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Foreword

Current research in magnetism is driven by the interesting physics of rather com-
plex materials and by technology relevance, as is indicated, for example, by the
rapidly increasing demands of the information-storage and -processing industry.
The discovery of the Giant Magneto-resistance 20 years ago, honoured by the
Nobel Prize in 2007, laid the foundation to the entirely new research field of Spin-
tronics, which attempts to exploit the electron spin as the basic carrier for the
functionality and information transfer in electronic devices. The fifth School on
Magnetism and Synchrotron Radiation held at Mittelwihr in October 2008 focussed
on current and likely future research trends in the area of magnetism and mag-
netic materials and posed the question about the special tools needed. Advances
in the synthesis of new materials and complex structures, often with nanometer-
scale dimensions, require increasingly sophisticated experimental techniques that
can probe the electronic states, the atomic magnetic moments and the magnetic
microstructures responsible for the properties of these materials. Tools are needed
to explore the microscopic interactions between a spin-polarized current and the
magnetization. Processes like spin-transfer torque and spin transfer at interfaces are
in the focus of interest.

In the last two decades, experimental techniques based on synchrotron radiation
have provided unique capabilities for the study of magnetic phenomena. One reason
is that X-ray techniques have the unique advantage of coupling directly to the spin-
resolved electronic states of interest. X-ray Magnetic Circular or Linear Dichroism
(XMCD or XMLD) spectroscopy is a unique tool for measuring element-specific 3d,
4 f and 5d magnetic moments, frequently separated into spin and orbital compo-
nents. Inelastic X-ray scattering, in resonant and non-resonant mode, is a powerful
emerging spectroscopic probe that, due to the advent of new instrumentation, pro-
vides a wealth of information on electronic states in strongly correlated materials
or in materials under high pressure and in strong magnetic fields. Such experiments
need the high brightness of a third-generation synchrotron source, like the ESRF or
SOLEIL and others.

An important aspect in magnetism research is dimensionality. Many modern
magnetic materials like thin films, multi-layers and clusters, self-organized or later-
ally patterned structures show spatial extensions with at least one dimension on the
nanometer scale. These novel materials, often heterogeneous or multi-component,
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exhibit structural, electronic and magnetic properties different from those of bulk
materials. The ability to control spatial dimensions of magnetic features at the
nanometer level opens the possibility to study the fundamental magnetic interactions
on this scale.

Synchrotron radiation sources of the third generation have made it possible to
perform magnetic imaging using X-ray techniques on a sub-micrometer level. This
technique combines X-ray microscopy or X-ray photoelectron microscopy with
spectroscopy and permits imaging of magnetic domain structures with a lateral spa-
tial resolution of a few 10 nm. A new development is lens-less imaging by Fourier
transform X-ray holography, where the diffraction pattern of a coherently illumi-
nated sample is recorded in Fourier space. These methods provide a key technique
for research on small structures important in microelectronics, which are often het-
erogeneous and composed of several elements. Together with the temporal structure
of the synchrotron radiation, they permit element-sensitive time-domain studies,
which are of prime importance for magnetic recording. Examples are the dynamics
of domain-wall displacements and transformation or dynamics of the magnetiza-
tion of mesoscopic magnetic structures. The underlying processes occur at times
in the nano- to femto-second range. Understanding is limited due to the lack of a
microscopic theory.

A class of materials of particular scientific interest are the actinide metals and
their compounds. Their physical properties, deriving from the 5 f* electron states,
show many similarities with the lanthanides, such as electron correlations, super-
conductivity, or ordered magnetism. But compared to the 4 f metals, their properties
and their magnetic structure, in particular, remain poorly understood. This is due to
experimental complications and the exotic behavior of the 5 f states that appear
to be delocalized for the light actinide metals, but become localized in the lat-
ter part of the series. Considerable insight into the electronic ground state can be
obtained from core-level X-ray absorption spectroscopy and electron energy loss
spectroscopy, together with recent theoretical results.

Current interest in magnetic materials includes molecular magnets. They bridge
the gap between the atomic and the mesoscopic length scale. A special case is
the Single Molecule Magnets, which are coordination compounds of paramagnetic
metal ions held together by suitable ligands. Interest in this material is focussed on
the understanding of their magnetic hysteresis that occurs at low temperature and
presumably is of pure molecular origin.

This Mittelwihr School on the interrelation of magnetism and synchrotron radia-
tion was meant, like the preceding ones, to introducing into the basics of the topic.
Hence the first lectures were devoted to the major fundamental phenomena and
aspects in magnetism, to the modern theoretical concepts for the description of the
interaction of an electromagnetic wave with matter, focussing on core-level X-ray
spectroscopies, and to the fundamentals of synchrotron sources and devices. A new
spectroscopic tool was presented, X-ray detected magnetic resonance, which uses
XMCD to probe the resonant precession of local magnetization spin and orbital
components in a microwave pump field. A lecture important for future develop-
ments was devoted to report on the progress in the realization of free-electron laser
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sources in the UV and X-ray range. These sources will produce spatially coherent,
ultra-short (~100fs) pulses with very high brilliance and mark the transition from
third- to fourth-generation light sources.

In the above lines, I have only addressed what appeared to me as the strong points
of the school. The reader interested in the fascinating actual aspects of magnetism as
studied by synchrotron radiation will find an excellent presentation in these Lecture
Notes.

Gottingen, Wolfgang Felsch
May 2009
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Chapter 1
Introduction to Magnetism

W. Weber

Abstract This lecture gives an overview of the main phenomena that determine
the magnetism of matter and the properties of magnetic materials. After an intro-
duction, the second section presents the following topics: orbital and spin magnetic
moment, dia- and paramagnetism of free atoms, and Pauli-paramagnetism of free
electrons. The third section deals with ferromagnetism. The Heisenberg-exchange
interaction and its consequences for the magnetization as a function of the applied
magnetic field and the temperature are discussed in the molecular field approxima-
tion. In particular, the ferromagnetic phase transition and spin waves are described
before we finish this section by discussing briefly itinerant ferromagnetism. The
fourth section introduces the important concepts of magnetic anisotropy (shape and
magneto-crystalline anisotropy) and magnetic domains. Then, we discuss magneti-
zation reversal by the application of a magnetic field, and how it is influenced by
the nucleation of domains and domain wall motion. In a last subsection of this sec-
tion, we discuss the magnetic behavior of small particles. The fifth section deals
with the magnetism of thin films and multilayers. We mostly concentrate on two
important phenomena observed in multilayers: indirect exchange coupling (RKKY
interaction) and giant magnetoresistance.

1.1 Introduction

1.1.1 Definition of the Magnetic Moment

It is not possible to define a magnetic moment in analogy to the electric dipole
moment: p = QI, with 1 the displacement vector between the charges +Q and
—Q. It is therefore not possible to write m = Qyl, with Qy the magnetic charge,

W. Weber
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Fig. 1.1 Magnetic moment A
due to an eddy current

Bl

£

a so-called magnetic monopole. Up to now, magnetic monopoles have not been
discovered, which is expressed by one of Maxwell’s equations: VB = 0, that is,
there is no source of a magnetic field.

To give a definition of the magnetic dipole moment, we exploit the fact that a bar
magnet and a small coil through which a current is driven have similar properties.
Both produce, if viewed from a point sufficiently far away from them, a magnetic
field of similar shape. Thus, let us define the magnetic dipole moment m by consid-
ering an eddy current (Ampere’s definition): m = I - F, where the direction of the
vector F indicates the sense of the current / and its absolute value the area that is
encircled by the current (Fig. 1.1). The unit of the magnetic moment is A m?.

1.1.2 Energy of the Moment in an External Magnetic Field

We emphasize that the magnetic field H (unit is A m™") derives from a vector poten-
tial and is therefore an axial vector, while the vector of the electric field E for
instance derives from a scalar potential and is thus a polar vector. Their transfor-
mations under a mirror symmetry operation are different, as such an operation lets
invariant the normal component of H while the parallel component is reversed. The
electric field E, however, behaves inversely.

The magnetic field H exercises a torque T on the magnetic moment m:

T = puom x H, (1.1)
with f1o the vacuum permeability (= 47 x 107" mkg A=2 s72). The energy E that

is needed to rotate m from a position with an angle «; between the moment and the
magnetic field to the one with an angle o, (see Fig. 1.2) is thus given by

o an
E = / Tda = Mo[ mH sin(a) da = —puomH [cos(az) — cos(ay)]. (1.2)
o o

1 1
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Fig. 1.2 A magnetic moment
m in a magnetic field H

Tl

We have the freedom to set our zero point of energy at @ = 90°, so that we get
E =—pom-H. (1.3)

If we allow for an inhomogeneous magnetic field, we have, beside the torque,
also a translational force F = —V E. With both the magnetic moment and the mag-
netic field along the x-direction and a field gradient along the z-direction, we obtain
for the force along the z-direction

0H,
0z

F, = poms (1.4)

This equation is the basis for the measurement of the magnetic moment by the
Faraday balance and the alternating gradient force magnetometer.

1.1.3 Further Definitions

— Magnetization:
M = % Xl: m;, (1.5)
with V' the volume of the system; the unitis Am™!.
— Magnetic induction:
B = po(H+M). (1.6)
— Magnetic susceptibility y:
M = yH. (1.7)
For negative y, we have diamagnetic behavior, that is, the material is repelled by

a magnetic field, while for positive y, the material behaves paramagnetic, that is,
it is attracted by a magnetic field. We note that y is in general a (3 x 3) tensor.
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1.2 Magnetism of Free Atoms and Electrons

1.2.1 Diamagnetism of Free Atoms [1]

In the following we deduce the diamagnetic susceptibility of free atoms in a semi-
classical way. We note that all magnetic effects, be it dia- or paramagnetism, cannot
be explained in terms of a purely classical theory. This is the content of the Bohr-
van Leeuwen theorem,! which states that at any finite temperature, and in all finite
applied electric or magnetic fields, the net magnetization of a collection of nonrel-
ativistic classical electrons in thermal equilibrium vanishes identically. Thus, it is
necessary to introduce some quantum-mechanical assumption to obtain magnetic
effects. In the present case, we assume that an electron orbits around the nucleus on
a fixed orbit with the angular velocity wy. In this case, the centripetal force is equal
to the Coulomb force, and the angular velocity is given by

Ze?

_, 1.8
4reomer3 (1.8)

wo =

with r the radius of the orbit and Z the atomic number.

Switching on a magnetic field H will result in a Lorentz force F, = —puole|(v X
H), with v the velocity of the electron. The condition for equilibrium in the plane
perpendicular to the magnetic field results in a new angular velocity:

H 2
w=wo 1+ £ 4 Holel (1.9)
2mewy 2me

with the sign in front of the second term depending on the sense of the current. We
note that even for the largest laboratory fields one has always £ OlelH << wg. In
fact, typical values of the angular velocity and the magnetic ﬁeld are wo(Z =1,

r = 10"1%m) ~ 10®s7! and H = 107 Am™!, respectively, so that the ratio
&%%Lﬁ is of the order of 1012 s~! and one can write
e|lH
w=wp+ " bt (1.10)
2me

with o, the Larmor frequency. To obtain the above equation, one has to assume
that the radius of the electron orbit is not significantly modified by the presence of
the magnetic field. This is the content of the Larmor theorem [2]. The only effect
(in first order) of the magnetic field is to impose on the electron a precession motion
about the direction of the magnetic field with an angular velocity wr .

! This theorem was independently discovered by N. Bohr (PhD thesis, 1911) and H.J. van Leeuwen
(PhD thesis, 1919).
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As the radius and thus the area F that is encircled by the electron orbit is not
changed by the magnetic field, one finds for the change of the magnetic moment
Am due to the magnetic field

Am = e g (1.11)
21

If the magnetic field is applied along the z-direction, then F' is the circular area
that is orbited by the electron in the xy-plane: F = & (x2 + y2) = mr?. Assuming
a spherical symmetry of the charge distribution (averaged over time) and averaging
over similar electron orbits (<>), one has (x?) = (y?) = (z%) and (r?) = (x?)+(»?),
with r the radius of the orbit. On the other hand, the radius R of the sphere fulfills
(Rz) = (xz) + (yz) + (zz), so that (rz) = % (Rz). Thus, we find for the total magnetic
moment per atom (with Z electrons and a radius R; for each of them) Am =
—SonH Y (R2).

6me

For the magnetic susceptibility y = M/H , one finds finally the following expres-
sion:

z

_ Netuo 2

with N the number of atoms in the volume V. One notes that the susceptibility is
always negative and one is thus dealing with diamagnetism. The effect of a mag-
netic field on the electronic motion in an atom is equivalent to an additional current
induced on the atom that produces a moment oriented in a direction opposite to that
of the applied magnetic field (Lenz’ law).

Examples of diamagnetic materials, in which the atoms possess either in the
atomic state or in a compound a closed shell electronic structure, are rare gases like
He, Ne, and Ar, some of the polyatomic gases like H, and N5, ionic solids like NaCl,
and substances formed by covalent bonding like graphite and Bi. We note that the
latter two have the strongest diamagnetism among the elements.

1.2.2 Paramagnetism of Free Atoms [3]

In this chapter, one takes into account the quantization of the angular momentum,
both of the orbital contribution with the orbital magnetic quantum number m; =
0,+£1,+£2,..., £/ (the eigenvalue of the L, operator) and of the spin contribution
with the spin magnetic quantum number my = —S, —S + 1, ..., + S (the eigenvalue
of the S, operator). We note that for not too heavy atoms or ions (transition metals
and even rare earth elements) in which the spin-orbit coupling is small compared
with spin—spin and orbit—orbit coupling, L and S can still be considered as good
quantum numbers.

The permanent magnetic moment of an atom or an ion is determined by the total
angular momentum J = L + S:

m = —gusJ, (1.13)
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with ug = % the Bohr magneton and g the Landé-factor:

JJ+1)+SS+1)—L(L+1)

=1
g=1+ 20(J + 1)

(1.14)

For a pure orbital angular momentum one obtains g = 1, while a pure spin angular
momentum gives g = 2.
Assuming H = (0,0, H), the energy of the magnetic moment in the magnetic
field is
E =—pom-H = guopusHmy, (1.15)

withm; = —J,—J + 1, ..., +J the magnetic quantum number of the total angular
momentum. For the sake of simplicity, we consider in the following the case J =
S = % (i.e., g = 2), which gives

1
E =2popsH (ﬂ:z) = tpoupH, (1.16)

and results in a two-level system (see Fig. 1.3) with N = N; + N, the total number
of electrons.
According to the Boltzmann distribution, one obtains

Nl e_El/kBT
N o Ei/keT f o EalksT’ (1.17)
N> e_EZ/kBT

(1.18)

N T e Ei/ksT 4 o Ea/ksT"

As the magnetization is proportional to the difference between N; and N5, one finds

1 N ea_e—a N
M:_N_N — _— tanh B 119
V( 1 2) 4B M o — e (@) (1.19)
with @ = “(}{‘;—%H.
H=0 1
| mg=+ E, = +pgugH ; Ny electrons
H=0

Mg =— ;_; E; = —nougH ; Ny electrons

Fig. 1.3 Effect of a magnetic field on the energy levels of the two electron states with m; = +1/2
and my; = —1/2
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M

1 4
0.8
0.6
0.4

0.2

Fig. 1.4 The Brillouin function B; («) as a function of « = guougJH/kgT

For o << 1, thatis, uoug H << kgT, one has tanh(«) & « so that one obtains
the so-called Curie law [4]

M  Npoug C
= — & = —. 1.20
=T VkeT — T (1.20)

For o >> 1, thatis, uougH >> kgT, one has tanh(a) = 1, a situation in
which all magnetic moments are aligned and one obtains the saturation value of the
magnetization: M ~ % UB.

The above result for the magnetization can be generalized to an arbitrary value
of the total angular momentum J:

N
M = VgMBJBJ((X), (1.21)
witho = g“‘}cﬁf‘}m and the Brillouin-function (see Fig. 1.4)
2J +1 2J + Do 1 o
B = th — —coth{—). 1.22
s(@) = 5o ( 27 ) 27 ° (ZJ) (1.22)

For o << 1, one obtains again the Curie-law

_ Np?popi

3kaT (1.23)

with p = g/ J(J + 1), the so-called paramagnetic moment.
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How can one determine the susceptibility of a substance? For this we need to
know the effective number of Bohr magnetons p, that is, we need to know the value
of the total angular momentum J. The J of the ground state can be determined by
using the empirical Hund’s rules [5]:

(1) The spin angular momentum S is as large as possible (by taking into account
Pauli’s principle [6]).

The larger the spin, the more asymmetric is the spatial part of the wave function,
that is, the electrons are farther from each other. This saves Coulomb energy.

(2) The orbital angular momentum L is as large as possible (taking into account
rule (1) and the Pauli principle).

The larger L, the farther apart are the electrons, which saves again Coulomb
energy.

(3) The total angular momentum J is maximum or minimum. For a shell that is less
than half-filled or half-filled, one has J = |L — S|. Spin and orbital angular
momentum are antiparallel. For a shell that is more than half-filled, one has
J = L + S. Spin and orbital angular momentum are parallel.

Let us compare theoretical and experimental values of the effective number of
Bohr magnetons [7]. As a first example, we take ions of the rare-earth elements, in
which the 4 f-shell is successively filled. With the exception of Sm3+ (4 £°) and
Eu3™ (4 £°), one has good correspondence (see Fig. 1.5). Because of the screening
of the 4 f electrons by the 5526 p®5d %1652 electrons — all being at larger radii than
the 4 f electrons — the atomic case is also realized in the solid state. The deviations
in the case of Sm3* and Eu®* are due to the fact that excited states with J' # J are
close to the ground state J. Their population at a given temperature has therefore to
be taken into account.

As second example we consider ions of the iron transition group, in which the
3d-shell is successively filled [7]. There is no correspondence between experi-
mental values and the theoretical values, which have been calculated according to
Pett = g4/ J(J + 1) (see Fig. 1.6). However, good correspondence is found with

10

81 4 Measured

6 | — Calculation

Pett (L)

L

0 2 4 6 8 10 12 14
Electrons in 4f shell

Fig. 1.5 Measured and calculated values (based on Hund’s rules) of the effective paramagnetic
moment for ions of the rare-earth elements
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Calculated

(J of 2+ ions)

_ _Calculated
(S of 2+ ions)

A Measured -~
i A

Pert (1)
o = N W HOOLO N

0 2 4 6 8 10
Electrons in 3d shell

Fig. 1.6 Measured and calculated values (based on Hund’s rules) of the effective paramagnetic
moment for ions of the iron transition group

Pett = g+/S(S + 1), that is, when we assume that J is given only by the spin angu-
lar momentum. This is explained by a complete or partial quenching of the orbital
angular momentum in the solid.? In the free atom, the 3d electrons “feel” a central
field, so that both L, and L? are integrals of the motion. In an ionic environment,
however, the 3d electrons are subject to a crystal field. In such a noncentral field, L,
is no longer an integral of the motion and an average may lead to a cancelation of
the orbital angular momentum.

1.2.3 Pauli Paramagnetism of Free Electrons (in Metals) [10]

Considering a free electron as a particle with a total angular momentum J = S =
1/2, one might — according to the theory of the paramagnetism of free atoms (see
Sect. 1.2.2) — expect at high temperatures a Curie-law:

(= N popg
V ksT

(1.24)

However, in metals one observes a magnetic susceptibility that is in first approxi-
mation independent of the temperature. In fact, in the case of electrons one has to
consider the Fermi—Dirac distribution instead of the Boltzmann distribution (as in
the case of free atoms). The Fermi—Dirac distribution reads

_ -1
f(E) = [efﬁE + 1] , (1.25)

2 The phenomenon of orbital momentum quenching is discussed for instance in [8,9].
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with the chemical potential £, which is chosen such that the total number of electrons
equals N. The Fermi energy is defined by Er = &(T = 0).

It is the peculiarity of the Fermi—Dirac distribution that for most electrons the
probability to switch the spin upon application of a magnetic field is zero. Most
states are already occupied. At finite temperatures, free states are available only
within a very small region around Ef, whose width is determined by the thermal
energy kgT'. The portion of electrons that can switch their spin is therefore of the
order of kg—:. One expects thus a temperature-independent magnetic susceptibility:

Nﬁﬂouﬁ‘kBTzﬁﬂoﬂﬁ
XNV e Er V Er

(1.26)

Moreover, at room temperature the magnetic susceptibility of a free electron system
is by a factor of 100 smaller than that of a system of free atoms.

1.3 Ferromagnetism

The most characteristic property of ferromagnets is that once exposed to a magnetic
field they retain their magnetization even when the field is removed. The reten-
tion of magnetization distinguishes ferromagnets from paramagnets which, although
they acquire a magnetic moment in an applied magnetic field, cannot maintain the
magnetization after the field is removed.

The most common way to represent the magnetic properties of a ferromagnetic
material is by a plot of the magnetization M against the applied magnetic field H .
In contrast to the non-hysteretic behavior of paramagnetic materials, which follows
the Brillouin function (see Sect. 1.2.2), the magnetization M of a ferromagnetic
material exhibits a hysteretic behavior as a function of the applied magnetic field H
(see Fig. 1.7).

Important quantities determining an hysteresis loop are the coercive field H., the
remanent magnetization M,, and the saturation magnetization M. The area within
the hysteresis loop is proportional to the work that has to be done to switch the
magnetization from one direction to the opposite direction: E = Vo [ H dM.

Fig. 1.7 A typical hysteresis
loop of a ferromagnetic
material. M, M, and H_ are
the saturation magnetization,
the remanent magnetization,
and the coercive field,
respectively
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What are the great differences between the behavior of a paramagnetic and a
ferromagnetic material? (a) In a ferromagnet, the magnetization depends on the his-
tory of the magnetic field treatment. (b) A nonzero magnetization can be achieved
in ferromagnets even in zero magnetic field. (c) In general, small magnetic fields of
the order of 103>~10* Am™! can induce in ferromagnets large magnetizations of the
order of 106 Am™!.

1.3.1 Molecular Field

To explain these properties, Pierre Weiss introduced (1907) the two following
postulates [11, 12]:

(1) A molecular field Hy, exists within the ferromagnetic material that orders the
magnetic moments against the thermal motion. It is so large that the ferro-
magnet can be saturated even without an external magnetic field. By a simple
calculation one gets its order of magnitude. At the so-called Curie temperature
T. above which ferromagnetic order is lost, the thermal energy (that disorders
the system) and the magnetic energy (that orders the system) must be of the
same order of magnitude: kg7, ~ poupHpn. With a 7. of 1,043K (Fe) one
finds Hy ~ 10° Am™L.

(2) A ferromagnetic material in its demagnetized state, that is, M; = 0, is divided
into a number of small regions, so-called magnetic domains. Within a single
domain the magnetization is saturated, but different domains have different
directions of the magnetization (see Fig. 1.8).

What is the origin of the molecular field? Can the dipole force between the mag-
netic moments be the origin? The interaction energy of two magnetic dipoles m;
and m, that are separated by a distance r is given by

1 3
Egip = 3 |:m1m2 2 (mgr) (mzr):| . (1.27)

With atomic distances r one yields Eg;, ~ 0.1-1 K. On the other hand, typical Curie
temperatures are on the order of 1,000 K, so that the dipole force cannot explain the
ferromagnetic order up to such temperatures.

%W@ @MQ
ST

Without applied field With applied field

Fig. 1.8 Schematic domain configuration in a demagnetized state (left). Application of a
sufficiently strong magnetic field leads to saturation (right)
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1.3.2 Exchange Interaction as Origin of the Molecular Field

113 ”

Let us consider two hydrogen atoms (proton “a” with electron “1”” and proton “b”
with electron “2”) that are far from each other. The hamiltonian of this system reads

2

2me

H=-

(V3 +V3) + V(l,a) + V(2,b). (1.28)

The potential is given by V(r) = —TEZ’ with r the distance between the electron and
“its” proton.

The total wave function of the two electrons must be antisymmetric according
to Pauli’s principle: ¥ (1,2) = —y(2, 1). With the single-electron wave functions
Ya(1),¥5(2),%4(2), and ¥ (1), the total wave function reads

v(1.2) = —= [Ya(D V5 (2) = a2 (1)]. (1.29)

1
V2
Now we factorize the total wave function into a spatial function ¢ and a spin function
x:v(1,2) = ¢(1,2) - x(1,2). We note that this factorization is justified only for
systems in which the spin—orbit interaction is small. A total antisymmetric wave
function can thus be achieved in two different ways:

(1) By a symmetric spatial function ¢ and an antisymmetric spin function y,
(2) By an antisymmetric spatial function ¢ and a symmetric spin function y.

One obtains thus four wave functions:

¥s(1.2) = 5 [¢a(Ddp(2) + ¢ (D] - 75 (| 1>~ 11>),

U/ (1.2) = 25 [9a(Dp(2) — ) (D] - | 11> (130)
V7(1.2) = 25 [9a(Ddp(2) — pa @ (D] - 5 (| 1>+ 11>), ‘
Y2 (1.2) = 55 [pa(Dp(2) — pa @) (D] - | 11> .

The first wave function describes a singlet state, because S = 0. The other three
wave functions describe a triplet state, because S = 1. The quantum numbers m
of the S, operator for these three functions are +1, 0, and —1, respectively.

For large distances between the two hydrogen atoms, singlet and triplet states
are energetically degenerated. When the distance becomes smaller the energies
become different. The additional interactions upon approach of the atoms are given
by Hi» = V(a,b) + V(1,b) + V(2,a) + V(1,2). The corresponding energies are

Es; = / Vs HioYs dV = K1 £ J12, (1.31)

with Kj, the Coulomb integral:

Kz = /¢;‘(1)¢Z(2)H12¢a(1)¢b(2)dVlde (1.32)
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in which electron 1 (2) stays on site a (b), and with Jq, the exchange integral:

Jiz = /¢;‘(1)¢§(2)H12¢a(2)¢b(1)dVlde (1.33)

in which electron 1 (2) swaps to site b (a). We note that the use of single-
atom wave functions (Heitler—London approach [13]) in the above equations is an
approximation that is not always justified.

We emphasize that H, is an operator without any spin dependence that acts,
therefore, only on the spatial part of the wave function: Hi2Yy = Hiz(d - x) =
xHi2¢ = x(Es:¢) = Es . The idea is now to construct a new hamiltonian Hpin
that acts only on the spin part of the wave function yet yielding the same eigenvalues
E ;. The following hamiltonian fulfills these requirements:

1
Hgpin = K12 — §J12 —2J1251S3. (1.34)

Consequently, the system can be described by an effective spin—spin hamiltonian,
that is, an effective spin—spin interaction exists, which is called exchange interaction
[14,15]. We note that the exchange interaction is the result of a combination of a
pure electrostatic interaction and the Pauli principle and that no real magnetic field
is involved.

By generalizing the above hamiltonian to a grid of atoms (one also shifts the zero
of the energy), one obtains the Heisenberg hamiltonian: Hyejs = — Z# j JijSi-S;.
It should be emphasized that the exchange interaction is very short-ranged. It is the
overlap of wave functions between neighboring atoms that produces an effective
interaction that propagates over large distances. Therefore, it is often sufficient to
consider only the interaction between nearest neighbors (n.n.). Assuming the same
value J of the exchange integral for all pairs of nearest neighbors, one finds

Hyss=—J Y S;-S;. (1.35)
i#j,n.n.

Let us finish this section with a word of criticism. The most important prob-
lem of the above hamiltonian lies in the determination of the exchange integral J.
We emphasize that the above expression for the exchange integral (1.33) has been
obtained within the Heitler—London approach. A comparison of “experimental” val-
ues of J (from specific heat measurements and spin wave considerations) with those
of calculations within this approach show strong discrepancies. It is in general not
even possible to obtain the correct sign of J. Therefore, although the approach of
Heitler—London and Heisenberg still provides a useful concept for discussing the
spin—spin interaction of electrons, the method seems to be inadequate. One resorts
to calculations of the total energy for different spin configurations. That with the
lowest energy gives the spin order ground state.
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1.3.3 Mean Field Approximation (MFA)

The total hamiltonian with the contribution due to the applied magnetic field H is

Hoa=—-J ) SiS; +guouBHZSm (1.36)
i#j,n.n.

where the magnetic field is supposed to be parallel to the z-direction. Now we want
to know the behavior of the magnetization as a function of both the temperature
and the applied magnetic field, that is, M (T, H). Unfortunately, it is not possible
to calculate it exactly, and so one has to make an approximation. A reasonable
approximation is done by using the thermal mean value of the spin operators, that
is, replacing S; by < S; > and thus neglecting thermal fluctuations. This approx-
imation is called mean field approximation (MFA). By applying the magnetic field
along the z-direction, the only nonvanishing component of the mean value of the
spin operator is the z-component. Moreover, because of translational symmetry, one
obtains < S, > = < S, > so that the total hamiltonian in MFA reads

Hyipa = —Jn < S, > ZS’?Z + guous H ZS"’Z

Jn < S, >
= gpos [H - —] > Sia (1.37)
gHoMB

1
with n the number of nearest neighbors.

The above hamiltonian describes a system of independent magnetic moments
that are under the influence of an external magnetic field H and a “molecular field”
H, =— J"<0SB> Replacing H in the Brillouin function for the paramagnetic case
by H + Hy, should therefore be a solution of our problem:

N
M = 3 gusSBs(@). (1.38)
with g ; g
— EHoiin [H _ = >]. (1.39)
kgT gHoMUB
On the other hand, one has
N
M, = —y 8 < S >, (1.40)

so that the magnetization can be expressed in terms of o, H, and 7" as follows:

_ NkeTgps N (g1n)*
STV InS VvV Jn

poH. (1.41)
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M(o,H,T)
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!

Fig. 1.9 The graphical determination of M(H,T) by plotting (1.38) (Brillouin) and (1.41)
(M(a, H,T))

MM,

T

Fig. 1.10 Schematic representation of the magnetization as a function of temperature

Equations (1.38) and (1.41) are a pair of equations that can be resolved graphically
(see Fig. 1.9).

For H > 0 one has always M, # 0. For H = 0, a temperature 7. exists for
which the straight line is a tangent to the Brillouin function. Above T, M; = 0
is the only possible solution. One can show that M (T, H = 0) is nonanalytic at
T = T (see Fig. 1.10). There is a phase transition.

1.3.3.1 Curie Temperature in MFA

The Curie temperature in MFA can be calculated by equating the slope of the
Brillouin function at « = 0 and the slope of the straight line for H = 0:
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N 9Bs N kgT.gus
- S—(¢=0)=——="2" 1.42
y8uS = Sl =0) = 7——" (1.42)
As Bs(a << 1) = %a, one obtains
TMEA _ JnS(S +1) (1.43)
. . .

3kp

The Curie temperature is in particular proportional to the number of nearest neigh-
bors nn. Accordingly, a reduction in the Curie temperature for surface atoms —having
areduced coordination number — has been observed in many instances [16]. We note
that MFA usually overestimates the Curie temperature.

1.3.3.2 Curie-Weiss Law [11]

For a paramagnetic material one finds a Curie law M = %H with a constant C.
For a ferromagnetic material in MFA, the magnetic field H has to be replaced by
H + Hy, so that we obtain M = %(H + Hp,). On the other hand, the molecular
field Hy, can be expressed in terms of the magnetization: H,, = N, M, with Ny, a

suitable number such that H,, = —%, leading us to M = %(H + NmM).
The magnetic susceptibility is thus given by
C C
X = = (1.44)

with 8 = C Ny, the so-called paramagnetic Curie temperature. For ferromagnets
one always has 0 > T, (see Fig. 1.11).

We note that the susceptibility follows only the Curie—Weiss law in the param-
agnetic region. For temperatures below 7, the material becomes ordered and the
susceptibility behaves in a very complicated way.

1.3.3.3 The Behavior of M (T) Close to T,

In the proximity of the Curie temperature 7¢, one finds a power law behavior of the
magnetization:

Fig. 1.11 Schematic
representation of the inverse
susceptibility of a
ferromagnetic material as a
function of temperature. 7,
and 6 are the Curie
temperature and the
paramagnetic Curie 0
temperature, respectively

Uy
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T\?
M(T) (1 — 7) , (1.45)
with the critical exponent § (0 < B < 1) of the magnetization. Let us calculate
within the MFA. For the sake of simplicity we consider only the case with S = %
From the preceding discussion we know that the magnetization can be expressed in
the following way:

M= tann | gy MVnJ (1.46)
= — g tanh | —— ) )
VMB kT HolB AN s
. _ M M
Witho = m = W,One has
1 onJ
=tanh | — H . 1.47
0 = tan |:kBT (MOMB + 1 )i| (1.47)

Using the expression for the Curie temperature 7 in MFA, one obtains

1.48
ksT T (1.48)

H T
o= tanh(MOMB + C) .

Applying tanh(x + y) = [tanh(x) + tanh(y)] /[l + tanh(x) tanh(y)] and T* =
T/ T, one arrives at

b= tanh(“ouBH) _o—tanh(o/T")

= . 1.49
kgT 1 —otanh (o/T*) (1.49)
For H =0and T ~ T, one has M = 0, thatis, 0 << 1. Considering only terms
up to third order in o, one obtains

1 o3 5
0=o0 1—; +W+O(O) (150)

The solution for 7' > T is trivial: 0 = 0. The solution for 7" < T¢ is

1
T T\2
=V3—(1-= 1.51
o ﬁTC( TC)’ (L.51)

thus yielding a critical exponent 8 of 1/2.

Experiments, however, show that the critical exponent 8 differs quite sensibly
from 1/2, that is, the MFA does not describe correctly the behavior in the vicinity
of T.. In fact, spin fluctuations, which have been neglected in the MFA, have to be
taken into account to obtain the correct value of the exponent.
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1.3.4 Spin Waves

A simple way to decrease the total magnetic moment of a ferromagnetic material
might be to switch the direction of a particular magnetic moment (see Fig. 1.12).

The energy of the ground state is Eg = —NJS2, while that of the first localized
excited state is given by E; = —(N —2)JS? +2J5% = —(N — 4)JS?. For the
normalized energy difference we thus find (E; — Eo) /Eo < 1/N.

However, there is another way to reduce the magnetization, in which the excita-
tion energy is distributed over the entire spin system. Most importantly, by exciting
a collective excitation, the required amount of energy can be lowered. Such a
collective excitation of the spin system is called spin wave (see Fig. 1.13).

Let 6 be the angle between a spin and the z-axis around which the spins are
precessing and ¢ the angle between two neighboring spins in the projection onto
the xy plane. As the effective reduction of the total magnetic moment by a spin
wave should be equal to that of a localized excitation as shown in Fig. 1.12, one has
N6 = m. The value of the angle ¢ is, however, not defined by the number of spins
in the chain, but by the wavelength of the spin wave. For the sake of simplicity we
consider a spin wave with the largest possible wavelength, that is, N¢ = 2x. The
energy of the spin wave is then £y = —NJS? cos(g), with & the angle between
two neighboring spins. For large N, the angles 6, ¢, and ¢ are very small and one
finds ¢ ~ 0 - ¢. Thus, one obtains (E; — E¢)/Eg = 1 —cos(e) ~ 1 — cos(0¢) =~
(9$)?/2 o 1/N*. This shows that the excitation of a spin wave is much more
favorable than a localized excitation if the number N of spins is large, that is, if the
system is large.

Fig. 1.12 A linear chain of
spins: ground state (left), a 111111111 IIIIlIIII
state with one spin

antiparallel (right) Ground state First excited state

FPPPEEFFY

Fig. 1.13 A state of a chain of spins in which each successive spin is at an angle ¢ to its neighbors



1 Introduction to Magnetism 19

1.3.4.1 Dispersion Relation of Spin Waves

Let us derive in the following the dispersion relation w(k) in a semi-classical way
for a line of spins. The exchange energy between one spin at a position pa (a being
the lattice parameter) and its neighbors at the positions (p — 1)a and (p + 1)a is

E=-JS, (Sp_l + Sp+1). The magnetic moment at the position pa is given by
m, = —gugS, and one obtains
—J

E =-mp— (Sp—1 + Sp+1) = —pom, - Hy, (1.52)
§HB

where H), can be identified as the molecular field or the “exchange” field. Classical
mechanics demands now that %(angular momentum) = torque, resulting in

d (kS
% = pom, x H,. (1.53)

With the above identification of H, as the molecular field, one obtains

dSp _ —8roms

J
4 - s,,przE(prsp_ﬁrspxspﬂ). (1.54)

Assuming small amplitudes of Sy and S, one can linearize the equations, that is,
S, = S, and all terms containing products of Sy and §, can be neglected:

as; JS

T = (B -S-sa) (19
ds; -JS

dsz,

> =0. (1.57)

In analogy to lattice vibrations, one looks for solutions of the following form:
_ i(pka—wt) _ i(pka—wt)
S;—Ae”““’ and S;—Be””“’ (1.58)
with A and B complex numbers. This ansatz leads to the following equations:
2JS 2JS
—iwA = — [l —cos(ka)] B and —iwB = - [1 —cos(ka)] A.

(1.59)
Vanishing of the coefficient determinant yields the dispersion relation

hw = 2JS[1 — cos(ka)]. (1.60)
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For ka << 1 one has a parabolic behavior

ho = JSa?k?. (1.61)

1.3.4.2 Thermal Excitation of Spin Waves

Analog to the case of lattice vibrations (or phonons) spin waves (or magnons)
are quantized. ny is the number of magnons having a wave vector k. In thermal
equilibrium, the average value of ny is determined by the Bose—Einstein distribution

(1.62)

Now we are interested in the total number of spin waves that are excited at the
temperature 7. As the excitation of one spin wave reduces the total spin by one
unit, we get information about the temperature-dependent magnetization. First, let
us calculate the number of possible k-states between k and k + dk:

Vv
density-of-states - dk = D* (k) dk = P -4rk? dk, (1.63)
7

where the first factor is the density of wave vectors and the second the volume of
a shell of radius k and thickness dk in reciprocal space. By exploiting the above
dispersion relation (1.61) (for ka << 1) one yields

3
. V [ h \2

with D(w) the density-of-states as a function of w.
Now we can calculate the total number of excited spin waves (only k values of
the first Brillouin zone (BZ) contribute):

kzp
> ome =/ D(w) < n(w) > do, (1.65)

kel.BZ 0

with kzp the k-value of the zone boundary. At low temperatures, < n(w) >
approaches zero exponentially as w goes to infinity, thus allowing us to integrate
from O to infinity:

* Vv hoO\? (™ Jo
Z nk:/ D(w) < n(w) > da):—z( 2) —a—— dow
kel.BZ 0 4m2 \JSa 0 efsT —1
3
V ([ ksT \2 [ Jx
=g (75a) [ &5ve (1.6
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Thus the reduction of the magnetization as a function of temperature is

AM(T)=M(T =0~ M(T)= Y ngoT3, (1.67)
kel.BZ

which is known as Bloch’s law [17].

1.3.5 lItinerant Ferromagnetism

Why there are only few metals that exhibit ferromagnetic b ehavior? To answer
this question we have to consider the competition between exchange energy and
kinetic energy. Let us consider a free electron gas with the Fermi wave vector kp =

(311211)%, where n = N/V is the electron density. In the paramagnetic case, each
state is occupied by a spin up electron and a spin down electron. The kinetic energy
Ein is proportional to k2. If we consider the completely ferromagnetic case, that
is, all spins are aligned parallel, one has to double the volume of the Fermi sphere
because of the Pauli principle. Consequently, kr is by a factor of 2% larger such that
the kinetic energy will be larger by a factor of 23 . This increase of the kinetic energy
can in general not be overcompensated by a reduction of the exchange energy. Thus,
in a free electron gas there is no ferromagnetic order. However, in systems that
are more localized than a gas of free electrons, ferromagnetic order can appear. A
localization leads to a reduction of the band width so that both the spin up and spin
down density-of-states at the Fermi energy Er become larger. For sufficiently large
density-of-states at Ep, D(EF), a “transfer” of electrons from the spin down to the
spin up density-of-states (which corresponds to an alignment of moments) does not
anymore lead to a strong increase of the kinetic energy. It is therefore the degree
of localization that decides whether ferromagnetic order appears or not. This fact
is expressed by the Stoner criterion [18] that will be derived in the following. The
exchange energy is given by

Ee = JN4Ny, (1.68)

with N4 | the number of electrons with spin up and spin down, respectively. The
total number of electrons is N = Ny + N, . If we assume now — starting from the
paramagnetic case with Ny = N —that AN electrons are transferred from the spin
down to the spin up band (see Fig. 1.14), then the exchange energy decreases by
—J(AN)>. (1.69)

On the other hand, the kinetic energy increases by

AE-AN =

AN
AN. 1.70
D (Er) .
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Fig. 1.14 D(EF) - AE spin E
down electrons are transferred
to the spin up band

Table 1.1 The product J - D(EF) and the sign of J are listed for six transition metals. Fe, Co, and
Ni fulfill the Stoner criterion

Element |{Cr |Mn |[Fe |Co |Ni |Pd
J.D(Ep) [0.27|0.63|1.43|1.70|2.04|0.78
J <0 | <0 | >0|=>01|>0]>0

Thus, the transfer takes place spontaneously if the condition
J D (Ep) > 1, 1.71)

the Stoner criterion, is fulfilled. Table 1.1 shows the above product for a few
elements.

1.4 Magnetization Curves M(H)

Based on an energy consideration and subsequent minimization of the total energy,
M (H) can in principle be determined. First, one has to identify all relevant energy
contributions. In the following, we will restrict our discussion to four contribu-
tions: exchange energy, field energy, magnetostatic energy, and magneto-crystalline
anisotropy. As we know already, the expressions for the exchange and the field
energy are

Ew=-J Y SiS;. (1.72)
i#j,n.n.
Ey = —uo/ M-HdV. (1.73)
|4

Let us discuss in the following section the magnetostatic energy.
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Fig. 1.15 A magnetic
moment (green) in the dipole
field of its neighbors (black)

1.4.1 Magnetostatic Energy or Shape Anisotropy

The field inside a specimen is different from the applied magnetic field H because
of the magnetization M. To understand this, let us consider a line of magnetic
moments. Each magnetic moment creates a magnetic stray field at the positions
of its neighbors that has to be added to the applied magnetic field (see Fig. 1.15).

As the sum of all these dipole fields is in a finite 3D-lattice on average always
opposed to the magnetization, we will call it demagnetizing field:

H; = —N‘M, (1.74)

with N¢ the demagnetizing factor. This term leads to an energy contribution
Eq= —@/ MH, dV. (1.75)
2 Jy

The demagnetizing factor is in general a tensor function of position and magneti-
zation orientation within the sample. For ellipsoids, Ny is a diagonal tensor (with
trace Ng = 1) and can be calculated because for those shapes the demagnetiz-
ing field turns out to be uniform. The most simple case is that of a thin film for
which the thickness is much smaller than the lateral dimensions, so that there is only
one nonvanishing coefficient. For a thin film in the x y-plane, for instance, the only
nonvanishing coefficient is Nz‘l and equals to 1. Consequently, the demagnetizing
field is

Hy = —NM = (0,0, —M.). (1.76)

For a magnetization in the plane of the film (xy-plane) the demagnetizing field is
zero, while it is —M for an out-of-plane magnetization. That is the reason why thin
films are usually magnetized in-plane. An out-of-plane magnetization would cost
too much energy. However, there exists another energy contribution, the magneto-
crystalline anisotropy (see Sect. 1.4.2), that favors particular directions in a crystal.
In certain situations, this can lead to an out-of-plane magnetization (see Sect. 1.5.1).

We note that for a continuous magnetization distribution, the dipole fields may
be expressed as due to magnetic pseudo-charges with a volume density p,, = —VM
and a surface density 0, = n - M, where n is the normal to the surface. If the
magnetization is uniform, then only the surfaces carry some pseudo-charges. One
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can show that in this case the demagnetizing field is determined by the number of
pseudo-charges on the external surface of the sample (see Fig. 1.16).

1.4.2 Magneto-Crystalline Anisotropy

In a solid, the electron orbitals of an atom are coupled to the crystal lattice, leading
thus to a particular orientation of the electron orbitals with respect to the crys-
talline axes. As the associated orbital angular momentum (L) is coupled to the
spin angular momentum (S) through the spin—orbit interaction (Es, = &L - S), the
orientation of orbitals forces the spin magnetic moments in one or more particu-
lar directions, the so-called easy directions of magnetization. This phenomenon of
magneto-crystalline anisotropy is the reason why a rotation of the spin direction
relative to the crystalline axes changes both exchange energy and electrostatic inter-
action. Thus, the energies in the two configurations (a) and (b) in Fig. 1.17 are not
identical. Usually, the configuration (a) is energetically more favorable, because in
this configuration the electrons can be more easily delocalized, thanks to the overlap
of neighboring electron distributions, while no overlap is realized in the configura-
tion (b). On the other hand, the uncertainty principle of Heisenberg tells us that the
uncertainty of the velocity is small when the uncertainty of the position is large, that
is, the kinetic energy is much smaller in the configuration (a).

The anisotropy energy must reflect the symmetry of the lattice. It is usual to
express the anisotropy energy in a power series of trigonometric functions of the
angles ¢; the magnetization makes with the principal axes of the crystal (see
Fig. 1.18). For the sake of ease, we define the direction cosine by o; = cos(¢;).

++++++t+t o+

IRANARALANANANAS B xad Bl

Fig. 1.16 The appearance of pseudo-charges on the upper and the bottom surface of a thin-film
sample for an out-of-plane magnetization. The resulting demagnetizing field Hy is —M

Fig. 1.17 The asymmetric

overlap of the electron

distributions at neighboring

positions is the origin of the

magneto-crystalline

anisotropy. Via the spin—orbit m a
interaction this asymmetry is

related to the magnetization

direction; a change of the spin
direction results thus in a @-» @-» ®-> @» @4 ®.> b
change of the overlap energy
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Fig. 1.18 The magnetization M and the angles ¢; between the magnetization and the principal
axes i,i.e., x,y,and z

On the one hand, the energy must be invariant under time reversal. On the other
hand, the axial vector M changes sign under time reversal, so that we must have
EA(M) = EA(—M). Thus, the energy expression must contain neither odd power
terms of o; nor cross terms such as o;or; (i 7# J).

As an example let us consider the cubic case (sc, fcc, bec). Consequently, the
anisotropy energy must be independent of an interchange of the ;. As a result,
the ¢; in the second order contribution E, = cla% + czag + C3O{32. are all iden-
tical. On the other hand, «? + a + a3 = 1, so that no anisotropy results
from it. The first nonvanishing anisotropy terms are of fourth and sixth order:
afa3 +alo3 +aiaf and afa3e?. Thus, we obtain in the cubic case for the energy
density

En/V = Ky (005 + o303 + aja) + Krafajas + -+, (1.77)

with K; and K, the anisotropy constants of fourth and sixth order, respectively. We
note that the unit of the anisotropy constants is Jm™3.

We note that beside the magneto-crystalline anisotropy, there is another impor-
tant contribution leading to magnetic anisotropy via spin—orbit interaction, namely
magnetostriction. The spin moments are coupled to the lattice via the orbital motion
of the electrons. If the lattice is changed by strain, the distances between the
magnetic atoms are altered and hence the interaction energies are changed. Thus,
stressing or straining a magnetic material can produce a change in its preferred
magnetization direction.
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1.4.3 Magnetization Curves in the “Uniform Rotation”
Model [19]

Let us consider as example a single-domain particle with an ellipsoidal shape and
with negligible magneto-crystalline anisotropy (see Fig. 1.19). As in the “uniform
rotation” model all spins in the particle are always aligned parallel to each other, the
exchange energy contribution is a constant and can therefore be neglected. In the fol-
lowing, all magnetization curves will show the projection M g of the magnetization
M onto the applied magnetic field H:

My = M cos(6). (1.78)
Assuming the following form for the energy contribution of the shape anisotropy,
Eq = K,V sin®(a), (1.79)

with K, > 0 the uniaxial anisotropy constant, the total energy Ei, being the sum
of shape anisotropy and field energy contribution, reads

Ew = Eq+ Eg = K,V sin?(a) — woMHV cos(h)
= K,V sin?(0 — $) — poMHV cos(6). (1.80)

Let us in the following consider three particular cases: ¢ = 0°, 45°, and 90°.

* o \0
M
0

Magnetic
field axis

Easy axis

Fig. 1.19 A single-domain particle with ellipsoidal shape in an applied magnetic field H. « is the
angle between the easy axis of the particle and the direction of magnetization M, 6 is the angle
between the magnetic field axis and M, and ¢ = 6 — « is the angle between the magnetic field
axis and the easy axis of the particle
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Fig. 1.20 The total energy (1.80) as a function of the angle 6 for different values of the applied
magnetic field H and ¢ = 0° (lef). Hysteresis loop obtained in this configuration (right)

1.4.3.1 ¢ = 0° Case
In this case, (1.80) reduces to
Ew = K,V sin?(0) — noMHV cos(6). (1.81)

Figure 1.20 (left) shows E as a function of 6 for different values of the applied
magnetic field. Whatever the magnetic field, the minimum energy is always at one
of the two positions 8 = 0° or 180°.

Let H be oriented to the right and M parallel to H. In this case, we find a mini-
mum position at § = 0° and the magnetization will remain in this configuration for
all positive values of the magnetic field (i.e., H remains oriented to the right). If we
switch the direction of H (orientation to the left), 8 = 0° will remain a minimum of
the energy for absolute values of the magnetic field smaller than the coercive field:

2K
H, = —=. (1.82)
noM
Crossing this value of the magnetic field, the minimum at § = 0° becomes a

maximum, so that this configuration can no longer be stable. Consequently, the mag-
netization will also switch to the left, so that the energy is again in a minimum (now
at 6 = 180°). The magnetization will remain in this configuration now for all neg-
ative values of the magnetic field and it will need again a magnetic field of strength
H. in the opposite direction to make M switch to the right. Figure 1.20 (right) shows
My as a function of the applied magnetic field and we see that the magnetization
curve exhibits a hysteretic behavior.

1.4.3.2 ¢ = 45° case
Now (1.80) becomes

Ewt = K,V sin?(6 —45°) — oM HYV cos(9). (1.83)



28 W. Weber

Fig. 1.21 As in Fig. 1.20, but for ¢ = 45°

Figure 1.21 (left) shows Ey, as a function of 6 for different values of the applied
magnetic field.

As in the first configuration, one obtains again a hysteresis loop (see Fig. 1.21,
right). However, there are several important differences with respect to the pre-
ceding case: first, the coercive field H. is half of that found for ¢ = 0°; second,
the remanent magnetization M, is not equal to the saturation magnetization Mj,
M, = M,/ «/E; and third, saturation is never reached for finite magnetic fields, but
is approached asymptotically.

1.4.3.3 ¢ = 90° case
Now (1.80) becomes
Ew = K,V cos®(0) — oM HYV cos(h). (1.84)

Figure 1.22 (left) shows Ey as a function of 6 for different values of the applied
magnetic field. In this configuration we obtain a completely different behavior of
the magnetization as a function of the applied magnetic field. Although in the case
¢ = 0° only two minimum positions exist, namely 6 = 0° and 180°, the mini-
mum position varies continuously as a function of the magnetic field strength in the
present case. In fact, My varies linearly with the magnetic field and saturates for
absolute magnetic field values larger than ;ffllul Figure 1.22 (right) shows Mg as
a function of the applied magnetic field. In contrast to the two preceding cases, no

hysteresis is found.

1.4.4 Domains and Domain Walls

In massive ferromagnetic samples, the obtained coercive fields are substantially
lower, often by a factor of 10, than those found in the “uniform rotation” model.
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Fig. 1.22 Asin Fig. 1.20, but for ¢ = 90°. Note that in this particular case no hysteretic behavior
is found

+4+4+4

Fig. 1.23 The creation of magnetic domains leads to a decrease of the magnetic field energy
(o< [(H2dV)

The reason for this is that there exists another magnetization-reversal mechanism
that can proceed via considerably lower energy expenditure. The latter mechanism
is based on the nucleation of domains, the motion of domain walls, and the growth
of reversed domains.

1.4.4.1 Why Do Domains Exist?

Figure 1.23 shows two hypothetical domain configurations. In the left configura-
tion both the exchange and the anisotropy energy are minimal. The first because
all moments are aligned, and the second because the magnetization axis is an easy
axis. However, the demagnetizing energy is not minimal. There are a lot of uncom-
pensated magnetic “poles” at the surface of the ferromagnetic sample. This energy
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contribution can be decreased by introducing domains as it is seen for the right
configuration. However, a transition region between the two domains has been cre-
ated in which the moments are not parallel to each other. Moreover, the moments in
this region are not anymore parallel to the easy axis. Thus, both the exchange and the
anisotropy energy are larger than in the left configuration. Nevertheless, in massive
ferromagnets this domain configuration has a smaller total energy than in the single
domain state, because a comparatively small number of moments are involved in
increasing the exchange and the anisotropy energy.

1.4.4.2 Domain Wall Width

The transition region between the two domains has a finite width § that is gov-
erned by the exchange and the anisotropy. While § would become infinite without
anisotropy, the anisotropy tries to make § as small as possible. Thus, we have a
competition between both energy contributions.

In the following we consider only 180°-walls as in Fig. 1.24, that is, the mag-
netization directions of the two neighboring domains are opposite. For the sake of
simplicity, let us assume that the angle between two neighboring spins in the domain
wall in the direction perpendicular to the domain wall be ¢ = 7/N, with N the
number of spins along this direction in the domain wall of width §. For large N, the
angle ¢ is small and we find for the exchange energy per unit area

J J >
Oex = ——2S2N cos(¢) ~ ——ZSzN [1 - ¢—] , (1.85)
a a 2

with a the lattice constant. Thus, the energy difference per unit area between the
single-domain state and the configuration with domain wall is

A
ACy ~ —N¢? = ——, (1.86)
2a

. 2 .
with A = % the exchange stiffness constant.

Domain wall

Fig. 1.24 A transition region, in which the spin direction varies, exists between two magnetic
domains
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Assuming a uniaxial magnetic anisotropy of the form E5, = KV sin?(6), with
K the anisotropy constant and 6 the angle between the spin and the easy axis of
magnetization, we obtain for the energy difference per unit area between the single-
domain state and the configuration with domain wall:

N
. Na
Aoy =Ka ) sin*(ng) = K—. (1.87)

n=1

To minimize the total wall energy per unit area, Aoy, = Aoex + Aoa, we have
to demand

=3 T

N
§=N ,/A (1.89)
= a =7 —_ .
K

For a 180° domain wall in massive Fe § is about 85 nm. However, this is an
approximate value for the domain-wall width in Fe. Actually the width depends on
the type of domain wall, Bloch or Néel walls (see Sect. 1.4.4.5). In addition, there
exists 180° and non-180° domain walls. In cubic materials with K; > 0, such as Fe,
the non-180° walls are all 90° walls, so that the direction of the magnetic moments
in neighboring domains are at right angles.

(1.88)

resulting in

1.4.4.3 Nucleation of Reversed Domains

Reversed domains can be generated near all types of defect regions in which the
local values of the exchange and the anisotropy are sufficiently small with respect to
the bulk values to make the reversal of the local magnetization possible. The domain
wall that has been created during such a reversal will spread into the ferromagnetic
material and move across the whole sample until complete magnetization reversal
has been established. Note that the energy required for this process is equal to the
wall energy taken over the wall surface and thus involves only a very small volume
compared to the total volume of the sample. This explains why actual coercive fields
are much smaller than that found in the model of uniform rotation (see Sect. 1.4.3),
in which the anisotropy energy over the whole sample volume has to be considered.

1.4.4.4 Pinning of Domain Walls

The changes in magnetization due to the application of a magnetic field can be either
reversible or irreversible. In ferromagnetic materials, reversible changes occur only
for small field increments. Two mechanisms are responsible for a magnetization
change: first, domain rotation as discussed in Sect. 1.4.3, and second, domain wall
motion. Both of these processes can be reversible or irreversible, which depends in
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Fig. 1.25 The intersection of
a nonmagnetic inclusion by a — | Py

domain wall reduces the
magnetostatic energy

Domain wall

both cases on the amplitude of the applied magnetic field. Domain wall motion is
manifested in two different ways: bowing of the domain wall and translation, both of
which become irreversible if the domain wall encounters a pinning site, preventing
it from relaxation when the magnetic field is removed. There are two possible types
of pinning sites:

(a) Strain associated with dislocations in the material can pin domain walls through
the magnetoelastic coupling. Therefore, the higher the density of dislocations,
the stronger the pinning and the greater the impedance to domain wall motion.

(b) The presence of inclusions in the material, which show different magnetic
behavior (usually nonmagnetic) than the matrix material. The intersection of a
nonmagnetic inclusion by a domain wall can strongly reduce the magnetostatic
energy associated with the inclusion (see Fig. 1.25). Consequently, the domain
wall will be pinned in this energetically favorable position unless a much higher
magnetic field is applied to unpin it.

Defects that are most effective in pinning domain walls are those whose magnetic
properties differ most from those of the matrix and whose dimensions are compara-
ble to the domain wall width. Thus, in hard magnetic materials (i.e., high-coercivity
materials) in which the domain wall width is of the order of a few nanometer, point
defects and grain boundaries are very important. In soft magnetic materials (i.e.,
low-coercivity materials), on the other hand, the domain wall width is of the order
of 100 nm so that long-range strain fields and larger precipitates are more effective
in pinning domain walls.

1.4.4.5 Bloch or Néel Wall?

Up to now we have neglected the demagnetization energy due to a domain wall. If
we take it into account, two different types of domain walls are possible: Bloch [20]
and Néel walls [21] (see Fig. 1.26).

For a dimensional analysis of the energy, we consider a ferromagnet with the
lateral dimensions /, the thickness d, and the domain wall width § (see Fig. 1.27).

In the case of Bloch walls where the magnetic “poles” appear at the surface
of the ferromagnet, the demagnetization energy due to the domain wall E(]fl‘”h is
proportional to the product §-/. In the case of Néel walls where the magnetic “poles”
appear within the ferromagnet, the demagnetization energy due to the domain wall
EXNee! is proportional to the product d - /.
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Fig. 1.26 The two types of
domain walls: Bloch wall
(top); the moments rotate in a
plane perpendicular to the
plane defined by the
magnetization directions in
the neighboring domains.
Néel wall (bottom); the
moments rotate in the plane Néelwall
defined by the magnetization

directions in the neighboring

domains

"\ . Bloch wall

Fig. 1.27 A two-domain

state of a ferromagnet with /

lateral dimensions /, |

thickness d, and domain wall

width § d

This analysis shows that the ratio §/d determines whether a Bloch or a Néel wall
is energetically more favorable. In thick films, in particular in massive ferromagnets,
in which d >> § is realized, Bloch walls are preferred. In thin films with d << 4§,
however, Néel walls are energetically more favorable.

1.4.4.6 Why Small Particles are Always Mono-domain?

By the introduction of domains and hence of domain walls the demagnetizing
energy is reduced while the wall energy is increased. By considering a ferromag-
net with a linear dimension /, we obtain for the demagnetizing and the wall energy,
Eqy = Al3 and E, = BI?, respectively, with A and B constants. By defining a
critical value of the linear dimension /. = B/A, one finds that for / > [, the
demagnetizing energy is larger than the wall energy, thus favoring a multidomain
state, while for / < [, the particle is in a mono-domain state because the energy of
a single wall is now larger than the demagnetizing energy. Usually, critical values /.
are in the nanometer regime.

1.4.4.7 Superparamagnetism [22]

Assuming an uniaxial magnetic anisotropy for a small particle, in zero applied
magnetic field an energy barrier separates the two possible orientations of the mag-
netization along the easy directions (see Fig. 1.28). The height of the energy barrier
is E = KV, with K the anisotropy constant and V' the volume of the particle. One
observes superparamagnetic behavior when the energy barrier becomes comparable
to the thermal energy kg T . Indeed, the characteristic time to overcome the barrier
Eis
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Fig. 1.28 A small particle with uniaxial magnetic anisotropy in zero magnetic field has two energy
minima (at 6 = 0° and 180°). The energy barrier is given by AE = KV

log(7) [s]
20 7 I
Age of universe 7

10
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8 10 12 14 16 18 20

Fig. 1.29 The characteristic time 7 as a function of the radius r for a spherical particle with a
uniaxial magnetic anisotropy of K = 10° Jm™3 at room temperature

T = goel/ksT (1.90)

where 7 is of the order 107 s. Thus, for particles of sufficiently large size, the
characteristic time is extremely long so that the magnetization is stable. However,
there exists a critical volume V, of the particle below which the energy barrier will
become so low that the magnetization will start to fluctuate on a very short time
scale. While the magnetization is essentially uniform over the particle volume at any
time, the time-averaged magnetization appears to be zero for V' < V.. Figure 1.29
shows the characteristic time t as a function of the radius for a spherical particle
with K = 10° Jm™3 at room temperature.
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1.5 Thin Film Magnetism

The reasons to investigate thin films are manifold. On the one hand, new crystal-
lographic structures can be realized for certain elements that cannot be found in
the bulk (e.g. fcc Fe films). On the other hand, they can exhibit different (mag-
netic) behavior compared to bulk systems. The deposition of thin films on different
substrates is an essential step in many fields of modern high technology, and appli-
cations range from large area optical coatings on windows and layers to improve
friction and wear to the applications in microelectronics.

Among the many phenomena occurring in magnetic thin films, we will restrict
ourselves in this last section to the discussion of only three of them: the appearance
of a surface anisotropy, the indirect exchange coupling, and the giant magneto-
resistance effect in multilayers.

1.5.1 Surface Anisotropy

Because of the symmetry breaking at the surface, the surface anisotropy K can
have a different symmetry than the volume anisotropy K. The surface anisotropy,
which is uniaxial by symmetry, may favor either an in-plane or an out-of-plane
magnetization. An interesting case is that where the surface anisotropy favors the
out-of-plane orientation, because it competes then with the magnetostatic energy
that favors an in-plane orientation of the magnetization. Because of the definition of
the surface anisotropy as an energy per unit area (unit is J m~2), the total anisotropy
(energy/volume) of a magnetic film of thickness d is Koy = Ky + K/d. Thus, for
thicknesses below a critical value, the term K;/d becomes dominant such that the
magnetization will show a reorientation from in-plane to out-of-plane magnetiza-
tion. Figure 1.30 shows an example of a film system in which the surface anisotropy
favors an out-of-plane magnetization at low coverages.

P

~
out-of-plane I .
T\"?& '

3 M ‘ 4 ML 5 ML 6 ML
Co/Au(111)  20x20um?

Fig. 1.30 The magnetic domains in ultrathin Co films grown on Au(111) show a transition from
out-of-plane to in-plane between 4 and 5 monolayers. The images were taken with a spin-polarized
scanning electron microscope. Adapted from [23]
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1.5.2 Indirect Exchange Coupling in Multilayers

Between two ferromagnetic layers an indirect exchange coupling is observed, which
oscillates as a function of the thickness of a nonmagnetic layer that separates the
ferromagnetic layers (see Fig. 1.31).

What is the origin of this indirect exchange coupling? An explanation for this
behavior is given within the RKKY theory (Ruderman, Kittel, Kasuya, Yosida) [ 25—
27]. Tt explains the ferromagnetic as well as the antiferromagnetic coupling in cer-
tain impurity systems where strongly localized moments (e.g., rare-earth ions) are
embedded in a nonmagnetic host metal (e.g., Cu). Because of the negligible overlap
of the wave functions of the localized moments, direct Heisenberg-exchange is not
possible. However, there is a large overlap with the s-electrons of the host metal.
The host metal tries to screen the localized moments by concentrating electrons
with the opposite spin around the localized moment. The s-electron spin density
tries to create Dirac peaks at the positions of the localized moments. To do so,
k-values ranging between —oo to 400 are necessary. However, only k-values rang-
ing between —kg and +kpg are available. Thus, the Fourier series is truncated and
the electron—spin density is left with oscillations characterized by k > kg that are
uncompensated. These oscillations are analogue to the Friedel oscillations of the
charge density. The cutoff leads thus to an oscillatory structure with a wavelength
of 7/ kg. Because these oscillations carry spin information away from the localized
moment, they allow it to interact with other moments that are out of the reach of
direct exchange coupling (see Fig. 1.32).

In the zero-dimensional case, the coupling is given by

1
J}}.KKY = [sin(2kgR) — R cos(2kgR)] . (1.91)

100 - N

(b) antiferromagnetic

—Jy, (Memu/cm?)
(4]
o
T

2N
[ J o —,
Or—= . / . I S
= v (a) ferromagnetic .
_50 ! ! ! ! ! !
0 10 20 30

Ru-spacer-layer thickness (A)

Fig. 1.31 The magnetic coupling between two ferromagnetic NiygCop, layers oscillates as a
function of the Ru-spacer layer thickness. From [24]
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Fig. 1.32 Oscillatory localized moment
response of the spin density at
the Fermi energy to a local
magnetic moment

Spin density

N

N, N
U U v distance

If we go to the case where two layers of localized moments are separated by a
nonmagnetic metal, one obtains

JEREY = % sin(2kgR), (1.92)
that is, the oscillations are much less damped in the two-dimensional case. Taking
typical values for kg (between 10 and 17 nm™1), we expect a wavelength A = 7/ kg
between 0.18 and 0.31 nm, that is, of the order of the lattice constant. However,
this is not observed. For the above case of Ru as spacer layer, we expect A ~
0.27nm while a wavelength of 1.2nm is measured. How can one solve this con-
tradiction? So far, it was assumed that the coupling J;; is a continuous function of
the distance between the ferromagnetic layers. However, the spacer layer is a solid
material and the atoms are arranged at discrete lattice plans. Therefore, the spacer
thickness and along with it the coupling function can only take discrete values. The
consequences are elucidated in Fig. 1.33. The lattice plans intersect the coupling
curve at the points. It is obvious that the new wavelength (continuous line) is much
larger than the one in the original coupling curve (dashed line). This effect is called
aliasing effect.

The aliasing approach is a first attempt to account for the discreteness of the crys-
tal lattice. More accurately, the spatial distribution of the atoms reflects itself in the
shape of the Fermi surface. The Fermi surfaces of crystalline materials are generally
not spherical as for free electrons. As a consequence, kr is directional dependent and
the oscillation period depends on the direction, as has been experimentally verified.
Generally, there exists more than one period for a given crystal direction. The peri-
ods in multilayers can be derived from the Fermi surface of the spacer layer by using
the following procedure. Figure 1.34 shows the elliptical Fermi surface of a hypo-
thetical spacer layer in a stack, with the stack normal i,. One now looks for pairs
of wave vectors kg and k; for which the difference vector Q = kg — k; is parallel
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N

Fig. 1.33 The spin-density oscillations of wavelength A = n/kr (dashed line) seem to have a
longer wavelength (continous line) when measured at integer monolayer values ndyy (dots), if
A< 2dML

Fig. 1.34 The stationary
spanning vector
Q = kg — kg parallel to the

LSH i v
vector i, of a hypothetical . kr ; k r & -
Fermi surface. See also text v : : 1

g CETTTTTT

Fig. 1.35 Cross section of the Fermi surface of Cu along the (110) plane passing through the
origin. The two stationary spanning vectors along the [001] direction are shown

to the stack normal and for which the group velocities v, and V/g are opposite. Only
one such direction is found for each i; in the case of an elliptical Fermi surface. Fig-
ure 1.35 shows the famous dog-bone Fermi surface, being typical of cubic lattices.
Using the same method one finds three solutions for the [100] direction of i,, two of
which being equivalent. Q; and Q, represent a short and a long period, respectively.
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1.5.3 Giant Magnetoresistance

Giant magnetoresistance (GMR) has been discovered in 1988 in multilayers of Fe
(ferromagnetic metal) and Cr films (nonmagnetic metal) [28,29]. For Cr spacer layer
thicknesses around 0.9 nm, a strong reduction of the resistivity is observed when a
magnetic field is applied. Because of the indirect anti-ferromagnetic coupling that
exists at this particular Cr spacer thickness between the ferromagnetic layers, the
magnetic moments in the Fe films pass from an antiparallel alignment in zero field
to a parallel one in high magnetic fields (Fig. 1.36). The giant magnetoresistance
has also been observed in other multilayer systems containing ferromagnetic layers
separated by nonmagnetic spacer layers.

Figure 1.37 shows in a schematic way the mechanism that is responsible for
giant magnetoresistance in multilayers. For the sake of simplicity we assume that
the mean free path A (typically of the order of 10 nm in nonmagnetic metals and
several nanometer in ferromagnetic metals) is much larger than the thickness of

R/R (H = 0)

—_

0.8

0.6 (Fe 30 A/Cr9 Ay

4
I GNP & S
-40-30-20-10 0 10 20 30 40

Fe ¢ [ [

Cr — — —

Fe ¢ [: [:
Fig. 1.36 The resistance of a Fe/Cr/Fe multilayer system as a function of the applied magnetic
field. See text. Adapted from [28]

4~ et
t ! t }
A R s R

Fig. 1.37 Schematic description of the giant magnetoresistance by considering equivalent circuit
diagrams. Parallel configuration (left), antiparallel configuration (right)
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the layers. In this limit, one observes an average effect produced by the scattering
over several periods. To understand the following discussion, we have to know that
the scattering probability of an electron in a ferromagnetic material is not the same
whether its spin is parallel or antiparallel to the local magnetic moment. This results
in different mean free paths for up and down spin electrons, and is due to the fact that
the densities-of-states of the two spin directions are very different. Consequently,
the number of unoccupied states is also very different for the two spin directions.
For example, in permalloy one finds spin-dependent mean free paths, which are
separated by one order of magnitude.

Let us consider the case where spin up electrons have a larger mean free path than
spin down electrons. The resistance of the up channel, r4, is therefore smaller than
that of the down channel, r|. For the sake of simplicity we assume ry >> ry. When
the magnetic moments of the ferromagnetic films are in the parallel configuration
(Fig. 1.37, left ), the spin up electrons are little scattered in all magnetic films, while
the spin down electrons are strongly scattered. The short-circuit in the up channel
causes a small total resistance:

rp = —2”” ~ 2r
b = ~ 2ry. (1.93)
rrtry

In contrast, in the antiparallel configuration of the magnetic moments (Fig. 1.37,
right), both spin directions are strongly scattered in one ferromagnetic film and little
scattered in the other. The total resistance reads

Fap = % ~ %T (1.94)
and hence ry, > 1.

The giant magnetoresistance characterizes therefore the progressive passage
from the antiparallel alignment in zero magnetic field to the parallel alignment
of the magnetic moments in a strong applied magnetic field (Fig. 1.36). The giant
magnetoresistance can be expressed in terms of the spin asymmetry o = r4/r:

(ﬂ) LTt S o Sl D C Rl Vil (1.95)
r JoMmr o dryry da
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Chapter 2
Spintronics: Conceptual Building Blocks

J.-Ph. Ansermet

Abstract The purpose of this introduction to spintronics is to provide some ele-
mentary description of its conceptual building blocks. Thus, it is intended for a
newcomer to the field. After recalling rudimentary descriptions of spin precession
and spin relaxation, spin-dependent transport is treated within the Boltzmann for-
malism. This suffices to introduce key notions such as the spin asymmetry of the
conductivities in the two-current model, the spin diffusion length, and spin accumu-
lation. Two basic mechanisms of spin relaxation are then presented, one arising from
spin—orbit scattering and the other from electron—-magnon collisions. Finally, the
action of a spin-polarized current on magnetization is presented in a thermodynam-
ics framework. This introduces the notion of spin torque and the characteristic length
scale over which the transverse spin polarization of conduction electron decays as it
is injected into a magnet.

2.1 Spin Precession

We begin by some simple reminders about how a spin evolves in a magnetic field,
limiting the description to a spin 1/2 particle, as we will be concerned with transport
phenomena for the electron spin exclusively.

Consider a particle with a magnetic moment m in an induction field B. The
evolution of its angular momentum £S is, according to classical mechanics, given
by

d (hS)
=m
dt

Now in a semi-classical picture, we write that AS = m/y. Then the evolution of the
moment m can be written as

A B. 2.1)
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Fig. 2.1 Numerical integration of (2.2) for a B field rotating at an angular velocity 10 times smaller
than the Larmor frequency of the spin precessing about this field. The x coordinate is the polar
angle (in degrees) of the spin direction with respect to the vertical, and the y coordinate is the
polar angle of the field (in radian)

dm _ A 2.2)
— = Am, .
dt

with @ = —yB. This equation describes the precession of the vector m about w,

|@| /(27) is called the Larmor frequency. The gyromagnetic factor y of electrons is
about 2y x 2.8 GHzkG™!.

Using no more than (2.2), we can discuss the phenomenon known as fast adia-
batic passage. The method is well-known in magnetic resonance spectroscopy and
it has been invoked in discussing the dynamics of the electron spin when an electron
crosses a domain wall. By simple integration, it can be shown that the magnetization
will follow the applied field in its rotation, provided the period of rotation about the
applied field is short compared to the time it takes the applied field to undergo the
rotation. In Fig. 2.1, we show the result of a numerical integration. The time evolu-
tion of the angle between the magnetization and the applied field is shown for the
case when the precession frequency is 10 times the angular velocity of the applied
field. Hence, when the field changes direction suddenly, the spins do not follow
whereas, when the spins have time to revolve about the field as the field tilts, the
spins follow precessing tightly about the direction of the field.

When discussing the notion of spin mixing (Sect. 2.5), it will be useful to remem-
ber that in quantum mechanics the precession of spin can be thought of in terms of
the probability of observing the spin being “up” and “down” alternatively. Consider
a spin one-half particle at + = 0 in the state |+) quantized in some “z” direction,
possibly because it was exposed to a field B, in this z direction. A transverse field is
suddenly turned on along the x direction (by choice of x), By (Fig.2.2). The total
field is at an angle 6 with respect to the z axis. The Hamiltonian is

—)/h Bz Bx
H=—-yB-hS = — . 2.3
Y 2 (BX—BZ) @3
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Fig. 2.2 A spin initially
along the z axis precesses B
about a field B B, A > B

It is a standard example of elementary quantum mechanics to calculate the proba-
bility for the state |1/ (¢)) of the system to be in the opposite z-spin direction. The
result is known as the Rabi formula:

Pi_(t) = % sin? 6 cos(wt), 2.4)

where o is the Larmor frequency for the total field.

2.2 Spin Relaxation

The principle of detailed balance applied to spin 1/2 brings out the notion of spin
relaxation time in the most concise fashion. We will see in particular that transition
rates from “up” to “down” must be distinct from those of transitions from “down” to
“up” if the spin system is to reach thermal equilibrium. Consider an ensemble of spin
1/2 particles. Under the effect of a static homogeneous magnetic field By = k Bo,
the energy levels m = 3, m = S are split (Fig.2.3):

We apply an alternative field By (f) = Bxo cos(w?)x, and the Hamiltonian con-
tains a time-dependent term: H(¢f) = —yhBxo cos(wt)ly. If one were to apply
time-dependent perturbation theory, we would have a probability of transition per
unit time:

2 |

Paspy = = (a| H(t) |b)|* § (Eq — Ep — ho). 2.5)
This result implies that the transition rates going from a to b and b to a are equal:
P, ., = Pp_, = W. We consider the populations of both levels, N+ and N—.
Under the influence of the oscillating field, N+ and N— vary. As the transition rates
are equal, we denote them as W. The principle of detailed balance states in this
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Fig. 2.3 Zeeman splitting N_
under a field B defining a -172 A
two-level system
Yh By
12 N, L
case are
dnN.
— = W(N- = Ny). 2.6)
dr
dN_

This implies, as it should, that the total population N = N4 + N_ is constant. The
population difference n = Ny — N_ follows

dn
— = 2Whn. 2.8
" n (2.8)

This differential equation for n integrates as n(¢) = no e 2"*. Note that if the initial
population difference (or polarization) no > 0, then the effect of the oscillating field
is to make the populations equal. The absorption of energy by the ensemble of the
system is given by

dE
e NiWhow — N-Whw = Wnho. 2.9)

Therefore, we expect that the adsorption of energy drops to zero in a time of the
order of 1/ W. Likewise, if there is no time-dependent field applied, we get no evo-
lution of n. Indeed, when the spins precess according to (2.2), the angle between
the field and the spin is constant, and so the energy is constant. However, we know
that when we apply a static field By = Bok, the spins will eventually align in the
field and N4+ > N_. If we start with N = N_, we need a net excess of transitions
(=) = (4). Where does the energy go? What is missing in our model so far is the
coupling to a thermal bath. We have to describe the process by which N4 and N_
evolve until they reach the equilibrium value given by

NO
Vo = ¢ AE/KT (2.10)
+

We must therefore assume a coupling of the spins to another system that consti-
tutes a bath. We represent the effect of the coupling to the bath by the probability
per unit time of transitions from (—) — (4) and (4) — (—): the transition rates
W, and W; (Fig.2.4).
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Fig. 2.4 Two-level system N_
with distinct up-down and -172
down-up transition rates
Wq Wy
N,
1/2

We apply the principle of detailed balance once again, yielding here

dN,

At equilibrium we have dN4/dt = 0, which sets a condition on the ratio of the
rates in order to reach the proper equilibrium populations:

0
% = % = e AE/KT (2.12)
+ {
Why is it that the transition rates are not equal in this case, whereas the Fermi Golden
Rule would make them equal? In a proper treatment, such as that found using the
formalism of Bloch—Wangness—Redfield [1], these rates do not depend only on the
matrix elements |(a| H(¢) |b)|? but also on the population of the levels of the bath.
We can solve for n using (2.11) and

N_ = %(N —n) Ny= %(N +n). (2.13)

Hence, q
n no—n

-— = , 2.14
dr T: ( )
with the spin-lattice relaxation rate
1
—=W+Ww (2.15)
T
and W —W
no= —¥ 1N, (2.16)
Wy + W,

the equilibrium value of n. T} is known as the spin-lattice relaxation. The integration
for n is straightforward (Fig. 2.5):

n(t) = no (1 - e—f/Tl). (2.17)
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A N

No

T,

Fig. 2.5 Exponential relaxation, such as it might occur when a spin system, coupled to a bath,
reaches equilibrium in an applied magnetic field

2.3 Spin-dependent Transport: The Collinear Case

In this section, we put in place the key ingredients for understanding giant magne-
toresistance, relying on the Boltzmann formalism for describing transport perpen-
dicular to interfaces between ferromagnetic layers in which the magnetization is
always along a set direction of space. This allows us to introduce spin-dependent
conductivities and chemical potentials. The derivation introduces a diffusion equa-
tion for the chemical potential difference, with the spin diffusion length as the
characteristic length scale.

We assume that we can define a statistical distribution of the points in the phase
space of positions and momentum of one electron states (r,p). We assume that
we can define a statistical distribution for each spin. This does not preclude trans-
fers between the spin channels, but these transfers must be slow enough that an
equilibrium per channel can be defined. Thus we consider

Js (r.p.1) =m1.

This is justified by experimental data. It turns out that the mean distance between
two collisions (which contribute to the momentum relaxation) is much less than the
mean distance between two spin flips, and so we can think of the electrical current
as being either of “up” spins or “down” spins. The scattering events may differ in
these two channels (Fig. 2.6 top). We have to distinguish also the two types of spin-
flip events: those that take place in collisions, which also relax the momentum of
the electrons, and those that do not (Fig. 2.6 bottom).

We assume that we can define a local equilibrium distribution:

Es(p) — s (I‘))
kgT ’

Here, frp is the Fermi-Dirac distribution, w (r) is the position-dependent, spin-
dependent, chemical potential, kg is Boltzmann constant, and 7 is the temperature.

Jos (r,p) = frp ( (2.18)
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O VT, C VT, §vt+ O spin-+

RIS O] spin—

—@ _@ ’—> spin+
l—> l—> —é spin—

Fig. 2.6 (Top) The two types of events, collisions with or without loss of momentum. Electrons are
accelerated in between collisions, and stopped fully at each inelastic collisions. (Botfom) Another
type of spin flip is considered, where the spin flips without a change of its momentum

We learn from the semi-classical theory of electrons that p = 7k, with k the wave
vector of the Bloch state, and that dp/df = F applies, where F is the force on the
electron. The present approach presupposes that we describe electrons not as plane
wave (Bloch) states, but as wave packets [2]. We describe the energy of the electron
wave packets Es(p) with an accuracy sharper than k7. We invoke the uncertainty
relation §r §p ~ h to see what this implies on the length scale over which the system
changes. From E = %mvz, we get 6E = mvév = vép, which we want to be of the
order of kT, implying §p = kT /v. Consider for the sake of the argument what
would happen if we took §r as if we wanted to describe collisions with the field
of an ion. Then we would have 6E =~ 10 Eg. This is way too big! Therefore, by
this approach, we can hope to describe inhomogeneities over macroscopic scales
only. To account for collisions with ions, for example, one must work them out in
another framework, namely, with a quantum mechanical calculation. The effect of
such collisions is then included as a distinct contribution to the time evolution of the
probability distribution:

dfs dfs dfsdr Odfsdp  Ofs
o= Ys _ 0 0fsdr  Ofsdp  ds| 2.19
& "o T ordr Tapdr T ar |y 2.19)
We seek the linear response to an electric field F = —eE = edV /dr. So we write

fs (r,p,t) = fos (r,p) + fis (r,p, 1), where the last term is a small perturbation.
In (2.19), we have for the momentum term, to first order,

fsdp  3fos OBs () (V) (2.20)
Jp dr JE  Jp ar
In (2.19), the position term gives
of e dfos s (1) o

ardr © Y 9E  or
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Here also, we keep only the distribution at equilibrium because the spatial varia-
tion of the chemical potential comes from the application of the electric field, and so
it is of the order of the electric field. Now we simply assume that we have parabolic
bands, the same for each spin orientation: E; (p) = p?/2m. We are considering a
stationary regime, that is, df; /0t = 0. From (2.19), there remains now

PO (us (1) eV (1) Bfos _ Ofs

m or oE ot

. (2.22)

coll

As usual, the chemical potential and the electrostatic potential come together. We
combine them into a spin-dependent electrochemical potential: jig (r) = s (r) —
eV (r). Finally, our linearized spin-dependent Boltzmann equation has become

PO () fos s
m or OJE 0t

(s=1.1). (2.23)

coll

2.3.1 Collisions

As for the collision term, we assume that a quantum mechanical calculation has
provided us with scattering rates P (k,i;Kk’, j) with or without spin flips, that is,

i,j =1, ]. We construct the collision term % of (2.23) by counting events that

co
bring spins to the s channel at k and events that remove from spin s at this same k,

fors = (1, }):

dfs
ot

{
=33 UAK) (- £ ) P (K. ik, s)

coll i=t K

— s ®) (1= fi (K)) P (k.s:K, i)} (2.24)

We could improve on this picture if we introduced the statistical weight of the
initial state. This would introduce a difference in transition rates from “up” to
“down” and its converse. This refinement is used below when treating collisions
with magnons.

The Born approximation or the Fermi Golden rule gives the symmetry P (K, i;
k,s) = P (k, s;K',i). The collision terms for s = (4, }) simplify to

dfs
ot

'
=Y D AA )= 0] P (K. isk,s)}. (2.25)

coll i=t K

In anticipation of later developments, when we work out the spin-dependent cur-
rents, we pay special attention to the collisions that leave the momentum unchanged.
We refer to them as spin mixing term. We see that these terms give rise to
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off-diagonal elements in the matrix that expresses the linear relationship between
the spin-dependent currents and the gradients of the electrochemical potentials. We
decompose also the sum over spin orientations, so as to render explicit the collisions
with spin flips, and those without. Hence we rewrite (2.25) as

ofs

o = [f=s (k) — fs (K)] P (k, —s;k, s)

+ > AL (K) = £ (] P (K. sik.s)}

3 () — /M) P (K. —s:kos)} . (2.26)

In view of the form of (2.23), we make an “educated guess” as to the form of the
perturbation fi; (r, pr, p, t) of the distribution functions. We write

Ss (e,p.t) = fos (r,p) + ask. (2.27)

So long as ¢ is not specified, there is no loss of generality in writing the pertur-
bation this way. Recall that we assumed E; (k) = Es (|k|). We further assume that
the collisions are elastic, |k| = |k’|. Then in (2.26), fos (r,k) = fos (r,Kk’). Thus,
substituting (2.26) and (2.27) into (2.23) yields for s =1, |

s (r) 0
RO WY _ 11 )~ 1 40] P (k. —s:K.5)

m or OJE
+Z{as [K — k] P (K,s5:k,5)}
k/

+ ) {lesK —ask] P (K. —s:k.s)} . (2.28)

We assume the scattering potential to be spherically symmetric, so that the scat-
tering probability P (K',i;k, j) for any given i and j depends only on the angle 0
between k' and k. For every kK’ in the development above, there is a k”, which has
the same angle 6 to k and cancels out the contribution of k' normal to k. So we can
replace in the sum k’ by k cos 6:

p a/’_LS (l‘) afOs _ .
e g = U 0= W] Pk —sik.s)
— {1 = cos fhae JaskP (K, 53k, 5))
k/

+ > " {lcos e a—s k — agk] P (K. —s:k.s)} . (2.29)
k/
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Noting that (2.27) tells us that o k = [ f; (xr, p, ?) — fos (v, p)], we get then

P s () fos
m or OF

= [f=s k) — f5s (K)] P (k,—s;K, ) (2.30)
—Z {[1—cosbha ] P (K,s:k,5)} [ f5 (0., 1) — fos (. p)]

— Z % [— COS Qkk/ (Xa—s

N

[/ (r, p.1) — fos (r.p)].

+ 1} P (K.—s:k, s)}

We define the following relaxation rates:

= Pksiks) 231
N

1

—= Z{u —cos b ] P (K, s:k,5)}, (2.32)
1 _ U ' s
o _;{[1 cos ¢ - }P(k, s,k,s)}. (2.33)

The relaxation times, thus defined, are implicit functions of the momentum k. The
end result is, for s =1, |,

m or OF Tsf N

Ts

This is the result stated by Fert and Campbell in their analysis of spin-dependent
transport in Nickel and Iron [3].

2.3.2 Calculation of the Currents

We define the current for each spin channel as js (r) = Y, (—e/m)iKkf; (r,p).
We note that the equilibrium distribution does not contribute to the current (there is
no net current at zero applied field). We take (2.34), with p = 7k, multiply it by
(—e/m)hk and sum over all k’s:

Z(— ) (hk amr(r)) fos _ _Z( ) e)—fs (k)

+ Z a(_e); (f=s (k) = fs (K)).

k

(2.35)
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Fig. 2.7 Under the effect of

the electric field, the Fermi

sphere is displaced slightly,

so the average k no longer

vanishes and lies in the >F
direction of the applied field

As commonly done in transport under the framework of the Boltzmann equation,
we take into account that only the terms near the Fermi level (the chemical potential)
contribute to the current. As graphically put by Mott and Jones in their wonderful
book [4], we are considering the contribution from the slight distortion of the Fermi
surface due to the applied current (Fig.2.7). So, we have

Rk Ois ()Y dfos (1 1 1. 1.
;(_ )_ (_ ar ) 0E (rs + Tsf * rN)h )+ TNJ_S "
(2.36)

We consider that we have Bloch waves quantized in a cube, and so the density
of points in k space is 1/ (27)3, and we transform the left-hand-side above into an
integral. We assume that the electric field, as well as all the gradients, are in the z
direction. Then only the k, terms contribute. As the other terms of the sum depend
only on |k|, k? = k? cos? 6 is the only nonvanishing term.

Hence, the left-hand side of (2.36) becomes

3—s 2 /2 kg k2dk h2k2 s
#s (©) / do / do sin 6 / —(= ) cos? 6 9o .
0z 0 /2 o (2m) oE

We recall that at reasonable temperatures, agg ~ §(E — pg), and so the k
integral is trivial. The angular integral gives a factor of 47/3. In summary, for

s =M1,

s (r) 4m ki o1 I -
dz 3 (231)3( ) 5= s o + o) (r) g (r). (2.37)

At this point, we want to manipulate algebraically the form of this result so as
to identify coefficients that can be equated with resistivity terms. Thus, we bring

forth a term —‘LV which is the applied electric field. Hence, we write jis (r) =

(—e) (V (r) — L (r)) in 2.37):

d 1 2k2E 1 1 1 1
(V(l‘)——/j,s()) F=(—+—+—)js(r)__j—s(r)-
™ ™l

dZ Ts Tsf
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Now we can identify the resistivity terms:

_ (1 + 1) (2.38)
Ps = e2kEEr \ 175 Tr )’ ’

372m 1

n 2.39
ezkl%EF ™) ( )

Pr =

The two equations contained in (2.37) can now be written as

_ C% (V(r) = Lpur () _ (,0¢ + o1y Pty ) (j¢ (r)) (2.40)
— 5 (V) =gy () —pry puten ) \y@®) '

This matrix is readily inverted, giving

(jT (r)) - ! (m +ory o )
JL® ) proy+ory (o o) U oy eyt ny

d 1
— 5 (V(@®) = 2pp (v)
dz e
(i 12 i e

In (2.41), we find off-diagonal terms in the conductivity matrix. These express a
contribution to the current of one spin channel by the gradient of the electrochemical
potential of the other channel. We refer to these as spin mixing terms. We recall that
they arise from collision terms for which the initial and final states have the same k
(see (2.31)).

As will be seen, the spatial dependence of the chemical potential dies down over a
characteristic distance, the spin diffusion length. If we are deep into a homogeneous
material, then the terms containing the chemical potentials drop out and the total
current is deduced from (2.41) to be

4 d
j= py + pr +4apyy (——V) . (2.42)
proy+pry (o1 +py) \ dz

This is one of the earliest results on spin-dependent transport. It refers to bulk mate-
rials, while giant magnetoresistance arose when it became possible to make metal
superlattices (needed when the current runs parallel to the interfaces) or nanostruc-
tures (when the current is driven perpendicular to the interfaces). This result for bulk
samples is interesting, as it contains both the notion of spin-dependent conductivity
and the notion of spin mixing.

The spin mixing term will be discussed later on for the case of the collision
of electrons to magnons. In most situations, it is negligible compared to the inter-
face effects. So, in what follows, in conformity with the standard literature on
spin-dependent transport, we drop out this term. We have then Ohm’s law for each
spin channel:
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Js () = o [— T (V O (r))] (2.43)

with oy = 1/ps given by (2.38).

2.3.3 Diffusion Equation and the Spin Accumulation

We can write a continuity equation for each electron spin current. The divergence of
each spin current is equal to the source of electrons in this channel, which is equal
to the rate of spin flips producing electrons coming into the channel minus the rate
of electrons leaving it:

a 5 N
div(js) = JZ - / %d3p( /; fsff )( e). (2.44)

We need to consider fo+ — fo—. We neglect the term — (f1,s — f1,—s) /sy Of
(2.36), as both terms of this difference are small, they are expected to be quite sim-
ilar, and they arise from the electric field. Graphically, the integral of fo4+ — fo—
is the area in between two step-like Fermi—Dirac functions at a distance 2A u from
one another (Fig. 2.8), defining a narrow energy slice and one expects to be able to
approximate fo+ — fo— with a delta function.

Indeed, developing to first order, writing u for the argument of f;, we have

fo(E+8) = fo(u),

dfo 1
—f0(8—0)+— EXT
=f0(£=0)+%ﬁ8§—g=fo( —0)+%£

0.8
06
04f
02
E/Ef

00 : 1 I
0.0 0.5 1 15

Fig. 2.8 Qualitative aspect of the Fermi—Dirac distribution and its energy derivative for finite
T>0
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Hence,

fos — o = fo (w) ~f (E—HO—““A“) _ —2?

—2A. (24
kT kT (245)

Thus the integral for the current gives

s Os ((lls - ll—s))
) .

(2.46)
-1
0z 3 gh) R

Tsf

We distinguish in this expression the electron mean free path and another length,
which we call the electron spin-flip mean free path:

A,Sf = VF Tsf. (247)
We denote by
1 _ 1
2= (st ) Q48
the square of some coherence length of each spin band. Finally, for each spin current
we have Y _ _
€ 0js MHs — H—s
— 22 2.49
os 0z ( 12 ) 249)
and Ohm’s law (2.43)
1 (op
jx:Us_( “s). (2.50)
e \ 0z

We can then show that the chemical potential difference

Ap = (s — fi—s) = (Us — f—s) (2.51)

follows a diffusion equation. Indeed, we have

Kt = o £ Au,
Rx = px —eV,
Je - _ 1[0
oy o- e\ 9z )’
lazAﬂ_ 1 Jj+ 1dj- 1Ap 1Ap
e 02 oy 0z o- 9z el el
In short,
PAL AR
==, 2.52
972 12 (2.52)
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with the spin diffusion length /i defined by

L. + ! (2.53)
1212 012
If wetake A = A_ = A,, then
12 = (1/6)Agthe. (2.54)

Spin up electrons transform into spin down electrons and vice versa. So the sum
of both currents is spatially uniform. Indeed we find

J . . 92 1 o+ o_
% s +Jj-)= 72 (O4py —o-p) = = 7z (n+ — u-)+§ (h——p4) =0.

As a final consideration, we turn now to the concept of spin accumulation. This
terminology is used because the spin dependent chemical potential difference Afi is
closely linked to the spin polarization in the system. To make this clear, we intro-
duce the density of states g(E) of the conduction electrons. The spin accumulation
creates an imbalance in population, though the spin bands are assumed identical,
thus the spin-dependent densities of states:

a 1
g+(E) = —g(E). (2.55)
The spin populations are given by
Nt = [ AEGLE) fin (E.juo £ Au/2), (2.56)

where the second argument of fgp is the Fermi level. We can change the integration
variable to £/ = E F Au/2:

1
Nt = [ AE'Sg(E'F A/ foo (E.uo). 2.57)

We can compare this result with the one that is obtained when deriving Pauli para-
magnetism. In this case, the spin bands are shifted by the Zeeman splitting due to
an applied field H, so that their densities of states are

1
gL(E) = 8(E F upH). (2.58)

The Fermi level remains ¢ for both spin bands because the spin system is assumed
to have reached equilibrium in the field H. Thus, in the Pauli paramagnetism case,
we have the spin populations
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1
NE = [[AES9(E T ) fio (E. o). (2.59)

Comparison of (2.57) and (2.59) demonstrates the similarity in both calculations.
The calculation is carried out further assuming small shifts in energies compared to
the Fermi energy (see e.g., [2]). Thus, for Pauli paramagnetism, one finds

MP = —pg (N} — NF) = s (u H) g(10). (2.60)
By analogy, for the spin accumulation, we deduce
M* = —pg (N} — N2) = us (Ap/2) g(po). (2.61)

As the Pauli susceptibility is found from (2.60) to be y* = u2g(io), the spin
accumulation can be expressed as

_1Ap

M? =
ZNBX

(2.62)

Valet and Fert [5] gave one of the clearest accounts of the application of this form
of Boltzmann transport analysis using spin-dependent Boltzmann distributions. The
authors begin with integrating the diffusion equation for the chemical potential
under the presence of a current crossing an infinitely sharp interface between two
ferromagnetic layers. This is experimentally not achievable, but the result brings out
an important point. When the magnetization of the two layers is set antiparallel, the
spins of the electrons must relax in order for the electrons to cross the interface. This
is a dissipative process that leads to a so-called spin-coupled interface resistance.
The resistance of a unit area is

rsr = Zﬂzp;lSFf,

where f is defined by p; = pf (1 & B). Furthermore, they find that the difference
in chemical potentials A u at the interface is given by

Ap = Bpg j I (2.63)

where j is the current density. This result can be used to get an estimate of the order
of magnitude of the spin accumulation. Hence, one finds that the spin accumulation
M? due to a current density of 10° A cm™2, assuming a resistivity of 107> Ohm cm,
is ten times less than the Pauli spin polarization M of the same conduction electron
band in a field of 1 tesla.

Valet and Fert [5] also considered a trilayer: two ferromagnetic layers separated
by a nonmagnetic layer (Fig.2.9). The first line shows the spatial variation of the
difference in chemical potential. Given the above relations of chemical potential and
electron spin polarization, this graph shows in a way the spin-accumulation effect.
The second line is the effective spin-dependent electric field (i.e., the gradient of the
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Fig. 2.9 (Top) Valet and Fert calculation of spin-dependent transport, with current perpendicular
to the layers. (Leff) The magnetization is in the anti-parallel configuration; (right) the parallel
configuration. From top to bottom on each side: the chemical potential difference §, the gradient
of the chemical potential, and the spin currents

chemical potential) and the last line shows each spin current. We must keep in mind
that the spin polarization that is referred to here is driven by the current.

2.4 Spin Relaxation of Conduction Electrons

The Boltzmann description of transport, in the relaxation time approximation, leaves
out the question of the mechanisms determining those relaxation times. Here we
consider two mechanisms: spin—orbit scattering and electron—-magnon collisions.

