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Preface

Over last decades low-dimensional materials are in focus of physics and chemistry
as well as of material and other natural sciences. Like Vitaly Ginzburg has foreseen
30 years ago, low dimensionality offers physical phenomena and properties unseen
in three-dimensional world. To see how thin films and monomolecular layers realize
such a prediction it suffices only to observe intensity of research devoted to recently
synthesized graphene. Still, quasi-one-dimensional compounds are over long period
established as the origin of the most important and most interesting discoveries of
material science and solid state physics. To mention only deoxyribonucleic acid, the
most important molecule in nature, and diversity of nanotubes and nanowires, the
cornerstones of the present and future nanotechnology.

Line groups, describing symmetry of quasi-one-dimensional materials, offer the
deepest insight to their characteristic properties. Underlying many of the laws,
they are very useful, but far from simple. This book is intended to explain them,
their properties, and their most common applications. In particular, it is important
to understand that the line groups are much wider class of symmetries than the
well-known rod groups. While the latter describe only translationally periodical
objects, line groups include symmetries of incommensurate periodical structures.
Indeed, just the incommensurability is one of new features related to quasi-one-
dimensionality. Being not subgroups of the space groups (like rod groups), line
groups are beyond the scope of the standard crystallography. New techniques are
needed to understand and use line groups. It follows that the book is devoted both
to mathematicians and physicists, chemists, and other material scientists. We hope
that it will be interesting for crystallographers, too, at least for the comparison of
the techniques.

The purpose of the book is twofold. First, it gives overview of the state of art
of the line groups, at the level enabling reader to understand and possibly further
develop or apply the theory. Besides this, it should serve as a more or less exhaustive
manual or reference book. Therefore, together with discussion of various notions
and properties (with brief but mathematically rigorous explanations), there are many
tables and figures, summarizing results in a comprehensive way. Still, there are some
especially lengthy data, not suitable to present them in a text of this type, despite
their importance in applications (e.g., Clebsch–Gordan coefficients). Many of them,
as well as concrete calculations of the most of the theoretical results given here in
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a general form, are automatically generated by the computer code POLSym and
online available through our Website www.nanolab.rs. (where also this book can be
commented).

While the first half of the text is focused on the preparation of the main result,
and therefore with prevailing mathematical discussions and seldom examples on
their usage, the last part is completely devoted to applications in two levels of elab-
oration. First, the most important applications are considered generally, in order to
provide understanding and derive necessary data. Finally, all the results are applied
to nanotubes. Having in mind how deeply symmetry determines the properties of
nanotubes, the last chapter can serve as a sort of the comprehensive textbook of
these important (and also fashionable) systems.

We want to acknowledge help of many people during several years of prepara-
tion of this book. Younger members of our research team at NanoLab, Faculty of
Physics, Belgrade, contributed by their research to the material of the book, like B.
Dakić with new results on the invariant and covariant functions, T. Vuković with
some of the number theoretical results, as well as with the most of the theory related
to diffraction, E. Dobardžić performed much of the phonon work, while B. Nikolić
was involved in the derivation of parities of nanotubes rolled up from arbitrary layer.
Collaboration with Professor Thomsen’s group, Institute for Solid State Physics,
Technical University Berlin, was crucial in motivation to implement symmetry in
various problems related to nanotubes; discussions with Christian Thomsen, Janina
Maultzsch, Stephanie Reich, and Marcel Mohr resulted in several papers which are
in some form reflected in this book. In the final stage of preparation of manuscript
Professor Evarestov, Department of Chemistry, St. Petersburg University, made sev-
eral suggestions important to make text closer to people already familiar with stan-
dard crystallographic methods and terminology. Professor Stergios Logothetidis,
Aristotle University Thessaloniki, and students of the master program Nanoscience
and Nanotechnology, organized by him, by putting lot of questions on nanotubes,
convinced us to make the last chapter more extensive. In addition, the first lines
of the book (in spring of 2005) were written and the last revision (in 2008) of
the text was done in Stergios’ and Alcestis’ Halkidiki house, inspiring quiet spot
among the pine trees overlooking Egéo Pélagos, with Óros Ólimbos on the horizon.
And last but not least, we want to express our gratitude to many other friends and
collaborators which helped us in technical and computer matter. Especially, we are
grateful to our invincible young hacker I. Y. Perushka.

Belgrade, Milan Damnjanović
June, 2009 Ivanka Milošević
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Acronyms

m, n = GCD(m, n) Greatest common divisor of m and n
m, n = LCM(m, n) Least common multiple of m and n

[x] Integer part of x (maximal integer less then x)
{x} Fractional part of x (x − [x])

x, x Numerator and denominator of the rational, i.e., x = x/x
x̃ x/n (division by the line group parameter n); exceptionally, k̃

and m̃ denote helical quantum numbers.
x−1
(x ′) Inverse of x modulo x ′, i.e., xx−1

(x ′) = 1 + zx ′
I Identity matrix, identity orthogonal transformation
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X (when X is a set or a group), dimension of X (when X is a
vector space or a representation)

A
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L, L(F) Line group, F th family

Z Generalized translations of a line group
P Point factor of a line group
Y Transversal
Sx Orbit of the point x
P I Isogonal point group

PM Symmetry group of monomer
M Intersection of L and PM

D, D(λ) Representation, irreducible representation
D(id) Identical representation of the group: D(id)(�) = 1
SAB Symmetry-adapted basis

(A| f ) Koster–Seitz symbol of transformation (A| f )r
def= Ar + f

e = (I |0) Identical transformation

xiii



Chapter 1
Introduction

Polymers, due to palette of remarkable and applicable properties, attract interest
of physicists, chemists, and biologists over decades. Most of these extraordinary
characteristics originate from their reduced dimensionality and regular structure.
Discovery of carbon nanotubes by Iijima in 1991, and the revolution they caused
in material science, additionally stressed out that quasi-one-dimensionality was
crucially responsible for the peculiarities of these systems. The well-established
notions of nanoscience, nanotechnology, and/or nanobiotechnology illustrate impact
of these systems on both the fundamental science and technology. Actually, the
acronym N&N, stressing out only the nanoscale, is the best description of the whole
bunch of interrelated classical sciences and high-tech breakthroughs of the fast-
growing field initialized by the discovery of nanotubes. This is probably the most
remarkable example how development of the fundamental and applied science is
interrelated through endless series of feedbacks.

Quantum mechanics proved to be the key to the nano-world. Over seven decades
before the dawn of N&N quantum mechanical formalism and techniques have
been developing intensively and successfully through many challenges. Various
approaches to many-body problems, correlation and interference effects, advanced
numerical algorithms, and many other quantum mechanical achievements have been
already at nano-researchers disposal.

However, symmetry, one of the deepest concepts in science and philosophy,
which after the work of Wigner in the second quarter of the previous century became
one of the roots as well as a powerful technical tool of quantum mechanics, has not
been fully exploited. This is a bit strange in a view of its cornerstone status in particle
physics and its long and extensive use in solid state physics over more than half a
century, to mention only the Bloch theorem, through which symmetry underlies
all the results for crystals. Nevertheless, in nanoscience symmetry is not used in
a systematic way. This is even more surprising since the translational invariance
from the very beginning proved to be extremely fruitful in the theoretical studies
of nanotubes and stereo-regular polymers, enabling many important predictions. In
particular, due to the symmetry electronic bands of carbon nanotubes are easily
found analytically (in a simplified model though). Prediction of a wide variety of
the conducting properties was probably the first major result, which paved the way

Damnjanović, M., Milošević, I.: Introduction. Lect. Notes Phys. 801, 1–5 (2010)
DOI 10.1007/978-3-642-11172-3_1 c© Springer-Verlag Berlin Heidelberg 2010
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for N&N. And almost a decade after the discovery of nanotubes, their full symmetry
was reported and the symmetry-based results started to appear, although still rarely
enough.

One possible reason for such a delay is that there is no systematic monograph on
the symmetry of quasi-one-dimensional structures, unlike the vast number of books
devoted to the space groups of crystals. Even more, there is a frequent belief that the
symmetry of the systems periodical in one dimension is described by the rod groups,
for which there exist exhaustive reviews [1]. However, rod groups are subgroups of
the space groups, thus subdued to the crystallographic restrictions applicable for
the two- and three-dimensional crystals. Thus all of 75 rod groups are only a small
subset of the continuously many line groups. They are not applicable to the carbon
nanotubes, and this prevented standard full symmetry considerations from the very
beginning.

The other reason may be the experience from the physics of two- and three-
dimensional crystals. The translation group with associated conserved quasi-
momentum is simple to understand and use, in contrast to the 230 space groups
and their irreducible representations. On the other hand, the translations are a major
part of the symmetry: the translational subgroup index of the space group is small
and theoretically never greater than 32. Moreover, for the most of the typical prob-
lems in which the usage of the remaining symmetry proved to be fruitful, ad hoc
recipes are more or less well elaborated. Thus, the idea of direct application of the
translational symmetry only is quite natural and seemingly equally good enough for
the quasi-one-dimensional physics. However, it is just the opposite.

First, line groups and related conserved quantum numbers (i.e., irreducible rep-
resentations) are by far simpler than the space groups. Second, lack of the crystal-
lographic restrictions makes translations just a small part of the full symmetry, in
contrast to the higher dimensional crystals. In fact, pure translations are completely
absent in the incommensurate structures. Therefore the considerations, including
only translational symmetry (and Bloch theorem in its original form), are inefficient,
and in the incommensurate cases conceptually inapplicable. While in the unit cell of
a three-dimensional crystal there are typically several to hundred atoms, unit cell of
a typical chiral nanotube includes hundreds or thousands of atoms. This is the source
of the major technical obstacle for theoretical predictions: existing ab initio numer-
ical codes do not implement line group symmetry, but only space groups, meaning
that the computer capacity restricts calculations to the rare nanotubes and polymers
with small number of atoms per unit cell, excluding automatically the incommen-
surate systems from the studies. To summarize, with a smaller effort invested to
understand line groups (in comparison to the space groups), the gain is much larger,
opening the single way out in some cases. Actually, structural differences between
various line groups are in many aspects larger than those between the space groups,
and this is a sort of hallmark of the variety of properties of quasi-one-dimensional
crystals.

First notions of the symmetry of mono-periodic systems appeared in the second
quarter of the last century in the works of Speiser (stripe groups) [2], Hermann
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(commensurate line groups) [3], Alexander (incommensurate groups are mentioned
for the first time) [4], Shubnikov [5], and Belov [6] (rod groups).

In the late 1950s the relevance of the line groups for polymers was discussed
by B. K. Vainshtein [7]. Shortly after, the symmetry of time reversal was included,
yielding a structure of the magnetic rod groups (Neronova and Belov [8]). In the
first volume of the series Modern Crystallography, among other types of symmetry
groups Vainshtein reviewed line groups under the name spiral groups [9]. Finally,
in the volume E of International Tables of Crystallography, many data about rod
groups are given [1].

Another derivation of the commensurate line groups, based on the theory of
extensions of the translational group, was performed in the late 1970s in the works of
Vujičić, Božović, and Herbut [10]. Also, they systematically constructed irreducible
representations of the line groups just 1 year later [11, 12].

Later on the factorization of the line groups into week direct product of cyclic
groups proved to be essential property of both commensurate and incommensurate
line groups. It was accomplished in the context of construction of the magnetic
line groups (describing the symmetry of the quasi-1D systems with spin ordering)
by Damnjanović and Vujičić [13]. Later on it has been extensively used in many
applications of the line groups. In the early 1990s the line group formalism has been
applied to general classification of monoperiodic systems and analysis of their nor-
mal vibrations and vibronic instability. Jahn–Teller theorem, originally formulated
and proved for molecules (i.e., for systems with point group symmetry), has been
reformulated and proved for polymers and other systems with line group symmetry
by Milošević and Damnjanović [14].

In 1999, in the paper “Full symmetry, optical activity, and potentials of single-
wall and multi-wall nanotubes” by Damnjanović et al. [15] elucidated that symmetry
of single wall carbon nanotubes was described by non-symmorphic line groups.
This had many important consequences, to mention here a dramatic effect on the
understanding of vibrational spectra of achiral tubes, almost negligible interaction
between the layers in multi-wall tubes, selection rules for the processes in tubes, etc.
From that time on, line group symmetry and methods based on it have been exten-
sively applied in the studies of various quasi-one-dimensional compounds: carbon
and transition metal chalcogenide nanotubes, ZnO nanorods, nanosprings and NTs,
and many other (in)organic nanostructures [16–18].

Quite recently, generalized Bloch theorem [19] for line groups and general result
on the symmetry of nanotubes rolled up from arbitrary two-dimensional lattices
along an arbitrary chiral vector [20] completed the base for full application of the
line groups in the physical problems.

Chapters 2, 3, 4, 5, and 6 are more mathematical and give a systematic overview
of the current state of the theory of line groups. The specific structure of the line
groups (Chap. 2) has been used to derive quite general classification of the systems
with line group symmetry (Chap. 3), irreducible representations (Chap. 4), tensors
characterizing such systems (Chap. 5), and magnetic line groups (Chap. 6). In the
last three chapters we treat a number of physical properties of the systems with
line group symmetry. Normal modes and vibronic instability are derived in Chap. 7,
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while Chap. 8 reviews basic results on the applications of the line groups in various
physical problems. Finally, Chap. 9 is completely devoted to nanotubes and their
properties; besides overview of such an interesting and modern subject, this chapter
can serve to reader as a detailed illustration of the previously developed methods.
Appendices are quite brief remainders on the relevant well-known mathematical
topics, aimed to enable interested readers and researchers to fully verify the conclu-
sions of the main text and to introduce a particular notation. To facilitate reading
and later usage of the book, we extracted the most of the symbols in a separate list.

Therefore, the reader interested only in mathematical topics is referred to
Chaps. 2, 3, 4, 5, and 6, while the last three are mainly devoted to physicists. How-
ever, for this physical part some knowledge of the material of the previous chapters
is assumed. Generally, these prerequisites depend on the problem considered and
are roughly sketched in the scheme of the interdependencies of the chapters below.
Still, most of Chap. 2 is indispensable for understanding of the later ones.

Most of the contents exist in the literature, dispersed in many articles with dif-
ferent points of view and notation; it is exposed here in a systematic and consistent
way. Still, there are several original results, to mention only incommensurate line
groups and generalizations of the line groups (in particular bihelical line groups
and their relation to the symmetry breaking), general treatment of the chirality of
the physical systems, list of the symmetries and symmetry cells for the line group
orbits, completion of the epikernels (Landau’s problem in the phase transitions), etc.

We found that the most natural way to expose the material is to follow specific,
factorized, structure of the line groups. For example, we systematically use helical
momenta and their relationship to the helical coordinate system. In fact, it turns out
that linear momenta cannot be introduced for incommensurate systems, and even
for commensurate ones they are not fully conserved, making their application more
cumbersome; however, linear momenta may be preferable when system is influ-
enced by an external field. For the same reason we generally use the term polymer
for all the considered systems generalizing the notion usually related to polymers.
Similarly, although we introduced both factorized and international notation, we
prefer the former, not only because international refers only to the commensurate
groups.
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Chapter 2
Line Groups Structure

Abstract Line groups are introduced as symmetry groups of the system periodic
in a single direction, with periodicity being not restricted to the translational one.
Their structure is a weak direct product of the intrinsic symmetry of monomer and
the group of generalized translations, arranging these monomers along the direction
of periodicity. Continuously many of these groups are classified into 13 infinite
families. Only 75 of the line groups are subgroups of the space groups and they are
known as rod groups.

2.1 Factorization of the Line Groups

It is physical point of view which gives the natural and straightforward insight
into the line group structure. When we analyze stereo-regular polymers, nan-
otubes, nano-rods, nano-springs, and quasi-one-dimensional subsystems in three-
dimensional solids, we first notice their large longitudinal-lateral aspect ratio which
singles out the direction along which basic constituents, monomers, are repeated
regularly. Therefore their symmetries, being defined as the geometrical transfor-
mations leaving the compound unchanged, arise in two different ways: as period-
icity of the regular arrangement of monomers and as an intrinsic symmetry of a
single monomer. However, only if the intrinsic symmetry leaves simultaneously
all the monomers unchanged, i.e., if it is compatible with the periodical arrange-
ment, it is symmetry of the whole structure. Consequently, the symmetries of the
total compound are combined from the symmetries of the arrangement and the
intrinsic symmetries of monomers. This fact gives a hint to classification of the
line groups: after independent classification of all possible arrangements and their
symmetries, as well as of the symmetries of monomers, one should combine these
two in all compatible ways and will thus get [1] all the line groups. Besides, in such
a way important information on the specific structure of the line groups is directly
obtained and it will be used extensively in order to derive many significant physical
consequences.

Damnjanović, M., Milošević, I.: Line Groups Structure. Lect. Notes Phys. 801, 7–27 (2010)
DOI 10.1007/978-3-642-11172-3_2 c© Springer-Verlag Berlin Heidelberg 2010



8 2 Line Groups Structure

2.1.1 Generalized Translations: Symmetry of Arrangements

Here we analyze the symmetries coming from the periodical arrangement of the
monomers along one direction which by the convention is denoted as the z-axis.
Note that such a system should necessarily be infinite along z-axis. Therefore, the
considered symmetries only approximately describe real compounds.

We shall slightly generalize the notion of periodicity. Usually translational peri-
odicity is considered only and it is sufficient for the compounds which can be
obtained by successive translations from some minimal part, called elementary
cell. Generalizing this, we recall that polymer is an infinite chain of the identical
monomers, regularly arranged along the z-axis. Although this regular arrangement
is in some cases realized by translations, other situations may occur as well. Thus,
instead of pure translations (I | f ), we allow more general geometrical transforma-
tion Z = (X | f ) (see Appendix A for notation), mapping each monomer of the
chain onto the adjacent one.

Such a periodicity implies that element Z generates infinite cyclic group, Z.
Translational part f enables to move from one monomer to the adjacent one, and
this way it determines the direction of the system. Therefore, it is a vector along the
axis of the system, f = f ez ; knowing this, we shorten notation to (X | f ), explicat-
ing only the length f . Finally, conveniently choosing the orientation of z-axis we
take f positive.

The orthogonal part X of the generator Z must leave z-axis invariant. Otherwise,
after applying Z our system would not be directed along z-axis, and Z could not
be a symmetry. This leaves two possibilities: X ez = ez and X ez = −ez . However,
as square of Z is (X | f )2 = (X2| f X ez + f ez), in the latter case the translational
part vanishes and infinite system cannot be generated. Therefore, X leaves invariant
also the orientation of the z-axis. Hence X can be either a rotation around z-axis
or a reflection in the vertical mirror plane (composition of these two is a mirror
plane), i.e., the possibilities are X = CQ (rotation for φ = 2π/Q around z-axis)
and X = σv (vertical mirror plane). Altogether, the group Z is infinite and cyclic,
being screw-axis (alternatively called helical) group generated by Z = (CQ | f )
or glide plane group, with Z = (σv| f ). Here, Q may be any real number and
for the sake of uniqueness we conveniently take it to be greater than or equal
to one.

Now we examine when the arrangement generated by the above defined Z =
(X | f ) has translational periodicity, i.e., we search for the conditions under which in
the cyclic group Z there is a subgroup T of the pure translations. Such arrangements
and groups will be called commensurate, to distinguish from the incommensurate
ones, having no translations leaving the system invariant. Translational subgroup is
cyclic, and it is generated by (I |A), where the translational period A is the minimal
among the pure translations in Z. As an element of Z, this minimal translation is
obtained as a successive application of Z , i.e., there is a natural number q such that
(X | f )q = (Xq |q f ) = (I |A). This gives the condition Xq = I . For glide planes
this is always automatically fulfilled for q = 2 (σ 2

v = I ). As for the screw-axes, the
condition reads Q = q/r , where r is a natural and not greater than q (as Q ≥ 1).
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So, translational periodicity appears only when Q is rational, i.e., when φ = 2πr/q
is rational multiple of 2π . Conveniently, we assume that r and q are co-primes,
GCD(q, r) = 1. Particularly, if q = 1 (i.e., φ = 0) screw-axis is pure translational
group; formally we take φ = 2π , with Q = q = r = 1. The obtained period1

A is multiple of the fractional translation of the generator, A = q f , meaning that
the elementary cell contains q monomers. Thus the helical generator in this case is
(Cr

q |A/q).
To summarize, there are two types of periodical arrangements, corresponding to

the generalized translational groups:

1. screw-axis group, T Q( f ) generated by (CQ | f ). In the special cases when Q =
q/r , with positive co-prime integers r ≤ q, screw-axis T r

q(A/q) generated by
(Cr

q |A/q) is commensurate, with index q subgroup of pure translations with
period A = q f ; particularly, for q = 1 and q = 2, screw-axis degenerates to the
translational and zigzag group, respectively.

2. glide plane group, T ′(A/2), generated by (σv| f ), which has a halving subgroup
of pure translations with period A = 2 f .

These groups are schematically depicted in Fig. 2.1.
Knowing the group of generalized translations, we arbitrary chose an initial

monomer and denote it by M0. Then applying Z successively t times on monomer
M0, i.e., acting by Zt on each atom in M0, we get another monomer, which is
naturally labeled by Mt . Apart from giving practical way to count the atoms,
this conclusion shows that complete information on the entire polymer is given
by the group of generalized translations and chemical and geometrical structure
of a single monomer. In other words, physical properties of polymer are deter-
mined by properties of a single monomer and symmetry of the arrangement of the
monomers.

2.1.2 Axial Point Groups: Intrinsic Monomer Symmetry

Single monomer possesses its own symmetry. As monomer is considered to be a
finite molecule or ion, its symmetry transformations cannot include translations, and
their form is X = (X |0). Such transformations are gathered into point groups [2].
Here we analyze which of these transformations contribute to the symmetry of the
compound and classify all the relevant intrinsic symmetry groups.

Let PM be symmetry group of an arbitrary monomer M0. Any transformation P
from PM leaves M0 invariant. However, to be a symmetry of the whole polymer, this
transformation in addition has to map any monomer Mt into itself or into another
monomer Mt ′ . Generally, this cannot be fulfilled unless P leaves z-axis invariant.
Hence, only the maximal subgroup P of PM leaving z-axis invariant may contribute

1 Capital A denotes the translational period of the commensurate helical group, only. The period
of the total group is denoted as a.
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to the symmetry of the polymer. As the maximal orthogonal group which preserves
the z-axis is the D∞h, we conclude that the point group P = PM ∩ D∞h is the
maximal subgroup of the monomer symmetry group relevant for the polymer.

The orthogonal transformations leaving z-axis invariant are rotations Cs
n for angle

φ = 2πs/n around z-axis, rotations U for π around an axis perpendicular onto
z-axis, horizontal and vertical mirror planes (σh and σv, and their combinations,
such as roto-reflectional plane S2n = C2nσh). It turns out that with such operations
one can build seven infinite families of the axial point groups (Table 2.1, Fig. 2.1).
The groups within a family differ by the order n = 1, 2, . . . of the principal axis. In
fact, each axial point group has a subgroup Cn of index nF = |Pn|/n, with nF = 1
for family 1, nF = 2 for families 2, 3, 4, and 5, and nF = 4 for families 6 and 7.
This allows decomposition onto cosets:

Pn =
nF∑

i=1

p(F)i Cn, (2.1)

with p(F)1 = e, and the remaining coset representatives listed in Table 2.1.
The transformations of these groups may reverse the direction of z-axis; such

elements will be called negative to differ from the positive elements preserving the
z-axis direction. As the product of negative elements is positive, set of positive ele-
ments is either the whole group (positive group P+

n ) or a halving subgroup (which
is also axial point group as Cn is positive), when the group is called negative:

P−
n = P+

n + p− P+
n . (2.2)

The first two families, Cn and S2n , are cyclic groups. All other families are fac-
torized into products of cyclic groups. The first three families, Cn , S2n , and Cnh,
are the abelian groups.

Table 2.1 Axial point groups. For each group Pn (n = 1, 2, . . . ), its order |Pn |, factorization F,
generators g, limiting continual groups for n = ∞, positive subgroup P+

n (for positive groups
P+

n = Pn), and the coset representative(s) p(F) of Cn are given. For Dnd and Dnh (when |Pn | =
4n), the first coset representative satisfies P+

n = Cn + p(1)Cn . In the last two rows the extension
PI

n = Pn + IPn of Pn by spatial inversion is given for n odd and even

Pn Cn S2n Cnh Dn Cnv Dnd Dnh

|Pn | n 2n 2n 2n 2n 4n 4n
F Cn S2n Cn C1h Cn D1 Cn C1v S2n C1v Dn C1v
g Cn C2nσh Cn, σh Cn,U Cn, σv C2nσh,Ud Cn,U, σv
P∞ C∞ C∞h C∞h D∞ C∞v D∞h D∞h
P+

n Cn Cn Cn Cn Cnv Cnv Cnv

p(F) C2nσh σh U σv σv,C2nσh,Ud σv, σh,U

PI
n=2i+1 S2n S2n C2nh Dnd Dnd Dnd D2nh

PI
n=2i Cnh C2nh Cnh Dnh Dnh D2nh Dnh
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Fig. 2.1 Factors of line groups. Generalized translational groups (up, from left to right): incom-
mensurate (and chiral) helical axis, translational group, zigzag group, glide plane; fractional trans-
lations are shown by dark gray cylinders on which the initial (red) atoms sit. Axial point groups
(down): the groups with n = 6 from all the families are presented by the points obtained from the
initial one (red). Those obtained by the successive action of the generators (according to Table 2.1)
are in special colors and connected by the lines: purple, blue, green, and orange correspond to Cs

n
or (C2nσh)

s , σh, U and σv; accordingly, vertical mirror plane and U -axis are orange and green.
Gray square and circle are horizontal mirror and roto-reflectional planes

In the limit n = ∞ each family gives a continuous group P∞. These limiting
groups correspond to symmetry of linear molecules and also appear as the isogonal
groups of incommensurate systems (Sect. 2.1.5).

2.1.3 Compatible Intrinsic and Arrangement Symmetries

The final part in the construction of the line groups is to examine compatibility of the
intrinsic monomer symmetry and of the symmetry of the arrangement. Precisely, we
construct a group L with elements being the products � = Zt P of the generalized
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translations Zt from Z (all elements of Z are powers of the generator Z ) and intrin-
sic symmetries P from P . If such a set has a group structure, then P and Z are its
subgroups (for fixed t = 0 and P = I , respectively). In other words, we want to
find all pairs P and Z giving a group L = P Z.

It is text book knowledge [3] that product of two subgroups is a group if and only
if these subgroups commute,2 i.e., P Z is group if and only if P Z = Z P . Thus,
we have to check the compatibility of each axial point group with each group of
generalized translations. Here we only briefly sketch these results, in order to get
the classification of the line groups.

At first, we combine rotational groups Cn with screw-axes. The rotations around
z-axis and translations along it commute, implying that all the helical operations
(CQ | f )t commute with pure rotations around z-axis. Therefore any group Cn is
compatible with any T Q( f ). Their products T Q( f )Cn comprise the first family line
groups, the simplest line groups which are subgroups of all the other line groups.
More subtle details on these groups studied in Sect. 2.2 are necessary to construct
and analyze the structure of other groups (Sect. 2.3). Quite analogously, all T Q( f )
are compatible with the groups Dn , since U (CQ | f )t = (CQ | f )−tU .

However, mirror planes (of the intrinsic symmetry) can be retained in the helical
arrangement only in the very special cases of screw-axes. For example, if in the point
factor besides Cn there is a horizontal mirror plane, then the compatibility condition
σh(CQ | f )t = (CQ | f )−tσhC2t

Q becomes C2t
Q = Cs

n . In other words, for each t there
must be s such that 2t/Q = s/n, which is fulfilled only if n is multiple of Q/2, i.e.,
Q = 2n/j for some j = 1, 2, . . . . At first, this means that Q is rational, i.e., only
commensurate helical groups allow mirror plane. Moreover, generator (CQ | f ) =
(C j

2n| f ) becomes Z ′Ci
n , where Ci

n is rotation from Cn , while Z ′ = (I | f ) for j even
and Z ′ = (C2n| f )Ci

n for j odd; therefore, the group T Q( f )Cn is equal to the group
T ( f )Cn for j even and to T 1

2n( f )Cn for j odd.3 Quite similar argumentation can
be performed for all other axial point groups, giving the same result: besides Cn and
Dn which are compatible with any helical group, the other axial point groups are
compatible only with special helical groups T ( f = a) and T 1

2n( f = a/2), where n
is order of the principle axis of the point group.

On the other hand, glide plane group is compatible with all the axial point groups.
The only requirement when the point group contains mirror planes or U -axes is
that glide plane either coincides with them or bisects them, and different groups
are obtained in these two cases. As glide plane is commensurate, such are all the
resulting groups.

This way we obtain [1] all the products of the point factor P and generalized
translation group Z:

L = Z P . (2.3)

2 This does not mean that the elements of P and Z commute, but only that for each P and t there
is a choice of P ′ and t ′ such that P Zt = Zt ′ P ′.
3 Essentially, we exploited here nonuniqueness of the helical subgroup of the first family line
groups, which will be discussed in Sect. 2.2.2.
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Table 2.2 Line groups. For each family F different factorizations, roto-helical subgroup L(1),
generators, and the isogonal point group P I, are given in the first line. Below follow NF =
|L(F)|/|L(1)|, international symbol (of commensurate groups only), family F+ of the positive
subgroup L+ (for positive groups F = F+), and the coset representatives �(F)i for i > 1 of (2.29)
(when nF = 4, the first one gives L+). T ′

d and Ud are glide plane and horizontal axes bisecting
vertical mirror planes, while S2n = C2nσh. For families 1 and 5, the order q of the isogonal
principle axis is given by Q = q/r (according to (2.12)) for commensurate groups, while q = ∞
otherwise

F Factorizations L(1) Generators P I

NF n even International n odd F+ �
(F)
i

1 T Q ⊗ Cn T Q ⊗ Cn (CQ | f ),Cn Cq

1 Lqp 1

2 T ∧ S2n T ⊗ Cn (I |a), S2n S2n

2 L2n Ln 1 S2n

3 T ∧ Cnh T ⊗ Cn (I |a),Cn, σh Cnh

2 Ln/m L2n 1 σh

4 T 1
2n Cnh = T 1

2n S2n T 1
2n Cn (C2n |a/2),Cn, σh C2nh

2 L2nn/m 1 σh

5 T Q ∧ Dn T Q ⊗ Cn (CQ | f ),Cn,U Dq

2 Lqp22 Lqp2 1 U

6 T ⊗ Cnv = Cnv ∧ T ′ T ⊗ Cn (I |a),Cn, σv Cnv

2 Lnmm Lnm 6 σv

7 Cn ∧ T ′ 7 T ⊗ Cn (σv|a/2),Cn Cnv

2 Lncc Lnc 7 (σv|a/2)
8 Cnv ∧ T 1

2n = Cnv ∧ T ′
d T 1

2n ⊗ Cn (C2n |a/2),Cn, σv C2nv

2 L2nnmc 8 σv

9 T ∧ Dnd = T ′ ∧ Dnd T ⊗ Cn (I |a),Cn,Ud, σv Dnd

4 L2n2m Lnm 6 σv,Ud, S2n

10 T ′S2n = T ′
d Dn T ⊗ Cn (σv|a/2), S2n Dnd

4 L2n2c Lnc 7 (σv|a/2), S2n, (Ud|a/2)
11 T ∧ Dnh = T ′ Dnh T ⊗ Cn (I |a),Cn,U, σv Dnh

4 Ln/mmm L2n2m 7 σv,U, σh

12 T ′Cnh = T ′ Dn T ⊗ Cn (σv|a/2),Cn, σh Dnh

4 Ln/mcc L2n2c 7 (σv|a/2),U, (S2n |a/2)
13 T 1

2n Dnh = T 1
2n Dnd = T ′

d Dnh = T ′
d Dnd T 1

2n ⊗ Cn (C2n |a/2),Cn,U, σv D2nh

4 L2nn/mcm 8 σv,U, σh

Although with different factors, some of these products are equal, giving dif-
ferent factorization of the same line group. Taking this into account, we get 13
infinite families of the line groups in the factorized form (Table 2.2). Each family
includes all groups (with various parameters Q, f , n) with fixed type of Z and
P . The incommensurate line groups are either from the first or from the fifth family
(commensurate ones from these families are singled out by the condition Q = q/r ),
while in all other families generalized translational group is either glide plane, pure
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translational group T , or zigzag group T 1
2n . In Appendix B all of the 75 groups sat-

isfying crystallographic conditions from all families are singled out (i.e., subgroups
of space groups); these groups are known as rod groups.

As the intersection of P and Z is the identity element only (point operations are
without translational part, and the identity Z0 is the only such element in Z), the
products are weak direct ones. In some cases one or both subgroups are invariant,
and this product becomes semi-direct (∧, with the first factor invariant) and direct
(⊗), respectively.

2.1.4 Monomer, Elementary Cell, Symcell

After clarifying the structure of the line groups, we are able to define precisely the
basic structural ingredients of the systems with line group symmetry.

At first, by monomer we denote the minimal part of the system sufficient to
generate the whole system by the action of generalized translations Z only. For
commensurate systems we can also introduce the elementary cell, which generates
the polymer by the translations only. Finally, with the help of the full symmetry we
generate the system with only a part of monomer which we call symcell or symmetry
cell.

None of these parts of the system is uniquely defined, but the number of atoms
it contains is. In fact, the symcell is any set of orbit representatives (orbits of line
groups will be discussed in details in Sect. 3.1). Further, as in commensurate case
translational group is a subgroup of Z, elementary cell contains |Z|/|T | monomers.

2.1.5 Isogonal Groups

For some physical applications, like study of the excitations in the external fields
(e.g., first order Raman spectra), the translational parts of the symmetry transforma-
tions are not important. Therefore, for such purposes only the set of all the orthogo-
nal parts X from the line group elements (X | f ) is relevant. This set is obviously an
axial point group P I, called isogonal point group. As it includes all elements of the
point factor, P is a subgroup of P I. Note that the elements of P I being not in P are
not the symmetries of the considered system.

For an incommensurate line group, the isogonal group is infinite. In order to
prove this, we assume the opposite, i.e., that the set of rotations Rφ included in
the elements (Rφ | f ) (where f may be zero) is finite. As the line group is infi-
nite, this means that the same rotation, Rφ , in the line group must be accom-
panied by (infinitely many) different translational parts. Thus, there are elements
(Rφ | f ) and (Rφ | f ′) in L. Then, there is also a pure translation (Rφ | f )(Rφ | f ′)−1 =
(I | f − f ′), which contradicts the assumption of incommensurability. Consequently,
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the isogonal groups of the incommensurate first and fifth family line groups are
continuous groups C∞ and D∞, respectively.4

For the commensurate line groups, the translational group T is an invariant sub-
group, and the isogonal group is the factor group P I = L/T . This means that the
line group may be partitioned into disjoint cosets5:

L =
∑

X∈P I

(X | fX )T . (2.4)

Obviously, only when Z = T all of the elements (X | fX ) may be taken from P
(having fX = 0), showing that then P I = P . These line groups are called symmor-
phic. Beside some special line groups of the families 1 and 5, symmorphic are the
whole families 6, 9, and 11.

For a commensurate line group of the first family, the isogonal point group con-
tains products of the rotations Crt

q (different among them are for t = 0, . . . , q − 1)
from the helical group, and Cs

n from the point factor. As q and r are co-primes, the
set Crt

q is same as the set Ct
q . Thus, we have the products Ct

qCs
n of the elements of

two cyclic groups Cq and Cn . This group is Cq Cn = CLCM(q,n), since the intersec-
tion of factors is CGCD(q,n). Consequently, CLCM(q,n) is the isogonal group of the
commensurate line groups of the first family. Analogously, for the fifth family one
gets DLCM(q,n). For other families the isogonal group is easily found (Table 2.2).
Later on (Sect. 2.2.2) we will show that in the commensurate groups q may be taken
to be a multiple of n. Thus, within this convention, q is the order of the principle
axis of the isogonal group.

2.1.6 Spatial Inversion and Chirality

Many molecules and polymers have left and right form, i.e., two different conforma-
tions being mapped one into another by the spatial inversion I. Although chemically
the same, and with the same properties when isolated, the two forms may be dis-
tinguished during interaction with some “oriented” external probe, like polarized
light, where they rotate the polarization of the transmitted (and also reflected) beam
in the opposite way, which is known as dichroism or birefringence. Such systems
are called chiral, while the achiral ones have the same left and right form. Chi-
rality is important property of quasi-one-dimensional systems. In technology it has
applications in optical devices and spectroscopical methods. In addition chirality is

4 Strictly, number of elements Rφ is countable; however, the obtained angles φ are dense in the
interval [0, 2π), and for physical applications, when the involved quantities are continuous func-
tions on φ, there is no difference between such countable groups and mentioned continuous ones.
5 This type of coset decomposition is applied in crystallography for derivation of the space groups,
and it is reflected in the international notation of these groups (see Sect. 2.2.3). The (complicated)
mathematical construction used for this purpose is known as extension from the translational sub-
group by the isogonal group. It gives [4] classification of the commensurate line groups only.
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correlated with many structural properties of symmetry groups and through this with
a wide scale of physical properties of system. So, we are going to define criteria to
distinguish chiral and achiral system.

Let us start with a bit simplified approach, which is also of physical interest
in some quantum mechanical analysis involving selection rules for transitions in
various external fields. Obviously, if symmetry group contains spatial inversion I,
then the system is invariant under I and automatically achiral. Hence line groups
containing spatial inversion are to be singled out. Having in mind that I may be
written as a product of a mirror plane and the rotation for π around the perpendicular
axis to it, e.g., I = C2σh = Uσ⊥

v (mirror plane perpendicular to U axis), it is easy
to find such groups: spatial inversion appears in all the groups of the families 4 and
13; families 2, 9, and 10 contain I for n odd, and the families 3, 11, and 12 for n
even. In fact, in these cases the isogonal group contains spatial inversion (Table 2.2).

However, the question whether the initial and the inverted systems are indis-
tinguishable is more subtle. Indistinguishability means that the inversion does not
change the relative positions of atoms: the atoms of the left form are mutually related
in the same way as the atoms of the right form. In order to clarify this, we begin with
a mono-orbit system. Let LR be the symmetry of its right-handed form. Then all the
atoms are mutually connected by the operations of LR: any two atoms positioned
at r and r ′ there is a symmetry transformation �R ∈ LR such that r ′ = �Rr . In the
inverted system, i.e., in the left form, we get I r ′ = I�Rr = (I�RI−1)I r . Thus, the
inverted positions are related by the elements �L = I�RI (obviously I = I−1) of
the left symmetry group LL = ILRI. The relative positions of the atoms are same
if for each �R there is �L = (R|v)�R(R|v)−1. Here R and v are arbitrary rotation
and translation (but same for all �R), enabling to move the system as a rigid body;
essentially, they interrelate various right frames. Even more, if the elements �L are
not equal to the corresponding element (R|v)�R(R|v)−1, but they are still elements
of the set (R|v)LR(R|v)−1, we would get indistinguishable system, as this means
that at the position I r ′ is an equivalent atom to that being at r ′ in the right form.
So, the criterion of (a)chirality of a mono-orbit system is related exclusively to the
symmetry groups of the right and left conformations: the system is achiral if the left
and right groups are geometrically conjugated (note that they are always conjugated
by I and thus isomorphic):

L = (R|v)−1ILI(R|v). (2.5)

Otherwise it is chiral. Still, in the case of multi-orbit systems, with symcell atoms
at r1, . . . , r S , the above analysis provides achirality criterion for each orbit sep-
arately, but the relative positions of the spatially reversed symcell atoms (being
at I r1, . . . , I r S) are to be analyzed independently. Obviously, this is reduced to
comparison of the sets of vectors r i j = r i − r j and (R|v)I r i j for each pair of
the symcell atoms. Achirality appears only if simultaneously with condition (2.5)
these two sets are equivalent, in the sense that they are the same up to the possible
permutation of the chemically same symcell atoms.



2.2 First Family Line Groups 17

Obviously, if spatial inversion belongs to L, left and right groups are the same
and the system is achiral.

All orthogonal transformations (pure rotations, including U -axes, mirror planes,
and roto-reflections) commute with I (i.e., I�I = � for such an element �), so these
symmetries cannot provide chirality. Also, as I(σv|a/2)tI = (σv|a/2)−t , spatially
inverted glide plane T ′(a/2) remains the same (only its elements are reordered).
Therefore, chirality is completely determined by helical axis solely, i.e., by the first
family subgroup of the line group. As we will show in the Sect. 2.2.5, there are only
two achiral groups of the first family: translational or symmorphic T (a)Cn and
zigzag or non-symmorphic T 1

2n(a/2)Cn . Thus, all the line groups with such L(1)

are achiral.
However, vast majority of the line group families are achiral, namely, chiral

groups are only in the two (out of 13) families, 1 and 5. Besides, not all the groups
from these families are chiral: two infinite series (Q = n and Q = 2n) are achiral
line groups. In other words, mirror and glide planes, as well as roto-reflectional axes
are compatible only with achiral roto-translations.

2.2 First Family Line Groups

The first family line groups are used in the construction of all the other line groups
and their irreducible representations. Here we derive the basic properties of the first
family groups. Generally, they are direct products of a helical and rotational group,
T Q( f )⊗ Cn , being thus abelian and non-symmorphic.

2.2.1 Helix Generated by the Helical Group

Let us chose an arbitrary point r0 = (ρ, ϕ0, z0) (cylindrical coordinates) which is
not at the z-axis (i.e., ρ > 0). Transformations of the screw-axis T Q( f )map r0 into
the infinite set of points:

r t = (CQ | f )t r0 =
(
ρ, ϕ0 + t

2π

Q
, z0 + t f

)
. (2.6)

All these points are at a cylinder of radius ρ, and at a helix given by (2.6) when t
is continuously changed (Fig. 2.2). The inclination of the helix is χ = arctan f Q

2πρ ,
while the increase of z in a single turn is helix step h = f Q. Among all right-
handed arcs (right-handed rotations are accompanied by increase of z) connecting
successive points rt , the minimal in length is just the one along the helix. Also,
one can draw another left-handed minimal helix connecting the points, involving
left rotations for 2π/Q′, with Q′ = Q/(Q − 1), i.e., generated by (C−1

Q′ | f ). The
inclinations of the two helices are related by 1/tanχ + 1/tanχ ′ = 2πρ/ f .
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Fig. 2.2 Helical coordinates. Some of the points rts obtained by L = T 5
12( f )C4 from r00 in

accordance with (2.10) are on the left denoted by pairs ts; among them, t0 are on the standard
(convention C1) helix (r = 5, thick line), while other helices correspond to the alternative helical
groups T r0=2

12 ( f ) (convention C0, black), T r2=8
12 ( f ) and T r3=11

12 ( f ). Fractional translation f , line
group period a and period A of T 5

12( f ) are indicated as dark, light, and medium parts of cylinder.
Standard helix is used (right) to define coordinates ϕ̃ and z̃ of an arbitrary point p. As r = 5, helix
step h is 12 f/5

We use a helix generated by a screw-axis in order to define the coordinate system
in which action of the helical generator changes a single coordinate. Given an arbi-
trary point r = (ρ, ϕ, z) of the cylinder, starting from the point x = ρ, y = z = 0,
we move along the helix (2.6) with ϕ0 = z0 = 0 until we reach the height z;
the corresponding length of the helix is z̃. To reach r it remains to move along
the horizontal circle for (right-handed) angle ϕ̃. Obviously, the helical coordinates
(ρ, ϕ̃, z̃) uniquely define r . They are related to the cylindrical ones as:

ρ = ρ, z = h

h̃
z̃ = z̃ sinχ, ϕ = ϕ̃ + 2π

h̃
z̃ = ϕ̃ + cosχ

ρ
z̃, (2.7)

where h̃ = √
4π2ρ2 + h2 = h/ sinχ is the increase of z̃ per turn. Note that h is

determined by the group parameters only, while χ and h̃ depend additionally on the
radial coordinate ρ.

Momenta p̃ and l̃z conjugated to the helical coordinates z̃ and ϕ̃ are combina-
tions of the z components of linear momentum pz (conjugated to z) and angular
momentum lz (conjugated to ϕ):
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p̃ = h

h̃
pz + 2π

h̃
lz = sinχpz + cosχ

ρ
lz, l̃z = lz . (2.8)

The last equality manifests that the coordinates ϕ and ϕ̃ have the same physical
sense: as the corresponding coordinate lines are the same circles, with different
starting points only, the angular momenta lz and l̃z are equal. On the contrary, helical
momentum p̃ combines linear and angular momenta in the ρ-dependent way, as its z
and circumferential components are proportional, respectively, to the sine and cosine
of the inclination angle, which decreases with ρ (the step h is fixed).

2.2.2 Different Factorizations and Conventions

To get the points generated by the first family line group, it remains to apply group
Cn to the set of points (2.6). In other words, the elements of the group are of the
roto-helical form:

�ts = (CQ | f )t Cs
n . (2.9)

which manifests the factorization of the line group onto the cyclic helical T Q and
rotational Cn subgroups. Obviously, �ts = �t

10�
s
01. Alternatively, we shall use �̃(t, s)

instead of �ts .
The elements �ts map r0 = r00 into the points

r ts = (CQ | f )t Cs
n r0 = (ρ, ϕ0 + 2π

(
t

Q
+ s

n

)
, z0 + t f ). (2.10)

For the fixed s set of the points r ts lay on the helix T Q( f ). However, n points r1s

(at the height z0 + f ) may also be connected with r0, giving the arcs of n differ-
ent helixes counted by s (Fig. 2.2). Note that non-minimal helixes, making more
than one turn before passing through r1s are not taken into account as Q ≥ 1 is
assumed. All of them may be defined with the help of rotational angles φ = 2π/Q
and φs = φ + s 2π

n = 2π/Qs (s = 0,±1 . . . ), i.e., these helixes correspond to

the transformations Z (s) = (CQ | f )Cs
n = (CQs | f ), with Qs = Qn

n+s Q . There-

fore, although each Z (s) generates different helical group T Qs ( f ), all the prod-
ucts T Qs Cn are the same and equal to T Q( f )Cn (obtained for s = 0). Thus, to
classify the first family line groups we have to resolve this non-uniqueness by a
convention.

To this end we consider arbitrary factorization T Q′( f )Cn and determine all

equivalent Q′
s = nQ′

n+s Q′ . Then, by the convention which will be referred to as C0,
we assign to Q the maximal finite Q′

s . This means that we take s which provides
the minimal positive denominator n + s Q′. It is easy to find that
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Convention C0: Q =
⎧
⎨

⎩

Q′ if n ≤ Q′ (for s = 0),
nQ′

n+Q′+Q′
[
− n

Q′
] if n ≥ Q′

(
for s = 1 +

[
− n

Q′
])

(2.11)

([x] is integer part of x). Consistently, for n = Q′ the both expressions give Q = Q′.
Geometrically, the introduced convention means that the helix with the maximal
inclination is chosen.6 It is easy to show that C0 always give Q ≥ n.

2.2.3 Commensurability

Now we analyze commensurability of the first family groups. If exist, pure trans-
lations form a cyclic group generated by the minimal among them (I |a), i.e., a
denotes the translational period. Therefore, arbitrary translation is of the form
(I |t f ), and according to (2.9), commensurability requires the existence of t and

s such that (I |t f ) = (Ct
Q |t f )Cs

n . This gives equation 2π
Q t + 2π

n s
2π= 0, and it is

solvable if and only if t
Q + s

n is an integer. Obviously, when the helical factor is
commensurate, the whole group T Q( f )Cn is commensurate, since additional sym-
metry Cn cannot break translational periodicity. On the contrary, in the case of the
incommensurate helical group the rational number s/n cannot cancel the irrational
1/Q, and the condition cannot be satisfied. Thus, the first family line groups are
commensurate if and only if the helical factor is commensurate.

As for commensurate groups, the convention on the helical factor can be more
specified. Namely, for Q′ = q ′/r ′, with positive co-primes q ′ and r ′ (all the other
cases may be reduced to this one) (2.11) becomes

Q = q

r
, with q = LCM(q ′, n) = nq̃, r =

{
q
n

{
r ′n
q ′
}

if q
n

{
r ′n
q ′
}

�= 0,

1 otherwise.
(2.12)

Recall (Sect. 2.1.5) that here q is the order of the principle axis of the isogonal
group Cq . Also, we introduced quantity q̃ = q/n, which proves to be useful in
further discussions. It is easy to show that r and q̃ = q/n = q ′/GCD(n, q ′) are
co-primes. However, r may have common factors with n and thus with q. If these
factors are canceled, and Q written in the simplest form as assumed by the conven-
tion C0, the convenient form of q will be lost. To remedy this, we slightly change
the convention. In fact, various helical generators may now be written in the form
(Crs

q | f ) = (Cr0
q | f )Cs

n , rs = r0 + sq̃ , with r = r0. Each rs is co-prime with q̃ , but at
least one of them is also co-prime with q. So, by the convention C1 we choose r as
the minimal rs which is co-prime with q, retaining thus the more useful form of q.

