geometrical interpretation which is helpful in
visualizing their content:

The spinning top without external forces follows geodesics of the smooth manifold
SO(3).



6. Stability and Chaos

In this chapter we study a larger class of dynamical systems that include but go
beyond Hamiltonian systems. We are interested, on the one hand, in dissipative
systems, i.e. systems that lose energy through frictional forces or into which energy
is fed from exterior sources, and, on the other hand, in discrete, or discretized, sys-
tems such as those generated by studying flows by means of the Poincaré mapping.
The occurence of dissipation implies that the system is coupled to other, external
systems, in a controllable manner. The strength of such couplings appears in the
set of solutions, usually in the form of parameters. If these parameters are varied
it may happen that the flow undergoes an essential and qualitative change, at cer-
tain critical values of the parameters. This leads rather naturally to the question of
stability of the manifold of solutions against variations of the control parameters
and of the nature of such a structural change. In studying these questions, one re-
alizes that deterministic systems do not always have the well-ordered and simple
behavior that we know from the integrable examples of Chap. 1, but that they may
exhibit completely unordered, chaotic behavior as well. In fact, in contradiction
with traditional views, and perhaps also with one’s own intuition, chaotic behavior
is not restricted to dissipative systems (turbulence of viscous fluids, dynamics of
climates, etc.). Even relatively simple Hamiltonian systems with a small number
of degrees of freedom exhibit domains where the solutions have strongly chaotic
character. As we shall see, some of these are relevant for celestial mechanics.

6.1 Qualitative Dynamics

In the preceding chapters, we dealt primarily with fundamental properties of me-
chanical systems, with principles that allowed the construction of their equations of
motion, and with general methods of solving these equations. The integrable cases,
although a minority among the dynamical systems, were of special importance be-
cause they allowed us to follow specific solutions analytically, to appreciate the
significance and the power of conservation laws, and to study the restrictions that
the latter impose on the manifold of motions in phase space.

On the other hand, there are questions to which we have paid less attention so
far; for example: What is the long-term behavior of a periodic motion that is subject
to a small pertubation? What is the structure of the flow of a mechanical system
(i.e. the set of all possible solutions) in the large? Are there structural, characteristic

F. Scheck, Mechanics, Graduate Texts in Physics, 5th ed.,
DOI 10.1007/978-3-642-05370-2_6, © Springer-Verlag Berlin Heidelberg 2010
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properties of the flow that do not depend on the specific values of the constants
appearing in the equations of motion? Can there be “ordered” and “unordered”
types of motions, in a given system? If yes, can one define a quantitative measure
for the lack of “order”? If a given system depends on external control parameters
(strength of a perturbation, amplitude and frequency of a forced vibration, varying
degree of friction, etc.), are there critical values of the parameters where the flow
of the system changes its structure in the large?

These questions show that, here, we approach the analysis of mechanical sys-
tems in a somewhat different spirit. The equations of motion are assumed to be
known (even though they may depend on control parameters that can be varied).
We concentrate less on the individual solution but, instead, study the flow as a
whole, its stability, its topological structure, and its behavior over long time peri-
ods. It is this kind of analysis we wish to call qualitative dynamics. Quite logically,
it leads one to investigate the stability of equilibrium positions and of periodic or-
bits, to study attractors for dissipative systems (i.e. manifolds of lower dimension
than the original phase space, to which the system tends, for large times, under the
action of dissipation), to study bifurcations (i.e. structural changes of the flow at
critical values of the control parameters), and to analyse the pattern of disordered
motion if it occurs.

6.2 Vector Fields as Dynamical Systems

The dynamics of a very great variety of dynamical systems can be cast in the form
of systems of first-order differential equations, viz.

d

dt
x
˜
(t) = F˜ (x˜

(t), t) . (6.1)

Here, t is the time variable, x
˜
(t) is a point in the configuration space of the system,

and F˜ is a vector field that is continuous and often also differentiable. The space
of the variables x

˜
may be the velocity space, described locally by generalized co-

ordinates qi and velocities q̇i , or the phase space that we describe locally by the
qi and the canonically conjugate momenta pi . There are, of course, other cases
where the x

˜
live in some other manifold: an example is provided by the Eulerian

angles that parametrize the rotational motion of rigid bodies.
As an example, let the equation of the motion be given in the form

ÿ + f1(y, t)ẏ + f2(y, t) = 0 .

It is easy to recast this in the form of (6.1), by taking

x1(t)
def= y(t) , x2(t)

def= ẏ(t) ,

so that ẋ1 = x2, ẋ2 = −f1x2−f2. The pattern (6.1), of course, is not restricted to
Lagrangian or Hamiltonian systems. It also describes systems with dissipation, that
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is systems where either mechanical energy is converted to other forms of energy
or where energy from external sources is fed into the system. Thus, (6.1) describes
a large class of dynamical systems, defined on the space of x

˜
variables and the

time axis Rt . This equation is a local expression of the underlying physical laws.
For instance, it relates the acceleration at every point of space and at each time
t with the given field of forces. In this sense it determines the dynamics locally,
“in the small”. The temporal evolution of the system, starting from an arbitrary
but fixed initial configuration, will be known only when we have the complete
solution of the differential equation (6.1) that obeys this initial condition. As an
example, consider the Kepler problem (Sect. 1.7.2) for a given initial position r0
and initial velocity ṙ0 of the relative coordinate. Take T0 = μṙ2

0/2 to be smaller
than |U(r0)| ≡ A/r0 (where A = Gm1m2) and take l ≡ |r0 × ṙ0|μ to be differ-
ent from zero. The specific solution that assumes this initial configuration is the
Keplerian ellipse with parameters l2/Aμ and

ε =
√

1 + 2(T0 + U(r0))l2/μA2 .

This specific solution, though, gives little information on the general dynamics of
mass points in the field of the gravitational force F = −∇U . Only when we know
the solutions for all allowed initial configurations do we learn that, besides ellipses
and circles, the Kepler problem also admits hyperbolas and parabolas as the typ-
ical scattering orbits. In other words, the diversity of the dynamics hidden in an
equation such as (6.1) will come to light only if one knows and understands all
solutions, i.e. the complete flow of the vector field F˜ .

These remarks apply to a system whose law of motion is given once and for
all. In the case of real physical systems, this assumption is true only in exceptional
situations, for the following reasons.

(i) It may happen that the force law is not known exactly. Its explicit form
may contain one or several parameters that one whishes to determine from the
observed motions. Here is an example: if one doubts the long-range character of
the Coulomb potential between two point charges e1 and e2, one might assume
U(r) = e1e2/r

α with α = 1+ ε, with the idea of studying the dependence of the
corresponding dynamics on the parameter ε (see also Practical Example 1.4).

(ii) The vector field F˜ on the right-hand side of (6.1) describes the influence of
an external system that might be varied. An example is an oscillator that is coupled
to an external oscillation of variable frequency and variable amplitude.

(iii) It may be that the differential equation (6.1) contains a predominant force
field for which all physically allowed solutions are known. In addition, it contains
further terms that describe the coupling of the system to other, external systems, the
coupling being weak enough so that they may be taken to be small perturbations of
the initial, soluble system. This is the situation that we studied in Sect. 2.38–2.40.

In all cases and examples quoted above, the vector field F˜ contains additional
parameters that can be varied and that may have a decisive influence on the man-
ifolds of solutions. For example, it may happen that the solutions of (6.1) change
their structure completely once the parameters cross certain critical values. Stable
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solutions can turn into unstable ones, a periodic solution, by the bifurcation phe-
nomenon, can double its frequency, etc.

From these remarks it is clear that the task of studying deterministic dynamic
systems on the basis of their equation of motion (6.1) is a very ambitious one. When
formulated this generally, this field of differentiable dynamics, by far, is not a closed
subject. On the contrary, there are only relatively few rigorous results and a number
of empirical results based on numerical studies. Therefore, studying this branch of
mechanics leads one very quickly into the realm of modern research in this field.

6.2.1 Some Definitions of Vector Fields and Their Integral Curves

In this section we take up the tools introduced in Chap. 5 and discuss some con-
cepts that are important for studying vector fields as dynamic systems. The local
form of (6.1) is sufficient for an understanding of most of what follows in subse-
quent sections. Therefore, the reader who is not used to the geometrical language
may skip this section. On the other hand, if one wishes to learn more about the
subjects touched upon in this chapter, some knowledge of the content of Chap. 5 is
mandatory, as the specialized literature and the research in this field make extensive
use of the concepts and methods of topology and differential geometry.

In reality, (6.1) is a coordinate expression of the differential equation (5.42) for
integral curves of a smooth vector field F on the manifold M . In physics, typically
M is the phase space T ∗Q or the velocity space TQ, i.e. the cotangent or tangent
bundles of the coordinate manifold, respectively.

The curve Φm : I → M is an integral curve of F if the tangent vector field
Φ̇m coincides with FΦm(t), the restriction of F to points along the curve Φm,

Φ̇m(t) = FΦm(t) , t ∈ I ⊂ Rt , F ∈ X (M) . (6.2)

I is an open interval on the time axis Rt that contains the origin t = 0. The inte-
gral curve Φm is chosen such that it goes through m at time zero. (We adopt the
notation of Sect. 1.19 because we shall use results from there.)

In the coordinates of the chart (ϕ, U) we obtain the differential equation (5.43),
i.e.

d

dt
(xi ◦Φm) = F i (xk ◦Φm, t) , (6.3)

or, in a somewhat simplified notation, (6.1).
Somewhat more generally, we have the following. For each m0 of M there is

an open neigborhood V on M , an open interval I on the time axis containing the
origin t = 0, and a smooth mapping

Φ : V × I → M , (6.4)

such that, for every fixed m ∈ V , the curve Φ(m, t) is the integral curve Φm(t) ≡
Φ(m, t) of F that goes through m at time t = 0, Φ(m, t = 0) = m. The theorem
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of Sect. 1.19 guarantees the existence and uniqueness of this integral curve. Φ is
said to be the local flow of the vector field F and the integral curves Φm : I → M

are said to be the flux or flow lines of Φ. Keeping the time variable in Φ(m, t)

fixed and letting m wander through V , we obtain the flow fronts

Φt(m)
def= Φ(m, t) (6.5)

of the flow Φ. This local manifold of solutions may be visualized as shown in
Fig. 6.1. Given a fixed time t ∈ I , each point of the domain V flows along a cer-
tain section of its integral curve Φm. The domain as a whole moves on to Φt(V ).

Fig. 6.1. During time t , the flow of a vector field trans-
ports a domain V to V ′ = Φt (V ). The figure also shows
the orbits along which the points of V move during this
time

If I(m) is the maximal allowed interval on the time axis for which Φm exists,
Φm is unique and is said to be the maximal integral curve through m. Applying this
reasoning to every point of M yields a uniquely determined, open set Ω ⊂ M×Rt ,
on which the maximal flow Φ : Ω → M of the vector field F is defined. This
leads to the following.

Definition. A vector field F is said to be complete if Ω = M × Rt , i.e. if its
maximal flow is defined on the whole manifold and for all times.

The Hamiltonian vector field of the harmonic oscillator provides an example
of a complete vector field,

(F i ) ≡ (Xi
H) =

(
∂H

∂p
,−∂H

∂q

)
= (p,−q) . (6.6)

Its maximal flow

Φ(m ≡ (q, p), t) =
(

cos t sin t
− sin t cos t

)(
q

p

)

is defined on the whole phase space (this is the example of Sect. 5.3.1 with t0 = 0).
In practice there are examples of vector fields that are not complete. For instance,
in the Kepler problem the origin of the potential must be cut out of the orbit plane
because of its singularity at this point. The corresponding Hamiltonian vector field
then ceases to be complete on R

2. Similarly, in relativistic mechanics and in general
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relativity there are vector fields (such as velocity fields of geodesics) that are not
complete. For a complete vector field, Φ is a global flow,

Φ : M × Rt → M , (6.7)

that may be interpreted in yet another way. As in (6.5) let us keep the time fixed.
The flow (6.7) then generates a smooth mapping of M onto itself,

Φt : M → M : m → Φt(m)
def= Φ(m, t) , (6.8)

which has the following properties. For t = 0 it is the identical mapping on M ,
Φ0 = idM . Taking the composition of (6.7) with itself, twice or several times, one
obtains

Φt+s = Φt ◦Φs for t, s ∈ Rt .

For each t , Φt is a diffeomorphism of M . The inverse of Φt is Φ−t . In this way
we obtain a one-parameter group of diffeomorphisms on M , generated by the flow
Φ and the assignment t → Φt . Thus every complete vector field defines a one-
parameter group of diffeomorphisms. Conversely, a group Φ : M × R → M that
depends on a real parameter defines a complete vector field.

6.2.2 Equilibrium Positions and Linearization of Vector Fields

Suppose the laws of motion of a physical system are described by the local equation
(6.1) or, more generally, by an equation of the form of (6.2). A set of differential
equations of this kind is called a dynamical system (although, strictly speaking,
only the set of all solutions to these equations describes the dynamics). For what
follows, we treat dynamical systems in the simplified form of (6.1), i.e. in the form
of differential equations on R

n. For manifolds that are not Euclidean spaces this
means that we work in local charts. Exceptions regarding dynamical systems on
more general, smooth manifolds will be mentioned explicitly.

A point x
˜ 0 is said to be an equilibrium position of the vector field F˜ if

F˜ (x˜ 0) = 0. Equivalently, one also talks about a singular or critical point of the
vector field. For an autonomous system, for example, (6.1) becomes

ẋ
˜
(t) = F˜ (x˜

(t)) . (6.9)

At a critical point x
˜ 0 the velocity vector vanishes so that the system cannot move

out of this point. However, as such, (6.9) says nothing about whether the configu-
ration x

˜ 0 is stable or unstable against perturbations. One learns more about this if
one linearizes (6.9) about the point x

˜ 0. For this purpose we introduce the following
definitions.

(i) Linearization in the neighborhood of a critical point. In the terminology of
Sect. 6.2.1 the linearization of a vector field at a critical point m0 is defined to be
the linear mapping
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F ′(m0) : Tm0M → Tm0M ,

which assigns to every tangent vector v ∈ Tm0M the derivative

F ′(m0) · v = d

dt
(T Φm0(t) · v)

∣∣
t=0 .

Here Φ is the flow of F and TΦ is the corresponding tangent mapping.
In the simplified form of (6.9), valid on R

n, linearization means simply that
we expand about the point x

˜
= x

˜ 0. Thus, take y
˜
= x

˜
− x

˜ 0 and F˜ (x˜ 0) = 0. From
(6.9) we obtain the differential equation

ẏi (t) =
n∑

k=1

∂F i

∂xk

∣
∣
∣
∣
∣
x
˜ 0

yk(t) (6.10a)

or, in more compact notation,

ẏ
˜
(t) = DF˜

∣
∣
x
˜ 0
· y
˜
(t) . (6.10b)

This is a differential equation of the type studied in Sect. 1.21. The symbol DF
denotes the matrix of partial derivatives, very much as in Sect. 2.29.1. For an au-
tonomous system (6.9) this matrix is independent of time. The linear system (6.10)
obtained from it is homogeneous and autonomous.

The following case is more general (see Exercise 1.22 and the example of
Sect. 1.26).

(ii) Linearization in the neighborhood of a given solution. Let Φ
˜
(t) be a so-

lution of (6.1) and let y
˜
(t) = x

˜
(t)−Φ

˜
(t). Then, from (6.1),

ẏ
˜
(t) = F˜ (y˜

(t)+Φ
˜
(t), t)− Φ̇˜ (t) = F˜ (y˜

(t)+Φ
˜
(t), t)− F˜ (Φ˜

(t), t) .

Expanding the right-hand side in a Taylor series about the solution Φ
˜
(t) yields the

linear and homogenous differential equation

ẏi (t) =
∑

k

∂F i

∂xk

(
x
˜
= Φ

˜
(t), t

)
yk(t) , (6.11)

where the partial derivatives of F˜ must be taken along the orbit Φ
˜
(t). Even if F˜

has no explicit time dependence, the linearized system (6.11) is not autonomous.
It becomes autonomous only if the specific solution is chosen to be an equilibrium
position, Φ

˜
(t) = x

˜ 0, taking us back to the first case (6.10).
In the simpler case of linearizing an autonomous system about an equilibrium

position we obtain the linear, homogeneous, and autonomous system (6.10), i.e.

ẏ
˜
(t) = Ay

˜
(t) (6.12)

with the matrix A being given by

Aik = ∂F i

∂xk

∣∣∣
∣
x
˜ 0

.
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The linear system (6.12) can be solved explicitly. The solution that fulfills the ini-
tial condition y

˜
(s) = y

˜ 0 is

y
˜
(t) ≡ Ψ

˜ t,s
(y
˜ 0) = exp[(t − s)A]y

˜ 0 (6.13)

with Ψ
˜ s,s

(y
˜ 0) = y

˜ 0 and with

exp[(t − s)A] =
∞∑

n=0

(t − s)n

n! An .

If A is given in diagonal form, this series becomes particularly simple. With αi
denoting the eigenvalues of A the exponential series also has diagonal form, its
eigenvalues being exp(λαi) with λ = t − s. For this reason, the eigenvalues of the
matrix A = DF are called characteristic exponents of the vector field F˜ at the
point x

˜ 0.
For the sake of illustration we consider two examples. The first is the example

of Sect. 1.21.1, which is understood to be the linearization of the plane pendulum
at the point x

˜
= 0. From (1.46)

A =
(

0 1/m
−mω2 0

)
.

The eigenvalues of A are easily found. From the characteristic equation det (α1l−
A) = 0 one finds α1 = iω, α2 = −iω, so that the diagonalized matrix is

0
A =

(
iω 0
0 −iω

)
. (6.14)

In the second example we add a friction term to the plane pendulum, pro-
portional to the velocity of the motion. Thus, in linearized form we obtain the
differential equation

mq̈ + 2γmq̇ +mω2q = 0 , (6.15)

where γ is a constant with the dimension of a frequency.
Using the notation of Sect. 1.18, y1 = q, y2 = mq̇, (6.15) becomes
(
ẏ1

ẏ2

)
= A

(
y1

y2

)
with A =

(
0 1/m

−mω2 −2γ

)
.

The eigenvalues of A are computed as in the previous example. For γ 2 < ω2

(this is the case of weak friction) one finds two, complex conjugate characteristic
exponents

|γ | < ω :
0
A =

(
−γ + i

√
ω2 − γ 2 0

0 −γ − i
√
ω2 − γ 2

)

(6.16a)
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For γ 2 > ω2 (this is the aperiodic limit) one finds two real characteristic exponents
both of which have the same sign as γ ,

|γ | > ω :
0
A =

(
−γ +√

γ 2 − ω2 0
0 −γ −√

γ 2 − ω2

)

. (6.16b)

In all cases, y
˜ 0 = (y1, y2) = 0 is an equilibrium position. In the case of damped

motion, (6.16a) and (6.16b) show that all solutions (6.13) approach the origin ex-
ponentially as t goes to infinity. This point is certainly one of stable equilibrium.
If, on the other hand, γ < 0, the oscillations are enhanced and every initial con-
figuration except y

˜ 0 = 0 moves away from the origin, no matter how close to 0 it
is chosen. In this situation the origin is certainly a point of unstable equilibrium.

In the case of purely harmonic oscillations (6.14) the origin is again stable but
in a weaker sense than with positive damping. Indeed, if we perturb the oscillator
a little from its position of rest, it becomes a stationary state of motion with small
amplitude. It neither returns to zero nor moves away from it for large times. The
origin is stable but, obviously, its stability is of a different character than for the
damped oscillator. Let us study these different kinds of stability in more detail.

6.2.3 Stability of Equilibrium Positions

Let x
˜ 0 be a stable critical point of the vector field F˜ , i.e. F˜ (x˜ 0, t) = 0 and x

˜ 0
is an equilibrium position of the dynamical system (6.1) or (6.9). The notion of
stability of the critical point is qualified by the following definitions.

S1. The point x
˜ 0 is said to be stable (or Liapunov stable) if for every neigh-

borhood U of x
˜ 0 there is a further neighborhood V of x

˜ 0 such that the
integral curve, that, at time t = 0, goes through an arbitrary point x

˜
∈ V ,

exists in the limit t → +∞ and never leaves the domain U . Thus, when
expressed in symbols, we have for x

˜
∈ V and Φ

˜ x
(0) = x

˜
, Φ
˜ x
(t) ∈ U for

all t > 0.
S2. The point x

˜ 0 is said to be asymptotically stable if there is a neighbor-
hood U of x

˜ 0 that is such that the integral curve Φ
˜ x
(t) through an arbitrary

x
˜
∈ U is defined for t →+∞ and tends to x

˜ 0 as t goes to infinity. Thus,
with Φ

˜
(x
˜
, t) denoting the flow,

Φ
˜
(U, s) ⊂ Φ

˜
(U, t) ⊂ U for s > t > 0 and

lim
t→+∞Φ

˜ x
(t) = x

˜ 0 , for all x ∈ U .

In the first case orbits that belong to initial configurations close to x
˜ 0 stay in

the neighborhood of that point, at all later times. In the second case they move to-
ward the critical point as time increases. Clearly, S2 contains the situation defined
in S1: a point that is asymptotically stable is also Liapunov stable.

The following proposition gives more precise information on how rapidly the
points of the neighborhood U in S2 move towards x

˜ 0 as time increases.
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Proposition I. Let x
˜ 0 be an equilibrium position of the dynamical system

(6.1), which is approximated by the linearization (6.10b) in a neighborhood
of x

˜ 0. Assume that for all eigenvalues αi of DF˜ |x˜ 0 we have Re{αi} < −c <
0. Then there is a neighborhood U of x

˜ 0 such that the flow of F˜ on U (i.e.
which fulfills Φ

˜
(U, t = 0) = U) is defined for all positive times, as well

as a constant d such that for all x
˜
∈ U and all t > 0 we have

‖Φ
˜ x
(t)− x

˜ 0‖ ≤ d e−ct‖x
˜
− x

˜ 0‖ . (6.17)

Here ‖ . . . ‖ denotes the distance function. The result (6.17) tells us that the
orbit through x

˜
∈ U converges to x

˜ 0 uniformly and at an exponential rate.
A criterion for instability of an equilibrium position is provided by the follow-

ing.

Proposition II. Let x˜ 0 be an equilibrium position of the dynamical sys-
tem (6.1). If x˜ 0 is stable then none of the characteristic exponents (i.e. the
eigenvalues of DF˜ |x˜ of the linearization of (6.1)) has a positive real part.

We skip the proofs of these propositions and refer, for example, to Hirsch and
Smale (1974). Instead, we wish to illustrate them by a few examples and to give
the normal forms of the linearization (6.10) for the case of two dimensions.

One should note that definitions S1, S2 and propositions I and II apply to
arbitrary smooth vector fields, and not only to linear systems. In general, the lin-
earization (6.10) clarifies matters only in the immediate neighborhood of the critical
point x

˜ 0. The question of the actual size of the domain around x
˜ 0 from which all

integral curves converge to x
˜ 0, in the case of asymptotic stability, remains open,

except for linear systems. We shall return to this below.
For a system with one degree of freedom, f = 1, the space on which the

system (6.1) is defined has dimension 2. In the linearized form (6.10) it is
(
ẏ1

ẏ2

)
=

(
a11 a12
a21 a22

)(
y1

y2

)

with aik = (∂F i/∂xk)|x
˜ 0 . The eigenvalues are obtained from the characteristic

polynomial det (α1l − A) = 0, i.e. from the equation

α2 − α(a11 + a22)+ a11a22 − a12a21 = 0 ,

which may be expressed by means of the trace t = TrA and the determinant
d = detA as follows:

α2 − tα + d = 0 . (6.18)

As is well known, the roots of this equation fulfill the relations

α1 + α2 = t , α1α2 = d .
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If the discriminant D = t2 − 4d is positive or zero, the solutions α1 and α2 are
real. In this case we must distinguish the following possibilities.

(i) α1 < α2 < 0, i.e. d > 0 and −2
√
d < t < 0. For diagonal A the solu-

tions are y1 = exp(α1t)y
1
0 , y2 = exp(α2t)y

2
0 and we obtain the pattern shown in

Fig. 6.2a. The origin is asymptotically stable: it is a node.
(ii) α1 = α2 < 0. This is a degenerate case contained in (i) and is shown in

Fig. 6.2b.
(iii) α2 < 0 < α1, i.e. d < 0. Here the origin is unstable. The orbits show the

typical pattern of a saddle point; see Fig. 6.2c: some orbits approach the origin,
others leave it.

Fig. 6.2a–c.Typical behavior of a system with one degree of freedom in the neighborhood of an
equilibrium position. In cases (a) and (b) the equilibrium is asymptotically stable. In case (c) it is
unstable and has the structure of a saddle-point

If the discriminant D is negative, the characteristic exponents are complex con-
jugate numbers

α1 = σ + i� , α2 = σ − i� ,

with σ and � real. Here t = 2σ , d = σ 2 +�2. The various cases that are possible
here are illustrated in Fig. 6.3, which shows the examples of the damped, the ex-
cited, and the unperturbed oscillator (6.16a). The figure shows the solution with
initial condition y1

0 = 1, y2
0 = 0 of (6.15), viz.

y1(τ ) ≡ q(τ) =
[

cos

(
τ

√
1 − g2

)
+

(
g
/√

1 − g2

)
sin

(
τ

√
1 − g2

)]
e−gτ ,

y2(τ ) ≡ q̇(τ ) = −
(

1
/√

1 − g2

)
sin

(
τ

√
1 − g2

)
e−gτ . (6.19)

Here we have introduced τ ≡ ωt and g ≡ γ /ω. Curve A corresponds to g = 0,
curve B to g = 0.15, and curve C to g = −0.15. In the framework of our analysis
these examples tell us the following.

(iv) Curve A. Here σ = 0, � = ω, so that t = 0 and d ≥ 0. The origin is
stable but not asymptotically stable. It is said to be a center.

(v) Curve B. Here σ = −γ < 0, � = √
ω2 − γ 2, so that t < 0, d ≥ 0. The

origin is now asymptotically stable.
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(vi) Curve C. Now σ = −γ is positive while � is as in (v); therfore t > 0,
d ≥ 0. The orbits move away from the origin like spirals. The origin is unstable
for t →+∞.

Fig. 6.3. Nature of the equilib-
rium position (0, 0) for the case of
two, complex conjugate, characteris-
tic exponents. All curves start from
the initial configuration (1, 0) and
belong to the example of the oscilla-
tor (6.15) with the explicit solution
(6.19)

Our discussion shows the typical cases that occur. Figure 6.4 illustrates the var-
ious domains of stability in the plane of the parameters (t, d). The discussion is
easily completed by making use of the real normal forms of the matrix A and by
considering all possible cases, including the question of stability or instability as
t tends to −∞.

Fig. 6.4. For a system with f = 1
the various stability regions are deter-
mined by the trace t and the deter-
minant d of the linearization A. AS
means asymptotically stable (the equi-
librium position is a node). S means
stable (center) and US means unstable
(saddle-point)
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6.2.4 Critical Points of Hamiltonian Vector Fields

It is instructive to try the stability criteria developed above on canonical systems.
These are governed by the canonical equations (2.99),

ẋ = JH,x , (6.20)

where J is defined as in (2.102), its properties being

det J = 1 , JT = J−1 = −J,J2 = −1l .

The system (6.20) having an equilibrium position at x
˜ 0, the Hamiltonian vector

field XH vanishes at that point. As J is regular, also the vector of partial derivatives
H,x vanishes in x

˜ 0. Linearizing around x
˜ 0, i.e. setting y

˜
= x

˜
− x

˜ 0 and expanding
the right-hand side of (6.20), we obtain the linear system

ẏ
˜
= Ay

˜
with A = JB and B = {∂2H/∂xk∂xi |x

˜
=x
˜ 0}.

The matrix B is symmetric, B = BT . Making use of the properties of J we
have

AT J+ JA = 0 . (6.21)

A matrix that obeys condition (6.21) is said to be infinitesimally symplectic. This
name becomes clear if one considers a symplectic matrix M that differs only a
little from 1l,

M = 1l + εA+ O(ε2) .

The defining relation (2.113) then indeed yields (6.21), to first order in ε1.
The following result applies to matrices which fulfill condition (6.21).

Proposition. If α is an eigenvalue of the infinitesimally sympletic matrix
A, having multiplicity k, then also −α is an eigenvalue of A and has the
same multiplicity. If α = 0 is an eigenvalue then its multiplicity is even.

Proof. The proof makes use of the properties of J, of the symmetry of B and of
well-known properties of determinants. The eigenvalues are the zeros of the char-
acteristic polynomial P(α) = det (α1l−A). Therefore, it is sufficient to show that
det (α1l − A) = det (α1l + A). This is seen as follows

1 In Sect. 5.5.4 symplectic transformations are defined without reference to coordinates, see defi-
nition SYT. If these are chosen to be infinitesimal, F = id+ εA, then to first order in ε relation
(6.21) is obtained in the coordinate-free form ω(Ae, e′)+ ω(e,Ae′) = 0.
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P(α) = det (α1l − A) = det (−αJ2 − JB) = det J det (−αJ− B)

= det (−αJ− B)T = det (αJ− B) = det (α1l − J−1B)

= det (α1l + JB) = det (α1l + A) .

Thus, the proposition is proved. �
This result shows that the assumptions of proposition I (Sect. 6.2.3) can never

be fulfilled for canonical systems. As a consequence, canonical systems cannot
have asymptotically stable equilibria. Proposition II of Sect. 6.2.3, in turn, can be
applied to canonical systems: it tells us that the equilibrium can only be stable
if all characteristic exponents are purely imaginary. As an example consider the
case of small oscillations about an absolute minimum q

˜ 0 of the potential energy
described in Practical Example 2.1. Expanding the potential energy about q

˜ 0 up
to second order in (q

˜
− q

˜ 0), we obtain equations of motion that are linear. After
we have transformed to normal coordinates the Hamiltonian function that follows
from the Lagrangian function (A.8), Practical Example 2.1, reads

H = 1

2

f∑

i=1

(P 2
i +Ω2

i Q
2
i ) .

Setting Q′
i =

√
ΩiQi and P ′

i = Pi/
√
Ωi , H takes the form

H = 1

2

f∑

i=1

Ωi(P
′2
i +Q′2

i ) . (6.22)

We calculate the matrix A = JB from this: A takes the standard form

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Ω1 0

0
. . .

0 Ωf

−Ω1 0
. . . 0

0 −Ωf

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (6.23)

Generally, one can show that the linearization of a Hamiltonian system has pre-
cisely this standard form if the Hamiltonian function of its linearization is positive-
definite. (Clearly, in the case of small oscillations about an absolute minimum of
the potential energy, H does indeed have this property.) Diagonalizing the matrix
(6.23) shows that the characteristic exponents take the purely imaginary values

±iΩ1,±iΩ2, . . . ,±iΩf .
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Therefore, a system for which A has the standard form (6.23) does not contra-
dict the criterion for stability of proposition II of Sect. 6.2.3. The point x

˜ 0 has a
chance to be stable although this is not decided by the above propositions. In order
to proceed one tries to find an auxiliary function V (x

˜
) that has the property that

it vanishes in x
˜ 0 and is positive everywhere in a certain open neighborhood U of

that point. In the example (6.22) this could be the energy function (with xi ≡ Q′
i ,

xi+f = P ′
i , i = 1, . . . , f )

V (x
˜
) ≡ E(x

˜
) = 1

2

f∑

i=1

Ωi[(xi+f )2 + (xi)2] .

We then take the time derivative of V (x
˜
) along orbits of the system. If this deriva-

tive is negative or zero everywhere in U , this means that no solution moves out-
ward, away from x

˜ 0. Then the point x
˜ 0 is stable.

Remark. An auxiliary function that has these properties is called a Liapunov func-
tion.

The test for stability by means of a Liapunov function can also be applied to
systems that are not canonical, and it may even be sharpened there. Indeed, if the
derivative of V (x

˜
) along solutions is negative everywhere in U , then all orbits

move inward, towards x
˜ 0. Therefore this point is asymptotically stable. Let us il-

lustrate this by the example of the oscillator (6.15) with and without damping. The
point (q = 0, q̇ = 0) is an equilibrium position. A suitable Liapunov function is
provided by the energy function,

V (q, q̇)
def= 1

2 (q̇
2 + ω2q2) with V (0, 0) = 0 . (6.24)

Calculate V̇ along solution curves:

V̇ = ∂V

∂q
q̇ + ∂V

∂q̇
q̈ = ω2qq̇ − 2γ q̇2 − ω2qq̇ = −2γ q̇2 . (6.25)

In the second step we have replaced q̈ by q and q̇, using (6.15). For γ = 0, V̇
vanishes identically. No solution moves outward or inward and therefore (0, 0) is
stable: it is a center. For positive γ , V̇ is strictly negative along all orbits. The
solutions move inward and therefore (0, 0) is asymptotically stable.

6.2.5 Stability and Instability of the Free Top

A particularly beautiful example of a nonlinear system with stable and unstable
equilibria is provided by the motion of a free, asymmetric rigid body. Follow-
ing the convention of Sect. 3.13 (3.60), the principal axes are labeled such that
0 < I1 < I2 < I3. We set

xi
def= ωi and F 1 def= I2 − I3

I1
x2x3 (with cyclic permutations) .
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The Eulerian equations (3.59) take the form (6.1), viz.

ẋ1 = −I3 − I2

I1
x2x3 , ẋ2 = +I3 − I1

I2
x3x1 , ẋ3 = −I2 − I1

I3
x1x2 . (6.26)

Here, we have written the right-hand sides such that all differences Ii−Ik are pos-
itive. This dynamical system has three critical points (equilibria) whose stability
we wish to investigate, viz.

x
˜
(1)
0 = (ω, 0, 0) , x

˜
(2)
0 = (0, ω, 0) , x

˜
(3)
0 = (0, 0, ω) ,

ω being an arbitrary positive constant. We set y
˜
= x

˜
−x

˜
(i)
0 and linearize equations

(6.26). For example, in the neighborhood of the point x
˜
(1)
0 we obtain the linear

system

ẏ
˜
≡

⎛

⎝
ẏ1

ẏ2

ẏ3

⎞

⎠ =

⎛

⎜
⎜
⎜
⎝

0 0 0

0 0 ω
I3 − I1

I2

0 −ωI2 − I1

I3
0

⎞

⎟
⎟
⎟
⎠

⎛

⎝
y1
y2
y3

⎞

⎠ ≡ Ay .

The characteristic exponents follow from the equation det (α1l − A) = 0 and are
found to be

α
(1)
1 = 0 , α

(1)
2 = −α(1)3 = iω

√
(I2 − I1)(I3 − I1)/I2I3 . (6.27a)

A similar analysis yields the following characteristic exponents at the points x
˜
(2)
0

and x
˜
(3)
0 , respectively:

α
(2)
1 = 0 , α

(2)
2 = −α(2)3 = ω

√
(I3 − I2)(I2 − I1)/I1I3 , (6.27b)

α
(3)
1 = 0 , α

(3)
2 = −α(3)3 = iω

√
(I3 − I2)(I3 − I1)/I1I2 . (6.27c)

Note that in the case of (6.27b) one of the characteristic exponents has a positive
real part. Proposition II of Sect. 6.2.3 tells us that x

˜
(2)
0 cannot be a stable equi-

librium. This confirms our conjecture of Sect. 3.14 (ii), which we obtained from
Fig. 3.22: rotations about the axis corresponding to the intermediate moment of
inertia cannot be stable.

Regarding the other two equilibria, the characteristic exponents (6.27a) and
(6.27c) are either zero or purely imaginary. Therefore, x

˜
(1)
0 and x

˜
(3)
0 have a chance

of being stable. This assertion is confirmed by means of the following Liapunov
functions for the points x

˜
(1)
0 and x

˜
(3)
0 , respectively:

V (1)(x
˜
)

def= 1
2 [I2(I2 − I1)(x

2)2 + I3(I3 − I1)(x
3)2] ,

V (3)(x
˜
)

def= 1
2 [I1(I3 − I1)(x

1)2 + I2(I3 − I2)(x
2)2] .
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V (1) vanishes at x
˜
= x

˜
(1)
0 ; it is positive everywhere in the neighborhood of this

point. Taking the time derivative of V (1) along solutions, we obtain, making use
of the equations of motion (6.26),

V̇ (1)(x
˜
) = I2(I2 − I1)x

2ẋ2 + I3(I3 − I1)x
3ẋ3

= [(I2 − I1)(I3 − I1)− (I3 − I1)(I2 − I1)]x1x2x3 = 0 .

An analogous result is obtained for V (3)(x
˜
). As a consequence the equilibria x

˜
(1)
0

and x
˜
(3)
0 are stable. However, they are not Liapunov stable, in the sense of the

definition (St3) below.

6.3 Long-Term Behavior of Dynamical Flows
and Dependence on External Parameters

In this section we investigate primarily dissipative systems. The example of the
damped oscillator (6.15), illustrated by Fig. 6.3 may suggest that the dynamics
of dissipative systems is simple and not very interesting. This impression is mis-
leading. The behavior of dissipative systems can be more complex by far than the
simple “decay” of the motion whereby all orbits approach exponentially an asymp-
totically stable point. This is the case, for instance, if the system also contains a
mechanism that, on average, compensates for the energy loss and thus keeps the
system in motion. Besides points of stability there can be other structures of higher
dimension that certain subsets of orbits will cling to asymptotically. In approach-
ing these attractors for t → +∞, the orbits will lose practically all memory of
their initial condition, even though the dynamics is strictly deterministic. On the
other hand, there are systems where orbits on an attractor with neighboring initial
conditions, for increasing time, move apart exponentially. This happens in dynam-
ical systems that possess what are called strange attractors. They exhibit the phe-
nomenon of extreme sensitivity to initial conditions, which is one of the agents
for deterministic chaos: two orbits whose distance, on average, increases exponen-
tially, pertain to initial conditions that are indistinguishable from any practical point
of view.

For this phenomenon to happen, there must be at least three dynamical vari-
ables. In point mechanics this means that the phase space must have dimensions
4, 6, or higher. Obviously, there is a problem in representing the flow of a dynam-
ical system as a whole because of the large number of dimensions. On the other
hand, if we deal with finite motions that stay in the neighborhood of a periodic
orbit, it may be sufficient to study the intersection of the orbits with hypersurfaces
of smaller dimension, perpendicular to the periodic orbit. This is the concept of
Poincaré mapping. It leads to a discretization of the flow: e.g. one records the flow
only at discrete times t0, t0+T , t0+2T , etc., where T is the period of the reference
orbit, or else, when it hits a given transversal hypersurface. The mapping of an
m-dimensional flow on a hypersurface of dimension (m−1), in general, may give
a good impression of its topology. There may even be cases where it is sufficient
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to study a single variable at special, discrete points (e.g., maxima of a function).
One then obtains a kind of return mapping in one dimension that one may think
of as a stroboscopic observation of a one-dimensional system. If this mapping is
suitably chosen it may give hints to the behavior of the flow as a whole.

In general, dynamical systems depend on one or several parameters that control
the strength of external influences. An example is provided by forced oscillations,
the frequency and amplitude of the the exciting oscillation being the control param-
eters. In varying these parameters one may hit critical values at which the structure
of the flow changes qualitatively. Critical values of this kind are called bifurcations.
Bifurcations, too, play an important role in the development of deterministic chaos.

This section is devoted to a more precise definition of the concepts sketched
above. They are then discussed and illustrated by means of a number of examples.

6.3.1 Flows in Phase Space

Consider a connected domain U0 of initial conditions in phase space that has the
oriented volume V0.

(i) For Hamiltonian systems Liouville’s theorem tells us that the flow Φ carries
this initial set across phase space as if it were a connected part of an incompress-
ible fluid. Total volume and orientation are preseved; at any time t the image Ut of
U0 under the flow has the same volume Vt = V0. Note, however, that this may be
effected in rather different ways: for a system with f = 2 (i.e. four-dimensional
phase space) let U0 be a four-dimensional ball of initial configurations. The flow
of the Hamiltonian vector field may be such that this ball remains unchanged or is
deformed only slightly, as it wanders through phase space. At the other extreme,
it may be such that the flow drives apart, at an exponential rate exp(αt), points of
one direction in U0, while contracting points in a direction perpendicular to the
first, at a rate exp(−αt) so that the total volume is preserved.2 Liouville’s theorem
is respected in either situation. In the former case orbits through U0 possess a cer-
tain stability. In the latter case they are unstable in the sense that there are orbits
with arbitrarily close initial conditions that nevertheless move apart at an expo-
nential rate. Even though the system is deterministic, it is practically impossible
to reconstruct the precise initial condition from an observation at a time t > 0.

(ii) For dissipative systems the volume V0 of the initial set U0 is not conserved.
If the system loses energy, the volume will decrease monotonically. This may hap-
pen in such a way, that the initial domain shrinks more or less uniformly along all
independent directions in U0. There is also the possibility, however, that one di-
rection spreads apart while others shrink at an increased rate such that the volume
as a whole decreases.

A measure of constant increase or decrease of volume in phase space is pro-
vided by the Jacobian determinant of the matrix of partial derivatives DΦ (2.119).

2 In systems with f = 1, i.e. with a two-dimensional phase space, and keeping clear from saddle
point equilibria, the deformation can be no more than linear in time, cf. Exercise 6.3.
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If this determinant is 1, then Liouville’s theorem applies. If it decreases as a func-
tion of time, the phase space volume shrinks. Whenever the Jacobian determinant
is different from zero, the flow is invertible. If it has a zero at a point x

˜
of phase

space, the flow is irreversible at this point.
A simple phenomenological method of introducing dissipative terms into

Hamiltonian systems consists in changing the differential equation for p
˜
(t) in the

following manner:

ṗj = − ∂H

∂qj
− Rj (q˜ , p˜

) . (6.28)

One calculates the time derivative of H along solutions of the equations of motion,

dH

dt
=

∑ ∂H

∂qj
q̇i +

∑ ∂H

∂pj
ṗj = −

f∑

i=1

q̇iRi(q˜ , p˜
) . (6.29)

Depending on the nature of the dissipative terms Ri , the energy decreases either
until the system has come to rest or the flow has reached a submanifold of lower
dimension than dim P on which the dissipative term

∑
q̇iRi(q˜ , p˜

) vanishes.

In the example (6.15) of the damped oscillator we have

H = (p2/m+mω2q2)/2 and R = 2γmq̇ ,

so that

dH

dt
= −2γmq̇2 = −2γ

m
p . (6.30)

In this example the leakage of energy ceases only when the system has come to
rest, i.e. when it has reached the asymptotically stable critical point (0, 0).

6.3.2 More General Criteria for Stability

In the case of dynamical systems whose flow shows the behavior described above,
the stability criteria of Sect. 6.2.3 must be generalized somewhat. Indeed, an orbit
that tends to a periodic orbit, for t →+∞, can do so in different ways. Further-
more, as this concerns a local property of flows, one might ask whether there are
subsets of phase space that are preserved by the flow, without “dissolving” for large
times. The following definitions collect the concepts relevant to this discussion.

Let F˜ be a complete vector field on R
n, or phase space R

2f , or, more generally,
on the manifold M , depending on the system one is considering. Let B be a subset
of M whose points are possible initial conditions for the flow of the differential
equation (6.1),

Φt=0(B) = B .
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For positive or negative times t this subset moves to Φt(B). The image Φt(B) can
be contained in B, but it may also have drifted out of B, partially or completely.
We sharpen the first possibility as follows.

(i) If the image of B under the flow is contained in B, for all t ≥ 0,

Φt(B) ⊂ B , (6.31)

the set B is said to be positively invariant.
(ii) Similarly, if the condition (6.31) held in the past, i.e. for all t ≤ 0, B is

said to be negatively invariant.
(iii) Finally, B is said to be invariant if its image under the flow is contained

in B for all t ,

Φt(t) ⊂ B for all t . (6.32)

(iv) If the flow has several, neighboring domains for which (6.32) holds, ob-
viously, their union has the same property. For this reason one says that B is a
minimal set if it is closed, nonempty, and invariant in the sense of (6.32), and if
it cannot be decomposed into subsets that have the same properties.

A periodic orbit of a flow Φt has the property Φt+τ (m) = Φt(m), for all points
m on the orbit, T being the period. Very much like equilibrium positions, closed,
periodic orbits are generally exceptional in the diversity of integral curves of a
given dynamical system. Furthermore, equilibrium positions may be understood
as special, degenerate examples of periodic orbits. For this reason equilibria and
periodic orbits are called critical elements of the vector field F˜ that defines the dy-
namical system (6.1). It is not difficult to verify that critical elements are minimal
sets in the sense of definitions (iii) and (iv) above.

Orbits that move close to each other, for increasing time, or tend towards each
other, can do so in different ways. This kind of “moving stability” leads us to the
following definitions. We consider a reference orbit A, say, the orbit of a mass
point mA. This may, but need not, be a critical element. Let another mass point
mB move along a neighboring orbit B. At time t = 0 mA starts from m0

A and mB

starts from m0
B , their initial distance being smaller than a given δ > 0,

‖m0
B −m0

A‖ < δ (t = 0) . (6.33)

These orbits are assumed to be complete (or, at least, to be defined for t ≥ 0), i.e.
they should exist in the limit t →±∞ (or, at least, for t →+∞). Then orbit A
is stable if

St1. for every test orbit B that fulfills (6.33) there is an ε > 0 such that
for t ≥ 0 orbit B, as a whole, never leaves the tube with radius ε around
orbit A (orbital stability); or
St2. the distance of the actual position of mB(t) from orbit A tends to zero
in the limit t →+∞ (asymptotic stability); or
St3. the distance of the actual positions of mA and mB at time t tends to
zero as t →+∞ (Liapunov stability).
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Fig. 6.5. Stability of an orbit (A) for the exam-
ple of a system in two dimensions. (a) Orbital
stability, (b) asymptotic stability, (c) Liapunov
stability

In Fig. 6.5 we sketch the three types of stability for the example of a dynamical
system in two dimensions. Clearly, analogous criteria can be applied to the past,
i.e. the limit t →−∞. As a special case, mA may be taken to be an equilibrium
position in which case orbit A shrinks to a point. Orbital stability as defined by St1
is the weakest form and corresponds to case S1 of Sect. 6.2.3. The two remaining
cases (St2 and St3) are now equivalent and correspond to S2 of Sect. 6.2.3.

Remarks: Matters become particularly simple for vector fields on two-dimen-
sional manifolds. We quote the following propositions for this case.

Proposition I. Let F˜ be a vector field on the compact, connected manifold M

(with dimM = 2) and let B be a minimal set in the sense of definition (iv) above.
Then B is either a critical point or a periodic orbit, or else B = M and M has
the structure of a two-dimensional torus T 2.

Proposition II. If, in addition, M is orientable and if the integral curve Φt(m)

contains no critical points for t ≥ 0, then either Φt(m) is dense in M (it covers
all of M), which is T 2, or Φt(m) is a closed orbit.

For the proofs we refer to Abraham and Marsden (1981, Sect. 6.1).
As an example for motion on the torus T 2, let us consider two uncoupled

oscillators

ṗ1 + ω2
1q1 = 0 , ṗ2 + ω2

2q2 = 0 . (6.34)
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Transformation to action and angle coordinates (see Sect. 2.37.2, Example (vi))
gives

qi =
√

2Pi/ωi sinQi , pi =
√

2ωiPi cosQi , i = 1, 2

with Pi = Ii = const. The integration constants I1, I2 are proportional to the
energies of the individual oscillators, Ii = Ei/ωi . The complete solutions

P1 = I1 , P2 = I2 , Q1 = ω1t +Q1(0) , Q2 = ω2t +Q2(0) (6.35)

lie on tori T 2 in the four-dimensional phase space R
4 that are fixed by the constants

I1 and I2. If the ratio of frequencies is rational,

ω2/ω1 = n2/n1 , ni ∈ N ,

the combined motion on the torus is periodic, the period being T = 2πn1/ω1 =
2πn2/ω2. If the ratio ω2/ω1 is irrational, there are no closed orbits and the or-
bits cover the torus densely. (Note, however, as the rationals are dense in the real
numbers, the orbits of the former case are dense in the latter.) For another and
nonlinear example we refer to Sect. 6.3.3(ii) below.

6.3.3 Attractors

Let F˜ be a complete vector field on M ≡ R
n (or on another smooth manifold M ,

for that matter) that defines a dynamic system of the type of (6.1). A subset A of
M is said to be an attractor of the dynamical system if it is closed and invariant
(in the sense of definition 6.3.2(iii)) and if it obeys the following conditions.

(i) A is contained in an open domain U0 of M that is positively invariant itself.
Thus, according to definition 6.3.2(i), U0 has the property

Φt(U0) ⊂ U0 for t ≥ 0 .

(ii) For any neighborhood V of A contained entirely in U0 (i.e. which is such
that A ⊂ V ⊂ U0), one can find a positive time T > 0 beyond which the image
of U0 by the flow φt of F˜ is contained in V ,

Φt(U0) ⊂ V for all t ≥ T .

