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Preface 

 

 

 

 

This book is a collection of papers presented at the IUTAM symposium on “Re-

cent Advances of Acoustic Waves in Solids” which was held in Taipei, Taiwan, 

May 25-28, 2009. Fifty invited participants from 16 countries were participated in 

this Symposium.  

Acoustic wave in solids is not a new topic; instead, it has been a topic of impor-

tance in both engineering and science for several decades. However, started from 

the mid 90’s, emerging needs in engineering applications have re-triggered new 

and important topics, such as phononic crystals, UHF acoustic filters in mobile 

communications, quantitative NDE of materials, etc. The purpose of this sympo-

sium was to bring renowned scholars and leading researchers from the areas of 

acoustic waves in solids together to discuss the latest advances, in particular, the 

emerging topics such as phononic band gap materials and acoustic metamaterials, 

acoustic filters in mobile communications, waves and quantitative nondestructive 

evaluation of materials, and waves in complex media.  

We are grateful to all of the participants for their contribution and support to 

this symposium. The organizing of the symposium would not be possible without 

the valuable advices and guidance from all the scientific committee members, Jan 

D. Achenbach (USA), Arthur G. Every (South Africa), Ken-ya Hashimoto (Ja-

pan), Vincent Laude (France), Ioannis E. Psarobas (Greece), Chau-Shioung Yeh 

(Taiwan), Yook-Kong Yong (USA), Jüri Engelbrecht (Estonia, IUTAM Represen-

tative). The excellent works of the Local Organizing Committee and the Sympo-

sium Secretariat are gratefully acknowledged. Sincere thanks are also extended to 

Professor Jan D. Achenbach and Professor Yih-Hsing Pao for their encouragement 

and support of this symposium at the early planning stage.  
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During the symposium held in the Institute of Applied Mechanics, the scientific 

committee proposed and obtained unanimous consensus to dedicate this book to 

Professor Yih-Hsing Pao, in honor of his 80th birthday and profound contribution 

to the field of acoustic waves in solids. 

Finally, but not the least, generous supports of the symposium from Taiwan 

government and related agencies are gratefully acknowledged, including National 

Science Council, Ministry of Education, National Applied Research Laboratories, 

National Taiwan University, IUTAM and the Society of Theoretical and Applied 

Mechanics in Taiwan. 

 

Tsung-Tsong Wu 

Chien-Ching Ma 

Taipei, November, 2009
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In Honor of 
Professor Yih-Hsing Pao’s 80th Birthday 

 

 

 

 

Prof. Yih-Hsing Pao was born in Nanking, China in 1930. After enrolling at Na-

tional Chiao-Tung University in Shanghai, he transferred to National Taiwan Uni-

versity and received a Bachelor’s Degree in civil engineering in 1952. He then 

pursued advanced studies in the United States, earning a Master Degree in me-

chanics from Rensselaer Polytechnic Institute in 1955, and a Ph.D. in applied me-

chanics from Columbia University in 1959. 

Prof. Pao is a world-renowned scholar in applied mechanics. Since 1960, his 

innovative contributions have covered a broad range of theories and applications 

in modern engineering technology. Chief among them is a seminal treatise entitled 

“Diffraction and Scattering of Elastic Waves,” co-authored with his former col-

league Dr. C.C. Mow. This book laid the foundation for investigating soil-

structure interaction under dynamic impact and blasting. The theory was later ex-

tended to Non-Destructive Evaluation of materials and structures, a modern tech-

nique employing ultrasonics to characterize a material or to detect defects in air-

crafts, bridges, railways, as well as human bodies. His work on the theory of 

generalized rays for waves in layered media has been applied extensively to foun-

dations of structures and to underwater acoustics. One of his papers has been se-

lected by the International Union of Theoretical and Applied Mechanics as a 

landmark publication of the 20th century. In a research project with his student, 

Prof. Francis Moon of Cornell University, Prof. Pao pioneered the new field of 

electromagneto-mechanics, which is basic to study the stability of vehicles by 

magneto-levitation and of superconducting coil structures carrying strong current. 
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He has made contributions in building fundamental theories, numerical analysis, 

technical applications, and his research in earthquakes has been widely referenced 

by civil, mechanical, and aeronautical engineers.  

During Prof. Pao’s celebrated career in the US, he attained prestige matched by 

only a few in his field. This is evidenced by numerous leading positions in profes-

sional societies, such as the general chairman and the chairman of scientific com-

mittee of 9th US National Congress of Applied Mechanics. A special session was 

dedicated to honor his achievements at the 11th (1990) US National Congress of 

Applied Mechanics in Tucson, Arizona.  