6 Also, one can find the minimal Qs not less than one; in the above-mentioned cases, it is Qmin =
nQ′/(n + nQ′ − Q′) (for n ≤ Q′) and Qmin = nQ′/(n + Q′[(nQ′ − n)/Q′]) (for n ≥ Q′).
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Note that the translational period of the helical factor T rs
q ( f ) is q f/GCD(n, rs) and

that within convention C1 it gets simple form: q f .
Although Cn cannot break the commensurability of the helical factor, the transla-

tional period of T r
q( f )Cn is in general decreased with respect to that of the helical

factor. In order to find this period, we determine t solving the commensurability
condition, t

Q + s
n being integer. Knowing that Q = q̃n/r , this condition transforms

to r t + sq̃ = iq, i = 0,±1, . . . , equation of the type (C.7). As GCD(r, q̃) = 1, it
has always solutions7 (C.8). The translational period of the whole group is defined
as t f for the minimal positive solution in t . This is t = q̃ (then s = −r ), obtained
for i = 0. Thus, the minimal pure translation is (Cr

q | f )q̃C−r
n = (I |q̃ f ), and the

translational period of T r
q( f )Cn is

a = q̃ f. (2.13)

As the translational period of the helical factor alone is q f/GCD(r, n), it turns out
that the rotational group Cn decreases period, i.e., increases translation symme-
try of T r

q( f ) by n/GCD(r, n). Particularly, within the convention C1 the period is
decreased n times. It immediately follows that in this case the step of the generated
helix is h = an/r . Apart from n and a defining periodicity of the system along
coordinates ϕ and z, r is necessary to define the inclination, and therefore we call it
helicity parameter.

Summarizing all these, the commensurate line groups of the first family are
uniquely given by the integers r , n, q̃ , and real f , in the form (according to the
conventions (a) and (b)):

L = T r
q̃n( f )⊗ Cn, n = 1, 2, . . . ,

{
C0: r = 0, 1, . . . q̃, GCD(q̃, r) = 1,

C1: r = 0, 1, . . . q̃n, GCD(q̃n, r) = 1.
(2.14)

Factorized form of the general element of these groups is

�ts =
(

Crt
q |t a

q̃

)
Cs

n, s = 0, . . . , n − 1; t = 0,±1, . . . (2.15)

The achiral groups have within the both conventions the same factorization: T 1
n( f =

a)Cn and T 1
2n( f = a/2)Cn , translational and zigzag groups, respectively. Note that

T (a) instead of the alternative for notation T 0
n(a) (i.e., r = 0, with the helix reduced

to the vertical line) can be used.
Finally, let us mention that when it is convenient we shall unify notation for

commensurate and incommensurate groups, writing helical factor either as T Q( f )
(assuming Q = q/r for commensurate groups) or as T r

q( f ) (assuming irrational
q = Q and r = 1 for incommensurate groups).

7 The solvability, i.e., commensurability, has been already provided by rationality of Q.
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2.2.3.1 Translational Factorization and International Notation

As discussed in Sect. 2.1.5, when L is commensurate, pure translations form its
invariant subgroup. For the commensurate first family line group the factor group
(isogonal point group) is Cq , and L can be decomposed into q cosets of the

translational group. The coset representatives may be taken in the form (C j
q | f j )

( j = 0, . . . , q − 1), where f j are the corresponding fractional translations (less
than a). To find f j we write coset representatives in the factorized form (2.15):

(C j
q | f j ) = (C

rt j
q |t j

a
q̃ )C

s j
n ; obviously all t j are less than q̃ . For j = 1 the rotational

part gives the condition Cq = Crt1
q Cs1

n , i.e., r t1 + s1q̃ = 1. This is Diophantine
equation (C.7) in t1 and s1, with co-primes r and q̃ (independently of the convention
used for r ) having solutions (C.8). The only solution in t1 which is less than q̃ is
t1 = p̃ = rEu(q̃)−1 = r−1

(q̃) (inverse of r modulo q̃; see Appendix C). Thus, the first

coset representative is (Cq |a p̃
q̃ ) = (Cq |a p

q ), where p = n p̃ is integer less than q.
Clearly, p̃ indicates the monomer at the minimal height (equal to z = p̃ f ) with
the atoms rotated for 2π/q (the minimal rotation involved with respect to the initial
monomer8 (at z = 0)). The other coset representatives can be the powers of the first
one; as we want that f j is less than a, we subtract appropriate number of periods

from j pa/q and take them in the form (C j
q |{ j p

q }a), getting the coset decomposition:

L =
q∑

j=1

(
C j

q |
{

j p

q

}
a

)
T (a). (2.16)

This gives another factorization of the elements of the line group:

�(t, j) =
(

C j
q |ta +

{
j p

q

}
a

)
, j = 0, . . . , q − 1; t = 0,±1, . . . . (2.17)

Obviously, the translational subgroup is generated by �(1, 0) and contains all the
elements �(t, 0). The element �(0, 1) = (Cq |a p

q ) generates the helix with step h =
pa and inclination tanχ = pa/2πρ. The coset representatives �(0, j) do not form
a subgroup in L unless p = 0, as their translational part is fractional translation
{ j p/q}a instead of j pa/q of � j (0, 1). Accordingly, we call the factorization (2.17)
translational form. Only in the case of symmorphic groups (p = 0), using the choice
r = 0 for the helical factor (i.e., T (a) = T 0

n(a)), the two factorization become the
same: �ts = �(t, s).

Starting from q, r , and n, we have found p. Oppositely, if q and p, are given,
then as we have seen n = GCD(p, q), while r is modular (with respect to q/n)
inverse of p̃. Therefore, the first family line group is given by q, f , and either p or

8 Note that r and p, respectively, correspond to the minimal (possibly not pure) rotation and trans-
lation involved: r is (convention C0) chosen such that Cr

q is the minimal rotation mapping initial
monomer to the monomer at this minimal height f .
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the pair (r, n). The transition rules are

n = GCD(n, p), r = p̃−1
(q̃) + lq̃, p = nr−1

(q̃); (2.18)

here the inverse modular modulo q̃ is used (see C.5). In the second expression, l
is zero within the convention C0, while in C1 it must be calculated. Note again
that p is independent on the convention used for r . As q, p, and period a com-
pletely determine line group, they are used in the so-called international notation
(Table 2.2): a line group of the first family is denoted as Lqp(a) (q = 1, 2, . . . ;
p = 0, 1, . . . , q − 1). It is now easily seen that for any positive integer q there are
q different commensurate first family line groups Lqp with the isogonal group Cq .
Among them, only for p = 0 the symmorphic line group T (a)Cq=n is obtained.

2.2.3.2 Transition Between the Two Factorizations

As both factorization (2.15) and (2.17) have some advantages, we will use both.
Here we interrelate them to enable direct switch from one to another. For this pur-
pose it is convenient to use notation �̃(t, s) = �ts .

To get the translational form of the roto-helical generators we find the corre-
sponding t and j of (2.17). From �̃(0, 1) = �(t, j) = (C j

q |(t + { j p
q })a) we get t +

{ j p
q } = 0, i.e., t = 0 and { j p̃

q̃ } = 0. As p̃ and q̃ are co-primes, this is the case if and

only if j is multiple of q̃ , yielding �̃(0, 1) = �(0, q̃). From �̃(1, 0) = �(t, j), equal-
ity of the translational parts t+{ j p̃

q̃ } = 1/q̃ gives t = 0, while the fractional parts are

equal to 1/q̃ for j = r , i.e., �̃(1, 0) = �(0, r). Analogously, for the roto-helical form
of the translational generators, we solve (2.15) in t and s for each of them. From
�(0, 1) = �̃(t, s) = (Crt+q̃s

q |ta/q̃), the translational part immediately gives t = p̃,

while s must satisfy sq̃
q= 1−r p̃, i.e., s = n{ 1−r p̃

q }. Thus, �(0, 1) = �̃( p̃, n{ 1−r p̃
q }).

Finally, solving �(1, 0) = �̃(t, s) we get �(1, 0) = �̃(q̃,−n{ r
n }). Altogether, the two

set of generators of the commensurate groups are related as follows:

�̃(1, 0) =
(

Cr
q |a

q̃

)
= �(0, r), �̃(0, 1) = Cn = �(0, q̃), (2.19a)

�(1, 0) = (I |a) = �̃
(q

n
,−n

{ r

n

})
, �(0, 1) =

(
Cq | p

q
a

)
= �̃

(
p

q
, n

{
1 − r p̃

q

})
.

(2.19b)

2.2.4 Isomorphisms and Physical Equivalence

The first family line groups are determined by the group parameters Q, f , and n.
As Q and f can take any real value, the group parameters make a continuous set. In
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principle, each of these parameters may be experimentally measured, and therefore
these groups are physically different.

However, all the helical groups T Q( f ) are infinite cyclic groups, and therefore
they are mutually isomorphic. Hence, nonisomorphic groups are distinguished by
the natural parameter n only.

In many experiments, only the isogonal group can be manifested. If it is finite,
then the line group is commensurate. This opens the question which are different
commensurate groups with the same q. Nonisomorphic groups are defined by differ-
ent possible values of n, i.e., by different divisors of q. Despite continual parameter
f , it remains to determine different values of r . To count them we use convention
C0, when r is co-prime with q̃ . As each such co-prime defines different group, the
number of groups with fixed q and n equals the number of co-primes with q̃ less
than q̃ , i.e., to the Euler function Eu(q̃). Hence, summing over all divisors of q, we
get

∑
n Eu( q

n ) = q (which is a number theory theorem). Indeed, as shown at the
end of Sect. 2.2.3.1, these groups are counted by the parameter p = 0, . . . , q − 1.

2.2.5 Chirality

To discuss chirality of the first family group LR = T QR( f )Cn , we have to deter-

mine its spatially inverted group LL = IL(1)R I. Since I(CQ | f )t Cs
nI = (CQ | −

f )t Cs
n , we see that the rotational factor Cn is the same. Further, to get positive

fractional translation, instead of (CQ | − f ) we use its inverse (C−1
Q | f ) generating

the same helical factor of the “left” group. Therefore, also f is the same (i.e., R and
L indices are not necessary for n and f ), only in the “left” helical factor it is coupled
with C−1

Q = CQ′
L
; as 2π/Q′

L = 2π −2π/QR, we find Q′
L = QR/(QR −1). To find

“left” helical group according to the convention C0 we apply (2.11), for Q′
L ≤ n

(this is fulfilled as in C0 convention QR ≥ n ≥ 1). This gives

QL = nQR

nQR − n + QR + QR

[
−n + n

QR

] =
{

n, if QR = n,
nQR

QR−n , otherwise.
(2.20)

The equation QL = QR = Q has solutions Q = n, 2n, i.e., the only achiral first
family groups are translational (symmorphic) T 1

n Cn and zigzag (non-symmorphic)
T 1

2n Cn , both commensurate with q̃ = 1, 2, respectively, and r = 1. For other
commensurate groups, substituting QR = qR/rR general solution (2.20) gives
qL/rL = qR/(qR/n − rR), i.e.,

qR = qL = q, rL = q̃ − rR (convention C0). (2.21)
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2.3 Other Families

Here we briefly consider the most important structural properties of the other line
group families. Although these groups are more complicated, their properties may
be derived using their maximal first family subgroup.

2.3.1 Elements

The factorization (2.3) of the line groups enables to generalize the form (2.15) and
to factorize elements of any line group as follows �tp = Zt P . Here Z generates the
generalized translations subgroup, and P is the axial point group element. Hence P
can be further factorized to the rotation Cs

n around the system axis and additional
one or two parities P1, P2 (generators of the second order, i.e., P2

i = I ), so that the
general form of the line group element is

�tsp1 p2 = zt Cs
n P p1

1 P p2
2 , t = 0,±1, . . . ; s = 0, . . . , n − 1; p1, p2 = 0, 1.

(2.22)

Only for second family line groups the last generator S2n is not a parity, being
of order 2n. However, as S2p

2n = C p
n , the general form is �tsp = (I |a)t Cs

n S p
2n =

(I |a)t S2s+p
2n for p = 0, 1, and (2.22) is valid.9

The action of all the line group transformations � in the Euclidean space leaves
the radial coordinate ρ invariant. Therefore, it is effectively reduced to the cylinder
and can be explicated both in the cylindrical and helical coordinates. Using the
general form (2.22), from the following results we can generate this action for any
line group element:

(CQ | f )(ϕ, z) =
(
ϕ + 2π

Q
, z + f

)
, (CQ | f )(ϕ̃, z̃) =

(
ϕ̃, z̃ + h̃

Q

)
, (2.23)

Cn(ϕ, z) =
(
ϕ + 2π

n
, z

)
, Cn(ρ, ϕ̃, z̃) =

(
ϕ̃ + 2π

n
, z̃

)
, (2.24)

(I | f )(ϕ, z) = (ϕ, z + f ), (I | f )(ϕ̃, z̃) =
(
ϕ̃ − 2π

h
f, z̃ + h̃

h
f

)
,

(2.25)

U (ϕ, z) = (−ϕ,−z), U (ϕ̃, z̃) = (−ϕ̃,−z̃), (2.26)

9 For the families 2 and 9 S2n can be used instead of Cn to get the general forms �ts = (I |a)t Ss
2n

and �tsp = (I |a)t Ss
2nσ

p
v , respectively (this reduces the number of generators to 2 and 3).
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Cnσh(ϕ, z) =
(
ϕ + 2π

n
,−z

)
, Cnσh(ϕ̃, z̃) =

(
ϕ̃ + 4π

h̃
z̃,−z̃

)
, (2.27)

Cnσv(ϕ, z) =
(

−ϕ + 2π

n
, z

)
, Cnσv(ϕ̃, z̃) =

(
−ϕ̃ − 4π

h̃
z̃ + 2π

n
, z̃

)
. (2.28)

The action of the mirror planes is obtained from the last two equations for n = 0.
Note that (CQ | f ) and Cn change only a single helical coordinate, z̃ and ϕ̃, respec-
tively.

2.3.2 First Family Subgroup

The set of all roto-helical transformations forms a subgroup L(1) of any line group.
In the case of the first family groups, L(1) is the group itself, i.e., the trivial subgroup.
For the families F = 2, . . . , 8 it is a halving subgroup, NF = |L(F)|/|L(1)| = 2,
and for the remaining families F = 9, . . . , 13, the first family subgroup is a sub-
group of index four: NF = 4. Assuming �(F)1 = (I |0), the line group decomposition
is analogous to the one of the point factor (2.1):

L(F) =
NF∑

i=1

�
(F)
i L(1). (2.29)

For the families 9–13, with L(1) and only one of the three cosets one gets one of
the groups from families 2, . . . , 8, as a halving subgroup. The coset representatives
�(F) are listed in Table 2.2.

Let us emphasize once again that the first family subgroup in all the families
except the first and fifth ones are achiral (either translational or zigzag) and also
commensurate. Thus, only the first and fifth family groups can be chiral (when Q �=
n, 2n) and incommensurate (for irrational Q), while the other families are achiral
and commensurate.

2.3.3 Subgroups Preserving z-Axis

Leaving z-axis invariant, the line group transformations may reverse its orientation.
Hence, there are two classes of such elements: positive ones preserve the direction
of z-axis, while negative elements reverse it. As products of the positive elements
are always positive they form a subgroup L+ of any line group. On the other hand,
if there is a negative element, �−, then its product with any positive element is
negative, meaning that the negative elements are coset of L+. Therefore, there are
positive and negative line groups. Positive groups contain only positive elements,
i.e., L = L+. As neither of the generalized translations reverses z-axis, the type of
the line group is effectively determined by the type of the point factor: positive are
the families 1, 6, 7, and 8. The remaining families pertain to the negative groups,
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with positive elements forming a halving subgroup (which is a line group itself,
Table 2.2):

L = L+ + �−L+. (2.30)

Obviously, the first family subgroup is always contained in L+.

2.3.4 International Notation

According to the standard crystallographic prescription, the commensurate line
groups have the international symbols L P given in Table 2.2 . Here, when L is
symmorphic P is the international symbol PI of the isogonal point group P I. For
non-symmorphic groups, P is obtained by modifying symbol of PI in order to
indicate the non-symmorphic elements: the letter c is used instead of the letter
m to indicate the glide plane and also qp instead of q denotes the corresponding
screw-axis.

The international notation [5, 4] gives the isogonal point group, slightly modified
in the cases of the non-symmorphic line groups. It is based on the crystallographic
conventions, covering only commensurate groups; thus it cannot be generalized to
the full range of the line groups. Factorized notation explicitly manifests structure
of the line groups, being convenient for various group-theoretical constructions and
derivation of the properties related to the groups structure. These are the main rea-
sons that throughout the text the factorized notation is used.

On the other hand, Z and P (including the parameter Q or the pair q and r ) in
the factorized notation are not unique, and additional conventions are necessary to
fix them. Thus, when line groups (and later on magnetic line groups) are themselves
derived, it is important to give their international symbols, in order to avoid discus-
sions on the equivalence of the groups with different factors and parameters. Finally,
some conclusions are derived using factorized notation within the most suitable con-
vention; in such situations, expressing the result in terms of international notation
(e.g., besides q, r , and n, also p is found) automatically provides the convention
independent consideration (e.g., derivation of the magnetic line groups).
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Chapter 3
Symmetrical Compounds

Abstract Acting by a whole line group to a single atom one obtains orbit, i.e., an
elementary system invariant under that line group. There are altogether 15 infinite
classes of such elementary systems, and their various combinations give any system
periodic along one direction, exhausting all line group symmetries. The most effi-
cient way to completely determine configuration of a system is to define coordinates
for one atom from each orbit.

3.1 Orbits of the Line Groups

In this section we list and depict all the systems having line group symmetry. As
there are infinitely many line groups, the number of such systems is infinite and we
give their general classification [1] and illustrate results for one group from each
family.

3.1.1 Orbit, Stabilizer, and Transversal

Recall that the invariance of some polymer under the line group L means that any
transformation � of the line group maps any particular atom x into another one (of
the same chemical type necessarily), say x ′ = �′x . We define orbit Sx of the atom
x as the set of atoms obtained by the action of L on this atom. In other words, Sx is
the set of atoms x ′ for which there is at least one element �′ of L such that x ′ = �′x ,
i.e., Sx = Lx . Note that the transformation �′−1 maps x ′ into x . Consequently, if
�′′ maps x into another member x ′′ = �′′x of Sx , then also x ′ is mapped into x ′′ by
�′′�′−1. This shows that the orbit of x is the same as the orbit of any other member
of Sx , and that two orbits Sx and Sx ′ are the same if and only if x is from Sx ′ (than
x ′ is from Sx , as well). We conclude that the whole orbit is completely determined
by the position of any of its atoms. On the contrary, if x ′ is not in the orbit of x , then
Sx and Sx ′ are disjoint. Thus, choosing an atom x of the considered system, we can
find its orbit Sx . If there are other atoms, we take arbitrary one x ′ being not in Sx ,
and acting on it by L we get Sx ′ . The procedure is repeated, until the whole system
is partitioned into the disjoint orbits, each of them being invariant under L.

Damnjanović, M., Milošević, I.: Symmetrical Compounds. Lect. Notes Phys. 801, 29–46 (2010)
DOI 10.1007/978-3-642-11172-3_3 c© Springer-Verlag Berlin Heidelberg 2010
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Obviously, the orbits are the simplest systems invariant under L. They are the
building blocks of any invariant system and gather the atoms being physically equiv-
alent regarding both chemical properties and interaction with the neighbors (this is
the symmetry-based definition of the physical equivalence of the atoms). Thus, each
system is uniquely decomposed into a number of disjoint orbits, and the classifica-
tion of the symmetrical compounds is reduced to determination of all the possible
orbits of the line groups. However, orbits may be mutually quite different. For exam-
ple, if x is an atom on the z-axis, then this is the case for all atoms of the orbit of
x . As the operations of Cn leave x fixed, the number of atoms in such orbit is at
least n times less than in the orbits with atoms out of z-axis. Therefore, the different
types of orbits are to be found. This is performed with help of the stabilizer or little
group Lx of atom x , which is in a sense complementary notion to the orbit Sx . It
is the set of the elements of L for which x is a fixed point: �x x = x . As it is easily
verified, Lx is a subgroup of L, and the partition of L into the cosets ci Lx yields the
factorization of the line group elements in the form � = ci�x . The whole coset maps
the atom x into the same atom of the orbit Sx , meaning that the different atoms of
the orbit are determined by the coset representatives ci . Consequently, the orbit Sx

is completely determined by the set of the coset representatives or transversal Y x .
Further, it is straightforward to show that the atom xi = ci x (from the orbit of x)
has conjugated (and accordingly isomorphic) stabilizer Lxi = ci Lx c−1

i . This is used
to define orbit type as the set of the orbits with the conjugated stabilizers [2]. Con-
sidering the symmetry-based properties, the orbits of the same type are equivalent,
making classification of the orbit types important for applications in physics. Hence,
to find different orbits, we have to determine non-conjugated stabilizers of the line
groups.

3.1.2 Construction of the Orbit Types of the Line Groups

Factorization of the line groups (2.3) is the starting point in the construction of the
orbit types. In fact, it enables to employ already known [3] analogous classification
of the point group orbits to solve this problem. As Z is an infinite cyclic group,
generated by Z = (R| f ) without fixed points, it has no common elements with
Lx , and Lx must be finite. Therefore, the expansion of Lx into cosets of the point
stabilizer subgroup P x = P ∩ Lx has the following form [4]: Lx = ∑K

i=0 Zti pi P x ,
where Zti and pi are from Z and P , respectively, and Zt0 = Z0 = p0 = (I |0).
Besides the trivial situation, K = 0, when Lx = P x , there are cases when there are
cosets of P x in Lx . Then pi must reverse z-axis for i > 0, because otherwise Zti pi

cannot have fixed points and cannot be in the stabilizer; thus the stabilizer form is
Lx = P x + ∑K

i=1 Zti p− p+
i P x , where p+

i are from P+ (see (2.2)), and P x is a
subgroup of P+, i.e., P x = P+

x = Lx ∩ P+. For any two coset representatives
Zti p− p+

i and Zt j p− p+
j (i, j �= 0), the product (Zti p− p+

i )
−1 Zt j p− p+

j must be
in Lx . However, this is possible only for i = j , since a simple calculation shows
that this composite transformation diminishes z-coordinate of x for f (t j − ti ), and
otherwise cannot be in the stabilizer. Accordingly p+

i = p+
j , meaning that there
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is at most one coset: Lx = P+
x + Zt p− p+ P+

x . Moreover, by conjugating with
Zs we verify that for t even Lx is conjugated to a purely point stabilizer (i.e., the
mentioned trivial case is achieved again), and otherwise to a subgroup with t = 1.
To summarize, there are two types of stabilizers:

(a) Lx = P x , (b) Lx = P+
x + Z p− P+

x . (3.1)

Stabilizers of the type (a) are the stabilizers of the axial point group P , which are
known [3], while the second case can arise within nine families of the negative line
groups (Sect. 2.3.3). Even in this case, all the subgroups P+

x are the stabilizers of
the point group P+, and it remains only to find various combinations Z p−. In other
words, for given P+

x one should find possible elements p− such that P+
x + Z p− P+

x
is a group, i.e., such that simultaneously satisfy conditions: (i) (Z p−)2 ∈ P+

x and

(ii) p− P+
x = P+

x p− (when Z is an invariant subgroup (i) simplifies to p−2 ∈ P+
x ).

Thus we have obtained a straightforward algorithm for classifying orbit types of
line groups. If P = P+, each orbit type of P generates one orbit type of L, giving
the complete set of L-orbits. It turns out that this correspondence is bijective, except
in the case of the groups L2nnmc for n even, when the point group orbits b and c
give the same orbit type of the line group (two stabilizers are conjugated by Z ). In
the case P = P−, orbit types of P with the stabilizers reversing z-axis bijectively
correspond to a part of L-orbit types. However, P-orbit type with the stabilizer from
P+ (only orthogonal transformations are considered) is in general split when Z is
introduced: (a) there are points in R3 for which P+

x remains the stabilizer in L, and
they give one L-orbit type (again, the correspondence is bijective, except that for
the groups L2nn/mcm, where point group orbits b and c generate the same orbit
type of the line group) and (b) for other points the stabilizer in Z is twice greater.
In this case all the subgroups of the type (b) are to be found (using the conditions
(i) and (ii)), and among them only those for which P+

x and the coset have the same
fixed points are retained. Finally, non-conjugated subgroups obtained in this manner
generate bijectively the rest of the L-orbit types.

3.1.3 Monomers and Orbit Orders

After this discussion on the stabilizers, a brief consideration of the corresponding
orbits will be made. The whole polymer must be disjoint union of the orbits of Z.
Each Z orbit has | Z | points, since generalized translations have no fixed points.
This enables to define monomer M , as the set containing one atom from each orbit
of Z. Then the whole system S is generated from M by the action of Z in the form
of disjoint union S = ∑∞

t=−∞ Zt M , and formally it contains | S |=| M || Z |
atoms.

If Sx is an L-orbit of the type (a) there is no p in P and Zt in Z such that px =
Zt x , otherwise Z−t p belongs to Lx . In other words, Sx is factorized into orbits of P
and orbits of Z, giving the simple form of the monomer: M = Px = {px |p ∈ P},
i.e., one monomer is the orbit of P with x and | Sx |=| Z | |P |

|P x | . When Sx is of the
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type (b), then Z−1x = p−x and clearly Px = P+x + Z P+x (to show this in detail
note that Z P+ = P+Z and p− P+ = P+ p−). Hence the role of monomer is taken
by M = P+x , and the order of the orbit is | Sx |=| Z | |P |

2|P x | .
The symmetry group PM of the monomer has been defined as the maximal axial

point group PM leaving the monomer invariant. Still, when in various applications
the line group of the system is fixed it is useful to introduce symmetry group of
the monomer as the subgroup M containing only the transformations from L, i.e.,
M = PM ∩ L. This group is isomorphic to the point factor P , but some of its
(negative) elements can have fractional translations.

3.1.4 Results

The result of this procedure applied to the factorization first listed in Table 2.2 is
given in Table 3.1. For each line group L = Z P , its orbit types are in the intersec-
tion of the row P and the column Z (there is “Not group” when Z and P do not
combine into a group, or another factorization of the same group if it is used). For
the orbits with the stabilizer P x + Z p− P x in the fourth column is P x , and under
corresponding Z is p− or “None” if the stabilizer is P x only. For Z equal to T (a),
T 1

2n(a/2), T Q( f ), and T ′(a/2), the generators Z are (E |1), (C2n| 1
2 ), (CQ | f ), and

(σv| 1
2 ), respectively. Symbols a, b, . . . for orbits are as in [3], with indices distin-

guishing between different L-orbit types generated from the same P-orbit type. The
order of monomer is in the third column. As usual, σh is xy mirror plane, while σv
and U are along x-axis, except in Dnd where only σv is along x-axis. Finally, the
symmetry group M of monomer is in the fifth column. Note that for the families 1
and 5, the cases when Z is T and T 1

2n are separately considered in the table for the
purposes of the following sections.

To visualize the obtained results, for one group from each of the 13 line group
families the different orbits are illustrated in Fig. 3.1 and explained in detail in
Table 3.2. The coordinate system is adapted to the positions of characteristic sym-
metry elements (mirror planes, horizontal axes, which are also indicated in the
figures):

• horizontal mirror or roto-reflectional plane is xy-plane (depicted in gray, roto-
reflectional planes are round);

• vertical mirror or glide plane matches xz-plane (orange, glide plane distinguished
by zigzag edges);

• U -axis (green lines) coincides with the x-axis, except in the ninth family, where
Ud bisects vertical mirror planes (along x-axis).

The representative atom is connected to the atoms obtained by the action of the
group generators: blue for Z , purple for Cn or S2n , green for z-reversing elements,
and orange for vertical mirror/glide planes. Each monomer consists of the atoms
within dark gray part of the cylinder (with z between − f

2 and f h). The subgroup
M = PM ∩ L leaving the monomer invariant is explicitly given in the third row
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Table 3.1 Classification of the orbits of the line groups (see explanation in the text)

P Condition Orbit |M | P x PM T T 1
2n T r

q T ′

Cn a1 n C1 Dnh None None None None
b1 1 Cn D∞h None None None None

S2n a1 2n C1 Dnd None T 1
2n Cnh Not None

a2 n \ group S−1
2n

n even a3 n \ S2n
b1 2 Cn D∞h None None
b2 1 C2nσh S2n
c1 1 S2n D∞h None None

Cnh a1 2n C1 Dnh None None Not None
a2 n σh \ group σh

n even a3 n \ \ σhCn
b1 n C1h Dnh None None None
c1 2 Cn D∞h None None None
c2 1 D∞h σh σh σh
d1 1 Cnh D∞h None None None

Cnv a1 2n C1 Dnh None None Not T 1
2n

b1 n C1v Dnh None None group T Cnv
n even c1 n C1v Dnh None \

d1 1 Cnv D∞h None None

Dn a1 2n C1 Dn None None None T ′S2n
a2 n U U U T ′Cnh

n even a3 n UCn UCn UCn
b1 n D1 Dnh None None None

n even c1 n D1 Dnh None None None
d1 2 Cn D∞h None None None
d2 1 U U U
e1 1 Dn D∞h None None None

Dnd a1 4n C1 Dnd None T 1
2n Dnh Not T Dnd

a2 2n U group
b1 2n C1v Dnd None
c1 2n D1 D2nh None
d1 2 Cnv D∞h None
d2 1 U
e1 1 Dnd D∞h None

Dnh a1 4n C1 Dnh None None Not T Dnh

a2 2n σh U group T 1
2n Dnh

b1 2n C1v Dnh None None T ′ Dnd
b2 n σh \

n even c1 2n C1v Dnh None \
n even c2 n σh \

d1 2n C1h Dnh None None
e1 n D1h Dnh None None

n even f1 n D1h Dnh None None
g1 2 Cnv D∞h None None
g2 1 σh σh
h1 1 Dnh D∞h None None
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Fig. 3.1 (continued)
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Fig. 3.1 Orbits of the line groups. Each box shows orbits of the group from family F (given in the
down right corner) with n = 6; also, Q = 18 and Q = 12 for the families 1 and 5, respectively
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of the table, and the stabilizer in the fourth row. Finally, in the last row a possi-
ble transversal Y is suggested. It is not unique, and the choice is restricted by the
convention that the transversal is a subgroup of L. However, this is not possible in
general, and the transversals of the orbits b1 of the groups with even n of the families
2 and 10 are not groups. In some other cases the chosen subgroups are not unique,
and some other (listed in the caption) may be taken instead. Note that some orbit
types exist only for special values of n. First, there are orbit types appearing only
for even n, as in for n odd they become another orbit type specified in the square
bracket. Second, for n = 1 some linear orbit types disappear, becoming another
orbit type (given in the bracket) with reduced stabilizer.

3.2 Conformation Classes and Their Symmetry

Inspection of Table 3.2 shows that for different line groups there are orbits gener-
ated by the same transversal. The conformations of such orbits are the same, and
only their stabilizers may differ in accordance with group. In this sense, we find 15
conformation classes corresponding to different transversals (Fig. 3.2). Thirteen of
them are the generic orbit types a1 of all the line group families; their transversals
are the groups Y (F) = L(F). The rest are the two types of linear (arranged along
z-axis) orbits. The first of them is generated by the transversals being generalized
translations Y = Z( f ) (along z-axis all of them act as pure translations, T ( f )). For
the second one the transversal contains additional z-reversing element, thus having
the form Y = Z + p− Z; however, all such elements along z-axis act as σh, making
that all these transversals (namely T Q D1, T Q C1h, T Q D1d, T ′C1h, T + S2n T , and
T ′ + S2n T ′) act effectively as T ( f )C1h. It is natural to denote the classes by their
transversals: the first 13 conformation classes correspond to the line group families
L(F), while for the linear conformations, despite the transversal is not unique, we
use Y (14) = T ( f ) and Y (15) = T ( f )C1h. However, this is not completely unique,
as the transversals themselves are not unique (alternative transversals are listed in
Table 3.2).

When the transversal is a group, then the whole group is obviously a product of
the transversal and stabilizer, L = Y x Lx (one of the factorizations of L). This has a
consequence that such transversals are simultaneously left and right: L = Y x Lx =
Lx Y x . All the transversals of the line groups are again the line groups (with n = 1
for linear orbits), except T + S2n T and T ′ + S2n T ′. Even for these exceptional
transversals it is easy to show directly that they are both sided, making this property
universal for the line group orbits.

It follows from the definition that each orbit of L is invariant under L, but most of
the orbits have additional symmetries. Actually, the full or covering symmetry group
Ỹ of an orbit is related only to its conformation class, i.e., to the transversal Y . For
example, all isolated orbits a1 of the line group L = T (a)Cn are invariant under
the group Ỹ = T (a)Dnh (these are orbits c1, b2, c2, or e1 of L(13)) and L is only a
subgroup of the symmetry of such orbits. Also, independent of the line group, the
linear orbits have symmetry T D∞h. Altogether, the symmetry of the orbits is one of
the groups T Q Dn , T Dnd, T ′S2n, T Dnh, T ′Cnh, T 1

2n Dnh, and T D∞h. In Table 3.3



3.2 Conformation Classes and Their Symmetry 37

Table 3.2 Characteristics of the orbits of the line groups. For each line group family F orbits
(OL) are listed in the decreasing generality order: allowed coordinates (x, y, z) (column C) of the
orbit representative (Wyckoff positions) are arbitrary but cannot take the values of the coordinates
of orbits given below; in short we use cX = cos π

X , sX = sin π
X , cn,Q = cos( πQ − π

n ), and
sn,Q = sin( πQ − π

n ). Then the monomer symmetry group M and stabilizer (site symmetry) group
S follow. If possible transversal Y is chosen as a subgroup; this is unique except when alternative
choices are given in Y ′: 1 T S2 (for n odd only), 2 T ′S2 (for n odd only), 3 T Dn , 4 T D1, 5 T 1

2n Cnh,
6 T 1

2n Dn , and 7 T 1
2n D1. Among the orbit types belonging to the same conformation class (CC),

bold-faced class denotes one used as a representative of the class in the text

F OL A M S Y Y ′ CC

1 a1 (x, y, z) Cn C1 L 1
b1 (a1) (0, 0, z) Cn Cn T Q( f ) 14

2 a1 (x, y, z) S2n C1 L 2
b1 (a1) (0, 0, z) S2n Cn T + S2n T 1 15
b2 (0, 0, a

2 ) Cn + (S2n |a)Cn Cn + (S2n |a)Cn T 14
c1 (0, 0, 0) S2n S2n T 14

3 a1 (x, y, z) Cnh C1 L 3
a2 (x, y, a

2 ) Cn + (σh|a)Cn {e, (σh|a)} T Cn 11
b1 (x, y, 0) Cnh C1h T Cn 11
c1 (a1) (0, 0, z) Cnh Cn T C1h 15
c2 (a2) (0, 0, a

2 ) Cn + (σh|a)Cn Cn + (σh|a)Cn T 15
d1 (b1) (0, 0, 0) Cnh Cnh T 14

4 a1 (x, y, z) Cnh C1 L 4
b1 (x, y, 0) Cnh C1h T 1

2n Cn 12

c1 (a1) (0, 0, z) Cnh Cn T 1
2n C1h 15

c2 (0, 0, a
4 ) Cn + (S2n | a

2 )Cn Cn + (S2n | a
2 )Cn T 1

2n 14
d1 (b1) (0, 0, 0) Cnh Cnh T 1

2n 14

5 a1 (x, y, z) Dn C1 L 5
a2 (ρcQ , ρsQ ,

f
2 ) Cn + (CQ | f )U Cn {e, (CQ | f )U } T Q( f )Cn 1

a3 [a2] (ρcn,Q , ρsn,Q ,
f
2 ) Cn + (CQ | f )U Cn {e, (CQ | f )C−1

n U } T Q( f )Cn 1
b1 (x, 0, 0) Dn D1 T Q( f )Cn 1
c1 [a2] (ρcn, ρsn, 0) Dn {e,CnU } T Q( f )Cn 1
d1 (a1) (0, 0, z) Dn Cn T Q( f )D1 15
d2 (a2) (0, 0, f

2 ) Cn + (CQU | f )Cn Cn + (CQU | f )Cn T Q( f ) 14
e1 (b1) (0, 0, 0) Dn Dn T Q( f ) 14

6 a1 (x, y, z) Cnv C1 L 6
b1 (x, 0, z) Cnv C1v T Cn 11
c1 [b1] (ρcn, ρsn, z) Cnv {e,Cnσv} T Cn 11
d1 (b1) (0, 0, z) Cnv Cnv T 14

7 a1 (x, y, z) Cn C1 L 7
b1 (a1) (0, 0, z) Cn Cn T ′ 14

8 a1 (x, y, z) Cnv C1 L 8
b1 (x, 0, z) Cnv C1v T 1

2n Cn 12

d1 (b1) (0, 0, z) Cnv Cnv T 1
2n 14

9 a1 (x, y, z) Dnd C1 L 9
a2 (ρc2n, ρs2n,

a
2 ) Cnv + (Ud|a)Cnv {e, (Ud|a)} T Cnv 11

b1 (x, 0, z) Dnd C1v T Dn 2
c1 (ρc2n, ρs2n, 0) Dnd D1 T Cnv 11
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Table 3.2 (continued)

d1(b1) (0, 0, z) Dnd Cnv T D1d 15
d2 (0, 0, a

2 ) Cnv + (Ud|a)Cnv Cnv + (Ud|a)Cnv T 14
e1 (0, 0, 0) Dnd Dnd T 14

10 a1 (x, y, z) S2n C1 L 10
a2 (ρc2n, ρs2n,

a
4 ) Cn + (σv| a

2 )S2n Cn {e, (σv| a
2 )S

−1
2n } T ′Cn 12

a3 [a2] (ρc2n,−ρs2n,
a
4 ) Cn + (σv| a

2 )S2n Cn {e, (σv| a
2 )S2n} T ′Cn 12

b1 (a1) (0, 0, z) S2n Cn T ′ + S2n T ′ 2 15
b2 (a2) (0, 0, a

4 ) Cn + (σv| a
2 )S2n Cn Cn + (σv| a

2 )S2n Cn T ′ 14
c1 (0, 0, 0) S2n S2n T ′ 14

11 a1 (x, y, z) Dnh C1 L 11
a2 (x, y, a

2 ) Cnv + (σh|1)Cnv {e, (σh|a)} T Cnv 3 6
b1 (x, 0, z) Dnh C1v T Cnh 3 3
b2 (x, 0, a

2 ) Cnv + (σh|a)Cnv {e, σv, (σh|a), (U |a)} T Cn 11
c1 [b1] (ρcn, ρsn, z) Dnh {e,Cnσv} T Cnh 3 3
c2 [b2] (ρcn, ρsn,

a
2 ) Cnv + (σh|a)Cnv {e,Cnσv, (σh|a), (U |a)} T Cn 11

d1 (x, y, 0) Dnh C1h T Cnv 3 6
e1 (x, 0, 0) Dnh D1h T Cn 11
f1 [e1] (ρcn, ρsn, 0) Dnh {e,Cnσv, σh,CnU } T Cn 11
g1 (b1) (0, 0, z) Dnh Cnv T C1h 4 15
g2 (b2) (0, 0, a

2 ) Cnv + (σh|a)Cnv Cnv + (σh|a)Cnv T 14
h1 (e1) (0, 0, 0) Dnh Dnh T 14

12 a1 (x, y, z) Cnh C1 L 12
a2 (x, 0, a

4 ) Cn + (σv| a
2 )σhCn {e, (σv| a

2 )σh} T ′Cn 11

a3 [a2] (ρcn, ρsn,
a
4 ) Cn + (σv| a

2 )σhCn {e, (σv| a
2 )C

−1
n σh} T ′Cn 11

b1 (x, y, 0) Cnh C1h T ′Cn 7
c1 (a1) (0, 0, z) Cnh Cn T ′C1h 15
c2 (a2) (0, 0, a

4 ) Cn + (σvσh| a
2 )Cn Cn + (σv| a

2 )σhCn T ′ 14
d1 (b1) (0, 0, 0) Cnh Cnh T ′ 14

13 a1 (x, y, z) Dnh C1 L 13
a(5)2 (ρc2n, ρs2n,

a
4 ) Cnv + (C2nσh| a

2 )Cnv {e, (C2n | a
2 )U } T 1

2n Cnv 5 11

b(6)1 (x, 0, z) Dnh C1v T 1
2n Cnh 6 4

d(6)1 (x, y, 0) Dnh C1h T 1
2n Cnv 6 8

e1 (x, 0, 0) Dnh D1h T 1
2n Cn 12

f1 [e1] (ρcn, ρcn, 0) Dnh {e, σh,CnU,Cnσv} T 1
2n Cn 12

g(7)1 (b1) (0, 0, z) Dnh Cnv T 1
2n C1h 7 15

g2 (0, 0, a
4 ) Cnv + (C2nσh| a

2 )Cnv Cnv + (C2nσh| a
2 )Cnv T 1

2n 14
h1 (e1) (0, 0, 0) Dnh Dnh T 1

2n 14

we list the symmetry of all different orbits of the line groups, which is important in
some applications. Some orbit types for a special position of orbit representatives
have even larger symmetry (e.g., orbit type a1 of the group T (a)S2n for z = a/4 has
doubled symmetry T 1

2n(a/2)Dnh). Such special cases of Y (i) are listed immediately
below row of Y (i); as the orbit type and transversal are the same, the condition
selecting the special case is given instead. Also, the orbits of the achiral groups
(Q = n, 2n) of the first family have increased symmetry with respect to the chiral
ones, and for these special cases of the transversal Y (1) we use notation Y (11) and
Y (12), respectively. All the elements of symmetry are depicted in Fig. 3.2.
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Table 3.3 Symmetry of the orbits of the line groups. For all line group families (column F) and
each orbit type (column OT) the transversal Y and the full symmetry group Ỹ are given. The first
appearance of a transversal is labeled (column CC) as its configuration class, Y (i), and the special
cases are listed below; the other appearances are denoted by i only

F CC OT Y Ỹ

1 Y (1) a1 T Q( f )Cn T Q( f )Dn
11 Q = 1 T ( f )Dnh

12 Q = 2n T 1
2n( f )Dnh

Y (14) b1 T Q( f ) T ( f )D∞h

2 Y (2) a1 T ( f )S2n T ( f )Dnd

11 z = f
2 T ( f )D2nh

12 z = f
4 T 1

2n(
f
2 )Dnh

Y (15) b1 T ( f ){e, S2n} T ( f )D∞h

14 z = f
4 T ( f

2 )D∞h

14 b2
c1

T ( f ) T ( f )D∞h

3 Y (3) a1 T ( f )Cnh T ( f )Dnh

11 z = f
4 T ( f

2 )Dnh
11

a2
b1

T ( f )Cn T ( f )Dnh

15 c1 T ( f )C1h T ( f )D∞h
14 c2

d1
T ( f ) T ( f )D∞h

4 Y (4) a1 T 1
2n( f )Cnh T 1

2n( f )Dnh

11 z = f
2 T ( f )D2nh

12 b1 T 1
2n( f )Cn T 1

2n( f )Dnh

15 c1 T 1
2n( f )C1h T ( f )D∞h

14 c2
d1

T 1
2n( f ) T ( f )D∞h

5 Y (5) a1 T Q( f )Dn T Q( f )Dn
2 Q = 1, ϕ = π

2n T ( f )Dnd
3 Q = 1, ϕ = 0 T ( f )Dnh

4 Q = 2n, ϕ = 0, π2n T 1
2n( f )Dnh

1 a2,a3
b1,c1

T Q( f )Cn T Q( f )Dn

15 d1 T ( f )D1 T ( f )D∞h

14 d2
e1

T ( f ) T ( f )D∞h

6 Y (6) a1 T ( f )Cnv T ( f )Dnh
11 ϕ = π

2n T ( f )D2nh

11
b1
c1

T ( f )Cn T ( f )Dnh

14 d1 T ( f ) T ( f )D∞h

7 Y (7) a1 T ′( f )Cn T ′( f )Cnh
11 ϕ = 0, πn T ( f )Dnh

12 ϕ = π
2n T 1

2n( f )Dnh
14 b1 T ′( f ) T ( f )D∞h

8 Y (8) a1 T 1
2n( f )Cnv T 1

2n( f )Dnh
11 ϕ = π

2n T ( f )D2nh

12 b1 T 1
2n( f )Cn T 1

2n( f )Dnh

14 d1 T 1
2n( f ) T ( f )D∞h

F CC OT Y Ỹ

9 Y (9) a1 T ( f )Dnd T ( f )Dnd

8 z = f
4 T 1

2n(
f
2 )Dnh

12 z = f
4 T 1

2n(
f
2 )Dnh

11
a2
c1

T ( f )Cnv T ( f )D2nh

2 b1 T ( f )Dn T ( f )Dnd
15 d1 T ( f )D1d T ( f )D∞h

14 d2
e1

T ( f ) T ( f )D∞h

10 Y (10) a1 T ′( f )S2n T ′( f )S2n

11
ϕ=0
z=0 T ( f )D2nh

12
a2
a3

T ′( f )Cn T 1
2n( f )Dnh

15 b1 T ′( f ){e, S2n} T (a)D∞h

14 b2
c1

T ′( f ) T (a)D∞h

11 Y (11) a1 T ( f )Dnh T ( f )Dnh

6 z = f
4 T ( f

2 )Dnh
3 ϕ = π

2n T ( f )D2nh
6 a2

d1
T ( f )Cnv T ( f )Dnh

3 b1
c1

T ( f )Cnh T ( f )Dnh

Y (11) b2,c2
e1, f1

T (a)Cn T (a)Dnh

15 g1 T ( f )C1h T ( f )D∞h
14 g2

h1
T ( f ) T ( f )D∞h

12 Y (12) a1 T ′( f )Cnh T ′( f )Cnh
3 ϕ = 0, πn T ( f )Dnh

4 ϕ = π
2n T 1

2n( f )Dnh
11

a2
a3

T ′( f )Cn T ( f )Cnh

7 b1 T ′( f )Cn T ( f )Cnh
15 c1 T ′( f )C1h T ( f )D∞h
14 c2

d1
T ′( f ) T ( f )D∞h

13 Y (13) a1 T 1
2n( f )Dnh T 1

2n( f )Dnh
4 ϕ = π

2n T ( f )D2nh

11 ϕ = π
2n , z = f

4 T ( f
2 )D2nh

11 a2 T 1
2n( f )Cnv T ( f )D2nh

4 b1 T 1
2n( f )Cnh T 1

2n( f )Dnh

8 d1 T 1
2n( f )Cnv T 1

2n( f )Dnh

Y (12) e1
f1

T 1
2n( f )Cn T 1

2n(
a
2 )Dnh

15 g1 T 1
2n( f )C1h T ( f )D∞h

14 g2
h1

T 1
2n( f ) T ( f )D∞h



3.3 Symmetry Domain 41

3.3 Symmetry Domain

As it has been defined in the Sect. 2.1.4, symcell is the minimal part of a system
generating the whole system by the action of the translational group. However,
independently of a specific system, the group action infers a partition of the whole
Euclidean space. Namely, each point of this space generates an orbit of the line
group, and gathering representatives of different (and automatically disjoint) orbits,
one gets the set generating the whole space. It is well-known mathematical theorem
on stratification [5] that orbit representatives may be chosen such that they form a
connected symmetry domain. The representatives of the same orbit types form sub-
domains called strata. The stratus of the orbit type with the least stabilizer, called
generic orbit, almost fulfills the whole domain, while other strata, called special,

Fig. 3.3 Symmetry domains of the line groups. The top left panel is general shape of the domain:
radial sector of the angle α of the disk of the height h. On the other panels are domains of the line
group families, with specified α and h. For clarity, the part of the z-axis in the domain is given
separately, while the rest of the sector is represented by its section. The generic a1 stratus is shaded
light gray. The special strata, surfaces and lines on the boundaries of the domain, are represented
as the colored lines and points on the boundaries of the section with indicated orbit-type symbol
(braced symbols apply for n odd). Black lines and filled circles belong to the generic strata, while
the light gray boundaries and empty circles do not. For comparison between the different families,
the section − f/2 ≤ z ≤ f/2 and −π/n ≤ α ≤ π/n is indicated in all cases
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are on its boundary. In fact, the strata of the orbits with greater stabilizer are on the
boundaries of the strata of the orbits with less stabilizers. Note that such domain is
not unique; in the following we present a choice convenient for its simplicity.

As for the first family line groups, screw-axis Z generates the whole space from
the disk of the infinite radius, with the height f (fractional translation of the gen-
erator (CQ | f )). Further, the action of the point factor Cn generates this disk from
its radial sector of the angle 2π/n. Therefore, the domain is this radial sector. The
whole domain is generic stratus a1, except that its central part (on the z-axis) is the
only special stratus b1.

For other line groups, the shape of domain remains disk sector. However, for the
negative line groups the disk height is the half of the translation f of the generator
of Z (families 2–5 and 9–13), while the sector angle is halved in the families 6, 8,
9, 11, and 13, containing mirror planes.

The general shape and described domains for all line groups are illustrated in
Fig. 3.3. It is obvious that operations from Z do not contribute to special strata. On
the other hand, mirror planes produce special lines and U axes the special points.
Finally, the z-axis is a special line for Cn and S2n , where the later has also special
points.

Finally, let us mention that for any system the symcell may be chosen to be
intersection of the system with the domain of its line group.

3.4 Symmetry Fixing Sets

The precise meaning of the statement that line group L is symmetry group of a
system S is not only that S is invariant under all the transformations from L but
also that L is the maximal group of transformations leaving S invariant. For most
of the orbits of the line groups the symmetry is greater than the original line group,
meaning that the symmetry of the system is in general less than the symmetry of
the isolated orbits. In fact, only the operations simultaneously leaving invariant all
of the orbits constitute the symmetry of the composite system. This shows that the
symmetry L of a polymer S, decomposing into orbits as S = S1 + . . . S�, is the
intersection Ỹ 1 ∩· · ·∩ Ỹ� of the full symmetries Ỹ i of the orbits. So, combining the
orbits of L, we get systems with symmetry less than that of the isolated orbits, but
not necessarily restricted to L, i.e., some combinations give supergroups. However,
if some set of orbits of L with the total symmetry being L is a subsystem in the
polymer S, then the symmetry of S is L, independently of other orbits.