The first condition says that there should exist open domains of M that contain the
attractor and that do not disperse under the action of the flow, for large positive
times. The second condition says that, asymptotically, integral curves within such
domains converge to the attractor. In the case of the damped oscillator, Fig. 6.3,
the origin is a (pointlike) attractor. Here, U0 can be taken to be the whole of R

2

because any orbit is attracted to the point (0,0) like a spiral. It may happen that M
contains several attractors (which need not be isolated points) and therefore that
each individual attractor attracts the flow only in a finite subset of M . For this
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reason one defines the basin of an attractor to be the union of all neighborhoods
of A that fulfill the two conditions (i) and (ii). Exercise 6.6 gives a simple example.

Regarding condition (ii) one may ask the question whether, for fixed U0, one
can choose the neighborhood V such that it does not drift out of U0 under the ac-
tion of the flow for positive times, i.e. whether Vt ≡ Φt(V ) ⊂ U0 for all t ≥ 0. If
this latter condition is fulfilled, the attractor, A, is said to be stable. The following
examples may help to illustrate the concept of attractor in more depth.

Example (i) Forced oscillations (Van der Pol’s equation). The model (6.15) of
a pendulum with damping or external excitation is physically meaningful only in
a small domain, for several reasons. The equation of motion being a linear one,
it tells us that if q(t) is a solution, so is every q̄(t) = λq(t), with λ an arbitrary
real constant. Thus, by this simple rescaling, the amplitude and the velocity can be
made arbitrarily large. The assumption that friction is proportional to q̇ then can-
not be a good approximation. On the other hand, if one chooses γ to be negative,
then according to (6.30) the energy that is delivered to the system grows beyond
all limits. It is clear that either extrapolation – rescaling or arbitrarily large energy
supply – must be limited by nonlinear dynamical terms.

In an improved model one will choose the coefficient γ to depend on the am-
plitude in such a way that the oscillation is stabilized: if the amplitude stays below
a certain critical value, we wish the oscillator to be excited; if it exceeds that value,
we wish the oscillator to be damped. Thus, if u(t) denotes the deviation from the
state of rest, (6.15) shall be replaced by

mü(t)+ 2mγ (u)u̇(t)+mω2u(t) = 0 , (6.36a)

where γ (u)
def= − γ0(1 − u2(t)/u2

0) (6.36b)

and where γ0 > 0. u0 is the critical amplitude beyond which the motion is damped.
For small amplitudes γ (u) is negative, i.e. the motion is enhanced.

We introduce the dimensionless variables

τ
def= ωt , q(τ )

def= (
√

2γ0/u0
√
ω)u(t)

and set p = q̇(τ ). The equation of motion can be written in the form of (6.28),
where

H = 1
2 (p

2 + q2) and R(q, p) = −(ε − q2)p , ε
def= 2γ0/ω ,

and therefore

q̇ = p ,

ṗ = −q + (ε − q2)p . (6.36c)

Figure 6.6 shows three solutions of this model for the choice ε = 0.4 that are
obtained by numerically integrating the system (6.36c) (the reader is invited to
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Fig. 6.6. The dynamical system (6.36a) has an attractor.
Orbits that start inside or outside the attractor, for t →
∞, tend towards the attractor at an exponential rate, on
average. The control parameter is ε = 0.4. The dashed
line segment is a transverse section

repeat this calculation). The figure shows clearly that the solutions tend rapidly to
a limit curve, which is itself a solution of the system. (In Exercise 6.9 one is invited
to find out empirically at what rate the solutions converge to the attractor.) Point
A, which starts from the initial condition (q0 = −0.25, p0 = 0), initially moves
outward and, as times goes on, clings to the attractor from the inside. Points B
(q0 = −0.5, p0 = 4) and C (q0 = −4, p0 = 0) start outside and tend rapidly to the
attractor from the outside. In this example the attractor seems to be a closed, and
hence periodic, orbit. (We can read this from Fig. 6.6 but not what the dimension of
the attractor is.) Figure 6.7 shows the coordinate q(τ) of the point A as a function
of the time parameter τ . After a time interval of about twenty times the inverse
frequency of the unperturbed oscillator it joins the periodic motion on the attractor.
On the attractor the time average of the oscillator’s energy E = (p2 + q2)/2 is
conserved. This means that, on average, the driving term proportional to ε feeds in
as much energy into the system as the latter loses through damping. From (6.29)
we have

dE/dτ = εp2 − q2p2 .

Taking the time average, we have dE/dτ = 0, and hence

εp2 = q2p2 , (6.37)

the left-hand side being the average energy supply, the right-hand side the average
loss through friction.

For ε = 0.4 the attractor resembles a circle and the oscillation shown in Fig. 6.7
is still approximately a harmonic one. If, instead, we choose ε appreciably larger,
the limit curve gets strongly deformed and takes more the shape of a hysteresis
curve. At the same time, q(τ) shows a behavior that deviates strongly from a sine
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Fig. 6.7. Motion of the point A of Fig. 6.6,
with initial condition (q = −0.25, p = 0) for
ε = 0.4, as a function of time. It quickly joins
the periodic orbit on the attractor

Fig. 6.8. Motion of the point A, with initial
condition (−0.25, 0) as in Fig. 6.7 but here
with ε = 5.0

curve. Figure 6.8 shows the example ε = 5.0. The time variation of q(τ) shows
cleary that it must contain at least two different scales.

Example (ii) Two coupled Van der Pol oscillators. The second example is di-
rectly related to, and makes use of the results of, the first. We consider two identical
systems of the type (6.36c) but add to them a linear coupling interaction. In order
to avoid resonances, we introduce an extra term into the equations that serves the
purpose of taking the unperturbed frequencies out of tune. Thus, the equations of
motion read

q̇i = pi , i = 1, 2 ,

ṗ1 = −q1 + (ε − q2
1 )p1 + λ(q2 − q1) , (6.38)

ṗ2 = −q2 − �q2 + (ε − q2
2 )p2 + λ(q1 − q2) .

Here � is the detuning parameter while λ describes the coupling. Both are assumed
to be small.

For λ = � = 0 we obtain the picture of the first example, shown in Fig. 6.6,
for each variable: two limit curves in two planes of R

4 that are perpendicular to
each other and whose form is equivalent to a circle. Their direct product defines a
torus T 2, embedded in R

4. This torus being the attractor, orbits in its neighborhood
converge towards it, at an approximately exponential rate. For small perturbations,
i.e. �, λ � ε, one can show that the torus remains stable as an attractor for the
coupled system (see Guckenheimer and Holmes 2001, Sect. 1.8). Note, however,
the difference to the Hamiltonian system (6.35). There, for given energies E1, E2,
the torus is the manifold of motions, i.e. all orbits start and stay on it, for all times.
Here, the torus is the attractor to which the orbits tend in the limit t →+∞. The
manifold of motions is four-dimensional but, as time increases, it “descends” to a
submanifold of dimension two.
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6.3.4 The Poincaré Mapping

A particularly clear topological method of studying the flow in the neighborhood
of a closed orbit is provided by the Poincaré mapping to which we now turn.
In essence, it consists in considering local transverse sections of the flow, rather
than the flow as a whole, i.e. the intersections of integral curves with some local
hypersurfaces that are not tangent to them. For example, if the flow lies in the two-
dimensional space R

2, we let it go through local line segments that are chosen in
such a way that they do not contain any integral curve or parts thereof. One then
studies the set of points where the integral curves cross these line segments and
tries to analyze the structure of the flow by means of the pattern that one obtains
in this way. Figure 6.6 shows a transverse section for a flow in two dimensions
(dashed line). The set of intersection points of the orbit starting in A and this line
section shows the average exponential approach to the attractor (see also Exercise
6.10).

A flow in three dimensions is cut locally by planes or other two-dimensional
smooth surfaces that are chosen such that they do not contain any integral curves.
An example is shown in Fig. 6.9: at every turn the periodic orbit Γ crosses the
transverse section S at the same point, while a neighboring, nonperiodic orbit cuts
the surface S at a sequence of distinct points. With these examples in mind the
following general definition will be readily plausible.

Fig. 6.9. Transverse section for a periodic orbit in R
3

Definition. Let F˜ be a vector field on M = R
n (or on any other smooth manifold

of dimension n). A local transverse section of F˜ at the point x
˜
∈ M is an open

neighborhood on a hypersurface of dimension dim S = dimM − 1 = n − 1 (i.e.
a submanifold of M) that contains x

˜
and is chosen in such a way that, at none of

the points s˜ ∈ S does the vector field F˜ (s˜ ) lie in the tangent space TsS.

The last condition makes sure that all flow lines going through points s˜ of S
do indeed intersect with S and that none of them lies in S.

Consider a periodic orbit Γ with period T , and let S be a local transverse
section at a point x

˜ 0 on Γ . Without restriction of generality we may take x
˜ 0(t =

0) = 0. Clearly, we have x
˜ 0(nT ) = 0, for all integers n. As F˜ does not vanish in
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x
˜ 0, there is always a transverse section S that fulfills the conditions of the defi-
nition above. Let S0 be a neighborhood of x

˜ 0 that is contained in S. We ask the
question at what time τ(x

˜
) an arbitrary point x

˜
∈ S0 that follows the flow is taken

back to the transverse section S for the first time. For x
˜
= x

˜ 0 the answer is simply
τ(x

˜ 0) = T and ΦT (x˜ 0) = Φ0(x˜ 0) = x
˜ 0. However, points in the neighborhood of

x
˜ 0 may return to S later or earlier than T or else may not return to the transverse
section at all. The initial set of S0, after one turn, is mapped onto a neighborhood
S1, i.e. into the set of points

S1 = {Φτ(x
˜
)(x˜

)|x
˜
∈ S0} . (6.39)

Note that different points of S0 need different times for returning to S for the first
time (if they escape, this time is infinite). Therefore, S1 is not a front of the flow.
The mapping generated in this way,

π : S0 → S1 : x˜ → Φτ(x
˜
)(x˜

) , (6.40)

is said to be the Poincaré mapping. It describes the behavior of the flow, as a
function of discretized time, on a submanifold S whose dimension is one less
than the dimension of the manifold M on which the dynamical system is defined.
Figure 6.10 shows a two-dimensional transverse section for a flow on M = R

3.

Fig. 6.10. Poincaré mapping of an initial domain S0 in the
neighborhood of a periodic orbit Γ . The point x

˜ 0, where Γ

hits the transverse section, is a fixed point of the mapping

Of course, the mapping (6.40) can be iterated by asking for the image S2 of
S1, after the next turn of all its points, etc. One obtains a sequence of open neigh-
borhoods

S0 →
Π
S1 →

Π
S2 . . .→ Sn ,

which may disperse, as time goes to +∞, or may stay more or less constant, or
may shrink to the periodic orbit Γ . This provides us with a useful criterion for
the investigation of the flow’s long-term behavior in the neighborhood of a peri-
odic orbit, or, more generally, in the neighborhood of an attractor. In particular, the
Poincaré mapping allows for a test of stability of a periodic orbit or of an attractor.

In order to answer the question of stability in the neighborhood of the periodic
orbit Γ , it suffices to linearize the Poincaré mapping at the point x

˜ 0. Thus, one
considers the mapping

DΠ(0) = {∂Πi/∂xk|x
˜
=0} . (6.41)
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(In the case of a general manifold M this is the tangent map TΠ at x
˜ 0 ∈ M .)

The eigenvalues of the matrix (6.41) are called characteristic multipliers of the
vector field F˜ at the periodic orbit Γ . They tell us whether there is stability or
instability in a neighborhood of the closed orbit Γ . We have the following. Let Γ
be a closed orbit of the dynamical system F˜ and let Π be a Poincaré mapping in
x
˜ 0 = 0. If all characteristic multipliers lie strictly inside the unit circle, the flow
will tend to Γ smoothly as t →+∞. This orbit is asymptotically stable. In turn,
if the absolute value of one of the characteristic exponents exceeds one, the closed
orbit Γ is unstable.

We study two examples. The first concerns flows in the plane for which trans-
verse sections are one-dimensional. The second illustrates flows on the torus T 2

in R
4, or in its neighborhood, in which case the transverse section may be taken

to be a subset of planes that cut the torus.

Example (i) Consider the dynamical system

ẋ1 = μx1 − x2 − (x2
1 + x2

2 )
nx1 ,

ẋ2 = μx2 + x1 − (x2
1 + x2

2 )
nx2 , (6.42a)

where the exponent n takes the values n = 1, 2, or 3 and where μ is a real param-
eter. Without the coupling terms (−x2) in the first equation and x1 in the second,
the system (6.42a) is invariant under rotations in the (x1, x2)-plane. On the other
hand, without the nonlinearity and with μ = 0, we have the system ẋ1 = −x2,
ẋ2 = x1 whose solutions move uniformly about the origin, along concentric circles.
One absorbs this uniform rotation by introducing polar coordinates x1 = r cosφ,
x2 = r sin φ. The system (6.42a) becomes the decoupled system

ṙ = μr − r2n+1 ≡ − ∂

∂r
U(r, φ) ,

φ̇ = 1 ≡ − ∂

∂Φ
U(r, φ) . (6.42b)

The right-hand side of the first equation (6.42b) is a gradient flow (i.e. one whose
vector field is a gradient field, cf. Exercise 6.7), with

U(r, φ) = −1

2
μr2 + 1

2n+ 2
r2n+2 − φ . (6.43)

The origin r = 0 is a critical point. Orbits in its neighborhood behave like spirals
around (0,0) with radial dependence r = exp(μt). Thus, for μ < 0, the point (0,0)
is asymptotically stable. For μ > 0 this point is unstable. At the same time, there
appears a periodic solution

x1 = R(μ) cos t , x2 = R(μ) sin t with R(μ) = 2n
√
μ ,

which turns out to be an asymptotically stable attractor: solutions starting outside
the circle with radius R(μ) move around it like spirals and tend exponentially to-
wards the circle, for increasing time; likewise, solutions starting inside the circle
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move outward like spirals and tend to the circle from the inside. (The reader is
invited to sketch the flow for μ > 0.)

In this example it is not difficult to construct a Poincaré mapping explicitly. It is
sufficient to cut the flow in the (x1, x2)-plane with the semi-axis φ = φ0 = const.

Starting from (x0
1 , x

0
2 ) on this line, with r0 =

√
(x0

1 )
2 + (x0

2 )
2, the flow hits the

line again after the time t = 2π . The image of the starting point has the distance
r1 = Π(r0), where r1 is obtained from the first equation (6.42b). Indeed, if Ψt
denotes the flow of that equation, r1 = Ψt=2π (r0).

Let us take the special case n = 1 and μ > 0. Taking the time variable τ = μt ,
the system (6.42b) becomes

dr

dτ
= r

(
1 − 1

μ
r2
)
,

dφ

dτ
= 1

μ
. (6.44)

With r(τ ) = 1/
√
�(τ) we obtain the differential equation d�/dτ = 2(1/μ − �),

which can be integrated analytically. One finds �(c, τ ) = 1/μ + c exp(−2τ), c
being an integration constant determined from the initial condition �(τ = 0) =
�0 = 1/r2

0 . Thus, the integral curve of (6.44) starting from (r0, φ0) reads

Φτ (r0, φ0) =
(

1
/√

�(c, τ ), φ0 + τ/μmod 2π
)

(6.45)

with c = 1/r2
0 −1/μ. Hence, the Poincaré mapping that takes (r0, φ0) to (r1, φ1 =

φ0) is given by (6.45) with τ = 2π , viz.

Π(r0) =
[

1/μ+
(

1

r2
0

− 1

μ

)

e−4π

]−1/2

. (6.46)

This has the fixed point r0 = √
μ, which represents the periodic orbit. Linearizing

in the neighborhood of this fixed point we find

DΠ(r0 = √
μ) = dΠ

dr0

∣∣∣∣
r0=√μ

= e−4π .

The characteristic multiplier is λ = exp(−4π). Its absolute value is smaller than
1 and hence the periodic orbit is an asymptotically stable attractor.

Example (ii) Consider the flow of an autonomous Hamiltonian system with
f = 2 for which there are two integrals of the motion. Suppose we have already
found a canonical transformation to action and angle coordinates, i.e. one by which
both coordinates are made cyclic, i.e.

{q1, q2, p1, p2, H } → {θ1, θ2, I1, I2, H̃ } , (6.47)

and H̃ = ω1I1+ω2I2. An example is provided by the decoupled oscillators (6.34).
As both θk are cyclic, we have
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İi (q˜
, p
˜
) = 0 , or Ii(q˜

, p
˜
) = const = Ii(q˜ 0, p˜ 0)

along any orbit. Returning to the old coordinates for the moment, this means that
the Poisson brackets

{H, Ii} and {Ii, Ij } (i, j = 1, 2) (6.48)

vanish.3 In the new coordinates we have

θ̇i = ∂H̃/∂Ii = ωi or θi(t) = ωit + θ0
i . (6.49)

From (6.49) we see that the manifold of motions is the torus T 2, embedded in the
four-dimensional phase space. For the transversal section of the Poincaré mapping
it is natural to choose a part S of a plane that cuts the torus and is perpendicular
to it. Let θ1(t) be the angular variable running along the torus, and θ2(t) the one
running along a cross section of the torus. A point s ∈ S0 ⊂ S returns to S for
the first time after T = (2π/ω1). Without loss of generality we measure time in
units of this period T , τ = t/T , and take θ0

1 = 0. Then we have

θ1(τ ) = 2πτ , θ2(τ ) = 2πτω2/ω1 + θ0
2 . (6.49′)

Call C the curve of intersection of the torus and the transverse section of S. The
Poincaré mapping maps points of C on the same curve. The points of intersection
of the orbit (6.49′) with S appear, one after the other, at τ = 0, 1, 2, . . . If the ratio
of frequencies is rational , ω2/ω1 = m/n, the first (n − 1) images of the point
θ2 = θ0

2 are distinct points on C, while the nth image coincides with the starting
point. If, in turn, the ratio ω2/ω1 is irrational, a point s0 on C is shifted, at each
iteration of the Poincaré mapping, by the azimuth 2πω2/ω1. It never returns to
its starting position. For large times the curve C is covered discontinuously but
densely.

6.3.5 Bifurcations of Flows at Critical Points

In Example (i) of the previous section the flow is very different for positive and
negative values of the control parameter. For μ < 0 the origin is the only critical
element. It turns out to be an asymptotically stable equilibrium. For μ > 0 the
flow has the critical elements {0, 0} and {R(μ) cos t, R(μ) sin t}. The former is an
unstable equilibrium position, the latter a periodic orbit that is an asymptotically
stable attractor. If we let μ vary from negative to positive values, then, at μ = 0,
a stable, periodic orbit branches off from the previously stable equilibrium point
{0, 0}. At the same time, the equilibrium position becomes unstable as shown in
Fig. 6.11. Another way of expressing the same result is to say that the origin acts
like a sink for the flow at μ < 0. For μ > 0 it acts like a source of the flow, while
the periodic orbit with radius R(μ) is a sink. The structural change of the flow
happens at the point (μ = 0, r = 0), in the case of this specific example. A point
of this nature is said to be a bifurcation point.

3 H , I1, and I2 are in involution, for definitions cf. Sect. 2.37.2
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Fig. 6.11. For the system (6.42a) the
point r = 0 is asymptotically stable
for μ < 0. At μ = 0 a periodic solu-
tion (circle with radius R(μ)) splits
off and becomes an asymptotically
stable attractor. At the same time the
point r = 0 becomes unstable

The general case is that of the dynamical system

ẋ
˜
= F˜ (μ˜

, x
˜
) . (6.50)

whose vector field depends on a set μ
˜
= {μ1, μ2, . . . , μk} of k control parameters.

The critical points x
˜ 0(μ˜

) of the system (6.50) are obtained from the equation

F˜ (μ˜
, x
˜ 0) = 0 . (6.51)

The solutions of this implicit equation, in general, depend on the values of the
parameters μ

˜
. They are smooth functions of μ

˜
if and only if the determinant of

the matrix of partial derivatives DF˜ = {∂F i(μ
˜
, x
˜
)/∂xk} does not vanish in x

˜ 0.
This is a consequence of the theorem on implicit functions, which guarantees that
(6.51) can be solved for x

˜ 0, provided that the condition is fulfilled. The points
(μ
˜
, x
˜ 0) where this condition is not fulfilled, i.e. where DF˜ has at least one van-

ishing eigenvalue, need special consideration. Here, several branches of differing
stability may merge or split off from each other. By crossing this point, the flow
changes its structure in a qualitative manner. Therefore, a point (μ

˜
, x
˜ 0) where the

determinant of DF˜ vanishes, or, equivalently, where at least one of its eigenvalues
vanishes, is said to be a bifurcation point.

The general discussion of the solutions of (6.51) and the complete classifica-
tion of bifurcations is beyond the scope of this book. A good account of what is
known about this is given by Guckenheimer and Holmes (2001). We restrict our
discussion to bifurcations of codimension 1.4 Thus, the vector field depends on
only one parameter μ, but is still a function of the n-dimensional variable x

˜
. If

(μ0, x˜ 0) is a bifurcation point, the following two forms of the matrix of partial
derivatives DF˜ are typical (cf. Guckenheimer and Holmes 2001):

DF˜ (μ, x˜
)|μ0,x˜ 0 =

(
0 0
0 A

)
, (6.52)

where A is a (n− 1)× (n− 1) matrix, as well as

4 The codimension of a bifurcation is defined to be the smallest dimension of a parameter space
{μ1, . . . , μk} for which this bifurcation does occur.
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DF˜ (μ, x˜
)|μ0,x˜ 0 =

⎛

⎝
0 −ω 0
ω 0 0
0 0 B

⎞

⎠ , (6.53)

with B a (n− 2)× (n− 2) matrix.
In the first case (6.52) DF˜ has one eigenvalue equal to zero, which is respon-

sible for the bifurcation. As the remainder, i.e. the matrix A, does not matter, we
can take the dimension of the matrix DF˜ to be n = 1, in the case of (6.52). Fur-
thermore, without restriction of generality, the variable x

˜
and the control parameter

μ can be shifted in such a way that the bifurcation point that we are considering
occurs at (μ = 0, x

˜ 0 = 0). Then the following types of bifurcations are contained
in the general form (6.52).

(i) The saddle-node bifurcation:

ẋ = μ− x2 . (6.54)

For μ > 0 the branch x0 = √
μ is the set of stable equilibria and x0 = −√μ the set

of unstable equilibria, as shown in Fig. 6.12. These two branches merge at μ = 0
and compensate each other because, for μ < 0, there is no equilibrium position.

(ii) The transcritical bifurcation:

ẋ = μx − x2 . (6.55)

Here the straight lines x0 = 0 and x0 = μ are equilibrium positions. For μ < 0
the former is asymptotically stable and the latter is unstable. For μ > 0, on the
other hand, the former is unstable and the latter is asymptotically stable, as shown
in Fig. 6.13. The four branches coincide for μ = 0, the semi-axes (x0 = 0, or
x0 = μ,μ < 0) and (x0 = μ, or x0 = 0, μ > 0) exchange their character of
stability; hence the name of the bifurcation.

Fig. 6.12. Illustration of a saddle-node bifurca-
tion at x0 = μ = 0. As in Fig. 6.11 the arrows
indicate the direction of the flow in the neigh-
borhood of the equilibria

Fig. 6.13. The transcritical bifurcation. In cross-
ing the point of bifurcation μ = 0, the two
semi-axes exchange their character of stability
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(iii) The pitchfork bifurcation:

ẋ = μx − x3 . (6.56)

All the points of the straight line x0 = 0 are critical points. These are asymptoti-
cally stable if μ is negative, but become unstable if μ is positive. In addition, for
μ > 0, the points on the parabola x2

0 = μ are asymptotically stable equilibria,
as shown in Fig. 6.14. At μ = 0, the single line of stability on the left of the
figure splits into the “pitchfork” of stability (the parabola) and the semi-axis of
instability.

Fig. 6.14. The pitchfork bifurcation

In all examples and prototypes considered above the signs of the nonlinear
terms are chosen such that they act against the constant or linear terms for μ > 0,
i.e. in such a way that they have a stabilizing effect as one moves from the line
x0 = 0 to positive x. The bifurcations obtained in this way are called supercrit-
ical. It is instructive to study the bifurcation pattern (6.54–6.56) for the case of
the opposite sign of the nonlinear terms. The reader is invited to sketch the re-
sulting bifurcation diagrams. The so-obtained bifurcations are called subcritical.
In the case of the second normal form (6.53) the system must have at least two
dimensions and DF˜ must have (at least) two complex conjugate eigenvalues. The
prototype for this case is the following.

(iv) The Hopf bifurcation:

ẋ1 = μx1 − x2 − (x2
1 + x2

2 )x1 ,
(6.57)

ẋ2 = μx2 + x1 − (x2
1 + x2

2 )x2 .

This is the same as the example (6.42a), with n = 1. We can take over the results
from there and draw them directly in the bifurcation diagram (μ, x

˜ 0). This yields
the picture shown in Fig. 6.15. (Here, again, it is instructive to change the sign of
the nonlinear term in (6.57), turning the supercritical bifurcation into a subcritical
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Fig. 6.15. The Hopf bifurca-
tion in two dimensions. The
lower part of the figure shows
the behavior of the flow in the
neighborhood of the asymptoti-
cally stable equilibrium and of
the asymptotically stable peri-
odic solution

one. The reader should sketch the bifurcation diagram.) We add the remark that
here and in (6.53) the determinant of DF˜ does not vanish at (μ0, x˜ 0). It does so,
however, once we have taken out the uniform rotation of the example (6.42a). One
then obtains the system (6.42b) for which the determinant of DF˜ does vanish and
whose first equation (for n = 1) has precisely the form (6.56). Figure 6.15 may be
thought of as being generated from the pitchfork diagram of Fig. 6.14 by a rotation
in the second x-dimension.

6.3.6 Bifurcations of Periodic Orbits

We conclude this section with a few remarks on the stability of closed orbits, as
a function of control parameters. Section 6.3.5 was devoted exclusively to the bi-
furcation of points of equilibrium. Like the closed orbits, these points belong to
the critical elements of the vector field. Some of the results obtained there can
be translated directly to the behavior of periodic orbits at bifurcation points, by
means of the Poincaré mapping (6.40) and its linearization (6.41).

A qualitatively new feature, which is important for what follows, is the bi-
furcation of a periodic orbit leading to period doubling. It may be described as
follows. Stability or instability of flows in the neighborhood of closed orbits is
controlled by the matrix (6.41), that is the linearization of the Poincaré mapping.
The specific bifurcation in which we are interested here occurs whenever one of the
characteristic multipliers (i.e. the eigenvalues of (6.41)) crosses the value −1, as a
function of the control parameter μ. Let s0 be the point of intersection of the peri-
odic orbit Γ with a transverse section. Clearly, s0 is a fixed point of the Poincaré
mapping, Π(s0) = s0. As long as all eigenvalues of the matrix DΠ(s0) (6.41)
are inside the unit circle (i.e. have absolute values smaller than 1), the distance
from s0 of another point s in the neighborhood of s0 will decrease monotonically
by successive iterations of the Poincaré mapping. Indeed, in linear approximation
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we have

Πn(s)− s0 = (DΠ(s0))
n(s − s0) . (6.58)

Suppose the matrix DΠ(s0) to be diagonal. We assume the first eigenvalue to
be the one that, as a function of the control parameter μ, moves outward from
somewhere inside the unit circle, by crossing the value −1 at some value of μ.
All other eigenvalues, for simplicity, are supposed to stay inside the unit circle.
In this special situation it is sufficient to consider the Poincaré mapping only
in the 1-direction on the transverse section, i.e. in the direction the eigenvalue
λ1 refers to. Call the coordinate in that direction u. If we suppose that λ1(μ)

is real and, initially, lies between 0 and −1, the orbit that hits the transverse
section at the point s1 of Fig. 6.16a appears in u2 after one turn, in u3 after
two turns, etc. It approaches the point s0 asymptotically and the periodic orbit
through s0 is seen to be stable. If, on the other hand, λ1(μ) < −1, the orbit
through s1 moves outward rapidly and the periodic orbit through s0, obviously, is
unstable.

Fig. 6.16a,b. Poincaré mapping in the neighborhood of a periodic orbit, for the case where a char-
acteristic multiplier approaches the value −1 from above (a), and for the case where it equals that
value (b)

A limiting situation occurs if there is a value μ0 of the control parameter for
which λ1(μ0) = −1. Here we obtain the pattern shown in Fig. 6.16b: after one
turn the orbit through s1 appears in u2 = −u1, after the second turn in u3 = +u1,
then in u4 = −u1, then in u5 = +u1, etc. This applies to each s on the u axis,
in a neighborhood of s0. As a result, the periodic orbit Γ through s0 has only
a sort of saddle-point stability: orbits in directions other than the u-axis are at-
tracted towards it, but orbits whose intersections with the transverse section lie
on the u-axis will be caused to move away by even a small perturbation. Thus,
superficially, the point (μ0, s0) seems to be a point of bifurcation having the char-
acter of the pitchfork of Fig. 6.14. A closer look shows, however, that there is
really a new phenomenon. In a system as described by the bifurcation diagram
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of Fig. 6.14, the integral curve tends either to the point x0 = +√μ, or to the
point x0 = −√μ, for positive μ. In the case shown in Fig. 6.16b, on the con-
trary, the orbit alternates between u1 and −u1. In other words, it is a periodic
orbit Γ2 with the period T2 = 2T , T being the period of the original reference
orbit.

If we take Γ2 as the new reference orbit, the Poincaré mapping must be re-
defined in such a way that Γ2 hits the transverse section for the first time after
the time T2. One can then study the stability of orbits in the neighborhood of Γ2.
By varying the control parameter further, it may happen that the phenomenon of
period doubling described above happens once more at, say, μ = μ1, and that
we have to repeat the analysis given above. In fact, there can be a sequence of
bifurcation points (μ0, s0), (μ1, s1), etc. at each of which the period is doubled.
We return to this phenomenon in the next section.

6.4 Deterministic Chaos

This section deals with a particularly impressive and characteristic example for de-
terministic motion whose long-term behavior shows alternating regimes of chaotic
and ordered structure and from which some surprising empirical regularities can
be extracted. Although the example leaves the domain of mechanics proper, it
seems to be so typical, from all that we know, that it may serve as an illustra-
tion for chaotic behavior even in perturbed Hamiltonian systems. We discuss the
concept of iterative mapping in one dimension. We then give a first and somewhat
provisional definition of chaotic motion and close with the example of the logis-
tic equation. The more quantitative aspects of deterministic chaos are deferred to
Sect. 6.5.

6.4.1 Iterative Mappings in One Dimension

In Sect. 6.3.6 we made use of the Poincaré mapping of a three-dimensional flow
for investigating the stability of a closed orbit as a function of the control para-
meter μ. We found, in the simplest case, that the phenomenon of period doubling
could be identified in the behavior of a single dimension of the flow, provided one
concentrates on the direction for which the characteristic multiplier λ(μ) crosses
the value −1 at some critical value of μ. The full dimension of the flow of F˜ (μ, x˜

)

did not matter. We can draw two lessons from this. Firstly, it may be sufficient
to choose a single direction within the transverse section S (more generally, a
one-dimensional submanifold of S) and to study the Poincaré mapping along this
direction only. The picture that one obtains on this one-dimensional submanifold
may already give a good impression of the flow’s behavior in the large. Secondly,
the restriction of the Poincaré mapping to one dimension reduces the analysis of
the complete flow and of its full, higher-dimensional complexity, to the analysis
of an iterative mapping in one dimension,
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ui → ui+1 = f (ui) . (6.59)

In the example of Sect. 6.3.6, for instance, this iterative mapping is the sequence
of positions of a point on the transverse section at times 0, T , 2T , 3T , . . . Here the
behavior of the full system (6.1) at a point of bifurcation is reduced to a difference
equation of the type (6.59).

There is another reason one-dimensional systems of the form (6.59) are of
interest. Strongly dissipative systems usually possess asymptotically stable equi-
libria and/or attractors. In this case a set of initial configurations filling a given
volume of phase space will be strongly quenched, by the action of the flow and as
time goes by, so that the Poincaré mapping quickly leads to structures that look
like pieces of straight lines or arcs of curves. This observation may be illustrated
by the example (6.38). Although the flow of this system is four dimensional, it
converges to the torus T 2, the attractor, at an exponential rate. Therefore, con-
sidering the Poincaré mapping for large times, we see that the transverse section
of the torus will show all points of intersection lying on a circle. This is also
true if the torus is a strange attractor. In this case the Poincaré mapping shows a
chaotic regime in a small strip in the neighborhood of the circle (see e.g. Bergé,
Pomeau, Vidal 1987). Finally, iterative equations of the type (6.59) describe spe-
cific dynamical systems of their own that are formulated by means of difference
equations (see e.g. Devaney 1989, Collet and Eckmann 1990). In Sect. 6.4.3 be-
low we study a classic example of a discrete dynamical system (6.59). It belongs
to the class of iterative mappings on the unit interval, which are defined as fol-
lows.

Let f (μ, x) be a function of the control parameter μ and of a real variable x
in the interval [0, 1]. f is continuous, and in general also differentiable, and the
range of μ is chosen such that the iterative mapping

xi+1 = f (μ, xi) , x ∈ [0, 1] , (6.60)

does not lead out of the interval [0, 1]. An equation of this type can be ana-
lyzed graphically, and particularly clearly, by comparing the graph of the function
y(x) = f (μ, x) with the straight line z(x) = x. The starting point x1 has the im-
age y(x1), which is then translated to the straight line as shown in Fig. 6.17a. This
yields the next value x2, whose image y(x2) is again translated to the straight line,
yielding the next iteration x3, and so on. Depending on the shape of f (μ, x) and
on the starting value, this iterative procedure may converge rapidly to the fixed
point x̄ shown in Fig. 6.17a. At this point the straight line and the graph of f
intersect and we have

x̄ = f (μ, x̄) . (6.61)

The iteration x1 → x2 → . . .→ x̄ converges if the absolute value of the derivative
of the curve y = f (μ, x) in the point y = x is smaller than 1. In this case x̄ is
an equilibrium position of the dynamical system (6.60), which is asymptotically
stable. If the modulus of the derivative exceeds 1, on the other hand, the point x̄



394 6. Stability and Chaos

Fig. 6.17a,b. The iteration xi+1 = f (μ, xi ) converges to x̄, provided |df/dx|x̄ < 1 (a). In (b) both
0 and x̄2 are stable but x̄1 is unstable

is unstable. In the example shown in Fig. 6.17a x̄ = 0 is unstable. Figure 6.17b
shows an example where x̄0 = 0 and x̄2 are stable, while x̄1 is unstable. By the
iteration (6.60) initial values x1 < x̄1 tend to x̄0, while those with x̄1 < x1 ≤ 1
tend to x̄2.

The nature and the position of the equilibria are determined by the control pa-
rameter μ. If we let μ vary within its allowed interval of variation, we may cross
certain critical values at which the stability of points of convergence changes and,
hence, where the structure of the dynamical system changes in an essential and
qualitative way. In particular, there can be bifurcations of the type described in
Sects. 6.3.5 and 6.3.6. We do not pursue the general discussion of iterated map-
pings (6.60) here and refer to the excellent monographs by Collet and Eckmann
(1990) and Guckenheimer and Holmes (1990). An instructive example is given in
Sect. 6.4.3 below. Also we strongly recommend working out the PC-assisted exam-
ples of Exercises 6.12–14, which provide good illustrations for iterative mappings
and give an initial feeling for chaotic regimes.

6.4.2 Qualitative Definitions of Deterministic Chaos

Chaos and chaotic motion are intuitive concepts that are not easy to define in a
quantitative and measurable manner. An example taken from daily life may illus-
trate the problem. Imagine a disk-shaped square in front of the main railway station
of a large city, say somewhere in southern Europe, during rush hour. At the edges
of the square busses are coming and going, dropping passengers and waiting for
new passengers who commute with the many trains entering and leaving the sta-
tion. Looking onto the square from the top, the motion of people in the crowd
will seem to us nearly or completely chaotic. And yet we know that every single
passenger follows a well-defined path: he gets off the train on platform 17 and
makes his way through the crowd to a target well known to him, say bus no. 42,
at the outer edge of the square.
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Now image the same square on a holiday, on the day of a popular annual
fair. People are coming from all sides, wandering between the stands, going here
and there rather erratically and without any special purpose. Again, looking at the
square from the top, the motion of people in the crowd will seem chaotic, at least
to our intuitive conception. Clearly, in the second case, motion is more accidental
and less ordered than in the first. There is more chaoticity in the second situation
than in the first. The question arises whether this difference can be made quanti-
tative. Can one indicate measurements that answer quantitatively whether a given
type of motion is really unordered or whether it has an intrinsic pattern one did
not recognize immediately?5

We give here two provisional definitions of chaos but return to a more quan-
titative one in Sect. 6.5 below. Both of them, in essence, define a motion to be
chaotic whenever it cannot be predicted, in any practical sense, from earlier con-
figurations of the same dynamical system. In other terms, even though the motion
is strictly deterministic, predicting a state of motion from an initial configuration
may require knowledge of the latter to a precision that is far beyond any practical
possibility.

(i) The first definition makes use of Fourier analysis of a sequence of val-
ues {x1, x2, . . . , xn}, which are taken on at the discrete times tτ = τ · Δ, τ =
1, 2, . . . , n. Fourier transformation assigns to this sequence another sequence of
complex numbers {x̃1, x̃2, . . . , x̃n} by

x̃σ
def= 1√

n

n∑

τ=1

xτ e−i2πστ/n , σ = 1, 2, . . . , n . (6.62)

While the former is defined over the time variable, the latter is defined over a fre-
quency variable, as will be clear from the following. The sequence {xi} is recorded
during the total time

T = tn = nΔ ,

or, if we measure time in units of the interval Δ, T = n. The sequence {xτ } may
be understood as a discretized function x(t) such that xτ = x(τ) (with time in
units of Δ). Then F = 2π/n is the frequency corresponding to time T , and the
sequence {x̃σ } is the discretization of a function x̃ of the frequency variable with
x̃σ = x̃(σ · F). Thus, time and frequency are conjugate variables.

Although the {xτ } are real, the x̃σ of (6.62) are complex numbers. However,
they fulfill the relations x̃n−σ = x̃∗σ and thus do not contain additional degrees of
freedom. One has the relation

n∑

τ=1

x2
τ =

n∑

σ=1

|x̃σ |2

5 In early Greek cosmology chaos meant “the primeval emptiness of the universe” or, alternatively,
“the darkness of the underworld”. The modern meaning is derived from Ovid, who defined chaos
as “the original disordered and formless mass from which the maker of the Cosmos produced
the ordered universe” (The New Encyclopedia Britannica). Note that the loan-word gas is derived
from the word chaos. It was introduced by J.B. von Helmont, a 17th-century chemist in Brussels.
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and the inverse transformation reads6

xτ = 1√
n

n∑

σ=1

x̃σ ei2πτσ/n . (6.63)

The following correlation function is a good measure of the predictability of
a signal at a later time, from its present value:

gλ
def= 1

n

n∑

σ=1

xσ xσ+λ . (6.64)

gλ is a function of time, gλ = gλ(λ ·Δ). If this function tends to zero, for increas-
ing time, this means that any correlation to the system’s past gets lost. The system
ceases to be predictable and thus enters a regime of irregular motion.

One can prove the following properties of the correlation function gλ. It has
the same periodicity as xτ , i.e. gλ+n = gλ. It is related to the real quantities |x̃σ |2
by the formula

gλ = 1

n

n∑

σ=1

|x̃σ |2 cos(2πσλ/n) , λ = 1, 2, . . . , n . (6.65)

Hence, it is the Fourier transform of |x̃σ |2. Equation (6.65) can be inverted to give

g̃σ
def= |x̃σ |2 =

n∑

λ=1

gλ cos(2πσλ/n) . (6.66)

The graph of g̃σ as a function of frequency gives direct information on the sequence
{xτ }, i.e. on the signal x(t). For instance, if {xτ } was generated by a stroboscopic
measurement of a singly periodic motion, then g̃σ shows a sharp peak at the corre-
sponding frequency. Similarly, if the signal has a quasiperiodic structure, the graph
of g̃σ contains a series of sharp frequencies, i.e. peaks of various strengths. Exam-
ples are given, for instance, by Bergé, Pomeau, and Vidal (1987). If, on the other
hand, the signal is totally aperiodic, the graph of g̃λ will exhibit a practically con-
tinuous spectrum. When inserted in the correlation function (6.65) this means that
gλ will go to zero for large times. In this case the long-term behavior of the system
becomes practically unpredictable. Therefore, the correlation function (6.65), or its
Fourier transform (6.66), provides a criterion for the appearance of chaotic behav-
ior: if gλ tends to zero, after a finite time, or, equivalently, if g̃λ has a continuous
domain, one should expect to find irregular, chaotic motion of the system.

6 In proving this formula one makes use of the “orthogonality relation”

1

n

n∑

σ=1

ei2πmσ/n = δm0 ,

m = 0, 1, . . . , n− 1 .

(see also Exercise 6.15)
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(ii) The second definition, which is closer to the continuous systems (6.1), starts
from the strange or hyperbolic attractors. A detailed description of this class of
attractors is beyond the scope of this book (see, however, Devaney 1989, Bergé,
Pomeau, Vidal 1987, and Exercise 6.14), and we must restrict our discussion to a
few qualitative remarks. One of the striking properties of strange attractors is that
they can sustain orbits that, on average, move apart exponentially (without escaping
to infinity and, of course, without intersecting). In 1971 Newhouse, Takens, and
Ruelle made the important discovery that flows in three dimensions can exhibit this
kind of attractors7. Very qualitatively this may be grasped from Fig. 6.18, which
shows a flow that strongly contracts in one direction but disperses strongly in the
other direction. This flow has a kind of hyperbolic behavior. On the plane where the
flow lines drive apart, orbits show extreme sensitivity to initial conditions. By fold-
ing this picture and closing it with itself one obtains a strange attractor on which
orbits wind around each other (without intersecting) and move apart exponentially8.

Fig. 6.18. Flow in R
3 that can be bent and glued such

that it generates a strange attractor

Whenever there is extreme sensitivity to initial conditions, the long-term be-
havior of dynamical systems becomes unpredictable, from a practical viewpoint, so
that the motion appears to be irregular. Indeed, numerical studies show that there
is deterministically chaotic behavior on strange attractors. This provides us with
another plausible definition of chaos: flows of deterministic dynamical systems
will exhibit chaotic regimes when orbits diverge strongly and, as a consequence,
practically “forget” their initial configurations.

7 Earlier it was held that chaotic motion would occur only in systems with very many degrees of
freedom, such as gases in macroscopic vessels.

8 See R.S. Shaw: “Strange attractors, chaotic behavior and information flow”, Z. Naturforschung
A36, (1981) 80.
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6.4.3 An Example: The Logistic Equation9

An example of a dynamical system of the type (6.60) is provided by the logistic
equation

xi+1 = μxi(1 − xi) ≡ f (μ, xi) (6.67)

with x ∈ [0, 1] and 1 < μ ≤ 4. This seemingly simple system exhibits an ex-
tremely rich structure if it is studied as a function of the control parameter μ. Its
structure is typical for systems of this kind and reveals several surprising and uni-
versal regularities. We illustrate this by means of numerical results for the iteration
(6.67), as a function of the control parameter in the interval given above. It turns out
that this model clearly exhibits all the phenomena described so far: bifurcations of
equilibrium positions, period doubling, regimes of chaotic behavior, and attractors.

We analyze the model (6.67) as described in Sect. 6.4.1. The derivative of
f (μ, x), taken at the intersection x̄ = (μ− 1)/μ with the straight line y = x, is
f ′(μ, x̄) = 2 − μ. In order to keep |f ′| initially smaller than 1, one must take
μ > 1. On the other hand, the iteration (6.67) should not leave the interval [0, 1].
Hence, μ must be chosen smaller than or equal to 4.

In the interval 1 < μ < 3, |f ′| < 1. Therefore, the point of intersection
x̄ = (μ − 1)/μ is one of stable equilibrium. Any initial value x1 except 0 or 1
converges to x̄ by the iteration. The curve x̄(μ) is shown in Fig. 6.19, in the domain
1 < μ ≤ 3.

At μ = μ0 = 3 this point becomes marginally stable. Choosing x1 = x̄ + δ

and linearizing (6.67), the image of x1 is found in x2 = x̄ − δ, and vice versa.
If we think of x1, x2, . . . as points of intersection of an orbit with a transverse
section, then we have exactly the situation described in Sect. 6.3.6 with one of the
characteristic multipliers crossing the value −1. The orbit oscillates back and forth
between x1 = x̄ + δ and x2 = x̄ − δ, i.e. it has acquired twice the period of the
original orbit, which goes through x̄. Clearly, this tells us that

(μ0 = 3 , x̄0 ≡ x̄(μ0)) (6.68)

is a bifurcation. In order to determine its nature, we investigate the behavior for
μ > μ0. As we just saw, the point x̄ = (μ − 1)/μ becomes unstable and there
is period doubling. This means that stable fixed points no longer fulfill the con-
dition x̄ = f (μ, x̄) but instead return only after two steps of the iteration, i.e.
x̄ = f (μ, f (μ, x̄)). Thus, we must study the mapping f ◦ f , that is the iteration

xi+1 = μ2xi(1 − xi)[1 − μxi(1 − xi)] , (6.69)

9 This equation takes its name from its use in modeling the evolution of, e.g., animal population
over time, as a function of fecundity and of the physical limitations of the surroundings. The
former would lead to an exponential growth of the population, the latter limits the growth, the
more strongly the bigger the population. If An is the population in the year n, the model calculates
the population the following year by an equation of the form An+1 = rAn(1 − An) where r

is the growth rate, and (1−An) takes account of the limitations imposed by the environmental
conditions. See e.g. hypertextbook.com/chaos/42.shtml.
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Fig. 6.19. Numerical results for large number of iterations of the logistic equation (6.67). The first
bifurcation occurs at (μ0 = 3, x̄0 = 2/3), the second at μ1 = 1 +√

6, etc. The range of μ shown
is 1 < μ ≤ 4

and find its fixed points. Indeed, if one sketches the function g = f ◦ f , one
realizes immediately that it possesses two stable equilibria. This is seen also in
Fig. 6.19, in the interval 3 ≤ μ < 1 + √

6 � 3.449. Returning to the function
f , this tells us that the iteration (6.67) alternates between the two fixed points
of g = f ◦ f . If we interpret the observed pattern as described in Sect. 6.3.6
above, we realize that the bifurcation (6.68) is of the “pitchfork” type shown in
Fig. 6.14.

The situation remains stable until we reach the value μ1 = 1 + √
6 of the

control parameter. At this value two new bifurcation points appear:
(
μ1 = 1 +√

6, x̄1/2 = 1
10 (4 +

√
6 ± (2

√
3 −√

2))
)
. (6.70)

At these points the fixed points of g = f ◦ f become marginally stable, while for
μ > μ1 they become unstable. Once more the period is doubled and one enters
the domain where the function

h
def= g ◦ g = f ◦ f ◦ f ◦ f

possesses four stable fixed points. Returning to the original function f , this means
that the iteration visits these four points alternately, in a well-defined sequence.

This process of period doublings 2T , 4T , 8T , . . . and of pitchfork bifurcations
continues like a cascade until μ reaches the limit point

μ∞ = 3.56994 . . . . (6.71)

This limit point was discovered numerically (Feigenbaum 1979). The same is true
for the pattern of successive bifurcation values of the control parameter, for which
the following regularity was found empirically. The sequence
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lim
i→∞

μi − μi−1

μi+1 − μi
= δ (6.72)

has the limit δ = 4.669 201 609 . . . (Feigenbaum 1979), which is found to be uni-
versal for sufficiently smooth families of iterative mappings (6.60).

For μ > μ∞ the system shows a structurally new behavior, which can be fol-
lowed rather well in Figs. 6.21 to 6.24. The figures show the results of the iteration
(6.67) obtained on a computer. They show the sequence of iterated values xi for i >
in with in chosen large enough that transients (i.e. initial, nonasymptotic states of
oscillations) have already died out. The iterations shown in Figs. 6.19–21 pertain to
the range 1001 ≤ i ≤ 1200, while in Figs. 6.22–24 that range is 1001 ≤ i ≤ 2000.
This choice means the following: initial oscillations have practically died out and
the sequence of the xi lie almost entirely on the corresponding attractor. The density
of points reflects approximately the corresponding invariant measure on the respec-
tive attractor. Figure 6.22 is a magnified section of Fig. 6.21 (the reader should mark
in Fig. 6.21 the window shown in Fig. 6.22). Similarly, Fig. 6.23 is a magnified

Fig. 6.20. In this figure the domain of pitchfork bifurcations and period doubling up to about 16 T
as well as the window of period 3 are clearly visible. Range shown: 2.8 ≤ μ ≤ 4

Fig. 6.21. Range shown is 3.7 ≤ μ ≤ 3.8 in a somewhat expanded representation. The window with
period 5 is well visible
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Fig. 6.22. A window of Fig. 6.21, with 0.4 ≤ x ≤ 0.6 and 3.735 ≤ μ ≤ 3.745

Fig. 6.23. The domain of bifurcations of Fig. 6.22 (itself cut out of Fig. 6.21) is shown in an enlarged
representation with 0.47 ≤ x ≤ 0.53 and 3.740 ≤ μ ≤ 3.745

Fig. 6.24. Here one sees a magnification of the periodic window in the right-hand half of Fig. 6.23.
The window shown corresponds to 0.47 ≤ x ≤ 0.53 and 3.7440 ≤ μ ≤ 3.7442
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section of Fig. 6.22. The number of iterations was chosen such that one may com-
pare the average densities on these figures directly with those in Figs. 6.19–2110.