At the invitation of the Taiwan government in 1984, Prof. Pao made an admi-

rable and far-sighted decision to return to Taiwan to found the Institute of Applied 

Mechanics at National Taiwan University. After more than two decades, his sus-

tained and dedicated leadership has resulted in a first-class research center of Ap-

plied Mechanics. By creating an attractive research environment, he was able to 

recruit outstanding faculty members from Taiwan and abroad. Under his guidance, 

with depth of vision and breadth of knowledge, the Institute has set the standards 

of excellence in Taiwan. It emphasizes multidisciplinary efforts in both research 

and teaching, and in the balance of theory with experiments and applications. 

These efforts have established the Institute as the forerunner not only in Taiwan, 

but also in Asia and the world. As a leader in numerous professional societies and 

government advisory committees, Prof. Pao’s influence has spread far beyond the 

university campus. Among other appointments, he has been elected a Member of 

the US National Academy of Engineering in 1985, and Academician of Academia 

Sinica in 1986. He is also the recipient of numerous prestigious awards, including 

the Senior Scientist Award from the Humboldt Foundation of Germany, the presi-

dential award from the Republic of China and an honorary Doctorate Degree by 

National Chiao-Tung University. Prof. Pao has authored and co-authored several 

books and more than one hundred research articles published in various scientific 

and technical journals. He has been invited to contribute articles in Physical 

Acoustics, Mechanics Today, and Applied Mechanics Reviews. 
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Part I  
Waves in General 
 



 

Existence of Exceptional Body Waves and 
Subsonic Surface Waves in Monoclinic and 
Orthotropic Materials 

T. C. T. Ting 

Division of Mechanics and Computation, Durand 262, Stanford University, Stanford, CA 94305, USA 

tting@uic.edu  

Abstract. Explicit conditions are given for the existence of an exceptional body 

wave in monoclinic materials with the symmetry plane at 1 0x = , 2 0x =  or 

3 0x = and in orthotropic materials with the symmetry planes coinciding with the 

coordinate planes. The non-existence of an exceptional body wave ensures the ex-

istence of a subsonic surface wave. If an exceptional body wave exists, explicit 

conditions are given for the existence of a subsonic surface wave in monoclinic 

and orthotropic materials except when ˆ( )tr υL needs to be computed. 

1. Introduction 

It is known [1-5] that a subsonic surface (Rayleigh) wave exists in an anisotropic 

elastic half-space if the limiting wave, which is a body wave, is not exceptional. If 

the limiting wave is exceptional but the transonic state is not of Type 1 (see Sec-

tion 4), a subsonic surface wave exists. If the limiting wave is exceptional and the 

transonic state is of Type 1, a subsonic surface wave exists when ˆ( ) 0tr υ ≤L . 
ˆ( )υL  is one of three Barnett-Lothe tensors [6,7] where υ̂  is the limiting wave 

speed. Explicit conditions for the existence of an exceptional body wave for a 

general anisotropic elastic material have been presented by Chadwick and Smith 

[8] in terms of the elastic stiffness Cαβ . Using a different approach Ting [9] re-

cently obtained the conditions in terms of the reduced elastic compliance sαβ′ . The 

existence conditions in terms of sαβ′  appear to have simpler expressions. We apply 

the conditions presented in [9] to monoclinic materials with the symmetry plane at 

one of the coordinate planes. We also consider the special case of orthotropic 

materials with the symmetry planes coinciding with the coordinate planes. If an 

3 T.-T. Wu and C.-C. Ma (eds.), IUTAM Symposium on Recent Advances of Acoustic 

© Springer Science + Business Media B.V. 2010 
Waves in Solids, IUTAM Bookseries 26, DOI 10.1007/978-90-481-9893-1_1, 

mailto:tting@uic.edu
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exceptional body wave does not exist, a subsonic surface wave exists. If an excep-

tional body wave exists, conditions are given for identifying whether the transonic 

state is of Type 1. If it is not of Type 1, a subsonic surface wave exists. If it is of 

Type 1, a subsonic surface wave exists when ˆ( ) 0tr υ ≤L . Hence, through the exis-

tence of an exceptional body wave we provide explicit conditions for the existence 

of a subsonic surface wave in monoclinic and orthotropic materials with the ex-

ception when ˆ( )tr υL  needs to be computed. 