2.4.1 Spin-Lattice Relaxation Time for Conduction Electrons

We consider here a nonmagnetic metal, and so the spin-up and spin-down bands
have the same structure. The density of states at the energy level E will be g’(E) =
% g(E) for both spin directions, p(FE) is the total density of states. We will assume
later on that the surfaces in k-space of constant energy are spheres.
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Fig. 2.10 Density of states AE
for up and down spins just N—

after a field has been turned E
off. The population difference
shown is the initial state from N+
which the system will relax.
This imbalance may have
been produced at zero current

by an applied field that is
suddenly turned off

g (E)=29E) 9E)=19(E)

We ask ourselves how fast the electrons reach equilibrium if they have been ini-
tially prepared in a state away from equilibrium. We mean that the population N
of up spins differs from that, N_, of down spins (Fig. 2.10). This initial state could
be achieved, for example, by switching off an applied field in a short time compared
to the relaxation time of the electrons. In spintronics, such a fast turn-off of the
field occurs when spin polarized electrons are injected in a normal metal, for exam-
ple, electrons going from Co to Cu in a Co/Cu multilayer. Here we assume that the
system is uniform. We avoid the effects specific of spin transport and focus on spin-
lattice relaxation mechanisms as they intervene in a magnetic resonance experiment.
This amounts to considering relaxation times as in (2.32) and (2.33), but without the
cos(6) terms. The electrons are in states |ks) of energy Exs. To make explicit the
assumption of uniform system, we write the Fermi—Dirac distribution (2.18) with

the notation .

1+ e(E—E+)/kT

and likewise for the down spins. E+ is defined by

J=(E) =

Ne =Y faB = [aEg®) (2.64)
k

1
/ ds?
1+e(Ek—Ei)/kT
0 4n

and likewise for E_. In writing this, we assume that the electrons of each spin-band
are brought to a thermal equilibrium much faster than the spins relax among each
other.

Now we want to evaluate the spin lattice relaxation rate 1/7; introduced in
Sect.2.2. Here it is sufficient to make the approximation Wy = W, = W and
we draw W from (2.6). We express W in terms of the scattering amplitudes of sin-
gle electrons interacting with the potential V' of an impurity. The probability per
unit time for an electron in a state |ks) to scatter into a state |kK’s’) is calculated with
the Born formula [6]:

W (ks,K's') = %” (k| V |K's")[* 8 (Ews — Ewy) -
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Because we are dealing with electrons and must take care of the exclusion principle,
a scattering event from state |ks) to a state |k’s’) occurs with a probability propor-
tional to the probability that the state |ks) is occupied, and the final state [K's’) is
not, which is given by the product f; (Ex) (1 — fs» (Ex’)). The spin flip rate WN_
feeding N4 as expressed in the detailed balance (2.6) can be expressed as

=Y W (k= K+) £~ (E) (1 = f+ (Ex)).

kK’

The converse process can be expressed as

WNy =Y W (k+.K=) fr (Ew) (1 = f= (Ew)),
| 9'Y

= > W (K+.k=) f+ (BEw) (1 = f- (EW) .

k' .k

We could swap the summation indices, thanks to the fact that the sums are carried
over all ks. Then using W (k—, k'+) = W (k'+,k—) we get

dN

= WN-—WNy =3 W (k= K+) (- (Ew) — f+ (Ew)).

kK’

The sum is transformed into an integral over spherical surfaces of constant energy:

dN a2’
bl o /dE/dE/ / W (k— K +)g

(Ex)p'(Ex) (f— (Ek) - f+ (Ex)).

The Born formula imposes Ex — Ey = 0. The term (f— (E) — f+ (E)) is nonzero
over a narrow range of energy only (Fig. 2.8 and (2.45)). Over this range, the rest
of the integrand can be considered approximately constant, equal to its value at the
Fermi level. Hence we have

—= == (V?). & (Ep)* (E- — E4), (2.65)

=T [ [ e e

We have, according to (2.64) and using (2.45),

with

No—Ny = (f-(E) = fr (Ex) = (E-— E4) ¢’ (Ep).
k
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Thus, with W given by 1/T1 = 2W, the relaxation rate is

27
T (VZ)F g(EF).

If there is an atomic concentration ¢ of impurities, N electrons and the density
of state is defined as a number per energy and per electrons, then

L2,
= Ne— (V?)p g(Er). (2.66)

This last step amounts to assuming that the scattering events are independent
(incoherent scattering), which is the case at sufficiently low impurity concentrations.

2.4.2 The Bottleneck Regime

The spin-lattice relaxation as detected in electron spin resonance experiments
depends strongly on spin—orbit scattering at impurities or crystalline defects in a nor-
mal metal. In the 1950s, some 10 years after the discovery of magnetic resonance,
researchers of the caliber of Bloombergen at Harvard [7] and Kittel at Berkeley [8]
investigated the electron spin resonance of ferromagnets (now called ferromagnetic
resonance, FMR). The line width of the resonance gave a measure of the relax-
ation time for magnetic excitations to relax to equilibrium. The rf field excited long
wavelength spin waves of wavelength comparable to the skin depth. Soon the pic-
ture arose that in metals the magnetization does not relax efficiently to the lattice.
Instead, it couples efficiently to conduction electrons, and those relax fast via the
spin-orbit coupling (Fig.2.11) [9]. Thus, the relaxation mechanism for localized
moments is closely linked to one of the central themes of spintronics: the coupling
of the spin of the conduction electrons with the magnetization. The case can be

Electrons |s-d exchange
giving rise to | ————»
local moments

Spin-orbit
coupling

Thermal bath

Conduction
electrons

Fig. 2.11 Localized electron of predominant d character do not couple strongly to the thermal
bath. However, via exchange, they strongly interact with the conduction electrons. These experi-
ence a strong spin—orbit scattering at impurities, owing to their nonvanishing probability to be at
the nuclei
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made that some of the recent considerations on the action of a spin polarized cur-
rent on magnetization have origins that can be traced back to conduction electron
spin resonance experiments [10].

2.4.3 Spin-Orbit Scattering

It is sometimes useful to remember that the spin—orbit coupling is essentially a
coupling of the electron spin with the electric field:

eh

V=——
2m2c?

S-(Exp). (2.67)
In alkali metals, the electric field is negligible and there is practically no spin—orbit
effect, in general. However, to the extent that phonons induce an electric field, the
spin—orbit coupling can produce a spin—phonon coupling [11]. Basic reference on
spin—orbit coupling in solids can be found in reviews and research articles (Yafet
1963, Friedel 1964, Elliott 1953). The spin—orbit coupling is the strongest when the
electron is near the nucleus. There, the electric field can be assumed to be radial,
thus a factor r A p appears in (2.67), which is the orbital moment of the electron 1.
Then we can write the customary expression

V =A(r)S-L

To calculate 77 in (2.66), we need to estimate (VZ)F and according to (2.65) we need
to consider:

| ke—| V [ ki+)|* = (ke—| V [ki+) (Ki+| V [ke—)
(+1S1=) (=S |+) (ke| ()1 |KE) (ki | A () [Kg)

D (HISa =) (=1 Sp 14) (Kel Ao [KE) (Ki| A(r)1p [Ke).

af=x,y

(2.68)

As (VZ)F requires summing over all possible states, we write this sum as

D (HSa |-} (~1 Sp |+)

af=x,y
[(ke| A(r) e ki) (ki | A(r)lg [ke) + (ke| A(r)lp ki) (Kg| A(r) e [Ke)] .

N =

As (+]Sq |[+) = (=[Sa |-) = 0(a = x,y), we can add (+| Sy [+) (—| Sp |-) to
this sum without changing it. Then we make use of the closure relation to replace
the spin part with (+| S¢Sg |+). Again as the sum is carried over both & and 8, we
can write it as
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=

Z +|Sa Sﬂ +SﬂSo¢|+>

[ e A ) K6 2402 ) Ol A ) K 20 )]
As S Sg + SgSe = 0if oo # B, the sum reduces to

1

1252 1) (2] 0el 200 [k)) + (1252 1) (2] el 2000y (K5}

This expression is to be integrated over all possible kg, and the /, and the [/, terms
give the same contributions, and so

/ /(2(72-[’4 +|252+252|+ (2‘ (k| A(r)lx |kg)| )}

Finally, using (+] S2 + SJ% [4+) = (+]S% - SZ2 [+) = % , we get

dQ’
/ / | (ke| A1)l [Kp)]? (2.69)

We proceed further with the purpose of a given explanation as to why it is that
one finds in the literature the spin—orbit scattering expressed in terms of core states.
This may seem paradoxical as we just stated that the conduction electrons were the
most strongly subject to spin—orbit scattering. In (2.69), we have got rid of the spin
part, and we are left with the description of the orbital part of the electron wave
function. We consider here a model that turns out to account reasonably well of
the spin-lattice measurements when the impurity has no excess charge compared to
its host [12]. We need to make a good choice to express the |kg) states so that the
electronic state near the nucleus is well approximated. Our choice is suggested by
the following considerations [13]. The tight binding approach is acceptable if there
are not too many overlaps, that is, for narrow bands. When the bands broaden too
much, they cross, and the simplest scheme of tight binding is not applicable. We
assume that we are preparing to apply a variational principle to find an approximate
solution to the Schroedinger equation. We consider a trial wave function, which is a
superposition of wave functions that are orthogonal to the core states of the system.

Here, we work out a set of wave functions for conduction electrons in a crystal
with a single impurity at R = 0. We consider an impurity that has p core states. We
take into consideration only the core p-states |b;) = |x;) = x; f(r) x; = x,y,2
The directions numbered with i refer to crystalline directions. The conduction
electron states are taken to be

kg) = [e'*) Zﬁ,k |xi).
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with .

Bix = (" |x;)
in order to satisfy the condition of orthogonality. Consider coordinate axes X, Y, Z
such that the Z axis is along kg. We can write |x;) = > ¢;j ]Xj) Then Bix =

J
(eikz |xi) = Zci_,- (eikz ’XJ) We have (eikx |xf) = (eiky vf) = <e"kZ |zf),
J

equal to a constant a. We have also (e“"Z |xf) = <e"kZ |¥f) = 0. Then Bix = a cix.
Let cos(i, k) be the cosine of the angle between the crystalline direction designated
by i and the direction of k. As 7 f(r) = Z cos(i, k) f(r), we have c;jx = cos(i, k)
and

|kg) = ’kr Za cos(i, k) |x;).

In calculating (VZ)F, four terms appear (plane wave in, plane-wave out, core in,
core out, crossed terms plane wave-core state). Calculations show that the core—core
terms are by far the largest. We will neglect the others. Thus,

/
<V2> = / /dQ Z a4CikCi/k/Ci//kCi///k/

ii’inin

(ir [ AQr) e i) (xir | A(r) e [oxiom)

a2 1
If i and i” differ, we have4f 42 cigcimi = 0, while if i = i”, then f g2 =1
T
We are left with

(V2) = Z| x| A x2) P,
ii’
and we see how the scattering is finally expressed as matrix element with core
state! The spin—orbit parameters such as a?A(r) are tabulated from measurements of
X-ray spectra.

2.4.4 Electron-Magnon Scattering

Starting around 1999, research on spin transport was concerned with the effect of
a current on the magnetization, the possibility of exciting spin waves by current,
or driving a magnetization flip by a spin-polarized current. Here we focus on a
corollary effect, the spin flip of electrons that scatter with spin-waves. Long before
spintronics research, this interaction of conduction electron and magnetization at
an interface between a ferromagnet and a metal was examined by electron spin
resonance [14]. Here we examine simply the effect of electron—-magnon collisions
on spin mixing (see Sect.2.3, (2.31)). Another mechanism for spin mixing would
be elastic electron—electron scattering.
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The following description is meant to approximate the situation for 3d ferromag-
nets Fe, Co, Ni [15]. A very crude picture is used, by which conduction electrons
form a sea of s electrons, while 3d electrons are responsible for the localized
moments. Our main concern here is to obtain the qualitative form of the interac-
tion between conduction electrons and magnetization. We consider the scattering
of a single conduction electron spin with N electrons forming the local moments.
These localized electrons are described by Wannier functions wét (r—Ry), where R;
is a lattice vector. The conduction electron is specified by a Bloch function 1/fki (r),
which can be thought of as composed of Wannier functions ¢ (r):

1 kR,
YiE (r) = ﬁ;e KRs g (r).

The state of the system composed of N + 1 electrons must be an antisymmetric
linear combination of these states. There are many possible states of the system, cor-
responding to all the spin configurations. The interaction of the conduction electron
with the moment-forming electrons is given by the Hamiltonian

N+1

Z -
r.. :

i<j Y

A perturbation calculation carried out to estimate the effect of the Coulomb inter-
action needs to work out the matrix elements of this Hamiltonian between these
antisymmetric states of N 4 1 electrons. When all is done [15], it is possible to con-
struct a Hamiltonian that would give the same matrix elements, where we to consider
simple products of one-electron wave functions instead of the fully antisymmetric
ones. This Hamiltonian has the form

N
HI k) =2 J;(K K)S; s,
j=1

where

2
T K) = / / dtia g (D, (D 204,

is a typical exchange integral. Now, by expressing the expansion of the Bloch wave
function of the conduction electron in terms of Wannier functions, we have

1 (k—k’ . 82 * *
Jj(K k) = —e' KR drida—¢" (ri)w; (r1)w; (r2) g, (r2).
N r12

In this expression, the w; are the localized wave functions of those electrons that
give rise to the ferromagnetic moments, they are presumed to be 3d -electrons, while
the ¢ represent a 4s-type electron, and so the exchange integral is a so-called s—d
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exchange integral. Atomic physics provides tabulated values for these integrals.
In solid, one must expect these integrals to take on different values because of
screening effects (Zener et al. 1953). We write

1 . ,
Ti(K k) = e 6OR g

and treat Jy as a phenomenological parameter. The end result [15] for the form of
the exchange interaction between a conduction electron and localized moment is
then

1 (k—K/
HK k) = —2Jy ~ Y el RG] s (2.70)
J
As this Hamiltonian commutes neither with )_S;S; nor with ) S; ., it provides

i,j isJ
a coupling mechanism that can change the magnitude and the z-component of the

localized moments. Thus, this interaction specifies how magnetization is transferred
between s and d electrons. The total angular momentum of s and d electrons is
conserved in this Hamiltonian description. This conservation rule is dictated by the
invariance under rotation of the coupling S - s [6].

Note that scattering with k' = Kk, )" S; ; does not commute with H(k’, k), but

1
>°SiS; does commute with it, implying that the magnitude of the d moments is
i,J
constant, that is, the d moments undergo a rotation under the effect of this “spin-
only” scattering.

2.4.5 Spin Mixing by Collisions with Magnons

Here we look at the contribution of electron—-magnon collisions to spin-mixing, that
is, to spin-dependent transport. It turns out that it is the difference in spin-mixing
rates from majority to minority vs. minority to majority that plays a crucial role in
some measurements, such as the spin-dependent thermoelectric effect [16] and the
temperature derivative of the low-temperature resistance of metallic ferromagnets
[17]. Consequently, we distinguish the two directions of spin flips.

The electron—magnon scattering was initially discussed by Kasuya [18], Man-
nari [19], and Goodings [20]. They focused there attention on its contributions to
the transport relaxation. Fert emphasized the role of electron—-magnon collisions
in the spin-mixing [21]. We can find useful insight about how to calculate this by
examining the treatment of collisions with phonons [22]. Mahan derives as well the
mean time between collisions (not the transport relaxation time) for collisions with
acoustic phonons [23]. For spin-mixing, we seek in effect the mean time between
spin flips due to collisions with magnons, and ignore any momentum relaxation due
to electron—magnon collision, as they are quite negligible. We will use the notation
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Fig. 2.12 From left to right: density of states for conduction electrons, for localized electrons, and
f(EY(A = f(E)) product

74— and 7_ 4 instead of the spin-mixing time 74 ; defined in (2.31) to signal that
here we keep track of the difference between the two spin-flip directions.

The time 7— 4 refers to the process in which the polarization of the conduction
electrons gains one Bohr magneton. In view of the form (2.70) of the electron—
magnon interaction, this gain must correspond to a loss of one Bohr magneton on
the part of the magnetization. This is equivalent to saying that one magnon is created
(Fig.2.12). We use the modified Fermi golden rule in which we add the statistical
weight of the initial state [1] so as to take into account the difference between 74 —
and t_ 4. For the electrons, we insure that the electronic final state is empty and
the electronic initial state is occupied. This gives, after summing over all possible
magnon wave vectors,

i:zn Qr )3’M‘1’ NCIf(E)(l_f(E+))8( (E_,’__i_h/a)q))’

where ‘Mq ‘2 symbolizes the square of the matrix element of the interaction hamil-
tonian (2.70), N, is the number of magnons of wave vector of module g, and hwy is
their frequency. In creating a magnon, the electrons loose some energy, and so this
integral contains a product of the form fo(E)(1 — fo(E — AE))(AE > 0).

For the converse process, a magnon is annihilated and the rate of such a process
is given by

1 2n [ &g
o )’ S| M|* (Ng +1) f(E2) (1 - F(E2))

] (E+ — (E- — hay)) .

The magnetization restitutes some energy to the electrons in this process, and so
the integrand contains a term of the form fo(E)(1 — fo(E + AE))(AE > 0). The
graph of Fig. 2.13 shows that these two factors, namely fo(E) (1 — fo(E + AE))
and fo(E) (1 — fo(E — AE)), may be noticeably different. Hence, we expect that
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Fig. 2.13 Fermi-Dirac distribution f(E) and product f(E)(1 — f(E = AE))
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Fig. 2.14 Temperature difference in the (+) — (—) and (—) — (+) rates due to collision with
magnons (arbitrary units)

the spin mixing rates differ depending on whether transitions are from majority to
minority spins or vice versa.

To proceed further with an estimate of the temperature dependence of the differ-
ence between 74 _ and 7_ 4, we take a magnon dispersion w, = Dg?. We assume
that there is a splitting of the majority and minority bands, the energies of which are
E., E_.Thenthe magnon energies must have at least the value of this gap in order
for them to induce transitions between the two bands. We call this splitting k 7.
This defines a lower bound for g. The largest q would be kg, but this corresponds to
magnon energies that have zero occupancy Ny, and so we can set the upper bound
to infinity. After some algebra and integration, it can be found that the mixing rates
vary about as 72 at high temperatures. As T goes below T, they drop sharply to
zero. In Fig. 2.14, we report the quantity

AL:L"'__L_—"__QT_O_I_O

3

Oy T4— T—4
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where 7y 1 is the mean collision rate (see (2.38)) averaged over both spin channels.
This quantity AL appears in the analysis of spin-dependent transport when spin
mixing is included [24]. Thus, we find that A L, though it is small, presents a sharp
temperature dependence around the temperature Tg.

A recent paper asserts that the contribution of the s—d interaction to the mag-
netic resistivity via electronic spin-flip transitions remains poorly known [25]. These
authors deduce from their very high field magnetoresistance data that the freezing
temperature (7%) of the electron—magnon process is of about 15K for Nickel and
250K for Co. Thus, details of the band structure give rise to very large differences in
the temperature dependence of electron—magnon collision effects, even though the
magnetic excitation dispersion at low g are not very different in these two metals.

2.5 Spin-dependent Transport: The Non-collinear Case

The notion that a spin-polarized current can act on the magnetization was introduced
by two seminal papers by Berger [26] and Slonczewski [27]. There is by now a gen-
eral consensus that a torque arises when the conduction electrons enter a layer where
the magnetization is not aligned with their spin polarization, because this transverse
spin moment relaxes onto the magnetization. We saw that this spin polarization, or
spin accumulation, is an out-of-equilibrium property that arises when a current is
driven through a magnetic nanostructure. When the magnetization directions in the
two layers of a spin valve are not collinear, the spin accumulation of the incoming
electrons is at an angle with respect to the magnetization. For Slonczewski [28], the
length over which this transverse component decays is of the order of one atomic
unit, owing to the K4 | averaging over the Fermi surface. Instead, Shpiro et al. [29]
described this decay in a diffusive model and estimated this decay length to be in
the range of a few nanometers [30].

Here, the idea that a spin-polarized current can exert a torque on the magne-
tization that it traverses is introduced by means of a simple approach. We use a
thermodynamics description of transport, with Pauli matrices to account for the full
spin dynamics. As reported by other groups, we describe the spin and charge cur-
rents as tensorial quantities using Pauli matrices [31]. We follow the notation of
Zhang et al. [32]. Thermodynamic descriptions of spin-dependent transport was ini-
tiated by Johnson and Silsbee [33]. This formalism allowed Wegrowe et al. [34] to
express the details of s and d electron spin relaxation processes. Quite generally,
the Onsager matrix defines linear relationships between generalized currents and
generalized forces, which are the gradients of their associated potentials [35]. This
approach is convenient to describe spin relaxation and spin-dependent transport,
including spin mixing effect [24].

In spin valves, when a conduction electron enters a magnetic layer from a non-
magnetic metal, we can consider that its spin experiences a sudden turn-on of a
magnetic field (see Sect.2.2). The spin dynamics regime is the extreme opposite to
the adiabatic fast passage as found, most notably, when an electron crosses a domain
wall. Following Shpiro et al. [29], we express this with a Bloch equation for the
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transverse spin accumulation. A more appropriate approach is that of Brataas et al.
[36]. These authors treat transport through the interface using quantum mechan-
ics, thus obtaining spin mixing conductivities of interfaces. This sets for them the
boundary conditions for diffusive transport in each layer. Recently, they extended
their calculations in order to include thermal currents [37]. However, the simple
thermodynamic description adopted here is sufficient to introduce the concept of
spin torque and to analyze some basic experiments [38].

2.5.1 Toward a Semi-classical Description of Spin Dynamics
in Transport

It is possible to infer the form of the basic properties of spin-dependent transport,
in particular spin current, by starting from a quantum-mechanical description of
the conduction electrons. The treatise on transport of Smith and Jensen [39] shows
that a system of N electrons can be described by a density matrix. When statisti-
cal averages are carried out, it results in a Hamiltonian equation of evolution for
a Boltzmann distribution in the space of 2 x 2 matrices that accounts for the spin
dynamics of one electron.

Gliesche et al. [40] discussed in detail under what conditions an equation of
evolution for a density matrix for one electron can be derived from the full density
matrix of a system of N electrons, which are weakly coupled among themselves and
also weakly coupled to a thermal bath. Thus they obtain an equation of evolution
for the one-electron density matrix D with relaxation terms

dD i
— = —[D.H]+ D, 271
ar h[ 1+ (2.71)

where H is the one-electron hamiltonian and I" a superoperator. Such equations
are often referred to as master equations and correspond to a generalization of the
detailed balance (2.6). In a follow-up paper, the same authors [41] show under what
conditions it is possible to derive from (2.71) a semi-classical Boltzmann equation,
including relaxation terms.

At this point of the semi-classical approach, one has a Boltzmann distribution
defined in terms of 2 x 2 matrices. Those can be projected in terms of the unit matrix
and the Pauli matrices. This is, for example, the starting point of the development of
Zhang et al. [30]. Spin and charge currents can then be deduced from D, with the
appropriate tensorial character.

2.5.2 Constitutive Equations

We consider a 1D model of a magnetic multilayer with current flow perpendic-
ular to the interfaces (the variable x will be used as the spatial coordinates). In
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Fig. 2.15 Spin polarization m, magnetization M, and unit vectors of the reference frame

Fig.2.15, we have represented one magnetic layer for which we define the following
properties.

The Onsager reciprocal relations including the thermal current are written in the
Pauli space as follows [42]:

j(x)= (E( )+ l%) , (2.72)
0x

where E is the electric field and Ithe2 x 2 identity matrix. Here, the generalized
current ] the chemical potential i, and the Onsager coefficient C are 2 x 2 tensors.
The latter ones can be decomposed upon the Pauli spin matrix ¢ and the identity
matrix

C=col+cM-0, (2.73)

A=pol+m-o. (2.74)

The electric current and the spin current are derived from the generalized current
following .
= Re(Tr())), (2.75)

jm = Re(Tr(jo)). (2.76)

M is the unit vector representing the direction of local magnetization. In this
notation, the projections of m have the dimensions of a chemical potential. The
generalized charge and spin accumulation 71 is proportional to the chemical potential

A= / eN(E)f(E)dE = eN(sp)L (2.77)

with N(ep) the density of states at the Fermi level. For convenience, we note the
electric field augmented by the chemical potential gradient as

F=EXx)+ lTr (%) . (2.78)
e ax
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2.5.3 Spin Diffusion in Non-collinear Configurations

We express now the equations of continuity for the currents in the stationary regime.
The continuity of the charge current reads, as usual,

dje

=0. 2.79
i (2.79)

We assume a Block equation for the spin accumulation 72 from which we deduce
an equation of evolution for m. 7i evolves under the combined effect of a relaxation
process, with a spin-lattice relaxation time s and an exchange field JM. There is
a corresponding Bloch equation for the chemical potential vector m, according to
(2.74) and (2.77), with a relaxation time 7y = tst/e N(eF) and an angular velocity
term g = JeN(eg)/h. Thus, we obtain the continuity equation for the spin current:

Gm _ M oMAm. (2.80)
dx Tsf

The constitutive equations together with the continuity equations imply a set
of diffusion equations. In nonmagnetic layers, the Onsager coefficient Cis diag-
onal. We write C = ¢xI. Then the transport equation and the continuity equations
together imply a diffusion equation for the generalized chemical potential:

cn d?m m
—_—— = —. 2.81
e dx2 2TN (2.81)

Writing the spin-diffusion length as ¢~! = /2tnen e, the general solution of
(2.81)is
m = my) exp(gx) + m) exp(—¢gx). (2.82)

In magnetic layers, we consider that the magnetization M is uniform. Substitut-
ing (2.73) and (2.74) into the transport equations (2.72), we can decompose j into
currents of charge and spins:

dm
Je =2 [COF + M —:|
e dx

co dm
jm=2|cFM+ ——
e dx
When these linear relations are substituted into the continuity equations, we obtain a
diffusion equation for the part of the chemical potential m , which is perpendicular
to the magnetization M:

cod’m; my
—_— = M A 2.83
e dx?2 ert + 2 mL (2.83)
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Fig.2.16 Chemical potential m (appearing like a comb) as a function of position along the axis of
a nanowire comprising a Co—Cu—Co spin valve contacted with Cu leads. The electrons flow from
right to left. m is roughly upward as it is injected from the N spacer into the second magnetic layer,
and soon becomes parallel to its magnetization as the electrons travel deeper into it

This is the key result of this section. Typically, we expect the second term to
dominate the diffusion process. We define a new characteristic length of spintronics:

Ay = Vco/ge. (2.84)

This is the decay length associated with the relaxation process of the transverse spin
polarization. A diffusion equation for the component of the chemical potential 1,
can also be obtained [38].

We could at this point set out to calculate spin transport through a set of layers
of nonmagnetic and magnetic layers in non-collinear configurations. The boundary
conditions at the ends of the structure and the continuity of currents at each interface
would determine the coefficients of the solutions for each diffusion equation in each
layer. An example is shown in Fig.2.16 for a nanowire of square cross-section,
100 x 100 nm?2, comprising a spin valve in its middle.

The torque that the spin-polarized current exerts on a given layer can be calcu-
lated by determining how much the spin current has changed as it traverses this
layer, that is,

At = % im(L) — jm(1))S. (2.85)

where S is the cross-section of the magnetic layer, up is the Bohr magneton. In a
pillar with a cross-section less than 100 nm in diameter, the torque produced by a
current density of about 107 A cm™2 is equivalent to a field strength of about 10 mT
applied to the magnetization. In comparison, the field induced by this current would
be less than 0.01 mT!

2.5.4 Domain Walls

When a spin-polarized current goes through a domain wall, the spin dynamics is
quite different from that of a spin valve. In the reference frame of the electron, the
spin injection into a magnetic layer is equivalent to a sudden passage in magnetic
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Fig. 2.17 Spin polarized
current flowing in the z
direction through a domain

y A
wall. The incoming spin
current at z and at z + dz . .
differ, implying a torque on le le
the magnetization of the
I

pill-box

resonance. To the contrary, when an electron goes through a domain wall, the effec-
tive field (in a sd exchange picture) rotates at a rate slow enough that the spin tracks
the field [43]: we are in a situation of adiabatic fast passage (see Sect.2.2).

In this approximation, the effect of a spin-polarized current on the magnetization
can be thought of as follows. We work out an equation for the time evolution of
the magnetization in a small pill box in the domain wall (Fig.2.17). The evolution
of the magnetization inside the pillbox (Fig.2.17) can be described with a Laudau—
Lifshitz equation. The pill-box also experiences an incoming flow of spins parallel
to M(x) on its face at position x, and an outgoing flow parallel to M(x + +dx) on
its face at position x 4 dx. Therefore, there is a change per unit time of the total
angular momentum of the pill-box proportional to dM/dx [44—46]. Hence, we infer
an equation of the form

oM 1 j o (M
— =yMxH4+DMxV*M+ —gug=— | — ) . 2.86
ot Skl % + 25P  ox (MS) (2.86)

In general, the spin current is not fully polarized and the tracking of the exchange
field is not perfect [47]. This gives rise to an additional term, as discussed in the
recent literature [44,48,49]. Kldui has shown (see his contribution to this volume)
that this effect is critical in pushing walls [50].
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Chapter 3
Interaction of Polarized Light with Matter

Y. Joly

Abstract This chapter is devoted to the interaction of light, mainly in the X-ray
range, with matter. The subject is introduced by some experimental evidences of X-
ray absorption, emission, or scattering processes in different kinds of materials. The
ways of describing the electromagnetic wave field are then briefly presented before
developing its interaction with an electron in an atom. They are then applied in the
context of X-ray spectroscopies. Absorption, dichroism, and resonant diffraction are
specifically discussed before giving some key elements to manage monoelectronic
simulations.

3.1 Introduction

When an electromagnetic wave interacts with matter, many processes can be
observed. The incoming wave can simply be partially, or completely, absorbed by
the sample. It can be scattered elastically or inelastically, coherently or incoherently.
We can also observe emission of photons at specific wavelengths and of electrons
also at characteristic energies. From the explanation of the photoelectric effect by
Einstein, huge progress in the understanding of the physical processes involved in
all these phenomena have been done. Moreover, enormous developments in the use
of these processes, often spectroscopies, have been made. They permit to analyze
all kinds of material, solid, liquid, or gaseous, ordered or disordered, used in many
fields, like biology, geology, chemistry, or condensed matter physics. It is impossi-
ble to give an exhaustive overview of such a subject. We shall focus mainly on the
X-ray regime and consider essentially the absorption and elastic scattering of the
photons. To introduce the subject, we first present some of the basic observations.
Then, we give the main concepts of the electromagnetic waves before developing
their interaction with matter: first from a microscopic point of view and second
using terminology used for the study of dielectrics to make the connection between

Y. Joly
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both approaches. The microscopic point of view will concern mainly the transition
process between two electronic levels and not the full multielectronic aspect. The
last part will concern the X-ray spectroscopies, mainly absorption, including dichro-
ism and resonant diffraction.

3.2 Experimental Observations of X-Ray Interaction
with Matter

Here we give some important measurements showing general aspects connected to
the X-ray absorption/scattering by matter. We shall see that the absorption depends
on energy, polarization, chemical species, and geometrical environment.

3.2.1 Absorption

From its discovery by Roentgen in 1896, the most important use of X-ray comes
probably from its high penetration depth in matter with different absorption rates
depending on its constituents. It is thus an exceptional tool to investigate the struc-
ture and the composition of all types of samples. For an homogeneous isotropic
material, there is a simple exponential decrease of the transmitted beam intensity /
in terms of the sample thickness D:

I =Iyexp(—uD), 3.1

where [y is the incident intensity. This equation, equivalent to the Beer—Lambert
law In(Zy/I) = uD, introduces the total linear absorption coefficient . This coef-
ficient, for a crystalline solid, is related to the absorption cross section, o;, of the n
different chemical elements of the unit cell [1]:

1 n
n=1 0 3.2)

i=1

where V is the volume of the unit cell. It is usually expressed in square centimeters
or in megabarns (1 Mbarn = 10718 cm?).

3.2.2 Dependence on Energy

When measuring the energy dependence of the photoelectric absorption cross sec-
tion for the interaction of X-rays with matter, one can see a decrease from some
megabarns at low energy down to some barns at around 1 MeV [2]. At some ener-
gies, there are strong and abrupt increases in the cross section. For example, in
Fig. 3.1, we show the energy dependence of the photoabsorption cross section in
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Fig. 3.1 X-ray absorption spectrum of a gold metallic foil in a 2.5keV energy range around
13keV. The experiment by Proux and Hazemann [3] shows the abrupt increases (called edges)
in the absorption cross section at energies characteristic of the chemical element. Note that the Ly
edge is two times higher than the Ly edge. Note also the so-called EXAFS oscillations after each
edge
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Fig. 3.2 X-ray absorption spectra at different edges of uranium in the uranyl ion UO,>t. All
the edges are shifted by the value of the ionization energy of the corresponding edge in order to
compare their shapes. The Ly and My are step like and very similar. The other edges have a very
different shape. This difference is due to the selection rule imposed on the electronic transition

the 11.8—-15keV energy range for a gold metallic foil [3]. One can see three edges
labeled Ly, Ly, and Ly. Note also the EXAFS oscillations after the edges, which
are very rich in information on the close neighborhood of the absorbing atoms, as it
will be seen further on.

When looking at the different edges of a same element in the same material, as
for instance the uranium edges in uranyl ion UO,%* (Fig.3.2) in the experiment
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performed by Fillaux et al. [4], we can see the different kinds of shape of the edges.
In this case, we see that the Ly and My have a very similar step-like shape. The
My, Oy, and Oy spectra present only a single peak, more or less broad. We shall
see, Sect. 3.4.6, that this is due to selection rules in the transition. Another observa-
tion which is often done is that, as in Fig. 3.1, the Ly edge is two times higher than
the Ly edge.

The energy of the edges is a signature of the absorbing atom and its chemical
bonding. A closer look at the spectra shows that small shifts (up to a few eV) can
be observed in the threshold energy for a same element but in different chemical
environments. When increasing the oxidation state, the edge tends to shift toward
higher energy. This fact is often used to check the valence state of a metal atom in
an oxide.

3.2.3 Dependence on the Atomic Environment

Now let us have a look at the oscillations above a typical edge. We compare two
different surroundings of a same element, as, for example, the Cu K edge in pure
copper and in YCuOy 5. In Fig. 3.3, we can observe very different oscillations.
From other measurements in the gas phase or in disordered materials, we also know
that these oscillations do not need a long-range order. They are thus a signature of
the close environment of the absorbing atoms. The connection between the spectral
shape and the neighborhood will be discussed in Sect. 3.6.

3.2.4 Dependence on the Light Polarization

Pleochroism or dichroism is the change in color when a mineral is observed at dif-
ferent angles under plane-polarized light. Because of the absorption of particular
wavelengths, the transmitted light appears colored depending on the thickness and
the particular chemical and crystallographic nature of the mineral.

Cu, metal foil

Fig. 3.3 X-ray absorption
spectra at the Cu K edge in
(top) a copper metallic foil
and (bottom) in YCuOy »s.
The edges are roughly at the L - L -

same energy, but the 8900 9000 9100 9200 9300 9400

oscillations are very different Energy (eV)

Absorption cross-section
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Fig. 3.4 X-ray absorption T T T T
spectra of TiO, (rutile) .
around the Ti K edge. The Polarization i
experiment by Poumellec - along c axis L/
et al. [5] is performed using a
single crystal under two
orientations of the sample in
front of the incoming linear
wave field. The difference
shown in the figure is called
linear dichroism. It is
relatively strong when the
sample is not cubic

Polarization
perp. to c axis

Absorption cross-section
T

4960 4970 4980 4990 5000 5010
Energy (eV)

By extension, the difference of absorption, under rotation only, is called dichro-
ism. This phenomenon is also observed in the X-ray energy range. To observe this,
one needs a single crystal of a noncubic material (note that very small dichroism
can also be observed in cubic material). For example, Poumellec et al. [5] measured
the absorption along three orientations of a TiO, single crystal; two are shown in
Fig. 3.4. The effect of the tetragonal symmetry of the material can be easily checked.

These studies are performed with linearly polarized light (the concepts of linearly
or circularly polarized light are given in Sect. 3.3). As in the visible range, the use of
circularly polarized light in the X-ray regime also gives useful information. Special
interest comes from experiments where one looks at the difference between two
spectra recorded, respectively, with left and right circular polarization. At the Ly it
edges of magnetic material, the dichroic signal can reach several percent of the
total absorption edge. For example, at the Er Ljj edge in ErZn (Fig.3.5), we see
an oscillating behavior around the rising edge energy. At K edges, on the contrary,
these kinds of observations are always very small.

The explanation of these polarization phenomena comes from the dependence
of the absorption spectroscopies on the electronic structure around the absorbing
atoms. This is detailed in Sect. 3.6.

3.2.5 Diffraction Around Edges

Another kind of experiment increasingly popular at the different synchrotron facil-
ities concerns the measurement of diffraction peaks in a more or less wide energy
range around some edges. The technique called diffraction anomalous fine structure
(DAFS) or resonant X-ray Scattering (RXS) [7] gives sets of spectra rich in
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Fig. 3.5 X-ray absorption
spectra of ErZn and the
circular dichroic signal at the
Er Ly edge. The latter is a
signature of magnetism of the
5d orbitals on the Er atom.
The experiment was
performed at the ESRF ID12
beamline by Galéra et al. [6]

Absorption
(arbitrary unit)

Dichroism
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Energy (eV)

Fig. 3.6 Two diffraction peaks measured by Grenier et al. [8] around the V K edge in NaV,05 at
13 K. Their intensity is nearly zero far from the edge and shows strong variations around the edge.
The spectra also strongly depend on the polarization conditions. For comparison, the absorption
spectra are also shown for two linear polarizations. The pre-peak visible in these spectra is also
present but slightly shifted in the diffraction spectra

information on the crystalline material studied. For example, in Fig. 3.6 are shown
two spectra of diffraction peaks in NaV,05 compared with two absorption spec-
tra measured for two orientations of the sample. The diffracted intensity becomes
highly energy-dependent around the absorption edges. In some cases, the intensity
is nearly zero; but close to the edge, the intensity variations have similarities with
what is observed in the absorption spectra. This spectroscopy is indeed very similar
to absorption spectroscopy. It is explained for the photon—matter interaction process
in Sect. 3.4 and in an unified scheme to get the final amplitudes in Sect. 3.6.
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3.3 The Light

Before considering the interaction of light with matter, one has to recall the basic
definitions used to describe the electromagnetic waves.

3.3.1 Definitions and Notations

The vector potential, A, the electric and magnetic field, E and B, of the electromag-
netic waves are obtained from the Maxwell equations. These equations lead first to
the propagation equations in vacuum:

92A 3°B 9’E
AA =gopo——, AB =¢gopo——, AE =¢gopo—. 33
oMo 53 0055 0ho 55 (3.3)
A plane wave is a wave with infinitely long and wide wave front. From the
propagation equations, it can be shown that in this case:

e The vector potential depends only on time (¢) and coordinate corresponding to
the propagation direction z

e A E, and B are perpendicular to the propagation direction

e E and B are perpendicular to each other

e F=cB

The solutions of the propagation equations are necessarily of the form
s(z,t) = f(z—ct) + gz + ct), (3.4

where f and g are scalar functions.
Progressive plane waves are such that either f or g is always zero. That is,

o s(z,t) = f(z— ct) is a traveling plane wave propagating along +z
o s(z,t) = g(z + ct) is a traveling plane wave propagating along —z.

Monochromatic traveling plane waves can be written as

Ax (2,1) = Aoy cos [2;11) (f - t) n <p0x] : (3.5)

z
Ay (z,1) = Aoy cos [2711) (E — t) + 900y] ,

where the amplitudes, Ao, and Ao, , and the phases, o, and ¢y, , can have peculiar
relations.

Linearly polarized plane waves have both components in phase, that is, @, =
@oy. E, B, and A are thus in phase. E and A are moreover collinear.

Circularly polarized plane waves are such that Agx = Agy and ¢ = oy —@ox =+
90°. The sign plus and minus are, respectively, for left and right circular polariza-
tions.
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Complex notations are more tractable. A, E, and B are then given by
A — AO ei(k~r—wt)’ E = EO ei(k~r—wt)’ B = BO ei(k-r—wt)’ (36)

where k is the wave vector, which is collinear to the propagation direction, and w =
27v is the pulsation. Moreover, we have the relations E = —iwA, B = —ik x A,
and k? = w?/c?.

In this context, we define the polarization vector by

e=1i—. (3.7)

e=—|+i|. (3.8)

In diffraction, the terms of o (or s) and 7 (or p) polarizations are often used. They
designate the orientation of the polarization relative to the scattering plane. When
the polarization is perpendicular to the scattering plane, it is called o; when it is
parallel, it is called . In classical diffraction, most of the intensity of the diffraction
peaks is obtained in the o-in—o-out channel (one says directly 0—o). With mag-
netism or around the absorption edge, one can get important o— contributions.
The information obtained from the polarization analysis of the diffraction peaks can
be very rich.

3.3.2 Stokes Parameters

There is another way to characterize the polarization. It is the use of the Stokes
parameters. They are used in many contexts: in astrophysics, in instrumentation to
validate the quality of the beam lines, and in X-ray physics to describe with common
tools the effect of the interaction with matter. The Stokes parameters describe com-
pletely the polarization state of an electromagnetic wave through a four component
vector S:

So |Ex|2+‘Ey’j

S| 2 EP - |E|

s [T (ExE}) | G
S5 23 (E<E?)

The polarization itself (or rate of polarization) is thus given by
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S+ S7+ 82

5 (3.10)

p:

For practical purposes, one normalizes by Sp and thus one gets the following for
example:

(1, 0,0, 0): unpolarized

(1,1,0,0): linearly polarized along x
(1,—1,0,0): linearly polarized along y
(1,0, 1, 0): linearly polarized at 45°

(1, 0,0, 1): left-hand circularly polarized
(1,0,0,—1): right-hand circularly polarized.

3.3.3 Quantization of the Electromagnetic Field

In the next section, we give the expression of the interaction between the electro-
magnetic wave and an electron in an atom. For this purpose, we have to first derive
the quantization of the electromagnetic field. When it is confined in a volume V,
the potential vector A (r,?) is expressed using the previous expressions and the

annihilation a, x and creation a:'k operators:

A =Y Aok [ae,k ekrong 4 gt e—i“"f—w””*] , G.11)

e,k
h
Aok = . 3.12
0.k = 4/ eoVon (3.12)

The Hamiltonian of the field is given by

with

1
Hg = Z g (a:kae,k + E) ) (3.13)
e,k

3.4 Interaction of Light with an Electron in an Atom

Having defined the electromagnetic waves, one can now consider how they inter-
act with matter. In this section, we consider the interaction of a photon with one
electron, making a transition between two atomic levels. From the interaction
Hamiltonian, we shall have, at the end of this chapter, the important processes
involved in the absorption, resonant, and nonresonant scattering phenomena.
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3.4.1 Linear and Nonlinear Interactions

A first distinction between the linear and nonlinear interactions should be carried
out. When there is a single incoming or a single outgoing photon in the interaction,
the process is said to be linear. With more photons, one gets the nonlinear physics
involved, for example, in frequency doubling. The subject, extensively studied in
the infrared, visible, and ultraviolet regimes, very rarely deals with X-ray physics.
Indeed, it needs huge radiation power (typically 1 kW mm™2). This can be reached
by lasers but not at a synchrotron radiation facility, even with the very high brilliance
one gets now [~1020 photons (s~ 'mm™?mrad=20.1% bw~1)]. In a near future, with
the free electron laser, which gives X-ray pulses with a brilliance 1,000 times higher
than the synchrotron, the radiation power will be probably sufficient to reach non-
linear phenomena in the X-ray regime. For the moment it is not yet done, and thus
the following sections are limited to the linear response.

3.4.2 Interaction Hamiltonian

The nonrelativistic Hamiltonian' for one photon and one particle of mass m and
charge g is given by [9, 10]

1
H=—@®—-qA)?+qV—g.-LS.B+ Hg, (3.14)
2m 2m

where g is the Landé factor (2 here), and P and S are, respectively, the momen-
tum operator and the spin vector. Hg is the Hamiltonian of the field already
seen in Sect.3.3.3. The relativistic Hamiltonian brings terms resulting in a spin—
orbit component, which can be neglected in the X-ray regime.? The nonrelativistic
Hamiltonian can be split between its noninteraction part Hy and a perturbation V1:

2
Ho= 2" +qv + Hy, (3.15)
2m
2
Ne-dpat L a_g lg.3 (3.16)
m 2m 2m

We consider a transition between an initial state and a final state. The initial state
contains one photon with wave vector k; and polarization &; and one electron in the
state ¢,. In the same way, the final state contains the photon (ks, &) and the electron

! The Hamiltonian is in SI units. When expressed in CGS units, there is a 1/¢ extra factor in front
of A.

2 This spin—orbit component must not be confused with that of the electronic structure in the mate-
rial, particularly strong for the atomic core states and which makes magnetism detectable using
X-rays.
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in state ¢s. The solutions of Hy can be written as

|be) = |po: ki €i). Ho|pe) = & |¢s) with & = Eg + hayi,  (3.17)
l¢6) = |pe:Ks, &), Ho |gr) = E|dr) with & = Er + ha, (3.18)

where &, (&) is the total initial (final) energy, £, (Ey) is the electron initial (final)
energy and hw; (hws) the initial (final) photon energy. For practical purposes, we
shall use this formulation in the context of transition from one electronic localized
state up (or down) to some unlocalized state. We shall thus ascribe a density of states
pr to the final state, which is supposed to be not zero on some energy range. In this
context the transition probability from |¢g) to |¢¢) is given by

Wi = 2% | (el Ti [ b)) . (3.19)
where 77 is the transition operator given by
i = Vi + ViG (&) V1. (3.20)
G (Eg) is the resolvent (Green’s function) of the total Hamiltonian, that is,

. 1
G (&) = lim, EH (3.21)

The zero-order approximation using 71 &~ Vj gives the second golden rule. In the
following, we shall use the first-order approximation where we replace the Green’s
function of the total Hamiltonian by that of the ground state Hamiltonian. The
transition probability we get is the first golden rule, where

Ty ~ Vi + ViGo (&) Wi (3.22)
Inserting in (3.22) the expression of V; givenin (3.16) and usingg = —e, gL = 2,
and B = —ik x A, one gets to the second order in an e/m expansion
Tix L P-A—iS-kx A) (3.23)
m

eN21rm . .
+ Z> [zA'A+(P'A—1S~kxA)GO(Sg)(P'A—ls'kxA)]

N

In this expression, the terms containing just one A reveal processes with one photon,
that is, absorption or emission. The terms with two A reveal situations with two
photons, one photon in and one photon out, that is, a scattering process. Let us now
introduce the expression of the potential vector given in (3.11).
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3.4.3 Absorption and Emission

When keeping the annihilation term alone, one gets the operator corresponding to
the absorption process:

Tias = — Y Aoxden (e - P —iSk x g) elkr=n), (3.24)
m ek

To get the absorption cross section, one introduces this operator in (3.19) and we
divide by the incoming flux (c/ V). We get,

|4 2
Ous = — D = (i Tians [@5)|” o1 (3.25)

£
47ah
T e ZK(pf
£

A

)

2
%)‘ pt (Ef = Eq + ho), (3.26)

where @ = e2/(2ephc) ~ 1/137 is the fine structure constant, and the operator 0
is given by . '
O =(e-P—iSk x &) e!*". (3.27)

The total energies are given by
5g = Eg + hw, & = Ef. (3.28)

Very often the term corresponding to the magnetic field can be neglected in the
X-ray energy range. This means that we use O ~ & - Pe/k™.
The emission is treated identically by keeping the only creation operator. There
is no incident flux and the normalization depends on the peculiar process. For a
coupling between the continuum and a discrete final level, one gets an emission
cross section proportional to the absorption cross section, but with the total energies
given by
& =E+ho, & =E,. (3.29)

3.4.4 Scattering

Now one considers the two photon case. For a scattering process, to get the intensity,
one has to divide by the incoming flux (¢/ V') and multiply by the density of pho-
ton in the final state V(hws)?/(2whc)3. One thus multiplies and divides the matrix
element (¢¢|T'| ¢, ) by the square root of the previous factors. To get the scattering
amplitude in the conventional unit scale, that is, in number of electrons, one also
divides by the classical electron radius ro = €2/ (4weomc?) = 2.82 x 1075 A. We
have thus to calculate
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V haos

= T . 3.30
f e {dr 171 ) (3.30)

3.4.4.1 Thomson Scattering

We consider the first term with A - A in (3.24). The corresponding amplitude is

Vhow, €2
= ———5 5 \p|A-Alg (3.31)
(271hc)3/2 ro 2m < g>
) i(ki—k.)-
= Zje:ei <¢>f eiki "‘S)r(aias+ + afa;) ¢g>. (3.32)
In the elastic case, one gets the Thomson scattering
fo=¢el-& <<pg el ¢g> =el& / o (0)]2 e, (3.33)

where Q = k; — k;.

We now compare this result with the classical demonstration. Then, Thomson
scattering is the elastic interaction with a free electron. The vibrating electron acts
as a source and the ratio of the radiated field E,(r) to the incoming field E; is

E, (r) elkr
= —rO
Ei r

cos v, (3.34)

Y being the angle between the incoming polarization and the outgoing one. It is the
scattering angle only when the polarizations are parallel with the scattering plane.
One has cos { = €] - ;. The scattering amplitude expressed in number of electrons
is then

f =el-e. (3.35)

For one atom with a distribution of charge p(r), one just has to integrate over it,
taking into account the phase difference between the paths (Fig. 3.7), which is given
by

Ap(r) = (ki—k) r=-Q-r, (3.36)

and the scattering amplitude is thus

f Q= / p(r) e 'dr, (3.37)

that in the limit Q — 0 yields f(Q = 0) = Z. Finally just multiplying by the
scattering amplitude for one electron (3.35), one gets again the formula giving the
Thomson scattering amplitude (3.33).



90 Y. Joly

Fig. 3.7 Thomson scattering
where the incoming beam
with wave vector k; is shown
scattered at the center and at a
point r in the atom, giving
thus a phase difference

In periodic systems, the diffracted peaks are mainly due to this effect. The phase
difference between the atoms of the unit cell is taken into account by the Bragg
factor, e!Q®Ra  in such a way that the intensity is given by

2

1(Q) o el ey ™ fo, (Q) , (3.38)

where R, and fy, are, respectively, the position and Thomson scattering ampli-
tude of the atom a. The summation is over all the atoms of the unit cell. From this
equation, one sees that there is no o—m Thomson scattering. Often the electronic
density can be considered as spherical around the atoms. Consequently, the Thom-
son scattering for a specific diffraction vector Q is mostly isotropic. Note finally that
a temperature dependent Debye—Waller factor must also be included in the Bragg
factor to take into account the thermal disorder.

3.4.4.2 Compton Scattering

For completeness one has to touch on the Compton scattering. It corresponds to the
inelastic interaction with a free electron. Contrary to Thomson scattering, it cannot
be explained purely with light as a wave phenomenon. One has to consider the
relativistic energy and momentum conservation laws (Fig. 3.8), and we get then

ki hoi  Ag
o he o n 1 4+ Acki (1 —cos9), (3.39)

where 0 is the scattering angle and A¢c = i/ mc is the Compton wavelength. Comp-
ton scattering is incoherent and it is often seen as a simple background. This one
is small in the X-ray range but increases at higher energy (see Fig. 3.8) and with
the scattering angle. For electrons in solids, it gives nevertheless information on the
electronic momentum distribution (see Chap. 8).
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Fig. 3.8 Compton scattering T T
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3.4.4.3 Resonant Scattering

Now we consider the second term in the two photon process, the one containing
Go (&) in (3.24). This Green’s function applied on the state |y ) is

n nakn
Go (£) l¢n) = lim |¢n) |€n, Kn)

- 3.40
n—ot & — Ho +in ( )

There are two possibilities. In the first one, the intermediate state already contains
the photon of energy hws. In other words, the emitted photon is created before the
annihilation of the incoming one. We thus have £, = E, and

En = Ey + hws. (3.41)

In the second case, there is no photon in the intermediate state. The emitted photon
is created after the annihilation of the incoming one. In this case one gets

En = E,. (3.42)

One also has for the initial state £ = E, + hw;. Consequently, the expression of
the scattering amplitude becomes
Resonant case:

ws 1 . <‘/’f‘és* §0n><<ﬂn éi §0g>
f(a) = —— lim .

Wi m p—ot+ = Ey — Ey + hoi + in

(3.43)
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Nonresonant case with the photon in the intermediate state:

N

fo-tly <¢f\o;g > < i %) o

In these expressions, the operator OAi,S has now subscripts corresponding to the
incoming and outgoing photons and thus their corresponding wave vector and polar-
ization. Note that for the expression of f(z), one does not need the limit with n
because £, — E, and hws are generally of the same sign. On the contrary, f(,) is
a resonant process because we can have E, — E, + hws = 0. We get a virtual
transition because there is an uncertainty on the energy during the interval At, such
that AtAE = h, with AE = |E,, —E, — ha)s| One can also remark that around
an absorption edge, the denominator of the resonant term is nearly zero. On the
contrary, the denominator of f(z) is around two times the energy edge. Thus fz) is
nearly always negligible in comparison with f,).

The resonant term is used in many spectroscopies. Depending on the wavelength,
different properties of the material can be investigated. Section 3.6 is partly devoted
to the use of the resonant term in the X-ray regime.

3.4.4.4 Nonresonant Magnetic Scattering

To end up this part on scattering, one can consider the nonresonant magnetic scat-
tering. This scattering was explained by Blume and Gibbs [11] and first observed
in 1981 by de Bergevin and Brunel [12]. It contains the interaction between the
magnetic field of the incoming wave with the spin of the electron. It contains
also an angular momentum part, which comes from the expansion to first order
in hw/ (E,, - Eg) of the resonant f(,) and nonresonant f(3) scattering amplitudes.
At high energy, one then gets a magnetic scattering amplitude given by

P EL(Q) a+SQ)- b} , (3.45)

mc?

where a and b are two vectors depending on the incoming and outgoing wave
vectors and polarizations:

a=2(1—u-u)e; xe — (u X&) -5+ (us X &) ug - &, (3.46)
b=¢e;xe— (g xe)u e+ (U X &) uy-&; — (ugxes) X (wjxe;) .(3.47)

where u = k/k and S (Q) is the Fourier transform of the spin density, that is of
0 (r)T —-p (r)¢. The term L (Q) is related to the Fourier transform of the orbital
momentum. It is often a good approximation to take L (Q) and S (Q) in the same
direction.
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The amplitude of the nonresonant magnetic scattering is very small, and neutron
diffraction is most often far more sensitive to measure magnetic ordering. Neverthe-
less, when studying magnetic material using resonant processes, because this term
interferes with the other terms, it can gives notable effects on the intensity of some
peaks.

3.4.5 Transition Matrix
To obtain the absorption and emission cross sections and the resonant scattering

amplitudes, matrix elements of the form ((pf ‘ 0‘ (pg> have to be evaluated. The expo-

nential in the operator can be expanded in terms of k - ¢ and we get to second order
for, respectively, its electric and magnetic part:

N . 1
Oe=e-Pe""r=s-P|:1+ik-r—§(k-r)2+---:|, (3.48)
N . 1
Om:—iSkxee‘k'r:—iSkxe[l+ik'r—§(k~r)2+mi|. (3.49)

In (3.48), the first term of the expansion is called the electric dipole or E1 term.
The corresponding operator € - P can be rewritten, thanks to its relation with the
commutator, as

e-P="1le-r H. (3.50)
ih
Using the relation
(¢t |[e - v, Holl ¢e) = (Eq — Ex) {¢r|e - | @g), (3.51)
one gets
.m
Miger = (ot le - Plog) = i (Er — Ey) (erle - xl ). (3.52)

Let us calculate now the second term of the expansion of the electric operator.
To get the corresponding matrix, one sets the polarization along the y-axis and the
wave vector along z. Then we use

m m i
— [zy, Hol = — ([z, H L Ho) = = (P P
57 2y Hol = = ([z. Hol y + z[v. Ho)) 2( .y +zPy)
i i
= E(Zsz—sz+zPy) =isz—§Lx, (3.53)

where Ly is the x component of the orbital angular moment L. For any direction,
we thus get

iP-e k-r=%[s-r k-r,Ho]+%kxe-L. (3.54)
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The first term of the second member of this expression gives the electric quadrupole
or E2 contribution:

m

= (Ei— Eg) 5 (orle v k-1l gy). (3.55)

M gr =i
The second term of the second member depending on orbital moment L is magnetic.

Consequently, it is grouped with the zero order of the expansion coming from the
spin contribution. The new term is called the magnetic dipole or M1 term:

1
Meg p1 = 3 (or |k x &+ (L +2S)| ¢g). (3.56)

The M1 contribution is very small in the X-ray energy range because it involves a
nearly zero radial integral (it acts only on m and o, the corresponding selection rule
being AL = 0).

3.4.6 Selection Rules
We have to calculate
(wlola, = o [ of 000600 (.0) . (3:57)

When considering only the E1 and E2 transitions, there is no possibility of spin
flip during the transition; thus the sum on the spin is reduced to one index, o, set
outside. Here the operator just contains the terms inside the matrix of (3.52) for E1
and (3.55) for E2, that is,

1
6:e-r(l+§ik~r). (3.58)
The core state g is localized, thus the integral has to be performed only inside
the absorbing atom. The expansion of f, 6, and g in spherical harmonics is con-

sequently very convenient because it singles out the angular momentum quantum
numbers explicitly, and separates the radial and angular dependences.

3.4.6.1 Final States

In the nonmagnetic case, the final (or intermediate) state can be written as

@r(r) = "ay,, (E)b(E.r) Y (). (3.59)

L,m
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where r = (r, £2) is expressed in spherical coordinates and by (E, r) is the radial
component of the wave function inside the atom. It is obtained by solving the radial
Schrddinger equation in the atom. It weakly depends on the photoelectron energy E.
The bar is to show a specific normalization, which will be seen in Sect.3.7.2. The
ay ,, (E) are the amplitudes.’

In the magnetic case, if one neglects the spin—orbit coupling, a single sum over
o is to be included:

Gr(r) =Y ay, s (E)brg (E.1)Y (2) 1o (3.60)

L,m,o

where the spin state is given by

1 0
Xy = (0), aoy = (1) (3.61)

When one considers the spin-orbit coupling, the final state is written as

B - +1_
Grmy=3 a0 (BB (ENY ()0 (362

L,m,s

Note that in this case, the spherical harmonics are necessarily the complex ones.
This expression comes from the solution of the Dirac equation for the atom. o is not
anymore a good quantum number. We replace it by the index s. Because of the spin-
orbit coupling, the (£,m, 3) and (£,m + 1,—%) components are part of the same
state. This is what gives the eventual spin flip during the photoelectron scattering.

3.4.6.2 Initial States

Now let us look at the initial states. They are localized and the expansion seen in
the previous expression is limited to one or two components. For example, at the K
edge, one has £ = 0 and two initial states

11
‘5, —§> = byy () YOOX_%, (3.63)
11 0

3 When using the monoelectronic approach, the azm (E) contain the main dependence on the
energy E. They are obtained using the continuity of the wave function and its derivative between
the atom and its surrounding. In the other approaches, they are just normalization coefficients, and
the energy dependence is put outside the transition matrix. At this stage, whatever is the method,
our demonstration is general.
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At the Ly edge, one has £ = 1, j = 1/2, and two initial states

11 2 ., T o

‘5,—§>—b1%(r) (—\EY1 Xé+\/;Y1)(_é), (3.65)
11\ [ 2.,

Lo (ot )

At the Lyj- edge, one has £ = 1, j = 3/2, and four initial states

3 3 _
’5,—§> =b;3 (NY; 1;{_%, (3.66)

3 1 1 __ 2

’57—§>:b1§(”)<\/;y1IXé‘f‘\/;YPX_é),
301\ 2 o 1,
’5’§>—b1%<’><@“ +\EY1X—1)*

33 .
33)=ha iz

D=
[N]

In general, when using complex harmonics, one can just write

1_
b= ngg(r)ye’:ng2 7 Yo (3.67)
g

3.4.6.3 Operator

The operator can also be expanded in spherical harmonics:

. lo—1

N 1 ! ° N 0

b=e¢e-r (1 + zlk . r) = (E (Ek) CeymyT YZZ (2), (3.68)
0sMo

where the ¢y, ,, are specific coefficients with their operator quantum numbers
(€, m,). For example, for a polarization along z and a wave vector along x, one

gets
[4
e-r=z=rcosb = TﬂrYlo, (3.69)

. . . . 7]
%e-r k-r= %kzx = %kr2 sinf cos ¢ = %k‘ll—ZrzYz, (3.70)
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where we have used the real spherical harmonics, which if needed can be expressed
in terms of the complex spherical harmonics.

3.4.6.4 The Transition Matrix

We can now gather (3.62), (3.67), and (3.68). The transition matrix for each spin o
is then

P £o—1
. 1 ° Lomgt+ % —0,L,mq
(erlol o), = (Ek) Clomy D r,*> é_zo (3.71)
L,m

o

Lo, ‘
xE RE Ul_g,s (E)“z,er% (E),
N

(,m+§ —5,8
where
Ly,0 R Lo 244
Ri’m"_’i_%_o,x (E) = /0 ot L—s.s (E,r)bg (r) r="rdr, (3.72)

is the radial integral performed up to the atom radius R, and

rlemetoms _ o / V@Y (@Y ()42 (T3)
sphere

is the angular integral or Gaunt coefficient multiplied by the factor Gg coming from

the initial state. It is usually expressed in terms of Clebsch—Gordan coefficients. The

angular integral is not zero only for peculiar value of £, m:

e { must have the same parity than £, + £,
o |ly—Lo] =€ <|lg+ Lo
e m =mg+ mg.

The last condition on m is when using complex spherical harmonics. When using
the real ones the conditions are

o Whenmomg = 0,m = m, + myg
e Whenmomg > 0,m = |mO +mg| andm = |m0 —mg|
o Whenmomg<0,m=—|m0|—|mg|andm=—|m0+mg|.

For the dipole and quadrupole components, we have, respectively, £, = 1 and
{, = 2. Thus, the difference on £ between the initial and the final state is

e Dipole: Al = £1
e Quadrupole: AL =0, £2.

The orbitals probed at the different edges are summarized in Table 3.1.

At the K edge, the initial state is 1s and the Gaunt coefficients are equal to
(1/+/4m) 8¢,6,6m,m,- The corresponding effect of the selection rule on the probed
orbital is shown in Fig. 3.9. One considers an atom in an octahedral surrounding, for
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Table 3.1 Probed states for the dipole and quadrupole transition for the different edges

Edge Dipole probed state Quadrupole probed state
K, L, M, Ny, Oy )4 s—d

L, L, My, My, Ny, Ny, Or, Om s—d r-f

My, My, Ny, Ny, Oy, Oy r—f s-d-g

Fig. 3.9 Selection rule in the K-edge case. An octahedron is surrounding a 3d element. When
the polarization is along z and the wave vector along x, the dipole probed orbital is p, and the

quadrupole probed orbital is 3d,,. When rotating the sample by 90°, the probed 3d state by the E2
channel can correspond to an e, state or to a #,, state

instance, a 3d element. It is oriented in a specific way with respect to the incom-
ing electromagnetic wave, which has its polarization along z and its wave vector
along x. The electric field of the wave makes the core 1s electron vibrating to first
order (for the dipole) in the vertical direction, like a p,. The core electron can thus
jump into the empty 4 p, state above the Fermi level. When the energy is sufficiently
high, or the wave length sufficiently short in comparison with the 1s orbital radius,
the vibration is not anymore exactly along z. There is a phase difference along x,
resulting in a dy,-like vibration component. The core electron can thus jump into
the 3dy, final state. This is a quadrupole transition.

3.5 Dielectric Function or Macroscopic Point of View

We briefly recall the definitions of the values permitting to describe macroscopi-
cally a dielectric. The aim is to connect the susceptibility, the permittivity, and the
refractive index with the scattering factor used in the microscopic point of view.

A dielectric is a nonconducting substance where any volume element d 7 has a
dipole electric moment d M. It can be permanent or induced by an external electric
fields E. The polarization vector P is defined by

dM = Pd-. (3.74)
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The electric displacement at a point M is defined by
DM)=¢EM)+PM). (3.75)

For a linear (see Sect.3.4.1) dielectric medium, the relation between the electric
displacement and the electric field is

Dy Exx Exy €xz Ey
Dy | = | eyx &yy €y Ey ). (3.76)
D, Ex Ezy &z E;

where ¢ is the dielectric constant. Defining the electric susceptibility y and the
relative permittivity &, by € = go&; = €9 (1 + y), one gets

P = ¢oyE. 3.77)
For an isotropic material, the refractive index is given by

n=Je. (3.78)

For an anisotropic material, the refractive index is a vector defined by
n = —Kk, (3.79)
1)

where k is the wave vector, ¢ the speed of light, and w the pulsation. One gets the
components of the refractive index from the Maxwell equations. For a plane wave,
we find

D=n’E— (n-E)n. (3.80)

Using the matrix relation between D and E and substituting D by (3.80), one obtains
the Fresnel equation
0’ (En% +8yns +En?) —niex 6y + &) — ey (Bx + &) —nle. (6 +5y)
+&xey€, =0, (3.81)

where (£x, %), €.) are the eigenvalues of the permittivity matrix, defining the princi-
pal axis.

3.5.1 Complex Permittivity

In this section, we use classical equations to define a resonant system. When com-
paring with the quantum mechanical scattering factor calculated in Sect. 3.4.4, we
shall see that the resulting expressions have strong similarities. First we consider the
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differential equation of motion for an electron in a molecule:

mo = —kr—— ¢k, (3.82)

where E; = E 4 P/3¢y is the local field, t some damping, m, e, and r the mass, the
absolute charge, and the position of the electron, respectively. Putting P = 2Ner,
where N is the number of electrons per unit volume, we find the relation between E
and P, and the electric susceptibility is given by

2
Xowy
= 1 3.83
X w0 —w? +i2 (5:65)
where
2Ne?
0= 5 (3.84)
Eomwsy

is the susceptibility at @ = 0. From the (3.83), the complex relative permittivity (or
dielectric function) can be expressed as

& () = &l () +ie” (w) . (3.85)

where its real and imaginary parts are given by

02 (02 — 02 20
e () —1= 22 i ( 12 w)z, & () = X0 1; —. (3.86)
(@f —?)" + = (@f —?)" + =

When plotting (Fig.3.10) these quantities, we find the typical resonant shapes
for the imaginary and real part of the amplitude. From this simple consideration and

6 T
;=35
5 .
4 4
3 .
2 "/ 4
g 2 € /%o
.E 1 4
e o
Fig. 3.10 Real and iyl ]
imaginary part of the
permittivity for tw; = 5. At -2 -1/ % 1
high frequency, 3l ]
corresponding to the X-ray
range, the real part is -4 !
; . 0 1 2 3
negative. The refractive index
o/ ®q

is thus less than unity
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taking into account that the main resonance pulsation w; is in the ultraviolet range,
one gets the Cauchy formula giving the dependence of the refractive index on the
wavelength at low frequency (i.e., in the visible):

2

n? =nj+ (3.87)

ﬁy

with A = 4n2yoc?/ a)f We also obtain the value inferior to unity for the refractive
index at high frequency, that is, in the X-ray range.

3.5.2 Complex Refractive Index

With a complex permittivity, one also gets a complex refractive index and a complex

wave vector. We have )

K2 = % (sl +igl). (3.88)
Setting k = k' + ik”, one gets
2 2
K2k = Zoel, KK = el (3.89)

So, for a plane wave along z, there is a damping given by elk? = eik’2e*"2 The
complex refractive index is simply defined by

e 1’ = k'c/w is the refractive index
e n” = k”c/w is the extinction index.

Around w1, there is an absorption and an anomalous dispersion. Far from w1, there
is no absorption and a normal dispersion.

From these relations, reflection and transmission coefficients can be calculated
for an incident electromagnetic wave when interacting with a surface separating
two media of different refractive indices. It is then possible to get a relation between
the orientation of the polarization of an electromagnetic wave after reflection by a
surface in terms of the permittivity. In the visible range, it is one of the goals of
ellipsometry. Another one is, knowing the refractive index, to determine the thick-
ness and roughness of a surface. For magnetic materials, the equivalent technique is
called Kerr effect.

At higher energy, in the soft X-ray range, reflectivity is a tool to get magnetic
moment and thickness as a function of depth in a material. The connection with
resonant scattering factor f(Q, w) is effective in this technique, and we can write
the relation between the refractive index n and f(Q, w):

2N,
n(Q.ow)=1- %f«z, ). (3.90)
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with rg the classical electron radius, N, the number of atom per unit volume, and
Q the diffraction vector. For a magnetic system, the scattering factor itself depends,
as seen previously, on a nonresonant and a resonant part. The Q dependence of n
shows its angular dependence.

3.6 X-Ray Spectroscopies

In Sect. 3.4, we have seen the case of the interaction of a photon with an electron,
making a transition between two levels. It is implied that the electron is in some
atom. In this section, we focus on the X-ray spectroscopies. The corresponding
energies make that the transition is necessarily between a core level and some other
unoccupied level above the Fermi energy (or above the highest molecular occupied
orbital to adopt the chemistry terminology).

The series of ionization edges gives evidence of the existence of the electronic
energy levels in the atom. They are labeled by a letter K, L, M, N, and O according
to the principal quantum number, n = 1, 2, 3, 4, and 5. The atomic levels are also
split according to the orbital momentum quantum number £ and to j = |£ + s,
where s = :I:% is the spin. These sublevels are labeled using the subscripts I, II, 11,
IV, and V (see Table 3.2).

The expressions of the core level wave functions corresponding to the K, Ly,
and Ly edges were given in Sect. 3.4.6. The energies spread from 13.6eV for the K
edge of hydrogen (defining the Rydberg unit) up to 115, 606eV for the K edge of
uranium. The K edges of the light elements and the Ly i edges of the 3d elements
are in the soft X-ray energy range.

In fact, the atom is embedded in a molecule or in a solid and, often, the final states
for the photoelectron cannot be considered as completely localized. The description
is very different depending upon the localization of the final states (atom-like or
band-like). For the moment, we remain with a final (or intermediate state) at least
partially nonlocalized and thus with some hybridization with the environment. The
transition probability depends on the transition matrix seen in Sect. 3.4, which itself
depends on the final states. X-ray spectroscopies are thus necessarily a direct probe
of the density of states, or at least its projection on the absorbing atom. This den-
sity of states depends on the position of the atoms in the neighborhood and thus

Table 3.2 Correspondence between the edge names and the quantum numbers of the core states

Edge 14 j Spectro. notat. No. of electrons
K, LI, MI, NI, OI 0 172 S1/2 2
L, My, Nii, On 1 172 D12 2
L, M, Ny, Oy 1 3/2 D32 4
My, Ny, Oy 2 3/2 d3/2 4
My, Ny, Oy 2 52 ds)» 6

The two last columns give the corresponding spectroscopic notation and the number of electrons
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absorption spectroscopies are also indirect probes of the geometrical surrounding
(interatomic distances and symmetry).

The transition can be observed by different detection modes. One can simply
measure the attenuation, that is, the damping, of the X-ray beam through a sam-
ple. This is the most frequent measurement of X-ray absorption fine structure
spectra for powder samples. For monocrystalline samples or for surface sensitive
measurements, fluorescence or secondary electron emission measurements can be
preferred. They are in principle nearly proportional to the transition process but,
due to experimental reasons (self-absorption, for instance), strong divergence can
be observed.

Irrespective of the detection mode, X-ray absorption spectroscopies are local
spectroscopies. They are chemically selective because of the energy of the edges.
They are also selective on the second (or total) angular quantum number of the
final states. However, the processes involved are complex. There is no single tran-
sition of one electron from one level to another level. The scheme is more complex
because during this transition, all the other electrons would have to be included in
the process. The photoelectron probes final states, which see a core hole. When the
interaction with the hole is too strong, it must be taken into account within a multi-
electronic scheme. The other electrons tend also to screen the core hole. In any case,
the probed density of states is not the ground density of states but an excited one.

3.6.1 Characteristic Times

The main interaction of light with matter, at least in the energy range considered
here, is the photon absorption, in which a core (for X-rays) electron is promoted
to some higher level. The transition process is not limited to this single electron;
it is a multielectronic process that involves a complete reorganization of the elec-
tronic (and vibrating, .. .) configuration. The limit of validity of the monoelectronic
approach can be understood by looking at the various characteristic times in the
absorption process:

o Duration of the photon absorption process. It is given by t; = 1/ Wy, where Wy,
is the transition rate. We have t; < 10720 s,

e Lifetime of the core hole. It is given by t, = h/AE,, where AE, is the core
level width. For the 1s level and for Z = 20 upto Z = 30, AE, ~ 1¢V; thus,
107105 <1, < 107155,

e Relaxation time of the electrons. It is the effect on all the electrons of the field
created by the hole and the photoelectron. It is intrinsically a multielectronic
effect. The associated time is also 10715 < 3 < 1071%s.

o Traveling time of the photoelectron outward from the atom. It depends on the
photoelectron kinetic energy E.. For 1 < E. < 100eV, we have 10775 < t4 <
10715,

o Thermal vibration. The time scale associated to the thermal displacements
extends from about 10~!! down to 107 1%,
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We see that the thermal time scale is far larger that the other ones; thus, in most
cases the thermal aspect can be seen as independent of the other phenomena. For
this adiabatic approximation, it is often said that the photon sees a rigid but slightly
disordered arrangement of atoms. Nevertheless, in the soft X-ray range, for example,
at the K edge of carbon in small molecules, the vibrational modes can sometimes be
observed.

More interestingly, it can be noted that #,, 3, and 74 can be of the same order. It
is the condition to have multielectronic processes involved. For this, the first condi-
tion is that the photoelectron has a very low kinetic energy. The second condition,
as stated earlier, is that the final state is localized. We know that it is typically the
case of the Ly edges of the 3d elements and even more of the My v edges of
the 4f elements. Nevertheless, there is an experimental way to check when it is
the case. One just has to look at the edge shape. When the edge is more or less
step-like, the final states are not localized. It is the case at K edges (except for some
light elements where the electron probes unoccupied molecular orbitals) and at the
Li,m edges of the heavy elements. On the contrary, the edge shape can be more or
less peak-like, that is, that some electron volt after the usual increase, the absorp-
tion cross section decreases sharply, to go back to nearly zero. This means that the
probed states are localized in energy as well as in space. In the first case, the sim-
ulation of such spectra can be performed using monoelectronic simulations. The
difficulties are that, the state being not localized, the electronic structure must be
evaluated in a sufficiently large volume around the absorbing atom. In the second
case, multielectronic calculations are necessary. When the localization is very high,
atomic multiconfiguration calculations where the surrounding symmetry breaking is
just parametrized are often sufficient. It is the domain of multiplet theory. Unfortu-
nately, it exists in intermediate situations where the edge starts with an intense peak,
the absorption cross section then decreasing rather strongly but not completely van-
ishing above the edge. In these cases, multielectronic and multiatomic calculations
are mandatory. The theories that account for these multiprocesses are presently in
progress. There are three main tracks: the multichannel approach [13], the use of
the Bethe—Salpeter equation [14], and the time-dependent density functional theory
(TDDFT) [15, 16].

3.6.2 The Different Spectroscopies

We treat the spectroscopies related to the transition of a core level up to some excited
level. We recall that this transition that involves a photon absorption can be real or
virtual.

3.6.2.1 Real Absorption

X-ray absorption spectroscopy (XAS) is the general name for the techniques mea-
suring in some way the photon absorption. A distinction is first made according to
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the energy range under study. In the wide range from around 50V after the edge
up to several hundredth (or even some thousands) of electron volt, the spectroscopy
is called EXAFS for Extended X-ray Absorption Fine Structure. This spectroscopy
is particularly sensitive to the radial distances of the different shells of neighboring
atoms (two shells, sometimes more) around the absorbing atom. It also gives the
number of atoms by shell albeit with less precision, because this number is corre-
lated with the thermal disorder. The data analysis is performed by comparison with
simulations where the calculated spectra is built by simple superposition of outgo-
ing and backscattered electron waves by the different shells. It is the interference
phenomena on the absorbing atom that depend on the shell distances from the cen-
tral atom and on the photoelectron energy, which are responsible for the oscillating
aspect of the spectra [18] and thus of the sensitivity of the method. Actual analy-
sis go farther than the single scattering process by considering a multiple scattering
phenomena limited to some paths between the atoms.

At low kinetic energy of the photoelectron, that is, from the rising edge up to
around 100eV, the absorption spectroscopy is called XANES for X-ray absorp-
tion near edge spectroscopy. This spectroscopy is sensitive to the three-dimensional
aspect of the geometry around the absorbing atom. As stated earlier, it is also directly
sensitive to the electronic structure around the absorbing atom.

In the XANES energy range, analysis as a function of the polarization are often
done. Using a single crystal of a material with some preferential arrangement, as on
a surface, one can perform studies with different orientations of the sample. When
the incoming electromagnetic wave field is linearly polarized, the corresponding
spectroscopy is called linear dichroism. When it is circularly polarized, the differ-
ence between the absorption spectra recorded using right and left polarizations is
measured (Fig. 3.5). This technique is very useful to study ferromagnetic or ferri-
magnetic systems (in antiferromagnetic systems, it gives no intensity!). It is called
X-ray magnetic circular dichroism (XMCD). Without magnetism, this technique
also exists for materials of peculiar symmetry. It gives a small but detectable signal.
It is called natural circular dichroism. More recently, a new technique has surged
with the time analysis of the rotation of orbitals under magnetic field. It is called
X-ray detected magnetic resonance (XDMR).

From the absorption techniques, one derives many other techniques as X-ray pho-
toelectron spectroscopy (XPS) and, with angular resolution on the emitted electron,
photodiffraction. At lower energy and with a better resolution, it is called angle-
resolved photoelectron spectroscopy (ARPES) [21]. It is particularly well adapted
to study tiny details in the band structure and is presently extensively used for the
analysis of superconducting materials.

It can be noted that an equivalent absorption spectroscopy is performed in the
electronic microscope. It is the electron energy loss spectroscopy (EELS) where
the incoming photons are replaced by an incoming energetic electron beam. The
measured spectra are very similar (but with a slightly lower resolution) to the X-ray
absorption spectra obtained with synchrotron radiation. The main dipolar contribu-
tion is equivalent. The smaller quadrupolar contribution obtained when increasing
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the electron scattering angle is different. Recent studies claim for Angstrom lateral
resolution, thanks to the Angstrom-size electron beam.

3.6.2.2 Virtual Absorption

When the transition is virtual, or as is more usually said, for a resonant scatter-
ing process, different spectroscopies are used. In the context of elastic scattering
in diffraction mode, a distinction is made depending on the energy range, as in the
XAS case. The equivalent to EXAFS is called diffraction anomalous fine struc-
ture spectroscopy (DAFS). The diffraction peaks are then measured along a wide
energy range. On the contrary, when measuring spectra just around the edge (as in
XANES), the DAFS is called diffraction anomalous near edge structure (DANES)
or resonant X-ray scattering (RXS) or resonant X-ray diffraction (RXD). There is a
third technique where the intensity of the reflections is recorded only at some points
in energy around the edge. This is a way to increase the sensitivity of the diffraction
technique on some specific atoms (corresponding to the energy edge). This tech-
nique is called multi-wavelength anomalous diffraction (MAD). It is often used for
complex materials, particularly in biology, to help with structure resolution.

3.6.3 Fluorescence and Auger Spectroscopies

Two spectroscopies are a direct consequence of the photoelectric effect. Because of
the expulsion of the electron from an atomic energy level £, a hole remains in the
atom. The atom is thus excited and two main concurrent channels can put back the
atom in a less excited state. Both channels involve the transition of another electron
with energy E, down to the hole left behind (Fig. 3.11). The resulting energy gain
E; — E5 can be used either through the emission of a photon with energy hw =
E, — E> (X-ray fluorescence) or through the ejection of an electron from an atomic
energy level E3, with a kinetic energy around E; — E, — E3 (Auger effect). Both
effects give typical signature of the material by the energy of their appearance and
sometimes by the shape of the resulting spectra. The first gives the X-ray emission
spectroscopy (XES) or UPS in the ultra-violet regime; the second, gives the auger
electron spectroscopy (AES).* The relative weight of these phenomena depends on
the atomic number of the element. The Auger emission is always dominating, except
for K shell decay in elements with an atomic number larger than ~30. Note also that
because of the difference in the detected particle, an electron having a much shorter
mean free path than a photon with the same energy, the Auger technique is surface

4 Note that the first core hole can also be created by an incident energetic electron (and not by a
photon).
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Fig.3.11 The two channels for the desexcitation of an atom in which a hole is left after the ejection
of a core electron. In the left panel, the transition of an electron from level E, down to the core
level E| gives directly a photon of energy hiw = E| — E, (fluorescence). In the right panel, the
corresponding energy is given to an electron with energy E;. In this Auger effect, an electron is
ejected with a kinetic energy ~ E| — E, — Ej

sensitive. Indeed, it is one of the most popular technique to check the cleanliness of
a surface.

3.6.4 XANES and RXS Formula

The initial and final states must contain all the electrons of the system and one would
have to calculate matrix terms of the form

(<Df(r1,r2,r3,...) |6|¢g (r1,r2,r3,...)), (391)

where r1, 712,73, ... are the positions of the different electrons and @ is the mul-
tielectronic states. Such a general formulation is developed in the ligand field
multiplet scheme. All the possible transitions from all the multielectronic states
up to all the multielectronic final states are then summed up. They occur at dif-
ferent energies and have amplitudes related to the multiplicity of the states. The
resulting comb figure is then convoluted with a relevant spectral profile for com-
parison with the experimental data. In the monoelectronic approach, we write
D (r1,7r2,13,...) = @1(r1)e2(r2)@3(r3) - - -. One also assumes that there is a spe-
cific electron that makes the transition, the others being spectators. The different
states are seen through a continuum and with a density of states that can be calcu-
lated. Then, the general formula seen in Sect. 3.4 is still valid. The effect of the other
electrons is then a simple multiplicative factor:

So= [T (ef o) lgf (). (3.92)

i=2,N

So is typically of the order of 0.8 and is supposed to be energy independent. It
comes from the fact that the core hole screening induces a contraction of the final
state atomic orbitals, resulting in a scalar product less than unity. The screening also
makes the energies of the other atomic levels change so that in the transition one has
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ho ~ & — € = Ex— Eg + AE,, (3.93)

where AFE, is the sum of the differences between the initial and final energies of
the other electrons. This fact is mostly often forgotten and AFE, is not written.
Nevertheless, it can represent several hundredth of electron volt at typical K edges.

With this simplification, we can use the matrix product that appears in both
absorption (3.26) and RXS (3.43) formulas:

A= "0 |0%| @) (@:10i] @) (3.94)
f,g

In the absorption case, one just has to impose 65 = 0;. Using moreover (3.72) of
Sect. 3.4.6 on the selection rules, which expresses the transition matrix in terms of
the radial and angular integrals and of the atomic amplitudes, one gets

A= c c Fﬁg,mg+%—o,(0[ Mo, F(g,mg,+%—cr,€os Mo
B Z Loj:mo; “og.mog Z Z Z,m—i—%—o (,m’+%—cr

0,05 0.8 {,m,t' ,m’

y Z,m+%—0,s (,m+%—cr,s
S,

YR (YRS (B)Y af,  (E)al%, , (E). (3.95)
s

where we omit the index f on the energy because, in this summation, they all have

the same value.

The density of states does not appear explicitly because it is included in the
atomic amplitudes and in the normalization of the radial wave functions. They are
built by continuity with an outer sphere where the potential is constant. There the
solutions are the Bessel and Hankel functions normalized by the density of states
in vacuum, that is, by /k/m, where k is the photoelectron wave vector. One thus
gets the normalized radial solutions by (E, r) instead of the by (E, ), which are nor-
malized to unity. Thus one replaces in the formulas (¢, [67| @) (¢r |0i] @) p (E) by
(e |07 | ) (r101] ).

In many cases this expression can be simplified. For example, when quadrupole
transitions are negligible, as at the Ly iy edges of the 3d elements, the summation
on the operators often reduces to one element. In the absorption case where o5 = 0;,
we can write

2
Zr,mr+l—cr,€ ,m g.40.,0
o =4n’ehoc] , > Y | [T TETIRmeR T (E)
Lo,mo —0,s

{m+i-c tm+31
0,8 {,m,s

x|l s (E)’Z. (3.96)
7

To get a signal equivalent to the measured one, a broadening due to the core-
hole and final-state lifetimes has to introduced in this equation. This is achieved
by convoluting (3.96) by a Lorentzian profile having a width which increases
with energy. At the Fermi energy, it is typically the initial state width. At higher
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energy, plasmons and other phenomena contributes also to the damping. Often the
width follows an arctangent-like function vs. the photoelectron kinetic energy. Note
that new measurements improve the resolution by selecting sub-channel using the
fluorescence detection. This limit the hole width to smaller value.

For the RXS, the infinitely small 1 in (3.43) is replaced by a finite value equiva-
lent to the width broadening in absorption. The summation on the intermediate states
n can be made in two steps. We first group, as in XANES, the states of same energy
(we shall call them now f* of energy E, to be consistent with the XANES formula),
which we still sum in a discrete form. The sum over the states of different energies
is performed in a second step through an integral spreading from the Fermi level up
to infinity. In the elastic case where we are supposed to have £ — E; + AE, ~ hw,
the resonant or anomalous scattering amplitude is given by

Y e (0e 105107 )@ 1 1011 0g)
E ho —(E — Eg + AE,) +il'/2

f=if" ~ mw? dE, (3.97)

where EF is the Fermi energy and I" is the broadening. Note the minus sign in front
of the imaginary part of the scattering amplitude to get the conventional way where
fis negative and f” positive.> When the incoming and outgoing polarizations are
parallel, the absorption cross section is nearly proportional to hew f".

The RXS and XANES formula we have derived stand for an atom embedded in
some surrounding. In fact the absorption or scattering comes from all the atoms in
the molecule or in the unit cell. Thus one has to sum over them eventually using the
symmetry operations of the space group. For the XANES this gives

N Ne ng
Oeet = ) 0 =Y > S,(0a). (3.98)
a=1 a=1p=1

where N is the number of atoms, b is the index of the n, equivalent atoms related
by the symmetry operation Sp to the prototypical atom a. N, is the number of
nonequivalent atoms. We see in this way that the tensor dependence (or anisotropy)
of the absorption cross section depends not on the individual point group but on that
of the unit cell. On the contrary, the shape of the spectra is related to the individual
surroundings and symmetries.

For RXS, one uses the same summation, but now taking into account the Bragg
factors and the nonresonant contributions. The intensity for a diffraction peak of
diffraction wave vector Q is then given by

Ne ng

= 13D ) €@ [foa +ifma + @) +iff@] | (99

a=1p=1

3 This sign as well as the plus sign in the exponent of the Bragg factor of (3.38) and (3.99) comes
from a different convention in the time arrow between the crystallographic community and the
theoreticians of quantum mechanics.
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where we have the nonresonant Thomson fj, and nonresonant magnetic scattering
amplitude f, of the atom @ and the resonant terms f, and f,’. The latter terms
contain the eventual magnetic resonant contribution, sometimes written in separate
terms. In the formula, K is a constant, V is the volume of the unit cell, and R, is
the position of the atom a.

In this context, during the last years there has been a strong interest in the so-
called forbidden reflections, which are nearly zero far from the absorption edges but
with sharp intensity around the edge (as in the example of Fig. 3.6). These reflections
are such that the sum of the Bragg terms are zero, and the intensity can be nearly
proportional to | f; — f3|*, where a and b are the two atoms possibly related by a
symmetry operation (a rotation—translation or a glide plane). Thus the isotropic con-
tributions disappear and one remains with the anisotropic ones, giving the so-called
Templeton effect [25]. Very weak peaks often come from a slight symmetry break-
ing, thus they are, let say, nearly forbidden. These reflections can give information
on the change occurring during the transition between two previously equivalent
atoms. In XANES, one measures always a sum (and no f” neither). It is clear that
the sensitivity is enhanced when measuring a difference. It is what has been used in
the study of charge ordering in different compound, for instance in magnetite [26].

In Fig. 3.12, typical resonant scattering amplitudes for isolated atoms and for iron
atoms in magnetite are shown. The relative amplitude of these terms with the Thom-
son scattering amplitude (which is typically equal to the atomic number) shows the
importance of the anomalous effect around the absorption edge. The effect of the
surrounding atoms is shown when comparing the atomic and the atom embedded in
real structure spectra. For magnetite there are two different iron sites, one in octahe-
dral environment, the other in tetrahedral environment. They have also very different
shapes. Note also that their /" is typical of the XANES spectral shapes.

3.6.4.1 Relation with the Density of States

With the same notation, but without spin for simplicity, the density of states (or its
projection on the atom) is given by

pim (nE) =Y af, (Eyal}, (EYbe (rE)bl (rE)|.  (3.100)
S

One can integrate the radial part up to the atom radius and we get

ng ' (rE) =Y al, (E)alt, (E)| Ree (E), (3.101)
s
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Fig. 3.12 Anomalous scattering amplitudes. Top: atomic spectra for carbon, vanadium, and iron
atoms. Bottom: spectra for the iron atom in its octahedral and tetrahedral sites in magnetite at room
temperature. The imaginary parts, f”, of the amplitudes have shapes similar to the XANES. The
spectra are calculated using the FDMNES code [27]

where Ry ¢/ (E) is the radial integral:
R - -
Ry (E) :/ |be (r, E) b}, (r, E) 47rr?dr| . (3.102)
0
The diagonal term is the number of electrons per unit of energy in the atom:

nem (B) = Y|al, (B Ree (B). (3.109
S

The formulas for the absorption cross section and for RXS contain the same

a{ m (E) ae,";n, (E) terms than the density of states formula. The difference is in
the radial integral and other constant parameters. We thus see that the expressions
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are nearly proportional in most cases, except for the radial part, which depends
only slightly on energy. Note also that the proportionality coefficient is different
for dipole and quadrupole transitions, the dipole one being much stronger. From
all this we can confirm that absorption spectroscopy measures the projection of the
density of states on the absorbing atoms. Because of the selection rules, it is even a
peculiar projection of the density of states, resolved in £ and eventually also in m,
which is measured. When playing with the polarization and sometimes with the
magnetic field, more selective processes can be taken into account. A good example
is the measurement of circular magnetic dichroism. What is measured is then the
magnetic momentum as is seen in Sect. 3.6.6.

3.6.5 Multipole Analysis

We have seen in the previous section that we have access to specific projection of the
density of states. The access to a particular component can be obtained by playing
with the polarization and taking into account the symmetry of the material. Depend-
ing on this symmetry, the different terms can be zero or nonzero. The consequence is
that the measurement under specific conditions can give information on the symme-
try, including the magnetic state of the material. The mathematical tools, Cartesian
and spherical tensor algebra, which permits to make a complete analysis of these
terms are seen in the following.°

3.6.5.1 Cartesian Tensors

We have seen that the matrix elements can be expanded into dipole and quadrupole
components :

o k
(‘Pf|oi|(/’g):Dif+l§Qif+"'- (3.104)

The signal amplitude can thus be written as

Ak = = A * . k * k2 *
(¢e103164) (91611 @) ~ DI "D +iZ (DI*0/ — of*D]') + -0l 0]
(3.105)
We can then introduce three Cartesian tensors. The dipole—dipole or E1-E1 rank
2 tensor:

Dop = Z(%Vﬂ@f}(@f‘rﬂ’@g), (3.106)
f.g

where ry and rg represent x, y, or z.

6 Using other tools, Ch. Brouder gives, in a very useful paper [28], the relation between the angular
dependence of the absorption cross section and the point group of the studied system.
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In the same way, we get the dipole—quadrupole or E1-E2 rank 3 tensor and the
quadrupole—quadrupole or E2-E2 rank 4 tensor:

Iopy = > _{¢e |rarp| @) (@ |ry| @2) . (3.107)
1.

Qupy = D (e [rars| &) (@t ryrs| os) (3.108)
f.g

where «, 8, v, and § label the three directions of space in Cartesian coordinates.
With this, the signal amplitude (but the multiplicative factor in the absorption
cross section and the denominator in RXS) is given by

A=Y eeyDag +iz 3 eyl (hlupy — uylig, )
o,B a,B.y

k2 o
D eatepui s Qupys (3.109)
o,B,y,8

To fix the idea, the E1-E1 amplitude is given by

Dy ny sz €

i
X
i

Agipr = (657,655, 65%) | Dyx Dyy Dy &), (3.110)
D x Dzy D, ;
The matrix is hermitic (Dgg = D*a) and off-diagonal elements are complex

when the material is magnetic. For example, the D, term is proportional to the
absorption cross section when the polarization is along x.

The E1-E2 terms can be observed only for peculiar symmetry. We can remark
that, for a same final state f, one has a product of a dipole and a quadrupole term.
Because of the different selection rules (A¢ odd for the first and A¢ even for the
second), this means that f must have at the same time odd and even components.
In other words, f must be an hybridized state between odd and even components.
This is possible only when the atom is not at a center of symmetry. In absorption,
because of the sum on the equivalent atoms, it is sufficient to have a center of sym-
metry anywhere (and not necessarily on the atom) to make the E1-E2 signal zero.
In RXS, on the contrary, for some reflections such that the Bragg factor is opposite
on two equivalent atoms related by inversion, the signal can be observed only for the
E1-E2 term, the E1-E1 and E2-E2 contributions being zero. When there is no
center of symmetry, the signal can also be observed using the natural circular dichro-
ism [29, 30]. The subtraction between the spectra obtained with the left and right
polarized light eliminates the E1-E1 and E2—E2 contributions as in the diffraction
technique given above. In his chapter, A. Rogalev develops examples of optical
activities using the E1-E2 process (see also [31]).
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3.6.5.2 Spherical Tensors

The use of Cartesian tensor is rather natural. Nevertheless, the spherical tensors
are often preferred. The reason is that their components can be related to specific
observable values as, for example, the orbital occupancy, the magnetic moment, or
the toroidal moment. These tensors are also separated in EI-E1, E1-E2, and E2-E2
contributions. The amplitude can be written as

Yoo =ntrrrpp i Y (Do (31

0<t(=<2 1<¢<3
—L<m<l —{<m<t
} : l+m y,ym Am
0<l<4
—Ll<m<{

where Dy, 1", and Q7" are the components of the absorption-scattering tensors
and 7;”, U;", and V" are the same for the polarization-wave vectors.

All these spherical coefficients are related to the Cartesian ones. For example, for
the E1-E1 tensor, the relations are

i

1
DY = — (Dyxx + Dyy + D), DY =——(Dy, — D)),
V3 V2
- i +1 1
D1=_E(Dyz_Dzy)’ D1=ﬁ( e = Dax) s
i N 1
Dg = %(2D11_Dxx_Dyy)’ D;:_T (Dxz + Dux)
+ . —
i
Dy==—5 Dyt Dy).  Di=—=(Day+ D).
+ .
i
D2 = 5 (Dxx — Dyy). (3.112)

where we have used for all the tensors the transformation

+

1
"= — (T 1T, ™), (3.113)
)4 ﬁ( 14 14 )
which gives
+ + - -
"Dy =T,"Dy" — T;"Dy" . (3.114)

The £ = 1 components are directly proportional to the magnetic moment vector
per unit energy, m

m=|.7%1 |, (3.115)
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where we omitted the proportionality coefficient. To get the polarization spherical
tensor, one first writes the polarization in the matrix form

i CEPN CEPN

ey*el,, €5 ey, &3, ez

— i S* S* I
T = 8y S)F, £ ey, £y € (3.116)

Sk S* 0

8 *e ) &, sy,sz g,

The spherical components of the polarization are then calculated with the same
transformation than in (3.112). For example,

T0= S I Sk 1 S l)_
0

J? (ex7el + 576, +el%e
T = —% (6576l —£%el) = ——= (¢ x &), (3.117)

Using all these relations, one gets for the E1-E1 signal

1 i -
Apig1 = 3% -&Tr (D) — N (e x &), m+ T D3~ T, D; + T, D,

+ + - -
+ T#D3 — T7 D3, (3.118)

where Tr(D) is the trace of D.

The first term in this equation does not depend on the polarization orientation
in XANES because the scalar product is just one (it is also the case in RXS when
keeping the relative orientation of &; and &). It is thus called the electric monopole
component because it probes only the electronic density and not its magnetic part.
It gives the E1-E1 isotropic part of the signal in the absorption cross section and in
RXS for the o0—o polarization (there is also an E2-E2 isotropic part). It is the main
contribution to the XANES cross section. When the final states are rather localized,
one gets the so-called white line at the beginning of the edge. Because the electric
monopole measures the charge of the nonoccupied states, the surface of this white
line is roughly proportional to the number of hole in the corresponding state of the
atom (e.g., the 3d state in a Ly iy edge). By difference, one thus can get an idea of
the electron occupancy in the atom: larger is the white line, less electrons are in the
atom.”