The figures show very clearly that once μ exceeds the limit value μ∞ (6.71)
there appear domains of chaotic behavior, which, however, are interrupted repeat-
edly by strips with periodic attractors. In contrast to the domain below μ∞, which
shows only periods of the type 2n, these intermediate strips also contain sequences
of periods

p 2n, p 3n, p 5n with p = 3, 5, 6, . . . .

Figures 6.22 and 6.23 show the example of the strip of period 5, in the neigh-
borhood of μ = 3.74. A comparison of Figs. 6.23 and 6.20 reveals a particularly
startling phenomenon: the pattern of the picture in the large is repeated in a sec-
tional window in the small.

A closer analysis of the irregular domains show that here the sequence of iter-
ations {xi} never repeats. In particular, initial values x1 and x′1 always drift apart,
for large times, no matter how close they were chosen. These two observations hint
clearly at the chaotic structure of these domains. This is confirmed explicitly, e.g.,
by the study of the iteration mapping (6.67) close to μ = 4. For the sake of sim-
plicity we only sketch the case μ = 4. It is not difficult to verify that the mapping

f (μ = 4, x) = 4x(1 − x)

has the following properties.
(i) The points x1 < x2 of the interval [0, 1

2 ] are mapped onto points x′1 < x′2 of
the interval [0, 1]. In other words, the first interval is expanded by a factor 2, the
relative ordering of the preimages remains unchanged. Points x3 < x4 taken from
[ 1

2 , 1] are mapped onto points x′3 and x′4 of the expanded interval [0, 1]. However,
the ordering is reversed. Indeed, with x3 < x4 one finds x′3 > x′4. The observed
dilatation of the images tells us that the distance δ of two starting values increases
exponentially, in the course of the iteration. This in turn tells us that one of the cri-
teria for chaos to occur is fulfilled: there is extreme sensitivity to initial conditions.

(ii) The change of orientation between the mappings of [0, 1
2 ] and [ 1

2 , 1] onto
the interval [0, 1], tells us that an image xi+1, in general, has two distinct preim-
ages, xi ∈ [0, 1

2 ] and x′i ∈ [ 1
2 , 1]. (The reader should make a drawing in order

to convince him or herself.) Thus, if this happens, the mapping ceases to be in-
vertible. xi+1 has two preimages, each of which has two preimages too, and so
on. It is not possible to reconstruct the past of the iteration. Thus, we find another
criterion for chaotic pattern to occur.

One can pursue further the discussion of this dynamical system, which seems
so simple and yet which possesses fascinating structures. For instance, a classifi-
cation of the periodic attractors is of interest that consists in studying the sequence
in which the stable points are visited, in the course of the iteration. Fourier analy-
sis and, specifically, the behavior of the correlation functions (6.65) and (6.66) in

10 I thank Peter Beckmann for providing these impressive figures and for his advice regarding the
presentation of this system.
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the chaotic zones are particularly instructive. The (few) rigorous results as well as
several conjectures for iterative mappings on the unit interval are found in the book
by Collet and Eckmann (1990). For a qualitative and well-illustrated presentation
consult Bergé, Pomeau, and Vidal (1987).

6.5 Quantitative Measures of Deterministic Chaos

6.5.1 Routes to Chaos

The transition from a regular pattern of the solution manifold of a dynamical sys-
tem to regimes of chaotic motion, as a function of control parameters, can happen
in various ways. One distinguishes the following routes to chaos.

(i) Frequency doubling. The phenomenon of frequency doubling is characteris-
tic for the interval 1 < μ ≤ μ∞ = 3.56994 of the logistic equation (6.67). Above
the limit value μ∞ the iterations (6.67) change in a qualitative manner. A more
detailed analysis shows that periodic attractors alternate with domains of genuine
chaos, the chaotic regimes being characterized by the observation that the iteration
xn → xn+1 = f (μ, xn) yields an infinite sequence of points that never repeats
and that depends on the starting value x1. This means, in particular, that sequences
starting at neighboring points x1 and x′1 eventually move away from each other.
Our qualitative analysis of the logistic mapping with μ close to 4 in Sect. 6.4.3 (i)
and (ii) showed how this happens. The iteration stretches the intervals [0, 1

2 ] and
[ 1

2 , 1] to larger subintervals of [0, 1] (for μ = 4 this is the full interval). It also
changes orientation by folding back the values that would otherwise fall outside
the unit interval. As we saw earlier, this combination of stretching and back-folding
has the consequence that the mapping becomes irreversible and that neighboring
starting points, on average, move apart exponentially. Let x1 and x′1 be two neigh-
boring starting values for the mapping (6.67). If one follows their evolution on a
calculator, one finds that after n iterations their distance is given approximately by

|x′n − xn| � eλn|x′1 − x1| . (6.73)

The factor λ in the argument of the exponential is called the Liapunov characteris-
tic exponent. Negative λ is characteristic for a domain with a periodic attractor: the
points approach each other independently of their starting values. If λ is positive,
on the other hand, neighboring points move apart exponentially. There is extreme
sensitivity to initial conditions and one finds a chaotic pattern. Indeed, a numerical
study of (6.67) gives the results (Bergé, Pomeau and Vidal 1987)

for μ = 2.8 , λ � −0.2 ,

for μ = 3.8 , λ � +0.4 . (6.74)

(ii) Intermittency. In Sect. 6.3.6 we studied the Poincaré mapping at the tran-
sition from stability to instability for the case where one of the eigenvalues of
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DΠ(s0) crosses the unit circle at −1. There are other possibilities for the transition
from stability to instability. (a) As a function of the control parameter, an eigenvalue
can leave the interior of the unit circle at +1. (b) Two complex conjugate eigenval-
ues c(μ)e±iφ(μ) leave the unit circle along the directions φ and −φ. All three situ-
ations play their role in the transition to chaos. In case (a) one talks about intermit-
tency of type I, in case (b) about intermittency of type II, while the first case above
is also called type-III intermittency. We wish to discuss type I in a little more detail.

Figures 6.19 and 6.20 show clearly that at the value μ = μc = 1+√
8 � 3.83

a new cycle with period 3 is born. Therefore, let us consider the triple iteration
h(μ, x) = f ◦f ◦f . Figure 6.25 shows that the graph of h(μ = μc, x) is tangent to
the straight line y = x in three points x̄(1), x̄(2), x̄(3). Thus, at these points, we have

h(μc, x̄
(i)) = x̄(i) ,

d

dx
h(μc, x̄

(i)) = 1 .

In a small interval around μc and in a neighborhood of any one of the three fixed
points, h must have the form

h(μ, x) � x̄(i) + (x − x̄(i))+ α(x − x̄(i))2 + β(μ− μc) .

Fig. 6.25. Graph of the threefold iterated map-
ping (6.67) for μ = μc = 1+√

8. The func-
tion h = f ◦ f ◦ f is tangent to the straight
line in three points

We study the iterative mapping xn+1 = h(μ, xn) in this approximate form, i.e.
we register only every third iterate of the original mapping (6.67). We take z =
α(x − x̄(i)) and obtain

zn+1 = zn + z2
n + η (6.75)

with η = αβ(μ−μc). The expression (6.75) holds in the neighborhood of any of
the three fixed points of h(μ, x). For negative η, (6.75) has two fixed points, at
z− = −√−η and at z+ = √−η, the first of which is stable, while the second is un-
stable. For η = 0 the two fixed points coincide and become marginally stable. For
small, but positive η, a new phenomenon is observed as illustrated in Fig. 6.26. Iter-
ations with a negative starting value of the variable z, move for a long time within
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Fig. 6.26. The iterative mapping (6.75) with
small positive η spends a long time in the
narrow channel between the curve w = z +
z2 + η and the straight line w = z

the narrow channel between the graph of the function z+ z2 + η and the straight
line w = z. As long as z is small the behavior is oscillatory and has nearly the same
regularity as with negative values of η. This phase of the motion is said to be the
laminar phase. When |z| increases, the iteration quickly moves on to a chaotic or
turbulent phase. However, the motion can always return to the first domain, i.e. to
the narrow channel of almost regular behavior. Practical models such as the one by
Lorenz (see e.g. Bergé, Pomeau, Vidal 1987) that contain this transition to chaos in-
deed show regular oscillatory behavior interrupted by bursts of irregular and chaotic
behavior.

For small |z| the iteration remains in the channel around z = 0 for some finite
time. In this case successive iterates lie close to each other so that we can replace
(6.75) by a differential equation. Replacing zn+1 − zn by dz/dn, we obtain

dz

dn
= η + z2 . (6.76)

[Note that this is our equation (6.54) with a destabilizing nonlinearity, which de-
scribes then a subcritical saddle-node bifurcation.] Equation (6.76) is integrated at
once,

z(n) = √
η tg (

√
η(n− n0)) .

n0 is the starting value of the iteration and may be taken to zero, without restriction.
This explicit solution tells us that the number of iterations needed for leaving the
channel is of the order of n ∼ π/2

√
η. Hence, 1/

√
η is a measure of the time that

the system spends in the laminar regime. Finally, one can show that the Liapunov
exponent is approximately λ ∼ √

η, for small values of η.
(iii) Quasiperiodic motion with nonlinear perturbation. A third route to chaos

may be illustrated by Example (ii) of Sect. 6.3.4. We consider quasiperiodic mo-
tion on the torus T 2, choosing the Poincaré section as described in (6.49′), i.e. we
register the points of intersection of the orbit with the transverse section of the
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torus at θ1 = 0 (mod 2π). When understood as an iterative mapping, the second
equation (6.49′) reads

θn+1 =
(
θn + 2π

ω2

ω1

)
mod 2π ,

where we write θ instead of θ2, for the sake of simplicity.
Let us perturb this quasiperiodic motion on the torus by adding a nonlinearity

as follows:

θn+1 =
(
θn + 2π

ω2

ω1
+ κ sin θn

)
mod 2π . (6.77)

This model, which is due to Arnol’d, contains two parameters: the winding num-
ber β = ω2/ω1, with 0 ≤ β < 1, and the control parameter κ , which is taken
to be positive. For 0 ≤ κ < 1 the derivative of (6.77), 1 + κ cos θn, has no zero
and hence the mapping is invertible. For κ > 1, however, this is no longer true.
Therefore, κ = 1 is a critical point where the behavior of the flow on T 2 changes
in a qualitative manner. Indeed, one finds that the mapping (6.77) exhibits chaotic
behavior for κ > 1. This means that in crossing the critical value κ = 1 from reg-
ular to irregular motion, the torus is destroyed. As a shorthand let us write (6.77)
as follows: θn+1 = f (β, κ, θn). The winding number is defined by the limit

w(β, κ)
def= lim

n→∞
1

2πn
[f n(β, κ, θ)− θ ] . (6.78)

Obviously, for κ = 0 it is given by w(β, 0) = β = ω2/ω1. The chaotic regime
above κ = 1 may be studied as follows. For a given value of κ we choose
β ≡ βn(κ) such that the starting value θ0 = 0 is mapped to 2πpn, after qn steps,
qn and pn being integers,

f qn(β, κ, 0) = 2πpn .

The winding number is then a rational number. w(β, κ) = pn/qn ≡ rn, rn ∈ Q.
This sequence of rationals may be chosen such that rn tends to a given irrational
number r̄ , in the limit n → ∞. An example of a very irrational number is the
Golden Mean. Let rn = Fn/Fn+1, where the Fn are the Fibonacci numbers, de-
fined by the recurrence relation Fn+1 = Fn + Fn−1 and the initial values F0 = 0,
F1 = 1. Consider

rn = Fn

Fn+1
= 1

1 + rn−1

in the limit n→∞. Hence r̄ = 1/(1 + r̄). The positive solution of this equation
is the Golden Mean r̄ = (

√
5 − 1)/211.

11 The Golden Mean is a well-known concept in the fine arts, in the theory of proportions. For
example, a column of height H is divided into two segments of heights h1 and h2, with H =
h1 + h2 such that the proportion of the shorter segment to the longer is the same as that of
the longer to the column as a whole, i.e. h1/h2 = h2/H = h2/(h1 + h2). The ratio h1/h2 =
r̄ = (

√
5 − 1)/2 is the Golden Mean. This very irrational number has a remarkable continued

fraction representation: r = 1/(1 + 1/(1 + . . .
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With this choice, the winding numbers defined above, w(βn(κ), κ) = rn, will
converge to w = r̄ . A numerical study of this system along the lines described
above reveals remarkable regularities and scaling properties that are reminiscent of
the logistic mapping (6.67) (see e.g. Guckenheimer and Holmes (1990), Sect. 6.8.3
and references quoted there).

6.5.2 Liapunov Characteristic Exponents

Chaotic behavior is observed whenever neighboring trajectories, on average, di-
verge exponentially on attractors. Clearly, one wishes to have a criterion at hand
that allows one to measure the speed of this divergence. Thus, we consider a so-
lution Φ

˜
(t, y

˜
) of the equation of motion (6.1), change its initial condition by the

amount δy
˜
, and test whether, and if yes at what rate, the solutions Φ

˜
(t, y

˜
) and

Φ
˜
(t, y

˜
+δy

˜
) move apart. In linear approximation their difference obeys (6.11), i.e.

δΦ̇˜ ≡ Φ̇˜ (t, y˜
+ δy

˜
)− Φ̇˜ (t, y˜

) = Λ(t)[Φ
˜
(t, y

˜
+ δy

˜
)−Φ

˜
(t, y

˜
)]

≡ Λ(t)δΦ
˜
, (6.79)

the matrix Λ(t) being given by

Λ(t) =
(
∂Fi

∂φk

)

Φ
˜
.

Unfortunately, (6.79), in general, cannot be integrated analytically and one must
resort to numerical algorithms, which allow the determination of the distance of
neighboring trajectories as a function of time. Nevertheless, imagine we had solved
(6.79). At t = 0 we have δΦ

˜
= Φ

˜
(0, y

˜
+ δy

˜
)−Φ

˜
(0, y

˜
) = δy

˜
. For t > 0 let

δΦ
˜
(t) = U(t) · δy

˜
(6.80)

be the solution of the differential equation (6.79). From (6.79) one sees that the
matrix U(t) itself obeys the differential equation

U̇(t) = Λ(t)U(t)

and therefore may be written formally as follows:

U(t) = exp

{∫ t

0
dt ′Λ(t ′)

}
U(0) , with U(0) = 1l . (6.81)

Although this is generally not true, imagine the matrix to be independent of time.
Let {λk} denote its eigenvalues (which may be complex numbers) and use the basis
system of the corresponding eigenvectors. Then U(t) = {exp(λkt)} is also diagonal.
Whether or not neighboring trajectories diverge exponentially depends on whether
or not the real part of one of the eigenvalues Re λk = 1

2 (λk+λ∗k) is positive. This
can be tested by taking the logarithm of the trace of the product U†U,
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1

2t
ln Tr (U†(t)U(t)) = 1

2t
ln Tr (exp{(λk + λ∗k)t}) ,

and by letting t go to infinity. In this limit only the eigenvalue with the largest
positive real part survives. With this argument in mind one defines

μ1
def= lim

t→∞
1

2t
ln Tr (U†(t)U(t)) . (6.82)

The real number μ1 is called the leading Liapunov characteristic exponent. It pro-
vides a quantitative criterion for the nature of the flow: whenever the leading Li-
apunov exponent is positive, there is (at least) one direction along which neigh-
boring trajectories move apart, on average, at the rate exp(μ1t). There is extreme
sensitivity to initial conditions: the system exhibits chaotic behavior.

The definition (6.82) applies also to the general case where Λ(t) depends on
time. Although the eigenvalues and eigenvectors of Λ(t) now depend on time,
(6.82) has a well-defined meaning. Note, however, that the leading exponent de-
pends on the reference solution Φ

˜
(t, y

˜
).

The definition (6.82) yields only the leading Liapunov exponent. If one wishes
to determine the next to leading exponent μ2 ≤ μ1, one must take out the direction
pertaining to μ1 and repeat the same analysis as above. Continuing this procedure
yields all Liapunov characteristic exponents, ordered according to magnitude,

μ1 ≥ μ2 ≥ . . . ≥ μf . (6.83)

The dynamical system exhibits chaotic behavior if and only if the leading Liapunov
exponent is positive.

For discrete systems in f dimensions, x
˜ n+1 = F˜ (x˜ n

), x
˜
∈ R

f , the Liapunov
exponents are obtained in an analogous fashion. Let v(1) be those vectors in the tan-
gent space at an arbitrary point x

˜
that grow at the fastest rate under the action of the

linearization of the mapping F˜ , i.e. those for which |(DF˜ (x˜ ))
nv(1)| is largest. Then

μ1 = lim
n→∞

1

n
ln |(DF˜ (x˜ ))

nv(1)| . (6.84)

In the next step, one determines the vectors v(2) that grow at the second fastest
rate, leaving out the subspace of the vectors v(1). The same limit as in (6.84) yields
the second exponent μ2 etc. We consider two simple examples that illustrate this
procedure.

(i) Take F˜ to be two-dimensional and let x
˜

0 be a fixed point, x
˜

0 = F˜ (x˜
0).

DF(x
˜

0) is diagonalizable,

DF(x
˜

0) =
(
λ1 0
0 λ2

)
,

with, say, λ1 > λ2. Choose v(1) from {R2\2-axis}, i.e. in such a way that its 1-
component does not vanish, and choose v(2) along the 2-axis,
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v(1) =
(
a(1)

b(1)

)
, a(1) 	= 0 ; v(2) =

(
a(2)

b(2)

)
, a(2) = 0 .

Then one obtains

μi = lim
n→∞

1

n
ln

∣∣∣∣

(
(λ1)

n 0
0 (λ2)

n

)(
a(i)

b(i)

)∣∣∣∣

= lim
n→∞

1

n
ln |λi |n = ln |λi |

and μ1 > μ2.
(ii) Consider a mapping in two dimensions, x

˜
= (

u
v

)
, that is defined on the

unit square 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, by the equations

un+1 = 2un(mod 1) , (6.85a)

vn+1 =
{
avn for 0 ≤ un <

1
2

avn + 1
2 for 1

2 ≤ un ≤ 1
(6.85b)

with a < 1. Thus, in the direction of v this mapping is a contraction for u < 1
2

and a contraction and a shift for u ≥ 1
2 . In the direction of u its effect is stretching

and back-bending whenever the unit interval is exceeded. (It is called the baker’s
transformation because of the obvious analogy to kneading, stretching, and back-
folding of dough.) This dissipative system is strongly chaotic. This will become
clear empirically if the reader works out the example a = 0.4 on a PC, by following
the fate of the points on the circle with origin ( 1

2 ,
1
2 ) and radius a, under the action

of successive iterations. The original volume enclosed by the circle is contracted.
At the same time horizontal distances (i.e. parallel to the 1-axis) are stretched ex-
ponentially because of (6.85a). The system possesses a strange attractor, which is
stretched and folded back onto itself and which consists of an infinity of horizontal
lines. Its basin of attraction is the whole unit square. Calculation of the Liapunov
characteristic exponents by means of the formula (6.84) gives the result

μ1 = ln 2 , μ2 = ln |a| ,
and thus μ2 < 0 < μ1.

6.5.3 Strange Attractors

Example (ii) of the preceding section shows that the system (6.85a) lands on a
strangely diffuse object which is neither an arc of a curve nor a piece of a surface
in the unit square, but somehow “something in between”. This strange attractor
does indeed have zero volume, but its geometric dimension is not an integer. Geo-
metric structures of this kind are said to be fractals. Although a rigorous discussion
of this concept and a detailed analysis of fractal-like strange attractors is beyond
the scope of this book, we wish at least to give an idea of what such objects are.
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Imagine a geometric object of dimension d embedded in a space R
n, where

d need not necessarily be an integer. Scaling all its linear dimensions by a factor
λ, the object’s volume will change by a factor κ = λd , i.e.

d = ln κ

ln λ
.

Clearly, for points, arcs of curves, surfaces, and volumes in R
3 one finds in this

way the familiar dimensions d = 0, d = 1, d = 2 and d = 3, respectively. A
somewhat more precise formulation is the following. A set of points in R

n, which
is assumed to lie in a finite volume, is covered by means of a set of elementary
cells B whose diameter is ε. These cells may be taken to be little cubes of side
length ε, or little balls of diameter ε, or the like. If N(ε) is the minimal num-
ber of cells needed to cover the set of points completely, the so-called Hausdorff
dimension of the set is defined to be

dH = lim
ε→0

ln(N(ε)

ln(1/ε)
, (6.86)

provided this limit exists. To cover a single point, one cell is enough, N(ε) = 1; to
cover an arc of length L one needs at least N(ε) = L/ε cells; more generally, to
cover a p-dimensional smooth hypersurface F , N(ε) = F/εp cells will be enough.
In these cases, the definition (6.86) yields the familiar Euclidean dimensions dH =
0 for a point, dH = 1 for an arc, and dH = p for the hypersurface F with p ≤ n.

For fractals, on the other hand, the Hausdorff dimension is found to be nonin-
teger. A simple example is provided by the Cantor set of the middle third, which is
defined as follows. From a line segment of length 1 one cuts out the middle third.
From the remaining two segments [0, 1

3 ] and [ 2
3 , 1] one again cuts out the mid-

dle third, etc. By continuing this process an infinite number of times one obtains
the middle third Cantor set. Taking ε0 = 1

3 , the minimum number of intervals of
length ε0 needed to cover the set is N(ε0) = 2. If we take ε1 = 1

9 instead, we
need at least N(ε1) = 4 intervals of length ε1, etc. For εn = 1/3n the minimal
number is N(εn) = 2n. Therefore,

dH = lim
n→∞

ln 2n

ln 3n
= ln 2

ln 3
� 0.631 .

Another simple and yet interesting example is provided by the so-called snow-
flake set, which is obtained by the following prescription. One starts from an equi-
lateral triangle in the plane. To the middle third of each of its sides one adds another
equilateral triangle, of one third the dimension of the original one, and keeps only
the outer boundary. One repeats this procedure infinitely many times. The object
generated in this way has infinite circumference. Indeed, take the side length of
the initial triangle to be 1. At the nth step of the construction described above the
side length of the last added triangles is εn = 1/3n. Adding a triangle to the side
of length εn−1 breaks its up in four segments of length εn each. Therefore, the
circumference is Cn = 3 × 4n × εn = 4n/3n−1. Clearly, in the limit n→∞ this
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diverges, even though the whole object is contained in a finite portion of the plane.
On the other hand, if one calculates the Hausdorff dimensions in the same way as
for the middle third Cantor set one finds dH = ln 4/ ln 3 � 1.262.

There are further questions regarding chaotic regimes of dynamical systems,
such as: If strange attractors have the structure of fractals, can one measure their
generalized dimension? Is it possible to describe deterministically chaotic motion
on the attractor quantitatively by means of a test quantity (some kind of entropy),
which would tell us whether the chaos is rich or poor? These questions lead us
beyond the range of the tools developed in this book. In fact, they are the subject
of present-day research and no final answers have been given so far. We refer to the
literature quoted in the Appendix for an account of the present state of knowledge.

6.6 Chaotic Motions in Celestial Mechanics

We conclude this chapter on deterministic chaos with a brief account of some fas-
cinating results of recent research on celestial mechanics. These results illustrate in
an impressive way the role of deterministically chaotic motion in our planetary sys-
tem. According to the traditional view, the planets of the solar system move along
their orbits with the regularity of a clockwork. To a very good approximation, the
motion of the planets is strictly periodic, i.e. after one turn each planet returns to
the same position, the planetary orbits are practically fixed in space relative to the
fixed stars. From our terrestrial point of view no motion seems more stable, more
uniform over very long time periods than the motion of the stars in the sky. It is pre-
cisely the regularity of planetary motion that, after a long historical development,
led to the discovery of Kepler’s laws and, eventually, to Newton’s mechanics.

On the other hand, our solar system with its planets, their satellites, and the very
many smaller objects orbiting around the sun is a highly complex dynamical sys-
tem whose stability has not been established in a conclusive manner. Therefore, it
is perhaps not surprising that there are domains of deterministically chaotic motion
even in the solar system with observable consequences. It seems, for instance, that
chaotic motion is the main reason for the formation of the Kirkwood gaps (these
are gaps in the asteroid belts between Mars and Jupiter which appear at some ratio-
nal ratios of the periods of revolution of the asteroid and Jupiter) and that chaotic
motion also provides an important source for the transport of meteorites to the
earth (Wisdom 1987).

In this section we describe an example of chaotic tumbling of planetary satel-
lites which is simple enough that the reader may reproduce some of the figures on
a PC. We then describe some recent results regarding the topics mentioned above.

6.6.1 Rotational Dynamics of Planetary Satellites

The moon shows us always the same face. This means that the period of its spin
(its intrinsic angular momentum) is equal to the period of its orbital motion and
that its axis of rotation is perpendicular to the plane of the orbit. In fact, this is its
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final stage, which was reached after a long-term evolution comprising two phases:
a dissipative phase, or slowing-down phase, and the final, Hamiltonian phase that
we observe today. Indeed, although we ignore the details of the moon’s formation,
it probably had a much faster initial rate of rotation and its axis of rotation was
not perpendicular to the plane of the orbit. Through the action of friction by tidal
forces, the rotation was slowed down, over a time period of the order of the age of
the planetary system, until the period of rotation became equal to the orbital pe-
riod. At the same time the axis of rotation turned upright such as to point along the
normal to the orbit plane. These results can be understood on the basis of simple
arguments regarding the action of tidal forces on a deformable body and simple
energy considerations. In the synchronous phase of rotation (i.e. spin period equal
to orbital period) the effect of tidal forces is minimal. Furthermore, for a given
frequency of rotation, the energy is smallest if the rotation takes place about the
principal axis with the largest moment of inertia. Once the satellite has reached
this stage, the motion is Hamiltonian, to a very good approximation.

Thus, any satellite close enough to its mother planet that tidal forces can mod-
ify its motion in the way described above and within a time period comparable to
the age of the solar system will enter this synchronous phase, which is stable in
the case of our moon. This is not true, as we shall see below, if the satellite has
a strongly asymmetric shape and if it moves on an ellipse of high eccentricity.

The Voyager 1 and 2 space missions took pictures of Hyperion, one of the far-
thest satellites of Saturn, on passing close to Saturn in November 1980 and August
1981. Hyperion is an asymmetric top whose linear dimensions were determined
to be

190 km × 145 km × 114 km

with an uncertainty of about ±15 km. The eccentricity of its elliptical orbit is
ε = 0.1; its orbital period is 21 days. The surprising prediction is that Hyperion
performs a chaotic tumbling motion in the sense that its angular velocity and the
orientation of its axis of rotation are subject to strong and erratic changes within
a few periods of revolution. This chaotic dance, which, at some stage, must have
also occurred in the history of other satellites (such as Phobos and Deimos, the
companions of Mars), is a consequence of the asymmetry of Hyperion and of the
eccentricity of its orbit. This is what we wish to show within the framework of a
simplified model.

The model is shown in Fig. 6.27. Hyperion H moves around Saturn S on an
ellipse with semimajor axis a and eccentricity ε. We simulate its asymmetric shape
by means of four mass points 1 to 4, that have the same mass m and are arranged
in the orbital plane as shown in the figure. The line 2–1 (the distance between 2
and 1 is d) is taken to be the 1-axis, the line 4–3 (distance e < d) is taken to be
the 2-axis. The moments of inertia are then given by

I1 = 1
2me

2 < I2 = 1
2md

2 < I3 = 1
2m(d

2 + e2) . (6.87)

As we said above, the satellite rotates about the 3-axis, i.e. the axis with the largest
moment of inertia. This axis is perpendicular to the orbit plane (in Fig. 6.27 it points
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towards the reader). It is reasonable to assume that Hyperion’s motion has no ap-
preciable effect on Saturn, its mother planet, whose motion is very slow compared
to that of Hyperion.

The gravitational field at the position of Hyperion is not homogeneous. As I1
and I2 are not equal, the satellite is subject to a net torque that depends on its
position in the orbit. We calculate the torque for the pair (1,2). The result for the
pair (3,4) will then follow immediately. We have

D(1,2) = d

2
× (F1 − F2) ,

where F i = −GmMri/r
3
i is the force acting on the mass point i, M being the

mass of Saturn. The distance d = |d| being small compared to the radial distance
r from Saturn we have, with the notations as in Fig. 6.27,

1

r3
i

= 1

r3

(
1 ± d

r
cosα + d 2

4r2

)−3/2

� 1

r3

(
1 ∓ 3

2

d

r
cosα

)
.

(The upper sign holds for r1, the lower sign for r2.) Inserting this approximation
as well as the cross product r × d = −rd sin α ê3, one finds

D(1,2) � (3d 2mMG/4r3) sin 2α ê3 = (3GMI2/2r3) sin 2α ê3 .

In the second step we inserted the expression (6.87) for I2. The product GM can
be expressed by the semimajor axis a and the orbital period T , using Kepler’s third
law (1.23). The mass of Hyperion (which in the model is 4m) is small compared
to M , and therefore it is practically equal to the reduced mass. So, from (1.23)

GM = (2π/T )2a3 .

The calculation is the same for the pair (3,4). Hence, the total torque D(1,2)+D(3,4)

is found to be

D � 3

2

(
2π

T

)2

(I2 − I1)
(a
r

)3
sin 2α ê3 . (6.88)

Fig. 6.27. A simple model for the asymmetric satellite Hyperion of the planet Saturn
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This result remains valid if the satellite is described by a more realistic distribution
of mass. It shows that the resulting torque vanishes if I1 = I2. With this result the
equation of motion (3.52) for the rotational motion of the satellite reads

I3θ̈ = 3

2

(
2π

T

)2

(I2 − I1)

(
a

r(t)

)3

sin 2α . (6.89)

Here, the angle θ describes the orientation of the satellite’s 1-axis relative to the
line SP (joining Saturn and Hyperion’s perisaturnion) and Φ is the usual polar
angle of Keplerian motion. As α = Φ − θ , (6.89) reads

I3θ̈ = −3

2

(
2π

T

)2

(I2 − I1)

(
a

r(t)

)3

sin 2[θ −Φ(t)] . (6.89′)

This equation contains only one explicit degree of freedom, θ , but its right-hand
side depends on time because the orbital radius r and the polar angle Φ are func-
tions of time. Therefore, in general, the system is not integrable. There is an ex-
ception, however. If the orbit is a circle, ε = 0 (cf. Sect. 1.7.2 (ii)) the average
circular frequency

n
def= 2π

T
(6.90)

is the true angular velocity, i.e. we have Φ = nt and with θ ′ = θ−nt the equation
of motion becomes

I3θ̈
′ = − 3

2n
2(I2 − I1) sin 2θ ′ , ε = 0 . (6.91)

If we set

z1
def= 2θ ′ , ω2 def= 3n2 I2 − I1

I3
, τ

def= ωt ,

(6.91) is recognized to be the equation of motion (1.40) of the plane pendulum,
viz. d2z1/dτ 2 = − sin z1, which can be integrated analytically. The energy is an
integral of the motion; it reads

E = 1
2I3θ̇

′2 − 3
4n

2(I2 − I1) cos 2θ ′ . (6.92)

If ε 	= 0, the time dependence on the right-hand side of (6.89′) cannot be elimi-
nated. Although the system has only one explicit degree of freedom, it is intrinsi-
cally three-dimensional. The early work of Hénon and Heiles (1964) on the mo-
tion of a star in a cylindrical galaxy showed that Hamiltonian systems may exhibit
chaotic behavior. For some initial conditions they may have regular solutions, but
for others the structure of their flow may be chaotic. A numerical study of the
seemingly simple system (6.89′), which is Hamiltonian, shows that it has solu-
tions pertaining to chaotic domains (Wisdom 1987, and original references quoted
there). One integrates the equation of motion (6.89′) numerically and studies the
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result on a transverse section (cf. the Poincaré mapping introduced in Sect. 6.3.4),
which is chosen as follows. At every passage of the satellite at the point P of clos-
est approach to the mother planet one records the momentary orientation of the
satellite’s 1-axis with respect to the line SP of Fig. 6.27. One then plots the relative
change (dθ/dt)/n of the orientation at successive passages through P , for various
initial conditions. One obtains figures of the kind shown in Figs. 6.28–30. We start
by commenting on Fig. 6.28. One-dimensional manifolds, i.e. curves, correspond
to quasiperiodic motion. If, on the other hand, the “measured” points fill a surface,
this is a hint that there is chaotic motion. The scattered points in the middle part of
the figure all pertain to the same, chaotic orbit. Also, the two orbits forming an “X”
at about (π2 , 2.3) are chaotic, while the islands in the chaotic zones correspond to
states of motion where the ratio of the spin period and the period of the orbit are
rational. For example, the island at (0, 0.5) is the remnant of the synchronous mo-
tion where Hyperion, on average, would always show the same face to the mother

Fig. 6.28. Chaotic behavior of Hy-
perion, a satellite of Saturn. The
picture shows the relative change
of orientation of the satellite as a
function of its orientation, at every
passage in P , the point of closest
approach to Saturn (from Wisdom
1987)

Fig. 6.29. Analogous result to
the one shown in Fig. 6.28, for
Deimos, a satellite of Mars whose
asymmetry (6.93) is α = 0.81 and
whose orbital eccentricity is ε =
0.0005 (from Wisdom 1987)
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Fig. 6.30. Analogous result to
those in Figs. 6.28 and 6.29 for
Phobos, a satellite of Mars whose
asymmetry (6.93) is α = 0.83 and
whose orbital eccentricity is ε =
0.015 (from Wisdom 1987)

planet. The synchronous orbit at θ = π would be the one where the satellite shows
the opposite face. The curves at the bottom of the figure and in the neighborhood of
θ = π

2 are quasiperiodic motions with an irrational ratio of periods. (It is not diffi-
cult to see that the range π ≤ θ ≤ 2π is equivalent to the one shown in the figure.)

A more detailed analysis shows that both in the chaotic domain and in the
synchronous state the orientation of the spin axis perpendicular to the orbit plane
is unstable. One says that the motion is attitude unstable. This means that even a
small deviation of the spin axis from the vertical (the direction perpendicular to
the orbit plane) will grow exponentially, on average. The time scale for the ensuing
tumbling is of the order of a few orbital periods. The final stage of a spherically
symmetric moon, as described above, is completely unstable for the asymmetric
satellite Hyperion. Note, however, that once the axis of rotation deviates from the
vertical, one has to solve the full set of the nonlinear Eulerian equations (3.52).
In doing this one finds, indeed, that the motion is completely chaotic: all three
Liapunov characteristic exponents are found to be positive (of the order of 0.1).
In order to appreciate the chaoticity of Hyperion’s tumbling the following remark
may be helpful. Even if one had measured the orientation of its axis of rotation to
ten decimal places, at the time of the passage of Voyager 1 in November 1980, it
would not have been possible to predict the orientation at the time of the passage
of Voyager 2 in August 1981, only nine months later.

Up to this point tidal friction has been completely neglected and the system is
exactly Hamiltonian. Tidal friction, although unimportant in the final stage, was
important in the history of Hyperion. Its evolution may be sketched as follows
(Wisdom 1987). In the beginning the spin period presumably was much shorter
and Hyperion probably began its evolution in a domain high above the one shown
in Fig. 6.28. Over a time period of the order of the age of our solar system the spin
rotation was slowed down, while the obliquity of the axis of rotation with respect
to the vertical decreased to zero. Once the axis was vertical, the assumptions on
which the model (6.89′) and the results shown in Fig. 6.28 are based came close
to being realized. However, as soon as Hyperion entered the chaotic regime, “the
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work of the tides over aeons was undone in a matter of days” (Wisdom 1987). It
began to tumble erratically until this day12.

In order to understand further the rather strange result illustrated by Fig. 6.28
for the case of Hyperion, we show the results of the same calculation for two satel-
lites of Mars in Figs. 6.29 and 6.30: Deimos and Phobos. The asymmetry parameter

α =
√

3(I2 − I1)

I3
, (6.93)

which is the relevant quantity in the equation of motion (6.89′) and whose value
is 0.89 in the case of Hyperion, is very similar for Deimos and Phobos: 0.81 and
0.83, respectively. However, the eccentricities of their orbits around Mars are much
smaller than for Hyperion. They are 0.0005 for Deimos and 0.015 for Phobos. The
synchronous phase at (θ = 0, (1/n)dθ/dt = 1) that we know from our moon is
still clearly visible in Figs. 6.29 and 6.30, while in the case of Hyperion it has
drifted down in Fig. 6.28. Owing to the smallness of the eccentricities, the chaotic
domains are correspondingly less developed. Even though today Deimos and Pho-
bos no longer tumble, they must have gone through long periods of chaotic tum-
bling in the course of their history. One can estimate that Deimos’ chaotic tumbling
phase may have lasted about 100 million years, whereas Phobos’ tumbling phase
may have lasted about 10 million years.

6.6.2 Orbital Dynamics of Asteroids with Chaotic Behavior

As we learnt in Sect. 2.37 the manifold of motions of an integrable Hamiltonian
system with f degrees of freedom is Δf ×T f , with Δf = Δ1×Δ2×. . .×Δf be-
ing the range of the action variables I1, I2, . . . , If and T f the f -dimensional torus
spanned by the angle variables θ1, θ2, . . . , θf . Depending on whether or not the
corresponding, fundamental frequencies are rationally dependent, one talks about
resonant or nonresonant tori, respectively. These tori (the so-called KAM tori) and
their stability with respect to small perturbations play an important role in pertur-
bation theory of Hamiltonian systems, as explained in Sect. 2.39.

In the past it was held that the Kirkwood gaps referred to in the introduction
were due to a breakdown of the KAM tori in the neighborhood of resonances.
It seems that this rather qualitative explanation is not conclusive. Instead, recent
investigations of the dynamics of asteroids, which are based on long-term calcula-
tions, seem to indicate that the Kirkwood gaps are due rather to chaotic behavior
in a Hamiltonian system.

Here we wish to describe briefly one of the examples studied, namely the gap
in the asteroid belt between Mars and Jupiter, which occurs at the ratio 3:1 of the
periods of the asteroid and of Jupiter. Clearly, the integration of the equations of

12 The observations of Voyager 2 are consistent with this prediction, since it found Hyperion in a
position clearly out of the vertical. More recently, Hyperion’s tumbling was positively observed
from the earth (J. Klavetter et al., Science 246 (1989) 998, Astron. J. 98 (1989) 1855).
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Fig. 6.31. Eccentricity of a typical orbit in the
chaotic domain close to the 3:1 resonance, as a
function of time measured in millions of years.
From periods of small, though irregular, values
of ε the orbit makes long-term excursions to
large values of the eccentricity

Fig. 6.32. Surface of section for the orbit shown
in Fig. 6.31. The radial coordinate of the points
shown is the eccentricity

motion over a time span of several millions of years is a difficult problem of applied
mathematics for which dedicated methods had to be designed. We cannot got into
these methods13 and must restrict the discussion to a few characteristic results.

The main result of these calculations is that the orbits of asteroids in the neigh-
borhood of the 3:1 resonance exhibit chaotic behavior in the following sense: the
eccentricity of the asteroid’s elliptic orbit varies in an irregular way, as a function
of time, such that an asteroid with an initial eccentricity of, say, 0.1 makes long
excursions to larger eccentricities. Figure 6.31 shows an example for a time inter-
val of 2.5 million years, which was calculated for the planar system Sun–asteroid–
Jupiter. The problem is formulated in terms of the coordinates (x, y) of the asteroid
in the plane and in terms of the time dependence of the orbit parameters due to
the motion of Jupiter along its orbit. Averaging over the orbital period yields an
effective, two-dimensional system for which one defines effective coordinates

x = ε cos(ω̄ − ω̄J) , y = ε sin(ω̄ − ω̄J) . (6.94)

Here ω̄ and ω̄J are the longitudes of the perihelia for the asteroid and for Jupiter,
respectively. The quantities (6.94) yield a kind of Poincaré section if one records
x and y each time a certain combination of the mean longitudes goes to zero. Fig-
ure 6.32 shows the section obtained in this way for the orbit shown in Fig. 6.31.
These figures show clearly that orbits in the neighborhood of the 3:1 resonance
are strongly chaotic. At the same time they provide a simple explanation for the
observation that a strip of orbits in the neighborhood of this resonance is empty: all

13 The reader will find hints to the original literature describing these methods in Wisdom’s review
(1987).
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orbits with ε > 0.4 cross the orbit of Mars. As we know that orbits in the neighbor-
hood of the resonance make long excursions to larger eccentricities, there is a finite
probability for the asteroids to come close to Mars, or even to hit this planet, and
thereby to be scattered out of their original orbit. Thus, deterministically chaotic
motion played an important role in the formation of the 3:1 Kirkwood gap14.

Another, very interesting observation, which follows from these investigations,
is that irregular behavior near the 3:1 resonance may play an important role in
the transport of meteorites from the asteroid belt to the earth. Indeed, the calcu-
lations show that asteroidal orbits starting at ε = 0.15 make long-term excursions
to eccentricities ε = 0.6 and beyond. In this case they cross the orbit of the earth.
Therefore, chaotic orbits in the neighborhood of the 3:1 gap can carry debris from
collisions between asteroids directly to the surface of earth. In other words, deter-
ministically chaotic motion may be responsible for an important transport mecha-
nism of meteorites to earth, i.e. of objects that contain important information about
the history of our solar system.

In this last section we returned to celestial mechanics, the point of departure
of all of mechanics. Here, however, we discovered qualitatively new types of de-
terministic motion that are very different from the serene and smooth running of
the planetary clockwork whose construction principles were investigated by Ke-
pler. The solar system was always perceived as the prime example of a mechanical
system evolving with great regularity and impressive predictability. We have now
learnt that it contains chaotic behavior (tumbling of asymmetric satellites, chaotic
variations of orbital eccentricities of asteroids near resonances, the chaotic motion
of Pluto) very different from the harmony and regularity that, historically, one ex-
pected to find. At the same time, we have learnt that mechanics is not a closed
subject that has disappeared in the dusty archives of physics. On the contrary, it
is more than ever a lively and fascinating field of research, which deals with im-
portant and basic questions in many areas of dynamics.

14 Analogous investigations of the 2:1 and 3:2 resonances indicate that there is chaotic behavior at
the former while there is none at the latter. This is in agreement with the observation that there
is a gap at 2:1 but not at 3:2.
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A distinctive feature of the mechanical systems we have discussed so far is that
their number of degrees of freedom is finite and hence countable. The mechanics
of deformable macroscopic media goes beyond this framework. The reaction of a
solid state to external forces, the flow behavior of a liquid in a force field, or the
dynamics of a gas in a vessel cannot be described by means of finitely many coor-
dinate variables. The coordinates and momenta of point mechanics are replaced by
field quantities, i.e. functions or fields defined over space and time, which describe
the dynamics of the system. The mechanics of continua is an important discipline
of classical physics on its own and goes far beyond the scope of this book. In
this epilog we introduce the important concept of dynamical field, generalize the
principles of canonical mechanics to continuous systems, and illustrate them by
means of some instructive examples. At the same time, this serves as a basis for
electrodynamics, which is a typical and especially important field theory.

7.1 Discrete and Continuous Systems

Earlier we pointed out the asymmetry between the time variable on the one hand
and the space variables on the other, which is characteristic for nonrelativistic
physics, cf. Sects. 1.6 and 4.7. In a Galilei-invariant world, time has an absolute
nature while space does not. In the mechanics of mass points and of rigid bod-
ies there is still another asymmetry, which we also pointed out in Sect. 1.6 and
which is this: time plays the role of a parameter, whereas the position r(t) of a
particle, or, likewise, the coordinates {rs(t), θk(t)} of a rigid body, or, even more
generally, the flow Φ

˜ (t, t0, x˜ 0) in phase space are the genuine, dynamical variables
that obey the mechanical equations of motion. Geometrically speaking, the latter
are the “geometrical curves”, while t is the orbit parameter (length of arc) that
indicates in which way the system moves along its orbits.

This is different for the case of a continuous system, independent of whether
it is to be described nonrelativistically or relativistically. Here, besides the time
coordinate, also the space coordinates take over the role of parameters. Their pre-
vious role as dynamical variables is taken over by new objects, the fields. It is the
fields that describe the state of motion of the system and obey a set of equations
of motion. We develop this important new concept by means of a simple example.

F. Scheck, Mechanics, Graduate Texts in Physics, 5th ed.,
DOI 10.1007/978-3-642-05370-2_7, © Springer-Verlag Berlin Heidelberg 2010
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Example. Linear chain and vibrating string. Let n mass points of mass m be
joined by identical, elastic springs in such a way that their equilibrium positions
are x0

1 , x
0
2 , . . . , x

0
n, cf. Fig. 7.1. As shown in part (a) of that figure we displace

the mass points along the straight line joining them. The deviations from the equi-
librium positions are denoted by

ui(t) = xi(t)− x0
i , i = 1, 2, . . . , n .

The kinetic energy is given by

T =
n∑

i=1

1

2
mu̇2

i . (7.1)

The forces being harmonic the potential energy reads

U =
n−1∑

i=1

1

2
k (ui+1 − ui)

2 + 1

2
k
(
u2

1 + u2
n

)
. (7.2)

The last two terms stem from the spring connecting particle 1 with the wall and
from the one connecting particle n with the wall, at the other end of the chain. We
ascribe the coordinate x0

0 to the left suspension point and x0
n+1 to the right sus-

pension point of the chain and we require that their deviations and their velocities
be zero at all times, i.e. u0(t) = un+1(t) = 0. The potential energy can then be
written as

U = 1

2
k

n∑

i=0

(ui+1 − ui)
2 , (7.2′)

and the natural form of the Lagrangian function reads

L = T − U , (7.3)

with T as given by (7.1) and U by (7.2′). This Lagrangian function describes lon-
gitudinal motions of the mass points, i.e. motions along their line of connection.
We obtain the same form of the Lagrangian function if we let the mass points
move only transversely to that line, i.e. as shown in Fig. 7.1b. Let d be the dis-
tance between the equilibrium positions. The distance between neighboring mass
points can be approximated as follows:

√
d2 + (vi+1 − vi)

2 � d + 1

2

(vi+1 − vi)
2

d
,

provided the differences of transverse amplitudes remain small compared to d. The
force driving the mass points back is approximately transverse, its potential energy
being given by

U = S

2d

n∑

i=0

(vi+1 − vi)
2 , (7.4)
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Fig. 7.1. A linear chain of finitely
many mass points, which may os-
cillate (a) longitudinally or (b)
transversely. (c) shows a vibrating
string of the same length as the
chain, for comparison

where S is the string constant. As before, we must take into account the condition
v0(t) = vn+1(t) = 0 for the two points of suspension. In reality, the chain can
perform longitudinal and transverse motions simultaneously and the two types of
motion will be coupled. For the sake of simplicity, we restrict the discussion to
purely transverse or purely longitudinal motions and do not consider mixed modes.

In the first case we set ω0 = √
k/m and qi(t) = ui(t). In the second case we

set ω0 = √
S/md and qi(t) = vi(t). In either case the Lagrangian function reads

L = 1

2
m

n∑

j=0

{
q̇2
j − ω2

0

(
qj+1 − qj

)2} (7.5)

with the conditions q0 = q̇0 = 0, qn+1 = q̇n+1 = 0. The equations of motion,
which follow from (7.5), are

q̈j = ω2
0

(
qj+1 − qj

)− ω2
0

(
qj − qj−1

)
, j = 1, . . . , n . (7.6)

We solve these equations by means of the following substitution:

qj (t) = A sin

(
j
pπ

n+ 1

)
eiωpt . (7.7)

Obviously, we can let j run from 0 to n + 1 because q0 and qn+1 vanish for all
times. In (7.7) p is a positive integer. The quantities ωp are the eigenfrequencies of
the coupled system (7.6) and could be determined by means of the general method
developed in Practical Example 1 of Chap. 2. Here they may be obtained directly
by inserting the substitution (7.7) into the equation of motion (7.6). One obtains

ω2
p = 2ω2

0

(
1 − cos

(
pπ

n+ 1

))
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or

ωp = 2ω0 sin

(
pπ

2(n+ 1)

)
. (7.8)

Hence, the normal modes of the system are

q
(p)
j (t) = A(p) sin

(
j
pπ

n+ 1

)
sin

(
ωpt

)

with p = 1, . . . , n ; j = 0, 1, . . . , n+ 1 , (7.9)

and the most general solution reads

qj (t) =
n∑

p=1

A(p) sin

(
j
pπ

n+ 1

)
sin

(
ωpt + ϕp

)
,

where the amplitudes A(p) and the phases ϕp are arbitrary integration constants.
(As expected, the most general solution depends on 2n integration constants.)

Let us compare these solutions, for the example of transverse oscillations, to
the normal modes of a vibrating string spanned between the same end points as
the chain (see Fig. 7.1c). The length of the string is L = (n + 1)d. Its state of
vibration for the pth harmonic is described by

ϕ(x, t) = A(p) sin
(pπx

L

)
sin

(
ωpt

) ; ωp = pω̄0 . (7.10)

Here, ωp is the p-fold of a basic frequency ω̄0 that we may choose such that it
coincide with the frequency (7.8) of the chain for p = 1, viz.