2. Basic Equations 

In a fixed rectangular coordinate system ix  (i=1, 2, 3), the equation of motion is 

,ij j iuσ ρ= ɺɺ , (2.1) 

where ijσ  is the stress, iu  is the displacement, ρ is mass density, the dot denotes 

differentiation with time t and a comma denotes differentiation with ix . The 

stress-strain relation is 

,ij ijks k sC uσ = , (2.2) 

ijks jiks ksij ijskC C C C= = = , (2.3) 

in which ijksC  is the elastic stiffness. The ijksC  is positive definite and possesses 

the full symmetry shown in (2.3). The third equality in (2.3) is redundant because 

the first two imply the third ([10], p.32). 

For a steady state motion in the 1x -direction with a constant wave speed υ >0 

in the half-space 2 0x ≥ , a general solution for the displacement u in (2.1) and 

(2.2) is 

ikze=u a , 1 2z x px tυ= + − ,  (2.4) 

where k >0 is the real wave number, and p and a satisfy the equation [5,10,11] 

2[ ( ) ]TX p p− + + + =Q I R R T a 0 , 2X ρυ= .  (2.5) 

The superscript T denotes the transpose, I is the identity matrix and 

1 1ik i kQ C= , 1 2ik i kR C= , 2 2ik i kT C= .  (2.6)  
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Introducing the vector 

1( ) ( )T p p X p−= + = − − +b R T a Q I R a ,  (2.7) 

in which the second equality follows from (2.5), the stress computed from (2.4) 

and (2.2) can be written as  

1 ,1 ,2i i iXuσ ϕ= − , 2 ,1i iσ ϕ= , (2.8) 

where the vector 

ϕ ikze= b , (2.9) 

is the stress function.  The two equations in (2.7) can be written as 

( )p ξ− =N I 0 , (2.10) 

in which [12] 

1 2

3 1
TX

 
=  + 

N N
N

N I N
, ξ  

=  
 

a

b
,  (2.11) 

1
1

T−= −N T R ,  1
2

−=N T , 1
3

T−= −N RT R Q .  (2.12) 

The matrix 2N  is symmetric and positive definite while 3−N  is symmetric and 

positive semi-definite [13, 10]. 

A steady wave is a body wave when p is real. A body wave is exceptional 

with respect to the surface 2 0x =  if the wave produces no traction on the sur-

face [14]. Otherwise the body wave is normal.  It is shown in [8, 9, 15] that an 

exceptional body wave with respect to the surface 2 0x =  is necessarily a tran-

sonic wave. The converse need not hold. A transonic wave is a body wave that 

need not be exceptional. 

3. Exceptional Body Wave 

The explicit expression of 1N , 2N , 3N  in (2.12) was given by Ting [13] in terms 

of the elastic compliance sαβ  and by Barnett and Chadwick [16] in terms of the 

elastic stiffness Cαβ . The sαβ  and Cαβ  are the contracted notations of ijksS  and 

ijksC , respectively. 1N , 2N , 3N have complicated expression in terms of sαβ  or 

Cαβ . For the problems we will study here, an equation alternate to (2.10) is more 
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convenient. Using a modified Lekhnitskii formalism Ting [17] (see also [9]) 

obtained the following alternate equation 

ξΓ = 0 ,  (3.1) 

where 

61 65 66 61 62 64 65

21 25 26 21 22 24 25

41 45 46 41 42 44 45

11 15 16 11 12 14 15

51 55 56 51 52 54 55

1

0

1 0

0 0 1 0

0 1

Xs p Xs s ps s s ps

Xs p Xs s ps s s ps

Xs Xs p s ps s s ps

Xs Xs s ps s s ps

X p

Xs Xs s ps s s ps

′ ′ ′ ′ ′ ′ ′− − − −
 ′ ′ ′ ′ ′ ′ ′− − −
 ′ ′ ′ ′ ′ ′ ′− − −

Γ =
′ ′ ′ ′ ′ ′ ′− − −

− −
′ ′ ′ ′ ′ ′ ′− − −






 
 
 
 
 

,  (3.2) 

3 3

33

s s
s s

s
α β

αβ αβ′ = − .  (3.3) 

sαβ′  is the reduced elastic compliance. It is symmetric so that s sαβ βα′ ′= . 