" Note that another factor can give an idea of the atom valence state. It is the energy shift of
the edge. Indeed, when an atom is a higher oxidation state, its electrons tend to leave the atom.
Consequently, the potential at the core of the atom decreases and the core level becomes deeper.
The incoming photon needs thus more energy to eject the electron from its core level and the edge
is shifted towards higher energy. This phenomena is stronger at the K edges. Typically a change by
one in the oxidation number corresponds to a shift of several electron volt.
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The second term is strictly magnetic. One sees that it is proportional to the
magnetic moment through a scalar product with &} x &;. It can thus be probed with
circular polarization. The last terms are the electric quadrupole components. They
are, as the first term, purely electric. They measure the anisotropy of the electric
cloud around the absorber and are responsible for the main part of the linear dichro-
ism (see Fig. 3.4). A smaller part in the pre-edge region can comes from the E2-E2
contribution. Note that the present terms, magnetic dipole and electric quadrupole,
must not be confused with the dipole and quadrupole electric transitions E1 and E2.

To illustrate this more, one can have a look to three formal examples following
three different point group on the absorbing atom. We use a polarization ¢ = g5 =
&;, that is, like in the absorption or in 0—o RXS.

3.6.5.3 m3m Symmetry (O)

This cubic symmetry is for instance the case of a 3d atom surrounded by a nondis-
torted octahedron. Let us put the six surrounding atoms at the same distance along
the positive and negative directions of the three axes. Because of the symmetry plane
perpendicularto Ox, Oy, and Oz, the off-diagonal components of the E1-E1 Carte-
sian tensor are zero; because of the threefold axis its diagonal elements are equal.
The amplitude of the signal is in this case

DZZ

+

0 0
1
AElEl =& DZZ 0 & = 56‘ -eTr (D) = Dzz~ (3119)
D

0
0 0 D

The signal amplitude is isotropic. It does not depend on the polarization orientation.
3.6.54 4/mmm Symmetry (Dy;)
This symmetry can be obtained for instance by a single elongation of the previous

octahedron along the z-axis. There is no more threefold axis but a fourfold axis
around z, which makes Dy = D,,. One thus gets

Dy 0 O 1 1
AElEl:€+ 0 Dxx O ez_(szx + Dzz)+_(Dzz_Dxx)(?’COSze_l)-

3 3

0 0 D
(3.120)
Here we used the spherical coordinate for the polarization:
sin 6 cos ¢

e =| sinfsing |. (3.121)

cos 0
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We get a polarization orientation dependence equivalent to the harmonics Y. 20. The
signal is not anymore isotropic.

3.6.5.5 4/m’m’m Symmetry

Let us consider now a magnetic case with spin—orbit. We start again from the nondis-
torted octahedron and assume a magnetic moment along the z-axis on the central
atom. The diagonal threefold axes are broken as in the previous example. Because
of the magnetic moment, the symmetry planes perpendicular to Ox and Oy are now
multiplied by time reversal; thus, one gets the 4/m’m’m symmetry. The Cartesian
tensor contains now off-diagonal imaginary terms, which are proportional to the
magnetic moment per energy unit:

Dyx iDL, 0 1 :
Apigr = €7 | =iDi, Dyx 0 |& =< (Dux+2D)——z&*xe-m+T7DJ.
3 V2
0 0 D,

(3.122)
We get a new magnetic term, which can be directly measured with X-ray circular
dichroism, using polarizations:

e=—|+i|. (3.123)

such that ‘
AglEl — Agipr = D;y = m;. (3.124)

For linear polarization, one gets the same angular dependence as with the 4/mmm
symmetry, but probably with a smaller amplitude. This term reveals a nonspherical
electric cloud. It is not magnetic. Nevertheless, it is present even without elongation
along the z-axis. Its presence comes from the spin—orbit coupling, which makes that
the orbital electric cloud tends to align along the spin direction. It can then be said
that, though electric, it is an indirect signature of the magnetic moment. Note that
when there is also an elongation along z, this anisotropy reveals both phenomena
together. All this means that such a linear measurement cannot be considered as a
proof of a magnetization. One really needs circular polarization.

The expansion in spherical tensors can be performed also for the E1-E2 and
E2-E2 terms. All the components have a specific physical significance. They are
classified in Table 3.3. The different terms change in sign with time reversal when
they are magnetic and with inversion when they are E1-E2. This allows peculiar
measurements on specific reflections or/and with peculiar polarization conditions.
Time reversal can be obtained by inverting the magnetic field, making a measure-
ment in one way and another in the other way. The different contributions can
be often measured separately playing with the incoming (and outgoing in RXS)
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Table 3.3 List of the spherical tensor components with some of their physical significance

L EI-El E1-E2 elec. El-E2 magn. E2-E2

0  Monopole + 4+ chit +4+ =~ chiya

1 Dipole —+ myy +—n —— t —+ = myqr

2 Quadrupole ++ +— (t,m) —— (n,m) ++

3 Octupole +—- (n,m,m) —— (t,m,m) —+

4 Hexadecapole ++

The couple of signs (++, +—, —+, and ——) gives the change in sign under time reversal for

the first and inversion for the second. The magnetic terms are odd by time reversal. The E1-E2
components are odd by inversion. The electric monopole term measures the charge density ¢/
in E1-E1 and a part of it ch;4, for E2-E2. The magnetic dipole terms measure the magnetic
moment density m,4; in EI-E1 and a part of it m,4, for E2-E2. The magnetic dipole E1-E2
measures the toroidal moment (or anapole) . The electric quadrupole E1-E2 measures the toroidal
axis (¢, m). Other components measure higher order of electric charges or magnetic moments

polarizations, the choice of the reflections in RXS, the orientation of the magnetic
field and that of the sample.

To finish this part, we recall that the magnetic dipole transition M1 term can also
exist. Thus one can get M1-M1 or EI-M1 components. Nevertheless, these ones
are necessarily very small, when not zero. In the X-ray range, a definite proof of
their measurement remains to be given.

3.6.6 X-Ray Magnetic Circular Dichroism

When making the difference between spectra recorded with left and right circular
polarization, one measures the circular dichroism. In the X-ray range and applied
to magnetic materials, this technique is called XMCD. We have already seen in the
previous section that it is a way to measure the magnetic moment on the atoms.
Let us see in more detail how the measurements can give a quantitative evaluation
and how, using sum rules, one can in many cases separate the orbital and the spin
magnetic moments. The X-ray sum rules were derived at the beginning of the 1990s
by Thole, Carra et al. [32, 33] from magneto-optics sum rules. Numerous experi-
mental and theoretical studies were aimed at investigating their validity for itinerant
magnetic systems. The adequacy of the sum rules varied from very good to poor.
It is with the experimental work of Chen et al. [34], where a special care of the
experimental artifacts has been taken, that their validity was proved.

For the Ly ;i edges of the 3d elements, we can use the simplified (3.96) because
the quadrupolar transition is negligible. We choose polarizations such that:

4
e-r= ,/TﬂrYlil, (3.125)
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using the complex harmonics and with m = =1 for the left and right circular
polarized light. There are four p3/, initial states corresponding to the Ly edge and
two py/o states corresponding to the Ly edge.® From the different values of the
Gaunt coefficients for the Ly and Ly edges and from the different values of the Gg
in (3.66) and (3.67), it can be shown that the transition probability for the XMCD
is not the same for the orbital and spin part at Lj; and Ly edges.

We use also the fact that the 3d states are rather localized. This means that
they spread over a narrow energy range and thus integration in an energy range
containing all the empty 3d states is possible. When measuring the absorption cross
section, whatever is the polarization, one probes the unoccupied states. The idea is
that, by integration, one measures the number of unoccupied states in electron unit,
the occupied states being given by the difference with the total number of electrons
per atom in a 3d band, that is, 10. The difficulties are that d states are present
in the continuum. The photoelectron mainly probes the 3d states and also all the
(n > 3)d states. Thus, before making the integration, a double step like function,
with each height equal to the absorption after each white line, is subtracted. For
practical purposes, the integrations are performed over a range extending typically
from 20 eV below the Ly edge up to 40 eV above the Ly edge.

From all this, one gets two equations for the two unknowns. The normalization
is performed with the absorption edge, which is, as we know, a measurement of the
density of states. At the end, one gets the sum rules

4
Moy = ——— (10 — n34) (0T —07)dE, (3.126)
3N Ly+Lig
2 T(T)\ ™
spin = —— (10 — 1 ‘ 3.127
Mgy N ( n3d) ( + Z(SZ> ( )
x|:3/ (o+—o_)dE—2/ (o+—o_)dE],
L Li+Lig
with the normalization
N = (6t +07)dE, (3.128)

Lu+Lm

where mqn, and mygp;, are, respectively, the orbital and spin magnetic moments in
unit of Bohr magneton per atom. n34 is the 3d electron occupation number of the
transition metal atom under study. Ly and Ly denote the integration ranges. (77;)
is the expectation value of the magnetic dipole operator and (S;) is equal to mpin
in atomic units (Rydberg). The ratio (77) / {S;) can be estimated by first-principles

8 The relative number of states (and so of electrons) in the initial state gives the often observed
ratio of 2 between these edges. Note also that the ratio is exactly equal to 2 when there is no
multielectronic effect and no spin—orbit interaction in the final state. Getting the good branching
ratio is one of the challenges for the multielectronic theories.
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calculations; it is only a few percents and thus, for practical purposes, this term can
often be neglected. On the contrary, one has to estimate n34. These sum rules are
sufficient to extract mqy, and mygp;, from experiment.

3.7 Monoelectronic Simulations

As stated earlier, simulations can be very helpful in the interpretation of the exper-
iments. Moreover, to quantitatively access to parameters such as atom positions,
charges, or magnetic moments, they can be absolutely necessary. We have seen that
in some cases ligand field multiplet theory is necessary. Here we focus on the mono-
electronic simulations. They often give satisfactory results for the K and Ly, edges
of heavy elements.

Monoelectronic simulations use the local (spin) density approximation [L(S)DA]
of the density functional theory (DFT). There are two groups of calculation methods:
one solving the Schrodinger (or Dirac, or Dyson) equation in a cluster centered
around the absorbing atom; the other usually derived from band structure calcula-
tions, using the 3D periodicity of the material. The calculations can be performed
with or without self-consistency.

Whatever the method, the first thing needed is a potential. This is seen briefly
discussed in the next section. Among the different methods of calculation [(full-
potential) linearized augmented plane wave (F)LAPW [35], tight-binding, linear
combination of atomic orbitals (LCAO), pseudopotential [36], linear muffin-tin
orbital (LMTO), Korringa—Kohn—Rostoker (KKR) [38], finite difference, ...], the
most used for practical purposes is the multiple scattering theory (MST), which is
discussed a bit more in Sect.3.7.2. At the end, a table shows the different codes
available.

3.7.1 The Potential

It is often said that all the methods are equivalent, at the end. Although it might be
true, in fact, they give different results... This is due to the fact that, inside each
method, approximations are done. Expansions in spherical harmonics or in plane
waves are limited; there are interpolations in the building of the potential; calcu-
lations are in single or double precision. But, in particular, there are the potential
problems. The first problem comes from the approximation done on the potential
shape. The second is related to the choice of the exchange—correlation potential.
MST, as LMTO, usually makes an approximation on the potential shape. To make
the calculation simpler, the potential is taken as spherically symmetric in the atoms
and constant between them, in the interstitial region. This is the so-called muffin-tin
approximation. The radius of the atoms (of the spherical part) is thus a technical
difficulty, each code author having its own recipe. Often a small overlap is allowed
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because, pragmatically, this improves the agreement with the experiments. Never-
theless, from a mathematical point of view, this trick is not justified. Now, using the
finite difference method (FDM), pseudopotential or FLAPW techniques, for exam-
ple, it is possible to have shape-free (or full) potential. The price to pay is that
calculations are heavier. Nevertheless, for open structures, when there are few sym-
metry elements or when the absorbing atom is relatively light, important differences
are observed due to the muffin-tin approximation [27]. A recent work has shown,
however, that the MST, up to now always using the muffin-tin approximation, can
also be applied with a full-potential shape [39].

In the LSDA, the exchange—correlation problem is treated with a local potential,
which depends only on the local density of electrons (i.e., at the point where one
calculates the potential). In the magnetic case, it depends as well on the local dif-
ference between the spin-up and spin-down density. This density can have different
forms. Presently, the most used forms are the Hedin—Lundqvist [40] and Perdew—
Wang [41] forms. Globally they give an attractive potential of increasing amplitude
with increasing electron density. For XAS, it is important to consider the energy
dependence of this potential, as proposed by von Barth and Hedin [42]. Indeed, the
amplitude of the potential decreases with increasing electron kinetic energy. In a
relatively narrow energy range around the plasmon energy, that is, between 10 and
30eV, this potential changes by several electron volt. Without considering this phe-
nomenon, one gets structures in the spectra shifted by the same amount. Because
the position of the oscillations are related to the inter atomic distances, this could
lead to false agreement with wrong fit of the corresponding parameters.

3.7.2 The Multiple Scattering Theory

Explaining this theory in a single paragraph is difficult. Readers can find detailed
description by Natoli and coworkers [43] or Brouder [44]. There are two ways to
explain it. The first way uses the Green’s function approach, and the second uses the
scattering wave approach. Let us use the second one.

First, one considers just one atom. We build a complete basis in the surrounding
vacuum. There, the potential is constant and the solutions of the radial Schrodinger
equation are the Bessel, j;, Neumann, and Hankel functions. Using the phase shift
theory, one looks how the atom scatters all the Bessel functions. One uses the con-
tinuity of the wave function and its derivative at the border. For simplicity, we keep
the nonmagnetic case; we can write

k
aghy (R)Y" = \/;[jg (r)—iteghf (R)] Y] (3.129)

for the wave function at the muffin-tin radius R. hZ (r) is the Hankel outgoing func-
tion, #; is the atomic scattering amplitude, by the solution of the radial Schrodinger
equation in the atom, k the electron wave vector, and a; the amplitude inside the
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atom. All these terms depend on the electron kinetic energy. We have introduced the
normalization by the density of states in vacuum /k /7. By continuity, this normal-
ization makes the density of states included in the atomic amplitudes. Using the two
equations of continuity (function and derivative), one gets a; and #y.

Now the atom is embedded in a cluster. Thus the incoming wave is not anymore
included in a simple Bessel function, but the superposition of this Bessel function
and all the other waves of Hankel type is backscattered by the other atoms. The
problem is thus not anymore spherical, and the scattering and atomic amplitudes
will also depend on the quantum number m (and eventually on the spin index). One
has to consider all the scattering processes from one atom to any other atom. To do
that, one fills a (big) multiple scattering matrix, containing, for all the atoms, all their
individual expansion in spherical harmonics. Its diagonal contains the atomic scat-
tering amplitudes. The off-diagonal part contains the propagation terms connecting
the scattering from the (£, m) of an atom a to the (¢, m’) of another atom a’. The
inversion of this matrix gives the multiple scattering amplitudes, tf .l , by the
relation

U 1 tm'a
smLa _
Tﬁ,m,a = [mT} . (3130)

{,m,a
T is a diagonal matrix containing the atomic scattering amplitudes. H is the matrix
containing the propagation terms.

Most of the computing time is devoted to the inversion of this matrix. When we
are not interested in the low photoelectron energy range, it is possible to perform a
Taylor expansion (this is the so-called path expansion):

!’ 47

U ,m',a’ 2 3 o,
@ [T+THT+(TH) T + (TH) T+...] . (3131

TZ m,a
,m,a

where the number of paths increases with the power of 7H . The limitation of this
number is one of the key point in the IFEFFIT [45] and GNXAS [46] codes. At the
rising edge, it is not possible to perform this path expansion, because terms in the
denominator are bigger than 1 and the series never converge [47].

Using a = a’ and skipping the atom index, the optical theorem gives

=3 () = Za ral (3.132)
when the potential is real. Introducing this in the XANES formula, one gets

o =—dr’ah0y . Y \s(¢g|o | ey el <bg/Ye/ |0|(pg>>. (3.133)

g L{ml .m

The central term ‘bg Y’”) <b4/ (’5’ is the Green’s function.
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Table 3.4 Some of the most used monoelectronic codes for absorption spectroscopy

Authors Name Technique 3D SCF Fit Reference and note
Natoli et al. CONTINUUM MST Cl [43] The first
Benfatto et al. MXAN MST Cl VA [51]

Ankudinov et al. FEFF MST c 4 [52] The most used
Joly FDMNES MST&FDM Cl ./ v [27]

Ebert SPRKKR KKR 3D 4/ [38]

Blaha et al. WIEN2k FLAPW 3D [35]

Cabaret et al. Pseudo 3D [36]

Saint-Amant et al.  StoBe LCAO 3D [53]

Vedrinskii et al. XKDQ MST Cl [54]

Yaresko et al. Py-LMTO LMTO 3D [55]

Cl and 3D means, respectively, cluster and 3D approach, SCF means self-consistent calculation,
Fit means there is a fit procedure with experimental spectra to get parameters. Note that a FEFF
version used in the intermediate energy range called IFEFFIT [45] and the code GNXAS [46]
use the path expansion in the MST framework and allow a fitting procedure to get geometrical
parameters. Cabaret et al. use a pseudopotential approach, having modified first the PARATEC
code and more recently the PWSCF code

One can do the same for the RXS case. To be more complete, we have written
the equation with inclusion of the spin—orbit interaction:

. T 2m
[ =if" = S () (3.134)
o |, *| o m [/<’”/+%_5/<5/ 1o o
X Z Z (‘pg |OS |bl.)n+%7r7.xY[ )Tl.er%fx.x bl/,m/+%7r7.x’ |01|(pg :
8.0  tmgs
v.m's’

When the potential is complex, the expression contains more terms because the
irregular solutions of the radial Schrodinger equation have to be considered, as well.

3.7.3 Available Codes

There are a number of codes that permits to perform monoelectronic simulations
of the absorption spectra. We present a probably nonexhaustive list of them in
Table 3.4. Some use the 3D periodicity of the solid, and some others use the cluster
approach. One has first to recall that the first theories are due to Dill and Dehmer
in 1974 [48] and Lee and Pendry in 1975 [49]. The first calculations using a cluster
MST approach are due to Natoli et al. [43] and those using a band structure approach
were first performed by Mattheiss and Dietz [50], both in 1980.

3.8 Conclusion

We have reviewed the different phenomena governing the X-ray spectroscopies
related to the transition of an electron from a core level up to some other level.
The number of applications of these processes is huge. They permit a precise



124 Y. Joly

understanding of spectroscopies, giving different pieces of information on the
materials. Because the processes involved in the transition are complex, the inter-
pretations are not always direct. Some of them need multiplet calculations (see, e.g.,
[56]). Some others can use monoelectronic simulations as presented here. Some of
the spectroscopic techniques are presented in details in the following chapters of
this book. These are the inelastic X-ray scattering by J.-P. Rueff, the X-ray detected
magnetic resonance by J. Goulon and coworkers, and the resonant X-ray scatter-
ing by S.P. Collins and A. Bombardi. A. Rogalev also develops examples of optical
activities.
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Chapter 4
Synchrotron Radiation Sources and Optical
Devices

D. Cocco and M. Zangrando

Abstract This chapter will briefly describe the photon transport system, from the
sources to the experimental stations, including an overview of the characteristics
of the synchrotron radiation (SR). The target of this chapter is to give, to an occa-
sional user of the SR source, a general overview on the possible different available
sources and the different possible optical systems, with particular emphasis to the
soft X-ray region, without entering too much into details. If one wish to have a deep
knowledge on the subjects treated here, there are four books that can answer almost
all the possible questions on SR sources and optical devices, and they are reported
in the references [W.B. Peatman, Gratings, Mirrors, and Slits (Gordon and Breach
Science Publishers, New York, 1997); D. Attwood, Soft X-rays and Extreme Ultra-
violet Radiation (Cambridge University Press, Cambridge, 1999); H. Wiedemann,
Synchrotron Radiation (Springer, Heidelberg, 2002); A. Erko, M. Idir, T. Krist, A.G.
Michette, Modern Developments in X-ray and Neutron Optics, Springer Series in
Optical Science, vol. 137 (Springer, Heidelberg, 2008)].

4.1 Optics for UV and X-Ray

The synchrotron radiation emitted from the sources that will be described in the
next sections (bending magnets, undulators, and wigglers) typically ranges from the
infrared (IR) to the Hard X-rays (HXR) regions. Consequently, the emitted wave-
lengths go from microns (IR) to fractions of nanometers (HXR), and the energy
goes from fractions of electron-volt (eV) to tens of kilo electron-volt (keV). Within
this range there is a very interesting region going from vacuum ultraviolet (VUV)
to HXR, where most of the low- and intermediate-Z elements absorption edges are
present. So photons covering these energies are a very sensitive tool for elemental
and chemical identification. Unfortunately, these regions are difficult to access, and
the corresponding photons are not easy to handle and transport to the experiments
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through mirrors and diffraction gratings. This difficulty mainly arises from the fact
that the radiation from Soft X-rays (SXR) to extreme UV (EUV) is characterized by
very small reflection coefficients for most of the angles of incidence. This limitation
is caused by the fact that the refractive index is almost 1 (n = 1 — § 4 i), caus-
ing only little changes on the field amplitudes across the interface. Nevertheless, for
certain angles of incidence, namely grazing incidence (far from the surface normal),
this behavior changes, leading to an enhancement of the reflectivity. As a matter of
fact, total external reflection takes place, enabling the use of dedicated optics for
transport, deflection, focusing, and filtering of the EUV-XR radiation. This effect
can be understood from Snell’s law,

sing
n 9

sing’ = 4.1)
where n is the complex index of refraction, and ¢ and ¢’ are the incidence and
refraction angles, respectively (Fig.4.1). For EUV and XR, the real part of the
refractive index is slightly less than unity and consequently the radiation is refracted
in a direction slightly further from the surface normal (sing’ slightly larger than
sing). Thus for near-grazing incidence (¢ close to %), the refraction angle ¢’ can
equal 7, leading to a refracted wave propagating along the interface rather than
penetrating into the material (Fig.4.1).

In reality, the total external reflection is not completely realized due to the pres-
ence of the finite coefficient 8. As a portion of the field extends into the medium,
even if only in an evanescence manner, losses are incurred and total reflection is not
achieved. Nonetheless, it is possible to calculate the reflectivity vs. photon energy
of different materials simply by knowing § and 8 of the material of interest, across
the photon energies of interest, for the incident angles relevant to the experiment.
The values for § and B are tabulated by Henke et al. [1] and the resultant reflec-
tivity curves are interesting as they relate to real materials and include the effects
of absorption edges (as well as other effects such as oxidation and multi-elements).
Some examples of reflectivity curves for selected materials are reported in Fig. 4.2.

Typically, instead of having an optical element completely made of the selected
material, it iS common to put a thin coating of the material used for reflection on
the polished surface. In this way the radiation, which penetrates the surface only for
some nanometers, will optically behave as if the whole mirror was made by the right
material.

The choice of the coating material depends on the energy of the photons to be
used. In normal incidence mode, in the UV range, a typical coating is aluminium

Fig. 4.1 Grazing incidence
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Fig. 4.2 Grazing incidence reflectivity vs. photon energy for incidence angle of 2° for different
materials

with an MgF, over-coating protecting the aluminium from oxidation. In the lower
part of the soft X-ray range, carbon, gold, nickel, platinum, and some other metallic
layers are the good choices. Nevertheless, when higher energies are necessary, only
gold and platinum remain good choices due to the absence of absorption edges.

Another element to take into account is the dependence of the reflectivity upon
the angle of incidence. As the penetration depth of the photons into the matter
increases as the incidence angle goes towards the surface normal, the absorp-
tion increases too. In Fig. 4.3, the behavior of the reflectivity as a function of the
incidence angle is reported for a gold-coated mirror.

To select the proper material for the bulk of the optical element (mirror or grat-
ing), some considerations have to be made. The main problem is to find a material
that can be polished and manufactured to produce the required shape with the
required precision, and in the meantime this material must satisfy some require-
ments: it has to be UHV-compatible, it has to be characterized by a limited thermal
expansion (to avoid deformation under the synchrotron radiation beam), it has to be
rigid enough not to be deformed by the clamping system, and in many cases it must
be cooled. Depending on the chosen material, the roughness and the slope errors
can be reduced to acceptable values. Some widely used materials are summarized
in Table 4.1.

From Table 4.1 it is evident that silicon carbide (SiC) is a good material when it
is needed to cool the mirror/grating. It is in fact rigid enough not to be deformed by
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Fig. 4.3 Reflectivity vs. photon energy for gold at different grazing angles of incidence

Table 4.1 List of typically used material for the synchrotron radiation mirrors and some useful
characteristics

Material Density Young’s Thermal Thermal Figure of
(gecm™3) modulus expansion (o) conductivity (k) merit (k™)
(GPa) (ppmK™") (Wm~'K™)
Si 2.33 131 2.6 156 60
SiC 3.21 461 2.4 198 82.5
Glidcop 8.84 130 16.6 365 22
Mo 10.21 324 4.8 142 29.6
Fused silica 2.17 73 0.5 1.4 2.8
Zerodur 2.53 92 0.05 1.6 32

the clamping and it has a high figure of merit, that is, a limited thermal expansion
together with a good thermal conductivity. This means that, with a cooling system
made by a cool object put in tight contact with the edge of the optic, it is possible to
dissipate the heat induced by the synchrotron radiation light. Another advantage of
its stiffness is the possibility to polish it with a very good surface finishing. In this
way the final roughness can be of the order of 0.1 nmrms. The same statement is
valid for silicon and glass materials in general, while this is not true for metals. As
a matter of fact, metals are typically malleable, and therefore the friction with the
polishing tools always produces some particles of material that damage the surface.
If the optics need to be cooled, another possible solution is the use of Glidcop (Cop-
per and/or Molybdenum) but with the option of internal cooling. To realize such
internally cooled optics, it is necessary to manufacture them with particular care. In
particular, as the materials for this kind of optical elements are metals, it is feasible
to weld them. The only difference with normal welding is that the procedure should
be vacuum-compatible. This causes some complications, but nonetheless it is possi-
ble, and it is called brazing. In this way it is possible to create some channels close
to the optical surface inside the blank and let the water circulate inside them. There-
fore, even if the thermal conductivity of the material is poor with respect to silicon
or SiC, the cooling channels are very close to the optical surface and the cooling
procedure is efficient.
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Besides the above-mentioned characteristics of the optical elements to be used
along a beamline (materials, angles of incidence, cooling, etc.), the most important
requirement to be fulfilled is the shape of the optical surface reflecting/diffracting
the radiation. The need is to carry the photon beam to the experimental endstations
and to meet the users’ requirements in terms of fluxes, spot sizes, energy resolu-
tions, and so on. To perform these tasks, the optical designer must select the proper
shape and parameters for each optical element.

The typical shapes for synchrotron mirrors and gratings vary from plane to
more exotic aspherical ones (e.g., paraboloid, ellipsoid, toroids, etc.). Moreover,
the parameters of these mirrors are rather variable. Ellipsoidal and toroidal optical
surfaces, with radius (or equivalent radius) of curvature from 10-20 m up to some
kilometer in the tangential direction and close to few centimeters in the sagittal one
(perpendicular to the incoming beam), are typically specified.

On the other hand, for small grazing incidence angles, every imperfection on the
optical surfaces will result in drastically reduced overall performance of a multi-
component beamline, designed to monochromatize and focus synchrotron light.

It is possible to distinguish between two types of errors related to the optical
surface: those with a period comparable to the dimensions of the optical element
itself, and those with a much shorter period. A further subdivision is then possible
for the second type: errors that contribute to the specular image are called (along
with those of the first type) figure or tangent errors, while the others that contribute
to scattered light are ascribed to surface roughness [2]. Figure (slope) errors of a
few micro-radian rms and surface roughness exceeding few A rms can be sufficient
to reduce substantially both the energy resolution and the photon density required
for the experiments.

Going into detail, the slope errors can be thought as imperfections that locally
change the direction of the normal to the optical surface, and therefore change the
direction of the reflected radiation. In Fig. 4.4, §0 is the change in the normal direc-
tion and 286 (the angle is doubled by the reflection) is the change in the reflected
beam.

The plane reported in Fig. 4.4 is called the tangential plane, and it is determined
by the normal to the optical surface and the incoming radiation direction. In this
plane, the effect of the enlargement of the spot A sy, at a distance r’ from the mirror
is easily estimated by

Fig. 4.4 Effect of a surface
error on the tangential plane
of a mirror
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Astan = Zr/(getan. (4.2)

In the plane perpendicular to the tangential one, the so-called sagittal plane,
the effect of the enlargement on the spot is reduced. By applying simple geom-
etry relation, it is easy to see that the enlargement of the spot in the sagittal
direction is

Assag = 21805y cOs 6. (4.3)

As in a synchrotron typically the source is smaller in the vertical direction and
the monochromators have vertical dispersing planes, it is clear that optical elements
producing a horizontal (sagittal for the monochromator) deflection need not be of
as high quality as those producing a vertical (tangential for the monochromator)
deflection. In particular, to produce the same As on the image, in the case of
equal to 88°, the relative magnitudes of the figure errors should be related in the
following way: 8 = 298n. It is straightforward that the tangential figure errors
are more effective in disturbing the image with respect to the sagittal ones.

The second kind of error, the roughness, can be thought as a random distribution
of small imperfections. In this way the final effect is a reduction of the intensity
in the reflected peaks because the rays are dispersed all around the reflected beam
direction and the dispersion profile follows a Gaussian distribution. The parame-
ters of this Gaussian profile depend on the ratio o/A, where o is the amplitude of
the roughness and A is the wavelength of the incoming radiation: smaller is the
wavelength higher is the effect of the roughness.

The intensity of the reflected radiation I is reduced with respect to the ideal
reflected radiation intensity (/o) by a factor proportional to the above mentioned
ratio, and precisely

4o cos O )2

I =1 exp(— 7

(4.4)

As stated earlier, the shapes of the optical surfaces are the most important feature
to take into account when designing a beamline. Depending on these shapes, in fact,
the focusing and monochromatizing properties of a beamline may change, and so it
is important to choose the proper shape according to the experimental needs.

The different shapes can be described by means of simple formulas relating the
object distance r, the image distance r’, and the angle of incidence 6. Typical shapes
are toroidal, cylinder, ellipsoid, parabola besides the most used, spherical and plane.
Toroidal mirrors are spherical mirrors in the tangential direction and cylinder, with
a shorter radius of curvature, in the sagittal one. They are used commonly because
they are easily available on the market at reasonable prices, and moreover they offer
the advantage of reducing the number of optical elements in a beamline. However,
the quality of the produced image is poorer than that produced by ellipsoidal or
paraboloidal surfaces due to the presence of astigmatic coma. The latter ones, on
the other hand, are more difficult to manufacture due to the presence of aspheric
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surfaces (the ellipsoid will be described later in the refocusing section). They typ-
ically cost much more than plane and spherical/toroidal surfaces. However, it may
be convenient to select in any case ellipsoidal surfaces as they are almost free from
aberrations, which counterbalances the slightly poorer optical quality with respect
to simpler shapes.

4.2 Sources, Beamlines, and Monochromators for Soft X-Ray

To preserve the particular characteristics of the synchrotron radiation sources and
carry the light to the experiments, adapting the shape and selecting a particular
wavelength over the entire available spectrum, it is necessary to use a beamline.
A sketch of a typical beamline is reported in Fig.4.5. It can be divided into three
parts that can be present altogether or just one or two of them.

The first part is called prefocusing or sometimes preconditioning or heat load
section. The main purpose of it is to adapt the source characteristics to the need
of the following section. The second part, usually the most important and expen-
sive one, is the monochromator, used to select a particular wavelength within the
spectrum provided by the SR sources. The third part is the refocusing section
and it is used to adapt the beam dimensions or divergence to the needs of the
experiment.

4.2.1 SR Sources and Prefocusing or Heat Load Section

The purpose of the first part of a beamline is double. The most evident task is to
adapt the source size to the need of the following section, the monochromator. The
reason will be clear later on when the monochromator will be described. Practically,
to have high energy resolution or to have a flexible system (for instance in a Follath
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Fig. 4.5 Layout of a soft X-ray beamline. From left to right one can find the prefocusing section,
the monochromator, and the refocusing section
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Fig. 4.6 Areal view of the third generation synchrotron radiation Source Elettra in Trieste, Italy

type monochromator[3]), one needs to demagnify the SR source to create a new
source for the monochromator into the dispersive direction or to generate a colli-
mated beam, if needed. Moreover, there is a second reason to have a prefocusing
section, that is, the heat load. To understand this, we have to make a short review on
the characteristics of the radiation emitted by a synchrotron radiation source, also
called storage ring.

As stated at the beginning, the SR source is very well described in several text-
books [4, 5]. It consists of a circular ring (Fig. 4.6) where electrons are accelerated
up to a relativistic speed and maintained at a fixed energy of few Giga-electron-volt.
The electrons travel in an ultrahigh vacuum ring on a closed loop, maintained in
orbit by means of strong magnetic fields. Every time an electron is forced by a mag-
net to change its trajectory (Lorentz force), it loses energy by emitting radiation.
This is the first and most simple way to extract radiation from a storage ring, and
this kind of source is called Bending Magnet. The radiation emitted by an acceler-
ated electron is the typical dipole radiation but, in the laboratory frame, thanks to the
very high speed, it suffers from a relativistic contraction, resulting in a very forward
peaked beam, and the energy of the radiation shifts to the X-ray region.

The radiation emitted by a bending magnet has a continuous energy spectrum
ranging from the infrared to the hard X-ray (see Fig.4.7), with a peak at a wave-
length depending on the energy of the circulating electrons and the magnetic field
of the bending magnets. The higher is the energy of the electrons, the higher (in
photon energy) will be the position of this peak. This is the reason why the stor-
age rings are classified according to the energy of the circulating electrons. Typical
energies for the modern rings range from 2 to 8 GeV with very few exceptions. The
peak photon energy changes accordingly to the ring energy, from few keV to 50 keV
or more.

The radiation emitted by a bending magnet is concentrated in a narrow cone
(Fig.4.8) in the vertical plane and it is linearly polarized with the electric field
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Fig. 4.8 Distribution of the BM radiation for a 6 GeV ring. Top left: Typical normalized distribu-
tion of the linearly polarized light in the vertical plane (perpendicular to the electron orbit plane).
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left: Flux (ph/s) distribution of the 5 keV radiation in the vertical plane (energy lower than the peak
emission energy). Bottom right: Flux (ph/sec) distribution of the 40keV radiation (energy higher
than the peak one) in the vertical plane

parallel to the plane of the orbit. In reality, the linear polarization degree is 1 only in
the plane of the orbit (Fig. 4.8). If one looks at the emitted radiation from an angle
extending outside the plane of the orbit, the linearly polarized light contribution
decreases while the circularly polarized one increases (Fig. 4.8).

A very useful concept widely used in the SR community is the brilliance, some-
times also called brightness. The brilliance is the number of emitted photons per
second in a narrow energy bandwidth BW (usually 0.1%) per unit solid angle.
Practically, while the flux is a measure of the total intensity, integrated in the total
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Fig. 4.9 Periodic array of
magnets with the direction of
the magnetic field. (a) The
typical magnet array of a
planar undulator, producing
linear polarized light. (b) The
arrangement needed to
produce elliptically polarized
light

accepted solid angle, the brilliance takes into account the “ability” of the storage ring
to generate a very narrow cone of radiation out of a very small source dimension.
Therefore, the brilliance can be written as

N, photons

Brilliance = = ,
o*xoyo*xoyBWo.l%

4.5)

where 0,0, are the source spatial divergences and o;o; are the source angular
divergences. Even if the bending magnets are sources with very high flux, in terms
of brilliance, the undulators are some orders of magnitude higher. The undulators,
as well as the wigglers, are periodic arrays of magnets positioned along the straight
sections of the storage ring. In fact, between two consecutive bending magnets there
are several devices needed to maintain the electrons in the proper orbit with the right
energy and spatial characteristics, and machine designers typically let some long
empty spaces available to insert the so-called insertion devices (IDs). In this long
straight section, with length going from 1-2m up to 10-12m, one can insert, as
said, a periodic set of magnets (Fig.4.9) arranged such that the traveling electrons
are wiggled producing an interference effect.

The resulting emitted energy spectra are not continuous as for the bending mag-
net (Fig. 4.10) but peaked on well defined wavelengths, depending on the period of
the magnetic array (4,), the energy of the electrons (E), and the magnetic field (B).
The radiation wavelength is determined by

2= ZLyz(l +K72) 4.6)

1

. . 2\ 72 . .
where y is the relativistic factor (1 — Z—z) and K, called deflection parameter, is
a term taking into account the magnetic field, and it is

eBA

K=—""x~ 0.934A,(cm)B(T). .7
2nmc
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Fig. 4.10 Typical energy spectrum of the radiation emitted by an undulator (/eff) and a wiggler
(right) collected after a beam-defining aperture. The units are eV for the energy and photons per
seconds for the intensity

The radiation is emitted in a very narrow cone, whose divergence is inversely
proportional to y and to the number of periods into the undulator, which further
increases the brilliance of the undulator sources.

The undulators, of course, do not have a fixed magnetic field, which would pro-
duce a single wavelength. On the contrary, K can be varied producing different
values of A. The easiest way to do it is to change the vertical distance between
the magnets (undulator gap) or, in the electromagnetic undulators and wigglers, to
change the magnetic field by varying the flowing current.

Typical values of K for undulators range from more or less 1 to 3—4 or maximum
of 5, but never too much higher. If K increases further, the deflection becomes very
strong and the effect becomes similar to the “sum” of a series of bending magnets.
In this case, one works in the wiggler regime and the insertion devices are therefore
called wigglers. The emitted spectrum is no longer similar to the one produced by
an undulator but it is something closer to that produced by a bending magnet, with
higher brilliance and flux. Also the divergence of the emitted radiation becomes
larger than that emitted by the undulators. For this reason, the brilliance of the wig-
glers is lower than the one of the undulators, even if the total flux can be higher. For
both insertion devices, there is the possibility to generate circularly polarized light.
The way to do it is to force the electrons to oscillate not only in the horizontal plane
(Fig.4.9a) but also in the vertical plane (Fig. 4.9b). In this case, a single ID can pro-
duce, depending on the mechanical complexity of the system and or on the magnetic
arrangement, linear horizontal, linear vertical, circular, or elliptical polarization. In
some cases, it is also possible to rotate the main axis of polarization, so that it is
possible to have a linearly or elliptically polarized light with the axis oriented in any
given direction.

From Figs.4.7 and 4.10, it is evident that these sources deliver a lot of pho-
tons in very large spectra, even in the case of an undulator. As typically only
one wavelength, with narrow or large bandwidth, has to be selected, this means
that the biggest part of the emission must be cut. In particular, a high amount of
power load has to be absorbed and dissipated. While the selection is made into the
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monochromator, the power heat load is adsorbed by the first optical element encoun-
tered by the radiation, due to the fact that the reflectivity is not perfect, and so the
radiation is absorbed. The power carried by the radiation can be of the order of tens
of watts to kilo-watts. To avoid deformation of the mirror, one has to cool down
the optics and maintain the surface almost at a constant temperature. To do this, one
needs a mirror having a good thermal conductivity and also a low thermal expansion
coefficient. Moreover, to produce a good profile, it is necessary to have a quite large
Young’s modulus, meaning that the optic is quite stiff. Some widely used materials
are silicon or silicon carbide (SiC), both satisfying all the above mentioned char-
acteristics. In particular, SiC is slightly better but it is also much more expensive.
Therefore, the most used material in SR optics is silicon. Sometimes people use
metallic substrates, which have the advantage to be easily workable. In this way it is
possible to produce internally cooled mirrors, but the surface quality never reaches
that obtained with silicon or glass-based materials.

The list of the commonly used materials with their principal thermal and mechan-
ical properties is reported in Table 4.1.

Of course, the mentioned materials are used to make the mirror body. On its
optical surface, typically there is a thin layer of a proper coating to increase the
reflectivity, as described at the beginning of this chapter. The reflectivity drops
down with increase in the photon energy, and so the high energy part of the
source spectrum is adsorbed by the first optics. This fact preserve from defor-
mation the following mirrors and diffraction gratings, the heart of the soft X-ray
monochromators.

4.2.2 Soft X-Ray Monochromators and Diffraction Gratings

The central part of a beamline, typically the most expensive and the most com-
plicated, is the monochromator, which is dedicated to select the proper photon
energy.

Soft X-ray monochromators are based on the use of diffraction gratings in reflec-
tion mode. These are artificial periodic structures generated on substrates polished
as mirrors. The grating profiles are shown in Fig. 4.11. They can be laminar, a sort of
square profile, or blaze, like a saw tooth. The incident light is dispersed at different
angles depending on the wavelength, and the equation describing this effect is

nd_/\ = sin(a) — sin(B), 4.8)

where d is the grating period, n is the diffraction order, and « and § are the angles
of incidence and diffraction, respectively (see Fig.4.11).

The grating, therefore, disperses all the different wavelengths at different angles,
and the way to select just one of them over the entire spectrum is described in the
following. The radiation has to be focused by the grating or by a curved mirror
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Fig. 4.11 Possible grating profiles and principle of operation. Left: Laminar grating with the evi-
dence of the path difference between two rays impinging on the grating at two consecutive grooves.
Right: Blaze grating with the description of different diffraction orders

into a slit, which lets only “one” wavelength to pass through stopping the others.
This slit is generally called exit slit, and clearly it cannot select just a single wave-
length but rather an extended bandwidth AA (or AE in terms of photon energy).
The ratio between the selected wavelength or energy and the passing bandwidth
(E/AE = A/AM)is called resolving power. Let us highlight the relation between
the wavelength and the photon energy, namely

1239.852

(4.9)

How much should the resolving power be? This, of course, strongly depends on
the need of the experiment. One thing that have to be kept in mind, when a beam-
line and therefore a monochromator is designed, is that, by increasing the resolving
power by a factor of 2, the flux will very likely decrease by more than a factor
of 2. Another important factor is that the resolving power calculated analytically
or by simulation (ray tracing) is higher than the real one. So, if an experimentalist
needs a resolving power of 10,000 one must try to design beamline to have 11,000
or slightly more. The resolution needed in third generation storage rings must let
one study the detail of, for instance, core level shifts, dichroic effects on magnetic
sample, different chemical bonding of surface species, and so on. To study these
kind of effects, it is necessary to distinguish electrons coming out with difference in
energies of the order of few milli-electron-volt. If the incoming radiation has a pho-
ton energy of 600eV (around the Cr edge, for instance), it means that the resolving
power E /A E must be of the order of 600/0.01=60,000. Is it an acceptable request?
Let us consider the (4.8). To select the proper bandwidth, one has to use a slit. If we
call s the slit aperture in the direction of dispersion of the grating, this aperture can
also be addressed by

s=r"-AB, (4.10)
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where r’ is the focal distance of the grating or of the focusing mirror, and S is the
angle of diffraction. By deriving 4.8, it follows that

@zdcosﬂ_)A/\=dscos,3_)L=£= nr'A L@l
aB n nr' AL AE dscosp

It is important to underline that s can be varied by opening or closing the slit, but
it is useless to close it less than the monochromatic spot dimension of the focused
radiation. This is the dimension of the spot into the exit slit if the incoming radiation
is perfectly monochromatic. If one sets the exit slit at lower values, there is no gain
in resolution but just a loss of flux.

On the other side, d, the d -spacing, cannot be made as small as possible. Typical
values are of the order of 1 or half micrometer, corresponding to groove density of
the order of 1,200-1,8001mm™~!. Companies like Jobin Yvon [6] or Zeiss [7] are
able to produce larger groove density, but losing the precision of such a grating to
a certain extent. The typical groove density for high resolution monochromators is
1,2001mm™! corresponding to 0.833 jum d -spacing. The angle of diffraction can be
also very high, close to 90° but, for efficiency and acceptance reasons, it is practical
to set it smaller than 89°. Therefore, from (4.11), to reach a resolution of 60,000
in the first diffraction order at 600eV, one should have a monochromatic image
of 11 um at a focal distance of 3 m. The problem, consequently, is to generate a
monochromatic image of 11 pm.

Typical values for undulators or bending magnet sources can range from 30—40 to
more than 100 pm. If the SR sources are of the order of 30 um like in the new high
brilliance storage rings, one has to demagnify the source size by a factor 3, which
can be made inside the monochromator. When, vice versa, the source size is larger,
it is necessary to use an optic before the monochromator that pre-demagnifies the
source to transform it into a relatively small value, let us say 20-30 wm. In practice,
only in the new third generation SR sources and only on some insertion devices, it is
possible to have a monochromator without a prefocusing optics still obtaining quite
high resolution.

It is important to note that, in reality, to have a reasonable amount of flux and a
limited number of gratings, typical resolution are of the order of 10,000 or 20,000
with very few cases of higher values.

It is out of the scope of this introductive chapter to describe the different kinds
of monochromators. We wish just to highlight that one could divide the monochro-
mators in terms of the grating used: the plane grating monochromator (PGM) and
the spherical grating monochromators (SGM). In the first class, the most used
is the SX700 [8], originally designed by Petersen and modified to work without
entrance slit by Naletto and Tondello [9] and further on by Follath [3]. This kind of
monochromator needs a refocusing optic after the grating to focus the radiation into
the exit slit. It has the great advantage of using a single grating to cover a very large
energy range, maintaining the resolving power quite high (see Fig. 4.12). In the case
of the SGM, the most used configurations are the variable included angle SGM,
also called Padmore [10], and the Dragon [11], working with fixed included angle
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Fig. 4.12 Resolving power of a variable included angle SGM (Padmore like) monochromator
(full line) and of a variable included angle PGM (SX700) (dotted line). The numbers represent the
groove densities for the different needed gratings. The distance from the spherical gratings to the
exit slit is equal to the distance from the focusing optics of the SX700 to the exit slit, and is 3 m.
All the other parameters are identical

S0

------ Laminar

40 — Blaze

30

Grating efficiency (%)

20

Relative efficiency (1 ordi2™ ord)

2 ++=== Laminar
—— Blaze
s N
H ok 1 ] 1 ]
100 200 300 400 100 200 300 400
Photon energy (eV) Photon energy (eV)

Fig. 4.13 Calculated efficiency for a blaze profile (full line) and a laminar profile (dotted line)
for a PGM. The left figure is the first diffraction order efficiency, while the right one is the ratio
between the efficiency in first and second order. It represents the “ability” of the grating to suppress
the second diffraction order with respect to the first one

and movable exit slit. These solutions have the advantage of a very high resolving
power, but with the drawback of needing several gratings to cover the same energy
range as that covered by a single grating in the SX700 case (Fig.4.12).

Before closing this section, let us spend few words on the efficiency, the quan-
tity of photons of a particular wavelength diffracted into a particular order. Let us
consider the groove profile. The blaze profile (Fig. 4.13) has usually the highest effi-
ciency, as the light “sees” a mirror at each groove. But the efficiency is high also
for the higher orders of diffraction. In fact, from 4.8 it is evident that if a particular
wavelength A is diffracted at an angle § in the first diffraction order, the wavelength
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A/2 is diffracted at the same angle but in second order. What happens is that the
experimental chamber will receive radiation at 200 eV together with 400 eV, 600 ¢V,
and so on, even if with higher and lower efficiency. With a laminar profile, the effi-
ciency are usually lower but the higher order suppression is slightly better. This is
another thing to consider when a beamline is designed, for example, if the flux is the
only parameter to be optimized or if the presence of higher orders can be a problem
for the experimental program.

Because of the different kind of procedure for the realization of the gratings, the
different profiles can also affect the resolution. The laminar profiles, in fact, are pro-
duced holographically and this procedure generates a very good distribution of the
grooves along the grating. Precision of the order of 1 part over 1,00,000 was mea-
sured. The blaze gratings are, on the contrary, produced mechanically and this proce-
dure suffers from nonuniformity of the movement of the ruling machine, which can
generate some lacks in the homogeneity. These errors reduce the resolving power,
in the same way in which the slope errors will degrade the performance of a mirror.

Therefore, even if a great improvement in the mechanical production and density
measurement [12] was made in the recent years, the laminar gratings can deliver the
highest resolution and are the most used. Recently, Zeiss developed blaze gratings
with very shallow blaze angle [13], capable of reaching very high photon energies
[14], extending quite a lot the range of utilization of the soft X-ray monochromators.

4.2.3 Refocusing Optics

What was mentioned in the first part of this chapter is valid also for the last part
of a beamline, the refocusing section. This part has to adapt the photon dimension
and divergence to the needs of the experiment. Very often, a spot of 20 um or more
is required. As the SR sources, nowadays, are already quite small at the beginning
(from 20 to 200 pwm), this is not a big challenge and, according to the divergence of
the beam, one can use two spherical mirrors mounted perpendicularly with respect
to the other (KB configuration [15]) to focus the radiation as well as a toroidal or an
elliptical mirror. The last one is the best approach, but producing an elliptical mirror
with very good slope errors is not an easy task. Therefore, if one wishes to have
very small spot (of the order of 1-2 um roughly) or to preserve the wavefront or
coherence of the propagating radiation, it is mandatory to use a different approach.
As a matter of fact, the manufacturers are able to produce plane or spherical mirrors
with residual slope errors of the order of half a micro-radian. When, on the contrary,
an aspherical surface, like a toroid or an ellipsoid, is required, the residual errors
increase. These errors deteriorate the final spot and therefore the advantage of using
an ellipsoidal shape is lost.

A way to overcome such a limit is the use of active optics or bendable mirrors.
This technology is in use in astronomy since the 1980s, but it is just a decade that
it became popular in the SR community. The idea is the following: as the perfect
optic is an ellipsoid, but the easiest to do is the plane or spherical one, why don’t we
bend a plane surface to an elliptical profile? It actually works, but first of all we can
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Fig. 4.14 Elliptical profile of a mirror. Left: Just a part of the whole ellipsoid is used as mirror.
It produces a perfect image in one foci as if the rays come from the other foci. Right: A way to
produce an elliptical profile starting from a flat surface. Two unequal moments are applied at the
end of the substrate. This is not enough to have a good ellipsoid. One needs to correct the higher
orders

bend it only in one direction (forcing people to adopt the KB configuration), and
second, the ellipsoidal surface has to be approximated as much as possible not to
introduce artificial slope errors. If we rewrite the equation describing the ellipsoid
profile as a Fourier series, we need to approximate the ellipsoid up to the third or
fourth order not to introduce a too large residual shape error. So we need to act on
the starting flat mirror with, at least, three independent actuators. Two of them are
common to almost all the solutions and are shown in Fig. 4.14 (right). In practice,
two unequal moments are applied at the edge of the flat substrate to bend it toward
the elliptical profile. If the two moments are identical, one produces a symmetric
spherical profile. A proper difference between the two forces guarantees the required
elliptical profile, approximated to the second order.

The third order can be corrected in a different way. One can introduce a variable
thickness or width [16] of the flat substrate, which produce a variation of the moment
of inertia. Alternatively, one can polish this higher order into the initial process [17].
An alternative method is the use of piezoelectric actuators positioned at the back of
the mirror acting as local pushers or pullers. This solution permits the control of
a very high number of degrees of freedom so that the lateral forces are sometimes
no longer needed. The most successful use of piezoelectric actuators can be found
in the bimorph mirrors [18]. These are made by a thin silicon layer (3 mm more
or less) glued on a polarized piezoceramic. By applying a proper voltage, one can
obtain almost any surface with a spatial frequency control down to the distance of
three consecutive electrodes.

Some other focusing elements are the zone plates, the capillary optics, the photon
sieves, the X-ray lenses, the waveguides, and so on. These and other solutions can
be adopted according to the needs of the experiment. A description of most of these
elements can be found in dedicated books [4, 19].
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Chapter 5
X-Ray Magnetic Dichroism

H. Wende and C. Antoniak

Abstract An introduction is given to the X-ray magnetic dichroism focussing on
X-ray magnetic circular dichroism (XMCD). The standard analysis of XMCD spec-
tra by using the sum rules is elucidated. Additionally, aspects of the experimental
realization and the data analysis are presented. By means of experimental examples
of light 3d metal films, rare earth single crystals, and Fe-porphyrin molecules, the
assets and drawbacks of the XMCD technique are illustrated. It is shown that the
comparison of ab initio calculated spectra to the experimental results can provide
the magnetic properties of the samples if the standard analysis fails.

5.1 Introduction

Ever since the discovery of X-rays by Rontgen in 1895, the field of spectroscopy
using this regime of the electromagnetic spectrum has shown a dramatic develop-
ment. Nowadays, it is relatively easy to measure X-ray absorption spectra (XAS) or
X-ray photoelectron spectroscopy (XPS) at modern synchrotron radiation facilities
with excellent X-ray energy resolution. In a simplified picture, the XPS technique
investigates the occupied electronic states, while the XAS investigates the unoccu-
pied states (see, e.g., [1]). In contrast to the XPS measurements, where the focus
is, for example, the band dispersion by analyzing the dependence of the spectra
on the photoelectron k-value, the analysis of the integral unoccupied densities of
states vs. energy is one of the major interests in XAS. Because of these differ-
ences with respect to k-resolved or k-integral measurements, the X-ray absorption
spectroscopy can be used to determine magnetic moments, which can be compared
with the established methods such as vibrating sample or superconducting quan-
tum interference device (SQUID) magnetometry. As the history of X-ray absorption
spectroscopy, especially focusing on magnetic dichroism, can be found in various

H. Wende ()

Fachbereich Physik and Center for Nanointegration Duisburg-Essen (CeNIDE), Universitit
Duisburg-Essen, Lotharstrae 1, 47048 Duisburg, Germany

e-mail: heiko.wende @uni-due.de

E. Beaurepaire et al. (eds.), Magnetism and Synchrotron Radiation, Springer 145
Proceedings in Physics 133, DOI 10.1007/978-3-642-04498-4_5,
(© Springer-Verlag Berlin Heidelberg 2010



146 H. Wende and C. Antoniak

works (see e.g., [2, 3]), we want to start here directly with the discussion of
state-of-the-art X-ray absorption spectroscopy at third generation synchrotron radi-
ation facilities. It is certain that in modern electronic devices, magnetic systems play
a vital role especially for data storage. But also the vision of utilizing the electron
spin in addition to the charge in the so-called spintronics demonstrates the demand
for advanced magnetometries. It will be shown below that with the X-ray magnetic
circular dichroism (XMCD), element- and shell-selective magnetic properties can
be probed. The technique is highly sensitive, allows for the disentanglement of spin
and orbital magnetism, and probes local (atomic) properties. Thereby, the fields of
fundamental investigations as well as applied material science can be advanced.
Despite the fact that the extended energy regime in XAS (namely EXAFS) played
a more important role in the past, the investigation of the near edge regime (near
edge X-ray absorption fine structure (NEXAFS) or X-ray absorption near edge spec-
troscopy (XANES)) is a boom. One of the reasons is that it is quite straight forward
to determine magnetic moments by means of standard analysis procedures (sum
rules). However, as we show below, the handiness of the analysis as well as the avail-
ability of highly brilliant synchrotron radiation might lead to a misinterpretation of
the data if the limits of the applicability of these procedures are not considered.

To present the amenities and also the dangers of false analysis of the XMCD
spectra, we structured the chapter as follows. An introduction to the X-ray absorp-
tion spectroscopy is given in Sect. 5.2, which is followed by a detailed discussion of
the XMCD in Sect. 5.3. Some details of the actual experiments and the data analysis
including the sum rules are presented in Sects.5.4 and 5.5. In Sect. 5.6, examples
of recent investigations in the soft X-ray as well as the hard X-ray regime are pre-
sented. Especially, the examples for the XMCD of light 3d elements as well as the
measurements for the rare earth elements show that the failure of the standard anal-
ysis procedures can be overcome by comparison of the experimental results with
ab initio calculations. The chapter ends with Sect.5.7 giving a conclusion and an
outlook.

5.2 X-Ray Absorption Spectroscopy

In XAS, core-level electrons with their element-specific binding energies are excited
by incident X-rays. It is the generic term for the spectroscopic measurement of the
following:

e XANES that contains information about the unoccupied electronic states and the
chemical environment

o EXAFS for determination of type and distance of atoms in the local environment
of the absorbing atom

e Dichroism in X-ray absorption with linearly polarized light, that is, X-ray natural
linear dichroism (XNLD) and X-ray magnetic linear dichroism (XMLD), or with
circularly polarized light, that is, X-ray natural circular dichroism (XNCD) and
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X-ray magnetic circular dichroism (XMCD). The latter being explained in more
detail in the next section.

5.2.1 X-Ray Absorption Near-Edge Structure

As known from visible light, the intensity of X-rays after passing through matter of
thickness x is described by the Lambert—Beer law:

I(E,x) = Io(E) exp[-p(E) - x], (5.1

where p is the photoabsorption coefficient. In the case of energies below 20 keV,
the photoeffect is the dominating interaction between photons and electrons. Both
elastic Rayleigh scattering and inelastic Compton scattering is negligible. The pho-
toabsorption coefficient is proportional to the absorption cross section, that is, the
transition probability per unit time Pj and photon flux 7p:

M X Oabs = Pﬁ/lph- (5.2)

The transition probability per unit time can be described using Fermi’s Golden Rule:

Pioc Y M- (1-n(Ep))-8(ho — (Ef — Ey)). (5.3)
fii

where (1 — n(Ey)) is the density of unoccupied final states and the §-function
reflects the conservation of energy in the absorption process. The transition matrix
element Mﬁ2 can be written within electric dipole approximation (E1) as Mﬁ2 =
| (f|PAli)|?, where P is the momentum operator of the electron and A is the
vector of the electric field containing the polarization of X-rays.
Within this approximation, transitions are allowed according to the dipole selec-
tion rules
Amg =0, Am; = £1. (5.4)

For instance, transitions from the 2 p states to d states at the L3 » absorption edges
and transitions from the ls to p states at the K absorption edge are included in
the dipole approximation. In the electric quadrupole (E2) approximation, for exam-
ple, transitions from the 1s state to d states are described (Am; = 2). Interference
terms between dipolar and quadrupolar contributions may lead to special types of
dichroism in X-ray absorption (cf. next section).
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5.2.2 Dichroism in X-Ray Absorption Spectroscopy

A polarization dependent absorption behavior is called “dichroism.” In a micro-
scopic picture, this dependence is caused by an anisotropy of the charge or spin
distribution. If the dichroism is due to a charge anisotropy only, it is called “charge
dichroism” or “natural dichroism” like the XNLD and XNCD. In the case of an
anisotropic spin distribution, it is called “magnetic dichroism” like XMLD and
XMCD. The latter is the focus of this whole chapter and will be discussed in detail
in the next section. In the following, we give a short introduction to the different
types of dichroism mentioned earlier.

The XNLD is due to an anisotropic charge distribution. Measuring the X-ray
absorption of linearly polarized light for different angles of incidence, the electric
field vector of the X-rays acts like a search light for the maximum and minimum
unoccupied states. This can be used to study the orientation of molecules [4]. But
this effect can be detected also for solids. For instance, at the L3 » absorption edges,
the unoccupied d states are probed and the X-ray absorption intensity vanishes if
the vector of the electric field lies along the d orbital nodal axis. One example of the
XNLD effect measured at the Cu L3 » absorption edges of La; .g5Srg.15CuOy4 can be
found in [5]. The X-ray magnetic linear dichroism occurs if the charge anisotropy
is induced by an axial spin alignment. A first measurement yielding a significant
XMLD was performed at the My s absorption edges of Tb in Tb3FesO1, [6]. The
existence of the effect at the My s absorption edges of rare earths was predicted
one year before, in 1985 [7]. The XNLD and XMLD signals are even, under both
time reversal and spatial inversion. In contrast, the X-ray natural circular dichro-
ism effect has odd parity, as it is caused by a charge anisotropy lacking a center of
inversion. The first experimental evidence of the XNCD in a gyrotropic crystal of
a-LilO3 was reported in [8], where the occurrence of a large XNCD effect at the
I L; edge and a smaller effect at the I L, 3 absorption edges was ascribed to the
electric dipole (E1)—electric quadrupole (E2) interference terms. Breaking inversion
symmetry by magnetoelectric ordering yields the effect of X-ray non-reciprocal lin-
ear dichroism, which is a parity odd and time reversal odd property. Another type
of dichroism that is odd under both spatial inversion and time reversal is the X-ray
magnetochiral dichroism (XM yD) due to a chiral charge distribution and an axial
spin alignment. The latter two types of dichroism are more complicated cases but
have been experimentally proven [9, 10].

Here we focus on XMCD that arises from a directional spin alignment and is
even with respect to parity and odd with respect to time reversal. The XMCD effect
was predicted in 1975 by Erskine and Stern, who performed band structure calcula-
tions for the M3 » absorption edges of Ni [11]. The first experimental results were
reported in 1987 by Schiitz et al., who detected a significant XMCD effect at the K
absorption edge of an Fe foil [12]. A more detailed historical overview can be found,
for example, in [2]. The theoretical background of the XMCD will be summarized
in the following sections.
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5.3 X-Ray Magnetic Circular Dichroism

In this section, we focus on XMCD. After an explanation for the occurrence of
this effect in a simple two-step model, the so-called sum rules are presented, which
can be used for the determination of spin and orbital magnetic moments with some
limitations as mentioned at the end of Sect. 5.3.1.

Let us consider an X-ray photon with helicity 41 absorbed by an electron from
a spin—orbit-split core-level, for example, 2p3/, and 2p;/,. This may lead to the
electron transitions listed in Table 5.1. The excitation probabilities are given by the
Clebsch—Gordon coefficients and do not take into account the number of unoccu-
pied final states. These excitations with their related probabilities yield an orbital
polarization of excited electrons, which is the same for electrons from the 2py/,
or 2p3/, core levels. By simply summing up all possible excitations weighted by
their probabilities, one finds a spin polarization of the excited electrons. From the
2p3/» state, 62.5% of excited electrons carry a spin of my = +1/2 and only 37.5%
of mg = —1/2. From the 2p,,, state, 75% of excited electrons carry a spin of
mg = —1/2 and only 25% of my = +1/2. Note that the sign of spin polarization is
different for the different 2 p states. If there were no spin—orbit-splitting, that is, no
energy gap between 2ps3/, and 2p,/, states, the averaged spin polarization would
be zero.

Consideration of an X-ray photon with helicity —1 instead of 41 leads to the
same results, but with reversed signs.

With this spin and orbital polarized excited electrons, the polarization of the
unoccupied final states is probed in the second step of this model. Any imbalance
in either spin or orbital momentum in the final states will give rise to a dichroic
effect. This is shown schematically in Fig. 5.1 for X-ray photons with helicity +1,
that is, transitions from the 2p3,, state with a positive spin polarization into 3d
final states. For a simplification of the discussion, let us consider first the cases
of magnetic saturation at T = 0, each with the final unoccupied states contain-
ing electrons of one spin direction only. In the left panel of Fig.5.1, the spin
polarization of the unoccupied final states is positive, that is, has the same sign
as the spin polarization of the excited electrons. Therefore, the transition proba-
bility Py = Py 4 is quite large. Note that in this example P;,; = 0 as all final
d states of electrons with spin down are occupied. After reversal of the magne-
tization direction, the spin polarization of the unoccupied final states is negative
and the probability for transitions of the excited electrons with their positive spin
polarization is smaller: (P, , = P> < Py = Py4). The resulting difference in

Table 5.1 Possible electron transitions from a 2p state induced by an photon with helicity +1
and the related relative excitation probabilities

my Fraction
1—2 60%
0—>1 30%

—-1—=0 10%
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Fig. 5.1 Schematic depiction of the electronic transitions from a 2 p3/, level of a 3d ferromagnet
for two reversed directions of magnetization and zero magnetization

the absorption strength is the so-called XMCD effect at the L3 absorption edge.
Considering transitions at the L, absorption edge yields an XMCD with reversed
sign. For a vanishing magnetization (right panel of Fig.5.1), the total transition
probability (P3 = P34 + P3 ) is independent of the helicity of X-ray photons
and no dichroism can be obtained. The dependence of the dichroism on the mag-
netization gives the possibility to measure field-dependent magnetization curves
element-specifically.

In the following, ;4 denotes the absorption coefficient in the case of the same
sign of spin polarization of excited electrons from the 2py,, state and unoccupied
final states. Otherwise, the absorption coefficient is called p—.

5.3.1 Determination of Orbital and Spin Magnetic
Moments: Sum Rules

As the spin polarization of excited electrons from the 2 p3/, and 2 p; /, states exhibit
different signs in contrast to the orbital polarization, which has the same sign, it is
possible to distinguish between spin and orbital contributions to a dichroic signal.
Via the so-called sum rules derived by Thole [13] and Carra [14] for spin—orbit split
absorption edges, it is possible to determine both spin and orbital magnetic moment,
thatis, us = —2ug (S;) /hand p; = —up (L;) /h per unoccupied final state nj,:

6 [ (+ —p)dE—4 [ (g —p-)dE .

Bs _Ls Ly+Ls ( 7(Tz>) .

0 I (us +u)dE ’
Li+Lo

')

(5.5)
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[ (4 —po)dE

Mmi 3L3+L>
. - s (5.6)
np 4 [ (uy+pode P

Li+Lo

where (T;) is the expectation value of the intra-atomic magnetic dipole operator,
accounting for a possible asphericity of the spin density distribution. Usually, this
value is much smaller than the spin moment and can be neglected. Nevertheless, it
is widespread to use the term effective spin magnetic moment ,u%ff = us +7ur,
which consists of both the spin magnetic moment and the magnetic moment of (77).

With

p= / (U4 — p-) dE, (.7
L3
a= [ G-noaE (5:8)
Li+Lo
1
=35 [ G ruoee, (5.9)
Li+Lo

(5.5) and (5.6) can be written as [15]

2
Y (5.10)
np 3r

eff -3 2
“_S:ﬂ.mg_ (5.11)
ny r

Originally the sum rules are derived in an atomic framework. However, using the
density matrix formalism, Ankudinov and Rehr demonstrated that the application of
the sum rules is not only restricted to these atomic systems [16]. To derive the sum
rules, various assumptions and approximations were made in addition. For example,
the exchange splitting for the core-levels was ignored as well as any energy depen-
dence of the wave functions. Many-body effects are neglected, and for a proper
application of the sum rules, L3 and L, absorption edges have to be clearly separated
energetically. In any case, it could be shown that the determination of the magnetic
moments via sum-rule based analysis leads to reasonable results, for example, in the
case of Fe and Co [15].

A different approach to determine spin and orbital moments is the so-called
multipole moment analysis [17]. It is based on a calculation of the fine structures
in experimental XMCD spectra. Thereby, the focus is on the actual spectroscopic
details, which are not taken into account in the integral sum-rule analysis method
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discussed earlier. Nevertheless, the multipole moment analysis yields the same val-
ues for the magnetic moments. A detailed discussion of this method can be found in
[18] and is not a scope of the present manuscript.

5.4 Experimental Setup

It is possible to measure the absorption directly for thin samples by the analysis of
the intensity of transmitted X-rays, but this is not possible for thick samples such
as substrate-supported films. For the latter case, the absorption can be measured via
photon detection or current measurements as described later.

If a core electron is excited by an absorbed X-ray photon, the core-hole will
be reoccupied by an electron from an energetically higher state accompanied by
the emission of either a photon or an Auger electron. The absorption coefficient
measured by the detection of the emitted photons is called the fluorescence yield
(FY) mode. The detection of Auger electrons and cascade secondary electrons with
an energy high enough to leave the sample is called the total electron yield (TEY)
mode. The emission of electrons may be facilitated by an electric field, for example,
by putting a positively charged electrode near the sample or by applying a negative
voltage on the sample with respect to ground. In both cases, the sample drain current
can be used as a measure of the absorption coefficient with some limitations as
discussed in the following section. Usually, the absorption signal of a gold grid in
the path of light is used as a reference for the intensity of the incident X-rays.

5.5 Data Analysis

5.5.1 Self-absorption and Saturation Effects in Electron Yield

In total electron yield (TEY) mode, the X-ray absorption is measurable only if sec-
ondary electrons escape from the sample. The probability of an electron reaching
the surface becomes smaller with larger distance to the surface, and the number of
electrons that may escape is given by [19]

dY. = dY, exp[—x/Ae]. (5.12)

where A, is the electron escape depth, which is usually in the range of a few nanome-
ters and dYj is the number of secondary electrons created in a layer of thickness dx
at depth x from the surface (cf. Fig. 5.2). It is given by [20]

n
cos

dYo = IhG

7 exp[—ux/ cos 0] dx, (5.13)
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Fig. 5.2 Emission of an
Auger electron in various
possible direction after
absorption of an X-ray photon
under grazing incidence on a
semi-infinite sample

Ax

with the angular-dependent absorption coefficient u(6, E) = u(E)/cosf =
i/ cos 8. The factor G represents the averaged number of secondary electrons
released in a cascade caused by a single Auger electron. As can be seen from
(5.12), the TEY mode is a surface sensitive method to measure the X-ray absorption.
The TEY intensity can be calculated by simple integration over dx from x = 0 to
x = 00. Thus, the TEY intensity can be written as

I()G/i/\e 1 _ I()G/i/\e 1
cos phe/cosO+1 Ay AfAc+ 17

TEY = (5.14)

using A, = cos 8/, which describes the attenuation depth of incident X-rays along
x direction. For Ax > A, the measured TEY intensity is proportional to the absorp-
tion coefficient, Itgy = IoGAcp/ cosB. For A, < A, the TEY intensity can be
approximated by Itgy &~ [pGA/cos6. In the latter case, the measured TEY is
independent of the absorption coefficient, that is, the signal is saturated. This occurs
for measurements of samples under grazing incidence or at photon energies equal
to the energy of an absorption edge.

One example of a XANES spectrum that suffers from saturation is shown in
Fig.5.3 on the left hand side. Simply assuming a proportional dependence of the
TEY intensity on the absorption coefficient u leads to too small values of u, espe-
cially at the absorption edges (see also [21]). At the L3 absorption edge with its
larger intensity, the saturation effect is larger than that for the L, intensity. For sam-
ples exhibiting XMCD, the dichroic signal is also strongly influenced by saturation
effects as can be concluded from Fig. 5.3, where the deviation from the proportional
relation between the TEY signal and p is shown for the ;4 and p— spectrum. The
analysis of TEY spectra which have not been corrected for saturation effects always
underestimates the dichroism and the magnetic moments, respectively. Especially,
the orbital magnetic moment is underestimated as it corresponds to the difference
between the areas of the dichroism at the L3 and L, absorption edges, while the
spin magnetic moment corresponds to the sum of these areas. A detailed discussion
of these effects in Fe, Ni, and Co samples is given in [19]. For instance, the cal-
culated spin magnetic moment of Fe atoms in a Fe bulk sample from a saturated
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Fig. 5.3 Example of a XANES spectrum at the Fe L3 ; absorption edges of an FePt sample before
and after saturation correction (left) and the deviation from a proportional dependence of the TEY
signal from the absorption coefficient as a function of photon energy for reversed directions of
sample magnetization

spectrum is only about 92% of the real value at # = 0 and about 80% when
6 = 70°. The orbital magnetic moment determined from saturated spectra is only
half of the real value at & = 0 and vanishes at grazing incidence around 6 = 65°.
Going to more grazing incidence (¢ = 70°) will even lead to the wrong sign of
the calculated orbital magnetic moment. For thin Fe films with thicknesses of a
few nanometers, the saturation effects are smaller but nevertheless they cannot be
neglected.

5.5.2 Standard Analysis

To analyze an experimentally obtained XANES spectrum or XMCD spectrum,
respectively, the spectra are first normalized to the total photon flux, which usu-
ally shows an energy and time dependence. This dependence is usually measured
by the absorption of a gold mesh brought into the beam in front of the sample. The
absorption signal of the gold reference is often called the “/¢ signal.” This method
is much more precise than, for example, normalization simply using the current of
the storage ring or the current of one of the mirrors in the beamline.

Second, the slope of the pre-edge region can be subtracted and the post-edge
region should be normalized to unity. Before application of the sum rules it is nec-
essary to separate the absorption intensity due to the electron transitions we are
interested in, for example, 2p — d states at the L3 » absorption edges, from tran-
sitions into higher unoccupied states or into the continuum. In the case of the 3d
transition metals, the latter can be described by a two step-like function. If there
are less pronounced absorption maxima at the absorption edges, a reference spec-
trum of a similar element with a well-known number of unoccupied states should
be subtracted. In Fig. 5.4 are two examples shown. In the left panel, an absorption
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Fig. 5.4 XANES at the L3, absorption edges of Fe and two-step-like function accounting for
transitions into continnum (/eft panel) and XANES at the Pt L; absorption edge with Au reference
spectrum shifted and stretched in energy. See text for details

spectrum measured at the Fe L3 >-edges is shown with the transitions into higher
unoccupied states than the 3d levels approximated by a two step-like function. In
the right panel, an absorption spectrum of Pt at the L3 , absorption edges is shown
which was normalized to an Au reference spectrum.

In the case of Fe, the L3 and L, absorption edges are not clearly separated
energetically, which lead to larger errors in the determination of spin and orbital
magnetic moments as, for example, in the case of Pt.

5.6 Examples of Recent Research

In the next three sections we give examples for the advantages and also the difficul-
ties in the XMCD analysis. At first, we turn to the investigation of induced moments
in ultrathin films of light 3d elements at the interface with Fe films. For the light 3d
elements, the reduced splitting of the L3 and L,-edge leads to a failure of the stan-
dard analysis, resulting in a large underestimation of the induced spin moments.
In the second example, we turn to the analysis of the L3 ;-edge XMCD of rare
earth elements. Here, a spin-dependence of the transition matrix elements has the
effect that applying the XMCD sum rules would even lead to the wrong sign of
the 5d moments for the rare earth elements. The limits of the applicability of the
sum rules have already been discussed in the original presentation of these rules
[13, 14]. This raises the question in which way these systems can be analyzed. For
both examples we show that the magnetic moments can be determined by compar-
ing the experimental XMCD spectra to ab initio calculations. In the last example we
demonstrate the strength of combining XNLD and XMCD. For a monolayer of Fe—
porphyrin molecules adsorbed on epitaxially grown Co and Ni films, XNLD clarifies
the orientation of the molecules on the surface, and the XMCD spectra allow for the
determination of the element-specific magnetic properties and the corresponding
magnetic coupling phenomena.
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5.6.1 Failure of Sum Rule-based Analysis for Light 3d Elements

To exemplify the breakdown of the XMCD standard analysis and to look at the
XMCD fine structures in the light 3d elements in a more systematic way, we inves-
tigate the induced or uncompensated moments in prototype Fe/light 3d/Fe trilayers
on a Cu(100) single crystal. Such a trilayer is presented in Fig.5.5 for the case
of vanadium as the light 3d element. Indeed, an induced magnetic moment in V
can be revealed by the XMCD spectroscopy. The X-ray absorption coefficients for
right and left circularly polarized X-ray are shown at the V and Fe L3 >-edges in
Fig. 5.5b. The dichroic signal at the Fe edges is quite obvious as it stems from bulk-
like 50 monolayer (ML) buffer layer and the 5ML on top of the in situ prepared
structure. At the V L3 »-edges, the X-ray absorption coefficients u* and ™~ are
very similar. But because of the excellent performance of modern third generation
synchrotron radiation facilities, even tiny induced moments can be revealed. This
can be seen in the small dichroic signal (please note the enlargement factor x15),
which presents a large signal-to-noise ratio. The positive sign of XMCD at the V L3-
edge in comparison to the negative signal at the Fe L3-edge shows that the induced
momentin V is aligned antiparallel to Fe. Furthermore, the V XMCD signal exhibits
many more fine structures as compared to the Fe case, for example, an asymmetric
contribution at both L-edges can be determined.

Unfortunately, a quantitative analysis is more problematic. To discuss this in
greater detail, we present the XMCD signal of Ti, V, and Cr recorded for the same
trilayer setup in Fig. 5.6. The dichroic signal in the transition metals (TM) Ti and V
stems from induced moments at the Fe/TM interface, while it originates in Cr from
uncompensated moments in the layerwise antiferromagnetic structure. To compare
the systematics in the XMCD fine structures, the dichroic signals of bulk-like Fe,
Co, and Ni films are also presented in Fig. 5.6. The spin moments of the light 3d ele-
ments Ti, V, and Cr are oriented antiparallel to those of the Fe films in the trilayers.

a b

norm. XAS, XMCD (arb. units)
N

LV
— Y
_2 i i y

520 540 700 720 740
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Fig.5.5 (a) Schematic picture of the prototype Fe/V/Fe(110) trilayer on Cu(100). The bold arrows
indicate the direction of the total Fe and V moments, respectively. (b) Normalized XAS for right
(uT) and left (u ™) circularly polarized X-rays (fop) and the corresponding XMCD at the V and Fe
L3 ,-edges of a Fe/V,/Fe trilayer [32]. For a clearer representation, the V XMCD was multiplied
by a factor 15. Figure taken from [3]
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Fig. 5.6 Normalized isotropic spectra (solid lines) and corresponding XMCD spectra (dotted
lines) for light 3d transition metals (upper panel) in comparison to the heavy 3d ferromagnetic
transition metals Fe, Co, and Ni (lower panel) [30] at the L3 ;-edges. The XMCD spectra for the
light 3d transition metals (TM) are obtained for Fe/TM/Fe(110) trilayers, whereas the Fe, Co, and
Ni spectra are recorded for bulk-like films on Cu(100). The direction of magnetization for the light
3d metals is defined with respect to the one of Fe in the trilayer. For a clearer presentation of
the systematics, the sign of the Ti, V, and Cr XMCD spectra was changed (negative enlargement
factors). Figure taken from [30]

However, to study the systematics in the XMCD fine structures, we multiplied them
by negative scaling factors. When inspecting the spectra from the heavier element Ni
towards the lighter element Ti, the effect of the reduction of the L3 >-edge splitting
is revealed. First of all, the intensity ratio of the L3-edge whiteline to the L,-edge
whiteline clearly changes. For the case of Fe, nearly the statistical ratio of 2:1 (orig-
inating from the electron occupancy of the 2p3,, and 2p;,, core levels) is seen,
while for the lighter 3d elements this ratio becomes about 1:1.

These changes in the isotropic spectra have been analyzed in the past experimen-
tally as well as theoretically [22-24]. Here, we want to focus on the dichroic spectra.
When traversing the 3d series towards the lighter elements, the XMCD spectra
become more and more asymmetric. An onset of this trend is already detected for
the element Fe. At a photon energy of about 711 eV in the Fe spectra, a small pos-
itive XMCD signal is seen at the L3-edge. This contribution increases clearly for
Cr, V, and Ti. A reason for this asymmetry is the effective exchange field split-
tings of the initial 2p and final 3d sublevels [25, 26]. Furthermore, for these light
3d elements, an obvious overlap of the L3-edge signal with the one at the L,-edge
is seen.

Despite the fact that all fine structures in the XMCD are nicely resolved and
hardly any noise can be detected by eye, the quantitative analysis turns out to be
problematic because the sum rule analysis fails for Ti, V, and Cr. The reason is that
for these elements, the initial j, m; elements are mixed [27] and therefore the stan-
dard analysis procedure cannot be applied any more. For V the induced spin moment
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Fig. 5.7 Normalized XAS (above) and XMCD spectra (below) for the light 3d TM’s Ti, V, and
Cr at the L3 5-edges: (solid lines) experimental data vs. (dashed lines) ab initio calculations. There
are no scaling factors between theory and experiment. Figure taken from [29]

determined by sum rule analysis is wrong by about a factor of 5 [3,28-31]. To over-
come this difficulty, we compared the experimental results to ab initio calculations.
For this purpose, an Feg.9 V.1 alloy was prepared by co-evaporation of Fe and V to
create an experimental standard. Furthermore, Fe/Ti/Fe(110) and Fe/Ct/Fe(110) tri-
layers were prepared on a Cu(100) crystal [30]. During the preparation of the Fe/Ti
trilayers, it turned out that the Ti XMCD signal did not depend on the deposited
thickness of the Ti film up to 15 A. An explanation could be that all the Ti atoms
were polarized by Fe. This would be the case if a TiFe, compound was formed as it
has been reported for Fe/Ti multilayers [33]. The SPR-KKR calculations have been
performed in the group of H. Ebert (LMU Munich, Germany) for a FeTi, com-
pound, and Feg 9Vy.1 and Feg 9Crg.; alloys. The results are presented in Fig.5.7.
As the interaction of the excited electron with the created core hole is not taken into
account, the calculated isotropic spectra assume the statistical branching ratio in
contrast to the experimental spectra. However, the calculated XMCD spectra agree
with the experimental reasonably well with respect to the intensity and the detailed
fine structures. For the case of Ti and V, the magnetic moments were directly taken
from the SPR-KKR calculations, while the Cr moment was determined by down-
scaling (factor 0.6) the calculated results. The reason for the downscaling is that
Fe/Cr/Fe(110) trilayers were measured in the experiment, which were compared
with calculations of an Fe ¢Cry.; alloy to account for some intermixing at the
interface of the trilayer [3,29]. By comparison to the ab initio calculations, the fol-
lowing spin moments were obtained: us(Ti) = —0.7 ug, us(V) = —1.0 up, and
s (Cr) = —0.6 up. The negative sign indicates that these moments are aligned
antiparallel to the Fe moments. The apparent moments for the experimental spec-
tra determined by sum rule analysis for Ti and V are about a factor of four to five
too small, whereas for the case of Cr, the spin moment is underestimated by about
a factor of two using the same analysis [29]. Interestingly, the agreement between
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experiment and theory for the XMCD seen in Fig. 5.7 is an indication that the prob-
lem for the standard analysis is related to the isotropic spectra that are needed for
the normalization in the sum rule analysis. Therefore, we established a two-pole
approximation within a time-dependent density functional theory [34] in collabora-
tion with E.K.U. Gross (Freie Universitit Berlin, Germany) to analyze the change
of the branching ratio for the light 3d elements for metallic systems.

In this work, we applied a simple three-level model to explain the origin of the
strong deviations from the one-particle branching ratio and determined the matrix
elements of the unknown exchange-correlation kernel directly from experiment by
utilizing the experimentally determined branching ratios. It turns out that because
of the reduced 2p spin—orbit coupling, the two poles couple due to interaction of the
excited electron with the created core hole. In the future, the effect of the coupling
of the two poles on the dichroic spectra will be studied in detail.

5.6.2 Spin-dependence of Matrix Elements in Rare Earths

In the previous section it was demonstrated that the decrease of the separation
between the L3- and the L,-edges results in the breakdown of the standard sum rule
analysis because of the reduced spin—orbit splitting of the 2p3/, and 2p;/, core
levels. This standard analysis can also yield erroneous results even if the L3 >-edges
are well separated, as it is the case for rare earth metals. The magnetic proper-
ties of the rare earth metals are determined by the localized 4f moments. However,
the magnetic ordering of these metals originates from the polarized 5d band. We
show below that the 4f as well as the 5d magnetic moments can be probed by the
analysis of the L3 »-edge XMCD: in addition to the electric dipole transitions (E1:
2p — 5d), electric quadrupole transitions can be identified (E2: 2p — 4f). How-
ever, even after separating the two contributions, the application of the sum rules to
the electric dipolar contributions yields the wrong sign of the induced 5d moments
[3,35,36]. This is due to a spin-dependence of the transition matrix elements. For the
standard XMCD analysis, it is assumed that the XMCD signal A u is proportional to
the difference in the spin-dependent density of states (DOS): Au ox pT — pt. How-
ever, this is not the case for the rare earth L3 -edge XMCD as the dipole transition
matrix elements /LT and ;ﬂ are spin-dependent. The exchange potential of the 4 f
electrons is attractive for spin up and repulsive for spin-down electrons [37]. There-
fore, the 5d spin up radial wave function is compressed while the 5d spin-down
wave function is pushed out. This leads to a larger dipole—dipole transition matrix
element for the spin-up electrons (ut > ).

Consequently, the XMCD spectra cannot be directly related to the difference in
the DOS, but the spin-dependence of the transition matrix elements must be included
[36]: Ap o [ulpt — u¥p']. To analyze the effect of this spin-dependence, we
defined a dimensionless spin asymmetry parameter [36]:
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Fig. 5.8 Unoccupied (E < 0) and occupied (E > 0) 5d density of states for spin-up (solid line) and
spin-down (dashed line) electrons in Tb as calculated with the FEFFS8 code [36]. The asymmetry
parameter a (dotted line) characterizes the difference from unity of the ratio between spin-up and
spin-down matrix elements (5.15). Figure taken from [36]

a; = Rjnit — Rjnty ’ (5.15)
Rjnit + Rjnty

where R ;4 denotes the matrix element for the majority spin and R} 7 that for the
minority spin. The asymmetry parameter a ; is presented in Fig. 5.8 together with the
spin-dependent 5d density of states as calculated by the FEFFS code [36]. The effect
of the spin-dependent transition matrix elements can be depicted as follows: the
integral of the empty states of the 5d majority band is smaller than the integral
of the minority band (there are more empty states in the minority band). However, in
the vicinity of the Fermi energy, the asymmetry parameter has a sizable value of
about 0.06. Therefore, one probes apparently more empty majority states. The effect
is so dramatic that even the sign of XMCD signal is changed (positive L3-edge
XMCD signal) and thereby the moment determined from the sum rule analysis
exhibits the wrong sign.

The total moment of bulk Tb is known to be 9.34 up [38]. According to Hund’s
rules, one expects that the 4 f spin contribution to this moment is us(4f) = 6.0 ug,
while the orbital contributionis ;7. (4f) = 3.0 wg. This simple calculation suggests
that the remaining 0.34 pp is due to the induced 5d moments. However, as men-
tioned earlier, the sum rule analysis even yields the wrong sign, namely an induced
moment of ufq“m“‘le (5d) = —0.27 pp is determined from the experimental XMCD
results for a Tb single crystal by this standard analysis procedure. To overcome this
difficulty, we included the spin-dependence of the matrix elements in a generalized
form of the sum rules as presented in [36]. Using these corrections, a spin moment
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Fig. 5.9 (a) Calculated E1 and E2 contributions to the L3 ;-edge XMCD spectra of Gd, Tb, and
Dy. (b) Comparison of the measured XMCD spectra of rare earth single crystals at low temperature
to the total spectra obtained from calculations. Figure taken from [40]

of us(5d) = +0.37 up is determined, which is consistent with the results expected
(see above).

To display spectroscopic features of the electric dipole (E1) and quadrupolar con-
tributions (E2) in a more systematic manner, we show Gd, Tb, and Dy single crystal
L3 2-edge XMCD results together with ab initio calculations (utilizing the SPR-
KKR code) in Fig.5.9 (for details see [39,40]). The theoretical calculations have
the advantage that individual contributions can be easily switched on and off. This
allows for the separation of the E1 and the E2 contributions as presented on the left
hand side (Fig. 5.9a). The consequence of the spin dependence of transition matrix
elements is obvious in the different signs of the calculated E1 and E2 signals: the
4 f states probed by the E2 transitions basically yield a negative contribution to the
Ls-edge XMCD, whereas mainly a positive contribution is detected at the L,-edge.
This is different for the El transitions that probe the polarized 5d band: the E1
transitions are mainly positive at the L3-edge and negative at the L,-edge. Further-
more, it is interesting to see that clear dichroic fine structures can be identified in the
extended energy regime that originate from the E1 transitions. Figure 5.9b presents
that these calculations indeed nicely reproduce the experimental results, where the
sum of the calculated E1 and E2 contributions is shown together with the experimen-
tal XMCD results of the rare earth single crystals (see [40] for details). The different
signs of the E1 and the E2 contributions result in a very pronounced fine structure
of the XMCD, where the contribution from the 4 f* states (E2 transitions) is essen-
tially located in the pre-edge regime. The reason for this energy shift is the stronger
Coulomb interaction of the 4 f states with the 2 p core hole [37]. Another interesting
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effect on the spectral form of the XMCD can be seen in Fig. 5.9b. Although a clear
double structure is identified in the empty 5d density of states (Fig.5.8), a dou-
ble structure is seen only at the L,-edges. This is due to the fact that the final
states at the respective edges are not identical. The Lz-edge is dominated by the
2p3/2 — 5ds), transitions. However, the 5d5/, states cannot be probed at the L,-
edge. To test this, the spin—orbit coupling (SOC) in the final states was switched on
and off in [40]. It was found for the case with SOC switched on that the splitting
of the double structure decreases as compared to the case without SOC and cannot
be resolved any more. The results presented in this section again demonstrate that a
direct comparison of the experimental data to ab initio calculations helps to interpret
the experimental results — especially if the standard analysis procedure fails.

5.6.3 Paramagnetic Biomolecules on Ferromagnetic Surfaces

In this last section, various advantages of the X-ray absorption spectroscopy will
be utilized to unravel the secrets of Fe—porphyrin molecules adsorbed on ferromag-
netic surfaces. In addition to offering the possibility of an element-specific magnetic
analysis, the XMCD-technique has the advantage of an amazing high sensitivity
that allows for the detection of tiny magnetic signals as, for example, of magnetic
molecules with sub-monolayer coverages on surfaces. Additionally, the orientation
of the molecules on the surface is analyzed using linearly polarized X-rays to study
the angular dependence of the near-edge X-ray absorption fine structures (NEX-
AFS), which is also referred to as the XNLD. The combination of these X-ray
absorption spectroscopies provides a deeper insight into the important interactions
of the molecules with the surface.

Fe—porphyrin molecules are important biomolecules, for example, as a part of
the heme group these molecules are essential components of hemoglobin, which
is responsible for the transport of oxygen in blood. However, recently porphyrins
have also been discussed with the prospect of realizing the vision of molecular
spintronics. One of the reasons for this recent revival of these molecules in surface
science is connected to the immense stability of these molecules. This allows one
to sublimate porphyrin molecules under ultra-high vacuum conditions. Thereby, the
molecules can be adsorbed on the surface with well-defined coverages, which is vital
to gain insight into the interaction of the molecules with the surface. Here, we focus
on possible coupling phenomena of the Fe spin in the porphyrin molecule (schemati-
cally shown in Fig. 5.10) to ferromagnetic surfaces [41,42]. To start with structurally
well defined surfaces, Ni and Co ferromagnetic films were grown epitaxially on a
Cu(100) single crystal. The use of Ni and Co films has also the advantage that by
the choice of the film thickness the easy direction of magnetization can be tuned
to the in-plane (5 ML Co/Cu(100)) or out-of-plane (15 ML Ni/Cu(100)) direction.
By sublimation at 485 K of octaethylporphyrin Fe(III) chloride (OEP), a coverage
of one monolayer on the ferromagnetic films could be achieved (see [42, 43] for
further experimental details).
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Fig. 5.10 Top left: schematic illustration of the Fe-OEP-chloride molecule. Top right: element-
specific hysteresis curves of the Fe atoms (filled squares) and Ni (full line) obtained at the L3-edge
XMCD maxima of Fe OEP on Ni/Cu(100) at 300 K [42]. Bottom: normalized X-ray absorption
coefficients for right and left circularly polarized X-rays u (E) (red) and ™ (E) (blue) and XMCD
(green) at the L3 -edges of the central Fe atoms of the OEP molecules and the Ni film (300 K,
10mT)[42]. The inset depicts the orientation of the sample to the incident X-rays. The arrows for
the Fe and the Ni film show the alignment of the spins. Figure taken from [44]

In contrast to the single molecule magnets that exhibit magnetic ordering by
intra-molecular exchange phenomena as, for example, described by R. Sessoli et al.
in this book, the porphyrin molecules studied here are paramagnetic. Hence, a cru-
cial question is if the paramagnetic molecules show a magnetic coupling to the
ferromagnetic films, and in that case what would be the nature of the coupling.
One could think of direct exchange phenomena, for example, by hybridization,
but also indirect exchange mechanisms like superexchange are imaginable. There-
fore, we studied the magnetism of the porphyrin molecules and the ferromagnetic
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films separately by the XMCD technique. The results for the Ni film substrate are
given in Fig.5.10 (bottom). Clear dichroic signals are revealed at the Ni as well
as the Fe L3 »-edges. This means that the Fe spins in the molecules present an
obvious ordering. The data are recorded at room temperature and at an applied
field of 10 mT only. At these conditions, a paramagnet would hardly exhibit such
ordering of the spins. Hence, there must exist a ferromagnetic coupling to the Ni
film. By means of density functional theory, the nature of this coupling was inves-
tigated. It turned out that a 90° indirect exchange mechanism via the N-atoms
is responsible for this coupling [42]. Furthermore, the strength of the coupling
was studied by temperature-dependent XMCD measurements [43]. Thereby, it was
found that the coupling to the Ni films is considerably weaker than that to the Co
film. Interestingly, we could show that the coupling of the porphyrin molecules to
the ferromagnetic films can be changed from ferromagnetic coupling to antiferro-
magnetic coupling if the Ni or Co film is covered by 0.5 ML of atomic oxygen.
To achieve a more detailed experimental understanding of the ferromagnetic cou-
pling, we investigated the magnetic hysteresis loops element specifically by tuning
the photon energy to the maximum of the dichroic signals at the Fe and Ni L3-
edges. To record the hysteresis loops, the XMCD signal was measured as a function
of the applied field. The result is presented in Fig.5.10 (top right). Obviously, the
two curves coincide, which shows that the Fe-spins can be switched by reversing
the magnetization of the subjacent ferromagnetic films. The hysteresis loop at the
Fe L3-edge is more noisy than the one at the Ni L3-edge. The reason is the small
amount of material: one monolayer of Fe—porphyrins corresponds to an effective
Fe-coverage of about 1/100 ML. But because of the high sensitivity of the XMCD
spectroscopy, the dichroic signal and the hysteresis can be clearly resolved as shown
in Fig. 5.10.

For the analysis of the coupling of the porphyrin molecules to the ferromagnetic
films, the orientation of the molecules on the surface is crucial. Therefore, we stud-
ied the X-ray absorption spectra with linearly polarized X-rays at the nitrogen and
carbon K-edges in the near-edge regime (NEXAFS). Spectra were taken at normal
(90°) and grazing incidence (20°). The results shown in Fig.5.11 present a promi-
nent difference in angular dependence — the so-called XNLD. The NEXAFS spectra
show clear excitations into the antibonding 7* and o* molecular states. At normal
X-ray incidence, the 6* resonances dominate the spectra. As these resonances stem
from the scattering of the photoelectron at the surrounding atoms, it can be con-
cluded that the molecules are basically oriented flat on the surface. Accordingly, at
grazing incidence the 7 * resonances are detected. The angular dependence is more
pronounced at the N K-edge compared to the C K-edge. The reason is that not all
the carbon atoms, as for example, in the ethyl groups, are located in the molecular
plane. Therefore, angular dependence at the C K-edge is diminished by averaging.
Hence, XNLD at the N and the C K-edges shows that the molecules are lying flat
on the surfaces, which enables the coupling of the Fe spins to the ferromagnetic
films.
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Fig. 5.11 Angular dependence of the NEXAFS (linear polarization) of Fe OEP at the C K-edge
(left) and N K-edge (right) for the Co and Ni substrates at 300 K. X-rays were applied at normal
and grazing incidence (20°). After [42]

5.7 Conclusions and Outlook

In this article we presented the advantages and possible misinterpretations of XMCD
investigations. We provide insight into the theoretical background, the standard
analysis procedures, as well as the corrections of the data for specific detection
schemes. The danger of an incorrect analysis by the standard procedures was
exemplified by XMCD measurements of magnetic systems of current interest: the
effect of the reduced spin—orbit splitting in the initial states leading to a devia-
tion of the branching ratio from its statistical value was shown for the induced
moments in light 3d elements. Furthermore, the strong spin-dependence of the tran-
sition matrix elements for the electric dipolar transitions of rare earth elements at
the L3 -edges was described. The neglect of this effect even yields the wrong
sign of the 54 moments for these elements. The comparison of the experimen-
tal data with ab initio calculations avoids the pitfalls of the sum rule analysis. In
contrast, the investigation of paramagnetic biomolecules on ferromagnetic surfaces
demonstrates the beauty of the XMCD technique: the magnetic properties of the
Fe—porphyrin molecules can be studied separately from the ferromagnetic sur-
faces. Even the element-specific hysteresis curves can be taken, which show that
the Fe spins in the molecules can be switched by reversing the ferromagnetic
film. This high sensitivity together with the possibility to analyze spin and orbital
moments in an element-selective way will definitely advance modern magnetism
research.
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Chapter 6
X-Ray Detected Optical Activity

A. Rogalev, J. Goulon, F. Wilhelm, and A. Bosak

Abstract The detection of optical activity (OA) with X-rays became possible with
third generation synchrotron radiation sources. X-ray detected OA stems mainly
from electric dipole—electric quadrupole interference terms, which mix multipoles
of opposite parity: this implies that these effects can be observed only in sys-
tems with broken inversion symmetry. Natural OA refers to effects that are even
with respect to time-reversal symmetry, while nonreciprocal OA is concerned with
time-reversal odd contributions. Various types of X-ray dichroisms related to either
natural or nonreciprocal OA were measured at the ESRF and are briefly reviewed in
this chapter.

6.1 Introduction

Natural optical activity (OA) was discovered in 1811 by Arago and Biot [1, 2],
who observed the rotation of the plane of polarization of visible light in a crys-
tal of quartz. In 1845, Faraday [3] found that the plane of polarization could also
be rotated when a beam of visible light propagated through a medium subject to
a strong magnetic field: he just discovered magneto-optical activity. Even though
what was measured was in both case a rotation of the plane of polarization of light,
the underlying mechanisms involved in those two experiments are fundamentally
different.