ω̄0 = 2ω0 sin

(
π

2(n+ 1)

)
. (7.11)

The solution (7.10) is closely related to the solution (7.9); we shall work out the
exact relationship in the next subsection. Here we wish to discuss a direct com-
parison of (7.9) and (7.10).,

At a fixed time t the amplitude of the normal mode (7.9), with a given p and
with 1 � p � n, has exactly the same shape as the amplitude of the vibration
(7.10) at the points x = jL/(n+ 1) on the string. Figure 7.2 shows the example
p = 2 for n = 7 mass points. The full curve shows the first harmonic of the vi-
brating string; the points indicate the positions of the seven mass points according
to the normal oscillation (7.9) with p = 2. (Note, however, that the frequencies
ωp and pω̄0 are not the same.)

The discrete system (7.9) has n degrees of freedom which, clearly, are count-
able. The dynamical variables are the coordinates q(p)j (t) and the corresponding

momenta p(p)j (t) = mq̇
(p)
j (t). Time pays the role of a parameter.

In the continuous system (7.10) we are interested in the local amplitude ϕ(x, t),
for fixed time and as a function of the continuous variable x ∈ [0, L]. Thus, the
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Fig. 7.2. Transversely oscillating chain
of 7 mass points and the second har-
monic of the vibrating string, for com-
parison

function ϕ over time t and position x on the string takes over the role of a dy-
namical variable.

If we suppose that the continuous system was obtained from the discrete sys-
tem by letting the number of particles n become very large and their distance d

correspondingly small, we realize that the variable x of the former takes over the
role of the counting index j of the latter. This means, firstly, that the number of
degrees of freedom has become infinite and that the degrees of freedom are not
even countable. Secondly, the coordinate x, very much like the time t, has become
a parameter. For given t = t0 the function ϕ(x, t0) describes the shape of the vi-
bration in the space x ∈ [0, L]; conversely, for fixed x = x0, ϕ(x0, t) describes
the motion of the string at that point, as a function of time.

7.2 Transition to the Continuous System

The transition from the discrete chain of mass points to the continuous string can
be performed explicitly for the examples (7.2′) and (7.4) of longitudinal or trans-
verse vibrations. Taking the number of mass points n to be very large and their
distance d to be infinitesimally small (such that (n + 1)d = L stays finite), we
have qj (t) ≡ ϕ(x = jL/(n+ 1), t) and

qj+1 − qj � ∂ϕ

∂x

∣∣∣
x=jd+d/2

d , qj − qj−1 � ∂ϕ

∂x

∣∣∣
x=jd−d/2

d ,

and therefore

(
qj+1 − qj

)− (
qj − qj−1

) � ∂2ϕ

∂x2

∣∣∣
x=jdd

2 .

The equation of motion (7.6) becomes the differential equation

∂2ϕ

∂t2
� ω2

0d
2 ∂

2ϕ

∂x2 . (7.6′)

In the case of longitudinal vibrations, ω2
0d

2 = kd2/m. In the limit n→∞ the ra-
tio m/d becomes the mass density � per unit length, while the product of the string
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constant k and the distance d of neighboring points is replaced by the modulus of
elasticity η = kd . With the notation v2 = η/� equation (7.6′) reads

∂2ϕ(x, t)

∂t2
− v2 ∂

2ϕ(x, t)

∂x2 = 0 . (7.12)

This differential equation is the wave equation in one spatial dimension.
In the case of transverse motion one obtains the same differential equation,

with v2 = S/�. The quantity v has the dimension of velocity. It represents the
speed of propagation of longitudinal or transverse waves.

In a next step let us study the limit of the Lagrangian function obtained in
performing the transition to the continuum. The sum over the mass points is to be
replaced by the integral over x, the mass m by the product �d, and the quantity
mω2

0(qj+1 − qj )
2 by

�d

(
∂ϕ

∂x

)2

ω2
0d

2 = �d

(
∂ϕ

∂x

)2

v2 .

The infinitesimal distance d is nothing but the differential dx. Thus, we obtain

L =
∫ L

0
dx L , (7.13)

where

L = 1

2
�

[(
∂ϕ

∂t

)2

− v2
(
∂ϕ

∂x

)2
]

. (7.14)

the function L is called the Lagrangian density. In the general case, it depends on
the field ϕ(x, t), its derivatives with respect to space and time, and, possibly, also
explicitly on t and x, i.e. it has the form

L ≡ L
(
ϕ,

∂ϕ

∂x
,
∂ϕ

∂t
, x, t

)
. (7.15)

The analogy to the Lagrangian function of point mechanics is the following. The
dynamical variable q is replaced by the field ϕ, q̇ is replaced by the partial deriva-
tives ∂ϕ/∂x and ∂ϕ/∂t, and the time parameter is replaced by the space and time
coordinates x and t. The spatial coordinate now plays the same role as the time
coordinate, and therefore a certain symmetry between the two types of coordinates
is restored.

We now turn to the question whether the equation of motion (7.12) can be ob-
tained from the Lagrangian density (7.14) or, in the more general case, from (7.15).
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7.3 Hamilton’s Variational Principle for Continuous Systems

Let L(ϕ, ∂ϕ/∂x, ∂ϕ/∂t, x, t) be a Lagrangian density assumed to be at least C1

in the field ϕ and in its derivatives. Let L = ∫
dx L be the corresponding La-

grangian function. For the sake of simpliticy we consider the example of one spa-
tial dimension. The generalization to three dimensions is straightforward and can
be guessed easily at the end.

As ϕ is the dynamical variable, Hamilton’s variational principle now requires
that the functional

I [ϕ]def=
∫ t2

t1

dt L =
∫ t2

t1

dt
∫

dx L (7.16)

assumes an extreme value if ϕ is a physically possible solution. Like in the me-
chanics of mass points one embeds the solution with given values ϕ(x, t1) and
ϕ(x, t2) at the end points in a set of comparative fields. In other words, one varies
the field ϕ such that its variation vanishes at the times t1 and t2, and requires I [ϕ]
to be an extremum. Let δϕ denote the variation of the field, ϕ̇ the time derivative
and ϕ′ the space derivative of ϕ. Then

δI [ϕ] =
∫ t2

t1

dt
∫

dx

{
∂L
∂ϕ

δϕ + ∂L
∂ϕ̇

δϕ̇ + ∂L
∂ϕ′

δϕ′
}
.

Clearly, the variation of a derivative is equal to the derivative of the variation,

δϕ̇ = ∂

∂t
(δϕ) , δϕ′ = ∂

∂x
(δϕ) .

Furthermore, the field ϕ shall be such that it vanishes at the boundaries of the
integration over x. By partial integration of the second term with respect to t and
of the third term with respect to x, and noting that δϕ vanishes at the boundaries
of the integration, we obtain

δI [ϕ] =
∫ t2

t1

dt
∫

dx

{
∂L
∂ϕ

− ∂

∂t

(
∂L
∂ϕ̇

)
− ∂

∂x

(
∂L
∂ϕ′

)}
δϕ .

The condition δI [ϕ] = 0 is to hold for all admissible variations δϕ. Therefore,
the expression in the curly brackets of the integrand must vanish. This yields the
Euler–Lagrange equation for continuous systems (here in one space dimension),

∂L
∂ϕ

− ∂

∂t

∂L
∂(∂ϕ/∂t)

− ∂

∂x

∂L
∂(∂ϕ/∂x)

= 0 . (7.17)

We illustrate this equation by means of the example (7.14). In this example L does
not depend on ϕ but only on ϕ̇ and on ϕ′. L does not depend explicitly on x or
t, either. The variable x is confined to the interval [0, L]. Both ϕ and δϕ vanish
at the end points of this interval. We have
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∂L
∂(∂ϕ/∂t)

= �
∂ϕ

∂t
,

∂L
∂(∂ϕ/∂x)

= −v2�
∂ϕ

∂x
,

and the equation of motion (7.17) yields the wave equation (7.12), as expected,

∂2ϕ

∂t2
− v2 ∂

2ϕ

∂x2 = 0 .

Its general solutions are ϕ+(x, t) = f (x − vt), ϕ−(x, t) = f (x + vt), with f (z)

an arbitrary differentiable function of its argument z = x ∓ vt. The first of these
describes a wave propagating in the positive x direction, the second describes a
wave propagating in the negative x direction. As the wave equation is linear in
the field variable ϕ, any linear combination of two independent solutions is also
a solution. As an example we consider two harmonic solutions (i.e. two pure sine
waves) with wavelength λ and equal amplitude,

ϕ+ = A sin

(
2π

λ
(x − vt)

)
, ϕ− = A sin

(
2π

λ
(x + vt)

)
.

Their sum

ϕ = ϕ+ + ϕ− = 2A sin

(
2π

λ
x

)
cos

(
2π

λ
vt

)

describes a standing wave. It has precisely the form of the solution (7.10) if

2π

λ
x = pπx

L
or λ = 2L

p
, p = 1, 2, . . . .

The length L of the string must be an integer multiple of half the wavelength. The
frequency of the vibration with wavelength λ is given by

ωp = 2πv

λ
= pω̄0 , with ω̄0 = πv

L
. (7.18)

Thus, the transverse oscillations of our original chain of mass points are standing
waves. Note also that their frequency (7.11) takes on the correct continuum value
(7.18). Indeed, when the number n of mass points is very large, the sine in (7.11)
can be replaced by its argument,

ω̄0 = 2ω0 sin

(
π

2(n+ 1)

)

� 2ω0
π

2(n+ 1)
= π

L
ω0d = πv

L
,

where we have set L = (n+ 1)d and replaced ω0d by v.

We conclude this subsection with another example in one time and three space
coordinates. Let ϕ(x, t) be a real field and let the Lagrangian density be given by
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L = 1

2

{
1

v2

(
∂ϕ

∂t

)2

−
3∑

i=1

(
∂ϕ

∂xi

)2

− μ2ϕ2

}

, (7.19)

where μ has the physical dimension of an inverse length. The generalization of
(7.16) and (7.17) to three spatial dimensions is obvious. It yields the equation of
motion

∂L
∂ϕ

− ∂

∂t

∂L
∂(∂ϕ/∂t)

−
3∑

i=1

∂

∂xi

∂L
∂(∂ϕ/∂xi)

= 0 . (7.20)

In the example defined by (7.19) we obtain

1

v2

∂2ϕ

∂t2
−Δϕ + μ2ϕ = 0 , (7.21)

where Δ = ∑3
i=1 ∂

2/(∂xi)2 is the Laplacian operator.
For μ = 0 (7.21) is the wave equation in three space dimensions. For the case

μ 	= 0 and the velocity v equal to the speed of light c, the differential equation
(7.21) is called the Klein–Gordon equation.

7.4 Canonically Conjugate Momentum
and Hamiltonian Density

The continuous field variable ϕ whose equation of motion is derived from the La-
grangian density L is the analog of the coordinate variables qj of point mechanics.
The canonically conjugate momenta are defined in (2.39) to be the partial deriva-
tives of the Lagrangian function L with respect to q̇j . Following that analogy we
define

π(x)
def= ∂L
∂(∂ϕ/∂t)

. (7.22)

For example, with L as given in (7.14) we find π(x) = �ϕ̇(x). This is nothing but
the local density of momentum for transverse vibrations of the string (or, likewise,
longitudinal vibrations of a rubber band). Following the pattern of the definition
(2.38) one constructs the function

H̃ = ϕ̇
∂L

∂(∂ϕ/∂t)
− L

and, by means of Legendre transformation, the Hamiltonian density H. In the ex-
ample (7.14), for instance, one finds

H = 1

2�

[

π2(x)+ �2v2
(
∂ϕ

∂x

)2
]

.
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H describes the energy density of the vibrating system. Therefore, H = ∫ L
0 dxH

is the total energy of the system. For example, inserting the explicit solution (7.10)
into the expression for H, one easily finds that

H = 1

4
�A(p)2 ω̄ 2

0p
2 .

This is the total energy contained in the pth harmonic vibration.

7.5 Example: The Pendulum Chain

A generalization of the harmonic transverse oscillations of the n-point system of
Sect. 7.1 is provided by the chain of pendulums shown in Fig. 7.3. It consists of
n identical mathematical pendulums of length l and mass m which are suspended
along a straight line and which swing in planes perpendicular to that line. They
are coupled by means of harmonic forces in such a way that the torque acting be-
tween the ith and the (i+ 1)th pendulum is proportional to the difference of their
deviations from the vertical, i.e. is given by −k(ϕi+1−ϕi). The line of suspension
may be thought of as being realized by a torsion bar. As the chain is fixed at its
ends, we formally add two more, motionless pendulums at either end of the bar,
to which we ascribe the numbers 0 and (n + 1). This means that the angles ϕ0
and ϕn+1 are taken to be zero at all times. The kinetic and potential energies of
this system are given by (cf. Sect. 1.17.2)

Fig. 7.3. A chain of pendulums, which
are coupled by harmonic forces. While the
first three show small deviations from the
vertical, pendulum number n has made al-
most a complete turn
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T = 1

2
ml2

n+1∑

j=0

ϕ̇2
j ,

U = mgl

n+1∑

i=0

(1 − cosϕi)+ 1

2
k

n∑

i=0

(ϕi+1 − ϕi)
2 . (7.23)

From the Lagrangian function in its natural form, L = T − U, and the Euler–
Lagrange equations (2.28) we obtain the equations of motion

ϕ̈i − ω2
0

[
(ϕi+1 − ϕi)− (ϕi − ϕi−1)

]

+ ω2
1 sin ϕi = 0 , i = 1, . . . , n . (7.24)

Here we introduced the following constants

ω2
0 =

k

ml2
, ω2

1 =
g

l
.

With g = 0 (7.24) is identical to (7.6). For k = 0 we recover the equation of
motion of the plane pendulum that we studied in Sect. 1.17.2.

Let the horizontal distance of the pendulums be d so that the length of the chain
is L = (n+1)d. We consider the transition to the corresponding continuous system
by taking the limit n→∞, d → 0. The countable variables ϕ1(t), . . . , ϕn(t) are
replaced with the continuous variable ϕ(x, t), x taking over the role of the count-
ing index, which runs from 1 to n. While the discrete system had n degrees of
freedom, the continuous system has an uncountably infinite number of degrees of
freedom. Let � = m/d be the mass density. The constant in the harmonic force
is set equal to k = η/d, η being proportional to the modulus of torsion of the
bar. When d tends to zero, k must formally tend to infinity in such a way that the
product η = kd stays finite. At the same time the quantity

ω2
0d

2 = d

m

kd

l2
= η

�l2
≡ v2

stays finite in that limit. In the same way as in Sect. 7.2, (7.24) becomes the equa-
tion of motion

∂2ϕ(x, t)

∂t2
− v2 ∂

2ϕ(x, t)

∂x2 + ω2
1 sin ϕ(x, t) = 0 . (7.25)

This is the wave equation (7.12), supplemented by the nonlinear term ω2
1 sin ϕ.

Equation (7.25) is said to be the Sine–Gordon equation. In contrast to the wave
equation (7.12) or to the Klein–Gordon equation (7.21) it is nonlinear in the field
variable ϕ. It is the Euler–Lagrange equation (7.17) corresponding to the following
Lagrangian density:

L = 1

2
�l2

[(
∂ϕ

∂t

)2

− v2
(
∂ϕ

∂x

)2

− 2ω2
1(1 − cosϕ)

]

. (7.26)
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The latter may be obtained from (7.23) in the limit described above. Let us discuss
solutions of (7.25) for two special cases.

(i) The case of small deviations from the vertical. In its discrete form (7.24) this
coupled system of nonlinear equations of motions can only be solved in closed form
for the case of small deviations from the vertical. Taking sin ϕ1 � ϕ1, we see that
(7.24) becomes a linear system which may be solved along the lines of Practical
Example 1 of Chap. 2, or following Sect. 7.1 above. In analogy to (7.9) we set

ϕ
(p)
j (t) = A(p) sin

(
jpπ

n+ 1

)
sin

(
ωpt

)
,

j = 0, 1, . . . , n+ 1 (7.27)

and obtain ωp in terms of ω1 and ω0, as follows:

ω2
p = ω2

1 + 2ω2
0

(
1 − cos

(
pπ

n+ 1

))

= ω2
1 + 4ω2

0 sin2
(

pπ

2(n+ 1)

)
. (7.28)

The corresponding solution of the continuous system (7.25), assuming small de-
viations from the vertical, is obtained with sin ϕ(x, t) � ϕ(x, t) and by making
use of the results of Sect. 7.2. For large n (7.28) gives

ω2
p � ω2

1 + 4ω2
0

(
pπ

2(n+ 1)

)2

= ω2
1 + ω2

0d
2
(pπ
L

)2

= ω2
1 + v2

(pπ
L

)2
,

so that (7.27) yields the pth harmonic oscillation

ϕ(p)(x, t) = A(p) sin
(pπx

L

)
sin

(
ωpt

)

with

ω2
p = ω2

1 +
(pπ
L

)2
v2 = ω2

1 + p2ω̄ 2
0

and with ω̄0 as in (7.18).

(ii) Soliton solutions. For the continuous chain of infinite extension there are in-
teresting and simple exact solutions of the equation of motion (7.25). Introducing
the dimensionless variables

z
def= ω1

v
x , τ

def=ω1t ,

(7.25) takes the form

∂2ϕ(z, τ )

∂τ 2 − ∂2ϕ(z, t)

∂z2 + sin ϕ(z, τ ) = 0 . (7.25′)
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Furthermore, we take ϕ = 4 arctan f (z, τ ). With f = tan(ϕ/4) and using the
well-known trigonometric formulae

sin(2x) = 2tan x

1 + tan2x
, tan(2x) = 2tan x

1 − tan2x
,

we obtain

sin ϕ = 4f
(

1 − f 2
)
/
(

1 + f 2
)2

.

From (7.25′) follows a differential equation for f

(
1 + f 2

)(
∂2f

∂τ 2 − ∂2f

∂z2

)
+ f

[

1 − f 2 + 2

(
∂f

∂z

)2

− 2

(
∂f

∂τ

)2
]

= 0 .

Finally, we set y = (z + ατ)/
√

1 − α2, with α a real parameter in the interval
−1 < α < 1. If f is understood to be a function of y, the following differential
equation is obtained:

(
1 + f 2

) d2f

dy2 − f

[

1 − f 2 + 2

(
df

dy

)2
]

= 0 .

It is not difficult to guess two simple solutions of the latter. They are f± = e±y.
Thus, the original differential equation (7.25′) has the special solutions

ϕ±(z, τ ) = 4 arctan

(
exp

{
± z+ ατ√

1 − α2

})
. (7.29)

As an example choose the positive sign, take α = −0.5 and consider the time
τ = 0. For sufficiently large negative z the amplitude ϕ+ is practically zero. For
z = 0 it is ϕ+(0, 0) = π, while for sufficiently large positive z it is almost equal
to 2π. In a diagram with z as the abscissa and ϕ+(z, τ ) the ordinate, this tran-
sition of the field from the value 0 to the value 2π propagates, with increasing
time, in the positive z-direction and with the (dimensionless) velocity α. One may
visualize the continuous pendulum chain as an infinitely long rubber belt whose
width is l and which is suspended vertically. The process just described is then a
flip-over of a vertical strip of the belt from ϕ = 0 to ϕ = 2π which moves with
constant velocity along the rubber belt. This strange and yet simple motion is char-
acteristic of the nonlinear equation of motion (7.25). It is called a soliton solution.
Expressing the results in terms of the original, dimensionful variables x and t,

one sees that the soliton moves with velocity vα along the positive or the negative
x-direction.
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7.6 Comments and Outlook

So far we have studied continuous systems by means of examples taken from the
mechanics of finitely many, say n, point particles, by letting n go to infinity. This
limiting procedure is very useful for understanding the role of the fields ϕ(x, t)
as the new dynamical variables which replace the coordinate functions q(t) of the
mechanics of point particles. This does not mean, however, that every continuous
system can be obtained by or could be thought of as the limit f →∞ of a discrete
system with f degrees of freedom. On the contrary, the set of classical, continuous
systems is much richer than one might expect on the basis of the examples studied
above. Continuous systems form the subject of classical field theory, an important
branch of physics in its own right. Field theory, for which electrodynamics is a
prominent example, goes beyond the scope of this book and we can do no more
than add a few comments and an outlook here.

Let us suppose that the dynamics of N fields
{
ϕi(x)|i = 1, 2, . . . , N

}

can be described by means of a Lagrange density L in such a way that the equations
of motion that follow from it satisfy the postulate of special relativity (cf. Sect. 4.3),
i.e., that they are form invariant with respect to Lorentz transformations. Assume,
furthermore, that each of the fields ϕi(x) is invariant under Lorentz transformations
of space–time, viz.

ϕ′i (x′ = Λx) = ϕi(x) with Λ ∈ L
↑
+ .

Fields possessing this simple transformation behavior are called scalar fields. The
variational principle (7.16) is independent of the choice of coordinates (x, t). In-
deed, the hypersurface (x, t1 = const.) and (x, t2 = const.) can be deformed into
an arbitrary, smooth, three-dimensional, hypersurface Σ in space-time. In the ac-
tion integral (7.16) one then integrates over the volume enclosed by Σ and chooses
the variations δϕi of the fields such that they vanish on the hypersurface Σ . The
form of the equations of motion (7.17) is always the same. This has an impor-
tant consequence: Whenever the Lagrange density L is invariant under Lorentz
transformations, the equations of motion (7.17) which follow from (7.16) are form
invariant, i.e., they have the same form in every frame of reference.

The Lagrange density (7.14) may serve as an example for a Lorentz-invariant
theory, provided we replace the parameter v by the velocity of light c. The equation
of motion which follows from it

1

c2

∂2ϕ

∂t2
− ∂2ϕ

∂x2 = 0 (7.30)

is form invariant. (This equation is the source-free wave equation.) With ϕ a scalar
field it is even fully invariant itself. It is instructive to check this: With x′μ = Λμ

νx
ν

and xμ = gμνx
ν , and making use of the following simplified notation for the par-

tial derivatives
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∂μ := ∂

∂xμ
, ∂μ := ∂

∂xμ
(7.31)

one sees that (7.30) contains the expression ∂μ∂
μϕ. The transformation behavior

of ∂ν follows from the following calculation

∂ν ≡ ∂

∂xν
= ∂x′μ

∂xν

∂

∂x′μ
= Λμ

ν

∂

∂x′μ
≡ Λμ

ν∂
′
μ .

The transformation behavior of ∂ν being the inverse of the above, the differential
operator ∂ν∂ν is a Lorentz invariant operator. It is often called the Laplace operator
in four dimensions and is denoted by the symbol �,

� := ∂ν∂
ν = 1

c2

∂2

∂t2
−

3∑

i=1

∂2

(∂xi)2
≡ 1

c2

∂2

∂t2
−Δ , (7.32)

where Δ is the Laplace operator in three dimensions. Note that the derivative terms
in (7.14) as well as in (7.19) (taking v = c in either example) can be rewritten in
the form of an invariant scalar product (∂μϕ)(∂μϕ) of

∂μϕ =
(

1

c

∂ϕ

∂t
,∇ϕ

)
and ∂μϕ =

(
1

c

∂ϕ

∂t
,−∇ϕ

)
.

Thus, a Lorentz invariant theory of our fields ϕi could be designed by means
of a Lagrange density of the form

L
(
ϕi, ∂μϕ

i
)
= 1

2

{
N∑

i=1

(
∂μϕ

i
) (

∂μϕi
)

−
N∑

i=1

λi

[
ϕi(x)

]2 − U
(
ϕi(x)

)}

, (7.33)

with U(ϕi) a Lorentz scalar function of the fields. The first term on the right-
hand side of (7.33) is the analog of the kinetic energy in the mechanics of point
particles, the last term is the analog of the potential. The second term, which is
new, is called mass term because in the quantized version of the theory it does
indeed contain the rest masses of the particles which are described by the fields.
Of course, it could equally well be considered as part of the potential U .

In this discussion one recognizes, though in a sketchy manner only, an impor-
tant building principle for classical field theories: Very much like in mechanics of
point particles, symmetries and invariances can be read off, or can be built into,
the Lagrange density L. Above we considered the example of form invariance with
respect to Lorentz transformations. As the next step in a deeper and more detailed
analysis one would derive the theorem of Emmy Noether, in its form adapted to
field theory, which states that the energy, the momentum, or the angular momentum
are conserved quantities whenever L is invariant under translations in time, transla-
tions in space, or under rotations, respectively. A new feature is the appearence of
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a local energy density (cf. the example studied in Sect. 7.4), and, analogously, mo-
mentum and angular momentum densities. Noether’s theorem concerns local quan-
tities. If the energy density changes locally, i.e., if it changes in a finite domain of
space and time, then there must be a continuity equation which guarantees that the
total energy (i.e., the integral of the energy density over space) remains unchanged.
Analogous statements apply to momentum and angular momentum densities.

Finally, L may possess further, inner, symmetries which have to do with trans-
formations on the fields. In this case there are additional conservation laws, or
continuity equations, as shown by the following simple example.

Given two real scalar fields and a Lagrange density of the form (7.33) which
is such that λ1 = λ2 ≡ λ and where U depends on the sum of the squares of the
fields only,

L
(
ϕi, ∂μϕ

i
)
= 1

2

{
2∑

i=1

(
∂μϕ

i
) (

∂μϕi
)
− λ

2∑

i=1

[
ϕi(x)

]2

−U
(

2∑

i=1

(
ϕi(x)

)2
)}

. (7.34)

In addition to being invariant under Lorentz transformations in space and time L
is obviously invariant under orthogonal transformations of the fields as a whole,
of the kind

ϕ′1(x) = ϕ1(x) cosα − ϕ2(x) sin α ,

ϕ′2(x) = ϕ1(x) sin α + ϕ2(x) cosα (7.35)

with α ∈ [0, 2π ]. Equations (7.35) describe a formal rotation in the two-dimension-
al, inner, space which is spanned by the independent fields ϕ1 and ϕ2. In particular,
if we choose the angle α to be infinitesimal, α = ε, then (7.35) becomes

δϕ1 := ϕ′1 − ϕ1 = −εϕ2 , δϕ2 := ϕ′2 − ϕ2 = εϕ1 . (7.36)

As these changes in the fields are special cases of variations, one can calculate
the corresponding change of L. Let us write (7.36) as δϕi = ∑2

k=1 εikϕ
k with

ε11 = ε22 = 0 and −ε12 = ε21 = ε. Then we find

δL =
2∑

i=1

(
∂L
∂ϕi

δϕi + ∂L
∂(∂μϕi)

δ∂μϕ
i

)

= ∂μ

[ 2∑

i,k=1

∂L
∂(∂μϕi)

εikϕ
k

]
≡ ∂μj

μ(x) ,

where we have replaced ∂L/∂ϕi in the first term by

∂L
∂ϕi

= ∂μ
∂L

∂(∂μϕi)
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making use of the equations of motion. The right-hand side of the above equation
is nothing but a divergence in four dimensions, the quantity εjμ being defined by
the expression in square brackets. The left-hand side vanishes because the change
of the Lagrange density is zero, δL = 0. It is not difficult to show that jμ is a four-
vector with respect to Lorentz transformations. In the concrete example considered
here one calculates the explicit form of this vector from the Lagrange density (7.34)
and making use of the formulae (7.36). The result is

jμ(x) =
(
∂μϕ2(x)

)
ϕ1(x)−

(
∂μϕ1(x)

)
ϕ2(x) . (7.37)

The statement that the four-divergence of the quantity jμ vanishes, in fact, is a con-
tinuity equation. The time component j0 and the space components j have the same
physical dimension. Therefore, if j is a current density, that is, if it has dimension,
e.g., charge × velocity per unit of volume, then j0 is not yet a density, which, in our
example, should have dimension charge per unit volume. However, �(x, t) = j0/c

is a density with the correct physical dimension. Therefore, in a given frame of
reference, we set jμ = (c�, j) so that the continuity equation becomes

∂μj
μ = ∂�(x, t)

∂t
+ ∇ · j(x, t) = 0 . (7.38)

When the density � in a given, finite, space volume increases or decreases, this
change is compensated by a flow of charge into this volume, or out of this volume.
The total charge contained in the fields is given by the integral of the density �

over the entire space. Provided the fields and, therefore, also the current density
j vanish sufficiently fast at infinity, equation (7.38) implies that the total charge
Q := ∫

d3x�(x, t) is a constant of the motion,

d

dt
Q = d

dt

∫
d3x�(x, t) = −

∫
d3x∇ · j(x, t) = 0 . (7.39)

Indeed, the right-hand side of this equation vanishes because the volume integral
of the divergence over space equals the surface integral of the radial component
of j over the surface at infinity1.

In the example (7.34) invariance with respect to the transformations (7.35) leads
to the conservation law (7.38), or (7.39), with jμ(x) as given by the expression
(7.37). It is useful to replace the real fields ϕ1 and ϕ2 by a complex field and its
complex conjugate, through the definitions

φ(x) = 1√
2

(
ϕ1(x)+ iϕ2(x)

)
, φ∗(x) = 1√

2

(
ϕ1(x)− iϕ2(x)

)
.

1 One shows, furthermore, that the charge Q is a Lorentz invariant quantity, i.e., that its value
does not depend on the frame of reference in which it is calculated. This holds if and only if
∂μj

μ(x) = 0.
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The Lagrange density (7.34) then takes a simpler form, namely

L = (
∂μφ

∗) (∂μφ
)− λφ∗φ − U

(
φ∗φ

)
. (7.40)

Similarly, the transformation (7.35) simplifies to

φ′(x) = φ(x) eiα , φ′∗(x) = φ∗(x) e−iα , (7.41)

and the quantity (7.37) becomes

jμ(x) = −i
[
φ∗(x)∂μφ(x)− (

∂μφ∗(x)
)
φ(x)

]
. (7.42)

In quantum physics one learns that, indeed, this expression is a suitable candidate
for the description of the electric charge and current densities of a scalar particle.



Exercises

Chapter 1: Elementary Newtonian Mechanics

1.1 Under the assumption that the orbital angular momentum l = r × p of a
particle is conserved show that its motion takes place in a plane spanned by r0,
the initial position, and p0, the initial momentum. Which of the orbits of Fig. 1
are possible in this case? (O denotes the origin of the coordinate system.)

Fig. 1.

1.2 In the plane of motion of Exercise 1.1 introduce polar coordinates {r(t), ϕ(t)}.
Calculate the line element (ds)2 = (dx)2 + (dy)2, as well as v2 = ẋ2 + ẏ2 and
l2, in the polar coordinates. Express the kinetic energy in terms of ṙ and l2.

1.3 For the description of motions in R
3 one may use Cartesian coordinates r(t) =

{x(t), y(t), z(t)}, or spherical coordinates {r(t), θ(t), ϕ(t)}. Calculate the infinites-
imal line element (ds)2 = (dx)2+ (dy)2+ (dz)2 in spherical coordinates. Use this
result to derive the square of the velocity v2 = ẋ2 + ẏ2 + ż2 in these coordinates.

F. Scheck, Mechanics, Graduate Texts in Physics, 5th ed.,
DOI 10.1007/978-3-642-05370-2, © Springer-Verlag Berlin Heidelberg 2010
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Fig. 2.

1.4 Let êx , êy , êz be Cartesian unit vectors. They then fulfill ê2
x = ê2

y = ê2
z = 1,

êx · êy = êx · êz = êy · êz = 0, êz = êx × êy (plus cyclic permutations). Introduce
three, mutually orthogonal unit vectors êr , êϕ , êθ as indicated in Fig. 2, Deter-
mine êr and êϕ from the geometry of this figure. Confirm that êr · êϕ = 0. Assume
êθ = αêx + β êy + γ êz and determine the coefficients α, β, γ such that ê2

θ = 1,
êθ · êϕ = 0 = êθ · êr . Calculate v = ṙ = d(r êr )/dt in this basis as well as v2.

1.5 A particle is assumed to move according to r(t) = v0t with v0 = {0, v, 0},
with respect to the inertial system K. Sketch the same motion as seen from another
reference frame K′, which is rotated about the z-axis of K by an angle Φ,

x′ = x cosΦ + y sinΦ,

y′ = −x sinΦ + y cosΦ, z′ = z ,

for the cases Φ = ω and Φ = ωt , were ω is a constant.

1.6 A particle of mass m is subject to a central force F = F(r)r/r . Show that
the angular momentum l = mr× ṙ is conserved (i.e. its magnitude and direction)
and that the orbit lies in a plane perpendicular to l.

1.7 (i) In an N -particle system that is subject to internal forces only, the potentials
Vik depend only on the vector differences rik = ri − rk , but not on the individual
vectors ri . Which quantities are conserved in this system?
(ii) If Vik depends only on the modulus |rik| the force acts along the straight line
joining i to k. There is one more integral of the motion.

1.8 Sketch the one-dimensional potential

U(q) = −5qe−q + q−4 + 2/q for q ≥ 0

and the corresponding phase portraits for a particle of mass m = 1 as a function
of energy and initial position q0. In particular, find and discuss the two points of
equilibrium. Why are the phase portraits symmetric with respect to the abscissa?
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1.9 Study two identical pendula of length l and mass m, coupled by a harmonic
spring, the spring being inactive when both pendulums are at rest. For small de-
viations from the vertical the energy reads

E = 1

2m
(x2

2 + x2
4 )+

1

2
mω2

0(x
2
1 + x2

3 )+
1

2
mω2

1(x1 − x3)
2

with x2 = mẋ1, x4 = mẋ3. Identify the individual terms of this equation. Derive
from it the equations of motion in phase space,

dx

dt
= Mx .

The transformation

x → u = Ax with A = 1√
2

(
1l 1l
1l −1l

)
and

1l ≡
(

1 0
0 1

)

decouples these equations. Write the equations obtained in this way in dimension-
less form and solve them.

1.10 The one-dimensional harmonic oscillator satisfies the differential equation

mẍ(t) = −λx(t) , (1.1)

with m the inertial mass, λ a positive constant, and x(t) the deviation from equi-
librium. Equivalently, (1.1) can be written as

ẍ + ω2x = 0, ω2 def= λ/m . (1.2)

Solve the differential equation (1.2) by means of x(t) = a cos(μt)+ b sin(μt) for
the initial condition

x(0) = x0 and p(0) = mẋ(0) = p0 . (1.3)

Let x(t) be the abscissa and p(t) the ordinate of a Cartesian coordinate sys-
tem. Draw the graph of the solution with ω = 0.8 that goes through the point
(x0 = 1, p0 = 0).

1.11 Adding a weak friction force to the system of Exercise 1.10 yields the equa-
tion of motion

ẍ + κẋ + ω2x = 0 .

“Weak” means that κ < 2ω. Solve the differential equation by means of

x(t) = eat [x0 cos ω̃t + (p0/mω̃) sin ω̃t] .
Draw the graph (x(t), p(t)) of the solution with ω = 0.8 which goes through
(x0 = 1, p0 = 0).
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Fig. 3.

1.12 A mass point of mass m moves in the piecewise constant potential (see Fig. 3)

U =
{
U1 f or x < 0

U2 f orx > 0.

In crossing from the domain x < 0, where its velocity was v1, to the domain x > 0,
it changes its velocity (modulus and direction). Express U2 in terms of the quanti-
ties U1, v1, α1, and α2. What is the relation of α1 to α2 when (i) U1 < U2 and (ii)
U1 > U2 ? Work out the relationship to the law of refraction of geometrical optics.

Hint: Make use of the principle of energy conservation and show that one com-
ponent of the momentum remains unchanged in crossing from x < 0 to x > 0.

Fig. 4.

1.13 In a system of three mass points m1, m2, m3 let S12 be the center-of-mass of
1 and 2 and S the center-of-mass of the whole system. Express the coordinates r1,
r2, r3 in terms of rs , sa , and sb, as defined in Fig. 4. Calculate the total kinetic en-
ergy in terms of the new coordinates and interpret the result. Write the total angular
momentum in terms of the new coordinates and show that

∑
i li = ls + la + lb,

where ls is the angular momentum of the center-of-mass and la and lb are rela-
tive angular momenta. By considering a Galilei transformation r′ = r + ωt + a,
t ′ = t+s show that ls depends on the choice of the origin, while la and lb do not.
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1.14 Geometric similarity. Let the potential U(r) be a homogeneous function of
degree α in the coordinates (x, y, z), i.e. U(λr) = λαU(r).

(i) Show by making the replacements r → λr and t → μt , and choosing
μ = λ1−α/2, that the energy is modified by a factor λα and that the equation
of motion remains unchanged.

The consequence is that the equation of motion admits solutions that are ge-
ometrically similar, i.e. the time differences (Δt)a and (Δt)b of points that cor-
respond to each other on geometrically similar orbits (a) and (b) and the corre-
sponding linear dimensions La and Lb are related by

(Δt)b

(Δt)a
=

(
Lb

La

)1−α/2

.

(ii) What are the consequences of this relationship for

– the period of harmonic oscillation?
– the relation between time and height of free fall in the neighborhood of the

earth’s surface?
– the relation between the periods and the semimajor axes of planetary ellipses?

(iii) What is the relation of the energies of two geometrically similar orbits for

– the harmonic oscillation?
– the Kepler problem?

1.15 The Kepler problem. (i) Show that the differential equation for Φ(r), in the
case of finite orbits, has the following form:

dΦ

dr
= 1

r

√
rPrA

(r − rP)(rA − r)
, (1.4)

where rP and rA denote the perihelion and the aphelion, respectively. Calculate rP
and rA and integrate (1.4) with the boundary condition Φ(rP) = 0.

(ii) Change the potential to U(r) = (−A/r) + (B/r2) with |B| � l2/2μ. De-
termine the new perihelion r ′P and the new aphelion r ′A and write the differential
equation for Φ(r) in a form analogous to (1.4). Integrate this equation as in (i)
and determine two successive perihelion positions for B > 0 and for B < 0.

Hint:

d

dx
arccos

(α
x
+ β

)
= α

x

1
√
x2(1 − β2)− 2αβx − α2

.

1.16 The most general solution of the Kepler problem reads, in terms of polar
coordinates r and Φ,
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r(Φ) = p

1 + ε cos (φ − φ0)
.

The parameters are given by

p = l2

Aμ
, (A = Gm1m2) ,

ε =
√

1 + 2El2

μA2 ,

(
μ = m1m2

m1 +m2

)
.

What values of the energy are possible if the angular momentum is given? Calcu-
late the semimajor axis of the earth’s orbit under the assumption mSun � mEarth;

G = 6.672 × 10−11 m3 kg−1 s−2 ,

mS = 1.989 × 1030 kg ,

mE = 5.97 × 1024 kg .

Calculate the semimajor axis of the ellipse along which the sun moves about the
center-of-mass of the sun and the earth and compare the result to the solar radius
(6.96 × 108 m).

1.17 Determine the interaction of two electric dipoles p1 and p2 (example for
noncentral potential force).

Hints: Calculate the potential of a single dipole p1, making use of the following
approximation. The dipole consists of two charges ±e1 at a distance d1. Let e1
tend to infinity and |d1| to zero, in such a way that their product p1 = d1e1 stays
constant. Then calculate the potential energy of a finite dipole p2 in the field of
the first and perform the same limit e2 →∞, |d2| → 0, with p2 = d2e2 constant,
as above. Calculate the forces that act on the two dipoles.

Answer:

W(1, 2) = (p1 · p2) /r
3 − 3 (p1 · r) (p2 · r) /r5 ,

F = −∇1W = [
3(p1 · p2)/r

5

−15(p1 · r)(p2 · r)/r7]r

+3
[
p1(p2 · r)+ p2(p1 · r)

]
/r5 = −F12 .

1.18 Let the motion of a point mass be governed by the law

v̇ = v× a , a = const . (1.5)

Show that ṙ · a = v(0) · a holds for all t and reduce (1.5) to an inhomogeneous
differential equation of the form r̈ + ω2r = f (t). Solve this equation by means
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of the substitution rinhom(t) = ct + d. Express the integration constants in terms
of the initial values r(0) and v(0). Describe the curve r(t) = rhom(t)+ rinhom(t).

Hint:

a1 × (a2 × a3) = a2(a1 · a3)− a3(a1 · a2) .

1.19 An iron ball falls vertically onto a horizontal plane from which it is reflected.
At every bounce it loses the nth fraction of its kinetic energy. Discuss the orbit
x = x(t) of the bouncing ball and derive the relation between xmax and tmax.

Hint: Study the orbit between two successive bounces and sum over previous times.

1.20 Consider the following transformations of the coordinate system:

{t, r}→
E
{t, r}, {t, r}→

P
{t,−r}, {t, r}→

T
{−t, r},

as well as the transformation P·T that is generated by performing first T and then P.
Write these transformations in the form of matrices that act on the four-component
vector

(
t
r

)
. Show that {E,P,T,PT} form a group.

1.21 Let the potential U(r) of a two-body system be C2 (twice continuously
differentiable). For fixed relative angular momentum, under which additional con-
dition on U(r) are there circular orbits? Let E0 be the energy of such an orbit.
Discuss the motion for E = E0 + ε for small positive ε. Study the special cases

U(r) = rn and U(r) = λ/r .

1.22 Following the methods explained in Sect. 1.26 show the following.

(i) In the northern hemisphere a falling object experiences a southward deviation
of second order (in addition to the first-order eastward deviation).

(ii) A stone thrown vertically upward falls down west of its point of departure, the
deviation being four times the eastward deviation of the falling stone.

1.23 Let a two-body system be subject to the potential

U(r) = − α

r2

in the relative coordinate r , with positive α. Calculate the scattering orbits r(Φ).
For fixed angular momentum what are the values of α for which the particle makes
one (two) revolutions about the center of force? Follow and discuss an orbit that
collapses to r = 0.

1.24 A pointlike comet of mass m moves in the gravitational field of a sun with
mass M and radius R. What is the total cross section for the comet to crash on
the sun?
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1.25 Solve the equations of motion for the example of Sect. 1.21.2 (Lorentz force
with constant fields) for the case

B = B êz , E = Eêz .

1.26 Kepler problem and Hodograph: Let px and py be the components of the
momentum in the plane of motion of the Kepler problem. Show: In momentum
space, spanned by (px, py), all bound orbits are circles. Give the position and the
radius of these circles. The curve described by the tip of the velocity, or momen-
tum, vector is called hodograph.

Chapter 2: The Principles of Canonical Mechanics

2.1 The energy E(q, p) is an integral of a finite, one-dimensional, periodic mo-
tion. Why is the portrait symmetric with respect to the q-axis? The surface enclosed
by the periodic orbit is

F(E) =
∮
p dq = 2

∫ qmax

qmin

p dq .

Show that the change of F(E) with E equals the period T of the orbit, T =
dF(E)/dE, Calculate F and T for the example

E(q, p) = p2/2m+mω2q2/2 .

2.2 A weight glides without friction along a plane inclined by the angle α with
respect to the horizontal. Study this system by means of d’Alembert’s principle.

2.3 A ball rolls without friction on the inside of a circular annulus. The annulus is
put upright in the earth’s gravitational field. Use d’Alembert’s principle to derive
the equation of motion and discuss its solutions.

2.4 A mass point m that can only move along a straight line is tied to the point
A by means of a spring. The distance of A to the straight line is l (cf. Fig. 5).
Calculate (approximately) the frequency of oscillation of the mass point.

2.5 Two equal masses m are connected by means of a (massless) spring with
spring constant x. They move without friction along a rail, their distance being
l when the spring is inactive. Calculate the deviations x1(t) and x2(t) from the
equilibrium positions, for the following initial conditions:

x1(0) = 0 , ẋ1(0) = v0,

x2(0) = l , ẋ2(0) = 0.

2.6 Given a function F(x1, . . . , xf ) that is homogeneous and of degree N in its
f variables, show that
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Fig. 5.

f∑

i=1

∂F

∂xi
xi = NF .

2.7 If in the integral

I [y] =
∫ x2

x1

dx f (y, y′)

f does not depend explicitly on x, show that

y′ ∂f
∂y′

− f (y, y′) = const .

Apply this result to L(q, q) = T − U and identify the constant. T is assumed to
be a homogeneous quadratic form in q̇.

2.8 Solve the following two problems (whose solutions are well known) by means
of variational calculus:

(i) the shortest connection between two points (x1, y1) and (x2, y2) in the Euclidean
plane;

(ii) the shape of a homogeneous, fine-grained chain suspended at its end points
(x1, y1) and (x2, y2) in the gravitational field.

Hints: Make use of the result of Exercise 2.7. The equilibrium shape of the chain is
determined by the lowest position of its center of mass. The line element is given by

ds =
√
(dx)2 + (dy)2 =

√
1 + y′2 dx .

2.9 Two coupled pendula can be described by means of the Lagrangian function

L = 1
2m

(
ẋ2

1 + ẋ2
2

)− 1
2mω

2
0

(
x2

1 + x2
2

)− 1
4m

(
ω2

1 − ω2
0

)
(x1 − x2)

2.

(i) Show that the Lagrangian function

L′ = 1
2m(ẋ1 − iω0x1)

2 + 1
2m(ẋ2 − iω0x2)

2

− 1
4m

(
ω2

1 − ω2
0

)
(x1 − x2)

2
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leads to the same equations of motion. Why is this so?

(ii) Show that transforming to the eigenmodes of the system leaves the Lagrange
equations form invariant.

2.10 The force acting on a body in three-dimensional space is assumed to be
axially symmetric with respect to the z-axis. Show that

(i) its potential has the form U = U(r, z), where {r, ϕ, z} are cylindrical coordi-
nates,

x = r cosϕ , y = r sin ϕ , z = z ;
(ii) the force always lies in a plane containing the z-axis.

2.11 With respect to an inertial system K0 the Lagrangian function of a particle is

L0 = 1
2mẋ2

0 − U(x0) .

The frame of reference K has the same origin as K0 but rotates about the latter
with constant angular velocity ω. Show that the Lagrangian with respect to K reads

L = mẋ2

2
+mẋ · (ω × x)+ m

2
(ω × x)2 − U(x) .

Derive the equations of motion of Sect. 1.25 from this.

2.12 A planar pendulum is suspended such that its point of suspension glides with-
out friction along a horizontal axis. Construct the kinetic and potential energies
and a Lagrangian function for this problem.

2.13 A pearl of mass m glides (without friction) along a planar curve s = s(Φ)

put up vertically. s is the length of arc and Φ the angle between the tangent to
the curve and the horizontal line (see Fig. 6).

Fig. 6.

(i) Derive the equation for s(t) for harmonic oscillations.

(ii) What is the relation between s(t) and Φ(t) ? Discuss this relation and the mo-
tion that follows from it. What happens in the limit where s can reach its maximal
amplitude?

(iii) From the explicit solution calculate the force of constraint and the effective
force that acts on the pearl.
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2.14 Geometrical interpretation of the Legendre transformation. Given f (x) with
f ′′(x) > 0. Construct (Lf )(x) = xf ′(x) − f (x) = xz − f (x) ≡ F(x, z), where
z = f ′(x). The inverse x = x(z) of the latter exists and so does the Legendre
transform of f (x), which is zx(z)− f (x(z)) = Lf (z) = Φ(z).

(i) Comparing the graphs of the functions y = f (x) and y = zx (for fixed z) one
sees with

∂F (x, z)

∂x
= 0

that x = x(z) is the point where the vertical distance between the two graphs is
maximal (see Fig. 7).

Fig. 7.

(ii) Take the Legendre transform of Φ(z), i.e. (LΦ)(z) = zΦ ′(z) − Φ(z) =
zx − Φ(z) ≡ G(z, x) with Φ ′(z) = x. Identify the straight line y = G(z, x)

for fixed z and with x = x(z) and show that one has G(z, x) = f (x). Sketch the
picture that one obtains if one keeps x = x0 fixed and varies z.

2.15 (i) Let

L(q1, q2, q̇1, q̇2, t) = T − U with

T =
2∑

i,k=1

cikq̇i q̇k +
2∑

k=1

bkq̇k + a .

Under what condition can one construct H(q
˜
, p
˜
, t) and what are p1, p2, and H ?

Confirm that the Legendre transform of H is again L and that

det

(
∂2L

∂q̇k∂q̇i

)
det

(
∂2H

∂pn∂pm

)
= 1 .

Hint: Take d11 = 2c11, d12 = d21 = c12 + c21, d22 = 2c22, πi = pi − bi .

(ii) Assume now that L = L(x1 ≡ q̇1, x2 ≡ q̇2, q1, q2, t) ≡ L(x1, x2,u) with

u
def= (q1, q2, t) to be an arbitrary Lagrangian function. We expect the momenta

pi = pi(x1, x2,u) derived from L to be independent functions of x1 and x2, i.e.
that there is no function F(p1(x1, x2,u), p2(x1, x2,u)) that vanishes identically.
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Show that, if p1 and p2 were dependent, the determinant of the second derivatives
of L with respect to the xi would vanish.

Hint: Consider dF/dx1 and dF/dx2.

2.16 A particle of mass m is described by the Lagrangian function

L = 1

2
m(ẋ2 + ẏ2 + ż2)+ ω

2
l3 ,

where l3 is the z-component of angular momentum and ω is a constant frequency.
Find the equations of motion, write them in terms of the complex variable x + iy
and of z, and solve them. Construct the Hamiltonian function and find the kine-
matical and canonical momenta. Show that the particle has only kinetic energy
and that the latter is conserved.