The fifth equation implicit in (3.1) gives 

2 1 2Xa b pb= + .  (3.4) 

Elimination of 2a  in (3.1) using (3.4) yields 

ˆˆ ξΓ = 0 , (3.5) 

where 

2
16 56 66 26 46

2
12 25 26 22 24

2
14 45 46 24 44

11 15 16 12 14

15 55 56 25 45

1

ˆ

1

1

Xs p Xs Xs p Xs p Xs

Xs Xs Xs p Xs p Xs

Xs Xs p Xs Xs Xs p

Xs Xs Xs p Xs Xs

Xs Xs Xs Xs Xs p

 ′ ′ ′ ′ ′− − − −
 ′ ′ ′ ′ ′− − 
 Γ = ′ ′ ′ ′ ′− −
 

′ ′ ′ ′ ′− − 
 ′ ′ ′ ′ ′− − 

,            (3.6) 

1 1 1 1 1
1 1 3 3 1 2 3

ˆ [ , , , , ]T a pX b a pX b X b X b X bξ − − − − −= − − .  (3.7) 

It can be shown that 

2 ˆX −Γ = − Γ .  (3.8) 
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In (3.6), the 3×2 matrix on the upper left corner and the 2×3 matrix on the lower 

right corner are the transpose of each other. The 3×3 matrix on the upper right 

corner and the 2×2 matrix on the lower left corner are symmetric. 

For an exceptional body wave with respect to the surface 2 0x = , 

1 2 3 0b b b= = = .  (3.9) 

Equation (3.4) and (3.5) reduce to 

2 0a = , (3.10) 

3 15 1611 12 14

1 55 15 25 56 45

( / )1

1 ( / )

a Xs p X sXs s s

a Xs Xs s s p X s

′ ′′ ′ ′−− −
= = = = =

′ ′ ′ ′ ′− −
. (3.11) 

The second equality in (3.11) gives 

11 55

11 55 15 15

( )

2( )

s s
X

s s s s

η′ ′+ ±
=

′ ′ ′ ′−
, (3.12) 

2 2 2
11 55 11 55 15 15 11 55 15( ) 4( ) ( ) (2 )s s s s s s s s sη ′ ′ ′ ′ ′ ′ ′ ′ ′= + − − = − + ≥ 0.  (3.13) 

Equation (3.12) provides two possible wave speeds for an exceptional body wave. 

The last equality in (3.11) leads to 

16 45

1
( )

2

p
s s

X
κ ′ ′= + ±  , (3.14) 

2
16 45 14 56( ) 4s s s sκ ′ ′ ′ ′= − + ≥ 0. (3.15) 

κ cannot be negative because p has to be real for a body wave.  

When (3.11) does not hold, an exceptional body wave does not exist. This 

means that a subsonic surface wave exists. If (3.11) holds, a subsonic surface 

wave exists if the first transonic state is not of Type 1.  

4. First Transonic State of Type 1 

The p in (2.4) for the inhomogeneous plane wave is complex when the wave speed 

υ  is very small. As υ  increases, p becomes real at the limiting wave speed υ̂ . In 

the ( 1x , 2x )-plane, a vertical line with a distance 1υ −  to the 2x -axis does not inter-

sect the slowness curves when 1υ −  is very large. The vertical line touches the 

slowness curve for the first time when the distance to the 2x -axis is 1υ̂ − . It is the 

first transonic wave, and is also called the limiting wave. Since p is real, it is a 
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body wave. If we continue to move the vertical line towards the 2x -axis, the line 

will touch the slowness curves for the second time. It is the second transonic 

wave. The number of transonic waves is at least three and at most fifteen [8]. An 

exceptional body wave is a transonic wave but a transonic wave need not be ex-

ceptional. If an exceptional body wave is the limiting wave, the limiting wave is 

exceptional. 

At the limiting wave speed υ̂  there may be more than one limiting waves. All 

waves at the limiting wave speed υ̂  are referred as the first transonic state. Ac-

cording to Chadwick and Smith [5] (see also [9]), there are six types of first tran-

sonic state depending on whether the vertical line touches the slowness curves at 

one, two or three different points or at the same point. 

The first transonic state is of Type 1 if the vertical line touches only one of the 

slowness curves at only one point. Let 1p̂  be the p for this limiting wave which is 

real. The determinant of the 6×6 matrix ΓΓΓΓ shown in (3.2) must have the expression 

2
1 4

ˆ( ) ( )p p K pΓ = − . (4.1) 

In the above 4 ( )K p  is a quartic equation in p that has no real roots. If 4 ( )K p  has 

a real root, it is not of Type 1. It can be of other types or a subsequent transonic 

state. 