Magneto-optical (MO) effects arise as a consequence of frequency dispersion:
with an external magnetic field or an internal exchange field, one may induce an
unbalanced shift of the density of states involved in optical transitions caused by
either right- and left-circularly polarized light. MO effects are currently described
within quantum theory as the interaction of circularly polarized photons with elec-
tron spins through spin—orbit interaction. The leading terms in MO effects are thus
proportional to pure electric dipole (E1.E1) transitions. MO activity then requires
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time-reversal symmetry breaking, but it does not require the sample to satisfy any
specific symmetry condition.

On the other hand, OA is a consequence of spatial dispersion [4], that is, it
implies a dependence of the transition probabilities on a space variable r and on
the light wavevector K. As a first order spatial dispersion effect linear in k, OA is
inherently associated with transition probabilities that mix multipoles of opposite
parity, for example, electric dipole-magnetic dipole (E1.M 1) or electric dipole—
electric quadrupole (E1.E2). The Curie symmetry principle states that this can
occur only in systems with broken inversion symmetry. OA effects that are even
with respect to time reversal symmetry, such as optical rotation or circular dichro-
ism, are commonly referred to as natural OA or reciprocal OA. Time-reversal odd
OA phenomena do also exist, even though the subject is not so-well documented: the
corresponding phenomena are most often referred to as nonreciprocal OA effects.
Let us stress that these new effects are fundamentally different from MO effects and
can only be observed in parity-odd magneto-electric media.

Shortly after its discovery, OA of visible light has developed as one of the most
powerful spectroscopic tool in physics, chemistry, and biology, and this technique
has fascinated many successive generations of scientists. The existence of OA in
the X-ray range was questioned for nearly one century, that is, until X-ray natural
circular dichroism (XNCD) was unambiguously detected at the ESRF in a series
of non-centrosymmetric crystals [5—8]. Such pioneering experiments became feasi-
ble, thanks to the recent availability of intense beams of circularly polarized X-rays
at third-generation synchrotron radiation sources. Let us emphasize, however, that
the origin of OA is not identical in optical and in X-ray spectral regions. This is
because the E1.M1 interference terms, which dominate OA measured with visi-
ble light, become vanishingly small in X-ray spectroscopy because magnetic dipole
transitions (M 1) from deep core levels are forbidden, at least in nonrelativistic the-
ories. Fortunately, in the X-ray range there is a significant contribution from the
E1.E2 interference term [9], which, in contrast, plays only a marginal role at opti-
cal wavelengths. It is now well documented (see, e.g., [10]) that the E1.E2 terms
are responsible for most OA features detected in the X-ray range. Various types of
X-ray dichroisms related to either natural or nonreciprocal OA were measured at the
ESRF and are reviewed in the present chapter.

In the next section, the gyration tensor formalism is used to discriminate between
several types of dichroisms related to OA: this formalism is most helpful to identify
various effects that can be observed in a non-centrosymmetric crystal. In Sect. 6.3,
we shall draw attention onto instrumentation developments related to the measure-
ments of OA with X-rays. In the following sections, we have selected some typical
results that provide us with good illustrations of either natural or nonreciprocal OA
in the X-ray regime. In the last section, we introduce briefly edge-selective sum
rules [11], which made it possible to identify the effective operators responsible for
X-ray detected OA.



6 X-Ray Detected Optical Activity 171

6.2 X-Ray Detected OA Tensor Formalism

X-ray detected OA can be most easily described using a complex gyration tensor,
which takes into account spatial dispersion effects, that is, the breakdown of the
usual electric dipole approximation in radiation—matter interactions. A quick way
to introduce this tensor is to use the theory of refringent scattering which was elab-
orated by Buckingham and his colleagues [12, 13] to describe OA measured with
visible light. We have reported elsewhere an extension of this theory into the X-ray
regime [14]. The starting point of this approach is that all modes propagating inside
a crystal should be parallel to the wavevector of the incident beam: this requirement
is quite acceptable in the X-ray range where the real part of the refractive index
n = 1—4§ is very close to unity (§ < 107°): this explains why the critical angles for
X-ray reflection ©, = V2§ usually do not exceed a few micro-radian.

For a transverse polarized wave of wavevector k, the forward scattered amplitude
is most conveniently described with a complex tensor a*, which can be expanded in
series as

afy = o + Gk + (300 + gniy a2 + . (6.1

The first term refers to the rank-2 electric dipole complex polarizability tensor
(a* o< E1.E1). This term is fully symmetric and describes natural linear birefrin-
gence as well as natural linear dichroism effects. In an external magnetic field or in
the presence of spontaneous magnetic order, this tensor has an antisymmetric part
that is nonzero: the latter component is at the origin of the Faraday effect and of the
magnetic circular dichroism. There are as well additional “magnetic” contributions
to the symmetrical part, but the latter contributions are quadratic in the magneti-
zation: the corresponding terms describe the Cotton—Mouton effect and magnetic
linear dichroism.

The last term in (6.1) involves two complex rank-4 tensors: the pure electric
quadrupole polarizability tensor (Q* oc E2.E2) and the electric dipole—electric
octupole interference term (n* oc E1.E3). Many experimental results have accu-
mulated over these recent years [15], which support the view that the electric
quadrupole (E2.E?2) contribution should not be neglected in X-ray absorption spec-
troscopy because they are responsible for weak natural X-ray linear dichroisms and
for additional signatures in X-ray magnetic linear or circular dichroism spectra [16].
Typically, the electric quadrupole contribution can give rise to a detectable optical
anisotropy in cubic crystals, which can be measured either with visible light [17,18]
or with X-rays [19,20]. It may be worth emphasizing here that the electric dipole—
electric octupole interference term mixes multipole moments of the same parity and
hence cannot give rise to any OA effect.

In the present paper we want to focus on the second term of (6.1), which is
often identified as the complex, rank-3 gyration tensor ({* o« E1.E2 or E1.M1).In
the absence of any external magnetic field (or spontaneous magnetic order), * is
fully antisymmetric and describes natural OA effects, that is, the reciprocal rotation
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of the plane of polarization, circular birefringence, and natural circular dichroism.
One should emphasize here again that the elements of the gyration tensor ¢* are
associated with transition probabilities that mix multipoles of opposite parity: those
terms vanish except in non-centrosymmetric systems.

The gyration tensor has three irreducible representations with respect to the
symmetry operations of the rotation group SO3 [21]:

e A pseudo-scalar part associated only with the £1.M1 interference term, which
is responsible for the rotatory strength measured at optical wavelengths in enan-
tiomorphous (chiral) systems

e A polar vector part involving both E1.M1 and E1.E?2 interference terms: it is
responsible for a (very) weak longitudinal component of electrical polarization
that is a typical property of pyroelectric materials

e A rank-2 pseudo-deviator part to which both E1.M1 and E1.E2 interference
terms contribute.

As far as X-ray absorption spectroscopy (XAS) is concerned, magnetic dipole
transitions (M 1) are forbidden by standard ““ nonrelativistic” selection rules. How-
ever, as first pointed out by Goulon [9], the interference between electric dipole
and electric quadrupole E'1.E2 can still contribute to X-ray detected OA. This was
confirmed later on by more recent theories [22-24]. Thus, at this stage, we expect
both the vector-like and the pseudo-deviator representations to contribute to X-ray
detected OA. As a pseudo-deviator is a traceless object, it immediately appears that
there is a priori no hope to measure any sizeable X-ray detected OA in a sample that
would lack orientational order, for example, a powder or a solution. It then becomes
quite obvious that enantiomorphism (or chirality) and optical activity are two dis-
tinct concepts that should not be confused. Moreover, not all non-centrosymmetric
crystals are suitable to detect OA in the X-ray range. Following Jerphagnon and
Chemla [21], we have summarized in Table 6.1 which ones of the 21 classes of
non-centrosymmetric crystals should be compatible with the detection of natural
OA with X-rays: only 13 crystal classes that admit a pseudo-deviator as rotational
invariant in SO(3) may exhibit XNCD due to the {* o E1.E?2 gyration tensor; on
the other hand, the so-called Voigt—Fedorov dichroism might be observed only in
ten crystal classes, which admit a polar vector as irreducible representation.

When a crystal is odd with respect to both space parity and time-reversal, the
gyration tensor ¢* then exhibits an additional symmetric part. This is the latter term
that is at the origin of a variety of nonreciprocal OA effects such as nonreciprocal or
gyrotropic birefringence, nonreciprocal linear dichroism, magneto-chiral birefrin-
gence, and dichroism. Systems in which both the temporal and spatial inversion
symmetry are broken belong to the remarkable class of magneto-electric materi-
als. Dzyaloshinskii [25] was the first to point out that magnetoelectric solids had
precisely time- and parity-odd properties, but which should remain invariant with
respect to the product of both operations. There are only 58 Shubnikov groups
that are compatible with magnetoelectric effects [26]. We have analyzed elsewhere
[11] which nonreciprocal OA effect could be measured for a given magnetoelectric

group.
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Table 6.1 Irreducible components of the gyration tensor in non-centrosymmetric crystals

Crystal classes Point groups ~ Pseudo scalar Polar vector Pseudo-deviator
Enantio-morphism Voigt/Fedorov XNCD
(E1.M1) (E1.M1) & (E1.E2) (E1.M1) & (E1.E2)
43m 6m 6 T, D3y, Cy, No No No
43223 OT Yes No No
622 32 422 D¢ D3 Dy Yes No Yes
6mm 3m 4mm Cg,Cs, Cy, No Yes No
634 Ce C3Cy Yes Yes Yes
2m Doy No No Yes
4 Sy No No Yes
mm?2 Cy, No Yes Yes
222 D, Yes No Yes
2 C, Yes Yes Yes
m Cy No Yes Yes
1 C, Yes Yes Yes

If we restrict ourselves to dichroism experiments, it can be shown that every com-
ponent of the Stokes polarization vector of the incoming X-ray beam is associated
with a well identified dichroism related to OA:

So = X-ray magnetochiral dichroism (XM yD) [27]

S1 = nonreciprocal X-ray magnetic linear dichroism (nr-XMLD) [28]

S, => Jones nonreciprocal cross XMLD (Jones XMLD)!

S3 = X-ray natural circular dichroism (XNCD) [5] and Voigt-Fedorov
dichroism [29]

6.3 Instrumentation and Experimental Considerations

X-ray dichroism can be defined as the difference in the X-ray absorption cross sec-
tions measured for two orthogonal polarization states of the incident X-ray beam:
right- and left-handed polarizations for circular dichroism, and vertical and horizon-
tal polarizations for linear dichroism measurements. Given that the amplitude of the
dichroic signal can be as small as a few parts in 104 compared to the polarization
averaged edge jump signal, the experimental setup should be carefully optimized
if one wants to record such tiny dichroic effects free of artifacts. All experiments
reported in this paper were carried out at the ESRF beamline ID12, which was
designed for spectroscopic applications requiring a full control of the polarization
of X-ray photons of energy ranging between 2 and 15 keV. Given that the perfor-
mances of this beamline were already discussed in details elsewhere [30,31], we
shall focus hereafter on a few key points that concern OA experiments.

!'To the best of our knowledge this dichroism had not been detected with X-rays as yet.
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The X-ray source consists of three helical undulators, which are inserted in the
ID12 straight section of the storage ring: (1) the HELIOS-II (HU-52) undulator [32],
(2) the APPLE-II (HU-38) undulator, and (3) the so-called “ElectroMagnet Perma-
nent Magnet Hybrid Undulator” (EMPHU) [33]. All of them can produce either
circularly or linearly polarized X-ray photons, but the three devices were carefully
optimized to complement each other. Typically, (3) is most appropriate for experi-
ments at low photon energies (E < 4keV) and benefits of the advantage that one
can flip very rapidly (in ~160ms) the circular polarization of the emitted photons
from left to right. The HU-52 and HU-38 undulators can deliver a much higher
photon flux over a broad energy range but one cannot flip the polarization as fast.

The monochromator is the most critical component of a beamline designed for
XAS. This is because the quality of the spectra can be dramatically spoiled by a
poor energy resolution, by the transmission of unwanted harmonics, or by insta-
bilities of the exit beam during energy scans, etc. The beamline ID12 is equipped
with a UHV compatible, fixed-exit, double-crystal monochromator manufactured
by KoHzu Seiki Co. following specifications imposed by the ESRFE. The excep-
tional quality of the mechanics, in particular the high precision of the translation
stages, allows one to obtain a fixed exit beam (within +5 L m) over the whole
range of Bragg angles that are accessible (6°-80°). The monochromator is most
often equipped with a pair of Si <111> crystals. Note that the temperature of each
individual crystal is kept at —140°C (£0.2°) using a cryogenic cooling system
developed in-house and which proved to be totally free of undesirable vibrations.
The stability of the maximum of the rocking curve was shown to be better than
0.1 arcsec over periods of several hours. For two consecutive scans, we obtained an
excellent reproducibility of typically 1 meV or even better.

As far as we are concerned with X-ray circular dichroism experiments, one
should keep in mind that the double crystal monochromator does not preserve the
initial degree of polarization of the undulator beam, except for o or m linearly
polarized beams. Numerical simulations were performed to simulate the transfer of
polarization by a Si <111> double-crystal monochromator. The polarization rates
(i.e., the Stokes—Poincaré components P, P,, P;) were calculated as a function
of the energy of the incident photons over the range 2—10keV. Typical results are
reproduced in Fig. 6.1.

Such calculations were performed on assuming that the incoming undulator beam
was entirely circularly polarized (P; = 1). At photon energies around ca. 2.8 keV,
P drops down to very low values: this implies that X-ray circular dichroism mea-
surements should be most difficult in the corresponding energy range. Indeed, this
behavior is typical of the Brewster’s angle (&g = 45°), where the monochromator
acts as a linear polarizer (P} =1). There is an additional problem that stems from
the fairly different reflectivity of the o and m-components: linearly polarized com-
ponents with the polarization vector rotated by £45° can possibly be generated by
the monochromator, even though the incident beam is perfectly circularly polarized.
In critical cases, the unwanted P, component can even be fairly intense (nearly 20%
at 2.2 keV) with the important point that it is proportional to the P3 component of the
incident X-ray beam. This can have a dramatic consequence: whenever the helicity
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Fig. 6.1 Calculated polarization rates of the exit beam of a Si <111> double-crystal monochro-
mator. It was assumed that the incident X-ray beam was circularly polarized with typically
P3 =1

of the undulator beam is reverted, the Stokes components P, and P get simultane-
ously reverted, whereas P remains unaffected. In practice, this will spoil all types
of circular dichroism measurements (i.e., XMCD as well as XNCD) carried out on
biaxial crystals because a weak circular dichroim signal can easily be masked by a
much stronger linear dichroism signal [34, 35]. One should also worry about sim-
ilar difficulties experienced with uniaxial crystals whenever the optical axis of the
sample is not strictly parallel to the direction of propagation of the X-rays.

As it was highly desirable to fully characterize the polarization state of the
monochromatic beam, we found most convenient to insert downstream with respect
to the monochromator a UHV compatible quarter wave plate (QWP) chamber
equipped with a diamond single crystal [36]. It is also very convenient to exploit
a QWP for X-ray linear dichroism (XLD) experiments [30]: the QWP makes it easy
to convert a circularly polarized X-ray beam into a linearly polarized beam with a
full control of the orientation of the polarization vector. Moreover, it is straightfor-
ward to switch rapidly from one linear polarization to the orthogonal one, with the
advantage that one can flip the polarization vector several times for each data point
of an energy scan. Obviously, such measurements become much less sensitive to
low-frequency instabilities of the source, and small linear dichroism signals can be
measured more accurately.

So far, all OA experiments carried out at the ESRF beamline ID12 concerned
thick single crystals, which were much too absorbing for measurements in the
transmission mode. All spectra were then systematically recorded in the total fluo-
rescence yield mode using photodiodes as detectors. The backscattering geometry of
these detectors was found most attractive as it makes it possible (1) to set the optical
axis of the crystal either parallel or at a given angle with respect to the wavevector
k of the incident X-ray photons; (2) to rotate the crystal around the direction of the
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wavevector k. The latter option is crucial for OA experiments on biaxial systems.
Last but not least, in the case of magnetoelectric solids, the sample can be inserted
inside the bore of a superconducting electromagnet so that a magnetic field H and
an electric field E both parallel to the wavevector k can be applied simultaneously
for the magnetoelectric annealing process.

6.4 Natural Optical Activity Detected with X-Rays

6.4.1 X-Ray Natural Circular Dichroism

X-ray natural circular dichroism (XNCD) refers to the difference in X-ray absorp-
tion cross-sections measured with left- and right-circularly polarized photons inde-
pendently of the presence or absence of any external magnetic field. The first
experiment, which firmly established the existence of natural circular dichroism
in the X-ray range, was performed at the ESRF in 1997 using a uniaxial laevo-
rotatory crystal of «-LilO3, which belongs to the enantiomorphous crystal class 6
[5]. A rather large XNCD signal (up to 6% of the edge jump) was observed at the
iodine L; absorption edge. At the L, and L3 absorption edges, the recorded XNCD
spectra were found to have very similar spectral shapes and the same sign: this
observation is at variance with XMCD spectra, which most often exhibit opposite
signs at spin—orbit split edges. This can easily be understood as the spin—orbit and
exchange splitting are the driving forces in XMCD, while this is not the case in
XNCD, as long as the signal is to be assigned to electric dipole—electric quadrupole
E1.E?2 interference terms. Our interpretation was supported by a direct comparison
of the experimental spectra with ab initio simulations carried out in the framework
of the multiple scattering theory [22,24].

The existence of a well-resolved pre-edge feature assigned to 1s — 3d quadrupo-
lar transitions is often found on the low energy side of the K-edge X-ray absorption
spectra of transition metals [15]. The presence of this signature is often retained as
a favorable circumstance to detect a large XNCD signal. As an example, we have
reproduced in Fig. 6.2 the XAS and XNCD spectra recorded at the nickel K-edge
using an enantiomeric single crystal of a «-NiSO4 x 6H,O. This uniaxial crystal
(with four formula units per unit cell) belongs to the enantiomorphpous tetragonal
space groups, P4,2,12 or P432,2 [37]. This compound has long been known to
exhibit a natural OA only in the crystalline state, due to the chiral arrangement of
nonchiral units: four (nearly) perfect Ni(HZO)éJr octahedrons are located along a
screw axis, which is parallel to the tetragonal axis of the crystal, that is, the crys-
tallographic ¢ axis, which is the optical axis. OA measurements on this crystal date
back to the 1940s [38] and were reported from the infrared up to the UV range.
There was even an attempt to detect some natural optical rotatory power in the
X-ray range [39] using Cu K, radiation. The latter experiment had, however, very
little chance to yield any positive result, because it was performed far from the
absorption edges of the atoms constituting the crystal.
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Fig. 6.2 Ni K-edge XNCD of a dextro-rotatory uniaxial single crystal of «-NiSO4x6H,O. The
XNCD spectrum was recorded with the wavevector of the incident X-ray photons taken either par-
allel or perpendicular to the optical axis of the crystal. A polarization averaged XANES spectrum
was added for the sake of comparison. Note that the XNCD signatures recorded for two different
orientations may have the opposite sign

As one can judge from Fig. 6.2, the XNCD signal recorded at the Ni K-edge is not
marginally small: its amplitude is of the order of 1% of the edge jump. Surprisingly,
we did not observe the maximum of the XNCD signal in the pre-edge region but at
much higher energy, and the XNCD spectrum was found to extend well above the
absorption edge. This is at variance with what was previously reported regarding
the XNCD spectra of chiral transition metal complexes, for example, for XNCD
measurements carried out at the Co K-edge with a single crystal of the propeller-like
organometallic complex 2[Co(en)3Cl3]-NaCl-6H,O [8] or at the Cu K-edge with a
single crystal of CsCuCljz [40]. To check whether the XNCD spectrum measured
at the Ni K-edge was really to be assigned to the E1.E2 interference term, we
decided to carry out further measurements for several orientations of the crystal,
in particular on setting the optical axis either parallel or perpendicular to the X-
ray wavevector. From symmetry considerations [22], one would expect that, for
such a uniaxial crystal, the angular dependence of the XNCD signal should vary
as 3 cos26 — 1, where 6 denotes the angle between the X-ray wavevector and the
optic axis of the crystal. This is exactly what we found as illustrated with Fig. 6.2:
the XNCD spectrum recorded with the X-ray wavevector perpendicular to the optic
axis is typically twice weaker and, interestingly, it has the opposite sign with respect
to the XNCD spectrum recorded in the parallel configuration. This result provided
us with an excellent illustration of the fact that the E1.E2 mechanism can be very
efficient at the K-edge of transition metals. It also leaves very little hope to detect
easily any significant contribution of the pseudo-scalar E1.M1 interference term
under such experimental conditions.
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Let us nevertheless assume that a weak E1.M1 XNCD signal may exist. The
only chance to detect it is when the optic axis of the crystal is set at the magic angle,
ca. 54.73° with respect to the X-ray wavevector. This is because the XNCD sig-
nal due to E1.E2 interference term should vanish in this geometry so that only the
isotropic pseudo-scalar E1. M1 term could ultimately contribute to the XNCD spec-
trum. We have performed a whole series of angle dependent XNCD measurements
for both the enantiomers. The results are shown on Fig. 6.3, where we focused on
the XNCD spectra recorded in the pre-edge region of the Ni XANES. For the first
time we succeeded in measuring a very weak XNCD signal that may reasonably be
assigned to the E'1.M 1 interference term: the corresponding spectra are reproduced
on Fig. 6.3a. As expected the XNCD spectra have the opposite sign for the two enan-
tiomers and their amplitudes are as small as 3 x 10™> with respect to the edge-jump.
To the best of our knowledge, this appears to be the smallest static circular dichro-
ism signal ever measured in the X-ray range. For the sake of comparison, we have
also reproduced in Fig. 6.3b the XNCD spectra recorded with the X-ray wavevector
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Fig. 6.3 The pre-edge part of the Ni K-edge XNCD spectra for two enantiomeric uniaxial single
crystals of ¢-NiSO4 x6H,0. (a) XNCD spectra assigned to the £1.M 1 interference term, measured
at the magic angle. (b) XNCD spectra recorded with the X-ray wavevector parallel to the optic axis.
The XANES spectrum was added for the sake of comparison. Note that the £1.M 1 XNCD signal
is ca. 60 times smaller than the signal assigned to the dominant £1.E2 mechanism
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parallel to the optic axis, which are ca. 60 times larger and are indeed dominated
by the E1.E2 interference term. It is quite noteworthy that the latter spectra have
systematically the opposite sign with respect to the E1.M1 signatures measured
with a crystal of the same enantiomer. This result supports a tentative interpreta-
tion we gave elsewhere for a weak XNCD signal measured at the Co K-edge on
a pellet of a powdered sample of 2[Co(en)3Cl3]-NaCl-6H,O chiral organometal-
lic complexes[11]. Recall that monoelectronic M1 transitions from a 1s core level
to 3d states are strictly forbidden in a nonrelativistic approach, but they become
weakly allowed in a relativistic theory[41]. That is why the E1.M1 contribution to
the X-ray natural circular dichroism is so weak.

Therefore, the experiment reproduced in Fig. 6.3 sets the highest limit for the
E1.M1 contributions to natural OA in the hard X-ray range. When no single
crystal is available, we found another way to recover a well-detectable XNCD
signal assigned to the E1.E2 interference term: our strategy was simply to break
artificially the orientational isotropy of space, for example, dissolving the chiral
compound of interest in a liquid crystal aligned in a high magnetic field [11].

Given that the XNCD signal is not restricted to the near-edge region of the
XAS spectrum, one may question whether it can extend over a wider energy range
where EXAFS oscillations are usually observed. The existence of such oscilla-
tions in the XNCD spectrum was predicted by theory: those oscillations currently
referred to as Chiral-EXAFS (y-EXAFS) signatures could be seen as the analog of
Magnetic-EXAFS signatures for XNCD. The key point is that y-EXAFS oscilla-
tions originate only from symmetry allowed multiple-scattering paths, because all
single scattering paths are intrinsically achiral: vertical mirror planes would trans-
form them back into themselves. Chiral-EXAFS oscillations were unambiguously
detected at the Ly -edge of Te using a uniaxial crystal o-TeO,[35]: taking full advan-
tage of the capability of the EMPHU source to flip rapidly the helicity of X-rays,
we were able to detect a tiny XNCD signal over a wide energy range. This positive
result prompted us to try to identify the multiple-scattering paths contributing most
substantially to the measured y-EXAFS signal. Simulations carried out with the
multiple scattering formalism revealed that chiral paths involving the nearest oxy-
gen neighbors represented the dominant contribution, while chiral paths involving
heavy Te would suffer from a heavy Debye—Waller damping. These results led to
the conclusion that most of the XNCD signal could be accounted for by the chiral
arrangement of the low-Z oxygen atoms around the 7T'e atom.

The experiments carried out at the ESRF contributed to establish that X-ray
detected natural OA is not necessarily a weak or marginal effect: we proved that
XNCD can readily be measured in oriented non-centrosymmetric systems. More-
over, the sign of the XNCD signature can a priori be correlated with the absolute
configuration of chiral structures via either the E1.E2 interference term or the
E1.M1 contribution if the latter is measurable. XNCD is an element selective probe
of local chirality that could be used as a unique tool to extract quantitative infor-
mation regarding the mixing of orbitals of different parity at a given atom. The
knowledge of the amount of mixing should be of direct interest to explain and
predict the nonlinear optical properties of acentric crystals.
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6.4.2 Vector Part of X-Ray-detected OA

In this section, we focus on crystals in which the gyration tensor has an irre-
ducible part that transforms as a polar vector in O(3). There are three classes of
non-centrosymmetric crystals (4 mm, 3 m, 6 mm), which look particularly attrac-
tive because their gyration tensor have only an irreducible part that transforms as
a vector. Crystals that belong to those classes do not exhibit any optical rotation
or any natural circular dichroism in absorption: this is why such crystals have long
been (improperly) quoted as optically inactive.

In 1905, Voigt [42] was the first to suggest that these crystals should exhibit OA.
In 1959, Fedorov [43] proposed a new way to detect such a peculiar type of OA:
his idea was that, under oblique incidence, a linearly polarized light should be
reflected as an elliptically polarized light by a crystal at suitable symmetry. Shortly
later, Fedorov and his colleagues [44] refined their proposal and discussed specific
geometries aimed at maximizing the amplitude of this new OA effect at optical
wavelengths. Unfortunately, the reality of this effect was firmly established only
in 1978 when Ivchenko and coworkers measured the OA of an hexagonal crys-
tal of cadmium sulfide (CdS) on investigating its optical properties in the exciton
resonance region [45].

The theory of reflectivity in non-centrosymmetric uniaxial crystals was carefully
revisited more recently by Graham and Raab [46]. A major outcome of this work
was to show that one could easily access to the vector part of OA using circular
intensity differential reflectivity measurements when the optical ¢ axis is perpen-
dicular to the reflection plane and when the angle of incidence is close to 45°.
Unfortunately, specular reflectivity of X-rays cannot be used for such measure-
ments because the off-diagonal terms responsible for OA just vanish at glancing
angles. However, we suggested that the vector part of OA could still be measured
in the X-ray resonant diffraction regime using circularly polarized X-rays at Bragg
angles near 45 °, that is, under conditions where the crystal behaves just like a linear
polarimeter.

The first experiment of this type [29] was performed by the ESRF ID12 team
using a UHV compatible reflectometer/diffractometer featuring an excellent mecha-
nical reliability and a high level of reproducibility [47]. The crystal that we selected
for this challenging experiment was a high-quality single crystal of zincite (ZnO),
which exhibits the hexagonal structure of Wiirtzite. We decided to exploit the strong
(300) reflection characterized by a Bragg angle varying from 43.13° to 42.69° over
the whole Zn K-edge XANES range (9655-9735eV). Under such conditions, the
angular width of the reflection was measured to be typically 5.4 arcsec. Note that
the Zn atoms contribute for 80% of the structure factor of this reflection.

The results of this experiment are displayed in Fig.6.4. A typical Zn K-edge
DANES (diffraction anomalous near edge structure) spectrum of the zincite crystal
is reproduced in Fig. 6.4a, in which we plotted the integrated area below the (300)
diffraction peak as a function of the incident photon energy. Note that the crystal ¢
axis was kept strictly perpendicular to the scattering plane. The CID spectra shown
on Fig. 6.4b were obtained as a direct difference of the DANES spectra recorded
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Fig. 6.4 Circular intensity differential scattering measured at the Zn K-edge using the (300)
reflection by a single crystal of zincite: (a) Polarization averaged DANES spectrum. (b) Circu-
lar intensity differential scattering measured in DANES spectra for two orientations of the crystal.
(¢) Comparison of the residual signal with the XLD spectrum

with left- and right-circularly polarized incident photons. Graham and Raab pointed
out that the sign of the circular dichroism should be reversed if the crystal was
rotated by 180° around the normal to the reflection planes, that is, when the angle
between the ¢ axis of the crystal and the reflection plane changed from +90° to —90°.
This is precisely what is observed in Fig. 6.4b. Note that such a 180° rotation should
leave the unwanted linear dichroism unchanged, provided that the diffraction planes
are strictly perpendicular to the rotation axis. In the absence of any experimental
artifact, the sum of two circular dichroism spectra should reproduce the X-ray lin-
ear dichroism (XLD) spectrum expected as a consequence of the existence of a
small P, polarization component in the exit beam of the monochromator: the cor-
responding amplitude of the component was estimated to be of the order of 2% at
9.7keV. As illustrated with Fig. 6.4c, this residual spectrum matches perfectly the
XLD spectrum that could be measured simultaneously in the total fluorescence yield
detection mode.

This is the first example of X-ray detected OA measured in DANES spectra using
an acentric single crystal. This experiment clearly supports our view that the vector
part of OA can perfectly be measured in the X-ray range as well as with visible
light. Given that ZnO belongs to a very important class of pyroelectric materials, let
us suggest that this type of experiment could open a new field of applications for
X-ray spectroscopy, in which element- and orbital-selective studies could bring new
information on the ferroelectric properties of single crystals.
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6.5 Nonreciprocal X-Ray-detected OA

6.5.1 Nonreciprocal X-Ray Linear Dichroism

In this section, we draw attention on the possible existence of a nr-XMLD, that is, a
difference in the relative absorption of the o and = components of a linearly polar-
ized X-ray beam. Recall that this effect is expected to be odd with respect to the
time-reversal symmetry and that it can be observed only in magnetoelectric crystals
with broken inversion symmetry. Let us stress once again that this peculiar OA is
fundamentally different from the more common magneto-optical XMLD effect dis-
covered by Van der Laan et al. [48]. which was shown to be a time-reversal even
effect.

As first suggested by Birss and Shrubsall [49] and confirmed by several authors
[50,51], nonreciprocal OA should be detected only in crystals that are magnetoelec-
tric. Recall that magnetoelectric systems form a special class of magnetic ordered
materials in which time-reversal and parity are simultaneously broken, while the
product of the two operators should leave the measured properties unchanged.
The predicted nonreciprocal magnetic linear dichroism is notoriously very small
in the visible region and it took some time before theory could be corroborated with
rather challenging experiments [52, 53].

Even though there are as much as 58 non-centrosymmetric magnetoelectric crys-
tal classes, it does not mean that nr-XMLD can be observed in any experimental
geometry. The geometrical and symmetry requirements to detect such a small effect
with X-rays were discussed in deeper details elsewhere[11]. Unfortunately, most
magnetoelectric crystals are antiferromagnetic, with the additional difficulty that we
have to deal with multidomain states. To observe a nonreciprocal XMLD effect in
an antiferromagnet, one has to grow a single antiferromagnetic domain and should
have the capability to switch from one type of domain to the other. This is usually
achieved with a so-called “magnetoelectric annealing” procedure. Most frequently,
it consists in heating up first the crystal in the paramagnetic phase; then after some
delay time, both an electric and a magnetic field are applied to the sample before
one starts to cool slowly the systems across its antiferromagnetic phase transition.

The first nonreciprocal X-ray magnetic linear dichroism spectrum was tentatively
recorded at the ESRF ID12 beamline [28] using a Cr-doped crystal of vanadium
sesquioxide, that is, (V;_xCryx)203. According to neutron diffraction data [54], the
space—time group of the AFM monoclinic low temperature phase below Ty was
expected to be 2 due to the transfer of magnetic moments towards the oxygen atoms.
As far as this interpretation is correct, the low temperature monoclinic phase of
V,03 should be magnetoelectric. We have to admit that we are not aware of any suc-
cessful measurements of the magnetoelectric susceptibility in V,03. The reason for
the failure of the first experiment reported by Astrov [55] seems to be related to the
fact that the first order transition from the corundum phase to the monoclinic phase
in pure V503 is crystal-destructive. This is why we concentrated our efforts on a
Cr-doped (V1—-xCry )03 single crystal for which x = 0.028. At this concentration,
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not only 7y raises from 150K to ca. 181K, but also the electric resistivity is sub-
stantially increased in the paramagnetic phase. Here, we reused the same crystal as
for previous resonant X-ray scattering experiments carried out at the ESRF beam-
line ID20[56]: this Cr-doped crystal (1.0 x 0.8 x 0.05 mm?) was initially assumed to
have been cleaved perpendicularly to the hexagonal ¢ axis, but it was realized later
that it was slightly miscut. Neutron diffraction experiments tend to suggest that, in
the low temperature (monoclinic) phase, the magnetic moments (1.2 up per V atom)
could be rotated by ca. 71° with respect to the hexagonal ¢ axis: the system should
then exhibit a nonreciprocal XMLD signal.

As illustrated with Fig. 6.5, we observed a rather intense nr-XMLD signal at the
vanadium K-edge (ca. 1% of the edge jump) after magnetoelectric annealing. For
the sake of comparison, we added on the same plot a XANES spectrum recorded at
the V K-edge but deconvoluted to compensate for the effect of the core-hole lifetime
broadening. The nonreciprocal XMLD spectra reproduced in Fig. 6.5 were recorded
after a magnetoelectric annealing process conducted in the geometry E|H||k with ¢
tilted away from k by approximately 10°. Given that the signal was found to change
its sign when the annealing was performed with parallel or antiparallel electric and
magnetic fields and that it was clearly found to vanish above the Néel tempera-
ture Ty = 181K, we keep thinking that there is very little doubt left regarding
the nonreciprocal character of this signal. Let us emphasize that the true orien-
tations of the crystallographic axes a and b were unfortunately unknown in this
experiment: this makes it impossible to clarify whether the nonreciprocal dichro-
ism that was measured is to be interpreted as the Jones dichroism cross XMLD or
as a true nonreciprocal XMLD. In any case, the observed nonreciprocal effect can
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Fig. 6.5 Nonreciprocal XLD spectra recorded at the V K-edge in the monoclinic AFI phase of
the (V|—,Cr,),03 crystal. Magneto-electric annealing was performed either with parallel (+) or
antiparallel (—) electric and magnetic fields. A deconvoluted V K-edge XANES spectrum was
added again for the sake of comparison
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only be understood if the inversion symmetry is broken by the magnetic order as
expected in the space—time magnetoelectric group 2. Thus, our result would support
the interpretation proposed by Word and his colleagues [54]. In this respect, nonre-
ciprocal XMLD experiments could develop as a useful technique to unravel hidden
space—time symmetry in magnetoelectric systems.

Let us draw attention onto the fact that the existence of nr-XMLD effect was
confirmed more recently by Kubota et al. [57], who were able to detect a typical
nr-XMLD signal on recording the XANES spectra of a polar ferrimagnetic crystal
of GaFeOs3 at the Fe K-edge. These authors, however, gave a different name to this
effect, which they called X-ray non-reciprocal directional dichroism (XNDD), thus
referring to the fact that the sign of the effect depends on whether the direction of
propagation of X-rays is either parallel or antiparallel to the outer product of the
magnetization and electric-polarization vectors in the sample.

6.5.2 X-Ray Magnetochiral Dichroism: XM yD

Let us focus below onto another nonreciprocal effect that we tentatively called
X-ray magnetochiral dichroism (XM yD) by analogy with a long anticipated OA
effect [58, 59] that was finally observed in 1997 in the visible by Rikken and
Raupach [60]. A somewhat surprising aspect of this new type of dichroism is
that it can be measured with an unpolarized X-ray beam propagating in a mag-
netochiral medium when the sign of the magnetization is inverted at the absorbing
site. Once more, inversion and time-reversal symmetries should be broken in those
magneto-chiral systems. Indeed, magnetoelectric systems appear here again as good
candidates to measure a magnetochiral dichroism. However, only 31 magnetoelec-
tric groups [61] out of 58 are compatible with the existence of the magnetochiral
effect. Those groups have all in common the characteristic property that their rank-2
ME tensor should have antisymmetric off-diagonal terms.

The first XM D spectrum was measured with a single crystal of chromium
sesquioxyde (Cr,0O3) cooled down to the antiferromagnetic phase. This experiment
required us again to obtain single domains using the well established magneto-
electric annealing procedure. Recall that Cr,O3 is the generic example of mag-
netoelectric solids with a convenient transition temperature of 307 K. The XM yD
spectra were measured at 50 K on exploiting XAS spectra recorded at the Cr K-edge
in the fluorescence excitation mode using the usual backscattering configuration.
We produced artificially an unpolarized X-ray beam by incoherent superposition of
fluorescence excitation spectra recorded with right and left circularly polarized inci-
dent photons: Fo = Fy¢p, + Fip. The Cr K-edge XM D spectra displayed in Fig. 6.6
were obtained in comparing the pseudo-unpolarized XANES spectra recorded for
180° domains grown under the condition of time-reversality after magnetoelectric
annealing. For the sake of comparison, we have reproduced on the sample plot a
deconvoluted, unpolarized XANES spectrum recorded with an equidomain crystal:
in this experiment, the wavevector k was carefully set parallel to the ¢ axis of the
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Fig. 6.6 Cr K-edge XM D spectra recorded either with a (001) single crystal of Cr,O3 or with
a powdered pellet of the same material. In both experiments, we had k||c||E||H. The signal mea-
sured with the powdered pellet was tentatively multiplied by a factor 6. XM yD spectra refer to the
difference of isotropic spectra measured on two 180° domains grown by magnetoelectric anneal-
ing. For the sake of comparison, we added again a deconvoluted XANES spectrum recorded with
a equidomain crystal

crystal. As the rotational isotropy of space is broken when single domains are grown
after magnetoelectric annealing along the direction of (E, H), one may anticipate
that XM yD spectra could be recorded with powdered samples. This was confirmed
experimentally: using a pellet of Cr,O3; powder, we were able to record XMyD
spectra, which look very similar to the previous ones, except that the intensity of the
dichroism was reduced by a factor of the order of 6, such a reduction being nicely
consistent with the theory as discussed in the next section.

Surprisingly, we realized that the magnetic group 3’m’ which is most often
assumed for Cr,O3 was not in the list of the 31 groups that are compatible with
the existence of magnetochiral effects. Thus, our result tend to suggest that the true
magnetic group of Cr,O3 may not be 3'm’ as usually considered on the basis of
early neutron data: in reality, the level of symmetry should be somewhat lower and
we suggested that the true magnetic group might be only 3’. Several interpreta-
tions can be formulated to explain such a lower magnetic symmetry. It is our own
interpretation that the configuration of the chromium spins should be quite correct,
but we expect again some magnetic polarization of the oxygen atoms affecting the
orbital magnetism. This was already envisaged by Shirane and his colleagues [62]
more than 30 years ago: it was precisely suggested by these authors that the covalent
character in the Cr—O bonds should involve a small spin transfer from the chromium
3d-orbitals to the oxygen 2p shell, but they noted that such transferred moment
should be much too small to be detected in neutron diffraction experiments. Recall
that an asymmetric twist of the oxygen planes is already responsible for a reduction
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of the local symmetry of the Cr atoms from C3, to C3 [63]. As pointed out in [64],
the angular momentum unquenched by covalent bonding, with a different quanti-
zation axis than the spins, must be a widespread phenomenon in antiferromagnetic
solids. Therefore, one may perfectly envisage that some orbital contribution to the
magnetoelectric tensor (which could not be measured so far) could well explain a
symmetry reduction.

As far as our interpretation is correct, we must seek for a magnetoelectric group
consistent with the newly measured X-ray detected OA and with more standard
magnetoelectric susceptibility measurements. The only magnetic group that can
reconcile all published results regarding magnetic properties of Cr,O3 is 3'. We,
therefore, propose this group as the true magnetic group describing the spin and
orbital magnetoelectric effects in CrpO3[27].

6.6 Effective Operators for X-Ray Detected OA

The success of X-ray magnetic circular dichroism is, to a large extent, associated
with the availability of the magneto-optical sum rules [65,66]. This is because these
rules made it possible to correlate the integrated XMCD spectra with the expecta-
tion value of the z component of several magnetic operators: < L, >, < S, >, and
< T, >. A similar approach was first envisaged by Natoli [22] for X-ray natural cir-
cular dichroism, but no clear physical meaning was found for the effective operator
responsible for XNCD. Using the powerful method of group generators, Carra and
collaborators derived a whole set of the sum rules applicable to X-ray OA [67-70].
A key achievement was to show that all effective operators responsible for X-ray
OA could be built from a triad of mutually orthogonal vector operators:

e n = r/r, which is a time-reversal even, polar vector associated with the electric
dipole moment

o the orbital angular momentum L, which is a time-reversal odd axial vector

e the toroidal vector £2 = [(n x L) — (L. x n)] /2, which is odd with respect to
both parity and time-reversal.

Interestingly, §2 was rapidly identified with the orbital anapole moment as
defined in textbooks [71]. Recall that the concept of an anapole was first introduced
in 1958 by Zel"dovich[72], who started from symmetry considerations but proposed
it as a useful tool to describe parity-violating interactions.

Up to five spherical operators are required for a full description of the effects
related to X-ray OA:

e The ground state expectation value of the z component of the orbital anapole
moment < £2, > is found to be the key effective operator for XM yD.

e As long as one consider only the transition probabilities associated with the
E1E?2 interference terms, the effective operator responsible for XNCD is the
time-reversal even rank-2 pseudo-deviator built from the tensor product of two
time-reversal odd vectors [L ® .(2](2). The XNCD signal associated with the
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E1.M1 rotatory strength would refer to more complex two-electron operators: an
orbital pseudo-scalar and an orbital pseudo-deviator, both tensors being clearly
two-particle electron operators [73].

e Regarding the vector part of OA, the effective operator is a polar vector (L2 - n)
which, according as to Marri and Carra [70], may well be responsible for
ferroelectric ordering

e The time-reversal odd rank-2 pseudo-deviator defined as [L ® n](z) is another
effective operator responsible for nonreciprocal XMLD.

e An additional operator should still be introduced: it concerns the orbital septor

3
[[L ® L] g .Q] . Its expectation value is involved in the XM yD sum rule as
well as in the nonreciprocal XMLD sum rule.

The significance of the corresponding sum rules and the practical conditions of
their exploitation have been discussed elsewhere [11]. The case of Cr, O3 looks most
interesting. Recently, Di Matteo and Natoli [74] claimed that the largest contribu-
tion should come from the septor terms. This is, however, strongly contradicted by
our experiment carried out with the powdered sample (see Fig. 6.6). If we assume
that the effective operator for the magneto-chiral dichroism is £2, then one may eas-
ily predict [11] that the XM yD signal should be reduced by a typical factor ~5.5
in the powdered sample as compared to the signal measured with the single crys-
tal; if the effective operator was the septor, then the XM yD signal should be hardly
measurable with a powdered pellet as the sum-rule would predict a dramatic reduc-
tion factor (<0.05). This consideration strongly supports our interpretation and our
view that the XM yD sum rule may offer a unique possibility to quantify the expec-
tation value of the orbital anapole moment in Cr,O3: (£2;) &~ 0.03 a.u. This is a
rather small value when compared to the values currently admitted for spin anapoles
[11]. Indeed, this confirms that it would be very difficult — if not simply impossi-
ble — to access the orbital part of the magnetoelectric tensor using conventional
magnetoelectric susceptibility measurements.

There is another interesting implication of the XNCD sum rule: the effective
operator associated with natural X-ray detected OA should be the time-reversal even
direct product of two time-reversal odd operators that are both related to orbital
magnetism. This result establishes a direct link between OA and magnetism. Let
us recall that Pasteur tried very hard for many years to show that chirality and mag-
netism were connected [75], but he could never prove his view within the knowledge
of his time.

In conclusion, we believe that our work contributed to establish X-ray detected
OA as a new, element- and orbital-selective spectroscopy, which appears as a unique
tool to study orbital magnetism in parity nonconserving solids. As far as the sum
rules may give us access to the ground state expectation values of orbital operators,
the nonreciprocal X-ray detected OA might reveal hidden space—time symmetry
properties in magnetoelectric crystals whenever the partially unquenched angular
momentum has a quantization axis slightly different from the quantification axis of
the spins.
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Chapter 7
X-Ray Detected Magnetic Resonance:
A New Spectroscopic Tool

J. Goulon, A. Rogalev, F. Wilhelm, and G. Goujon

Abstract We discuss the information content of X-ray detected magnetic resonance
(XDMR), that is, a novel spectroscopy that uses X-ray magnetic circular dichro-
ism to probe the resonant precession of local magnetization components in a strong
microwave pump field. As XDMR is element- and edge-selective, it appears as a
unique tool to resolve the magnetization dynamics of spin and orbital components
at any absorbing site. We compare different experimental configurations that we
used to get access to element-selective information such as the opening angle and
the phase of precession in iron garnet films or single crystals. In YIG thin films,
orbital magnetization components measured at the iron sites were shown to couple
to magnetostatic waves. We also detected a change in the chirality of the preces-
sion of the Fe orbital magnetization components at the compensation temperature
of GdIG. Extending XDMR up to sub-THz frequencies would considerably enlarge
the range of potential applications of this new spectroscopic tool.

7.1 Introduction

X-ray detected magnetic resonance (XDMR) can be seen as a Pump and Probe
experiment in which X-ray magnetic circular dichroism (XMCD) is used to probe
the resonant precession of either spin or orbital magnetization components in a
strong microwave pump field. XDMR is not just another exotic way to record
ferromagnetic or ferrimagnetic resonance (FMR) spectra: given the rather poor sen-
sitivity of the method, this approach would have a fairly limited interest. It is the aim
of the present chapter to show that new and unique information can be extracted
from element- and edge-selective XDMR experiments performed in a variety of
experimental configurations. What stimulated our own interest in such experiments
was the prospect of resolving locally the precession dynamics of induced spin or
orbital magnetization components. Regarding FMR of 3d transition metals, it has
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long been considered that orbital magnetization components were either quenched
or so strongly coupled to the lattice that they had little or no contribution to FMR
due to ultra-fast damping processes. Using XDMR experiments carried out at the Fe
K-edge in yttrium iron garnet (YIG) thin films, we produced the first experimental
evidence [1-3] that orbital magnetization components were clearly precessing and
that XDMR was a quite appropriate tool to study their precession dynamics. In this
chapter, we lay emphasis on a few new results: the orbital magnetization compo-
nents at the Fe sites in YIG thin films will be shown to couple to magnetostatic
modes (MSM) through dipole—dipole interactions. On the other hand, using a single
crystal of ferrimagnetic gadolinium iron garnet (GdIG), we observed the inversion
of the chirality of the precession of the Fe orbital magnetization components at the
compensation temperature.

Recall that the XMCD signal at the K-edge of 3d transition metals is unfortu-
nately one or two orders of magnitude weaker than the XMCD signatures measured
at the corresponding L-edges in the soft X-ray range. The enhanced difficulty of
XDMR experiments at K-edges is, however, partly counter-balanced by one deci-
sive advantage to be discussed in Sect. 7.2: the effective operator responsible for
K-edge XMCD is entirely of orbital nature while our capability to disentangle spin
and orbital contributions in XDMR measurements at L-edges would rely on the
questionable validity of extended dynamical sum rules. The stronger XMCD sig-
nals expected at L-edges can nevertheless be turned out into a valuable gain of
XDMR sensitivity: actually, the first successful attempt to probe the precession
dynamics with X-rays was reported by Bailey and coworkers [4] who, initially,
combined soft X-ray differential circular reflectometry with time-domain pulsed
induction magnetometry (PIM) at the L-edges of Fe and Ni in permalloy. Fur-
ther work in the soft X-ray range tends to show that continuous wave (CW)
XDMR measurements carried out in the soft X-ray range either in a transmis-
sion geometry [5-7] or in the fluorescence excitation detection mode [8, 9] were
preferable.

A risky choice made by the ESRF was to develop XDMR experiments on
beamline ID12, which was optimized for XMCD measurements at higher X-ray
excitation energies (2-20keV). There are numerous arguments supporting this
strategy: (1) there is potentially much to be learned from L-edge XDMR of 4d
or 5d transition elements (e.g., Pd, Pt, etc.) and rare-earths (RE), as well as from
M-edge XDMR of actinides; (2) still very little is known regarding the magnetiza-
tion dynamics at nonmetal sites (e.g., at the K-edges of S, Se, Te, P, As, or Ge); (3)
above 2 keV, XDMR studies definitely probe bulk properties, while soft X-ray mea-
surements are rather surface sensitive: this can result in major differences regarding
the excitation of magnetostatic modes or the investigation of dilute paramagnets.
The choice made at the ESRF was indeed most demanding from the performances of
the whole instrumentation and required us to invest much time and effort as reflected
by the high quality of the XDMR spectra reproduced in Sect.7.3. In Sect. 7.4, we
introduce an even more challenging project, which is to extend XDMR experiments
up to sub-THz pumping frequencies.
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7.2 Precession Dynamics Probed with X-Rays

7.2.1 Phenomenological Equation of Motion

Let us consider a ferromagnetic sample with its equilibrium magnetization M4 not
necessarily aligned along the static magnetic bias field Hy as most conveniently
sketched in Fig.7.1. If one adds a microwave pump field h,, which is time-
dependent and oscillates in a direction perpendicular to Hy, then the magnetization
vector M (r, ¢) should transform according to the equation of motion [2]

% = —yT(r,1) = —yM x B, (7.1)

where y = gup/h denotes the gyromagnetic ratio. It was recognized by Landau
and Lifshitz that (7.1) described a precession of the magnetization vector M around
an effective, instantaneous field Be(r, ¢) defined as the functional derivative of the
free energy (F') with respect to the magnetic moment M (r, ¢):

SF

Be(r, 1) = poHe(r, 1) = M)

(7.2)

In (7.1), T (r,¢) is the total torque acting on M (r, ¢): it includes contributions
from external and internal magnetic fields. External fields encompass both the
static (bias) field Hy and the microwave (pump) field h,. Internal fields include
the exchange field He, the demagnetizing field Hp due to long range dipolar inter-
actions, and the magnetocrystalline anisotropy field Hy. The exchange field Hex
combines terms proportional to both M and V2M, but (7.1) implies that only the
inhomogeneous exchange term (V2M) can contribute to a nonvanishing torque as
MxM=0.

A phenomenological damping torque should be added to drive the magnetization
back towards its equilibrium state with M parallel to He. The Landau-Lifshitz—
Gilbert (LLG) torque is most frequently preferred because it does not depend on the
effective field B, [10]:

o M
Mx —,
yM; ot

T =+ (7.3)

o being a dimensionless, scalar constant. Note that the LLG formulation is fully
consistent with the fluctuation—dissipation theorem [11], whereas this is not true for
the Bloch-Bloembergen (BB) torque: Tgg = (w,/y)[M — Mcq] which, moreover,
does not conserve the length of M [10]. The corresponding BB equation of motion
can, however, be associated with two distinct relaxation times [12,13]: a longitudinal
relaxation time 77 parallel to the direction of Hy and a transverse relaxation time 7,
perpendicular to the direction of Hy. This was found more convenient because 7,
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Fig. 7.1 XDMR detection in longitudinal and transverse geometries. A M, is time invariant only
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is more sensitive to collective processes that couple the uniform precession mode
(k = 0) to thermally excited magneto-exchange modes or spin-waves (k # 0) [13].

As illustrated with Fig. 7.1, one may then envisage two distinct configurations
for the XDMR experiment:

— In the transverse geometry, the wavevector kx of the incident, circularly polar-
ized (CP) X-rays would be taken perpendicular to both Hy and h,: what should then
be measured is an XMCD signal proportional to the transverse magnetization AM |
which oscillates at the microwave frequency. The obvious difficulty is that such an
experiment requires a fast detection system with a high dynamic range.

— In the longitudinal geometry, the wavevector ky of the incident CP X-rays
could alternatively be chosen parallel to the static bias field Hp. As far as the length
of the equilibrium magnetization vector remains invariant in precession, that is,
M = |Mc|, one would expect a steady-state change of the projection of the mag-
netization along the direction of Hy, and the whole challenge of such an XDMR
experiment is precisely to probe AM, using XMCD. The difficulty arises from the
fact that A M, is only a second order effect with respect to the opening angle of pre-
cession. Note that any information related to the precession phase should implicitly
be lost. Actually, A M. is time invariant only for circular precession.

For a ferromagnetic thin film with true uniaxial anisotropy and near-normal
magnetization, the opening angle of precession is a constant of motion — even in
the foldover regime [14]. This consideration led us to propose [1,2] to determine
the opening angle 6y on simply combining together normalized XDMR cross-
sections with static XMCD cross-sections measured under identical conditions. For
an XDMR experiment performed in the longitudinal detection geometry (kx = k)
on a perpendicularly magnetized film, one easily obtains

[Aoxpmr (k)]/[Aoxmen (k)] = —1/2 tan® 6. (7.4)
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Similarly, for an XDMR experiment performed in the transverse geometry (ky =
k) with the same film,

[Aoxpmr (k1)]/[Aoxmep (k)] = tan g sin[w? + ¢o]. (7.5)

Here, the various Ao, refer to differential X-ray absorption cross-sections. What
stimulated our interest is the consideration that not only the opening angle of pre-
cession () but also the phase (¢9) could be element selective probes of the micro-
magnetic dynamics inside the sample. Let us insist that both (7.4) and (7.5) rely
on the LLG equation and the assumption that the norm of the local magnetization
vector (Mj) is invariant in the forced precession.

7.2.2 Precession Dynamics of Orbital and Spin
Magnetization Components

What makes the specificity of XDMR as compared to optically detected magnetic
resonance (ODMR) is indeed the element-selectivity of XMCD measurements. We
already pointed out earlier that the effective operator responsible for XMCD at a
K-edge had a pure orbital nature. For electric dipole transitions, this immediately
appears with a differential formulation of the XMCD sum-rules at K-edges [15-18]:

d

Aolg = 3Cp——r

(L)p = 3Cp(€z>pa (7.6)
in which AE = Egrx — Ey is the energy of the photoelectron excited by an X-ray
photon of energy Erx from a core level with the binding energy of Eg; C), is a con-
stant factor. The effective operators responsible for XMCD in electric quadrupole
transitions were also derived by Carra and coworkers [19]: again, it was clearly
established that the terms contributing only at a K-edge were of orbital nature. Thus,
the effective operator accounting for XMCD at the Fe K-edge in YIG could be
decomposed as a sum of two terms [1,2]: {{{;)4p + £(£;)34}-

At spin—orbit split L, 3-edges, one can similarly make use of differential opera-
tors [15, 18]

C d
8012, = 5oL a + 5 (S + 5 (Tl
- f—]jb{wz)d 3 {a + 2l .7)
Cy, d 4 14
[AO]Lz 6 m“ Z)d - g(Sz)d - ?(Tz)d}v

—(L)at (7.8)
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in which My, =~ 2 denotes the statistical branching ratio. Injecting (7.7) and (7.8)
into the definition of A M, allowed us to derive an extended formulation of the sum-
rules, which could make it possible to disentangle the precession dynamics of orbital
and spin components, for example, at the yttrium L-edges of YIG [2,3]

(1 4 37) tan® Oy (L3) = tan? O + 3y tan® O, (7.9)
(2 —3n) tan? By (L,) = 2 tan’ 6, — 3ntan’ 6y, (7.10)

in which n = (€;)4/2(s;)a, wWhereas (t;)q/2(s;)q was assumed here to be negli-
gibly small. In (7.9) and (7.10), 6p(L3) and 8o(L>) are effective precession angles
measured at the L3 and L, edges, whereas 65 and 6, are the precession angles for
the relevant spin and orbital magnetization components. This clearly shows that, at
spin—orbit split L-edges, one cannot resolve the precession dynamics of the spin and
orbital components without resorting to questionable approximations. Let us point
out first that (7.9) and (7.10) are basically a quasi-static extension of the (equilib-
rium) XMCD sum rules. Indeed, a pre-requisite to exploit (7.9) and (7.10) is that
the corresponding XMCD sum rules should be fully applicable: in the soft X-ray
range, difficulties will undoubtly happen whenever the L, and L3 edges are poorly
resolved (e.g., at the L, 3 edges of Ti, V, or Cr, etc.); at higher excitation energies,
one may also expect some problems at the RE L-edges for other reasons [20].

7.2.3 Precession Under High Pumping Power

It should be kept in mind that under the standard conditions of FMR experiments,
the opening angle of precession 6 is well below 1°: this makes the detection of the
XDMR signal very difficult, especially in the longitudinal detection geometry where
AM._ is proportional to tan? 6. This sensitivity problem becomes particularly acute
for K-edge XDMR experiments, given that the XMCD differential cross-section is
itself very poor. A way to increase 6y may be to increase the microwave pumping
power, but this option is fairly limited by the strong nonlinearity of the LLG equation
as discussed below.

7.2.3.1 Foldover Effects

For brevity, we shall consider only the simplest case where the static bias field Hy
is set perpendicular to a YIG thin film grown on a (111) GGG substrate:

(Vbcp)2

tan® 6y = ,
* 7 P2 + (awcos 6))?

(7.11)
in which

2 7
Po=—w+yBy+y |:Bu — §BA1 (1 —7 sin? 90):| cos b, (7.12)
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where B, and Bp; refer to the uniaxial demagnetizing field and the cylindri-
cal component of the magnetocrystalline anisotropy field, respectively. In the low
microwave power limit, that is, when cos 6y — 1, the resonance condition Py = 0
will obviously converge towards the well known Lorentzian lineshape of FMR.
This is not anymore true at high microwave power as the resonance condition now
depends on cos 6y, that is, on the microwave power. Equation (7.11) finally yields
a biquadratic equation in cos 6y, with multivalued (unstable) solutions defining the
foldover regime illustrated with Fig.7.2, which reproduces anticipated lineshapes
for a perpendicularly magnetized YIG film when the frequency of the pumping
radiation is either 9.51 GHz or 354 GHz.

For such a ferrimagnetic film magnetized perpendicularly, the maximum pre-
cession angle at resonance should be given by 6y, ~ (yb.p)/aw, in which b.p
denotes the amplitude of the circularly polarized microwave field component. With
a Gilbert damping parameter as small as & ~ 6 x 1076, YIG films would look
like excellent test samples. In reality, due to the foldover instability, the maximum
precession angle 0y is never reached (see Fig.7.2a): at best, opening angles of
the order of 62 are obtained experimentally, especially if the microwave power is
amplitude modulated. Thus, foldover effects will spoil the sensitivity of the XDMR
experiments. In the specific case of YIG films in which the uniaxial anisotropy field
B, largely exceeds the contribution of the cubic anisotropy Ba; (7.12), let us expect
that the foldover effects should be minimized when the film is rotated near the magic
angle (i.e., 8 = 54.73°). As illustrated with Fig. 7.2b, one may expect the foldover
distortion to be heavily reduced at very high pumping frequency simply because

[

T
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Fig. 7.2 Simulated lineshapes in the foldover regime for a perpendicularly magnetized YIG thin
film; (a) CW Pumping in the microwave x-band at 9.5 GHz; (b) High power excitation at sub-THz
frequency, e.g., at 354 GHz
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the whole anisotropy field tends to become very small in comparison with the large
resonance bias field (Bg ~ 12.8 T at 354 GHz).

7.2.3.2 Suhl’s Instability Thresholds

As early as in 1959, Suhl predicted that the opening angle of precession of the
uniform mode could hardly exceed some threshold value 6y, ,, beyond which para-
metric amplification of exchange spin-waves could also cause foldover-like FMR
lineshapes [21]. As sketched in Fig. 7.3, he introduced two distinct instability thresh-
olds associated with either a three-magnon or a four-magnon scattering process,
respectively.

The first-order instability predicted by Suhl could cause a subsidiary microwave
absorption off-resonance, for example, at By/2, but the corresponding process
should have a limited influence on the XDMR spectra recorded on perpendicu-
larly magnetized thin films as long as resonance truly occurs at the bottom of the
magnon band, that is, far above /2. In XDMR experiments, we might be more
directly concerned with the second-order process that develops at resonance but
only at fairly high microwave power [22]: the annihilation of two magnons should
alter the norm of the magnetization vector M, but since the early work of Bloem-
bergen and coworkers [12], it is well documented that this process should leave M,
and thus A M, invariant. We shall produce experimental evidence in Sect. 7.3 that
this does not hold true for magnetostatic modes.

A crude estimation of the saturation threshold field by, is given by

bs, ~ AB()[A B/ oM,]"? (7.13)

in which AB(g) refers to the intrinsic FMR linewidth of the uniform mode (i.e.,
k = 0), while A B) would refer to the (poorly known) linewidth of the amplified
spinwave with momentum k.

+k hog
e hog — +k
h(DO 45° hOJO
k:()_} _>Bo k:0_> qBO
hag _k
—k Y2 hog hog
Subsidiary absorption Magnon annihilation

Fig. 7.3 First-order and second-order instability processes resulting in parametric amplification
of exchange spin waves
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7.2.4 Nonuniform Eigen Modes of Precession

It has long been recognized that one serious complication in the theory of FMR
arose from the fact that the microdynamics of precession was driven by nonuniform,
time-dependent fields:

h(r,7) = hp + hyg + hexen + Nineas (7.14)

because, in addition to the external pump field, one has to take into account a
variety of time-dependent reaction fields, including a demagnetizing field (hgq)
due to dipole—dipole interactions, an exchange field (he) due — again — to the
anisotropic part of exchange interactions, and a dynamical reaction field (hy,c,) due
to magnetocrystalline anisotropy. As a consequence, the magnetic system will be
characterized by a number of orthogonal eigen modes of precession in which the
precession speed (w;) would be everywhere the same but not the phase. In this
section, we concentrate only on the excitation of magnetostatic modes (MSM)
caused primarily by hgq. A classical approach is based on the so-called Walker’s
quasi-static approximation which consists in describing the space-time dependence
of h(r, t) using Maxwell’s equations in the magnetostatic limit, that is, by neglecting
any time-dependence of the electric field [23]:

Vxh=0,
V-[aJh=0.

The first equation implies that h = —V(r, 1), while the second yields the wave
equation V-V (r,t) = 0. For a plane wave propagating in an infinite medium
¥ o explik - r], one would easily check that the LLG equation can be solved within
the Walker’s approximation only if the following dispersion relation is satisfied [23]:

on < o = [wy - (wn + omsin® 6)]Y? < wy, (7.15)

in whichwy = yHy and oy = y4m M. Here, wy and w ) are resonance frequencies
(w) obtained for 6 = 0 or 0 = 7/2, respectively, that is, when the wavevector k
is either parallel or perpendicular to the direction of the static bias field Hy. In other
terms, k will be real only if the dispersion relation is satisfied. Note that (7.15)
does not depend on the magnitude of k: this degeneracy will, however, be removed
by considering the effects of either sample finite boundaries (e.g., in thin films) or
exchange interactions in the so-called exchange spinwave regime.

Typically, for a perpendicularly magnetized YIG thin film of thickness d and
vanishingly small aspect ratio, the dispersion relation becomes [10]

2oy |l Qu4 —M | 7.16
o= [ W T Z2/(kiady? 710
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Fig. 7.4 Magneto-exchange dispersion spectrum for a thin film of YIG of vanishingly small
aspect ratio. FMSW satellite resonances are expected for a perpendicularly magnetized film, while
BMSW satellite resonances are expected for in-plane magnetization of the film

in which Z, ~ n x 7 = k.d, while Q4 = wn + oOm[Nexchk? + Nexenk 3 ]. As illus-
trated with Fig. 7.4, the resonance frequency (e.g., 1 = 9.51 GHz) of the uniform
mode is clearly located at the bottom of the whole magnon band. There should
be, however, a series of satellite resonances associated with bulk forward mag-
netostatic waves (FMSW), all of them being characterized with a positive group
velocity: vy = dw/0k > 0. As a consequence, for a given microwave frequency
Fyvw, FMSW satellites should systematically be observed in the FMR spectrum at
lower resonance fields, for example, at By, (Fmw)< Bo, (Fmw).

Similarly, if the same YIG thin film is magnetized in-plane, then the dispersion
relation could be written [10] as

2_ o [Q n oM ] 7.17
¢ U 1 4 cos? 0 /[sin? O + X2/ (kid)?] (7.17)

in which X,, >~ n x 7 = kyd, while 24 = o + Om[NexchkZ + Nexcnk 3 ] As shown
in Fig. 7.4, the resonance frequency (e.g., F; = 9.51 GHz) of the uniform mode is
now located at the top of the whole magnon band. There should be, however, another
series of satellite resonances associated this time with bulk backward magnetostatic
waves (BMSW), all of them being characterized with a negative group velocity
ve = dw/dk < 0. As a consequence, for a given microwave frequency Fyw,
BMSW satellites should now be observed at higher resonance fields, for example,
at By, (Fmw)> Bo, (Fmw). Damon and Eshbach [24] were the first to point out that
a thin film magnetized in its plane could also exhibit surface MSW on top of the
bulk magnon band, that is, with kT L Hj, but with opposite directions at the two
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film interfaces [23]. Surface magnetostatic waves offer an interesting example of
nonreciprocity as k™ would shift to the other interface on inverting the direction
of H().

The key question at issue is to know whether MSW satellites can be observed
in XDMR spectra, especially at those sites where the precessing magnetic compo-
nents are of orbital nature. In other terms, can orbital magnetization components
couple to magnetostatic eigen modes. Conceptually, this may well be envisaged as
orbital components are indeed subject to dipole—dipole interactions. In practice, the
nature of the X-ray probe can cause problems. There is a priori no fundamental
objection against the detection of MSW satellites in XDMR spectra recorded in
the longitudinal geometry because the steady-state component A M, is inherently
insensitive to the phase of precession. In real practice, we show in Sect.7.3 that
this is not such an easy task because the foldover distortion at high pumping power
is rapidly broadening the lineshape to the point where no satellite can be resolved
anymore.

The situation is even more puzzling in the transverse detection geometry, given
that the dispersion relations are invariant for plane-waves propagating with wavevec-
tors k and —k, while the transverse components M | probed by XMCD can oscillate
(locally) out of phase. Actually, one should keep in mind that the XMCD signal is
averaged over the whole effective volume in which X-rays are absorbed. More-
over, in the X-ray excited fluorescence detection mode, the X-ray penetration depth
distorts the weight of the averaged contributions of XMCD o« M . As illustrated
in Fig.7.5, the detection of magnetostatic standing waves should be much more
favorable for low order modes with an even number of nodes. In this respect, quasi-
surface modes could be more easily detected. Note that electron yield detection in
the soft X-ray range could be more exposed to surface pinning problems.

Surface Pinning ?

w11 A,
e

Rl .

Fig. 7.5 Transverse XDMR should be only weakly sensitive to MSM standing waves, the
detection sensitivity increasing for low-order modes with an even number of nodes
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7.2.5 Longitudinal and Transverse Relaxation Times

We emphasize that an accurate determination of the opening angle of precession
could, in principle, be turned into an indirect way to get access to the relaxation
times 77 and 75. For instance, far from saturation, (7.4) could be rewritten

1
Aoxpmr/Aoxmep _Z(Vbcp)z -1 T . (7.18)

Equation (7.18) was exploited in FMR by Fletcher and coworkers [13] but well
below the foldover threshold, that is, under conditions that are hardly accessible to
XDMR measurements. There is the additional difficulty that b., was never deter-
mined accurately enough in our XDMR experiments to let us access to the 7773
product. This is why it looks desirable to develop specific methods to measure
directly 77 in XDMR.

Although 77 describes how fast the magnetic energy is exchanged with the lattice
due to magnetoelastic and spin-orbit coupling, 7> is more sensitive to any loss of
coherence due to the coupling of the uniform precession mode (k = 0) with degen-
erated magneto-exchange modes or spinwaves (k # 0). In the Landau—Lifschitz—
Gilbert limit, one would expect (T»)"! = 2T1)7!, while the true relationship is
rather

L_1 + ! (7.19)
T, 27, Tp ‘

in which 7T would encompass all magnon scattering processes that decrease the
coherence of the precessing magnetization without altering the magnetic free energy:
processes involving only direct or indirect coupling to the lattice phonons are
energy dissipative. The various relaxation channels that are expected to contribute
to XDMR relaxation are summarized in Fig. 7.6.

In YIG films, sample nonuniformities such as crystal defects, impurities, sur-
face pits, etc. have long been shown to favor two-magnon scattering processes
that increase the FMR linewidth, especially at low microwave frequencies.

MICROWAVES
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Fig. 7.6 Block diagram of the relaxation channels contributing to XDMR (adapted from [10]
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Three-magnon scattering processes (either in momentum splitting or confluence
modes) do not conserve the total number of magnons nor M,. In four-magnon
scattering processes, two (uniform) magnons are annihilated, but two magnons are
created such that the total number of magnons remains unchanged (see Fig. 7.4).

Magnetoelastic interactions are the main cause of direct spin-lattice relaxation. In
magnetically ordered systems, three-particle Cherenkov scattering processes involv-
ing two magnons plus one phonon are compatible with exchange interaction and
form the most general basis of the analysis of direct spin-lattice relaxation mecha-
nisms. In particular, the direct Cherenkov process (splitting of a magnon into another
magnon plus one phonon) underlies the parametric excitation of magnetic and elas-
tic waves under magnetic pumping [10]. In the case of ferrimagnetic insulators like
YIG thin films, the Kasuya—LeCraw process [25] proved itself to be the most effi-
cient mechanism to explain relaxation of magnetostatic magnons with very small k:
it describes the confluence of a small K magnon with a phonon from the upper
(optical) branch to produce a magnon with large k that can now relax much more
efficiently by a Cherenkov process. In the first step, the energy transfer does not
occur from the spin system towards the lattice, but in the opposite direction with the
benefit that a low k magnon can be destroyed [10].

7.3 Experimental Results

7.3.1 Ferrimagnetic Iron Garnets

It is commonly admitted that the crystal structure of YIG is cubic with space
group Ia3d (O1°; group N°230) [26]. The unit cell consists of eight formula
units: {Y}3[Fe]2(Fe)30;12. This formulation emphasizes the role of two nonequiv-
alent sites for iron: the first one (16a sites) has octahedral coordination with
oxygen anions, while the second one (24d sites) has only tetrahedral coordina-
tion with O?~. Below the Curie temperature (~550K), the two Fe sublattices get
magnetized antiparallel to each other according to the ferrimagnetic model of Néel,
with an unbalanced magnetization (ca. 5 up) in favor of the tetrahedral sites. This
is classically explained by a strong superexchange interaction between the two
iron sublattices: the rather large Fe(a)—O—Fe(d) angle, 126.6°, is a clear indica-
tion that the wavefunctions of oxygen and iron have a substantial overlap so that
superexchange may well be mediated by the oxygen anions.

This picture describes correctly the spin magnetization at the iron sites, but it
does not preclude the existence of weaker, partially unquenched orbital moments
that can hardly be seen in neutron diffraction. On the other hand, the detection of
satellites in the >’Fe NMR spectra has fed the presumption that induced magnetic
moments could be carried by the nonmagnetic yttrium or other diamagnetic RE
ions (e.g., Y31, La3™, Lu3™, etc.): this is not totally unexpected as those cations
(in 24c sites) have dodecahedral coordination to the same oxygen anions mediating
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Fig. 7.7 XANES and XMCD spectra of a perpendicularly magnetized YIG/GGG thin film at the
Fe K-edge and Y L 3-edges

superexchange between the iron spins. This picture was confirmed by static XMCD
measurements performed at the ESRF on a series of YIG and RE-substituted thin
films such as, for example, [Y-La-Lu]IG = Y 3Lag 47Lu; 3Fe4.84012. The cor-
responding films grown by liquid phase epitaxy (LPE) on GGG single crystal
substrates were all prepared and characterized for us by J. Ben Youssef at the Lab.
de Magnétisme de Bretagne in Brest (France) [27].

We have reproduced in Fig. 7.7 typical XANES and XMCD spectra of such a
perpendicularly magnetized YIG thin film (#520; 9.8 wm thick) grown on a GGG
substrate cut parallel to the (111) planes. As the corresponding spectra were system-
atically recorded in the X-ray fluorescence detection mode, it should be mentioned
that the spectra displayed in Fig.7.7 are raw data, that is, uncorrected for fluo-
rescence re-absorption and circular polarization rates. These spectra provided us
with the clear evidence that induced spin components were present in the excited
states of yttrium and related RE atoms, even though the integrated spin moments
derived from the magneto-optic sum rules were extremely small. It will be shown
that those induced spin components do participate as well to the forced precession
in XDMR.

Even though the crystal structure of the gadolinium iron garnet (GdIG) is essen-
tially the same as in YIG, the FMR spectra are considerably more complicate
because, in addition to the strong exchange field acting on the iron sites, there is a
much weaker, temperature-dependent effective antiferromagnetic coupling between
the Fe3* ions and the Gd** ions in the dodecahedral sites. Typically, the Gd mag-
netization is a Brillouin function for spin 7/2 in a field proportional to the net
magnetization of the iron ions. In view of the weak coupling existing between
the RE sites and the Fe3* sites, as compared to the coupling of the two types of
Fe3T sites with each other, the two iron sublattices are most often treated as one in
FMR experiments. Even with such a crude simplification, the problem remains quite
complicate [33]. As illustrated with Fig. 7.8a, one should first take into account the
possibility to excite two different precession modes that have opposite chirality: in
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Fig. 7.8 (a) Low/high frequency precession modes in ferrimagnetic GdIG. Note that sublat-
tices precess with opposite chirality; (b) Change of precession chirality at the compensation
temperature [33]

the low-frequency mode that is not influenced by exchange, the two magnetization
components would precess with the same opening angle (6p) and the same phase as
in a ferromagnet, while this is not true for the high frequency (exchange coupled)
mode. Figure 7.8b was inserted to remind the reader that there is an instability range
near the compensation temperature (1) at which the system behaves as an antifer-
romagnet, the FMR linewidth becoming extremely broad. Let us emphasize that the
precession should have the opposite chirality on both sides of T¢.

7.3.2 Modular XDMR Spectrometer

The modular spectrometer that is now permanently installed in the fourth experi-
mental hutch of the ESRF beamline ID12 was designed to record XDMR spectra at
high microwave pumping power over the whole frequency range 2—18 GHz. The
microwave source is a wide-band tunable generator featuring an extremely low
phase noise (Anritsu MG-3692A). Depending on the required pumping power, one
may select the appropriate amplifier option:
(1) A low noise amplifier (LNA: Miteq AMF-4B) can deliver up to 34 dBm (2.5 W)
for standard experiments on YIG thin films
(2) A micro-TWT power module (Litton: MPM-1020) can deliver up to 50 dBm
(100W)
(3) Whenever higher pumping power is required, a powerful TWT amplifier oper-
ated in a pulsed mode can deliver up to 69 dBm (8 kW) peak power at ca. 9 GHz
with 5% duty cycle.

As sketched in Fig.7.9, the sample is inserted into a home-made TE¢, rect-
angular waveguide cavity, which makes it possible to record magnetic resonance
spectra in the usual Voigt configuration. The microwave power reflected back from
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Fig. 7.9 Either longitudinal or transverse XDMR experiments can be performed in the Voigt
configuration using the same rectangular TE(, cavity

the resonant cavity can be isolated using a circulator (Channel Microwave Inc.) that
may work at high microwave peak power without any risk of damage. Standard
FMR data can be recovered from this reflected signal. Whenever a phase informa-
tion is needed, the reflected microwave signal can be fed into a microwave phase
discriminator circuit (Anaren 20758).

As clearly shown by Fig. 7.9, one may use the same microwave resonant cavity
to carry out XDMR experiments either in the longitudinal or transverse geometries,
but this requires the resonance frequency of the cavity to be either adjustable or to
be carefully optimized so as to lay very close to some selected harmonics of the
RF frequency of the ESRF storage ring. A whole series of such cavities were thus
machined to cover the microwave X-band (F ~ 24 x RF), C-band (F >~ 12 x RF;
F >~ 16 xRF), or S-band (F ~ 8 x RF). Note that the cavity is itself inserted in a
high-vacuum chamber made of amagnetic stainless steel and designed to critically
match the rather narrow gap available between the magnetic poles of a commercial
electromagnet. Waveguide cavities offer a few basic advantages over other resonant
structures such as loop-gap or microstrip resonators: we can freely rotate the sample
inside the cavity without modifying the relative orientation of Ho and h,, and we
can easily cool the sample down to 10 K. Compared to a microstrip resonator, the
waveguide cavity benefits of very low losses and of much higher factors of merit:
typical loaded-Q in excess of 4,000 were easily achieved under critical coupling
conditions. Actually, for YIG films featuring very narrow linewidths, this turned
out to be even too high and required us to overcouple the cavity using a Gordon
coupler or to carry out the measurements slightly off-resonance (e.g., with A F¢,, <
4 MHz).

The sensitivity and the performances of the XDMR spectrometer were quite sig-
nificantly improved with a specific cavity design (see Fig.7.9), which makes it
possible to collect the X-ray fluorescence photons over a large solid angle using
a large area photodiode located very close to the sample but outside the resonant
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cavity. In this design, the electrical continuity of the X-ray transparent cavity wall
was preserved using a polished Be window (@ 31 mm; thickness: 25 wm). Fast pho-
todiodes were optimized for the XDMR experiments, which also require ultra-low
noise performances: they have a large active area (300 mm?) and a 4 mm @ hole at
their center, which is used to let the incident X-ray beam pass through the Si wafer
and enter the microwave cavity when the XDMR experiment is to be performed in
the longitudinal detection geometry [3].

7.3.3 XDMR in Longitudinal Geometry

7.3.3.1 Detection Issues

The incident microwave power is square-wave modulated using a fast switch fea-
turing over 80dB isolation with a very short rise/fall time (<2ns). The triggering
signal is generated from the storage ring RF reference using a versatile digital fre-
quency divider. As we are looking for a very weak XDMR signal, we have to make
absolutely sure that no microwave modulation signal can indirectly interfere with
the X-ray fluorescence signal detected by the photodiode. We found that a very high
level of immunity against artifact could be achieved in exploiting the macrobunch
time-structure of the incident X-ray beam, which results into a strong modulation of
the X-ray fluorescence signal at the low order harmonics of the revolution frequency
of the electrons in the storage ring, that is, Fo = RF/992 =355.0427 kHz. Thus,
experiments in longitudinal geometry were most easily carried out when the ESRF
storage ring was operated either in the 2x1/3 or 7/8 filling modes. A time-chart of
the data acquisition is illustrated with Fig.7.10.

We found most convenient to modulate the microwave power at a frequency
Finoda = 2Fy/ p kHz, with typically p = 200. The XDMR signal should then show
up as modulation sidebands at ' = Frx * Fyod, in Which Frx = n x Fy. The
data acquisition was performed in the synchronous time-average mode of a high-
performance vector spectrum analyzer driven by a triggering signal at Fjoq or any
appropriate sub-harmonics.

7.3.3.2 [Element-selective Measurements on YIG Films

We have reproduced in Fig. 7.11 a typical power spectral density (PSD) such as that
displayed with the Agilent VSA. The corresponding data were collected using an
YIG film (#520) excited at £, = 7115.1¢eV, that is, near the Fe K-edge. In those
early experiments [3], the normal to the thin film was slightly tilted (8, ~ 6°)
with respect to the direction of the magnetic bias field By. The incident microwave
power was typically 28 dBm, while the microwave frequency was deliberately off-
set (AF..,, = 4 MHz).
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Fig. 7.10 Time-chart of the data acquisition: the modulation of the microwave power is fully
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modes of the storage ring
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Fig. 7.11 Longitudinal XDMR signals measured at the characteristic excitation energy E; of the
K-edge XMCD spectrum of the YIG/GGG thin film (#520). The XDMR signals clearly show up
as two (%) modulation sidebands detected at: F = Frx & Fioq

The Fe K, fluorescence signal of the sample gave rise to a strong signal peaking
at Frx = 2Fyp = 710.086 kHz and normalized to 0 dBV. The two XDMR satellites
peak at ca. —80dBYV but still benefit of a quite comfortable dynamic range because
the noise floor could be kept below —115dBV: this gives a nice illustration of the
excellent performances of our detection system. The XDMR signals measured under
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such conditions were converted into an ultra-low dichroism cross-section per atom:
Aoxpmr =~ 4.22 x 107>, In the time-average data acquisition mode of the VSA,
each XDMR satellite has a complex vector character with a phase and an amplitude
(modulus): it was carefully checked that the phase of the XDMR signal changed by
180° when the helicity of the incoming X-ray photons was switched from left to
right [1] or when the energy of the X-ray photons was switched from E; to E, (see
Fig.7.7).

With the same YIG sample, we also measured the XDMR signals at the yttrium
L, 3-edges [3]: this experiment turned out to be much more challenging because
the circular polarization rate and the flux of the incident X-rays at 2.1 keV were not
as favorable as at the Fe K-edge, whereas the X-ray fluorescence yield at the Y L-
edges is fairly poor. Because of space limitation, we have reproduced in Fig.7.12
only the (£) cross-correlated spectral densities of the XDMR signals measured at
the yttrium L3- and L,-edges, when the energy of the X-ray photons was tuned to
the first extremum (E;) of each relevant XMCD spectrum. The geometry of the
experiment, the incident microwave power, and the resonant field By were all kept
strictly identical to the configuration used for the Fe K-edge measurements.

In Fig.7.12a, b, the (cross-correlated) XDMR signatures are still peaking ca.
18dBV above the noise floor, which could be decreased down to —126dBYV,
whereas the amplitude of the peak at Frx = 710.086kHz monitoring the fluo-
rescence intensity is (as expected) quite significantly reduced. Precession angles
were tentatively calculated from a series of XDMR measurements carried out either
at the Fe K-edge or Y L, 3-edges: for the orbital magnetization components pre-
cessing at the iron sites, we obtained Oy = (7 £ 1)°, while for the induced spin
components, which largely dominate the XDMR signal at the yttrium L-edges, we
obtained Ogpin 2~ (5.9 £ 0.2)°.
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Fig. 7.12 Cross-correlated (&) XDMR intensities measured at the Y L, 3-edges
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7.3.3.3 Collective Effects in the Precession Dynamics of Orbital Components

Valuable new information was extracted from additional XDMR measurements car-
ried out in longitudinal geometry on another iron garnet film, that is, [Y-La-Lu]IG,
in which the yttrium was partially substituted with lanthanum and lutetium. The
XDMR signal was not only measured at the Fe K-edge but also at the La and Lu
L, 3-edges, the bias field By being systematically kept strictly perpendicular to the
film surface. What made those experiments quite puzzling was the huge discrepancy
found between the precession angles calculated from the XDMR signals measured
either at the Fe K-edge or at the RE L, 3-edges: for the orbital magnetization com-
ponents precessing at the iron sites, we found Gy 2>~ 19.1°, while for the induced
spin components precessing at the La L, 3-edges, we found Opin =~ 4.7°.

FMR and XDMR spectra recorded simultaneously in the field-scan mode on
the [Y-La-Lu]IG film are reproduced in Fig.7.13. The foldover distortion of the
microwave absorption spectrum yx” (Bp) and of the XDMR spectra results in fairly
broad lineshapes (ABy > 400G). Most remarkable is, however, the very sharp
increase of the XDMR signal very near the foldover jump, in a range where the

T T T T

< 5.0 i
£
5]

4.5 T
3 oo
Q.
= ] ]
g 40
e]
2
8 351 g
© {Y La Lu}IG
T : Thin Film

1207 - | XDMR n )

. | FeK-edge |

100 ; | g
>3. 80 A 9():190? @\1" i
= - BO
o Sa
S 60 - | :
: |
o
S 40 A [\AMH\AJM 2.4 9,=13° 1

i 0=

2 T

5000 5200 5400 5600 5800
Resonant Field Bp(G)

Fig. 7.13 XDMR and FMR foldover lineshapes of the [Y-La-LU]JIG film recorded on scanning
the magnetic bias field in both directions; the XDMR signal was measured at the Fe K-edge for the
excitation energy E;
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FMR absorption spectrum seems to saturate. The observed XDMR lineshape con-
firms that what is measured in this experiment cannot be analyzed as the uniform
precession of a magnetization vector with a constant length: everything looks as
if the effective length (M) of the precessing magnetization vector would decrease
and thus |AM,| would increase. An interesting question is to know whether this
would be consistent with the model of parametric amplification of spin waves as
proposed by Suhl [21]. One certainly expects two-magnon annihilation processes
to develop at resonance above the so-called second-order Suhl’s instability thresh-
old, but it is often claimed that those processes should have ultimately no effect on
A M, as the fotal number of magnons remains unchanged (see Fig.7.3). Actually,
this claim holds true only for exchange spin waves because the exchange Hamilto-
nian commutes with the operator associated with M, [10]: it is false if one makes
allowance for dipole—dipole interactions and the excitation of magnetostatic waves.
This should precisely be the case for XDMR spectra recorded at the Fe K-edge
because the precessing moments are of pure orbital nature: exchange interaction
cannot play any role in those K-edge XDMR experiments, whereas, in contrast,
exchange interaction may well play a key role in the XDMR measurements carried
out at the L, 3-edges of RE in which the precessing components are essentially of
spin character.

These considerations prompted us to look for any possibility to detect magneto-
static wave satellites in the Fe K-edge XDMR spectra of YIG thin films. This was
surely not a trivial task because the poor sensitivity of XDMR experiments in longi-
tudinal geometry requires us to carry out such experiments at rather high microwave
pumping power: under such conditions the strong foldover distortions of spectra
recorded with either in-plane or perpendicular magnetization would make it totally
hopeless to resolve MSW satellites. As illustrated with Fig. 7.14a, we found it nev-
ertheless possible to minimize the foldover distortion on rotating the YIG film at the
magic angle.

Actually, for an incident microwave power of 1.5 W, the foldover distortion was
still quite significant and resulted in an apparent linewidth A Hy ~ 35 Oe, but we
found it possible to record the same XDMR spectrum with an incident power of
only 150 mW, the linewidth of the uniform mode being now reduced down to only
ca. 7 Oe. As illustrated with Fig. 7.14b, one could then resolve the very first satellites
due to the excitation of backward magnetostatic waves (BMSW) and, perhaps, a sur-
face mode. This was the first direct evidence that orbital magnetization components
could perfectly couple to magnetostatic modes in YIG.

7.3.3.4 Direct Estimate of the Longitudinal Relaxation Time 7}

Owing to the difficulty to establish a fully reliable calibration of the microwave
field &, acting on the sample located inside the resonant cavity, we tried to explore
a different approach to access the longitudinal relaxation time 73. This method,
which looks promising, consists in analyzing the response of the precessing mag-
netization when the frequency (Fpoq) of the amplitude-modulated (AM) microwave
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Fig. 7.14 (a) The XDMR foldover lineshape of the YIG/GGG thin film #520 was tentatively
minimized on rotating the film at the magic angle but this was not enough to resolve any magneto-
static waves (MSW) satellite; the XDMR spectrum was recorded at the Fe K-edge with an incident
microwave power of 1.5 W. (b) MSW satellites resolved at 150 mW pumping power

power is increased up to RF frequencies [13, 28, 29]. Recall that the XDMR signal
which is analyzed in the Agilent VSA is a complex quantity defined by its phase
and amplitude: we are precisely concerned below with careful measurements of
the phase of the XDMR modulation satellites. Typically, in the Bloch-Bloembergen
approach, the relaxation processes should contribute to the existence of an additional
phase-shift at the modulation frequency wam [28]:

T, 1 Ip)
can A®anie — T 1— 2TT 142 - ZTT 1
an A@ = — wam 1{( £ 12)[ +2T1:|+2(00AM) 12[ +2T1:|+ }
(7.20)

in which § = %hp now contributes only as a second order corrective term. With the
latter YIG/GGG thin film again rotated at the magic angle, we measured the follow-
ing phase-shifts: A®ay ~ 4.1° at the modulation frequency Fam = 71.0kHz;
Adpy >~ 7.9° at the modulation frequency Fay =142.0kHz. If one assumes
that 7, = 277, as expected for the Landau-Lifschitz—Gilbert damping model, one
obtains 77 ~ 80ns. Given that this preliminary measurement was performed at the
iron K-edge, this may be the first direct, element-selective measurement of an orbit—
lattice relaxation time in the excited states. Much more work would still be needed
to explore the whole potentiality of this method, which is nothing else than a pecu-
liar adaptation of a technique known in optics as phase fluorimetry. One should try



7 X-Ray Detected Magnetic Resonance: A New Spectroscopic Tool 213

to clarify to which extent such measurements would be affected by foldover dis-
tortions. It would be also desirable to check how far such 77 measurements could
really be exploited for sub-nanosecond relaxation times [30].

7.3.4 XDMR in Transverse Geometry

7.3.4.1 Super-Heterodyne Detection

The need for an X-ray fluorescence detector with a large active area is inherently
conflicting with the additional requirement that we need to detect a weak XMCD
signal oscillating at microwave frequencies. This led us to envisage an entirely new
strategy to record XDMR spectra in the transverse geometry. The underlying con-
cept can be easily understood if one keeps in mind that the time-structure of the
excited X-ray fluorescence signal /¢(7") consists of a series of discrete bunches,
with a periodicity AT = 1/RF = 2.839ns directly related to the RF frequency
(352.202MHz) of the storage ring, and with a FWHM length of ca. 50ps at the

ESRF
2
exp [——] . (7.21)
o

On fourier transforming /.7 (f), one obtains in the frequency domain a Gaussian
envelope of RF frequency harmonics:

1
Ixf(t)=1xf 8(t —nAT) ®
OXn: o/2m

Hyp(F) = Iy - RF Y 8(F —n- RF)-exp[-2(n0F)?]. (7.22)

At the ESREF, the half-width at half maximum of the gaussian envelope cor-
responds typically to the 25th harmonics of the RF frequency: note that 25 x
RF =8.79 GHz is typically in the microwave X-band. The proposed strategy was
then to let the oscillating XMCD signal beat with the closest harmonics of the RF
frequency. In other terms, the challenge was to adapt to XDMR the concept of het-
erodyne detection, which was quite popular in the early sixties: the difference is
that we could benefit here of the tremendous advantage that synchrotron radiation
directly provides us with a microwave local oscillator (LO) very near the desired
XDMR frequency (Fig.7.15). In this new approach of transverse XDMR, the res-
onance frequency of the microwave cavity should obviously match as closely as
possible the frequency of selected RF harmonics. Special resonators were thus care-
fully optimized for these experiments, which also require a very high frequency
stability and a very low phase noise. In the present paper, we shall report on a series
of experiments carried out in the transverse geometry using the 24th harmonics of
the RF frequency.
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Fig. 7.15 X-ray fluorescence intensity measured in the time and frequency domains

Considerable improvement in the detection sensitivity was achieved recently
with a super-heterodyne detection in which we exploit a 180° bi-phase modula-
tion technique (BPSK). A block-diagram of the corresponding detection scheme
is reproduced in Fig.7.16. In this experiment, we found it essential to drive the
microwave generator with the same (ultrastable) external 10 MHz reference clock as
the one used to drive the RF generator of the storage ring. Moreover, the microwaves
were phase-modulated at a very low modulation frequency: Fypsk = RF/(992 x
132) = 2.68948kHz generated by the same ESRF PCI board (C-353) as used
before. Defining next the XDMR resonance frequency as Fyw = 24 x RF+IF, we
are interested in measuring in the photodiode output not only the beating signal at
the intermediate frequency IF, but also the modulation satellites at frequencies IF +
Fyps. It is the aim of some additional electronics to carry out a translation in the
frequency domain of the detector output signal by a frequency shift strictly equal to
IF. This was achieved by properly combining a comb generator delivering a refer-
ence signal for LO = 24 x RF =8.45266 GHz, a microwave mixer with outputs
in phase quadrature, and two RF mixers. Two distinct channels of the Agilent VSA
are then used to carry out a vector decomposition of the XDMR signal, providing
us with the whole phase information of the resonance. It is a major advantage of the
proposed detection electronics to be now insensitive to any undesirable changes of
the RF required to stabilize the electron beam in the storage ring [3].

7.3.4.2 Transverse XDMR Spectra of a YIG/GGG Thin Film Rotated
at the Magic Angle

To illustrate the performance of the ESRF XDMR spectrometer in the transverse
geometry, we used strictly the same YIG thin film (#520) rotated at the magic angle,
which we used previously to carry out the XDMR experiments in the longitudinal
geometry. The XDMR spectra displayed in Fig.7.17a were recorded in the field-
scan mode at the Fe K-edge, the X-ray monochromator being preset at energy Eq,
that is, the energy of the first extremum in the Fe K-edge XMCD spectrum (see
Fig.7.7).
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Fig.7.16 Block-diagram of the superheterodyne detection of transverse XDMR exploiting BPSK

The absorptive and dispersive components of the resonances were obtained in
exploiting the two VSA channels & sin @ and o< cos @. Both spectra exhibit a rather
impressive signal-to-noise ratio although the pumping power was only 10 mW, that
is, two orders of magnitude smaller than in the experiments carried out in the lon-
gitudinal geometry and shown in Fig. 7.17a. With such a low pumping power, there
is no significant foldover distortion and the linewidth was narrowed down to 7.5 Oe.
The spectra reproduced in Fig.7.17a obviously confirms the prediction made in
Sect. 7.2.4, according to which one should expect only very weak contributions of
magnetostatic wave satellites in Transverse-XDMR spectra. This is quite obvious
regarding the (volume) BMSW satellites that are quite strong in the FMR absorption
spectrum, but this not as clear regarding the eventual contribution of surface modes.

We also reproduced in Fig.7.17b transverse-XDMR spectra recorded in the
energy-scan mode using either left- or right-circularly polarized X-rays. As
expected, the sign of the XDMR spectra recorded with orthogonal polarization is
nicely inverted while the amplitude of the signal remains constant. This is a critical
test, which establishes the full reliability of our measurements.

For the sake of comparison, we also added in Fig.7.17b a rescaled plot of the
static XMCD spectrum in the relevant Fe pre-edge region: interestingly, there is no
significant difference between the reference XMCD spectrum and the Transverse-
XDMR spectrum. One should nevertheless keep in mind that the orientation of the
static bias field is fundamentally different in the two types of experiments: Fig. 7.18
was precisely added to remind the reader that the Bias field is rotated by 90° in
transverse-XDMR experiment.

One important implication of the results displayed in Fig. 7.17b is that the open-
ing angle of precession should remain constant over the whole band of final states
probed by the excited photoelectrons. In other terms, 6y should be the same at ener-
gies Eq or E;: this might cast doubt about the small variations of 8y, which we
found in exploiting the measurements carried out in longitudinal geometry. It would
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be premature to draw such a conclusion because (1) the incident power was much
lower; (2) there are strong arguments to suspect that the magnetization components
M and M, should not be affected in the same way by two-magnon annihilation
processes [10,28].

At this stage, let us point out that it is not a trivial exercise to extract the opening
angle 6y from a transverse-XDMR signal measured with the proposed superhetero-
dyne detection even though this signal is o sin y: the difficulty arises from the fact
that the proportionality factor depends on the amplitude of the 24th harmonics of
the RF, the amplitude of which, in turn, depends on the true shape of the electron
bunches in the machine, which we assumed (for simplicity) to be Gaussian with a
constant bunch length.

What makes, nevertheless, the superheterodyne method quite attractive is its
remarkable sensitivity, which allowed us to record Fe K-edge XDMR spectra of YIG
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thin films down to pumping powers as low as 100 wW. As illustrated with Fig. 7.19a,
transverse-XDMR spectra could be recorded in a linear regime up to 10 mW, satu-
ration being observed at ca. 40 mW. There are other ways to enter into the nonlinear
regime: (1) one can decrease A F.,,, that is, tune the microwave frequency closer to
the resonance of the cavity; (2) with overcoupled cavities, one can approach closer to
the so-called critical coupling. In Fig. 7.19b, we have reproduced two XDMR spec-
tra recorded in the saturation regime while keeping an incident power of 10 mW: we
simply decreased A F,, down to 3.5 and 3.0 MHz. Both forward- and backward-low
order magnetostatic waves satellites now start growing and become rapidly rather
broad. These spectra recorded in transverse geometry clearly confirm that orbital
magnetization components precessing at the iron sites can couple to magnetostatic
waves through dipole—dipole interactions.