2.17 Invariance under time translations and Noether’s theorem. The theorem of
E. Noether can be applied to the case of translations in time by means of the fol-
lowing trick. Make t a coordinate-like variable by parametrizing both q and t by
q = q(τ), t = t (τ ) and by defining the following Lagrangian function:

L̄

(
q, t,

dq

dτ
,

dt

dτ

)
def= L

(
q,

1

dt/dτ

dq

dτ
, t

)
dt

dτ
.

(i) Show that Hamilton’s variational principle applied to L̄ yields the same equa-
tions of motion as for L.

(ii) Assume L to be invariant under time translations

hs(q, t) = (q, t + s) . (2.1)

Apply Noether’s theorem to L̄ and find the constant of the motion corresponding
to the invariance (2.1).

2.18 A mass point is scattered elastically on a sphere with center P and radius
R (see Fig. 8). Show that the physically possible orbit has maximal length.

Hints: Show first that the angles α and β must be equal and construct the action
integral. Show that any other path AB ′Ω would be shorter than for those points

Fig. 8.
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where the sum of the distances to A and Ω is constant and equal to the length of
the physical orbit.

2.19 (i) Show that canonical transformations leave the physical dimension of the
product piqi unchanged, i.e. [PiQi] = [piqi]. Let Φ be the generating function
for a canonical transformation. Show that

[piqi] = [PkQk] = [Φ] = [H · t] ,
where H is the Hamiltonian function and t the time.

(ii) In the Hamiltonian function H = p2/2m+mω2q2/2 of the harmonic oscillator
introduce the variables

x1
def= ω

√
mq , x2

def= p/
√
m, τ

def= ωt ,

thus obtaining H = (x2
1 + x2

2 )/2. What is the generating function Φ̂(x1, y1) for
the canonical transformation x →̂

Φ

y that corresponds to the function Φ(q,Q) =
(mωq2/2) cotQ ? Calculate the matrix Mik = ∂xi/∂yk and confirm det M = 1
and MTJM = J.

2.20 The group Sp2f is particularly simple for f = 1, i.e. in two dimensions.

(i) Show that every matrix

M =
(
a11 a12
a21 a22

)

is symplectic if and only if a11a22 − a12a21 = 1.

(ii) Therefore, the orthogonal matrices

O =
(

cosα sin α
− sin α cosα

)

and the symmetric matrices

S =
(
x y

y z

)
with xz− y2 = 1

belong to Sp2f . Show that every M ∈ Sp2f can be written as a product

M = S ·O
of a symmetric matrix S with determinant 1 and an orthogonal matrix O.

2.21 (i) Evaluate the following Poisson brackets for a single particle:

{li , rk} , {li , pk} , {li , r} , {li ,p2} .
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(ii) If the Hamiltonian function in its natural form H = T +U is invariant under
rotations, what quantities can U depend on?

2.22 Making use of the Poisson brackets show that for the system H = T +U(r)
with U(r) = γ /r and γ a constant, the vector

A = p× l+ xmγ/r

is an integral of the motion (Lenz’ vector or Hermann–Bernoulli–Laplace vector).

2.23 The motion of a particle of mass m is described by

H = 1

2m

(
p2

1 + p2
2

)
+mαq1 , α = const .

Construct the solution of the equations of motion for the initial conditions

q1(0) = x0 , q2(0) = y0 , p1(0) = px , p2(0) = py ,

making use of Poisson brackets.

2.24 For a three-body system with masses mi , coordinates ri , and momenta pi
introduce the following coordinates (Jacobian coordinates2):

ϕ1
def= r2 − r1 (relative coordinate of particles 1 and 2) ,

ϕ2
def= r3 − m1r1 +m2r2

m1 +m2
(relative coordinate of particle 3

and the center of mass of the first two) ,

ϕ3
def= m1r1 +m2r2 +m3r3

m1 +m2 +m3
(center of mass of the three particles) ,

π1
def= m1p2 −m2p1

m1 +m2
,

p2
def= (m1 +m2)p3 −m3(p1 + p2)

m1 +m2 +m3
,

π3
def= p1 + p2 + p3 .

(i) What is the physical interpretation of the momenta π1, π2, π3 ?

(ii) How would you define such coordinates for four or more particles?

(iii) Show in at least two (equivalent) ways that the transformation

{r1, r2, r3,p1,p2,p3} → {ϕ1,ϕ2,ϕ3,π1,π2,π3}
is canonical.

2.25 Given a Lagrangian function L for which ∂L/∂t = 0, study only those varia-
tions of the orbits qk(t, α) which belong to a fixed energy E =∑

k q̇k(∂L/∂q̇k)−L
2 Jacobi, C.G.J., Sur l’élimination des noeuds dans le problème des trois corps, Crelles Journal

für reine und angewandte Mathematik, XXVI (1843) 115
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and whose end points are kept fixed irrespective of the time (t2−t1) that the system
needs to move from the initial to the end point, i.e.

qk(t, α) with

{
qk(t1(α), α) = q

(1)
k

qk(t2(α), α) = q
(2)
k

for all α . (2.1)

Thus, initial and final times are also varied, ti = ti (α).

(i) Calculate the variation of I (α),

δI = dI (α)

dα

∣
∣
∣
∣
α=0

dα =
∫ t2(α)

t1(α)

L(qk(t, α), q̇k(t, α)) dt . (2.2)

(ii) Show that the variational principle

δK = 0 with K
def=

∫ t2

t1

(L+ E) dt

together with the prescriptions (2.1) is equivalent to the Lagrange equations (the
Principle of Euler and Maupertuis).

2.26 The kinetic energy

T =
f∑

i,k=1

qikq̇i q̇k = 1

2
(L+ E)

is assumed to be a positive symmetric quadratic form in the q̇i . The orbit in the
space spanned by the qk is described by the length of arc s such that T = (ds/dt)2.
With E = T + U the integral K of Exercise 2.25 can be replaced with an inte-
gral over s. Show that the integral principle obtained in this way is equivalent to
Fermat’s principle of geometric optics,

δ

∫ x2

x1

n(x, ν) ds = 0

(n: index of refraction, ν: frequency).

2.27 Let H = p2/2+U(q), where the potential is such that it has a local minimum
at q0. Thus, in an interval q1 < q0 < q2 the potential forms a potential well. Sketch
a potential with this property and show that there is an interval U(q0) < E ≤ Emax
where there are periodic orbits. Consider the characteristic equation of Hamilton
and Jacobi (2.154). If S(q,E) is a complete integral then t − t0 = ∂S/∂E. Take
the integral

I (E)
def= 1

2π

∮

ΓE

p dq

over the periodic orbit ΓE with energy E (this is the surface enclosed by ΓE).
Write I (E) as an integral over time and show that

dI

dE
= T (E)

2π
.
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2.28 In Exercise 2.27 replace S(q,E) by S̄(q, I ) with I = I (E) as defined there.
S̄ generates the canonical transformation (q, p,H) → (θ, I, H̄ = E(Ω)). What
are the canonical equations in the new variables? Can they be integrated?

2.29 Let H 0 = p2/2+q2/2. Calculate the integral I (E) defined in Exercise 2.27.
Solve the characteristic equation of Hamilton and Jacobi (2.154) and write the so-
lution as S̄(q, I ). Then θ = ∂S̄/∂I . Show that (q, p) and (θ, I ) are related by the
canonical transformation (2.95) of Sect. 2.24 (ii).

2.30 We assume that the Lagrangian of a mechanical system with one degree of
freedom does not depend explicitly on time. In Hamilton’s variational principle we
make a smooth change of the end points qa and qb, as well as of the running time
t = t2−t1, in the sense that the solution ϕ(t) for the values (qa, qb, t) and the solu-
tion φ(s, t) which belongs to the values (q ′a, q ′b, t ′) are related in a smooth man-
ner: ϕ(t) → φ(s, t) such that φ(s, t) is differentiable in s and φ(s = 0, t) = ϕ(t).

Show that the corresponding change of the action integral I0 into which the
physical solution is inserted (this function is called Hamilton’s principal function),
is given by the following expression

δI0 = −E δt + pb δqb − pa δqa .

2.31 The vector A that is introduced in Exercise 2.22 lies in the plane perpen-
dicular to . Calculate |A| as a function of the energy. When does this vanish? Let
φ denote the angle between x (orbit vector) and A. Calculate x ·A and show that
this yields the orbit’s equation in the form r = r(φ). Determine the modulus and
the direction of A, calculate the cross product ×A and from there the quantity

(
p− 1

�2 ×A

)2

.

This calculation yields an alternative solution of Exercise 1.26.

Chapter 3: The Mechanics of Rigid Bodies

3.1 Let two systems of reference K and K̄ be fixed in the center of mass of a
rigid body, the axes of the former being fixed in space, those of the latter fixed in
the body. If J is the inertia tensor with respect to K and J̄ the one as calculated
in K̄, show that (i) J and J̄ have the same eigenvalues. (Use the characteristic
polynomial.)

(ii) K̄ is now assumed to be a system of principal axes of inertia. What is the form
of J̄? Calculate J for the case of rotation of the body about the 3-axis.

3.2 Two particles with masses m1 and m2 are held by a rigid but massless straight
connection with length l. What are the principal axes and what are the moments
of inertia?



Chapter 3: The Mechanics of Rigid Bodies 455

3.3 The inertia tensor of a rigid body is found to have the form

Iik =
⎛

⎝
I11 I12 0
I21 I22 0
0 0 I33

⎞

⎠ , I21 = I12 .

Determine the three moments of inertia and consider the following special cases.

(i) I11 = I22 = A, I12 = B. Can I33 be arbitrary?

Fig. 9.

(ii) I11 = A, I22 = 4A, I12 = 2A. What can you say about I33? What is the shape
of the body in this example?

3.4 Construct the Lagrangian function for general, force-free motion of a conical
top (height h, mass M , radius of base circle R). What are the equations of motion?
Are there integrals of the motion and what is their physical interpretation?

3.5 Calculate the moments of inertia of a torus filled homogeneously with mass.
Its main radius is R; the radius of its section is r .

3.6 Calculate the moment of inertia I3 for two arrangements of four balls, two
heavy (radius R, mass M) and two light (radius r , mass m) with homogeneous
mass density, as shown in Fig. 9. As a model of a dancer’s pirouette compare the
angular velocity for the two arrangements, with L3 fixed and equal in the two cases.

3.7 (i) Let the boundary of a homogeneous body be defined by the formula (in
spherical coordinates)

R(θ) = R0(1 + α cos θ) ,

i.e. �(r, θ,Φ) = �0 = const for r ≤ R(θ) and all θ and Φ, and �(r, θ,Φ) = 0
for r > R(θ). If M is the total mass, calculate �0 and the moments of inertia.

(ii) Perform the same calculation for a homogeneous body whose shape is given by
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R(θ) = R0(1 + βY20(θ))

with Y20(θ) = √
5/16π(3 cos2 θ − 1) being the spherical harmonic with l = 2,

m = 0. In both examples sketch the body.

Fig. 10.

3.8 Determine the moments of inertia of a rigid body whose inertia tensor with
respect to a system of reference K1 (fixed in the body) is given by

J =

⎛

⎜⎜⎜⎜⎜
⎝

9

8

1

4

−√3

8
1

4

3

2

−√3

4
−√3

8

−√3

4

11

8

⎞

⎟⎟⎟⎟⎟
⎠
.

Can one indicate the relative position of the principal inertia system K0 relative
to K1 ?

3.9 A ball with radius a is filled homogeneously with mass such that the density
is �0. The total mass is M .

(i) Write the mass density � with respect to a body-fixed system centered in
the center of mass and express �0 in terms of M . Let the ball rotate about a point
P on its surface (see Fig. 10).

(ii) What is the same density function �(r, t) as seen from a space-fixed system
centered on P ?

(iii) Give the inertia tensor in the body-fixed system of (i). What is the moment
of inertia for rotation about a tangent to the ball in P ?

Hint: Use the step function Θ(x) = 1 for x ≥ 0, Θ(x) = 0 for x < 0.

3.10 A homogeneous circular cylinder with length h, radius r , and mass m rolls
along an inclined plane in the earth’s gravitational field.

(i) Construct the full kinetic energy of the cylinder and find the moment of inertia
relevant to the described motion.

(ii) Construct the Lagrangian function and solve the equation of motion.
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3.11 Manifold of motions of the rigid body. A rotation R ∈ SO(3) can be deter-
mined by a unit vector ϕ̂ (the direction about which the rotation takes place) and
an angle ϕ.

(i) Why is the interval 0 ≤ ϕ ≤ π sufficient for describing every rotation?

(ii) Show that the parameter space (ϕ̂, ϕ) fills the interior of a sphere with radius
π in R

3. This ball is denoted by D3. Confirm that antipodal points on the ball’s
surface represent the same rotation.

(iii) There are two types of closed orbit in D3, namely those which can be con-
tracted to a point and those which connect two antipodal points. Show by means
of a sketch that every closed curve can be reduced by continuous deformation to
either the former or the latter type.

3.12 Calculate the Poisson brackets (3.92–95).

Chapter 4: Relativistic Mechanics

4.1 (i) A neutral π meson (π0) has constant velocity v0 along the x3-direction.
Write its energy-momentum vector. Construct the special Lorentz transformation
that leads to the particle’s rest system.

(ii) The particle decays isotropically into two photons, i.e. with respect to its rest
system the two photons are emitted in all directions with equal probability. Study
their decay distribution in the laboratory system.

4.2 The decay π → μ+ν (cf. Example (i) of Sect. 4.9.2) is isotropic in the pion’s
rest system. Show that above a certain fixed energy of the pion in the laboratory
system there is a maximal angle beyond which no muons are emitted. Calculate
that energy and the maximal emission angle as a function of mπ and mμ (see
Fig. 11). Where do muons go in the laboratory system that in the pion’s rest sys-
tem were emitted forward, backward, or transversely with respect to the pion’s
velocity in the laboratory?

Fig. 11.

4.3 Consider a two-body reaction A+B → A+B for which the relative velocity
of A (the projectile) and B (the target) is not small compared to the speed of light.
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Examples are

e− + e+ → e− + e− , ν + e → e + ν , p + p → p + p .

Denoting the four-momenta before and after the scattering by qA, qB and q ′A,
q ′B the following quantities are Lorentz scalars, i.e. they have the same values in
every system of reference,

s
def= c2(qA + qB)

2 , t
def= c2(qA − q ′A)2 .

Conservation of energy and momentum requires q ′A+q ′B = qA+qB . Furthermore,
we have q2

A = q ′2A = (mAc
2)2, q2

B = q ′2B = (mBc
2)2.

(i) Express s and t in terms of the energies and momenta of the particles in the
center-of-mass frame. Denoting the modulus of the 3-momentum by q∗ and the
scattering angle by θ∗, write s and t in terms of these variables.

(ii) Define u = c2(qA − q ′B)2 and show that

s + t + u = 2
(
m2
A +m2

B

)
c4 .

4.4 Calculate the variables s and t (as defined in Exercise 4.3) in the labora-
tory system, i.e. in that system where B is at rest before the scattering. What is
the relation between the scattering angle θ in the laboratory system and θ∗ in the
center-of-mass frame? Compare to the nonrelativistic expression (1.80).

4.5 In its rest system the electron’s spin is described by the 4-vector sα = (0, s).
What is the form of this vector in a frame where the electron has the momentum
p? Calculate the scalar product (s · p) = sαpα .

4.6 Show that

(i) every lightlike vector z (z2 = 0) can be brought to the form (1,1,0,0) by means
of Lorentz transformations;

(ii) every spacelike vector can be transformed to the form (0, z1, 0, 0), where
z1 = √−z2 .

Indicate the necessary transformations in both cases.

4.7 If Ji and Ki denote the generators of rotations and boosts, respectively (cf.
Sect. 4.5.2 (iii)) define

Ap
def= 1

2

(
Jp + iKp

)
, Bq

def= 1

2

(
Jq − iKq

)
, p, q = 1, 2, 3 .

Making use of the commutation rules (4.59) calculate [Ap,Aq], [Bp,Bq], and
[Ap,Bq] and compare to (4.59).

4.8 Study the behavior of Ji and Kj with respect to space inversion, i.e. determine
PJiP−1, PKjP−1.
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4.9 In quantum theory one prefers to use the quantities

Ĵi
def= iJi , K̂j

def= − iKj .

What are the commutators (4.59) for these matrices? Show that the matrices Ĵi

are Hermitian, i.e. that (Ĵ
T
i )
∗ = Ĵi.

4.10 A muon decays predominantly into an electron and two nearly massless neu-
trinos, μ− → e−+ν1+ν2. If the muon is at rest, show that the electron assumes its
maximal momentum whenever the neutrinos are emitted parallel to each other. Cal-
culate the maximal and minimal energies of the electron as functions of mμ and me.

Answer:

Emax =
m2
μ +m2

e

2mμ

c2 , Emin = mec
2 .

Draw the corresponding momenta in the two cases.

4.11 A particle of mass M is assumed to decay into three particles (1,2,3) with
masses m1, m2, m3. Determine the maximal energy of particle 1 in the rest system
of the decaying particle as follows. Set

p1 = −f (x)n̂ , p2 = xf (x)n̂ , p3 = (1 − x)f (x)n̂ ,

where n̂ is a unit vector and x is a number between 0 and 1. Find the maximum
of f (x) from the principle of energy conservation.

Examples:

(i) μ− → e− + ν1 + ν2 (cf. Exercise 4.10),

(ii) Neutron decay: n → p + e + ν.

What is the maximal energy of the electron? What is the value of β = |v|/c for
the electron? mn −mp = 2.53me, mp = 1836me.

4.12 Pions π+, π− have the mean lifetime τ � 2.6× 10−8 s and decay predom-
inantly into a muon and a neutrino. Over what distance can they fly, on average,
before decaying if their momentum is pπ = x · mπc with x = 1, 10, or 1000?
(mπ � 140 MeV/c2 = 2.50 × 10−28 kg).

4.13 The free neutron is unstable. Its mean lifetime is τ � 900 s. How far can a
neutron fly on average if its energy is E = 10−2 mnc

2 or E = 1014 mnc
2 ?

4.14 Show that a free electron cannot radiate a single photon, i.e. the process

e → e + γ

cannot take place because of energy and momentum conservation.
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4.15 The following transformation

I : xμ → x̄μ = R2

x2 x
μ

implies the relation
√
x2
√
x̄2 = R2. This is an obvious generalization of the well-

known inversion at the circle of radius R, r · r̄ = R2. Show that the sequence of
transformations: inversion I of xμ, translation T of the image by the vector R2cμ,
and another inversion of the result, i.e.,

x′ = (I ◦ T ◦ I)x

is precisely the special conformal transformation (4.102).

4.16 Consider the following Lagrangian

L = 1

2
m

(
ψ q̇2 − c2

0
(ψ − 1)2

ψ

)
≡ L(q̇, ψ)

which contains the additional, dimensionless, degree of freedom ψ . The parameter
c0 has the physical dimension of a velocity. Show: The extremum of the action
integral yields a theory obeying special relativity for which c0 is the maximal ve-
locity, in other words, one obtains the Lagrangian (4.97) with the velocity of light
c replaced by c0. Consider the limit c0 →∞.

Chapter 5: Geometric Aspects of Mechanics

5.1 Let
k
ω be an exterior k-form,

l
ω an exterior l-form. Show that their exterior

product is symmetric if k and/or l are even and antisymmetric if both are odd, i.e.

k
ω∧ l

ω = (−1)k·l l
ω∧ k

ω .

5.2 Let x1, x2, x3 be local coordinates in the Euclidean space R
3, ds2 = E1 dx2

1+
E2 dx2

2 +E3 dx2
3 the square of the line element, and ê1, ê2, ê3 unit vectors along

the coordinate directions. What is the value of dxi(êj ), i.e. of the action of the
one-form dxi on the unit vector êj ?

5.3 Let a = ∑3
i=1 ai(x)êi be a vector field with ai(x) smooth functions on M . To

every such vector field we associate a one-form
1
ωa and a two-form

2
ωa such that

1
ωa(ξ) = (a · ξ) , 2

ωa(ξ, η) = (a · (ξ × η)) .
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Show that

1
ωa =

3∑

i=1

ai(x)
√
Ei dxi ,

2
ωa = ai(x)

√
E2E3 dx2 ∧ dx3 + cyclic permutations ,

5.4 Making use of the results of Exercise 5.3 determine the components of ∇f
in the basis {ê1, ê2, ê3}
Answer:

∇f =
3∑

i=1

1√
Ei

∂f

∂xi
êi .

5.5 Determine the functions Ei for the case of Cartesian, cylindrical, and spherical
coordinates. In each case give the components of ∇f .

5.6 To the force F = (F1, F2) in the plane we associate the one-form ω =
F1 dx1 + F2 dx2. When we apply ω onto a displacement vector, ω(ξ) is the
work done by the force. What is the dual ∗ω of the form ω ? What is its
interpretation?

5.7 The Hodge star operator assigns to every k-form ω the (n−k)-form ∗ω. Show
that

∗(∗ω) = (−1)k·(n−k)ω .

5.8 Let E = (E1, E2, E3) and B = (B1, B2, B3) be electric and magnetic fields
that in general depend on x and t . We assign the following exterior forms to them:

ϕ
def=

3∑

i=1

Eidx
i ,

ω
def= B1 dx2 ∧ dx3 + B2 dx3 ∧ dx1 + B3 dx1 ∧ dx2 .

Write the homogeneous Maxwell equation curl E + Ḃ/c = 0 as an equation be-
tween the forms ϕ and ω.

5.9 If d denotes the exterior derivatives and ∗ the Hodge star operator, the cod-
ifferential δ is defined by

δ
def= ∗ d ∗ .

Show that Δ
def= d ◦ δ+ δ ◦ d, when applied to functions, is the Laplacian operator

Δ =
∑

i

∂2

∂xi2
.
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5.10 Let

k
ω =

∑

i1<···<ik

ωi1...ik (x˜ ) dxi1 ∧ · · · ∧ dxik

be an exterior k-form over a vector space W . Let F : V → W be a smooth

mapping of the vector space V onto W . Show that the pull-back F ∗( kω∧ l
ω) of the

exterior product of two such forms is equal to the exterior product of the pull-back

of the individual forms (F ∗ k
ω) ∧ (F ∗ l

ω).

5.11 With the same assumptions as in Exercise 5.10 show that the exterior deriva-
tive and the pull-back commute,

d(F ∗ω) = F ∗(dω) .

5.12 Let x and y be Cartesian coordinates in R
2, V = y∂x and W = x∂y two

vector fields on R
2. Calculate the Lie bracket [V,W ]. Sketch the vector fields V,

W , and [V,W ] along circles about the origin.

5.13 Prove the follow assertions.

(i) The set of all tangent vectors to the smooth manifold M at the point p ∈ M

form a real vector space, denoted by TpM , whose dimension is n = dimM .

(ii) If M is R
n, TpM is isomorphic to that space.

5.14 The canonical two-form for a system with two degrees of freedom reads
ω = ∑2

i=1 dqi ∧ dpi . Calculate ω ∧ ω and confirm that this product is propor-
tional to the oriented volume element in phase space.

5.15 Let H(1) = p2/2 + (1 − cos q) and H(2) = p2/2 + q(q2 − 3)/6 be the
Hamiltonian functions for two systems with one degree of freedom. Construct the
corresponding Hamiltonian vector fields and sketch them along some of the solu-
tion curves.

5.16 Let H = H 0 +H ′ with H 0 = (p2 + q2)/2 and H ′ = εq3/3. Construct the
Hamiltonian vector fields XH 0 and XH and calculate ω(XH ,XH 0).

5.17 Let L and L′ be two Lagrangian functions on TQ for which ΦL and
ΦL′ are regular. The corresponding vector fields and canonical two-forms are
XE , XE′ , ωL, and ωL′ . Show that each of the following assertions implies the
other:

(i) L′ = L+ α, where α: TQ→ R is a closed one-form, i.e. dα = 0;

(ii) XE = XE′ and ωL = ωL′ .

Show that in local coordinates this is the result obtained in Sect. 2.10.
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Chapter 6: Stability and Chaos

6.1 Study the two-dimensional linear system ẏ
˜
= Ay

˜
, where A has one of the

Jordan normal forms

(i) A =
(
λ1 0
0 λ2

)
, (ii) A =

(
a b

−b a

)
, (iii) A =

(
λ 0
1 λ

)
.

In all three cases determine the characteristic exponents and the flow (6.13) with
s = 0. Suppose the system is obtained by linearizing a dynamical system in the
neighborhood of an equilibrium position. (i) corresponds to the situations shown
in Figs. 6.2a–c. Draw the analogous pictures for (ii) for (a = 0, b > 0) and
(a < 0, b > 0), and for (iii) with λ < 0.

6.2 The variables α and β on the torus T 2 = S1×S1 define the dynamical system

α̇ = a/2π , β̇ = b/2π , 0 ≤ α, β ≤ 1 ,

where a and b are real constants. Cutting the torus at (α = 1, β) and at (α, β = 1)
yields a square of length 1. Draw the solutions with initial condition (α0, β0) in
this square for b/a rational and irrational.

6.3 Show that in an autonomous Hamiltonian system with one degree of freedom
(and hence two-dimensional phase space) neighboring trajectories can diverge at
most linearly with increasing time as long as one keeps clear from saddle points.

Hint: Make use of the characteristics equation (2.154) of Hamilton and Jacobi.

6.4 Study the system

q̇1 = −μq1 − λq2 + q1q2

q̇2 = λq1 − μq2 +
(
q2

1 − q2
2

)
/2 ,

where 0 ≤ μ� 1 is a damping term and λ with |λ| � 1 is a detuning parameter.
Show that if μ = 0 the system is Hamiltonian. Find a Hamiltonian function for this
case. Draw the projection of its phase portraits for λ > 0 onto the (q1, q2)-plane
and determine the position and the nature of the critical points.

Show that the picture obtained above is structurally unstable when μ is chosen
to be different from zero and positive, by studying the change of the critical points
for μ 	= 0.

6.5 Given the Hamiltonian function on R
4

H(q1, q2, p1, p2) = 1

2

(
p2

1 + p2
2

)
+ 1

2

(
q2

1 + q2
2

)
+ 1

3

(
q3

1 + q3
2

)

show that this system possesses two independent integrals of the motion and sketch
the structure of its flow.
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6.6 Study the flow of the equations of motion p = q̇, ṗ = q − q3 − p and
determine the position and the nature of its critical points. Two of these are at-
tractors. Determine their basin of attraction by means of the Liapunov function
V = p2/2 − q2/2 + q4/4.

6.7 Dynamical systems of the type

ẋ˜ = −∂U/∂x˜ ≡ −U,x

are called gradient flows. They are quite different from the flows of Hamiltonian
systems. Making use of a Liapunov function show that if U has an isolated mini-
mum at x˜ 0, then x˜ 0 is an asymptotically stable equilibrium position. Study the
example

ẋ1 = −2x1(x1 − 1)(2x1 − 1) , ẋ2 = −2x2 .

6.8 Consider the equations of motion

q̇ = p , ṗ = 1

2
(1 − q2)

of a system with f = 1. Sketch the phase portrait of typical solutions with given
energy. Study its critical points.

6.9 By numerical integration find the solutions of the Van der Pool equation (6.36)
for initial conditions close to (0,0) and for various values of ε in the interval
0 < ε ≤ 0.4. Draw q(t) as a function of time, as in Fig. 6.7. Use the result
to find out empirically at what rate the orbit approaches the attractor.

6.10 Choose the straight line p = q as the transverse section for the system
(6.36), Fig. 6.6. Determine numerically the points of intersection of the orbit with
initial condition (0.01,0) with that line and plot the result as a function of time.

6.11 The system in R
2

ẋ1 = x1 , ẋ2 = −x2 + x2
1

has a critical point in x1 = 0 = x2. Show that for the linearized system the line
x1 = 0 is a stable submanifold and the line x2 = 0 an unstable one. Find the
corresponding manifolds for the exact system by integrating the latter.

6.12 Study the mapping xi+1 = f (xi) with f (x) = 1 − 2x2. Substitute u =
(4π) arcsin

√
(x + 1)/2 and show that there are no stable fixed points. Calculate

numerically 50 000 iterations of this mapping for various initial values x1 	= 0 and
plot the histogram of the points that land in one of the intervals [n/100, (n+1)/100]
with n = −100,−99, . . . ,+99. Follow the development of two close initial values
x1, x′1, and verify that they diverge in the course of the iteration. (For a discussion
see Collet, Eckmann 1990.)
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6.13 Study the flow of Roessler’s model

ẋ = −y − z , ẏ = x + ay , ż = b + xz− cz

for a = b = 0.2, c = 5.7 by numerical integration. The graphs of x, y, z as func-
tions of time and their projections onto the (x, y)-plane and the (x, ẋ)-plane are
particularly interesting. Consider the Poincaré mapping for the transverse section
y + z = 0. As ẋ = 0, x has an extremum on the section. Plot the value of the ex-
tremum xi+1 as a function of the previous extremum xi (see also Bergé, Pomeau,
Vidal 1984 and references therein).

6.14 Although this is more than an exercise, the reader is strongly encouraged
to study the system known as Hénon’s attractor. It provides a good illustration
of chaotic behavior and extreme sensitivity to initial conditions (see also, Bergé,
Pomeau, Vidal 1984, Sect. 3.2 and Devaney 1989, Sect. 2.6, Exercise 10).

6.15 Show that

n∑

σ=1

exp

[
i
2π

n
σm

]
= nδm0 , (m = 0, . . . , n− 1) .

Use this result to prove (6.63), (6.65), and (6.66).

6.16 Show that by a linear substitution y = αx + β the system (6.67) can be
transformed to yi+1 = 1 − γy2

i . Determine γ in terms of μ and show that y lies
in the interval (−1, 1] and γ in (0, 2] (cf. also Exercise 6.12 above). Making use
of this transformed equation derive the values of the first bifurcation points (6.68)
and (6.70).





Solution of Exercises

Cross-references to a specific section or equation in the main text of the book are
marked with a capital M preceding the number of that section or equation. For in-
stance, Sect. M3.7 refers to Chap. 3, Sect. 7, of the main text, while (M4.100) refers
to eq. (4.100) in Chap. 4. Cross references within this set of solutions should be
fairly obvious.

Chapter 1: Elementary Newtonian Mechanics

1.1 The time derivative of angular momentum is l̇ = ṙ×p+r×ṗ = mṙ×ṙ×r+r×
F . By assumption this is zero which implies that the force F must be proportional
to r,F = αr, α ∈ R. If we decompose the velocity into a component along r and a
component perpendicular to it, then F will change only the former. Therefore, the
motion takes place in a spatially fixed plane perpendicular to the angular momen-
tum l = mr(t)×ṙ(t) = mr0×v0, itself a constant. Motion along (a), (b), (e), and (f)
is possible. Motion along (c) is not possible because l would vanish at the turning
point but would be different from zero beforeand after passing through that point.

Fig. 1.
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Similarly (d) is not possible because l would vanish in O but not before and after.

1.2 We note that x(t) = r(t) cosϕ(t), y(t) = r(t) sin ϕ(t) and, hence dx =
dr cosϕ− rdϕ sin ϕ, dy = dr sin ϕ+ rdϕ cosϕ. In taking (ds)2 = (dx)2 + (dy)2

the mixed terms cancel so that (ds)2 = (dr)2 + r2(dϕ)2. Thus, the velocity is
v2 = ṙ2+ r2ϕ̇2. As neither r nor v have a z-component, the x- and y-components
of l = mr × v vanish. The z-component is

lz = m(xvz − yvx)

= mr(ṙ sin ϕ cosϕ + rϕ̇ cos2 ϕ − ṙ cosϕ sin ϕ + rϕ̇ sin2 ϕ)

= mr2ϕ̇ .

Thus one finds

v = ṙ2 + l2

m2r2 and T = 1

2
mṙ2 + l2

2mr2 .

If l is constant this means that the product r2ϕ̇ = const., thus correlating the an-
gular velocity ϕ̇ with the radial distance, cf. the examples (a), (b), (e), and (f), of
Exercise 1.1. A motion of type (d) could only be possible if, on approaching O,
ϕ̇ were to go to infinity in such a way that the product r2ϕ̇ stays finite. But then
the shape of the orbit would be different, see Exercise 1.23.

1.3 In analogy to the solution of the previous exercise one finds (ds)2 = (dr)2+
r2(dθ)2 + r2 sin2 θ(dϕ)2. Thus, v2 = ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2.

1.4 Having solved Exercise 1.3 one first reads off êr from Fig. 2: êr =
êx sin θ cosϕ + êy sin θ sin ϕ + êz cos θ . At the point with azimuth ϕ, êϕ is tan-
gent to a great cirlce, see Fig. 3. Hence, êϕ = −êx sin ϕ + êy cosϕ (check the
special cases ϕ = 0 and π/2!). One verifies that

êr · êϕ = − sin θ cosϕ sin ϕêx · êx + sin θ sin ϕ cosϕêy · êy = 0 .

Starting from the given ansatz for êθ the coefficients α, β, γ are determined from
the equations

êθ · êr = α sin θ cosϕ + β sin θ sin ϕ + γ cos θ = 0 ,

ê0 · êϕ = −α sin ϕ + β cosϕ = 0 ,

keeping in mind that êθ has norm 1, i.e. that α2 + β2 + γ 2 = 1. Furthermore,
from Fig. 2 and for θ = 0, ϕ = 0 one has êθ = êx , for θ = 0, ϕ = π/2 one has
êθ = êy , while for θ = π/2 one has always êθ = −êz . The solution of the above
equation which meets these conditions, reads

α = cos θ cosϕ , β = cos θ sin ϕ , γ = − sin θ .

In this basis we find



Chapter 1: Elementary Newtonian Mechanics 469

Fig. 2. Fig. 3.

v = ṙ = ṙ êr + r ˙̂er
= ṙ êr + r((θ̇ cos θ cosϕ − ϕ̇ sin θ sin ϕ)êx
+(θ̇ cos θ sin ϕ + ϕ̇ sin θ cosϕ)êy − θ̇ sin θ êz)

= ṙ êr + r(θ̇ êθ + ϕ̇ sin ϕêϕ) ,

from which follows the result v2 = ṙ2 + r2(θ̇2 + ϕ̇2 sin2 θ) that we found in the
previous exercise.

1.5 With respect to the frame K, r(t) = vt êy , i.e., x(t) = 0 = z(t) and y(t) = vt .
In the rotating frame

ẋ′ = ẋ cosφ + ẏ sin φ + φ̇(−x sin φ + y cosφ)

ẏ′ = −ẋ sin φ + ẏ cosφ − φ̇(x cosφ + y sin φ)

ż′ = ż = 0 .

In the first case, φ = ω = const., the particle moves uniformly along a straight line
with velocity v′ = (v sinω, v cosω, 0). In the second case, φ = ωt , ẋ′ = v sinωt+
ωvt cosωt , ẏ′ = v cosωt − ωvt sinωt . Integrating over time, x′(t) = vt sinωt ,
y′(t) = vt cosωt , and z′(t) = 0. The apparent motion as seen by an observer in
the accelerated frame K′, is sketched in Fig. 4.

1.6 The equation of motion of the particle reads

mr̈ = F = f (r)
r

r
.

Take the time derivative of the angular momentum, l̇ = mṙ× ṙ+mr× r̈. The first
term is always zero. The second term vanishes because, by the equation of motion,
the acceleration is proportional to r. Hence, l̇ = 0, which means that the magnitude
and the direction of the angular momentum are conserved. As l is perpendicular
to r and the velocity ṙ this proves the assertion.
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Fig. 4.

1.7 (i) By Newton’s third law the forces between two bodies fulfill F ik = −F ki

or −∇iVik(ri , rk) = ∇kVik(ri , rk). Hence, V can only depend on (ri − rk). Con-
stants of the motion are: total momentum P , energy E; furthermore, we have for
the center-of-mass motion

rS(t)− P/Mt = rS(0) = const. .

(ii) When Vij depends only on the modulus |ri − rk|, we have

F ji = −∇iVij (|ri − rk|) = −V ′
ij (|ri − rk|)∇i |ri − rk|

= −V ′
ij (|ri − rk|) ri − rk

|ri − rk| .
In this case the total angular momentum is another constant of the motion.

1.8 For q → 0 the potential goes to infinity like 1/q4, while for q → ∞
it tends to zero. Between these points it has two extrema as sketched in Fig. 5.
As the energy E = p2/2 + U(q) is conserved, the phase portraits are given by
p = [2(E−U(q))]1/2. The figure shows a few examples. The minimum at q = 2
is a stable equilibrium point, the maximum just beyond q = 6 is unstable. The
orbits with E ≈ 0.2603 are separatrices. The phase portraits are symmetric with
respect to reflection in the q-axis because (q, p = +√. . .) and (q, p = −√. . .)
belong to the same portrait.

1.9 The term (x2
2 + x2

4 )/(2m) is the total kinetic energy while U(x1, x3) =
m(ω2

0(x
2
1 + x2

3 ) + ω2
1(x1 − x3)

2)/2 is the potential energy. The forces acting on
pendula 1 and 2 are, respectively, −∂U/∂x1, and −∂U/∂x3. Thus, the equations
of motion are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1
ẋ2
ẋ3
ẋ4

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 1/m 0 0
−m(ω2

0 + ω2
1) 0 mω2

1 0
0 0 0 1/m

mω2
1 0 −m(ω2

0 + ω2
1) 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1
x2
x3
x4

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,
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or, for short, ẋ = Mx. The transformation as given above

u1 = 1√
2
(x1 + x3) , u2 = 1√

2
(x2 + x4) ,

u3 = 1√
2
(x1 − x3) , u4 = 1√

2
(x2 − x4)

leads to sums and differences of the original coordinates and momenta. We note
that the matrix M has the structure

M =
(

B C

C B

)

where B and C are 2×2 matrices. Furthermore the transformation A is invertible
and, in fact, the inverse equals A. Thus

du

dt
= AMA−1u with A−1 = A .

It is useful to note that one can do the calculations in terms of the 2×2 submatrices
as if these were (possibly noncommuting) numbers. For example,

AMA−1 = AMA =
(

B + C 0
0 B − C

)
with

B + C =
(

0 1/m
−mω2

0 0

)
and

B − C =
(

0 1/m
−m(ω2

0 + 2ω2
1) 0

)
.
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This system now separates into two independent oscillators that can be solved in
the usual manner. The first has frequency ω(1) = ω0 (the two pendula perform
parallel, in-phase oscillations); the second has frequency ω(2) = (ω2

0 + 2ω2
1)

1/2

(the pendula swing in antiphase). The general solution is

u1 = a1 cos(ω(1)t + ϕ1) , u3 = a2 cos(ω(2)t + ϕ2) .

As an example, consider the initial configuration

x1(0) = a , x2(0) = 0 , x3(0) = 0 , x4(0) = 0 ,

which means that, initially, pendulum 1 is at maximal elongation with vanishing
velocity while pendulum 2 is at rest. The initial configuration is realized by taking
a2 = a1 = a

√
2, ϕ1 = ϕ2 = 0. This gives

x1(t) = a cos
ω(1) + ω(2)

2
t cos

ω(2) − ω(1)

2
t = a cosΩt cosωt ,

x3(t) = a sin
ω(1) + ω(2)

2
t sin

ω(2) − ω(1)

2
t = a sinΩt sinωt ,

Where Ω := (ω(1)+ω(2))/2, ω := (ω(2)−ω(1))/2. If Ω/ω = p/q with p, q ∈ Z

and p > q, hence rational, the system returns to its initial configuration after time
t = 2πp/Ω = 2πq/ω. For earlier times one has t = πp/(2Ω): x1 = 0, x3 = a

(pendulum 1 at rest, pendulum 2 has maximal elongation); t = πp/Ω: x1 = −a,
x3 = 0; t = 3πp/(2Ω): x1 = 0, x3 = −a. The oscillation moves back and forth
between pendulum 1 and pendulum 2. If Ω/ω is not rational, the system will come
close, at a later time, to the initial configuration but will never assume it exactly
(cf. Exercise 6.2). In the example considered here, this will happen if Ωt ≈ 2πn
and ωt ≈ 2πm (with m, n ∈ Z), i.e. if Ω/ω can be approximated by the ratio of
two integers. It may happen that these integers are large so that the “return time”
becomes very large.

1.10 As the differential equation is linear, the two terms are solutions precisely
when μ = ω; a and b are integration constants which are fixed by the initial
condition as follows

x(t) = a cosωt + b sinωt ,

p(t) = −amω sinωt +mbω cosωt .

x(0) = x0 gives a = x0, p(0) = p0 gives b = p0/(mω). The solution with
ω = 0.8, x0 = 1, p0 = 0 reads x(t) = cos(0.8t).

1.11 From the ansatz one has

ẋ(t) = αx(t)+ eαt (−ω̃x0 sin ω̃t + p0/m cos ω̃t)

ẍ(t) = α2x(t)+ 2αeαt (−ω̃x0 sin ω̃t + p0/m cos ω̃t)

−eαt ω̃2(x0 cos ω̃t + p0/mω̃ sin ω̃t)

= −α2x + 2αẋ − ω̃2x .
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Inserting and comparing coefficients one finds

α = −κ

2
, ω̃ =

√
ω2 − α2 =

√
ω2 − κ2/4 .

The special solution x(t) = e−κt/2 cos(
√

0.64 − κ2/4 t), approaches the origin in
a spiraling motion as t →∞.

1.12 Energy conservation formulated for the two domains yields

m

2
v2

1 + U1 = E = m

2
v2

2 + U2 .

As the potential energy U depends on x only there can be no force perpendicular
to the x-axis. Therefore, the component of the momentum along the direction per-
pendicular to that axis cannot change in going from x < 0 to x > 0: v1⊥ = v2⊥.
The law of conservation of energy hence reads

m

2
v2

1⊥ +
m

2
v2

1‖ + U1 = m

2
v2

2⊥ +
m

2
v2

2‖ + U2 , or

m

2
v2

1‖ + U1 = m

2
v2

2‖ + U2 .

from which follows

sin2 α1 = v2
1⊥
v2

1

, sin2 α2 = v2
2⊥
v2

2

, directly yielding

sin α1

sin α2
= |v2|
|v1| .

For U1 < U2 we find |v1| > |v2|, hence α1 < α2. For U1 < U2 all inequalities
are reversed.

1.13 Let M = m1 +m2 +m3 be the total mass and m12 = m1 +m2. From the
figure one sees that r2 + sa = r1, s12 + sb = r3, where s12 is the center-of-mass
coordinate of particles 1 and 2. Solving for r1, r2, r3 we find

r1 = rS − m3

M
sb + m2

m12
sa ,

r2 = rS − m3

M
sb − m1

m12
sa ,

r3 = rS + m12

M
sb .

Inserting these into the kinetic energy all mixed terms cancel. The result contains
only terms quadratic in ṙS, ṡa, ṡb

T = 1

2
M ṙ2

S
︸ ︷︷ ︸

TS

+ 1

2
μa ṡ

2
a

︸ ︷︷ ︸
Ta

+ 1

2
μb ṡ

2
b

︸ ︷︷ ︸
Tb

with μa = m1m2

m12
, μb = m12m3

M
.
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Fig. 6.

TS is the kinetic energy of the center-of-mass motion, μa is the reduced mass of
the subsystem consisting of particles 1 and 2. μb is the reduced mass of the sub-
system consisting of particle 3 and the center-of-mass S12 of particles 1 and 2, Tb
is the kinetic energy of the relative motion of particle 3 and S12.

In an analogous way, the angular momentum is found to be

L =
∑

i

li = MrS × ṙS︸ ︷︷ ︸
lS

+ μasa × ṡa︸ ︷︷ ︸
la

+ μbsb × ṡb︸ ︷︷ ︸
lb

,

all mixed terms having cancelled.
By a special (and proper) Galilei transformation, rS → r′s = rS + wt + a,

ṙS → ṙ′S = ṙS + w, sa → sa , sb → sb and, hence,

l′S = lS +M(a× (ṙS + w)+ (rS − t ṙS)× w) ,

while l′a = la , l′b = lb remain unchanged.

1.14 (i) With U(λr) = λαU(r) and r ′ = λr the forces from Ũ (r ′) := U(λr) and
from U(r), respectively, differ by the factor λα−1. Indeed

F ′ = −∇r ′Ũ = −1

λ
∇r Ũ = −λα−1∇rU = λα−1F .

Integrating F ′ · dr′ over a path in r′ space and comparing with the correspond-
ing integral over F · dr, the work done in the two cases differs by the factor λα .
Changing t to t ′ = λ1−α/2t ,

(
dr′

dt ′

)2

= λ2λα−2
(
dr

dt

)2

,

which means that the kinetic energy

T = 1

2
m

(
dr′

dt ′

)2
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differs from the original one by the same factor λα . Thus, this holds for the total
energy, too, E′ = λαE. The indicated relation between time differences and linear
dimensions of geometrically similar orbits follows.

(ii) For harmonic oscillation the assumption holds with α = 2. The ratio of
the periods of two geometrically similar orbits is Ta/Tb = 1, independently of the
linear dimensions.

In the homogeneous gravitational field U(z) = mgz and, hence, α = 1. Times
of free fall and initial height H are related by T ∝ H 1/2.

In the case of the Kepler problem U = −A/r and, hence, α = −1. Two geo-
metrically similar ellipses with semimajor axes aa and bb have circumference Ua

and Ub, respectivley, such that Ua/Ub = aa/ab. Therefore the ratio of the peri-
ods Ta and Tb is Ta/Tb = (Ua/Ub)

3/2 from which follows (Ta/Tb)2 = (aa/ab)
3,

Kepler’s third law.
(iii) The general relation is Ea/Eb = (La/Lb)

α . If Ai denotes the ampli-
tude of harmonic oscillation, Ea/Eb = A2

a/A
2
b. In the case of Kepler motion

Ea/Eb = ab/aa : the energy is inversely proportional to the semimajor axis.

1.15 (i) From the equations of Sect. M1.24

rP = p

1 + ε
= − A

2E

1 − ε2

1 + ε
= − A

2E
(1 − ε) ;

rA = − A

2E
(1 + ε) .

From these we calculate

rP + rA = −A

E
, rP · rA = A2

4E2 (1 − ε2) = l2

−2μE
.

Inserting this into the differential equation we obtain

dφ

dr
= l

r2

√

2μ

(
E + A

r
− l2

2μr2

) .

This is precisely eq. (M1.67) with Ueff = −A/r+ l2/2μr2. Integration of eq. (1.4)
with the boundary condition as indicated implies

φ(r)− φ(rP ) =
∫ r

rP

1

r

(
rP rA

(r − rP )(rA − r)

)1/2

dr .

We make use of the indicated formula with

α = 2
rArP

rA − rP
, β = − rA + rP

rA − rP
,

and obtain
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φ(r) = arccos
2rArP − (rA + rP )r

(rA − rP )r
.

(ii) There are two possibilities for solving this equation: (a) the new equations
are obtained by replacing l2 with l̄2 = l2 + 2μB. For the remainder, the solution
is exactly the same as for the Kepler problem. If B > 0(B < 0), then l̄ > l(l̄ < l),
i.e., in the case of repulsion (attraction) the orbit becomes larger (smaller). (b)
With U(r) = U0(r)+ B/r2, U0(r) = −A/r , the differential equation for φ(r) is
written in the same form as above

dφ

dr
=

√
rArP

r
√
(r − r ′P)(r ′A − r)

,

where r ′P, r ′A denote perihelion and aphelion, respectively, for the perturbed poten-
tial. They are obtained from the formula (r−rP)(rA−r)+B/E = (r−r ′P)(r ′A−r).
Multiplying the differential equation by ((r ′Pr ′A)/(rPrA))

1/2 and integrating as be-
fore

φ(r) =
√
rPrA

r ′Pr ′A
arccos

2r ′Ar ′P − r(r ′A + r ′P)
r(r ′A − r ′P)

.

From this solution follows r(φ) = 2r ′Pr ′A/[r ′P + r ′A + (r ′A − r ′P) cos
√
r ′Pr ′A/rPrA φ].

The first passage through perhelion is set to φP1 = 0. The second is φP2 =
2π((rPrA)/(r

′
Pr

′
A))

1/2 = 2πl/
√
l2 + 2μB ≈ 2π(1 − μB/l2). The perhelion pre-

cession is (φP2 − 2π). It is independent of the energy E. For B > 0 (additional
repulsion) the motion lags behind, and for B < 0 (additional attraction) the motion
advances as compared to the Kepler case.

1.16 For fixed l, the energy must fulfill E ≥ −μA2/(2l2). The lower limit is as-
sumed for circular orbits with radius r0 = l2/μA. The semimajor axis (in relative
motion) follows from Kepler’s third law a3 = GN(mE+mS)T

2/(4π2). This gives
a = 1.495 × 1011 m (T = 1 y = 3.1536 × 107 s). This is approximately equal to
aE, the semimajor axis of the earth in the center-of-mass system. The sun moves
on an ellipse with semimajor axis

aS = mE

mE +mS
a ≈ 449 km .

This is far within the sun’s radius RS ≈ 7 × 105 km.

1.17 We arrange the two dipoles as sketched in Fig. 7. The potential created by
the first dipole at a point situated at r is

Φ1 = e1

(
1

|r − d1| −
1

|r|
)
≈ e1

(
1

r
+ r · d1

r3 − 1

r

)
= r · (e1d1)

r3 .
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Fig. 7.