Among the combinations of orbits having the total symmetry L the symmetry
fixing sets or irreducible combinations are minimal in the sense that if any orbit
from such a set is expelled, the symmetry of the remaining part of system becomes
a supergroup of L. Consequently, any system with symmetry L contains at least one
symmetry fixing set. To determine symmetry of some concrete polymer, as well as
for other physical applications (e.g., Jahn–Teller theorem discussed in Sect. 8.3.4),
it is important to find out these irreducible combination of the orbits.
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Table 3.4 Symmetry fixing sets of the line groups. For each line group family F , all the symmetry
fixing sets are listed. Those which are symmetry fixing only for chiral cases or when n is odd or
even are denoted by C , O , and E , respectively

F Symmetry fixing sets

1 2a1 a1 + b1
2 2a1
3 2a1 2a2 2b1 a1 + a2 a1 + b1 a2 + b1
4 2a1 2b1 a1 + b1
5 a1 a2 a3 C: b1 C: c1
6 2a1 2b1 2c1 a1 + b1 a1 + c1 a1 + d1 b1 + c1 b1 + d1 c1 + d1
7 2a1
8 2a1 2b1 a1 + b1 a1 + d1 b1 + d1
9 a1 a2 b1 c1
10 E: 2a1 E: 2a2 E: a1 + a2 O: a1 O: a2
11 a1 a2 b1 b2 c1 c2 d1 e1 f1
12 2a1 2a2 2a3 a1 + a2 a1 + a3 a2 + a3 2b1 a1 + b1 a2 + b1 a3 + b1
13 a1 a2 b1 d1 e1 f1

They can be found with the help of Table 3.1. In fact, the monomer of S is the
union M = M1+· · ·+M� of the monomers of the orbits contained in S. Obviously,
if M is invariant under some supergroup P ′ of P , such that Z P ′ is a line group
(being then a supergroup of L = Z P , which leaves S invariant), S cannot not be
a symmetry fixing set for L, as it has greater symmetry. Then, the symmetry of the
orbit is P ′ Z, where P ′ is the maximal subgroup of PM (column 5 of Table 3.1)
which can be combined with Z (i.e., commutes with Z). This subgroup is PM itself
if Z = T , T ′, T 1

2n , because each point group can be combined with them (no “Not
group” labels in the corresponding columns). Consequently, for these groups the
symmetry fixing combinations of the orbits correspond to those of the point groups:
if in the irreducible set for the point group (e.g., 2a + b + . . . ) any possible com-
bination of indices is inserted (aα + aβ + bγ ), the symmetry fixing set for the line
group is obtained. However, chiral (including incommensurate) helical axis T Q( f )
is compatible only with Cn and Dn . Further, any non-linear orbit completely defines
such a helical axis. Therefore, any orbit of type a, b, or c is symmetry fixing for
T Q( f )Dn , while two orbits of T Q( f )Cn , at least one of them non-linear (type a),
are necessary to exclude U -axis. The symmetry fixing sets are given in Table 3.4.

3.5 Application: Line Group Notation for Monoperiodic Crystals

The decomposition of the system into the orbits of the line groups is used for differ-
ent applications, as it will be seen in Chap. 8. In fact, this partition enables to give
precise conformation of system in a very essential and efficient way: it is necessary
to fix the line group and the coordinates of one orbit representative from each orbit.
For many purposes only orbit type (instead of coordinates) suffices. The general
form of such notation for the system with orbits S1, . . . , S�, each of them repeated
Ni times, i.e., with orbit representatives at r i1 . . . , r i Ni , is
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L[S1{Z11r11; . . . ; Z1N1 r1N1}, . . . , S�{Z�1, r�1; . . . ; Z�N�, r�N�}], (3.2)

where L is symbol (international or factorized) of the particular line group and
Zi j is chemical symbol of the orbit representative at r i j . From these data, all the
atomic coordinates may be found by action with the group transformations onto the
orbit representative coordinates. For some purposes, when only the orbit contents is
important but not the atomic coordinates, this can be reduced to L[N1S1, . . . , N�S�].

For example, the symmetry formula of the trans-polyacetylene (Fig. 3.4) is

T 1
2( f )D1h[e1{C, (xC , 0, 0); H, (xH , 0, 0)}], f = a

2
= 1.22Å,

xC = 0.6 Å, xH = 1.6Å

(xC and xH are coordinates [6] of the carbon and hydrogen orbit representatives).
The short notation is T 1

2 D1h[2e1]. As for the other isomers we get T 1
2 D1h[2b1] for

cis-transoid, trans-cisoid, and cis-polyacetylene (same line group as of the trans-
polyacetylene, also two orbits but of the different type, as the representatives are
now out of the horizontal plane, i.e., zC and zH are not zero), and T D1d[2b1] for
trans-transoid polyacetylene. Similarly, for the chain conformation of the stereo-
regular crystalline butadiene [7] polymer (Fig. 3.5) we get T ′C1[10a1] for cis-1,4,
T S2[5a1] for trans-1,4, T 1

2 D1h[3a23e14d1] for syndiotactic 1,2, and T 1
3[10a1] for

the isotactic 1,2 form.
The symmetry notation for backbone of A, B, and E types of deoxyribonucleic

acid [8] is T 1
11(2.56Å)D1[19a1], T 1

10(3.38Å)D1[19a1], and T 1
12(3.61Å)D1[19a1]

(the fifth family, with n = 1), respectively. The pairs of bases arranged within double
helix of backbone break both the helical and the U -axis symmetry. Only when all the
pairs are same (Fig. 3.6) helical symmetry is retained. Still, geometries of different
pairs are similar, and for some applications the differences may be neglected.

Fig. 3.4 Isomers of polyacetylene (CH)x . Carbon atoms are black and hydrogen ones gray. The
elements of the symmetry groups L(9) = T (a)D1d of trans-transoid and L(13) = T 1

2( f )C1 of
other isomers are depicted as follows: glide plane T ′ and U -axis as vertical and horizontal line,
horizontal mirror and roto-reflectional planes by gray parallelogram and circle; vertical mirror
plane is xz-plane. Arrows emphasized deformation of cis-isomer transforming it to trans-cisoid
and cis-transoid
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Fig. 3.5 Isomers of butadiene (C4H6)x ; from left to right: cis-1,4, trans-1,4, syndiotactic-1,2 and
isotactic-1,2 (side and top view)

Fig. 3.6 Deoxyribonucleic acid: A, B, and E form with only cytosine–guanine pair of bases. Two
successive monomers of each form are presented and the angles 2π/q of the rotation of the helical
axis, with q = 11, 10, and 12, respectively, are indicated
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Finally, for the carbon nanotubes, being single orbit systems (Sect. 9.2),
we get L(S{C, rC }]. For example, T 11

28(0.465Å)D2[a1{C, (3.34, 1.3, 0.465)}] fully
describes the tube (8,2).
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Chapter 4
Irreducible Representations

Abstract The irreducible representations of the line groups are the starting point
for physical applications. Quite general Wigner’s theorem [1] singles out unitary
representations as the relevant ones in the quantum mechanical framework. Such
representations are decomposable to the irreducible components, which are ingredi-
ents sufficient for composition of any unitary representations. Hence, in this chapter,
we construct and tabulate irreducible unitary representations only, although line
groups, since being not compact, have also the non-unitary representations. The
construction starts with the first family groups. Then we use simple (induction)
procedure to derive the representations of the families 2–8, containing the halv-
ing first family subgroup; finally, we use these representations repeating the same
procedure in order to get the representations of the largest families (with the first
family subgroup of index four). At the end, we make an overview of their properties
and physical implications.

4.1 First Family

As the first family groups are direct product of the helical and rotational factors, their
irreducible representations are found as the direct product of the irreducible repre-
sentations of the factors [2]. This task is easy, since both factors are cyclic groups.
In fact, the homomorphism condition D(��′) = D(�)D(�′) for the cyclic groups,
where all the elements are powers of the single generators g, means that for given
D(g) all the other elements are represented as D(gt ) = Dt (g). Further, Schur’s
Lemma [2] provides that the irreducible representations are one-dimensional. Con-
sequently, each nonzero complex number c defines an irreducible representation by

the equality D(c)(g)
def= c. Among them unitary ones are those with c of absolute

value 1. Thus, the different unitary irreducible representations are D(x)(g)
def= eix

for x ∈ (−π, π ]. For the finite groups of order n, as gn = (I |0) implying
1 = Dn(g) = einx , nx is a multiple of 2π ; in other words, there are n representations
given by x = 2πm/n, where m is integer from the above interval.

Damnjanović, M., Milošević, I.: Irreducible Representations. Lect. Notes Phys. 801, 47–64 (2010)
DOI 10.1007/978-3-642-11172-3_4 c© Springer-Verlag Berlin Heidelberg 2010
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4.1.1 Helical Quantum Numbers

Using this we find that there are infinitely many irreducible representations of the
helical group T Q( f ) generated by Z = (CQ | f ). They are classified with the help
of parameter k̃:

k̃ A(Z) = eik̃ f , k̃ ∈
(

−π
f
,
π

f

]
. (4.1)

The special form of the exponent is used in order to interpret h̄k̃ as the helical quasi-
momentum, i.e., quasi-momentum canonically conjugated to helical coordinate z̃
(see Sect. 2.2.1). The range (−π

f ,
π
f ] of k̃ is known as the helical Brillouin zone.

Quite analogously, for the rotational subgroup Cn there are n different irreducible
representations, given by the integer m:

Am̃(Cn) = eim̃ 2π
n , m̃ ∈

(
−n

2
,

n

2

]
. (4.2)

Again, h̄m̃ is z-component of angular quasi-momentum. Finally, we conclude that
there are infinitely many irreducible representations of the first family line groups,
and they are classified by the helical quantum numbers [3] of the helical and angular
momentum k̃ and m̃:

k̃ Am̃(�̃(1, 0)) = eik̃ f , k̃ Am̃(�̃(0, 1)) = eim̃ 2π
n (4.3)

(recall that Z = �̃(1, 0) and Cn = �̃(0, 1)). Note that the helical quantum numbers
are independently defined, which implies that the same representation is obtained
for any m̃′ = m̃ + M̃n and/or k̃′ = k̃ + K̃ 2π/ f . However, the helical irreducible
representations are convention dependent, as the matrices (4.1) are associated to the
helical generator Z , which is fixed by the convention adopted.

4.1.2 Commensurate Groups and Linear Quantum Numbers

For the commensurate systems there is an alternative choice of quantum numbers,
based on the representations of the translational subgroup T (a)

k A((I |0)) = eika, k ∈
(
−π

a
,
π

a

]
, (4.4)

and of the isogonal group Cq :

Am(Cq) = eim 2π
q , m̃ ∈

(
−q

2
,

q

2

]
. (4.5)



4.1 First Family 49

The range (−π
a ,

π
a ] of the (linear) quasi-momentum k is known as the Brillouin

zone. To differ from m̃ which shows only the part of angular momentum which
is not included in k̃, the quantum number m corresponds to the complete angular
quasi-momentum. However, since Cq is not a subgroup of L, these representations
are not to be directly multiplied to get a representation of L. Instead, due to the
fractional translation for pa/q accompanying Cq in �(0, 1), the resulting represen-
tations, classified [4, 5] by the linear quantum numbers k and m, are

k Am(�(1, 0)) = eika, k Am(�(0, 1)) = eik p̃ a
q̃ eim 2π

q . (4.6)

In contrast to the helical quantum numbers, from (4.6) it follows that k Am is
equal to k′ Am′ only when the equalities m′ = m + Mn and k′ = k + K 2π/a

simultaneously hold, and the integers K and M satisfy Mr
q̃= −K . Applying (2.18)

in the form r p̃
q̃= 1, we see that only the simultaneous change k′ = k + K 2π/a and

m′ q= m − pK gives the same representation.

4.1.3 Transition Rules

Both sets (4.3) and (4.6) are representations of the same groups, and therefore they
are biuniquely related. To find this correspondence, we use relations (2.19). First,
the representations of the roto-helical and translational generators with the linear
and helical quantum numbers, respectively, are easily found:

k Am(�̃(1, 0)) = eik a
q̃ eimr 2π

q , k Am(�̃(0, 1)) = eim 2π
n ; (4.7a)

k̃ Am̃(�(1, 0)) = e−im̃r 2π
n eik̃a, k̃ Am̃(�(0, 1)) = eim̃ 1−r p̃

q̃
2π
n eik̃ p̃ a

q̃ . (4.7b)

Using this we straightforwardly get the transition rules between the two pairs of
quantum numbers of the same representation. Combining (4.3) and (4.7a) we find

(k,m) → (k̃(k,m), m̃(m)) =
(

k + rm

n

2π

a
+ K̃ q̃

2π

a
,m + M̃n

)
. (4.8a)

Integers K̃ and M̃ are uniquely and independently determined by the requirement
that k̃ and m̃ are from the intervals given in (4.1) and (4.2). Analogously, from (4.6)
and (4.7b) it follows:

(k̃, m̃) → (k(k̃, m̃),m(k̃, m̃)) =
(

k̃ − m̃
r

n

2π

a
− K

2π

a
, m̃ + K p + Mq

)
. (4.8b)

Again, K and M are integers enabling to get linear momenta from the intervals
given by (4.4) and (4.5). However, as M depends on K , the value of K should be
determined first.
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It should be emphasized that due to the helical quantum number k̃, labeling the
representations (4.3), the transition rules depend on the r -convention. Indeed, the
choice of r determines the helicity of the momentum k̃: the unit change of the total
momentum m leads to the same change of m̃ (assuming n > 1) and a simultaneous
change of k̃ for 2rπ/na. Analogously, a change of the helical momentum by 2π/a
preserves the linear momentum k and induces a jump for p of the total angular
momentum m.

4.1.4 Brillouin Zones and Bands

In the both classifications the irreducible representations are grouped into the so-
called bands, the property which will be inherited by all the other families, namely,
for fixed m̃, representations differ only by k̃. When k̃ varies within the helical Bril-
louin zone, we obtain a series of representations to be referred to as a helical or
m̃-band, physical implications of which will be given later. Analogously, for com-
mensurate groups, fixing m we get series of the representations with k from the
Brillouin zone, which is called linear or m-bandm-.

From (4.8a) it follows that the set of q̃ linear bands with m differing by multiples
of n gives exactly a single m̃-band with m̃

n= m. As k̃(k,m) + 2π
a = k̃(k,m + p

(mod q)), the segment of the helical Brillouin zone of the m̃-band corresponding
to the m-band (thus m = m̃ + Mn for some M), is followed by the segment cor-
responding to (m + p (mod q))-band; these q̃ different segments continuously fill
up the m̃-band. The jumps of m occur at the points k̃ = π

a (1 + 2m̃ r
n + 2K ). This

is illustrated in Fig. 4.1, where for the line group T 9
56C4 = L5644 every m̃-band is

divided into m-bands.

Fig. 4.1 Subdivision of
m̃-bands into m-bands for the
line group T 9

56C4 = L5644.
Different parts of length
2π/a (linear Brillouin zone)
of m̃-band (of the length of
helical Brillouin zone is
q̃2π/a, with q̃ = 14) are
separated by the inclined
lines and assigned by the
corresponding quantum
number m. From left to right
m increases for p = 44, but
to get standard value from the
interval (−q/2, q/2] (i.e.,
from the set −27, . . . , 28) it
is reduced by subtracting
multiple of q = 56



4.1 First Family 51

The physical contents of the obtained quantum numbers can be seen from the
irreducible representations. From the first of the equations (4.6) it follows that k is
canonically conjugated to the discrete translations, i.e., k is linear quasi-momentum.
Further, in the second equation (4.6) the same ratio p/q appearing in the generator
and in the exponent means that k is associated to the fractional translation of �(0, 1).
Then the remaining m-dependent part appears due to the isogonal rotation Cq , and
m is the corresponding linear angular momentum (component along the rotational
axis of Cq ). Unless L is symmorphic (when n = q), Cq is not element of L, and m is
not a conserved quantum number. As for the k̃m̃-numbers, from the first of equation
(4.3) it follows that k̃ combines angular and linear momenta into the helical momen-
tum conjugated to the helical coordinate z̃. Complementing helical momentum, m̃
is the “pure” angular momentum, not related to the helical momentum, as steaming
from the rotations of the point subgroup Cn . Both quantum numbers k̃ and m̃ are
conserved. It turns out that depending on physical considerations one or the other
choice of quantum numbers is more suitable.

To clarify physical meaning of the transition rules, one goes back to the relation
(2.8) between the moments. Denoting by ζ = √

f 2 + ρ24π2/Q2 the helical arc
length between the two adjacent points connected by the helical generator (CQ | f ),

for the commensurate groups one gets ζ =
√

n2a2+4π2r2ρ2

q , sinχ = na
qζ , cosχ

ρ
= 2πr

qζ
and finally

p̃ = napz + 2πrlz

qζ
, l̃z = lz . (4.9)

If K̃ is the quasi-momentum resulting from p̃ because of the periodicity along the
helix (with period ζ ), the irreducible representations (4.1) should be eik̃ f = eiK̃ ζ .
Obviously k̃ = K̃ ζ/ f = K̃/ sinχ , and as k̃ is ρ-independent, it is preferably used
as the helical quantum number. According to (4.9), the corresponding momentum
p̃/ sinχ is related to the linear and angular momenta as p̃/ sinχ = pz + 2πrlz

na ,
which clarifies the meaning of (4.8b).

4.1.5 Special Points

The center and edge point of the one-dimensional Brillouin zone (either helical or
linear) have some special properties which are useful for the further constructions.
As we will see later on, for the negative line groups (Sect. 2.3.3) these points are
special as negative elements leave them invariant, giving rise to lower dimension of
the irreducible representations. Therefore we will consider them in detail.

The representations with k̃ = 0, q̃π/a and m̃ = 0 and (if n is even only)
m̃ = n/2 are particularly important: they are the only one-dimensional, real
number representations. In particular k̃=0 Am̃=0(�) = 1 for all the elements of L (the
identity representation), and the remaining ones are alternating (half of the elements
are represented by 1 and the other half by −1). In commensurate groups, using the
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transition rules (4.8b), we get special representations with k = 0 and m = 0, q/2
or k = π/a and m = −p/2, (q − p)/2. While for the identity representation
k̃ = m̃ = 0 we immediately get k = m = 0, the other representations are mutually
related according to the parities of q̃ , p̃, r , and A (defined by (2.18) as r p̃ = 1+ Aq̃ ,
Appendix C):

(k,m)
(k̃, m̃) (0, 0)

(
0, q

2

) (
π
a ,− p

2

) (
π
a ,

q−p
2

)

(0, 0) 1–6 – – –
(q̃ πa , 0) – 5,6 3,4 1,2
(0, n

2 ) – 2,4 1,6 3,5
(q̃ πa ,

n
2 ) – 1,3 2,5 4,6

q̃ p̃r A q̃ p̃r A
1 oooe 4 oeeo
2 ooeo 5 eooo
3 oeoo 6 eooe

(4.10)

To use this equation, for a particular line group we first determine the parities of
all four parameters and find the ordinal (between 1 and 6) of this combination in the
right table (“o” and “e” stand for odd and even). Then, given a pair of linear (helical)
quantum numbers, in the column (row) of the left table corresponding to this pair
we fix row (column) where the found ordinal appears; the equivalent pair of helical
(linear) quantum numbers is at the beginning of this row (column).

In particular, for translational groups km and k̃m̃ values coincide (the first column
“(k̃, m̃)” of the left table in (4.10)): in this case q = n, implying q̃ = 1, r =
p = p̃ = 0, and A = −1, resulting in combination 4. For zigzag groups q̃ = 2,
r = p̃ = 1, and A = 0, which is the combination 6. For nanotubes with hexagonal

lattices, q̃
12= 2 is even, implying that p̃ and r are odd, and only combinations 5 and

6 can be realized, depending on the parity of A.
Note that parity of r may depend on the convention. In fact, within C0, it is

co-prime with both q̃ and n. Thus, when n is even, which is necessary for existence
of the last two helical quantum numbers, r is odd, i.e., within this convention in the
last two rows of the left table the combinations 2 and 4 do not appear.

4.1.6 Zigzag Groups

Several families of the line groups are defined for q = 2n, and therefore it is worth
to simplify the derived formula for this case. At first, as we have seen q̃ = 2, r = 1,
p̃ = 1 and therefore p = n, meaning that

L = T 1
2n(a/2)Cn = L2nn(a). (4.11)

Their elements are (t = 0,±1, . . . , j = 0, 1, . . . , 2n − 1, s = 0, 1, . . . , n − 1):

�(t, j) =
(

C j
2n|
(

t +
{

j

2

})
a

)
, �̃(t, s) =

(
Cz

2n|z a

2

)
Cs

n, (4.12)
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with the transition rules between the generators

�̃(1, 0) = �(0, 1), �̃(0, 1) = �̃(0, 2), �(1, 0) = �̃(2,−1). (4.13)

The irreducible representations are easily seen from (4.3) and (4.6), with the transi-
tion rules:

(k,m) →
(

k̃ = k − m

n

2π

a
+ 2K̃

2π

a
, m̃ = m + M̃n

)
, (4.14a)

(k̃, m̃) →
(

k = k̃ − m̃

n

2π

a
+ K

2π

a
,m = m̃ − nK + 2nM

)
. (4.14b)

Finally, the special points (0, 0), (0, n/2), (2π/a, 0), and (2π/a, n/2) of helical
numbers correspond to the linear quantum numbers (0, 0), (π/a,−n/2), (0, n), and
(π/a, n/2), respectively, as follows from (4.10) for the combination 6.

4.2 Other Families

After we have found the representations of the first family groups, we use them
to construct the irreducible representations of other groups. In fact, due to their
structural properties explained in Sect. 2.3.2, we can apply the inductive procedure
described in the Appendix D.1. The results are summarized in Tables 4.1–4.13.

Table 4.1 Irreducible representations of the line groups T Q( f )Cn . For commensurate groups Lqp
both linear and helical quantum numbers apply (with a = f q̃ and Q = q/r ), while for the
incommensurate L∞n only the latter ones. Reality: 0 A0, π A0, 0 An/2, π An/2, (k Am , −k A−m)

IR (k,m) (CQ | f ) Cn SAB

k Am
k ∈ (− π

a ,
π
a

]

m ∈ (− q
2 ,

q
2

] e
i
(

k f +m 2π
Q

)

eim 2π
n |km〉

k̃ Am̃

k̃ ∈
(
− π

f ,
π
f

]

m̃ ∈ (− n
2 ,

n
2

] eik̃ f eim̃ 2π
n |k̃m̃〉

Table 4.2 Irreducible representations of the line groups L2n, Ln = T (a)S2n . Reality: 0 A±
0 , π A±

0 ,

k E0, k Ē n
2

, (0 A±
m , 0 A±−m), (0 A+

n/2, 0 A−
n/2), (k Em , k E−m), (π A±

m , π A±−m), (π A+
n/2, π A−

n/2)

IR (k,m) (I |a) σhC2n SAB

k A�h
m

k = 0, πa
m ∈ (− n

2 ,
n
2

] eika �heim π
n |km�h〉

k Em
k ∈ (0, π)

m ∈ (− n
2 ,

n
2

]
[

eika 0
0 e−ika

] [
0 eim 2π

n
1 0

] |km〉
|−km〉
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Table 4.3 Irreducible representations of the line groups Ln/m, L2n = T (a)Cnh. Reality: 0 A±
0 ,

0 A±
n/2, π A±

0 , π A±
n/2, k E0, k En/2, (0 A±

m , 0 A±−m), (π A±
m , π A±−m), (k Em , k E−m)

IR (k,m) (I |a) Cn σh SAB

k A�h
m

k = 0, πa
m ∈ (− n

2 ,
n
2

] eika eim 2π
n �h |km�h〉

k Em
k ∈ (0, πa )

m ∈ (− n
2 ,

n
2

]
[

eika 0
0 e−ika

] [
eim 2π

n 0

0 eim 2π
n

] [
0 1
1 0

] |km〉
|−km〉

Table 4.4 Irreducible representations of the line groups L2nn/m = T 1
2n(

a
2 )Cnh. Here k̃M̃ (m̃) =

2πm̃
na + M̃ 2π

a , M̃ = 0, 1. Reality: 0 A±
0 , 0 A±

n , π E0, π En/2, k E0, k En , (0 A±
m , 0 A±−m), (k Em , k E−m),

(π Em , π E−m)

IR (k,m) (C2n | 1
2 ) Cn σh SAB

0 A�h
m

k = 0

m ∈ (−n, n]
eim π

n eim 2π
n �h |km�h〉

k Em
k ∈ (0, πa

]

m ∈ (−n, n]

[
ei(m π

n +k a
2 ) 0

0 ei(m π
n −k a

2 )

] [
eim 2π

n 0

0 eim 2π
n

] [
0 1
1 0

] |km〉
|−km〉

k̃M̃ (m̃)
A�h

m̃ m̃ ∈ (− n
2 ,

n
2

]
eik̃M̃ (m̃)

a
2 eim̃ 2π

n �h |k̃M̃ (m̃)m�h〉

k̃ Em̃

k̃ ∈
(

2πm̃
na ,

2π
a + 2πm̃

na

)

m̃ ∈ (− n
2 ,

n
2

]
[

ei k̃a
2 0

0 e
i
(

m̃ 2π
n −k̃ a

2

)

] [
eim̃ 2π

n 0

0 eim̃ 2π
n

] [
0 1
1 0

] |k̃m̃〉
|−k̃ + 4m̃π

na , m̃〉

Table 4.5 Irreducible representations of line groups T Q( f )Dn . For the commensurate groups
Lqp22, Lqp2, both linear and helical quantum numbers apply (with a = f q̃ and Q = q/r ), while
for the incommensurate groups L∞n2 there are only helical quantum numbers. Reality: all the
representations of the first kind

IR (k,m) (Cr
q | f ) Cn U SAB

k A�U
m

k = 0, m = 0, q
2

k = π
a , m = − p

2 ,
q−p

2

e
i
(

k f +m 2π
Q

)

eim 2π
n �U |km�U〉

k Em (a)

[
e

i
(

k f +m 2π
Q

)

0

0 e
−i
(

k f +m 2π
Q

)

] [
eim 2π

n 0

0 e−im 2π
n

] [
0 1
1 0

] |km〉
|−k,−m〉

k̃ A�U
m̃ k̃ = 0, πf , m = 0, n

2 eik̃ f eim̃ 2π
n �U |k̃m̃�U〉

k̃ Em̃

k = 0, πf , m ∈ (0, n
2

)

k ∈
(

0, πf

)
, m ∈ (− n

2 ,
n
2

]
[

eik̃ f 0
0 e−ik̃ f

] [
eim̃ 2π

n 0

0 e−im̃ 2π
n

] [
0 1
1 0

] |k̃m̃〉
|−k̃,−m̃〉

(a) k ∈ (0, πa ) with m ∈ (− q
2 ,

q
2 ], k = 0 with m ∈ (0, q

2 ), and k = π
a with m ∈ (− p

2 ,
q−p

2 ).

Table 4.6 Irreducible representations of the line groups Lnmm, Lnm = T (a)Cnv. Reality: 0 A0,
0 B0, 0 An/2, 0 Bn/2, 0 Em , π A0, π B0, π An/2, π Bn/2, π Em , (k A0, −k A0), (k B0, −k B0), (k An/2,
−k An/2), (k Bn/2, −k Bn/2), (k Em , −k Em)

IR (k,m) (E |1) Cn σv SAB

k A/Bm
k ∈ (− π

a ,
π
a

]

m = 0, n
2

eika eim 2π
n �v |km�v〉

k Em
k ∈ (− π

a ,
π
a

]

m ∈ (0, n
2

)
[

eika 0
0 eika

] [
eim 2π

n 0

0 e−im 2π
n

] [
0 1
1 0

] |km〉
|k,−m〉
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Table 4.7 Irreducible representations of the line groups Lncc, Lnc = T ′( a
2 )Cn . Reality: 0 A0,

0 B0, 0 An/2, 0 Bn/2, 0 Em , π Ēm , (π A0, π B0), (π An/2, π Bn/2), (k A0, −k A0), (k B0,−k B0), (k An/2,
−k An/2), (k Bn/2, −k Bn/2), (k Em , −k Em)

IR (k,m) (σv| 1
2 ) Cn SAB

k A/Bm
k ∈ (− π

a ,
π
a

]

m = 0, n
2

�vei ka
2 eim 2π

n |km�v〉

k Em
k ∈ (− π

a ,
π
a

]

m ∈ (0, n
2

)
[

0 ei ka
2

ei ka
2 0

] [
eim 2π

n 0

0 e−im 2π
n

] |km〉
|k,−m〉

The representations are given by the matrices representing generators of the
group. This suffices to find the matrix of any other element of the group, since it
is a monomial over the generators. For the irreducible representations denoted in
the first column, allowed values of k and m (or k̃ and m̃) are given in the second
column; when an interval corresponds to m or m̃, only the integral values from
it are assumed. Representations with m = n/2 appear for n even only, while the
representation does not appear at all if for given n the allowed interval of m or
m̃ does not contain integers (in particular, several representations occur only for
n > 1). Then the matrices of the generators follow. In the last column we indicate
the corresponding symmetry-adapted basis, in terms of quantum numbers: vectors
are given in the form |km�〉, where � stands for all the parities of the group; note
that either all of the parities �U , �v, �h (this order is assumed) are present or only
one of them.

The four-dimensional matrices used in the tables are (α = 2π
n ):

A =
⎡

⎢⎣
ei(k f +m π

n ) 0 0 0
0 ei(k f −m π

n ) 0 0
0 0 ei(−k f +m π

n ) 0
0 0 0 e−i(k f +m π

n )

⎤

⎥⎦ , B =
[

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

]
,

J =

⎡

⎢⎢⎢⎣

0 ei ka
2 0 0

ei ka
2 0 0 0

0 0 0 e−i ka
2

0 0 e−i ka
2 0

⎤

⎥⎥⎥⎦ , K =
⎡

⎣
eika 0 0 0

0 eika 0 0
0 0 e−ika 0
0 0 0 e−ika

⎤

⎦ ,M(m) =
⎡

⎣
eimα 0 0 0

0 e−imα 0 0
0 0 eimα 0
0 0 0 e−imα

⎤

⎦ ,

N =
⎡

⎣
eimα 0 0 0

0 e−imα 0 0
0 0 e−imα 0
0 0 0 eimα

⎤

⎦ , P =
[ 0 1 0 0

1 0 0 0
0 0 0 eimα

0 0 e−imα 0

]
, R =

[
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

]
, S =

[
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

]
.

4.3 Properties of the Representations

We finish this chapter by considering some general properties of the irreducible
representations of the line groups. They will be widely used in physical applications,
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n 2
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Table 4.11 Irreducible representations of the line groups T Dnh = Ln/mmm, L2n2m. Reality:
all the representations of the first kind

IR (k,m) (E |1) Cn σv σh SAB

k A/B�h
m

k = 0, π

m = 0, n
2

eika eim 2π
n �v �h |km�U�v�h〉

k E�h
m

k = 0, π

m ∈ (0, n
2

) eika
[

1 0
0 1

] [
eim 2π

n 0

0 e−im 2π
n

] [
0 1
1 0

]
�h
[

1 0
0 1

] |km00�h〉
|k,−m00�h〉

k E�v
m

k ∈ (0, π)
m = 0, n

2

[
eika 0

0 e−ika

]
eim 2π

n
[

1 0
0 1

]
�v
[

1 0
0 1

] [
0 1
1 0

] |km0�v0〉
|−km0�v0〉

k Gm
k ∈ (0, π)
m ∈ (0, n

2

) K M(m) R S

|km000〉
|k,−m000〉
|−km000〉

|−k,−m000〉

Table 4.12 Irreducible representations of the line groups Ln/mcc, L2n2c = T ′( a
2 )Cnh. Reality:

all the representations of the first kind except (π E±
m , π E∓

n )

IR (k,m) (σv| 1
2 ) Cn σh SAB

0 A/B�h
m

k = 0

m = 0, n
2

�v eim 2π
n �h |km�U�v�h〉

k E�h
m

k = 0, π

m ∈ (0, n
2

) ei ka
2
[

0 1
1 0

] [
eim 2π

n 0

0 e−im 2π
n

]
�h
[

1 0
0 1

] |km00�h〉
|k,−m00�h〉

k E�v
m

k ∈ (0, π)
m = 0, n

2

�v

[
ei ka

2 0

0 e−i ka
2

]
eim 2π

n
[

1 0
0 1

] [
0 1
1 0

] |km0�v0〉
|−km0�v0〉

π Em
k = π

m = 0, n
2

[
i 0
0 −i

]
eim 2π

n
[

1 0
0 1

] [
0 1
1 0

] |πm0A0〉
|πm0B0〉

k Gm
k ∈ (0, π)
m ∈ (0, n

2 )
J M(m) S

|km000〉
|k,−m000〉
|−km000〉

|−k,−m000〉

because they manifest the structure of the line groups and corresponding physical
systems.

4.3.1 Reduced Brillouin Zones and Bands

As discussed in Sect. 4.1.4, for fixed m irreducible representations k Am of the first
family line groups form continual series or bands with k running over the Brillouin
zone (−π/a, π/a]. Analogously, in helical quantum numbers, for fixed m̃, there is
a series k̃ Am̃ with k̃ taking values the helical Brillouin zone (−π/ f, π/ f ].

Negative line groups L− have a z-reversing coset representative. Given proce-
dure of the construction of representations shows that in these cases the positive
and negative halves of the Brillouin zone label the same representations. In fact, the
parities (U or σh) in these groups join vectors with opposite linear momenta (from
interior of the Brillouin zone) into the same irreducible representation. Therefore,
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)

k̃
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0,
π a
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=
n 2
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(k̃
,
m̃
)
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(m̃
)

B
R

|k̃m̃
〉
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−
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α
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,
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〉
|−

k̃
+

2m̃
α

a
,
m̃

〉
|−

k̃,
−m̃

〉
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to count all nonequivalent irreducible representations, a half of the zone suffices,
and it is called reduced Brillouin zone or irreducible domain [6]. Thus, the reduced
zone is the whole zone for positive line groups, i.e., for the families 1, 6, 7, and 8,
while for the other ones it is the positive part [0, π/a]. Using irreducible domain,
we generalize the concept of representation bands: irreducible representations are
grouped into representation bands over the interior of the reduced Brillouin zone;
these band representations extend also to the edges of the zone for the positive
line groups, while for the negative groups some isolated representations of lower
dimension appear in the special points (Sect. 4.3.3).

For helical quantum numbers the irreducible domain is somewhat different. For
all the positive families (1, 6, 7 and 8, with helical factors TQ, T, T and T 2n,

respectively) irreducible domain coincides with helical zone (−π/ f, π/ f ]. For the
families 2, 3, 9, 10, 11 and 12, the helical factor is translational group, and heli-
cal and linear quantum numbers coincide. Only for the family 5, the irreducible
domain is [0, π/ f ], analogously to the linear quantum numbers. However, for
the remaining zigzag negative families 4 and 13, the irreducible domain cannot
be defined in the usual sense.1 Precisely, the m̃-bands are defined over intervals
(2πm̃/na, 2π/a +2πm̃/na). In addition, k̃ Gn/2 band of the family 13 spreads over
the interval (0, π/a), i.e., over only a quarter of the Brillouin zone.

4.3.2 Symmetry-Adapted Basis

The space of the irreducible representation λ will be denoted as H(λ), and its dimen-
sion, equal to the dimension of the representation matrices, by |λ|. The symmetry-
adapted basis (SAB) |λl〉 (l = 1, . . . , |λ|) in this space is defined as the orthonormal
basis, such that each element � of the line group L transforms basis vectors in the
following way:

D(λ)(�) |λl〉 =
∑

l ′
D(λ)

l ′l (�) |λl ′〉, (4.15)

where D(λ)

l ′l (�) are the elements of the matrix representing �. The basis vectors are
unique up to the common phase.

For the first family line groups, the irreducible representations are one-dimensi-
onal. Thus, counter l is superfluous, while the pair (k,m) or (k̃, m̃) of the momenta
quantum numbers take the role of the label λ which defines the representation.
Therefore, for the helical (linear) quantum numbers, symmetry-adapted basis of the
representation k̃ Am̃ (k Am) is the single vector |k̃m̃〉 (|km〉), satisfying (4.15):

1 Basically, this is because T 1
2n(a/2) is not invariant subgroup of these groups, in contrast to T (a).
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k̃ Am̃

(
�̃ts

)
|k̃m̃〉 = e

i
(

t k̃ f +sm̃ 2π
n

)

|k̃m̃〉, (4.16a)

k Am
(
�t j
) |km〉 = e

i
((

t+{ j p
q }
)

ka+sm 2π
q

)

|km〉. (4.16b)

Note that the last equation shows that SAB vectors are common eigenbasis for all
the roto-helical transformations, which is a consequence of mutual commutativity
of these transformations.

For the other families, besides the momenta invoked by the first family subgroup,
the parity quantum numbers are introduced. However, the parities do not commute
with the roto-helical transformations, which causes appearance of multidimensional
representations. For example, horizontal U -axis reverse all the momenta, k, m, k̃,
and m̃. Therefore, it maps |k̃m̃〉 into |−k̃,−m̃〉, and these two vectors become SAB
of the irreducible representation k̃ Em̃ of the fifth family line groups. Only in the
special points k̃ = 0, π/ f for the special values m̃ = 0, n/2 the two vectors have
the same quantum numbers, i.e., | k̃m̃〉 is an eigenvector for U . As U 2 is identity,
the eigenvalues can be only 1 (vector even with respect to U ) and −1 (odd vector).
Thus, for these quantum numbers we obtain eight one-dimensional irreducible rep-
resentations, k̃ A�U

m̃ , with SAB |k̃m̃�U〉, where�U = ±1 is U-parity. Alternatively,
with the linear quantum numbers, the vectors | km〉 and | −k,−m〉 are SAB of the
two-dimensional representations k Em . Only for k = 0 and m = 0, q/2 or k = π/a,
and m = −p/2, (q − p)/2 (these values by (4.10) correspond to k̃ = 0, q̃π/a,
and m = 0, n/2), one-dimensional representations k A�U

m are obtained, with single
vector |km�U〉 in the SAB.

Analogously, for horizontal and vertical mirror planes the corresponding parities
are denoted by�h and�v. This way SABs of all the irreducible representations are
uniquely denoted by the quantum numbers of momenta and parities. It is common
to denote values of �U and �h simply by ±, while A and B are used instead of
�v = 1 and �v = −1. Also, to get uniform notation, we will in general denote
SAB vectors as |km�〉, where � stands for the set of all relevant parities, and allow
� = 0 for the vectors being neither even nor odd with respect to the correspond-
ing transformation: e.g., for the representations k̃ Em̃ , SAB vectors are | k̃m̃0〉 and
|−k̃,−m̃, 0〉.

4.3.3 Dimensions and Compatibility Relations

The first family groups are abelian and their representations are one-dimensional.
As the induction method gives the representations with either the same or doubled
dimension, for the families 2, . . . , 8 the representations may be maximally two-
dimensional, while for the remaining families they are at most four-dimesional.

The dimensions are maximal in the interior of the reduced Brillouin zone. In fact,
the interior of irreducible domain is covered by several series of the irreducible rep-
resentations, which, for negative groups, at the boundaries usually become reducible
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Table 4.14 Compatibility relations of the irreducible representations of the line groups. The lim-
iting representation k → 0, π for each irreducible band representation k DΠ

m is found and, if
reducible, its decomposition onto the irreducible components is given. Note that for the positive
line groups (families 1,6,7, and 8) there are no special points in the Brillouin zone and hence there
is no reduction at the Brillouin zone boundaries
F m or m̃ Dim k = 0 ← IR → k = π

2
(− n

2 ,
n
2

]
2 → 1 0 A+

m + 0 A−
m k Em π A+

m + π A−
m

3
(− n

2 ,
n
2

]
2 → 1 0 A+

m + 0 A−
m k Em π A+

m + π A−
m

4 (−n, n] 2 → 1 0 A+
m + 0 A−

m k Em /
5 0, q

2 2 → 1 0 A+
m + 0 A−

m k Em /
− p

2 ,
q−p

2 / k Em π A+
m + π A−

m
0, n

2 2 → 1 0 A+
m̃ + 0 A−

m̃ k̃ Em̃ π A+
m̃ + π A−

m̃
9 0 2 → 1 0 A+

m + 0 A−
m k E A

m π A+
m + π A−

m

0 B+
m + 0 B−

m k E B
m π B+

m + π B−
m(

0, n
2

)
4 → 2 0 E+

m + 0 E−
m k Gm π E+

m + π E−
m

10 0 2 → 1 0 A+
m + 0 A−

m k E A
m /

0 B+
m + 0 B−

m k E B
m /

n
2 / k E A

m π A+
m + π A−

m
/ k E B

m π B+
m + π B−

m(
0, n

2

)
4 → 2 0 E+

m + 0 E−
m k Gm π E+

m + π E−
m

11 0, n
2 2 → 1 0 A+

m + 0 A−
m k E A

m π A+
m + π A−

m

0 B+
m + 0 B−

m k E B
m π B+

m + π B−
m(

0, n
2

)
4 → 2 0 E+

m + 0 E−
m k Gm π E+

m + π E−
m

12 0, n
2 2 → 1 0 A+

m + 0 A−
m k E A

m /
0 B+

m + 0 B−
m k E B

m /(
0, n

2

)
4 → 2 0 E+

m + 0 E−
m k Gm π E+

m + π E−
m

13 0, n 2 → 1 0 A+
m + 0 A−

m k E A
m /

0 B+
m + 0 B−

m k E B
m /

(0, n) 4 → 2 0 E+
m + 0 E−

m k Gm /

to some lower dimensional irreducible components. In other words, the boundaries
are the only special points in the one-dimensional reduced Brillouin zone, and there-
fore the corresponding little group is larger than in other points. This results in
lower dimension of the corresponding representations. The irreducible components
of the band representations at the edges of the irreducible domain give compatibility
relations (Table 4.14), important in the analysis of topology of the energy bands of
nanotubes and polymers 8.1.2.

4.3.4 Reality of Representations

Tables 4.1–4.13 give additional information about the reality of the representations,
according to the Wigner’s classification [1] (Sect. 6.2.1). In fact, the representa-
tion D(L) is of the first kind if all its matrices are real.2 If this is not the case,
but D(L) and the conjugated representation D∗(L) are still equivalent (as well

2 More precisely, if there is a nonsingular operator A such that all the matrices AD(�)A−1 are real.
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as for the representations of the first kind there is a nonsingular operator B such
that D(�) = B D∗(�)B−1, and the characters of D(L) and D∗(L) are the same),
D(L) is of the second kind. Otherwise, when D(L) and D∗(L) are not equivalent
(i.e., trace of at least one matrix D(�) is not real), the representation is of the third
kind. In the captions of the tables we give the reality as follows: at first, we list
the representations of the first and the second kind (the latter ones are overlined),
each of them giving a single real representations. The remaining representations are
of the third kind and they are grouped into conjugated pairs, giving a single real
representation. This information is sufficient to find real (or physically) irreducible
representations, by the method explained in Sect. 6.2.2.
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Chapter 5
Tensors

Abstract Each physical quantity is a particular type of a line group tensor, i.e., it
is changed in a specific way when line group transformations are applied. Quite
generally, the transformation is described by a representation of a line group, and
its irreducible components single out irreducible tensors. One important class is
various functions, in particular quantum mechanical wave functions, among which
symmetry-adapted basis consists of harmonics and covariants. Also, irreducible
components of polar and axial vectors and second-rank tensors are found.

5.1 Standard Components

Tensor A is a set of physical quantities Ai (i = 1, . . . , n) which under the action of
a spatial transformation � mutually combine according to the linear law

�Ai =
n∑

j=1

DA
j i (�)A j . (5.1)

The coefficients DA
j i (�) form a matrix DA(�). Collecting these matrices for all

the transformations � of a line group L, we get tensor representation (shortly A-
representation) DA of the group.

In general, this representation is reducible with irreducible components given in
its decomposition:

DA =
∑

μ

f μD(μ), (5.2)

where the frequency number f μ shows how many times the irreducible component
D(μ) appears in DA. Hence, if in the (5.1) instead of Ai their properly chosen linear
combinations are used, a block diagonal form of the matrices DA, with irreducible
representations (5.2) on the diagonal, can be obtained. These standard or symmetry-
adapted components Aμm,tμ (tμ = 1, . . . , f μ, m = 1, . . . , |μ|) transform according
to the corresponding irreducible representations:

Damnjanović, M., Milošević, I.: Tensors. Lect. Notes Phys. 801, 65–84 (2010)
DOI 10.1007/978-3-642-11172-3_5 c© Springer-Verlag Berlin Heidelberg 2010
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�Aμm,tμ =
|μ|∑

m′=1

D(μ)

m′m(�)A
μ

m′,tμ, (5.3)

i.e., each transformation � mixes only the standard components associated to the
same irreducible representation and the same index tμ.

Note that since in (5.1) nature of the components Ai is not specified, action of the
line group transformations cannot be given explicitly. In the next sections we shall
explicitly consider few particularly important cases.

5.2 Functions: Invariants and Covariants

Action of a transformation � on a function over Euclidean space is defined as

� f (r)
def= f (�−1r). (5.4)

It is convenient to use cylindrical or helical coordinate system since line group ele-
ments � leave radial coordinate ρ invariant: � f (ρ, ϕ, z) = f (ρ, ϕ′, z′).

This way, the line group transformations act nontrivially only on the functions
over cylinder and we can temporarily exclude radial coordinate and only afterward
give the general form of the invariants and covariants over the entire space.

5.2.1 Harmonics

The simplest are scalar or invariant functions, i.e., the functions invariant under the
line group transformations:

f (�−1r) = f (r), ∀� ∈ L. (5.5)

According to (5.3), invariant functions are single-component tensors, associated to
the identical representation. They form a subspace in the space of the all functions.
Basis functions of this space are called harmonics of the line groups [1].

Important examples are fields produced by nanotubes or polymers, i.e., potentials
felt by the probes being close to these objects. Indeed, for any pairwise interatomic
interaction v(r, r i ) of a probe positioned at r with an atom at r i , the total potential
V (r) = ∑

i v(r, r i ) is invariant, since in the transformed potential only the terms
are permuted:

�V (r) = V (�−1r) =
∑

i

v(�−1r, r i ) =
∑

i

v(r, �r i ). (5.6)

In the space spanned by the functions over cylinder, the condition of invariance
(5.5) becomes

�H(ϕ, z) = H(ϕ, z), �H̃(ϕ̃, z̃) = H̃(ϕ̃, z̃), (5.7)



5.2 Functions: Invariants and Covariants 67

where the action of any transformation � may be easily derived from (2.23).
Although each line group element imposes one condition (5.7), the independent
set of the conditions is obtained by taking into account only the generators. Thus,
we begin with harmonics of the first family subgroup and then analyze the action
of other generators (given in Table 5.1), which will result in two, three, or four
equations to be simultaneously solved.

5.2.1.1 Cylindrical Harmonics of the First Family

As the first family line groups are abelian, their generators have common eigenbasis:

Fm
ω (ϕ, z)

def= eimϕei2πωz, m = 0,±1,±2 . . . , ω ∈ R, (5.8)
∫ 2π

0

∫ ∞

−∞
Fm∗
ω (ϕ, z)Fm′

ω′ (ϕ, z) dϕ dz = 2πδmm′δ(ω − ω′), (5.9)

where δmm′ and δ(ω−ω′) are Kronecker delta and Dirac delta function, respectively.
The eigenvalues of the generators Cn and (Cr

q | f ) corresponding to the eigenfunc-

tions e−i2πm/n and e−i2π(mr/q+ω f ) define the irreducible subspaces.
The first two equations of (2.23) and the condition (5.5) in the case of the func-

tions (5.8) select harmonics H M
ω as the eigenfunctions for the eigenvalue one:

Cn H M
ω (ϕ, z) = H M

ω (ϕ, z), m = nM, M = 0,±1, . . . , (5.10)

(CQ | f )H M
ω (ϕ, z) = H M

ω (ϕ, z), Mn + ω f Q = 0,±Q,±2Q, . . . (5.11)

Therefore, the solutions are provided only by the special values ω = (−Mn/Q +
K )/ f with integer K , i.e., the first family line group harmonics are

C M
K (ϕ, z)

def= FnM
(K−Mn/Q)/ f (ϕ, z), M, K = 0,±1, . . . . (5.12)

The periodicity of the considered functions allows to define their scalar product
as the integral over (compact) domain ϕ ∈ [0, 2π/n) and z ∈ [0, f ), giving the
orthogonality relations

∫ 2π
n

0

∫ f

0
C M∗

K (ϕ, z)C M ′
K ′ (ϕ, z) dϕ dz = 2π f

n
δM M ′δK K ′ . (5.13)

Repeating the same procedure for the basis F M
ω (ϕ̃, z̃), or directly substituting cylin-

drical coordinates in (5.12), we get the invariants expressed in terms of the helical
coordinates:

C M
K (ϕ̃, z̃) = FnM

K q/r
√

4π2ρ2+h2
(ϕ̃, z̃) = einM ϕ̃e

i 2πK q

r
√

4π2ρ2+h2
z̃
, M, K = 0,±1, . . . ,

(5.14)

where M and K count rotational and helical harmonics over ϕ̃ and z̃, respectively.
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For the commensurate groups, where q is an integer and a = q̃ f , the harmonics
become

C M
K (ϕ, z) = FnM

(−Mr+K q̃)/a(ϕ, z), M, K = 0,±1, . . . (5.15a)

In the special cases, when screw-axis degenerates to pure translations T 0
1(a) (coor-

dinate helixes z̃ are vertical lines and the condition (5.11) is M-independent) or to
T 1

2n(a), the cylindrical harmonics are, respectively,

T M
K (ϕ, z) = FnM

K/a(ϕ, z), M, K = 0,±1, . . . , (5.15b)

Z M
K (ϕ, z) = FnM

(−M+2K )/a(ϕ, z), M, K = 0,±1, . . . . (5.15c)

5.2.1.2 Cylindrical Harmonics of the Other Families

The families 2–13 have elements which do not commute with roto-helical transfor-
mations and invariants of these groups form thus a nontrivial subspace of the first
family harmonics space.