7.3.4.3 Transverse XDMR Spectra of a Ferrimagnetic Single Crystal
of GAIG Above and Below the Compensation Temperature

In this last subsection, we show that one may unravel additional information
in looking at the precession phase. Basically, our idea was to check whether
transverse-XDMR spectra could be used to detect a change in the chirality of the
precession. We already mentioned in Sect.7.3.1 that such a change of chirality is
to be expected in a ferrimagnetic sample of GdIG if FMR or XDMR spectra are
recorded either below or above the compensation temperature T¢, ~ 285K. What
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makes such an experiment particularly challenging is the fact that the resonance
linewidths are considerably broader than in the YIG thin films discussed in the pre-
vious sections: one would even expect the linewidth to diverge at T.,. Typically,
the FMR linewidth measured with a GdIG single crystal cooled down to 200 K was
of the order of 280 Oe; note that the microwave resonance measured at 450 K was
considerably weaker and still fairly broad (A Hp >~ 135 Oe).

Concentrating first on measurements carried out at the Fe K-edge on the GdIG
crystal cooled downto T" >~ 200 K, we have reproduced in Fig. 7.20a XDMR spectra
recorded in the energy-scan mode using either left- or right-circularly polarized X-
rays. These spectra look obviously more noisy than the spectra recorded on the
YIG film, but a simple comparison with the static XMCD spectrum would convince
everybody that the information content of the XDMR spectra is still preserved. As
illustrated with Fig. 7.20b, the XDMR spectrum recorded at the Gd L,-edge looks
even worse: this is because X-rays are heavily absorbed in the sample due to the
Fe K-edge and Gd L3-edge photoionization processes, which do not contribute to
any XMCD signal. Note that the incident microwave power had to be kept below
1 W: the quality of the data could have been considerably improved on increasing
the pumping power, for example, up to 10 W but, unfortunately, this turned out to
be impossible during the allocated beam-time due to the accidental failure of one
microwave component.

In Fig.7.21, we have reproduced Fe K-edge XDMR spectra of GdIG recorded
in the field-scan mode for two temperatures: T ~ 200K (below T,: Fig.7.21a),
and 7'~ 400K (above T,: Fig. 7.21b). In these experiments, the monochromator of
beamline ID12 was tuned to energy E; ~ 7114¢eV that corresponds to the largest

a b
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LO = 24x RF GdIG Crystal GdIG Crystal
o Fe K-Edge Gd L,-Edge
MW Power T< Tc
28 dB <
" T ~ 200K L T<Tc
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3 @
£ e
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a a ]
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Fig. 7.20 Transverse XDMR spectra of GdIG recorded in the energy-scan mode at 7 >~ 200 K:
(a) at the Fe K-edge; (b) at the Gd L,-edge
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Fig. 7.21 Vector components of single-scan XDMR spectra recorded in the field-scan mode at the
Fe K-edge of the GdIG single crystal: (a) below the compensation temperature, i.e., at 7 =~ 200K;
(b) above the compensation temperature, i.e., at 7 =~ 400 K. At 400 K, the broad XDMR signal
& sin @ changes its sign, while there appears an (unexpected) additional signal with a narrow
linewidth

XMCD signal in the Fe pre-edge region. Most important, we have reproduced in
Fig.7.21 the two vector components of the XDMR spectra, which are either & cos @
(absorptive-like) or o sin @ (dispersive-like). If there is a change in the chirality of
the precession of the orbital magnetization components at the compensation tem-
perature T, then one would expect only one vector component to have opposite
signs at 200K and 400 K, that is, that component & sin @. This seems to be clearly
the case if one refers to the rather broad-band resonance of Fig. 7.21a, but what was
totally unexpected is the appearance in Fig. 7.21b of a strong additional signature at
resonance, this signature being quite intense and featuring a rather narrow linewidth.

In a further effort to figure out what could be the origin of this additional sig-
nature, we have also displayed in Fig.7.22 the modulus | X DM R| calculated from
the two vector components. Although the | XDMR| and | FMR| plots look rather
similar at low temperature (200 K), this is not the case at high temperatures (e.g.,
400K or 450K), where it seems that the XDMR line is clearly split. At this stage,
it should be kept in mind that the XDMR spectra recorded at the Fe K-edge here
again result from two nonequivalent magnetic sublattices associated with Fe atoms
in octahedral coordination (16a sites) or tetrahedral coordination (24d sites) and
antiferromagnetically coupled. Indeed, the forced precession of the local orbital
magnetization components should be fully coherent, but it is our interpretation that
a destructive interference of the two oscillating XDMR signals could be envisaged
under specific phase conditions.
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Fig. 7.22 Modulus of single-scan XDMR spectra recorded in the field-scan mode at the Fe
K-edge of the GdIG single crystal: (a) below the compensation temperature, i.e., at 7 2= 200K;
(b) above the compensation temperature, i.e., at 7 =~ 400K and 450K. Split lines were
systematically observed above the compensation temperature but not below

7.4 Facing New Challenges

In this contributed chapter, we tried to convince the reader that we have now the
capability to record XDMR spectra both in the longitudinal or transverse geome-
tries, either at the K-edge of 3d-transition metals or at the L, 3-edges of rare earths.
With a series of XDMR experiments carried out with YIG or RE-substituted YIG
thin films, we produced clear evidence that, at the iron sites, orbital components
of magnetized excited states with mixed p— or d—like symmetry are precessing;
similarly, induced spin components located at the diamagnetic yttrium or RE sites
are also precessing. Interestingly, the apparent opening angles of precession 6y
measured at various absorbing sites can be fairly different and we suggested that
this may well be the consequence of processes involving the annihilation of two
uniform magnons: such a process is expected to develop at high pumping power
whenever the precessing magnetization component can couple to collective modes,
and more specifically to magnetostatic waves, via dipole—dipole interactions. We
were precisely able to detect magnetostatic wave satellites in the Fe K-edge XDMR
spectra of YIG thin films rotated at the magic angle: this appears to be the first
direct evidence that orbital magnetization components can couple to magnetostatic
waves. One clear advantage of XDMR experiments performed in transverse geom-
etry is that one still preserves the capability to get access to additional information
contained in the precession phase. As an example, we have shown that, in a ferri-
magnetic single crystal of gadolinium iron garnet, the Fe K-edge XDMR spectra
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were sensitive to the inversion of the precession chirality, which has long been
predicted to take place at the compensation temperature 7.

There is no doubt that the encouraging results obtained at the ESRF will stimulate
further investigations of forced precession at large opening angle. One option would
be to exploit ultra-short high power microwave pulses to study XDMR in a highly
nonlinear regime. Another option would be to explore with XDMR what happens
in the SWASER regime of spin valves in which, according to Slonczewki or Berger
[31,32], electric currents flowing perpendicular to magnetic layers could result into
creating a spin transfer torque opposing the LLG damping torque.

Extending XDMR measurements up to sub-THz frequencies would open a
wide range of new applications. Let us recall, for example, that XMCD measure-
ments on paramagnetic samples require high magnetic bias fields (By > 5T): this
implies that the XDMR spectra should preferably be measured at high frequencies
(F = 70GHz). One should also keep in mind that many systems with integer spin
are EPR-silent at microwave frequencies and can only be investigated in the sub-
THz frequency range. In our opinion, XDMR at sub-THz frequencies would be
a unique tool to study Van Vleck orbital paramagnetism, which is so far poorly
known. The investigation of high frequency modes in ferrimagnetically coupled
sublattices would be another interesting option, one famous example concerning
the Kittel-Kaplan exchange modes in ferrimagnets. In this respect, one could even
dream of recording high-frequency XDMR spectra in antiferromagnetic systems
featuring a large anisotropy field.
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Chapter 8
Resonant X-Ray Scattering and Absorption

S.P. Collins and A. Bombardi

Abstract This chapter outlines some of the basic ideas behind nonresonant and
resonant X-ray scattering, using classical or semiclassical pictures wherever pos-
sible; specifically, we highlight symmetry arguments governing the observation of
X-ray optical effects, such as X-ray magnetic circular dichroism and resonant “for-
bidden” diffraction. Without dwelling on the microscopic physics that underlies
resonant scattering, we outline some key steps required for calculating its rotation
and polarization dependence, based on Cartesian and spherical tensor frameworks.
Several examples of resonant scattering, involving electronic anisotropy and mag-
netism, are given as illustrations. Our goal is not to develop or defend theoretical
concepts in X-ray scattering, but to bring together existing ideas in a pragmatic and
utilitarian manner.

8.1 Absorption and Scattering: The Optical Theorem

Absorption is a special case of scattering. The mathematical relationship between
the two, known as the optical theorem, is very general and fundamental. It can be

written as
TNno

y(E) = (V) (Bl =0 = o), (5.1)
where y is the linear absorption coefficient and n¢ is the atomic density, q, q’, &,
¢’ are the incident and scattered wavevectors and polarization, and E is the photon
energy. We see that absorption scales with the imaginary part of the forward scat-
tering amplitude for a scattered beam that is in the same state (energy, wavevector,
polarization) as the incident wave. This can be understood very easily if we accept
that the only way to diminish an electromagnetic wave is to add to it a wave that
is the same but of opposite phase. Such a wave can be caused by scattering, and

S.P. Collins ()

Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus,
Didcot, Oxfordshire, OX11 ODE, UK

e-mail: steve.collins@diamond.ac.uk

E. Beaurepaire et al. (eds.), Magnetism and Synchrotron Radiation, Springer 223
Proceedings in Physics 133, DOI 10.1007/978-3-642-04498-4_8,
(© Springer-Verlag Berlin Heidelberg 2010



224 S.P. Collins and A. Bombardi

so a relationship between absorption and the forward scattering amplitude is not
surprising. What is, at first sight, surprising is that we need to take the imaginary
component. The reason for this is that the optical theorem is written for a plane
wave, while our scattering formalism describes scattering from a point into a spher-
ical wave. It is therefore necessary to consider the scattering from every point on
a plane representing the wavefront, and it is easy to show [1] that this procedure
introduces a phase factor of 7/2, which allows the imaginary part of the forward
scattering amplitude to interfere destructively with the incident beam.

Because absorption is a special case of scattering, all the calculations described
in this chapter can be applied trivially to absorption, simply by choosing ' = q,
& =e.

8.2 Symmetry and X-Ray Absorption

Before looking at the detailed physics behind a physical effect, it can be very infor-
mative to ask if there are any obvious symmetry arguments that will render the
phenomenon impossible. Fundamental to modern physics is the assumption that
there are no preferred directions or positions in space, leading to invariance with
respect to spatial translation or rotation. Furthermore, all the forces of nature are
exactly symmetrical with respect to the simultaneous reversal of charge, parity, and
time (CPT). Electromagnetic interactions, which completely dominate the elec-
tronic and optical properties of materials, are symmetric with respect to C, P, and
T separately. As a mirror reflection is equivalent to the combination of a rotation
of 7 normal to the mirror plane and spatial inversion (P (r) = —r), it follows that
all physical phenomena that are governed by electromagnetic interactions are sym-
metric with respect to any reflection. That is, if a measurement (the probability of
detecting a photon that has passed through a material, e.g.) gives a certain result,
then exactly the same result is expected if the entire experiment is reflected in a mir-
ror plane. Here, we use this argument to show how some circular-dichroic effects
are impossible, while others may be allowed.

We first consider magnetic circular dichroism, where the magnetism is described
by an atomic vector. In Fig. 8.1 (top left), we arrange for the magnetic vector to be
perpendicular to the beam of circularly polarized X-rays. Is it possible that revers-
ing the direction of circular polarization will change the absorption to give circular
dichroism? We know that reflecting the whole experiment in a mirror, as shown in
the figure, must lead to the same result. The mirror reverses the circular polarization
but leaves the magnetic vector (perpendicular to the mirror plane) unchanged, and so
we can say that reversing the circular polarization cannot lead to different absorption
and there can be no circular dichroism in this configuration. The mirror preserves the
direction of the vector normal to it because it is an axial vector, conveniently visual-
ized as a current loop, which is an appropriate representation of its physical origin.
There are two types of vector: polar vectors and axial vectors. Polar vectors are
examples of true tensors, which transform under spatial inversion as (—1)X, where
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Fig. 8.1 Mirror planes constructed to give simple symmetry arguments to rule out circular dichro-
ism from a magnetic vector perpendicular to the beam direction (top left) or a polar vector in any
direction (bottom left). See text

Fig. 8.2 The odd inversion

symmetry of a polar vector Polar (true)
(fop) and even symmetry of vector
an axial vector or current loop

(bottom) Inversion

Axial
(pseudo)
vector

K, the tensor rank, is one for a vector. Axial vectors are examples of pseudotensors,
which transform under spatial inversion as (—1)X+1. Thus, axial vectors are even
under inversion (Fig. 8.2) and polar vectors are odd. This distinction is clearly of
fundamental importance for understanding the symmetry properties of crystals that
possess magnetic (axial) or electric (polar) dipoles. Turning to Fig. 8.1 (top right),
we can ask if it is possible for circular dichroism to exist if the magnetic vector is
parallel to the beam direction. In the mirror, we see that the magnetism reverses and
so does the circular polarization. We can therefore say that reversing both can have
no effect on the absorption, but there is no obvious symmetry argument to say that
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reversing just the circular polarization (or magnetic direction) must lead to the same
result, and so we cannot rule out circular dichroism if the magnetic vector is not
perpendicular to the beam. Indeed, such a configuration is known to exhibit circular
dichroism.

At first sight one might expect to observe similar effects with a polar vector (a
ferroelectric, for example), but Fig. 8.1 (bottom left) shows that there can be no cir-
cular dichroism in the configuration shown. Moreover, as the X-ray beam is invariant
(within a phase) to rotational about the beam direction, it is not hard to show that
there is no orientation of the polar vector that can give circular dichroism.

The situation is more complicated with chiral sample symmetry, where the object
(represented here by four points) is different from its mirror image, shown in Fig. 8.1
(bottom right). It is clear that reversing the chirality of the sample by reflection in
the mirror, and the circular polarization, must give the same result, but there is no
obvious reason why reversing only one must give the same result. Such a difference
in absorption is weak for X-rays and requires a theory that goes beyond the electric
dipole approximation, but it does exist.

The arguments demonstrated here can be applied to any measurement, includ-
ing scattering, photoemission etc., but then one must pay attention to the symmetry
properties of all of the vectors that are relevant to the experiment, such as the scat-
tered beam or photoelectron trajectory. As a general rule, adding complexity in this
way reduces the symmetry of the measurement and allows more optical effects to
exist.

8.3 X-Ray Scattering and Multipole Matrix Elements

The theory of resonant X-ray scattering and absorption is treated in detail by several
authors (see, e.g., [2-6]). The object of the exercise is the calculation of the quan-
tum mechanical photon scattering amplitude, which is related to the classical electric
field, and to the scattering cross-section via its squared magnitude. The scattering
strength is given in terms of matrix elements of the perturbation energy, by Fermi’s
Golden Rule. A very important conceptual point is that, in the presence of an elec-
tromagnetic field (say a photon), the momentum p of an electron is modified by the
e

vector potential, such that p — p — A [7]. Hence, the energy of the combined
photon/electron system is

2
(p—£A) p’ e* o, e
H=—F¢< <7 — — A — —p-A, 8.2
2m 2m + 2mc? mcp (8.2)

where the first and second terms are, respectively, the energies of the electron
and the photon (relativistic effects are ignored), and the third term is the photon—
electron interaction. In quantum mechanical calculations, p and A are operators.
The A2 term is responsible for nonresonant scattering and can be used to give a
sound interpretation of the vast majority of X-ray scattering data. The p - A term is
responsible for resonant scattering (and absorption). For a scattering process, it must
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be applied twice as the vector potential operator either creates or destroys a single
photon, and the scattering amplitude is finally given by second-order perturbation

theory as
a|0+|b (b|O|a)
f o Eﬁ—m , (8.3)

where O = p-£e'9T (essentially, p- A with its time dependence removed, where q is
the photon wavevector, and ¢ is the polarization vector), a and b are the initial and
virtual intermediate atomic states of energy £, ), AE = hw— Ep + E, (the energy
difference between the photon and the atomic excitation), and I" is a small energy
that is related to the lifetime of the intermediate state. The states a and b correspond
to the initial atomic state (normally the ground state) and an excited state whereby
a core electron is promoted into an empty valance level. The sum runs over all such
empty states. The energy denominator, a characteristic of second-order perturbation
theory, effectively selects only the state(s) of correct energy for the resonance.

It is worth pointing out that the resonant scattering and absorption described in
this chapter involve excitation of a tightly bound atomic core electron at energies
close to an X-ray “absorption edge,” which marks the sudden increase in absorption
as the core electron is given sufficient energy to fill an empty valence state. Close to
such a resonance I is determined mainly by the lifetime of the core hole.

As the wavelength is long compared to the dimensions of the atomic core elec-
trons, the exponential phase factor in the above expression can be expanded as a
rapidly converging series,

O=p-é+ip-&(q-r)+---. (8.4)

The transition operator is still not in a very convenient form as it involves both
position and momentum. Conversion to a purely spatial form is facilitated by the
use of commutation relations, such as,

p= " H] = f—;(rH — Hr), (8.5)

ih

where the Hamiltonian operator, H , is simply replaced by the energies of the initial
and final atomic states as they are energy eigenstates. Finally, we sidestep quantum
mechanics and replace operators with their expectation values, whereby the product
of the two terms in the numerator of (8.3) leads to a series of pure and mixed electric
multipole transition amplitudes. We write, for example, the electric dipole—electric
dipole (E1E1) amplitude as

fElEl = (l‘ . &A‘)(I' . é‘/)* = rir;‘eis’; = Tl‘inj. (86)
The last term introduces the widely used formalism of Cartesian tensors [8], where
(8.7)

* /%
Tij =rir;, Xij = &€

are the “material” and “X-ray probe” tensors, respectively.
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In the spirit of a phenomenological model, we take all constants and slowly vary-
ing functions into the expectation values, then restate and regroup the expression
using Cartesian tensor formalism and Einstein implied summation notation (there is
an implicit sum over three Cartesian basis vectors x, y, z, numbered 1-3). Finally,
we combine the two vectors, or rank-one tensors, 7; etc., to give a matrix or rank-two
tensor 7;;.

The tensor expressions for higher-order multipole transitions will be discussed
again later when specific examples are given. For now, we focus on electric dipole
(E1E1) transitions. Similar expressions can be derived for magnetic transitions,
which have been shown to play an important role in some resonant scattering experi-
ments [9], although they tend to be very weak at X-ray wavelengths [6] (Fortunately,
magnetic properties can be probed with electric transitions, as we demonstrate in the
next section).

While a proper calculation of the resonant amplitude requires a detailed knowl-
edge of the electronic wavefunctions, the “geometrical” aspects of the resonance can
be factored out as they depend only on the coupling of a set of unit vectors (polar-
ization etc.) to the angular parts of the matrix elements. It is therefore possible to
consider a phenomenological model of the scattering that can describe the polar-
ization dependence, orientation dependence, and whether or not a particular optical
effect, Bragg reflection, etc. can exist, without carrying out a detailed quantum-
mechanical calculation. The remainder of this chapter deals with such geometrical
properties.

8.4 Cartesian Tensors, Magnetism and Anisotropy

In the preceding section, we outlined the steps necessary to obtain a phenomeno-
logical model for resonant scattering (and absorption) based on Cartesian tensors.
This may seem an unnecessary step but the separation of the sample and X-ray
properties onto objects that have well-defined transformation properties proves to
be an extremely powerful and elegant way of dealing with complex scattering pro-
cess. The relationship between the scattering tensor and sample symmetries will be
discussed in the next section. Here, we discuss a simple but widely used model of
E1E1 resonant scattering, including magnetism and magnetically induced charge
anisotropy.
We begin by selecting the most general form of the E1E1 scattering tensor:

T Th2 Ths rirf riry rrj abc
_ _ * * * _
Tij=|Ta T2 Tos | = | rar{rary rary | =\|de f|]. (8.8)
T31 T32 T33 r3ri’“ r3r; 1‘37':;,k g hi

where a, b, c, etc. are complex functions of energy. Now let us assume that all the
interactions governing the atom of interest are (on average) either isotropic or have
a direction that is fixed only by an applied magnetic field, which we take to lie
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along the z-axis. This scenario corresponds to a free atom under the influence of a
magnetic field. We assume as little as possible about the system, but one thing we
can say with certainty is that the physical properties of the atom are invariant against
any rotation about the field (z) axis. As each tensor component is an observable
physical quantity (in principle, at least), then we must ensure that the tensor T;;
remains the same after rotation through some angle, ¢, that is,

T = R{(T) = R;TR; " = T;; R; i1 R; ju, 8.9)

where the transformation is given in both tensor and matrix form, T represents a
transpose and the rotation matrix is given by

cos¢ —sin¢ 0
= | sin¢ cos¢ 0 ]. (8.10)
0 0 1

¥4
Ry

One can solve (8.9) for each tensor element, but it is a slightly tedious process. It is,
however, a simple exercise to show that a tensor of the form

a—%c b 0
Tij = -b a—3c 0 (8.11)
0 0 a+§c

satisfies (8.9) and is therefore invariant against any rotation about the z-axis. On
inspection of (8.11), we can identify three separate structures, characterized by the
symbols a, b, and c. The first of these is a scalar, represented by the identity matrix
multiplied by a. It is invariant with respect to any rotation and therefore describes the
isotropic properties of the atom. The parts characterized by b and ¢ are not isotropic,
but are axially symmetric. One can show as another simple exercise that on rotation
by m about the x axis, one obtains an identical tensor with the exception that the
parameter b changes sign. We can therefore identify ¢ with uniaxial anisotropy and
b with a vector. In fact, this is an example of a well-established deconstruction of a
second-rank Cartesian tensor into its irreducible components: a scalar, a vector, and
a symmetric tensor that can be described by an ellipsoid.

To ascertain whether the vector part of the scattering tensor behaves like an
axial or polar vector (see Sect. 8.2), we need to determine whether it is even or odd
under inversion. For this we note that, under inversion, a Cartesian tensor of rank
K changes only by the overall sign, (—1)X, and so even rank tensors are even and
odd rank tensors odd. A vector described by a rank-two Cartesian tensor is therefore
even under inversion and behaves like a current loop rather than a polar vector. It is
not a large step to associate the vector term with a magnetic dipole and to label this
term in the scattering tensor as magnetic scattering. To add weight to this feasibility
argument, we note that the tensor in (8.8) is symmetric if the expectation values r
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are purely real. As complex conjugation (*) reverses the direction of time, we can
deduce that the antisymmetric vector term is time-odd, that is, magnetic.
The uniaxial term does not change sign with time reversal (it is time-even) and so
is not strictly magnetic, although the anisotropy is very often caused by magnetism.
To derive an explicit form for the polarization dependence of the above scattering
process, we simply expand out the X-ray tensor in (8.7):

e16 185 €165
Xij = 828/1* 828/2* 828/3* (812)
e3el" €38 e3el

and insert (8.11) and (8.12) into (8.6) to obtain

feiel = T Xij

1
&3 /% /% Ik Ik /% Ik Ik
a(e1e] + 285 + €385 ) + b(e165 —&26] )+C§(28383 — 18] —€28%)

1
= a(e-8%) +bi- (Ex &) 40 @ DET-D) - - E) (8.13)

Here, we have used only very simple symmetry arguments to obtain a phenomeno-
logical expression for magnetic resonant scattering, within the electric dipole (E1E1)
approximation, which reproduces the essence of the “standard” form [10, 11]

fepr = (E-8FO 4iz. @ x &) FWD 4 (2.2)(8™* - 2)FP, (8.14)

where the definitions of £ are given in the above references.

The Cartesian scattering tensor in (8.11) can be written equivalently, but more
flexibly, by detaching the (magnetic) symmetry vector from the Cartesian axes. If we
now represent the magnetic unit vector by m (i.e., replace Z with m in (8.13)), then
resonant scattering tensor becomes

100 0 m, —my m2—1 mymy mym,
Tijy=al010|+b|-m. 0 my |+c| memy m2—3% mym;
001 my —my O Mxm; mym; mzz—%

(8.15)

As m)zc + mf, + mz2 = 1, the above tensor has a total of five independent parame-
ters (four fewer than the most general case in (8.8)): one for the scalar term, three
for the magnetic vector term, one extra parameter for the third term, describing
the uniaxial anisotropy. The scalar and vector terms in (8.13) and (8.14) are com-
pletely general but the symmetric rank-two tensor is not. It is, therefore, clear that
the standard expression for E1E1 resonant scattering, given by Hannon et al. [10]
and reproduced in (8.14), is a complete description of the scalar and magnetic terms,
but offers only a highly simplified model of anisotropic resonant scattering. Despite
this limitation, it has proved extremely effective for the interpretation of resonant
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scattering from magnetic systems, particularly in systems where the anisotropy of
the electronic orbitals is dominated by magnetic (i.e., spin—orbit) interactions, rather
than the electric field of a highly anisotropic crystalline environment.

Before leaving this section, we note that (8.14) encompasses both magnetic linear
and circular dichroism. From the optical theorem (Sect. 8.1) and taking ¢ = &, we
find the absorption cross-section to be

y=F"Q 4im-(&x&)F'D 4|2 m)PF'@ (8.16)

where ” indicates the imaginary part of the scattering amplitude. (It can be shown,
as an exercise, that all the polarization factors in (8.16) are purely real, and so the
requirement of the optical theorem to select the imaginary part of the scattering
amplitude becomes a requirement to select the imaginary parts of F(©1:2)). The
first term is the (normal) isotropic absorption. The third is magnetic linear dichro-
ism [12] and depends in the direction of linear polarization relative to the magnetic
vector, m. The only term that is linear in m, and changes sign with the magnetic
vector direction, is the second term. This term vanishes if £ is real, and exists only
when the beam is circularly polarized. For right- and left-hand circularly polarized
beams, propagating along the z direction, we can write

Ex=—| £i ], (8.17)

which gives

&2
v = F'O g g ) L2007 p) (8.18)

and so it is clear that X-ray magnetic circular dichroism (XMCD) requires both

circularly polarized X-rays and a component of the magnetic vector along the beam

direction, as we saw in Sect. 8.2.

8.5 Neumann’s Principle and Symmetry-restricted Tensors

Derivation of properties of magnetic scattering from a material on the basis of
symmetry, as discussed in Sects. 8.2 and 8.4, is an example of the application of
Neumann’s Principle. The principle has been couched in several ways but it is,
essentially, that Any symmetry of a material must also be possessed by any physical
property of the material. By physical property we mean any observable, and this
includes the intensity, polarization, and relative phase of X-ray scattering. Thus, if
we describe the scattering by a tensor, where each tensor component is potentially
observable, then the tensor components must be invariant with respect to all the
symmetries of the crystal.
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In the tensor description of X-ray scattering, we obtain the scalar scattering
amplitude by contracting a tensor describing the X-ray probe, X, [4] with one
describing the scattering properties of the sample, T'. As the resulting scalar quan-
tity is invariant with respect to all symmetry transformations, it follows that any
symmetry (or antisymmetry) of X is an effective symmetry (or antisymmetry) of 7'
and vice versa. For example, a linearly polarized X-ray beam has mirror symmetry,
which is effectively passed to the sample, making it impossible to probe chirality
in an absorption measurement. Chiral properties can be probed only with a chiral
probe. Similarly time-odd properties of T' can only be accessed using a time-odd
tensor X . The hand must fit the glove!

Throughout this chapter, we take the most general form of a scattering tensor
as a starting point and “symmetrize” it by forcing it to be consistent with the sam-
ple symmetry operators. In some cases, these involve crystallographic (point- and
space-group) symmetry operations, which are functions of spatial variables only.
In other cases, the symmetry includes a description of magnetism (see Sect. 8.8),
which is formalized by selectively including (or not) time-reversal with each of
the crystallographic symmetry operators [13]. Often, the magnetic configuration
is incompatible with the basic crystal symmetry, leading to very weak Bragg
reflections that characterize this weak symmetry breaking. Sometimes, translation
symmetry is partially or completely destroyed, leading to incommensurate mod-
ulations with wavevectors that have no rational relationship to the basic lattice
parameters. All these phenomena are hugely important for studies of magnetic
materials.

A final comment concerns the symmetry of a crystal that is interacting with an
external field, such as a magnetic or electric field or uniaxial pressure. While the
basic crystallographic symmetry remains unchanged (in the absence of a phase
transition), the exact symmetry group of the crystal/field system is given by the
intersection of the symmetry elements of the crystal and field. In practice, this means
throwing away any symmetry element of the crystal that is not compatible with the
field, such as rotations about any axis that is not the field direction or reflections in
any plane that is not normal to the field. Although this is likely to be a minor per-
turbation, it may lead to a partial violation of glide-plane and screw-axis extinction
rules, and allow weak Bragg reflections that characterize the interaction between the
crystal and external field.

8.6 Scattering Matrix and Stokes Parameters

The scattering matrix [ 14] operates on a two-element polarization vector, rather than
the three-element vector employed in the previous section, to give the amplitude and
polarization of the scattered wave. Conventionally, the polarization basis states are
those of o and  polarization, that is, linear polarization perpendicular or parallel to
the scattering plane. Scattering is completely described by the scattering amplitudes
for the four polarization “channels,” normally referred to as “sigma to pi” etc, and
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we write

fc—o/ fn—cﬂ)
G = . 8.19
(fc—n/ fn—n/ ( )

An advantage with this formalism is that it employs only the two possible polar-
ization directions (transverse components of light are not, of course, allowed).
A disadvantage is that this requires a special frame of reference for each beam,
and the scattering matrix does not transform in a simple way, that is, as a tensor.
When the scattering intensity of interest corresponds to well-defined polar-
izations states, then the scattering matrix does not offer significant benefit. The
scattering matrix approach comes into its own when combined with the polarization
density matrix, which gives a complete description of the average state of polar-
ization, including partially polarized beams. It can be written in terms of Stokes

parameters [14]:
1 14+ P P—iP;
== 8.20

” 2(P1+iP2 1— P (8.20)

where P3, P;, and P, are, respectively, the Stokes parameters for linear polariza-
tion perpendicular to the scattering plane, linear polarization at 45° to the plane,
and circular polarization. The total polarization, P, which is unity for a completely
polarized beam, is given by

P?=P+ P} +P; <1 (8.21)

One of the appeals of Stokes parameters is that they describe intensities and are
closely related to measurements. Indeed, one can obtain a useful working defini-
tion of the Stokes parameters by considering the results of a measurement using a
perfect polarization filter. For example, the value of P3; could be obtained from a
measurement of the ratio of transmitted to incident beam intensity through a perfect
polarizing filter that transmits only linear polarization perpendicular to the scattering

plane:
1

Py=2+—1. (8.22)
Iy

For complete (linear) polarization, I = Iy and so P3 = + 1; for the opposite polar-

ization (polarization parallel to the scattering plane), I = 0 and so P3 = —1; and

for an unpolarized beam, I = Iy/2 and so P3 = 0. We can similarly define the
other Stokes parameters.

With a knowledge of the incident beam polarization and scattering matrix, we
can now take advantage of the very useful results [14]

I =Tr(GuG™) (8.23)

and |
w = TG/LG+, (8.24)
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where Tr is the trace (sum of diagonal elements), T indicates a Hermitian conjugate
(transpose of complex conjugate), and u’ is the polarization density of the scattered
beam.

The scattering matrix, G, can be thought of as an operator that transforms the
initial beam into the final beam. If two sequential scattering processes are involved,
then one can operate sequentially with two scattering matrices. A common example
is when first the sample scatters the beam and then a polarization analyzer crystal
scatters the secondary beam into an X-ray detector. We call the scattering matrix
for the polarization analyzer the analyzer matrix, A, and for the common case of
isotropic kinematical scattering from a crystal polarization analyzer, we find [15]

=( cos —sing ) (8.25)

cos2¢ sinn cos2¢ cos

where 7 is the rotation angle of the analyzer about the scattered beam and ¢ is
the analyzer crystal Bragg angle (note that this device is a perfect linear polariza-
tion analyzer only when ¢ = 7/4). The combined scattering matrix is simply the
product of the two and we find

I =Tr(AGuGTA™). (8.26)

With this expression and the scattering matrix elements, we can calculate the
intensity from an arbitrary, partially polarized incident beam, and nonideal linear
polarization analyzer.

8.7 Diffraction Intensity and the Unit-Cell Structure Factor

X-ray diffraction intensities can, in all cases other than strong scattering from high-
quality crystals, be interpreted within the framework of “kinematical diffraction,”
which is based on the Born approximation. One typically measures the ratios of
Bragg reflections, integrated over the Bragg angle, 6. Expressions for such an
integrated signal are given in the literature [16] and are of the form

I NA3 1
— o |F[? —,
Iy v sin20

(8.27)

where F is the unit cell structure factor (scattering amplitude) and N is the
number of unit cells of volume v that are effective in scattering. The usual for-
mulation includes a polarization factor, but we prefer to include this factor in the
structure factor as we are interested in a range of processes, all with different
polarization dependence. Often, all factors in (8.27) are constant and we typically
associate the scattering intensity with |F|? directly. For comparisons between
different reflections, some of the other factors may be required.
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The unit cell structure factor is given by the sum or integral over all scatterers at
positions r within a unit cell, taking into account the phase factor at each point that
arise from the path differences between beams scattered from different points:

Fk) =) fe*. (8.28)

cell

wherek = ¢’ —q.

For nonresonant scattering, this expression becomes an integral over the con-
tinuous electron density. Resonant scattering is much simpler because the process
requires a core electron, which exists only very close to the nucleus and is typically
taken as a point in space. We therefore need to consider only the sum of a finite num-
ber of points, each representing the site of a resonant ion. Because of the point-like
nature of the scattering, there is no form factor, but the Debye—Waller temperature
factor [16] is still expected to be active.

Calculation of structure factors is greatly facilitated by adopting crystal (real and
reciprocal space) coordinates, and one finds

N
Fuel = Z fu leti(hx-i-ky-i—lz)7 (8.29)

n=1

where hkl are the Miller indices of the reflection and xyz are the positions of the
resonant ion in crystal coordinates. Finally, we note that (8.29) can equally well
describe the relationship between the atomic resonant scattering tensor and the
structure factor tensor.

In this chapter, we concern ourselves mainly with “forbidden reflections” where
the structure factors and hence diffraction intensities are exactly zero by symmetry.
There are other cases where the scattering from point-like (or spherical) atoms, as
given by (8.29), is zero but the exact structure factor for the continuous electron
density is small but not zero, as they are not ruled out by spacegroup symmetry. In
other cases, the resonant scattering can be given by the sum of structure factors from
different processes, leading to interference effects. We do not discuss these in this
chapter.

8.8 Magnetic Symmetry, Propagation Vector,
and the Magnetic Structure Factor

The goal of this section is to provide the reader with some basic ideas and references
that can be useful when dealing with magnetic structure. Although the determina-
tion of complex magnetic structures using X-ray resonant scattering is not yet well
developed, we are able to take competing models and consider the resulting resonant
scattering signals. Here, we assume the structure to be known by other methods.
We have referred several times to the concept of invariance of the tensors under
the symmetry operations of the space group. In the same way, it is natural to
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associate with a magnetic structure a new sets of symmetry elements, including
transformation properties under time reversal. Several symbols have been adopted
to define the operation of time reversal and here we use T or ’. Shubnikov [17]
considered the group of figures with “black and white” symmetries and called these
“antisymmetry”” groups. This terminology indicates that we are concerned with the
connection between objects that are opposite (i.e., black and white or +1 and —1)
rather than objects that are the same. The analogy between these groups and the
symmetry element 7" is immediately seen. A black element is a space—time even
symmetry and a white element is a space—time odd symmetry. Therefore, under a
white symmetry, a black object will be transformed into a white object. Magnetic
point groups can contain ordinary crystallographic symmetry elements like rota-
tions and reflections, the element 7', and their combination. The point groups where
the element 7 enters only in combination with a crystallographic symmetry are
called black and white. They represent magnetic systems. If 7" alone is a symmetry
element, then the system is time-even and nonmagnetic.

While the concept of magnetic symmetry is sufficient to describe a large number
of magnetic structures, there remain many that are not invariant under any of these
groups, even though the atomic positions and charge density are described quite
precisely by the underlying crystallographic space group. Two well-known cases
where this framework is not useful are the description of the helical and/or semi-
ordered (e.g., spin density wave) structures [18]. In the first case, the symmetry does
not include spin rotations over non-crystallographic angles, and in the second, the
required nonconservation of the absolute value of the ordered spin is not allowed.

Despite these limitations, even when dealing with semi-ordered structures, mag-
netic symmetry can be an useful approach when the deviation from a symmetry is
small enough that its contribution to the scattering can be neglected, as we see in
Sect. 8.13. A more general description of magnetism uses group representation the-
ory and investigates the transformation properties of magnetic structures under the
operations of the normal 230 space groups and searches for the irreducible repre-
sentations and basis functions capable of describing them [18, 19]. This approach
contains the magnetic (Shubnikov) groups as a special case.

While the point group of a material describes its macroscopic properties, the
atomic-scale properties are determined by the space group, which includes transla-
tional symmetry. The structure of the ordered magnetic systems will be described
by the corresponding magnetic space group. Several cases can occur:

e The magnetic ordering maps perfectly onto the crystallographic symmetry; there-
fore, there are no additional periodicities leading to new Bragg reflections, and
there is no change to the crystal translational symmetry (e.g., a ferromagnet).

e The magnetic ordering introduces a new (larger) periodicity that is commensurate
with the crystallographic unit cell, that is, the magnetic translation vectors are
integer multiples of the crystallographic ones. In this case, if there is more than
one magnetic ion in the crystallographic cell, the crystallographic unit cell may
still be adequate to describe the magnetic ordering, but often multiple cells are
required.
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e The magnetic ordering introduces a new periodicity that is incommensurate with
the crystal structure. In this case, exact crystallographic translational symmetry
is destroyed in one or more directions and extra Bragg reflections are observed
that have no rational relationship with the normal reflections.

The first two cases can be relatively easily accommodated even when the large
number of cells required makes this description inconvenient. For the third case, it
is necessary to introduce the concept of the magnetic propagation vector as a con-
venient way of describing the translational properties of the magnetic symmetry.
In the following, we consider only magnetic configurations where the moments are
attached to the ions defining the crystal structure. This is appropriate for the descrip-
tion of resonant X-ray scattering because it is a “local” probe that is sensitive only
to magnetism in the vicinity of atomic core electrons. A complete description of the
magnetic moment m,, at any magnetic site n (assuming a single magnetic ion type)
is given by

m, = Y S, e R (8.30)
{tm}

where the set of vectors {7,,} are restricted to the first Brillouin zone, the vec-
tors R, span the crystal lattice, and the complex S;,, are the Fourier components
describing the magnetic moment distribution in the material. Often the sum over
{Tm} reduces to a single or to a small number of symmetrically equivalent vectors,
hugely simplifying this expression. Substituting this equation into the expression for
the unit-cell structure factor, it is a straightforward exercise to show that F (k) = 0
unless k = h + 7, where h is a vector of the reciprocal lattice and t,, is a propaga-
tion vector. Therefore, the structure factor formula holds for the integrated intensity
of a magnetic reflection if the appropriate changes are made:

Fht7p) =} S, e (831)
J

or, equivalently, )
FH+7) =) S, 2o, (8.32)
J

where the sum runs over all magnetic ions in the unit cell. The two expression above
are equivalent, except that the second is written in terms of crystal coordinates, that
is, r; is the atomic site vector expressed as fractions of the unit cell lengths, H is the
set of Miller indices (hkl values) of the reflection, and 7 is the modulation vector
in reciprocal lattice units.

The same kind of description can be followed for every type of periodic order
that is established in the crystal and leads to diffraction.
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8.9 Crystal Coordinates and Azimuthal Rotations

The main topic of this chapter is the calculation of geometrical properties of res-
onant scattering, that is, polarization and rotation dependence. The most tedious
part of the calculation involves making the rotations necessary to access the desired
reflection, h, with the desired azimuthal angle, . Here, we outline a method for
performing these transformations, which may be skipped by those who are not con-
cerned with such details. We adopt, where practical, the notation of Busing and
Levy [20] and opt to rotate the relevant “X-ray probe” vectors to the coordinate
system of the scattering tensor, rather than rotating the scattering tensor. While the
two approaches are equivalent, the machinery for transforming the scattering tensor
depends on rank, whereas the X-ray scattering “probe” is always constructed from
known vectors. We define several coordinate systems, each denoted by a subscript
character: X (crystal coordinates), C (crystal Cartesian coordinates),i (coordinate
system attached to the diffraction geometry, with the azimuthal reference in the
xy plane), and 6 (general diffraction coordinate system, rotated by an azimuthal
angle ¥ about the scattering vector). Our goal is to transform everything to the
crystal Cartesian system.

It is often convenient to consider the properties of the scattering tensor in the
crystal Cartesian coordinate system, where symmetries can either be applied manu-
ally from a knowledge of the symmetry operations or transformed from those found
in the International Tables [21], from crystal to crystal Cartesian coordinates via the
B matrix, described below and in (8.61). Any (column) vector v in the experimental
0 coordinate system can then be transformed to the crystal Cartesian system via

ve = UV vy, = UV UYPvg = UYRY vy, (8.33)
where
1 0 0
U =R*_;, = | 0 cosy siny (8.34)
0 —siny cosy

rotates the sample about X(= ﬁ) from some general azimuthal angle, ¥, to ¥ = 0
(the ¥ coordinate system), and UV is the unitary transformation from the ¥ to the
crystal Cartesian system. This matrix, which is the key to the calculation, can be
derived by noting that

USY%, =he =% = Bhy

USY2, =he x fic =2 = Bhy x Bny
Uy, =y =7 x%, (8.35)

and we can adopt the definition of the B matrix which transforms from crystal
(reciprocal lattice) to crystal Cartesian system, from [20]
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Fig. 8.3 The 0 coordinate
system for scattering
geometry. The ¥ coordinate .
system differs only by a %G ,
notation by ¥ about X, which a- )/ \/f »4
brings n into the xy plane 6 T - 10 y
b1 by cos B3 b3 cos B2
B=| 0 bysinf3 —b3sinfBrcosay |, (8.36)

0 0

1/as

where the a;’s and ¢;’s and the b;’s and B;’s are the

direct and reciprocal lattice

parameters, respectively [8,20], and fiy is the azimuthal reference hkl vector. The
required transformation matrix can now be constructed from

Uucv = (;}’,5/,2/), (8.37)
With reference to Fig. 8.3, we can write
- 1 —sinf sin 0
hg=q)—q,=[0]|dqo=| cosf |qy=|cosb |,
0 0 0
0 cos 0 cos 0
o=68,=|0] éx=|sin0 | & = —-sinf |, (838
1 0 0
where
h
. A A|Bhy| A
f=—=—"—=—-1|B , 8.39
Y= 5d 2 2 ]; (8.39)

where £, k, and [ are the Miller indices of the reflections. Armed with the definitions
of these vectors and the means to transform them into the crystal Cartesian coordi-
nate system, we can construct the required X tensors in the reference frame that
is usually most convenient for considering the physical properties of the resonant

scattering tensors.

8.10 Spherical and Cartesian Tensors

Spherical tensors, which are closely related to spherical harmonics and to the quan-
tum mechanical treatment of angular momentum, are often used to describe resonant
X-ray scattering [22]. They are useful partly because of their connection to atomic
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properties but mainly because they are irreducible. That is, they do not contain
within them tensors of lower rank. In Sect. 8.4, we saw that a Cartesian tensor of
rank two, which contains 3> = 9 components, can be split into three terms: one
that transforms as a scalar (the identity matrix), one that transforms as an axial vec-
tor, and a symmetric rank-two tensor. These parts contain 1, 3, and 5 components,
respectively. It is no coincidence that these are also the number (2J + 1) of pro-
jections of angular momentum J. As with angular momentum, a spherical tensor
of rank K has 2K + 1 components. Using spherical tensor components to describe
a tensor of rank K therefore has the advantages over the Cartesian equivalent, that
its transformation properties are better defined and that it requires fewer numbers
(5 rather than 9 in the rank-two case). The benefits in terms of economy of notation
become more apparent as the tensor rank increases: a fourth-rank spherical tensor
requires only nine components, compared to 81 for the Cartesian form.

The disadvantages of spherical tensors are that their manipulation tends to be
more of a mathematical challenge than for Cartesian tensors, and there can be com-
mon pitfalls such as inconsistency of phase conventions between different authors.
Moreover, they are less clearly related to the natural coordinate systems of crystals,
some of which nature has even chosen to be Cartesian, that is, cubic!

Manipulation of spherical tensor components is straightforward if they are given
in a form that has well-defined symmetry under inversion and time-reversal. Fortu-
nately, most of the results of interest in X-ray scattering have already been derived
in such a way [4,23]. Tensors that are even (odd) under inversion simply have all
components multiplied by +1 (—1) when this symmetry operator is applied, and
likewise for time-reversal. The possible inversion/time-reversal symmetry of ten-
sors describing multipole resonances up to E2E2 transitions is given in Table 8.1.
It is interesting to note [4,23] that for parity-even tensors, the time-reversal signa-
ture is given by (—1)X, whereas for parity-odd tensors there is no such relationship
and the tensors have no well-defined symmetry under time reversal. It is therefore
convenient to split them into parts that are time-even (U ) and time-odd (G).

To calculate the scattering amplitude and intensity for a resonant process des-
cribed by some set of spherical tensor components, the tensor describing the
atomic scattering must be contracted with a tensor of the same rank and inversion/
time-reversal symmetry which describes the X-ray probe (X 5 ), to form a scalar [4]:

K
f=Y > Hx§FX,. (8.40)

K 0=—K

The X tensors for E1E1 contributions to the scattering are written below in
terms of projections of the polarization vectors in the coordinate system depicted
in Fig. 8.3:

—exe —e,8 — g€ 1
Xpp = ( . \/ygy - Z) =3¢ e’ (8.41)
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Table 8.1 Tensor rank, symmetry under parity and time-reversal, and allowed multipole transi-
tions

K P+T+ P+T— Mpol Ref P—-T+ P—T— Mpol Ref

0 70 x EIEI a U G° (EIM1) b
E2E2 c

1 X T! EIEI a U! G! EI1E2 d
E2E2 c (EIM1) b

2 T? X EIE1 a U? G? E1E2 d
E2E2 c (EIM1) b

3 X T3 E2E2 c U3 G’ E1E2 d

4 T4 x E2E2 ¢

The references in the table give expressions for the X g (X-ray) spherical tensors for various pro-
cesses. A detailed Cartesian treatment is given in [3]. EIMI transitions are relatively obscure with
X-rays and are shown in brackets

4[4] Equation (66)

b [23] Equations (6.2) and (6.8)

¢ [4] Equations (77) and (78)

4 [4] Equations (115), (116) and (119)

(818; —liee), —exel +ieye, —ieyel +iexel,

y
2 ’ ,\/i 3

1 —
XEIEI -

/ 3 / / o /
&85 T16.8, — €xE, —1€y€,
4 ' ], (8.42)
2
/ o / o / / / . / / o /
) ExEy —1EyEy —lExE), —EyE), €6 — 168, + ExE, —iEyE,;
Xgigr = ) ) 5 )
/ / / / H / / H /
—ExEy — EyEy, + 268, —E.8, — 16, — ExE; —1EyE;
NG , > ,
ex&y +ieyel +iexe), —eye),
> . (8.43)

The X tensors can be transformed into the crystal coordinate system by rotat-
ing the vector component in the above expressions, as described in Sect. 8.9.
Alternatively, one can keep the X tensor fixed and rotate the scattering tensor.

Having determined that inversion and time-reversal operations are rather trivial
with suitably formed tensors, the only remaining symmetry operation required is
rotation, which can be carried out with a Wigner D matrix. These are described
in detail in the literature [4, 22, 24] and used in Sects. 8.12 and 8.13. We will not
describe them further here, other than to say that they are (2K +1) x (2K + 1) matri-
ces that operate on a 2K 41 component tensor in much the same way that a Cartesian
rotation matrix operates on a vector. The Wigner D matrices can be computed from
a set of three Euler angles that represent the rotation [24]. However, as the Euler
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angles are referenced to a particular coordinate system, it can be tricky using this
approach to apply crystallographic symmetry as one often encounters coordinate
singularities. These are avoided with Cartesian tensors by working directly with the
crystallographic unitary transformations, which no not require angles.

As there is sometimes real benefit in working with spherical tensors, and some-
times with Cartesian tensors, it can be convenient to convert between the two forms.
This we do following the procedure of Stone [25] (This procedure can be par-
ticularly useful for applying symmetry constraints to spherical tensors based on
Cartesian matrices. One can convert to Cartesian form, apply symmetry, and convert
back to spherical form).

Conversion between spherical tensor components Té( and corresponding Carte-
sian components Tk can be carried out using the following expressions:

K K
Ty = Z Tijk..Coiijk... (8.44)
ijk...
Tijk. 3 T6 Cire. (8.45)
0

where the conversion coefficients are given in Tables 8.2-8.5. The coefficients are
calculated using the Condon and Shortley phase convention, and we follow Stone’s
notation for the sequence of tensor coupling, that is, C 123# for rank four. For the
present discussion, we consider only the special case where the coupling gives the
maximum possible rank, although the same procedure can be used to carry out
a complete decomposition of a general cartesian tensor into all of its irreducible
spherical components.

To illustrate the use of the conversion coefficients, consider the spherical vector
(i.e., spherical harmonic) (0,1,0), or Ty = 1,7}, = T!! = 0. Conversion to
Cartesian form gives (0, 0, 1), or TZ1 =1, Tx1 = Ty1 = 0. Similarly, we find that the
spherical components (0, 0, 1) transform into the Cartesian vector %(—1, i,0).

8.11 Example: HoFe,

To illustrate some of the key points discussed in this chapter, we consider some
specific examples. The first of these, the ferromagnet HoFe,, is chosen because

Table 8.2 Cartesian-to-spherical conversion coefficients for rank-one tensors
I

cLl, = 1,—i,0
1 «/5( )

¢l =1(0,0,1)

c! =i(—1,—i,0)

2
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Table 8.3 Cartesian-to-spherical conversion coefficients for rank-two tensors

ch = %((1, —i,0), (—i,—1,0), (0,0,0))

1
cl = 5((0, 0,1), (0,0, —i), (1, —i, 0))
1

NG

cl2= %((0’ 0,—1),(0,0,—1), (=1, —i, 0))

cl?= ((—=1,0,0), (0,—1,0), (0,0, 2))

clr= %((1,1,0), (i,—1,0),(0,0,0))

Table 8.4 Cartesian-to-spherical conversion coefficients for rank-three tensors
€ = o (((1,-1,0). (=i, ~1,0),0,0,0)). (=i, = 1,0). (= 1., 0). (0,0.0)),

((0,0,0), (0,0,0), (0,0,0)))

3= ﬁ(((o, 0, 1), (0,0, —i), (1, —i, 0)), ((0, 0, —i), (0, 0, —1), (—i, —1, 0)),
((1,—1,0), (=i, —1,0), (0,0,0)))

CF = = (((=3.1.0). (i, =1,0). (0.0,4)). (i, —1,0). (—1,31.0). (0,0, —40)).
((0,0,4), (0,0, —4i), (4, —4i, 0)))

CB = ﬁ(((o,o,—l), (0,0,0), (—1,0,0)), ((0,0,0), (0,0, —1), (0, —1, 0)),
((=1,0,0), (0, —1,0), (0,0,2)))

cl? = ﬁ(((& i,0), (i, 1,0), (0,0, —4)), (i, 1,0), (1, 3i,0), (0,0, —4i)),
((0,0,—4), (0,0, —4i), (—4, —4i, 0)))

B = (0,0,1),(0,0,1), (1.1,0)), ((0,0,1), (0,0, —1), (i, —1,0)),

ﬁ((
((1,1,0), (i, —1,0), (0,0, 0)))
CiB = ﬁ(((—l, —i,0), (—i, 1,0), (0,0,0)), ((—i, 1, 0), (1,1, 0), (0, 0, 0)),

((0,0,0),(0,0,0), (0,0,0)))

it has been shown [15] to exhibit relatively strong resonant forbidden scattering,
which is adequately described within the electric dipole approximation. The mate-
rial is cubic, with spacegroup Fd3m (same as diamond), with iron atoms situated
on threefold axes at positions (%, %, %), etc. We concern ourselves only with the iron
atoms, as the goal is to model the angle- and polarization-dependence of iron K-edge
resonant forbidden diffraction. The most general form of the Cartesian atomic scat-
tering tensor, within the dipole approximation and neglecting magnetic scattering,

is a symmetric tensor with six independent elements:
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Table 8.5 Cartesian-to-spherical conversion coefficients for rank-four tensors

ciZ = i((((l, —i,0), (—i,—1,0), (0,0,0)), ((—i,—1,0), (—1,1,0), (0,0, 0)). ((0,0,0), (0,0,0), (0,0,0))),

(((—i,—1,0),(—1,i,0),(0,0,0)), ((—1,i,0), (i, 1, 0), (0,0,0)), ((0, 0., 0). (0, 0, 0), (0, 0,0))),
(((0,0,0),(0,0,0), (0,0,0)), ((0,0,0), (0,0,0), (0,0,0)), ((0,0,0), (0,0, 0), (0,0,0))))

cZ = ﬁ((((o.o, 1), (0,0, —i), (1, —1,0)), ((0, 0, —i), (0,0, —1), (—i, —1,0)). ((1, —i. 0). (—i, —1, 0), (0, 0, 0))).
(0,0, —i), (0,0, —1), (—i,—1,0)), ((0,0, —1), (0,0, 1), (—1.i,0)), ((—i, —1,0), (—1,1i,0), (0,0, 0))),
(((1,—1,0), (—i,—1,0),(0,0,0)), ((—i, —1,0), (—1,1,0), (0,0,0)). ((0,0,0), (0,0, 0), (0, 0,0))))

ciP = \/% ((((=2,1,0), (i,0,0), (0,0,2)), ((i,0,0), (0,1, 0), (0,0, —2i)), ((0, 0, 2), (0,0, —2i), (2, —2i, 0))),
(((0,0,0). (0,1,0), (0,0, —2i)), (0.1, 0), (i,2,0). (0, 0, —2)), ((0,0, —2i), (0, 0, —2), (—2i. —2,0))).

(((0,0,2), (0,0, —2i), (2, —2i,0)), (0,0, —2i), (0,0, —2), (—2i, —2,0)), ((2, —2i, 0), (—2i, —2, 0), (0,0, 0))))
1

ciZ = ﬁ((((o, 0,—3),(0,0,1), (—3.i,0)). ((0,0.1). (0,0, —1), (i, —1,0)), ((—3,1i,0), (i, —1,0). (0, 0, 4))).
(((0,0.1). (0,0, —1), (i, —1,0)), ((0, 0, —1), (0,0, 3i), (—1, 3, 0)), (i, —1.0), (—1, 3i, 0), (0,0, —4i))).
(((=3.i,0), (i, —1,0), (0,0,4)), ((i. —1,0), (—1,3i,0), (0, 0, —4i)), (0,0, 4), (0, 0, —4i), (4, —4i, 0))))

G = ﬁ(«(s.o,m.(o,1,0),<o,o,—4>>.((0,1,0),(1,0,0),<o,o,0>>,(<0,0, —4).(0,0,0), (—4.0.0))),
(((0,1,0), (1,0,0), (0,0,0)). ((1,0,0), (0, 3,0), (0,0, —4)), ((0,0,0), (0, 0, —4), (0, —4,0))).

(((0,0,—4). (0,0.0), (—4.0,0)), ((0.0,0). (0,0, —4), (0, —4,0)). (—4.0,0), (0, —4,0), (0,0, 8))))

P = \/%((((o. 0,3),(0,0,1), (3.1,0)), ((0,0,1), (0,0, 1), (i, 1,0)), ((3.1,0), (i, 1, 0), (0,0, —4))),
(((0,0.1). (0,0, 1), (i, 1,0)). (0,0, 1), (0, 0. 3i), (1, 3i,0)). ((i. 1,0). (1, 31, 0), (0, 0, —4i))).

(((3.1,0). (i, 1,0). (0,0, —4)), (i, 1, 0), (1, 3i,0), (0,0, —4i)), (0,0, —4), (0,0, —4i), (—4, —4i, 0))))

P = \/% ((((—2,—1,0), (—i,0,0), (0,0,2)), ((—i,0,0), (0, —i, 0), (0, 0, 2i)), ((0, 0, 2), (0,0, 2i), (2, 2i,0))).
(((—1,0.,0), (0, —i, 0). (0,0, 2i)), (0, —i. 0), (—i., 2, 0), (0,0, —2)). ((0, 0. 2i), (0.0, —2), (2i. —2,0))).
(((0,0.,2), (0,0,2i), (2,2i,0)), ((0, 0, 2i), (0,0, —2), (2i, —2,0)), ((2. 2i, 0), (2i, —2.0)., (0, 0,0))))

P = ﬁ((((o.o,—l),(o,o,—i),(—l,—1,0)),((0,0, —i), (0,0, 1), (—i, 1,0)), (—1, —i,0), (—i, 1,0), (0,0, 0))),

(((0,0,—i), (0,0, 1), (—i, 1,0)), ((0,0, 1), (0,0, 1), (1,1,0)), ((—i, 1,0), (1.1, 0), (0,0, 0))),
(=1, —1,0), (=1, 1,0), (0,0,0)), ((—i, 1,0), (1,1,0), (0,0,0)). ((0,0,0), (0,0, 0), (0, 0,0))))
P = i((((l.i,o).(i,—l.o). (0,0,0)), ((i, —1,0), (—1, —i,0), (0,0, 0)), ((0,0,0), (0, 0,0), (0,0, 0))),

((G,=1,0), (=1, =1,0),(0,0,0)), (—1, =i, 0), (—i, 1,0), (0,0,0)), ((0,0,0), (0,0, 0), (0,0,0))),
(((0,0,0),(0.0,0), (0,0,0)). ((0,0,0), (0,0,0), (0,0,0)), ((0, 0, 0), (0, 0,0). (0,0,0))))

abc
Ty=|bdel. (8.46)
ce f

The steps required to calculate the diffracted intensity as a function of azimuthal
rotation (rotation around the scattering vector at a fixed point in reciprocal space)
and linear polarization are as follows: (1) deduce the simplified form of the atomic
scattering tensor that is consistent with the symmetry of the atomic environment
(this step is optional but informative), (2) calculate the symmetrized structure fac-
tor tensor for the reflection(s) of interest, (3) calculate the polarization vectors
of interest, which vary with azimuthal angle, expressed in terms of the crystal
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Cartesian coordinate system, (4) contract the polarization vectors with the structure
factor tensor to produce a scalar amplitude and intensity.

Applying crystal symmetry to the scattering tensor can be carried out either by
inspection or more mechanically by performing the symmetry operations mathemat-
ically. The first approach may be more intuitive; the latter better suited to computer
programs. The iron atoms occupy sites of rhombohedral symmetry (371) where the
threefold axes point along the cube diagonals (Fig. 8.4). Recalling that the symmet-
ric second-rank tensor can be represented by an ellipsoid, it is clear that the only
ellipsoid compatible with this symmetry must have its unique axis along three-
fold axis. We have already encountered this symmetry in (8.15), and by taking
my = my = m, (symmetry axis along a diagonal) and neglecting the antisymmetric
term for magnetic scattering, we have

abb
Ty=(bab]|. (8:47)
bba

Given that the scattering tensors from all the other 15 sites are related by symmetry
to the first one, it is clear that no more than two independent tensor components will
contribute to the scattering at any reflection. Moreover, as one of the components
is a scalar (the identity matrix multiplied by a), it contributes only to “allowed”
reflections and not to the resonant forbidden scattering driven by anisotropy. Such
reflections are therefore determined entirely by a single tensor element b, making
our task much easier. To carry out the above procedure in a more mechanical and
mathematical way, two approaches are possible. The first is to identify one example
of each type of symmetry operator, S, for the site in question and solve a set of
equations of the form

Tij = S1iSy;Try (8.48)

or in matrix form
T =STS™, (8.49)

where, for example, the symmetry operator 3 is given by
S=10 0 -1]. (8.50)

The second approach is to take the complete group of N symmetry operators for the
site (12 in this case) and simply add the resulting tensors, that is,

N
Ty = St S} Tu. 8.51)

n=1
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Fig. 8.4 Top left: the energy spectrum of resonant forbidden scattering from HoFe, (circles)
superimposed on the absorption spectrum. As with all resonant forbidden scattering, the signal
is only large close to the absorption edge. Bottom right: the crystal structure of HoFe, showing the
diagonal threefold axis of one of the iron atoms

This approach is the least physically appealing but the easiest to automate. If mag-
netism is neglected, then the group of symmetry operators can be obtained in a
straightforward way from standard references such as the International Tables [21].
Unfortunately, the situation tends to be less well documented when magnetism plays
an important role.

The next step is to calculate the unit cell structure factor tensor for the (forbidden)
reflection of interest. For this, we follow the procedure in Sect. 8.7, that is, we add
the atomic tensor from each iron site within the unit cell, taking into account both the
different (but related) configuration of each site and the phase factor, e**. For the
(024) reflection, for example, we obtain

00b
Fooa=1000 |. (8.52)
b0oO
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Again, the form of this tensor is not a surprise. The diagonal terms have vanished as
they must for a forbidden reflection, and a single parameter describes the anisotropy.

Having established the form of the structure factor tensor, we must now contract
it with the relevant X-ray probe tensor/vectors, which for E1E1 resonant scattering
is simply the polarization vectors of the incident and scattered X-ray beam. The
only real complication is that these rotate relative to the sample during an azimuthal
scan. One must either compute the rotated properties of the scattering tensor or the
experimental probe. In Sect. 8.9, we outline a procedure for latter, which fits well
with the usual approach of taking the origin of the azimuthal angle with respect to a
favored reciprocal lattice vector of the sample.

In [15], the (024) reflection intensity from HoFe,, at the iron K-edge, was mea-
sured as a function of azimuthal rotation for scattered beam polarization states per-
pendicular to the scattering plane (§9 = &), perpendicular to the plane (§99 = £7,),
and at angles of 0 and 135° (€45 and £135). The incident polarization is perpendicu-
lar to the scattering plane, as is typical with a synchrotron diffraction experiment. In
the experimental (6) coordinate system shown in Fig. 8.3, the o and 7 vectors are
given in (8.38), with the vectors for 45 and 135° polarization easily obtained from
sums and differences of these:

cos 6 1 —cos 6
45 = — | —sinf | 135 = —| sin6 |. (8.53)

V2\ 2\

Before contracting these vectors (e.g., £5,6,5 for 45° polarization) with the struc-
ture factor tensor, following (8.6) and (8.12), we select a sample hk! vector to define
the azimuthal origin (we take the 010 vector), calculate the Bragg angle, 6, for the
reflection and wavelength, and use (8.33) to calculate the polarization vectors for
each azimuthal angle. Finally, we determine the X-ray intensity (to within an overall
scale factor, as per this entire discussion),

[ |FP. (8.54)

The resulting curves, reproduced in Fig. 8.5, show a remarkably rich angle and
polarization dependence for this, the simplest of resonant scattering processes. The
excellent agreement with the model calculations demonstrates that higher order pro-
cesses, including magnetic scattering, quadrupole resonance, etc., play a negligible
role in this case. One might reasonably ask what can be learnt from such an analysis
beyond ruling out higher-order (and perhaps more interesting) scattering processes.
In fact, “clean” examples such as these are vital for understanding more complex
systems where there may be several competing processes. Moreover, pure dipole
resonant forbidden scattering has been shown to be extremely sensitive to the atomic
coordinates of resonant ions [5] and, recently, to be directly sensitive to chirality in
enantiomorphic crystals [26].

Before concluding this example, we note that the results are strictly valid only
for pure polarization states and a perfect polarization analyzer. States of partial
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polarization can be dealt with by using Stokes parameter, as outlined in Sect. 8.6.
With modern synchrotrons, the degree of polarization (typically linear unless a spe-
cial insertion device or optic is employed) is usually very close to unity. A more
significant source of error arises from the fact that the linear polarization analyzer,
which relies on choosing an analyzer crystal with a d-spacing that gives a scatter-
ing angle (20) as close as possible to 90° with the X-ray energy at the resonance
of interest. Calculations with an imperfect analyzer are described in Sect. 8.6 and
illustrated in the next example.

8.12 Example: ZnO

Zinc oxide crystallizes in the polar hexagonal space group P 63mc with Zn atoms
occupying sites of symmetry 3m (see Fig.8.6). Resonant forbidden scattering
from ZnO is of interest because it has been shown [27] to exhibit two interfering
scattering processes described (in this case) by the same scattering tensor: one aris-
ing from mixed dipole—qaudrupole (E1E2) transitions and the other from thermal
motion induced scattering, whereby one is sensitive to the evolution of the resonant
anisotropy with atomic displacement. Here, we will not concern ourselves with the
details of the physical processes, but concentrate again on the symmetry properties
of the scattering tensor. For this example, we demonstrate two different approaches
compared to our treatment of HoFe,: we employ spherical tensors and use scattering
and analyzer matrices.

While there is only one unique site for the Zn atoms, half of the Zn positions dif-
fer from the other half by a combination of a translation and a rotation or reflection
(i.e., screw or glide symmetry). The fact that the symmetry operations are not purely
translational suggests the possibility of observing resonant forbidden scattering.
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However, such forbidden reflections are ruled out for second-rank tensors (normal
dipole—dipole resonant anisotropy) because the only allowed ellipsoids are identical
for the two rotated Zn atoms and therefore cancel completely. The lowest order scat-
tering tensor that survives symmetrization is of rank three. It is described by a true
tensor, that is, parity = (—1)X = (—1)> = odd. Just as we populated the Cartesian
tensor components with arbitrary symbols in the previous example, here we do the
same with the 2K + 1 = 7 (complex) components of the atomic spherical tensor:

Ts = (T 3. T3 2. T3 1. T30 To=1-Tg=r-Tp—3) = (a.b.c.d e, f.g2).

(8.55)
which we treat as a column vector but write as a row vector to save space on the
page. Our next task is to apply the constraints of crystal symmetry to the tensor
components. Again, this can be done either by inspection or can be automated by a
computer algorithm. We discuss both.

The simplest way to find the required tensor is to employ knowledge of the crys-
tal symmetry and the transformation properties of spherical tensors. The latter is
made considerably easier by following the approach of Lovesey et al. [4], whereby
we adopt tensors with well-defined symmetry (odd or even) with respect to space
and time reversal. Under these operations, even tensors are invariant and odd ten-
sors change the sign of all components. As mirror reflections are equivalent to the
combination of (spatial) inversion and a rotation of 7 normal to the mirror plane, we
need concern ourselves only with rotations. Rotation of any set of spherical tensor
components of rank K can be accomplished by the use of 2K + 1) x 2K + 1)
Wigner D matrices which multiply the tensor. We will not consider the properties
of Wigner D matrices here, but merely quote the results that we need from the liter-
ature [4,22,24]. In fact, the D matrix for rotations about the z-axis, which we take
to be parallel to the threefold axes, takes on a particularly simple (diagonal) form
for all K:

RU(TE) = 4T (8.56)

Insisting on threefold ({ = 27”) rotational invariance already eliminates most of the
tensor components, leaving

Ts = (a,0,0,d,0,0, g). (8.57)
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We next consider the effect of the mirror reflection, which we treat as an inversion
(under which the tensor in question is odd) and a m-rotation normal to the mirror
plane, which we call the y-axis, in keeping with our procedure for mapping crystal
to Cartesian frames. In general, rotations about the x and y axes mix all the compo-
nents. For rotations of 7, however, the matrices have a rather simple (skew-diagonal)
form, which exchanges + Q and —Q components, sometimes with a change of sign
[4,24]

RUTH) = (=DXTX,, RUTH) = (—nF+eTXk, (8.58)

By equating Ts = Té( with —R} (Té( ), one finds the atomic resonant scattering
tensor to be
Ts = (a,0,0,d,0,0,—a). (8.59)

The final step is to derive the structure factor tensor by noting that allowed and
(screw-axis) forbidden reflections are formed from the sum and difference of the
atomic tensor and its equivalent form rotated by s about z. From (8.29) it is
straightforward to show that

Fatowed = (Os 0,0,4d,0,0, O)s Fiorvidden = (as 0,0,0,0,0, _a)v (860)

and we note that the allowed reflections are invariant with respect to any rotation
about the z axis.

Calculation of the (relative) scattering intensity for polarization and wave vec-
tors, £,&',q,q, can now be carried out by contracting the structure factor tensor
with the relevant X-ray tensor for the process of interest (8.64), using (8.40).

While this calculation is straightforward in principle, it can become tedious when
dealing with arbitrary reflections, whose wavevectors bear no simple relationship to
the Cartesian crystal axes, and with arbitrary azimuthal rotation angles, referenced
to other arbitrary origin (usually given most conveniently in terms of an azimuthal
reference reciprocal lattice vector). Dealing with beams of partial polarization and
imperfect polarization analyzers will render the experience painful in the extreme.
We therefore devote the remainder of this section to the description of a procedure
whereby all of the steps, including symmetrization of the spherical tensor, can be
automated.

Step 1: Obtain crystal information and symmetry, that is, lattice parameters (and
therefore the B matrix), atomic coordinates of the resonant ion(s), and spacegroup
symmetry operators. For nonmagnetic systems (or when magnetism plays only a
minor role in the scattering process of interest), this may be obtained from a stan-
dard Crystallographic Information File (CIF file). Atomic coordinates and symmetry
operators are given in terms of crystal coordinates. In hexagonal ZnO, for example,
we find a Zn atom at (%, %, 0) and 12 spacegroup symmetry operators (including
the identity). These are conveniently expressed in terms of a set of “equivalent posi-
tions”: (x,y,2) (x —y,—»,1/2+2) (—=y.x —y,2) (—x,—y,1/2+2) (x,x —
y,Z) (—y,—x,z) (X -V, X, 1/2 +Z) (—X + y,—x,z) (y’xv 1/2 +Z) (—X,—X +
y,1/242) (y,—x+y,1/24+2) (—x+Yy, y, z) where, for example, the first nontrivial
element can be written in matrix/vector form as
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1-10 0

o-10]. [o].
1

001 :

which corresponds to a reflection in the ac plane combined with a translation, ¢/2.
While the hexagonal crystal coordinates are convenient for dealing with positions,
applying symmetry transformation matrices is more straightforward using Cartesian
coordinates. We therefore use the B-matrix, defined in (8.36), to transform from
crystal to crystal-Cartesian coordinates:

Sc = BT)"! Sy BT. (8.61)

The resulting Cartesian matrix for the above symmetry operator becomes,

1L _3

Bl
-5 2 0

0 0 1

corresponding to a reflection in the plane x + V3 y = 0, which lies parallel to the z
axis and at 30° to x.

Step 2: Select the scattering process and spherical tensor of interest (e.g., K = 3,
time-even, parity-odd tensor describing E1E2 resonance, for the current example).

Step 3: Populate the 2K + 1 tensor components with objects that can keep track
of the linear transformations applied to them. These might be symbols if a computer
algebra program is adopted. Another choice is a set of 2K + 1 vectors, each of length
2K + 1. For simple cases with a single independent tensor component, such as the
current example, random numbers are a very convenient choice.

Step 4: Convert the 2K + 1 components of the spherical tensor to 3X compo-
nents of the equivalent Cartesian tensor of rank K, using the conversion tables of
Stone [25], described in Sect. 8.10 (Note that pseudotensors, whose parity is given
by (—1)X*1, will have the wrong properties under inversion following this proce-
dure. This can be either corrected for when applying the symmetry transformations
or one could adopt a Cartesian tensor of rank K 4 1, which will have opposite parity.
We adopt the former approach). Conversion to Cartesian form is purely for conve-
nience, but has the great advantage of avoiding the coordinate singularities that arise
from the use of angles when constructing the rotation matrices for spherical tensors,
for example.

Step 5 (optional): Calculate the symmetrized Cartesian atomic scattering tensor
by transforming the original tensor with each of the symmetry operations in step 1
that preserves the atomic coordinates.

Step 6: Calculate the Cartesian resonant structure factor tensor by transforming
the original tensor with each of the symmetry operations in step 1 and adding these
together with the relevant phase factor:
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Tijk... = 2371' i i Tk, e S o) (8.62)
n

where S” and v" are the matrix and vector parts of the nth symmetry operator,
TIOJK... is the original Cartesian tensor located at the atomic site vector ryp, and the
symmetry matrix is applied K times — once for each tensor index. We noted in Step
4 that a factor must be applied to account for the incorrect transformation of pseu-
dotensors under inversion (or reflections, which include inversion) using the above
formalism. This simply requires multiplying each term in the above summation by
the factor .

det(S")2G+PED) (8.63)

where P = =1 is the parity of the tensor of rank K and det(S") = %1 depending
on whether the symmetry operator is a pure rotation or includes inversion. For the
ZnO 115 reflection, all 27 components of the resulting Cartesian tensor are zero
except Fi2o = Fa12 = Fa21 = —F111.

Step 7: Convert the Cartesian structure factor tensor (or atomic scattering ten-
sor) back to spherical form using the conversion tables of Stone. For the ZnO 115
reflection, all seven components of the resulting spherical tensor are zero except
F_3 =—Fp;.

Step 8: Calculate the scattering amplitudes for the four polarization channels
of the scattering matrix. To do this, we take the polarization and wavevectors in
(8.38) and rotate to the crystal Cartesian frame using (8.33), having first specified
the azimuthal rotation angle and the azimuthal reference hk! vector. These rotated
vector components are then inserted into the relevant expression for the X-ray tensor
from the references in Table 8.1 (one for each of the four polarization channels) and
finally, the X-ray and structure factor tensors are contracted, as per (8.40), to obtain
the four components of the scattering matrix.

The expressions for the required X-ray tensors are given in [4], appropriate for
time-even case (this example) and the time-odd case (next section), as,

X&i = N — N (8.64)
and .
XS3a = Mg + Mg (8.65)

respectively, where the tensors ]\7E31E2 and N§1E2 are each obtained by coupling three
vectors to form a rank-three tensor. A general expression for such a coupling of three
vectors, A, B and C is given, in terms of the Cartesian vector components, as,

To = ((AX —iA,)(iB, + By)(C, —iC,)
3= ,

24/10
A.(iB, + B,)(C, —iC,) + (i4, + A,)(B.(C, —iC,) + (B, —iB,)C.)
24/15 ’

44.(iB.C, + B.C, +iB,C. + B,C,) —iA(3B,C, —iB,C;—iB,C,+B,C,—4B.C,)

1046
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A,(B.C, +iB,C, +iB,C, + 3B,C, — 4B.C.)
104/6 '
—i(A,B.C, + A,B.C, + A, B,C. + A,B,C. + A.(B.C, + B,C, —2B.C.))
542 ’
4A,(—iB.C,+B.C,—iB,C.+B,C,)+iA,(3B,C,+iB,C,+iB,C,+B,C,—4B.C.)
104/6
A,(—(B,Cy) +iB,C, +iB,C, —3B,C, + 4B.C.)
+ .
104/6
i(A,(B, +iB,)(Cx +iC,) + (A, +i4,)(B.(Cx +iC,) + (B, +iB,)C.))
24/15 '
(A, +i4,)(—iB, + B,)(C, + iCy))
24/10 '

Careful inspection of the resultant tensor, T3, reveals that it is invariant with respect
to any permutation of the vectors. This is generally true for the coupling of n vectors
to form the tensor of maximum rank K = n (the stretched tensor) and leads to some
useful results. For the present example, NE31E2 is obtained by taking T3 with ¢, ¢’ and
q substituting for A, B, or C, in any order. Similarly, N§1E2 is given by replacing q
with ¢'. An interesting consequence of the symmetry with respect to permutation of
the vectors is that, for any stretched scattering tensor that involves ¢ and &’ once each,
for example, for the rank-two E1E1 tensor, rank-three E1E2 tensor, and rank-four
E2E2 tensor, the resulting 3 x 3 scattering matrix is always symmetric.

Step 9: Calculate the total scattering intensity for the required state of inci-
dent beam polarization, using (8.23), or the intensity scattered by the polarization
analyzer, using (8.26).

The calculated azimuthal scans for various polarizer angles are given in Fig. 8.7
for the ZnO (115) reflection. We reiterate that the calculations outlined here are
purely phenomenological and give intensities to within an overall scale factor. More-
over, in general, more than one tensor component survives the symmetrization
process and the results depend on the (complex) ratios of the independent tensor
components. Such an example is discussed in the next section.

(8.66)

8.13 Example: Ca3zCo0,0¢

For our final example we consider the azimuthal rotation dependence of resonant
scattering from Ca3Co,0¢ — a complex incommensurate magnetic system that
requires a number of resonant scattering tensors and illustrates most of the ideas
described in this chapter. This compound has been studied extensively in recent
years due largely to its fascinating properties under an applied magnetic field [28].
The role of X-ray diffraction has proved crucial in verifying long range magnetic
order in this system [29]. Here, we discuss resonant X-ray scattering near the cobalt
K-edge. In the following we are not going to discuss the physical properties of
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Fig. 8.7 The energy spectrum of the resonant forbidden (115) reflection in ZnO at T = 10K,
where the scattering is dominated by E1E2 processes (fop left), and at T = 600K, where the
scattering is dominated by thermal motion induced scattering (fop right). Azimuthal scans were
performed at each of the energies marked by the vertical lines (energy increasing from fop to bottom
row). As all line shapes agree with the calculations, we conclude that scattering is well described
by the same tensor at all temperatures and all energies (Data were obtained from Beamline 116,
Diamond Light Source, UK)

Ca3Co,0¢ but limit ourselves to the symmetry of the tensors that can contribute to
the X-ray scattering processes [29, 30].

The system, shown in Fig. 8.8, consist of chains made up of alternating distorted
octahedra and trigonal CoOg prisms sharing faces, running along the hexagonal ¢
axis, and arranged in a triangular pattern within the ab plane [31]. The different
local environments leave the Co3t ions on the octahedral site (Co-I) in a low-
spin (S = 0) state and those on trigonal prism (Co-II) sites in the high-spin (S
= 2) state [32,33]. The local anisotropy of the trigonal prism is very strong and
forces the magnetic moments to point along the ¢ axis as confirmed by a number
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Fig. 8.8 Schematic of the unit cell of Ca3Co,0¢ in the hexagonal setting. The trigonal prisms
are shown in dark grey and the octahedra in light grey. The magnetic moments at the center of the
trigonal prism are also drawn. Moving along the hexagonal c-axis the role of the magnetic chains
is exchanged

of experimental results. CazCo,Os is usually described in the hexagonal setting of
the R3¢ space group, as this representation allows one to immediately identify the
triangular arrangement of the CoOg chains within the ab planes. However, as this
setting is nonprimitive, it makes both the description of the magnetic structure and
the analysis of the symmetry of the tensors more difficult. For these reasons, in this
section, rhombohedral coordinates are used throughout. In this setting, the unit-cell
dimensions area = b = ¢ = 6.274A anda = B = y = 92.53°, and so we see
that the system is very close to being cubic.

In the transition to the magnetically ordered phase, no changes are observed apart
for the appearance of the magnetic reflections characterized by the propagation vec-
tor T ~~ (%, %, %), which is the parallel to the threefold symmetry axes. Only the
Co-II ions contribute to the magnetic properties and we neglect all the other ions in
the following discussion.

In the magnetically ordered state, in addition to the principal magnetic reflec-
tions, we observe a second class of reflections that also appear at the magnetic
propagation vector t =~ (%, %, %), but at positions where the magnetic struc-
ture factor is zero. These reflections are characterized by a completely different
photon energy spectrum and azimuthal rotation dependence. We first demonstrate
that unlike the principal magnetic reflections, they cannot be described within the
dipole—dipole (E1E1) approximation but require dipole—quadrupole terms to pro-
vide a satisfactory description. The occurrence of higher rank scattering in the space
group R3c has been treated by a number of authors [4,5,34,35].

The unit-cell scattering amplitude for the magnetic Co ions is obtained by
summing over the two cobalt sites and is found to be
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F(H) = fi + P(f;) e ™G30, (8.67)

where f; represents an atomic scattering tensor, defined in (8.40), where each tensor
component is a complex function of energy, and P is the parity or inversion operator,
which arises due to the fact that the two magnetic cobalt atoms occupy sites that are
related by inversion.

The procedure that we follow is similar to the one adopted in the previous exam-
ple of ZnO. The main difference stems from the fact that the signal that we are
treating in this case is magnetic (i.e., time-odd). The first step will be to consider
the point group symmetry of the magnetic cobalt site and to study the behavior of a
given set of spherical tensors under this set of symmetries. Using the magnetic point
group, we derive the linear combinations of tensor components that can contribute
to the diffraction process. The third step will be to calculate the resonant structure
factor. As described in the previous sections, one can write the (scalar) scattering
amplitude as a contraction of two tensors: one (X 5 ) built from the vectors describ-

ing the X-ray beams and the other (Tg ) arising from a multipole expansion of the
atomic resonance.

This brings us to the technical steps described earlier in the chapter. While these
tensors are relatively easy to write in appropriate reference frames, they become
immediately very complex otherwise. (For example, a simple and intuitive form for
the tensors Tg is typically obtained when the quantization (z-axis) of the spherical
tensor is taken parallel to a line of symmetry of the atom, such as a rotation axis
or intersection of mirror planes). Unfortunately, convenient choices for the tensors
Té( and X g are not generally the same. Hence, it is useful to evaluate the tensors

in two different reference frames and to rotate TX to the frame of X X. The latter
is calculated in the reference frame given in [4] and shown in Fig. 8.3, while the
reference frame for the resonant scattering tensor was chosen with the Z axis parallel
to the (111) direction, the axis y parallel to the (101) direction, and the axis %
parallel to § x Z. The required tensor rotations were performed using the Wigner
D-matrices [24]. Elsewhere in this chapter a different but completely equivalent
approach has been chosen, whose advantage is mainly that it requires only rotations
of vector quantities.

The Neumann principle requires the Té( tensors to be invariant under the point
group symmetry of the magnetic cobalt site. The nonmagnetic point group is 32, that
is, a twofold rotation axis perpendicular to a threefold axis. We note that maintaining
this point group would lead to the absence of magnetism as 32 is not an admissible
magnetic point group (one can show as an exercise that there is no possible vector
direction that can satisfy the two rotations simultaneously). Hence, in order for the
system to sustain a magnetic moment, the point group symmetry needs to be mod-
ified. The first admissible magnetic point group is 32’. The axis 3 is maintained,
and as the proper rotations act on classical spins (axial vectors) in the same way as
on polar vectors, we need to combine the action of the axis 2 with time reversal to
allow a magnetic vector that is parallel to the threefold axis and compatible with the
point group. Symmetry 3 would also be an admissible magnetic point group, but we
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choose to maintain as much symmetry as possible to describe the properties of the
system, as reducing the symmetry increases the number of parameters contributing
to the scattering. This is a pragmatic approach and the possibility of reproducing the
experimental data within this framework will provide a justification a posteriori for
this approach. It is worth mentioning that even if the twofold symmetry is actually
broken, we can assume that the deviation from this symmetry is relatively small and
therefore terms related to its breaking can be neglected. A similar approach has been
used in the past to reproduce the threefold modulation of reflections in Fe,O3[35].

The expressions describing the required spherical tensor rotations are given in
the previous section:

RUTE) = 9TE and RU(TE) = (—D)FHOTX,.

The tensors that “survive” the threefold symmetrization are as follows.

e EIEI resonance: T(?,T(},T2
e EI1E2 resonance: T1 T2 T3 T3 :I:T3 and T1 T2 T3 T3 :I:T3
e E2E2 resonance: T0 , TOI, TOZ, T03, T3 :I: T33, T(;‘, T4 + T4

where ~indicates time-reversal-odd (i.e., magnetic) tensors. (Recall from Table 8.1
the relationship between tensor rank and time-reversal symmetry for the parity-even
E1E1 and E2E2 tensors).

A further reduction in the number of the tensors contributing to the scattering
is obtained by applying the symmetry 2’ (equivalent to a twofold rotation for the
nonmagnetic tensors). This symmetry rules out T2, T1 and T3 (E1E2) and T3 +T3
and T3 + T*, (E2E2). It is easy to see that the magnetic vector component To1 is
retamed and that it corresponds to a magnetic moment along the trigonal (threefold)
axis.

There are still a considerable number of contributions. An effective way to sim-
plify the problem is to proceed to the calculation of the structure factor in (8.67) for
the magnetic reflections (h £ %, k+ %, [+ %), which are satellites of either allowed
reflections, (4, k, ) with k+k +[ = even or of the glide-plane-forbidden reflections
with k +k +/ = odd. A very elegant consequence of the modulation wavevector in
Ca3Co0,0¢4 combined with the form of the structure factor in (8.67) means that the
magnetic reflections fall neatly into two categories, which probe different aspects of
the resonant scattering tensors. With i £+ % k+ % [+ % =even (k +k +1 = odd)

we have |

(h +30k i 3’ L E §>k+k+l=odd - Tg + P<Té()’ (8.68)

whereby the scattering is determined by the parity-even tensors TX | that is, E1E1
and E2E2. Conversely, with k + k + [ = even,

and the scattering picks out the parity-odd tensors, that is, E1E2.
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This result is very important as it relates (%, k, /) and the parity of the tensors.
This is not something very common, but when it occurs it can allow a very easy dis-
tinction of the different scattering processes. The usual way to distinguish between
different scattering processes is to look at their energy spectra, as the position of the
resonances reflects the energy distribution of the projection of the empty density of
states of well defined symmetry. In the 3d transition metals, the 3d (I = 2) elec-
tronic states, responsible for the magnetic properties, are usually well localized in
energy within the much wider 4p (I = 1) band. The symmetry of the local environ-
ment is crucial in allowing the hybridization of the parity-even ((—1)"=even) and
parity-odd ((—1)’=odd) electronic states to occur. Again the presence or absence of
an inversion at the scattering center makes a very important difference and in our
case (32') allows the p and d states to hybridize and the 4p band become mag-
netically polarized. This is clearly seen in the complex photon-energy dependence

around the Co K-absorption edge of the (2, % %) reflection, shown in Fig. 8.9. In
this case the main contribution comes from the E1EI process that probes the p
states, with a much weaker contribution from E2E2 processes. Usually the E2E2
contribution will occur in the pre-edge region where the 3d states are localized.
Figure 8.9 also shows the energy spectrum of the much weaker (%, %, %) reflection.
This reflection exhibits a very simple energy spectrum that can be described using
a single oscillator, localized in the pre-edge region, which points to the E1E2 res-
onance being similarly localized. This is in good agreement with the fact that the

p states will not be accessible through these higher rank processes. The reduced

intensity (~ %) of the (% %, %) reflection compared to the (%, %, %) reinforces the

suggestion that the former originates from a higher order process.

—0— (8/3,~1/3,-7/3)

—m— (8/3,8/3,5/3)

Intensity (arb. units)

7.69 7.70 7.71 7.72 7.73

E (keV)

Fig. 8.9 The intensity vs. photon-energy dependence around the Co K-absorption edge of an
EI1E1 (top) and an E1E2 (bottom) magnetic reflection. The data were collected in the o7 channel
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Fig. 8.10 Theoretical and experimental azimuthal dependence of three magnetic reflections at
the Co K-absorption edge. In the first panel an E1EI reflection is reported, whereas the central
and bottom panels show reflections resulting from the E1E2 interference together with the model
predictions. Two free parameters were used for the first plot while the amplitude is the only free
parameter in the two E1E2 curves

The azimuthal dependence of the reflections reported in Fig. 8.10 confirms that

the (g ,E, %) and the (% %, %) reflections are due to higher rank tensors. In fact, the
(%, %, %) reflection due to E1E1 processes has an almost perfect twofold symmetry.

The k-vector of the latter is perpendicular to the quantization axis and form an
angle of about 174° with the y axis. The rotated tensor Tol has all three components
nonzero, but once contracted with the X-ray tensor only the rotated channel o7, with
periodicity cos i, survives. An improved agreement with the experimental data is
obtained if a small contribution coming from fg’ is considered. This contribution
appears also in the nonrotated channel, but probably it is too small to be observed
in the present case.

The (%, %, %) reflection, which has a k-vector ~ 10° from the threefold (111)
axis, has six peaks with different intensities and with zeros that are not exactly 60°
apart. For E1E2, only the term T33 - f_33 has a threefold periodicity with respect to a
rotation about the quantization axis, whereas Tol and T03 are constant. Considering
that the reflection is only slightly rotated from the (111) axis, they do not seem
to provide an appropriate reproduction of the symmetry of the signal. Hence we
neglect these contributions in the data analysis, and this will leave us with only one

free coefficient instead of three to describe the azimuthal dependence.
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To calculate the behavior of the reflections in the reference frame of X 5 , We
apply again a sequence of coordinate rotations [4] to the structure factor tensor. As
with the E1E1 tensor, E1E2 tensors T33 — Tf3 are rotated into the new reference
frame via the appropriate Wigner D-matrix, which produces a linear combination
of the other rank 3 tensor components, with the dominant coefficient coming from
the T33 - f_33 as the rotation is small with respect to the threefold axis. This oper-
ation, together with the contraction with the X-ray tensors X 5 [4] given in (8.65),

produces the following expressions for the (%, %, %) intensity:

Io—o = asT3 [ag + azcay ] cosy. (8.70)

Io—x = a1 T5cycg [arcosy + (a3 + ascay)se] (8.71)

where a; are complex numerical coefficients defined by the direction in the space
of the reflection, ¢ (sy) are shorthand for cos x (sin x), 6 is the Bragg angle, and

is the azimuthal angle. A similar expression is obtained in the case of the (170, %, %)
reflection but with a different relative weight of the coefficients as this reflection
forms a much larger angle with the threefold axis.

Violation of both parity and time-reversal symmetry at the Co-II sites in
Ca3Co,06 might suggest that the material could exhibit the magneto-electric effect,
because such (lack of) symmetry is an essential prerequisite. However, the system
is globally centrosymmetric, which rules out the effect in the bulk (and, indeed, an
E1E2 contribution to the bulk absorption). This highlights one of the strengths of
resonant X-rays scattering: it is a local probe that can access atomic-scale phenom-
ena even when they vanish macroscopically. The possibility of observing an E1E2
interference term in a globally centrosymmetric system has been demonstrated in
V,03 for the time-even case, arising from the absence of an inversion symmetry at
the V position. At the Co-II site in Ca3Co,QOg, both the magnetic 32’ and the non-
magnetic point groups 32 allow such “magneto-electric” tensors to occur. A useful
classification of the multipole moments detected in resonant X-ray scattering, based
exclusively on the linear magneto-electric effect, has been given in [36,37]. Accord-
ing to this scheme, the dominant term contributing to the scattering is a polar toroidal
octupole.

The possibility of observing a polar toroidal moment has been widely discussed
theoretically, but to date very few experimental observations of this quantity are
available. V503 is certainly the most well known case [38] but in this instance the
reflection structure factor allows an E2E2 term (the magnetic octupole) to occur
together with the E1E2 terms [36]. More recently, a possible E1E2 signal has been
reported in the ferroelectric phase of TbMnOj3 [39]. Here, both the E1E2 and the
E1EI contributions are symmetry allowed, but occur at different energies. So the tail
of the E1E1, that is much stronger in intensity, can give a significant contribution at
the lower energies where the E1E2 resonance is expected.
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8.14 Conclusions

Resonant X-ray scattering is a complicated and rapidly evolving subject. Current
interest in the subjects owes much to the wide variety of physical phenomena, such
as magnetism, that can be probed by the various scattering tensors. Some of the key
results of resonant scattering and absorption have a surprisingly simple, symmetry-
based origin, and we have given feasibility arguments based on these ideas. Most of
the remainder of the chapter is devoted to introducing the formalisms and language
commonly applied by researchers in the field. In particular, we have focused on
phenomenological models that employ Cartesian and spherical tensors to describe
the sample response and the X-ray probe. Much effort is spent identifying simplified
forms of the scattering tensors that obey the known symmetries of the sample. To
illustrate these ideas, we have picked several examples of varying complexity.

The chapter exploits key results from a small set of authors — Lovesey, Blume
etc — whose work is cited repeatedly. We do not elaborate on the results of these
papers: the reader is encouraged to refer to them directly. While we have not devel-
oped the theory of resonant scattering, we have nonetheless brought together several
established ideas and shown how they can be employed to compute scattering prop-
erties. Specifically, the formalism of Busing and Levy is employed to connect crystal
and Cartesian coordinate systems, and the work of Stone to convert between Carte-
sian and spherical representations of tensors. The chapter therefore has the feel of a
cook-book. As with its culinary counterparts, it is hoped that it is of interest both to
budding practitioners and those with a passing interest and keen appetite.

Acknowledgements The authors are grateful to S. W. Lovesey for helpful comments on the
manuscript.
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Chapter 9
An Introduction to Inelastic X-Ray Scattering

J.-P. Rueff

Abstract The article provides a brief but up-to-date overview of inelastic X-ray
scattering (IXS), a powerful spectroscopic probe of the electronic and dynamical
properties. We introduce in first part the basic theoretical concepts for both resonant
and nonresonant IXS, including resonant X-ray emission, absorption in the partial
fluorescence yield mode, and X-ray Raman scattering. This formal section is fol-
lowed by examples borrowed from the recent literature, with an emphasis on high
pressure physics, strongly correlated materials, and new instrumentation.

9.1 Introduction

Inelastic X-ray scattering (IXS) is emerging as a powerful spectroscopic probe for
investigating complex systems in physics or chemistry. Besides a somewhat com-
plicated theoretical and experimental handling, IXS presents several, some times
unique, advantages for the study of the electronic and dynamical properties of
electrons in materials: acquiring soft X-ray spectra with high energy X-rays, reveal-
ing the fine structure within the white line, “imaging” the chemical environment,
probing low energy excitations and their dispersion, measuring phonons, or per-
forming spectroscopy in constrained sample environments are among the manifold
possibilities offered by this technique.

The aim of the article is to provide a general yet selective overview of the IXS
process through relevant examples in physics and chemistry of solids. The basic the-
oretical concept will be reviewed in first section for both resonant and non-resonant
IXS. We address in second part emblematic examples of IXS borrowed from the
recent literature.

For further reading, we encourage the reader to consult the books recently pub-
lished on the subject [1, 2] and to browse through the review articles that have
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been devoted to inelastic X-ray scattering for electronic excitations [3-5], electron
dynamics [6, 7], and high-pressure physics [8]. The IXS development has been pos-
sible, thanks to the emergence of a new generation of synchrotron light sources and
improved X-ray optics. The latter is described in some detail in [9].

9.2 Theoretical Concepts

9.2.1 Overview of the IXS Process

“There are only three basic actions to produce all the phenomena associated with light and
electrons: A photon goes from place to place, an electron goes from place to place, an
electron emits or absorbs a photon.” (QED, Richard Feyman)

This beautifully concise definition of the interaction between light and matter by
R. Feyman applies well to the IXS process: as depicted in Fig. 9.1, IXS involves the
scattering of an incident photon defined by its wave vector, energy, and polarization
(ky, w1, €1) by the electron system; we use the same notation for the scattered
photon defined by (k», iw», €2). Energy (hw) and momentum (q) is transferred to
the electrons during the scattering event according to

hw = hwl — ha)z, (91)
q= k] — kz. (92)

For high energy X-ray, the change in the wave vector amplitude during the scattering
process is negligibly small so that g is well approximated by

q =~ 2k; sin(20), 9.3)

where 26 is the scattering angle.

As discussed in the following, the denomination IXS embodies in fact many
different spectroscopic techniques, which are summarized in Fig.9.2. These can
be mainly divided into two groups that branch out from the generic IXS process,
depending on whether the incident photon energy is close or not to a resonance
(absorption edge). Their definition will become clearer in the following when it
comes to the IXS cross section.

k1, W1, &

Fig. 9.1 Generic inelastic
X-ray scattering (IXS)
process
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Fig. 9.2 Overview of IXS-derived techniques (cf text for details)

9.2.2 Interaction Hamiltonian

The interaction Hamiltonian  is conventionally split into a noninteracting term Hy
and an interacting term My that is treated in perturbation theory:

H = Ho + Hint. 9.4)

‘Ho includes the electron kinetic and potential energies (9.5a), while Hj,; describes
the interaction between the incident electromagnetic field and the electrons (9.5b):

1
Ho=Y Ep? + Y V(). (9.5a)
J g’
_ e e,
Hint = Z ——A(r)) p; + ; S5 ANr). (9.5b)

The sum is carried over all the electrons j in the system. We have omitted the spin
dependent terms, which are smaller by a factor // mc?2. The (A - p) term in Hiy
involves the photoelectric process between an incident photon and the electrons. It
entails different phenomena such as photoemission, X-ray absorption or emission to
the first order of perturbation, and resonant inelastic X-ray scattering (RIXS) to the
second order of perturbation, all involving electronic transitions. The p - A term is
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usually qualified as a resonant operator in contrast to the nonresonant A% term that
gives rise to the Thomson scattering of photons by the valence electron, and more
generally to the nonresonant IXS (nrIXS) process.