Here, we have expanded

1

|r − d1| =
1

√
r2 + d2

1 − 2r · d1

up to the term linear in d1. In the limit we obtain Φ1 = r · p1/r
3. The potential

energy of the second dipole in the field of the first reads

W = e1(Φ1(r + d2)−Φ1(r)) = e2

(
p1 · (r + d2)

|r + d2|3 − p1 · r
r3

)
.

Expanding again up to terms linear in d2

W ≈ e2

(
p1 · r
r3

(
1 − 3

r · d2

r2

)
+ p1 · d2

r3 − p1 · r
r3

)
.

Finally, taking the limit e2 →∞, d2 → 0, with e2d2 = p2 finite, this yields

W(1, 2) = p1 · p2

r3 − 3
(p1 · r)(p2r)

r5
.

From this expression one calculates the components of F21 = −∇1W = −F12,
making use of relations such as

∂

∂x1
= ∂r

∂x1

∂

∂r
= x1 − x2

r

∂

∂r
, etc. .

So, for example
∂W(1, 2)

∂x1
= −(p1 · p2)

3

r4

x1 − x2

r
− 3

r5

(
px1 (p2 · r)

+(p1 · r)px2
)+ (p1 · r)(p2 · r)

15

r6

x1 − x2

r
.

1.18 Take the time derivative of ṙ · a,

d

dt
ṙ · a = r̈ · a = v̇ · a = (v× a) · a = 0 .

Thus, ṙ ·a is constant in time and the indicated relation holds for all times. Taking
the time derivative of (5) and inserting v̇, we find v̈ = v̇ × a = (v × a) × a =
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−a2v+(v ·a)a. The second term is constant as shown above. Thus, integrating this
equation over t from 0 to t , we have r̈(t)− r̈(0) = −ω2(r(t)−r(0))+ (v(0) ·a)at ,
where ω2 := a2. By eq. (5) r̈(0) = v(0)× a, so that we may write

r̈(t)+ ω2r(t) = (v(0) · a)at + v(0)× a+ ω2r(0) .

This is the desired form, the general solution of the homogeneous differential equa-
tions is

rhom(t) = c1 sinωt + c2 cosωt .

With the given ansatz for a special solution of the inhomogeneous equation the
constants are found to be

c1 = 1

ω3

(
a2v(0)− (v(0) · a)a

)
= 1

ω3 (a× (v(0)× a))

c2 = − 1

ω2 v(0)× a

c = 1

ω2 (v(0) · a)a

d = 1

ω2 v(0)× a+ r(0) .

The solution therefore reads

r(t) = 1

ω3 a× (v(0)× a) sinωt + 1

ω2 (v(0) · a)at

+ 1

ω2 v(0)× a(1 − cosωt)+ r(0) .

It represents a helix winding around the vector a.

1.19 The ball falls from initial height h0. It hits the plane for the first time at
t1 = √

2h0/g, the velocity then being u1 = −√2h0g = −gt1. Furthermore, with
α := √

(n− 1)/n

vi = −αui , ui+1 = −vi , ti+1 − ti = 2vi
g

.

The first two equations give v1 = αgt1 and vi = αigt1. The third equation yields

t0i − ti = vi

g
= ti+1 − t0i and t0i+1 − ti+1 = vi+1

g
,

and, from there, t0i+1 − t0i = (vi+1 + vi)/g = t1(α + 1)αi . With t00 = 0 we have
at once

t0i = t1(1 + α)

i−1∑

ν=0

αv .

From hi = v2
i /(2g), finally, hi = α2ih0.
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1.20 The answer is contained in the following table giving the products of the
elements

E P T P · T
E E P T P · T
P P E P · T T

T T P · T E P

P · T P · T T P E

1.21 Let R and E0 denote the radius and the energy of a circular orbit, respec-
tively. The differential equation for the radial motion reads

dr

dt
=

√
2

μ

√
E0 − Ueff(r) , Ueff(r) = U(r)+ l2

2μr2 .

From this follows E0 = Ueff(R), U ′
eff

∣
∣
r=R = 0, U ′′

eff

∣
∣
r=R > 0 or, for U(r),

U ′(R) = l2

μ

1

R3 and U ′′(R) > −3l2

μ

1

R4 .

If E = E0 + ε,

dr

dt
=

√
2

μ

√

ε − 1

2
(r − R)2U ′′

eff(R) .

Setting κ := U ′′
eff(R) we obtain, choosing ς = r ′ − R,

t − t0 =
√
μ

κ

∫ r−R

r0−R
dς

√
2ε/κ − ς2

=
√
μ

κ
arcsin

(
(r − R)

√
κ

2ε

)
.

Solving for r − R yields

r − R =
√

2ε

κ
sin

√
κ

μ
(t − t0) .

Thus, the radial distance oscillates around the value R. More specifically, one finds
(i) U(r) = rn, U ′(r) = nrn−1, U ′′(r) = n(n−1)rn−2. This yields the equation

nRn−1 = l2

μR3 ⇒ R = n+2

√
l2

μn
,

κ = n(n− 1)Rn−2 + 3l2

μR4 > 0 ⇔ n(n− 1)Rn+2
︸ ︷︷ ︸

l2/(μn)

+ 3l2

μ
= (n+ 2)l2

μ
> 0 .

(ii) U(r) = λ/r , U ′(r) = −λ/r2, U ′′(r) = 2λ/r3. From this R = −l2/(μλ),
κ = −λ/R3. This is greater than zero of λ is negative.
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1.22 (i) The eastward deviation follows from the formula given in Sect. M1.26,
Δ ≈ (2

√
2 /3)g−1/2H 3/2ω cosϕ. With ω = 2π/(1 day) = 7.27 × 10−5 s−1 and

g = 9.81 ms−2 one finds Δ ≈ 2.2 cm.
(ii) We proceed as in Sect. M1.26 (b) and determine the eastward deviation u

from the linearized ansatz r(t) = r(0)(t) + ωu(t), inserting here the unperturbed
solution, r0(t) = gt (T − 1

2 t)êv . This gives (d ′2/dt2)u(t) ≈ 2g cosϕ(t − T )êv .
Integrating twice,

u(t) = 1

3
g cosϕ(t3 − 3T t2)ê0 .

The stone returns to the surface of the earth after time t = 2T . The eastward de-
viation is found to be negative, Δ ≈ − 4

3gω cosϕT 3, which means, in reality, that
it is a westward deviation. Its magnitude is four times larger than in case (i).

(iii) Denote the eastward deviation by u as before (directed from west to east),
the southward deviation by s (directed from north to south). A local, earth-bound,
coordinate system is given by (ê1, ê0, êv), ê1 defining the direction N–S, ê0 and
êv being defined as in Sect. M1.26 (b). Thus, u = uê0, s = sê1. The equation of
motion (M1.74′), together with ω = ω(− cosϕ, 0, sin ϕ), implies

s̈ = 2ω2 sin ϕu̇ .

Inserting the approximate solution u ≈ 1
3gt

3 cosϕ and integrating over time twice,
one obtains

s(t) = 1

6
ω2g sin ϕ cosϕt4 .

1.23 For E > 0 all orbits are scattering orbits. If l2 > 2μα,

φ − φ0 = l√
2μE

∫ r

r0

dr ′
√
r ′2 − (l2 − 2μα)/(2μE)

= r(0)p

∫ r

r0

dr ′

r ′
√
r ′2 − r2

P

, (1)

where μ is the reduced mass, rP = √
(l2 − 2μα)/(2μE) the perihelion and

r
(0)
P = l/

√
2μE. The particle is assumed to come from infinity, traveling parallel

to the x-axis. Then the solution is φ(r) = l/
√
l2 − 2μα arcsin(rP/r). If α = 0,

the corresponding solution is φ(0)(r) = arcsin(r(0)P /r); the particle moves along a

straight line parallel to the x-axis, at the distance r(0)P . For α 	= 0

φ(r = rP) = l
√
l2 − 2μα

π

2
,

that is, after the scattering and asymptotically, the particle moves in the direction
l/
√
l2 − 2μα π . Before that it travels around the center of force n times if the

condition
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l
√
l2 − 2μα

(
arcsin

rP

∞ − arcsin
rP

rP

)
= r

(0)
P

rP

(
π − π

2

)
> nπ

is fulfilled. The number

n =
[
r
(0)
P

2rP

]

is independent of energy E.
In the case l2 < 2μα eq. (1) can also be integrated. With the same initial con-

dition one obtains

φ(r) = r
(0)
P

b
ln
b +√

b2 + r2

r
,

where b = ((2μα − l2)/(2μE))1/2. The particle travels around the force center
on a spiral-like orbit, towards the center. As the radial distance tends to zero, the
angular velocity increases in such a way as to respect Kepler’s second law (M1.22).

1.24 Let the comet and the sun approach each other with energy E. Long be-
fore the collision the relative momentum has the magnitude q = √

2μE, with μ

the reduced mass, the angular momentum has the magnitude l = qb. The comet
crashes when the perihelion rP of its hyperbola is smaller or equal R, i.e., when
b ≤ bmax with bmax following from the condition rP = R, viz.

p

1 + ε
= R with p

l2

Aμ
= q2b2

Aμ
, ε =

√

1 + 2Eq2b2

μA2

and A = GmM . One finds bmax = √
1 + A/(ER) and, hence,

σ =
∫ bmax

0
2πb db = πR2

(
1 + A

ER

)
.

For A = 0 this is the area of the sun seen by the comet. With increasing gravi-
tational attraction (A > 0) this surface increases by the ratio (potential energy at
the sun’s edge)/(energy of relative motion).

1.25 As explained in Sect. M1.21.2 the equation of motion reads

ẋ = Ax+ b ,

with A as given in eq. (M1.50), and

A =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 0 1/m 0 0
0 0 0 0 1/m 0
0 0 0 0 0 1/m
0 0 0 0 K 0
0 0 0 −K 0 0
0 0 0 0 0 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, b = e

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0
Ex

Ey

Ez

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.
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The last of the six equations is integrated immediately, giving x6 = eEt + C1.
Inserting this into the third and integrating yields

x3 = z = eEz

2m
t2 + C1t + C2 .

The initial conditions z(0) = z(0), ż(0) = v
(0)
z give C2 = z(0), C1 = v

(0)
z . The re-

maining equations are coupled equations. Taking the time derivative of the fourth
and replacing ẋ5 by the right-hand side of the fifth gives ẍ4 = −K2x4 + eKEy

which is integrated to x4 = C3 sinKt + C4 cosKt + eEy/K . Making use of the
fifth equation once more yields x3 = C3 cosKt −C4 sinKt +C5. Also the fourth
equation yields the condition C5 = −eEx/K . These two expressions are inserted
into the first and second equations so that these can be integrated yielding

x1 = − C3

Km
cosKt + C4

Km
sinKt + e

Km
Eyt + C6

x2 = + C3

Km
sinKt + C4

Km
cosKt − e

Km
Ext + C7 .

Upon insertion of the initial conditions x(0) = x(0), y(0) = y(0), ẋ(0) = v
(0)
x ,

ẏ(0) = v
(0)
y we finally obtain

C3 = mv(0)y + e

K
Ex , C4 = mv(0)x − e

K
Ey ,

C6 = x(0) + v
(0)
y

K
+ e

mK2 Ex , C7 = y(0) − v
(0)
x

K
+ e

mK2 Ey .

If the electric field points along the z-direction, E = Eêz , then the motion is
the superposition of a uniformly accelerated motion along the z-direction and a
circular motion in the (x, y)-plane. That is to say the particle runs along a spiral.

1.26 Using Cartesian coordinates in the plane of the motionand allowing for an
arbitrary initial position of the perihelion, the solution eq. (M1.21) reads

x(t) = p
1+ε cos(φ−φ0)

cos(φ − φ0) ,

y(t) = p
1+ε cos(φ−φ0)

sin(φ − φ0) .

Differentiate these formulae with respect to the time variable and replace the
derivative φ̇ by �/(μr2), by means of eq. (M1.19a). Inserting p = �2/(Aμ) one
obtains

px(t) = μẋ = −Aμ
�

sin(φ − φ0) ,

py(t) = μẏ = Aμ
�
{cos(φ − φ0)+ ε} .

This equation describes a circle with radius Aμ/� whose center has the coordinates
(

0, ε
Aμ

�

)
=

(
0,

√
(Aμ/�)2 + 2μE

)
.

See also Exercise 2.31 below.
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2.1 We take the derivative of F(E) with respect to E

dF

dE
= 2

d

dE

∫ qmax(E)

qmin(E)

√
2m(E − U(q)) dq = 2

∫ qmax(E)

qmin(E)

m√
2m(E − U(q))

dq

+2
√

2m(E − U(qmax))︸ ︷︷ ︸
=0

dqmax

dE
− 2

√
2m(E − U(qmin))︸ ︷︷ ︸

=0

dqmin

dE
.

To find T we must calculate the time integral over one period. In doing so we
note that

m
dq

dt
= p = √

2m(E − U(q)) , and hence ,

dt = mdq√
2m(E − U(q))

.

Therefore,

T = 2
∫ qmax(E)

qmin(E)

m√
2m(E − U(q))

dq .

This, however, is precisely the expression calculated above. For the example of
the oscillator with q = q0 sinωt , p = mωq0 cosωt , one finds F = mωπq2

0 =
(2π/ω)E and T = 2π/ω.

2.2 Choose the plane as sketched in Fig. 8. D’Alembert’s principle (F−ṗ)·δr = 0,
with F = −mgê3, admits virtual displacements along the line of intersection of
the inclined plane and the (1,3)-plane as well as long the 2-axis. Denoting the
two independent variables by q1, q2, this means that δr = δq1êα + δq2ê2 with

Fig. 8. Fig. 9.



484 Solution of Exercises

êα = ê1 cosα− ê3 sin α. Inserting this yields the equations of motion q̈1 = g sin α,
q̈2 = 0 whose solutions read

q1(t) = (g sin α)
t2

2
+ v1t + a1 , q2(t) = v2t + a2 .

2.3 Choose the (1,3)-plane to coincide with the plane of the annulus and take its
center to be the origin. Choosing the unit vectors t̂ and n̂ as shown in Fig. 9, viz.

t̂ = ê1 cosφ + ê3 sin φ , n̂ = ê1 sin φ − ê3 cosφ

we find

δr = t̂Rδφ , ṙ = Rφ̇ t̂ , r̈ = Rφ̈ t̂ − Rφ̇2n̂ ,

the force acting on the system being F = −mgê3.
D’Alembert’s principle (F − p) · δr = 0 yields the equation of motion

φ̈ + g sin φ/R = 0. This is the equation of motion of the planar pendulum that
was studied in Sect. M1.17.

2.4 Let d0 be the length of the spring in its rest state and let κ be the string
constant. When the mass point is at the position x the length of the string is
d = √

x2 + l2. The corresponding potential energy is

U(x) = 1

2
κ(d − d0)

2 .

Fig. 10.

For d0 ≤ l the only stable equilibrium position is x = 0. For d0 > l, x = 0 is

unstable, while the points x = ±
√
d2

0 − l2 are stable equilibrium positions.
As an example we study here the case d0 ≤ l. Expanding U(x) around x = 0,

U(x) ≈ 1

2
κ

(
l − d0 + x2

2l
− x4

8l3

)2

≈ 1

2
κ

(
(l − d0)

2 + l − d0

l
x2 + d0

4l3
x4

)
.

From this expression we would conclude that the frequency of oscillation is ap-
proximately
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ω =
√
κ

m

l − d0

l
.

However, this does not hold for all values of d0. For d0 = l the quadratic term
vanishes, and x4 is the leading order. In the other extreme, d0 = 0, we have
U(x) = κ(x2 + l2)/2, i.e. a purely harmonic potential (the constant terms in the
potential are irrelevant). Thus, the approximation is acceptable only when d0 is
small compared to l.

2.5 A suitable Lagrangian function for this system reads

L = 1

2
m(ẋ2

1 + ẋ2
2 )

︸ ︷︷ ︸
T

− 1

2
κ(x1 − x2)

2

︸ ︷︷ ︸
U

.

Introduce the following coordinates: u1 := x1 + x2, u2 := x1 − x2. Except for a
factor 1/2 these are the center-of-mass and relative coordinates, respectively. The
Lagrangian becomes L = m(u̇2

1 + u̇2
2)/4 − κu2

2/2. The equations of motion that
follow from it are

ü1 = 0 , mü2 + 2κu2 = 0 .

The solutions are u1 = C1t +C2, u2 = C3 sinωt +C4 cosωt , with ω = √
2κ/m.

It is not difficult to rewrite the initial conditions in the new coordinates, viz.

u1(0) = +l u̇1(0) = v0

u2(0) = −l u̇2(0) = v0 .

The constants are determined from these so that the final solution is

x1(t) = v0

2

(
t + 1

ω
sinωt

)
− l

2
(1 − cosωt)

x2(t) = v0

2

(
t − 1

ω
sinωt

)
+ l

2
(1 + cosωt) .

2.6 By hypothesis F(λx1, . . . , λxn) = λNF(x1, . . . , xN). We take the first
derivative of this equation with respect to λ and set λ = 1. The left-hand side is

d

dλ
F(λx1, . . . , λxn)

∣∣∣∣
λ=1

=
n∑

i=1

∂F

∂xi

d(λxi)

dλ

∣∣∣∣
λ=1

=
n∑

i=1

∂F

∂xi
xi .

The same operation on the right-hand side gives NF .

2.7 In the general case the Euler-Lagrange equation reads

∂f

∂y
= d

dx

∂f

∂y′
.
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Multiply this equation by y′ and add the term y′′∂f/∂y′ on both sides. The right-
hand side is combined to

y′ ∂f
∂y

+ y′′ ∂f
∂y′

= d

dx

(
y′ ∂f
∂y′

)
.

If f does not depend explicitly on x then the left-hand side is df (y, y′)/dx. The
whole equation can be integrated directly and yields the desired relation. Applying
this result to L(q̇, q) = T (q̇)− U(q) gives

∑

i

q̇i
∂T (q̇)

∂q̇i
− T + U = const. .

If T is a homogeneous, quadratic form in q̇ the solution to Exercise 2.6 tells us
that the first term equals 2T . Therefore, the constant is the energy E = T + U .

2.8 (i) We must minimize the arc length

L =
∫
ds =

∫ x2

x1

√
1 + y′2 dx

i.e. we must choose f (y, y′) = √
1 + y′2. Applying the result of the preceding

exercise we obtain

y′
√
y′

√
1 + y′2

−
√

1 + y′2 = const. ,

or y′ = const. Thus, y = ax + b. Inserting the boundary conditions y(x1) = y1,
y(x2) = y2 gives

y(x) = y2 − y1

x2 − x1
(x − x1)+ y1 .

(ii) The position of the center of mass is determined by the equation

MrS =
∫
r dm ,

M denoting the mass of the chain, dm the mass element. If λ is the mass per unit
length, dm = λ ds. As the x-coordinate of the center of mass is irrelevant, the
problem is to find the shape for which its y-coordinate is lowest. Thus we have
to minimize the functional

∫
y ds =

∫ x2

x1

y

√
1 + y′2 dx .
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The result of the preceding exercise leads to

yy′2
√

1 + y′2
− y

√
1 + y′2 = −

√
y

√
1 + y′2

= C .

This equation can be solved for y′,

y′ =
√
Cy2 − 1 .

This is a separable differential equation whose general solution is

y(x) = 1√
C

cosh
(√

C x + C′) .

The constants C and C′, finally, must be chosen such that the boundary conditions
y(x1) = y1, y(x2) = x2 are fulfilled.

2.9 (i) In either case the equations of motion read

ẍ1 = −mω2
0x1 − 1

2
m(ω2

1 − ω2
0)(x1 − x2)

ẍ2 = −mω2
0x2 + 1

2
m(ω2

1 − ω2
0)(x1 − x2) .

The reason for this result becomes clear when we calculate the difference L′ −L:

L′ − L = −iω0m(x1ẋ1 + x2ẋ2) = − i

2
ω0m

d

dt
(x2

1 + x2
2 ) .

The two Lagrangian functions differ by the total time derivative of a function which
depends on the coordinates only. By the general considerations of Sects. M2.9 and
M2.10 such an addition does not alter the equations of motion.

(ii) The transformation to eigenmodes reads

z1 = 1√
2
(x1 + x2) , z2 = 1√

2
(x1 − x2) .

This transformation
(
x1

x2

)
−→
F

(
z1

z2

)

is one-to-one. Both F and F−1 are differentiable. Thus, F , being a diffeomor-
phism, leaves the Lagrange equations invariant.

2.10 The axial symmetry of the force suggests the use of cylindrical coordinates.
In these coordinates the force must not have a component along the unit vector
êφ . Furthermore, since
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∇U(r, ϕ, z) = ∂U

∂r
êr + 1

r

∂U

∂ϕ
êϕ + ∂U

∂z
êz ,

U must not depend on ϕ. The unit vectors êr and êz span a plane that contains
the z-axis.

2.11 By a (passive) infinitesimal rotation we have

x ≈ x0 − (ϕ̂ × x0) ε or x0 ≈ x+ (ϕ̂ × x) ε .

Here ϕ̂ is the direction about which the rotation takes place, ε is the angle of rota-
tion, so that ϕ̂ε = ω dt . Thus ẋ0 = ẋ+(ω×x), the dot denoting the time derivative
in the system of reference that one considers. Inserting this into the kinetic energy
one finds

T = m
(
ẋ2 + 2ẋ · (ω × x)+ (ω × x)2

)
/2 .

Meanwhile U(x0) becomes U(x) = Ū (R−1(t)x). We calculate

∂L

∂ẋi
= mẋi +m(ω × x)i

∂L

∂xi
= −∂Ū

∂xi
+m(ẋ× ω)i +m((ω × x)× ω)i .

This leads to the equation of motion

mẍ = −∇U − 2m(ω × ẋ)−mω × (ω × x)−m(ω̇ × x) .

2.12 Let the coordinates of the point of suspension be (xA, 0), ϕ the angle be-
tween the pendulum and the vertical, with −π ≤ ϕ ≤ π . The coordinates of the
mass point are

x = xA + l sin ϕ , y = −l cosϕ ,

m denoting the mass, l the length of the pendulum. Inserting these into

L = m

2
(ẋ2 + ẏ2)−mg(y + l)

gives the answer

L = m

2
(ẋ2
A + l2ϕ̇2 + 2l cosϕẋAϕ̇)+mgl(cosϕ − 1) .

2.13 (i) If the oscillation is to be harmonic s(t) must obey the following equation

s̈ + κ2s = 0 ⇒ s(t) = s0 sin κt .

(ii) The Lagrangian function reads
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Fig. 11.

L = m

2
ṡ2 − U

where the potential energy is given by (see Fig. 11)

U = mgy = mg

∫ s

0
sin φ ds .

The Euler-Lagrange equation reads ms̈+mg sin φ = 0. Inserting the above relation
for s(t) we obtain the equation s0κ

2 sin κt = g sin φ.
Since the absolute value of the sine function is always smaller than, or equal

to, 1 one has

λ := s0
κ2

g
≤ 1 .

Thus we obtain the equation φ(t) = arcsin(λ sin κt) whose derivatives are

φ̇ = λκ cos κt
√

1 − λ2 sin2 κt
, φ̈ = −λκ2(1 − λ2) sin κt

(1 − λ2 sin2 κt)3/2
.

In the limit λ→ 1, φ goes to zero and φ̇ goes to κ , except if κt = (2n+ 1)/2π
where they are singular.

(iii) The force of constraint is the one perpendicular to the orbit. It is

Z(φ) = mg cosφ

(− sin φ

cosφ

)
.

The effective force is then

E = −mg
(

0

1

)
+ Z(φ) = −mg sin φ

(
cosφ

sin φ

)
.

2.14 (i) The condition ∂F (x, z)/∂x = 0 implies z− ∂f/∂z = 0, i.e., z = f ′(x).
Therefore, x = x(z) is the point where the vertical distance between y = zx (with
z fixed) and y = f (x) is largest (see Fig. 12).

(ii) The figure shows that (LΦ)(z) = zx−Φ(z) ≡ G(x, z), z fixed, is tangent
to f (x) at the point x = x(z) (the derivative being z).

Keeping x = x0 fixed and varying z yields the picture shown in Fig. 13. For
fixed z y = G(x, z) is the tangent to f (x) in x(z). G(x0, z) is the ordinate of the
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Fig. 12. Fig. 13.

intersection point of that tangent with the straight line x = x0. The maximum is
at x0 = x(z), i.e. z(x0) = f ′(x)|x=x0 . As f ′′ > 0 all tangents are below the curve.
The envelope of this set of straight lines is the curve y = f (x).

2.15 (i) In a first step we determine the canonically conjugate momenta

p1 = ∂L

∂q̇1
= 2c11q̇1 + (c12 + c21)q̇2 + b1

p2 = ∂L

∂q̇2
= (c12 + c21)q̇1 + 2c22q̇2 + b2 .

Using the given abbreviations this can be written in the form

π1 = d11q̇1 + d12q̇2 , π2 = d21q̇1 + d22q̇2 .

For this to be solvable in terms of q̇i the determinant

D := d11d22 − d12d21 = det

(
∂L

∂q̇i ∂q̇k

)
	= 0

must be different from zero. The q̇i can then be expressed in terms of the πi :

q̇1 = 1

D
(d22π1 − d12π2) , q̇2 = 1

D
(−d21π1 − d11π2) .

We construct the Hamiltonian function and obtain

H = p1q̇1 + p2q̇2 − L = 1

D

(
c22π

2
1 − (c12 + c21)π1π2 + c11π

2
2

)
− a + U .

The above determinant is found to be
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det

(
∂H

∂pi ∂pk

)
= det

(
∂2H

∂πi ∂πk

)

= 1

D2

∣∣∣∣
d22 (d12 + d21)/2

(d12 + d21)/2 d11

∣∣∣∣ =
1

D
.

The inverse transformation, the construction of L from H , proceeds along the same
lines.

(ii) Assume that there exists a function

F (p1(x1, x2,u), p2(x1, x2,u))

which vanishes identically in the domain of definition of the xi , u fixed. Take the
derivatives

0 = dF

dx1
= ∂F

∂p1

∂p1

∂x1
+ ∂F

∂p2

∂p2

∂x1

0 = dF

dx2
= ∂F

∂p1

∂p1

∂x2
+ ∂F

∂p2

∂p2

∂x2

By assumption the partial derivatives of F with respect to pi do not vanish (oth-
erwise the system of equations would be trivial). Therefore, the determinant

D = det

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂p1

∂x1

∂p2

∂x1
∂p1

∂x2

∂p2

∂x2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= det

(
∂2L

∂ẋi ∂ẋk

)

must be different from zero. This proves the assertion.

2.16 We introduce the complex variable w := x + iy. Then

x = (w + w∗)/2 , y = −i(w − w∗)/2 , ẋ2 + ẏ2 = ẇẇ∗ .

l3 is calculated to be

l3 = m(xẏ − yẋ) = m

2i
(ẇw∗ − wẇ∗) .

Expressed in the new coordinates the Lagrangian function reads

L = m

2
(ẇẇ∗ + ż2)− imω

4
(ẇw∗ − wẇ∗) .

The equations of motion are

m

2
ẅ∗ − imω

4
ẇ∗ = imω

4
ẇ∗ , mz̈ = 0 .

The first of these is written in terms of the variable u := ẇ∗. It becomes u̇ = iωu,
its solution being u = eiωt . w∗ is the time integral of this function, viz.
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w∗ = − i

ω
eiωt + C ,

where C is a complex constant. Take the complex conjugate

w = i

ω
e−iωt + C∗ ,

from which follow the solutions for x and y

x = 1

ω
sinωt + C1 , y = 1

ω
cosωt + C2 ,

where C1 = ){C}, C2 = −*{C}.
The solution for the z coordinate is simple: z = C3t+C4, i.e., uniform motion

along a straight line. The canonically conjugate momenta are

px = mẋ − m

2
ωy , py = mẏ + m

2
ωx , pz = mż ,

while the kinetic momenta are given by pkin = mẋ. In order to construct the Hamil-
tonian function the velocities are expressed in terms of the canonical momenta

ẋ = 1

m
px + ω

2
y , ẏ = 1

m
py − ω

2
x , ż = 1

m
pz .

Then H is found to be

H = p · ẋ− L = 1

2m
p2

kin .

2.17 (i) Hamilton’s variational principle, when applied to L̄, requires

Ī :=
∫ τ2

τ1

L̄ dτ

to be an extremum. Now, since
∫ τ2

τ1

L̄ dτ =
∫ t2

t1

Ldt with ti = t (τi) , i = 1, 2 ,

the action integral Ī is extremal if and only if the Lagrange equations that follow
from L are fulfilled.

(ii) We define q = (q1, . . . , qf ), t = qf+1. From Noether’s theorem the quan-
tity

I =
f+1∑

i=1

∂L̄

∂q̇i

d

ds
hs(q1, . . . , qf+1)|s=0
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is an integral of the motion provided L̄ is invariant under (q1, . . . , qf+1)

→ hs(q1, . . . , qf+1), i.e., in the case considered here, under (q1, . . . , qf+1) →
(q1, . . . , qf+1 + s). Here

dhs

ds

∣∣∣∣
s=0

= (0, . . . , 0, 1)

and

∂L̄

∂q̇f+1
= ∂L̄

∂(dt/dτ)
= L+

f∑

i=1

∂L

∂q̇i

(
− 1

(dt/dτ)2

)
dqi

dτ

dt

dτ
= L−

f∑

i=1

∂L

∂q̇i

dqi

dt
.

The integral of the motion is

I = L−
f∑

i=1

∂L

∂q̇i

dqi

dt
.

Except for a sign this is the expression for the energy.

2.18 The points for which the sum of their distances to A and to Ω is constant
lie on the ellipsoid with foci A, Ω , semi-major axis

√
R2 + a2, and semi-minor

axis R. The reflecting sphere lies inside that ellipsoid and is tangent to it in B.
Thus, any other path than the one shown in Fig. 14 would be shorter than the one
through B for which α = β.

Fig. 14.

2.19 (i) As usual we set xα = (q1, . . . , qf ;p1, . . . , pf ), and yβ = (Q1, . . . ,Qf ;
P1, . . . , Pf ), as well as Mαβ = ∂xα/∂yβ . We have

MT JM = J and J =
(

0f×f 1lf×f
−1lf×f 0f×f

)
. (1)

The equation always relates ∂Pk/∂pi to ∂qi/∂Qk , ∂Qj/∂pl to ∂ql/∂Pj etc. From
this follows that [Pk ·Qk] = [pj · qj ]. Let Φ(x, y) be generating function of the
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canonical transformation. As H̃ = H + ∂Φ/∂t , the function Φ has the dimension
of the product H · t . The assertion then follows from the canonical equations.

(ii) With the canonical transformation Φ and using τ := ωt , H goes over into
H̃ = H + ∂Φ/∂τ . Hence [Φ] = [H ] = [x1x2] = [ω][pq]. The new generalized
coordinate y1 = Q has no dimension. As y1y2 has the same dimension as x1x2,
y2 must have the dimension of H , or H̃ , that is, y2 must equal ωP . Therefore,

Φ̂(x1, y1) = 1

2
x2

1 cot y1 .

From this one calculates

x2 = ∂Φ̂

∂x1
= x1 cot y1 , y2 = − ∂Φ̂

∂y1
= x2

1

2 sin2 y1

or,

x1 =
√

2y2 sin y1 , x2 =
√

2y2 cos y1 .

Using these formulas one finds

Mαβ = ∂xα

∂yβ
=

(
(2y2)

1/2 cos y1 (2y2)
−1/2 sin y1

−(2y2)
1/2 sin y1 (2y2)

−1/2 cos y1

)
.

One easily verifies the conditions det M = 1 and MT JM = J.

2.20 (i) For f = 1 the condition det M = 1 is necessary and sufficient because,
quite generally,

MT JM =
(

0 1
−1 0

)
(a11a22 − a12a21) = J det M .

(ii) We calculate S ·O, set it equal to M, and obtain the equations

x cosα − y sin α = a11 (1)

x sin α + y cosα = a12 (2)

y cosα − z sin α = a21 (3)

y sin α + z cosα = a22 (4)

From the combination ((2)− (3))/((1)+ (4)) of the equations

tan α = a12 − a21

a11 + a22
.

This allows us to calculate sin α and cosα, so that the subsystems ((1), (2)) and
((3), (4)) can be solved for x, y, and z. One finds x = a11 cosα + a12 sin α,
z = a22 cosα − a21 sin α, y2 = xz− 1.

There is a special case, however, that must be studied separately: This is when
a11 + a22 = 0. If a12 	= a21 we take the reciprocal of the above relation
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cot α = a11 + a22

a12 − a21
.

If, however, a12 = a21 the matrix M is symmetric and O can be taken to be the
unit matrix, i.e., α = 0.

2.21 (i) Using the product rule one has {fg, h} = f {g, h} + g{f, h}. Hence

{li , rk} = {εimnrmpn, rk} = εimnrm{pn, rk} + εimnpn

{rm, rk} = εimnrmδnk = εimkrm

and, in a similar fashion, {li , pk} = εikmpm. In calculating the third Poisson bracket
we note that

{li , r} = {εimnrmpn, r} = εimnrm{pn, r} + εimnpn{rm, r}
= εimnrm

∂r

∂rn
= εimnrmrn

1

r
= 0 .

Finally, we have
{
li ,p

2
}
= {εimnrmpn, pkpk} = εimnrm{pn, pkpk} + εimnpn{rm, pkpk}
= −2εimnpnpkδmk = −εimnpnpm = 0 .

(ii) U can only depend on r .

2.22 The vector A is a constant of the motion precisely when the Poisson bracket
of each of its components with the Hamiltonian function vanishes. Therefore, we
calculate

{H,Ak} =
{

1

2m
p2 + γ

r
, εklmpllm + mγ

r
rk

}

= 1

2m
eklm

{
p2, pllm

}
+ γ εklm{1/r, pllm}

+γ

2

{
p2, rk/r

}
+mγ 2{1/r, rk/r} .

The fourth bracket vanishes. The first three are calculated as follows
{
p2, pllm

}
=

{
p2, pl

}
lm +

{
p2, lm

}
pl = 0

{1/r, pllm} = {1/r, pl}lm + {1/r, lm}pl = rl/r
3lm{

p2, rk/r
}
= 1/r

{
p2, rk

}
+ rk

{
p2, 1/r

}
= 2pk/r − 2rkp · x/r3 .

Inserting these results we obtain

{H,Ak} = γ εklmrl/r
3lm + γ

(
pk/r − rkp · x/r3

)
= 0 .

This vector is often called Lenz vector or, in the German literature, Lenz-Runge
vector, although apparently neither H.F.E. Lenz nor C. Runge claimed priority
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for it. Its discovery is due to Jakob Hermann (published in Giornale dei Letterati
d’Italia, vol. 2 (1710) p. 447). The conservation of this vector was also known to
Joh. I Bernoulli and to P.-S. de Laplace, see H. Goldstein, Am. J. Phys. 44 (1976)
No. 11. very much in the spirit of linear algebra.

2.23 Calculation of the Poisson brackets yields differential equations which are
solved taking proper account of the initial conditions as follows:

ṗ1 = {H,p1} = −mα ⇒ p1 = −mαt + px ,

ṗ2 = {H,p2} = 0 ⇒ p2 = py ,

q̇1 = {H, q1} = 1

m
p1 ⇒ q1 = −1

2
αt2 + px

m
t + x0 ,

q̇2 = {H, q2} = 1

m
p2 ⇒ q2 = py

m
t + y0 .

2.24 (i) Let μ1 = m1m2/(m1+m2) and μ2 = (m1+m2)m3/(m1+m2+m3) be the
reduced masses of the two two-body systems (1, 2) and ((center-of-mass of 1 and
2), 3), respectively. Then π1 = μ1�̇1 and π2 = μ2�̇2. This explains the meaning
of these two momenta. The momentum π3 is the center-of-mass momentum.

(ii) We define

Mj :=
j∑

i=1

mi ,

i.e., Mj is the total mass of particles 1, 2, . . . , j . We can then write

�j = rj+1 − 1

Mj

j∑

i=1

miri , j = 1, . . . , N − 1

�N = 1

MN

N∑

i=1

miri ,

πj = 1

Mj+1

⎛

⎝Mjpj+1 −mj+1

j∑

i=1

pi

⎞

⎠ , j = 1, . . . , N − 1

πN =
N∑

i=1

pi .

(iii) We choose the following possibilities:

a) As the Poisson bracket of ri and pk ist {pk, ri} = 1l3×3δik we must also have
{πk, �i} = 1l3×3δik . We use this suggestive short hand notation for {(pk)m, (qi )n}
= δikδmn with (·)m denoting the mth Cartesian coordinate. Using the former brack-
ets one calculates the latter brackets from the defining formulas. For instance, with
m12 := m1 +m2, M := m1 +m2 +m3,
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{π1, �1} =
( m1

m12
+ m2

m12

)
1l = 1l ,

{π2, �1} =
(m3

M
− m3

M

)
1l = 0 , etc.

b) In the 18-dimensional phase space introduce the variables x = (r1, r2, r3,p1,

p2,p3) and y = (�1, �2, �3,π1,π2,π3), calculate the matrix Mαβ := ∂yα/∂xβ
and verify that this matrix is symplectic, i.e. that it satisfies eq. (M2.113). This
calculation can be simplified by noting that M has the form

(
A 0
0 B

)

such that

MT JM =
(

0 AT B
−BT A 0

)

Thus, it suffices to verify that AT B = 1l9×9. One finds

A =
⎧
⎪⎪⎪⎪⎪⎪⎪⎩

−1l 1l 0

−m1/m121l −m2/m121l 1l

m1/M1l m2/M1l m3/M1l

⎫
⎪⎪⎪⎪⎪⎪⎪⎭

,

B =
⎧
⎪⎪⎪⎪⎪⎪⎪⎩

−m2/m121l m1/m121l 0

−m3/M1l −m3/M1l m12/M1l

1l 1l 1l

⎫
⎪⎪⎪⎪⎪⎪⎪⎭

,

the entries being themselves 3×3 matrices. In a next step one calculates (AT B)ik =∑
l AliBlk . For instance, one finds

(AT B)11 = m2

M12
+ m1m3

m12M
+ m1

M
= 1 , etc.

and verifies, eventually, that AT B = 1l9×9.

2.25 (i) In the situation described in the exercise the variation of I (α) is

δI = dI (α)

dα

∣∣∣∣
α=0

dα

= L (qk(t2(0), 0), q̇k(t2(0), 0))
dt2(α)

dα

∣∣∣∣
α=0

dα

−L (qk(t1(0), 0), q̇k(t1(0), 0))
dt1(α)

dα

∣∣
∣∣
α=0

dα

+
∫ t2(0)

t1(0)

(∑

k

∂L

∂qk

∂qk(t, α)

∂α

∣∣
∣∣
α=0

dα +
∑

k

∂L

∂q̇k

∂q̇k(t, α)

∂α

∣∣
∣∣
α=0

dα

)
dt .

We define, as usual
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∂qk

∂α

∣∣∣∣
0
dα = δqk and

∂q̇k

∂α

∣∣∣∣
0
dα = δq̇k = d

dt
δqk ,

and, in addition, dti(α)/dα|0dα = δti , i = 1, 2. The time derivative dδ qk/dt , by
partial integration, is shifted onto ∂L/∂q̇k . Here, however, the terms at the bound-
aries do not vanish because the variations δti do not vanish. One has

∫ t2(0)

t1(0)

∂L

∂q̇k

d

dt
δqk dt =

[
∂L

∂q̇k
δqk

]t2(0)

t1(0)
−

∫ t2(0)

t1(0)

(
d

dt

∂L

∂q̇k

)
δqk dt .

The end points are kept fixed which means that

dqk(ti(α), α)

dα

∣
∣
∣
∣
α=0

= 0 , i = 1, 2 .

Taking the derivative with respect to α this implies

dqk(ti(α), α)

dα

∣
∣
∣
∣
0
= ∂qk

∂t

∣
∣
∣
∣
t=ti

dti(α)

dα

∣
∣
∣
∣
α=0

dα + ∂qk

∂α

∣
∣
∣
∣
t=ti ,α=0

dα

≡ q̇k(ti)δti + δqk|t=ti = 0

Inserting this into δI one obtains the result

δI =
[(

L−
∑

k

∂L

∂q̇k
q̇k

)
δti

]t2(0)

t1(0)
+

∫ t2(0)

t1(0)
dt

∑

k

(
∂L

∂qk
− d

dt

∂L

∂q̇k

)
δqk .

(ii) One calculates δK in exactly the way, viz.

δK = K

∫ t2

t1

(L+ E) dt

=
[(

L−
∑

k

∂L

∂q̇k
q̇k

)
δti

]t2

t1

+
∫ t2

t1

dt
∑

k

(
∂L

∂qk
− d

dt

∂L

∂q̇k

)
δqk + [Eδti]t2t1 = 0 .

Now, by assumption E = ∑
k q̇k(∂L/∂q̇k)−L is constant. As a consequence the

first and third terms of the equation cancel. As the variations δqk are independent
one finds indeed the implication

δK
!= 0 ⇔ ∂L

∂qk
− d

dt

∂L

∂q̇k
= 0 , k = 1, . . . , f .

2.26 We write

T =
∑

gikq̇i q̇k =
(
ds

dt

)2

= 1

2
(L+ E) = E − U
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and obtain T dt = (ds/dt)ds = √
E − U ds. The principle of Euler and Mauper-

tuis, δK = 0, requires

δ

∫ q2

q1

√
E − U ds = 0 .

On the other hand, Fermat’s principle states the following: A light pulse traverses
the path ds in the time dt = (n(x, ν)/c)ds. The path it chooses is such that the
integral

∫
dt is an extremum, i.e. that δ

∫
n(x, ν)ds = 0. The analogy is estab-

lished if we associate with the particle an “index of refraction” which is given by
the dimensionless quantity ((E − U)/mc2)1/2; (see also Exercise 1.12).

2.27 For U(q0) < E ≤ Emax the points of intersection q1 and q2 of the curves y =
U(q) and y = E are turning points, q(t) oscillates periodically between q1 and q2,
cf. Fig. 15. Write the characteristic equation of Hamilton and Jacobi (M2.154) as

H

(
q,

∂S(q, P )

∂q

)
= E . (1)

We know that the transformed momentum obeys the differential equation Ṗ = 0,
i.e., that P = α = const. We are free to choose this constant to be the energy,
P = E. Taking the derivative of eq. (1) with respect to P = E,

∂H

∂p

∂2S

∂q ∂P
= 1 .

Fig. 15.

If ∂H/∂p 	= 0 (this holds locally if E is larger than U(q0)), then (∂2S)/(∂q∂P ) 	=
0. Thus, the equation Q = ∂S(q, P )/∂P can be solved locally for q = q(Q,P ).
This yields
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H

(
q(Q,P ),

∂S

∂q
(q(Q,P ), P )

)
≡ H̃ (Q, P ) = E ≡ P .

From this we conclude

Q̇ = ∂H̃

∂P
= 1 , Ṗ = −∂H̃

∂Q
= 0 ⇒ Q = t − t0 = ∂S

∂E
.

The integral I (E) becomes

I (E) = 1

2π

∮

ΓE

p dq = 1

2π

∫ t0+T (E)

t0

p · q̇ dt

so that dI (E)/dE = T (E)/(2π) ≡ ω(E), in agreement with Exercise 2.1.

2.28 The function S̄(q, I ), with I as in Exercise 2.27, generates the transforma-
tion from (q, p) to the action and angle variables (θ, I ),

p = ∂S̄(q, I )

∂q
, θ = ∂S̄(q, I )

∂I
, with H̃ = E(I) .

We then have θ̇ = ∂E/∂I = const., İ = 0, which are integrated to θ(t) =
(∂E/∂I)t + θ0, I = const. Call the circular frequency ω(E) := ∂E/∂I so that
θ(t) = ωt + θ0, I = const.

2.29 We calculate the integral I (E) of Exercise 2.27 for the case H = p2/2 +
q2/2: With p = √

2E − q2

I (E) = 1

2π

∮

ΓE

p dq = 1

2π

∮

ΓE

√
2E − q2 dq

= 1

π

∫ +A

−A

√
A2 − q2 dq ,

(
A = √

2E
)
.

Using

∫ A

−A

√
A2 − x2 dx = πA2

2

one finds I (E) = A2/2 = E, i.e., H = I . The characteristic equation (M2.154)
reads in the present example

1

2

(
∂S

∂q

)2

+ 1

2
q2 = E .

Its solution can be written as an indefinite integral S = ∫ √
2E − q ′2 dq ′, or

S̄(q, I ) = ∫ √
2I − q ′2 dq ′. The angle variable follows from this
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θ = ∂S̄

∂I
=

∫
1

√
2I − q ′2

dq ′ = arcsin
q√
2I

,

giving q = √
2I sin θ . In a similar fashion one calculates

p = ∂S̄

∂q
=

√
2I − q2 = √

2I cos θ .

These are identical with the formulas that follow from the canonical transformation
Φ(q,Q) = (q2/2) cotQ, cf. eq. (M2.95).

2.30 Following Exercise 2.17 we take the time variable t to be a generalized
coordinate t = qf+1 and introduce in its place a new variable τ such that

L̄

(
q, t,

dq

dτ
,
dt

dτ

)
:= L

(
q,

1

(dt/dτ)

dq

dτ

)
dt

dτ
.

By assumption f = 1, i.e., q1 = q and q2 ≡ qf+1 = t . The action integral (the
principal function) with the boundary conditions modified accordingly, reads

I s0 =
∫ τ ′2

τ ′1
dτ L̄(φ1(s, τ ), φf+1(s, τ ), φ

′
1(s, τ ), φ

′
f+1(s, τ )) ,

the prime denoting the derivative with respect to τ . We now take the derivative of
I s0 with respect to s, at s = 0,

d

ds
I s0

∣∣∣∣
s=0

=
∫ τ2

τ1

dτ

×
{
∂L̄

∂φ1

dφ1

ds
+ ∂L̄

∂φ′1
dφ′1
ds

+ ∂L̄

∂φf+1

dφf+1

ds
+ ∂L̄

∂φ′f+1

dφ′f+1

ds

}

. (1)

Replacing ∂L̄/∂φ1 in the first term by (d/dτ)(∂L̄/∂φ′1), through the equations of
motion, the first two terms of the curly brackets in eq. (1) can be combined to a
total derivative with respect to τ . The integral over τ can be rewritten as an integral
over t , so that the first two terms give the contribution

∫ t2

t1

dt
d

dt

(
∂L

∂φ̇1

dφ1

ds

)
= pb

dqb

ds
− pa

dqa

ds
.

(Note that here the dot means the derivative with respect to t , as before.) In the
third term we replace ∂L̄/∂φf+1 by (d/dτ)(∂L̄/∂φ′f+1), (again by virtue of the
equation of motion). In this term and in the last term of the curly brackets in eq. (1)
we make use of the solution to Exercise 2.17, viz.

∂L̄

∂(∂φf+1/∂τ)
= ∂L̄

∂(∂t/∂τ)
= L− ∂L

∂φ̇1

dφ1

dt
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so that these terms can also be combined to a total derivative

d

dτ

((
L− ∂L

∂φ̇1

dφ1

dt

)
dφf+1

ds

)
. (2)

As above, in doing the integral one replaces τ by the variable t . The inner bracket
in eq. (2) is the energy (to within the sign) so that we obtain the difference of the
term −E(dφf+1/ds) at the two boundary points, that is, (−E) times the deriva-
tive of the time t = t2 − t1 by s. Summing up one indeed obtains the result of the
assertion. Finally, the generalization to f > 1 is obvious.

2.31 Start from the Hamiltonian function H = p2/(2m)+U(r) with U(r) = γ /r ,
and from A = p ×  + mU(r)x. Clearly, A ·  = 0, the vector A is perpendic-
ular to  and, hence, lies in the plane of the orbit. Making use of the formula
x · (p× ) =  · (x× p) = �2 one calculates (with � = ||)

A2 = (p× )2 + 2mU(r) x · (p× )+m2γ 2

= �2(p2 + 2mU(r)
)+m2γ 2

= m2γ 2 + 2m�2H = m2γ 2 + 2m�2E .

This vanishes only if the energy E and hence also γ are negative. In the case of
the Kepler problem γ = −Gm1m2 ≡ −A (notation as in Sect. 1.7.2), m ≡ μ is
the reduced mass. The vector A vanishes for E = −μA2/(2�2) which is the case
of the circular orbit.

Calculate the scalar product x · A = x · (p× ) − μAr = �2 − μAr , set this
equal to r|A| cosφ to obtain

r(φ) = �2/|A| cosφ + μA

= �2/(μA)/1 +
√

1 + 2E�2/(μA2) cosφ ≡ p/1 + ε cosφ .

This is the solution given in Sect. 1.21, with φ0 = 0. One concludes that A points
along the 1-axis in the orbital plane, from the center of force to the perihelion, its
modulus being |A| = εμA.

The cross product is ×A = �2p− (μA/r) x×  from which one finds

(
p− 1/�2 ×A

)2 = μ2A21/�2 .

Noting that A = εμAê1 and ×A = �εμAê3 × ê1 = �εμAê2, and decomposing
p = p1ê1 + p2ê2 one obtains

p2
1 + (p2 − εμA/�)2 = (μA)2/�2 .