Moreover, the L(1)-invariants (5.12) cannot pertain to the harmonics of the fam-
ilies 2–13, but their suitable linear combinations. In order to get such a basis it
is sufficient to find the action of the coset representatives (Table 5.1) onto the roto-
helical harmonics. It turns out that in general this action has the form gC M

K = αC M ′
K ′ .

In particular,

C2nσhC M
K (ϕ, z) = e−iπM C M

−K+2 nMr
q
(ϕ, z), (5.16a)

(σv|a/2)C M
K (ϕ, z) = ei2π nMr

q C−M
K−2 nMr

q
(ϕ, z), (5.16b)

UC M
K (ϕ, z) = C−M

−K (ϕ, z), (5.16c)

σhC M
K (ϕ, z) = C M

−K+2 nMr
q
(ϕ, z), (5.16d)

σvC M
K (ϕ, z) = C−M

K−2 nMr
q
(ϕ, z). (5.16e)

While the U -axis can be combined with any helical axis, the rest of the generators
are compatible only with the achiral roto-helical subgroups (thus, only harmonics
(5.15b) and (5.15c) are to be considered). Further, as the square of an additional
generator g is always from the roto-helical subgroup L(1), the harmonic invariant
under g (and therefore under the group L(1) + gL(1)) is of the form C M

K + gC M
K .

This way we directly find the harmonics of the families 2–8, while for the rest of the
line group families the procedure is to be repeated, acting on these new harmonics
by the remaining coset representatives. All the line group harmonics are listed in
Table 5.1, together with factors making them orthonormal with respect to the scalar
product

(A, B) =
∫ 2π

n

0

∫ f

0
A∗(ϕ, z)B(ϕ, z) dϕ dz. (5.17)
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Table 5.1 Harmonics of the line groups. Below the family number F in the first column are the
generators complementing L(1) (Table 2.2). Harmonics H M

K are given in terms of chiral, transla-
tional, or zigzag (C, T, Z ) invariants, and explicitly below; the range of K and M are in the second
column (for F = 5 instead of M , K may be taken non-negative, as well). Normalized harmonics
are C H M

K , with C in the last column: general value (the first line) above exceptions
F
Generators

Range M
Range K H M

K C

1 M = 0,±1,±2, . . . C M
K = FnM

(K− Mn
Q )/ f

K = 0,±1,±2, . . . einMϕei2π(K− Mn
Q )z/ f

√
n

2π f

2 M = 0,±1,±2, . . . 1
2 T M

K + 1
2 (−)M T M−K

√
n
π f

C2nσh K = 0, 1, 2, . . . M even: einMϕ cos 2πK z/a

M odd: einMϕ sin 2πK z/a H M
0 :

√
n

2π f

3 M = 0,±1,±2, . . . 1
2 T M

K + 1
2 T M−K

√
n
π f

σh K = 0, 1, 2, . . . einMϕ cos 2πK z/a H M
0 :

√
n

2π f

4 M = 0,±1,±2, . . . 1
2 Z M

K + 1
2 Z M

M−K

√
n
π f

σh K = 0, 1, 2, . . . einMϕ cos 2π(2K − M)z/a H M
M/2 :

√
n

2π f

5 M = 0, 1, 2, . . . 1
2 C M

K + 1
2 C−M

−K

√
n
π f

U K = 0,±1,±2, . . . cos(nMϕ + 2π(K − Mn
Q )z/ f ) H M

Mn/Q :
√

n
2π f

6 M = 0, 1, 2, . . . 1
2 T M

K + 1
2 T −M

K

√
n
π f

σv K = 0,±1,±2, . . . cos nMϕei2πK z/a H0
K :

√
n

2π f

7 M = 0, 1, 2, . . . 1
2 T M

K + 1
2 (−)K T −M

K

√
n
π f

(σv| 1
2 ) M = 0,±1,±2, . . . K even: cos nMϕei2πK z/a

K odd: sin nMϕei2πK z/a H0
K :

√
n

2π f

8 M = 0, 1, 2, . . . 1
2 Z M

K + 1
2 Z−M

K−M

√
n
π f

σv K = 0,±1,±2, . . . cos nMϕei2π(2K−M)z/a H0
K :

√
n

2π f

9 M = 0, 1, 2, . . . 1
4 T M

K + 1
4 (−)M T M−K + 1

4 T −M
K +

1
4 (−)M T −M

−K

√
2n
π f

Ud , σv K = 0, 1, 2, . . . M even: cos nMϕ cos 2πK z/a H M
0 , H0

K :
√

n
π f

M odd: cos nMϕ sin 2πK z/a H0
0 :

√
n

2π f

10 M = 0, 1, 2, . . . 1
4 T M

K + 1
4 (−)K T −M

K + 1
4 (−)M T −M

−K +
1
4 (−)M+K T M−K

√
2n
π f

(σv| 1
2 ),Ud K = 0, 1, 2, . . . K ,M even: cos nMϕ cos 2πK z/a H M

0 , H0
K :

√
n
π f

K even,M odd: cos nMϕ sin 2πK z/a H0
0 :

√
n

2π f

K odd,M even: sin nMϕ sin 2πK z/a
K ,M odd: sin nMϕ cos 2πK z/a

11 M = 0, 1, 2, . . . 1
4 T M

K + 1
4 T M−K + 1

4 T −M
K + 1

4 T −M
−K

√
2n
π f

U, σv K = 0, 1, 2, . . . cos nMϕ cos 2πK z/a H M
0 , H0

K :
√

n
π f

H0
0 :

√
n

2π f
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Table 5.1 (continued)

12 M = 0, 1, 2, . . . 1
4 T M

K + 1
4 (−)K T −M

K + 1
4 T −M

−K +
1
4 (−)K T M−K

√
2n
π f

(σv| 1
2 ), σh K = 0, 1, 2, . . . K even: cos 2πK z/a cos nMϕ H M

0 , H0
K :

√
n
π f

K odd: sin 2πK z/a sin nMϕ H0
0 :

√
n

2π f

13 M = 0, 1, 2, . . . 1
4 Z M

K + 1
4 Z−M

K−M + 1
4 Z M

M−K + 1
4 Z−M

−K

√
2n
π f

U, σv K = 0, 1, 2, . . . cos nMϕ cos 2π(2K − M)z/a
H M

M/2:
√

n
π f

H0
0 :
√

n
2π f

The harmonics with M = 0 are ϕ-independent (and also ϕ̃-independent) func-
tions, i.e., they are constants on the circles around z-axis. However, harmonics with
K = 0 are constant along the coordinate helixes z̃, and only when L(1) = T (a)
(families 2,3,6,7,9,10,11, and 12) they are constant along the z-axis. For M �=
0, harmonic H M

K is invariant under CnM , as its rotational period is 2π/n|M |:
H M

K (ϕ + 2π/n|M |, z) = H M
K (ϕ, z); only for M = 1 rotational period 2π/n of the

harmonics coincides with the rotational symmetry of the system. Thus, rotational
symmetry of harmonic is larger than that of the system, except for M = ±1 when
they coincide. The analogue is true for K and the periodicity in z̃ (or z). In other
words, line group L is a subgroup of the symmetry group of its harmonics H M

K ,
comprising the full symmetry only of the harmonics with |M | = |K | = 1.

When an invariant is a real function, their expansion amplitudes satisfy αM
K (ρ) =

α−M
−K (ρ). Consequently, in this case for the families 5 and 9–13 the amplitudes are

real, while αM
K (ρ) = α−M

K (ρ) for the families 2, 3, and 4 and αM
K (ρ) = αM−K (ρ) for

the families 6, 7, and 8.

5.2.1.3 Entire Space Invariants

Having at disposal harmonics in the space of the functions over cylinder, it is easy
to write down the general form of the harmonics over the total space:

U M
K I (r) = RM

I K (ρ)H
M
K (ϕ, z). (5.18)

Here, for any fixed M and K the functions RM
I K (ρ) form a basis in the space

of functions over ρ. Singularity at ρ = 0 of the cylindrical and helical coordinates
implies that any function F(ρ, ϕ, z) at ρ = 0 must be ϕ-independent; therefore, for
M �= 0 the functions RM

I K (ρ) vanish at ρ = 0.
For various applications it is advantageous to use the basis

U M
K b(r) = √

bJ|nM|(bρ)H M
K (ϕ, z), b ∈ R (5.19)

(Bessel functions Jn normalized by
∫∞

0 Jn(bρ)Jn(b′ρ)ρdρ = 1
b δ(b − b′)), as this

is the eigenbasis of kinetic energy:
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ΔU M
K b(r) = −

(
b2 +

(
2π

K q̃ − Mr

a

)2
)

U M
K b(r). (5.20)

5.2.2 Covariants

After analysis of the invariant functions, we can easily find symmetry-adapted basis
in the space of functions over r , i.e., basis of functions Ψ (λ)l

tλ (r) satisfying (5.3):

�Ψ
(λ)l
tλ (r)

def= Ψ
(λ)l
tλ (�−1r) =

|λ|∑

l ′=1

D(λ)

l ′l (�)Ψ
(λ)l ′
tλ (r), tλ = 1, 2, . . . , f λ. (5.21)

Notably, as the line groups are not abelian (except for the first family groups) the
functions are grouped into the multiplets of covariants Ψ (λ)l(r) (l = 1, . . . , |λ|)
corresponding to the irreducible representations D(λ) of the dimension |λ| (|λ| =
1, 2, 4). Finally, tλ counts independent covariant multiplets transforming by the
same rule; the number of which is the frequency number f λ of the irreducible
representation λ.

In order to describe such a basis, we again first consider symmetry-adapted basis
Φ
(λ)l
tλ (ϕ, z) in the space of the functions over cylinder, satisfying the same transfor-

mation rules (5.21). The symmetry-adapted basis of the total space is then easily
obtained multiplying Φ(λ)ltλ (ϕ, z) by an arbitrary basis of radial functions, just as in
the case of invariants.

5.2.2.1 Cylindrical Covariants

Obviously, if the multiplet Φ(λ)ltλ (ϕ, z) is multiplied simultaneously by the same

invariant function H(ϕ, z), we obtain functions Φ(λ)ltλ (ϕ, z)H(ϕ, z) satisfying again

the transformation rule (5.21). Therefore, fixing one representative multiple Φ(λ)l00
for each irreducible representation, we generate symmetry-adapted basis as its prod-
uct with the basis of harmonics:

Φ
(λ)l
K M (ϕ, z) = Φ

(λ)l
00 (ϕ, z)H M

K (ϕ, z). (5.22)

Notice that tλ becomes a pair of the indices K and M counting the harmonics. In
particular, the invariant functions are covariants of the identical representation D(id);
therefore, harmonics themselves are a part of the symmetry-adapted basis if we take
Φ
(id)1
00 (ϕ, z) = 1.
Having harmonics tabulated (Table 5.1) it remains to find [2] the representative

functions Φ(λ)l00 (ϕ, z) for each irreducible representation λ of the line groups. For
the first family, the irreducible representations (Table 4.1) are one-dimensional. This
transforms the condition (5.21) to the eigensystem with eigenvalues (being matrix
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elements of the irreducible representations) a priory classified in terms of quasi-
momenta:

(Cr
q | f )Φ(k̃m̃)

00 (ϕ, z) = eik̃ fΦ
(k̃m̃)
00 (ϕ, z), CnΦ

(k̃m̃)
00 (ϕ, z) = ei2πm̃/nΦ

(k̃m̃)
00 (ϕ, z).

(5.23)
This way the subspace of the covariants with fixed quasi-momenta is completely
determined, and representative functions may be taken in the form

Φ
(km)
K M (ϕ, z) = e−i(mϕ+kz), Φ

(k̃m̃)
00 (ϕ, z) = e−im̃ϕ+i( 2πm̃

Q f −k̃)z
. (5.24)

For the other line group families, the representative functions are found (Table 5.2)
from the first family ones by the induction procedure. In fact, besides (5.23), the
covariants satisfy additional condition (5.3) for each additional generator. These
conditions involve the matrices of the irreducible representations, which are obtained
by induction from the first family line groups (Sect. 4.2). Recall that when L′ is a
halving subgroup of L, i.e., L = L′ + �L′, the irreducible representations of L are
related to those of L′ in one of two ways (2).

The halving subgroup in the families 2–8 is the first family group. The whole
space L is decomposed as L = ⊕k̃m̃L(k̃m̃) onto covariant subspaces of L′ = L(1).

When D(k̃m̃)(L′) is of the first type (i.e., corresponds to λ in (D.2a)), then L(k̃m̃) is
invariant under the additional generator �, meaning that L(k̃m̃) = L(k̃m̃+) ⊕ L(k̃m̃−).
Therefore, the additional generator decomposes L(k̃m̃) onto subspaces with defined
parity �� = ±1. This is performed by the group projector (F.2): in the space L(k̃m̃)

it is reduced to L k̃m̃± = 1
2 (1 ± A) (here A = ±D(k̃m̃±)(�)), according to (D.2a),

giving (normalization factors are omitted)

Φ(k̃m̃±) ∼ Φ
(k̃m̃)
t ± AΦ(k̃m̃)

t . (5.25)

As for A = 1 the simplest choiceΦ(k̃m̃)
t = Φ

(k̃m̃)
00 has vanishing projection by L k̃m̃±,

for uniqueness of notation and compact presentation, the supergroup invariants are

frequently built by Φ(k̃m̃)
01 or Φ(k̃m̃)

10 (and not Φ(k̃m̃)
00 ).

When D(k̃m̃)(L′) is of the second type, then D(g) maps L(k̃m̃) into the space
L(k̃�m̃�), causing the doubling of the dimension of D(k̃m̃)(L). When the projector
(F.2) is calculated (taking into account the matrices of form (D.2b)), it immediately

follows that the simplest representative doublet is Φ(k̃m̃)
00 and D(g)Φ(k̃m̃)

00 .
Finally, for the families 9–13, we repeat the procedure taking as L′ one of the

groups from the families 2–8.

5.2.2.2 Entire Space Covariants

Combining (5.21) and (5.18), we get SAB in the whole space:
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Table 5.2 Representative covariant functions of the line group. For each family L(F), correspond-
ing irreducible representations are listed in the column IR

F IR Representative function

1 k Am e−i(mϕ+kz)

T Q( f )Cn k̃ Am̃ e−im̃ϕ+i( 2πm̃
Q f −k̃)z

2 k A�h
m e−imϕ(ei( 2π

a −k)z +�U e−i( 2π
a −k)z)

T (a)S2n k Em
e−imϕ−ikz

ei mπ
n e−imϕ+ikz

3 k A�h
m e−imϕ(ei( 2π

a −k)z +�he−i( 2π
a −k)z)

T (a)Cnh k Em
e−imϕ−ikz

e−imϕ+ikz

4 0 A�h
m e−imϕ(ei( 4π

a −k)z +�he−i( 4π
a −k)z)

T 1
2n(

a
2 )Cnh k Em

e−imϕ−ikz

e−imϕ+ikz

5 k A�U
m ei(n−m)ϕ−i( 2πn

Q f +k)z +�U e−i(n−m)ϕ+i( 2πn
Q f +k)z

T Q( f )Dn k Em
e−imϕ−ikz

eimϕ+ikz

k̃ A�U
m̃ ei(n−m̃)ϕ−i( 2π(n−m̃)

Q f +k̃)z +�U e−i(n−m̃)ϕ+i( 2π(n−m̃)
Q f +k̃)z

k̃ Em̃
e−im̃ϕ−i(− 2πm̃

Q f +k̃)z

eim̃ϕ+i(− 2πm̃
Q f +k̃)z

6 k A/Bm e−ikz(ei(n−m)ϕ +�ve−i(n−m)ϕ)

T (a)Cnv k Em
e−imϕ−ikz

eimϕ−ikz

7 k A/Bm e−ikz(ei(n−m)ϕ +�ve−i(n−m)ϕ)

T ′( a
2 )Cn k Em

e−imϕ−ikz

eimϕ−ikz

8 k A/Bm e−ikz(ei(2n−m)ϕ +�ve−i(2n−m)ϕ)

T 1
2n(

a
2 )Cnv k Em

e−imϕ−ikz

eimϕ−ikz

k̃ A/B0 ei(k̃− 2π
a )z(einϕ +�ve−inϕ)

k̃ Em̃
e−im̃ϕ+i( 2πm̃

na −k̃)z

eim̃ϕ−i( 2πm̃
na −k̃)z

9 k A/B�U
0 einϕ+i( 2π

a −k)z +�U e−inϕ−i( 2π
a −k)z+

T (a)Dnd +�ve−inϕ+i( 2π
a −k)z +�U�veinϕ−i( 2π

a −k)z

k E�h
m

e−imϕ(ei( 2π
a −k)z +�he−i( 2π

a −k)z)

eimϕ(ei( 2π
a −k)z +�he−i( 2π

a −k)z)

k E n
2

cos mϕe−ikz

sin mϕe−ikz

k E�v
m

e−ikz(ei(n−m)ϕ + (−1)�v e−i(n−m)ϕ)

eikz(ei(n−m)ϕ +�ve−i(n−m)ϕ)
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Table 5.2 (continued)

k Gm

e−imϕ−ikz

eimϕ−ikz

eimϕ+ikz

e−imϕ+ikz

10 k A/B�U
m ei(n−m)ϕ+i( 2π

a −k)z −�U�vei πm
n +i ka

2 e−i(n−m)ϕ+i( 2π
a −k)z+

T ′( a
2 )S2n +�U ei πm

n ei(n−m)ϕ−i( 2π
a −k)z −�vei ka

2 e−i(n−m)ϕ−i( 2π
a −k)z

0 Em
cos mϕ

sin mϕ

π Em
e−i πa z

ei πa z

k E�h
m

e−imϕ(ei( 4π
a −k)z +�hei ka

2 e−i( 4π
a −k)z)

eimϕ(ei( 4π
a −k)z +�hei ka

2 e−i( 4π
a −k)z)

k E�v
m

e−ikz(ei(n−m)ϕ +�vei 2πm
n e−i(n−m)ϕ)

eikz(ei(n−m)ϕ +�vei 2πm
n e−i(n−m)ϕ)

k Gm

e−imϕ−ikz

eimϕ−ikz

e−imϕ+ikz

eimϕ+ikz

11 k A/B�h
m ei(n−m)ϕ+i( 2π

a −k)z +�ve−i(n−m)ϕ+i( 2π
a −k)z+

T (a)Dnh +�hei(n−m)ϕ−i( 2π
a −k)z +�h�ve−i(n−m)ϕ−i( 2π

a −k)z

k E�h
m

e−imϕ(ei( 2π
a −k)z +�he−i( 2π

a −k)z)

eimϕ(ei( 2π
a −k)z +�he−i( 2π

a −k)z)

k E�v
m

e−ikz(ei(n−m)ϕ +�ve−i(n−m)ϕ)

eikz(ei(n−m)ϕ +�ve−i(n−m)ϕ)

k Gm

e−imϕ−ikz

eimϕ−ikz

e−imϕ+ikz

eimϕ+ikz

12 0 A/B�h
m ei(n−m)ϕ+i 4π

a z +�ve−i(n−m)ϕ+i 4π
a z+

T ′( a
2 )Cnh +�hei(n−m)ϕ−i 4π

a z +�h�ve−i(n−m)ϕ−i 4π
a z

k E�h
m

e−imϕ(ei( 4π
a −k)z +�he−i( 4π

a −k)z)

eimϕ(ei( 4π
a −k)z +�he−i( 4π

a −k)z)

k E�v
m

e−ikz(ei(n−m)ϕ +�ve−i(n−m)ϕ)

eikz(ei(n−m)ϕ +�ve−i(n−m)ϕ)

π Em
e−ikz cos(n − m)ϕ

eikz cos(n − m)ϕ

k Gm

e−imϕ−ikz

eimϕ−ikz

e−imϕ+ikz

eimϕ+ikz

13 0 A/B�h
m ei(2n−m)ϕ+i 4π

a z +�U e−i(2n−m)ϕ−i 4π
a z+

T 1
2n(

a
2 )Dnh +�ve−i(2n−m)ϕ+i 4π

a z +�U�vei(2n−m)ϕ−i 4π
a z

0 E�h
m

e−imϕ(ei 4π
a z +�he−i 4π

a z)

eimϕ(ei 4π
a z +�he−i 4π

a z)
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Table 5.2 (continued)

k E A/B
m

e−ikz(ei(2n−m)ϕ +�ve−i(2n−m)ϕ)

eikz(ei(2n−m)ϕ +�ve−i(2n−m)ϕ)

π E�U
n/2

eimϕ+ikz +�U e−imϕ−ikz

e−imϕ+ikz +�U eimϕ−ikz

k Gm

e−imϕ−ikz

eimϕ−ikz

e−imϕ+ikz

eimϕ+ikz

Ψ
(λ)l
I K M (r) = Φ

(λ)l
00 (ϕ, z)RM

I K (ρ)H
M
K (ϕ, z). (5.26)

The result obtained enables expansion of any function Ψ (λ)l(r) over SAB:

Ψ (λ)l(r) =
∑

I K M

αI K MΦ
(λ)l
00 (ϕ, z)RM

I K (ρ)H
M
K (ϕ, z), (5.27)

where the sum is over all allowed values of I , M , and K , while the amplitudes
are scalar products: αI K M = (Ψ

(λ)l
I K M , Ψ

(λ)l) = ∫
Ψ
(λ)l∗
I K M (ρ, ϕ, z)Ψ (λ)l(ρ, ϕ, z)ρ dρ

dϕ dz. We also introduce expansions over harmonics with the radial functions being
independent on the choice of RM

I K (ρ):

Ψ (λ)l(r) =
∑

K M

αM
K (ρ)H

M
K (ϕ, z), (5.28)

αM
K (ρ) =

∑

I

αI K M RM
I K (ρ) = ρ

∫ 2π

0

∫ ∞

−∞
Φ
(λ)l∗
K M (ϕ, z)Ψ (λ)l(ρ, ϕ, z) dϕ dz.

(5.29)

This generalization (to the line group symmetry) of the famous Bloch theorem
(derived for the translational periodicity only) will be considered in Sect. 8.1. Appli-
cations to the tight-binding model (Sect. 8.5.1) and several examples of the expan-
sions (5.28) are discussed in the context of carbon nanotubes (Sect. 9.2).

5.3 Vectors

For the sake of the numerous physical applications here we elaborate [3] symmetry-
adapted basis of the three dimensional Euclidean space. Recall that a vector quantity
v, like momentum or electric and magnetic field, has three components, and the
action of the group elements (5.1) is realized by three dimensional matrices. There
are two types of such quantities, polar and axial vectors. Both are transformed in
the same way under rotations, both are invariant under translations, but the enan-
tiomorphic transformations distinguish between them. For instance, spatial inver-
sion changes the sign of the polar vectors and leaves the axial vectors invariant.
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Two corresponding types of vector representations are called polar Dp and axial
representation Da. Note that for the first and fifth family line groups polar and
axial representations are identical, as these groups do not contain enantiomorphic
elements.

Both vector representations of line groups are reducible, and when the isogo-
nal group principle axis q is greater than two the standard components (making
symmetry-adapted basis) are

v0 = vz, v± = vx ∓ ivy . (5.30)

Actually, under a line group transformation z-component of a vector either remains
invariant or changes the sign. Thus, it is itself a standard component associated to
one-dimensional representation. The remaining x- and y-components are standard
only in some of the groups with q < 3, and in these cases they also correspond to
the one-dimensional representations. Otherwise, they are combined into the stan-
dard components v±, which transform independently, according to the different
one-dimensional representations in the families 1–4, while in the other families form
a multiplet of a two-dimensional representation. The linear (for q ≥ 3) and helical
(for n ≥ 3) momenta of the components (5.30) are

v0 : k = m = 0; k̃ = m̃ = 0, (5.31a)

v± : k = 0, m � ±1; k̃ � ±κ, m̃ � ±1 (κ = 2π

f Q
). (5.31b)

Here, � denotes equality modulo range of the involved quantities. In particular, for
commensurate groups, when Q = q/r and f = an/q, this results in κ = 2rπ

na if

r ≤ q/2, while otherwise κ = 2(r−q)π
na . Also, when q = 2 (n = 2) then m = 1

(m̃ = 1) for both v±, and for q = 1 (n = 1) for all the components m = 0 (m̃ = 0).
Equations (5.31) single out relevant representations of the first family groups, and

for other families the parities should be additionally checked. As for the U -parity,
vz is odd, while v± are (for q ≥ 3) neither even nor odd. For polar (axial) vector
v0 is even (odd) in vertical and odd (even) in horizontal mirror and glide planes,
while v± is even (odd) in horizontal and for q ≥ 3 neither even nor odd in vertical
planes. All this is summarized in Table 5.3, where the standard components of vec-
tors are corresponded to the linear irreducible sub-representations of Dp and Da. As
k = 0 for the vector quantities, the reduction of the vector representations of the
commensurate groups is essentially related to the isogonal point groups.

There are many vectorial quantities describing various properties of physical sys-
tems. Among them, only those components corresponding to the identity represen-
tation may be nonzero in a structure having a line group symmetry. For example,
nonzero electrical field, characterizing ferroelectric structures, may appear (sponta-
neously) only if some of its components are invariant under the symmetry transfor-
mations. In this context the invariant components of the vectors are important. The
inspection of Table 5.3 shows that z-component of the polar vector is invariant for
the families 1, 6, 7, and 8, while the same component of the axial vector is invariant
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Table 5.3 Symmetry-adapted components of the polar and axial vectors. In the first column the
family numbers F of the line groups L(F) are above the corresponding isogonal group P I. Then
the standard components of antisymmetric polar/axial vectors for each order q of the principle axis
of the isogonal group are listed below the corresponding irreducible representations. While for the
families 1 and 5 all the types of vectors have the same irreducible representations, for other families
the irreducible representations of polar vectors differ by parities�h and�v from those of the axial
ones; respective parities are then denoted by ± or ∓, as well as X = A/B and Y = B/A. Linear
quantum numbers are used; helical ones are obtained according to the equivalence (5.31) retaining
all the parities. For q = 1, 2 the listed components correspond to the choice of xz-plane as σv in
Cnv, Dnd, and Dqh and x-axis as U in Dq

F
P I

q = 1 q = 2 q = 3, 4, . . .

1 30 A0 0 A0 20 A1 0 A0 0 A1 0 A−1
Cq vx , vy , vz vz vx , vy vz v+ v−
2 30 A∓

0 0 A∓
0 0 A±

1 0 A±
−1 0 A∓

0 0 A±
1 0 A±

−1
S2q vx , vy , vz vz v+ v− vz v+ v−
3, 4 20 A±

0 0 A∓
0 0 A∓

0 20 A±
1 0 A∓

0 0 A±
1 0 A±

−1
Cqh vx , vy vz vz vx , vy vz v+ v−
5 20 A−

0 0 A+
0 0 A−

0 0 A+
1 0 A−

1 0 A−
0 0 E1

Dq vz, vy vx vz vx vy vz (v+, v−)
6 − 8 20 X0 0Y0 0 X0 0 X1 0Y1 0 X0 0 E1
Cqv vz, vx vy vz vx vy vz (v+, v−)
9, 10 20 X−

0 0Y +
0 0 X−

0 0 E1 0 X−
0 0 E+

1
Dqd vz, vx vy vz (v+, v−) vz (v+, v−)
11 − 13 0 X∓

0 0 X±
0 0Y ±

0 0 X∓
0 0 X±

1 0Y ±
1 0 X∓

0 0 E±
1

Dqh vz vx vy vz vx vy vz (v+, v−)

for the families 1, 2, 3, and 4. Except for few trivial cases, where q = 1, 2, neither
of the other components can be invariant for any line group symmetry.

5.4 Second-Rank Tensors

The second-rank tensor T = T(v1, v2) relates two vector quantities v1 and v2
in a linear way: v1 = T(v1, v2)v2. In Cartesian components this reads v1i =∑

j Ti j (v1, v2)v2 j . Therefore, transformation of T under the action of the line group
elements follows the transformation of the involved vectors. Denoting by Dvi (i =
1, 2) the corresponding (polar or axial) vector representation, i.e., �vi = Dvi (�)vi ,
it follows that the transformed tensor T′ = �T satisfies

T′ = Dv1(�−1)T(v1, v2)D
v2(�), i.e., T ′

i j (v1, v2)=
3∑

i ′, j ′=1

Dv1
i ′i (�)D

v2
j ′ j (�)Ti ′ j ′(v1, v2),

(5.32)
since the matrices of the vector representations are orthogonal, i.e., DvT = Dv−1.
Therefore, one concludes that the second-rank tensor is transformed according to
the direct product representation:
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DT(�) = Dv1(�)⊗ Dv2(�). (5.33)

The obtained representation DT is reducible, and the standard components are called
irreducible tensor components.

Substituting axial a and polar p vectors for v1 and v2, we find four types of the
second-rank tensors: T( p, p),T(a, a),T( p, a), and T(a, p). Still, the representa-
tions Dp ⊗ Dp and Da ⊗ Da are equivalent, as well as Dp ⊗ Da and Da ⊗ Dp,
i.e., their standard components are the same combinations of the Cartesian ones
Ai j . As the first pair is invariant under the spatial inversion and the second one
changes the sign, such tensors are called axial and polar tensors, denoted as A and
P, respectively. Still, for the groups of the first and fifth families there is no such
distinction, as there is no difference between axial and polar vectors.

For each tensor T we define its symmetric and antisymmetric part T± = 1
2 (T +

TT ), which are also second-rank tensors. Their components T ±
i j = 1

2 (Tji ± T A ji )

transform independently (without mixing symmetrical and antisymmetrical ones)
under the line group transformations. This enables us to list separately the standard
components of the symmetric and antisymmetric parts [4], which is particularly
convenient for tensors being themselves symmetric or antisymmetric. In particular,
the representation DA = Da ⊗ Da of the axial tensors automatically reduces to
the symmetrized and antisymmetrized squares DA+ = [Da]2 and DA− = {Da}2,
corresponding to A+ and A−.

As for the first family line groups, the standard components are

T− : a0 =
[ 0 1 0−1 0 0

0 0 0

]
, a±1 =

[ 0 0 1
0 0 ∓i

−1 ±i 0

]
, (5.34a)

T+ : s0 =
[

1 0 0
0 1 0
0 0 0

]
, s′

0 =
[

0 0 0
0 0 0
0 0 1

]
, s±1 =

[ 0 0 1
0 0 ∓i
1 ∓i 0

]
,

s±2 =
[ 1 ∓i 0

∓i −1 0
0 0 0

]
. (5.34b)

They transform according to the one-dimensional representations, with linear and
helical quantum numbers:

a0, s0 : k = m = 0; k̃ = m̃ = 0, (5.35a)

a±1, s±1 : k = 0, m � ±1; k̃ � ±κ, m̃ � ±1

(
κ = 2π

f Q

)
, (5.35b)

s±2 : k = 0, m � ±2; k̃ � ±2κ, m̃ � ±2. (5.35c)

Note that the modular equalities (see comment below (5.31)) provide that for small
q (or n) the angular quantum numbers 2 and 1 are effectively lowered.

For the other families, depending on the symmetry group, standard components
are either mutually independent (i.e., transforming according to the one dimensional
representations) or combine into two dimensional multiplets. Note that for q < 5
(Table 5.4) the standard components in some cases are also



5.4 Second-Rank Tensors 79

Ta
bl

e
5.

4
St

an
da

rd
co

m
po

ne
nt

s
of

th
e

se
co

nd
-r

an
k

te
ns

or
s.

In
th

e
fir

st
co

lu
m

n
th

e
fa

m
ili

es
F

of
th

e
lin

e
gr

ou
ps

L
(F
)

ab
ov

e
th

e
co

rr
es

po
nd

in
g

is
og

on
al

gr
ou

p
P

I
ar

e
gi

ve
n.

T
he

n
th

e
st

an
da

rd
co

m
po

ne
nt

s
of

an
tis

ym
m

et
ri

c
T

−
an

d
sy

m
m

et
ri

c
T

+
te

ns
or

s
ar

e
lis

te
d

be
lo

w
th

e
co

rr
es

po
nd

in
g

ir
re

du
ci

bl
e

re
pr

es
en

ta
tio

ns
(fi

rs
t,

th
e

or
de

rs
q

=
1,

2
of

th
e

pr
in

ci
pl

e
ax

is
of

th
e

is
og

on
al

gr
ou

p
ar

e
in

cl
ud

ed
,

an
d

th
en

th
e

ca
se

s
q
>

2)
.

Fo
r

th
e

fa
m

ili
es

1
an

d
5

al
l

ty
pe

s
of

te
ns

or
s

ha
ve

th
e

sa
m

e
st

an
da

rd
co

m
po

ne
nt

s.
Fo

r
th

e
ot

he
r

fa
m

ili
es

th
e

ir
re

du
ci

bl
e

re
pr

es
en

ta
tio

ns
of

th
e

ax
ia

lt
en

so
rs

di
ff

er
by

pa
ri

tie
s
�

h
an

d
�

v
fr

om
th

os
e

of
th

e
po

la
r

te
ns

or
s,

as
w

el
l

as
so

m
e

of
th

e
st

an
da

rd
co

m
po

ne
nt

s;
re

sp
ec

tiv
e

pa
ri

tie
s

an
d

te
ns

or
co

m
po

ne
nt

s
ar

e
th

en
de

no
te

d
by

±
or

∓,
as

w
el

l
as

X
=

A
/

B
an

d
Y

=
B
/

A
.L

in
ea

r
qu

an
tu

m
nu

m
be

rs
ar

e
pr

es
en

te
d,

an
d

th
e

he
lic

al
on

es
ar

e
ob

ta
in

ed
ac

co
rd

in
g

to
th

e
eq

ui
va

le
nc

e
(5

.3
4)

,r
et

ai
ni

ng
al

lt
he

pa
ri

tie
s

F
A

− /
P

−
A

+ /
P

+
P

I
q

=
1

q
=

2
q

=
1

q
=

2

1
3 0

A
0

0
A

0
2 0

A
1

6 0
A

0
4 0

A
0

2 0
A

1
C

q
a 0
,
a 1
,
a −

1
a 0

a 1
,
a −

1
s 0
,
s′ 0
,
s 1
,
s −

1
,
s 2
,
s 2

s 0
,
s′ 0
,
s 2
,
s −

2
s 1
,
s −

1

2
3 0

A
± 0

0
A

± 0
0

A
∓ 1

0
A

± 1
6 0

A
± 0

2 0
A

± 0
0

A
∓ 1

0
A

± 1
2 0

A
∓ 0

S 2
q

a 0
,
a 1
,
a −

1
a 0

a 1
a −

1
s 0
,
s′ 0
,
s 1
,
s −

1
,
s 2
,
s 2

s 0
,
s′ 0

s 1
s −

1
s 2
,
s −

2

3,
4

0
A

± 0
2 0

A
∓ 0

0
A

± 0
2 0

A
∓ 1

4 0
A

± 0
2 0

A
∓ 0

4 0
A

± 0
2 0

A
∓ 1

C
q

h
a 0

a 1
,
a −

1
a 0

a 1
,
a −

1
s 0
,
s′ 0
,
s 2
,
s −

2
s 1
,
s −

1
s 0
,
s′ 0
,
s 2
,
s −

2
s 1
,
s −

1

5
0

A
+ 0

2 0
A

− 0
0

A
− 0

0
A

+ 1
0

A
− 1

4 0
A

+ 0
2 0

A
− 0

3 0
A

+ 0
0

A
− 0

0
A

+ 1
0

A
− 1

D
q

a
yz

a 0
,
a x

z
a 0

a
yz

a x
z

s 0
,
s′ 0
,
s y

z,
d

s x
y
,
s x

z
s 0
,
s′ 0
,
d

s x
y

s y
z

s x
z

6–
8

0
X

0
2 0

Y
0

0
Y

0
0

X
1

0
Y

1
4 0

X
0

2 0
Y

0
3 0

X
0

0
Y

0
0

X
1

0
Y

1
C

q
v

a x
z

a 0
,
a

yz
a 0

a x
z

a
yz

s 0
,
s′ 0
,
s x

z,
d

s x
y
,
s y

z
s 0
,
s′ 0
,
d

s x
y

s x
z

s y
z

9,
10

0
X

+ 0
2 0

Y
− 0

0
Y

− 0
0

E
1

4 0
X

+ 0
2 0

Y
− 0

2 0
X

+ 0
0

X
− 0

0
Y

+ 0
0

E
1

D
q

d
a x

z
a 0
,
a

yz
a 0

(a
1
,
±a

−1
)

s 0
,
s′ 0
,
s x

z,
d

s x
y
,
s y

z
s 0
,
s′ 0

d
s x

y
(s

1
,
±s

−1
)

11
–1

3
0

X
∓ 0

0
Y

± 0
0
Y

∓ 0
0
Y

± 0
0

X
∓ 1

0
Y

∓ 1
3 0

X
± 0

0
X

∓ 0
0
Y

± 0
0
Y

∓ 0
3 0

X
± 0

0
Y

± 0
0

X
∓ 1

0
Y

∓ 1
D

q
h

a x
z

a 0
a

yz
a 0

a x
z

a
yz

s 0
,
s′ 0
,
d

s x
z

s x
y

s y
z

s 0
,
s′ 0
,
d

s x
y

s x
z

s y
z



80 5 Tensors

Ta
bl

e
5.

4
(c

on
tin

ue
d)

F
A

− /
P

−
A

+ /
P

+
P

I
q

:
q

=
3,

4,
..
.

q
=

3
q

=
4

q
=

5,
6,
..
.

1
0

A
0

0
A

1
0

A
−1

2 0
A

0
2 0

A
1

2 0
A

−1
2 0

A
0

0
A

1
0

A
−1

2 0
A

2
2 0

A
0

0
A

1
0

A
−1

0
A

2
0

A
−2

C
q

a 0
a 1

a −
1

s 0
,
s′ 0

s 1
,
s −

2
s −

1
,
s 2

s 0
,
s′ 0

s 1
s −

1
s 2
,
s −

2
s 0
,
s′ 0

s 1
s −

1
s 2

s −
2

2
0

A
± 0

0
A

∓ 1
0

A
∓ −1

2 0
A

± 0
2 0

A
∓ 1

2 0
A

∓ −1
2 0

A
± 0

0
A

∓ 1
0

A
∓ −1

0
A

± 2
0

A
∓ 2

2 0
A

± 0
0

A
∓ 1

0
A

∓ −1
0

A
± 2

0
A

± −2
S 2

q
a 0

a 1
a −

1
s 0
,
s′ 0

s 1
,
s −

2
s −

1
,
s 2

s 0
,
s′ 0

s 1
s −

1
s 2

s −
2

s 0
,
s′ 0

s 1
s −

1
s 2

s −
2

3,
4

0
A

± 0
0

A
∓ 1

0
A

∓ −1
2 0

A
± 0

0
A

∓ 1
0

A
∓ −1

0
A

± −1
0

A
± 1

2 0
A

± 0
0

A
∓ 1

0
A

∓ −1
2 0

A
± 2

2 0
A

± 0
0

A
∓ 1

0
A

∓ −1
0

A
± 2

0
A

± −2
C

q
h

a 0
a 1

a −
1

s 0
,
s′ 0

s 1
s −

1
s 2

s −
2

s 0
,
s′ 0

s 1
s −

1
s 2
,
s −

2
s 0
,
s′ 0

s 1
s −

1
s 2

s −
2

5
0

A
− 0

0
E

1
2 0

A
+ 0

2 0
E

1
2 0

A
+ 0

0
E

1
0

A
+ 2

0
A

− 2
2 0

A
+ 0

0
E

1
0

E
2

D
q

a 0
(a

1
,
−a

−1
)

s 0
,
s′ 0

(s
1
,
−s

−1
),
(s

−2
,
s 2
)

s 0
,
s′ 0

(s
1
,
−s

−1
)

d
s x

y
s 0
,
s′ 0

(s
1
,
−s

−1
)

(s
2
,
s −

2
)

6–
8

0
Y

0
0

E
1

2 0
X

0
2 0

E
1

2 0
X

0
0

E
1

0
X

2
0
Y

2
2 0

X
0

0
E

1
0

E
2

C
q

v
a 0

(a
1
,
±a

−1
)

s 0
,
s′ 0

(s
1
,
±s

−1
),
(s

−2
,
±s

2
)

s 0
,
s′ 0

(s
1
,
±s

−1
)

d
s x

y
s 0
,
s′ 0

(s
1
,
±s

−1
)

(s
2
,
±s

−2
)

9,
10

0
Y

− 0
0

E
− 1

2 0
X

+ 0
2 0

E
− 1

2 0
X

+ 0
0

E
− 1

0
E

2
2 0

X
+ 0

0
E

− 1
0

E
+ 2

D
q

d
a 0

(a
1
,
±a

−1
)

s 0
,
s′ 0

(s
1
,
±s

−1
),
(s

−2
,
±s

2
)

s 0
,
s′ 0

(s
1
,
±s

−1
)

(s
2
,
±s

−2
)

s 0
,
s′ 0

(s
1
,
±s

−1
)

(s
2
,
±s

−2
)

11
–1

3
0
Y

± 0
0

E
∓ 1

2 0
X

± 0
0

E
∓ 1

0
E

± 1
2 0

X
± 0

0
E

∓ 1
0

X
± 2

0
Y

± 2
2 0

X
± 0

0
E

∓ 1
0

E
± 2

D
q

h
a 0

(a
1
,
a −

1
)

s 0
,
s′ 0

(s
1
,
±s

−1
)

(s
−2
,
±s

2
)

s 0
,
s′ 0

(s
1
,
±s

−1
)

d
s x

y
s 0
,
s′ 0

(s
1
,
±s

−1
)

(s
2
,
±s

−2
)



5.4 Second-Rank Tensors 81

T− : axz =
[ 0 0 1

0 0 0−1 0 0

]
, ayz =

[ 0 0 0
0 0 1
0 −1 0

]
, (5.36a)

T+ : d =
[ 1 0 0

0 −1 0
0 0 0

]
, sxy =

[
0 1 0
1 0 0
0 0 0

]
, sxz =

[
0 0 1
0 0 0
1 0 0

]
, syz =

[
0 0 0
0 0 1
0 1 0

]
. (5.36b)

The standard components of the symmetric and antisymmetric tensors, classified
according to the irreducible representations of the line groups, are given in Table 5.4.

Applications in physics frequently require to know the form of the invariant ten-
sors: obviously, tensorial physical quantity T produced by system with symmetry
group L can be nonzero only if it is invariant under the transformation of L. There-
fore, the general form of such a tensor is obtained as the sum aT1 + bT2 + . . .

over the all standard components Ti corresponding to the identity representations,

Table 5.5 Invariant second-rank tensors. In the first column are the family numbers F of the line
groups above the corresponding isogonal group P I. The forms of antisymmetric and symmetric
invariant tensors are given separately for the order q of principle axis of the isogonal group being
1, 2, and larger. The first line refers to the invariant axial tensors and the second one to the polar
ones, except for the families 1 and 5, for which there is no difference

q = 1 q = 2 q = 3, 4, . . .

F P I A−/P− A+/P+ A−/P− A+/P+ A−/P− A+/P+

1 Cq

[
0 a b−a 0 l

−b −c 0

] [
d e f
e g h
f h i

] [ 0 a 0−a 0 0
0 0 0

] [
d e 0
e g 0
0 0 i

] [ 0 a 0−a 0 0
0 0 0

] [ d 0 0
0 d 0
0 0 i

]

2 S2q

[
0 a b−a 0 l

−b −c 0

] [
d e f
e g h
f h i

] [ 0 a 0−a 0 0
0 0 0

] [
d 0 0
0 d 0
0 0 i

] [ 0 a 0−a 0 0
0 0 0

] [
d 0 0
0 d 0
0 0 i

]

None None None
[ d e 0

e −d 0
0 0 0

]
None None

3, 4 Cqh

[ 0 a 0−a 0 0
0 0 0

] [
d e 0
e g 0
0 0 i

] [ 0 a 0−a 0 0
0 0 0

] [
d e 0
e g 0
0 0 i

] [ 0 a 0−a 0 0
0 0 0

] [
d 0 0
0 d 0
0 0 i

]

[ 0 0 b
0 0 l−b −c 0

] [
0 0 f
0 0 h
f h 0

]
None None None None

5 Dq

[ 0 0 0
0 0 l
0 −c 0

] [
d 0 0
0 g h
0 h i

]
None

[
d 0 0
0 g 0
0 0 i

]
None

[
d 0 0
0 d 0
0 0 i

]

6–8 Cqv

[ 0 0 b
0 0 0−b 0 0

] [
d 0 f
0 g 0
f 0 i

]
None

[
d e 0
e d 0
0 0 i

]
None

[
d 0 0
0 d 0
0 0 i

]

[
0 a 0−a 0 l
0 −c 0

] [ 0 e 0
e 0 h
0 h 0

] [ 0 a 0−a 0 0
0 0 0

] [ 0 e 0
e 0 0
0 0 0

] [ 0 a 0−a 0 0
0 0 0

]
None

9, 10 Dqd

[ 0 0 0
0 0 l
0 −c 0

] [
d e f
e d 0
f 0 i

]
None

[
d 0 0
0 d 0
0 0 i

]
None

[
d 0 0
0 d 0
0 0 i

]

None None None
[ 0 e 0

e 0 0
0 0 0

]
None None

11–13 Dqh None

[
d 0 0
0 g 0
0 0 i

]
None

[
d 0 0
0 g 0
0 0 i

]
None

[ d 0 0
0 d 0
0 0 i

]

[ 0 0 0
0 0 l
0 −c 0

] [ 0 0 0
0 0 h
0 h 0

]
None None None None
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with the coefficients a, b, . . . characterizing the quantity. When this summation is
performed, the general form of invariant tensors is found (results are presented in
Table 5.5).

5.5 Application: Clebsch–Gordan Coefficients
and Selection Rules

Within quantum mechanical formalism, states of the considered system are vectors
in the Hilbert space S, while physical quantities are hermitian operators. Geomet-
rical transformations � are unitary operators D(�), giving (infinite dimensional, in
general reducible) representation D of the symmetry group. Accordingly, there is a
symmetry-adapted basis standard vectors |μmtμ〉 of which satisfy (5.3):

D(�) |μtμm〉 =
|μ|∑

m′=1

D(μ)

m′m(�) |μm′tμ〉. (5.37)

Such an action yields transformation of the operators of the second-rank tensors:
�Q = D−1(�)Q D(�), (5.32). The standard components are again defined by (5.3),
and in this context they are called irreducible tensor operators. This way, both the
states and the operators are assigned by irreducible representations of the symmetry
group, i.e., by conserved quantum numbers.

As a consequence, expanding vectors over SAB and the operators over irre-
ducible tensors, arbitrary matrix element becomes a sum of the matrix elements
〈μmtμ | Qν

ntν | λltλ〉 with the symmetry-adapted ingredients only. Clearly, these
entities are to a large extent determined by symmetry, as it is enlighten by the
Wigner–Eckart theorem:

〈μmtμ| Qν
ntν |λltλ〉 = (μtμ‖Qν

tν‖λtλ)〈μm |νn; λl〉. (5.38)

The first factor, called reduced matrix element, depends only on the involved irre-
ducible representations, not on the indices m, n, and l. Therefore, it can be calculated
or even measured just once, irrespective of the dimensions of the involved represen-
tations. On the other hand, the Clebsch–Gordan coefficients 〈μm | νn; λl〉 do not
depend neither on the representation counters (tμ, tν and tλ) nor on the physical
content of the quantity Q. They are completely determined by the symmetry of the
system and can be tabulated a priori.

For many applications it is important to know only whether a particular Clebsch–
Gordan coefficient vanishes. Quite generally, Clebsch–Gordan coefficient is zero
unless the quantum numbers of the involved representations satisfy selection rules
(for helical and linear quantum numbers):

�k̃ = k̃f − k̃i � k̃, �m̃ = m̃f − m̃i � m̃, ΠfΠΠi �= −1, (5.39a)

�k = kf − ki � k, �m = mf − mi � m + K p, ΠfΠΠi �= −1. (5.39b)
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The dotted equalities are taken modulo the ranges (−π/ f, π/ f ] and (−n/2, n/2]
of k̃ and m̃, i.e., (−π/a, π/a] and (−q/2, q/2] of k and m, respectively; as for K ,
it is the unique integer making kf − ki − 2πK/a being from the Brillouin zone.
The selection rules correspond to the physical conservation laws of momenta and
parities (if defined). In particular, the second rule in (5.39b) transparently reveals
that m is not a conserved quantum number as�m �= m when K �= 0 (Umklapp pro-
cesses). According to the Wigner–Eckart theorem, matrix elements vanish whenever
the quantum numbers do not satisfy the selection rules (5.39). However, note that
they can also vanish for some other, not symmetry-based reasons. In other words,
a matrix element may happen to be zero even if the relevant Clebsch–Gordan coef-
ficient is positive. In such a case it is the reduced matrix element which vanishes.
This is due to the particular operator Qν

ntν and vectors |μmtμ〉 and |λltλ〉 and cannot
be predicted by symmetry.

Particular values of Clebsch–Gordan coefficients are easy to find for the first
family line groups T Q( f )Cn . In the helical and linear (for commensurate groups
Lqp = T r

q(na/q)Cn , only) quantum numbers they read

〈k̃ f m̃ f |k̃m; k̃i m̃i〉 =
⎧
⎨

⎩
1 if �k̃ = k̃f − k̃i � k̃ and �m̃ = m̃f − m̃i � m̃,

0 otherwise.
(5.40a)

〈k f ,m f |km; ki mi〉 =
⎧
⎨

⎩
1 if �k = kf − ki � k and �m = mf − mi � m + K p,

0 otherwise.
(5.40b)

Clebsch–Gordan coefficients for other line groups can be calculated straightfor-
wardly from the irreducible representations (e.g., using modified group projector
technique, Appendix F). The results are too lengthy for tabulation, but the numerical
code calculating each particular Clebsch–Gordan coefficient for any line group is
available.