9.2.3 IXS Cross Sections and Fermi Golden Rule

The transition probability w;_, r between the ground state |7) (of energy E;) and the
final state | /) (of energy E r) is given by the Fermi Golden rule applied to Hjy. In
(9.6), it is developed up to the second order of perturbation:

2
S Hinen) (| Hinei) _
o S(Ef—Ep). (9.6

2
Wiy = 2| i) + 3

The sum is carried over all the intermediate states |n) (of energy E,) and the §
function ensures energy conservation.

A typical scattering experiment consists of detecting the scattered photon within
a certain solid angle df2 and with a given resolution dhw,. The scattering cross
section is then expressed by a double differential expression that is proportional to
the transition probability w and the scattering volume V according to

d’c _ wV2w3 ©7)
dQ2dw,  8m3hct

9.2.4 Nonresonant IXS

9.2.4.1 Cross Section

To compute the nonresonant IXS double differential cross section (DDCS), it suf-
fices to limit ourselves to the first-order of perturbation. The dominant term of the
interaction Hamiltonian is A2; using this operator in (9.6), we find

0wy [ €2
dQdw, @ \mc?

2
) (e1 -82)22’(f| X:exp(iq-r)h')‘2 x 8 (Ef—Ei—hw)
iLf J
9.8)

which can be simplified into

d?c do
ds2 da)z

E)Th S(q.0). 9.9)
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where (do/d$2)ry, is the Thomson scattering cross section and S(q, @) the dynami-
cal structure factor. In the adiabatic approximation, the electronic wave function in
(9.9) can be factorized out from the ionic one. The DDCS then reads

dZU _ do .
ddw, (@)Thlf(q)l 57(q, @), (9.10)

where f(q) is the electronic form factor and S*(q, @) the ionic contribution to the
total dynamical structure factor. This expression is widely used when treating IXS
of phonon excitations.

9.2.4.2 Expressions of the Dynamical Structure Factor

From (9.9) and (9.10), we find that the dynamical structure factor is expressed by

2
S(q.0) = Z‘(ﬂ Zexp(iq-r)h')’ 8 (E; — Ei — ho) 9.11a)
WA
1o . .
=5 / dre™ @l (i] Y~ emiamy (O glari ©)), (9.11b)
> i’

Equation (9.11a) links the dynamical structure factor to the excitations of the elec-
tron system from the ground state (E;) to all the excited final states (E f) that are
allowed by energy and momentum conservation. The second expression follows the
formulation of Van Hove [10] and expresses S(q, w) as the time dependent electron
density fluctuation in the ground state. Everything happens as if the photons were
not perturbing the electron systems. The equivalence between (9.11a) and (9.11b) is
a manifestation of the well-known fluctuation—dissipation theorem.

Other known formulations of the dynamical structure factor connect S(q, ®) to
the imaginary part of electronic polarization function y (9.12a) and to the inverse of
the dielectric function e(q, w) in (9.12b):

1
S 0) = ——(1+ ne)x" (q. w) (9.12a)

= R 9.12b

with np, the Bose factor. These are mostly useful when it comes to the theoretical
calculations of the nonresonant scattering process.

Thus, through the connection to the dynamical structure factor, IXS allows one to
probe the low energy excitations of the electron system. As illustrated in Fig.9.3a,
this covers phonons at low energy, then excitons, plasmons in the mid-energy range
to end up with excitation of core-electrons, which we discuss in the next section.
Fig.9.3b also compares IXS to other probing techniques of the electron dynamics
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Fig. 9.3 (a) Excitations probed by nonresonant IXS as a function of the energy transfer; (b) acces-
sible domain in the (q, @) phase space for IXS, inelastic neutron scattering (INS), and Brillouin
light scattering (BLS) (source ESRF)

such as Brillouin light scattering (BLS) or inelastic neutron scattering (INS). Clearly
enough, IXS can access a range in the (q, ) phase space not or only partly covered
by those techniques.

9.2.4.3 X-Ray Raman scattering: Equivalence with Absorption

As shown in (9.11a), the nonresonant IXS cross section involves the matrix element
of the transition operator exp(iq - r) taken between the initial and final states, |i) and
| f). Using the series expansion of the exponential in the limit gr — 0,

exp(iq-r) =1 +iq-r+ (iq-r)?/2+ ..., (9.13)

. . 12
the nonresonant IXS matrix element simplifies to |( flq-r))i )| at the first order;
the constant term does not contribute at low q as |i) and | /) are orthogonal. This
expression can be compared to the standard X-ray absorption cross-section:

do _ 12 o
(E)XAS—|(f|e-r|z)| x8(Ef — Ej — hw) . (9.14)

In the limit gr < 1, (9.13) is valid and then the nonresonant IXS is equivalent to an
absorption process with q playing the role of the polarization vector € [11]. When
qr > 1, other terms of the series expansion may contribute to the X-ray Raman
scattering (XRS) cross section, which then may contain monopolar or quadrupolar
excitations channels in addition to the dipolar one [12].



9 Introduction to Inelastic X-Ray Scattering 269

9.2.5 RIXS

When the incident photon energy /w; approaches the energy of an absorption edge,
the p - A term of the interaction Hamiltonian dominates. As RIXS involves two
photons, the Fermi golden rule (9.6) has to take into account the second order

perturbation theory. In this case, the DDCS is given by the Kramers—Heisenberg
formula,

& ny e 7 1663 pp e a1 -py i)
I Y Y)Y - /
d2dhw, ~ %\ = |\m Ei — En + hoy —ily /2

x 8(E; — E s + ho). 9.15)

n

The sum is over the intermediate |n) and final | /) states; I}, is the energy broaden-
ing of the intermediate state.

The Kramers—Heisenberg formula highlights the main aspects of RIXS: one elec-
tron is absorbed (transition |i) — |n)) and a secondary electron emitted (transition
|n) — | f)); interference may occurs between the different excitation channels; the
denominator diverges at the resonance. The general RIXS process is schematized in
Fig.9.4 in a configuration level scheme, which shows the energy level of the ground
state, intermediate state, and final states on a total energy scale (vertical axis). In
this picture, the transfer energy can be directly visualized as the excitation energy
of the final states.

To illustrate the physical content of the RIXS process, we have calculated the
RIXS cross section from the energy diagram depicted in the Fig. 9.4, which more
specifically applied to a resonant emission process. We consider both narrow energy
levels and a broad flat band whose onset marks the absorption edge (or resonance

Total energy
A

|7)

Fig. 9.4 RIXS process in a configuration level scheme; |i) is the initial state; |n) and | /') are the
intermediate and final states of energy width I, and I'y
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Fig. 9.5 (a) RIXS contour intensity map; lines are cuts at constant transfer energy (CTE), constant
incident energy (CIE), and constant emission energy (CEE), also known as partial fluorescence
yield (PFY); energy widths are indicated; (b) PFY XAS vs. standard XAS (TFY) spectra

energy). The cross-section was numerically computed using a simplified version
of Kramers—Heisenberg formula (9.15) without interference effects and dropping
the energy dependence of the matrix elements [13, 14]. The results are shown in
Fig.9.5a as an intensity contour map drawn as a function of the incident energy hw;
and transfer energy hiw; — hw,. Two types of spectral features can be recognized:
patches stretched along Aw; and a broad diagonal structure. These reflect the RIXS
process of, respectively narrow, levels and band states and give rise to different
dispersive behaviors as a function of fiw;: in the fluorescence regime, the features
move with the incident energy while they appear at fixed transfer energy below
the resonance in the so-called Raman regime. Notice, however, that the change of
regime does not occur exactly at the resonance energy (vertical dashed lined in
Fig.9.5a), but slightly below as a consequence of the finite energy width of the
intermediate and final states.

We now inspect different energy cuts through this intensity map which, as
explained below, shows-up the spectral sharpening effect inherent to RIXS. Along
hw; at constant transfer energy (CTE), the spectra are dominated by the lifetime
broadening of the core-hole I}, in the intermediate state; in contrast, cuts along the
transfer energy (constant incident energy (CIE) or resonant X-ray emission spec-
troscopy (RXES)) probes the RIXS surface with a resolution of width I'f; finally at
45° between these two are cuts at constant emission energy (CEE). They resemble
an absorption spectrum but with an improved intrinsic resolution smaller than the
core-hole lifetime broadening. This method is conventionally referred to as XAS in
the partial fluorescence yield (PFY).

It can be shown that

1

FPFY Ialiaae—————.
JUTZ+1/12

~ Ty (9.16)
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as I'y <« TI}. This sharpening effect is clearly visible in Fig.9.5b where the
PFY XAS spectrum is compared to standard XAS. Another possibility that is not
described in our model picture is when the lowest final state coincides with ground
state energy. This recombination process (often called simply RIXS) yields a direct
view of the low lying excited states. Besides the elastic peak at hw = 0, electronic
excitations can be measured in the energy loss scale similarly to S(q,®) but in
resonant conditions.

9.3 Applications of IXS

We now turn to some examples of IXS borrowed from the recent literature. Need-
less to say that the choice among numerous results is somewhat arbitrary and biased
by the author’s experience. We have nevertheless selected examples in two fields of
research where IXS has arguably attracted most interest and made the most signif-
icant impact in condensed matter physics: materials under extreme conditions and
strongly correlated systems.

9.3.1 Extreme Conditions

As an all photon technique, IXS in the hard X-ray range is a penetrative bulk
probe well suited to studying samples in constrained environments, amongst them
diamond anvil cells for high pressure.

9.3.1.1 Absorption Edge of Light Elements Under Pressure

As discussed in Sect. 9.2.4, XRS offers the opportunity to probe the electronic core
levels through the nonresonant scattering process. Under the condition gr < 1,
XRS was found equivalent to an absorption process. In reality, this mostly applies
to light elements whose binding energy falls in the soft X-ray region. Obviously,
the main interest of XRS with respect to soft X-ray XAS is the use of high energy
photon, which allows XRS to probe samples in highly absorbing environments. This
is especially the case of diamond anvil cells.

Bonding changes and coordination has been investigated under high pressure in
several C and B molecules by XRS. Figure 9.6b shows the C K-edge absorption
spectra measured by XRS as a function of pressure in pyrolytic graphite [15]. The
spectra were obtained in situ in a diamond anvil cell. The sample was loaded in a Be
gasket partly transparent to X-rays, and the scattered X-rays was detected through
the gasket. As depicted in Fig.9.6a, the scattering process probes the C-p empty
electronic states. These form 7 (o) bonds that show up in the absorption spectra
as distinct spectral features in the low (high) energy regions. The evolution of the
XRS spectra upon compression indicates a progressive conversion of 7 to o bonds
under pressure, which reveals the densification of graphite — initially a layered 2D
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Fig. 9.6 (a) XRS process in light element; (b) C K-edge absorption spectra measured by XRS as
a function of pressure in graphite (from [15])
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Fig. 9.7 (a) KB emission process; (b) KB emission line, and (c) spin state in (Mg,Fe)SiO, as a
function of pressure (from [16])

material — into a hard 3D structure. The high pressure form of graphite was found
to indent diamond.

9.3.1.2 Magnetic Collapse in Transition Metal

Thanks to the resonance, the RIXS scattering process discussed in Sect. 9.2.5 yields
information about the electronic properties selective of the chemical species and
electronic orbitals, a general feature of core-hole X-ray spectroscopic techniques.
The conservation laws further ensure that energy and momentum are conserved
during the scattering event and also the spin.

The sensitivity of RIXS to the spin state is best illustrated by the KB fluorescence
line (3p — s transition, cf Fig.9.7a) in transition metal. The Kf emission final
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state is dominated by the Coulomb and exchange interactions between the 3p core
hole and 3d electrons. The particularly strong multiplet effect splits of the final
states into mainly two subsets of states, eventually leading to a main peak and a low
energy satellite. The energy splitting between the two spectral features and their
intensity ratio sensitively depends on the 3d spin polarization. KB XES therefore
appears as a local probe of the 3d magnetism in transition metal. It can be easily
applied to high pressure conditions since no magnetic field is required, and also in
the absence of magnetic order.

Figure 9.7b shows the evolution of the KB emission line in Fe-perovskite, a
material assumed to be one of the components of the Earth mantle, as a function
of pressure [16]. The low pressure spectra have a marked satellite structure char-
acteristic of a high spin state of Fe. Upon pressure increase, the satellite intensity
progressively declines as the main peak shifts to lower energies. This behavior is
consistent with a change of the Fe spin state toward a low spin (or non magnetic)
configuration. A detailed analysis (Fig.9.7c) suggests a two-step decay of the Fe
spin magnetic moment at about 50 and 125 GPa, which could reflect the successive
magnetic collapse of the two Fe sites present in (Mg,Fe)SiO,.

9.3.1.3 Valence Transition and Kondo Behavior

Pressure primarily affects electron delocalization as the overlap of the electron
orbitals strengthens when the volume is reduced. Mixed valent rare-earth com-
pound are very sensitive to this effect. Formally, the ground state of a mixed valent
[ -electron system can be written as a linear combination of different f -states,

li) = coldf™) + cadf"Tly) + -, (9.17)

where the ¢; coefficients represent the weight of the |4 /7 ) components. The f -states
are degenerated in the ground state, but this degeneracy can be lifted if a core-hole
is created, thus making it possible to weight to the various f-states by core-hole
spectroscopy.

These considerations have led to numerous studies in mixed-valent rare-earth
compounds in the past performed by XAS or core-level photoemission. RIXS turns
out to be a powerful alternative, thanks to the resonant enhancement and spectral
sharpening effect, especially using the 2 p3d-RIXS process. It consists of tuning
the incident energy to the L, 3 edge and monitoring the Lo » emission line reso-
nantly as schematized in Fig. 9.8a. A spectacular example of mixed valent transition
occurs in Ty, T, . Figure 9.8b shows the results of a 2 p3d -RIXS experiment in 7, T,
under pressure. Both RXES and PFY spectra were measured in 77,7, under pres-
sure: the spectra can be decomposed into a 24 and 34 replica that are signatures
of the T,, mixed valent state. Through basic fitting, it is possible to extract the T,
valence v with a great accuracy and follow its evolution as a function of pressure
(cf Fig.9.8c). In T,,Te, v increases progressively with pressure except for the
jumps around 2 and 6 GPa that pinpoints the structural transition and a plateau from
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Tn T, under pressure; (c) pressure-dependence of the 7,, valence (from [17])

4-6 GPa. The latter is not expected in a normal delocalization picture of the f
electron and was subsequently analyzed in terms of exotic Kondo effects in this
material [17].

9.3.2 Strongly Correlated Materials

Strongly correlated electron systems embrace a vast family of materials that are of
paramount interest for their wide implication in high 7 superconductivity, GMR
effects, Kondo phenomena. Their properties rely on the interplay of charge, spin,
and electronic of degrees freedoms, which has been addressed over the years
by a massive experimental (and theoretical) effort. Among other spectroscopic
techniques, RIXS has been applied to 3d transition metal oxides and f -electron sys-
tems. We briefly discuss in the following two examples that emphasize state-of-art
IXS instrumentation for electronic excitation and electron dynamics.

9.3.2.1 dd-excitations in Transition Metal Oxides

The low energy excitations play a crucial role in many properties of transition
metal systems. Especially, the dd excitations carry important information on local
environment via the hybridization with ligands and magnetic interactions. They
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Fig. 9.9 Low energy excitations in NiO (a) and MnO (b) by 2 p3d-RIXS (from [18,19])

were traditionally the domain of optical absorption and electron energy loss experi-
ments. More recently, however, it was shown that resonant inelastic X-ray scattering
(RIXS) can also probe dd excitations, with the distinctive advantages of a resonant
spectroscopy. Recent RIXS experiments were carried out on NiO and lately MnO,
two model systems for correlated systems, in resonant conditions by tuning the inci-
dent energy to the metal M 3 and L, 3 edges, respectively, in the soft X-ray region
[18, 19]. The spectra displayed in Fig. 9.9 reveal well defined energy excitations in
the 0-5 eV energy region that are ascribed to dd excitations. The complex spectral
structure in MnO observed here with unprecedented details (Fig. 9.9b) is due to the
multiplet effects in the RIXS final state between the 2 p core hole and the 3d elec-
trons. That these are not visible in NiO (Fig.9.9a) illustrates the gain in resolving
power attained by the new generation of RIXS instrumentation, now aiming for 10*
in the soft X-ray range.

The MnO spectra can be well accounted for by calculations in the Anderson
impurity model (upper curves in Fig.9.9). The high quality of the experimental
spectra permits a fine adjustment of the input parameters (charge transfer energy,
crystal field strength) that are relevant for the physics of these materials.
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9.3.2.2 Phonons in Plutonium

f-electrons in the early actinides are usually considered as a broad band states
strongly hybridized with the 5d electrons. But starting from Am onwards, the
[ -electrons change their behavior to localized often correlated states. In this series,
Pu stands out as a unique element as it lies at the border between localization—
delocalization transition in presence of strong correlation. Such a valent (and mag-
netic) instability has major consequences for the electronic and structural properties
and is likely to be at the origin of the intricate phase diagram of Pu and the super-
conductivity reported in several Pu compounds. The understanding of f correlated
electrons remains a challenge for theoretical methods, though recent advances in
this field allow one to consider how to make confrontation with precise experimen-
tal possible. The phonon spectrum especially is expected to be sensitive to details of
the electronic distribution, influenced by the on-site Coulomb repulsion U'.

Figure 9.10a displays the phonon spectrum of PuCoGas, an unconventional
superconductor with a remarkably high transition temperature 7, = 18K for an
actinide material. The sample exists only in very small quantities, which hinders the
use of neutron scattering. On the other hand, IXS benefits from the highly focused
and intense X-ray beam generated by synchrotron light sources. The measure-
ments were carried out by ultra-high resolution IXS on a single crystal of PuCoGas
[20]. A resolution of ~1.5meV is achieved by using high orders of reflection of
the monochromator and analyzer crystals, here Si(11 11 11) at 21.7keV, close to
backscattering.

The phonon dispersion deduced from the IXS spectra is represented in Fig. 9.10b
for different sections of the Brillouin zone. The results are confronted to first prin-
ciple calculations (lines) with U left as the only adjustable parameter. Calculations
with U =3 eV match the experimental data best. This reveals the strongly corre-
lated nature of the f-electrons in PuCoGas while yielding an accurate estimation
of the Coulomb repulsion in this system.
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Fig. 9.10 (a) IXS phonon spectra in PuCoGas and (b) phonon dispersion (from [20])
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9.4 Conclusion

This short introduction to nonresonant and resonant inelastic X-ray scattering has
not attempted to be exhaustive. Rather, we have provided the reader with the the-
oretical basics of IXS and discussed about few experimental results that underline
the IXS specificities. We encourage the reader to consult the bibliography and the
references therein for additional information.

Although IXS is a growing technique present nowadays in most of the new gen-
eration of synchrotrons, including the Synchrotron SOLEIL on the GALAXIES
beamline, it is still in infancy with respect to other spectroscopic techniques. Our
hope is that this contribution will trigger interest and motivate new directions of
research using IXS.
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Chapter 10
XAS and XMCD of Single Molecule Magnets

R. Sessoli, M. Mannini, F. Pineider, A. Cornia, and Ph. Sainctavit

Abstract Molecular magnetism is here presented with emphasis concerning the
single molecule magnets (SMMs). The architecture of SMMs is reviewed as well
as the various ingredients promoting magnetic anisotropy and the relation between
magnetic anisotropy and the dynamics of magnetization. Then it is shown how XAS
and XMCD can be unique tools to unravel the magnetic properties of SMM sub-
monolayers grafted on clean surfaces. We bring a special attention to the spectral
features associated with the magnetic anisotropy and magnetization dynamics.

10.1 Introduction

Molecular magnetism has covered in time a sort of cyclic pathway. In the days
when X-ray diffractometers were not available, the magnetism of simple paramag-
netic metal complexes was investigated to gather information on the coordination
polyhedron around the metal center [1,2]. The investigation of pairs and oligomers
of transition metal ions was the focus of the research in the early 1980s and allowed
to establish useful correlations between the molecular structure and the efficiency of
exchange interactions between the paramagnetic centers [3]. With this information
in hand, chemists were able to construct extended structures that order magnetically
close to room temperature [4-6]. The main advantage of the molecular approach to
ordered magnetic materials resides in the possibility to combine properties brought
in by the different building-blocks forming the molecular materials. A very recent
example consists in the coexistence of magnetic order and optical chirality to yield
a strong magneto-chiral effect [7].

The nineties were characterized by an intense research on a new class of molec-
ular materials, known as single molecule magnets (SMMs) [8-10]. These are
in general polynuclear coordination compounds of paramagnetic metal ions held
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together by suitable organic ligands, which often provide an effective shielding
between adjacent molecules in the solid state. They can be figured as tiny pieces
of metal oxides or hydroxides, where the growth to form extended lattices has been
blocked by capping ligand molecules. The most interesting aspect is that a few of
these molecular clusters, featuring a combination of a large spin and an easy axis
magnetic anisotropy, are characterized by a dramatic slowing down of the fluc-
tuations of the magnetization at low temperature, and in some cases a magnetic
hysteresis is observed [10]. At variance with more conventional magnetic materi-
als, this type of hysteresis has a pure molecular origin and does not imply long
range order. It was soon recognized that SMMs hold great potential to store infor-
mation at the molecular level, even if the temperatures at which the hysteresis is
observed remain prohibitive for technological applications. In fact, it is still confined
to liquid helium region despite the many synthetic efforts devoted to its increase.
This, however, has not diminished the interest in SMMs as model systems to inves-
tigate magnetism at the nanoscale and, in particular, the coexistence of quantum
phenomena with the classical hysteretic behavior [11].

A key issue that has emerged in the last years is the possibility to address the
magnetism of a single molecule, indeed a mandatory step to fully exploit the poten-
tial of SMMs and magnetic molecules in general. In its circular pathway, molecular
magnetism is therefore focussing again on isolated magnetic objects. However, the
environment is no longer a crystal lattice but a nanostructured surface or a minia-
turized electronic device built using a single magnetic molecule. This gives the
possibility to combine the rich quantum-dynamics of SMMs with transport prop-
erties, in the emerging field known as molecular spintronics [12]. The first step in
this direction has been the organization of isolated SMMs on conducting and semi-
conducting surfaces [13] as a means of imaging single molecules and of measuring
their transport properties with scanning probes techniques.

Synchrotron-based techniques, in particular X-ray absorption spectroscopy with
circularly polarized light [14], have been used in molecular magnetism in all the
different steps outlined above because of their unique capability to provide element-
specific magnetic information [15-18], as well as to distinguish between orbital
and spin contributions to the magnetism of the molecular material [19]. More
recently, the great sensitivity of these techniques started to play a key role for
the investigation of molecular adsorbates at surfaces [20-24]. Here, the challenge
consists in clarifying the influence of the surface on the magnetic properties, and
especially on the memory effect of a SMM, which is known to be dramatically
environment-dependent [10].

The aim of this chapter is to present an overview of X-ray absorption (XAS) and
X-ray magnetic circular dichroism (XMCD) in order to illustrate the great potential
of these techniques as emerging from recent results [25-27]. This requires, however,
a brief introduction about a few key concepts in molecular nanomagnetism, that is,
magnetic exchange, magnetic anisotropy, and magnetization dynamics, all of them
addressable with XAS-XMCD experiments. This overview is not intended to be
exhaustive and the interested reader is addressed to more specialized literature.
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10.2 Single Molecule Magnets
10.2.1 Building Up a Large Spin

If we exclude the fascinating case of mononuclear lanthanide complexes of high
symmetry [28] or ions embedded in polyoxometallates [29], all other molecules
presenting slow relaxation of the magnetization are constituted by polynuclear
complexes of paramagnetic metal ions.

In the case of metal ions with a quenched orbital momentum, the leading term in
the effective spin hamiltonian (SH) is isotropic exchange

Hex =Y JijSi-S;. (10.1)

i>J

where i and j run over all metal sites of the cluster. Usually only interactions
between nearest neighboring magnetic sites are considered, even if sizeable next
nearest neighbor interactions are sometimes encountered. The resulting spin states
are derived by following a vector coupling procedure and are characterized by a total
spin state St, which in general varies from 0 or 1/», depending on the total number
of unpaired electrons being even or odd, respectively, up to the sum of all individual
spins [30,31].

The energy of the different St states can be calculated analytically in some high
symmetry cases, in particular when a central spin exhibits the same exchange inter-
action with the neighboring ones. This is also known as the Kambe approach [32]
and spin systems comprising up to 13 coupled spins have been handled in this way
[33]. A spin system that can be treated with this approach is the tetrameric unit
schematized in Fig. 10.1.

This spin topology is encountered in a large family of tetranuclear iron(III) clus-
ters, Feq [34,35], also known as iron stars [36]. Some of these clusters have also
been widely investigated by XAS-XMCD techniques, as we show in Sect. 10.4.

We are using this spin topology to illustrate how the Kambe approach works. The
SH that describes the exchange interactions in the system is

Hex=J[Sl'S4+SZ'S4+S3-S4]+J/[51'Sz+Sz'S3+Sl-S3]. (10.2)

Fig. 10.1 Tetrameric spin
arrangement found in a class
of iron(III) molecular clusters
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Every spin state arising from the coupling of the four spins is defined by three
quantum numbers | Sy, Sext, ST), Where S, = S1 + S, Sext = Sa + S3, and St =
S4 + Sexi. There are many spin states with the same St but differing for the other
quantum numbers. In the case of high symmetry, however, the total energy depends
only on two of them, St and Sey, according to

E(St, Sext) = 5 [S1(S1+ 1) = Sexe(Sext + 1) = Sa(Sa + 1))
5 [Sex(Sext + 1) = S3(S3 + 1) = S2(S2 + 1) = S1(S1 + 1]
(10.3)
Considering that all terms involving local spins S; introduce only an energy
offset, (10.3) can be simplified as

/

J J
E(STv Sext) = E [ST(ST + 1) - Sext(Sext + 1)] + 7 [Sext(Sext + 1)] . (10.4)

Thus, it is necessary only to properly count all possible states arising from the
coupling of four spins, in order to consider their correct degeneracy and to calculate
their energy according to (10.4). Knowledge of the energy of the spin states then
gives full access to the thermodynamic properties of the spin system.

In general, however, the diagonalization of big matrices is required and, as soon
as the number of magnetic centers increases, the calculation of the energy of all
resulting spin states becomes very demanding. Different approaches have been
developed [37-39], and for moderate cluster sizes, a convenient method is based
on irreducible tensor operators [40]. Codes are also available for the calculation of
the thermodynamic properties of spin clusters.

The occurrence of a large spin ground state is a necessary, although not suffi-
cient, condition to observe slow relaxation of the magnetization. At present a good
control of the spin of the ground state has been achieved, thanks to many stud-
ies on magneto-structural correlations, such as those known as Goodenough and
Kanamori rules [41-44]. They refer to the overlap of the wavefunction describ-
ing the unpaired electrons of two interacting fragments. It must be stressed that, in
coordination compounds, the exchange interaction usually occurs through a “super-
exchange” mechanism, that is, mediated by the coordinating atoms of the bridging
ligands, rather than arising from direct overlap of the metal d-orbitals. It is there-
fore more correct to refer to a molecular orbital of the metal fragment carrying the
unpaired electron, which has a small, but significant, spin density on the bridging
atom. The Goodenough and Kanamori rules tell us the following:

— An antiferromagnetic interaction is expected if the overlap integral between
magnetic orbitals is different from zero.

— A ferromagnetic one is instead expected if the magnetic orbitals of the two
interacting fragments are orthogonal.

— If a magnetic orbital shows a significant overlap with a fully occupied or with an
empty orbital of the second fragment, the exchange interaction is ferromagnetic.
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Fig. 10.2 Schematic view of the magnetic core of the heptanuclear cluster of formula [Cr'!(CN-
Ni''-L)s1°%, with the ferromagnetic alignment of the spin indicated by the arrows. The cyanide
bridges are shown as rods, with the carbon atom in pale grey

From these simple rules it is clear that antiferromagnetism is the norm in polynu-
clear compounds and that strict orthogonality of the orbitals can be most easily
achieved in highly symmetric molecules. An example is polycyanometallates, in
which the central atom, for instance a chromium(III) ion in octahedral environment,
is bridged by six CN™ ligands to other six metal ions, as schematized in Fig. 10.2
[45-48]. The unpaired electrons are occupying the dyy, d,., and dy, orbitals of
Cr'!l, which span the 75, symmetry representation of the O, group and are therefore
orthogonal to the d x2—y2 and d > orbitals of the external ions, for instance, the mag-
netic orbitals of Ni' ions. The compound of formula [Cr(CN-Ni-L)¢]°T, where L
is the terminal ligand tetraethylenpentamine, has a ground state St = 15/2. Inter-
estingly, if the outer metal ions are replaced by Mn'!, with unpaired electrons in
each of the five 3d orbitals, the antiferromagnetic exchange through the overlap-
ping orbitals of >, symmetry dominates to yield a ground spin state corresponding
to St = 6x5/2—3/2 = 27/2[47,48]. This simple example tells us that, although
ferromagnetic interactions in this type of insulators require strict conditions to be
fulfilled, relatively high spin values can be achieved by simply playing with the
noncompensation of the magnetic moments inside the molecule. This is by far the
most commonly encountered case in SMMs, including the archetypal Mn;, clus-
ters [49]. Here, the St = 10 ground state results from exchange interactions that
are antiferromagnetic and align the external spin S = 2 of Mn'! antiparallel to
the S = 3/2 spins of the internal Mn'Y ions, as shown in Fig. 10.3 [8,9, 38, 39].
In analogy to the uncompensated magnetism of different sublattices discovered by
Néel, these types of spin clusters are often called ferrimagnetic, with the necessary
clarification that they are zero-dimensional objects where the correlation is limited
to a finite number of spins and does not diverge as in traditional magnets.

A significant number of spin clusters showing ferromagnetic interactions are
however present in the literature. Noticeably, ferromagnetism is encountered in the
case of the molecular system exhibiting the largest spin ground state, St = 87/2
[50], and in the hexanuclear manganese cluster holding the record temperature for
the freezing of the magnetization [51].
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Fig. 10.3 View of the molecular structure of a Mn;, cluster along its tetragonal axis with the
arrows representing the spin structure of the ground state. The dark spheres represent Mn!V sites,
while pale spheres stand for Mn" ions. On the right, the ligand structure of the four different
derivatives discussed in this chapter (Mnjac, Mn;,Bz, Mn|;,BzSMe, and Mn;,C15SAc)

The spin structure of a SMM is strongly correlated to the dynamics of the magne-
tization and can be considered as a sort of fingerprint, which can be easily accessed
through XMCD, as shown in the following.

10.2.2 Magnetic Anisotropy in Single Molecule Magnets

The second key ingredient in SMMs is magnetic anisotropy. In traditional mag-
nets, three factors give equally important contributions to the anisotropy, namely
surface, strain, and magnetocrystalline contributions. In SMMs, the only significant
role is played by magnetocrystalline anisotropy and is brought in by a combina-
tion of spin—orbit coupling with the low-symmetry environment around the metal
centers constituting the SMMs. Dipolar contributions are in most cases negligi-
ble. A quantitative treatment of the magnetic anisotropy is based on the effective
spin-hamiltonian approach where only the spin variables appear, while the orbital
contributions are introduced through parameters [52]. The magnetic anisotropy is
treated with a multipolar expansion, which should be extended to the 2S? h order,
where S is the spin of the system. Very often SMMs have a low symmetry and thus
the lower terms of the expansion dominate.

For a system with no symmetry at all, the multipolar expansion up to the second
order gives

1
Hy,=S-D-S=D [53—35(S+ 1)} + E(S7—SD). (10.5)
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where D = D, — %D xx — %D yy represents the axial anisotropy and £ = %(D xx —

D, ) the transverse (or thombic) one. The value of E is intrinsically limited to %D
because going beyond this limit indeed corresponds to a change in the axis of the
leading anisotropy. The transverse term can be more conveniently rewritten in terms
of ladder operators as %E(Si + 52).

The effect of the magnetic anisotropy on the (2.5 + 1) states of the spin multiplet
is that of removing their degeneracy even in the absence of an external field, and thus
is also named zero field splitting (ZFS), especially among spectroscopists. The term
%S (S + 1) just introduces an offset of all levels to preserve the center of gravity of
the energy spectrum and can be dropped off when dealing with the relative energies
inside the S multiplet.

The same orbital contributions responsible for the ZFS are also affecting the
anisotropy of the g tensor. However, as the g tensor describes the response to an
applied magnetic field, it does not influence the dynamics of the magnetization in
zero field after the system has been magnetized. For this reason it will not be further
discussed in this context.

The effect of a negative D in (10.5) is that the system can be magnetized much
more easily when the field is applied along the principal, that is, z, axis. In tradi-
tional magnets the anisotropy energy is quantified through the difference in the area
spanned by the magnetization curves taken applying the field along the easy and
hard axes. In SMMs the anisotropy energy is instead associated to the energy gap in
zero field between the states characterized by the largest and smallest |m|, where m
is the eigenvalue of S, [10]. In the case of pure axial anisotropy, E = 0, the gap cor-
responds to |D|S? and | D|(S? — 1/4) for integer and half-integer S, respectively.
A system showing easy axis magnetic anisotropy, D < 0, has the ground doublet
characterized by m = £, which corresponds to two potential wells separated by
an energy barrier, as reported in Fig. 10.4.

In the case of a spin system constituted by a single paramagnetic center car-
rying 2S unpaired electrons, the value of D can be experimentally determined
through electron paramagnetic resonance (EPR) spectroscopy [53-56] or alterna-
tively through inelastic neutron scattering [57]. Also magnetometry, especially if
performed on a single crystal sample, can provide accurate values. The magnetic
anisotropy can also be estimated theoretically, with a great variety of approaches.

A
Fig. 10.4 Splitting in zero Energy

field of the (25 + 1) levels
due to an axial anisotropy
described by (10.5) with

D < 0. The application of a
strong field populates
selectively one of the wells
and equilibrium in zero field
is re-established by
transferring population in the
other well through a
multiphonon process here
depicted by the arrows
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These range from simple perturbation theory, starting from a spectroscopic estima-
tion of the energy separation of the partially filled d orbitals [58, 59] to a ligand
field treatment based on the angular overlap model [60]. More recently ab initio
calculations, either based on density functionals [61-64] or on post Hartree—Fock
approaches [65, 66], have also shown a good predictive capability.

The situation is more complicated in the case of a polynuclear metal system,
such as most SMMs. In general, when working with first row transition metal ions,
it is found that the magnetic anisotropy is weaker than intramolecular exchange
interactions. Hence, the resulting states are well described by the quantum num-
ber corresponding to the total spin state, as derived from (10.1), and the magnetic
anisotropy is introduced as a perturbation. The magnetic anisotropy of a given
total spin St can be related to the single ion contributions or to the anisotropic
part of the interaction, either dipolar or exchange in nature, by using projection
techniques [31]:

DST = Zd,’Di + Zd,’jDij, (10.6)
i i>]

where i and j refer to the magnetic centers inside the SMM. The projection
coefficients d; and d;; depend on how the individual spins project on the total
spin state under consideration; D; are the single ion contributions, and D;; the
anisotropy brought in by two-spin interactions. The calculation of d; and d;; is
based on a relatively simple recursive algorithm, whose details are beyond the
scope of this contribution and the interested reader is addressed to specific liter-
ature [10, 31]. However, to give a feeling to the reader, we provide the values of
the projection coefficients for the simple [Cr(CN-Ni-L)]°T cluster described in
Sect. 10.2.1. The magnetic anisotropy of the state with the largest spin (St = 15/2)
has dc, = 0.028571 and dy; = 0.009524. The small values of these coefficients
clearly show that it is not straightforward to combine a large spin with a large mag-
netic anisotropy. Although apparently coupling more and more spins to increase S
should lead to a quadratic effect on the height of the barrier, the projection of the
anisotropies of the single ion makes the barrier to scale linearly with S [10,67].

A second important aspect of (10.6) to be stressed here is its tensorial nature. In
other words, it is not only the single ion anisotropy that matters, but also how the
individual tensors are oriented inside the molecule. Let us again refer to the simple
[Cr(CN-Ni-L)g]°7T cluster described in Fig. 10.2, and assume that the easy axis of
the Ni ions is locally pointing along the CN™ group. These are orthogonal to each
other because they are arranged in an octahedron around the Cr'!! ion, thus resulting
in a cancelation of the magnetic anisotropy [47].

Noncollinearity of the single ion anisotropy axes is a rather common phe-
nomenon in molecular magnetism. It acts as a major source of high-order transverse
anisotropy in symmetric clusters like the Mn;, SMM of Fig. 10.3 [68], which has
tetragonal symmetry, and also gives rise to new phenomena like the spin chirality of
a Dy™! triangle [69].

For the remaining part of this chapter we adopt the so-called giant spin approx-
imation. In fact, at low temperature only the ground spin state is populated and the
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dynamics of the magnetization is in first approximation well rationalized assuming
that the whole molecule behaves like a unique large spin characterized by its axial
and transverse anisotropies, derived according to (10.6).

10.2.3 The Dynamics of the Magnetization

Slow relaxation of the magnetization was first observed in Mnjac, thanks to ac
susceptibility experiments [8]. By operating at sufficiently low temperature, the
relaxation becomes so slow that an opening of the hysteresis is observable [70]. This
dramatic slowing down of the fluctuations has its origin in the double well potential
reported in Fig. 10.4, characteristic of a large spin with a negative D parameter. A
similar double well potential characterizes single domain magnetic nanoparticles,
which are the classical analogues of SMMs.

The application of a magnetic field has the effect of stabilizing and populating
preferentially one of the two wells. Once the field is removed, an equal population of
the two wells, corresponding to zero magnetization, is re-established only by trans-
ferring part of the population on the other well. Transitions from one state to the
other are promoted by deformations of the metal coordination environment (rota-
tions and geometrical strains), which can affect the spin degrees of freedom, thanks
to spin orbit coupling. However, at a first level of approximation, these deformations
are only able to induce transitions between states differing in m by £1 and 2. To
overcome the energy barrier, a multiphonon mechanism is therefore necessary, as
shown in Fig. 10.4. In analogy to a chemical reaction involving many elementary
processes, the overall rate is determined by the slowest step. In the case of a SMM,
the slowest step is the one on top of the barrier, because at low temperature the
highest states are less populated and also because of the quadratic energy spacing
induced by (10.5). The combination of these two factors yields an exponential tem-
perature dependence of the relaxation time, which is typical of a thermally activated
mechanism:

T = 19 exp(Uest/ kg T). (10.7)

Characteristically, the pre-exponential factor 7p, that is, the inverse of the fre-
quency, is much longer than that observed in magnetic nanoparticles.

Figure 10.5 nicely shows the good agreement between the Arrhenius law (10.7)
and the experimental behavior of the archetypal Mnjzac SMM. U,/ kp has been
determined to be 62K, thus not far from 100|D|/kg ~ 70K, and tp amounts
to ca. 1077s, which is about 3—4 orders of magnitude longer than in magnetic
nanoparticles.

The question that immediately arises is why SMM behavior is not observable
also in smaller clusters or even mononuclear complexes. The answer can be found
in the quantum mechanics of angular momenta. In the case of pure axial symme-
try, the eigenstates of (10.5) are pure |m) states, and transitions between states of
the ground doublet with m = £ can only occur through the multi-Orbach process
schematized in Fig. 10.4 [71]. This is, however, an ideal case because in real systems
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Fig. 10.5 Temperature 7 T T T T
dependence of the relaxation 10 o’ ]
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with ac susceptibility (filled : il .
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circles). The broken line ~ 10 : . -0 :
represents the best fit by using ~1.] - A
the Arrhenius law (10.7) 10 3 .’ 1
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there are many mechanisms able to admix states on opposite sides of the barrier. A
transverse anisotropy due to symmetry reduction or a transverse field, either exter-
nally applied or of intrinsic origin (dipolar or hyperfine), introduces in (10.5) terms
in Sy and S, that admix states with different m, so that m is no longer a good
quantum number. The true eigenstates are now a linear combination of |m) states:

S

Wi >= ) gi(m)|m). (10.8)

m=—S

In general, if the transverse term is a small perturbation of the axial anisotropy,
one of the |m) states is dominant within each |¥). This is particularly true for the
states lowest in the double well, because they are admixed only at a high order
of perturbation, that is, at order Sth by a transverse anisotropy or at order 2Sth
by a transverse field. In the case of a small spin, like the S = 2 of a Mn'" ion,
unavoidable transverse terms make the energy barrier depicted in Fig. 10.4 become
transparent, and the low temperature divergence of the relaxation time responsible
of the SMM behavior is not observed.

A quantitative estimation of the relaxation time can be obtained by writing a lin-
ear system of equations describing the change in population of each of the (25 + 1)
states. For simplicity, each state of the S multiplet will be labeled using the quantum
number m, thus neglecting the above-described admixtures by transverse anisotropy
or transverse fields. At a given time, ¢, the spin has a certain probability p,,(¢) to be
in state |m). But in a short time dz, it has a certain probability to make a transition
to some other state |m’). If the transitions are independent from each other, that is,
assuming a Markov process, the probabilities p,, (¢) evolve according to equation

d
3 P =D _[vg P ) = Vi pm ()], (10.9)
q

which is called master equation [10]. In the present case the master equation is
a system of (25 + 1) equations. Finite transition probabilities y;; arise from the
interaction with phonons, but regardless of the interaction mechanism, (10.9) has
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general properties. A simple one is that the equilibrium value for the populations
pd = exp(—Em/ksT)/Z, with Z corresponding to the partition function, is a
trivial solution of the master equation. Moreover, in (10.9) the relation known as
detailed balance principle is satisfied:

ym po,
= T — oxp[(Em — Em)/ksT]. (10.10)

ym o p,

The evolution of each p,,(¢) follows an exponential decay towards the equi-
librium value and, consequently, M(¢t) = > pm(t) My, has the form of a sum of
m

exponentials, exp(—t /7x ), where the characteristic times, 7%, coincide with the solu-
tions of the master equation. This seems to contradict the experimental finding that
the magnetization in SMMs decays with a single exponential law. However, of the
(28 + 1) values of 1 one approaches oo, and indeed corresponds to the equilib-
rium state which persists for an infinite time. Concerning the remaining values, it
has been demonstrated that at low temperature all t; but one are very short. This
property is a consequence of the shape of the potential, more precisely of the exis-
tence of a potential barrier. Since the spin requires a very long time to jump over that
barrier, one eigenvalue of the master matrix must be very large while the (25 — 1)
remaining ones correspond to much faster spin motions inside the left or right hand
well.

To evaluate the relaxation time it is, however, necessary to know the transition
probabilities y(f . These can be expressed as

3 (Ep _Eq)3
mh*ped exp [(Ep — Eq)/ksT]| — 1
<02 [p1s31a)|” + [{pIsla)["]

+ DF[IpI4S+. S la) P + [pls= s3]}, aon

vy =

where p is density and ¢ is the speed of sound. The spin—phonon coefficients D~a,b
are taken to be of the same order of magnitude as the uniaxial anisotropy, but are
usually treated as adjustable parameters when trying to reproduce an experimental
relaxation time.

At temperatures that are significantly smaller than the height of the barrier,
the calculated relaxation time shows an exponential divergence on lowering the
temperature:

1 D|S?
-1 _1D] ] (10.12)

fO pc? kgT
Even if an accurate evaluation of the pre-exponential factor is hampered by the
difficulty in estimating the speed of sound inside the crystal and the spin—phonon

coupling parameters, here roughly assumed equal to D, the insertion in (10.12) of
reference values, like the density of water and a sound speed of 103> ms™!, yields for

|DI*(DS?)? eXP[
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Mnis 19 ~ 1077, indeed an unusually large value that is, however, in agreement
with the experimental finding.

Most SMMs, including the Fe4 complex previously mentioned, at low tempera-
ture do not obey (10.7), but on decreasing the temperature the relaxation time levels
off [35,72,73]. This suggests that under-barrier pathways not involving phonons
are active. We have seen previously that transverse terms in the SH admix states on
opposite sides of the barrier. In analogy to the quantum mechanical treatment of a
particle in a double well potential, it is clear that such an admixture leads to a finite
probability that a through-barrier transition may occur from one potential well to
the other. In the case of spins, however, an additional factor enters the scenario: the
magnetic field. A field applied along the anisotropy axis couples with the S, com-
ponent of the spin and induces opposite shifts on the levels lying on opposite sides
of the barrier. Perturbation theory tells us that quantum state admixtures are most
efficient when the unperturbed states are degenerate.

The case of zero field, reported in Fig. 10.4, is a special case where all unper-
turbed levels are degenerate in pairs. This is therefore expected to be a favorite
situation for tunnel relaxation. However, this energy matching is re-established for
other characteristic values of the applied field:

_ _|D|
H, =n——-. (10.13)
gHUB

Figure 10.6a shows the Zeeman diagram for a spin S with uniaxial anisotropy
when exposed to an axial field, while on the right, the aspect of the barrier at the
resonance field, n = 1, is depicted.

This phenomenon, known as resonant quantum tunneling of the magnetization,
has been first observed in the ac magnetic susceptibility of Mnj,ac SMM [74] and
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Fig. 10.6 (a) Field dependence of the levels of a spin multiplet characterized by a negative D
parameter when the magnetic field is applied along the unique axis, z. (b) The shape of the double
well potential at the first level crossing H = |D|/gus



10 XAS and XMCD of Single Molecule Magnets 291

then, more spectacularly, in the hysteresis curve [75,76], which is characterized by
steps at the resonant fields (see Fig. 10.7).

It is interesting to notice that quantum effects are also observed in a regime
where phonons still play a role. In fact the admixing of levels is more efficient for
states higher in the barrier, that is, smaller |m|, making quantum tunneling among
these thermally populated states competitive even at intermediate temperatures. The
mechanism is named thermally activated resonant quantum tunneling [77].

The vertical segments of the curve in Fig. 10.7 reflect accelerations of the relax-
ation rate and can be theoretically reproduced with the approach developed before,
by taking into account that the true eigenstates of the system are not pure |m) states
but they are described by (10.8). As an example, in Fig. 10.8 we report the calculated
field dependence of the relaxation time for the Fe4 cluster, or iron star, previously
introduced to treat exchange interactions in symmetric molecules. The spin state has
S =5 D/kg=—-0.6Kand E/D =0.1.

As expected, the relaxation time shows a minimum in zero field, when tunneling
is permitted. Three different cases are presented in Fig. 10.8. In the first calcula-
tion, a transverse term of the magnetic anisotropy is introduced with £/D = 0.1.
As this term couples states with even values of (m’ — m), an admixing occurs for
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every second crossing field value. The first acceleration is thus observed around
H, = 0.9T, which corresponds to n = 2. If a weak transverse field is added or is
present due to a small misalignment of the crystal (which is difficult to avoid in a
real experiment), the selection rule due to the symmetry of the transverse anisotropy
operator is relaxed and also the first resonance at H, = 0.45 T becomes observable.

The fascinating interplay between quantum and classical effects in the dynamics
of the magnetization of molecular nanomagnets has attracted great interest among
physicists and chemists and many other spectacular phenomena have been observed
in the last 10 years [11], including topological interferences [78] and quantum coher-
ence [79] to mention only two. However, what has been presented up to know
is sufficient for the reader to understand the experiments with synchrotron light
described in Sect. 10.4 and we will not go any further here, addressing the interested
reader to more specialized literature [10].

10.3 Deposition of Single Molecule Magnets on Surfaces

The following step in the study of SMMs is the transposition of their unique proper-
ties to a nanoscale environment. Indeed, the assembling of magnetic molecules such
as Mnj, and Fe4 on surfaces and their addressing using scanning probe microscopy
techniques has been the target of intensive research activity in last years. Many
approaches have been followed to anchor such complex metallo-organic molecular
units to surfaces, as described in a recent review [27]. In some cases, the structural
and electronic intactness of deposited molecules could be ascertained only with the
aid of sophisticated techniques for surface analysis.

The formation of arrays of SMMs on surface can be obtained following either
elementary methods, like the deposition from the vapor phase or the drop casting
of a dilute solution, or more complex ones, such as chemical adsorption. In this last
case, the selection of a specific linker for a given surface [27] is a fundamental issue,
and in Table 10.1 we list functional groups that can be used to graft molecules to
representative surfaces.

A technique of widespread use relies on the formation of self-assembled mono-
layers, SAMs. We adopt here the definition of self-assembly given by Whitesides
et al. [80]: A process that involves pre-existing components (separate or distinct
parts of a disordered structure), is reversible and can be controlled by proper design
of the components. Reversibility requires that the surface—molecule interactions are
not too strong but comparable to thermal energy. The combination of reversibility
with the fact that the building blocks are free to move allows the reparation of errors
and thus the formation of ordered structures. Furthermore, weaker interactions like
intermolecular van der Waals forces may play a crucial role [27].

So far grafting of SMMs on surfaces has been carried out by following the three
main schemes depicted in Fig. 10.9. Interactions between molecules and the surface
can be either nonspecific (case a, physisorption) or specific, being induced by proper
functionalization of the magnetic molecule (b) or of the surface (c).
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Table 10.1 Commonly employed combinations of linker-substrate for the formation of self-
assembled monolayers

Linking group Substrate
-SH Au
—RS-SR
—S—Ac?
“RSR 4Ac stands for acetyl ((O)CCH3), a
-SCN o
group that replaces H in thiols to
—OH Pt protect the otherwise too reactive S
-NH, atom
—-COOH Al O3
—-OPOsH, TiO,
ITO
=SiCls Si0O,
-CH=CH, Si-H)
a b
l.‘\l\‘? € - "
o
Y o y
%.I)"ﬁﬂﬂt r{}l
éis*
*n ;@
= " " é‘g'!g N !{g‘(
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Fig. 10.9 Schematic view of three approaches for deposition of magnetic molecule (squares)
by (a) drop casting of unfunctionalized molecules from diluted solutions; (b) self assem-
bling of molecules pre-functionalized with suitable anchoring groups for specific surfaces;
(c) functionalization of surfaces with docking groups suitable as molecule receptors

All these strategies have been adopted for the surface grafting of Mnj,-type
SMMs. Encouraging results on the deposition of Mnj, clusters by scheme (a) were
reported by Bucher et al. [81]. Unfortunately, the hysteresis loop observed on such
samples could not be firmly attributed to adsorbed molecules due to the possible
formation of multilayers. On the other hand, strategy (b) had been attempted a few
years before using compound Mn;,-C15SAc (see Fig. 10.3), which was deposited
on Au(111) as a homogeneous but disordered monolayer [82]. The third method
(c) was used to covalently graft Mn;, derivatives on silicon surfaces prefunction-
alized [83] with carboxylate groups. Attempts to use the same strategy to bind
Mn;, complexes to gold surfaces functionalized with carboxylic groups have also
been reported [84]. However, no hysteresis was observed on samples featuring a
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Fig. 10.10 STM topography scans of Mn;;BzSMe on Au(111) surfaces (Vipias = 0.4V, Tiunnel =
10 pA): (a) Image of a large area of the deposit obtained from THF; (b) detail of the same molecular
array, with a 2D-FFT in the inset; (c) detail of a similar deposit obtained from dichloromethane;
(d) image of a patterned sample where the depressions were created by removing the monolayer
of Mn;,BzSMe using a stronger tip-to-sample interaction (Vpips = 0.24 'V, Iyynner = 30 pA)

monolayer coverage [25]. Similar approaches have also been employed to graft Fey
molecules on silicon [85] as well as, more recently, on carbon nanotubes [86].

These monolayers are invariably disordered, as shown by scanning tunneling
microscopy (STM) which, although unable to reveal the internal structure of the
grafted molecules, has provided molecular sizes in agreement with expectation. In
some cases STM has evidenced the complexity of the grafting process. For the same
molecule and the same surface, deposition can give very different results depending
on the solvent used to dissolve the SMM compound [87]. Figure 10.10 shows the
results obtained by depositing on Au(111) a Mnj, cluster with sulphide substituted
carboxylates (Mn;,BzSMe, see Fig. 10.3). Figure 10.10a, b refers to SAMs obtained
dissolving the SMM in tetrahydrofuran (THF) and show submonolayer coverage
with a certain degree of order, probably induced by gold substrate reconstruction.
A more dense and disordered deposit is obtained when using dichloromethane, as
shown in Fig. 10.10c. In this case, the molecules appear to interact more weakly
with the substrate; in fact imposing a stronger tip-to-sample interaction resulted in
an almost complete removal of the monolayer (Fig. 10.10d).

X-ray photoemission spectroscopy (XPS) has an excellent sensitivity for chemi-
cal species at the surface and in some cases is able to provide information on their
oxidation states. However, because of the strong overlap of both Mn;, and Mnj3,
signals with peaks from the gold substrate (Augpi/2 and Ausp,s/o, respectively),
quantitative assessment of the atomic relative abundance in SAMs of Mnj, deriva-
tives is severely hampered.

The key point remains, however, the characterization of the magnetic properties
of these monolayers. Preliminary experiments based on traditional magnetometry
proved to be extremely challenging due to the exceedingly small amount of magnetic
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centers [81]. Magneto-optical techniques are more adequate and have been recently
applied to Mn;» SAMs. Quite surprisingly, no opening of the magnetic hysteresis
has been detected for the SAM of Mnj, clusters whose morphology is reported in
Fig. 10.10a [88].

A fundamental question arises, namely whether SMM behavior is unfavorably
affected by the surface environment, or the grafting process leads to changes in the
chemical and electronic structure of the molecules. Only more surface-sensitive and
selective techniques such us XAS — XMCD demonstrated to be able to provide such
an answer, as detailed in the following section.

10.4 XAS and XMCD of SMMs

In this section, we show with some selected examples from our recent research
that X-ray absorption spectroscopy is an invaluable tool for the surface scientist
interested in magnetic systems. Other interesting examples are the investigation of
the magnetic properties of cobalt ad-atoms on Pt terraces [20], or the detection of
surface-induced ferromagnetism in Fe'-octaethylporphyrin molecules deposited on
metallic surfaces [22,23], also discussed by Wende in this volume.

The key features of XAS and XMCD analysis can be summarized as follows:

e Atomic species selectivity: Unlike most magnetic characterization techniques,
polarized X-ray absorption reveals element- and even oxidation-state-specific
magnetic properties.

o FElectronic and spin structure information: XAS spectra can be used to ascertain
the electronic structure of the metal centers, while XMCD spectra can give pre-
cious information on spin—spin coupling. When applicable, the magneto-optical
sum-rules yield unique and direct information on the orbital magnetic moments.

o Extreme surface sensitivity: Beam stability coupled to total electron yield (TEY)
detection allow for reliable acquisition of polarized X-ray absorption spectra on
monolayers of SMMs grafted to metallic surfaces.

The first XAS and XMCD measurements on molecular magnetic clusters were
performed on Ni(II) and Mn(II) chromicyanides (see Fig. 10.2), for which the mag-
netic coupling between the central Cr(IIT) ion and the peripheric divalent cations
could be determined [89].

However, to fully characterize the unique magnetic features of SMMs XAS and
XMCD measurements must be carried out at very low temperatures and only few
end-stations offer such a possibility. For our investigations we used one of the most
advanced setups available, namely the TBT end-station developed by Ph. Sainctavit
and J.-P. Kappler. It is equipped with a >He—*He dilution refrigerator capable of
reaching temperatures lower than 300 mK under photon flux; details on the TBT
setup can be found in [90]. This equipment has been first used to characterize the
Fes SMM, allowing the observation of the XMCD signal arising from remnant
magnetization [91].
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10.4.1 XAS and XMCD to Investigate the Electronic
Structure of Mn, Clusters

The investigation of Mnj, SMMs with synchrotron-based techniques has been first
performed by Ghigna et al. [92] and then Moroni et al. [93] using a bulk sam-
ple of Mnj,ac mixed with graphite to warrant an acceptable electrical conduction.
The mixed valence nature of this cluster did not allow to apply directly the sum
rules to determine the magnetic and orbital contributions. A different approach
has been used, which is based on spectra simulation starting from those of model
compounds, such as simpler complexes comprising manganese ions in a single
oxidation state. More recently also a one-electron-reduced Mnj, complex with for-
mula (PPh4)[Mn;,012(0,CPh);16(H20)4], (PPhs)Mn;,Bz, has been characterized
[25,94]. The additional electron is localized on a former Mn™ site and this complex
can therefore be formulated as Mn"Mn!'Mn}".

It is important to recall that manganese ions in oxidation states higher than +2
are very sensitive to photo-reduction and special care must be taken to avoid sample
damage. The optimization of the photon flux is therefore the first step in the charac-
terization of molecular materials. Moreover, as small changes in the dichroic signal
can be significant in SMMs, the protocol to be employed must minimize spurious
signals. This requires a cycle of eight acquisitions: four of them are carried out while
applying a positive external field (i.e., polarizing the spins in one direction) and the
remaining ones are carried out in a negative field (spins polarized in the opposite
direction). For each of the two field directions, photon helicity is varied twice. When
field and photon helicity have the same sign (photon helicity is taken to be positive
according to the right hand rule), the spectrum is called positive (¢ T); if field and
photon polarization are of opposite sign, the spectrum is referred to as negative (0 ~).
This procedure holds when reversing the field is theoretically identical to changing
photon helicity, that is, in the electric dipole approximation.

The order of such sequence (Table 10.2) is important, as it allows to compensate
for any linear drift of the signal with time (e.g., a drift in energy or in the intensity
of the beam), as explained in Fig. 10.11.

The above-described set of eight XAS acquisitions allows to record a XMCD
spectrum without spurious effects; however, when the signal is very weak, as in

Table 10.2 A typical acquisition cycle of XMCD spectra

Photon helicity (¢)  Applied field (H) Resulting spectrum
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Fig. 10.11 Schematic picture
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Fig. 10.12 (a) XAS-XMCD spectra of a thick film of Mn;,BzSMe at the L, ;3 edge of manganese
(H =4Tand T = 4.2K); (b) same for the one-electron reduced species (PPhs)Mn,,Bz, where
the grey lines represent the calculated spectra as discussed in the text

the case of monolayers, several such datasets are required to achieve an acceptable
signal-to-noise ratio.

In Fig. 10.12a, the XAS-XMCD spectra of a thick deposit of Mn;,BzSMe are
reported [25]. They are very similar to those previously reported in [93], showing
that changes in the periphery of the cluster do not significantly affect the elec-
tronic properties. The XAS and XMCD spectra of a microcrystalline sample of
(PPh4)Mn,Bz look quite similar to those of “neutral” Mnj,, with a small enhance-
ment of the dichroic signal around 639 eV, consistent with the presence of a Mn!!
component (Fig. 10.12b).

To get more quantitative information, the experimental energy dependence of
XAS spectrum intensity, /(E), can be reproduced through a linear combination
of model spectra /*(E) obtained on suitable reference compounds containing the
Mn ion in the three oxidation states (o = II, III, IV) and in similar chemical
environments:

I(E) = Zqc®I%(E). (10.14)
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Reference spectra are normalized following the sum rules of the number of holes.
The values of ¢® give information on the relative abundance of the different valence
states and percent values P, can be thus extracted:

C(X

P, = 1OOZci .
i

(10.15)

This semi-quantitative analysis of XAS data of Fig. 10.12b provided a Mn'':Mn!!;
Mn!Y ratio (5:60:35) that is in complete agreement with expectation (8:58:33), thus
confirming that the technique is able to clearly detect one-electron reduction in such
a complex system.

An analogous approach can be employed to extract from the XMCD spectra,
semi-quantitative information on the orientation of the local magnetic moments rel-
ative to the applied magnetic field. The energy dependence of the dichroic signal,
S(E), is expressed as a linear combination of model spectra, S*(E), at the same
field and temperature values:

S(E) =) c“8*S*(E). (10.16)

where « runs over the oxidation state numbers, ¢ are the same coefficients resulting
from the deconvolution of XAS spectra (10.14), and §% accounts for the average
polarization of the local magnetic moment in the applied field (positive if parallel to
the field).

To apply this type of analysis, all reference signals need to be normalized in terms
of intensity to the experimental conditions used for the acquisition. In particular, the
dichroic signal is assumed at the first level of approximation to scale linearly with
the degree of polarization and to vary according to a simple Brillouin function with
temperature and applied field.

This analysis of the XMCD data provided a positive polarization for Mn! in
agreement with magnetic measurements, in fact the experimental spectrum is well
reproduced only assuming the Mn'" and Mn'"! spins parallel to each other.

To give an idea of how sensitive is XMCD to the spin structure of a high nucle-
arity spin cluster like Mnj,, we report in Fig. 10.13 the spectra of Mn;,BzSMe
calculated using (10.16) and imposing two different spin configurations: Mn!" spins
antiparallel or parallel to Mn'"! ones. It is evident that in all regions of the spectrum,
the agreement with experimental data is significantly better for the antiparallel
alignment.

10.4.2 XAS and XMCD of Monolayers of Mn,, SMMs

The extreme sensitivity of X-ray absorption spectroscopy, in particular when cou-
pled to the surface specificity of TEY detection mode, allowed to investigate Mnj,
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Fig. 10.13 Experimental
XMCD spectrum of a thick
film of Mn;,BzSMe (top)
compared with the spectra
calculated by convoluting
spectral standards and
assuming antiparallel or
parallel alignment of the
Mn!™ and Mn'V spins (middle
and bottom, respectively)

XMCD (a.u)

—— Experimental Mn12
—— Antiferro (8*Mnlll — 4*MnlIV)
—— Ferro (8*Mnlll + 4*MnlIV)
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Fig. 10.14 Mn L, 3 edge XAS spectra of different types of monolayers of Mnj, clusters com-
pared to reference spectra for manganese in three different oxidation states. Mn),-th is a thiophene
substituted carboxylate adsorbed either on native gold or on a surface prefunctionalized with
4-mercapto-2,3,5,6-tetrafluorobenzoic acid (4-MTBA). The same gold surface is used to deposit
a Mnj, cluster with biphenyl-carboxylate (Mnj,-biph). Reprinted with permission from [84]
(Copyright American Physical Society)

adsorbates even if manganese ions are present in very low amounts on the gold sur-
face (significantly less than one monolayer, considering that a large portion of the
surface is occupied by organic ligands).

Voss et al. [84] employed XAS at room temperature to investigate the electronic
structure of three different samples. The first two were prepared by functionalizing
the Mnj, cluster with sulphur-containing carboxylates, according to the method
schematized in Fig. 10.9b, while the third one was prepared by first depositing a
layer of 4-mercapto-2,3,5,6-tetrafluorobenzoic acid (4-MTBA), and then allowing
it to react with a solution of Mnj, via ligand exchange [95].

The recorded XAS spectra at the Mn L, 3 edge are displayed in Fig. 10.14 along
with some reference spectra for the three different oxidations states of manganese.
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It is clear from Fig. 10.14 that most of the recorded intensity for the monolayers
coincides with the absorption of Mn", even if significant differences are detected
between the three samples. In particular, the deposition on prefunctionalized sur-
faces appears to afford a weaker Mn'! contribution.

A more quantitative analysis has been recently performed by combining XAS
and XMCD with the simulation procedure previously described [25].

In this case, two different pre-functionalized Mnj, clusters have been used to
prepare monolayers on gold: Mn;,C15/SAc and Mn;,BzSMe (see Fig. 10.3 for the
details of the ligand structures). They have different anchoring groups, namely a
thioacetyl and a sulfide group, and also very different spacers, a long aliphatic chain
and a short aromatic group, respectively. Moreover, for Mn;,BzSMe, the deposition
has been performed using two different solvents, as described in Sect. 10.3.

The XAS and XMCD spectra of the three investigated samples are reported in
Fig. 10.15. At a first glance, significant differences are visible between bulk phases
and monolayers, as evidenced in the clearest way by inspection of dichroic spectra.
The XAS spectra of prefunctionalized Mn;, clusters grafted on Au surface are,
however, more similar to those obtained by depositing Mn, on a prefunctionalized
surface (see Fig. 10.14), suggesting that the deposition method of Fig. 10.9¢ is not
necessarily better suited for SMMs.

By performing a simulation of the XAS spectra with a convolution of stan-
dard spectra according to (10.14), the percentages of the different oxidation states
have been evaluated and reported [25]. Mn"' accounts for 20-30% of the man-
ganese content, suggesting that the underlying redox process is not a simply one- or
two-electron reduction, as observed in some Mn;, clusters in the bulk phase.

We noticed also that the reduction seems to involve also MnVions, in contrast
with what was observed for the bulk phase [96,97]. Even more dramatic differences
are seen in the dichroic signal. In fact, a significant reduction of the polariza-
tion is observed [25], in some cases with a complete loss of the ferrimagnetic
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Fig. 10.15 Experimental (bold) and calculated XAS and XMCD spectra at the Mn L, 3 edge for
monolayers on native Au(111) of Mn;,C15Sac (a) Mn;,BzSMe deposited from THF (b), or from
dichloromethane (c)
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spin arrangement typical of Mnj, (see Fig. 10.3). Significant differences are also
observed in the case of the same prefunctionalized cluster deposited from differ-
ent solvents. In particular, the ferrimagnetic structure is partially retained when
dichloromethane is employed and the molecules adsorbed on the surface can be
easily removed with the STM tip, as shown in Fig. 10.10.

On the other side, the very weak magnetic polarization suggests that a com-
plete disruption of the cluster does not occur, as the formation of monomeric units
would lead to a full polarization of their magnetic moments in the employed exper-
imental conditions of high magnetic field (40 kOe) and low temperature. This is
in agreement with XPS and STM investigations that suggest surface coverage by
chemical species whose size and composition are close to those of intact Mn; 5 clus-
ters [87]. The significant changes in the electronic and spin structure, evidenced
unambiguously by XAS and XMCD, justify the absence of SMM behavior for these
deposits.

10.4.3 XMCD and Magnetic Anisotropy

The conservation of a large spin in the ground state, once the molecular clusters
are grafted to the surface, is not the only requirement to be fulfilled to observe
SMM behavior: also the magnetic anisotropy must be preserved. XMCD probes the
magnetization state of the molecule and can be used to measure the field dependence
of the magnetization.

At low temperature, the effect of ZFS (see (10.5)) causes the molecules that have
their easy axis parallel to magnetic field to saturate in weaker fields than a simple
paramagnet, while stronger fields, indeed up to 100 kOe for Mn;, clusters, are nec-
essary to align the magnetic moment along the hard axis. In the case of a random
distribution of orientations of the magnetic axes, like in a polycrystalline powder
specimen, in a thick deposit, or in disordered SAMs, all the orientations are present.
For |D|/kgT << 1, the magnetization curve of a randomly oriented sample can be
reproduced by considering just the average of the magnetization curves calculated
along the anisotropy axes, that is, M(H) = %MH(H) + %MJ_(H) for a uniaxial
system, but in general an integration on the solid angle must be performed [10, 30].

In Fig. 10.16a, the XAS spectra obtained with two circular polarizations and the
derived dichroic signal for a bulk sample of Mn;,BzSMe are reported [26]. The
energy of 643 eV, corresponding to the maximum amplitude of the XMCD signal,
has been selected to measure the field dependence up to 50 kOe and at 7 = 0.75 K.
The measured data cannot be modelized assuming that the magnetic anisotropy is
that estimated from electron paramagnetic resonance [54] and typical of Mn;, clus-
ters, D/ kg = —0.7 K (line in Fig. 10.16b), even leaving an adjustable scale factor
for the XMCD signal intensity. Moreover, up-field and down-field scans coincide
and hysteresis is absent even at temperatures lower than those required to observe a
memory effect on bulk samples.

It is important to stress that no evidence of photo-reduction is detected in these
thick films of Mnj, derivatives. We can also exclude that the deposition of a thick
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Fig. 10.16 (a) Absorption spectra (fop) and dichroic signal (bottom) at the L, 3 edge of manganese
at 7 = 0.75 K and 40 kOe for a bulk sample of Mn;,BzSMe. (b) Magnetic field dependence of the
XMCD signal at 643 eV, highlighted by the arrow in (a), compared to the expected magnetization
curve for a bulk sample with random orientation of the crystallites (red curve). A sweeping rate of
200es~! has been employed. Original data available in [26]

Fig. 10.17 On fop, a 0 0
schematic view of the )j\ WGOM Jj\
functionalization of a Fe, S o) fe} S
cluster with a tripodal ligand

derived from

2-hydroxymethyl-1,3-

propanediol, while the

molecular structure as

determined from X-ray "
diffraction is reported in the ’(

lower part

film by drop-casting affects the magnetic properties of the molecules, or gives a
selective orientation of them, because a similarly prepared film investigated by stan-
dard magnetometry reveals the typical hysteresis curve of randomly oriented Mn,
SMMs.

A possible explanation could be that the temperature of the sample is signifi-
cantly higher (a few K) than that measured by the calibrated sensor. This hypothesis
has been, however, discarded, thanks to parallel experiments on a different SMM
described hereafter.

The Fe4 cluster already mentioned in Sect. 10.2.1 has six methoxide ligands that
bridge the central ion to the outer ones [34]. Methoxides can be easily replaced by
two tripodal ligands, one above and one below the plane of the iron atoms [35, 73].
Several tripodal ligands with different chains on the pivot carbon atom and with
a functional group on the other end have been prepared to anchor Fe4 clusters on
different surfaces, i.e Si [98] and Au [99].

One of these derivatives with formula [Fe4(L)2(dpm)g], Fe4C9SAc, where Hdpm
is dipivaloylmethane and HsL is the tripodal ligand schematized in the upper part
of Fig.10.17, has been extensively investigated by XAS and XMCD [26, 99].
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Fig. 10.18 Fe L, ; edge
absorption spectra (upper)
and dichroic signal (lower) at
T = 0.75K and 30 kOe,
along with simulated curves
obtained using ligand field
multiplet calculations. The
arrow indicates the energy
used to measure the field
dependence reported in

Fig. 10.19. Original data E . " .
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The spectra recorded on a thick film obtained by drop-casting on a gold slab are
reported in Fig. 10.18. The absorption at the L, 3 edges of iron is typical of 43
oxidation state. Interestingly, the intensity of the XMCD at high field (30 kOe)
corresponds to half of the polarization expected for uncorrelated iron(IIl) spins.
In fact, the cluster has a ferrimagnetic spin structure yielding an S = 5 ground
state, and the first excited states are several tens of K above in energy. As the
ligand fields of the internal and external iron ions are very similar, the XMCD spec-
trum is much simplers than that of Mn,, and the signals coming from different
antiferromagnetically-coupled iron atoms partially cancel.

The field dependence of the XMCD signal at 709.2eV, corresponding to the
largest negative signal, is reported in Fig. 10.19a at T = 1.4 K, together with the
calculated magnetization assuming random orientation of molecules with § =
5and D/kg = —0.63K. At variance with the results obtained on Mnj, (see
figure 10.16b), the calculated data, again adjusted with an arbitrary factor for
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y-scale, nicely reproduce the XMCD signal (see figure 10.19). Moreover, on decreas-
ing the temperature, an opening of the hysteresis is observed, as discussed in detail
in the next section.

The parallel investigation of the two types of SMMs allows us to exclude that
the loss of SMM behavior is due to an experimental artifact. On the other side, it is
evident that the behavior of Mny, clusters in a thick film is different if probed with
standard magnetometry or with XMCD. Recalling that the discussed XAS-XMCD
spectra have all been recorded in TEY mode, it is reasonable to deduce that different
portions of the sample are showing different behaviors. In fact this detection mode
probes only the first few nanometer of a thick compound [100], corresponding to a
couple of layers of these bulky molecules. We can therefore deduce that, in a thick
film of Mn;, SMM:s, the first few layers behave differently, as far as the magnetic
anisotropy is concerned, from the remainder of the sample. This is not completely
surprising. As previously discussed (see (10.6)), the magnetic anisotropy of a spin
cluster depends not only on the single ion contributions and projection coefficients
but also on the relative orientation of the anisotropy axes.

In Fig. 10.20a, we show the molecular structure of Mn;, SMMs highlighting the
easy axis of Mn!!! ions, which correspond to the direction of Jahn-Teller elongation
of their coordination octahedra. There are two types of Mn'!! sites and they form
typically angles of ca. 10° and 35° with the idealized tetragonal axis, respectively.
On the other hand, it is well known that the elongation axis of some of these Mn'"!
sites can flip in a different orientation, as shown in Fig. 10.20b. Some crystalline
phases of Mn;, compounds have revealed to be uniquely composed by these flipped
species [101] and show an almost halved anisotropy and a much faster relaxation.
Relaxation is in fact enhanced not only by a reduction of the anisotropy barrier, but
also by the breaking of the tetragonal symmetry that increases transverse anisotropy
and consequently the efficiency of under barrier mechanisms. In other cases, like in
the archetypal Mn;j,ac compound, the flipped species are present only as a minority
fraction, probably associated to defects in the crystal [10, 102]. We can imagine that
the surface layers of the thick films present more of these defects and therefore relax
faster.

Fig. 10.20 (a) Schematic structure of the Mn,; cluster where the Jahn—Teller elongation axes of
Mn'" ions, corresponding to the single ion easy axis of magnetization, are highlighted. (b) The

elongation axis of a Mn' ion can flip to the direction pointing towards a bridging oxygen (broken
bond)
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On the contrary, the magnetic anisotropy of Fey4 cluster is related to the “helical
pitch” of the molecule, that is, the dihedral angle between each FeO,Fe “blade” and
the Fe4 plane [35,73,98]. This angle is imposed by the geometry of the rigid tripodal
ligands and is probably less affected by the surface strain.

Even if this explanation remains speculative, the results reported here nicely
highlight an intrinsic “lability” of the SMM behavior of Mn;, clusters that, asso-
ciated with the redox instability induced by the grafting process, makes them
unsuited for organization in nanostructures. The family of Fe4 clusters seems more
promising, despite the fact that the low blocking temperature makes them even less
appealing for technological applications and complicates their characterization.

10.4.4 XMCD and the Dynamics of the Magnetization

The peculiar dynamic nature of the hysteresis of SMMs described in Sect. 10.2.3
makes the loop opening very sensitive to the field sweeping rate. The recording of
the hysteresis with XMCD requires changing both field and polarization of X-rays.
These operations are usually rather slow and some time-dependent features can be
lost, particularly if fast relaxation occurs at the resonant fields. The investigation of
the hysteretic behavior of Fe4 has been possible thanks to the capability of the SIM
beamline of the SLS synchrotron [103] to switch the polarization in a few seconds
through a tune—detune operation (see the contribution of F. Nolting).

The hysteresis loop of Fig. 10.19b has been recorded by sweeping the field at
200es™! from one set point to the next one and then measuring at each field the
XAS signal with the two polarizations at the energy of the maximum XMCD ampli-
tude (e.g., 709.2 eV for Fe4C9SAc). The measurement is then repeated at an energy
before the edge for normalization sake. The whole hysteresis experiment requires
ca. 1 h and, in order to reduce the noise, more cycles can be recorded as well (thanks
to the high temperature stability of the set-up) in order to improve the signal-to-noise
ratio.

Even if the combination of a dilution refrigerator with the fast switching of the
polarization makes the set-up an almost unique tool to investigate SMMs, we have
developed an alternative technique to probe the magnetization dynamics. It is well
known that information on the relaxation time of the magnetization can be directly
obtained by using an alternating field at variable frequency or by measuring in real
time the evolution of the magnetization after a field change according to the scheme
of Fig. 10.21.

This type of experiment is usually performed by applying a strong field to can-
cel the barrier and reach rapidly the equilibrium value, then changing the field and
starting to measure the magnetization as a function of time. The curve is then fitted
starting from a single exponential law,

M(t) =M2+(M1—M2)6Xp(—£) (10.17)
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Fig. 10.21 Schematization H
of the procedure to measure 1
the dynamics of the

magnetization in real time. H
The upper part displays the 27
time dependence of the =
applied field, while the lower
part shows a typical
magnetization measurement

=0 time —

where 7 is the relaxation time. More complex behaviors are often encountered like
a stretched exponential decay.

While M, is easy to detect, it is important that the experiment lasts long enough
to get a precise determination of M,. Very often the final field is set to zero and
the decay of the remnant magnetization is thus measured. Moreover, to avoid errors,
the relaxation time should be much longer than the time needed to ramp the field.
This instrumental parameter determines the shortest relaxation time that can be mea-
sured. A similar procedure has been employed to measure the time dependence of
the dichroic signal. In this case, however, fluctuation in the photon flux could induce
a parasitic signal, which fortunately resulted to be negligible, thanks to the high flux
stability of SLS synchrotron [26].

In the case of Feq, we have decided to avoid measuring the decay of the remnant
magnetization for two reasons. The first one is that Fey4 exhibits a very efficient
tunneling in zero field [35], which is also at the origin of the peculiar butterfly shape
of the hysteresis loop (see Fig. 10.19b). As we cannot measure very short relaxation
times, it is better to avoid this fast relaxation regime. The second reason is that the
TEY detection mode has a lower signal-to-background ratio when operated in zero
field.

We therefore magnetized the sample in a relatively strong field (20 kOe), then the
field was quickly changed to a slightly negative value (—2.5 kOe) and the XAS mea-
sured while continuously switching the polarization. The resulting time dependence
of the XMCD amplitude is reported in Fig. 10.22 [26].

The signal shows a time dependence that can be well reproduced with a mono-
exponential decay. Moreover, the characteristic time is strongly dependent on the
temperature, being evaluated as T = (285 &+ 10)s at T = (0.55 & 0.05) K, and
T = (87 £ 5)sat T = (0.75 & 0.05) K. The relaxation times extracted with this
procedure are in good agreement with the expected thermally activated regime and
well compare with data obtained through conventional magnetometry. On the con-
trary, the same protocol repeated on the thick film of Mn;, molecules did not show
any significant time dependence of the signal, in agreement with the absence of
magnetic hysteresis (see inset in Fig. 10.22).
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Fig. 10.22 Time dependence of the dichroic signals at the Fe L, 3 edges measured on a thick film
of Fe, magnetized in a strong positive magnetic field. After that, the field is rapidly ramped to a
moderate negative value. Black lines represent the simulation with a mono-exponential decay. In
the inset, the same protocol has been applied to investigate a thick film of Mn;,

10.5 Conclusions

In this chapter we hope to have shown to the reader that XAS and XMCD are unique
tools able to address several aspects of molecular magnetism, ranging from the elec-
tronic and spin structure of polynuclear complexes to their magnetic anisotropy.
The topic addressed here is the investigation of SMMs grafted to conducting sur-
faces, a fascinating field that hopefully may allow in the future to play with the
elementary interactions between electron transport and magnetic degrees of free-
dom at the molecular scale. However, the characterization of complex molecules on
surfaces has demonstrated to be very challenging. Thanks to the use of XAS and
XMCD at sub-Kelvin temperatures, it has been possible to show that the archety-
pal SMMs, the Mnj, family of clusters, is not suited for this type of applications
because of its redox instability and also because the SMM behavior does not stand
the strain typical of a surface environment. Fe4 clusters, probably thanks to a more
rigid structure induced by the tripodal ligands, are on the other side compatible
with the surface environment. More recently, the approach described in this chapter
has been extended to the investigation of a sub-monolayer of Fe4, SMMs directly
wired to gold. XMCD has demonstrated to have the sensitivity required to mon-
itor the dynamics of the magnetization and has shown unambiguously that SMM
behavior is compatible with the grafting to a conducting surface [99]. Despite the
low blocking temperature of Fe4 clusters, this finding represents an important result
and paves the way to fundamental developments in the emerging field of molecular
spintronics.
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Chapter 11
Magnetic Structure of Actinide Metals

G. van der Laan and K.T. Moore

Abstract In comparison to 3d or 4f metals, magnetism in actinides remains
poorly understood due to experimental complications and the exotic behavior of
the 5f states. In particular, plutonium metal is most especially vexing. Over the last
five decades, theories proposed the presence of either ordered or disordered local
moments at low temperatures. However, experiments such as magnetic susceptibil-
ity, electrical resistivity, nuclear magnetic resonance, specific heat, and elastic and
inelastic neutron scattering show no evidence for ordered or disordered magnetic
moments in any of the six phases of plutonium. Beyond plutonium, the magnetic
structure of other actinides is an active area of research, given that temperature,
pressure, and chemistry can quickly alter the magnetic structure of the 5f states.
For instance, curium metal has an exceedingly large spin polarization that results
in a total moment of ~8ug/atom, which influences the phase stability of the metal.
Insight in the actinide ground state can be obtained from core-level X-ray absorp-
tion spectroscopy (XAS) and electron energy-loss spectroscopy (EELS). A sum rule
relates the branching ratio of the core-level spectra measured by XAS or EELS to
the expectation value of the angular part of the spin—orbit interaction.

11.1 Introduction

Actinide elements such as uranium and plutonium often conjure visions of radiation-
spawned monsters who wreak havoc on unsuspecting bystanders. While this makes
for spectacular pulp fiction, it does not relay the fact that actinide materials are the
cornerstone of nuclear energy and are scientifically fascinating. At present, nuclear
power offers the only viable carbon-free energy production that can meet the grow-
ing demands of the world that will stress the power grid over the next several
decades. Scientifically, the 5f electron states of actinide materials create a myr-
iad of exciting physical behaviors, such as superconductivity, itinerant magnetism,
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electron correlations, and heavy fermions [1]. Therefore, these heavyweights of the
periodic table are relevant both technologically and scientifically, poised to play a
key role in the resurgence of nuclear power for clean and robust energy, and expand
our understanding of condensed-matter physics.

The actinide series consists of 14 elements and, accordingly, the 5f states can
contain up to the same number of electrons. Adhering to Hund’s rule of maximiz-
ing total spin, this means the f-shell accepts seven electrons with the same spin
direction before taking electrons with opposite spin. Therefore, magnetism has the
potential to be strong near the middle of the series. Indeed, this is observed in the
rare-earth series where the middle elements such as Eu and Gd exhibit very strong
magnetic moments due to spin polarization of the 4 f states. The strong magnetic
moments observed in the rare-earth series are a direct consequence of the 4 f states
being localized, that is, reduced wavefunction overlap with non- or weakly-bonding
4 f electrons. The opposite is true for the light actinides, such as Th, Pa, U, Np, and
a-Pu, because the 5 f states are delocalized in the metallic form. This changes in the
latter part of the actinide series where the 5/ states become localized. The actinide
series, therefore, does not simply adhere to Hund’s rule. Rather, there is a compe-
tition between the exchange interaction that drives maximization of the total spin
and the spin—orbit interaction of the j = 5/2 and 7/2 angular momentum levels of
the 5f states [2-5]. This competition produces interesting magnetic behavior in the
actinides when the states localize in heavier elements and when the light actinide
elements bond with other elements.

In this chapter, we discuss in general terms the magnetism of the actinide ele-
ments, in particular Pu. A comparison will be d with the 3d, 4d, and 5d metal
series as well as the 4 metals. Because electron localization is a requirement to
obtain local magnetic moments, we pay specific attention to this in both metals
and some compounds. For instance, the transitions from «- to §-Pu and from «- to
y-Ce both exhibit a large change in volume, indicative of a transition from itiner-
ant to localized behavior. However, unlike Ce metal that shows a magnetic moment
in the large-volume y-Ce phase with localized 4 f states, both «- to §-Pu show no
evidence of a magnetic moment. Surprises like this litter the actinide series, often
creating controversies that are fodder for fruitful and entertaining arguments. We
will specifically discuss subjects such as the following:

Localization of the 5f states across series

Crystal phase transitions and comparison to Cerium

Magnetic properties

Consequences of angular-momentum coupling of the 5f states: LS, jj, and

intermediate coupling

Role of spin—orbit and electrostatic interactions

o Electron energy-loss spectroscopy (EELS) in a transmission electron microscope
(TEM)

e N4 s branching ratio

Spin—orbit sum rule and its validity for the 5 f states of actinides

Spin—orbit interaction per hole for Th, U, Np, Pu, Am, and Cm
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o Electron population of the f5,, and f7/, levels
o Ramifications of these results for the magnetic structure of actinides.

We point the reader to other review articles, such as Challenges in plutonium
science, Vol. I and II in the Los Alamos Science Series [6], particularly the article
entitled Plutonium Condensed-Matter Physics. A Survey of Theory and Experiment
by Boring and Smith [7], Absence of Magnetic Moments in Plutonium by Lashley
et al. [8], Handbook on the Physics and Chemistry of the Actinides by Freeman and
Lander [9], and Nature of the 5f States in Actinide Metals by Moore and van der
Laan [1]. These reviews cover the electronic, magnetic, and crystal structure of the
actinide materials. Here, we will focus on the magnetic structure of actinide metals
and materials, incorporating the most current experimental and theoretical results.

11.2 Volume Change Across the Actinide Series

Figure 11.1 shows a plot of the metallic radii, which are directly proportional to
volume of the actinide 5 f* metals, in comparison to those of 5d and 4 f metals. The
curve for the 5d transition-metal series is parabolic because in the first half of the
series, each additional electron contributes to the cohesive energy of the solid result-
ing in a decrease of volume until the shell is approximately half full. In the second
half of the d series there is an increase of volume due to filling of the antibonding

2.3

Metallic 5/ electrons Atomic 5/ electrons
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Fig. 11.1 Wigner-Seitz radius of each metal as a function of atomic number Z for the 5d, 4f,
and 5f metal series (from [7]). The upper-left insets schematically illustrate the localized and
delocalized 51 states between adjacent actinide atoms (from [10]). Note the parabolic shape of the
3d series, the almost constant values of the trivalent rare earths (for clarity the divalent Eu and
Yb are omitted), and the unusual behavior of the 5f elements, with minimum volume near Pu and
strong increase between Pu and Am
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states. This behavior is indicative of states that are delocalized and actively bond-
ing. The early actinides (Th to Np) exhibit a contraction with increasing electron
count similar to the 5d series, and this in conjunction with the absence of magnetic
order indicates that the 5f electrons of the early actinide elements are itinerant
(delocalized).

In the vicinity of Pu, there is an abrupt jump in the volume and the elements Am
to Cf exhibit little change in volume with increased 5f electron count. This behav-
ior can be explained by examining the 4 f rare-earth series in Fig. 11.1. Here, there
is little change in metallic radii across the series because the 4 f states are localized
and nonbonding, leaving cohesion to the (spd)? electrons that do not change count
across the series. Comparison with the 4 f elements, together with the presence of
ordered magnetism in Cm and elements beyond, indicate localized behavior of the
5f electrons.

Our discussion of the two types of bonding behaviors in the actinide series
emphases the unique position of plutonium. The volume change between «-Pu and
Am is ~50%, a staggering change in volume between two neighboring elements
in the periodic table considering that the only apparent change is to add one elec-
tron in the 5f shell. Indeed, unlike the lanthanide elements Eu and Yb, which are
both divalent in the normally trivalent lanthanide series, there is no indication of
a straightforward valence change between Pu and Am. This means that the sim-
ple addition of another 5f electron is not the pressing issue, but rather the change
from itinerant to localized behavior. What we will find is that the bulk of the tran-
sition from itinerant to localized 5f states occurs within Pu itself! Compared to the
ground state «-phase, the high-temperature 6-Pu phase is ~25% larger in volume.
Thus, plutonium is the nexus between itinerant- and localized-electron behavior.

11.2.1 Photoemission Spectroscopy’s Two Cents

Clear support for increased localization across actinide series is provided by 4 f core
and 5f valence-band photoemission of actinide metals. When examining the pho-
toemission spectra for the elements traversing the series, the 4 f photoemission of
o-Th [11], @-U [11], and «-Np [12] is dominated by well-screened peaks, character-
istic for itinerant behavior. Between a-Pu and §-Pu, poorly screened peaks that are
due to more localized 5 states increase in intensity compared to the well-screened
peak [13]. a-Am shows almost uniquely unscreened peaks, which are characteris-
tic for localized behavior [14]. In a similar fashion, valence-band photoemission of
actinide metals shows an increase in structure from Np to Am, where growing struc-
ture indicates localization of the 5f states [12, 14—16]. The increase of structure in
4f core and 5f valence-band photoemission from Np to Am shows that the entire
transition from itinerant to localized 5f states occurs over several elements; how-
ever, the a-Pu and §-Pu spectra clearly reveal that the brunt of the change occurs
within the metal’s phases.

The most important insight from the previous discussion is that the 5/ states
in Th to Pu are slightly overlapping between neighboring actinide atoms. They
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therefore occupy a very narrow energy band with very high density of states near
the Fermi energy. As the number of 5/ electrons populating the 5f band increases,
the specific properties of the band begin to dominate the bonding properties of the
metal. At plutonium, the 5f states rapidly change towards localization and this
abrupt change produces a metal with more solid allotropic phases than any other
element in the periodic table.

11.3 The Six Crystal Allotropes of Pu Metal

Plutonium is often described as “A physicist’s dream but an engineer’s night-
mare” because the metal has an anomalously low melting point, a high number
of allotropes, negative coefficient of thermal expansion in some phases, and the
unusual preference for low-symmetry crystal structures. At ambient pressure, Pu
exhibits six solid allotropic crystal structures («, 8, y, 8, §°, €) between room tem-
perature and melting, as shown in Fig. 11.2. The phase stability of Pu as a function
of temperature clearly illustrates the change in volume that occurs between the
low-symmetry monoclinic structure of «-Pu with 16 atoms in the unit cell and the

Pure plutonium

<
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Fig. 11.2 Length change of Pu as a function of temperature, including the liquid phase. The
crystal structure of all six solid allotropic phases of the metal is given in the lower-right side
of the figure (after [17]). The structure changes from low-symmetry monoclinic (a-phase) to
high-symmetry fcc (§-phase), which occurs with exceeding large volume changes over a short
temperature span. Note also the §-phase contracts as it is heated, and plutonium contracts as it
melts
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high-symmetry structure of §-Pu. Indeed, despite a cubic structure, the fcc §-phase
is perplexing, given its unusually low density and negative thermal expansion coef-
ficient, that is, it contracts when heated. It is, however, most intriguing that the «,
B, and y phases of Pu are low symmetry monoclinic or orthorhombic structures, a
geometry that is common to minerals but foreign to metals and alloys, which are
usually cubic or hexagonal. An immediate question is why do the light actinides
have low symmetry crystal structures if most all other metals have high symmetry
atomic geometries? This is quite important, given that the high symmetry structures
of most metals, such as fcc copper and aluminium, exhibit ductility by readily allow-
ing dislocation motion through 12 slip systems. It is the ductile behavior of metals
that makes them prized for many technological applications. Accordingly, the low
symmetry and concomitant brittle nature of Pu and other light actinides is unwanted
and we must understand its physical origins.

11.3.1 Lowering the Electronic Energy Through
a Peierls-like Distortion

Protactinium, uranium, neptunium, and plutonium all exhibit low-symmetry ground-
state structures rather than the high-symmetry structures usually found in metals. In
the early days of actinide research, this low symmetry was attributed to directional
or covalent-like bonding resulting from the angular characteristics of f electrons.
However, this so-called chemist view that the pointy f-electron atomic orbitals are
forming directional bonds, hence no closed-packed structure of the metals falls short
of explaining the abundance of crystal structures observed of the actinide elements.
Accordingly, physicists looked for a better answer and found it in the width of the
band. Soderlind et al. [18] showed that as the bandwidth of a bonding state is nar-
rowed, the crystal structure of the metal will distort through a Peierls-like distortion
to a low-symmetry geometry. The original Peierls-distortion model was formulated
in a one-dimensional lattice: A row of equidistant atoms can lower its total energy
by forming pairs. The lower periodicity causes the degenerate energy levels to split
into two bands with lower and higher energies. The electrons occupy the lower lev-
els, so that the distortion increases the bonding and reduces the total energy. In
one-dimensional systems, the distortion opens an energy gap at the Fermi level,
making the system an insulator. However, in the higher dimensional systems the
material remains a metal after the distortion because other Bloch states are filling
the gap. This mechanism is highly effective if there are many degenerate levels near
the Fermi level — that is, if the energy bands are narrow with a large density-of-
states [7]. Symmetry breaking of a crystal structure through a Peierls-like distortion
due to narrow bandwidths (and concomitant high density-of-states near the Fermi
level) is true for s, p, d, and f states, meaning that even aluminium can be expanded
enough that a low-symmetry body-centered tetragonal structure is observed [18]. Of
course for metals with s, p, and d bands actively bonding, huge theoretical tensions
must be applied to narrow the bands enough to lower the crystal structure symmetry.
However, the 5 f bands of Pa, U, Np, and Pu that are bonding are narrow enough to
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yield low symmetry structures at ambient conditions. Thus, the narrow width of the
5/ band causes the low-symmetry structures of the ground state, without the need
to invoke an explanation involving directional bonding.

Our discussion of Pu and energy-lowering lattice distortions means that the metal
is directly on the border between itinerant and localized 5f electron behavior. The
metal shows a monoclinic ground state and an fcc high-temperature phase, result-
ing in 5/ states that are balanced between a Peierls distortion to a low symmetry
structure due to stronger bonding of the f states and a high-symmetry crystal struc-
ture with strong electron correlations with weaker bonding of the f states. The
fact that 6-Pu exhibits a high symmetry fcc structure even though it has active,
albeit weaker, 5f electron bonding is somewhat perplexing. Surely the degree
of bonding is less than in «-Pu, given that the ground-state phase is monoclinic.
However, the exceedingly high electronic specific heat (Sommerfield coefficient) of
35-64mJ K2 mol~! [19-21] tells us that there is appreciable electron weight at the
Fermi level in 6-Pu, and this could only be achieved with the 5f states. To under-
stand this apparent contradiction, we can turn our attention to a rare-earth metal that
has 4 f states that can be changed from bonding to nonbonding through temperature
or pressure, all the while retaining its high symmetry fcc structure.

11.3.2 Comparison with Cerium

A material with similar properties as plutonium, and of comparable complexity,
is cerium, the first element in the row of the lanthanides, which is known for the
ambivalent character of its 4f states. It exhibits multiple crystallographic phases
that are strong functions of temperature, pressure, and chemistry [22]. At ambi-
ent pressure, Ce metal exhibits four allotropic phases between absolute zero and
its melting temperature at 1,071 K, namely « (fce), B (dhep), y (fec), and § (bece).
Magnetic, nonmagnetic, and superconducting behavior is also observed. There is
broad consensus that the unusual properties of Ce and its compounds originate
essentially from the interplay of strong electronic correlations between the Ce 4 f
electrons and hybridization between 4 f - and conduction-electron states. Phenom-
ena such as intermediate-valence, which points to noninteger occupation of the 4 f
shell, or heavy-fermion behavior characterized by an extremely large contribution
of the electronic specific heat, are prominent observations on such systems. But per-
haps one of the most intriguing phenomena is the y-o phase transition in Ce metal
[22]. It occurs under pressure at room temperature or, at ambient pressure, on cool-
ing to low temperature. Complexity of the underlying mechanisms is reflected in
the collapse of the atomic volume by ~17%, preserving the fcc lattice symmetry,
and the loss of the magnetic moment (y-Ce is paramagnetic and «-Ce nonmag-
netic). The y-o phase boundary ends at a critical point where the two phases become
indistinguishable.

The anomalous behavior of Ce at the -« phase transition is commonly described
by mechanisms involving either a Mott transition [23] or Kondo hybridization [24,
25]. However, recent first-principle calculations provide evidence for a combination
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of effects, involving strongly correlated 4 f electrons in both phases and screening
as important ingredients [26—28]. The transition to the a-phase is accompanied by
a sizable increase of the hybridization between 4 f- and valence-electron states. It
leads to a partial delocalization of the 4 f states, that is, the ground state occupa-
tion number, 7 ¢, that is almost equal to one electron in the y-phase is reduced in
the a-phase. This has been directly derived from recent measurements of resonant
inelastic X-ray scattering on elemental Ce under pressure [29]. The experiments per-
mit to conclude that the changes of the electronic structure at the phase transition
mainly result from band formation of 4 f electrons that concurs with reduced elec-
tron correlation and increased Kondo screening. The experiments also highlight the
importance of double occupancy of the 4 f states in the ground state for understand-
ing the effects of electron correlation in this element, as stated in [27]. Considering
lattice dynamics, phonon density of states of « and y-phases in Ceg.9Thg.; by Man-
ley et al. show only a very small difference in the vibrational entropy of the two
phases, where most of the transition entropy can be accounted for with the crystal
field and changes in the ground-state spin fluctuations [30].

In compounds, Ce shows y-a-phase-like character depending on the 4 f -valence
band hybridization strength. Interestingly, in a-like compounds, such as CeFe, or
CeCos, the Ce atoms carry an ordered magnetic 4/ moment [31] in contradistinc-
tion to elemental o-phase Ce metal [22]. An important concept in the theoretical
description of these compounds is the hybridization between the 3d states of the
transition metal and the delocalized Ce 4 f states. Ce readily reacts with hydrogen.
As with other light rare earth metals, it forms a cubic dihydride CeH, with hydro-
gen atoms on tetrahedrally coordinated sites (CaF,-type structure) and dissolves, in
a single phase, further hydrogen on octahedral sites up to the cubic trihydride CeHs
(BiFs-type structure) [32]. As the composition of the trihydride is approached, a
metal-to-insulator transition occurs that is reversible. It was recognized that thin
films of such rare-earth hydrides allow to rapidly switch between the contrasting
optical properties of the dihydride and trihydride phases, making them techno-
logically interesting as optical switches [33]. Model calculations of the rare earth
hydrides in an ionic picture have shown the importance of electron correlations for
this effect [34-36]. Strong Coulomb interactions between the electrons on hydro-
gen sites were shown to be responsible for opening up a gap of ~2 eV between the
valence bands derived from rare earth—hydrogen and hydrogen—hydrogen hybridiza-
tion and a set of bands predominantly of rare earth-metal d character. X-ray
absorption spectra have shown that the electronic configuration of the Ce 4 f states
in the Ce hydrides is similar as in the y-phase of the pure metal [37]. Below 7K,
CeH, orders magnetically in a complex phase diagram [32, 38].