This is the equation of the hodograph of Exercise 1.26.
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Chapter 3: The Mechanics of Rigid Bodies

3.1 (i) As K and K̄ differ by a time-dependent rotation, J is related to J̄ by
J = R(t)JR−1(t), with R(t) the rotation matrix that describes the relative rotation
of the two coordinate systems. The characteristic polynomial of J is invariant under
similarity transformations. Indeed, by the multiplication law for determinants,

det |J− λ1l| = det
∣∣∣R(t)J̄R−1(t)− λ1l

∣∣∣

= det
∣
∣
∣R(t)(J̄− λ1l)R−1(t)

∣
∣
∣

= det
∣
∣
∣J̄− λ1l

∣
∣
∣ .

The characteristic polynomials of J and J̄ are the same. Hence, their eigenvalues
are pairwise equal.

(ii) If K̄ is a principal-axes system, J̄ has the form

J̄ =
⎧
⎪⎪⎪⎪⎪⎪⎩

I1 0 0
0 I2 0
0 0 I3

⎫
⎪⎪⎪⎪⎪⎪⎭

.

A rotation about the 3-axis reads

R(t) =
⎧
⎪⎪⎪⎪⎪⎪⎩

cosφ(t) sin φ(t) 0
− sin φ(t) cosφ(t) 0

0 0 1

⎫
⎪⎪⎪⎪⎪⎪⎭

.

This allows us to compute J with the result

J =
⎧
⎪⎪⎪⎪⎪⎪⎩

I1 cos2 φ + I2 sin2 φ (I2 − I1) sin φ cosφ 0
(I2 − I1) sin φ cosφ I1 sin2 φ + I2 cos2 φ 0

0 0 I3

⎫
⎪⎪⎪⎪⎪⎪⎭

.

3.2 The straight line connecting the two atoms is a principal axis. The remain-
ing axes are chosen perpendicular to the first and perpendicular to each other,
as sketched in Fig. 16. Using the notation of that figure we have m1a1 = m2a2,
a1 + a2 = l, and therefore

a1 = m2

m1 +m2
l , a2 = m1

m1 +m2
l ,

with μ denoting the reduced mass.

I1 = I2 = m1a
2
1 +m2a

2
2 =

m1m2

m1 +m2
l2 = μl2 ,
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Fig. 16.

3.3 The moments of inertia are determined from the equation

det(J− λ1l) =
∣
∣
∣
∣
∣
∣

I11 − λ I12 0
I21 I22 − λ 0
0 0 I33 − λ

∣
∣
∣
∣
∣
∣
= 0 ,

whose solutions are

I1,2 = I11 + I22

2
±

√
(I11 − I22)2

4
+ I12I21 , I3 = I33 .

(i) I1,2 = A±B. Thus it follows that B ≤ A and A+B ≥ 0. Since I1+I2 ≥ I3
we also have I3 ≤ 2A, i.e., A ≥ 0.

(ii) I1 = 5A, I2 = 0. From I1 + I2 ≥ I3 and I2 + I3 ≥ I1 follows I3 = 5A.
The body is axially symmetric with respect to the 2-axis.

3.4 The motion being free we choose a principal-axes system attached to the
center-of-mass, letting the 3-axis coincide with the symmetry axis. The moments
of inertia are easily calculated, the result being

I1 = I2 = 3

20
M

(
R2 + 1

4
h2

)
, I3 = 3

10
MR2 .

A Lagrangian function is

L = Trot = 1

2

3∑

i=1

Iiω̄
2
i ,

where ω̄i are the components of the angular velocity in the body fixed system.
They are related to the Eulerian angles and their time derivatives by the formulae
(M3.82),

ω̄1 = θ̇ cosψ + φ̇ sin θ sinψ

ω̄2 = −θ̇ sinψ + φ̇ sin θ cosψ

ω̄3 = φ̇ cos θ + ψ̇ .

Inserting these into L and noting that I1 = I2, we have
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L(φ, θ, ψ, φ̇, θ̇ , ψ̇) = 1

2
I1

(
θ̇2 + φ̇2 sin2 θ

)
+ 1

2
I3

(
ψ̇ + φ̇ cos θ

)2
.

The variables φ and ψ are cyclic, hence

pφ = ∂L

∂φ̇
= I1φ̇ sin2 θ + I3

(
ψ̇ + φ̇ cos θ

)
cos θ ,

pψ = ∂L

∂ψ̇
= I3

(
ψ̇ + φ̇ cos θ

)
,

are conserved. Furthermore, the energy E = Trot = L is conserved. Note that pφ =
I1(ω̄1 sinψ+ω̄2 cosψ) sin θ+I3ω̄3 cos θ . This is the scalar product L·ê30 of the an-
gular momentum and the unit vector in the 3-direction of the laboratory system, i.e.
pφ = L3. Regarding pψ we have pψ = I3ω̄3 = L̄3. The equations of motion read

d

dt
pφ = d

dt
(I1(ω̄1 sinψ + ω̄2 cosψ) sin θ + I3ω̄3 cos θ) = 0 (1)

d

dt
pψ = I3

d

dt

(
ψ̇ + φ̇ cos θ

) = 0 (2)

d

dt

∂L

∂θ̇
− ∂L

∂θ
= I1θ̈ − I1φ̇

2 sin θ cos θ + I3
(
ψ̇ + φ̇ cos θ

)
φ̇ sin θ = 0 . (3)

From the first of these φ̇ = (L3 − L̄3 cos θ)/(I1 sin2 θ). Inserting this into the
Lagrangian function gives

L = 1

2
I1θ̇

2 + 1

2I1 sin2 θ

(
L3 − L̄3 cos θ

)2 + 1

2I3
L̄2

3 = E = const. (4)

If, on the other hand, φ̇ is inserted into the third equation of motion (3), one obtains

I1θ̈ − cos θ

I1 sin3 θ

(
L3 − L̄3 cos θ

)2 + 1

I1 sin θ
L̄3

(
L3 − L̄3 cos θ

) = 0 ,

which is nothing but the time derivative of eq. (4).

3.5 We choose the 3-axis to be the symmetry axis of the torus. Let (r ′, φ) be po-
lar coordinates in a section of the torus and ψ be the azimuth in the plane of the
torus as sketched in Fig. 17. The coordinates (r ′, ψ, φ) are related to the cartesian
coordinates by

x1 = (R + r ′ cosφ) cosψ , x2 = (R + r ′ cosφ) sinψ , x3 = r ′ sin φ .

The Jacobian is

∂(x1, x2, x3)

∂(r ′, ψ, φ)
= r ′(R + r ′ cosφ) .

The volume of the torus is calculated to be

V =
∫ r

0
dr ′

∫ 2π

0
dψ

∫ 2π

0
dφ r ′(R + r ′ cosφ) = 2π2r2R ,
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so that the mass density is �0 = M/(2π2r2R). Thus

I3 =
∫
d3x�0

(
x2

1 + x2
2

)
= �0

∫ 2π

0
dψ

∫ 2π

0
dφ

∫ r

0
dr ′ r ′(R + r ′ cosφ)3

= M

(
R2 + 3

4
r2
)
,

I1 =
∫
d3x�0

(
x2

2 + x2
3

)
= �0

∫ 2π

0
dψ

∫ 2π

0
dφ

∫ r

0
dr ′ r ′(R + r ′ cosφ)

·
(
(R + r ′ cosφ)2 sin2 ψ + r ′2 sin2 φ

)
= 1

2
M

(
R2 + 5

4
r2
)
.

Fig. 17.

Fig. 18.

3.6 In the first position we have I (a)3 = 2(2/5)(MR2+mr2) and ω(a)3 = L3/I
(a)
3 .

In the second position the contribution of the two smaller balls is calculated by
means of Steiner’s theorem, I ′i = Ii + m(a2 − a2

i ), now with I3 = 2mr2/5,
a = ±(b/2)ê1:

I
(b)
3 = 2

(
(2/5)(MR2 +mr2)+mb2/4

)
.
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It follows that ω(b)3 = L3/I
(b)
3 , and ω

(a)
3 /ω

(b)
3 = 1 + mb2/(2I (a)3 ). One rotates

faster if the arms are close to one’s body than if they are stretched out. Making
use of Steiner’s theorem once more we finally calculate I1 = I2. For the two
arrangements one obtains the result

I
(a)
1 = I

(a)
3 + 1

2
a2

(
M + 1

9
m

)
, I

(b)
1 = 4

5

(
MR2 +mr2

)
+ 5

9
Ma2 .

3.7 The relation between density and mass reads

M =
∫
�(r) d3r =

∫ 2π

0
dφ

∫ π

0
sin θ dθ

∫ ∞

0
r2 dr �(r, θ, φ) .

In our case, where � depends on θ only, this means

M =
∫ 2π

0
dφ

∫ π

0
sin θ dθ

∫ R(θ)

0
r2 dr �0 = 2π

3
�0

∫ π

0
sin θ dθ R(θ)3 .

The moments of inertia I3, I1 = I2 are calculated from the formulas

I3 =
∫

d3x �r2(1 − cos2 θ) , I1 + I2 + I3 = 2
∫

d3x �r2 ,

(i) Integration gives the results

M = 4π

3
�0R

3
0(1 + α)2 , i.e., �0 = 3

4π

M

R3
0(1 + α2)

.

I1 = I2 = 2MR2
0

5(1 + α2)

{
1 + 4α2 + 9

7
α4

}
, I3 = 2MR2

0

5(1 + α2)

{
1 + 2α2 + 3

7
α4

}
.

(ii) Substituting z = cos θ the integrals are easily evaluated. With the abbrevi-
ation γ := √

5/16π β we obtain

M = 4π

3
�0R

3
0

(
16

35
γ 3 + 12

5
γ 2 + 1

)
,

that is

�0 = 3

4π

M

R3
0

(
16

35
γ 3 + 12

5
γ 2 + 1

)−1

.

I1 = I2 = 2MR2
0

5
· 1 + γ + 64γ 2/7 + 8γ 3 + 688γ 4/77 + 2512γ 5/1001

1 + 12γ 2/5 + 16γ 3/35
,

I3 = 2MR2
0

5
· 1 − 2γ + 40γ 2/7 − 16γ 3/7 + 208γ 4/77 − 32γ 5/1001

1 + 12γ 2/5 + 16γ 3/35
,
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3.8 The (principal) moments of inertia are the eigenvalues of the given tensor and,
hence, are the roots of the characteristic polynomial det(λ1l− J). Calculating this
determinant we are led to the cubic equation λ3 − 4λ2 + 5λ− 2 = 0. Its solutions
are λ1 = λ2 = 1, λ3 = 2. The inertia tensor in diagonal form reads

◦
J =

⎧
⎪⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
0 0 2

⎫
⎪⎪⎪⎪⎪⎪⎭

.

We write J = R
◦
JRT and decompose the rotation matrix according to R(ψ, θ, φ) =

R3(ψ)R2(θ)R3(φ). As the factor R3(φ) leaves
◦
J invariant we can choose φ = 0.

With

R2(θ) =
⎧
⎪⎪⎪⎪⎪⎪⎩

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

⎫
⎪⎪⎪⎪⎪⎪⎭

and R3(ψ) =
⎧
⎪⎪⎪⎪⎪⎪⎩

cosψ sinψ 0
− sinψ cosψ 0

0 0 1

⎫
⎪⎪⎪⎪⎪⎪⎭

we calculate

R
◦
JRT = 1l+

⎧
⎪⎪⎪⎪⎪⎪⎩

cos2 ψ sin2 θ − sinψ cosψ sin2 θ − cosψ cos θ sin θ
− sinψ cosψ sin2 θ sin2 ψ sin2 θ sinψ cos θ sin θ
− cosψ cos θ sin θ sinψ cos θ sin θ cos2 θ

⎫
⎪⎪⎪⎪⎪⎪⎭

.

If this is set equal to J as given, we find cos2 θ = 3/8, and, with the following
choice of signs for θ : cos θ = √

3/(2
√

2) and sin θ = √
5/(2

√
2), the result

cosψ = 1/
√

5, sinψ = −√4/5.

3.9 (i) �(r) = �0θ(a − |r|). The total mass is equal to the volume integral of
�(r), viz.

M = 4π

3
a3�0 ⇒ �0 = 3M

4πa3 .

(ii) We choose the 3-axis to be the axis of rotation. Let the coordinate in the
body fixed system be (x, y, z), the coordinates in the space fixed system are

x′ = x cosωt − (y + a) sinωt , y′ = x sinωt + (y + a) cosωt , z′ = z .

Fig. 19.
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Inverting these equations we have

x = +x′ cosωt + y′ sinωt , y = −x′ sinωt + y′ cosωt − a ,

whence

x2 + y2 = x′2 + y′2 + a2 + 2a(x′ sinωt − y′ cosωt) .

From this we get

�(r′, t) = �0θ
(
a −

√
r ′2 + a2 + 2a(x′ sinωt − y′ cosωt)

)
.

(iii) In the case of a homogeneous sphere the inertia tensor is diagonal, all
three moments of inerta are equal, I1 = I2 = I3 ≡ I . Hence,

3I = I1 + I2 + I3 = 2
∫
d3r�(r)r2 = 6Ma2

5
.

Making use of Steiner’s theorem (M3.23) we find

I ′3 = I3 +M
(
a2δ33 − a2

3

)
= 7Ma2

5
.

3.10 (i) The volume of the cylinder is V = πr2h, hence the mass density is
�0 = m/(πr2h). The moment of inertia relevant for rotations about the symmetry
axis is best calculated using cylindrical coordinates,

I3 = �0

∫ 2π

0
dφ

∫ h

0
dz

∫ r

0
�3 d� = 1

2
mr2 .

Call q(t) the projection of the center-of-mass’ orbit onto the inclined plane. When
the center-of-mass moves by an amount dq, the cylinder rotates by an angle
dφ = dq/r . Therefore, the total kinetic energy is

T = 1

2
mq̇2 + 1

2
I3
q̇2

r2 = 3

4
mq̇2 .

(ii) A Lagrangian function is

L = T − U = 3mq̇2/4 −mg(q0 − q) sin α ,

where q0 is the length of the inclined plane and α its angle of inclination. The
equation of motion reads 3mq̈/2 = mg sin α, the general solution being q(t) =
q(0)+ v(0)t + (g sin α)t2/3.

3.11 (i) The rotation R(φ · φ̂) is a right-handed rotation by an angle φ about
the direction φ̂, with 0 ≤ φ ≤ π . Any desired position is reached by means of
rotations about φ̂ and −φ̂.
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(ii) With φ̂ an arbitrary direction in R, and with φ between 0 and π , the pa-
rameter space (φ, φ̂) is the ball D3 (surface and interior of the unit sphere in R

3).
Every point p ∈ D3 represents a rotation, the direction φ̂ being given by the polar
coordinates of p, and the angle φ being given by its distance from center. Note,
however, that A : (φ̂, φ = π) and B : (−φ̂, φ = π) represent the same rotation.

(iii) There are two types of closed curves in D3: curves of the type of C1 as
shown in Fig. 20, which can be contracted, by a continuous deformation, to a point,
and curves such as C2, which do not have this property. C2 connects the antipodes
A and B. As these points represent the same rotation, C2 is a closed curve. Any
continuous deformation of C2 which shifts A to A′ also shifts B to B ′, the antipodal
point of A′.

While C1 contains no jumps between antipodes, C2 contains one such jump.
One easily convinces oneself, by means of a drawing, that any closed curve with an
even number of antipodal jumps can be deformed continuously into C1 or, equiv-
alently, into a point.

Take the example of a closed curve with two such jumps as shown in Fig. 21.
One can let A1 move to B2 in such a way that the arc B1A2 goes to zero, the sec-
tions A1B1 and A2B2 become equal and opposite so that the curve A1B2 becomes
like C1 in Fig. 20. In a similar fashion one shows that all closed curves with an
odd number of jumps can be continuously deformed into C2. (One says that the
two types of curves form homotopy classes.)

Fig. 20.

Fig. 21.



Chapter 4: Relativistic Mechanics 511

3.12 We do the calculation for the example of (M3.93). Equations (M3.89) yield
expressions for the components of angular momentum in the body fixed system.

Making use of the relation {pi, f (qj )} = δij f
′(qj ) which follows from the

definition of the Poisson brackets, we calculate readily

{
L̄1, L̄2

} =
{
pφ

sinψ

sin θ
− pψ sinψ cot θ + pθ cosψ,

pφ
cosψ

sin θ
− pψ cosψ cot θ − pθ sinψ

}

= pθ
cos θ

sin2 θ

(− {
sinψ,pψ cosψ

}− {
pψ sinψ, cosψ

})

+pφ
(
− sin2 ψ

{
1

sin θ
, pθ

}
+ cos2 ψ

{
pθ ,

1

sin θ

})

+ cot2 (pψ sinψ,pψ cosψ
}+ (

sinψ
{
pψ cot θ, pθ sinψ

}

− cosψ
{
pθ cosψ,pψ cot θ

})

= +pφ cos θ

sin2 θ
− pφ

cos θ

sin2 θ
− pψ cot2 θ + pψ

1

sin2 θ

= pψ = L̄3 .

Chapter 4: Relativistic Mechanics

4.1 (i) Let the neutral pion fly in the 3-direction with velocity v = v0ê3. The full
energy–momentum vector of the pion is

q =
(

1

c
Eq, q

)
= (γ0mπc, γ0mπv) = γ0mπc

(
1, β0ê3

)
,

where β0 = v0/c, γ0 = (1 − β2
0 )
−1/2. The special Lorentz transformation which

takes us to the rest system of the pion, is

L−v =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ0 0 0 −γ0β0
0 1 0 0
0 0 1 0

−γ0β0 0 0 γ0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Indeed, L−vq = q∗ = (mπc, 0).
(ii) In the rest system (Fig. 22, left-hand side) the two photons have the four-

momenta k∗i = (E∗
i /c, k

∗
i ), i = 1, 2. Conservation of energy and momentum re-

quires q∗ = k∗1 + k∗2 , i.e. E∗
1 + E∗

2 = mπc
2 and k∗1 + k∗2 = 0. As photons are

massless, E∗
i = |k∗i |c, and, as k∗1 = −k∗2, one has E∗

1 = E∗
2 . Denote the absolute

value of the spatial momenta by κ∗. Then |k∗1| = |k∗2| = κ∗ = mπc/2.
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Fig. 22.

In the rest system the decay is isotropic. In the laboratory system only the di-
rection ê3 of the pion’s momentum is singled out. Therefore, in this system the
decay distribution is symmetric with respect to the 3-axis. We first study the situa-
tion in the (1, 3)-plane and then obtain the complete answer by rotation about the
3-axis. We have (k∗1)3 = κ∗ cos θ∗ = −(k∗2)3, (k∗1)1 = κ∗ sin θ∗ = −(k∗2)1, while
the 2-components vanish. In the laboratory system we have ki = Lv0k

∗
i , viz.

1

2
E1 = γ0κ

∗ (1 + β0 cos θ∗
)
,

1

c
E2 = γ0κ

∗ (1 − β0 cos θ∗
)
,

(k1)1 =
(
k∗1

)
1 = κ∗ sin θ∗ , (k2)1 =

(
k∗2

)
1 = −κ∗ sin θ∗ ,

(k1)3 = γ0κ
∗ (β0 + cos θ∗

)
, (k2)3 = γ0κ

∗ (β0 − cos θ∗
)
,

(k1)2 = 0 = (k2)2 .

In the laboratory system we then find

tan θ1 = (k1)1

(k1)3
= sin θ∗

γ0(β0 + cos θ∗)
; tan θ2 = − sin θ∗

γ0(β0 − cos θ∗)
.

Examples:

a) θ∗ = 0 (forward emission of one photon, backward emission of the other): From
the formulas above one finds E1 = mπc

2γ0(1+ β0)/2, E2 = mπc
2γ0(1− β0)/2,

k1 = mπcγ0(β0 + 1)ê3/2, k2 = mπcγ0(β0 − 1)ê3/2, and, as β0 ≤ 1, θ1 = 0,
θ2 = π .

b) θ∗ = π/2 (transverse emission): In this case E1 = E2 = mπc
2γ0/2, k1 =

mπc(ê1 + γ0β0ê3)/2, k2 = mπc(−ê1 + γ0β0êe)/2, tan θ1 = tan θ2 = 1/(γ0β0).
c) θ∗ = π/4 and β0 = 1/

√
2, i.e, γ0 = √

2: In this case one finds E1 =
3mπc

2γ0/4, E2 = mπc
2γ0/4, k1 = mπc(ê1 − 2

√
2ê3)/(2

√
2), k2 =

−mπcê1/(2
√

2), θ1 = arctan(1/(2
√

2)) ≈ 0.108π , θ2 = π/2.
In the rest system the decay distribution is isotropic, which means that the

differential probability dΓ for k∗1 to lie in the interval dΩ∗ = sin θ∗ dθ∗ dφ∗ is
independent of θ∗ and of φ∗. (To see this enclose the decaying pion by a unit
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sphere. If one considers a large number of decays then photon 1 will hit every
surface element dΩ∗ on that sphere with equal probability.) Thus,

dΓ = Γ0 dΩ
∗ with Γ0 = const.

In the laboratory system the analogous distribution is no longer isotropic. It is dis-
torted in the direction of flight but is still axially symmetric about that axis. We have

1

Γ0
dΓ =

∣∣
∣
∣
dΩ∗

dΩ

∣∣
∣
∣ dΩ where

dΩ∗

dΩ
= sin θ∗

sin θ

dθ∗

dθ
.

The factor sin θ∗/ sin θ is calculated from the above formula for tan θ1, viz.

sin θ = tan θ√
1 + tan2 θ

= sin θ∗

γ0(β0 + cos θ∗)
,

and the derivative dθ/dθ∗ is obtained from θ = arctan(sin θ∗/γ0(β0+ cos θ∗)) by
making use of the relation γ 2

0 β
2
0 = γ 2

0 − 1. One finds

dΩ∗

dΩ
= γ 2

0

(
1 + β0 cos θ∗

)2
.

The cosine of θ∗ is expressed in terms of the corresponding laboratory angle by
the formula

cos θ∗ = cos θ − β0

1 − β0 cos θ
.

The shift of the angular distribution is well illustrated by the graph of the function

F(θ) := dΩ∗

dΩ
= γ 2

0

(
1 + β0

cos θ − β0

1 − β0 cos θ

)2

for different values of β0. Quite generally we have dF/dθ |θ=0 = 0. For β0 → 1
the value F(0) = (1+β0)/(1−β0) tends to infinity. For small argument θ = ε � 1,
on the other hand,

F(ε) ≈ 1 + β0

1 − β0

(
1 − ε2

1 − β0

)
,

which means that for ε2 ≈ (1 − β0) F becomes very small. Therefore, when
β0 → 1 the function F(θ) falls off very quickly with increasing θ . Figure 23
shows the examples β0 = 0, β0 = 1/

√
2, and β0 = 11/13.

4.2 Let the energy-momentum four-vectors of π , μ, and ν be q, p, and k, re-
spectively. We have always q = p + k. In the pion’s rest system

q = (mπc, q = 0) , p =
(

1

c
E∗
p,p

∗
)
, k =

(
1

c
E∗
k ,−p∗

)
.
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Fig. 23.

If κ∗ := |p∗| denotes the magnitude of the momentum of the muon and of the
neutrino, then

E∗
k = κ∗c = m2

π −m2
μ

2mπ

c2 , E∗
p =

√
(κ∗c)2 + (mμc)2 =

m2
π +m2

μ

2mπ

c2 .

In the laboratory system the situation is as follows: The pion has velocity v0 = v0ê3
and, therefore,

q = (Eq/c, q) = (γ0mπc, γ0mπv0) = γ0mπc(1, β0ê3)

with β0 = v0/c, γ0 = 1/
√

1 − β2
0 . It is sufficient to study the kinematics in the

(1, 3)-plane. The transformation from the pion’s rest system to the laboratory sys-
tem yields

1

c
Ep = γ0

(
1

c
E∗
p + β0p

∗3
)
= γ0

(
1

c
E∗
p + β0κ

∗ cos θ∗
)
,

p1 = p∗1 ,

p2 = p∗2 = 0 ,

p3 = γ0

(
1

c
β0E

∗
0 + p∗3

)
= γ0

(
1

c
β0E

∗
p + κ∗ cos θ∗

)

and, therefore, the relation between the angles of emission θ∗ and θ is (cf. Fig. 24)
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Fig. 24.

tan θ = p1

p3 = κ∗ sin θ∗

γ0(β0E∗
p/c + κ∗ cos θ∗)

, (1)

or

tan θ =
(
m2
π −m2

μ

)
sin θ∗

γ0
(
β0

(
m2
π +m2

μ

)+ (
m2
π −m2

μ

)
cos θ∗

) . (2)

Making use of β∗ := cκ∗/E∗
p = (m2

π − m2
μ)/(m

2
π + m2

μ) (this is the beta factor
of the muon in the rest system of the pion), eq. (1) is rewritten

tan θ = β∗ sin θ∗

γ0(β0 + β∗ cos θ∗)
. (3)

There exists a maximal angle θ if the muons which are emitted backwards in the
pion’s rest system (θ∗ = π), have momenta

p3 = γ0E
∗
p/c

(
β0 + β∗ cos θ∗

) = γ0E
∗
p/c

(
β0 − β∗

)
> 0 ,

i.e., if β0 > β∗. The magnitude of the maximal angle is obtained from the condition
d tan θ/dθ∗ = 0 which gives cosβ∗ = −β∗/β0 and, finally,

tan θmax =
β∗

√
β2

0 − β∗2

γ0(β
2
0 − β∗2)

= β∗

γ0

√
β2

0 − β∗2
=
β∗

√
1 − β2

0
√
β2

0 − β∗2
. (4)

4.3 The variables s and t are the squared norms of four-vectors and are thus
invariant under Lorentz transformations. The same is true for u = c2(qA−q ′B)2. For
our calculations it is convenient to choose units such that c = 1. It is not difficult to
re-insert the constant c in the final results. (This is important if we wish to expand
in terms of v/c.) To reconstruct those factors one must keep in mind that terms like
(mass times c2) and (momentum times c) have the physical dimension of energy.

Conservation of energy and momentum means that the four equations

qA + qB = q ′A + q ′B (1)



516 Solution of Exercises

must be satisfied. This means that the variables s, t, u can each be expressed in
two different ways (now setting c = 1):

s = (qA + qB)
2 = (

q ′A + q ′B
)2 (2)

t = (
qA − q ′A

)2 = (
q ′B − qB

)2 (3)

u = (
qA − q ′B

)2 = (
q ′A − qB

)2
. (4)

(i) In the center-of-mass system we have

qA = (
E∗
A, q

∗) , qB = (
E∗
B,−q∗

)
,

q ′A = (
E′∗
A , q

′∗) , q ′B = (
E′∗
B ,−q′∗

)
, (5)

where E∗
A =

√
m2
A + (q∗)2 etc., with q∗ = |q∗|. Like in the nonrelativistic case

energy conservation requires the magnitudes of the three-momenta in the center-
of-mass system to be equal. However, the simple nonrelativistic formula

(q∗)n.r. = mB

mA +mB

∣
∣
∣qlab
A

∣
∣
∣

that follows from eq. (M1.79a) no longer holds. This is so because neither the
nonrelativistic energy

Tr = mA +mB

2mAmB
(q∗)2n.r.

nor the quantity

(
qA + qB

)2

2(mA +mB)

are conserved. We have

s = (
E∗
A + E∗

B

)2 = m2
A +m2

B + 2(q∗)2

+2
√(

(q∗)2 +m2
A

) (
(q∗)2 +m2

B

)
. (6)

Thus, s is the square of the total energy in the center-of-mass system. Reintroduc-
ing the velocity of light,

s = m2
Ac

4 +m2
Bc

4 + 2(q∗)2c2 + 2
√(

(q∗)2c2 +m2
Ac

4
) (
(q∗)2c2 +m2

Bc
4
)
.

In a first step we check that s, when expanded in terms of 1/c, gives the correct
nonrelativistic kinetic energy Tr of relative motion (except for the rest masses, of
course)

s ≈
(
mAc

2 +mBc
2
)2

(
1 + 1

mAmB

(q∗)2/c2 +O

(
(q∗)4

m4c4

))
,
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and, thus,

√
s ≈ mAc

2 +mBc
2 + mA +mB

2mAmB

(q∗)2 +O

(
(q∗c)4

(mc2)4

)
.

The magnitude of the center-of-mass momentum is obtained from (6)

q∗(s) = 1

2
√
s

√(
s − (mA +mB)2

) (
s − (mA −mB)2

)
. (7)

Clearly, the reaction can take place only if s is at least equal to the square of the
sum of the rest energies,

s ≥ s0 := (mA +mB)
2 =̂

(
mAc

2 +mBc
2
)2

.

s0 is called the threshold of the reaction. For s = s0 the momentum vanishes,
which means that at threshold the kinetic energy of relative motion vanishes.

The variable t is expressed in terms of q∗ and the scattering angle θ∗ as follows:

t = (
qA − q ′A

)2 = q2
A + q ′2A − 2qA · q ′A = 2m2

A − 2E∗
AE

′∗
A + 2q∗ · q′∗ .

As the magnitudes of q∗ and of q′∗ are equal, E∗
A = E∗

B . Therefore,

t = −2(q∗)2(1 − cos θ∗) . (8)

Except for the sign, t is the square of the momentum transfer (q∗ − q′∗) in the
center-of-mass system. For fixed s ≥ s0, t varies as follows

−4(q∗)2 ≤ t ≤ 0 .

Examples:

a) e− + e− → e− + e−

s ≥ s0 = 4
(
mec

2
)2

, −(s − s0) ≤ t ≤ 0 .

b) ν + e− → e− + ν

s ≥ s0 =
(
mec

2
)2

, −1

s
(s − s0)

2 ≤ t ≤ 0 .

(ii) Calculating s+ t +u from the formulas (2)–(4) and making use of (1), we
find s+ t+u = 2(m2

A+m2
B)c

4. More generally, for the reaction A+B → C+D,
one finds

s + t + u =
(
m2
A +m2

B +m2
C +m2

D

)
c4 .
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4.4 In the laboratory system

qA = (
EA, qA

)
, qB =

(
mBc

2, 0
)
,

q ′A = (
E′
A, q

′
A

)
, q ′B = (

E′
B, q

′
B

)
, (1)

The scattering angle θ is the angle between the three-vectors qA and q′A. From
eq. (3) of the solution to Exercise 4.3 above (using c = 1),

t = q2
A + q ′2A − 2qAq

′
A = 2m2

A − 2EAE
′
A + 2

∣∣qA
∣∣ ∣∣q′A

∣∣ cos θ . (2)

Equation (8) of Exercise 4.3 above gives an alternative expression for t . The
aim is now to express the laboratory quantities EA, E′

A,
∣
∣qA

∣
∣,

∣
∣q′A

∣
∣ in terms

of the invariants s and t . Using (1) s is found to be, in the laboratory system,
s = m2

A +m2
B + 2EAmB , that is,

EA = 1

2mB

(
s −m2

A −m2
B

)
. (3)

From this, using q2
A = E2

A −m2
A,

∣∣qA
∣∣ = 1

2mB

√(
s − (mA +mB)2

) (
s − (mA −mB)2

) = 1

mB

q∗
√
s (4)

with q∗ as given by eq. (7) of Exercise 4.3 above. We now calculate t = (qB−q ′B)2
in the laboratory system and find E′

B = (2m2
B − t)/(2mB) and from this E′

A =
EA +mB − E′

B to be equal to

E′
A = 1

2mB

(
s + t −m2

A −m2
B

)
= EA + t

2mB

, (5)

and, eventually, from q′2A = E′2
A −m2

A

∣∣q′A
∣∣ = 1

2mB

√(
s + t − (mA +mB)2

) (
s + t − (mA −mB)2

)
. (6)

From (2)

cos θ =
(
EAE

′
A −m2

A +
t

2

)
1

∣∣qA
∣∣ ∣∣q′A

∣∣ .

This is used to calculate sin θ and tan θ , replacing all quantities which are not in-
variants by the expressions (3)–(6). With the abbreviations Σ := (mA+mB)

2 and
Δ := (mA −mB)

2 we find

tan θ = 2mB

√−t (st + (s −Σ)(s −Δ))

(s −Σ)(s −Δ)+ t
(
s −m2

A +m2
B

) .

Finally, cos θ∗ and sin θ∗ can also be expressed in terms of s and t , starting from
eqs. (8) and (7) of Exercise 4.3 above,
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cos θ∗ = 2st + (s −Σ) (s −Δ)

(s −Σ)(s −Δ)
,

sin θ∗ = 2
√
s

√−t (st + (s −Σ)(s −Δ))

(s −Σ)(s −Δ)
.

Replace the square root in the numerator of tan θ by sin θ∗ and insert t in the
denominator, as a function of cos θ∗, to obtain the final result

tan θ = 2mB

√
s

s −m2
A +m2

B

sin θ∗

cos θ∗ + s +m2
A −m2

B

s −m2
A +m2

B

(7)

For s ≈ (mA +mB)
2 one recovers the nonrelativistic result (M1.80). The case of

two equal masses is particularly interesting. With mA = mB ≡ m

tan θ = 2m√
s

tan
θ∗

2
.

As
√
s ≥ 2m the scattering angle θ is always smaller than in the nonrelativistic

situation.

4.5 If we wish to go from the rest system of a particle to another system where
its four-momentum is p = (E/c,p), we have to apply a special Lorentz transfor-
mation L(v) with v related to p by p = mγ v. Solving for v,

v = pc
√

p2 +m2c2
= pc2

E
.

Insertion into eq. (M4.41) and application to the vector (0, s) gives

s = L(v)(0, s) =
(
γ

c
s · v, s+ γ 2

c2(1 + γ )
v · sv

)
.

As sαpα is a Lorentz scalar, and hence is independent of the frame of reference
that one uses, this quantity may be evaluated most simply in the rest system. It is
found to vanish there and, hence, in any frame of reference.

4.6 In either case the coordinate system can be chosen such that the y- and z-
components of the four-vector vanish and the x-component is positive, i.e., z =
(z0, z1, 0, 0) with z1 > 0, If z0 is smaller than zero we apply the time reversal oper-
ation (M4.30) so that, from here on, we assume z0 > 0, without loss of generality.

(i) A light-like vector has z2 = 0 and, hence, z0 = z1. We apply a boost with
parameter λ along the x-direction, cf. (M4.39). In order to obtain the desired form
of the four-vector we must have

z0 cosh λ− z0 sinh λ = 1 or z0e−λ = 1 ,
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from which follows λ = ln z0.
(ii) For a space-like vector z2 = (z0)2− (z1)2 < 0, i.e., 0 < z0 < z1. Applying

a boost with parameter λ it is transformed to
(
z0 cosh λ− z1 sinh λ, z′ cosh λ− z0 sinh λ, 0, 0

)
.

For the time component to vanish, one must have tanh λ = z0/z1. Calculating
sinh λ and cosh λ from this yields the assertion z1 = √−z2 .

4.7 The commutation relations (M4.59) can be summarized as follows, making
use of the Levi-Civita symbol:

[
Jp,Jq

] = εpqrJr ,
[
Kp,Kq

] = −εpqrJr ,
[
Jp,Kq

] = εpqrKr .

From this one obtains
[
Ap,Aq

] = εpqrAr ,
[
Bp,Bq

] = εpqrBr ,
[
Ap,Bq

] = 0 .

4.8 The explicit calculation gives

PJiP−1 = Ji , PKjP−1 = −Kj .

This corresponds to the fact that space inversion does not alter the sense of rotation
but reverses the direction of motion.

4.9 The commutators (M4.59) read in this basis
[
Ĵ i , Ĵ j

]
= iεijkĴ k ,

[
Ĵ i , K̂j

]
= iεijkK̂k ,

[
K̂i, K̂j

]
= −iεijkĴ k .

The matrix Ji and Kj being real and skew-symmetric, we have for instance

(
Ĵ
T

i

)∗ = − (iJi )∗ = iJi = Ĵ i .

4.10 This exercise is a special case of Exercise 4.11. The result is obtained from
there by taking m2 = 0 = m3.

4.11 Energy conservation implies (again taking c = 1)
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M = E1 + E2 + E3 =
√
m2

1 + f 2 +
√
m2

2 + x2f 2 +
√
m2

3 + (1 − x)2f 2

= M(xf (x)) .

The maximum of f (x) is found from the equation

0
!= df

dx
= −∂M/∂x

∂M/∂f
= −fE1

xE3 − (1 − x)E2

E2E3 + x2E1E3 + (1 − x)2E1E2
,

or xE3 = (1 − x)E2. Squaring this equation gives x2(m2
3 + (1 − x)2f 2) =

(1 − x)2(m2
2 + x2f 2), and from this the condition

x
!= m2

m2 +m3
.

Taking into account the condition

E3 = 1 − x

x
E2 = m3

m2
E2 ,

one obtains

M − E1 = m2 +m3

m2
E2 .

The square of this yields

M2 − 2ME1 +m2
1 + f 2 = (m2 +m3)

2

m2
2

(

m2
2 +

m2
2

(m2 +m3)2
f 2

)

and from this

(E1)max = 1

2M

(
M2 +m2

1 − (m2 +m3)
2
)
.

Examples:

(i) μ→ e + ν1 + ν2 : m2 = m3 = 0, M = mμ, m1 = me. Thus

(Ee)max = 1

2mμ

(
m2
μ +m2

e

)
c2 .

With mμ/me ≈ 206.8 one finds (Ee)max ≈ 104.4mec
2.

(ii) n → p + e + ν; M = mn, m1 = me, m2 = mp, m3 = 0. Therefore one
obtains

(Ee)max = 1

2mn

(
m2

n +m2
e −m2

p

)
c2 = 1

2mn

(
(2mn −Δ)Δ+m2

e

)
c2 ,

where Δ := mn − mp. Inserting numerical values yields (Ee)max ≈ 2.528mec
2.

Thus γmax = 2.528 and βmax =
√
γ 2

max − 1/γmax = 0.918. The electron is highly
relativistic at the maximal energy.



522 Solution of Exercises

4.12 The apparent lifetime τ (v) in the laboratory system is related to the real
lifetime τ (0) by τ (v) = γ τ (0). During this time the particle, on average, travels a
distance

L = vτ (v) = βγ τ (0)c .

Now, the product βγ equals |p|c/(mc2), cf. eq. (M4.83), so that for |p| = xmc

there follows the relation

L = xτ (0)c .

For pions, for instance, one has τ (0)π c ≈ 780 cm.

4.13 From the results of the preceding exercise we obtain τ (0)n c ≈ 2.7×1013 cm.
For E = 10−2mnc

2 one has x = √
γ 2 − 1 = 0.142, while for E = 1014mnc

2 one
has x ≈ 1014.

4.14 Let p1, p2 be the energy–momentum four-vectors of the incoming and out-
going electron, respectively, and k that of the photon. Energy and momentum con-
servation in the reaction e → e + γ requires p1 = p2 + k. Squaring this relation
and making use of

p2
1 = mec

2 = p2
2 , k2 = 0 ,

one deduces p2 · k = 0. As k is a light-like four-vector this relation can only hold
if p2 is light-like, too, i.e., if p2

2 = 0. This is in contradiction with the outgoing
electron being on its mass shell, p2

2 = m2
e . Hence, the reaction cannot take place.

4.15 The first inversion leads from xμ to (R2/x2)xμ, the translation that follows
leads to R2(xμ/x2 + cμ), and the second inversion, finally, to

x′μ = R4
(
xμ + x2cμ

)
x4

x2R4
(
x + x2c

)2 = xμ + x2cμ

1 + 2(c · x)+ c2x2 .

The inversion J leaves invariant the two halves of the time-like hyperboloid
x2 = R2, but interchanges those of the space-like hyperboloid x2 = −R2. The
image of the light-cone by the inversion is at infinity. The light-cone as a whole
stays invariant under the combined transformation J ◦ T ◦ J .

4.16 As L does not depend on q, the equation of motion for this variable reads

d

dt

∂L

∂ q̇
= m

d

dt
(ψ q̇) = 0 . (1)

In turn, L is independent of ψ̇ . The condition for the action integral to be extremal
leads to the following equation for ψ ,
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∂L

∂ψ
= 1

2
m

(
q̇2 − c2

0
ψ2 − 1

ψ2

)
= 0 .

The solutions of this equations are

ψ1 = c0√
c2

0 − q̇2
, ψ2 = − c0√

c2
0 − q̇2

.

Insertion of ψ1 into the Lagrangian function yields

L
(
q̇, ψ = ψ1

) = 1

2
m
(
− 2c0

√
c2

0 − q̇2 + 2c2
0

)
= −mc2

0

√
1 − q̇2/c2

0 +mc2
0 .

This is nothing but eq. (M4.97), with c replaced by c0, to which the constant energy
mc2

0 is added.
If we let c0 go to infinity, ψ1 trends to 1 and the Lagrangian function becomes

Lnr = mq̇2/2, well-known from nonrelativistic motion. One verifies easily that (1)
is the correct equation of motion in either case.

The second solution ψ2 must be excluded. Obviously, the additional term

1

2
m(ψ − 1)

(
q̇2 − c2

0
ψ − 1

ψ

)
.

which is added to the Lagrangian function Lnr takes care of the requirement that
the velocity q̇ should not exceed the value c0.

Chapter 5: Geometric Aspects of Mechanics

5.1 We make use of the decomposition (M5.52) for
k
ω and

l
ω

k
ω∧ l

ω
∑

i1<···<ik
ωi1...ik

∑

j1<···<jl
ωj1...jl dx

i1 ∧ . . . ∧ dxik ∧ dxj1 ∧ . . . ∧ dxjl .

The analogous decomposition of
l
ω∧ k

ω (k and l interchanged) is obtained from
this by shifting first dxj1 , then dxj2 , and so forth up to dxjl , across the product
dxi1 ∧ dxi2 ∧ . . . ∧ dxik from the right to the left. Each one of these operations
gives rise to a factor (−)k , so that one obtains the total factor (−)kl .
5.2 We calculate

ds2 (êi , êj
) =

3∑

k=1

Ek dx
k(êi ) dx

k(êj ) =
3∑

k=1

Eka
k
i a

k
j ,

where we have set aki := dxk(êi ). As ds2(êi , êk) = δik , we must have aki =
bki /

√
Ek , where {bki } is an orthogonal matrix. This matrix must be orthogonal be-

cause the coordinate axes were chosen orthogonal. Therefore dxk(êi ) = δki /
√
Ek .
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5.3 Consider

1
ωa =

3∑

i=1

ωi(x) dx
i ,

2
ωa = b1(x) dx

2 ∧ dx3 + cyclic permutations

whose coefficients, ωi(x) and bi(x), are to be determined.
a) We calculate

1
ωa(ξ) =

∑

i

ωi(x) dx
i(ξ) =

∑

i

ωi(x) dx
i

(∑

k

ξk êk

)
=

∑

i

ωi(x)ξ
i 1√

Ei

.

Since, on the other hand,

1
ωa(ξ) = a · ξ =

∑

i

ai(x)ξ
i

we deduce

ωi(x) = ai(x)
√
Ei .

b) We calculate

2
ωa(ξ, η) = b1(x)(dx

2(ξ) dx3(η)− dx2(η) dx3(ξ))+ cycl. perms.

= b1(x)(ξ
2η3 − η2ξ3)/

√
E2E3 + cycl. perms. .

Comparing this with the scalar product of a and ξ × η yields

b1(x) =
√
E2E3 a1(x) (cyclic permutations) .

5.4 Denote by (∇f )i the components of ∇f with respect to the orthogonal basis
that we consider. We then have, according to the solution of Exercise 5.3,

1
ω∇f =

∑

i

(∇f )i
√
Ei dx

i .

With ξ̂ = ∑
i ξ

i êi a unit vector, the function
1
ω∇f (ξ̂) = ∑

i (∇f )iξ i is the di-

rectional derivative of f along the direction ξ̂. This quantity can be calculated
alternatively from the total differential

df =
∑

i

∂f

∂xi
dxi

to be
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df (ξ̂) =
∑

i,k

∂f

∂xi
ξk dxi (êk) =

∑

i

1√
Ei

∂f

∂xi
ξ i .

Comparing the two expressions yields the result

(∇f )i =
1√
Ei

∂f

∂xi
.

5.5 For cartesian coordinates we have E1 = E2 = E3 = 1.
For cylindrical coordinates (ê�, êφ, êz) we have ds2 = d�2 + �2dφ2 + dz2,

i.e., E1 = E3 = 1, E2 = �2 and, therefore,

∇f =
(
∂f

∂�
,

1

�

∂f

∂φ
,
∂f

∂z

)
.

For spherical coordinates (êr , êθ , êφ) we have ds2 = dr2 + r2dθ2 + r sin2 θdφ2,
which means that E1 = 1, E2 = r2, E3 = r2 sin2 θ and, hence,

∇f =
(
∂f

∂r
,

1

r

∂f

∂θ
,

1

r sin θ

∂f

∂φ

)
.

5.6 The defining equation (M5.58) can be written alternatively as follows

(∗ω)(êik+1 , . . . , êin ) = εi1...ik ik+1...inω(êi1 , . . . , êik ) .

Here εi1...in is the totally antisymmetric Levi-Civita symbol. It equals +1(−1)
if (i1 . . . in) is an even (odd) permutation of (1, . . . , n), and vanishes whenever
two of its indices are equal. Thus, for n = 2, ∗dx1 = dx2, ∗dx2 = −dx1, and
∗ω = F1dx

2 − F2dx
1. Therefore, ω(ξ) = F · ξ, while ∗ω(ξ) = F × ξ. If ξ is a

displacement vector ξ = rA−rB , F a constant force, ω(ξ) is the work of the force
along that displacement. In turn, ∗ω(ξ) describes the change of the external torque.

5.7 For any base k-form dxi1 ∧ . . . ∧ dxik with i1 < · · · < ik

∗(dxi1 ∧ . . . ∧ dxik ) = εi1...ik ik+1...indx
ik+1 ∧ . . . ∧ dxin .

Here we have assumed the indices on the right-hand side to be ordered, too, viz.
ik+1 < · < in. The dual of this form is again a k-form and is given by

∗ ∗ (dxi1 ∧ . . . ∧ dxik ) = εi1...ik ik+1...inεik+1...inj1...jk dx
j1 ∧ . . . ∧ dxjk .

All indices i1 . . . in must be different. Therefore, the set (j1 . . . jk) must be a permu-
tation of (i1 . . . ik). If we choose the ordering j1 < · · · < jk , then j1 = i1, . . . , jk =
ik . In the second ε-symbol interchange the group of indices (i1, . . . , ik) with the
group (ik+1, . . . , in). For i1 this requires exactly (n− k) exchanges of neighbors.
The same holds true for i2 up to ik . This gives k times a sign factor (−)n−k . As
(εi1...in )

2 = 1 for all indices different, we conclude
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∗ ∗ (dxi1 ∧ . . . ∧ dxik ) = (−)k(n−k)dxi1 ∧ . . . ∧ dxik .

5.8 The exterior derivative of φ is calculated following the rule (CD3) of
Sect. M5.4.4, viz.

dφ =
(
−∂E1

∂x2 + ∂E2

∂x1

)
dx1 ∧ dx2 + cyclic permutations

= (curlE)3 dx
1 ∧ dx2 + . . . .

This yields the result dφ + ω̇/c = 0.

5.9 With f a smooth function df = ∑
(∂f/∂xi) dxi , thus

∗df =
(
∂f/∂x1

)
dx2 ∧ dx3 + cyclic permutations ,

d(∗df ) =
(
∂2f/(∂xi)2

)
dx1 ∧ dx2 ∧ dx3 + cyclic permutations ,

and

∗d(∗df ) =
3∑

i

∂2f/(∂xi)2 .

Furthermore, ∗f = f dx1 ∧ dx2 ∧ dx3 and d(∗f ) = 0.

5.10 If
k
ω is a k-form which is applied to k vectors (ê1, . . . êk), then, by the def-

inition of the pull-back (special case, for vector spaces, of (M5.41), Sect. 5.4.1)

F ∗ k
ω(ê1, . . . êk) = k

ω(F (ê1), . . . , F (êk)). Then

F ∗( kω∧ l
ω)(ê1, . . . , êk+l ) = (

k
ω∧ l

ω)(F (ê1), . . . , F (êk+l )) ,

which, in turn, equals (F ∗ k
ω) ∧ (F ∗ l

ω).

5.11 This exercise is solved in close analogy to the solution of Exercise 5.10
above.

5.12 With V := y∂x and W := x∂y we find readily Z := [V,W ] = (y∂x)(x∂y)−
(x∂y)(y∂x) = y∂x − x∂x .

5.13 Let v1 and v2 be elements of TpM . Addition of vectors and multiplication
by real numbers being defined as in (M5.20), it is clear that both v1 + v2 and avi
with a ∈ R belong to TpM , too. The dimension of TpM is n = dimM . TpM is
a vector space. In the case M = R

n, TpM isomorphic to M .

5.14 We have
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ω ∧ ω =
2∑

i=1

2∑

j=1

dqi ∧ dpi ∧ dqj ∧ dpj = −2dq1 ∧ dq2 ∧ dp1 ∧ dp2 .

This is so because we interchanged dpi and dqj , and because the terms (i =
1, j = 2) and (i = 2, j = 1) are equal.