As an illustration relevant for the chiral nanotubes, we list Clebsch–Gordan coef-
ficients for fifth family line groups. First, Clebsch–Gordan coefficients vanish when-
ever any of the selection rules (5.39b) with Π = �U is not satisfied. Otherwise, all
the coefficients are equal to 1, except the following ones:

〈k̃ f , m̃ f |k̃m̃; k̃i m̃i−〉 = −1, if k̃ < 0, or k̃ = 0,
π

f
and m̃ < 0,

〈k̃ f , m̃ f |k̃m̃−; k̃i m̃i〉 = −1, if k̃i < 0, or k̃i = 0,
π

f
and m̃i < 0,

〈k̃ f , m̃ f ,±|k̃, m̃; k̃i , m̃i〉 =
{± 1√

2
, k̃ < 0, or k̃ = 0, πf and m̃ < 0,

1√
2
, otherwise,

(5.41a)
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〈k f m f 0|km0; ki mi ,−1〉 = −1, if
k < 0, or k = 0 and m < 0, or

k = π
a and m /∈ [− p

2 ,
q−p

2 ],
〈k f m f 0|km,−1; ki mi 0〉 = −1, if

ki < 0, or ki = 0 and mi < 0, or

ki = π
a and mi /∈ [− p

2 ,
q−p

2 ],

〈k f m f ,±1|km0; ki mi 0〉 =
⎧
⎨

⎩
± 1√

2
, if k<0, or k=0 and m<0, or

k= π
a and mi /∈[− p

2 ,
q−p

2 ],
1√
2
, otherwise

(5.41b)

for the helical (5.41a) and linear (5.41b) quantum numbers.
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Chapter 6
Magnetic Line Groups

Abstract In this chapter we consider magnetic line groups, which besides geometri-
cal symmetries of quasi-one-dimensional regular systems include also time reversal
operationΘ . These groups and their co-representations besides being relevant in the
context of spin ordering and magnetic phenomena, give insight into the properties
of energy spectrum in some other dynamical problems.

6.1 Classification

In this section we will derive all the magnetic line groups. It turns out that to this
end one has to construct all the halving subgroups of all the line groups.

6.1.1 Structure

As time reversal changes the sign of the time coordinate, and leaves the spatial coor-
dinates unchanged, it is an involution, Θ2 = (I |0) which commutes with all spatial
transformations �. Consequently, product of two space–time transformations is a
spatial transformation, Θ�1Θ�2 = �1�2, implying that spatial transformations form
a halving subgroup of a magnetic line group, i.e., general structure of a magnetic
line group is L′ +Θ�∗L′, where L′ is a line group. By setting Θ to identity the line
group L = L′ +�∗L′ is obtained. If �∗ belongs to L′ then the cosetΘ�∗L′ is simply
ΘL′, and gray group is constructed:

L∗(L) = L ⊗ {e,Θ} = L +ΘL. (6.1a)

Otherwise, when L′ does not contain �∗, L′ is a halving subgroup of L and black-
and-white magnetic line group is obtained:

L∗(L′) = L′ +Θ�∗L′. (6.1b)

Thus, to each line group L a class of magnetic line groups [1] L∗ is associated: line
group itself, gray group, and a set of black-and-white groups.

Damnjanović, M., Milošević, I.: Magnetic Line Groups. Lect. Notes Phys. 801, 85–93 (2010)
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6.1.2 Construction

As shown in the last section, in order to construct all magnetic line groups, one
should find all halving subgroups of line groups. A quite general method of con-
struction of the magnetic groups, developed within the space group theory, exists. It
is based on the alternating representations. However, it will not be applied here
because the line group factorization (Sect. 2.1) offers more efficient approach,
namely, it has been shown [2] that an index-two subgroup of the line group Z P
takes one of the following three forms: (a) Z′

j P , (b) Z P ′
i , and (c) Z′

j P ′
i + Z

′c
j P

′c
i ,

where Z′
j and P ′

i are halving subgroups of Z and P , respectively, while Zc
j = Z\Z′

j

and P
′c
i = P\P ′

i are their complementary cosets. So, in order to construct halving
subgroups of a line group, we derive halving subgroups of the factors Z and P and
then construct sets (a)–(c). Finally, among them we chose only those which satisfy
the condition that Z or Z′

j commute with P ′
i or P , i.e., the prerequisite of a subgroup

structure.

6.1.2.1 Point Factor

The halving subgroups of the point and of the magnetic point groups are well
known [1]; they can be found [2] using the described algorithm and the factorization
(Table 2.1).

6.1.2.2 Generalized Translations

Being cyclic, generalized translational group Z contains only one subgroup of index
two, infinite cyclic group Z′, generated by Z ′ = Z2 of the generator of Z (Sect. 2.1).

For the helical group T Q( f ) squared generator is (CQ | f )2 = (CQ/2|2 f ). There-
fore, applying the convention Q′ ≥ 1, we obtain helical group:

Z = T Q( f ) : Z1 = T Q′(2 f ), Q′ =
{

Q
2 , if Q ≥ 2;

Q
2−Q , otherwise.

(6.2a)

In particular, halving subgroup of a commensurate helical group T r
q( f ) is also com-

mensurate and generated by (Cr1
q1 |2 f = a1/q1):

Z = Tr
q ( f ) : Z′ = Tr ′

q ′
(

a′
q ′
)
, q ′ =

{
q
2 , q even,

q, q odd,
r ′ = q ′

{
2r

q

}
, a′ =

{
a, q even,

2a q odd.
(6.2b)

Note that for q even commensurate helical group and its halving subgroup have the
same period.

In the special cases of achiral helical groups and glide plane we get
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Z = T (a) : Z′ = T (2a), (6.3)

Z = T 1
2(a/2) : Z′ = T (a), (6.4)

Z = T ′(a/2) : Z′ = T (a). (6.5)

6.1.3 Results and Notation

It turns out that it is convenient to elaborate results for the magnetic groups related
to the first family line groups and to consider parities afterward. This is one more
manifestation of the specific structure of the line groups.

6.1.3.1 First Family Line Groups

Halving subgroups of the first family group T Q( f )Cn are easily found applying the
above-described procedure and convention (2.11):

T Q′(2 f )Cn : Q′ =
⎧
⎨

⎩

Q
2 , if Q ≥ 2n;

nQ

2n+Q+Q
[
− 2n

Q

] , otherwise. (6.6a)

T Q( f )Cn/2; (6.6b)

T Q′( f )Cn/2 : Q′ = Qn

Q + n
. (6.6c)

Commensurate line groups have commensurate halving subgroups. After apply-
ing convention C1 to (6.6), various values for q ′, r ′, and p′ are obtained depending
on the combinations of the parities of q̃ = q/n, p̃ = p/n, and (r p̃ − 1)/q̃ (see
Table C.1, taking into account that within C1, q and r cannot be simultaneously
even). These results are exhaustively listed in Table 6.1. Summarizing table, we
note that for n even three black-and-white magnetic groups Lq∗

p(a), Lcqp(2a), and
Lsqp(2a) are obtained, while for n odd only one of them, depending on the parities
of the parameters q̃ , p̃, and A.

6.1.3.2 Other Families

The above given algorithm of construction of the magnetic line groups can be
now performed easily as all the relevant subgroups are determined. All 13 classes
of these groups are presented in Table 6.2. In the total of 81 families [3] of the
magnetic line groups, there are 13 families of the ordinary as well as the gray
groups, while the remaining 55 families are the black-and-white magnetic line
groups.
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Table 6.1 Black-and-white groups of the commensurate first family line groups. For each of the
subgroups (6.6) conventional coset representative �∗ (two alternatives in the last case), the resulting
black-and-white group L∗(L′) (international notation) and the halving subgroup L′ (international
notation and parameters r ′, n′, and f ′; r ′ and p̃′ should be taken modulo q ′/n′) are given. Corre-
sponding conditions on the parities of q̃, p̃, and A = (r p̃ − 1)/q̃ are denoted by “e” and “o” for
even and odd; data in bold face are main conditions, i.e., those which determine parities of other
parameters (entry is empty when both parities are allowed, while −x denotes the parity opposite
to that of x)

Type Conditions Halving subgroup
�∗ n q̃ p̃ A q L′ = Lq ′

p′ r ′ n′ f ′ a′ L∗(L′)
(6.6a) e o e L( q

2 )p r n 2 f a Lq∗
p(a)

(CQ | f ) o e o Lqp/2 2r n 2 f 2a Lcqp(2a)
o o e Lq(p+q)/2 2r n 2 f 2a Lsqp(2a)

(6.6b) e o e e Lqp/2 r n/2 f 2a Lcqp(2a)
Cn e - p̃ -q̃ o e Lq(p+q)/2 r n/2 f 2a Lsqp(2a)
(6.6c) e e o e e Lq(p+q)/2 r + q̃ n/2 f 2a Lsqp(2a)
Cn (or e e o o e Lqp/2 r + q̃ n/2 f 2a Lcqp(2a)
(CQ | f )) e o e L( q

2 )p (r + q̃)/2 n/2 f a Lq∗
p(a)

6.1.3.3 Notation

The international symbol of a commensurate magnetic line group L∗ can be uniquely
derived from the symbol L P of the corresponding ordinary line group L (Sect. 2.3.4).
Gray group in the L-class is represented as L P 1∗. Notation of black-and-white
groups L∗(L′) manifests one of the two possible situations:

1. The translational periods of L and L′ are equal, while the isogonal group P ′
I of

L′ halves the isogonal group P I of L. Corresponding magnetic group is denoted
by L P∗(P ′), where P∗(P ′) is the international symbol of the magnetic point
group P∗

I (P
′
I ).

2. Translational period of L′ is twice the period of L, while P I is equal to P ′
I . In

this case we add a subscript to the symbol of the ordinary line group in order to
indicate the halving subgroup:

a. If �∗ is from L(1), then the first family subgroup L
′(1) of L′ halves L(1); as

it follows from Table 6.1, there are two choices L
′(1) = Lqp/2 or L

′(1) =
Lq(n+p)/2 of the halving subgroups with the isogonal group of L(1) (i.e., with
q ′ = q). The corresponding magnetic groups are denoted as Lc P and Ls P ,
respectively.

b. If �∗ is not from L(1), then L(1) = L
′(1). The only remaining way to double

the period of L′ (and still to preserve the isogonal group) is �∗ = (σv|0),
which transforms mirror plane σv of L into the glide plane �∗ = (σv|a =
a′/2) of L′ and the resulting magnetic group L∗(L′) is denoted as Lm P .
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Table 6.2 Commensurate magnetic line groups. Each of the 81 families belongs to a class of an
ordinary group (first listed; gray group is the last). Its ordinary halving subgroup is at the right
(denoted by L′′ if its period is doubled initial group period). For families 2 and 24, p′ = q

2 { 2p
q }

Magnetic group Halving subgroup
n even n odd n even n odd

1 Lqp Ordinary group L(1) = T Q( f )Cn
2 Lq∗

p
a L( q

2 )p′ a

3 Lcqp
a L′′qp/2

a

4 Lsqp
a L′′q(p+q)/2

a

5 Lqp 1∗ Lqp

6 L2n Ln Ordinary group L(2) = T S2n

7 L2n
∗

Ln∗ Ln Ln
8 Lc(2n) Lcn L′′(2n) L′′n
9 L2n 1∗ Ln 1∗ L2n Ln
10 Ln/m L2n Ordinary group L(3) = T Cnh

11 Ln/m∗ L2n
∗

Ln Ln
12 Ln∗/m∗ L2 n

2 , L n
2

13 Ln∗/m L n
2 /m, L2 n

2
14 Lcn/m Lc(2n) L′′n/m L′′(2n)
15 Lsn/m L′′n n

2
/m

16 Ln/m 1∗ L2n 1∗ Ln/m L2n
17 L2nn/m Ordinary group L(4) = T 1

2n(
a
2 )Cnh

18 L2nn/m∗ L2nn

19 L2n∗
n/m∗ L2n Ln

20 L2n∗
n/m Ln/m L2n

21 L2nn/m 1∗ L2nn/m
22 Lqp22 Lqp2 Ordinary group L(5) = T Q( f )Dn
23 Lqp2∗2∗ Lqp2∗ Lqp Lqp

24 Lq∗
p22∗ b L( q

2 )p′ 22, L( q
2 )p′ 2 b

25 Lcqp22 b L′′qp/222 b

26 Lsqp22 b L′′q(q+p)/222 b

27 Lqp22 1∗ Lqp2 1∗ Lqp22 Lqp2
28 Lnmm Lnm Ordinary group L(6) = T (a)Cnv
29 Lnm∗m∗ Lnm∗ Ln Ln
30 Ln∗mm L n

2 mm, L n
2 m

31 Lcnmm Lcnm L′′nmm L′′nm
32 Lmnmm Lmnm L′′ncc L′′nc
33 Lsnmm L′′nn/2mc
34 Lnmm 1∗ Lnm 1∗ Lnmm Lnm
35 Lncc Lnc Ordinary group L(7) = T ′( a

2 )Cn
36 Lnc∗c∗ Lnc∗ Ln Ln
37 Ln∗cc L n

2 cc, L n
2 c

38 Lncc 1∗ Lnc 1∗ Lncc Lnc
39 L2nnmc Ordinary group L(8) = T 1

2n(
a
2 )Cnv

40 L2nnm∗c∗ L2nn
41 L2n∗

nmc∗ Lnmm Lnm
42 L2n∗

nm∗c Lncc Lnc
43 L2nnmc 1∗ L2nnmc
44 L2n2m Lnm Ordinary group L(9) = T (a)Dnd

45 L2n2∗m∗ Lnm∗ L2n Ln
46 L2n

∗
2m∗ Ln∗m∗ Ln22 Ln2
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Table 6.2 (continued)

Magnetic group Halving subgroup
n even n odd n even n odd

47 L2n
∗
2∗m Ln∗m Lnmm Lnm

48 Lc2n2m Lcnm L′′2n2m L′′nm
49 Lm2n2m Lmnm L′′2n2c L′′nc
50 L2n2m 1∗ Lnm 1∗ L2n2m Lnm
51 L2n2c Lnc Ordinary group L(10) = T ′( a

2 )S2n

52 L2n2∗c∗ Lnc∗ L2n Ln
53 L2n

∗
2c∗ Ln∗c∗ Ln22 Ln2

54 L2n
∗
2∗c Ln∗c Lncc Lnc

55 L2n2c 1∗ Lnc 1∗ L2n2c Lnc
56 Ln/mmm L2n2m Ordinary group L(11) = T (a)Dnh

57 Ln/mm∗m∗ L2n2∗m∗ Ln/m L2n
58 Ln/m∗m∗m∗ L2n

∗
2m∗ Ln22 Ln2

59 Ln/m∗mm L2n
∗
2∗m Lnmm Lnm

60 Ln∗/m∗mm∗ L2 n
2 2m, L n

2 m
61 Ln∗/mmm∗ L n

2 /mmm, L2 n
2 2m

62 Lcn/mmm Lc(2n)2m L′′n/mmm L′′(2n)2m
63 Lsn/mmm L′′nn/2/mcm
64 Lmn/mmm Lm(2n)2m L′′n/mcc L′′(2n)2c
65 Ln/mmm 1∗ L2n2m 1∗ Ln/mmm L2n2m
66 Ln/mcc L2n2c Ordinary group L(12) = T ′( a

2 )Cnh

67 Ln/mc∗c∗ L2n2∗c∗ Ln/m L2n
68 Ln/m∗c∗c∗ L2n

∗
2c∗ Ln22 Ln2

69 Ln/m∗cc L2n
∗
2∗c Lncc Lnc

70 Ln∗/m∗cc∗ L2 n
2 2c, L n

2 c
71 Ln∗/mcc∗ L n

2 /mcc, L2 n
2 2c

72 Ln/mcc 1∗ L2n2c 1∗ Ln/mcc L2n2c
73 L2nn/mcm Ordinary group L(13) = T 1

2n(
a
2 )Dnh

74 L2nn/mc∗m∗ L2nn/m
75 L2nn/m∗c∗m∗ L2nn22
76 L2nn/m∗cm L2nnmc
77 L2n∗

n/m∗c∗m L2n2m Lnm
78 L2n∗

n/m∗cm∗ L2n2c Lnc
79 L2n∗

n/mc∗m Ln/mmm L2n2m
80 L2n∗

n/mcm∗ Ln/mcc L2n2c
81 L2nn/mcm 1∗ L2nn/mcm
a Allowed only one of Lq∗

p(a), Lcqp(2a), or Lsqp(2a), according to Table 6.1 for n odd.
b Allowed only one of Lq∗

p(a)22′, Lcqp(2a)22, or Lsqp(2a)22, according to Table 6.1 for n odd.

6.2 Co-representations

When in the Schrödinger equation ih̄ ∂ψ
∂t = Hψ for a conservative system (i.e., the

hamiltonian H is time independent) t is substituted by −t , which is the effect of the
action of the time reversal, the minus sign appears at the left. The same effect has
conjugation, meaning that the time reversal is represented by conjugation K . It is an
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antilinear operator, and therefore the halving subgroup L of the purely geometrical
operations is represented by linear operators, while antilinear operators represent the
coset Θ�∗L in the form K D(�′�). Such a representation is called linear–antilinear
representation of the magnetic group, while matrices obtained by omitting the con-
jugation operator K are known as co-representation.

6.2.1 Irreducible Co-representations

Theory of co-representations is quite similar to that of ordinary representations.
As far as the line groups are considered, the irreducible co-representations are
known [4, 5]. The method of construction, the so-called ∗-induction, uses irre-
ducible representations of the halving ordinary line group L (for a brief review see
Appendix D.2).

Its main part is Wigner’s classification of the irreducible representations of the
geometric subgroup L′ into three types. Precisely, D(L) is an irreducible represen-
tation of the first or second kind if it is equivalent to its ∗-�′-conjugated represen-
tation D∗

�′(�) = D∗(�′−1��′), and the matrix A realizing this equivalence satisfies
AA∗ = D(�′2) and AA∗ = −D(�′2), respectively. If D(L) and D∗

�′(L) are not
equivalent, the representation is of the third kind. Each representation of the first
kind generates one co-representation of L∗(L) of the same dimension; as for the
second kind, this is also true; only the generated co-representation is of the dou-
bled dimension. For the third kind, the pair of ∗-�-conjugated representations of L
generates single co-representation of L∗(L) of the doubled dimension.

6.2.2 Gray Groups and Reality of Representations

While black-and-white groups are related to particular systems with specific order-
ing of ionic spins, gray groups refer to a considerable wide class of systems
being invariant under the time reversal. In particular, this includes subsystems, like
phonons or electrons, with dynamics described by real hamiltonian, i.e., hamiltonian
which commutes with the time reversal. Therefore, here we restrict our attention to
gray groups only.

It turns out that co-representations of gray groups are neatly related to the
reality of the halving subgroup representations namely, when �∗ is identity, ∗-�∗-
conjugation is actually ∗-conjugation, and Wigner’s criterion essentially examines
how the representation and the conjugated one are related. Precisely, when there is
A such that D∗(�) = A−1 D∗(�)A for each �, then either AA∗ = I (identity matrix)
or AA∗ = −I , i.e., the representation is either of the first (real) or of the second
(quaternionic) kind. In all other cases, the representation is of the third (complex)
kind. Only the representations of the first kind have real matrices. The second-kind
representations have only real characters, while both characters and matrices of the
third class representations are complex.
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6.2.3 Real or Physical Representations

In many physical problems there is a need to deal with real irreducible representa-
tions only. For example, analysis of vibronic instability (Sect. 8.3.4) is based on such
representations, dimension of which gives insight into the systematic degeneracy of
the energies (Sect. 8.1) if hamiltonian is a real operator (this is the most frequent
situation when spin can be neglected and magnetic field absent). Their importance
in physics is the reason for which these representations are also called physically
irreducible.

Construction of the co-representations of the gray line groups automatically
gives physically irreducible representations of the ordinary line groups. Precisely,
the matrices D̄(L) representing halving subgroup are real representations, and for
the complete set of irreducible co-representations of L + ΘL, these matrices give
the complete set of irreducible real representations of L. Thus, Theorem 2, when
applied to gray groups gives direct and simple method for construction of physically
irreducible representations. Furthermore, it is only necessary to classify the repre-
sentations according to their kind. Then, the explicit form of the irreducible repre-
sentation is easy to found. This classification is given in caption of Tables 4.1–4.13
listing irreducible representations of the line groups (representations of the second
and third kind are singled out, assuming that all others are of the first kind).

6.3 Application: Spin Ordering

As a kind of angular momentum, spin is reversed by time reversal. Therefore, if the
ions are not spin neutral, it is convenient to use magnetic groups to describe such
systems, i.e., magnetic groups and their co-representations take role of the groups
and representations. Still, in many cases it is more convenient to work with halv-
ing subgroup of spatial transformations and incorporate time reversal a posteriori.
Therefore, applications of magnetic line groups will be illustrated here only by an
example of ordering of spins, but it should be stressed out that all examples of usage
of line groups commented in Chap. 8 are easily adapted to magnetic groups.

To illustrate magnetic ordering in quasi-one-dimensional systems, we consider
orbit a1 of the group L5

24( f )C4 (the first conformation class in Fig. 3.2). The param-
eters of this group are

L2420 : q = 24, r = 5, n = 4, p = 20, q̃ = 6, p̃ = 5, A = 6.
(6.7)

As n is even there are three halving subgroups, with parameters given in Table 6.1
(convention C0):

L24∗
20 : q = 12, r = 5, n = 4, p = 8, q̃ = 3, p̃ = 2; (6.8a)

Lc2420 : q = 24, r = 5, n = 2, p = 10, q̃ = 12, p̃ = 5; (6.8b)

Ls2420 : q = 24, r = 11, n = 2, p = 22, q̃ = 12, p̃ = 11. (6.8c)
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While fractional translations are unchanged in the last two cases and doubled in the
first one, period is unchanged in the first case and doubled in the remaining ones. In
Fig. 6.1 we illustrate possible spin orderings corresponding to these groups.

Fig. 6.1 Spin arrangements (arrows) with symmetry described by the magnetic groups (6.8).
Depicted helical and rotational symmetries refer to the atoms without spin
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Chapter 7
Vibrational Analysis

Abstract In 1930 Wigner showed that symmetry offers efficient method for sys-
tematic classification of normal vibrational modes, which are valuable tool in many
physical problems (e.g., Raman or infrared activity, vibronic (in)stability). This
task has been completed for small molecules (with the help of the point groups),
quasi-one-dimensional systems (using line groups), and layers (utilizing diperiodic
groups). For three-dimensional crystals (space groups) only partial results exist in
literature. Here we discuss normal modes of the systems with line group symmetry.
The results are also applicable to three-dimensional crystals, since some of the line
groups are subgroups of the relevant space groups. Classification of normal modes
will be performed for all the orbits of the line groups. In fact, there are only several
orbit types for each line group, and any system with a line group symmetry consists
of such simple subsystems. Symmetry assignation of normal modes is achieved
through reduction of the dynamical representation of the system onto its irreducible
components. This representation is sum of the dynamical representations of the con-
stituting orbits. Therefore, with decompositions of the dynamical representations
of the orbits presented here, the result for any system can be easily obtained by
summation over the orbits included in the considered system.

7.1 Dynamical Representation

Normal vibrational modes of the system S, having the symmetry group L and con-
taining | S | atoms, are found by the well-known Wigner’s method [1]. Its main
part is the reduction of the dynamical representation [2] Ddyn(L) to the irreducible
components. In order to construct Ddyn(L), a basis {es

x , es
y, es

z} is associated to
each atom s of S. All these vectors span three | S |-dimensional displacements
space of the collective modes of the system. Action of the group in this space is
given by the matrix representation Ddyn(L) = S(L) ⊗ Dp(L). Here, Dp(L) is
(three-dimensional) polar-vector representation (Sect. 5.3) of the symmetry group,
while S(L) is | S |-dimensional permutational representation of L, manifesting
the action [3] of L on S: to atom s corresponds sth row and sth column of the
matrix S(�) with the matrix elements Ss′s(�) = δs′,�s (equal to 1 if �s = s′ and 0
otherwise). Thus, this is permutational matrix, having in each row and each column
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single nonzero element equal to 1. An important property of the representation S(L)
is that it is automatically given in the partially reduced form S(L) = ⊕K

i=1 Ni Si (L)
for arbitrary system L[N1S1, . . . , NK SK ] containing several orbits (symmetry nota-
tion, Sect. 3.5). Then the dynamical representation is additive and reduces over the
orbits:

Ddyn
S (L) = ⊕K

i=1 Ni Ddyn
Si
(L). (7.1)

This manifests that group acts on the orbits independently and in particular that
Ddyn

S (L) does not depend on the relative position of the orbits of S. Hence, with

the orbits of the line groups derived in Sect. 3.1, we construct and reduce Ddyn
S (L)

to the irreducible components for each orbit Si . Precisely, according to (7.1), the
frequency number f λ of the irreducible representation D(λ)(L) is sum of the orbital
ones, f λi :

Ddyn
S (L) = ⊕λ f λD(λ)(L), f λ =

K∑

i=1

Ni f λi . (7.2)

In order to find decomposition onto the irreducible components of an orbital
dynamical representation, i.e., frequency numbers f λi , we use modified group pro-
jector technique for induced representations (Appendix F). Indeed, the dynamical
representation of each orbit Si is equivalent to the induced [4] vector representation
of the orbit stabilizer [3] Li onto the whole group: Ddyn

Si
(L) = Dp(Li ↑ L). Then

the frequency number f λi is equal to the intertwining number of the representations
D(λ)(L ↓ Li ) (subduced irreducible representation on the stabilizer) and Dp(Li ):

f λi = 1

| Li |
∑

�∈Li

dp(�)d(λ)(�). (7.3)

Here, dp(�) and d(λ)(�) are characters (sum of the diagonal elements) of the matrices
Dp(�) and D(λ)(�).

With the data from Table 3.1, this expression is systematically calculated for all
the orbits and irreducible representations of each line group and the results are pre-
sented in the Tables 7.1–7.13. To include incommensurate systems, helical quantum
numbers are used for the families 1 and 5.

Table 7.1 Dynamical representations of the orbits of the line groups L(1) = T Q( f )Cn . Sum is
over k̃ ∈ (− π

f ,
π
f ], m̃ ∈ (− n

2 ,
n
2 ]

Orbit point Dynamical representation

a1 (ρ, ϕ, z) 3
∑

k̃,m̃
k̃ Am̃

b1 (0, 0, z)
∑

k̃

(k̃ A0 + k̃ A1 + k̃ A−1)
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Table 7.6 Dynamical representations of the orbits of the line groups L(6) = T (a)Cnv. Sum is over
k ∈ (− π

a ,
π
a ], m ∈ (0, n

2 )

Orbit point Dynamical representation

a1 (ρ, ϕ, z) 3
∑
k
(k A0 + k B0)+ 6

∑
k,m

k Em+
n even +3

∑
k
(k A n

2
+ k B n

2
)

b1 (ρ, 0, z)
∑
k
(2k A0 + k B0)+ 3

∑
k,m

k Em+
n even +∑

k
(2k A n

2
+ k B n

2
)

c∗
1 (ρ, πn , z)

∑
k

[
2(k A0 + k B n

2
)+ k B0 + k A n

2
)
]

+ 3
∑
k,m

k Em

d1 (0, 0, z) n = 1 : ∑
k
(2k A0 + k B0)

n = 2 : ∑
k
(k A0 + k A1 + k B1)

n > 2 : ∑
k
(k A0 + k E1)

∗ Orbit exists for n even only.

Table 7.7 Dynamical representations of the orbits of the line groups L(7) = T ′( a
2 )Cn . Sum is

over k ∈ (− π
a ,

π
a ], m ∈ (0, n

2 )

Orbit point Dynamical representation

a1 (ρ, ϕ, z) 3
∑
k
(k A0 + k B0)+ 6

∑
k,m

k Em+
n even +3

∑
k
(k A n

2
+ k B n

2
)

b1 (0, 0, z) n = 1 : 3
∑
k
(k A0 + k B0)

n = 2 : ∑
k

[k A0 + k B0 + 2(k A1 + k B1)]

n > 2 : ∑
k

[k A0 + k B0 + 2k E1]

Table 7.8 Dynamical representations of the orbits of the line groups L(8) = T 1
2n(

a
2 )Cnv. Sum is

over k ∈ (− π
a ,

π
a ], m ∈ (0, n)

Orbit point Dynamical representation

a1 (ρ, ϕ, z) 3
∑
k
(k A0 + k B0 + k An + k Bn)+ 6

∑
k,m

k Em

b1 (ρ, 0, z)
∑
k

[
2(k A0 + k A n

2
)+ k B0 + k B n

2

]
+ 3

∑
k,m

k Em

d1 (0, 0, z) n = 1 : ∑
k

[2(k A0 + k A1)+ k B0 + k B1]

n > 1 : ∑
k
(k A0 + k A n

2
+ k En−1 + k E1)
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7.2 Normal Modes

Frequency numbers of the irreducible components in the dynamical representations
of all the orbits of the line groups are sufficient to classify normal vibrations of
the systems with line group symmetry. However, to determine the exact form of
normal displacements of the concrete system, the group projector technique [5, 6]
is to be used. As for a single orbit S, we can again exploit the inductive structure
of the displacements space and reduce the calculations to the stabilizer and to the
orbit representative. However, this method cannot be directly applied to a general
system consisting of several orbits of a line group, because different orbits may
have different stabilizers and transversals. In other words, in such a situation the
dynamical representation of the system cannot be induced from the dynamical rep-
resentation of the symcell. To overcome this difficulty, a common transversal of
the symcell atoms should be found. However, instead of symcell a larger set of
atoms is to be involved in the induction procedure. Nevertheless, this method is the
most efficient, although it strongly depends on the system, i.e., on the orbit types it
consists of.

Still, the line group structure enables to find quite general method to solve the
proposed task [7]. In fact, the group of the generalized translations Z generates the
whole system from the monomer. Therefore, it is possible to subduce the dynamical
representation onto the symmetry group M of the monomer M . Then, irrespective
of the types of orbit building the polymer, cyclic group Z is the transversal for the
induction from Ddyn

M (M) to Ddyn
S (L). The relevant Wigner operator corresponding

to the mth row of the irreducible representation D(μ)(L) in the total displacements
space is infinite matrix with three|M |-dimensional blocks:

[Pdyn
μm ]i j = | μ |

| L |
∑

�∈M

D(μ)∗
m1 (zi�z− j )Ddyn

M (�). (7.4)

Block indices i and j enumerate monomers.
There are f μ normal modes corresponding to the μth representation, and for

f μ > 1, the group projector technique gives only a subspace of their linear com-
binations. Exact displacements can be found by diagonalization of the vibrational
hamiltonian (i.e., dynamical matrix) H in this subspace. To build H parameters of
the concrete system (configuration, force constants) are to be known. Hence, the pro-
cedure of finding normal modes is the following. The f μ-dimensional subspace Sμ1

of the eigenvectors of Pdyn
μ1 for the eigenvalue 1 is to be found.1 Then, the first row

normal modes |μ1; i〉 (i = 1, . . . , f μ) are the vectors of this subspace being also
the eigenvectors of H ; such vectors form basis of Sμ1. The rest of the μth modes

1 Group projector Pdyn
μ1 (only for m = 1 Wigner operator is projector) commutes with H , and these

two operators have common eigenbasis.
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are obtained by acting on this basis by the operators Pdyn
μm for m = 2, . . . , | μ |:

|μm; i〉 = Pdyn
μm |μ1; i〉.

In order to get classification of purely vibrational modes, the acoustic modes,
describing rigid body motions of the system should not be counted. Three trans-
lational acoustic modes correspond to purely translational degrees of freedom of
arbitrary system. As for the rotational degrees, they are allowed only in the systems
finite in the directions perpendicular to the rotational axis (otherwise, the atoms
infinitely far away from the axis get infinite velocity). Typical systems described
by line group symmetry (like nanotubes and polymers) are infinite along z-axis,
but finite in other directions. Hence, rigid body rotation around z-axis becomes
a rotational (also called twisting) mode [8]. However, when a line group is used
as a subgroup of the space group to describe three-dimensional crystal there is no
such mode; also, for chains (one-dimensional structure), such a mode is not degree
of freedom, as rotations around z-axis do not change configuration. Translational
acoustic mode corresponds to a polar vector and twisting mode to the z-component
of axial vector. The irreducible components of these representations (Table 5.3) are
to be subtracted from Ddyn

S (L).
Among infinitely many modes, the symmetric ones are of particular interest.

These correspond to the ionic displacements preserving the symmetry of the con-
sidered system, i.e., they transform according to the identity representation. There
are always at least two such modes: breathing mode (simultaneous in-phase radial
displacements) and stretching mode (longitudinal vibrations of the ions). However,
they may not be the normal modes, i.e., specific interaction of ions may couple them
(mutually or with other symmetric modes) into another symmetrical eigenvector of
the dynamical matrix.

7.3 Example: Polyacetylene

Trans-polyacetylene (CH)x (Fig. 3.4a) has symmetry described by the 13th family
line group L21/mcm = T 1

2( f )C1. Carbon and hydrogen atoms form orbits of
the e1-type. We consider normal mode corresponding to the irreducible represen-
tation D(μ) = 0 A−

1 (also denoted by B2g [9]). Group projector (7.4) is the only

Wigner operator for one-dimensional representations: Pdyn
μ = Pdyn

μ1C ⊕ Pdyn
μ1H . From

Table 3.1 we see that the stabilizer of the orbit e1 is D1h = {e, σxz, σh,Ux }. Matri-
ces of the monomer dynamical representation of D1h are those of the polar-vector
representation. Noticing that the generator of Z is (C2| f ), the projector becomes

[Pdyn
μ ]i j = (−1)i+ j

|Z|
[

0 0 0
0 0 0
0 0 1

]
and the resulting normal displacements are xi = yi = 0

and zi = (−1)i zo, i.e., the mode is alternating, distortive, and longitudinal. As
each of the orbits (C, H) has such a mode, polyacetylene normal modes are the
combinations of them (Fig. 7.1).
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Fig. 7.1 Two trans-polyacetylene 0 A−
1 modes: carbon and hydrogen orbits (see Fig. 3.4) are dis-

placed (along arrows) in-phase (left) and out-of-phase (right)
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Chapter 8
Applications

Abstract Standard framework of the symmetry application in physics has three
main parts. First, the description of the system is formalized within the state space
S; it is a vector space, with the vectors representing states of the system. Actually,
a physical problem under consideration determines the state space S. For instance,
in quantum mechanical studies, S is a Hilbert space of the wave functions of the
system, while in the vibrational analyses it is the space of the all possible atomic
displacements. The second part is symmetry group L and its representation D(L)
in the state space; i.e., the set of the operators D(�) in S corresponding to the
group elements. Finally, the main task is usually to solve the eigenproblem of the
hamiltonian H , a hermitian operator in the state space which governs the dynam-
ics. Choice of H depends on the specific problem considered, as well as on the
approximations involved in the physical model. Hamiltonian and symmetry com-
mute: D(�)H = H D(�) for each symmetry transformation �.

8.1 Energy Bands and Bloch Functions

The fact that hamiltonian and symmetry commute is the source of any application
of symmetry of physics, namely, due to this fact, quantum numbers, i.e., irreducible
representations, correspond to the eigenenergies of the hamiltonian. Recall that for
commensurate systems there are two sets of quantum numbers, linear and helical.
Generally, while the helical ones are favorable choice for studying the processes in
the isolated chiral systems, the linear quantum numbers are easier to handle when
the interaction with an external field is present. Here, the analysis is illustrated in
terms of the helical quantum numbers. Naturally, by repeating the argumentation
the energy bands over Brillouin zone assigned by the linear quantum numbers are
obtained.

8.1.1 Eigenproblem and Bands

Quantum numbers k̃ and m̃ correspond to physical quantities of helical and
z-component angular quasi-momenta. These quantities commute, and, as emerging

Damnjanović, M., Milošević, I.: Applications. Lect. Notes Phys. 801, 113–141 (2010)
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from symmetry, they commute with the hamiltonian H , too. Accordingly, they may
be used to reduce eigenproblem of H ; namely, all the states with given k̃ and m̃
values of these quantities form a subspace Sm̃(k̃) of the system state space S, and
in each such subspace H acts independently as the reduced operator Hm̃(k̃). Obvi-
ously, total spectrum of the hamiltonian consists of the eigenvalues εi

m(k̃) of the
sub-hamiltonians Hm̃(k̃).

8.1.1.1 Energy Bands

Taking into account continuity of physical quantities, for fixed k̃ and m̃ we can
count eigenvalues εi

m(k̃) (i.e., order them by superscript i) in the way that εi
m̃(k̃)

are continuous functions over helical Brillouin zone. Therefore, the energies are
grouped into the energy bands: each band is assigned by the angular momentum
m̃, and if there are several bands with same m̃, they are distinguished by i . Corre-
sponding eigenvectors are denoted as |k̃m̃, i〉. It is important that this continuity also
means that for each k̃ there is the same number of these vectors,1 i.e., all the spaces
S(k̃) = ∑

m̃ Sm̃(k̃) are of the same dimension independently of k̃.
The additional symmetries, parities Π , do commute with the hamiltonian, but

do not with the momenta. Thus, when applied to an eigenstate of H they pro-
duce another eigenstate with the same energy, giving rise to degeneracy. Precisely,
HΠ | k̃m̃, i 〉 = εi

m(k̃)Π | k̃m̃, i 〉, but generally Π | k̃m̃, i 〉 and | k̃m̃, i 〉 are
physically different states, except for some special values of the quasi-momenta.
These vectors span subspaces of irreducible representations. As a result, to each
energy band corresponds a representation band (Sect. 4.3.1), dimension of which
gives the degeneracy of energy band. The symmetry-adapted eigenbasis becomes
|k̃m̃Π; i〉, with the quantum numbers specifying the irreducible representation band,
and additional counter i distinguishing between the energy bands corresponding to
the same representation band.

8.1.1.2 Eigenstates: Bloch Functions

Bloch theorem asserts that (quasi)particle eigenfunctions of the system translation-
ally periodic along z-axis are of the form Ψk(r) = eikzu(r), where u(r) is invariant
(i.e., periodic) function: u(ρ, ϕ, z + ta) = u(ρ, ϕ, z). Obviously, the first fac-
tor defines the rule of the transformation under translations, Ψk(ρ, ϕ, z + ta) =
eikatΨk(ρ, ϕ, z), singling out the irreducible representation D(k)(I |ta) = eikat of
the translational group, while only the second factor specifies the function obeying
this transformation rule.

In order to generalize this concept to full-line group symmetry, we note that the
translation group is abelian, having only one-dimensional irreducible representa-
tions, and that this property is shared solely by the first family line groups; all the

1 This is easy to prove when the space S is inductive, as within tight-binding model (Sect. 8.5.1)
or in the framework of normal modes (Sect. 7.1).



8.1 Energy Bands and Bloch Functions 115

other families are not abelian, thus having two- and/or four-dimensional irreducible
representations as well. Therefore, the eigenstates | k̃m̃Π; i〉 are covariants associ-
ated to irreducible representations of the line group and obeying general rule (5.3):

D(�) |λl; i〉 =
∑

l ′
D(λl)(�) |λl ′; i〉. (8.1)

Thus, we may utilize the derived classification of the covariants (Sect. 5.2.2) to
generalize Bloch theorem. Indeed, the sum over K and M in (5.28) refers to the
harmonics and amplitudes only, resulting in an invariant function u(r). Substituting
λ and l by the quantum numbers, we get Bloch theorem adapted to the line group
symmetry:

Ψ k̃m̃Π(r) = Φ k̃m̃Π
00 (ϕ, z)u(r), (8.2)

where, the representative functions Φ k̃m̃Π
00 (ϕ, z) are given in Table 5.2. Obviously,

this form is similar to the Bloch form for pure translational symmetry, with the
representative functions taking role of the plane waves.

8.1.2 Band Topology

Here we discuss topological properties of the energy bands (e.g., band joining and
van Hove singularities) as a consequence of the line group symmetry (being thus
system independent).

8.1.2.1 Linear Bands and Helical Symmetry

When linear quantum numbers are used to describe band structure of a commen-
surate system with symmetry given by the line group with nontrivial helical axis,
there is very pronounced band sticking at the edges of the irreducible domain
(k = 0, π/a). This can be explained by comparing these bands with those labeled
by helical quantum numbers.

In fact, application of different sets of quantum numbers results in the same set of
energies (eigenvalues of the same hamiltonian), but grouped into bands differently.
Therefore, transition rules (4.8) between the representations of the two types directly
relate these bands. Helical Brillouin zone is q̃ times larger than the linear one, and
each helical representation band is subdivided into the linear ones (Sect. 4.1.4). The
continuity of the helical energy bands implies that some of the linear bands must be
connected at the edges of the reduced Brillouin zone [1]. Precisely, the band εi

m(k)
sticks to the band εi

m′(k), with m′ � m + p.
This is illustrated in Fig. 8.1, where we show the conduction bands of the (8,4)

carbon nanotube given by both linear (k,m) and helical (k̃, m̃) quantum numbers.
The m̃-bands can be thought of as consisting of the “unfolded” m-bands. There
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Fig. 8.1 Valence bands of the
(8,4) carbon nanotube [2, 3].
Helical bands m̃ = 0,±1, 2
(large numbers) are over
helical irreducible domain
k̃ ∈ [0, 3.9Å

−
1]. In the left

part are linear bands
m = 0,±1, . . . ,±27, 28,
over linear irreducible
domain k ∈ [0, 0.28Å

−
1]. In

particular, bold linear bands
(with m given by small
numbers) yield helical band
with m̃ = 0

are n = 4 helical bands with k̃ ∈ (−14π/a, 14π/a] and q = 56 linear bands
with k ∈ (−π/a, π/a]. Thus, the number of bands when represented in the helical
quantum numbers is q̃ = 14 times less than when represented in terms of the linear
quantum numbers. However, the range of k̃ is increased by the same factor (q̃ = 14)
relative to the range of k.

Note that in the case of the groups with Z = T , these rules are ineffective,
while for another achiral generalized translation group, Z = T 2n , they connect
pairs of the bands. Further, considering only the first family groups, without addi-
tional symmetries, the obtained connectivity rules are applicable only to the point
k = π/a.

8.1.2.2 Band Sticking and van Hove Singularities Induced by the Negative
Parities

While vertical mirror and glide planes only increase the degeneracy of energy bands,
not causing their additional sticking, the z-reversing elements give rise to the new
connectivity rules. The easiest way to see this is to consider first the band struc-
ture assigned by the quantum numbers of the halving positive subgroup only, and a
posteriori to analyze the influence of these symmetries. Although we discuss only
linear quantum numbers, the same arguments and conclusions apply to the helical
quantum numbers as well.

Thus, we begin with the bands εm(k) assigned only by the momenta quantum
numbers,2 with k taking values over the entire Brillouin zone.

2 Since possible appearance of several bands with the same assignation, as well as the parity of the
vertical mirror/glide planes, is not important for further discussion, the corresponding superscripts
are omitted.
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The z-reversing symmetries, combining the quantum numbers k and −k into
single irreducible representation, imply that the band structure is symmetrical with
respect to the k = 0 axis, i.e., that for each m there is m′ such that εm(−k) = εm′(k).
Effectively, the assumed band structure is simply folded along the k = 0 axis and
the bands are thus completely defined if their shape over only the positive half of the
Brillouin zone is given (irreducible domain, Sect. 4.3.1). Therefore the band degen-
eracy is doubled within the interior of the irreducible domain (i.e., it is a sum of the
degeneracies of εm(k) and εm′(k)) and unchanged at the edges k = 0, π/a. How-
ever, if εm(k) and εm′(k) differ (i.e., m �= m′), then these two bands stick together
at k = 0, and the degeneracy at this point is the same as in the interior. Otherwise,
when εm(k) = εm′(k) (and m = m′) the degeneracy at k = 0 is halved, while
the symmetry condition εm(−k) = εm(k) implies that the band has extremum at
k = 0; this is known as van Hove singularity. Quite analogously, the band structure
is symmetrical with respect to the point k = π/a (this follows from the described
symmetry with respect to k = 0, and the periodicity of the band structure, meaning
that the set of the eigenenergies at k and k + 2π/a is the same).

The derived conclusions can be efficiently applied through the compatibility
relations of Table 4.14; namely, in this table are listed all the band representations
k D which become reducible when an edge point value K = 0, π/a is substituted
for k. In such cases the eigenstates at K transform according to one of the irre-
ducible components (depending on the hamiltonian considered), meaning that the
degeneracy |k D| of the energy band is halved at this edge. Consequently, there is
no band sticking, but van Hove singularity appears. All other band representations
remain irreducible at K (hence they are not listed in Table 4.14), and the K point
degeneracy of the energy band is the same as in the interior of irreducible domain.
Accordingly, there is another band εm′(k) which sticks together with εm(k) at K ; its
band representation k D′ is the unique one satisfying K D = K D′. This is illustrated
in Fig. 8.2.

It should be mentioned that even for the positive groups, time reversal sym-
metry may infer topological rules similar to those of the negative parities. In
general, for the systems with ordered spins, the magnetic line groups and their
co-representations with the corresponding compatibility relations should be used
instead of the ordinary line groups. On the other hand, when the hamiltonian is
invariant under the time reversal, the gray group and its co-representations are rele-
vant. However, in this case the degeneracy and topology of the bands follow from the
kind of the representations involved. Actually, for the band representations and the
edge points one should determine the kind of the representations involved (captions
of Tables 4.1–4.13). Then, the additional band sticking may appear when the edge
point components combine into the single third kind representation, while van Hove
singularities comes also in the cases when the band representation is of the second
or third kind (thus with doubled degeneracy) while the edge point representations
are not: then the edge point co-representation is reducible, although the ordinary one
is not.

Finally, let us mention here that the derived topological rules may be easily used
to derive various types of band shapes in polymers and nanotubes [4].
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Fig. 8.2 Helical electron
bands of the (8,4) carbon
nanotube (Fig. 8.1).
Assignation of the bands by
the irreducible
representations enables to
compare the connectivity of
the bands (points) and van
Hove singularities (arrows)
with the compatibility
relations of the corresponding
line group T 9

56(0.8Å)C4,
n = 4, q̃ = 14, and p = 44

8.2 Symmetry Breaking and Epikernels

System may reduce its symmetry L to a subgroup L′ for many reasons: influence of
the external fields, vibrational instability, continuous phase transition, etc. The state
space S of the system remains the same, while the action of the new symmetry is
realized by the subduced (restricted) representation D(L′), being a subset of D(L).
Typically, an order parameter is related to the symmetry breaking. It is the invariant
of the new symmetry, but not of the initial one. Order parameter is usually a com-
ponent of the applied field, particular displacement, or a quantity getting a nonzero
value during a phase transition. Being either single component object or a compo-
nent of a vector or higher rank tensor, the order parameter A transforms accord-
ing to the nonidentical representation D A(L), which after the symmetry breaking
subduces a reducible representation of the broken group, with at least one identity
irreducible component.

Therefore, the broken symmetry L′ is an epikernel of D A(L); namely, epikernel
of D A(L) is any subgroup of L such that the subduced representation D A(L′)
contains identical representation Did(L′). In other words, in the decomposition
D A(L′) = f id Did(L′)+· · · , the frequency number f id does not vanish. Obviously,
the order parameter is linear combination of the standard vectors of D A(L′). Note
that kernel of the representation is a special epikernel, for which the whole space
of D A(L) is transformed according to identity representation of L′. Here we derive
so-called epikernels of the irreducible representations of the line groups, i.e., we
consider the cases D A(L) = k DΠ

m (L). This is the most important situation, and the
results can be used to treat also the cases of reducible D A(L).
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8.2.1 Epikernels of the First Family Groups

First, we briefly derive epikernels of the first family groups for arbitrary represen-
tations. To this end it is convenient to use helical quantum numbers. As the repre-
sentations are one-dimensional, these are also their kernels. Therefore, the epikernel

T (k̃,m̃)Q ( f ) is the set of elements �ts satisfying k̃ Am̃((CQ | f )t Cs
n) = 1, which leads

to equation f t k̃
2π + sm̃

n ∈ Z in t and s.

For irrational f k̃
2π , the only solution in t is t = 0. Then for s we obtain s =

s′n/GCD(n, m̃), i.e., the epikernel is pure rotational subgroup

Cn,m̃ . (8.3a)

In the opposite case k̃ = 2πk/ f k the solutions (C.9) are two-parameter series of
pairs (ti j , si j ) = (ti + t j , si + s j ) corresponding to product of two screw-axes. The
helices are obviously commensurate (as both fractional parts are multiples of f ), and
according to Theorem 3, the product is a line group of the first family. However, its
rotational part must be a subgroup of Cn , precisely Cn,m̃ . Then it directly follows
that t = t ′k (t ′ = 0,±1, . . . ), i.e., that helical factor is T Q/k(k f ). Finally, the
epikernel is

T (k̃=2πk/ f k,m̃)
Q ( f ) = T Q/k(k f )Cn,m̃ . (8.3b)

Of course, the obtained Q should be additionally standardized in accordance with
previously introduced convention (2.11). Note that commensurability of the rational
epikernels is the same as for the initial group.

Using this result the epikernels of the other families can be easily found. Indeed,
the first family subgroup of the epikernel is to be found according to (8.3), while the
parities are easily handled afterward.