11.3.3 Stabilized §-Plutonium

Now back to the point of why we introduced Ce. ¢-Ce has actively bonding f states,
but the crystal structure is fcc, as observed for §-Pu. For «-Ce, this means there
is just enough f bonding to influence the physical properties such as electronic
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specific heat, but not enough to reduce the crystal structure. Of course, this can
easily be changed with external influences. When pressurized to about 4 GPa, the
structure changes to orthorhombic C mcm (the same as @-U), meaning the 4 f states
become decisive enough in bonding so as to break the cubic symmetry of the crystal.
Considering §-Pu, a similar situation is occurring where there is enough f bonding
to influence the electronic specific heat, but not enough to break cubic symmetry. It
is possible, there is a slight distortion from a perfect cubic symmetry in §-Pu, but
if true this would be small [39,40]. Once §-Pu is pressurized to about 0.1 GPa, the
structure looses cubic symmetry. In a reverse manner, adding a few percent of Ga,
Al, Ce, Am, or other tetravalent elements stabilizes 6-Pu at room temperature and
below.

The addition of impurity atoms often destroys the coherence of the f band.
Without its narrow f band actively bonding, plutonium can no longer reduce its
energy by lowering its symmetry through Peierls-like distortion to the a-phase; it
therefore remains in the §-phase. Another view is that plutonium atoms relax and
move toward the smaller non- f* atoms, thereby reducing the f—f interactions that
stabilize the a-phase. Either way, we see that addition of many different elements
stabilizes §-Pu, such as Al, Ce, Am, and, most often utilized, Ga. Indeed, we find
8-phase stabilization occurs even for defects, where it has been found that excessive
plastic deformation, and, concomitantly the introduction of dislocations, stabilizes
8-Pu [41]. Once more we see how external influences, such as temperature and
chemistry as well as the pressure or defects, can influence the phase stability of plu-
tonium. What is more, we now have a way to overcome the crippling technological
disadvantage of monoclinic Pu that is brittle and difficult to machine.

11.4 Revised View of the Periodic Table

Plutonium is not alone in juggling its electrons between bonding and localized
states. Figure 11.3 shows a rearranged periodic table containing the d and f elec-
tron series, where the f series are placed on top and spaced slightly tighter. The
localization increases going from bottom to top. Furthermore, along each series the
localization increases from left to right. The elements on the white diagonal stripe
form the rough dividing line between localized (local moment magnetism) and itin-
erant (superconductivity) long-range collective behavior. The elements on or near
the transition between localized and delocalized behavior, that is, the white diago-
nal stripe, exhibit a large number of solid allotropic phases (see Fig. 11.3b). This is
clearly illustrated in the lower part of Fig. 11.3, where the lighter shades indicate
more phases, and the light band mirrors the white diagonal stripe in the rearranged
periodic table above [43]. The most notable elements with numerous phases are Pu
with 6, Ce with 4, Mn with 4, as well as La, U, Np, Am, and Fe, each with 3.

The elements at the diagonal white stripe in Fig. 11.3 have in common that the
wave functions from different atoms are barely overlapping, and their electrons
are thus bordering on being localized. These are the so-called correlated-electron
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Fig. 11.3 (Color online) (a) Rearranged periodic table showing the five transition metal series,
4f,5f, 3d, 4d, and 5d (after [42] and [7]). When cooled to the ground state, the metals in the
blue area exhibit superconductivity while the metals in the red area exhibit magnetic moments. The
white band running diagonally from upper left to lower right is where conduction electrons change
from itinerant and pairing to localized and magnetic. Slight changes in temperature, pressure, or
chemistry will move metals located on the white band to either more conductive or more magnetic
behavior. (b) Version of (a) where the number of solid allotropic crystal structures for each metal is
indicated by gray scale. Lighter shades indicate more phases. Notice that a band of lighter shades
mirrors the white band in (a), showing that metals on or near the transition between magnetic and
superconductive behavior exhibit numerous crystal phases

materials that are characterized by the presence of a narrow conduction band, giv-
ing rise to spin and charge fluctuations associated with the low-energy excitations.
The exotic behaviors of these materials necessitate a description by many-electron
models, such as the Kondo, Hubbard, or Anderson models. These models can be
generically classed as two-electron “impurity” models, which introduce interactions
between pairs of electrons, one localized on an impurity atom and one in a conduc-
tion band. The Anderson Hamiltonian contains both a repulsive Coulomb term and
an electron hopping term. The former term keeps the 5 f electrons localized, and the
latter term leads to a partial localization of the conduction electrons [7].
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11.5 Actinide Magnetism

The relation between f -electron localization and the formation of magnetic mom-
ents, as illustrated in Fig.11.3a, leads to the following conclusions. The light
actinides (Th, U, Np) are delocalized and show no magnetic ordering. Many of
these metals are even superconducting at low temperatures. On the other hand, the
localized heavy actinides (from Cm onwards) show magnetic ordering. Note that
americium s 5 £ ® with a ground state J/ = 0 and therefore has no magnetic ordering.
Thus, magnetism — or lack thereof — of most of the actinides is clear. The situation
regarding the magnetism of Pu, however, remains murky.

11.5.1 Experimental Absence of Magnetic Moments
in Plutonium

Plutonium shows a large experimentally observed magnetic susceptibility, hints of
heavy-fermion behavior, and an anomalous temperature dependence of the electri-
cal resistivity. At low temperatures the resistivity increases, which is characteristic
for a Kondo lattice. Judging by its small volume, the monoclinic a-phase is clearly
delocalized and therefore nonmagnetic. The fcc §-phase is more localized. So, could
this phase be magnetic? In the past, ab initio electronic structure calculations that
included spin and orbital polarization successfully reproduced the large volume
change by localizing the 5f electrons in §-Pu [44-47]. One particular set of cal-
culations by Soderlind and Sadigh [48] achieved the appropriately spaced energies
and atomic volumes for five of the six allotropic phases of Pu (the high-temperature
bcce e-phase was too high in energy) as well as an equation-of-state, bulk modulus,
and elastic constants that are in agreement for all the six allotropic phases. However,
these calculations gave rise to a new problem, namely they concluded that Pu con-
tained local magnetic moments. While experimental results in the early days were
ambiguous, today it well established that all six phases of Pu, including 8, show no
evidence of long-range magnetism.

Magnetic measurements on Pu were reviewed in 2005 by Lashley et al. [8]. To
understand the large volume expansion between «- and §-phases of plutonium, a
localization of the 5f states is needed. With strong reasons for taking the number
of 5f electrons in Pu as five, this gives a Kramer’s ground state with the prediction
of magnetic ordering for the §-phase, and in some cases, even for the -phase. The
resulting moments are predicted to be large, and even though, due to their antipar-
allel coupling there is a partial cancelation of the spin and orbital parts, the total
magnetic moments are of the order of 1-2 yg/atom. This remains the case when
band structure calculations take into account orbital polarization effects, in which
case the absolute value of the orbital magnetic moment exceeds the value of the spin
magnetic moment.

The measured magnetic susceptibilities of Pu in its various phases is shown in
Fig. 11.4 [8]. This susceptibility is characteristic of metals with relatively strong
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Fig. 11.4 Molar susceptibility of Mn and various forms of Pu plotted as a function of the melting
point [Tie(Mn) =1519K and T (Pu) = 913 K]. The susceptibility of Pu is characteristic of
metals with relatively strong paramagnetism. Manganese is given for comparison. The sequence for
Mn is & (complex cubic), 8 (complex cubic), y (fcc), and § (bec). Mn orders antiferromagnetically
at 95 K (T'/ Tinerr = 0.063) in a complex tetragonal structure that is a slight distrotion of the «-phase.
From [8]

paramagnetism caused by electronic band magnetism. Neither the temperature nor
the magnetic field dependence of the measured susceptibilities in Pu provide evi-
dence for disordered or ordered moments. Specific-heat measurements indicate
the absence of magnetic entropy. The combination of neutron elastic and inelas-
tic scattering data shows no convincing evidence for either long-range ordered or
disordered (static or dynamic) magnetic moments. On the basis of resistivity mea-
surements for both «- and §-Pu, and review of other measurements, Arko et al. [49]
concluded in 1972 that there was no evidence for localized moments or magnetic
order. On the basis of a T2 dependence of the resistivity near 7= 0, these authors
suggested a model involving spin fluctuations for elemental Pu, as well as for a
number of other alloys and compounds.

Review of the magnetic measurements by Lashley et al. [8] demonstrated beyond
all reasonable doubt that there is no ordered magnetism involving the 5f electrons
in Pu metal in either the - or the §-phases down to a base temperature of ~4 K.
The experimental evidence presented includes magnetic susceptibility, specific heat
(with an applied field of up to 14 T), nuclear magnetic resonance, and elastic and
inelastic neutron scattering. Previous reports of “anomalies,” seen especially in the
specific heat, can in fact be ascribed to impurities or structural effects, most probably



11 Magnetic Structure of Actinide Metals 325

the occurrence of martensitic transformations of some parts of the samples to the o’
phase that contains Ga. The absence of any diffuse scattering in the neutron diffrac-
tion patterns (except at high-temperature from thermal disorder) also argues against
any disordered local moments. Dynamical mean-field theory (DMFT) results by
Savrasov et al. [50] imply that the local moments are “washed out” over short time
scales and thus may not be observable to probes such as NMR and neutron inelastic
scattering, depending on the probes observational frequency window. Again, more
effort to quantify these predictions for experiments on Pu would seem worthwhile
[8,51].

11.5.2 Looking to Other Elements for Clues

As plutonium has no local magnetic moments, a limited comparison could per-
haps be drawn with palladium, which finds itself also on the diagonal stripe in
Fig. 11.3a. As bulk compound, palladium is an anomalous paramagnet on the verge
of ferromagnetism [52, 53]. The free Pd atom has a [Kr]4d 10 ¢losed-shell elec-
tronic configuration. In bulk Pd no spontaneous ferromagnetic order is observed.
Although the Fermi level is located immediately above a sharp peak in the density
of states, at the equilibrium volume the Stoner criterion is not satisfied. The most
sensitive factors that may enhance the density of states at the Fermi level and cause
the onset of ferromagnetism in Pd clusters are the electron localization associated
with a reduced coordination number, the expansion of the lattice, and the change of
the local symmetry [52].

One might also ask whether the conduction electrons of Pu could make it an
itinerant magnet, like iron. While there is little evidence for magnetism in pure plu-
tonium, many plutonium compounds are indeed magnetic and tend to be itinerant
magnets [54]. Indeed, simply dissolving hydrogen in plutonium is enough to make
the electrons localize and to turn the system ferromagnetic. Also, a comparison of
the light actinides with the transition metals indicates that the light actinides should
be superconductors unless they have local moments. So, the fact that plutonium
is not a superconductor might indicate that plutonium is an incipient, weak itiner-
ant magnet, and that the loss of magnetic ordering with heating plays a role in the
contraction of the §-phase.

11.6 Experimental Complications of Plutonium

Because of its toxic and radioactive nature, hands-on investigation of Pu can only
be done at a small number of institutions around the world, making experimental
results sparse in comparison to other materials. Furthermore, experiments on Pu
suffer from the problem of self-irradiation, which heats the sample, slowly destroys
the crystal structure [55, 56], grows in daughter products of the decay process, and
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potentially creates local magnetic moments [57]. When a plutonium nucleus in the
material undergoes o-decay, the recoiling uranium and helium nuclei knock plu-
tonium atoms from their lattice sites. Displaced plutonium atoms come to rest at
interstitial sites leaving lattice vacancies. Each displaced plutonium atom creates
a Frenkel pair — consisting of a vacancy and a self-interstitial. Each decay event
creates more than 2,000 Frenkel pairs. The self-heating means that in practice it
is extremely difficult to achieve temperatures much below ~2 K, unless very small
(<mg) samples are used, and even then there is always some doubt as to the real
temperature of the sample. This, however, may be overcome by choosing the right
isotope. The most common isotope is fissile 23°Pu with a 24,400 year half-life,
which is made in nuclear reactors: 238U + neutron — 23°Pu. The 239-isotope pro-
duces considerable self heating. Alternatively, 2#?Pu has a 376,000 year half-life,
which drastically reduces heat due to self irradiation. Finally, the créme de la creme
is 244Pu with a ~80 million year half-life, meaning the isotope is near nonradioac-
tive. This isotope, if separated in usable quantities (it is very rare), could open many
new avenues for low-temperature experiments on Pu.

11.7 One Man’s Electron Energy Loss is Another’s
X-Ray Absorption

While the technique of X-ray absorption spectroscopy has become routine and
is the go-to measurement for physicists, actinides and their special requirements
demand a different experiment: electron energy-loss spectroscopy (EELS) in a trans-
mission electron microscope (TEM). Why is this? First, the TEM utilizes small
samples, allowing one to avoid the handling of appreciable amounts of toxic and
radioactive materials. The alternative XAS performed at a multi-user synchrotron
radiation facility is usually less well-adapted for the delicate and secure handling of
radioactive materials. Second, the technique is bulk sensitive due to the fact that the
electrons traverse ~40 nm of metal, this being the appropriate thickness for qual-
ity EELS spectra of actinide materials at the primary energy used in our TEM. A
few nanometers of oxide do form on the surfaces of the TEM samples, but this is
insignificant in comparison to the amount of metal sampled through transmission
of the electron beam. Third, actinide metals near the localized-itinerant transition
exhibit numerous crystal structures that can coexist in metastable equilibrium due
to the small energy difference between the phases [43]. Therefore, acquiring single-
phase samples of metals at or near this transition is uncertain, making spectroscopic
techniques with low spatial resolution questionable. Finally, actinide metals readily
react with hydrogen and oxygen, producing many unwanted phases in the material
during storage or preparation for experiments. The TEM has the spatial resolution
to image and identify secondary phases [58—60], ensuring examination of only the
phase(s) of interest. A field-emission-gun TEM, such as the one used in these exper-
iments, can produce an electron probe of ~5 A, meaning recording spectra from a
single phase when performing experiments is easily achieved. Quantitatively mea-
suring the reflections in electron diffraction patterns over several crystallographic
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orientations proves that the correct phase is examined [61, 62]. Hence there is no
need for large single crystals!

EELS spectra of the actinide metals have been collected at the Lawrence Liv-
ermore National Laboratory (LLNL) using a Phillips CM300 field-emission-gun
TEM, equipped with a Gatan imaging filter [43]. The momentum transfer in EELS
gives rise to multipole transitions. However, by employing a small objective aper-
ture and using a high primary energy of the electron beam (297kV), the low-energy
transitions are electric-dipole. The similarity between high-energy EELS spectra
and synchrotron-radiation-based XAS has been well established for some time, and
was recently validated for f-electron systems for the case of Ce metal [63].

11.8 Theory

The behavior of the 5f electrons in the actinides is governed by the interplay of the
spin—orbit and electrostatic interactions. Here, we treat the effect of these interac-
tions on the electronic configuration in the different angular momentum coupling
schemes, that is, jj-, LS-, and intermediate coupling. This will be illustrated for
the example of the f?2 configuration. This two-particle state is rather straightfor-
ward as it does not require explicit use of coefficients of fractional parentage or
creation and annihilation operators. It is also shown how to obtain the expectation
values of the moments in each of the different coupling schemes. For further read-
ing on these topics, we refer, for example, to the Hitchhiker’s Guide to Multiplet
Calculations [64].

11.8.1 Atomic Interactions

For n electrons moving about a point nucleus of charge, the Hamiltonian can be
written in the central field approximation as

H = H¢ + Ho, (11.1)

where H, and Hy, are the terms for the electrostatic and spin—orbit interaction,
respectively. This atomic Hamiltonian can be embedded in a solid state, for exam-
ple, using an Anderson impurity model [65]. Crystal field interactions are usually
less prominent in the actinides, leading only to a small perturbation; therefore, we
assume a spherical potential. In any case, all interactions can be separated in angular
and radial parts. The angular parts depend on the angular quantum numbers of the
basis states of the electronic configuration and are independent of the radial wave
functions, which in the calculations are taken as empirical scaled parameters (see
Sect. 11.8.3).

The basis wave functions are assumed to be an antisymmetrized product of one-
electron functions. In spherical symmetry, these basis states are eigenfunctions of
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the total angular momentum J and its component M ;. The states are characterized
by quantum numbers o LS, where « is a suitable quantity for distinguishing between
terms having the same values of the orbital and spin angular momenta, L and S.

11.8.1.1 Electrostatic Interactions

The nonrelativistic Hamiltonian for the electrostatic interactions of # electrons in an
atom with nuclear charge Ze is

[ 1 Ze? e
Hy=-—-—> V7 =) ——+% —. (11.2)
2m - ‘ ri — tij
i=1 i=1 i<j
The first term describes the kinetic energy of all electrons, and the second one
gives the potential energy of all electrons in the potential of the nucleus. The third
term describes the repulsive Coulomb potential of the electron—electron interaction,
where the expectation value can be expressed as

e2

<otLS

[r1 — 12|

aLS> => fiF*F+) Gk, (11.3)
k k

with angular parts f; and g and radial parts F* and G¥.

The radial integrals F* and G* are theoretically defined by the Slater inte-
grals [66] and experimentally treated as empirically adjustable quantities to fit the
observed energy levels and their intensities. The direct integrals F* represent the
actual electrostatic interaction between the two electronic densities of electrons £
and ¢'. The exchange integrals G¥ arise due to the quantum mechanical principle
that fermions are indistinguishable, so that the wave function is totally antisymmet-
ric with respect to permutation of the particles. Consequently, G* is not present for
the configuration £”, where the electrons are equivalent.

The angular parts f and g can be written in terms of 3 j - and 6/ -symbols [67]

fu&60=(—anxq(£ke)(”k”){EE/L}, (11.4)

000 000 ULk
2
Lkt LY L
N — (—1\S l
ao =i (gee) el (15)
The triangle conditions require that f (¢, £) has nonzero values fork = 0,2,...,2¢,

whereas gi (£, £’) has nonzero values fork = [£ — €|, [ — €' + 2| ..., ¢ + £, with
€ # {'. Thus the initial state f” has the radial parameters F°, F2, F*, F, while
the final state d° f™ has F2, F*, G!, G3, G°.
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11.8.1.2 Spin-Orbit Interaction

Turning to the second term of (11.1), the spin—orbit interaction for the £ shell is
given as

n
Hyo = C0(r) ) L -si. (11.6)
i=1
where 1; and s; are the one-electron orbital and spin angular momentum operators
of the ith electron of the £" configuration. ¢y (r) gives the radial part and ) ; 1; - s;
gives the angular part of the spin—orbit operator. For brevity, we also introduce the
following notation

n
Ls=Lsw'' =31, (11.7)
i=1
where w10 is the coupled tensor for the spin-orbit interaction (see, e.g., [68, 69]

for details on coupled tensors). The expectation value for a one-electron state |5 )
with £ # 0 s

(sjl-s|€sj) = %[j(j +1)—Ll+1)—s(s+ 1), (11.8)

which gives a doublet | j = £ £ s5) with expectation values

—3(L+1) for j; =L—s,

Lsjll-sllsj) =
(CsjlL-sltsf) %Z for j, =4 +s.

(11.9)

For the atomic many-electron state, the Hamiltonian Hy, commutates with J 2 and
J. and is hence diagonal in J and independent of the magnetic quantum number
M. However, it does not commute with L? or S? and can thus couple states of
different LS quantum numbers. For a pure state [{"«L S J ), the expectation value is

§(aLS)

(("aLSJT|l-s|"aLSJT) = %[J(J +1)—L(L+1)—S(S +1)] (11.10)

where the factor £ (L. S)/¢ isequalton™!,0,and —(4£ +2—n)"! forn < 2 +1,
n =2+ 1,and n > 2£ + 1, respectively.

It is useful to have a general expression for (I - s) valid for any many-electron
state in intermediate coupling, including the LS- and jj-coupling limits. As the
spin—orbit operator is diagonal in j, there are no cross terms between | j;) and | j2).
Therefore, we can distribute n over n j; and n j,, which are the electron occupation
numbers of | j1) and | j2). For the configuration £" with n = n;, + nj,, application
of (11.8) gives the anticipated general expression

1 1
(@ IN-spengy = > GIsljnj ==+ Dnjy + Senjp. (111D

J=J1:J2

which does not depend on the values of L, S, and J.
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11.8.2 LS-and jj-Coupling Schemes

The electrostatic interaction is diagonal in the L S-coupled basis, and the spin—orbit
interaction is diagonal in the jj-coupled basis. Switching between the LS- and
JjJj-coupled basis states is done using a transformation matrix containing the recou-
pling coefficients.

11.8.2.1 LS Coupling

In the LS-coupling scheme, which gives the eigenfunctions in the limit ;(r) — 0,
the particles are coupled as

[(£a,€p)L, (54, 55)S]J. (11.12)

The Russell-Saunders notation for the LSJ-coupled states is 25T L ;. The lowest
energy term of a configuration £", that is, the Hund’s rule ground state, is that term
of maximum S which has the largest value of L. In addition, according to the third
Hund’srule, J = L — S (J = L + §) for less (more) than half filled shell.

11.8.2.2 jj Coupling

In the jj-coupling scheme, which gives the eigenfunctions in the limit { F¥, G¥} —
0, the particles are coupled as

[(€a.5a) ja. (Lo, 55) jb]J - (11.13)

In the jj-coupled ground state, first all j = £ — s levels are filled prior to the
Jj = £ + s levels. For equivalent electrons, that is, with equal values of j, the Pauli
exclusion principle limitations on the possible values of m; prohibit some of the
J -values that would be predicted by a vector model [67]. The result is that for any
two equivalent electrons £2 only the even J-values are allowed when j, = jp.

11.8.2.3 Transformation Matrix

For a given electronic configuration, we arrive in both coupling schemes at the same
set of allowed values of the total angular momentum J = |[L — S|, ..., L + S. This
means that the Hamiltonian of (11.1) is block-diagonal in J. For each J-block,
the basis states can be transformed between L S- and jj-coupling using recoupling
coefficients that can be expressed in terms of 9j symbols,
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Lo lp L
([(Ca.€p)L, (sa,5p)S]J [(€as Sa) ja, L, sp) jplJ) = [L. S, ja. jbl? | Sa 56 S (.
Ja jb J
(11.14)
where [x,y,...] = 2x + 1)(2y 4+ 1) .... These coefficients form a matrix T =
(LS | jj). For a given J-block, transformation of the wave function or operator is
given by

ljj) = TILS) and |LS) = T~1|(j))).

HUD — THEZD T! and HES = T 1'HUDT. (11.15)

11.8.2.4 LS- vs. jj-Coupled Ground State: Example for 12

To make the angular momenta coupling more explicit, let us examine the two-
electron case, f2. The possible LS. states for this configuration are ! So, 1 D5, 1 G4,
6, 3Po,1,2, > Fa2,3,4, > Ha 56, amounting to a total of > ;(2L; + 1)(2S; + 1) =
> ;(2J; +1) = 91Mj levels. For two equivalent f electrons, the Pauli princi-
ple allows the jj states (5/2,5/2)0,2,4, (5/2,7/2)1,2,3,4,5,6, (1/2,7/2)0,2,4,6. This also
gives a total of Zi (2J; + 1) =91 My levels, which illustrates that the Hamiltonian
in (11.1) is block diagonal in J.

In any coupling, including intermediate, the ground state has total angular
momentum J = 4. The LS-coupled Hund’s rule ground state is |>Hj4) and the
jj-coupled ground state is |(5/2,5/2)4). Spin—orbit interaction mixes |3 Hy4) with
|'G4) and |3 F4). The transformation matrix for

(PHa). 1" Ga) PFa)) = (1(5/2,5/2)4),1(5/2.7/2)4), 1(7/2.7/2)4))

is obtained from (11.14) as

/10 7 _%
35

5
1

— 2 5

T=- 4\/;—2«/3 :

-5 3v2 22

Note that each state is (2J + 1 = 9)-fold degenerate in the absence of a mag-
netic field. Using (11.15), the jj-coupled ground state can be written as a sum over
L S-coupled basis states

(11.16)

&'

1 /110 1 2
1(5/2.5/2)4) = V3 *Ha) + §m|lG4) BENE *Fa). (11.17)

The character is given as the square of the wave function coefficient, so that the
jj-coupled ground state has 74.8% |>Hy), 22.5% |'G,), and 2.7% |>F,). This
shows that the jj-coupled ground state contains a considerable amount of low spin.
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Equation (11.15) also allows us to express the LS-coupled Hund’s rule ground
state as a sum over jj-coupled basis states

1 /110 4 [2 1 /5
PHy) = 7\ 5 16/2.5/2)4) + ;\/;|(5/2,7/2)4) - ;\/;|(7/2,7/(21):)1-8)

Thus the jj-coupled ground-state has 74.8% [(5/2,5/2)4), 21.8% |(5/2,7/2)4),
and 3.4% |(7/2,7/2)4) character. As (3Hy | (5/2,5/2)4) = 0.748, there is ~75%
of the total electronic state found simultaneously in | H4) and |(5/2,5/2)4). The
remaining ~25% 1is distributed over different states depending on whether the
spin—orbit or Coulomb interaction prevails. As we shall see, this has important
consequences for the expectation values of the moments.

11.8.3 Intermediate Coupling

To assess the importance of intermediate coupling, we show in Table 11.1 the calcu-
lated atomic Hartree-Fock (HF) values of the radial parameters of the Slater integrals
for representative elements among the various transition metal series. It is seen that
the HF values of the Slater integrals F¥ for the different metal series are comparable
in size. In practice, an empirical scaling factor is used that depends on the degree of
(de)localization of the valence electrons. In localized atomic systems, the Coulomb
and exchange parameters typically require a scaling to 70-80% of the HF value
to account for interactions with configurations omitted in the calculation [70], but
fully itinerant systems might have to be scaled down to 10-20% [71]. In line with
increasing atomic number Z, the value of the spin—orbit parameter is dramatically
different for each of the metal series, with the largest values found for the actinides.

While the LS-coupled Hund’s rule ground state is a reasonable approximation
for the rare earths, this will usually not hold for the actinides [72].

To express the wavefunctions in intermediate coupling, where {{;, F k. Gk} # 0,
we can choose either the jj- or the LS-basis states, but in both cases the Hamil-
tonian has off-diagonal matrix elements. The spin—orbit interaction is diagonal in
Jj coupling and (11.11) gives (I-s) = —4, —%, and 3 for [(5/2,5/2)4),(5/2,7/2)4),
and |(7/2,7/2)4), respectively, with radial part ¢. Transforming this diagonal
Hamiltonian to the LS-coupled basis (|>Hy), | G4), |2 F4)) using (11.15) and then

Table 11.1 Comparison of the radial parameters, F k (£, £), for the Coulomb interaction and the
spin—orbit interaction, ¢, for actinides with rare earths [70] and 3d transition metals [73]

F? F* F© &
BMn2t 3d° 8.25 5.13 0.040
4Gt 4f7 11.60 7.28 5.24 0.197
%Cm3t 517 8.37 5.46 4.01 0.386

All values are in electron volt. The Slater integrals have been reduced to 80% of the atomic
Hartree—Fock values
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including the diagonal Coulomb interaction gives the full Hamiltonian

ECH) -3t —/%¢ 0

HS) =| - /9 ecey U | (11.19)
3
0 U ECF) 4+ 3¢

with the energies of the Coulomb interaction obtained from (11.3) and (11.5) as

1 17 25
ECH)=Fy— -F*— —F*—- —_F*
9 363 47157

)

2 97 50
ElG)=Fy— —F*>+ —F*+ —F®,
CG)=Fo— 1o F+ 105" + 1710
2 1 50
ECF)=Fy— —F?>— —F*— —_FS, (11.20)
45 33 1287

As is evident from the Hamiltonian in (11.19), the spin—orbit operator can be
written as

1
L-S=1LoSo+ E(L+S_+L_S+), (11.21)

where the step-operators L1 and St mix LS states with AL = £1and AS = FI1.

11.8.4 Moments for f*

From the wavefunction coefficients we can work out the expectation value of the
different moments.

11.8.4.1 Spin—Orbit Expectation Value

For the LS-coupled states |3 Hy), |1 Gy), | F4), we obtain from (11.19) that (1-s) =
-3,0, %, respectively. These results can be directly verified using (11.10), which is
valid for pure LSJ states.

Substituting the values of the Slater integrals F* and spin—orbit interaction ¢, and
diagonalizing the Hamiltonian, we obtain the wavefunction coefficients in interme-
diate coupling, and from those we obtain the expectation value (1 - s). The result is
shown in Table 11.2 and can be compared with the values for LS and j;j-coupled
states.

Alternatively, writing the wavefunction in jj-coupled states, we can use the
general expression in (11.11). An arbitrary state of the £ configuration can be
written as

V() = ci1ljr, 1) + eizlji, j2) + cazlja, ), (11.22)



334 G. van der Laan and K.T. Moore

Table 11.2 Expectation values for the spin—orbit interaction and the orbital and spin magnetic
moments for the LS-, jj-, and intermediate-coupled (IC) states of the atomic configurations f2
and f°

(l'S) Nns/2 n7/2 (Lz) (Sz)
f? LS |*H,) -3 1.71 0.29 —4.8 0.8
I'G,) 0 0.86 1.14 —4 0
PF,) 1.5 0.43 1.57 -3 -1
Jjj 1. 3)4) —4 2 0 —4.57 0.57
1(3, 2)a) —0.5 1 1 —338 —0.2
[(Z. D)a) 3 0 2 —3.43 —0.57
IC —3.88 1.97 0.03 —4.70 0.70
f3 LS °Hs /o) -3 3 2 —4.29 1.79
IC —7.66 433 0.67 —3.89 1.38
ij —-10 5 0 —2.86 0.36

For IC, the Slater integrals for the actinides were reduced to 80% of the Hartree—Fock values. Also
given are the occupation numbers 75/, and 77,5, which are related to n and (1-s) by (11.27) and
(11.28)

where the wave-function coefficients fulfill the conditions n;, = 2¢?, + ¢, and
nj, = ¢, + 2c3,. For instance, using the expression of |*H,) in (11.18) gives
ns/, = 1.714 and n7/, = 0.286, so that with (11.11) we obtain (1-s) = —2n;, +
3

Enjz = —3.

11.8.4.2 Orbital and Spin Magnetic Moments

To obtain the magnetic moments, we assume here that the magnetic field is infinitely
small, so that J is a good quantum number. Furthermore, we take the magnetic
ground stateat T =0as My = —J.

We write |LSJM ;) as a sum over |LSMy, Mg) using the Clebsch-Gordan
coefficients

— (_1\L—S—M, 1 J L S
(LSMyMg|IM;) = (—1) [J]2(MJ My M) (11.23)

The nonzero values for f2(J = 4) are listed in Table 11.3. Only if the moments
are stretched, thatis, L + S = J, the |[LSJM ) state is a single determinant.
The expectation values of the orbital and spin magnetic moment are

(L) = (LSIMy|L,|LSIMy) = Y [(LSMyMs|IM)* My, (11.24)
My

(S.) = (LSIM|S|LSIM;) = > (LSMLMs|JMy)[* Ms. (11.25)
Mg
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Table 11.3 Values of nonzero Clebsch-Gordan coefficients (LSM; Mg|JM;) with |JM;) =
|4, —4)

B, (LSMy Ms|IM,) Value
H, (5.1,=5,1]4,—4) vl
— — 3
(5.1,—4,004, —4) N
(5.1.=3.-1]4.-4) =
'Gy (4.0,—4,0[4, —4) 1
’Fy (3.1,=3.—1]4,—-4) 1

The obtained diagonal elements of (L) and {S;) for the LS-coupled states are given
in Table 11.2. Switching to jj-coupled basis states using (11.15) gives

—4.57-042 0 057 042 0
(L)U) = [ —0.42 —38 054 |, (S)Y) =] 0.42 —0.2 —0.54
0 054 —3.43 0 —0.54—0.57

(11.26)
Obviously, the trace of both (L) and (S;) is conserved in different coupling
schemes. Furthermore, the matrix (L.) + (S;) = (J;) has diagonal elements equal
to —4, while nondiagonal elements vanish.

Results for the other f” configurations can be found in [68], which shows that
the type of coupling has an important influence on the values of the moments. In
Table 11.2, we reproduce the values of the moments for f°(J = 5/2). If Pu would
be ferro- or ferrimagnetic, then (L) and (S;) could be obtained from X-ray mag-
netic circular dichroism (XMCD). An alternative is to measure (1 - s), which gives
conclusive information about the type of angular coupling in the material. It is clear
from Table 11.2 that there is a huge variation in (I - s) across the three coupling
cases. We show in Sect. 11.10 how to extract the expectation value of the spin—orbit
interaction from the EELS or XAS branching ratio.

11.9 Spectral Calculations

We briefly mention how the multiplet calculations are performed. Multiplet theory
[64] is ideally suited to calculate the core-level spectra for EELS or XAS at the N4 5
and Oy s edges. These calculations for the transitions 5" — d°5f"*!are per-
formed in the same way as for the M4 5 and N4 5 absorption edges of the rare earths
[70], using only different radial parameters of the spin—orbit and Slater integrals (see
Table 11.1). Contrary to band-structure calculations, the multiplet structure is cal-
culated in intermediate coupling, which treats spin—orbit, Coulomb, and exchange
interactions on equal footing.

First, the initial and final state wavefunctions are calculated in intermediate cou-
pling using the atomic Hartree—Fock method with relativistic correction [67, 74].
The electric-multipole transition matrix elements are calculated from the initial state
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to the final state levels of the specified configurations. At low photon energies below
a few kilo electron-volt only electric-dipole transitions play a role. The electric-
dipole selection rules from the ground state strongly limit the number of accessible
final states, so that compared to the total manifold of final states, the allowed tran-
sitions are located within narrow energy regions [70], historically called white lines
due to their appearance on photographic plates.

Examples for the 5% — d°5f! transitions of the actinide Os4,5, N4,5, and My 5
edges, corresponding to the 5d, 4d, and 3d core levels, respectively, as well as
numerical results for other f” configurations can be found in [1].

11.10 Spin—-Orbit Interaction and Sum Rule Analysis

The spin—orbit sum rule relates the angular dependent part of the spin—orbit inter-
action to the EELS or XAS branching ratio, that is, the intensity ratio of the core d
spin—orbit split j-manifolds in the f* — d° f**1 transition. This is discussed in
detail in this section and the validity of the sum rules is discussed in the next section.

While the expectation value of the orbital and spin magnetic moments, (L) and
(S;), can only be measured with XMCD, the spin—orbit interaction, (I - s), can be
obtained from the branching ratio of the XAS or EELS spectra.

For the f shell, the number of electrons, n #» and the expectation value of the

angular part of the spin—orbit interaction, (w!1?), is given by
ng =nyz+ns, (11.27)
2 4
(WHO) = 3 (I-s) =ng/n— 5”5/2, (11.28)

where 17/, and 15/, are the electron occupation numbers of the angular-momentum
levels j =7/2 and j = 5/2 of the f shell.

A sum rule [68,75-77] relates the expectation value of the angular part of the 5 f
spin—orbit interaction per hole to the branching ratio, B, of the core d to valence f
transitions in EELS or XAS,

110 5 3
W) A 2(p3) (11.29)
14—n; 2

where the branching ratio for the N4 5 edge is defined as

I(Ns)

b= 1 + 1)

(11.30)

with /(Ns) and I(N4) the integrated intensities of the Ns (4ds;2 — 5f5/2,7/2)
and Ny (4d3j2 — 5fs5/2) peaks. As the expectation value of w!!? is for the angu-
lar part of the spin—orbit interaction, it does not include the radial part, which
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Fig. 11.5 Calculated
electric-dipole transitions for
the N, 5 EELS or XAS
spectra using many-electron
atomic theory in intermediate
coupling for 2U f!to f3
and 'Fm f7 to £13. The
convolution by 2eV
corresponds to the intrinsic
lifetime broadening. The
spectrum for f© (not shown)
has only a 4ds,, peak but no 5
4d3/; peak. From [68]. The PP
calculated spectra show very
good agreement with the 4dsn
experimental Ny s spectra in
Fig. 11.6, where n(Th) ~1,
n(U) ~3, n(Np) ~4, n(Pu)
5, n(Am) =6, and n(Cm)
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is approximately constant for given element. Therefore, the spin—orbit sum-rule
analysis is complementary to, for example, optical spectroscopy, where energy
level separations are measured. Thus the sum rule analysis reveals the proper
angular-momentum coupling scheme in the material.

Figure 11.5 shows the calculated electric-dipole transitions 4d1°5f" — 4d°5
£ for the N4 s EELS or XAS spectra using many-electron atomic theory in inter-
mediate coupling for °2U 5f! to f> and '%°Fm 5f7 to f13 [68]. The line spectra
are convoluted by 2 eV, which corresponds to the intrinsic lifetime broadening. The
spectrum for ¢ (not shown) contains only a N5 peak while the N4 peak is zero.
The calculated results in Fig. 11.5 are in very good agreement with the experimental
results shown in Fig. 11.6.

11.11 Validity of the Sum Rule

The sum rule in (11.29) contains a correction term A, which can be calculated using
Cowan’s relativistic Hartree—Fock code [67,74]. In the same way as the spin mag-
netic moment sum rule in XMCD [69], the sum rule in (11.29) is strictly valid only
in the absence of core—valence electrostatic interactions, or so-called jj mixing,
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Fig. 11.6 Experimental Ny s 4ds,
EELS spectra for the :
a-phases of Th, U, Np, Pu, 4d~;
Am, and Cm metal,
normalized to the N5 peak
height. It is observed that the
intensity of the Ny (4ds/2)
peak gradually decreases in
intensity relative to the N5
(4d3/») peak going from Th
to Am, then increases again
for Cm. From [4, 5]. The
branching ratio of these
spectra gives direct
information about the
expectation value of the 5f
spin—orbit interaction in the
actinde metal ground state

Normalized Intensity (arb. units)
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in which case the correction term A becomes zero [2]. In the periodic table, the
different transition-metal series show a different behavior due to diverse valence—
electron interaction. For 3d transition metals, the application of the spin—orbit sum
rule for the L, 3 branching ratio is severely hampered by the large 2 p-3d exchange
interaction that is of similar size as the 2p spin—orbit interaction [75]. The same
is true for the My s edges of the lanthanides, where the 3d-4f exchange interac-
tion is quite strong compared to the 3d core spin—orbit interaction [70]. On the
other hand, for the L, 3 edges of 4d and 5d transition metals, associated with
the deep 2p core level, the sum rule is expected to hold quite well [75]. Theo-
retical values obtained using relativistic atomic Hartree—Fock calculation (Cowan
code) in Fig. 11.7 show that the correction factor, A, is proportional to the ratio of
the core—valence exchange interaction and the core spin—orbit interaction, that is,
G'(c,€)/¢.. Thus the condition for the sum rule is that the total angular momentum
of the core hole, j = ¢ &+ %, is a good quantum number, in other words, there should
be no mixing of the j =5/2 and j = 3/2 core states. This corresponds to the core—
valence exchange interaction much smaller than the core spin—orbit interaction,
Gl(c,0) < ¢ 2]

Even in the worst case of the rare earth My s edges, the trend in the branching
ratio can still be used to obtain the relative population of spin—orbit split states,
as was demonstrated for Ce systems [78]. The situation is favorable for the M, s
and N4 5 edges of the actinides, given the small exchange interactions between the
3d and 4d core levels and the 5f valence states. This means that the EELS and
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Fig. 11.7 Validity of the spin—orbit sum rule. Theoretical values obtained using relativistic atomic
Hartree—Fock calculations show that the correction factor, A, in (11.29) is proportional to the
ratio of the core-valence exchange interaction and the core spin—orbit interaction, G!(c, £)/{.. The
condition for the sum rule is that the total angular momentum of the core level, j = c=%1, isa good
quantum number, that is, there is no mixing of the j = 5/2 and the j = 3/2 core levels. This means
the core—valence exchange interaction should be much smaller than the core spin—orbit interaction
[G'(c,€) < &.]. Numerical values are given in [2]

XAS branching ratios depend almost solely on the 5f spin—orbit expectation value
per hole, thus affording an unambiguous probe for the 5f spin—orbit interaction in
actinide materials.

11.12 Experimental Results for the V4 s Edges

The experimental N4 5 (4d — 5f) EELS spectra for a-phase Th, U, Np, Pu, Am,
and Cm metals are displayed in Fig. 11.6. All spectra are normalized to the Ns
peak height. Noticeable is the gradually growing separation between the N4 and
N5 peaks from Th to Cm, in pace with the increase in 4d spin—orbit splitting with
atomic number. Second and more importantly, the intensity of the N4 (4ds,,) peak
gradually decreases in intensity relative to the N5 (4d3;») peak going from Th to
Am, then abruptly increases for Cm [4, 5]. Applying the sum-rule analysis to the
experimental branching ratio gives the values of the 5f spin—orbit interaction per
hole.

To visualize the spin—orbit analysis of the EELS spectra in relation to the results
of our atomic calculations, both are shown as a plot of (w!1)/(14 —ns) — A
vs. the number of 5f electrons in Fig. 11.8a. The curves for the three theoreti-
cal angular-momentum coupling schemes, LS, jj, and intermediate, as calculated
using a many-electron atomic model, are plotted as a short-dashed, long-dashed, and
solid line, respectively. The EELS results are indicated by the blue points. Thorium
metal falls on all three curves due to the fact that it takes two electrons to tangle,
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Fig. 11.8 (a) Ground-state a 0
spin—orbit interaction per 0.1
hole as a function of the Th- qU 5
number of 51 electrons (7 f). - 8 w7 y
! -03 N ;

The three theoretical i ™ ®Np Cm *,
angular-momentum coupling i \\
schemes are shown (LS, jj, <+ =05 . \yPu
and intermediate coupling). = \\
The dots give the results of S 07 %
the spin—orbit sum-rule = \
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experimental Ny 5 branching 09 ﬁﬁ ------ \\
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and with less than one 5f electron in Th there is no difference between the cou-
pling mechanisms. U falls directly on the LS-coupling curve, Np between the LS
and intermediate curve, and Pu, Am, and Cm all fall on or near the intermediate
coupling curve. The intermediate curve is strongly shifted towards the j;j limit for
Pu and Am, evidence of the strong preference of the 5f electrons to occupy the
j = 5/2 level in both metals. However, for Cm, there is a sudden and pronounced
shift in the intermediate coupling curve toward the LS limit.

The values of n s and (w'!®) can be converted into the electron occupation num-
bers 17/, and ns/, using (11.27) and (11.28). Note that this is just a different way
of presenting the same data. The experimental and theoretical results are displayed
in Fig. 11.8b, where the number of electrons in the j = 5/2 and j = 7/2 lev-
els as calculated in intermediate coupling using the atomic model are drawn with
black and red lines, respectively. Again, the experimental EELS results are indi-
cated with blue points. Apart from the slight deviation in the lighter actinides, U
and Np, which is caused by delocalization of the 5f states and thus indicates a
departure from the atomic model, the EELS results are in excellent agreement with
the theoretical curves. Figure 11.8b clearly shows that for the actinide metals up to
and including Am, the 5/ electrons strongly prefer the fs/, level. However, this
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changes in a striking manner at Cm, where not only does the electron occupation
sharply increases for the f7/, level, but also decreases for the f5/, level.

The physical origin of the abrupt and striking change in the values between Am
to Cm can be understood from the angular momentum coupling. In jj coupling,
the electrons prefer to be in the f5/, level, which, however, can hold no more than
six, so that the maximal energy gain in jj coupling is obtained for Am f©, where
the fs5/> level is full. However, for Cm f 7 at least one electron will be relegated
to the f7,, level. The f 7 configuration has the maximal energy stabilization due
to the exchange interaction, with parallel spin in the half-filled shell, which can be
achieved only in LS coupling. Thus the large changes observed in the electronic
and magnetic properties of the actinides at Cm are due to the transition from opti-
mal spin—orbit stabilization for f° to optimal exchange stabilization for f”. In all
cases, spin—orbit and exchange interaction compete with each other, resulting in
intermediate coupling; however, increasing the f-count from 6 to 7 shows a clear
and pronounced shift in the power balance in favor of the exchange interaction.
The effect is in fact so strong that, compared to Am, not one but two electrons
are transferred to the f7,, level in Cm (Fig. 11.8b) . Therefore, in Cm metal, the
angular-momentum coupling in the 5/ states plays a decisive role in the formation
of the magnetic moment, with Hund’s rule coupling being the key to producing the
large spin polarization that dictates the newly found crystal structure of Cm under
pressure [4,79, 80].

11.12.1 What Our Results Mean for Pu Theory

The spin—orbit sum rule suggests an f-count near 5 for Pu, with 5.4 being a rea-
sonable upper limit [3-5]. Further evidence for this f-count comes from Anderson
impurity calculations for Pu [81] that explain photoemission results on 1-9 mono-
layer thin films of Pu metal [16, 82]. The 4f core-level photoemission spectra
display a screened and unscreened peak, thereby acting as a ruler for the degree of
localization. The results for the f-count are in agreement with the recent DMFT
calculations by Shim et al. [83] and Marianetti et al. [84], as well as LDA+U
calculations by Shick et al. [85], which explain the three-peak structure in 5f
photoemission and the relatively high electronic specific heat. The absence of exper-
imentally observed magnetic moments in any of the six allotropic phases of Pu metal
[8] is thought to be due to Kondo screening and a nonsingle Slater-determinant
ground state in these respective models. The lack of local moments §-Pu has also
been recently explained theoretically in terms of electron coherence using dynamic
mean-field theory [84]. Using DFT, a model where spin—orbit interactions and
orbital polarization are strong but spin polarization is zero has been employed to
yield a nonmagnetic configuration of 6-Pu [86]. This has received ancillary support
by polarized neutron scattering measurements on single crystal PuCoGas, which
shows that the orbital moment dominates the magnetization [87]. Recent magnetic
susceptibility measurements have shown that local magnetic moments in the order
of 0.05 pg/atom form in Pu as damage accumulates due to self-irradiation [57].
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11.13 Conclusions

The rare-earth metals have localized and atomic-like 4 f states across the series,
leading to strong magnetic moments. The 5d transition metals are itinerant and
band-like, behaving as typical metals with wide bands that strongly participate in
bonding. The 5/ actinide metals exhibit a behavior similar to the 5d transition met-
als in the early actinides Th, Pa, U, and Np, but then as the 4 f rare earths for the
middle actinides Am, Cm, Bk, and Cf. This is directly attributed to a transition from
itinerant to localized 5/ states that occurs at Pu. This transition can be examined
through the N4 s EELS spectra and the spin—orbit sum-rule analysis. The relative
N4 peak intensity reduces up to Am, then increases for Cm in EELS spectra, where
the N4 and N5 peaks are only marginally broadened by multiplet structure. Across
the actinide series, we see the light metals exhibit LS coupling while the middle
metals Pu, Am, and Cm exhibit intermediate coupling. It is the transition from LS
to intermediate coupling that reveals the transition from itinerant to localized 5f
states. This means that the EELS N4 s spectra and spin—orbit sum-rule analysis can
be used as a measure of the degree of itinerancy in the actinide 5f states.

The EELS spectra and spin—orbit analysis clearly support that n y ~ 5 and not
6 in Pu and that it falls near intermediate coupling curve. The 5 /> configuration
with a spin—orbit interaction that adheres to intermediate coupling near the j; limit
begs the question of why Pu is not magnetic. Recent advances in band theory have
begun to address this question, such as DFT with zero spin polarization but strong
spin—orbit and orbital polarization [86], DMFT calculations by Shim et al. [83] and
Marianetti et al. [84], and LDA+U calculations by Shick et al. [85]

Americium falls precisely on intermediate coupling curve and has the largest
spin—orbit interaction of all actinide metals. The results anchor the f-count for the
adjacent actinides and clearly show the metal is nonmagnetic because the 576 has
a ground state J = 0. Finally, the results for Cm prove that the spin—orbit sum rule
works, showing that the intermediate coupling curve bends back to LS curve. The
experimental results [4] show that the angular-momentum coupling mechanism dic-
tates large spin polarization and explain the magnetic stabilization of Cm observed
by Heathman et al. [79]

Acknowledgements We thank W. Felsch for his valuable contribution on the Ce comparison. Part
of this work was performed under the auspices of the US Department of Energy by Lawrence
Livermore National Laboratory.

References

1. K.T. Moore, G. van der Laan, Rev. Mod. Phys. 81, 235 (2009)
2. G. van der Laan et al., Phys. Rev. Lett. 93, 97401 (2004)

3. K.T. Moore et al., Phys. Rev. B 73, 033109 (2006)

4. K.T. Moore et al., Phys. Rev. Lett. 98, 236402 (2007)

5. K.T. Moore et al., Phys. Rev. B 76, 073105 (2007)



11

10.
11.
12.
13.

14.
15.
16.

17

18.
19.

20.
21.
22.

23.
24.
25.
26.
27.
28.
29.
. M.E. Manley et al., Phys. Rev. B 67, 014103 (2003)
31.

32.

33.
34.
35.
36.

37

39.
40.
41.
42.
43.

44

Magnetic Structure of Actinide Metals 343

. Challenges in Plutonium Science I and II, vol 26 (Los Alamos Science, Los Alamos, 2000)
. AM. Boring, J.L. Smith, Challenges in Plutonium Science, vol I (Los Alamos Science, Los

Alamos, 2000), p. 91

. J.C. Lashley, A. Lawson, R.J. McQueeney, G.H. Lander, Phys. Rev. B 72, 054416 (2005)
. AJ. Freeman, G.H. Lander (eds.), Handbook on the Physics and Chemistry of the Actinides

(Elsevier, Amsterdam, 1984)

R.C. Albers, Nature (London) 410, 759 (2001)

H.R. Moser, B. Delley, W.D. Schneider, Y. Baer, Phys. Rev. B 29, 2947 (1984)

J.R. Naegele, L.E. Cox, J.W. Ward, Inorg. Chem. 139, 327 (1987)

A.J. Arko et al., in Challenges in Plutonium Science I, vol 26 (Los Alamos Science, Los
Alamos, 2000), p. 168

J.R. Naegele, L. Manes, J.C. Spirlet, W. Miiller, Phys. Rev. Lett. 52, 1834 (1984)

Y. Baer, J.K. Lang, Phys. Rev. B 21, 2060 (1980)

T. Gouder, L. Havela, F. Wastin, J. Rebizant, Europhys. Lett. 55, 705 (2001)

. S.S. Hecker, in Challenges in Plutonium Science I1, vol 26 Los Alamos Science, Los Alamos,

2000), p. 290

P. Soderlind et al., Nature (London) 374, 524 (1995)

0O.J. Wick, Plutonium Handbook: A Guide to the Technology (American Nuclear Society,
LaGrange Park, IL, 1980)

J.C. Lashley et al., Phys. Rev. Lett. 91, 205901 (2003)

P. Javorsky et al., Phys. Rev. Lett. 96, 156404 (2006)

D.C. Koskenmaki, J.K.A. Gschneidner, in Handbook on the Physics and Chemistry of Rare
Earths, 1, ed. by J.K.A. Gschneidner, L. Eyring (North-Holland, Amsterdam, 1978), p. 337

B. Johansson, Philos. Mag. 30, 469 (1974)

J.W. Allen, R.M. Martin, Phys. Rev. Lett. 49, 1106 (1982)

M. Lavagna, C. Lacroix, M. Cyrot, Phys. Lett. 90A, 210 (1982)

L. de’ Medici, A. Georges, G. Kotliar, S. Biermann, Phys. Rev. Lett. 95, 066402 (2005)

A.K. McMahan, K. Held, R.T. Scalettar, Phys. Rev. B 67, 075108 (2003)

M. Zwolfl et al., Phys. Rev. Lett. 87, 276403 (2001)

J.-P. Rueff et al., Phys. Rev. Lett. 96, 237403 (2006)

M.S.S. Brooks, B. Johansson, in Handbook of Magnetic Materials, ed. by K.H.J. Buschow
(North-Holland, Amsterdam, 1993)

P. Vajda, in Handbook on the Physics and Chemistry of Rare Earths, 20, ed. by K.A. Gschnei-
dner, L. Eyring (Elsevier Science, Amsterdam, 1995), p. 207

J.N. Huiberts et al., Nature (London) 380, 231 (1996)

K.K. Ng, E.C. Zhang, V.I. Anisimov, T.M. Rice, Phys. Rev. Lett. 78, 1311 (1997)

K.K. Ng, EC. Zhang, V.I. Anisimov, T.M. Rice, Phys. Rev. B 59, 5398 (1999)

R. Eder, H.F. Pen, G.A. Sawatzky, Phys. Rev. B 56, 10115 (1997)

. M. Arend et al., Phys. Rev. B 59, 3707 (1999)
38.

R.R. Arons, in Landolt-Bornstein, New Series, Vol. Ill/dl, ed. by H.PJ. Wijn (Springer,
New York, 1991)

S.M. Valone, ML.I. Baskes, R.L. Martin, Phys. Rev. B 73, 214209 (2006)

K.T. Moore, P. Soderlind, A.J. Schwartz, D.E. Laughlin, Phys. Rev. Lett. 96, 206402 (2006)
S.I. Gorbunov, A.G. Seleznev, Radiochemistry 43, 111 (2001)

J.L. Smith, E.A. Kmetko, J. Less-Common Met. 90, 83 (1983)

K.T. Moore et al., Phil. Mag. 84, 1039 (2004)

. P. Soderlind, O. Eriksson, B. Johansson, J.M. Wills, Phys. Rev. B 50, 7291 (1994)
45.
46.
47.
48.
49.
50.
51.

V.P. Antropov, M. van Schilfgaarde, B.N. Harmon, J. Magn. Magn. Mater. 144, 1355 (1995)
S.Y. Savrasov, G. Kotliar, Phys. Rev. Lett. 84, 3670 (2000)

A.L. Kutepov, S.G. Kutepova, J. Phys. Condens. Matter 15, 2607 (2003)

P. Soderlind, B. Sadigh, Phys. Rev. Lett. 92, 185702 (2004)

A.J. Arko, M.B. Brodsky, W.J. Nellis, Phys. Rev. B 5, 4564 (1972)

S.Y. Savrasov, G. Kotliar, E. Abrahams, Nature (London) 410, 793 (2001)

R.H. Heffner et al., Phys. Rev. B 73, 094453 (2006)



344 G. van der Laan and K.T. Moore

52

53.
54.

55

56.
57.
58.
59.
60.

61.
62.
63.
64.
65.
66.

67.

68.
69.
70.
71.
72.
73.
74.
75.
76.
71.
78.
79.
80.
81.
82.
83.
84.
85.
86.

87

. L. Vitos, B. Johansson, J. Kollar, Phys. Rev. B 62, R11957 (2000)

J.B. Staunton et al., Phys. Rev. B 62, 1075 (2000)

P. Santini, R. Lémanski, P. Erdos, Adv. Phys. 48, 537 (1999)

. AJ. Schwartz, M.A. Wall, T.G. Zocco, W.G. Wolfer, Phil. Mag. 85, 479 (2005)

K.T. Moore, C.R. Krenn, M.A. Wall, A.J. Schwartz, Metall. Mater. Trans. A 38A, 212 (2007)
S.K. McCall et al., Proc. Natl. Acad. Sci. (U.S.A.) 103, 17179 (2006)

P. Hirsch et al., Electron Microscopy of Thin Crystals, 2nd edn. (Robert E. Kreiger, FL, 1977)
L. Reimer, Transmission Electron Microscopy, 4th edn. (Springer, New York, 1997)

B. Fultz, J.M. Howe, Transmission Electron Microscopy and Diffractometry of Materials, 2nd
edn. (Springer, New York, 2001)

J.M. Zuo, J.C.H. Spence, Electron Microdiffraction (Springer, New York, 1992)

K.T. Moore, M.A. Wall, A.J. Schwartz, J. Nucl. Mat. 306, 213 (2002)

K.T. Moore et al., Phys. Rev. B 69, 193104 (2004)

G. van der Laan, Lect. Notes Phys. 697, 143 (2006)

G. van der Laan, S.S. Dhesi, E. Dudzik, Phys. Rev. B 61, 12277 (2000)

E.U. Condon, G.H. Shortley, The Theory of Atomic Spectra (Cambridge University Press,
Cambridge, 1963)

R.D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press,
Berkeley, CA, 1981)

G. van der Laan, B.T. Thole, Phys. Rev. B 53, 14458 (1996)

G. van der Laan, Phys. Rev. B 57, 112 (1998)

B.T. Thole et al., Phys. Rev. B 32, 5107 (1985)

B.T. Thole, G. van der Laan, Phys. Rev. B 50, 11474 (1994)

F. Cricchio, F. Bultmark, L. Nordstrom, Phys. Rev. B 78, 100404(R) (2008)

G. van der Laan, I.W. Kirkman, J. Phys. Condens. Matter 4, 4189 (1992)

R.D. Cowan, J. Opt. Soc. Am. 58, 808 (1968)

B.T. Thole, G. van der Laan, Phys. Rev. B 38, 3158 (1988)

B.T. Thole, G. van der Laan, Phys. Rev. A 38, 1943 (1988)

G. van der Laan, B.T. Thole, Phys. Rev. Lett. 60, 1977 (1988)

G. van der Laan et al., J. Phys. C Solid State Phys. 19, 817 (1986)

S. Heathman et al., Science 309, 110 (2005)

P. Séderlind, K.T. Moore, Scripta Materialia 59, 1259 (2008)

G. van der Laan (unpublished)

L. Havela, T. Gouder, F. Wastin, J. Rebizant, Phys. Rev. B 65, 235118 (2002)

J.H. Shim, K. Haule, G. Kotliar, Europhys. Lett. 85, 17007 (2009)

C.A. Marianetti, K. Haule, G. Kotliar, M.J. Fluss, Phys. Rev. Lett. 101, 056403 (2008)

A.B. Shick et al., Europhys. Lett. 77, 17003 (2007)

P. Soderlind, Phys. Rev. B 77, 085101 (2008)

. A. Hiess et al., Phys. Rev. Lett. 100, 076403 (2008)



Chapter 12
Magnetic Imaging with X-rays

F. Nolting

Abstract Looking into a magnetic system with X-rays and revealing its secrets by
imaging fuels a powerful and beautiful area of research. Magnetic imaging with
X-rays allows us to understand and engineer the magnetic properties of thin films,
heterostructures, and nanoscale magnets. In this chapter, the underlying concepts
of imaging magnetic systems with X-rays are presented, and different microscope
techniques are described.

12.1 Introduction

The imaging of magnetic systems is much more than just taking aesthetic pictures,
which for sure is part of the beauty of this business. It reveals the microscopic details
of the functionality of magnetic systems, enabling the understanding of their behav-
iors and engineering of their properties [1]. Besides the fascinating physics of these
systems, this activity is clearly fueled by the magnetic data storage industry. There
are a variety of different techniques to image the domain structure of magnetic sys-
tems [2-4], each of which has its own strengths and weaknesses. Using X-rays,
a nanoscale heterostructure can be dismantled without destroying it, and one can
investigate the function of the different elements (see example in Fig. 12.1 [5]). Over
the last decade, magnetic imaging with X-rays has developed into a powerful tool
[6, 7] and the spatial resolution has improved by almost two orders of magnitude
from about 1 um [8] down to the 10 nm level [9, 10]. In addition, the diversity of the
microscopes has increased and we now have a complementary set of techniques. Up
to now, magnetic imaging with X-rays is the domain of soft X-rays (below 2000eV)
as the relevant absorption edges of the 3d metals and the 4f rare earth falls into
this energy range. Although magnetic dichroism can be measured in the hard X-ray
range (indeed the first measurement was in the hard X-ray range [11]), the dichroism
is much smaller so far preventing the use for magnetic imaging.
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Fig. 12.1 Dismantling a magnetic heterostructure. (a) The heterostructure consists of periodic
arrays of elongated (1.7 X 5 um?) cobalt (Co) island exchange coupled to a continuous Permalloy
(Py = NigoFeyp) thin film [5]. Changing the thickness from 5 nm Py/1 nm Co to 2 nm Py/2 nm Co,
the hysteresis loop changes from a one-step behavior to a double-step behavior (¢). Employing
the elemental sensitivity of X-ray absorption spectroscopy, the magnetic domain structure in the
Py film and in the Co structures can be revealed separately, as the absorption edges of Co and of
Fe and Ni for the Py film are well separated (b). The obtained domain images in (d) reveals that
in the 5nm Py/1 nm Co structure, the Py below the Co structure is coupled to the rest of the Py
film and the whole structures switches together, leading to the one-step hysteresis. In contrast, in
the 2nm Py/2 nm Co structure, the Py below the Co is decoupled from the rest of the Py film,
which switches at a lower magnetic field than the Co/Py sandwich, leading to the double-step
hysteresis. From the domain images it can be seen that the presence of Co islands results in a
spatial modulation of the magnetic properties of the Py film, and domain walls are positioned
at the island boundaries. Imaging the domain structure during the hysteresis loop, two reversal
mechanisms could be revealed: formation of domains running between the islands (2 nm Py/2 nm
Co) and coherent rotation followed by propagation of large domains (5 nm Py/1 nm Co). For the
domain imaging in applied magnetic fields, the sample was mounted in a small magnet (a), which
allowed applying magnetic fields up to 50 Oe while still performing domain imaging with a PEEM

The concept of absorption spectroscopy and magnetic dichroism are described
in other chapters of this book (see chapter by H. Wende and C. Antoniak). The
focus of this chapter is to give an introduction into the basic concept of magnetic
imaging, with different types of X-ray-based instruments describing the underlying
concepts of the contrast mechanism. In addition, a brief description of the differ-
ent microscopes for magnetic imaging with X-rays is given: photoemission electron
microscope (PEEM), transmission X-ray microscope (TXM), scanning transmission
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X-ray microscope (STXM), “lensless” imaging, and combining scanning probe
techniques with X-rays. It is not the aim of this chapter to give an overview of the
latest results of magnetic imaging or to give a comprehensive introduction into all
details of the different techniques. For recent results gained with magnetic imaging
with X-rays, see, for example, the contributions from M. Kldui and C. Quitmann in
this book.

12.2 Concepts of Magnetic Imaging Contrast

Most magnetic imaging techniques with X-rays are based on X-ray absorption
spectroscopy (XAS) either in transmission mode, measuring the transmitted pho-
tons, or in total electron yield mode, measuring the generated photoelectrons. Other
techniques employed are based on photoemission and diffraction. These variety of
techniques offer a wide range of information that can be obtained. For example,
going from transmission to total electron yield, the sampling depth goes from about
100 nm down to few nm, changing from probing more the bulk properties to probing
surfaces and interfaces.

Common for all these techniques is that the contrast in the images originates from
local variations of the X-ray absorption coefficient of the sample, which depends on
the X-ray energy and polarization. How this variation of the absorption coefficient is
transformed into an image contrast can be illustrated with the help of a sample con-
taining spatially inhomogeneous distributed Fe and Co. On tuning the photon energy
to the Fe absorption edge, areas with Fe will strongly absorb while Co rich areas will
only weakly absorb. Measured in transmission, this would result in less transmitted
photons, for example, a darker image intensity, in the Fe-rich areas compared to
the Co-rich areas, which will appear brighter. If instead the total electron yield is
measured, the contrast is reversed, for example, more electrons will be emitted by
the Fe-rich areas, leading to a brighter image intensity. In this way, the elemental or
chemical distributions in a system can be imaged.

To image magnetic domains, the polarization properties of X-ray must be
employed. The contrast for imaging domains of ferromagnetic systems arises now
from X-ray magnetic circular dichroism (XMCD) and for antiferromagnetic sys-
tems from X-ray magnetic linear dichroism (XMLD) [12,13]. For magnetic images,
it is essential to select the corresponding photon energy, and to find the right energy,
the underlying absorption spectra must be measured. Therefore, most instruments
for magnetic imaging with X-rays are able to measure spectra from selected areas
to optimize the imaging contrast and also to reveal its origin. In the following, the
concepts of the magnetic imaging will be described. Although the examples shown
are taken with PEEM, the principle behind the imaging is the same for all magnetic
imaging techniques with X-rays. Of course, the technical details and quantitative
analysis will vary, but a detailed description is not the aim of this chapter.
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12.2.1 XMCD Image

Employing XMCD, ferromagnetic domains can be imaged by tuning the X-ray
energy to the L3 -edges for the 3d transition metals and to the M5 4-edges for
the rare earths. The concept of XMCD is explained in the chapter by H. Wende and
C. Antoniak. The absorption spectra for different orientations of the magnetization
in a Co film with respect to the X-ray polarization vector L are shown in Fig. 12.2a.
Tuning the photon energy to the L3 peak, the domain structure can be imaged as
shown in Fig. 12.2b for a 20 nm-thick square Co structure. Dividing two images
taken with left and right circular polarized light at the L3 edge leads to an image
with increased magnetic contrast, which we refer to as an XMCD image as contri-
butions to the image that do not depend on the polarization cancel out. Instead of
changing the polarization, it is possible to change the energy instead, for example,
dividing an image at the L3 edge with an image at the L, edge. In the XMCD image,
the intensity is a measure of the angle (o) between the circular X-ray polarization
vector (L) and the magnetic moments (M) in the domains given by

IXMCD =M L= (M) COS(Ol), (121)

XMCD ~ <M> cos(M,L)

b
fe |
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Fig. 12.2 Principle of XMCD images. (a) Spectra of the Co L3, edge of a ferromagnetic Co
film for different orientations of the magnetization relative to the X-ray polarization vector L are
shown; parallel, perpendicular, and antiparallel. (b) Images taken at the L3 edge with circular right
and circular left are divided leading to the XMCD image. Nonmagnetic contributions cancel out
as they do not depend on the X-ray polarization, and the resulting image contrast is a measure of
the relative orientation of the magnetization with respect to the X-ray polarization vector, i.e., the
X-ray propagation direction. Shown are images taken with a PEEM of a 4 pm square of 20 nm
thick Co showing a Landau flux closure domain structure
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Fig. 12.3 Visualization of in- and out-of-plane domains in XMCD images. (a) In-plane system
measured with grazing incident for three orientations of the X-ray direction showing how the
contrast of a domain changes from black (0°), to gray (90°), and to white (180°). The resulting
two-dimensional magnetization map with corresponding color wheel for the directions is shown on
the right. Shown are XMCD images of arrays of dipolar-coupled Co islands arranged in a kagome
spin ice configuration [14]. The field of view is 4 wm. (b) Out-of-plane system measured with graz-
ing incident for three orientations of the X-ray direction showing that the contrast is independent
on the X-ray direction. The XMCD images are from a 20 nm thick GdCoFe film taken at the Fe
L3 edge with a PEEM and the field of view is 20 pm. (¢) Out-of-plane system measured in normal
incident with a STXM. The field of view is 5 um and the typical worm domain structure of a Co/Pt
multilayer can be seen [15]

where (M) is the expectation value of the magnetic moment of the probed band,
for example, the d-band. Ferromagnetic domains with a magnetization parallel or
antiparallel to the polarization vector will appear black or white in the XMCD
image, while domains with a magnetization perpendicular to the polarization vector
will have a gray contrast.

The direction of the magnetization in the gray domains can be revealed after a 90°
rotation of the sample about the surface normal and a two-dimensional map of the
magnetization can be determined from these two XMCD images, which is shown in
Fig. 12.3a (example taken from [14]). For this, care has to be taken that the images
have the same magnification, position, distortion, and resolution. To obtain a full
three-dimensional magnetization map, a third sample angle is needed, which con-
veniently is 180°. Actually, any three angles will be sufficient, but at 0°, 90°, and
180°, the contrast changes are largest. Important to note is that the incidence angle
of the X-rays must be taken into account. If one has grazing incident geometry, like
in PEEM, mainly the in-plane component is measured, while in a normal incidence
geometry, the out-of-plane component is measured. If one measures at grazing inci-
dence, in-plane and out-of-plane domains can be distinguished by the 180° rotation
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of the sample. While in-plane domains reverse their contrast (Fig. 12.3a), the out-
of-plane domains will have the same contrast (Fig. 12.3b). Measuring in a normal
incidence geometry, that is, 90° to the surface plane as shown in Fig. 12.3¢ (example
taken from [15]), only the out-of-plane components are measured. While in STXM
and TXM, the angle of incidence of the X-rays can be changed, it is fixed for the
PEEM. The angle in PEEM is limited by the first lens geometry and is a fixed value,
which varies for the different PEEMs between 16° and 30°.

It should be noted that the XMCD image as defined here (i.e., dividing one image
by another) is a ratio image. A ratio image has the advantage that it is normalized
to the image intensity, hence inhomogeneous sample illumination is corrected [16].
For qualitative information, such as determining the direction of the magnetization
or shapes of domains, this is sufficient. However, care must be taken if quantitative
information, such as spin and orbital moment [17], is required. Strictly, XMCD is
defined as the difference of absorption between circular right (67) and left (o)
polarizations and in reality one has to calculate asymmetry images
+

o —0"

p (12.2)
(see sum rules in the chapter by H. Wende and C. Antoniak). Also dark count rates
and varying sensitivity of the imaging device must be correct by corresponding
dark and sensitivity images. In practice, for images with a small XMCD contrast
compared to the total image intensity, the ratio image is equivalent to the asymme-
try image [16], which one can see by performing a mathematical expansion of the
XMCD expression.

Another problem arises if one measures in the grazing incident geometry. Here,
saturation effects will lead to a modification of the spectra [18, 19], the magnitude
of which depends on the X-ray absorption coefficient. As this coefficient varies
between circular right and left polarizations, the modification of the amplitude of
the L3 edge will be different for X-rays with opposite helicity. Actually, this is true
not only for imaging but also for spectroscopy, which is not spatially resolved! How-
ever, often the grazing incident angle in microscopy is smaller than in spectroscopy,
which increases the effect.

Even if only qualitative images are required, a healthy mistrust of the final image
is good. For example, a shift of the position of the sample between the image taken
with circular right and the one with circular left can lead to a black—white contrast
artifact in the divided image. It is therefore important to note the contrast reversal
of the individual domain in the single images taken with circular right and circular
left polarization. In general, it is advisable to prove the magnetic origin of the image
contrast, for example, by recording local spectra to check that there is a correct
magnetic dichroism, applying magnetic fields to see if the magnetization direction
changes or measure the temperature dependence to see if there is a change in the
contrast as a transition temperature (Curie or Néel temperature) is approached.
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12.2.2 XMLD Images

As XMCD is proportional to the net magnetization, it is not sensitive to antifer-
romagnetic systems where the net magnetization is zero. Therefore, a technique is
needed that is not relying on the net magnetization but probes the spin axis of a
sample. Using linearly polarized X-rays, this is possible employing XMLD, which
probes the anisotropy of the sample that either originates from the atomic struc-
tures, for example, crystal fields or orbital bonds, or magnetism. Here I want to
describe how XMLD can be employed for imaging antiferromagnetic systems. The
detailed origin of XMLD is described in the chapter by H. Wende and C. Antoniak.
In Fig. 12.4a, the dichroism of the Fe L3, edge of a 20nm LaFeOs3 film is shown.
Actually, the spectra are recorded from individual domains that have antiferromag-
netic axes perpendicular to each other [20]. As for the XMCD image, a ratio image
is taken to increase the magnetic contribution and to decrease nonmagnetic contri-
butions. As shown in Fig. 12.4b, dividing images taken at two peaks of the multiplet
structure at the Fe L3 absorption edge, that is, at L3, and L3, an XMLD image
is obtained. Areas with different orientations of the antiferromagnetic axis appear
with different intensities in the image. As the XMLD contrast is usually weak, it is
important to already see low contrast domains in the individual images with reversal
of contrast at these two edges.

a F -L:u:

i

e o GAGRRHR XMLD ~ <M2>
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Fig. 12.4 Principle of XMLD images. (a) Fe L3 ) edge spectra of an antiferromagnetic LaFeO3
film are shown for parallel and perpendicular orientation of the polarization vector E with respect
to the antiferromagnetic spin axis. The spectra are recorded from individual domains [20]. (b)
Images taken at the L3, and L3, edge are divided resulting in the XMLD image. The polarization
vector is in the plane of the sample and the antiferromagnetic domain structure of the LaFeOs film
can be seen



352 F. Nolting

XA (arb. units)

XMLD {arb, units)

860 865 870 875
pheton energy (eV)

Fig. 12.5 Orientation analysis of XMLD images. (Left) Rotating the polarization vector, more
contrast scales appear in the XMLD images of the LaFeOj thin film [20]. (Right) Using the unique
fingerprint of the Ni L3 edge [24], it is possible to determine the orientation of the spin axis of
the domains in an antiferromagnetic NiO single crystal [23]. The inset shows the domain struc-
ture, and the spectra recorded from individual domains are shown in (a). The (100) directions of
the NiO(001) plane and the orientation of the linear X-ray polarization are indicated in the inset.
Comparing the obtained XMLD spectra (b) with multiplet calculations, the orientation could be
determined unambiguously (reproduced from [23]). In both examples a PEEM was used for the
imaging

Using linearly polarized X-rays with the polarization vector in the plane of the
sample, one probes the in-plane component of the system. To be sensitive to the out-
of-plane component, one can rotate the polarization vector. This is demonstrated in
Fig. 12.5 (left) for LaFeOs. With the polarization vector in the plane of the sam-
ple, only two types of intensity appear (black and white), from which one could
conclude that only two domain orientations exist. Rotating the polarization vector
by 45° reveals actually four intensities, showing that four domain orientations are
present [20]. The exact determination of the orientation of these axis turns out to
be more complicated. For a long time, a rule of thumb existed, which related the
ratio of the multiplet structure peaks with the orientation of the antiferromagnetic
axis. This was based on the belief that XMLD is sensitive only to the relative ori-
entation of the magnetization and the polarization vector. However, recently it was
discovered that XMLD is sensitive to the relative orientation of the magnetization,
the polarization vector, and the crystallographic axis [20-22]. Even the sign of the
XMLD can change depending on the orientation of the crystallographic axis, which
is shown in Fig. 12.5 (right) where the dichroism of a NiO single crystal is shown
[23]. The domain structure of the antiferromagnetic NiO is shown in the inset and
the spectra are recorded from individual domains. The XMLD signature depends
on whether the polarization vector is oriented along the (110) axis (b) or along the
(100) axis (d). The sign of the XMLD at the L, edge simply reverses, while at the
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Fig. 12.6 Temperature dependence of the XMLD contrast. (a)—(c) XMLD images of a 20 nm thin
LaFeO; film with increasing temperature [20] and (d) back to room temperature showing the same
domain structure than before. (e) Detailed analysis of the contrast change in the XMLD images
from which a reduced Néel temperature compared to the bulk material is obtained. (f) XMLD
spectra at different temperatures

L3 edge a distinctly different shape of the XMLD is observed, which can be used
as a fingerprint to determine the orientation of the domain [24].

For both XMCD and XMLD images, it is critical to be able to show that
the observed contrast is of magnetic origin. While for ferromagnetic systems this
can often be achieved by changing the magnetization direction of the domains
with a magnetic field, this is rather difficult for antiferromagnetic systems, which
would require extremely high fields. Instead, this check can be made by compari-
son with calculations such as the multiplet calculation shown in Fig. 12.5¢ (right)
and 12.5e (right) and with temperature dependent measurements [25]. An example
for a detailed temperature-dependent study of a thin film of the antiferromagnetic
LaFeOs is shown in Fig. 12.6 [20]. In the upper row, XMLD images for different
temperatures are shown. It can be seen that while the domain structure is inde-
pendent of the temperature, the contrast in the images decreases with increasing
temperature and disappears above 600 K, see Fig. 12.6c. In Fig. 12.6e, the quantita-
tive image contrast is plotted together with a fit using a mean field approximation
to match the ( M 2) dependence, indicating a reduced Néel temperature compared to
the reported bulk value. In Fig. 12.6f, the XMLD spectra of individual domains at
different temperatures are shown. The dichroism decreases without changing its sig-
nature, further supporting that the reduction of ( M 2) is the reason for the decreasing
dichroism and not changes of the orientation of the antiferromagnetic axis or crystal
field effects.
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12.2.3 Polarization Control

For magnetic imaging with X-rays, it is essential to control the polarization. The
time it takes to switch the polarization should be short to minimize possible drifts
between the two images. If possible, this time should be comparable to or faster than
the time it needs to take an image, which is often in the range of several seconds.
The basics of producing polarized X-rays is described in the chapter by D. Cocco.
Here I want to point out some nonstandard ways to switch the polarization from
circular left to circular right with either an undulator or a bending magnet as source.

The first concept is based on having two apple type undulators shown in
Fig. 12.7a. For imaging, a simple solution is to use the fact that the photon energy
generated from an undulator has a specific, finite width in the range of a few
electron-volt as shown in Fig. 12.7a right. The energy emitted from an undulator
depends on the strength of the magnetic field, which in turn depends on the gap
between the upper and lower row of magnets. Usually, the monochromator is set to
the same energy as the center of the energy distribution of the undulator (tuned).
Detuning the undulator [26] by moving now the gap by a few millimeters will shift
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Fig. 12.7 Nonstandard ways for polarization switching. (a) The photon energy generated from
an undulator has a specific, finite width in the range of a few electron-volt, which must be tuned
to the energy of the monochromator to get photons on the sample. If the energy of the undulator
is detuned and does not match the energy of the monochromator, no photons will hit the sample.
With two undulators, it is now possible to switch between them by having one tuned and the other
detuned as only photons from the tuned undulator will hit the sample, while the photons from the
detuned undulator will not pass the monochromator. If now the first undulator is set to circular right
polarization and the second to circular left polarization, one can switch the polarization within a
few seconds. (b) The polarization from a bending magnet can be changed by tilting the synchrotron.
This can be realized by an asymmetric bump of the electron beam in the bending magnet, and now
the circular polarized fraction of the produced X-rays is passing the aperture
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the center of the emitted photon energy away from the energy of the monochroma-
tor, such that nearly no intensity passes the monochromator. Setting one undulator
to circular left polarization and the other to circular right polarization, one can
switch rapidly between these two undulators having one “tuned” to the energy of
the monochromator and the other “detuned” (see Fig. 12.7a left). The switching can
be done in a few seconds, which for the imaging is fast enough but also slow enough
so that the feedback system of the storage ring can compensate possible variations of
the electron beam path. The latter is important as the polarization switching should
not affect the X-ray quality at the other beamlines. This schematic in Fig. 12.7a is
implemented at the SIM beamline at the SLS.

The second concept is based on a bending magnet as source with control over
the electron path in the synchrotron. A bending magnet produces linearly polar-
ized X-rays in the central plane of the synchrotron. The light is circularly polarized
above and below this plane. A common way to change the polarization is to use
movable apertures between the source and the end station to select the polarization.
Another approach is to tilt the synchrotron, for example, to tilt the electron beam
in the section of the bending magnet, with the apertures fixed [27]. The principle
is sketched in Fig. 12.7b. The tilt of the electron beam is introduced by means of a
vertical asymmetric bump produced by four successive dipole correctors (Fig. 12.7b
left). In the example, the beam is tilted downwards and circular polarized X-rays are
passing the apertures. This set-up is implemented at the PolLux beamline at the SLS
and a switching time of about 1 s is achieved [15]. It should be noted that the degree
of circular polarization of a bending magnet is in practice between 60 and 80%, in
contrast to the undulator where 100% polarization can be reached.

12.2.4 Local Spectra

The possibility to obtain local spectra is a major advantage of magnetic imaging
with X-rays as it enables the determination of the origin of the observed contrast
in the images. Sometimes it enables to explain why no contrast is observed if,
for example, the film is oxidized or contains the wrong elements. In addition, the
combination of microscopy and spectroscopy allows studies, which would other-
wise not be possible. For example, the study of the orientation of NiO domains
[23] in Fig. 12.5 (right) is based on absorption spectra from individual domains.
This could not have been done without spatially resolved spectroscopy as one
would always average over many domains with different orientations, making it
impossible to obtain the pure spectrum. Another example is the spectroscopy of
individual nanocrystals [28, 29] and semiconductor dots [30]. Here the signals
from individual nanocrystals can be separated in the microscope and their spectra
recorded.

To obtain a local spectrum, a series of images for different photon energies is
recorded and the image intensity of an area is plotted vs. the photon energy. An
example is shown in Fig. 12.8. Here the spectrum of an individual Fe nanoparticle
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Fig. 12.8 Local spectra. Spectra of an individual 20 nm Fe nanoparticle recorded with a PEEM
are shown in the upper part. These spectra were obtained from the selected area (square) of the
individual images shown below the spectra taken with opposite helicity. The square structure and
numbers in the images where used to identify the particles and perform measurements at the very
same spot with a scanning electron microscope (SEM)

of 20 nm size is measured. The series of images is plotted at the bottom of the figure.
At the pre-edge, no Fe particles are visible, but with increasing photon energy, the
contrast increases at the L3 edge. The spectra in the upper row are obtained by cal-
culating the image intensity of a selected region, marked with a square, normalized
to the area of the region, resulting in an average value of the intensity per pixel for
different photon energies. The measurements were performed with circular left and
right polarization with a PEEM. Although the particles are smaller than the spatial
resolution, their individual spectra can be recorded as their distance is much larger
than the spatial resolution.

12.2.5 Spatial Resolution

The spatial resolution is an important benchmark in microscopy, and as with many
important benchmark figures, there is some freedom in the usage. Ranging from “we
have seen structures that are smaller than x nm,” to 10-90%, intensity change in a
line scan, Rayleigh criterion, etc. These definitions are good to distinguish two spots,
which is sufficient for microscopy, but they do not take into account the crosstalk
between these two spots, which is important for local spectroscopy. This will be
demonstrated with the help of the Rayleigh criterion, which in its simplest form
takes the intensity drop between two particles as criterion [31]. In Fig. 12.9a, the
intensity profile of two spots with equal intensity is plotted. To distinguish these
two spots in the image, the intensity between the two spots must be 81% of that at
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Fig. 12.9 Spatial resolution. (a) Definition of the Rayleigh criterion for two spots with the same
intensity and (c¢) two spots with different intensity. (b) Intensity modulation for different line widths
of a test sample measured with a PEEM [32]. Measurements with different aperture sizes are shown
demonstrating how the spatial resolution can be improved by reducing the electron energy spread
by means of an aperture [34]

the maximum on either side. However, if one wants to extract spectral information
from one spot, a significant contribution from the neighboring spot will be measured
as the intensity profiles of the two spots overlaps. The effect of this is illustrated in
Fig. 12.9b, where the intensity modulation of a stripe pattern with varying period is
plotted [32]. A contrast of unity corresponds to a full change of the intensity between
the lines, for example, full intensity of the line and full intensity drop between the
lines. In the example, one can see that the Rayleigh criterion results in a spatial
resolution of about 50 nm for a 12 micrometer aperture. However, a full contrast
change, that is, no crosstalk between the spectrum of the line and the spectrum of
the area between the lines, is only achieved with a spatial resolution of 150 nm for
a 12 um aperture. Of course, this crosstalk is not important if these spots are from
the same material with the same magnetization direction, but already imaging two
dots with opposite magnetization will make it difficult to apply the Rayleigh crite-
rion to define the spatial resolution. This is illustrated in Fig. 12.9c. Now, the same
spots as in Fig. 12.9a have opposite magnetization and one spot has a higher inten-
sity, while the other has a lower intensity. The intensity profile between these spots
is now very different than in Fig. 12.9a and the question is how the spatial resolu-
tion would be defined. One should be careful with the given spatial resolution. The
definition is only for idealized situations and therefore the value is determined in
an idealized situation. Of course, it must be like this to be able to compare instru-
ments, but the practical spatial resolution in a magnetic imaging experiment might
be different.
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12.3 Realization of the Magnetic Contrast
with Different Microscopes

12.3.1 Photoemission Electron Microscope

In a photoemission electron microscope (PEEM), the electrons emitted from the
sample on illumination with X-rays are imaged (see [34] for a recent review).
A schematic diagram of a PEEM is shown in Fig. 12.10a. The low energy pho-
toelectrons are accelerated by a strong electric field (20kV) to maintain their
local information, and these fast electrons are imaged with an electron microscope
(Fig. 12.10c). The image is magnified with a set of lenses. Deflectors and stigmators
are used to optimize the electron path through the microscope and to correct for
image distortions. In this example, the electrons are detected with a multichannel
plate and a phosphor screen and then imaged with a CCD camera. Some PEEMs
are equipped with an energy filter, allowing the selection of specific electrons to be
used for imaging, which can be employed to change the probing depth of the mea-
surement. The energy distribution of the electrons leaving the sample is sketched
in Fig. 12.10b. Using the Auger electrons for imaging only the first monolayers of

a
b__‘éj Secondary electrons
-
§ - Auger peak
o =3 (4
2 = —/L’\f\_/\

kinetic energy

c
Lenses OeV 20 k 20 keV
(magnetic)
MCP
Phosphor 3
Sample First lens
Accelerating voltage

ey e,

Fig. 12.10 Photoemission electron microscope (PEEM). (a) Sketch of one possible configuration
of a PEEM consisting of the sample, accelerating voltage, lenses, energy filter, and detector. (b)
Energy distribution of the photoelectrons emitted from the sample. (¢) Accelerating of the electrons
towards the microscope. As the sample and the microscope form an anode/cathode setup, it is
sometimes called a cathode lens. In addition, the term immersion lens is used as the energy of the
electron before and after the lens are different. (d) Trajectory of two electrons leaving the sample
with different angles
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the system are probed as these elastic electrons have a short escape depth. Using
the secondary electrons, the probing depth is several nanometers due to the larger
escape depth of these inelastic scattered electrons. As the intensity of the secondary
electrons is more than 100 times larger than the intensity of the Auger electrons, it
is convenient to use the secondary electrons for imaging. However, they also have a
wider energy distribution, which is limiting the spatial resolution.

The contributions to the spatial resolution of the PEEM are different to those in
STXM/TXM. In the PEEM, the sample is an integral part of the optical system lim-
iting the spatial resolution. This becomes clear on having a closer look at the region
between the sample and the microscope. Here the electrons are emitted from the
sample with a low energy and are accelerated to about 20 keV. This acceleration is
important to keep the information of the spot where the electron has been emitted
and that all electron emitted from the same spot are imaged on the same spot at
the CCD. This would be impossible to achieve with slow electrons. However, the
emitted electrons are slow and move on a parabolic trajectory from the sample to
the microscope and the exact path depends on the angle and velocity of the emitted
electrons, for example, path of e; and e, in Fig. 12.10d. Hence, electrons emitted
from the very same spot will not appear on the very same spot on the image (which
would be the ultimate spatial resolution), but will lead to an increased spot size. The
angular- and velocity-variations of the electrons leads to the spherical and angular
aberration of the imaging system determining the spatial resolution. This means that
a very rough surface will deteriorate the spatial resolution, and also a large energy
spread of the electrons will reduce the spatial resolution. The electron energy spread
can be reduced using either an aperture [33] (see also Fig. 12.9b) or an energy filter
[35] at the expense of intensity. The best spatial resolution reported so far is about
20nm [36]. New PEEMs are under construction to increase both the spatial resolu-
tion to several nanometers and the transmission of the electrons using an aberration
correction mirror [37,38].

Another consequence of the low energy of the emitted electrons is the sensitivity
to magnetic fields. To measure in applied magnetic fields, a special sample holder
is needed with very small stray fields. Up to now, imaging in applied fields of a
few 100 0Oe have been achieved [5, 39]. Unfortunately, much larger fields cannot
be reached and as an alternative, measurements can be performed at remanence.
Imaging in larger magnetic fields is possible only if one takes photons for imaging,
which is described in the next section. A further, very important consequence of
the low energy of the emitted electrons is the sensitivity to interfaces [13] and the
relative freedom in choosing the sample or the substrate of the sample, that is, no
transparent substrates such as SiN-membranes are needed.

12.3.2 STXM/TXM

Another approach to measure X-ray absorption is to measure in transmission, for
example, to measure the X-rays transmitted through a sample with a photodetector.
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Fig. 12.11 STXM. (a) Arrangement of the Fresnel zone plate, the ordering selecting aperture,
sample, and detector. (b) The Fresnel zone plate has a varying period of the lines starting with
a larger period in the middle and a smaller period at the outer diameter. The outer width of the
zone plate is determining the spots size. (¢) Changing from out-of-plane measurement to in-plane
measurement by rotating the sample

This can be done in a scanning mode, STXM [40, 41], or full field mode, TXM
[42,43]. Common to both is the use of a Fresnel zone plate (FZP), a diffractive
optical element that focuses the X-ray beam.

A schematic for a STXM is shown in Fig. 12.11a. The FZP focuses the soft X-ray
light to a diffraction limited spot. The focal length of the FZP depends on the pho-
ton energy. Higher diffraction orders are filtered out using an order sorting aperture
(OSA), located between the FZP and the sample. The distance between OSA and
the sample is typically less than 1 mm, depending on the photon energy. The sam-
ple is deposited on a semitransparent SiN-membrane or mounted on a transmission
electron microscope grid. Images are formed by raster scanning the sample through
the focal point while measuring the transmitted intensity using an X-ray detector.
For spectroscopy, the FZP is moved along the X-ray direction to track the energy
dependence of the focal length, while the sample position is kept fixed. The sam-
ple geometry can be changed from normal incidence for probing the out-of-plane
component to grazing incidence for probing the in-plane component by rotating
the sample as shown in Fig. 12.11c. This might sound trivial but, as the distances
between the FZP, OSA, and sample are very small, down to a few 100 pum, all of the
system components must be moved very precisely at the same time. The spatial res-
olution is given by the spot size of the focused X-rays which in turn is determined by
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the outer width of the zone plate (Fig. 12.11b). New developments for the production
of these zone plates lead to spatial resolutions down to about 10 nm [10].

For a full-field, transmission X-ray microscope (TXM), the set-up must be
changed. Here the X-rays pass first through a condenser lens in front of the sample
and than a magnifying micro-FZP behind the sample. The two-dimensional image is
recorded with a CCD camera, reducing the image acquisition time. As in the STXM,
the spatial resolution is determined by the outer width of the zone plate, and a spatial
resolution down to 15 nm has been achieved [9].

Common for both microscopes is the possibility to apply high magnetic fields
during the measurement, and magnetic fields of up to 0.7 T have been obtained. The
size of the magnetic field is limited here by geometrical restrictions as the distances
between the sample and FZP is very narrow. So far, STXM and TXM instruments
work under moderate pressure and probe more the bulk properties of the system.
Constructions of set-ups to measure in UHV conditions are underway, which will
enable to perform surface science experiments. In addition, new developments with
the STXM allows measurements in the total electron yield mode and transmission
mode in parallel, so that one can obtain information from the surface region and
from the bulk region at the same time.

12.3.3 “Lensless” Imaging

The microscopes described above are based on absorption spectroscopy, and the
spatial resolution is determined by the optical system of these microscopes. Using
diffraction-based imaging without lenses, the spatial resolution would not be limited
by the optical system, but ultimately by the wavelength of the X-rays. Conventional
diffraction requires periodic scattering objects, such as the crystal structure. This is
usually not given in the case of studying magnetic domains, which have an irregular
shape, and coherent X-rays must be used. Typical sources for synchrotron radiation
produce incoherent X-rays, and only by selectively filtering the coherent fraction
can purely coherent radiation be obtained. Using monochromatic X-rays, the longi-
tudinal coherence is obtained and apertures can be employed to achieve transverse
coherence. As the efficiency here is very small, experiments relying on coherent X-
rays are possible only due to the development of very bright synchrotron sources.
With coherent X-rays, the scattering from different domains within the coherence
length can interfere, and from the recorded so-called speckle pattern, the domain
structure can be calculated. To reconstruct the real space image from the reciprocal
space pattern, the phase is needed. However, only the intensity is recorded, which is
the square of the amplitude, and the phase is lost. Using phase retrieval algorithms,
attempts are being made to reconstruct the image [44,45]. Another approach is based
on Fourier transform holography, where a reference beam is used to allow the phase
information to be recorded as intensity modulations [46].

The set-up for such an experiment is shown in Fig. 12.12. The monochromatic
X-ray beam from an undulator passes through a small pinhole and is incident on
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Fig. 12.12 Lensless imaging. The experimental set-up for a Fourier transform holography image
using coherent X-rays is shown [46]. The special ingredient is the design of the sample set-up
shown in the lower left corner. It consists of a small reference hole and the sample, which is a
Co/Pt multilayer on a SiN-membrane. The worm domain structure is shown on the upper right
corner (XMCD image taken with a STXM). The resulting interference of the two beams can be
recorded with a CCD camera (reproduced from [46])

the sample set-up (sample and mask) which is 723 mm away. The arrangement of
pinhole and sample set-up acts as a spatial filter to obtain a coherent fraction of the
X-ray beam and a transverse coherence of a few micrometer is typically obtained.
The sample set-up consists of two holes: one is 1.5 pm in diameter surrounding the
sample to be measured and the other is the reference hole. The sample is a Co/Pt
multilayer grown on a SiN-membrane and the X-ray beam is scattered by the out-
of-plane worm domain structure present in this multilayer. In the upper corner, an
XMCD image taken with a STXM is shown. At the detector, the sample beam and
the reference beam interfere, and by a Fourier transformation of the scattering inten-
sities, the real space image is obtained. The spatial resolution is determined by the
reference beam and is given by the size of the reference hole. In this experiment,
the reference hole has a size of 100nm and a spatial resolution of about 50 nm is
achieved. Because of the special design of the sample set-up, this technique is lim-
ited in its use as a pure microscope. One can not scan a large sample area and also
the intensity of the scattered beam of the sample must be matched to the intensity
of the reference beam so that the interference pattern is not dominated by one of
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the beams. Its great potential is in the “simplicity” of the set-up. The sample can be
positioned in a large vacuum chamber, which allows the addition of various sample
environments without any geometrical restrictions. For example, it is in principle
possible to apply very large fields of a few teslas and cool the sample down to few
kelvins. The other big application of this technique is for time-resolved measure-
ments [47] and for measurements in the future with coherent X-ray free-electron
laser sources.

12.3.4 Combining Scanning Probes with X-Rays

On the one hand, the spatial resolution of scanning probe microscopes, such as scan-
ning tunneling microscopy or atomic force microscopy, is superior to that of X-ray
microscopes [48]. On the other hand, the elemental and chemical sensitivity of the
X-ray microscopes described above is superior to the one of the scanning probe
microscopes. The obvious thing to do is to combine both techniques but, this is far
from being easy. A first combination of X-ray absorption spectroscopy and scan-
ning tunneling microscopy has been demonstrated [49-51]. In these experiments,
X-rays impinge on the same side of the sample as the tip of the scanning tunneling
microscope. In Fig. 12.13a, another possible set-up is shown where a conventional
STXM consisting of a FZP and OSA is combined with a coaxially insulated can-
tilever tip behind the sample [52]. The FZP focus the X-ray beam and thus increases
the emitted photoelectron density. These emitted photoelectrons are than locally col-
lected with the cantilever tip (Fig. 12.13b). The cantilever tip can be withdrawn so
that normal STXM measurements can be performed. Several developments in this
direction are ongoing with the aim of spatial resolutions below 10 nm.

a) FzpP OSA Sample

Y

cantilever

Fig. 12.13 Combining scanning probes with X-rays [52]. (a) A conventional STXM set-up is
used to focus the X-rays and a scanning probe cantilever detects the photoelectrons emitted. (b)
The cantilever tip has a coaxial insulating, which acts as a lens for the electrons
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12.4 Summary

The last decade has seen an impressive development of the X-ray microscopes for
magnetic imaging. They offer elemental and chemical sensitivity with high spa-
tial resolution and can rely on powerful magnetic dichroism methods for imaging.
A large variety of samples can be measured in different environmental conditions
like magnetic fields and different temperatures (150—1,000K). The instrument best
suited for all experiments does not exist. For example, measurements in applied
magnetic field are best suited for transmission measurements such as STXM/TXM.
However, the samples must be grown on a thin SiN-membrane, which is not suit-
able for many systems such as single crystals. For these and very thin or diluted
systems, the measurement of the emitted photoelectrons in PEEM is better suited.
Very low temperatures of a few kelvins will be very difficult to achieve in PEEM
and STXM/TXM. For this the lensless imaging approach is ideally suited, but then
measurements of larger sample areas or scanning of the sample is not possible. The
right technique for the experiment must be chosen, the sample carefully prepared
and the complementary information from the different methods obtained. It will be
interesting to see the future development of imaging magnetic systems with X-rays
and to see what we have achieved when we meet at the next Mittelwihr school on
Magnetism and Synchrotron Radiation.
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Chapter 13
Domain Wall Spin Structures and Dynamics
Probed by Synchrotron Techniques

M. Kléiui

Abstract Synchrotron-based magnetic imaging techniques have proven to be pow-
erful for the investigation of geometrically confined magnetic domain walls and
their dynamics due to the interaction with fields and spin-polarized currents. The
application of different high resolution imaging techniques allows one to determine
the nanoscale domain wall spin structures, which are comprehensively reviewed.
Different domain wall types are observed depending on the materials and the geome-
tries resulting from the interplay of the micromagnetic energy terms. When currents
are injected into the nanostructures, the interaction between the spin-polarized
charge carriers and the magnetization leads to current-induced domain wall motion
due to the spin transfer torque effect, which is studied by direct imaging. Domain
wall motion can be induced by field pulses, and imaging with sub-nanosecond time
resolution of the domain wall dynamics is presented.