5.15 H(1) = p2/2 + 1 − cos q is the Hamiltonian function that describes the
planar mathematical pendulum. The corresponding Hamiltonian vector field reads

X
(1)
H = ∂H

∂p
∂q − ∂H

∂q
∂p = p∂q − sin q∂p .

A sketch of this vector field will yield the vectors tangent to the curves of
Fig. M1.10. The neighborhood of the point (p = 0, q = π) is particularly in-
teresting as this represents an unstable equilibrium. For

H(2) = 1

2
p2 + 1

6
q(q2 − 3)

the Hamiltonian vector field is

X
(2)
H = p∂q − 1

2
(q2 − 1)∂p .

This vector field has two equilibrium points, (p = 0, q = +1) and (p = 0, q =
−1). A sketch of X(2)

H will show that the former is a stable equilibrium (center),
while the latter is unstable (saddle point). Linearization in the neighborhood of
q = +1 means that we set u := q − 1 and keep up to linear terms in u only.
Then X

(2)
H ≈ p∂u − u∂p. This is the vector field of the harmonic oscillator or,

equivalently, the vector field X
(1)
H above, for small values of q.

Linearization of the system in the neighborhood of (p = 0, q = −1), in turn,
means setting u := q+ 1 so that X(2)

H ≈ p∂u+u∂p. Here the system behaves like

the mathematical pendulum (described by X
(1)
H above) in the neighborhood of its

unstable equilibrium (p = 0, q = π) where sin q = − sin(q − π) ≈ −(q − π).
(See also Exercise 6.8.)

5.16 One finds XH 0 = p∂q − q∂p, XH = p∂q − (q + εq2)∂p, and, finally

ω
(
XH,XH 0

) = dH
(
XH 0

) = εpq2 =
{
H 0, H

}
.

5.17 For the proof consult for example Sect. 3.5.18 of Abraham and Marsden
(1981).
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6.1 (i) A is already diagonal. The flux is

exp(tA) =
(

etλ1 0
0 etλ2

)
.

(ii) The characteristic exponents (i.e., the eigenvalues of A) are λ1 = a + ib,
λ2 = a − ib so that in the diagonalized form the flux reads as follows: With

y
˜
→ u

˜
= Uy

˜
,

◦
A = UAU−1 =

(
a + ib 0

0 a − ib

)
,

we have

u
˜
(t) = exp(r

◦
A)u

˜
(0) =

(
et (a+ib) 0

0 et (a−ib)

)
u
˜
(0) .

For a = 0, b > 0 we find a (stable) center. For a < 0, b > 0 we find an (asymp-
totically stable) node.

(iii) The characteristic exponents are equal, λ1 = λ2 ≡ λ. For λ < 0 we again
find a node.

6.2 The flux of this system is
(
α(τ) = a

2π
τ + α0( mod 1), β(τ ) = b

2π
τ + β0( mod 1)

)
.

If the ratio b/a is rational, i.e., b/a = m/n with m, n ∈ Z, the system returns to its
initial position after the time τ = T where T follows from α0 + aT /(2π) = α0 (

mod 1) and β0 + bT /(2π) = β0 ( mod 1), i.e., T = 2πn/a = 2πm/b. We study
the example (a = 2/3, b = 1) with initial condition (α0 = 1/2, β0 = 0). This
yields the results shown in Table 1 and in Fig. 25. In the figure the sections of the
orbit are numbered in the order in which they appear.

Table 1

� = τ

2π
0

3

4
1 2

9

4
3

α
1

2
1

1

6

5

6
1

1

2

β 0
3

4
1 1

1

4
1

If the ratio b/a is irrational then the flux will cover the torus, or the square
of Fig. 25, densely. As an example one may choose a “out of tune” at the value
a = 1/

√
2 ≈ 0.7071, keeping b = 1 fixed, and plot the flux in the square. A
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Fig. 25.

specific example is provided by two coupled oscillators, cf. Exercises 1.9 and 2.9.
The modes of the system obey the differential equation üi+ω(i)2ui = 0, i = 1, 2.
These are rewritten in terms of action and angle variables Ii and Θi , respectively, by
means of the canonical transformation (M2.95). They become İi = 0, Θ̇i = ω(i),
i = 1, 2. Embedded in the phase space which is now four-dimensional, we find two
two-dimensional tori which are determined by the given values of Ii = I 0

i = const.
Each of these tori carries the flux described above.

6.3 The Hamiltonian function has the form H = p2/(2m)+ U(q). The charac-
teristic equation

1

2m

(
∂S0(q, α)

∂q

)2

+ U(q) = E0

is integrated by quadrature:

S0(q, α) =
∫ q

q0

√
2m(E0 − U(q ′)) dq ′ .

We have p = mq̇ = ∂S0/∂q = √
2m(E0 − U(q)) and hence

t (q)− t (q0) =
∫ q

q0

m
√

2m(E0 − U(q ′))
dq ′ = ∂S0

∂E0
.

(This holds away from equilibrium positions, in case the system possesses any
equilibria.) Choose P ≡ α = E0. Then Q = ∂S0/∂E0 = t − t0, or, alternatively,
(Ṗ = 0, Q̇ = 1). Thus, we have achieved rectification of the Hamiltonian vector
field: In the coordinates (P,Q) the particle moves on the straight line P = E0
with velocity Q̇ = 1.

Consider now an energy in the vicinity of E0, E = βE0, with β not far
from 1. Let the particle travel from q0 to a point q ′ in such a way that the time
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t (q ′) − t (q0) is the same as for E0. Of course, p′0 = √
2m(E − U(q0)), and

p′ = √
2m(E − U(q ′)), and

t − t0 =
∫ q

q0

mdx√
2m(E − U(x))

.

The new momentum is chosen to be P = E0 (the energy of the first orbit). Then
one has

Q = ∂S(q,E)

∂E0
= β

∂S(q,E)

∂E
= β(t − t0) ,

i.e., (Ṗ = 0, Q̇ = β). In the new coordinates the particle again moves along the
straight line P = E0, this time, however, with velocity β. The particles on the
orbits to be compared move apart linearly in time. If U(q) is such that in some
region of phase space all orbits are periodic, one should transform to action and
angle variables, I (E) = const., Θ = ω(E)t +Θ0. Also in this situation one sees
that the orbits separate at most linearly in time. In the case of the oscillator, where
ω is independent of E or I , their distance remains constant.

The integration described above is possible only if E is larger than the maxi-
mum of U(q). For E = Umax(q) the running time goes to infinity logarithmically
(cf. Sect. M1.23). The statement of this exercise does not apply when one of the
trajectories is a separatrix.

6.4 For μ = 0 the system becomes q̇1 = ∂H/∂q2 and q̇2 = −∂H/∂q1, with
H = −λ(q2

1+q2
2 )/2+(q1q

2
2−q3

1/3)/2. The critical points (where the Hamiltonian
vector field vanishes) are obtained from the system of equations −λq2+q1q2 = 0,
λq1+ (q2

1 −q2
2 )/2 = 0. One finds the following solutions: P0 = (q1 = 0, q2 = 0),

P1/2 = (q1 = λ, q2 = ±√3 λ), P3 = (q1 = −2λ, q2 = 0). Linearization in the
neighborhood of P0 leads to q̇1 ≈ −λq2, q̇2 ≈ λq1. Thus P0 is a center. Lineariza-
tion in the neighborhood of P1 is achieved by the transformation u1 := q1 − λ,
u2 := q2 −

√
3 λ, whereby the differential equations become.

u̇1 =
√

3 λu1 + u1u2 ≈
√

3 λu1 ;
u̇2 = 2λu1 −

√
3 λu2 +

(
u2

1 − u2
2

)
/2 ≈ 2λu1 −

√
3 λu2 .

The flux tends to P1 along u1 = 0 but tends away from it along u2 = 0. Thus P1
is a saddle point. The same is true for P2 and P3. One easily verifies that these
three points belong to the same energy E = H(Pi) = −2λ3/3 and that they are
pairwise connected by separatrices. Indeed, the straight lines q2 = ±(q1+2λ)/

√
3

and q1 = λ are curves with constant energy E = −2λ3/3 and build up the triangle
(P1, P2, P3).

If one switches on the damping terms by means of 1 � μ > 0, P0 is still an
equilibrium point because in the neighborhood of (q1 = 0, q2 = 0) we have

(
q̇1
q̇2

)
≈

(−μ −λ
λ −μ

)(
q1
q2

)
≡ A

(
q1
q2

)
.
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From the equation det(x1l − A) = 0 one finds the characteristic exponents to be
x1/2 = −μ ± iλ. Thus P0 becomes a node (a sink). The points P1, P2, and P3,
however, are no longer equilibrium positions. The lines which connect them are
broken up.

6.5 We write H in two equivalent forms

(i) H = I1 + I2 with I1 =
(
p2

1 + q2
1

)
/2 + q3

1/3 ,

I2 =
(
p2

2 + q2
2

)
/2 − q3

2/3 ,

(ii) H =
(
p2

1 + p2
2

)
/2 + U(q1, q2) with U =

(
q2

1 + q2
2

)
/2 +

(
q3

1 − q3
2

)
/3

=
(
Σ2 +Δ2

)
/4 +Σ2Δ/4 +Δ3/12 ,

where Σ := q1 + q2 , Δ := q1 − q2 .

Then the equations of motion are

q̇1 = p1 , q̇2 = p2 ,

ṗ1 = −q1 − q2
1 , ṗ2 = −q2 + q2

2 .

The critical points of this system are P0 : (q1 = 0, q2 = 0, p1 = 0, p2 = 0),
P1 : (0, 1, 0, 0), P2 : (−1, 0, 0, 0), P3 : (−1, 1, 0, 0). One easily verifies that
dIi/dt = 0, i = 1, 2, i.e., I1 and I2 are independent integrals of the motion. The
points P1 and P2 lie on two equipotential lines, viz. the straight line q1−q2 = −1,
and the ellipse 3(q1+q2)

2+(q1−q2)
2+2(q1−q2)−2 = 0. In either case U = 1/6.

As an example and using these results, one may sketch the projection of the flux
onto the plane (q1, q2).

6.6 The critical points of the system q̇ = p, ṗ = q−q3−p are P0 : (q = 0, p =
0), P1 : (1, 0), and P2 = (−1, 0). Linearization around P0 gives

(
q̇

ṗ

)
≈

(
1 1
0 −1

)(
q

p

)
= A

(
q

p

)
.

The eigenvalue of A are λ1/2 = (−1 ±√
5)/2, hence λ1 > 0 and λ2 < 0 which

means that P0 is a saddle point. Linearizing in the neighborhood of P1 and intro-
ducing the variables u := q − 1, v := p, the system becomes

(
u̇

v̇

)
≈

(
0 1

−2 −1

)(
u

v

)
.

The characteristic exponents are μ1/2 = (−1± i
√

7)/2. The same values are found
for the system linearized in the neighborhood of P2. This means that both P1 and
P2 are sinks.

The Liapunov function V (q, p) has the value 0 in P0, and the value −1/4 in P1
and P2. One easily verifies that P1 and P2 are minima and that V increases mono-
tonically in a neighborhood of these points. For instance, close to P1 take u :=
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q−1, v := p. Then Φ1(u, v) := V (q = u+1, p = v)+1/4 = v2/2+u2+u3+u4/4.
Indeed, at the point P1 we find Φ1(0, 0) = 0 while Φ1 is positive in a neighborhood
of P1.

Along solutions the function V (q, p), or, equivalently, Φ1(u, v), decreases
monotonically. Let us check this for V :

dV

dt
= dV

∂p
ṗ + ∂V

∂q
q̇ = ∂V

∂p
(q − q3 − p)+ ∂V

∂q
p = −p2 .

In order to find out towards which of the two sinks a given initial configuration
will tend, one has to calculate the two separatrices that end in P0. They form the
boundaries of the basins of P1 and P2 as indicated in Fig. 26 by the blank and
dotted areas, respectively.

Fig. 26.

6.7 As x0, by assumption, is an isolated minimum, a Liapunov function is chosen
as follows: V (x) := U(x) − U(x0). In a certain neighborhood M of x0, V (x) is
positive semi-definite and we have

d

dt
V (x

˜
) =

n∑

i=1

∂V

∂xi
ẋi = −

n∑

i=1

(
∂U

∂xi

)2

.

If we follow a solution in the domain M\{x0}, V (x) decreases, i.e., all solution
curves tend “inwards”, towards x0. Thus, this point is asymptotically stable.

In the example U(x1, x2) = x2
1 (x1 − 1)2 + x2

2 . The points x0 = (0, 0) and
x′0 = (1, 0) are isolated minima and, hence, are asymptotically stable equilibria.

6.8 This system is Hamiltonian. A Hamiltonian function is H = p2/2+ q(q2 −
3)/6. The phase portraits are obtained by drawing the curves H(q, p) = E =
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const. The Hamiltonian vector field vH = (p, (1 − q2)/2) has two critical points
whose nature is easily identified by linearizing in their neighborhoods. One finds

P1 : (q = −1, p = 0) and, with u := q + 1, v := p : (u̇ ≈ v, v̇ ≈ u). Thus, P1 is
a saddle point.

P2 : (q = 1, p = 0) and, with u̇ := q − 1, v := p : (u̇ ≈ v, v̇ ≈ −u). Thus, P2 is
a center. In the neighborhood of P2 there will be harmonic oscillations with
period 2π (see also Exercise 5.15).

6.9 The differential equation q̈ = f (q, q̇), with f (q, q̇) = −q + (ε − q2)q̇, is
solved numerically by means of a Runge–Kutta procedure as follows

qn+1 = qn + h

(
q̇n + 1

6
(k1 + k2 + k3)

)
+O(h5)

q̇n+1 = q̇n + 1

6
(k1 + 2k2 + 2k3 + k4) ,

h being the integration step in the time variable, and the auxiliary quantities ki
being defined by

k1 = hf (qn, q̇n) ,

k2 = hf

(
qn + h

2
q̇n + h

8
k1, q̇n + 1

2
k1

)
,

k3 = hf

(
qn + h

2
q̇n + h

8
k1, q̇n + 1

2
k2

)
,

k4 = hf

(
qn + hq̇n + h

2
k3, q̇n + k3

)
.

One lets the dimensionless time variable τ = ωt run from 0 to, say, 6π , in steps of
0.1, or 0.05, or 0.01. This will produce pictures of the type shown in Figs. (M6.6)–
(M6.8). Alternatively, one may follow the generation of these figures on the screen
of a PC. One will notice that all of them tend quickly to the attractor.

6.10 The program developed in Exercise 6.9 may be used to print out, for a given
initial configuration, the time τ and the distance from the origin d, each time the
orbit crosses the line p = q. One finds the following result:

p = q > 0 :
τ 5.46 11.87 18.26 24.54 30.80 37.13 43.47

d 0.034 0.121 0.414 1.018 1.334 1.375 1.378

p = q < 0 :
τ 2.25 8.86 15.07 21.42 27.66 33.96 40.30

d 0.018 0.064 0.227 0.701 1.238 1.366 1.378

Plotting ln d versus τ shows that this function increases approximately linearly
(with slope ≈ 0.1) until it has reached the attractor. Thus, the point of intersec-
tion of the orbit and the straight line p = q wanders towards the attractor at an
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approximately exponential rate. One finds a similar result for orbits which approach
the attractor from the outside.

6.11 The motion manifold of this system is R
2. For the linearized system (ẋ1 =

x1, ẋ2 = −x2) the straight line Ustab = (x1 = 0, x2) is a stable submanifold.
Indeed, the velocity field points towards the equilibrium point (0, 0) and the char-
acteristic exponent is −1. The straight line Uunst = (x1, x2 = 0), in turn, is an
unstable submanifold: The velocity field points away from (0, 0) and the charac-
teristic exponent is +1. The full system can be transformed to

ẍ2 − ẋ2 − 2x2 = 0 , x2
1 = x2 + ẋ2 ,

whose general solution is

x2(t) = a exp(2t)+ b exp(−t) , x1(t) =
√

3a exp t ,

or, equivalently,

x2 = 1

3
x2

1 + b
√

3a
1

x1
≡ 1

3
x2

1 +
c

x1
.

Among this set of solutions the orbit with c = 0 goes through the point (0,0) and
is tangent to Uunst in that point. On the submanifold Vunst = (x1, x2 = x2

1/3) the
velocity field moves away from (0, 0).

The corresponding stable submanifold of the full system coincides with Ustab
because, with a = 0, x1(t) = 0, x2(t) = b exp(−t) which means that Vstab =
(x1 = 0, x2).

6.12 We have xn+1 = 1 − 2x2
n and yi = 4/π arcsin

√
(xi + 1)/2 − 1. With

−1 ≤ xi ≤ 0 also −1 ≤ yi ≤ 0, and with 0 ≤ xi ≤ 1 also 0 ≤ yi ≤ 1. We
wish to know the relation between yn+1 and yn. First, the relation xn → yn+1 is
yn+1 = 4/π arcsin(1−x2

n)
1/2−1. Using the addition theorem arcsin u+arcsin v =

arcsin(u
√

1 − v2 + v
√

1 − u2) and setting u = v = (1 + x)/2 one shows

arcsin
√

1 − x2 = 2 arcsin

√
x + 1

2
for − 1 ≤ x ≤ 0 ,

arcsin
√

1 − x2 = π − 2 arcsin

√
x + 1

2
for 0 ≤ x ≤ 1 .

In the first case yn ≤ 0 and yn+1 = 1+2yn, in the second case yn ≥ 0 and yn+1 =
1−2yn. These can be combined to yn+1 = 1−2|yn|. The derivative of this iterative
mapping is ±2; its magnitude is larger than 1. There are no stable fixed points.

6.15 If, for instance, m = 1, then zσ := exp(i2πσ/n) are the roots of the equation
zn−1 = (z− z1) . . . (z− zn) = 0. They lie on the unit circle in the complex plane
and neighboring roots are separated by the angle 2π/n. Expanding the product
(z− z1) . . . (z− zn) = zn− z

∑n
σ=1 zσ + . . . , one sees that, indeed,

∑n
σ=1 zσ = 0.
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For the values m = 2, . . . , n− 1 we renumber the roots and obtain the same re-
sult. For m = 0 and for m = n, however, the sum is equal to 0. Multiplying
x̃σ = ∑n

τ=1 xτ exp(−2iπστ/n)/
√
n by 1/

√
n exp(2iπσλ/n) and summing over

σ one obtains

1√
n

n∑

σ=1

x̃σ e2iπσλ/n = 1

n

n∑

τ=1

xτ

n∑

σ=1

e2iπσ(τ−λ)/n =
n∑

τ=1

xτ δτλ = xλ .

This is used to calculate

gλ = 1

n

n∑

σ=1

xσ xσ+λ = 1

n2

∑

μ,ν

x̃μx̃
∗
n−ν

∑

σ

e2iπ/n(σ(μ+ν)+λν) .

The orthogonality relation implies μ+ν = 0 (mod n), and we have used x̃∗n−ν = x̃ν .
Furthermore, x̃μ mod n = x̃μ and, finally, x̃μ and x̃n−μ have the same modulus.
It follows that gλ = 1/n

∑n
μ=1 |x̃μ|2 cos(2πλμ/n). The inverse of this formula

|x̃σ |2 = ∑n
λ=1 gλ cos(2πσλ/n) is obtained in the same way.

6.16 If we set y = αx + β, i.e., x = y/α − β/α, the relation

xi+1 = μxi(1 − xi) = μ

(
1

α
yi − β

α

)(
1 + β

α
− 1

α
yi

)

will take the desired form provided α and β are chosen such that they fulfill the
equations α + 2β = 0, β(1 − μ(α + β)/α) = 1. These give α = 4/(μ − 2),
β = −α/2, and, therefore, γ = μ(μ− 2)/4. From 0 ≤ μ < 4 follows 0 ≤ γ < 2.
One then sees easily that yi ∈ [−1,+1] is mapped onto yi+1 in the same inter-
val. Let h(y, γ ) := 1 − γy2. The first bifurcation occurs when h(y, γ ) = y and
∂h(y, γ )/∂y = 1, i.e., when γ0 = 3/4, y0 = 2/3, or, correspondingly, μ0 = 3/4,
x0 = 2/3. Take then k := h ◦ h, i.e., k(y, γ ) = 1 − γ (1 − γy2)2. The second bi-
furcation occurs at γ1 = 5/4. The corresponding value y1 of y is calculated from
the system

k

(
y,

5

4

)
= −1

4
+ 25

8
y2 − 125

64
y4 = y , (1)

∂k

∂y

(
y,

5

4

)
= 25

4
y

(
1 − 5

4
y2

)
= −1 . (2)

Combining these equations according to y · (2)–4 · (1), one finds the quadratic
equation

y2 − 4

5
y − 4

25
= 0 ,

whose solutions are y1/2 = 2(1±√
2)/5. From γ1 = 5/4 we have μ1 = 1+√

6,
from this and from y1/2, finally

x1/2 = 1

10

(
4 +√

6 ± (
2
√

3 −√
2
)) = 0.8499 and 0.4400 .
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A. Some Mathematical Notions

“Order” and “Modulo”. The symbol O(εn) stands for terms of the order εn and
higher powers thereof that are being neglected.

Example. If in a Taylor series one wishes to take acount only of the first three
terms, one writes

f (x) = f (0)+ f ′(0)x + 1

2!f
′′(0)x2 + O(x3) . (A.1)

This means that the right-hand side is valid up to terms of order x3 and higher.
The notation y = x (mod a) means that x and x + na should be identified, n

being any integer. Equivalently, this means that one should add to x or subtract from
it the number a as many times as are necessary to have y fall in a given interval.

Example. Suppose two angles α and β are defined in the interval [0, 2π ]. The
equation α = f (β) (mod 2π) means that one must add to the value of the func-
tion f (β), or subtract from it, an integer number of terms 2π such that α does
not fall outside its interval of definition.

Mappings. A mapping f that maps a set A onto a set B is denoted as follows:

f : A→ B: a → b . (A.2)

It assigns to a given element a ∈ A the element b ∈ B. The element b is said to
be the image and a its preimage.

Examples. (i) The real function sin x maps the real x-axis onto the interval
[−1,+1],

sin : R → [−1,+1]: x → y = sin x .

(ii) The curve γ : x = cosωt , y = sinωt in R
2 is a mapping from the real t-axis

onto the unit circle S1 in R
2,

γ : Rt → S1 : t → (x = cosωt, y = sinωt) .

A mapping is called surjective if f (A) = B, i.e. if B is covered completely. The
mapping is called injective if two distinct elements in A also have distinct images
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in B, in other words, if every b ∈ B has at most one original a ∈ A. If it has both
properties it is said to be bijective. In this case every element of A has exactly
one image in B, and for every element of B there is exactly one preimage in A.
In other words the mapping is then one-to-one.
Examples: (i) The mapping

f : R → R : a → b = f (a) = a3

is injective. Indeed, b1 = f (a1) = f (a2) = b2 implies the equality a1 = a2. The
mapping is also surjective: For any b ∈ R the preimage is a = b1/3 if b is positive,
and a = −b1/3 if b is negative.
(ii) The mapping

f : R → R : a → b = f (a) = a2

is not injective because a1 = 1 and a2 = −1 have the same image.

The composition f ◦ g of two mappings f and g means that g should be applied
first and then f should be applied to the result of the first mapping, viz.

If g: A→ B and f : B → C , then f ◦ g: A→ C . (A.3)

Example: Suppose f and g are functions over the reals. Then, with y = g(x) and
z = f (y) we have z = (f ◦ g)(x) = f (g(x)).

The identical mapping is often denoted by “id”, i.e.

id: A→ A: a → a .

Special Properties of Mappings. A mapping f : A→ B is said to be continuous
at the point u ∈ A if for every neighborhood V of its image v = f (u) ∈ B there
exists a neighborhood U of u such that f (U) ⊂ V . The mapping is continuous if
this property holds at every point of A.

Homeomorphisms are bijective mappings f : A→ B that are such that both
f and its inverse f−1 are continuous.

Diffeomorphisms are differentiable, bijective mappings f that are such that both
f and f−1 are smooth (i.e. differentiable, C∞).

Derivatives. Let f (x1, x2, . . . , xn) be a function over the space R
n, {ê1, . . . , ên},

a set of orthogonal unit vectors. The partial derivative with respect to the variable
xi is defined as follows:

∂f

∂xi
= lim

h→0

f (x + hêi )− f (x)

h
. (A.4)

Thus one takes the derivative with respect to xi while keeping all other arguments
x1, . . . , xi−1, xi+1, . . . , xn fixed.
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Collecting all partial derivatives yields a vector field called the gradient,

∇f =
(
∂f

∂x1 , . . . ,
∂f

∂xn

)
. (A.5)

Since any direction n̂ in R
n can be decomposed in terms of the basis vectors

ê1, . . . , ên, one can take the directional derivative of f along that direction, viz.

∂f

∂n̂
=

n∑

i=1

n̂i
∂f

∂xi
≡ n̂ · ∇f . (A.6)

The total differential of the function f (x1, . . . , xn) is defined as follows:

df = ∂f

∂x1 dx1 + ∂f

∂x2 dx2 + · · · + ∂f

∂xn
dxn . (A.7)

Examples. (i) Let f (x, y) = 1
2 (x

2 + y2) and let (x = r cosφ, y = r sin φ)
with fixed r and 0 ≤ φ ≤ 2π be a circle in R

2. The normalized vector tangent
to the circle at the point (x, y) is given by vt = (− sin φ, cosφ). Similarly, the
normalized normal vector at the same point is given by vn = (cosφ, sin φ). The
total differential of f is df = xdx+ydy and its directional derivative along vt is
vt · ∇f = −x sin φ + y cosφ = 0; the directional derivative along vn is given by
vn · ∇f = x cosφ + y sin φ = r . For an arbitrary unit vector v = (cosα, sin α)
we find v · ∇f = r(cosφ cosα + sin φ sin α). For fixed φ the absolute value of
this real number becomes maximal if α = φ (modπ ). Thus, the gradient defines
the direction along which the function f grows or falls fastest.

(ii) Let U(x, y) = xy be a potential in the plane R
2. The curves along which

the potential U is constant (they are called equipotential lines) are obtained by
taking U(x, y) = c, with c a constant real number. They are given by y = c/x,
i.e. by hyperbolas whose center of symmetry is the origin. Along these curves
dU(x, y) = ydx+ xdy = 0 because dy = −(c/x2)dx = −(y/x)dx. The gradient
is given by ∇U = (∂U/∂x, ∂U/∂y) = (y, x) and is perpendicular to the curves
U(x, y) = c at any point (x, y). It is the tangent vector field of another set of
curves that obey the differential equation

dy

dx
= x

y
.

These latter curves are given by y2 − x2 = a.

Differentiability of Functions. The function f (x1, . . . , xi, . . . , xn) is said to be
Cr with respect to xi if it is r-times continuously differentiable in the argument
xi . A function is said to be C∞ in some or all of its arguments if it is differentiable
an infinite number of times. It is then also said to be smooth.

Variables and Parameters. Physical quantities often depend on two kinds of ar-
guments, the variables and the parameters. This distinction is usually made on the
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basis of a physical picture and, therefore, is not canonical. Generally, variables are
dynamical quantities whose time evolution one wishes to study. Parameters, on the
other hand, are given numbers that define the system under consideration. In the
example of a forced and damped oscillator, the deviation x(t) from the equilib-
rium position is taken to be the dynamical variable while the spring constant, the
damping factor, and the frequency of the driving source are parameters.

Lie Groups. The definition assumes that the reader is familiar with the notion of
differentiable manifold, cf. Sect. 5.2. A Lie group is a finite dimensional, smooth,
manifold G which in addition is a group and for which the product “ · ”,

G×G→ G : (g, g′) → g · g′ ,
as well as the transition to the inverse,

G→ G : g → g−1

are smooth operations.
G being a group means that it fulfills the group axioms, cf. e.g., Sect. 1.13:

There exists an associative product; G contains the unit element e; for every g ∈ G

there exists an inverse g−1 ∈ G. Loosely speaking, smoothness means that the
group elements depend differentiably on parameters, which may be thought of as
angles for instance, and that group elements can be deformed in a continuous and
differentiable manner.

A simple example is the unitary group

U(1) =
{

eiα|α ∈ [0, 2π ]
}
.

This is an Abelian group (i.e., a commutative group). Further examples are
provided by the rotation group SO(3) in three real dimensions, and the unitary
group SU(2) which are dealt with in Sects. 2.21 and 5.2.3 (iv). The Galilei group
is defined in Sect. 1.13, the Lorentz group is discussed in Sects. 4.4 and 4.5.

B. Historical Notes

There follow some biographical notes on scientists who made important contri-
butions to mechanics. Some of these are marked by an asterisk and are treated
in somewhat more detail, though without striving for completeness, because their
impact on the understanding and the development of mechanics was particularly
important.

∗d’Alembert, Jean-Baptiste: born 17 November 1717 in Paris, died 29 October
1783 in Paris. Writer, philosopher, and mathematician. Co-founder of the Ency-
clopédie. Important contributions to mathematics, mathematical physics and as-
tronomy. His principal work “Traité de dynamique” contains the principle which
bears his name.
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Arnol’d, Vladimir Igorevich: 1937– , Russian mathematician.

Cartan, Elie: 1869–1951, French mathematician.

Coriolis, Gustave-Gaspard: 1792–1843, French mathematician.

Coulomb, Charles Augustin: 1736–1806, French physicist.

∗Descartes, René (Cartesius): born 31 March 1596 in La Haye (Touraine), died
11 February 1650 in Stockholm. French philosopher, mathematician and natural
philosopher. In spite of the fact that Descartes’ contributions to mechanics were not
too successful (for instance, he proposed incorrect laws of collision), he contributed
decisively to the development of analytic thinking without which modern natural
science would not be possible. In this regard his book Discours de la Méthode
pour bien conduire sa Raison, published in 1637, was particularly important. Also
his imaginative conceptions – ether whirls carrying the planets around the sun;
God having given eternal motion to the atoms relative to the atoms of the ether
which span our space; the state of motion of atoms being able to change only
by collisions – inspired the amateur researchers of the 17th century considerably.
It was in this community where the real scholars of science found the resonance
and support which they did not obtain from the scholastic and rigid attitude of the
universities of their time.

∗Einstein, Albert: born 14 March 1879 in Ulm (Germany), died 18 April 1955 in
Princeton, N.J. (U.S.A.). German-Swiss physicist, 1940 naturalized in the U.S.A.
His most important contribution to mechanics is Special Relativity which he pub-
lished between 1905 and 1907. In his General Relativity, published between 1914
and 1916, he succeeded in establishing a (classical) description of gravitation as
one of the fundamental interactions. While Special Relativity is based on the as-
sumption that space-time is the flat space R

4, General Relativity is a dynamical
and geometric field theory which allows one to determine the metric on space-time
from the sources, i.e., from the given distribution of masses in the universe.

∗Euler, Leonhard: born 15 April 1707 in Basel (Switzerland), died 18 September
1783 in St. Petersburg (Russia). Swiss mathematician. Professor initially of physics,
then of mathematics at the Academy of Sciences in St. Petersburg (from 1730 un-
til 1741, and again from 1766 onwards), and, at the invitation of Frederick the
Great, member of the Berlin Academy (1741–1766). Among his gigantic scientific
work particularly relevant for mechanics: development of variational calculus; law
of conservation of angular momentum as an independent principle; equations of
motion for the top. He also made numerous contributions to continuum mechanics.

Fibonacci, Leonardi: ∼1175–∼1240. Italian mathematician who introduced the
Indian-Arabic system of numbers. See also Fibonacci numbers in Sect. 6.5.

∗Galilei, Galileo: born 15 February 1564 in Pisa (Italy), died 8 January 1642
in Arcetri near Florence (Italy). Italian mathematician, natural philosopher, and
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philosopher, who belongs to the founding-fathers of natural sciences in the mod-
ern sense. Professor in Pisa (1589–1592), in Padua (1592–1610), mathematician
and physicist at the court of the duke of Florence (1610–1633). From 1633 on un-
der confinement to his house in Arcetri, as a consequence of the conflict with Pope
Urban VIII and the Inquisition, which was caused by his defence of the Coper-
nican, heliocentric, planetary system. Galilei made important contributions to the
mechanics of simple machines and to observational astronomy. He developed the
laws of free fall.

∗Hamilton, William Rowan: born 4 August 1805 in Dublin (Ireland), died 2
September 1865 in Dunsink near Dublin. Irish mathematician, physicist, and as-
tronomer. At barely 22 years of age he became professor at the university of Dublin.
Important contributions to optics and to dynamics. Developed the variational prin-
ciple which was cast in its later and more elegant form by C.G.J. Jacobi.

∗Huygens, Christiaan: born 14 April 1629 in The Hague (Netherlands), died 8
July 1695 in The Hague. Dutch mathematician, physicist and astronomer. From
1666 until 1681 member of the Academy of Sciences in Paris. Although Huygens
is not mentioned explicitly in this book he made essential contributions to me-
chanics: among others the correct laws for elastic, central collisions and, building
on Galilei’s discoveries, the classical principle of relativity.

Jacobi, Carl Gustav Jakob: 1804–1851, German mathematician.

∗Kepler, Johannes: born 27 December 1571 in Weil der Stadt (Germany), died
15 November 1630 in Regensburg (Germany). German astronomer and mathemati-
cian. Led a restless live, in part due to numerous misfortunes during the turbulent
times before and during the Thirty Years War, but also for reasons to be found in
his character. Of greatest importance for him was his acquaintance with the Danish
astronomer Tyge (Tycho) Brahe, in the year 1600 in Prague, whose astronomical
data were the basis for Kepler’s most important works. Succeeding T. Brahe, Ke-
pler became mathematician and astrologer at the imperial court, first under emperor
Rudolf II, later under Mathias. Finally, from 1628 until his death in 1630, he was
astrologer of the duke of Friedland and Sagan, A. von Wallenstein. Kepler’s first
two laws are contained in his Astronomia nova (1609), the third is contained in
his main work Harmonices Mundi (1619). They were not generally accepted, how-
ever, until Newton’s work who gave them a new, purely mechanical foundation.
Kepler’s essential achievement was to overcome the ancient opposition between
celestial mechanics (where the circle was believed to be the natural inertial type of
movement) on one hand and terrestial mechanics on the other (where the straight
line is the inertial motion).

Kolmogorov, Andrei Nikolaevic: 1903–1987, Russian mathematician.

∗Lagrange, Joseph Louis: born 25 January 1736 in Torino, died 10 April 1813
in Paris. Italian-French mathematician. At the early age of 19 professor for mathe-
matics at the Royal School of Artillery in Torino, from 1766 member of the Berlin
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Academy, succeeding d’Alembert, then from 1786 member of the French Academy
of Sciences, professor at Ecole Normale, Paris, in 1795 and at Ecole Polytechnique
in 1797. His major work Mécanique Analytique which appeared in 1788, after
Newton’s Principia (1688) and Euler’s Mechanica (1736), is the third of the his-
torically important treatises of mechanics. Of special relevance for mechanics were
his completion of variational calculus which he used to derive the Euler-Lagrange
equations of motion, and his contributions to celestial perturbation theory.

∗Laplace, Pierre Simon de: born 28 March 1749 in Beaumont-en-Auge
(France), died 5 March 1827 in Paris. French mathematician and physicist. From
1785 on member of the Academy, he became professor for mathematics at Ecole
Normale (Paris) in 1794. He must have been rather flexible because he survived
four political systems without harm. Under Napoleon he was for a short time Sec-
retary of the Interior. Besides important contributions to celestial mechanics on
the basis of which the stability of the planetary system was rendered plausible, he
developed potential theory, along with Gauß and Poisson. Other important publi-
cations of his deal with the physics of vibrations and with thermodynamics.

Legendre, Adrien Marie: 1752–1833, French mathematician.

Leibniz, Gottfried Wilhelm: 1646–1716, German natural philosopher and phi-
losopher.

Lie, Marius Sophus: 1842–1899, Norwegian mathematician.

Liapunov, Aleksandr Mikhailovich: 1857–1918, Russian mathematician.

Liouville, Joseph: 1809–1882, French mathematician.

Lorentz, Hendrik Antoon: 1853–1928, Dutch physicist.

∗Maupertuis, Pierre Louis Moreau de: born 28 September 1698 in St. Malo
(Britanny, France), died 27 July 1759 in Basel (Switzerland). French mathemati-
cian and natural philosopher. From 1731 paid member of the Academy of Sci-
ences of France, in 1746 he became the first president of the Prussian Académie
Royale des Sciences et Belles Lettres, newly founded by Frederick the Great in
Berlin who called many important scientists to the academy, notably L. Euler. In
1756, seriously ill, Maupertuis returned first to France but then joined his friend
Joh. II Bernoulli in Basel where he died in 1759. Along with Voltaire, Mauper-
tuis was a supporter of Newton’s theory of gravitation which he had come to
know while visiting London in 1728, and fought against Descartes’ ether whirls.
Of decisive importance for the development of mechanics was his principle of
least action, formulated in 1747, although his own formulation was still some-
what vague (the principle was formulated in precise form by Euler and Lagrange).
A widely noticed dispute of priority started by the Swiss mathematician Samuel
König who attributed the principle to Leibniz, was eventually decided in favor



544 Appendix

of Maupertuis. This dispute alienated Maupertuis from the Prussian Academy and
contributed much to his bad state of health.

Minkowski, Hermann: 1864–1909, German mathematician.

Moser, Jürgen: 1928–1999, German mathematician.

∗Newton, Isaac: born 24 December 1642 in Whoolsthorpe (Lincolnshire, Eng-
land), died 20 March 1726 in Kensington (London), (both dates according to the
Julian calender which was used in England until 1752). Newton, who had studied
theology at Trinity College Cambridge, learnt mathematics and natural sciences
essentially by himself. His first great discoveries, differential calculus, dispersion
of light, and the law of gravity which he communicated to a small circle of experts
in 1669, so impressed Isaac Barrow, then holding the “Lucasian Chair” of mathe-
matics at Trinity College, that he renounced his chair in favor of Newton. In 1696
Newton was called at the Royal Mint and became its director in 1699. The Royal
Society of London elected him president in 1703. Venerated and admired as the
greatest English natural philosopher, Newton was buried in Westminster Abbey.

His principal work, with regard to mechanics, is the three-volume Philosophiae
Naturalis Principia Mathematica (1687) which he wrote at the instigation of his
pupil Halley and which was edited by Halley. Until this day the Principia have
been studied and completely understood only by very few people. The reason for
this is that Newton’s presentation uses a highly geometrical language, divides mat-
ters into “definitions” and “axioms” which mutually complete and explain one an-
other, following examples from antiquity, in a manner difficult to understand for
us, and because he presupposes notions of scholastic and Cartesian philosophy we
are normally not familiar with. Even during Newton’s lifetime it took a long time
before his contemporaries learned to appreciate this difficult and comprehensive
work which, in addition to Newton’s laws, deals with a wealth of problems in me-
chanics and celestial mechanics, and which contains Newton’s original ideas about
space and time that have stimulated our thinking ever since. Newton completed a
long development that began during antiquity and was initiated by astronomy, by
showing that celestial mechanics is determined only by the principle of inertia and
the gravitational force and, hence, that it follows the same laws as the mechanics
of our everyday world. At the same time he laid the foundation for a development
which to this day is not concluded.

Noether, Emmy Amalie: 1882–1935, German mathematician. Belongs to the
great scientific personalities in the mathematics of the 20th century. Her semi-
nal work Invariante Variationsprobleme, published in 1918, contains two theorems
which ever since we refer to as the “Noether theorems” and which provide impor-
tant keys to various parts of theoretical physics, notably mechanics and classical
field theory. Barely any other mathematical publication has had such a profound
and lasting impact on theoretical physics in the 20th century.

∗Poincaré, Jules Henri: born 29 April 1854 in Nantes (France), died 17 July
1912 in Paris. French mathematician, professor at Sorbonne university in Paris.
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Poincaré, very broad and extraordinarily productive, made important contributions
to the many-body problem in celestial mechanics for which he received a prize
donated by King Oscar II of Sweden. (Originally the prize was announced for the
problem of convergence of the celestial perturbation series, the famous problem
of the “small denominators” that was solved much later by Kolmogorov, Arnol’d,
and Moser.) Poincaré may be considered the founder of qualitative dynamics and
of the modern theory of dynamical systems.

Poisson, Siméon Denis: 1781–1840, French mathematician.
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Euler–Lagrange equations, 100, 346
Eulerian angles, 208
Event, 11
Extended phase space, 41
Extensive, 7, 193
Exterior

derivative, 309, 315
product, 309, 313

Exterior product, 313

Fermat’s principle, 97
Fibonacci numbers, 406
Fibres, 302
Fields, 421
Fitzgerald–Lorentz contraction, 279
Flow, 40

fronts, 361
local, 361
maximal, 361

Flux, 361
Force

central, 13, 20
centrifugal, 56
conservative, 29
Coriolis, 56
external, 8, 20
field, 7

frictional, 236
generalized, 93
gravitational, 8
harmonic, 9
internal, 8, 20
Lorentz, 277
of constraint, 92

Form invariant, 5, 272
Foucault pendulum, 60
Fractals, 409
Frequency doubling, 403
Friction

gliding, 232
rolling, 232
rotational, 232

Function
smooth, 290

Galilei group
orthochronous, 25
proper, 25

Galilei invariant space-time, 269
Gauge transformations, 103
Generalized coordinates, 91
Generating function of canonical transformation,

125
Generating function of the infinitesimal

transformation, 147
Generator for infinitesimal rotations, 117, 122
Generators of boosts, 458
Generators of rotations, 458
Geodesic, 349
Geometric similarity, 443
Golden mean, 406
Gradient, 539
Gradient flow, 384
Gradient flows, 464
Group

axioms, 26

Hénon’s attractor, 465
Hamilton function, 106
Hamilton’s principal function, 454
Hamilton’s variational principle, 101
Hamilton’s variational principle for continuous

systems, 427
Hamiltonian systems, 332, 374
Hamiltonian vector field, 299, 332
Harmonic oscillator, 34, 159
Hausdorff space, 289
Hermann–Bernoulli–Laplace vector, 452
Hodge star operation, 318
Hodge star operator, 461
Hodograph, 55, 446, 502
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Holonomic, 89
Homeomorphisms, 538
Hopf bifurcation, 389
Hyperion, 412

Impact parameter, 68
Impact vector, 68
Inertia tensor, 191, 193
Inertial frames, 5
Infinitesimal canonical transformations, 147
Infinitesimal rotations, 121
Infinitesimally symplectic matrix, 369
Inhomogeneous Lorentz group, 252
Initial conditions, 5, 39
Inner product, 334
Integrable systems, 156, 162
Integral curve, 39, 312
Integrals of the motion, 148
Intermittency, 403
International System of Units (SI), 9
Invariant plane, 221
Involution, 161
Iterative mappings on the unit interval, 393

Jacobi identity, 145
Jacobian coordinates, 452
Jupiter, 417

KAM theorem, 169
KAM tori, 417
Kepler problem, 52, 443
Kepler’s first law, 17
Kepler’s Problem, 13
Kepler’s second law, 16
Kepler’s third law, 18, 476
Kinetic energy, 191
Kinetic energy of a rigid body, 192
Kirkwood gaps, 411, 417
Klein–Gordon equation, 429

Lagrange’s equations, 95
Lagrangian function, 95, 282
Lagrangian multiplier, 283
Lagrangian two-form, 341
Lagrangian vector field, 343
Legendre transformation, 107

geometrical interpretation, 449
Leibniz rule, 300, 316, 350, 351
Lenz’ vector, 452
Levi–Civita connection, 351
Liapunov characteristic exponents, 403, 407
Liapunov function, 371
Liapunov stable, 365

Lie
algebra, 122
derivative, 333
group, 122, 540
product, 122

Lie bracket, 462
Lie derivative, 306
Lightlike, 251
Line element, 272
Linear autonomous systems, 129
Linear chain, 422
Linear systems, 42
Linearization in neighborhood of critical point,

362
Linearization in neighborhood of given solution,

363
Liouville’s theorem, 137, 333
Local coordinates, 288
Local rectification, 156
Local transverse section, 382
Logistic equation, 398
Lorentz invariant space-time, 270

Manifold, 286
Mapping

bijective, 538
continuous, 538
injective, 537
regular, 340
surjective, 537

Mappings of manifolds, 309
Mars, 417
Mass

density, 76
electron, 273
gravitational, 8
inertial, 6, 8
reduced, 12
rest, 273

Mass points, 2
Mass term, 435
Mathematical Pendulum, 139
Maximal integral curve, 313, 361
Metric, 321

Riemannian, 322
semi-Riemannian, 322

Metric tensor, 247
Minkowski space-time manifold, 251
Modulo, 537
Momentum, 6, 242
Momentum canonically conjugate to the

coordinate, 107
Motion, 169
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Multipole moments, 79
Muon, 244, 276

n-particle system, 101
Natural coordinate functions, 290
Neutrino, 276
Newton’s equation, 272
Noether’s theorem, 115, 450
Nonresonant torus, 169
Normal coordinates, 184
Nutation, 229

One–form, 307
Orbital angular momentum, 13
Orthochronous, 253
Orthogonality relation, 396

Parallel vector fields, 352
Parameter, 421
Parameters, 11, 539
Parity, 27
Particles, 2
Pauli matrix, 262
Pendulum chain, 430
Pericenter, 49
Perihelion, 49

precession of, 83
Periodic orbits, 390
Perturbation theory, 167
Phase

portraits, 33
space, 33

Phobos, 412
Photon, 243
π meson, 243
Pirouette, 455
Pitchfork bifurcation, 389
Planar mathematical pendulum, 36, 185
Platonic year, 220
Pluto, 167, 419
Poincaré group, 252
Poincaré mapping, 383
Poinsot’s construction, 221
Poisson bracket, 142, 226, 283, 334
Poisson’s theorem, 146
Potential, 13
Principal moments of inertia, 194
Principle

of center-of-mass motion, 21
Principle of Euler and Maupertuis, 453
Principle-axes systems, 194
Projectile, 65, 457
Projection, 303
Proper Lorentz transformations, 252

Proper orthochronous Lorentz group, 254
Proper time, 3, 271
Pull-back, 310, 462
Push-forward, 310

Quasiperiodic Hamiltonian systems, 166
Quasiperiodic motion, 405

R
n, 290, 293

R-linearity, 300
Radioactive decay, 244
Rapidity, 256
Real symplectic group Sp2f (R), 133
Rectification theorem, 158
Reduced action, 152
Regular precession, 206
Relative motion, 12
Resonant tori, 169
Rest energy, 243
Restricted three-body problem, 166
Reversal of motion, 27
Riemannian manifold, 349
Rigid body, 187, 189
Rod, 189, 205
Roessler’s model, 465
Rosettelike orbits, 85
Rotation group, 119
Routes to Chaos, 403
Runge–Kutta procedure, 186, 533
Rutherford scattering, 71, 72, 86

Saddle-node bifurcation, 388
Saturn, 412
Scale contraction, 279
Scattering orbits, 85
Secular perturbation, 168
Sine–Gordon equation, 431
Small oscillations, 43, 182
Smooth curve, 298
Smooth function on a manifold, 298
Smooth overlap, 292
Snowflake set, 410
SO(3), 119, 187, 296
Soliton solutions, 432
Space

base, 302
cotangent, 307
homogeneous, 3
isotropic, 3
phase, 319
reflection, 27
velocity, 319

Spacelike, 251
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Special conformal transformations, 284
Special Lorentz boosts, 255
Special Lorentz transformations, 255, 258
Speed of light, 245
Spherical mathematical pendulum, 164
Spherical symmetry, 2
Spherical top with friction, 231
Spin

electron, 458
Stability

asymptotic, 376
Liapunov, 376
orbital, 376

Steiner’s theorem, 197
Stokes’ theorem, 30
Strange attractors, 373, 397, 409
SU(2), 122, 295
Summation convention, 247
Symplectic

charts, 330
form, 330
geometry, 330

System
center-of-mass, 66
laboratory, 66

Tangent vectors, 300
Target, 65, 457
Tautological form, 324
Tensor field, 321
Tensor of field strengths, 278
Theorem of Kolmogorov, Arnol’d and Moser,

169
Time dilatation, 279
Time reversal, 27
Time-dependent Hamiltonian systems, 337
Timelike, 251
Tippe top, 231, 240
Top

sleeping, 228
spherical, 195, 205
standing, 229
symmetric, 195, 206, 217, 238

symmetric children’s, 227
triaxial, 195, 216

Torus, 295
Total angular momentum, 23
Total differential, 539
Total elastic cross section, 71
Transcritical bifurcation, 388
Transformation

affine, 250
Legendre, 339
scale, 249

Uniform rectilinear motion, 4
Unitary unimodular group, 295
Units, 10
Universality of the speed of light, 242

Van der Pol’s equation, 379
Variable

action, 165
angle, 165

Variables, 539
Variational calculus, 98
Variational derivative, 99
Variational principles, 97
Vector field, 304

complete, 313
Vector fields, 39
Velocity, 4

angular, 190
translational, 190

Vibrating string, 422
Virial, 80
Virial theorem, 80
Virtual displacement, 91
Voyager 1 and 2 missions, 412

Wave equation, 426
Winding number, 406
World

events, 245
line, 245
points, 245

World line, 271
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