8.2.2 Equitranslational Epikernels

Here we restrict our considerations to the case of the commensurate line groups and
to their irreducible representations with vanishing quasi-linear momentum, k = 0.
This is the most frequent situation, corresponding to the translationally invariant
order parameters, like Euclidean vectors or tensors. As at k = 0 all the translations
(including the fractional ones) are represented by the identity operators, the set of
matrices DΠ

m (X) = 0 DΠ
m (X | f ) is effectively irreducible representation of the isog-

onal point group P I. Therefore, we first look for the epikernels P ′ of the irreducible
representations DΠ

m (P I) of the axial point groups. Then to each element X of P ′
the same fractional translation f as in L is added to get the coset representative
(X | f ). As the translational subgroup remains the same, the line group epikernel L′
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is obtained retaining in the decomposition (2.4) only the cosets corresponding to P ′
(this is called extension of P ′ to L′):

L1 =
∑

X∈P1

(X | fX )T . (8.4)

To obtain the epikernels of the axial point groups we use the theorem [5] that
if P ′ is an epikernel of P I for the irreducible representation DΠ

m (PI ) with kernel
KΠ

m = {X ∈ P I|DΠ
m (X) = I }, then P ′/KΠ

m is epikernel of a faithful irreducible
representation of the factor group P I/KΠ

m . In addition, all the epikernels of DΠ
m (PI )

are biuniquely related to the epikernels of DΠ
m (P I/K ). As the factor groups of the

axial point groups are again axial point groups, and the isomorphic groups have
the same irreducible representations with isomorphic epikernels, only the faithful
irreducible representations of the four nonisomorphic axial point groups are to be
considered.

As usual, the main difficulty is to find epikernels of the first family line groups.
Their isogonal point groups are Cq , with irreducible representations Am(C

j
q ) =

eimj2π/n . Then the unique epikernel is the kernel, determined by the equation

eimj2π/q = 1. This yields Diophantine equation (C.6) in j : mj
q= 0, which is solved

by j being multiple of q/q ′, with q ′ = GCD(m, q). Therefore, the searched for

epikernel is the subgroup Cq ′ generated by Cq/q ′
q . Corresponding cosets are easy to

find from (2.17): �(t, j ′q/q ′) = (C j ′
q ′ |(t + { j ′ p

q ′ })a), implying that p′ = q ′{ p
q ′ }.

Particularly, for the achiral groups, when p = 0 also p′ = 0 (i.e., epikernels
of the symmorphic first family groups are symmorphic themselves), and when
q = 2p = 2n, if m/GCD(n,m) is odd or even, the epikernels are, respectively, sym-
morphic or non-symmorphic: as q ′ = GCD(2,m/GCD(n,m))GCD(n,m), then
for odd m/GCD(n,m) one gets { n

GCD(n,m) } = 0, implying p′ = 0, while in the
opposite case n/GCD(n,m) must be odd, meaning that q ′ = 2GCD(n, m

2 ) and
{ 1

2
n

GCD(n,m) } = 1
2 , i.e., p′ = GCD(n, m

2 ) = q ′/2. This also gives the procedure to
determine the first family subgroup of the epikernel of the other families. It follows
that for all achiral families epikernels are achiral, and for symmorphic families in
particular the epikernels are symmorphic (p = 0). Thus only parities are to be
additionally analyzed. It is easy to see that they pertain to the epikernels of the even
representations only.

The equitranslational epikernels of the line groups are presented in Table 8.1,
gathered according to the isogonal axial point groups.

Obviously, apart from the kernel, one-dimensional representations do not have
other epikernels. Two-dimensional representations, however, besides the kernel (for
which all the vectors of the irreducible subspace are invariant), have epikernels being
supergroups of the kernel and subgroups of the whole group. In these cases the
frequency number f id of the identity representation is one, meaning that the order
parameter is along a uniquely defined direction. However, such epikernels may not
be invariant subgroups (to differ from the kernel), and their conjugated subgroups
are also epikernels (leaving some other subspaces invariant).
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Table 8.1 Equitranslational epikernels of the line groups. In the first column are isogonal axial
point groups P I (underlined) above their epikernels P ′

I for the irreducible representations DΠ
m (P I)

(column DΠ
m ). The principle axis order of P I and P ′

I is, respectively, q or q ′′ (when q/q ′′ must be
odd) and q ′ (any divisor of q); when convenient, we separate q odd and even, denoted then by q̂
and 2q. In the next (one, two or three) columns F/F ′ follow the line groups L(F) having isogonal
point group P I, above their equitranslational epikernels L(F

′) for the representations 0 DΠ
m (L

(F)).
The next column specifies parameters of L(F

′). The different types of epikernels for the same
(two-dimensional) representation D are in the consecutive rows, starting with the largest one; N is
the number of different conjugated epikernels
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8.3 Optical and Vibrational Activity

Within quantum mechanics, physical processes induced by an external field are
described by perturbation theory. Apart from the hamiltonian H0 of the isolated
system, total hamiltonian contains also the term Q describing interaction with
the external field. This leads to the concept of quantum transitions between the
symmetry-adapted eigenstates (5.37) of H0. The response functions depend on prob-
abilities of the particular transitions, which are determined by the matrix elements
(5.38). For a qualitative analysis it is usually sufficient to find the matrix elements
which do not vanish, i.e., to single out transitions contributing to the particular
process.

Selection rules are clue to this problem. They simply reflect the conservation
laws and selection rules for the line groups are given by (5.39). However, for pre-
cise calculation Clebsch–Gordan coefficients (Sect. 5.5) are needed. They manifest
conservation of helical, linear, and angular momenta, as well as of the parities (when
these are present in the symmetry group of the system) in the most detailed form.

8.3.1 Optical Transitions

When a system is exposed to the electromagnetic field, Hamiltonian of an electron is

H = 2

2m
( p − e A)2 + V + eϕ, (8.5)

where, p is electronic (generalized) momentum, V potential of the electron (without
electromagnetic field), and ϕ and A the scalar and vector potentials of the electro-
magnetic field.

Within the Coulomb gauge, ∇ · A = 0, the monochromatic electromagnetic wave
propagating with the wave vector q and frequency ω = cq is described by ϕ = 0
and

A(q) = a(q)ei(q·r−ωt) + c.c. = ei(q·r−ωt+α)e + c.c. (8.6)

where polarization phase α is defined by a2
1 + a2

2 = |a2
1 + a2

2 |e2iα (components in
the basis transversal to q), and (complex) polarization vector e = ae−iα = e1 + ie2
determines mutually orthogonal (with real coordinates) principle axes of polariza-
tion. In the dipole approximation [6], valid within the optical domain, i.e., when
q · r � 1, the terms linear in the potential are dominate, which gives

H = H0 + Q, Q = − e

m
A · p ≈ − e

m

(
ei(−ωt+α)e + ei(ωt−α)e∗) · p. (8.7)

This form enables perturbative approach, namely, H0 = 1
2m p2 + V is hamiltonian

of the isolated system, and Q is the perturbation introduced by the electromagnetic
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wave. The first term of Q corresponds to the absorption and the second one to the
emission of the energy quantum h̄ω.

As the absorption and emission terms for the monochromatic wave are propor-
tional to the e · p and e∗ · p components of the linear momentum, they transform
like momentum operator, being a polar vector (Sect. 5.3). Its standard components,
p0 = pz and p± = px ∓ ipy , correspond to the linear e0 = ez and circu-
lar polarizations e± = ex ∓ iey of the wave. According to the resulting electric
field, we call them also parallel (‖) and perpendicular polarizations (⊥), while in
these cases the wave propagates perpendicularly to the z-axis and along the z-axis,
respectively.

Thus, optical properties of the system are determined by the matrix elements
〈kfmfΠf | p0,± | kimiΠi〉. They vanish unless the optical transition between initial
and final state is allowed by the selection rules. Substituting quantum numbers of
the polar vector (Table 5.3 and (5.31)) into the general expression (5.39), we find
(for the order of the principle axis of the isogonal group larger than two) selection
rules for the polarized optical transitions:

‖ : Δk = Δk̃ = 0, Δm = Δm̃ = 0, �U f�U i �= 1, �vf�vi �= −1, �hf�hi �= 1;
(8.8a)

⊥ : Δk = 0, Δk̃ = κ, Δm = Δm̃ = ±1, �hf�hi �= −1. (8.8b)

Note that for the perpendicular polarization there is no restriction regarding U and
σv parities, as circular polarization is neither even nor odd under these transforma-
tions.

Optical properties of the system are expressed through several optical response
functions. All of them are determined by the real part of the tensor of the optical
conductivity:

Re[σl j (ω)] = 2πe2

m2
eω

∑

f,i

〈ψ f | pl |ψi〉〈ψi | p j |ψ f〉n f (1−ni )δ(Ei −E f −h̄ω), (8.9)

where e and me are electron mass and charge, while nk = (e(Ek−μ)/kT + 1)−1 is the
temperature-dependent probability of the occupancy of the state |ψk〉. In particular,
for the temperatures for which kBT/2 (kB is Boltzman constant) is less than a gap of
a semiconductor, n f (1 − n f ) is equal to 1 if |ψi〉 is bonding and |ψ f 〉 valence state,
while otherwise vanishes. Note that Re[σl j (ω)] is symmetric second-rank tensor.
Further, as the angular momentum selection rules show that for fixed initial and
final symmetry-adapted states 〈ψ f | p0 | ψi 〉 and 〈ψ f | p± | ψi 〉 cannot both
be nonzero, it follows that the only nonzero standard components of conductivity
tensor are Re[σ‖(ω)] = Re[σ00(ω)] and Re[σ⊥(ω)] = Re[σ++(ω)] = Re[σ−−(ω)],
in accordance with the general form diag[Re[σ⊥],Re[σ⊥],Re[σ‖]], of the invariant
symmetric tensors (for q > 2) given in Table 5.6.
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8.3.2 Infrared Active Modes

Long wavelength light may be absorbed by ions, which are then excited and vibrate.
Quantum mechanical formalism for such a perturbation is analogous to the electron–
light interaction causing optical transitions, with the appropriate changes in the
hamiltonian (8.5):

H = 2

2m
(P + Ze A)2 + V − Zeϕ, (8.10)

where P is momentum of the ion with the (positive) charge Ze, m is ion mass while
V is the field made by the other ions or electrons of the isolated system. Therefore,
the perturbation is again a polar vector, with the symmetry-adapted components
discussed in Sect. 5.4. Such a transition is described as a creation of a phonon, being
an elementary quant of ionic normal vibrational mode. Accordingly, the selection
rules refer to the phonons which may be created (annihilated) by the absorption
(emission) of light, and these phonons carry the quantum numbers given by (5.31)
and Table 5.4. We conclude that only normal modes (phonons) transforming accord-
ing to the polar-vector irreducible components may be infrared active and visible in
the infrared spectra. More precise information about phonon activity in the polarized
light may be derived from the same table, by extracting only the standard compo-
nents corresponding to the polarization direction of the light.

The number of infrared active modes is obtained by adding numbers of such
modes for all the orbits of the system. According to (7.2), this means that for the
system L[N1 X1, . . . , NK X K ] (symmetry notation, Sect. 3.5) the total number of the
active modes is

N ir =
∑

λ

|λ|
K∑

i=1

Ni f λi − N ir
ac. (8.11)

Here the first sum is taken over all irreducible components D(λ)(L) of the polar vec-
tor (Table 5.4), f λi is the frequency number of this representation in the dynamical
representation of the orbit Xi , and N ir

ac is the number of acoustic modes counted by
the first part of the expression; namely, the three translational acoustic modes have
the quantum numbers of polar vector, and in the families 1 and 5, also the twisting
mode has the quantum number of the z-component of the vector. Thus, the sum
includes N ir

ac = 4 for the families 1 and 5 and N ir
ac = 3 for the other families of

such modes. However, having zero frequency, they cannot be infrared active, and
the result must be diminished by N ir

ac.
Finally, recall that in Sect. 5.5 it is discussed that the matrix element allowed

by symmetry may still vanish if the reduced matrix element is zero. In the present
context this means that also the modes which are active by symmetry may actually
be of low intensity or totally inactive. Hence, relation (8.11) gives complete set of
potentially infrared active modes.
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8.3.3 Raman Active Modes

Raman scattering is in the simplest way described as a three step process. It starts
by the electronic excitation due to the absorption of the incident light. This changes
spatial distribution of the electronic density, and previously stable ions are exposed
to the electrostatic forces (within adiabatic approximation), which in the next step
cause ionic vibration. Finally, the rest of the electronic excitation energy is emitted
as the scattered light. Obviously, the first and the last steps are optical transitions,
while the second one is activation of a normal mode, i.e., creation of a phonon. Rig-
orous quantum mechanical treatment reveals that ions may also be deexcited in the
second step, causing increase of the electronic energy. Therefore Raman shift, i.e.,
energy difference of the incident and scattered light, can be either positive or nega-
tive (either phonon is created or annihilated). However, both schemes are described
by the two electronic transitions and creation or annihilation of one phonon. Recall
that in the dipole approximation, the optical transitions related to the incident and
scattered electromagnetic wave polarized along ei and ef are described by pi = ei · p
and pf = ef · p. Hence, the total perturbation is Q = pfRfi(R)pi, where Rfi(R)
are components of the Raman tensor, essentially related to the electron–phonon
interaction (R denotes all the ionic coordinates). As far as the transformations in the
electronic space are considered, Q is axial second-rank tensor. Usually, for quasi-
one-dimensional systems, it is given by the components describing the following
polarizations of the incident and scattered light: parallel R‖‖, perpendicular R⊥⊥,
and two crossed R‖⊥ and R⊥‖. The initial and final electronic states are identical so
the total matrix element of the perturbation is

〈kel
i mel

i Π
el
i |
(
〈kph

f mph
f Π

ph
f | Q |kph

i mph
i Π

ph
i 〉
)

|kel
i mel

i Π
el
i 〉.

Therefore, the braced ionic (i.e., phonon) part must be invariant. On the other side,
the selection rules (5.39) in the ionic space allow creation (annihilation) of the nor-
mal vibration mode (phonon) with the quantum numbers kph, mph, andΠph, relating
initial and final ionic states with quantum numbers kph

i , mph
i ,Πph

i and kph
f , mph

f ,Πph
f ,

respectively (analogously for the helical quantum numbers). Finally, as the perturba-

tion is axial second-rank tensor, we see that Dp(L)⊗Dp(L)⊗D(kph
i mph

i Π
ph
i )(L)must

contain identical representation, i.e., the representation of the activated normal mode
must be among the components of DA(L) (Table 5.5). In conclusion, among the
normal modes with the symmetry defined by the irreducible representations given
in Table 5.5 are those which can be activated by Raman scattering. They are finally
selected by the nonvanishing Clebsch–Gordan coefficients in (5.38).

As well as for the infrared active modes, one has to bear in mind that the reduced
matrix element (including all the specific physical quantities) may annihilate the
total matrix element, in which case the mode will be inactive, although allowed
by symmetry. It turns out that for non-chiral and non-polar systems, the modes
corresponding to the antisymmetric part of the axial tensor (of perturbation) are
inactive.
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The number of Raman active modes can be found as described for the infrared
activity. For the system L(N1S1, . . . , NK SK ) it is

N R =
∑

λ

|λ|
K∑

i=1

Ni f λi − N R
ac. (8.12)

Like in (8.11), the first sum is taken over all irreducible components of the axial ten-
sor (or its symmetric part, if only such modes are searched for), listed in Table 5.5,
while N R

ac is the number of the acoustic modes included in the first term.

8.3.4 Vibronic Activity: Jahn–Teller Theorem

The Jahn–Teller theorem asserts that for any degenerate electronic state, some nor-
mal modes of the phonon spectrum will be activated due to the vibronic coupling to
produce nonsymmetrical distortion of the ions. The exceptions are linear ion config-
urations as well as the electronic Krammer’s degeneracy. The theorem is verified [7]
in 1937 for molecules, i.e., point groups, and in 1993 for quasi-one-dimensional
crystals [8]. However, there are exceptions [9] for some highly symmetric diperiodic
structures (in particular for the CuO layers relevant for high temperature supercon-
ductivity), while the systematic investigation of three-dimensional crystals (space
groups) has not been performed yet. Here we present outline of the proof of the
theorem for the line groups.

From the group theoretical point of view, electronic orbital degeneracy means
that the state | E〉 of the electronic subsystem belongs to the multidimensional real
(Sect. 4.3.4) irreducible representation E(L). Within the linear vibronic coupling,
the mean value 〈E | H |E〉 of the hermitian real operator, transforming according to
the irreducible component DH (L) of the dynamical representation Ddyn(L) of the
system, multiplies the normal mode Q H associated to this representation. Hence,
when < E |H |E >�= 0, Q H is the active mode: its nonzero mean displacement is
a distortion of the configuration. If it is not totally symmetric or acoustic (transla-
tional or rotational) mode, the symmetry L of the system is broken. The Jahn–Teller
theorem points out that such active modes always exist, i.e., that for each E(L), the
symmetrized square [E2(L)] contains at least one irreducible component which also
pertains to Ddyn(L) and which does not correspond to symmetrical, translational,
or rotational modes.

As it has been stressed out (Sect. 3.4), the set of orbits Si of a system S with
symmetry L contains at least one of the symmetry fixing sets (Table 3.5) of L
(otherwise not L but a supergroup of L would be the symmetry). Further, as the
dynamical representation is additive over orbits, it is easily found by use of (7.1).
Irreducible components for each orbit are given in Tables 7.1–7.13.

For the present task, it is sufficient to check the conditions of the Jahn–Teller
theorem only for the symmetry fixing sets. As irreducible components of the sym-
metrized squares of the real representations of the line groups are found [10–12],
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it remains to construct the dynamical representations Ddyn
S (L) of the symmetry

fixing sets listed in Table 3.5 and subtract from them the translational and rota-
tional acoustic modes (Sect. 7.2), in order to get the vibrational representation.
Finally, comparing this representations and symmetrized squares, we straightfor-
wardly verify Jahn–Teller theorem for the line groups, proving vibronic instability
of the stereo-regular polymers, nanotubes, and other systems with line group sym-
metry.

8.3.4.1 Example: Vibronic Instability of trans-Polyacetylene

One of the most frequently discussed [13] examples of the vibronic instability is dis-
tortion of the trans-polyacetylene with uniform bond length, yielding trans-transoid
isomer with alternating bond lengths (Fig. 3.4). Here we briefly repeat the relevant
symmetry arguments. At first, we see from Table 4.13 of the representations of the
group L(13) = T 1

2 D1h that there can be at most four types of the π -electron energy

bands, k E�v
m (m = 0, 1, �v = A, B), all of them double degenerate. As at k = π/a

there is no one-dimensional irreducible representation of the line groups from the
13 family, compatibility relations (Table 4.14) at this point give no dimensionality
reduction; in addition, since n = 1, at k = π/a there are only two double degen-
erate representations π E A

0 and π E B
0 . Compatibility relations k E�v

m → π E�v
0 stick

together bands k E A
0 and k E A

0 into π E A
0 , as well as the bands k E B

0 and k E B
1 into π E B

0
(Fig. 8.3). There is one electron per monomer, i.e., two electrons per translational
unit cell, and the Fermi radius equals π .

At first, we consider carbon atoms only, within the Hückel’s approximation
with π -electrons. Taking into account py-orbital per atom, the C C bonding πu

orbital [13] is assigned (as y-component of polar vector, Table 5.4) by B+
0 repre-

sentation of the stabilizer group D1h (or B+
1 of the isogonal group D2h , i.e., 0 B+

1 of

Fig. 8.3 Band structure at the end of the Brillouin zone (reduced representation is used) of trans-
polyacetylene and “dimerized” trans-polyacetylene
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L(13)). All these orbitals of the orbit e1 give the induced representation of the line
group:

B+
0 (D1h ↑ L(13)) = e1(L(13))⊗ 0 B+

1 = 0 B+
0 + 0 B+

1 + k E B
0 + k E B

1 + π E B
0

(e1(L(13)) is the permutational representation of the orbit e1). This implies that the
electronic state at Fermi level is π E B

0 , connecting the bands k E B
0 and k E B

1 (Fig. 8.3,
left panel). So, the electronic state space is half-filled and trans-polyacetylene is
an intrinsic metal with the degenerate Fermi level. This is a classical situation of
the cooperative Jahn–Teller vibronic instability. The candidates for the soft mode
are those transforming according to the irreducible components of the symmetrized
square [π E B

0 ]2 = 0 A+
0 + 0 A+

1 + 0 A−
1 . All of them are contained in the dynamical

representation of the orbit of C-ions (Table 7.13):

Ddyn
e1 = 0 A+

0 + 0 A−
0 + 0 A+

1 + 0 A−
1 + 0 B+

0 + 0 B+
1 +

+
∑

k

[k E B
0 + k E B

1 + 2(k E A
0 + 2k E A

1 )] + 2π E A
0 + π E B

0 .

After neglecting the totally symmetrical representation and x-component of the
translations, in [π E B

0 ]2 remains 0 A−
1 (Fig. 7.1), satisfying all the requirements for

the Jahn–Teller effect.
If one takes into account both e1-type orbits the situation is a little bit differ-

ent. The dynamical representation now becomes 2Ddyn
e1 and contains 0 A−

0 twice.
The vibrations of the polymer are described by the linear combinations of the
independent normal displacements (Fig. 7.1): atoms from the different orbits can
oscillate out-of-phase (C H bending) and in-phase (C C stretching). For the
phase transition the candidate is only the last mode (C H bonds are tighter and
hydrogen atoms follow neighboring C-ions), yielding the Peierls dimerization. This
is equitranslational structural phase transition, with the soft mode 0 A−

1 being the
order parameter. The symmetry predicts its epikernel L(9) = L1m for the symmetry
group of new configuration (Table 8.1), i.e., trans-transoid isomer (Fig. 3.4). The
reflection σh is representative of the “lost” coset (L21/mcm = L1m + σh L1m),
thus restoring the initial symmetry via two possible domains with the soliton [14] in
the role of the Goldstone mode.

Both representations k E B
0 and k E B

1 of L21/mcm subduce into k E B
0 of L1m,

without any requirement on their connection at k = π/a; moreover, at k = π/a this
representation reduces into π B+

0 + π B−
0 . Hence, the energy gains a gap at Fermi

level, and the distorted isomer is an intrinsic insulator, with nondegenerate ground
state (Fig. 8.3, right panel).

In the previous example the order parameter was one-dimensional, which is the
simplest case. Two- or four-dimensional active modes are possible also (e.g., the
representation πG2 occurs in the orbit e1 of the group L168/mcm, as well as in
the symmetrized square [π/2G1]2), giving rise to more complicated, and possibly
physically more interesting phenomena [10–12].
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8.4 Diffraction

Diffraction measurements reveal scattering intensity S(k) along cross sections of
k space. The scattering vector 2πk is the difference ksc − kin of the scattered and
incident wave vectors. Within kinematical diffraction theory, S(k) is determined by
the scattering amplitude averaged per atom F(k):

S(k) = |F(k)|2, F(k) = 1
N

∑

i

fi (k)e2π ik·r i ;

here, fi (k) is the scattering amplitude of the i th atom (i = 1, . . . , N ) positioned
at r i .

8.4.1 Symmetry and Orbit Amplitudes

For the system with symmetry group L, the sum over atoms splits into the sums
over symcell atoms A and over their orbits; the later have |Y A| = |L|/|SA| atoms,
where Y A is the transversal and SA is the stabilizer of the symcell atom A. Thus,
the total amplitude F(k) is expressed in terms of the orbit amplitudes FA(k):

F(k) =
∑

A∈S |Y A|FA(k)∑
B∈S |Y B | =

∑
A∈S

1
|SA| FA(k)

∑
B∈S

1
|SB |

, FA(k) = f A(k)

∑
yA

e2π ik·r yA A

|Y A| ,

(8.13)
where r A is position of the atom A while the atom yA A (i.e., A moved by the
transversal element yA) is at r yA A. Therefore, we calculate scattering amplitudes
for orbits, and then superpose them according to (8.13). As only one type of atoms
is involved, the scattering amplitude of an orbit is factorized:

FA(k) = f A(k)GY A (k), GY A (k) = 1

|Y A|
∑

yA∈Y A

e2π ik·r yA A . (8.14)

The first factor, f A(k), is input which comprises relevant physical information on
the diffraction power of the atoms. The second, transversal factor GY A(k) is purely
geometrical determined only by the conformation class (Sect. 3.1.4).

Therefore, geometrical factor can be calculated a priori, for each transversal Y
of any line group. To this end we use cylindrical coordinates k = (k⊥, Φ, kz) and
r y A = (DA/2, ϕy A, zy A) of the scattering vector and atom y A. Substituting scalar
product k · r y A = k⊥ρA cos(ϕy A − Φ) + kzzy A in the Jacobi–Anger expansion
eix cosϕ = ∑+∞

l=−∞ il Jl(x)eilϕ over the Bessel functions Jl(x), (8.14) becomes

GY
A(k) =

∑

l

il Jl(πDAk⊥)e−ilΦ 1

|Y |
∑

z

eilϕy A+i2π zy Akz . (8.15)
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This general expression will be specified for each of the 15 conformation classes
of the systems with line group symmetry defined by the different transversals Y (i)

(Table 3.4). As usual we start with the first family groups (i.e., with the transver-
sal Y (1)), and after that the remaining results we will find in two steps using the
expressions found for the halving subgroups [15].

8.4.2 Geometrical Factors of the Line Group Orbits

For the fist family groups the general element is �ts = (CQ | f )t Cs
n . Taking it as y in

(8.15) one gets

G
T Q Cn
A (k) =

∑

l

il Jl(Dπk⊥)e−il(Φ−ϕA)e2π ikz z A

(
1

n

∑

s

eil 2π
n s

)(
1

|T Q |
∑

t

e2π i(kz f + l
Q )t

)
.

The sum over s vanishes unless l = M̃n for any integer M̃ . Also, when l = M̃n the
sum over t is nonzero only when the bracket in the exponent is an integer, K̃ . This
implies that the amplitudes are distributed within the countable set of planes with

kz = ( nM̃
Q + K̃ )/ f , which are called layer lines. For incommensurate groups the

layer lines are quasi-continually distributed: each pair of integers K̃ and M̃ defines

a layer line with vectors k constrained by kM̃
K̃

= ( D
2 , Φ,

−nM̃+QK̃
Q f ); geometrical

factor along it is given in the row 1’ of Table 8.2. However, for commensurate groups
T r

q( f )Cn = Lqp(a = q̃ f ) (here Q = q/r ), all the different pairs of M̃ and K̃

satisfying Diophantine equation −r M̃ + K̃ q̃ = K correspond to the same layer
line kz = K/a. As q̃ and r are co-primes, according to (C.8), the solutions are
M̃ = −K p̃ + Mq̃ (here, p̃ = p/n) and K̃ = K 1−r p̃

q̃ − Mr for any integer M .

Thus, summing over M for the fixed layer line defined by kK = ( D
2 , Φ,

nM̃+QK̃
Q f ),

we find the geometrical factor of the row 1 of the table within discrete layer lines
spaced by 1/a.

Especially for the achiral first family groups, being important as subgroups of
several other families, we find

GT Cn
A (kK ) =

∑

M

iMn JMn(Dπk⊥)eiMn(ϕA−Φ)e2π iK z A
a , (8.16a)

G
T 1

2n Cn

A (kK ) =
∑

M

i(2M−K )n J(2M−K )n(Dπk⊥)ei(2M−K )n(ϕA−Φ)e2π iK z A
a .

(8.16b)

For the remaining orbit types the results from Table 8.2 are obtained by the
usual two step procedure. In fact, according to (8.13), if Y = Y ′ + zY ′, then

GY
A(kK ) = 1

2

(
GY ′

A (kK )+ GY ′
z A(kK )

)
. Thus, for the transversals having the first
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Table 8.2 Geometrical factors for conformation classes. For each class (Column CC, primes single

out the incommensurate cases), the diffraction space symmetry group P̃
I
I = Ỹ I + IỸ I is in

the next column (when it depends on the parity of n, the odd case is up). The last column gives
geometrical factors GY

A in the layer lines specified by kK = (k⊥, Φ, K
a ) for commensurate and

kM̃
K̃

= (k⊥, Φ, QK̃−nM̃
Q f ) for incommensurate groups; outside them geometrical factors vanish.

Here q, n, p, f , and a are line group parameters, while d = DAπk⊥
CC P̃

I
I GY

A(kK ) or GY
A(k

M̃
K̃
)

1 Dqd
Dqh

∑
M iMq−K p JMq−K p(d)ei(K p−Mq)(Φ−ϕA)e2π iK z A

a

11
D2nh
Dnh

∑
M iMn JMn(d)e−iMn(Φ−ϕA)e2π iK z A

a

12 D2nh
∑

M i(2M−K )n J(2M−K )n(d)ei(K−2M)n(Φ−ϕA)e2π iK z A
a

1′ D∞h inM̃ JnM̃ (d)e
−inM̃(Φ−ϕA)e2π i QK̃−nM̃

Q
z A
f

2 Dnd
D2nh

∑
M iM(n+1) JMn(d)e−iMn(Φ−ϕA) cos(2πK z A

a − Mπ
2 )

3 D2nh
Dnh

∑
M iMn JMn(d)e−iMn(Φ−ϕA) cos 2πK z A

a
4 D2nh

∑
M i(2M−K )n J(2M−K )n(d)ei(K−2M)n(Φ−ϕA) cos 2πK z A

a
5 Dqd

Dqh

∑
M iMq−K p JMq−K p(d)ei(K p−Mq)Φ cos[(Mq − K p)ϕA + 2πK z A

a ]
5′ D∞h inM̃ JnM̃ (d)e

−inM̃Φ cos(2π QK̃−nM̃
Q

z A
f − nM̃ϕA)

6 D2nh
Dnh

∑
M iMn JMn(d)e−iMnΦei2πK

z A
a cos MnϕA

7 D2nh
Dnh

∑
M iMn+K JMn(d)e−iMnΦe2π iK z A

a cos(MnϕA − Kπ
2 )

8 D2nh
∑

M i(2M−K )n J(2M−K )n(d)ei2πK
z A
a ei(K−2M)nΦ cos(K − 2M)nϕA

9 Dnd
D2nh

∑
M iM(n+1) JMn(d)e−iMnΦ cos(2πK z A

a − Mπ
2 ) cos MnϕA

10 Dnd
D2nh

∑
M iM(n+1)+K JMn(d)e−iMnΦ cos(2πK z A

a − Mπ
2 ) cos(MnϕA − Kπ

2 )

11 D2nh
Dnh

∑
M iMn JMn(d)e−iMnΦ cos 2πK z A

a cos MnϕA

12 D2nh
Dnh

∑
M iMn+K JMn(d)e−iMnΦ cos 2πK z A

a cos(MnϕA − Kπ
2 )

13 D2nh
∑

M i(2M−K )n J(2M−K )n(d)ei(K−2M)nΦ cos 2πK z A
a cos(K − 2M)nϕA

14 D∞h ei2πK
z A
a

15 D∞h cos(πK z A
a )

family group as a halving subset, the geometrical factors are immediately found
from the above-derived ones. Further, such transversals are halving subsets for the
remaining ones, and the procedure can be applied once again.

8.4.3 Characteristics of the Diffraction Patterns

8.4.3.1 Symmetry of the Intensity Distribution

To find the symmetry of the diffraction space we consider the action of the geometri-
cal transformations on the intensity distribution S(k) = ∑

i j fi (k) f j (k)ei2πk·(r i −r j ),
being the only observable quantity in the diffraction experiments. As the translations
leave k vectors invariant, the action of the transformation � = (R| f ) is

�S(k)
def= S(�−1k) =

∑

i j

fi (k) f j (k)ei2π(R−1k)·(r i −r j ) =
∑

i j

fi (k) f j (k)ei2πk·(Rr i −Rr j ).
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Due to the summation over the pairs of atoms, the elements of the isogonal group
P I of L act simply as permutations of the terms, not affecting the sum. Further,
only the difference r i − r j of the atomic position vectors is involved; the inver-
sion changes its sign and only intertwines the terms. Consequently, the symme-
try of the intensity distribution is the isogonal point group of the symmetry of
the atomic conformation, extended by the spatial inversion. For the conformation
classes we combine the results on their symmetry, isogonal groups, and their exten-

sion (Tables 3.4, 2.2, and 2.1), to get the symmetry of the diffraction space P̃
I
I given

in Table 8.2.

8.4.3.2 Properties Related to the First Family Subgroup

Each of the geometrical factors contains products of Bessel functions of k⊥ and
trigonometric functions of Φ and kz . The orders of the Bessel functions are deter-
mined by the first family subgroup: all of them are multiples of n (for the commen-
surate classes 1 and 5 recall that n divides both p and q) and which multiples are
involved in K th layer line is determined by the helical axis.

For incommensurate helical axes layer lines are densely distributed, and geo-
metrical factor along a layer line is a single term. For commensurate axes there is
a countable set of equally spaced (by 1/a) layer lines; geometrical factor for K th
one is a sum of terms with Bessel functions of orders q M − pK = n(q̃ M − p̃K )
(M = 0,±1, . . . ), differing by multiple of q, and repeating for every q̃th layer line.
Due to this periodicity and spatial inversion of the diffraction space (making equal
distributions along layer lines K and −K ), only the layer lines 0 ≤ K ≤ q̃/2 are
different.

Several properties of Bessel functions are manifested in diffraction patterns. As
J−α(x) = (−1)α Jα(x), the position xα,i of i th nonnegative extreme of Jα(x) satis-
fies xα,i = x−α,i . The position xα,i increases with |α|; while x0,1 = 0, for α > 0
the function Jα(x) is almost zero until the region close to xα,1. For K th layer line,
two orders with the least absolute values are denoted by βK and β ′

K ; their val-
ues are βK � −K p (equality modulo interval (−q/2, q/2]), and β ′

K = βK − q
if βK ≥ 0 and β ′

K = −βK + q otherwise. Thus, |βK | + |β ′
K | = q, yielding

that |βK | = |iK |n (for essentially different layer lines K = 0, . . . , [q̃/2]) and
|β ′

K | − |βK | = q − 2|iK |n for iK � −K p̃ (equal modulo interval (−q̃/2, q̃/2]).
Consequently, βK = 0 only for K = 0,±q̃,±2q̃, . . . , these layer lines are char-
acterized by broad maximum at k⊥ = 0 produced by the term with J0. In other
layer lines there is intensity gap, a dark central region, as the first maximum is
at a distance k⊥ = xβ,1/πD > 0. The layer lines with K = ±1, i.e., the
closest to the equatorial one have the leading term J∓p. The narrowest intensity
gap is for the minimal nonzero βK ; this is ∓n and corresponds to the layer lines
K = ±r + sq̃ (s = 0,±1, . . . ).

Dependence of intensity distribution on Φ, included by the phase factors, yields
the interference terms in the absolute square of geometrical factor. The angular
period of all the terms in S(k) is at most 2π/q, as q is the principle axis order
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of the pattern (having symmetry group P̃
I
I ). The most characteristic region is

the central part of a pattern (k⊥ < xβ ′,1/πD), where all the terms except the
leading one J 2

β (πDk⊥) are negligible. Consequently, several concentric seemingly
solid (nonmodulated) circles are observed at radii corresponding to the extremes of
Jβ(πDk⊥). The number of such circles is less than (though close to) the number of
zeros of Jβ(πDk⊥) which are less than xβ ′,1/πD). Thus, the circles do not appear
if and only if |β ′

K | = |βK |, which is the case only for even q̃ for the layer lines
K = ±q̃/2,±3q̃/2,±5q̃/2, . . . ; then p̃ is odd, p̃ = 2P + 1, and substituting
M − P by M the geometrical factor reads

G(1)
A (kK ) = 2e2π iK z A

a
∑

M≥0

iMq+ q
2 cos[(2M + 1)(Φ − ϕA)

q

2
]JMq+ q

2
(d).

The cosine factor introduces significant angular modulation and vanishes for

Φ j = ϕA + π(2 j + 1)/q, j = 0, . . . , q − 1. (8.17a)

This leads to the extinction of these layer lines, i.e., they disappear in the diffraction
patterns for normal incidence with wave along q directions Φ j .

Thus, to reveal the first family subgroup L(1) one first examines gapless layer
lines; while in chiral systems they are rare, in achiral ones either all or one half
lines are such. The distance between them is 1/ f . Numerical fit of radii of the
first several intensity maxima to the first extremes of J0(Dπk⊥) suffices to find the
diameter D.

Chiral systems (Q/n > 2) may be incommensurate or commensurate and belong
either to the first or to the fifth conformation class (Figs. 8.4 and 8.5, left column).
The incommensurate systems produce dense layer lines, each being completely
axially symmetric. The least gap characterizes layer line with M̃ = ±1 at kz =
∓n/Q f + K̃/ f , and radius xn,1/πD of the first extreme (or positions of the next
peaks) enables to find Q/n and n. The equal distance 1/a = 1/q̃ f between adjacent
layer lines justifies that the system is commensurate and gives q̃; alternatively, it can
be found as the ordinal of the first gapless line above the equatorial one. The height
(i.e., the value of K ) of the layer line with the narrowest intensity gap equals r , while
its radius of the gap, equal to xn,1/πD, gives n (and then q). Alternatively, q (and n)
can be found as the order of the principle axis of diffraction space (i.e., of any layer
line). Finally, to distinguish from Y (1) and Y (1

′), the intensities of layer lines for

Y (5) and Y (5
′) are K dependent due to cos(2π QK̃−nM̃

Q
z A
f − nM̃ϕA). However, the

restriction of the area around k⊥ = 0 visible in real experiments seems to prevent
experimental verification of the incommensurability of a system. At first, within
this finite region layer lines of an incommensurate system are not dense (intensity
gap of vast majority of layer lines is greater than this region), while commensu-
rate system may produce axially symmetric patterns in this region (solid circles).
Therefore, together with n and f one always finds rational q/r , being in incom-
mensurate cases only an approximation of the irrational parameter Q. Possible



134 8 Applications

F
ig

.8
.4

L
ay

er
lin

es
fo

r
co

nf
or

m
at

io
n

cl
as

se
s.

Si
m

ul
at

ed
di

ff
ra

ct
io

n
pa

tte
rn

s
fo

r
m

on
o-

or
bi

t
sy

st
em

s
(F

ig
.3

.2
)

ge
ne

ra
te

d
fr

om
th

e
or

bi
t

re
pr

es
en

ta
tiv

e
po

si
-

tio
ne

d
at

(c
yl

in
dr

ic
al

co
or

di
na

te
s)

r
=
(3

Å
,
π 18
,
0.

8Å
)

(o
nl

y
fo

r
th

e
cl

as
se

s
14

an
d

15
r

=
(0

Å
,
0,

0.
8Å
))

by
th

e
tr

an
sv

er
sa

ls
Y
(F
)

fo
r

n
=

4
an

d
f

=
4

Å
.

Fo
r

ac
hi

ra
lc

la
ss

es
ea

ch
la

ye
r

lin
e

K
=

0,
1,

2,
3

(i
nd

ic
at

ed
as

a
w

hi
te

nu
m

be
r)

is
gi

ve
n

in
a

(r
ad

ia
l)

qu
ar

te
r

of
th

e
pa

ne
l.

Fo
r

ch
ir

al
co

m
m

en
su

ra
te

cl
as

se
s

(t
he

fir
st

an
d

th
e

la
st

pa
ne

l
of

th
e

le
ft

co
lu

m
n)

q̃
=

6,
an

d
th

e
la

ye
r

lin
es

K
=

0,
..
.,

5
ar

e
pl

ot
te

d.
Fo

r
th

e
in

co
m

m
en

su
ra

te
tr

an
sv

er
sa

l
(i

n
th

e
m

id
dl

e
of

th
e

le
ft

co
lu

m
n)

,t
he

la
ye

r
lin

es
w

ith
M̃

=
0,

1,
2,

3
(c

or
re

sp
on

di
ng

to
K̃

=
0,

0,
1,

2
at

he
ig

ht
s

k z
=

0,
0.

21
,
0.

17
,
0.

12
Å

−1
,r

es
pe

ct
iv

el
y)

ar
e

pl
ot

te
d.

T
he

pl
ot

te
d

re
gi

on
is

|k x
|,|

k y
|≤

2
Å



8.4 Diffraction 135

F
ig

.8
.5

N
or

m
al

in
ci

de
nc

e
pa

tte
rn

s
fo

r
co

nf
or

m
at

io
n

cl
as

se
s.

Fo
r

th
e

sa
m

e
sy

st
em

s
as

in
Fi

g.
8.

4
th

e
si

m
ul

at
ed

di
ff

ra
ct

io
n

in
te

ns
ity

fo
r

no
rm

al
in

ci
de

nc
e

of
th

e
lig

ht
al

on
g

th
e

di
re

ct
io

n
Φ

=
0,

ex
ce

pt
Φ

=
π
/
6

fo
r

Y
(7
)
,Y

(1
0)

,a
nd

Y
(1

2)
(f

ou
rt

h
co

lu
m

n;
od

d
la

ye
r

lin
es

ex
tin

ct
fo

r
Φ

=
0)



136 8 Applications

control is to compare if this way found parameter p agrees with the intensity gap in
the closest to equatorial visible layer line, which in the commensurate case should
correspond to Jp.

The achiral systems are commensurate with q̃ being 1 or 2. In the first case,
L(1) = T (a)Cn (q = n, q̃ = 1 and p = 0) all the multiples nM of n are
involved for each K , and all the layer lines are gapless, unless glide plane is
present (classes Y (7), Y (10) and Y (12) in the fourth column of Figs. 8.4 and 8.5).
In fact, for odd layer lines sin MnϕA is a divisor of the M th term of geomet-
rical factor; besides appearing of intensity gap (due to vanishing of the term
with zero order Bessel function), this yields extinction along 2n normal incidence
directions

Φ j = π j/n, j = 0, . . . , 2n − 1. (8.17b)

These characteristics are much alike those of the another achiral case L(1) =
T 1

2n(a)Cn (classes Y (12), Y (4), Y (8), and Y (13) in the last two right columns). Still,
besides the angle of extinction of odd layer lines, the two cases differ in equatorial
line: besides J0, the number and radii of the circles can be numerically fitted either
by J2n for L(1) = T 1

2n(a/2)Cn , and Jn for L(1) = T (a)Cn . Generally, in the latter
case the number of circles is less, while the number of white spots is greater. While
for Y (12), Y (4) extinction directions are given by (8.17a), for Y (8) and Y (13) cosine
factor disappears for ϕA independent directions

Φ j = π(2 j + 1)/2n, j = 0, . . . , 2n − 1. (8.17c)

8.4.3.3 Parities

While for Y (1) each Bessel function is multiplied by a Φ-dependent phase, coordi-
nates of the orbit representative, and counters K and M . This multipliers equiva-
lently ponder all the terms. On the contrary, parities in other conformation classes
introduce cosine functions which may affect contribution of the terms: σh yields
cosine dependence on K and z A, σv on M and ϕA, glide plane on K , M , and ϕA,
roto-reflectional plane on K , z A, and M , and U -axis on the all four parameters. If
depend on M , these cosine terms give additional radial modulation of the patterns in
comparison to the Y (1). Also, position of orbit representatives may have important
effect on patterns (some layer lines may completely disappear).

Horizontal mirror plane infers factor cos2(2πK za/a) in all the terms, making K -
dependent intensities, but not changing the patterns of the layer lines. On the other
hand, inferring ϕA and M depending factor, vertical mirror plane modulates relative
contribution of the terms, thus changing patterns but not the relative intensity of
the layer lines. Finally, U -axis and S2n symmetry affect both the patterns and their
relative intensities; these two are easily distinguished, as odd M terms disappear
only in the latter cases.
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8.4.4 Applications to the Multiorbit Systems

Above results for conformation classes, i.e., single orbit systems (like carbon nan-
otubes 9.2.1.8), give exhaustive characterization of the diffraction patterns of the
quasi-one-dimensional crystals. For a multiorbit system with symmetry group L(F)

(F = 1, . . . , 13), all the orbits should be determined and then found in the column
2 of the F th part of Table 3.4. For each of these orbits its conformation class is
in the first column of the same row. Finally, we substitute scattering amplitudes
of these conformation classes in (8.13) and obtain total scattering amplitude. The
symmetry of the distribution is the intersection of the symmetries of the included
conformation classes, and at least it is equal to P (F)I , being the isogonal group P (F)

of L(F), extended by spacial inversion.
Finally, let us stress out that the presented results are obtained within kinematical

approximation, meaning that their validity is restricted by the applicability of the
model. Still, the symmetry of the diffraction space is model independent. In this
context, it should be noted that the range of k is restricted in the real experiment,
which leads to considerably fast fading of the patterns with increase of k. This may
cause that some of the features discussed above are not easily visible. However, this
varies with the type of the used beam; e.g., for X-ray diffraction the visible range of
k is much greater than for electron diffraction.

8.5 Numerical Implementations of the Line Groups

As it has been discussed, symmetry group generates the whole structure from the
symcell, i.e., a set containing one atom from each orbit (Sect. 2.1.4). Therefore,
it is intuitively clear that symcell and symmetry group determine all the physical
properties of the considered system. However, most of the numerical algorithms
used to derive such properties do not use the full symmetry but just the transla-
tional invariance. This is satisfactory enough for two- and three-dimensional crys-
tals, since in such systems translational group is a subgroup of low index of the total
symmetry, making elementary cell at most several times larger than the symcell.
However, in the systems with line group symmetry, the situation is frequently quite
different. Incommensurate structure has no elementary cell, while symcell is well
defined. As for commensurate systems, elementary cell is typically much larger than
the symcell (e.g., for carbon nanotubes symcell consists of a single atom, while
there are hundreds or thousands of them in elementary cell). In this context we
briefly discuss numerical implementation of the full-line group symmetry. Gener-
ally, physical predictions are based on the known (electron and/or phonon) eigenen-
ergies, causing that various numerical algorithms are devoted to spectral problem
of effective hamiltonians obtained within different physical approximations. With
respect to the adopted physical models, these algorithms can be roughly divided
into two groups: tight-binding approximation and density functional theory. Their
combinations are also developed. In both models full symmetry implementation
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effectively reduces calculations to the symcell with no further approximation, but in
the conceptually different ways.

8.5.1 Tight-Binding Methods

In the tight-binding electronic models we empirically chose several relevant orbitals
| A;ψ〉 (ψ = 1, . . . , n A) from each atom A, building the total tight-binding state
space S by linear combinations of all of them. As for phonons, S is the space of
the atomic displacements, having the same structure, with three independent dis-
placement | A;ψ〉 (ψ = 1, 2, 3) of each atom used instead of the atomic orbitals.
This space is infinite dimensional, as the systems with line group symmetry are with
infinitely many atoms. Hamiltonian is defined according to the model of interaction:
an assumption on the mutually interacting atoms is made (e.g., the first or higher
neighbors are considered, depending on the range of the interaction), and interaction
for each such pair is defined by a number of parameters. These are essentially hamil-
tonian matrix elements, such as hopping integrals or force constants, but the model
treats them as the empirical data suitable for further optimization; in the hybrid
density functional tight-binding methods, these matrix elements are calculated by
density functional procedure. Hamiltonian is built up by collecting all of them and
it remains to apply an eigenvalue code.

At this stage symmetry may be efficiently implemented due to the special (so-
called inductive) structure of the space and hamiltonian. The total space is obviously
the direct sum of the orbit subspaces, which are built from the orbitals of atoms
being on the same orbit. In fact, if A is symcell atom, then its orbit (Sect. 3.1) is
generated by the action of the corresponding transversal Y A on A. Symmetry of the
system requires that the orbitals of all other atoms on this orbit are physically the
same as for A, meaning that they are also generated by the action of the transversal
elements yA:

|yA A;ψ〉 = yA |A;ψ〉. (8.18)

Therefore, arbitrary state may be expanded in the form

|ψ〉 =
S∑

A=1

∑

yA

∑

ψ

cAyAψ yA |A;ψ〉. (8.19)

Simultaneously, the matrix elements must obey the same symmetry requirement:
interaction of pairs A-B and �A-�B is the same for any symmetry transformation �.
Therefore, it is intuitively clear that only the space SS of the orbitals/displacements
of the symcell atoms determines the whole space and total hamiltonian and that
the eigenproblem can be reduced to this space. It is important that this is finite
dimensional problem, as the symcell contains finite number S of atoms, and the
dimension of SS is |SS| = ∑S

A=1 n A.



8.5 Numerical Implementations of the Line Groups 139

The described structure of the total space enables to implement full symmetry of
the system and to reduce the eigenvalue problem to the finite dimensional one. The
procedure, briefly reviewed in Appendix F, is known the modified group projector
technique. Suppose that there is common transversal Y of all the symcell atoms, and
that there is (finite) subgroup P of L such that Y is the set of its coset representa-
tives: L = y1 P + y2 P + . . . . In fact, this is always satisfied for mono-orbit systems
or systems with the same type of orbits, when P is the stabilizer of the orbit. If this
is not the case, the procedure may be further elaborated to use symcell only, but for
simplicity we consider here a case when there is a common transversal: we consider
larger set of atoms (i.e., S is larger than the number of symcell atoms) such that it
generates the same structure by a transversal Y (being at most intersection of the
original transversals) and use P which intertwines (at most) these atoms. Due to the
product structure of the line groups, monomer has this property, with the transversal
and P being generalized translations and point factor, respectively.