13.1 Introduction

The physics of surfaces, interfaces, and nanostructures has become one of the main
areas of research due to the trend in science and technology towards miniaturiza-
tion of physical systems into the nanoscale. From the scientific viewpoint, such
systems pose a whole new set of problems, both theoretical and experimental.
Fundamentally, novel properties emerge in magnetic elements as the lateral struc-
ture dimensions become comparable to or smaller than certain characteristic length
scales, such as spin diffusion length, carrier mean free path, magnetic exchange
length, domain wall width, etc. The effects of the governing energy terms deter-
mine the interplay between the relevant physical length scales and the sizes of the
structured materials.

But not only from a basic physics point of view have magnetic nanostructures
moved into the research focus, but they have also been at the heart of a multitude of
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devices ranging from sensing applications to data storage. Probably the best known
storage device is the magnetic disc drive [1], which was pioneered in the 1950s
by IBM with the RAMAC, and since then the storage density has seen a gigan-
tic exponential increase. While hard drives continue to excel in the high capacity
market, they entail nonetheless disadvantages, which have led to other memory con-
cepts replacing them for applications, such as lower density mobile storage. One of
the key problems is the mechanical motion of the media, which poses reliability
questions and can lead to catastrophic failure in the case of mechanical shock. To
overcome this problem, novel storage class memory devices have been put forward.
In addition to the shift register suggested by Cowburn [2, 3], S.S.P. Parkin of IBM
has put forward the idea of the so-called race-track device [4,5], and both approaches
are based on nanoscale magnetic wires with domains delineated by domain walls
representing the bits.

These domains and domain walls occur when the geometry changes from the
bulk to the nanoscale, since then the magnetic properties of ferromagnetic elements
start to be governed by the element geometry and not only by the intrinsic mate-
rials properties. Such behavior and in particular the magnetization configurations
and reversal in small magnetic elements have been reviewed in detail for instance
in [6,7]. Such a strong dependence on the geometry allows one then to tailor the
magnetization configuration and spin switching by appropriately engineering the
geometry. The magnetization configuration that constitutes the lowest energy state
in a small magnetic structure can for instance be set to a multidomain state with
domain walls, as the dipolar interaction (stray field) leads to the magnetization being
parallel to the element edges. This results in a very reproducible and controllable
spatially inhomogeneous magnetization distribution (domain configuration) [6].

Domain walls, which constitute the boundary between domains, have been inten-
sively researched in the past, though with a focus on the domain wall types that
occur in the bulk or in continuous films. The most prominent examples are the
Bloch and the Néel wall types, which occur in continuous thin films [8-10]. A
thorough overview of such domain walls is given in [7]. While previously rela-
tively low resolution imaging has been used to image the wall position, the advent
of synchrotron-based techniques has opened up the possibility to image the actual
domain wall spin structure on the nanoscale. In addition to imaging the relaxed
spin structure, the inherent time-structure of the synchrotron radiation pulses can
be used to image the magnetization and in particular domain wall dynamics on the
picoseconds timescale.

In this chapter, the imaging of domain walls and related spin structures is
reviewed with a view to study field- and current-induced wall dynamics. After a
brief introduction to the techniques employed, the actual wall spin structures are dis-
cussed and their dependence on the geometry is explained. Then the wall dynamics
due to applied fields and injected currents is presented, allowing one to draw con-
clusions about the underlying physical interaction mechanisms. This chapter gives
a broad overview of investigations that have become possible with advanced syn-
chrotron imaging, but for further in-depth information, the reader is referred to the
more specialized literature, which is referenced.
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13.2 Techniques

For all these investigations, high quality magnetic nanostructures have to be fabri-
cated. The prevailing geometries to study head-to-head domain walls are straight
and zigzag wires, U-shaped, L-shaped, and half-ring elements, as well as full rings.
Ring elements have proven to be a useful geometry for the investigation of domain
walls as due to the high element symmetry, walls can be easily created and posi-
tioned by applying an external uniform magnetic field [11, 12]. Ferromagnetic rings
can be in the flux closure vortex state or in the onion state, where they exhibit 180°
head-to-head and tail-to-tail domain walls [11, 13]. To make sure that the domain
walls exhibit the same behavior in straight parts of the structure as in the curved
parts, the radius of curvature should be much larger than the width, as otherwise the
wall can be pinned by the variation in the geometry [14].

To make the structures, a range of fabrication methods is available and details as
well as reviews can be found in [13, 15-17]. In particular, for techniques based on
X-ray transmission, the structures have to be defined on membranes, which entails
certain complications as discussed in [16].

To study domain walls and their dynamics, different methods are employed.
Direct imaging of spin structures can be carried out using scanning probe techniques
(magnetic force microscopy (MFM), spin-polarized scanning tunneling microscopy,
Scanning hall microscopy, etc.), magneto-optical techniques (MOKE), electron
microscopy, and in particular synchrotron-based microscopy techniques. Intro-
ductory overviews can be found in [6, 7] and more detailed descriptions of the
techniques can be found in various articles in [18]. The techniques used most exten-
sively for the measurements in this review are X-ray magnetic circular dichroism
photoemission electron microscopy (XMCD-PEEM) [19, 20], transmission X-ray
microscopy (TXM) [21], and scanning transmission X-ray microscopy [22]. Some
of these techniques are described in more detail in this book in the Chaps. 12, 14, etc.

13.3 Domain Wall Types and Wall Phase Diagrams

13.3.1 Theory of Head-to-Head Domain Wall Spin Structures

To understand theoretically the domain wall types and their spin structures, we need
to briefly consider the energy terms that lead to the wall formation. The wall spin
structure is a result of the energy minimization (to be more precise, the minimiza-
tion of the appropriate thermodynamic potential, which is usually the Landau Free
Energy (though often entropy effects are neglected and only the internal energy
is considered) [6, 23]). Without any externally applied fields and as we neglect
anisotropies, the two important energy terms are the exchange energy, which is at
the heart of ferromagnetism, and the stray field energy due to the dipolar interaction
of the spins. Qualitatively, this means that if the exchange dominates, the wall



370 M. Kldui

a
z Y .
X Domain 1 Domain 2
b El ; FTTI X R
. - L — a— —_— A
Domain 1 sesesaase RN [ o S mastsess Domain 2
BRGNS 2 0 E I T3
b il cmteae sl o A 1 T, s s i i e
- A B e e e
e A R et
- A LE =
[+

e R e e e o e e

Domain 1 A A AT | § f Domain 2

v
e AP LA AN} e
e AP AN RNk S e
e B B R e al aF a
R L B S e

P Ly

Fig.13.1 (a) Schematic of a magnetic wire with two domains pointing in opposite directions (light
red and dark blue arrows) and a domain wall (dotted line) separating the domains. The length of
the wire is along the x-direction, the width W along the y-direction, and the thickness ¢ along the
z-direction. Top view (x-y plane) of the spin structure of a transverse head-to-head domain wall
(b) and a vortex head-to-head domain wall (c)

should be very wide, so that there is only a small angle between adjacent spins,
resulting in a small exchange energy. If the stray field energy dominates, the spins
try to stay parallel to the structure edge as much as possible, yielding a narrower
wall. To go beyond such qualitative considerations, numerical calculations are nec-
essary to ascertain the spin structures that constitute local energy minima (stable
wall structures). For the case of domain walls in wires, such micromagnetic sim-
ulations [24-26] were carried out by McMichael and Donahue in 1997 [27]. Two
wall spin structures were predicted to occur: transverse walls (TW, see Fig. 13.1b)
and vortex walls (VW, see Fig. 13.1c). In the case of the transverse wall, the spins
rotate in the plane of the structure. To reduce the energy further, the shape of the
wall is asymmetric along the y-axis, yielding a V-shaped wall Fig. 13.1(b). The
vortex wall exhibits a very different spin structure. Here the spins curl around
the vortex core, where the magnetization is pointing out of the plane (Fig. 13.1c)
[28-30].

The energies of the two wall types vary with geometry and material and can be
calculated from the simulations. More instructive though is an analytical calcula-
tion of the energies of the two wall types as a function of geometry, as carried out
by McMichael and Donahue [27]. They assumed that as a first approximation, the
difference in stray field energies between the two wall types is effectively the stray
field of the transverse component in the TW, which is less present in the VW. They
calculate this stray field energy difference to be

1
AE‘strayﬁeld ~ _g}«LOMSZtZW, (131)

with M the saturation magnetization, ¢ the thickness, and W the width of the struc-
ture [27]. For the difference in exchange energies, they assume that it is given by the
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vortex in the VW, which yields

AE. =~ 27iA In ™% (13.2)

"'min

with A the exchange constant, ¢ the thickness, rp,x the outer radius of the vortex,
which is assumed to be half the strip width, and ry;, the inner radius of the vortex,
which is given by the vortex core radius §. From this we can now deduce a “phase
diagram” where the energetically favorable wall type is determined as a function of
the geometry (width, thickness). In particular, to obtain the phase boundary, which
delineates the region where one wall is favored or the other, the sum of the energy
differences is set to zero (both wall types have the same energy). Neglecting the
weak logarithmic dependence, this yields Wt ~ const, with the constant depending
on the material. This means that in a width vs. thickness diagram the phase boundary
is a hyperbola.

These calculations were later refined by Nakatani and Thiaville [31] and they
found, in addition to symmetric transverse walls, tilted transverse walls that consti-
tute the energy minimum in a small range of geometries, and such tilted transverse
walls were actually observed experimentally [32].

These micromagnetic simulations were carried out in the 0 K limit, but the influ-
ence of thermal excitations on the wall spin structure has also been investigated
theoretically. Such simulations are difficult, because a small cell size (ideally an
atomistic lattice) is necessary to reproduce a realistic spin wave spectrum. So only
few results have been made available, and analytical calculations as well as simula-
tions on small systems have yielded a transition to a linear wall close to the Curie
temperature [33,34].

13.3.2 Experimental Determination of Head-to-Head Domain
Wall Spin Structures

13.3.2.1 Spin Structures in NiggFe;¢ (Permalloy)

Here the main properties of head-to-head domain walls are presented, while a more
extensive discussion can be found in [14]. To study the domain wall types experi-
mentally [35,36], arrays of 5 x 5 polycrystalline Co and Permalloy (NigoFe,o) rings
with different thicknesses and widths were fabricated as described in [17,37]. For
the investigation of the phase diagram, the edge-to-edge spacing between adjacent
rings was more than twice the diameter to prevent dipolar interactions, which might
otherwise influence the domain wall type (see [14, 38] for a study of interacting
domain walls). To determine the spin structure of the domain walls as a function of
ring geometry, the samples were first saturated with an external field, and then after
the field is reduced to zero, the resulting domain wall spin structure is imaged using
XMCD-PEEM [19].
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Fig. 13.2 Spin structure of (a) a vortex and (b) a transverse wall simulated using OOMMEFE. PEEM
images of (¢) 30 nm thick and 530 nm wide (outer diameter D = 2.7 um), (d) 10 nm thick and
260 nm wide (D = 1.64 pm), and (e) 3 nm thick and 730 nm wide (D = 10 wm) Permalloy rings
in the onion state. The gray scale indicates the direction of magnetic contrast (from [36])
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Fig. 13.3 Experimental phase diagrams for head-to-head domain walls in (a) Permalloy and
(c¢) Co rings at room temperature. Black squares indicate vortex walls and red discs transverse
walls. The phase boundaries are shown as solid lines. (b, d) Comparison of the upper experimen-
tal phase boundary (solid lines) with results from calculations (dotted lines) and micromagnetic
simulations (dashed lines). Partly from [35,36]

In Fig. 13.2, we present PEEM images of (c) a thick and wide Permalloy ring,
(d) a thin and narrow ring, and (e) an ultrathin ring measured at room temperature.
The contrast of the images is explained in (a) and (b). The domain wall type was
systematically determined from PEEM images for more than 50 combinations of
ring thickness and width for both Permalloy and Co, and the quantitative phase
diagrams shown in Fig. 13.3a,c were extracted (a similar phase diagram was also
obtained in [39]). The phase diagrams exhibit two phase boundaries indicated by
solid lines between vortex walls (thick and wide rings, squares), transverse walls
(thin and narrow rings, discs), and again vortex walls for ultrathin rings.

We discuss first the upper boundary shown in Fig. 13.3a,c. This phase bound-
ary was investigated theoretically by McMichael and Donahue as described earlier
[27]. The theoretical phase boundary (dotted lines) is shifted to lower thickness and
smaller width compared to the experimental boundary (solid lines in Fig. 13.3b,d).
This discrepancy can be understood by taking into account the following: The
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calculations [27] compare total energies and therefore determine the wall type with
the absolute minimum energy as being favorable. In the experiment, the wall type
was investigated after saturation of the ring in a magnetic field and relaxing the
field to zero. During relaxation, first a transverse wall is formed reversibly [40].
For the formation of a vortex wall, an energy barrier has to be overcome to nucle-
ate the vortex core, which leads to a hysteretic behavior of the wall formation.
So the observed spin structure does not necessarily constitute the absolute mini-
mum energy, but transverse walls can be observed for combinations of thickness
and width, where they constitute local energy minima even if the vortex wall has
a lower energy for this geometry. Next we have simulated the experiment by cal-
culating the domain wall spin structure after reducing an externally applied field
stepwise using the OOMMEF code [41] (for Permalloy: M, = 800 x 103 Am™!,
A=13x10"1Tm™L; forCo: My = 1,424x10°Am™!, 4 =33x 10711 Jm™;
for both: damping constant @ = 0.01, cell size 2—-5nm). The simulated boundary
(dashed line) is shifted to higher thickness and larger width compared to the experi-
ment. This can be attributed to the fact that thermal excitations help to overcome the
energy barrier between transverse and vortex walls in case of the room temperature
experiment, while they are not taken into account in the 7" = 0 simulation. Thus we
can expect that for temperatures above room temperature, the upper experimental
phase boundary is shifted to lower thickness and approaches the theoretical phase
boundary. In other words, transverse walls formed at room temperature change to
vortex walls with rising temperature.

In addition to studying domain wall spin structures in Permalloy and Co, we have
also used XMCD-PEEM to image domain walls in amorphous CoFeB [42]. Here we
find that due to the reduced saturation magnetization, transverse walls prevail for all
the geometries studied (up to 1,500 nm width and 20 nm thickness) [42].

Transverse and vortex walls have also been imaged using TXM [43], and vortex
cores have been imaged by STXM [44,45] and electron holography [29] in 3D metal
structures with similar geometries to those we discussed here.

13.3.3 Further Head-to-Head Domain Wall Types

The description in the context of the phase diagrams presented here is limited to
a certain geometry regime and to soft materials with no or low magnetocrystalline
anisotropy. In structures with material-specific anisotropies and in elements that are
significantly wider than ~1 pum, we observe more complicated domain wall spin
structures such as distorted transverse walls, and these are discussed in detail in
[14,46,47].

13.3.3.1 Complex Wall Types in Permalloy

In general, in wider structures, the influence of shape anisotropy is reduced and thus
more complicated spin structures can constitute local energy minima and become
observable. To classify these wall types, the notion explained in Fig. 13.4 was
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Fig. 13.4 Further domain wall types in a 1 pwm wide and 28 nm thick Permalloy wire. The magne-
tization direction is given by the gray scale bar: (a) Single vortex wall (VW type) located next to a
kink in the wire; (b) Double vortex wall with two parallel vortices and an antivortex in between (2P
type); (¢) Micromagnetic simulation of such a 2P wall visualizing the spin structure; (d) Double
vortex wall with two antiparallel vortices (2AP type); (e) Extended vortex wall; (f) Triple vortex
wall with three parallel vortices and 2 antivortices (3P). In (g) and (h), TXM images of domain
walls in 960 nm wide and 80 nm thick permalloy wires are shown. The spin structure of the 2P
type in (g) agrees well with the PEEM image in (d), while (h) shows a more complicated wall
type. ((a—f) from [49], (g, h) courtesy of G. Meier taken at the XM-1 microscope at the Advanced
Light Source in Berkeley)

suggested [48,49] and will be used here. Apart from the simple single vortex wall
(Fig. 13.4a), more complicated wall spin structures including vortices with the same
sense of rotation (parallel P) or opposite sense of rotation (antiparallel AP) are found
(Figs. 13.4b—f). One of the reasons that such spin structures are stable in very thick
structures is the magnetic stray field that is present for single transverse or vortex
walls due to magnetic (pseudo-) charges at the edge of the structure as discussed in
detail in [48]. Observation of the double vortex wall with antiparallel vortices (2AP)
was also reported using MFM [50] and transmission electron microscopy techniques
[51]. In Fig. 13.4g, a TXM image of a 2AP wall is shown, and comparison with the
XMCD-PEEM image in (d) shows nice agreement (the wall exhibits inverted con-
trast to that in (d)) [43]. To show that even more complicated spin structures can be
stable in thick wires, we present in (h) a domain wall spin structure with an even
higher number of (anti-) vortices.

13.3.3.2 Domain Wall Spin Structures in Fe;04 (Magnetite)

The performance of devices based on current-induced domain wall dynamics
depends on the spin polarization of the current. This means that it can be enhanced
using ferromagnetic materials exhibiting a high degree of spin polarization. Of par-
ticular interest are so-called half-metallic ferromagnets, compounds that are metallic
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Fig. 13.5 (a) High resolution XMCD-PEEM image of a Fe30,4 ring (D = 10 pm, nominal width
W = 1135nm) at zero-field. 90° DWs are visible in the image (marked with A). A tail-to-tail
zigzag DW (marked with B) as well as a head-to-head zigzag DW at the opposite side of the ring
are also present. Black and white contrasts correspond to the magnetization pointing to the left
and right, respectively. (b) Simulated magnetization orientation obtained from the micromagnetic
calculation for the Fe;04 ring (D = 5pum, W = 1135 nm) in the remanent state after saturation
(from [54])

for one spin component while insulating for the other spin component, thus lead-
ing to 100% spin polarization at the Fermi energy. In this context, magnetite is a
promising material combining a high Curie temperature 7c =851 K with a high spin
polarization of up to —80% at room temperature [52].

Another key difference between the soft magnetic permalloy and the magnetite is
the fact that magnetite exhibits an intrinsic cubic magnetocrystalline anisotropy [53,
54], while permalloy has no significant magnetocrystalline anisotropy. Furthermore,
previously polycrystalline permalloy has been used where all magnetocrystalline
anisotropies are averaged out anyway.

After lithographically defining various ring and wire structures in magnetite films
(the details of the fabrication process are given in [54]), the spin structure is imaged
using XMCD-PEEM. The image in Fig. 13.5 shows that (a) a FezO4 ring struc-
ture (D = 10 wm, nominal width W = 1135nm) initially magnetized along one
of the magnetocrystalline hard axes (the [001] direction) is compared with a sim-
ulated magnetization configuration obtained from micromagnetic calculations (b).
The black (white) contrast in the XMCD-PEEM image (Fig. 13.5a) reflects the hori-
zontal component of the in-plane magnetization direction pointing to the left (right).
The main difference to the magnetization configurations of polycrystalline 3d metal
rings is that here the in-plane magnetization deviates from the direction given by
the shape of the structure. Instead of following the ring perimeter, the magnetization
is divided into four domains. Within each of the domains, the magnetization points
along one of the in-plane magnetocrystalline easy axes. In the neighboring segments
of the ring, the magnetization vectors are perpendicular to each other, causing two
90° DWs at the right and the left side of the ring (marked with A). The configuration
resembles the onion state magnetic configuration observed in 3d metal rings [14].
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In this state, the FesO4 ring structure contains characteristic head-to-head and
tail-to-tail DWs, indicated by the change from black to white (and vice versa) at
the top and bottom of the ring (the position of the tail-to-tail DW at the top is
marked with B). In contrast to the transverse or vortex DWs observed in permal-
loy, the head-to-head (tail-to-tail) DWs in Fe3O4 exhibit a zigzag shape (see, e.g.,
the tail-to-tail DW marked with B). To understand the remanent magnetic states
observed in Fe3O4 rings, micromagnetic simulations of the equilibrium state at
remanence are performed as shown in (b). The gray scale for the magnetization
directions is chosen to be identical with the XMCD-PEEM image contrast in (a).
The micromagnetic simulation reproduces the four domain structure measured by
XMCD-PEEM extremely well, exhibiting two 90° DWs and two zigzag DWs. The
four domain structure is a consequence of the strong fourfold in-plane magnetocrys-
talline anisotropy of Fe304(100) films. The magnetocrystalline anisotropy favors
alignment of the magnetization along the easy axes, that is, along the in-plane
<011> crystallographic directions (diagonal directions in the figure). The forma-
tion of the observed zigzag DW structure in epitaxial Fe3Oy4 rings is the result of
the energetic compromise between the fourfold magnetocrystalline anisotropy, the
exchange, and dipolar coupling. In a ring structure, two neighboring domains meet
at 90° due to the strong magnetocrystalline anisotropy and the separating DW devel-
ops a characteristic zigzag shape to reduce the magnetic charge density compared
to a straight wall, which would have a larger magnetic charge concentration. Thus
increasing the zigzag angle, the magnetic charge density decreases at the expense of
the wall surface.

13.4 Domain Wall Dynamics

So far we have looked at static domain walls, thus the next step is to look at the
dynamics of walls. Two kinds of dynamics will be studied: (1) wall displacements,
whereby the wall propagates a distance much larger than its lateral extent, and
(2) small scale oscillations of domain walls, where the wall is deflected slightly
from its equilibrium and then relaxes back. Both types of dynamics can be excited
using magnetic fields or spin-polarized currents.

As this is a very active field of research with many open questions, we only give
a brief overview of the field and discuss rather qualitatively the behavior of the wall
velocity for a 1D model system and show examples where imaging at synchrotron
sources was used. For further information and a more quantitative and detailed dis-
cussion for more realistic wall spin structures, the reader is advised to consult the
specialized literature that we refer to.

In general, the magnetization dynamics is governed by the Landau-Lifshitz
Gilbert equation augmented by spin torque terms [8, 55]:

om(z) om(z)
ot

o1 = —yom X Heg + am X

—(u-y)m+ fmx [(u-vy)m], (13.3)
N————— N———

adiabatic non—adiabatic
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with Hegr the effective field, yo the gyromagnetic ratio, o the damping constant,
and the effective velocity u given by u = 5’;2“2 j (P is the spin polarization, the
electron charge e, the saturation magnetization M, the current density j, and the
g-factor) [56]. The non-adiabaticity parameter is in one theory [57] given by 8 =
(Aex/Asp)? (ratio of the exchange length and the spin-flip length), but the theory of
the non-adiabaticity is still hotly debated.

The first two terms account for precession and damping, whereas the third term
is the adiabatic spin torque term due to the injected current, and the fourth term is
called the non-adiabatic spin torque term (even though it can originate from spin
relaxation as well as from non-adiabatic transport). As we limit ourselves here to
a brief overview, the reader is referred to reviews and more specialized literature
[24,25,56-58] for an in-depth discussion of the effects of these terms.

13.4.1 Field-induced Domain Wall Propagation

When a field is applied to a system, this tilts the energy potential and so a domain
wall will move to a new energetically favorable wall position. If the field is suf-
ficiently high to overcome the local wall pinning, the wall will move to this new
equilibrium position. In a smooth wire with no pinning sites, this means that
even very small fields move the domain wall. The actual field-induced propaga-
tion process was studied in an analytical model by Walker and Schryer [59] for
180° walls with an easy axis. They found that walls should move with a velocity
v = (yA/a) - H, with y the gyromagnetic ratio, A the wall width, and « the
damping constant. As the field is increased, the wall deforms (the details depend-
ing on the wall type) and at a critical field Hwayer, the so-called Walker breakdown
occurs, where the wall spin structure transforms periodically [59]. A very thorough
theoretical micromagnetic investigation of the behavior of realistic transverse and
vortex head-to-head domain wall spin structures under applied fields was carried
out recently [60]. In general, an increase in the velocity up to a Walker field is
observed. For higher fields, depending on the geometry and field, different transfor-
mations including vortices and antivortices were found to occur, which are described
in detail in [60]. Theoretically, the influence of roughness on wall propagation was
also investigated and rough wires were found to suppress the vortex nucleation [61].

Experimentally, the field-induced wall motion of head-to-head domain walls was
studied by a number of groups using various techniques from magneto-resistive
measurements [62, 63] to magneto-optical microscopy [64]. Their experimental
results agree well with the theoretical predictions and they can even detect the
periodic transformations that set in above the Walker breakdown [63].

13.4.2 Current-induced Domain Wall Propagation

The influence of a current on a domain wall was investigated theoretically some
time ago [66], but only recently controlled propagation of single domain walls has
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Fig.13.6 Simulation of the wall velocity as a function of the injected current density j (details of
the simulation and the units used, see [65]). The damping constant is « = 0.02 and three different
values of the non-adiabaticity parameter 8 are used: § = 0 (red empty squares), p = 0.02 = «
(black discs), and B = 0.1 (light green diamonds). The filled symbols correspond to motion with
no domain wall transformation (below the Walker breakdown), while the open symbols signify
motion including wall transformations (from [65])

become possible [14,43,67-74]. The displacement is due to the transfer of angular
momentum (adiabatic spin torque) and linear momentum (spin torque due to non-
adiabatic transport and spin relaxation) from the conduction electrons to the domain
wall, thus leading to current-induced domain wall motion in the direction of the
electron flow [56,57,75].

The theoretically expected velocity as a function of current density is depicted
in Fig. 13.6 [65]. The behavior depends on the parameter B, which accounts for
the torque arising from non-adiabatic transport and spin relaxation that probably
dominates for wide domain wall in Permalloy (for details see [56, 57, 65]). For the
purely adiabatic case (8 = 0, red squares), a high critical current density j. is
observed as predicted by Thiaville [56] and Zhang [57], and the velocity follows
a /(j2 — j2) behavior [75] and approaches an effective velocity for large current
densities as detailed in [14, 56]. If non-adiabatic transport or spin relaxation exist
(non-adiabaticity parameter § # 0), the critical current density is reduced to zero
for an ideal wire and the velocity increases at first linearly with current density.
For the case that the non-adiabaticity parameter is equal to the damping constant
(B = «, black discs), the velocity increases always linearly and the wall is not
deformed. For B8 # 0 and B # o (green diamonds), the velocity scales with g up to
a peak at the Walker current density. Above this, wall transformations set in (open
symbols in Fig. 13.6) [74].

An example of experimentally observed domain wall displacements is shown
in Fig. 13.7. We see in Fig. 13.7a that a vortex head-to-head domain wall and
Fig. 13.7b a transverse head-to-head domain wall is displaced by a current pulse
with a high current density of 10> Am™2 in the electron flow direction. Dynamic
measurements of the velocity have been carried out by Hayashi et al. for the case
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25ps, 1012A/m?2
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Fig. 13.7 (a) Photoemission electron microscopy images of the displacement of a vortex wall
by current injection in a 28 nm thick, 1 pm wide permalloy wire. The gray scale bar shows the
magnetic contrast direction for all the images. (b) shows the displacement of a transverse wall in
a 7nm thick and 500 nm wide wire. In both cases, the wall spin structure stays the same after the
displacement

Fig. 13.8 A sequence of XMCD images of current-induced DW transformations. The bottom row
shows results from a corresponding simulation. (a) Initial TW (vertical contrast). (b) A 25 s pulse
transforms the TW to a VW. (¢) A TW with opposite magnetization is formed after a second pulse.
The dark spot close to the DW results from a channel plate defect. (d) The next pulse creates an
off-center VW. This intermediate state is direct evidence for the transformation mechanism (from

[74])

of a domain wall which is dynamically generated. Here, high velocities exceeding
100m s~! have been reported [73]. Starting with a domain wall at rest, slower veloc-
ities have been observed for pure current-induced wall motion as seen in Fig. 13.7
[67,69].

As the current density is increased, wall transformations are theoretically pre-
dicted above the Walker critical current density if § # «. To observe such trans-
formations, we use a geometry close to the phase boundary where both transverse
and vortex walls are stable (1500nm wide, 8 nm thick) [14, 74]. After generating
a transverse domain wall with a field, we switch the field off and we inject 25 ps
long current pulses with a current density of 1 x 102 A m~2. The magnetization is
imaged after each injection. In Fig. 13.8, a sequence of images of a DW after consec-
utive injections is presented. The top row shows the recorded experimental images
and the bottom row shows results from a corresponding micromagnetic simulation.

The initial transverse wall in Fig. 13.8a has a dark triangular contrast, indicating
that the spins are pointing downwards, as shown in the corresponding simulation.
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After the first current pulse, the initial transverse wall is displaced in the direc-
tion of the electron flow and transformed to a clockwise vortex wall, Fig. 13.8b. A
subsequent pulse injection brings back a transverse wall (Fig. 13.8c) but now with
transverse spins pointing upwards corresponding to a white contrast. A next pulse
is expected to result again in a vortex wall. However, we observe an intermediate
state (Fig. 13.8d), which occurs further on when the vortex wall is on the way trans-
forming back to the original transverse wall (Fig. 13.8a): the vortex core is pushed
from the center position towards the bottom edge of the wire and we see it halfway.
Normally this state should immediately relax back into a vortex wall, but probably
a small material defect stabilizes this off-center vortex wall. This intermediate state
is direct evidence for the transformation mechanism suggested by theory if 8 # «,
namely the perpendicular motion and eventual annihilation of the vortex core.

13.4.3 Field- and Current-induced Domain Wall Excitations

So far we have not actually done any real dynamic imaging, as the wall propagation
was simply studied by imaging the wall before and after the pulse. This is due to
the fact that dynamic measurements at the synchrotron can only be carried out in a
pump-probe approach. A pump-probe measurement requires a repeatable measure-
ment though, where the original situation is restored before every pump excitation.
For the domain wall motion, this is obviously not the case as the wall after the
pulse has been displaced and is thus in a different position. To make use of the time
structure of the synchrotron and carry out real dynamic measurements, we need to
resort to excitations combined with a restoring mechanism that resets the experiment
before each pulse.

An example of an experiment that probes the real dynamics is the pulsed excita-
tion of a pinned domain wall and other confined magnetic structures. Here a constant
restoring force is provided either by a constant applied field or by the geometry
that acts to keep the wall in a certain pinned position. We then apply a short field-
or current-pulse excitation to deflect the wall and watch it relax into the original
position.

Current-induced excitations have been difficult to study due to the impedance
mismatch for current injection. The magnetic nanostructures usually have resis-
tances far above 50 €2, which make the injection of ultra-fast current pulses difficult.
Furthermore, quite often the contacts are close to the spin structure of interest, and
nonhomogeneous current flow in the contact region can lead to Oersted fields, so
that the excitation is due to a combination of currents and fields [76-78].

While further experiments of current-induced excitations are under way, we
focus here on field-induced excitations, where the interpretation is easier and a more
coherent picture of the underlying physics has been formed. Field-induced pulsed
and ac excitations of various spin structures such as vortices have been imaged using
for instance XMCD-PEEM [79, 80] and STXM [44], and here we present details of
field-induced domain wall excitations.
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Hpulse
Hstatic J

Fig. 13.9 Scanning electron microscopy (SEM) image of the 20 nm thick permalloy structures on
a 10 wm wide coplanar waveguide. The direction of the static magnetic field and the pulsed field
due to the current in the waveguide are indicated

Fig. 13.10 XMCD-PEEM images of the domain wall before the pulse (a) and 200 ps later during
the pulse (b). The sub-nanosecond field pulse deflects the domain wall to the left with a very high
velocity of more than 1,000ms™!. Note that the image is turned by 90° compared to the SEM
image in Fig. 13.9

13.4.3.1 Field-induced Dynamic Wall Deflection

To investigate the domain wall dynamics, we image the wall motion of a wall during
a field pulse. The geometry of interest is depicted in Fig. 13.9. A small static field
H,ic of 4mT is applied to act as a restoring force that tries to keep the domain
wall in the center of the structure. Then a field pulse is generated by a short current
pulse in the coplanar waveguide underneath the structure. This pulsed field points
perpendicularly to the static field and acts to displace the domain wall in the direc-
tion of the field. The field pulse has a very short rise time of <150 ps and reaches a
maximum of around 3.5 mT. The pulse then decays on a timescale of a few hundred
picoseconds.

The resulting deflection of the domain wall is shown in Fig. 13.10. In (a) the wall
is in its initial position centered in the structure. As the field pulse is applied, the
wall moves towards the left in the direction of the pulsed field. This is reflected
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in the increase of the white area where the spins are pointing to the left. The dis-
placement reaches a maximum of about 150 ps after the pulse peak, which indicates
that wall motion lags slightly behind the field. The velocity of the wall reaches
very high values above 1,000 m s~L, which bodes well for using field-induced wall
displacements in applications with fast operating speeds.

We see in Fig. 13.9 that there are also structures with notches. Such structures
can be used to study domain wall excitations without a static field, as the pin-
ning is achieved due to the geometry of the notch [14, 81]. Further details of such
experiments can be found in [82].

13.5 Summary

We have presented an overview of the domain wall spin structures and the dynamics
investigated by synchrotron-based techniques. Different techniques allow for high
resolution magnetic imaging and by this the nanoscale magnetization configuration
is ascertained. Making use of the time structure of the synchrotron radiation, the
high frequency dynamics of a domain wall is determined and wall displacements on
the picoseconds timescale are imaged.
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Chapter 14
Dynamics of Mesoscopic Magnetic Objects

C. Quitmann, J. Raabe, A. Puzic, K. Kuepper, and S. Wintz

Abstract We report on the dynamic properties of mesoscopic magnetic objects.
Such objects have dimensions somewhat larger than the magnetic exchange length .
This leads to relatively simple and stable patterns of the magnetization, which can be
excited using magnetic field pulses. The subsequent dynamics can be studied using
X-ray-based magnetic microscopy. We show examples of high symmetry structures
where the dynamics is relatively simple and can be analyzed quantitatively in terms
of amplitude, frequency, damping, and symmetry.

Intentional defects allow modifying specific modes. When using high amplitude
excitations, the magnetization in such structures can be switched.

14.1 Introduction

Magnetic materials have fascinated mankind ever since their discovery many thou-
sand years ago and have led to wide spread application ranging from compasses for
navigation over generators and electro motors to modern data storage media.

Such applications have been possible only because of an ever better understand-
ing of the fundamental properties of magnetism and because of the subsequent
possibility to tailor these properties for specific applications. Until the 1950s, the
interest focused on static behavior of magnetic materials. With the advent of RF-
technology, the interest in dynamic aspects arose. At the same time, RF-technology
enabled ferromagnetic resonance (FMR) experiments [1, 2]. Such experiments are
performed on macroscopic samples having typical sizes of millimeters. Today
technology requests an understanding and optimization of magnetic properties of
materials on a scale of micrometers and below for applications in magnetic data stor-
age and high frequency electronics. This has led to substantial efforts for studying
magnetic properties with the highest possible spatial (Ax) and temporal (At) res-
olution [3-5]. Synchrotron-based X-ray microscopy has evolved as a technique
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providing such information with up to several 10ps temporal and about 20 nm
spatial resolution.

We give an overview of the technique, describe results for simple geometrical
structures, and show how the dynamics in such simple structures can be modi-
fied using intentional defects. Finally, we discuss excitations with higher amplitude,
which can induce switching of the magnetization.

14.2 Macroscopic vs. Mesoscopic Magnetic Objects

14.2.1 Magnetic Interactions and Domains

The origin of ferromagnetism is the exchange interaction changing the energy of the
system by an amount A E . if the spins on atoms 7 and j are aligned parallel. In a
localized electron model, it is given by

AEexc = J,"j ¥ -Sj. (141)

This exchange energy favoring parallel spin alignment (J; ; < 0) and thus
homogenous magnetization M of the entire sample is counteracted by the stray field
energy Eq4

Eq= —% / HMAV. (14.2)
sample

The stray field Hq is a consequence of the sample magnetization M and becomes
large if the magnetization M points into the same direction over a significant
volume V. Such a region is called a magnetic domain. Thus, it is energetically favor-
able to form finite sized domains with homogenous magnetization and with adjacent
domains having opposite direction of the magnetization [6]. This reduces the stray
field energy Ej4, but increases the total energy because of the higher exchange energy
E. along the interface between two domains, the domain wall. Domain configu-
rations keeping the entire magnetic field within the sample are called flux closure
structures and are often the lowest energy state of a magnetic system. The mini-
mum distance over which the magnetization can change direction is given by the
exchange length &, which can be estimated from measurable parameters using

£~ \/% ~ (1 —10) nm. (14.3)

Here A is the exchange constant and K is the effective magnetic anisotropy con-
stant [6]. In soft magnetic materials like permalloy (Fe,oNigg), the exchange length
€ is typically of the order of a few nanometers. The exchange length determines the
width of the domain walls and of the vortex core formed in flux closure structures.
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Vortex

Domain
wall

Domain

Fig. 14.1 Difference between macroscopic and mesoscopic magnetism shown by the stray field
of a macroscopic bar magnet visualized using small ferromagnetic particles (a), the simulated
magnetization in a mesoscopic soft magnetic square showing a Landau flux-closure pattern (b),
and the energy density in the same mesoscopic square (c)

The formation of domains is the reason why macroscopic samples usually have
saturation magnetizations far below what one would extrapolate from the atomic
scale. To study the fundamental magnetization dynamics, it is essential to use sam-
ples containing a single or a few well defined domains. Otherwise, one obtains
an average over many domains, which does not reveal the fundamental process
and time scales of the material. Samples with a well defined number and arrange-
ment of domains have dimensions larger than the exchange length £ but usually not
exceeding about 100 pwm and are called mesoscopic.

Figure 14.1 shows the difference between a macroscopic and a mesoscopic sam-
ple. The macroscopic sample (a) is a bar magnet with its stray field Hy made
visible using fine iron particles. The stray field contains an energy Ejy, is dipolar,
and extends to infinity. The mesoscopic sample (b) is a square with side length
a ~ pm. The arrows show the orientation of the magnetization within the square
as predicted by micromagnetic simulations. The magnetization lies in the plane of
the square. The square contains four homogenously magnetized domains oriented
at 90° to each other [6]. Together they form a so-called Landau flux-closure pattern,
which has no in-plane stray field. The domains are separated by domain walls indi-
cated by white lines. At the center of the square the domain walls intersect. Because
of the finite exchange length &, the magnetization rotates out-of-plane forming the
so-called vortex core. By this out-of-plane rotation, the system avoids having the
spins on two adjacent atoms antiparallel, which would be energetically very expen-
sive. This vortex core has a magnetization perpendicular to the plane pointing either
up or down. The dimensions of the domain wall and the vortex core are both given
by the exchange length £ ~ 10 nm and are thus much smaller than the dimension of
the square.

The energy density for the mesoscopic magnetic square is plotted in Fig. 14.1c.
The domains are the lowest energy density regions of the sample. Introduction of
the domain walls increases the exchange energy, resulting in a higher energy density,
but this is limited to the narrow width of the domain walls, and is compensated by
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the gain in stray field energy. The vortex core is the region with the highest energy
density and is seen in Fig. 14.1c as a narrow spike in the center.

As even an object as simple as a square contains three sub-regions (domains,
domain walls, and vortex core), it is clear that microscopy techniques are required
to understand the different dynamics in such objects. In the following, we show
how synchrotron-based X-ray microscopy can be used to study the dynamics of all
subunits in quantitative detail.

14.2.2 Magnetic Time Scales

To perform time and spatially resolved experiments on magnetic materials, it is
necessary to understand the temporal and spatial scales involved.

Figure 14.2 shows examples of the relevant time scales in magnetism. They span
more than 20 orders of magnitude. For magnetic storage, a retention time of many
years (108 s) is mandatory. Typical measurements of hysteresis loops take place on
the second scale. Here domains nucleate and grow and domain walls are moved
through the sample. These are quasi-static processes where the system can always
be assumed to be in equilibrium. In ferromagnetic resonance experiments (FMR),
the atomic spins are subject to a static magnetic field and are resonantly excited by
a microwave field. The precession frequency is given by the gyromagnetic constant
y = 17.6 MHz Oe™!, resulting in typical time scales of nanoseconds. This is also

A
—— >10%s Long term stability
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T-1%  Thermal activation:

domain nucleation & I+4]
—— 1 ms growth,viscous regime A
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= 1 <
el
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29
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Fig. 14.2 Time scales relevant for magnetism ranging from very long times (years) required for
data storage to ultra-short times (femtoseconds) relevant to processes within an atom
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the regime of precessional switching [7, 8], where switching of a magnetic moment
from up to down is suggested to happen by first resonantly exciting its precession.

The time scale around and below 1 ps has received much attention because of
the interest in ultra-fast demagnetization induced by laser pulses and the subsequent
establishment of spin—spin and spin-lattice equilibrium [8, 9].

The fastest processes are those happening within the atom. Here the time scales
can be estimated by the energy differences A E between the atomic states involved
and are given by 7(fs) ~ 4/ A E(eV). Such processes are too fast to be coherent over
many lattice sites and are mainly local intra-atomic processes.

The dynamics in mesoscopic magnetic structures happens on time scales rang-
ing from picoseconds to many nanoseconds (marked by a blue region in Fig. 14.2).
They can conveniently be studied by synchrotron radiation, which has a natural
time structure of 50-100 ps. This is given by the length of the X-ray flashes that are
produced by the electron bunches circulating in the storage ring [10].

14.2.3 Magnetic Length Scales

Magnetic length scales also vary by about 20 orders of magnitude (Fig. 14.3). The
largest magnet in practical use is the earth with a diameter of more than 10,000 km.
Its dipole field is used for navigation since more than 2,000 years. In conven-
tional engineering, the sizes of magnets range from several meters to fractions of
a millimeter. Modern hard disks store information in bits with diameters down to
100 nm. The exchange length £ determines the sizes of the smallest inhomogeneous
magnetic structures such as domain walls or vortex cores and is of the order of
nanometers. The atoms with typical dimensions of 0.1 nm are considered as the
smallest building blocks in solid-state physics.

The range of mesoscopic magnetic objects with well defined and controllable
magnetization pattern is between several 10 nm and several 10 wm. This is conve-
niently covered by X-ray microscopy, which today can resolve structures down to
about 15nm [11]. In the following, we focus on structures made out of permalloy
thin films of several 10nm thickness with diameters of about 1-20 pm. We show
that their dynamics has characteristic frequencies in the range between several hun-
dred megahertz and a few gigahertz and that damping happens on a nanosecond
scale.

14.2.4 Landau-Lifshitz—Gilbert Equation

Even today, after decades of intensive research, there exists no microscopic the-
ory consistently describing the dynamics of mesoscopic magnetic structures. Band
structure methods like LSDA [12] and its many extensions have difficulties taking
into account the correlation effects and therefore limit their efforts to description of
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Fig. 14.3 Length scales relevant for magnetism ranging from the very large (thousands of km)
as for the magnetic field of the earth to very small (Angstrom) in the case of magnetic atoms.
Mesoscopic effects appear when the sample dimensions are larger than the exchange length & but
not much larger than typical domain sizes (~1-100 pm)

the ground-state of simple magnetic transition metals such as Fe, Co, and Ni. The
models explicitly developed to take into account strong correlations like the Hub-
bard model and its variants, on the other hand, are numerically so demanding that
it is impossible to perform calculations on the required numbers of atoms and for
realistic geometries.

Thus the semi-classical equation suggested by Landau—Lifshitz in the 1930s and
extended by Gilbert in 1955 [13] is still the most used equation. It relates the rate
of change of the magnetization M to a torque term caused by the effective field Hg
and to a phenomenological damping term. The damping term ensures that for long
times M becomes parallel to H .

dM dM
T —M X Her + o (d_t X M) . (14.4)
The effective field is the sum of many terms containing the applied external
field H ,,p;, the saturation magnetization M, the demagnetizing field Hg, anisotropy
fields H yniso, the exchange field Heyc, etc. The damping is parameterized using an
empirical constant, which for permalloy is typically @ ~ 0.01. The original equa-
tion has been extended by many people to take into account additional effects such
as spin—torque [14]. This Landau-Lifshitz—Gilbert equation (LLG) can be applied
to mesoscopic magnetic structures by calculating the magnetization M for an array
of voxels (typically about 100 nm?), each treated as a macro spin. The effective field
H g is calculated by summing up all contributions, including the sum over M from
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all voxels. Time-dependent calculations are done by the use of discrete time steps
of typically a few picoseconds. As soon as the magnetization in one voxel of the
sample deviates from the equilibrium orientation, it influences all other voxels, thus
leading to a coupling between the voxels.

Many implementations of the LLG equation exist [15—-17] and are used to simu-
late the behavior of mesoscopic magnetic objects and to assist in the interpretation
of experiments.

14.2.5 Experimental Techniques

Imaging the dynamics of mesoscopic magnetic structures requires high spatial Ax
and temporal A¢ resolution [18]. Two popular methods fulfilling these requirements
exist. Magneto-optical Kerr effect [19] uses the rotation of linearly polarized visible
light when reflected from a magnetic surface. As this rotation is proportional to the
magnetization at the point r and time ¢ of the reflection, it can be used to measure
M(r, t). The polarized visible light is produced by a laser. This has the advantage of
very high temporal resolution At ~ fs, but the disadvantage of diffraction limited
spatial resolution Ax ~ /2 ~ 200 nm.

X-ray microscopy using tunable and pulsed X-rays from a modern synchrotron
is the other. Its advantage is the superior spatial resolution, which can reach Ax =
15nm and the ability to image separately different chemical elements and thus
investigate multilayer samples. The disadvantage is the time resolution, which is
given by the length of the X-ray pulses. These have typical values of Atpynm ~ 75 ps
at most modern synchrotrons. Details of the experimental technique are described
in [10] for the work by the authors. A review of current work using photoemis-
sion electron microscopy (PEEM) is given by Locatelli et al. in [20] and by Nolting
[21]. A review of time-resolved microscopy was recently compiled by Elmers et
al. [22]. An alternative device to the PEEM is a scanning X-ray microscope, which
is also often used in general materials and environmental science and for biology
[23,24]

All X-ray techniques for magnetic imaging make use of X-ray magnetic circular
dichroism (XMCD). This is the difference in X-ray absorption Ixas(r) depending on
the relative orientation of the magnetization M(r) and the X-ray circular polarization
vector P. It was first observed by Schiitz et al. at the K-edge of transition metals
[25]. Later it was realized that the effect is much stronger at the L-edges [26, 27].
Today it is generally assumed that the difference in the resonant absorption at the
L3- and L,-edges of transition metals, when switching the helicity of the X-rays, is
proportional to the magnetization, M ~ Alxas(E2p) = I)‘(" 'us — Ixas- By changing
the relative orientation of the circular X-ray polarization P and the magnetization
M, one can measure the relative orientation Alxas ~ P - M. Because the effect
happens at the absorption edges of the magnetic transition metals (Fe, Co, Ni), it is
element specific.
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Measuring the dynamic properties on a sub-nanosecond time scale requires a
stroboscopic pump-probe approach because the photon flux is by far not sufficient
to create an image of reasonable quality using a single X-ray pulse. In fact, one
needs to average over about 10° pump-probe cycles to obtain reasonable signal-to-
noise ratio. Such an experiment is thus sensitive only to repetitive dynamics, which
can be averaged over a large number of cycles. All random fluctuations average out
and are invisible using this technique.

The experiments shown in the following have all been performed on thin mag-
netic films with a typical thickness of 30 nm. They are lithographically produced
on top of a coplanar wave guide (gold: width = 10 wm, thickness =200 nm). The
current in the wave guide produces a magnetic field pulse within the plane of the
sample. It has an amplitude of several 10 Oe and a rise time of about 200 ps.

Complementary techniques used are conventional FMR [4, 28, 29] and
X-ray detected ferromagnetic resonance (X-FMR) and magnetic force microscopy.
Because FMR is a resonance-based technique, it is excellently suited to measure
frequencies and damping of periodic processes. While conventional FMR is not ele-
ment sensitive at all, this limitation has recently been overcome by using XMCD as
the detection method [30,31]. So far these FMR based techniques are not performed
with spatial resolution.

Magnetic scanning probe microscopy has by far the best spatial resolution: it
is done by spin-polarized scanning tunneling microscopy (SP-STM) [32] or by
magnetic force microscopy (MFM) [33]. However, acquisition of a high resolu-
tion image typically requires minutes and therefore MFM not suited to study fast
dynamics.

14.3 Dynamics in Simple Squares

14.3.1 Static Mesoscopic Structures

Before studying the dynamics of mesoscopic magnetic structures, we show results
on their static properties. Figure 14.4 shows magnetization patterns for the equilib-
rium state of simple geometrical objects. The sample is an exchange coupled mul-
tilayer of Cobalt and permalloy (PY) separated by a thin nonmagnetic Ruthenium
layer (PY 3 nm/Ru 0.8 nm/Co 50 nm). Shown are a circle, a square, an ellipse, and
a rectangle. We first discuss the top PY layer imaged using the Fe-2p edge at an X-
ray energy of 708 eV (top row). The structures show clear contrast originating from
the varying orientation of the magnetization M(r) with respect to the polarization
P. Regions of the sample showing high intensity (white) are aligned parallel to P
while those showing low intensity (black) are antiparallel. Grey regions are at right
angles to P. Theoretically they might be at 90° or 270° to P. But as the structures
are known to show flux closure patterns, a unique determination of M is possible.
This can be verified by rotating the sample 90° around the surface normal, as will
be shown in Fig. 14.7.
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Fig. 14.4 Examples of magnetization patterns in geometrically simple magnetic objects of a mag-
netic trilayer permalloy 3 nm/Ru 0.8 nm/Co 50 nm. The circle (a) and square (b) show flux closure
patterns, the ellipse (c¢) has a diamond pattern, and the rectangle (d) contains four cross-tie walls.
Each of the domains in the top permalloy layer is antiferromagnetically coupled to its domain in
the underlying Co-layer

The Landau-flux closure structures observed for the square (a) and the circle (b)
are the lowest energy state and are quite stable. The experimental magnetization
pattern of the square compares well to the simulated result shown in Fig. 1. One
observes the four domains with magnetizations rotated by 90° relative to each other,
leading to the flux closure state. The domain walls are visible as the sharp lines
separating the domains. The vortex core is located at the intersection of the two
domain walls. It is below the resolution of the PEEM (Ax ~ 50 nm). The circle has
a magnetization continuously rotating around the perimeter (M is perpendicular to
the radius vector). In the center, the circle also contains a vortex core pointing either
into or out-of the plane.

The magnetization pattern of the ellipse (c) and the rectangle (d) are already more
complex. The ellipse has a so-called diamond configuration. This can be thought of
as consisting of two flux closure structures each containing one vortex core. They
are joined by a common black domain in the center. The diamond pattern is slightly
distorted (black domain shifted to the left), probably due to some material defect
in the film or because of roughness along the edge caused by the lift-off process
employed for the fabrication.

The rectangle shows an even more complex pattern. Again it can be thought of
as having two flux-closure patterns, one on each end. In the middle, however, there
are four vertical lines of alternating dark—bright contrast. They are the consequence
of cross-tie domain walls [34, 35]. This is not the lowest energy configuration for
a rectangle and shows that even for simple geometries the magnetization pattern
can be complex. In practice, the energy differences between different magnetization
patterns can be quite small, leading to many almost degenerate configurations.
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Experimental results and theoretical predictions on the variation in magnetization
patterns and their relative abundance agree quite well [36].

Comparing the magnetization pattern for the PY-layer (top) with the underly-
ing Co-layer (bottom), one observes a one-to-one correlation of the magnetization
patterns. For all structures, the magnetizations in the PY- and the Co-layer are
antiparallel. This is a clear proof of the antiferromagnetic exchange coupling medi-
ated by the nonmagnetic Ru layer (0.8 nm thickness) [37]. This antiferromagnetic
coupling is true down to the fine details like the asymmetry of the diamond pattern
in the ellipse (c) and to the number, size, and locations of the cross-tie walls in the
rectangle (d).

This behavior shows that the exchange coupling is a local phenomenon occur-
ring on a scale comparable to or smaller than the exchange length, which is about
10nm in Permalloy. A similar local character of exchange coupling is known for
antiferromagnets as well [38].

14.3.2 Pulsed Field Excitations

In this section, we analyze the dynamics of mesoscopic magnetic squares. The
squares are excited by a short magnetic field pulse Hp oriented in the plane of the
thin film. Ideally, the pulse is a delta function and thus excites all magnetic modes.
In reality it has a finite rise time, which sets an upper limit for the frequencies that
are excited.

14.3.2.1 Sequence of Dynamics

Characteristic time steps of the dynamics in a permalloy square of a = 6 pm side
length are given in Fig. 14.5 for the equilibrium state and three delays up to At =
1,667 ps [39]. A color wheel shows the color scale used to represent the relative
orientation of M(r) and P. The equilibrium state (A¢ = 0 ps) shows the well known
Landau-flux closure state. Arrows indicate the orientation of the magnetization in
the four domains, and dashed lines indicate the domain walls.

At a delay of At = 467 ps, the two domains oriented perpendicular to the field
pulse Hp have rotated towards the y-direction. The torque exerted by Hp has caused
a precession of the magnetization. This precession is essentially in the plane of the
film [39]. The amplitude of this coherent precession has a maximum around A¢ =
500 ps, indicating a precession frequency of about Az ~2 GHz. The domains with
magnetization parallel or antiparallel to the field pulse initially show little change
because there is no torque acting on them [40].

At adelay of At = 667 ps, we observe a bulging of the domain walls. The walls
that are straight lines in the equilibrium configuration are bent. This is a consequence
of the precession in the domains. The deviation of M away from the equilibrium
state has modified the effective field H.¢ at other locations within the square, thus
leading to the bending of the domain walls for example.
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Fig. 14.5 Permalloy square shown at distinct time delays At after excitation by a magnetic field
pulse Hp. Prior to the excitation (0 ps) it displays a Landau flux closure pattern, and after At =
467 ps, one observes coherent domain precession in the top and bottom domains. This is followed
by domain wall bulging around 667 ps and finally by vortex motion perpendicular to Hp at 1,667 ps

For long delays, we observe a motion of the vortex core towards the left as seen
for At = 1,667 ps. The intersection of the domain walls (dashed lines) has shifted
by about 750 nm, as shown below, indicating an initial vortex core velocity of about
450ms~1.

Similar experiments on mesoscopic magnetic squares have been done by several
groups. In several of these experiments, a gyrotropic spiraling motion of the vortex
core has been observed [41-43]. The gyration occurs with a frequency given by Hg¢
and a direction given by the core orientation (up or down).

14.3.2.2 Coherent Domain Precession

We now look in more detail at the coherent precession within the domains. For
this we plot the time dependence of the magnetization M, (At) averaged over a
small region in the sample in Fig. 14.6 [40]. This is done for two orientations of the
sample, polarization parallel to the field pulse Hp (left) and polarization perpendic-
ular to the field pulse Hp (right). Rotating the sample like this allows measurement
of both in-plane components (M, (At): left, M (At): right). This gives maximum
sensitivity to small deviations from the equilibrium orientation.

First we discuss the domains with magnetization perpendicular to the exciting
field pulse. These domains experience a torque T' = M, x H,(At) resulting in
coherent precession as discussed in Fig. 14.5. Here in Fig. 14.6 (left), this coherent
precession is seen as an oscillation of the magnetization M, showing four periods
over about At = 2.5ns. The oscillation is identical (within experimental error) in
the two areas investigated, which are indicated by circles (green and black) in the
inset. As these are located on opposite sides of the symmetry line, the precessional
mode is symmetric.

The situation in the domains at right angles to the field pulse is different. Not only
is the amplitude lower by about a factor of four, but also regions on opposite sides
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Fig. 14.6 Coherent domain mode in a square (side @ = 6 um) probed in two geometries to obtain
high sensitivity to changes in the domains with magnetization perpendicular (left) and parallel
(right) to the applied field pulse Hp. The inset shows the geometry used and the areas over which
the magnetization was averaged to obtain its time dependence

of the symmetry line oscillate with opposite phases. Thus the precessional domain
mode in these domains is antisymmetric.

Such local spectra can be fitted to damped oscillation to provide precise values
of the oscillation frequency, amplitude, and damping [39]. By taking such spectra
for each pixel in the image and then Fourier transforming the spectrum, it is also
possible to calculate the eigen frequencies. The spatial distribution for each of the
eigen frequencies is then given by the amplitude of the Fourier-components at this
frequency [10,39,44].

To investigate the response of the vortex core following the excitation pulse, we
show the results for two squares of identical size (¢ = 6 um) but with a different
orientation (Fig. 14.7). The top row shows squares aligned parallel to the field pulse,
while the middle row shows squares of the same size, but oriented at 45° relative
to the field pulse. The geometry of polarization P and field pulse Hp is shown by a
sketch on the left. The square tilted by 45° is seen to have only two shades of grey.
The light grey results from the two domains with the magnetization oriented at 45°
(left half of the square), while the dark grey results from those oriented at 135° with
respect to P.

The vortex displacement is measured by comparing the intensity in four boxes
surrounding the equilibrium position of the vortex core, similar to a quadrant detec-
tor. The displacement is mainly in the direction perpendicular to the field pulse. It
rises rapidly reaching a maximum and then decreases very slowly back to zero. For
both orientations of the square, the initial rise is completed after about At = 1.2ns,
but the amplitude is different. While in the square aligned to Hp the vortex core
moves by ~750nm, it moves by ~1,420nm in the square rotated by 45°. This
results in vortex speeds of 625 and 1,180ms™!, respectively.
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Fig. 14.7 Sequence of images of squares (side @ = 6 um) showing equilibrium (Az = 0) and
subsequent excited states. Note the different amplitude in the motion of the domain walls and the
vortex core between squares aligned to the exciting field pulse Hp (fop) and those tilted by 45°
(middle). Quantitative values for the vortex motion parallel and perpendicular to the applied field
pulse Hp are given in the graph (bottom)

The vortex core is moved by a larger amount and at higher speed in the tilted
squares because here the field pulse exerts a torque upon the magnetization in all
four domains and not only in two, as is the case for the square aligned to Hp.

After having shown how the three subcomponents of a mesoscopic magnetic
square react to an exciting field pulse, we show how their response can selectively
be influenced in the next chapter.

14.3.2.3 Tuning the Response of Mesoscopic Magnetic Objects using Defects

The magnetization in mesoscopic magnetic squares consists of different subcom-
ponents with very different energy densities (see 14.1). The high energy density
components like the domain wall and the vortex core are stabilized by the gain in
stray field energy E4 resulting from the flux closure pattern.

As the domain wall and the vortex core have a high energy density, they can
be pinned to a certain point in the mesoscopic object if this region is made non-
magnetic. Focused ion beam milling (FIB) allows controlled introduction of such
nonmagnetic defects into thin film samples. For this, a finely focused beam of high
kinetic energy ions is directed onto the sample. By properly selecting the ion type
and the kinetic energy, one can either remove the magnetic thin film creating a hole
or destroy the magnetism by ion-induced defects and doping [45,46].
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Fig. 14.8 Defects in mesoscopic magnetic squares produced using a focused ion beam (FIB). The
defects are clearly visible as dark spots in the scanning electron microscope (SEM) images (top).
The PEEM images show the magnetic domain configuration of the same squares (middle). Here the
defects are not well visible. The micromagnetic simulations (botfom) show that the defects cause
a change of the magnetization only in a small region, which is close to the resolution limit of the
PEEM

An example of defects created using FIB is shown in Fig. 14.8. In the scanning
electron microscope (top), they show up as dark spots. Shown are three squares with
defects along the domain walls (left and center) or in the domains (right). These
squares were imaged in the PEEM using the geometry shown schematically at the
bottom. In the PEEM image the defects are not clearly visible. Their diameter is
given by the region irradiated using the FIB. This needs to be comparable with the
width of the vortex core or the domain wall (~£) to be an effective pinning site.

The micromagnetic simulations show that as expected the changes of the mag-
netization produced by the defects are limited to a distance a few times the size of
the defects. Because the size of the defects is close to the resolution of the PEEM,
they are not clearly visible in the PEEM images.

To show the effect of pinning on the dynamics, we present a sequence of images
of these defect containing structures following the excitation by a field pulse Hp
(Fig. 14.9). Results are shown for two squares rotated by 45° relative to the exciting
field pulse Hp. One of them (configuration I) has a single defect in the center, which
pins the vortex core. The other (configuration II) has two additional defects pinning
domain walls.

Comparing the results shown for the defect containing squares in Fig. 14.9 with
those of the defect free squares in Fig. 14.7, we observe clear differences. The
defects pin the vortex core and thus hinder both the core motion and the domain
wall bulging. For defect free squares, the core and the domain walls move along the
—x direction (see Fig. 14.7, At = 1,267 ps). The small defect apparently pins the
vortex for configuration I, thus also significantly reducing the bulging of the domain
walls. In the difference images M(r, At) — M(r, At = 0) the bulging of the walls to
the —x direction is still visible (as seen by the white line in the difference images),
but the amplitude is reduced significantly. Comparing configuration I and II, we see
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Fig. 14.9 Dynamics of two magnetic squares, containing controlled defects, following excita-
tion by a field pulse Hp. Experiments (left) can be compared to simulations (right). To increase
the visibility of small changes caused by the field pulse, we show difference images M (r, At) —
M (r, At = 0) adjacent to all images

that at short delays (A7 < 600 ps) the domain wall moves visibly in both upper and
lower half of the square. For long delays (A¢ > 900 ps) the wall in the upper half
is still displaced, while in the lower half it has already returned to the equilibrium
position. Apparently, the defects become effective only once the amplitude of the
wall motion falls below a length comparable to the defect size.

The reason why the defects are more effective for the vortex core than for the
domain wall is that the energy density associated with the vortex core is much higher
than that associated with the domain walls (see Fig. 14.1c). The vortex core is also
very narrow (diameter ~ £ ~ 10nm) and the energy gain when keeping it in the
nonmagnetic defect region is very high.

Defects can thus be used to selectively influence the dynamics of the domain
wall and of the vortex. Depending on the size, number, and position of such defects,
the dynamic response of mesoscopic magnetic objects can be tailored. This will
be shown to be useful for generating bi-stable magnetic configurations, which in
principle can be used for data storage.

14.4 Vortex Dynamics and Switching

14.4.1 Current Induced Resonant Vortex Core Motion

In the following, we discuss a complementary experiment performed by Kasai
et al. [47]. This experiment uses a transmission X-ray microscope (TXM) [48] and
a resonant excitation by a spin-current.
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Fig. 14.10 (a) permalloy disk (¢ = 1.5um, t = 40nm) resonantly excited by an electrical
current and imaged using a transmission X-ray microscope (TXM) (from [47]). (b) Simulation
of the same permalloy disk using the Landau-Lifshitz—Gilbert equation including a spin-transfer
torque term. The vortex position is marked by a blue dot in both image sets and can be seen to
precess around the disk center in a clock wise direction

In contrast to our PEEM experiments discussed above, the sample in a TXM
experiment is at ground potential. This makes it easy to apply RF-signals to the
sample and to induce dynamics. In the present experiment, the magnetic sample,
a 1.5 pm diameter permalloy disk, is in electrical contact with two electrodes. In
Fig. 14.10, the electrodes are visible as faint shadows on the top and the bottom
of the circle. An oscillating current (f = 220MHz) is driven through the mag-
netic disk. Within the disk, the current becomes spin polarized because of the spin
splitting of the states at the Fermi level. This current exerts a spin torque on the
vortex. The torque is proportional to the spin polarization of the current. Because
the frequency of the oscillating current is close to the resonance frequency of the
gyrotropic rotation of the vortex core in such a disk, it excites this mode. The
effect is seen in Fig. 14.10 where the vortex core (marked by a blue dot) starts at
the center of the disk (7o = 0ns), and subsequently rotates on a circular trajectory
around the center. The experimental results in the upper half are well reproduced by
micromagnetic simulations in the lower half. From a fit of the gyration amplitude
to a harmonic oscillator, which is the solution to the LLG equation with an added
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spin-torque term, the authors obtain the spin polarization P = 0.67 &£ 0.15 and the
empirical damping constant @ = (0.01 £ 0.002).

This experiment nicely shows the complementarity between different dynamic
experiments. In contrast to the PEEM experiments described above, which employed
a pulsed excitation, this TXM experiment uses a resonant excitation to selectively
excite one particular mode. For this it uses the torque created by a current passing
through the mesoscopic magnetic disk, while in the PEEM experiments a pulsed
magnetic field was used.

14.4.2 Bistable Configurations by Pinning the Vortex Core

Using the experience obtained from studies of defects in such mesoscopic magnetic
objects and combining it with the result that the vortex core can be significantly
displaced led us to the idea of producing objects providing two stable positions
for the vortex. These are shown in Fig. 14.11. The low energy electron microscope
(LEEM) image (a) shows the topography of the sample. Two disks, each contain-
ing two defects that are located off center, are well seen. The LEEM image has
higher spatial resolution and contrast than the PEEM image, but does not provide
any magnetic information.

In Fig. 14.11b, we show a first PEEM image. The magnetization curling around
the disk center is clearly seen (clock-wise for the upper and counter-clock-wise for
the lower disk).

The same disks are shown in Fig. 14.11b, ¢ after application of about 107 switch-
ing pulses (at that time we were not able to isolate a single pulse from the train of
magnetic field pulses). The change in black/white contrast between Fig. 14.11b and
c shows that switching has taken place in both disks. The field pulse has moved the

Fig. 14.11 Permalloy disks containing two defects leading to a bi-stable vortex position. LEEM
image (a) showing the topography including the defects. PEEM image before (b) and after (c)
applying switching pulses. The switching pulses lead to a motion of the vortex core in both disks.
The chirality (blue arrow) of the flux closure pattern is unchanged upon the switching
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vortex core from one of the two stable positions to the other. While the switching
itself is easily observed, the trajectory followed by the vortex core when moving
from one defect to the other could not be observed in this experiment. So far it is not
clear whether this is due to a chaotic trajectory of the vortex in this highly nonlinear
situation, or it is due to equal probability of the vortex following an upper and a
lower trajectory, which in a stroboscopic experiment get summed up and result in
zero contrast.

14.4.3 Resonant Burst Switching

The details of vortex switching have been studied in several experiments and using
simulations. While in experiments, no one has observed the details of the switching
so far, it can well be studied using micromagnetic simulations [49].

As an example we show results obtained by van Wayenberge et al. [50].
This experiment was performed using a scanning transmission X-ray microscope
(STXM). In such an instrument, the X-ray beam is focused to a narrow diameter
and the intensity of the X-rays transmitted through the semi-transparent sample
is recorded as a function of position r and time (A¢). When scanning the sam-
ple in x- and y-direction, one can measure the spatial distribution of the X-ray
absorption coefficient in the sample /(r, At). Using XMCD, this leads to the
spatially resolved magnetization M(r, At). This STXM is attractive for magneti-
zation dynamics because it makes very efficient use of the photons, as each photon
absorbed contributes to the signal. As it is a scanning technique, no photons are lost
in uninteresting portions of the sample. In the experiment by van Waeyenberge et al.,
it was investigated how a vortex core could be switched from one direction (P 11 z)
to the other (P |1 z) using fast and low amplitude magnetic pulses. The orienta-
tion of the vortex core was measured through the gyrotropic core motion resonantly
excited by a low amplitude (0.1 mT) oscillating magnetic field. This is shown in the
left part of Fig. 14.12 (At = 0-12ns). The vortex core oscillates counter clock wise
revealing its orientation parallel to the z-direction. This is schematically shown in
the sketch at the bottom of the figure (left) where the magnetization curls around the
vortex located in the center.

At a certain moment (Az = 12ns), an RF-burst is applied to the magnetic disk.
This burst has a single cycle and an amplitude of 1.5mT. In a static situation, fields
of the order of 5T are needed to induce switching [51, 52]. However, the situation
is different when the vortex core is already excited to the low amplitude gyrotropic
motion. In this case, such a relatively weak switching pulse can induce switching as
evidenced by the change of the gyrotropic rotation to clockwise (At = 16—28 ns).

This experiment shows that knowledge about the internal modes of such meso-
scopic objects, such as gyrotropic precession, can be used to optimize their proper-
ties like core reversal.
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Fig. 14.12 Magnetic vortex core reversal by excitation with a short burst of an alternating field
(from [50]). At the bottom, the magnetization is shown schematically before (up) and after (down)
the switching. The image in the middle shows the STXM images with the vortex core gyrating
counter clockwise before the switching and clockwise after the switching

14.5 Summary

Mesoscopic magnetic objects show interesting properties on a length scale of
about 0.1-100 wm. Their dynamics is governed by collective modes. Pulsed field
excitations excite all these modes simultaneously, thus allowing to identify and
characterize the eigen-modes. Resonant excitations allow selective excitation of
specific modes. Synchrotron-based X-ray microscopy has become a versatile and
useful technique to study such systems as it offers not only the required spatial and
temporal resolution, but also the element sensitivity.

The theoretical understanding in this field is still limited by a lack of a micro-
scopic theory. However, the phenomenological Landau—Lifshitz—Gilbert equation
successfully describes the properties of these mesoscopic objects in which true
quantum effects are negligible.

Following first studies related to a basic understanding and a development of the
methods, the field is now progressing toward questions related to industrial applica-
tions like increased density and optimized switching for data storage and possible
applications of spin-torque.
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Because of the great efforts undertaken internationally and because of the wide
potential of both fundamental physics questions and industrial applications, it is
likely that in the future this type of research will produce many more interesting
results.
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Chapter 15

From Third- to Fourth-Generation Light
Sources: Free-Electron Lasers in the UV
and X-ray Range

M. Altarelli

Abstract Worldwide activities towards the realization of free-electron laser UV
and X-ray sources to produce spatially coherent, ultra-short ~100fs pulses with
very high peak brilliance (>10%8-1032 photons/s/ mm?/mrad?/0.1% BW) are sum-
marized. These sources are based on linear accelerators to overcome the limits to
brilliance imposed by the ring geometry. The scientific case includes time-resolved
studies of dynamics on sub-ps scales, structural studies by imaging of nonperiodic
systems, and investigation of high energy-density phenomena such as nonlinear
X-ray optics and the production of warm dense matter. Examples of the existing
projects are presented, with emphasis on the presently operational FLASH facility
at DESY, which delivers ultrashort coherent pulses at 6.5 nm wavelength. Projects in
the US, in Japan, and in Europe, aiming to attain the hard X-ray region, with wave-
lengths of order 0.1 nm, are described. Plans to control the time and energy structure
of the pulses by seeding and harmonic generation schemes are also mentioned.

15.1 Introduction

Synchrotron radiation sources have revolutionized UV and X-ray experiments in
many fields of science. The driving force behind the development of light sources
is the optimization of their brilliance (or spectral brightness), which is the figure of
merit for many experiments. Brilliance is defined as a function of frequency given
by the number of photons emitted by the source in unit time in a unit solid angle, per
unit surface of the source, and in a unit bandwidth of frequencies around the given
one. The units in which it is usually expressed are

photons/s/mrad?/mm?/0.1% BW,

M. Altarelli
European XFEL, 22607 Hamburg, Germany
e-mail: massimo.altarelli @xfel.eu

E. Beaurepaire et al. (eds.), Magnetism and Synchrotron Radiation, Springer 407
Proceedings in Physics 133, DOI 10.1007/978-3-642-04498-4_15,
(© Springer-Verlag Berlin Heidelberg 2010



408 M. Altarelli

where 0.1% BW denotes a bandwidth 10™3 w centered around the frequency w. In
the most modern synchrotron sources (the so-called third-generation light sources,
such as the ESREF, Elettra, Diamond, Swiss Light Source, etc.), the average brilliance
of undulator radiation reaches values up to 101°~102°, in the above units (see for
example [1]). Taking into account the pulsed nature of the sources, that is, the filling
patterns and revolution times of storage rings, this corresponds to peak brilliance
values of ~10%*. To achieve such values, two ingredients are essential. The first is
the reduction in the phase-space volume of the circulating electrons in the two trans-
verse directions (the horizontal and vertical directions perpendicular to the average
orbit). These quantities are called horizontal (vertical) emittances and are roughly
speaking a measure of the size of the electron bunch times the angular divergences
of the corresponding velocity vectors projections in the horizontal (vertical) plane.
Progress in accelerator physics allows reduction of the horizontal emittance to val-
ues of the order ~1 pmmrad. It is intuitive that the properties of small dimension
and high collimation of the electron beam translate into corresponding attributes of
the radiated photons, and therefore in higher brilliance. The second ingredient is
the extensive use of undulators as radiation sources. In undulators, the broadband
radiated power of bending magnet radiation is concentrated in a spectrum of narrow
lines, centered about the wavelengths

;y“z(l + K?/2). (15.1)

nA =

Here n = 1,2,3... is the order of the harmonic, A, is the period of the undu-
lator magnetic structure, y is the electron energy of the ring, expressed in units
of the electron rest energy, and K is the undulator parameter, a number of order
~1 given by K = y#8, where 0 is the maximum angular deviation of the elec-
trons from their unperturbed trajectory induced by the undulator magnetic field.
Equation (15.1) identifies the wavelength of the fundamental harmonic A as the dis-
tance by which one electron lags behind the emitted photons after traveling over the
distance A, from the emission point.

A substantial reduction of emittance values is hardly possible in storage ring
sources, because every photon emission event imparts a random recoil to the elec-
tron, and this happens many times at every turn, as each electron goes through all
the bending dipoles and undulators around the ring.

Another fundamental limitation of storage rings concerns the length of the
bunches, that is, the duration of the light pulses. Typically, pulse duration in stor-
age rings is limited to some ~30ps, and substantially shorter pulses can only be
achieved at the expense of dramatic reductions of the radiated intensity. This poses
a limitation to the time scales, which can be explored by time-resolved experi-
ments with synchrotron sources: at full power they are limited to the 50 ps time
scale; access to the scale of atomic motions and rearrangements (typically, sub-ps)
is possible only by techniques such as “bunch slicing,” which produce pulses of
~100fs, but with intensities limited to ~10> photons per pulse [2]. On the other
hand, there is a high demand for ultrafast experiments capable to explore atomic
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motions and configuration changes on a sub-ps time scale. The development of fs
lasers in the infrared, the visible, and near UV has shown a variety of interesting
phenomena essential for the understanding of chemical reactions, phase transitions,
etc.; only shorter wavelengths, however, can resolve smaller and smaller distances,
and ultimately only X-rays can provide us with atomic position information.

In the following sections, we shall review progress in the realization of UV and
X-ray FEL (free-electron laser) sources, based on linear accelerators, which allow
generation of transversely coherent ultrashort (typically 10 — 100 fs) pulses, with a
spectacular increase of some nine orders of magnitude in peak brilliance.

15.2 The SASE Process and Short-wavelength
Free-Electron Lasers

In the undulators of a synchrotron source, electrons are forced to follow a zigzag tra-
jectory by the device magnetic field. There is a definite phase relationship between
the radiation emitted by the same electron at different points of the trajectory, and
as the fields overlap (the angle 6 of maximum deviation, entering the undulator
parameter K of (15.1), is of order 1/y, i.e., of the aperture of the radiation cone)
there is an interference, which is constructive only for the wavelengths described by
(15.1). Notice, however, that under such circumstances all interference between the
fields radiated by different electrons is averaged out, as no definite phase relationship
occurs between them. The reason is that electrons are randomly distributed inside
the bunch, with no correlation between positions of different electrons. In order to
have such interference, electrons should be spatially ordered; considering for sim-
plicity two electrons, if the longitudinal coordinate (projection on the undulator axis
of the position) of the second lags behind that of the first by an integer number of
wavelengths, the corresponding radiation fields will superpose in phase after the
electrons have run through an integer number of undulator periods. The intensity
radiated from the two electrons will be four times larger than that of one single elec-
tron. From these simple considerations, one can understand how coherence effects
between different electrons can arise when the density in the bunch (integrated over
the transverse direction) has a Fourier component at the wavelength of the radia-
tion, that is, when this density shows a modulation at the radiation wavelength. The
intensity of the radiation in such cases becomes proportional to the square of the
number of electrons involved in the modulation.

For short wavelengths, in the nm range or below, controlling the electron den-
sity on that scale may appear extremely difficult. However, it turns out that, for
a sufficiently low-emittance and high peak-current electron beam, in a sufficiently
long undulator, the radiation does it for us. This microbunching phenomenon occurs
because the electric field of the radiation has a small component parallel (or
antiparallel) to the electron velocity (see Fig. 15.1), which tends to accelerate some
electrons and decelerate those which are positioned one half radiation wavelength
ahead or behind, leading to bunching on the radiation wavelength scale. Whenever



410 M. Altarelli

rad

v

/

L J

Erad Sin o~ Erad/Y

Fig. 15.1 Schematics of the microbunching process. The radiated electromagnetic wave (black
wavy line) propagates along the undulator axis (green line), and the electron trajectory (red line) is
at an angle o ~ 1/ to this axis. Therefore, the radiation electric field E\,4 has a small component
(blue arrows) parallel or antiparallel to the electron velocity, Ey,q sin«, which can perform work
on the electrons and therefore accelerate or decelerate them

shot-noise fluctuations in the electron bunch introduce a Fourier component of the
appropriate wavelength in the electron density, the coherence effect between elec-
trons described above increases the radiated intensity; the stronger radiation field,
via the microbunching process, reinforces the density fluctuation, and so on, in a
runaway process that leads to exponential amplification of the radiated intensity. The
amplification proceeds until saturation, which occurs when the intense radiation
and subsequent recoil effects lead to a degradation of the electron beam quality that
prevents further amplification. This single-pass process, known as self-amplified
spontaneous emission (SASE) was theoretically identified many years ago, long
before electron beams of sufficient density and quality were technologically fea-
sible [3-5]. It was later shown experimentally in the visible range at the LEUTL
facility at Argonne National Laboratory [6], and later pushed to lower and lower
wavelengths (down to 6.5 nm) at the FLASH facility at DESY, in Hamburg [7, 8].
The linear accelerator (linac) geometry is essential in allowing the low emittance
and the high peak current required to trigger the SASE process. During acceleration
in a linac, the normalized emittance ¢, = y¢ is approximately constant, and this
implies that the emittance decreases as the energy y grows. So, if a sufficiently low
emittance is available already at the start, that is, at the electron gun of the injec-
tor system, then transverse emittances of the order of the radiation wavelength are
achievable at a sufficiently high electron energy. Furthermore, the high peak cur-
rent can be achieved by compressing the bunch in one or several suitable magnetic
chicanes, down to bunch lengths of order 30 pwm or durations of 100 fs or less.
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15.3 First Results at FLASH and the Science Case
for X-Ray FELs

FLASH is a UV and soft X-ray FEL, based on the SASE principle, operating since
2005 as a user facility at DESY [9]. It is presently powered by a 1 GeV supercon-
ducting linac and produces coherent radiation pulses down to 6.5 nm wavelength,
with up to ~100J per pulse. It has provided a unique testing ground for the
investigation of the SASE process itself, as well as the first possibility to per-
form experiments with ultra-high peak brilliance pulses, of ~10-50fs duration,
with ~10!2 photons per pulse. This corresponds to a peak power of Giga-watt, and
it surpasses the peak brilliance of modern synchrotron sources by many orders of
magnitude (see Fig. 15.2).

As it was explained in Sect. 15.2, SASE is a process starting from noise, and
it contains therefore an unavoidable aspect of randomness, which makes every
pulse different. In Fig. 15.3, results of a spectroscopic analysis of different pulses
is shown, and the very limited pulse-to-pulse reproducibility is evident, as well as
the lineshape, which is far from an ideal single gaussian or lorentzian profile [10].

10 R ELRLLL B R B B L L

Euxn':aan
10% / i
LASH /
(seeded) LCLS —

-

107 e
15 FLASH 3
1(]'2‘9 — FLASH (3rd) =
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107 | /'/ -
1025 B PETRA I o

Peak brilliance [Photons/(s mrad” mm- 0.1% BW)]
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Energy [eV]

Fig.15.2 Peak brilliance as a function of photon energy of FLASH and future FELs (the European
XFEL in Hamburg, and LCLS in Stanford, see Sect. 15.4; an upgraded version of FLASH based
on “seeding,” see Sect. 15.5) compared with some third generation synchrotron radiation facilities.
Blue dots denote measured values. The third and fifth harmonics of the FLASH undulator, on which
lasing was observed, but not saturation, are also shown
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Fig. 15.3 VUV spectra for ten arbitrarily chosen FEL pulses. The main wavelength for all pulses
is about 32.2 nm, with an overall width of about 0.4 nm. Inset, third-harmonic spectrum, centered
at 10.7 nm, averaged over 2,500 pulses (after Diisterer et al.)

The revolutionary properties of FLASH have allowed many ground-breaking,
completely novel experiments. Among these, one of the most celebrated is the
single-pulse coherent diffraction imaging by Chapman et al. [11], in which it was
demonstrated that a diffraction pattern sufficient to reconstruct an image by standard
iterative algorithms could be acquired using a single FLASH pulse of 25 fs duration.
As a result of the high number of photons in the pulse, photoelectric absorption
deposits sufficient energy in the sample (a microstructure milled through a sili-
con nitride membrane) to bring it up to a temperature of 60,000K and to destroy
it completely. Nonetheless, the extremely short duration of the pulse allows col-
lection of the relevant data before the sample is blown apart. Although the use of
32 nm radiation limits the resolution to a few tens of nanometer, which could be
obtained easily by other, nondestructive, methods, the interest of this experimental
breakthrough lies in the proof-of-principle of single-shot imaging of nonperiodic
objects. One of the chapters of the scientific case for hard X-ray FELs is the hope
to be able to image nonperiodic biological objects (from individual cells down to
large macromolecules) with resolution approaching the atomic scale [12], without
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Particle injectiofe®

XFEL pulse

Fig. 15.4 Schematic layout of a single-particle imaging experiment, where single objects (e.g.,
macromolecules) are injected into the interaction region by a suitable spray device (not shown) and
interact with X-ray pulses from an XFEL. The diffraction pattern is recorded by a two-dimensional
detector (with a central hole to prevent damage from the direct beam). After the interaction the
particle, highly ionized by the photoelectric effect, explodes

the need for crystallization — which is a major hurdle in structural biology studies
(Fig. 15.4).

The possibility of acquiring valuable information in a single-pulse is not lim-
ited to imaging: very recently, a resonant magnetic scattering experiment at the Co
M-edge on a Co-Pt multilayer system showed that magnetic speckles can also be
collected in a single shot [13]. This pioneering results point to the possibility of
ultrafast magnetization studies down to the ~100 fs timescale.

Another class of experiments in which the ultra-high intensity is essential is the
study of extremely dilute samples. One can for instance generate and trap for a
short time highly ionized atoms, such as Fe?3™ [14]. In such a Li-like three-electron
system, relativistic and QED effects are gigantic: for the 15225 257/ to 15%2p1/»
2 Py transition, radiative corrections to the transition energy are of order 1%. At
FLASH the transition energy, close to 48.6eV, was measured with unprecedented
accuracy, opening up a program of investigation of QED effects extending beyond
the region of perturbation theory, which could later continue with X-ray FELs with
ions up to U,

Gas phase experiments on the photoionization of neutral atoms in intense XUV
fields also produced stimulating results. Sorokin et al. [15] observed that Xe gas sub-
ject to focused FLASH pulses of 13.3nm with fluences up to 10!® W cm™2 shows
unexpected ionization states up to charge +21. From the standard theory of high-
field ionization, at these fluences and frequency one should be in the multiphoton
regime, and it is not yet clear whether these experimental results are reconcilable
with the traditional wisdom.

To take advantage of the short pulse duration for time-resolved studies, the
“pump-and-probe” experimental strategy is well known from ultrafast laser experi-
ments: a process, for example, a chemical reaction, is triggered by a “pump” pulse;
a successive “probe” pulse interrogates the system and determines a physical quan-
tity at a later time. Repeating the experiment with different delays between the two



414 M. Altarelli

pulses, the time dependence of the physical quantity during the course of the reac-
tion can be determined, with a resolution limited by the duration of the pulses and
the accuracy in the determination of the delay. To perform such experiments with
an FEL, it is therefore necessary to determine a posteriori the delay in the arrival of
an FEL probe pulse with respect to another pulse [16], for example, from an optical
laser, which acts as pump, because it is not possible to control the arrival time of the
FEL pulses a priori with sufficient accuracy. This is because of the jitter determined
by the limits in the stability of the accelerator radio frequency (RF) system and by
the strong compression of the bunch length. Another strategy, also successfully pur-
sued at FLASH, consists in extracting both pump and probe pulses from the same
electron bunch. This can be done by inserting a special undulator for infrared or
THz frequencies along the electron path on the way to the SASE undulator [17];
or, alternatively, by a split-and-delay device that separates each FEL pulse in two,
separated by an adjustable delay; in the latter case, of course, both pulses have the
same photon energy. Such a device has been realized and tested at FLASH [18], and
a device for hard X-rays, based on crystal optics, has also been developed at DESY
and subjected to preliminary tests at the ESRF [19].

15.4 The Quest for Hard X-Ray FELSs

The remarkable results obtained at the FLASH facility have allowed considerable
progress in the understanding of the SASE process itself, and demonstrated the
revolutionary potential of FEL experiments for a variety of disciplines. This has
provided further stimulation to projects for the realization of hard X-ray FELs.
There are at present three major projects under construction worldwide, one in
the USA (the Linac Coherent Light Source, LCLS, in Stanford, California [20]),
one in Japan (the SCSS, SPring-8 Compact SASE Source, at SPring-8 [21]), and
one in Europe (the European XFEL in Hamburg [22]), which aim at wavelengths
of the order of 0.1 nm, suitable for experiments determining structural properties
with atomic resolution. The main features of the three projects are summarized in
Table 15.1.

The LCLS project in Stanford produced the first 0.15nm SASE photons in
April 2009. It uses the pre-existing SLAC high energy linear accelerator, or more

Table 15.1 Basic parameters of the three hard X-rays FEL projects (see text)

Project LCLS SCSS European XFEL (SASE1)
Max. electron energy (GeV) 14.3 8.0 17.5

Min. photon wavelength (nm) 0.15 0.1 0.1

Photons/pulse ~1012 2 x 101 ~1012

Peak brilliance 1.5 % 10% 1 x10% 5% 103

Average brilliance 4.5 x 102 1.5 x 10% 1.6 x 10?
Pulses/second 120 3,000 30,000

Date of first beam 2009 2011 2014

Brilliance are expressed in photons/s/mrad?/mm?/0.1% BW
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precisely, one third of its length, to accelerate electrons and feed them into an undu-
lator with fixed gap, 112 m long, to produce coherent X-rays with photon energies
between 0.8 and 8 keV, that is, with wavelengths between 1.5 and 0.15 nm. Tuning
of the photon energy occurs by tuning of the electron energy between 4.5 GeV and
the maximum energy 14.3 GeV. The linear accelerator has been modified to accept
the bunches produced by a RF photocathode gun and preserve the low-emittance
beams required for the SASE process and also to include two stages of bunch com-
pression. The repetition rate is 120 pulses per second. The SASE pulses are directed
into two experimental halls, where a total of six instruments are foreseen to become
available between 2009 and 2011:

1. Atomic, Molecular, and Optical Science (AMO): this instrument should con-
tinue and extend to higher photon energy the innovative experiments pioneered
at FLASH on ions, atoms, and molecules.

2. X-ray Correlation Spectroscopy (XCS): its purpose is to use the coherence of the
beams to explore dynamic fluctuations in matter, accessing unprecedented length
and time scales.

3. X-ray Pump-Probe (XPP): the purpose of this instrument is to explore ultra-
fast phenomena in the physics and chemistry of solids, liquids, and soft-matter
systems.

4. Coherent X-Ray Imaging (CXI): this instrument is devoted to the pursuit of
structural studies in nonperiodic systems, especially in structural biology.

5. High Energy-Density Science (HED): here the idea is to use the FEL pulses to
bring a target to extremely high values of temperature and then to interrogate
it in order to access regions of the phase diagram not easily accessible in the
laboratory (e.g., warm dense matter in which ordinary densities of solid materials
are present at temperatures such that kg7 ~1-10eV).

6. Soft X-Ray Materials Science: this is a multipurpose instrument, on which differ-
ent end-stations should be mounted for a variety of techniques in the soft X-ray
analysis of materials, such as RIXS, fluorescence, photoemission, etc.

The Japanese SCSS project is characterized by the attempt to reduce the size
and the cost of large FEL installations by daring innovations, such as the use of a
thermionic cathode gun to produce very low emittance bunches, the use of C-band
accelerator technology to generate very high acceleration gradients, a very high
compression ratio for the bunch length (~4,000) and the use of a tunable in-vacuum
undulator, with a 4 mm gap in the standard operation for generation of 0.1 nm radi-
ation with an electron energy of 8 GeV, considerably lower than in the competing
projects. Validation of some of these concepts has been provided by a test facility
with a 250 MeV linac, which is operating as a VUV FEL down to 49 nm wavelength.
This test facility was used for some ground-breaking experiments on the “seeding”
scheme based on high harmonic generation (see Sect. 15.5). The design value for the
number of pulses per second is 3,000 as there are 60 RF pulses per second, each of
them filled with up to 50 bunches. There are five undulators foreseen in the ultimate
configuration of the facility.
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Fig. 15.5 Schematic layout of the arrangement of undulators at the European XFEL. The initial
configuration of the facility does not include the spontaneous emission undulators U1 and U2, nor
the helical version of SASE3, which is going to be initially built in the planar version

The European X-ray Free-Electron Laser Facility (European XFEL), which
started construction in January 2009 in Hamburg, is deriving its basic technical
choices from the successful FLASH experience. The photoinjector and the gun are
directly derived from the corresponding FLASH components and so is the basic
superconducting accelerator technology, first developed in the context of the inter-
national TESLA collaboration, coordinated by DESY. The 1.7 km long accelerator,
located in an underground tunnel, can provide electrons with a 17.5GeV energy,
and feed them into two beamlines according to the scheme displayed in Fig. 15.5
[23]. The first beamline contains a hard X-ray undulator (SASE1), for 0.1 nm coher-
ent photons, and a soft X-ray one (SASE3), which makes use of the “spent” beam
resulting from saturation of SASEI to generate soft X-rays in the 0.4—1.6 nm range
(at 17.5GeV electron energy: softer X-ray radiation is of course obtained if the
electron energy is reduced). The second beamline contains a tunable hard X-ray
undulator (SASE2) for the 0.1-0.4 nm range, and two tunnels downstream in which
two spontaneous emission undulators, Ul and U2, can be located. In the baseline
design for the initial phase of the facility, each of the three SASE undulators will
feed into two instruments. The six foreseen instruments are similar in their scientific
goals to the six instruments foreseen for the LCLS project.

The use of the superconducting technology allows a very wide flexibility in the
operating conditions; in particular, it allows to fill each RF pulse with a very large
number of electron bunches. In the European XFEL, it is foreseen to have a train
of up to 3,000 bunches in each of the 10 RF pulses of 600 s duration. It will be
possible to switch the electrons from one beamline to the other during each bunch
train. The possibility to use such a large number of bunches implies considerable
development work in the field of detectors, as well as in the lasers for pump-probe
experiments, which should be able to follow the time structure of the XFEL pulses.
The average brilliance, corresponding to this large number of X-ray pulses per unit
time, could prove very important in experiments such as coherent diffraction of
nonperiodic objects, illustrated in Fig. 15.4, where hits of the FEL pulses with a
molecule are expected to be very rare, but a large number of them needs to be
accumulated in order to achieve a satisfactory signal-to-noise ratio.
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15.5 Seeded Free-Electron Lasers

As it was said in Sect. 15.2, the generation of coherent light by the SASE process
is triggered by shot-noise fluctuations in the electron density. There is therefore
an intrinsic random character to SASE radiation, which is reflected for example in
the non-reproducibility of successive pulses, as visible in Fig. 15.3; in addition, the
spectral profile of each pulse is far from an ideal, transform-limited lorentzian or
gaussian shape. It would certainly be desirable for many classes of experiments to
alleviate these problems of the SASE process and to obtain reproducible, spectrally
pure FEL pulses. This is the motivation for the development of the “seeding” pro-
cedure. To do it in practice, one must replace the triggering by random fluctuations
with a reliable and reproducible “trigger,” able to impress a controllable density
modulation on the electron bunch, with an amplitude larger than noise, thus mak-
ing the latter irrelevant. The schemes developed so far invariably use a conventional
laser as a source of reliable, reproducible, and spectrally pure pulses. Clearly, an
additional advantage of such seeding schemes is the intrinsic time synchronization
of the FEL pulses with the seed laser, with very important applications to pump-
probe experiments. Conventional lasers, however, are available for wavelengths in
the infrared, visible, or at best near ultraviolet spectral ranges, whereas FELs, as we
have seen, have demonstrated lasing in the X-ray range (down to the 0.15 nm wave-
length region). To bridge this large difference in wavelength, two schemes have been
proposed.

In the first one, the “seed” laser is overlapping with the electron bunch within an
undulator, called “modulator,” for which the resonant wavelength is that of the laser
pulse (typically a Ti:saffire laser, operating at a wavelength of 800 nm, or frequency-
tripled at 266 nm). Here the laser pulse produces an energy modulation in the bunch,
which is then led through a dispersive element (a chicane of four dipole magnets),
where the energy modulation is converted to a spatial density modulation, that is, to
a bunching of the electronic charge. What is important is that the bunching does not
occur as a single cosine wave at the wavelength of the seed pulse, but it is also appre-
ciable at the harmonics thereof. When the spatially modulated bunch enters now a
second undulator, called “radiator,” such that its resonant wavelength is one of the
harmonics of the seed pulse, if the corresponding Fourier component of the bunch
density modulation is large enough to trigger the exponential growth of coherent
radiation, the “seeding” will be successfully transferred at a harmonic of the input
pulse. This mechanism of seeding is labeled HGHG, for “High Gain Harmonic Gen-
eration.” Its first demonstration in the VUV was performed in Brookhaven, where
9 ps long Ti:saffire pulses at 800 nm, with peak power in the MW region, were over-
lapped with the electron bunches at 177 MeV energy in a 0.8 m long modulator, and
after a dispersive section, sent into a 10 m long radiator, resonant at 266 nm, that
is, at the third harmonic of the seed laser pulse [24]. It was possible, under opti-
mal condition to generate spectrally clean, reproducible coherent pulses at 266 nm
wavelength, with ~100 uJ energy per pulse, exceeding the SASE output (in the
absence of the seed) by orders of magnitude. It is obvious that if the radiator is
tuned on the fifth or seventh harmonic of the seed laser, the output power is reduced,
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corresponding to a decreasing harmonic contents of the density modulations induced
by the seed. There are nonetheless schemes for accessing shorter and shorter wave-
lengths by the so-called cascaded HGHG set up: here the output of the radiator
at a harmonic of the original seed laser is again fed into a second modulator, and
then, after a dispersive section into a second radiator, resonant at an even higher-
order harmonic of the original seed laser. This “cascaded” approach is supported
by simulations, but how far it can really reduce the wavelength has to be proven in
practice: the FERMI@Elettra project, already in an advanced state of construction
in Trieste, Italy, has the ambition to use the simple HGHG scheme to reach 40 nm
wavelengths, and to adopt cascaded HGHG for lasing down to 10 nm wavelength or
less in a second stage [25].

A second scheme, which has been successfully tested at SPring-8 at the test VUV
FEL, uses as a seed not directly a Ti:saffire laser pulse, but one of high order har-
monics that the pulse generates in a gas [26]. For very intense laser pulses, it is well
known that the photoionization of atoms proceeds via tunneling, the laser electric
field having an intensity sufficient to bend down the steep atomic potential and to let
electrons escape during one laser cycle. When the field changes direction, one half
period later, the photoelectrons are accelerated back towards the parent atom, gen-
erating high harmonics in the collision (a process termed HHG for “High Harmonic
Generation”). Thus, in the experiment by Lambert et al., a Ti:saffire laser focused
on a xenon gas cell generates odd harmonics from the 3rd to the 21st. The fifth har-
monic at 160 nm has an energy per pulse close to 1 LJ. The 50 fs pulses are spectrally
selected and directed on a trajectory overlapping the 1 ps long, 150 MeV electron
bunches, which are directed through two undulator sections tuned to resonate at the
same 160 nm wavelength. The thus seeded emission exceeds the unseeded one by a
factor of 2,600. There are good reasons to believe that seed pulses down to ~1 nJ can
still be used as effective seeds and this opens the way to the use of higher harmonics,
down to the 10 nm region.

A test facility with the HHG scheme is being implemented for FLASH, with
the objective of seeding to 30 nm wavelengths and below [27]. The corresponding
anticipated increase in peak brilliance is shown in Fig. 15.2.
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