According to these assumptions, symmetry-adapted eigenvector is

|λl; tλ〉 =
S∑

A=1

∑

y

∑

ψ

c(λl;tλ)
Ayψ |y A;ψ〉. (8.20)

However, the expansion coefficients c(λl;tλ)
Ayψ are related to those corresponding to

the symcell atoms, c(λl;tλ)
Aψ , because the orbitals within same orbit are related by the

symmetry transformations (8.18), while the total state obeys the rule (8.1). When
these rules are substituted in (8.20) we get

|λl; tλ〉 = 1√|Y |
∑

y∈Y

∑

l ′ AψA

c(λl ′;tλ)
AψA

D(λ)∗
ll ′ (y) |yt A, ψA〉. (8.21)

It remains to find the coefficients c(λl ′;tλ)
AψA

. To this end we construct pulled down

hamiltonian matrix H↓λ
AB , with the submatrices corresponding to the atoms of

symcell

H↓λ
AB =

N A
B∑

y=1

∑

ψAψB

〈A, ψA | H |y B, ψB〉 |BψB〉〈AψA | ⊗D(λ)T (y). (8.22)

Here, for the fixed atom A, we sum over the transversal elements y for which the pair
A-y B is within the range of interaction. Solving the common eigenproblem of H↓λ

AB

and of the projector Lλ↓ = |λ|
|P |
∑
�∈P D↓(�)⊗ D(λ)∗(s). There are f λ eigenvectors

of H↓λ
AB (with the eigenvalues Eλtλ ) which are in the range of Lλ↓. They have form

|0; λtλ〉 = ∑
l AψA

c(λl;tλ)
AψA

| AψA〉〈λl |, enabling to determine these coefficients, and
therefore the symmetry-adapted eigenvectors (8.21) with the same eigenvalue Eλtλ
(degenerate |λ| times).
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To summarize, the energy bands of the systems with line group symmetry can
be found by solving eigenvalue problem of the matrix H↓λ for each irreducible
representation. Therefore, assignation of the bands by the complete set of conserved
quantum numbers is automatically obtained, together with the symmetry-adapted
eigenbasis. The dimension of this matrix is equal to the dimension of the irre-
ducible representation times number of orbitals included in the extension of symcell
described above (monomer, at most). For mono-orbit systems only single atom of
symcell is considered, which greatly simplifies problem, allowing in some cases
(e.g., carbon nanotubes, Sect. 9.2.1.4) analytical solution.

8.5.2 Density Functional Relaxation

The most precise numerical methods to find stable configurations of structures are
based on quantum mechanical density functional theory. Although the success of
this theory stems from the better treatment of the electronic correlations than in
other methods, density functional theory is still an approximation. Therefore, many
diverse density functional algorithms are adopted in order to improve predictions of
particular physical properties. Common characteristics of all the variants are that
the configuration of the system is slightly varied in the vicinity of some initial
position, and the configuration corresponding to the minimum of the total energy
(including electronic and ionic) is considered as the stable one. This procedure is
called relaxation. Concerning consumed computer time, the critical parameters are
number of atoms of the studied structure and the dimension of the approximate
quantum mechanical state space.

Number of atoms in the structure is important, as their coordinates are to be
varied. Currently, the structures with not more than a few hundreds of atoms may
be successfully relaxed. For the crystals, the methods implementing translational
symmetry are elaborated to enable relaxation of elementary cell only. Still, as it has
been stressed out, quasi-one-dimensional crystals frequently have large elementary
cells, with sufficiently many atoms to prevent calculations, and for incommensu-
rate systems such approach is completely inapplicable. However, application of
full symmetry for the most of the studied structures enables acceptably rapid cal-
culations. In fact, according to the topological theorem of Abud and Sartori [16],
extremes of the total energy correspond to the special configurations where the
symmetry is increased with respect to the vicinity. Further, a slight change of the
position of an atom of the structure with line group symmetry, will reduce the total
symmetry significantly, meaning that this is not a stable configuration. Therefore,
it is sufficient to vary only those very special collective coordinates (combining
coordinates of various atoms) which do not diminish the symmetry. Obviously, as
the atoms within same orbit are all obtained by the action of the symmetry group
from a single one, only one atom per orbit may be independently changed. This
way, it is obvious that only the symcell atoms coordinates are to be varied. Note that
in carbon nanotubes, despite large number of atoms in the elementary cell, symcell
contains only one atom. Some symmetry operation may further forbid variation of
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some of the coordinates; in particular, atoms being in the mirror/glide plane must
not change the perpendicular to the plane coordinate.

In addition to the symcell atom coordinates, there are also parameters of the sym-
metry group itself which can be varied without diminishing symmetry. To under-
stand this, note that the line groups of the same family with same n are isomor-
phic, independent of Q and f . Therefore, change of these continual parameters do
not diminish symmetry. Accordingly, in the numerical relaxation Q and f should
also be varied. While f is responsible for spacing of atoms along z-axis, helicity
of the system is governed by Q. Note that even when the initial configuration is
commensurate, the relaxed one may not be, such although the numerical floating
point calculations will give rational result for Q. In particular, such effect may be
expected when externals fields or mechanical influence [17] like twisting is applied.
The question, of commensurability of quasi-one-dimensional solids will be referred
to in the context of carbon nanotubes in Sect. 9.2.

The number of probe functions, i.e., the dimensionality of the approximate quan-
tum mechanical state space of electrons is a compromise between the memory and
run-time on the one side and accuracy on the other. Usually a regular greed of several
hundreds to thousand plane waves is used. However, the symmetry inspires a new
scheme. It can be expected (as illustrated by carbon nanotubes in Sect. 9.2.1.9) that
in the expansion of the ground state density (which is invariant function) over line
group harmonics, only several lowest harmonics have significant contribution. Even
in the cases of the most complex quasi-one-dimensional systems, the number of such
harmonics is less than hundred. Therefore, using basis of the lowest harmonics, the
dimension of the numerical problem is reduced and the comparative accuracy is
improved; namely, the contribution of the neglected part of the Hilbert space is a
priori known to be negligible.
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Chapter 9
Nanotubes

Abstract The first reports on synthesis of carbon [1] and transition metal chalco-
genide [2] nanotubes triggered extensive research on both organic and inorganic
nanostructures which proved to have potential of becoming a key nanotechnolog-
ical material due to the outstanding physical properties. It was found that many
compounds which crystallize in a bulk or/and in a layered form can grow into the
cylindrical structures, under specific conditions. After the discoveries of nanotubes
made of carbon, transition metal chalcogenides and oxides [3], boron nitride [4],
silicon [5] and metal (e.g., Au [6]), recent discovery of the functional semiconduct-
ing oxide nanostructures [7] paved the way for synthesis of diverse nanosized forms
of zinc oxide as well. Diameters of the synthesized nanotubes (or lateral dimen-
sions of the other nanostructures) vary from few Angstroms to few micrometers. In
this chapter we derive symmetry of arbitrary nanotubes and discuss their common
symmetry-based properties. Then we focus on carbon nanotubes: deriving easily
many of their famous properties, we show that symmetry is the most profound way
of understanding them.

9.1 Symmetry of Nanotubes

The so-called layer folding offers the simplest description and parametrization of
the structure of nanotube and also enables to derive their symmetry. Let us assume
that the two-dimensional layer has lattice basis vectors A1 and A2, chosen such that
A1 ≥ A2 and the angle between them is α ∈ (0, π/2]. Then we define dimensionless
parameters X and Y :

X = A2
1

A2
2

≥ 1, Y = A1

A2
cosα ≥ 0. (9.1)

The nanotube (n1, n2) is obtained by folding the layer in a way that the chiral vec-
tor c = (n1, n2) = n1 A1 + n2 A2 becomes circumference of the tube (Fig. 9.1).
Alternatively, nanotube is defined by length c (giving the tube’s diameter D = c/π )
and slope θ (called chiral angle) of the chiral vector c:

Damnjanović, M., Milošević, I.: Nanotubes. Lect. Notes Phys. 801, 143–169 (2010)
DOI 10.1007/978-3-642-11172-3_9 c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 9.1 Layer folding. Two dimensional lattices (up), defined by the basis A1 and A2, are rolled
to the nanotubes (below) according to the chiral vectors c (red). The vectors c̃ (red) and z (blue,
line shows other possible choices zs ) are roto-helical generators Cn and Z , while f if fractional
translation, and for commensurate cases a is nanotube period (green). Left: layer A1 = (12,
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Right: rectangular layer A1 = (π, 0), A2 = (0, 3) (Sect. 9.1.3); nanotubes c = (3, 0) (z = (1, 1),
L(1) = T 1
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incommensurate tube)

c = A2

√
n2

1 X + n2
2 + 2n1n2Y , sin θ = n2 A2/c. (9.2)

It is enough to consider nanotubes with n2 ≥ 0, i.e., 0 ≤ θ < π , as indices
(−n1,−n2) and (n1, n2) describe the same nanotube structure.

Nanotubes, being quasi-one-dimensional systems have line group symmetry.
From the very beginning, it has been recognized [8, 9] that such a large symme-
try substantially determines fundamental physical characteristics of carbon nan-
otubes [10, 11]. Additionally, it had proved to be important technically facilitating
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the calculations. For example, only due to the symmetry, the electronic bands of
carbon nanotubes are analytically calculated in a good approximation, which has
been the most important result for further development of the field.

9.1.1 Folded Translations: The First Family Subgroup

The translations of the layer become roto-helical operations on the tube, i.e., two-
dimensional translational group is folded into the first family subgroup L(1) of the
nanotube line group. In particular, the minimal lattice vector collinear with c is
the reduced chiral vector c̃ = c/n = ñ1 A1 + ñ2 A2, where1 n = GCD(n1, n2)

(hence ñ1 and ñ2 are co-primes). It corresponds to the minimal pure rotation around
the nanotube axis, generating Cn (the circle is closed after n successive rotations,
c = n c̃). Further, L(1) contains combined transformations from Z and Cn , which
means that the (CQ | f ), generator of Z, must correspond to a lattice vector z =
z1 A1 + z2 A2, such that z and c̃ form a basis of the two-dimensional lattice. The
area equality |A1 × A2| = |c̃ × z| gives Diophantine equation ñ2z1 − ñ1z2 = ±1.
Positive f is provided by −1 on the right, when the solutions (C.8) are

zs = (z1s, z2s) = z0 + s(ñ1, ñ2), s = 0,±1, . . . (9.3)

z0 =

⎧
⎪⎪⎨

⎪⎪⎩

(0, 1), if c = (n, 0),

(−1, 0), if c = (0, n),

(ñEu(ñ1)−1
2 ,

ñ
Eu(ñ1)
2 −1

ñ1
), otherwise.

(9.4)

The series zs is on the line parallel to the chiral vector, for f = |A1 × A2|/c̃
away from it. All zs correspond to the generators (CQs | f ) of the variety of screw-
axes, which combine with Cn into the same roto-helical group (Sect. 2.2.2); within
convention C0 (2.11), among all zs we chose z as a vector making minimal (but
strictly positive) angle with the vector perpendicular to c. Obviously, the rotation for
2π/Q corresponds to the projection of z onto c, giving Q = c2/(c · z). Altogether,
we finally get

L(1) = T Q( f )Cn, (9.5a)

n = GCD(n1, n2), (9.5b)

f = A1
sinα√

ñ2
1 X + ñ2

2 + 2ñ1ñ2Y
, (9.5c)

Q = n
ñ2

1 X + ñ2
2 + 2ñ1ñ2Y

ñ1z1 X + ñ2z2 + (ñ1z2 + ñ2z1)Y
. (9.5d)

1 Recall that x̃ = x/n (division by the line group parameter n), while x, x denote numerator and
denominator of the rational x = x/x .
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In conclusion, the roto-helical part L(1) of the nanotube symmetry generates the
whole tube from a single two-dimensional unit cell. The symmetry parameters f
and Q̃ = Q/n depend only on c̃ and thus they are the same for the ray of the
nanotubes n(ñ1, ñ2) differing by the order n of the principle axis.

9.1.2 Commensurability

As pointed out, nanotube is commensurate if Q is rational. However, instead of
analyzing (9.5d), we directly check whether nanotube has a translational period.
Obviously, if the translational vector a = a1 A1 + a2 A2 exists, it is the minimal
lattice vector (i.e., a1 and a2 are co-primes) orthogonal onto the chiral vector. This
shows that the commensurability condition is the equation

c̃ · a = a2ñ2 + a1ñ1 X + (a2ñ1 + a1ñ2)Y = 0, (9.6)

solvable in co-prime integers ai . Period of such tube is the length of a:

a = A2

√
a2

1 X + a2
2 + 2a1a2Y . (9.7)

Let q be the number of the layer lattice unit cells within a translational period a of
a nanotube. Then the equality of the surface areas, q A1 A2 sinα = ca, gives

q = n
c̃a

A2
2

√
X − Y 2

. (9.8)

Recall that the real numbers may be viewed as an infinite dimensional vector
space over the rational numbers. Therefore, as only X and Y may be irrational,
commensurability condition (9.6) requires that 1, X , and Y are rationally dependent.
In other words, either both X and Y are rational or there are rational w, x , and y
(with x �= y as X > Y ) and irrational J , such that X = w + x J and Y = w + y J .

When both X and Y are rational, then (9.6) is a (rational) proportion between a1
and a2. Consequently, any nanotube (n1, n2) is commensurate with

q = n
2ñ1ñ2 XY + ñ2

1 XY + ñ2
2 XY

GCD(ñ1 XY + ñ2 XY , ñ2 XY + ñ1 XY )
, (9.9)

a =
(
ñ1 XY + ñ2 XY ,−ñ2 XY − ñ1 XY

)

GCD(ñ1 XY + ñ2 XY , ñ2 XY + ñ1 XY )
. (9.10)

In the other case, rational and irrational parts of (9.6) give a system of two homo-
geneous equations in ai :
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a1w(ñ1 + ñ2)+ a2(ñ1w + ñ2) = 0, (9.11a)

a1(ñ1x + ñ2 y)+ a2ñ1 y = 0. (9.11b)

It is solvable when the determinant of the system vanishes:

ñ2
1w(y − x)− ñ1ñ2x − ñ2

2 y = 0. (9.12)

This constraint on ñ1 and ñ2 singles out a subset of the chiral vectors yielding com-
mensurate nanotubes. As a is fully determined by the reduced chiral vector c̃, all
the chiral vectors n c̃ (n = 1, 2, . . . ) give commensurate nanotubes with period a.
Besides, when the roles of c̃ and a are interchanged, a nanotube with the period
c̃ (orthogonal onto a) is obtained. Hence, if such a lattice allows commensurate
nanotubes, their chiral vectors lie on two perpendicular lines.

For ñ2 �= 0, the constraint (9.12) becomes

ñ1

ñ2
= x ±√

x2 − 4wxy + 4wy2

2w(y − x)
= ν±, (9.13)

i.e., ñ1/ñ2 is rational only if
√

x2 − 4wxy + 4wy2 is. This singles out mutually
orthogonal directions c̃± = a∓ = (ν±, ν±) of commensurate nanotubes c± = n c̃±,

with q = n(ν+ν− − ν−ν+) and a± = A2

√
ν2∓ + ν2∓ X + 2ν∓ν∓Y .

The case ñ2 = 0 appears if and only if w = 0, meaning Y = y X (i.e., J = X
and x = 1). Then the ray orthogonal onto c̃+ = (1, 0) is obtained from (9.11b):
c̃− = (y, y). The corresponding periods are a+ = A1 y| tanα| and a− = A1, while
q = ny.

Finally, as for all the commensurate nanotubes we have found q, n, and a, to com-
plete the first family subgroup determination we use (9.5d) to calculate r = q/Q.

9.1.3 Additional Symmetries

Apart from the translational invariance, two-dimensional lattice has rotational C2
symmetry (rotation for π around the axis perpendicular to the layer). In addition,
rhombic and rectangular lattices have vertical mirror and glide planes and also in
rhombic rectangular and hexagonal lattices the order of the rotational axis is four
and six, respectively. Particular atomic arrangements within the lattice unit cell may
reduce the lattice symmetry group, and this way one of the 80 diperiodic groups [12]
are obtained. Only some of these non-translational layer symmetries are preserved
after layer folding into a nanotube: twofold rotational axis, mirror, and glide planes.
When combined with the roto-helical group L(1) (emerging from the lattice transla-
tions) given by (9.5), these additional symmetries yield line groups of the remaining
12 families.
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Rotation C2 of a layer becomes horizontal twofold axis, the U -axis, of the tube.
Thus, whenever order of the principle axis of the layer is two, four, or six, symme-
try of the nanotube is the fifth family line group T Q( f )Dn at least. Note that the
higher order rotational symmetries of the layer do not give rise to the symmetry of
nanotubes.

Vertical mirror (glide) plane is preserved in the nanotube only if the chiral vec-
tor is perpendicular onto it. When c is parallel to the plane, nanotube gets hori-
zontal mirror (roto-reflectional) plane. All these transformations can be combined
(Table 9.1) only with the roto-helical groups T (a)Cn or T 1

2n(a)Cn (i.e., q̃ = 1, 2)
of the achiral nanotubes.

First, we consider rectangular lattices, α = π/2 (i.e., Y = 0). For irrational
X = J , we havew = y = 0 (then y = 1) and x = 1, yielding c̃+ = (1, 0) and c̃− =
(0, 1), with q̃ = 1, i.e., the helical factor reduces to the pure translational group. For
X rational, from (9.9) we get q̃ = (ñ2

1 X + ñ2
2 X)/GCD(ñ1, X)GCD(ñ2, X). Thus,

for X �= 1, the same result as for X irrational is achieved, while in the case X = 1
(square lattice) additionally q̃ = 2 is obtained for c̃± = (±1, 1).

Second, in the case of rhombic lattices A1 = A2 (X = 1) for Y irrational,
taking J = Y − 1, we have w = y = 1 and x = 0 (then x = 1), yielding
c̃± = (±1, 1) with q̃ = 2, i.e., L(1) = T 1

2n(a/2)Cn . For rational Y , from (9.9) we
get q̃ = (2ñ1ñ2Y + (ñ2

1 + ñ2
2)Y )/GCD(ñ1Y + ñ2Y , ñ1Y + ñ2Y ), allowing the same

c̃± as for Y irrational. Only for Y = 0 and Y = 1/2 the additional pair, c̃+ = (1, 0)

Table 9.1 “Rolling-up” correspondence of the line and diperiodic groups. For each family F of
the line groups after roto-helical subgroup L(1) and the isogonal point group P I

q (for irrational Q
in the families 1 and 5, q is infinite), follow corresponding diperiodic groups enumerated accord-
ing to [12]: for arbitrary chiral vector rolling gives either the first or the fifth family line group;
only for special chiral vector(s) a = (n, 0), b = (0, n), c ∈ {(n, 0), (0, n)}, d = (n, n), e =
(−n, n), f ∈ {(n, n), (−n, n)}, g ∈ {(n, 0), (0, n), (−n, n)}, h ∈ {(n, n), (−n, 2n), (−2n, n)},
i ∈ {(n, 0), (0, n), (−n, n), (n, n), (−n, 2n), (−2n, n)} the underlined groups (repeated after the
corresponding vectors) give other line group families below

F L(1) P I
q Diperiodic group

1 T Q Cn Cq 1,2,4,5,8,9,10,11,12,13,14, 15,16,17,18,27,28,29,30,
31,32,33,34,35,36,65,66,67,68, 69,70,71,72,74,78,79

5 T Q Cn Dq 3,6,7,19,20,21,22,23,24,25,26, 37,38,39,40,41,42,43, 44,45,46,47,48,
49,50,51,52,53,54,55,56,57,58,59,60, 61,62,63,64,73,75,76,77,80

2 T Cn S2n a:17,33,34; b:12,16,29,30
3 T Cn Cnh a:11,14,15,27,31,32; b:28
4 T 1

2n Cn C2nh e:13,18,35; d:36; h:69,72,78; g:70,71,79
6 T Cn Cnv a:28; b:11,14,15,27,31,32
7 T Cn Cnv a:12,16,29,30; b:17,33,34
8 T 1

2n Cn C2nv e:36; d:13,18,35; h:70,71,79; g:69,72,78
9 T Cn Dnd a:42,45; b:24,38,40
10 T Cn Dnd c:25,39,43,44,56,60,62,63
11 T Cn Dnh c:23,37,41,46,55,59,61,64
12 T Cn Dnh a:24,38,40; b:42,45
13 T 1

2n Cn D2nh f :26,47,48,55,56,57,58,61,62,63,64; i :77,80
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and c̃− = (0, 1) appear, giving q̃ = 1 for the square lattice, and again q̃ = 2 for the
hexagonal lattice.

Additional symmetries of the layer reduce the number of the different nanotubes.
For the layers with the principle axis order n = 1, 2, 3, 4, 6, the effective interval of
the chiral angle is [0, 2π/n′), where n′ = LCM(2, n) = 2, 2, 6, 4, 6, respectively.
Further, vertical mirror plane of the layer intertwines the chiral vectors of the opti-
cally isomeric tubes, enabling to halve this range to [0, π/n′]. However, if there is
not such a plane, the optical isomer of the (n1, n2) tube is obtained from the layer
reflected in the mirror plane (perpendicular to A1) again as the (n1, n2) tube.

9.1.4 Symmetry-Based Common Characteristics of Nanotubes

It has been shown that symmetry of a nanotube rolled up from an arbitrary diperi-
odic layer and along any chiral vector is described by a line group. This has many
important physical consequences, which depend not only on the geometry of the
layer but also on the direction of the folding given by the chiral vector. While large
diameter tubes (long chiral vectors) are in many aspects similar to the layers, many
properties of small diameter tubes are determined by the chiral angle.

Depending on the two-dimensional lattice (but not on the particular diperiodic
group corresponding to the layer) and on the chiral vector, nanotube may be incom-
mensurate (then its line group is from the first or fifth family) or commensurate.
Without optical isomers, i.e., achiral, are nanotubes with pure translational or zigzag
helical factors; these commensurate structures are obtained for special chiral vectors
from the rectangular and rhombic two-dimensional lattice, when also mirror/glide
planes may be symmetries of the layer.

The conserved quantum numbers related to the roto-helical symmetries of nan-
otubes are quasi-momenta [8, 13, 9]: helical, k̃, from the helical Brillouin zone
(−π/ f, π/ f ] and remaining angular m̃ (i.e., the part not included into the helical
one), taking integer values from the interval (−n/2, n/2]. When U -axis, vertical,
or horizontal mirror/glide planes are symmetries, the corresponding parities (�U ,
�v, and �h, taking values +1 and −1 for even and odd states, and 0 otherwise)
are conserved. In commensurate nanotubes, one may alternatively use more con-
ventional quantum numbers of linear and total angular quasi-momenta, k (from the
Brillouin zone (−π/a, π/a]) and m (integers from (−q/2, q/2]), where q is the
order of the principle axis of the isogonal point group. However, m is not conserved
in the Umklapp processes.

These quantum numbers assigning energy bands of (quasi)particle spectra (EΠm̃ (k̃)
or EΠm (k)) correspond to the irreducible representations of the nanotube’s line
group. The dimension of irreducible representation is equal to the degeneracy of
the band. Thus, for incommensurate nanotubes, degeneracy is either one or two,
while for the commensurate also fourfold degeneracy is possible (families 9–13).

As an illustration we consider briefly inorganic metal chalcogenide nanotubes,
MS2 (M=Mo,W). The corresponding monolayer structure has diperiodic symmetry
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group DG78. As X = 1 and Y = 1/2, the corresponding nanotubes are always com-
mensurate, with the roto-helical subgroup defined by (9.5). According to Table 9.1,
all chiral nanotubes (n1 > n2 > 0) have symmetry groups of the first family. The
symmetry of zigzag nanotubes (n, 0), with additional vertical mirror plane, and
armchair (n, n) ones, with additional horizontal mirror plane, is described by the
line groups of the eight and fourth families, respectively. As all the groups from the
first and eighth families are positive, the Brillouin zones of the chiral and zigzag
inorganic nanotubes have no special points and consequently, there is no reduction
at the Brillouin zone boundaries. Moreover, the bands of the chiral tubes are non-
degenerate as their symmetry groups are abelian. On the other side, the zigzag tubes
have a series of the double degenerate bands and a pair of a non-degenerate bands
with well-defined vertical mirror parity (one band is odd and the other one is even).
In contrast to this, all the bands of the armchair inorganic nanotubes are double
degenerate (with no parity) reducing at the center of the Brillouin zone into two
non-degenerate states with well-defined horizontal mirror parities.2

9.2 Carbon Nanotubes

Soon after the discovery of carbon nanotubes by Iijima [1] in 1991, they have
became one of the most interesting objects of material science. Their unique prop-
erties investigated by researches from almost all fields of natural sciences, with
applications important for diverse parts of technology, became a trademark of the
new multidisciplinary field of nanoscience and nanotechnology (now well known
by the acronym N&N). From the very beginning it was clear that carbon nanotubes
are highly symmetric structures, and this was more or less explicitly used even in
the early prediction of their conducting properties [8, 14], which was the result
remarkable enough to start the period of N&N. Still, only in 1998, the full symmetry
of these structures was found [9] and described by the line groups, which is latter
on intensively used in the literature [15, 16]. In this chapter, as an illustration of the
various applications of the line group symmetry in physics of quasi-one-dimensional
crystals, we give a brief review of those properties of carbon nanotubes which are
essentially related to their symmetry. For a more extended review see the refer-
ences [11, 16].

Most of the experimentally grown carbon nanotubes are multi-walled, i.e., they
have several coaxial single-wall tubes, each of them being a rolled up graphene
layer, with the difference of radii of the adjacent walls being close to the distance
between the graphite layers (3.44 Å).

2 However, if the hamiltonian is real, then the time reversal must be taken into account to predict
band degeneracy and topology, Sect. 8.1.2.



9.2 Carbon Nanotubes 151

9.2.1 Single-Wall Nanotubes

Single-wall carbon nanotubes are the most interesting object of the contemporary
solid state physics. From the point of view of symmetry, it is a single orbit system
with highly nontrivial line group symmetry. This causes that symmetry gives insight
to all properties of nanotubes.

9.2.1.1 Symmetry and Configuration

Graphene, quite recently synthesized [17] single layer of graphite, has symmetry of
the symmorphic diperiodic group DG80, with the isogonal point group D6h, and
hexagonal lattice with both the periods a0 = 2.46 Å (i.e., rhombic with the angle
between periods α = 60◦). Due to the vertical mirror symmetry, according to the
Sect. 9.1.3, the chiral angle of different tubes is in the range [0, 30◦], and the tubes
with θ ∈ [30◦, 60◦] are their optical isomers. The limiting values θ = 0◦, 30◦
correspond to the tubes (n, 0) and (n, n), called zigzag (Z) and armchair (A). As it
will be immediately justified, the latter two classes are achiral, while all others are
chiral (C) (Fig. 9.2).

The symmetry group of the nanotube (n1, n2) is extracted from Table 9.1: for
chiral and achiral tubes it is from the fifth and thirteenth families, respectively:

LC = T Q( f )Dn, LZA = T Q( f )Dn, (9.14)

with the first family subgroup parameters Q, n, and f to be found according to
the prescription of the Sect. 9.1. As the necessary lattice parameters are X = 1

and Y = 1/2, the length of chiral vector is c = a0n
√

ñ2
1 + ñ2

2 + ñ1ñ2, giving also
the tube diameter and chiral angle: D = c/π and sin θ = n2a0/c. All the tubes

Fig. 9.2 Carbon nanotubes with symmetries. The symmetry groups of the depicted nano-
tubes (8,4), (8,2), (6,0), and (6,6) are T 9

56(0.8 Å)D4, T 11
28(0.46 Å)D2, T 1

12(2.14 Å)D6h, and
T 1

12(1.24 Å)D6h, respectively. The symmetry elements are depicted by the action on the symcell
atom C000 (indicated by 0). Helix and circle represent action of T r

q and Cn . Along x-axis is U -axis.
Parallelograms are vertical and horizontal mirror planes, while zigzag plane and circle are glide
and roto-reflectional plane
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are commensurate because both X and Y are rational. From (9.9) we find isogonal
group principle axis order q. Then, using (9.3) we get z, which according to (9.5d)
gives Q = q/r ; as q is already known, r directly follows, while f is given by (9.5c)
(alternatively, one applies f = a/q̃ , with a obtained from (9.7)). This completes
search for the first family subgroup:

n = GCD(n1, n2); (9.15a)

f = a0√
ñ2

1 + ñ2
2 + ñ1ñ2

, a =
a0

√
3
√

ñ2
1 + ñ2

2 + ñ1ñ2

R ; (9.15b)

q = 2n
ñ1ñ2 + ñ2

1 + ñ2
2

R , (9.15c)

r1 = n1 + 2n2 − ( n2
n )

Eu(
n2
n )−1qR

n1R , r
q̃= r1. (9.15d)

Here, R = GCD(ñ1 + 2ñ2, ñ2 + 2ñ1), which is equal to 3 if ñ1 − ñ2 is divisible by
3, and 1 otherwise; r1 is helicity parameter subdued to the convention C1 of (2.14).
Thus, the transformations of the symmetry group of chiral and achiral tubes are,
respectively:

�tsu = (CQ | f )t Cs
nU u, �tsuv = (CQ | f )t Cs

nU uσvv . (9.16)

All tubes are with nontrivial helical axis, because from (9.15c) it follows that

q̃ = 2
ñ1ñ2+ñ2

1+ñ2
2R is even. In fact, it can be represented [18] as q̃ = 12K + 2,

with K = 0, 1, . . . . Its minimal value q̃ = 2 singles out achiral helical groups,
corresponding to achiral tubes. As the other values are much larger, elementary cell
of chiral tubes contains many monomers. Different tubes have different roto-helical
symmetries, i.e., chiral indices and triples (Q, n, f ) are biuniquely related. Even
more, all chiral tubes have different pairs (Q, n), and only in the achiral tubes (n, 0)

and (n, n), we get the groups T 1
2n(

√
3

2 a0)Cn and T 1
2n(

a0
2 )Cn differing only in the

fractional translations (also R is 1 for zigzag and 3 for armchair tubes).
The isogonal point group is Dq for chiral and D2nh for achiral tubes. Its principle

axis order q is equal to the half of the number of the atoms in the elementary cell.
The graphene elementary cell contains two carbon atoms, which are mutually

connected by rotation C2. Thus, pure translations and this rotation generate whole
graphene from a single atom. After folding, graphene translations become roto-
helical transformations L(1), which together with U -axis coming from C2 symmetry
of the layer, generate nanotube from a single atom. This means that all single-wall
carbon nanotubes are mono-orbit systems: symcell contains an arbitrary chosen
atom, while the transversal is the fifth family subgroup of the symmetry group, i.e.,
LC for both chiral and achiral tubes.

Conveniently, we define nanotube reference frame with z-axis being the nanotube
axis, and x-axis coinciding with the U -axis through center of carbon hexagons.
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Fig. 9.3 Symcell atom C000 and its nearest neighbors 1,2, and 3 at honeycomb. Perpendicular
to the plane C2-axis (dot with arrow), maps C000 to C001 and becomes U -axis of the nanotube
(along x-axis). Lines depict the graphene mirror planes becoming σh and σv in the cases of zigzag
(superscript Z) and armchair (A) tubes, when the chiral vector is in σh and perpendicular to σv

Further, as the symcell atom we chose the atom C000 at graphene honeycomb
(Fig. 9.3). After rolling, its cylindrical coordinates are

r000 =
(

D

2
, φ0, z0

)
, φ0 = 2π

n1 + n2

nqR , z0 = n1 − n2√
6nqRa0. (9.17a)

Acting by the transversal element �tsu of (9.16) on C000 we get coordinates of any
other atom Ctsu :

r tsu = �tsu r000 =
(

D

2
, (−1)uϕ0 + 2π

(
r t

q
+ s

n

)
, (−1)uz0 + t

n

q
a

)
. (9.17b)

In particular, the nearest neighbors 1, 2, and 3 (Fig. 9.3) are atoms Cti si ui (i =
1, 2, 3) with

t1/2 = ∓n2/1

n
, t3 = t1+t2, s1/2 = 2n1/2 + (1 ± r1R)n2/1

qR , s3 = s1+s2, ui = 1.

(9.18)

In chiral cases the stabilizer of any atom is trivial C1 (the identity element only),
and the whole nanotube is generic orbit a1 of the fifth family line groups (Fig. 3.1,
Table 3.2). For the achiral tubes the transversal LC is a halving subgroup of the
symmetry group LZA. Therefore, the stabilizer is with two elements: orbit type and



154 9 Nanotubes

stabilizer of C000 are b1 and {e,Cnσx } for zigzag, and d1 and {e, σh} for armchair
tubes. Also, it follows that carbon nanotubes belong to fifth conformation class.

9.2.1.2 Relaxation

As a single-wall nanotube is a mono-orbit system, its configuration is determined
by the coordinates of the orbit representative atom r000 = (D/2, ϕ000, z000) and
symmetry group. For the fifth family line groups (transversals of all nanotubes)
T Q( f )Dn , the continual parameters are Q and f . Hence, there are altogether five
parameters to be varied. However, the increased symmetry T 1

2n(a/2)Dnh prevent
variation of Q = 2n. In addition, for the zigzag tubes, with atoms being in the
vertical mirror planes, ϕ000 is fixed, likewise z000 for the armchair tubes, with atoms
in the horizontal mirror planes; thus, reduces number of the relaxation parameters to
three. In Table 9.2 configuration parameters for simply rolled and relaxed nanotubes
are compared.

9.2.1.3 Band Topology

The conclusions of the Sect. 8.1.2 enable to derive some quite general characteristics
of the band structures of carbon nanotubes. Since the dihedral axis reverses the both
momenta, i.e., (k,m) → (−k,−m) or (k̃, m̃) → (−k̃,−m̃), it suffices to consider
only the irreducible domain k ∈ [0, π/a] or k̃ ∈ [0, π/ f ].

For chiral nanotubes, the energy bands are double degenerate within interior of
the irreducible domain. However, if simultaneously k̃ = 0, π/ f and m̃ = 0, n/2 the
corresponding states are physically the same and at the edge of the Brillouin zone
singlet states, even and odd with respect to the dihedral axis appear. All other states
are doublets and those with opposite m̃ meet at the center or at the Brillouin zone
edge. Thus, only the bands m̃ = 0, n/2 (i.e., when m̃ = −m̃) are symmetric around
the center and the edge of the Brillouin zone, with extremes in the density of states
at k̃ = 0 and k̃ = π/ f ; these edge point states are singlets, even or odd with respect
to the U transformation.

Achiral carbon nanotubes have in addition vertical σv and horizontal σh mirror
symmetries. Leaving k invariant while reversing m, vertical mirror symmetry causes
additional (altogether fourfold) degeneracy, for the bands characterized by m =
1, . . . , n − 1. However, the bands m = 0 and m = n remain double degenerate,
but with the well-defined σv parity. At the Brillouin zone center there are eight
singlets characterized by different combinations of the angular momentum quantum
numbers m = 0, n, and two types of the mirror parities (σh and σv). The remaining
states (m = 1, . . . , n − 1) are double degenerate, even or odd with respect to σh.
At another Brillouin zone edge, the doublets m = 0, n have σv parity, while if n
is even the corresponding m = n/2 doublet has σh parity. Hence, z-reversal parity
characterizes all the states at the edges of the bands causing van Hove singularities
in the density of states.
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9.2.1.4 Electronic Bands and Conductivity

We consider the simplest tight-binding dynamical model of electrons in carbon nan-
otubes. This spin-independent model is based on graphene sp2 bonding: carbon 1s
orbital is occupied by the two localized core electrons, while the bonds with the
nearest neighbors are realized by three bonding hybridized orbitals (2s and two
in-plane 2p orbitals) occupied by three electrons per atom. Therefore, the relevant
state space is spanned by the remaining p⊥-orbital [19] perpendicular to the tube
surface, half-filled by a single electron per atom. Such an orbital at the site Ctsu is
denoted as | tsu〉. It is generated from the p⊥-orbital | 000〉 of the reference atom
C000, with wave function:

〈r |000〉 = χ000(ρ, ϕ, z) =
√

2Z7
eff

15πa7
B

|r − r000|
(
ρ cosϕ − D

2
cosϕ0

)
e− Zeff

aB
|r−r000|

(9.19)

(aB is Bohr radius and Zeff ≈ 3.81). The orbitals from different sites are consid-
ered to be orthogonal. Hamiltonian is built within nearest neighbor approximation,
assuming that they are symmetrically distributed (this is also an approximation; it
partly neglects curvature effects). Therefore, denoting three nearest neighbors of the
atom Ctsu by C(tsu);i (i = 1, 2, 3), the nonvanishing hamiltonian matrix elements
are diagonal ones, 〈tsu | H |tsu〉 = EC, equal to the carbon atom p-orbital energy,
and 〈tsu| H |(tsu); i〉 = V ≈ −3 eV.

As carbon nanotubes are mono-orbit systems, we use the algorithm explained in
Sect. 8.5.1, with the transversal Y = LC and P being the stabilizer of the initial
atom C000. The pulled down hamiltonian is3

H↓λ =
3∑

i=0

〈000| H |ti si ui〉D(λ)T (�ti si ui ). (9.20)

Here, for i = 0 the on-site matrix element is assumed, i.e., �t0s0u0 = �000 is the
identity, while for i > 0 we use �ti si ui given by (9.18). This matrix should be found
for each irreducible representation D(λ) of the symmetry group of the nanotube
(Table 4.5 for chiral and Table 4.13 for achiral tubes).

For chiral tubes and representations k̃ Em̃ we get

H↓(k̃m̃) = EC
(

1 0
0 1

)+ V

(
0

∑3
i=1 e−iψ̃i

∑3
i=1 eiψ̃i 0

)
, ψ̃3 = ψ̃2 − ψ̃1,

ψ̃1 =−k̃a
n2

q
+ 2πm̃

2n1 + (1 + r1R)n2

qnR , ψ̃2 = k̃a
n1

q
+ 2πm̃

(1 − r1R)n1 + 2n2

qnR .

3 As in the considered case there is a single orbit and single orbital per atom, the term
| A, ψA〉〈B, ψB | determining block H↓λ

AB in the pulled down hamiltonian matrix (8.22) reduces
to the superfluous factor, projector |000〉〈000|.
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Solving the eigenproblem of this hamiltonian we easily get the energy bands,

ε±m̃ (k̃) = EC ± |V |
√√√√

3∑

i=1

(1 + 2 cos ψ̃i ), (9.21)

and the corresponding eigenvectors in the generalized Bloch form (Sect. 8.1):

|k̃m̃0;±〉 = 1√|LC |
∑

ts

(
e−iψ k̃

m̃ (t,s) |ts0〉 ± ei(hk̃
m̃−ψ k̃

m̃ (t,s)) |ts1〉
)
, (9.22a)

|−k̃,−m̃, 0;±〉 = 1√|LC |
∑

ts

(
± ei(hk̃

m̃+ψ k̃
m̃ (t,s)) |ts0〉 + eiψ k̃

m̃ (t,s) |ts1〉
)
;

(9.22b)

here, ψ̃(k̃,m̃)(t, s) = k̃a
q̃ t + 2πm̃

n s and hk
m = arg{V (eiψ1 + eiψ2 + ei(ψ1+ψ2))}.

Analogously, we can get the energies and states for all the representations of
chiral and achiral nanotubes [20]. Also, for linear quantum numbers, the bands have
the same form when ψ̃i is substituted by

ψ1 = −ka
n2

q
+ 2πm

2n1 + n2

qnR , ψ2 = ka
n1

q
+ 2πm

n1 + 2n2

qnR , ψ3 = ψ2 −ψ1.

(9.23)

Obviously, for each m̃ there are two bands (9.21), symmetric with respect to EC.
Taking into account that only half of the states are occupied (at zero temperature),
we see that Fermi level EF coincides with EC (therefore, according to the convention
EF = 0 it is usual to put EC = 0 in (9.21)). The bands ε+Em̃

(k̃) are conducting, while

the valence bands are ε−Em̃
(k̃). Consequently, there is a gap between conducting and

valence bands (and the tube is semiconducting) unless for some values k̃ and m̃ the
square root vanishes. Simple calculation shows that this occurs only for the tubes
with n1 − n2 divisible by three, i.e., only these tubes are conducting. Namely, for
all tubes [21] Fermi level is at k̃F = 2qπ

3na on the band ε−Em̃F
(k̃) with m̃F � 2

3 nr1R
(equality modulo interval (−n/2, n/2]). So, only when n1 −n2 is divisible by three,
the square root vanishes and the gap disappears since ε−Em̃F

(k̃F) = ε+Em̃F
(k̃F) = EF

(Fig. 9.4).
However, Landau non-crossing rule [22] for the bands reveals more subtle

symmetry-based detail. Indeed, having all the quantum numbers identical, the bands
ε−Em̃F

(k̃) and ε+Em̃F
(k̃) cannot cross, i.e., in a more precise model a small secondary

gap appears. Still, for armchair tubes R = 3, giving m̃F = 0 for which there are
two representations of the opposite σv-parity, and it is easily checked that just the
bands with different parity are crossed. To summarize, there are three types of nan-
otubes: armchair ones are conducting, the remaining tubes with n1 −n2 divisible by
3 are quasi-conducting (due to small gap of 0.01 eV they are conducting at the room
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Fig. 9.4 Electronic bands of a chiral (quasi-metallic), zigzag (semiconducting) and armchair
(metallic) nanotubes. Thin and thick bands are twofold and fourfold, respectively. Band quantum
numbers are listed at the bottom

temperature), and all other tubes are semiconducting (with gaps of order of 1 eV).
Calculations show that gap decreases with tube diameter and vanishes in the infinite
limit, when graphene, being semi-metal, is obtained.

9.2.1.5 Bloch States and Electronic Density

In the interior of the helical Brillouin zone energy ε±m̃ (k̃) is double degenerate with
the multiplet of states (9.22) transforming according to the irreducible representa-
tion k̃ Em̃ (U -parity for these representations is �U = 0 and then Π̃U = 1). The

corresponding Bloch wave functionsΨ (k̃,m̃)1 = Ψ k̃,m̃(r) andΨ (k̃,m̃)2 = Ψ−k̃,−m̃(r)
are of the type (8.2) and may be expanded over the symmetry-adapted basis of the
Bloch functions (5.26), with the representative functions (Table 5.2):

Ψ
±k̃,±m̃
I K M (r) = e∓i(m̃ϕ+(k̃− 2πm̃r1

f )z)RM
I K (ρ)H

M
K (ϕ, z), (9.24)

where H M
K (ϕ, z) are the fifth family harmonics (Table 5.1).

The tight-binding model (Sect. 8.5.1) with n atomic orbitals �tsuχi (r) (i =
1, . . . , n) per atom, with χi (r) = 〈r | 000; i 〉 being orbitals of C000, gives the
electronic eigenfunctions in the inductive form (8.21):

Ψ (k̃m̃)l(r) = 1√
|L(5)|

∑

tsu

∑

l ′i
c(k̃m̃)l ′

i D(k̃m̃)∗
ll ′ (�tsu)�tsuχi (r). (9.25)

Here, c(k̃m̃)l ′
i = c(k̃m̃)l ′

000,i are the coefficients associated to the atomic orbitals of C000 in

the expansion of Ψ (k̃m̃)l(r). To find the amplitudes αM
I K = (Ψ

(k̃m̃)l
I K M (r), Ψ

(k̃m̃)l(r))
in the expansion (5.28), we substitute (9.25), and instead of acting on χi (r) by
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the unitary operators D(�tsu), we apply their inverses D(�tsu)
† = D(�−1

tsu) on the
symmetry-adapted functions on the left; this by (8.1) gives

αM
I K =

∑

l ′l ′′i

(
1√

|L(5)|
∑

tsu

D(k̃m̃)∗
ll ′ (�tsu)D

(k̃m̃)
ll ′′ (�tsu)

)
c(k̃m̃)l ′

i

(
Ψ
(k̃m̃)l ′′
I K M (r), χi (r)

)
.

The orthogonality theorem [23] reduces the braced factor to δl ′,l ′′/|λ|, and Bloch
eigenstates expressed through the amplitudes of the atomic orbitals are obtained

αM
I K = 1

2

∑

l ′i
c(k̃m̃)l ′

i

(
Ψ
(k̃m̃)l ′
I K M (r), χi (r)

)
. (9.26)

Figure 9.5 shows the expansion (performed numerically) of the state with quantum
numbers k̃ = π

10 f , m̃ = 1, U = 0 (corresponding to the energy E = −0.285 eV
of the tube (4,2)). Also, the electronic density of this tube is shown. It is sum

Fig. 9.5 Bloch eigenstate Ψ (k̃,m̃)(r) with k̃ = π/10 f = 0.389993 Å
−1

and m̃ = 1, corresponding
to eigenenergy E = −0.285 eV (top panels) and total electronic density (bottom panels) of the
carbon nanotube (4,2) with symmetry group L = T 9

28( f = 0.8 Å)D2 and diameter D = 4.14 Å.
Left: non-negligible expansion coefficients αM

K plotted in the significant range 0 < ρ̃ < 1.5 of the
reduced radial coordinate ρ̃ = 2D/ρ. Right: Harmonic expansions at radii ρ̃ = 1.15
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� = ∑ |Ψ (k̃m̃)l(r)|2 of the densities |Ψ (k̃m̃)l(r)|2 of all the filled states, i.e., the
ones below Fermi level. At zero temperature it is an invariant function and can be
expanded over the harmonics H M

K .

9.2.1.6 Optical Properties

Having at disposal electronic bands and Bloch eigenstates assigned by the complete
set of conserved quantum numbers, we can straightforwardly apply the prescription
given in Sect. 8.3.1 to predict optical properties of carbon nanotubes. The allowed
optical transitions are singled out by the selection rules (8.8). As for the parities,
for chiral tubes only U -parity applies; since in the interior of the Brillouin zone
the Bloch states have not defined parity, i.e., �U = 0. The nontrivial restrictions
appear only at the edges of the zone. On the other side, for achiral tubes the bands
with m = 0, n have σv parity throughout the zone, while the z-reversal parities are
effective only at k = 0, π/a. The allowed transitions are illustrated in Fig. 9.6.

Fig. 9.6 Left: Optical transitions allowed by the selection rules for the tube (4,0). Bands are
assigned by quantum numbers m and �v = A. The allowed transitions differ for electrical field
parallel to nanotube (red) and perpendicular to it (green); in the last case the transitions prevented
by �h parity in k = 0 (indicated by + or − sign on the left) are indicated by blue color. Right:
Parallel and perpendicular components of the optical conductivity tensor for nanotube (10,10)

Taking into account all the selection rules, we apply (8.9) to calculate optical
conductivity. The main features are shown in Fig. 9.6: strong anisotropy and strong
chirality dependence of the absorption.

9.2.1.7 Ion Dynamics

As each carbon nanotube is a single orbit of a line group, the dynamical representa-
tion for the chiral tubes can be read from Table 7.5 (row a1), and from Table 7.13 for
the achiral nanotubes (rows b1 and d1 for zigzag and armchair cases, respectively).
There are six bands for each m. For the purpose of the further discussion we write
here only the k = 0 components:
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Ddyn
0C = 3(0 A+

0 + 0 A−
0 + 0 A+

q/2 + 0 A−
q/2)+ 6

q/2−1∑

m=1

0 Em; (9.27a)

Ddyn
0Z = D+

Z + D−
Z , D±

Z = 20 A±
0 + 20 A±

n + 0 B±
0 + 0 B±

n + 3
n−1∑

m=1

0 E±
m ; (9.27b)

Ddyn
0A = 2D+

A + D−
A, D±

A = 0 A±
0 + 0 B±

0 + 0 A±
n + 0 B±

n + 2
n−1∑

m=1

0 E±
m . (9.27c)

The phonon bands are usually obtained within force constant model. An exam-
ple of the band structure is given in Fig. 9.7. There are four acoustic modes: two
translational in the perpendicular plane are multiplet of the representation 0 E1 for
chiral and 0 E+

1 for achiral tubes; the longitudinal one corresponds to 0 A−
0 , while

the irreducible representation of the twisting mode is again 0 A−
0 for chiral, but 0 B+

0
for achiral tubes. The slopes of the acoustic bands at k = 0 determine the transver-
sal, longitudinal, and twisting sound velocities: vT = 9.41 km/s, vL = 20.37 km/s,
vTW = 14.98 km/s.

The infrared active modes transform according to the irreducible representations
0 A−

0 and 0 E1 for chiral tubes and 0 A−
0 and 0 E+

1 for achiral. Then, using (9.27), from
(8.11), with N ir

ac = 4, 3, 3 for chiral, zigzag, and armchair tubes, respectively, we
conclude that there are 11, 5, and 6 infrared active modes, respectively. However,
some of them are multiplets of 0 E1 or 0 E+

1 representations, thus having the same
energies; counting this, we may expect at most 6 and 3 lines in the spectra of chiral
and achiral tubes, respectively.

Fig. 9.7 Phonon dispersions of the tube (8,2). Bolded branches are beginning with acoustic (A),
radial-breathing (RB), and high energy (HE) modes
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Similarly, for the Raman active modes we find the irreducible representations
0 A+

0 , 0 A−
0 , 0 E1, 0 E2 for chiral and 0 A+

0 , 0 B+
0 , 0 E−

1 , 0 E+
2 for achiral tubes. Conse-

quently, the number of the Raman active modes is 26, 14, and 15 for chiral, zigzag,
and armchair tubes, respectively (N R

ac = 4, 1, 1), but as some of them are double
degenerate, there may be at most 15, 8, and 9 different frequencies in the Raman
spectra.

As the Raman and infrared measurements are among the basic tools in the char-
acterization of materials, the frequencies of the active phonons are extensively cal-
culated [15, 24] for nanotubes, in order to get their dependence on the tube diameter
and chirality. However, it is experimentally found that the totally symmetric modes,
corresponding to the representation 0 A+

0 , are much more intensive in the Raman
spectra than the others. The lowest among them is called breathing mode, because
the vibrations of the atoms are almost radial, and in the limiting case of infinite
diameter it becomes transversal acoustic graphene mode. The other two (for chiral)
or one (for achiral tubes) symmetric modes are in the high-energy region.

9.2.1.8 Diffraction

Diffraction amplitude [25] of a single-wall carbon nanotube is proportional to the
geometrical factor for its single orbit, i.e., for the transversal T r

q( f )Dn (Table 8.2):

Fig. 9.8 Diffraction patterns of carbon nanotubes. Below the patterns for normal incident wave
(Φ = 0) are layer lines for chiral, zigzag, and armchair tubes
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G A(kK ) = 2
∑

M

iMq−K p JMq−K p(Dπk⊥)ei(K p+Mq)Φ

cos
[
(Mq − K p)ϕ000 + 2πK

z000

a

]
.

Diffraction patterns are illustrated in Fig. 9.8. As for carbon nanotubes q is even,
the symmetry of the diffraction space is Dqh. According to general discussion
(Sect. 8.4), layer lines are spaced by 1/a, and every q̃th one includes the same
Bessel functions multiplied by different cosine factors. The layer lines K =
0,±q̃,±2q̃, . . . are with central peak, while other ones have intensity gap, which
is minimal for K = r or K = q̃ − r . The leading Bessel functions in the layer lines
K = ±1 are Jp or Jq−p.

Note that for zigzag tubes the atom C101 is in the xz-plane; thus ϕ101 = 0, and if
C101 is taken for the orbit representative the cosine factor becomes M-independent.
Thus there are only two different patterns (for odd and even K ) of the layer lines,
though the intensities are K -dependent. This manifests that this orbit belongs also
to conformation class Y (4) (as chosen for b1 in Table 3.2). Analogously, for arm-
chair tubes z000 = 0 gives the geometrical factor of the conformation class Y (8).
Chiral tubes are characterized by the properties of the conformation class Y (5)

only.

9.2.1.9 Potentials

The total potential produced by a tube at the point r is

V (r) =
∑

tsu

v(r, r tsu), (9.28)

where v(r, r tsu) is the potential at r produced by the atom Ctsu . It is invariant
(Sect. 5.2.1), and its general form is given by (5.28). Recall that if the terms with
|K | = M = 1 vanish, the potential has larger symmetry than the system. We analyze
here several examples of the expansions of the potentials over harmonics.

Coulomb potential of ions, v(r, r tsu) = 1
|r−r tsu | may be treated analytically. In

fact, due to the Poisson equation ΔV (r) = −4π
∑

tsu δ(r − r tsu), the expansion
over the basis (5.19) is straightforwardly found

V (r) =
∑

K M

∫ ∞

0
αMb

K U M
K b(bρ, ϕ, z)db, αMb

K = 8π

D

U M∗
K b (

D
2 , ϕ000, z000)

b2 + (2π 2K−M
a )2

.

(9.29)

The amplitudes αM
K (ρ) are obtained in terms of modified Bessel functions Km(x)

and Im(x). E.g., for the achiral tubes we get for K = M = 0, K = M/2 (M �= 0
even), and otherwise, respectively:
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α0
0(ρ) = H0∗

0 (ϕ000, z000)

{
0, ρ ≤ D

2 ;
−4π ln

(
2ρ
D

)
, ρ > D

2 ,
(9.30a)

αM
M
2
(ρ) = 2π

nM
H M∗

M
2
(ϕ000, z000)

⎧
⎪⎨

⎪⎩

(
2ρ
D

)nM
, ρ ≤ D

2 ;
(

2ρ
D

)−nM
, ρ > D

2 ,
(9.30b)

αM
K (ρ) = 4πH M∗

K (ϕ000, z000)

⎧
⎨

⎩
KnM

(
π

|2K−M|D
a

)
InM

(
2π |2K−M|

a ρ
)
, ρ ≤ D

2 ;
InM

(
π

|2K−M|D
a

)
KnM

(
2π |2K−M|

a ρ
)
, ρ > D

2 .

(9.30c)

Several harmonics of low order in K and M are plotted in Fig.9.9.
Another example is Van der Waals interaction between the layers in graphite

and walls of multi-wall nanotubes. The pairwise potential is well fitted [26] to the
interaction of the layers in graphite by Lenard–Jones form:

v(r) = −18.5426

|r|6 + 29000.4

|r|12
. (9.31)

We numerically calculate total potential V (r) and expand it over harmonics. The
amplitudes αM

K (ρ) for the radius ρ± = D
2 ± 3.44 Å, corresponding to the adjacent

layer in a multi-wall nanotube, are depicted in Fig. 9.10. These results will be used
in Sect. 9.2.2 to discuss layer–layer interaction in double-wall tubes.

An important common characteristics of all the discussed expansions is that
amplitudes αM

K (ρ) rapidly decrease both with M and K .

Fig. 9.9 Total potential produced by the carbon nanotube (13,13) (symmetry group L = T 1
26( f =

1.23 Å)D13h, diameter D = 17.64 Å), resulting from the Coulomb potential of the atoms. Non-
negligible expansion coefficients αM

K (ρ̃) are plotted in the significant range 0.75 < ρ̃ < 1.2 of the
reduced radial coordinate ρ̃ = 2ρ/D
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Fig. 9.10 Van der Waals potential V (ρ, ϕ, z) of the tube (12,12) (symmetry group L = T 1
24( f =

1.23 Å)D12h and diameter D = 16.28 Å) at ρ = 7.2 Å. Right: coefficients αM
K (arbitrary units) in

the expansion (5.28) over line group harmonics. Left and middle: density and cylindrical (ϕ and z,
radius of the surface at ϕ and z equals to V (ρ, ϕ, z) added to the nanotube radius) plots of V

9.2.2 Double- and Multi-Wall Nanotubes

Although in this section we primarily consider double-wall carbon nanotubes,
the methods and results presented can be straightforwardly generalized to multi-
wall nanotubes. The double-wall nanotube W @W ′ = (n1, n2)@(n′

1, n′
2) consists

of two coaxially arranged single-wall nanotubes, denoted as W = (n1, n2) and
W ′ = (n′

1, n′
2). Since the axes z and z′ of the walls coincide, their relative position

is determined by angle Φ and vertical displacement Z : x-axis of the inner wall,
defined by (9.17a), should be rotated for Φ and upraised for Z to match the x ′-axis
of the outer wall. Therefore, in the frame of the interior wall, its atoms have coordi-
nates (9.17), while the positions r ′

tsu of the outer wall atoms are given by the same
expression, only with Φ and Z added to φ′

0 and z′
0, respectively.

9.2.2.1 Symmetry

Symmetry group of a multi-wall carbon nanotube is intersection of the symmetry
groups (9.14) of the walls. Therefore we apply Theorem 3, which for double-wall
carbon nanotubes gives the following general result [27]. As both Q and Q′ are
rational, the commensurability conditions reduce to that of fractional translations or
equivalently to the commensurability of periods. When it is satisfied, the double-
wall tube is commensurate with the period a∩ = â′a = âa′ (the second equality
defines co-primes â and â′). However, using (9.15b), we find a/a′ = √

q̃R′/q̃ ′R,
implying that whenever R �= R′ tubes are incommensurate. Thus, for commensu-
rate tubes a/a′ = √

q̃/q̃ ′, meaning that commensurability requires

â = √
q̃/GCD(q̃, q̃ ′), â′ = √

q̃ ′/GCD(q̃, q̃ ′), (9.32)

i.e., that the square roots are co-prime integers. When it is satisfied then the first fam-
ily subgroup of the symmetry group of the double-wall tube is L(1)∩ = T r∩

q∩(a∩)Cn∩ ,
with



166 9 Nanotubes

n∩ = GCD(n, n′), q∩ = n∩GCD(r â′ n′

n∩
− r ′â n

n∩
,
√

q̃q̃ ′), a∩ = â′a = âa′.
(9.33)

Helicity parameter r∩ is determined by the integer r∩ = (r âτ + q
n s0)q∩/q with

τ = √
q̃q̃ ′/GCD(r â′ n′

n∩ −r ′â n
na
,
√

q̃q̃ ′) and s0 = τ(r âq ′−r ′â′q)(n̂Eu(n̂′)−1)/n′q̃q̃ ′;
then r1∩ = r∩ + jq∩/n∩, where j is the minimal nonnegative integer for which r1∩
and q∩ are the co-primes.

The remaining symmetry elements, parities, are present only for special relative
positions of the walls, when some of their U -axes and/or mirror planes coincide [9].
Recalling again the theorem of Abud and Sartori [28], we conclude that just such
configurations, having maximal symmetry, are stable. Therefore, U -axis is always
present, while when both walls are achiral, mirror planes appear, too.

Leaving aside more detailed study of particular double-wall tubes, we only stress
out that the walls may be commensurate or incommensurate. In the later case sym-
metry is described by a finite axial point group. Even in the commensurate cases
L(1)∩ is small in comparison to the single-wall tubes. Both facts manifest the incom-
patibility of the symmetries of the walls and have strong impact on the interaction
of the walls, as we shall see immediately.

9.2.2.2 Interwall Interaction

The interaction of the walls W and W′ is known to be of the van der Waals type. With
the model of the Lenard–Jones interatomic potential (9.31), the total interaction
between the walls is

V (Φ, Z) =
∑

t ′s′u′

∑

tsu

v(r ′
t ′s′u′ , r tsu) =

∑

t ′,s′,u′
Vin(r ′

t ′s′u′) =
∑

t,s,u

Vout(r tsu). (9.34)

Here, Vin(r) = ∑
t ′s′u′ v(r ′

t ′s′u′ , r) and Vout(r) = ∑
tsu v(r tsu, r) are the poten-

tials (9.28) of the interior and outer wall, respectively. It is obvious that V (Φ, Z)
is invariant under transformations of the L of the interior and L′ of the outer wall
atoms. Therefore, the total symmetry of the potential is the product L× = LL′ =
L⊗L′/L∩L′ of these groups. Notice that if there was no interaction between walls,
the symmetry of the double-wall tube would be the direct product L ⊗ L′. In other
words, the interaction breaks the symmetry to L∩ = L ∩ L′ by the factor L×, i.e.,
the symmetry of the interaction is exactly the symmetry breaking group.

The breaking group L× is an ordinary line group only if the commensurabil-
ity condition (9.32) is fulfilled, while otherwise it is a bihelical one (Sect. E.2).
In the commensurate case, the parameters of the first family subgroup L(1)× =
T r1×

q× (a×)Cn× of the breaking group are [27]
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n× = LCM(n, n′)
√

q̃q̃ ′

GCD(r1â′n′/n − r ′
1ân/n,

√
q̃q̃ ′)

, q× = LCM(q, q ′), (9.35)

a× = aa′GCD(r1â′n′/n∩ − r ′
1ân/n∩,

√
q̃q̃ ′)

A GCD(q, q ′)
, (9.36)

qq ′r1×
q, q ′ = (r1â′q ′ − r ′

1âq)âEu(â′) + r ′
1qâ

ââ′ (mod n∩q̃q̃ ′, r1â′q ′ − r ′
1âq).

(9.37)

By convention, r1× is the unique solution of the last equation which is less than q×
and co-prime with q×.

The mentioned incompatibility of L and L′ yields simultaneously low symmetry
of double-wall nanotubes and high symmetry of their interaction. This implies fine
periodicity (Fig. 9.11) of the interaction potential along and around the z-axis, i.e.,
small periods a× and 2π/n×. Precisely, if Vin in (9.34) is expanded over harmonics
of L, the remaining summation over L′ cancels all the terms which are not also

Fig. 9.11 Interwall potential V (Φ, Z) (density and cylindrical plot). Nanotube (12,12) is taken as
the emitter, and potential and units are as in Fig. 9.10. Up: (12,0)@(12,12), incommensurate, thus
super slippery along z-axis, with rotational symmetry C24. Down: (7,7)@(12,12), commensurate,
roto-translational symmetry T (a)C168) (almost rotationally super slippery due to large n)
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harmonics of L′. Hence, only a sparse distribution of the common harmonics which
contribute to the interaction is left: the first common harmonics will be with large
K and M . In the view of the rapid decrease of the amplitudes αM

K (Fig. 9.10), this
means that the interaction of the walls is generally very small.

In particular, for incommensurate walls, when L∩ is finite, the breaking group
is bihelical, with broken translational commensurability condition, meaning that the
orbits of L× are quasi-continual along Z , i.e., for any Z , there is an arbitrary close
Z + ε that is obtained from Z by a transformation from L×. However, due to the
invariance of V , values V (Φ, Z) and V (Φ, Z +ε) are equal, and as V is continuous
function, this implies that it is constant along Z . Hence, no energy is needed for
the coaxial relative translation of the incommensurate walls, i.e., the walls are super
slippery [29].

Let us only mention here that super slippery effect cannot be realized for the
coaxial rotations of the walls, because from the beginning it was assumed that Q and
Q′ are rational. Still, if for some other types of nanotubes Q and Q′ were irrational
it would be possible to build up a super slippery double-wall nanotube, an ideal
component of nano-machines.
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Appendix A
Koster–Seitz Notation

Abstract Necessary details on notation of Euclidean transformations which are
widely used in three-dimensional crystallography and solid state physics are sum-
marized.

Arbitrary transformation in the Euclidean space can be seen as a successive appli-
cation of an orthogonal transformation X (rotation, inversion, or their combination)
and a translation for some vector f . Thus, it can be expressed by the symbol (X | f )
defined as follows:

(X | f )r = X r + f , (A.1)

where r is a radius vector. In an orthonormal frame {ex , ey, ez}, vectors r and f
are columns of their coordinates (r = (x, y, z)T and f = ( fx , fy, fz)

T ) while X
is a 3 × 3 matrix (X = (X)i j ). These matrices give the coordinate representation
of (A.1). The action (A.1) can also be given in a four-dimensional notation: vector
r = (x, y, z, 1)T is used instead of r , and the transformation (A.1) is represented
by a 4 × 4 matrix:

[X | f ] =

⎛

⎜⎜⎝

X11 X12 X13 fx

X21 X22 X23 fy

X31 X32 X33 fz

0 0 0 1

⎞

⎟⎟⎠ . (A.2)

Then, the transformed vector is obtained after omitting the last coordinate 1 in
[X | f ]r .

Obviously, when the translation vector f is equal to 0, the transformation reduces
to the orthogonal part: (X |0) = X . Analogously, pure translations are obtained
for orthogonal part X equal to the identical matrix I . Thus, (I |0) is the identity
transformation. Multiplication rule and inverse transformation follow from (A.1) or
from its matrix form (A.2):

(X | f )(X ′| f ′) = (X X ′| f + X f ′), (X | f )−1 = (X−1| − X−1 f ). (A.3)

Damnjanović, M., Milošević: . Lect. Notes Phys. 801, 171–190 (2010)
DOI 10.1007/978-3-642-11172-3 c© Springer-Verlag Berlin Heidelberg 2010
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Conventionally, rotation for angle ϕ = 2π
Q around z-axis is denoted by Rϕ

or CQ , while σ and U denote mirror plane and rotation for π around an axis
perpendicular to z; if necessary, subscript specifies position of these symmetry
elements: σh is horizontal mirror plane, Ux coincides with x-axis, σv is verti-
cal mirror plane, and σx such a plane containing z-axis. The product C2nσh is
denoted as S2n . When translation is along z-axis, f = f ez , we write (R| f )
and [R| f ]. Finally, the Lie algebra generators (Sect. E.1), as being derivatives of
transformations (R(x)| f (x)) over some parameter x , we write (R(x)| f (x))′x =
∂
∂x (R(x)| f (x))|x=0, and [R(x)| f (x)]′x analogously. In particular, z-components of
the linear and angular momenta are pz = −ih̄(I | f )′f and lz = −ih̄(Rϕ | f )′ϕ .



Appendix B
Rod Groups

Abstract Among (infinitely many) line groups there are 75 rod groups, with the
order q of the principle axis of rotation of the isogonal group taking crystallographic
values q = 1, 2, 3, 4, 6 or q = 1, 2, 3 for the line groups with roto-reflections (i.e.,
for the families 2, 9, and 10).

Rod groups are listed in Table B.1 using international notation [1, 2] which is
obtained substituting L by p in the symbol of the corresponding line groups.
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Appendix C
Elements of the Number Theory

Abstract Elementary number theory notation and terminology necessary in analy-
sis of the line groups is introduced.

For each real number x , the greatest integer being less than or equal to x is called
integer part of x and denoted by [x]. The difference {x} = x−[x] is called fractional
part.

The greatest common divisor of the integers x and x ′ is denoted as x, x ′ or

GCD(x, x ′). Analogously, for the least common multiple we use either x, x ′ or
LCM(x, x ′). We say that x and x ′ are coprimes if x, x ′ = 1. For any x and x ′,
we define coprimes x̂ and x̂ ′ by

x = x̂GCD(x, x ′), x ′ = x̂ ′GCD(x, x ′). (C.1)

It is useful to note that

x, x ′ = x̂ x̂ ′x, x ′ = x̂ x ′ = x̂ ′x, xx ′ = x̂ x̂ ′x, x ′2 = x, x ′x, x ′. (C.2)

Especially, when x = ab and x ′ = a′b′, it follows that

x, x ′ = a, a′ b, b′ â, b̂′ â′, b̂, x, x ′ = a, a′ b, b′ ââ′b̂b̂′

â, b̂′ â′, b̂
= a, a′ b, b′

â, b̂′ â′, b̂
,(C.3)

x̂ = âb̂

â, b̂′ â′, b̂
, x̂ ′ = â′b̂′

â, b̂′ â′, b̂
,

x̂

x̂ ′ = âb̂

â′b̂′ . (C.4)

The numbers x and y are equal modulo positive integer x ′ if { x
x ′ } = { y

x ′ },
i.e., if there is an integer i such that x = y + i x ′; this is denoted as x

x ′= y
or x = y (mod x ′). In particular, the minimal integer y equal x modulo x ′ is
y = x ′{ x

x ′ }.
The inverse of x modulo x ′, denoted as x−1

(x ′), is the minimal integer y such that

xy
x ′= 1, i.e., such that xy = 1 + Ax (A integer). It exists only if x and x ′ are
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co-primes (since x ′{ xy
x ′ } = x, x ′ x̂ ′{ x̂ y

x̂ ′ } is multiple of x, x ′), and then the Euler
theorem shows that

y = x−1
(x ′)

x ′= xEu(x ′)−1, (C.5)

where Eu(x ′) is Euler function giving the number of the co-primes with x ′ being
less than or equal to x ′. Note that A = (xEu(x ′) − 1)/x ′ is integer and co-prime
with both x and x−1

(x ′) and that when x < x ′, x is the inverse of its inverse. In some

occasions we take a benefit of a fact that the parities of x ′, x , x−1
(x ′), and A can be

combined in only six ways which are given in Table C.1.

Table C.1 Possible combinations of the parities (“o” and “e” stand for odd and even) of x ′, x , y,
and A related by xy = 1 + Ax ′

x ′ x y A xy x ′ x y A xy x ′ x y A xy

1 o o o e o 3 o e o o e 5 e o o o o
2 o o e o e 4 o e e o e 6 e o o e o

Diophantine equation in unknown integer x is

ax
b= c, (C.6)

where a, b, and c are integers. The above analysis shows that it is solvable if and
only if c is a multiple of d = GCD(a, b). Especially, when a and b are co-primes

(i.e., d = 1), particular (minimal positive) solution of (C.6) is x0
b= caEu(b)−1, while

general solution is xz = x0 + ib, z ∈ Z. Otherwise, when d ≥ 1 (and divides c),
there are d particular solutions of (C.6): xi = x0 + i b

d (i = 0, . . . , d − 1), with

x0
b/d= c

d (
a
d )

Eu( b
d )−1 (solving the original equation divided by d); then the general

solution is xiz = xi + zb.
Diophantine equation in two unknowns x and y is

ax ∓ by = c, (C.7)

where a, b, and c are integers. When a and b are co-primes, its particular solution
is a pair (x0, y0):

x0 = caEu(b)−1, y0 = ± c

b
(aEu(b) − 1),

while the general one consists of the pairs (xz, yz):

xz = caEu(b)−1 + zb, yz = ± c

b
(aEu(b) − 1)± za, z ∈ Z. (C.8)
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Generally, the Diophantine equation (C.7) is solvable if and only if c is a multiple of
GCD(a, b). Then there is a unique particular solution (x0, y0) such that 0 ≤ x0 <

a
a,b , and the general solution is

xz = x0 + b

a, b
z, yz = y0 ± a

a, b
z. (C.9)



Appendix D
Construction of the Representations

Abstract Due to the structure of the line groups, construction of their irreducible
representations and co-representations can be straightforwardly performed with
a help of the basic group theoretical considerations, which are briefly reviewed
here.

D.1 Irreducible Representations

The first family line groups are direct products of cyclic groups, which allows to
find their representations. On the other side, induction of the representations from
halving subgroup gives a method to construct irreducible representations of other
families.

D.1.1 Cyclic Groups

As cyclic groups are abelian their irreducible representations are, according to Schur
lemma, one-dimensional. For unitary representations this means that the generator
is represented by D(λ)(g) = eiλ, for γ restricted to (−π, π ]. If group is of the finite
order n, then gn is the identity, and 1 = D(λ)(gn) = einλ. Thus, different represen-
tations are counted by λ = 2mπ/n for m integer taking values from (−n/2, n/2].
In particular, this gives form of the irreducible representations of the helical groups
T Q( f ) and pure rotational point factor Cn used in Sect. 4.1.1.

D.1.2 Direct Product

Complete set of the irreducible representations of the direct product group L =
A ⊗ B is

D(αβ)(L) = D(α)(A)⊗ D(β)(B), i.e. D(αβ)(ab) = D(α)(a)⊗ D(β)(b), (D.1)
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where D(α)(A) and D(β)(B) run over the complete sets of the irreducible repre-
sentations of A and B. This immediately gives the irreducible representations of the
first family groups (Sect. 4.1.1), being the direct product of the cyclic groups T Q( f )
and Cn .

D.1.3 Induction from a Halving Subgroup

Knowing the irreducible representations of a halving subgroup, we construct the
irreducible representations by the inductive method [3]. Let L be a group, and L′ its
halving subgroup with � being the complete set of the irreducible representations
�(μ)(L′). In L there is a unique coset of L′; choosing an arbitrary element � of L
outside L′ as coset representative, we decompose the group:

L = L′ + �L′.

Halving subgroup L′ is invariant subgroup and contains squares of all the ele-
ments of the group; in particular, �2 and �−1�′� for any �′ from L′ are from L′.
Therefore, if �(λ)(L′) is an irreducible matrix representation of L′, the matrix
�
(λ)
� (�′) = �(λ)(�−1�′�) is one of the matrices of the representation �(λ)(L′), but

not necessarily the same as �(λ)(�′). The set of matrices �(λ)� (L′) is irreducible

(as simply reordered set �(λ)(L′)) and a representation of L′ since �(λ)� (�′�′′) =
�
(λ)
� (�′)�(λ)� (�′′). So, �(λ)(L′) and �(λ)� (L′) are two irreducible representations of

the same dimension. We check whether they are equivalent, i.e., whether there is
a nonsingular matrix A such that for each �′ holds the relation A−1�(λ)(�′)A =
�
(λ)
� (�′). Depending on the outcome the irreducible representation(s) of L are con-

structed from �(λ)(L′) in one of the two following ways:

Theorem 1 LetΔ be the set of all nonequivalent irreducible matrix representations
�(λ)(L′) (λ = 1, 2, . . . ). For each λ we find �(λ)� (L′) and the equivalent to it rep-
resentation from Δ we denote by �(λ�). Two cases are possible:

1. �(λ)(L′) = �(λ�)(L′).
Then two non-equivalent irreducible representations D(λ±) of L are obtained:

D(λ±)(�′) def= �(λ)(�′), D(λ±)(�) def= ±A, (D.2a)

where A is a nonsingular matrix satisfying:

a. A−1�(λ)(�′)A = �(λ)(�−1�′�) for each �′, and
b. A2 = �(λ)(�2).

2. D(λ)(L′) �= D(λ�)(L′). Then the pair D(λ)(L′) and D(λ�)(L′) give single irre-
ducible representation D(λ,λ�) of L:
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D(λ,λ�)(�′) def=
(
�(λ)(�′) 0

0 �
(λ)
� (�′)

)
, D(λ,λ�)(�)

def=
(

0 �(λ)(�2)

1 0

)
. (D.2b)

The set of the obtained irreducible representations of L (two for each λ such that
λ� = λ, and one for each pair of nonequal λ and λ�) is the complete set of non-
equivalent unitary irreducible representations of L.

The representations listed in Tables 4.1–4.13 are obtained by the three-step pro-
cedure, according to the following scheme:

1 L(1)

� C2nσh σh σh U σv (σv| a
2 ) σv

2 L(2) L(3) L(4) L(5) L(6) L(7) L(8)

� Ud Ud U U U
3 L(9) L(10) L(11) L(12) L(13)

(D.3)

The first step is to find representations of the first family line groups. In the second
step we construct the representations of the families 2, . . . , 8, applying the above
theorem to the irreducible representations of the first family subgroup, with the coset
representative � indicated in the second row. Finally, in the third step Theorem 1 is
used to find representations of the remaining families 9, . . . , 13 (the applied coset
representatives and the halving subgroups, being from the positive families 6, 7, or
8 (Sect. 2.3.3), are listed in (D.3)).

D.2 Co-representations of the Magnetic Groups

Irreducible co-representations of the magnetic group L∗(L′) = L′ + Θ�∗L′ are
constructed by the induction procedure similar to the one described in Sect. D.1.3 for
the ordinary representations. We again assume that the irreducible representations
of the halving subgroup L′ (purely geometrical transformations) are known. Then,
for each such representation �(λ)(L′) we define the set of matrices �(λ)

∗
�′ (�∗) =

�(λ)
∗
(�∗−1��∗), which is again an irreducible representation. According to the rela-

tionship between �(λ)(L) and �(λ)
∗

�∗ (L), Wigner defined three types of irreducible
representations of L, each giving an irreducible co-representation of L∗(L) in a
particular way.

Theorem 2 Let Δ be the set of all the nonequivalent irreducible matrix representa-
tions �(λ)(L′) (λ = 1, 2, . . . ) of L′. For each λ we find �(λ)

∗
�∗ and equivalent to it

representation �(λ
∗
�∗ ) from Δ. Then there are three kinds of irreducible representa-

tions of L′, and for each of them the corresponding irreducible co-representation is
constructed as follows.



182 Appendix D

1. If �(λ)(L′) = �(λ
∗
�∗ )(L′) and AA∗ = �(λ)(�∗2) for a nonsingular operator

A such that �(λ)
∗
(�∗−1��∗) = A−1�(λ)(�)A for each � in L′, then we obtain

irreducible co-representation D̄(λ)(L ∗ (L ′)) of L∗(L ′) of the same dimension as
�(λ)(L′):

D̄(λ)(�)
def= �(λ)(�), D̄(λ)(�∗�) def= A�(λ)

∗
(�). (D.4a)

2. If �(λ)(L′) = �(λ
∗
�∗ )(L′) and AA∗ = −�(λ)(�∗2) for a nonsingular operator A

such that �(λ)
∗
(�∗−1��∗) = A−1�(λ)(�)A for each � in L′, then we obtain the

irreducible co-representation D̄(λ)(L∗(L′)) of L∗(L′) of the doubled dimension:

D̄(λ)(�)
def=
(
�(λ)(�) 0

0 �
(λ)∗
�∗ (�)

)
, D̄(λ)(�∗�) def=

(
0 �(λ)(�∗2

)�
(λ)
�∗ (�)

�(λ)
∗
(�) 0

)
.

(D.4b)

3. If �(λ)(L′) �= �(λ
∗
�∗ )(L′), then �(λ)(L′) and �(λ

∗
�∗ )(L′) give by (D.4b) single

irreducible co-representation D̄(λ)(L∗(L ′)) of L∗(L ′) of the doubled dimension.

The set of the obtained irreducible co-representations of L∗(L ′) (one for each λ
such that λ∗

�∗ = λ, and one for each pair of nonequivalent λ and λ∗
�∗) is complete.



Appendix E
Generalizations of the Line Groups

Abstract The structure of the line groups allows some generalizations, which have
physical applications. By emphasizing the factorization of the line groups as the
crucial for their construction and consequently for their very definition, the possi-
bility to widen the scope of the factors Z and P is opened, namely, we had tacitly
assumed that the both factors were discrete and that the point factor was finite,
although this was not required by the factorization itself. Therefore we here briefly
discuss the groups having the same form of factorization L = Z P but without the
above-mentioned restrictions.

The most straightforward way to the forthcoming generalizations is to consider
the symmetry group Lcyl = T 1C∞ of the homogeneous cylinder. Leaving the par-
ities aside, it contains all translations along z-axis, all rotations around it, and their
combinations; in particular, it contains all the first family line groups. This group
is a subgroup of the Euclidean group T 3 SO(3), comprising all the translations and
rotations of the three-dimensional Euclidean space.1 Further, Lcyl = T 1C∞ is a
two-dimensional Lie group, with Lie generators (Appendix A)

P = (I |z)′z, L = (Rϕ |0)′ϕ. (E.1)

These are essentially z-components of linear and angular momenta. However, the
same Lie group is formed by arbitrary two independent linear combinations αi P +
βi L (i = 1, 2) of these generators. Note that such a linear combination with both
nontrivial coefficients is proportional to some of the continual helical generators

P̃h = (Rϕ | h

2π
ϕ)′ϕ = h

2π
P + L . (E.2)

The helical momentum introduced in (2.8) is proportional to this generator: p̃h =
h̃
h Ph . Thus, for any two different h1 and h2 the group Lcyl is generated by Ph1 and
Ph2 .

1 Note that SO(2) = C∞.
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E.1 Continual Line Groups

At first, we consider cases when one of the generators remains discrete, while
the other one becomes continual. When the discrete rotational group P = Cn is
substituted by C∞, five continual line groups, being one-dimensional Lie groups
(Table E.1) are obtained. Further, allowing continual helical generator and retaining
discrete P , we get two additional one-dimensional Lie groups.

Table E.1 Continual line groups. For each family of the continual line groups the international
symbol, different factorizations, generators, and the isogonal point group P I are given. Continual
subgroup is point factor (containing C∞ generated by L) for groups 1–5, and generalized transla-
tional group (T 1, with Lie generator P) for groups 6 and 7. Z0 = (I |a) is written instead of the
conventional Z1

n

International symbol Factorizations Generators L(1) P I

1 L∞(a) T (a)⊗ C∞ Z0, L T (a)⊗ C∞ C∞
2 L∞/m(a) T (a) ∧ C∞h Z0, L , σh T (a)⊗ C∞ C∞h
3 L∞2(a) T (a) ∧ D∞ Z0, L ,U T (a)⊗ C∞ D∞
4 L∞m(a) T (a)⊗C∞v=C∞v∧T ′(a)

=C∞∧T ′(a/2) Z0, L , σv T (a)⊗ C∞ C∞v

5 L∞/mmm(a) T (a)∧Dnh=T ′(a)Dnh
=T ′(a/2)Cnh=T ′(a/2)Dn

Z0, L ,U, σv T (a)⊗ C∞ D∞h

6 Ln(0) T 1 ⊗ Cn P,Cn T 1 ⊗ Cn Cn

7 Ln2(0) T 1 ⊗ Dn P,Cn,U T 1 ⊗ Cn Dn

E.2 Bihelical Line Groups

Finally, we briefly consider discrete groups with two helical generators, (CQ+| f +)
and (CQ−| f −), and possibly other finite order generators. Obviously, any pair of
such generators commute, implying that independently of other generators, such
group contains subgroup T Q+( f +)T Q−( f −). Let us start with analysis of this
product.

As obviously all the elements of these groups commute, the resulting product is
the factor group

T Q+,Q−( f +, f −) = T Q+( f +)⊗ T Q−( f −)
T Q+( f +) ∩ T Q−( f −)

. (E.3)

Being intersection of two cyclic groups, T Q+( f +)∩T Q−( f −) is also cyclic, gener-
ated by a roto-helical transformation (CQ∩| f ∩). Therefore it is either infinite helical
group T Q∩( f∩) or a trivial group (comprising the identity transformation only, i.e.,
Q∩ = 1, f∩ = 0). Let us examine the nontrivial case.

Theorem 3 The product group T Q+,Q−( f +, f −) is line group T Q( f )Cn if and
only if the intersection group T Q∩( f∩) = T Q+( f +)∩T Q−( f −) is nontrivial helical
group, which is equivalent to the commensurability condition: there exists irrational
number J such that 1

Q± = x± + J±y±, with rational x± and y± such that ratios
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f +/ f − and y+/y− are equal and rational, i.e., when f +
f − = y+

y− = F+
F− for some

co-primes F±. Then 1
Q∩ = x∩ + J y∩ and 1

Q = x + J y, with:

f = f ±
F± , y = y±

F± , (E.4)

f ∩ = nF+F− f, y∩ = nF+F−y, (E.5)

where n is determined (together with integer Z) as the minimal positive integer
satisfying x+

F+ − x−
F− = Z

τ F+ F− ; finally, Q and Q∩ (i.e., x and x∩) are found (together
with integers Z± and Z±

∩ ) from the systems of equations

x = x±
F± − Z±

nF± , Z+ − Z− = Z , (E.6)

x∩ = nF∓x± − Z±
∩ , Z+

∩ − Z−
∩ = Z . (E.7)

In order to prove the theorem we first note that helical group T Q( f ) is a subgroup
of T Q′( f ′) if and only if there are positive integers F ′ and Z ′ such that f = F ′ f ′

and 1
Q′ − F ′

Q = Z ′. Indeed, as the both groups are cyclic, the subgroup condition

actually means that there is positive integer F ′ satisfying (CQ′ | f ′)F ′ = (CQ | f ).
Now we consider the intersection. As T Q∩( f∩) is the maximal (cyclic) sub-

group of both T Q+( f +) and T Q−( f −), its generator satisfies (CQ+| f +)F− =
(CQ∩| f∩) = (CQ−| f −)F+

, and according to the lemma, it is nontrivial if and
only if there are reals Q∩ ≥ 1 and f ∩ > 0 such that the two pairs of equations
(conveniently, x̆ denotes 1/x)

f ∩ = F∓
∩ f ±, F∓

∩ Q̆± − Q̆∩ = Z∓
∩ , (E.8)

are simultaneously solvable in the integers Z±
∩ and F±

∩ > 0. The first condition
means that the fractional translations f ± are commensurate (their ratio is rational).
Then there are co-prime (thus minimal) integers F± such that f +/ f − = F+/F−;
all other pairs are their multiples, in particular F±

∩ = τ F±. Consequently, f ±
are both multiples of the (maximal) length f = f ±/F±, while f∩ = τ F+F− f .
Substituting this in the last pair of (E.8) we get F∓

∩ Q̆± − Q̆∩ = Z±
∩ . When these

conditions are subtracted, one gets equation F−
∩ Q̆+ − F+

∩ Q̆− = Z+
∩ − Z−

∩ , showing
that if 1, Q̆+ and Q̆− are not rationally independent, the intersection is trivial (as
the only solution is F−

∩ = F+
∩ = 0). Otherwise there is irrational J and rational x±

and y± such that Q̆± = x± + J y± (if both Q̆+ and Q̆− are rational, then this is
automatically satisfied for arbitrary J , x± = Q̆±, and y± = 0). Irrational part of
the subtracted equations becomes commensurability condition on y±, with the same
ratio as that of the fractional translations: y+/y− = F+/F−, i.e., there is (maximal)
rational y such that y = y±/F±. However, the rational part

x+

F+ − x−

F− = Z+
∩ − Z−

∩
τ F+F− (E.9)
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is automatically satisfied: its left side simple to calculate; being rational, it is quo-
tient of two co-primes and can be (by simultaneous multiplication of numerator and
denominator by the minimal appropriate factor) adapted to the form Z/τ F+F−,
directly giving τ . Then (E.8) means that Q̆ is of the form Q̆ = x∩ + J y∩ (with
rational x∩ and y∩). Taking into account previous relations, its irrational part yields
y∩ = τ F+F−y, while the rational part, being (E.7), is automatically solvable in
x∩ and Z±

∩ (due to (E.9)) and with Z = Z+
∩ − Z−

∩ gives the values of all these
quantities.

Finally, we examine whether T Q+,Q−( f +, f −) is one of the ordinary line
groups. If it is, it must be from the first family, as only roto-helical operations are
involved. Thus, we search for Q, n, and f such that for each t+ and t− there are s
and t satisfying

(CQ+| f +)t+(CQ−| f −)t− = (CQ | f )Cs
n . (E.10a)

This gives equations

t+ f + + t− f − = t f, t+ Q̆+ + t− Q̆− = t Q̆ + sn̆. (E.10b)

The first condition is equivalent to the first equation of (E.4), being necessary for
nontrivial intersection, as it has already been proved. Including this in the second
condition, the requirement on the existence of a real Q and integers Z+, Z−, and n
such that

Q̆± − F± Q̆ = Z±n̆ (E.11)

is obtained. Again, subtracting these conditions multiplied by F∓, we find the
requirement that 1, Q̆+, and Q̆− are rationally dependent, which is, coincident with
the condition necessary for the nontrivial intersection (exactly the second equation
of (E.4)). Further, x+ and x− are related by (E.9) with τ = n. Introducing this into
the first (or second) condition we find that Q̆ is also rationally dependent on the
same set, with the irrational part (if not zero) being y: Q̆ = x + J y. Finally, we
determine x (together with Z±) from the rational part (E.6).

Therefore, if the commensurability conditions of Theorem 3 are satisfied, the
product of two helical groups is the first family line group. Otherwise, it is an abelian
group, but not one of the ordinary line groups, and we call it bihelical line group.
The orbits of bihelical groups are quasi-continual: if translational commensurability
condition (for f ±) is broken, but the rotational one (for y±) is preserved, the orbits
are quasi-continual along the z-axis, while in the opposite case along the coordinate
ϕ; if the both conditions are broken, the orbits are quasi-continual in both directions.

It remains to investigate whether additional transformations may be incorporated
into the bihelical groups. It turns out that Cn and U -axis are always compatible,
while vertical and horizontal mirror and glide (roto-helical) planes may appear only
when both helical groups are achiral, but with incommensurable (fractional) trans-
lations.
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Modified Group Projector Technique

Abstract One of the most frequent tasks in physics is to solve eigenproblem of the
hermitian operator H (hamiltonian) in the state space S of some system. Symmetry
group L, acting in S through representation D(L)with the operators D(�) commut-
ing with H , may be applied to simplify this problem. Well-known Bloch theorem is
a special case of the group projector technique, applicable for translational group.

Namely, Wigner’s group projector technique [4] is aimed to find symmetry-
adapted basis | μm, t 〉 (t = 1, . . . , f μ; here f μ is the frequency number of the
irreducible component D(μ)(L) in D(L)) satisfying (8.1), which is also eigenbasis
of H . However, the original technique involves summation of the representative
matrices over the group, preventing its direct application to the crystalline systems,
when infinite groups and infinite dimension of the state space occur. Modified group
projector technique [5–7] avoids both obstacles using the product structure of the
relevant groups and inductive nature of the state space, thus enabling numerical
implementations of full symmetry.

First, we construct auxiliary space S ⊗ S(μ)∗ , where S(μ)∗ is the space of the
conjugated irreducible representation D(μ), with the standard vectors (5.37) |μ∗m〉.
The representation Dμ(L) = D(L)⊗ D(μ)∗(L) acts in this space. The basis |μ, t〉
of the fixed points determines basis |μm, t〉 in S by the partial scalar product:

|μm, t〉 = 〈μm |μ, t〉, (m = 1, ..., |μ|). (F.1)

Thus, one needs to find this set of fixed points (Fig. F.1), which is the range of the
Wigner projector

Lμ = |μ|
|L|

∑

�∈L

D(�)⊗ D(μ)∗(�) (F.2)

on the multiple irreducible space of the identity representation; this is modified
projector of L for the representations D(L) and D(μ)(L). However, this subspace
coincides with the space spanned by the common fixed points, i.e., eigenvectors for
eigenvalue 1, of the operators D(�)⊗ D(μ)∗(�) representing group generators only.
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Fig. F.1 Scheme of the modified group projector technique in the induced spaces. The symmetry-
adapted basis | μm, t〉 looked for in the state space S is effectively found in the monomer space
S0: the fixed points | 0;μt〉 of the stabilizer group P in this space are induced to auxiliary space
S ⊗ S(μ)∗ (where they are fixed points |μ, t〉 of the whole group L), and then by the partial trace
mapped to |μm, t〉

So, instead of the summation over the whole group, one solves finite system of linear
equations.

The second difficulty, infinite dimension of the involved operators, is in the
studies of crystals resolved by the convenient algebraic properties of the modi-
fied projector. Let L = Z P , where P is finite subgroup of L, and Z the group
of the generalized translations.1 The Lagrange decomposition onto cosets of P is:
L = ⋃

z z P . Simultaneously, action of the transversal Z makes partition of the
system into orbits SP of Z. Taking a representative atom sP from each orbit one
gets the “initial monomer” M. Assume that the representatives are chosen such that
M is invariant under P , i.e. P is its stabilizer. Further we assume that the total
space S is spanned over orbitals associated to atoms, i.e. each atom contributes by
its orbitals. Due to symmetry, atoms from the same orbit have the same orbitals.
Orbitals from the atoms of M span finite dimensional monomer space S0, and S is
decomposed as S = ∑

z D(z)S0.
When � is from P , monomer space S0 is invariant under D(�), i.e. D(P) reduces

in S0 to the representation D↓(P) of the stabilizer (precisely, D(L) is induced rep-
resentation [8] of D↓(P)). This enables to construct the modified projector in the
finite dimensional space S0 ⊗ S(μ)∗ related to the stabilizer only:

Lμ↓ = |μ|
|P |

∑

�∈P

D↓(�)⊗ D(μ)∗(�). (F.3)

1 Quite generally, the technique uses [7] arbitrary transversal Z and the corresponding stabilizer
group P , and instead to the monomer calculations are reduced the to the symcell. However, when
transversal is not a subgroup, some expressions are cumbersome, and for simplicity we use gener-
alized translations instead of transversal. Consequently, whenever transversal is a group, it may be
used as Z without any change in the forthcoming results.
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The most important fact is that the operator Bμ = 1√|Z|
∑

z I0 ⊗ D(μ)∗(z) (I0 is |S0|
dimensional identity matrix) is partial isometry interrelating modified projectors as

Lμ↓ = Bμ
†
LμBμ. (F.4)

Thus, Bμ biuniquely relates the fixed points of Lμ in S to the fixed points of Lμ↓
in S0. Precisely, to any basis |0;μt〉 in the range of Lμ↓ correspond vectors

|μ, t〉 = Bμ |0;μt〉, (F.5)

yielding by (F.1) a symmetry-adapted basis in S.
Technically, arbitrary basis |0;μt〉 = ∑

m AψA
c(μm;t)
ψ | AψA〉〈μm | in the range

of Lμ↓ may be used in (F.5); as A and ψA count atoms in the monomer and their
orbitals, states | AψA〉 are basis in S0. The vectors |μ, t〉 are then given by the coef-
ficients c(μm,t)

AψA
. The component of the vector |μ, t〉 corresponding to the monomer

zM is according to (F.5):

|z;μm, t〉 = 1√|Z|
∑

m′ AψA

c(μm′,t)
AψA

D(μ)∗
mm′ (z) |z A, ψA〉. (F.6)

In particular |0;μm, t〉 = 1√|Z|
∑

AψA
c(μm,t)

AψA
|A, ψA〉, since for the initial monomer

z is identity.
To find a symmetry-adapted eigenbasis of the hamiltonian, we construct in the

same finite dimensional space H0 ⊗ H(μ)∗ the pulled down hamiltonian

Hμ↓ = Bμ
†
H ⊗ IμBμ (F.7)

(Iμ is identity matrix in S(μ)). As it commutes with Lμ↓, there are common eigen-
vectors. Those among them which are fixed points of Lμ↓ are to be chosen as |0;μt〉
to generate, through (F.5) and (F.1), the part of symmetry-adapted eigenbasis corre-
sponding to μth irreducible representation. The eigenvalues of Hμ↓ corresponding
to |0;μt〉 are exactly the eigenvalues (with degeneracy |μ|) of H corresponding to
|μm, t〉 for all m = 1, . . . , |μ|.

To construct Hμ↓ in the introduced atomic basis |A, ψA〉 we assume that
monomer atom A interacts with N A

B atoms from the orbit of another monomer atom
B. When the hamiltonian matrix elements 〈z A, ψA | H | z′ B, ψB〉 are introduced
in (F.7), we obtain Hμ↓ with submatrices representing interaction of the orbits of A
and B:

Hμ↓
AB =

N A
B∑

z=1

∑

ψAψB

〈A, ψA | H |zB, ψB〉 |BψB〉〈AψA | ⊗D(μ)T (z). (F.8)
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Note that for the finite range interactions the sum over the transversal elements z
reduces to the finite number of neighbors.
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A
Absorption, 123
Achiral

group, 17, 24, 26
nanotube, 151
system, 15

Axial, 78
group, 10
representation, 76
tensor, 78
vector, 75, 98

Axis
helical, 8
screw, 8, 9

B
Band, 50, 114

m̃-, 50
energy, 115
helical, 50
linear, 50
representation, 61, 114, 115

Bihelical group, 186
Birefringence, 15
Bloch theorem, 115
Brillouin zone, 49, 149

helical, 48, 50
linear, 50
reduced, 61

Butadiene, 44

C
Cell

elementary, 8, 14
symmetry, 14

Chain, 98
Chiral

group, 26
nanotube, 83, 151

system, 15
vector, 143

Clebsch-Gordan coefficients, 82, 122
Co-representation, 85, 91
Commensurability condition, 184
Commensurate group, 8, 26
Compatibility relations, 63, 117
Component

standard, 65
symmetry adapted, 65

Conformation class, 36, 129
Coprimes, 175
Coset representative, 180
Coulomb potential, 163
Covering symmetry, 36

D
Dichroism, 15
Domain

irreducible, 61
symmetry, 41

Dynamical representation, 95

E
Element

negative, 10, 26
positive, 26

Emission, 123
Enantiomorphic transformations, 75
Epikernel, 118
Equal modulo, 175
Extension, 120
Extinction, 133, 136

F
Factorization, 30

line group, 13
translational, 22

Fixed point, 30
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Fractional part, 175
Frequency number, 65
Function

invariant, 66
scalar, 66

G
Gap, 123, 128, 157

intensity, 132, 136, 163
secondary, 157

Generalized translation, 9
Generic orbit, 41
Gray group, 85
Greatest common divisor, 175
Group

achiral, 17, 24, 26
axial, 10
bihelical, 186
black-and-white, 85
chiral, 26
commensurate, 8, 26
gray, 85
incommensurate, 8, 26
isogonal, 14
little, 30
negative, 10, 26
non-symmorphic, 17, 24
point, 9
positive, 10, 26
rod, 14, 173
symmetry breaking, 166
symmorphic, 15, 17, 24
translational, 9, 17, 24
zig-zag, 17, 24

H
Hamiltonian, 189
Harmonic, 66
Helical, 149

Brillouin zone, 48, 50
axis, 8
band, 50
coordinates, 18
quantum number, 48
quasi-momentum, 48, 51

Helicity parameter, 21
Helix step, 17

I
Identical representation, 66
Incommensurate group, 8, 26
∗-induction, 91
Integer part, 175
International notation, 23

Inverse, 175
Irreducible

domain, 61
tensor, 82
tensor component, 78

Isogonal point group, 14

J
Jacobi–Anger expansion, 129
Jahn–Teller theorem, 126

K
Kernel, 118

L
Layer lines, 130
Least common multiple, 175
Linear

band, 50
Brillouin zone, 50
quasi-momentum, 51

Little group, 30

M
Mode

acoustic, 97, 124, 126, 127
active, 126
breathing, 98, 162
rotational, 98
rotational (twisting), 126, 127
stretching, 98
symmetric, 98
translational, 126, 127
twisting, 98, 124

Modified group projector technique, 139
Modified projector, 187
Momentum

angular, 183
linear, 183

Monomer, 7, 14, 31
Monomer space, 188

N
Nanotube

achiral, 151
armchair, 151
chiral, 83, 151
reference frame, 152
zig-zag, 151

Negative
element, 10, 26
group, 10, 26

Non-symmorphic group, 17, 24
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O
Optical

conductivity, 123, 160
response functions, 123
transition, 123, 125

Orbit, 29
generic, 41
type, 30

Order parameter, 118

P
Parity, 25, 149

U -, 62
Permutational matrix, 95
Phonon, 124
Physical equivalence, 30
Physically irreducible, 92
Plane

glide, 8, 9
Point group, 9
Polar, 78

representation, 76, 95
tensor, 78
vector, 75, 98, 124

Polarization
circular, 123
linear, 123
parallel, 123
perpendicular, 123
vector, 122

Polarization phase, 122
Polyacetilene, 98
Polyacetylene, 44, 127
Positive

element, 26
group, 10, 26

Q
Quantum number

helical, 48
linear, 49

Quasi-momentum, 51, 149
angular, 48, 49
helical, 48, 51
linear, 49, 51

R
Raman

shift, 125
tensor, 125

Reduced
Brillouin zone, 61
matrix element, 82

Relaxation, 140

Representation
axial, 76
band, 61, 114, 115
dynamical, 95
first kind, 63, 91
identical, 66
induced, 188
permutational, 95
physically irreducible, 92
polar, 76, 95
second kind, 63, 91
tensor, 65
third kind, 64, 91
vector, 76

Rod group, 14

S
Scattering, 129
Screw-axis, 9
Secondary

gap, 157
Selection rules, 82, 122
Stabilizer, 30
State space, 113
Stratification, 41
Stratus, 41

special, 41
Symcell, 14, 41, 137, 188
Symmetry

adapted basis, 61, 82, 189
adapted component, 65
breaking, 166
cell, 14
covering, 36
domain, 41
fixing set, 42
notation, 124

Symmorphic group, 15, 17, 24
System

achiral, 15
chiral, 15

T
Tensor, 65

antisymmetric, 78
axial, 78
irreducible, 82
irreducible component, 78
polar, 78
representation, 65
symmetric, 78

Time reversal, 85
Transition rules, 49
Translational
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acoustic mode, 97
factorization, 22
form, 22
group, 9, 17, 24
period, 8, 20

Transversal, 30
factor, 129

U
U -parity, 62
Umklapp processes, 83

V
Van Hove singularity, 117

Vector
axial, 75, 98
chiral, 143
polar, 75, 98, 124
polarization, 122
representation, 76

W
Wigner’s classification, 63

Z
Zig-zag

group, 17, 24
nanotube, 151
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