5. Monoclinic Materials with the Symmetry Plane at x1=0 

When the material has a symmetry plane at 1 0x =  we have 

15 16 25 26 45 46 0s s s s s s′ ′ ′ ′ ′ ′= = = = = = .  (5.1) 

Equation (3.11) reduces to 

3 11 12 14

1 55 56

10 /

1 0 0 /

a Xs s sp X

a Xs s p X

′ ′ ′− −
= = = = =

′ ′−
.  (5.2) 

By inspection, (5.2) does not hold if one of the following holds, 

12 56 0s s′ ′ ≠ , (5.3a) 

14 56 0s s′ ′ < , (5.3b) 

12 0s′ = , 14 56 0s s′ ′ > , 11 55s s′ ′≠ . (5.3c) 
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When (5.3a), (5.3b) or (5.3c) holds, an exceptional body wave does not exist so 

that a subsonic surface wave exists. 

We next consider several cases for which an exceptional body wave exists. 

 

Case I-1. When 

56 0s′ = , (5.4) 

an exceptional body wave exists with 551/X s′= , 0p =  and 1 0a = . Equation 

(3.8) simplifies to 

( )2
4p K pΓ =  (5.5) 

where 

2
66

2
4 12 222

11 12

1
1

( )

1

p Xs p p

K p Xs p Xs p
X

Xs p Xs

′− − − −
′ ′= − −

′ ′− −
,  551 /X s′= .  (5.6) 

4 ( )K p  is a quadratic equation in 2p  that can be written as 

4 2
4 ( ) [ 2 ]K p p pγ α β= − + , (5.7) 

where γ, α, β are constants. It has a real root for p when 

2α β≥ >0, 0α >  (5.8a) 

or 

0β ≤ . (5.8b) 

Thus, when (5.8a) or (5.8b) holds, the transonic state is not of Type 1 so that a 

subsonic surface wave exists. 

 

Case I-2. When 

12 14 0s s′ ′= = , (5.9) 

an exceptional body wave exists with 111/X s′= , 0p = and 3 0a = . Equation 

(3.8) simplifies to (5.5) in which 
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2
22 24

2
4 24 442

55

0
1

( )

1 0

Xs p Xs

K p p Xs Xs p
X

Xs p

′ ′−
′ ′= − −

′ − −
, 111 /X s′= .  (5.10) 

Again, 4 ( )K p  is a quadratic equation in 2p  shown in (5.7). If (5.8a) or (5.8b) 

holds, the transonic state is not of Type 1 so that a subsonic surface wave exists. 

 

Case I-3. When 

12 11 55 0s s s′ ′ ′= − = , 14 56 0s s′ ′ > ,  (5.11) 

an exceptional body wave exists with 11 551/ 1/X s s′ ′= = , 14 56/p X s s′ ′= ±  and 

3 1 14 56/ /a a s s′ ′= ± . Equation (3.8) reduces to 

Γ 2 2 2 2 2
14 56 22( ) ( )X p X s s p Xs− ′ ′ ′= − − . (5.12) 

The transonic state is not of Type 1 so that a subsonic surface wave exists. 

 

Case I-4. Consider the case 

12 14 56 11 55 0s s s s s′ ′ ′ ′ ′= = = − = . (5.13) 

This is a degenerate case of Case I-3 for which 11 551/ 1/X s s′ ′= = , 0p = , and 

3 1/a a  is arbitrary. Equation (5.12) simplifies to 

Γ 2 4 2
22( )X p p Xs− ′= − . (5.14) 

A subsonic surface exists for this case. 

6. Monoclinic Materials with the Symmetry Plane at x2=0 

When the material has a symmetry plane at 2 0x = we have 

14 16 24 26 45 56 0s s s s s s′ ′ ′ ′ ′ ′= = = = = = .  (6.1) 

Equation (3.11) reduces to 

3 15 11 12

1 55 15 25

1 / 0

1 0 /

a Xs Xs s p X

a Xs Xs s p X

′ ′ ′− −
= = = = =

′ ′ ′−
.  (6.2) 
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Equation (6.2) does not hold if one of the following holds, 

25 0s′ = , 12 15 0s s′ ′ ≠ , (6.3a) 

12 0s′ = , 15 25 0s s′ ′ ≠ , (6.3b) 

12 25 0s s′ ′ ≠ , 12 11 25 12 15 25 12 55 15 25( ) ( )s s s s s s s s s s′ ′ ′ ′ ′ ′ ′ ′ ′ ′− ≠ − .  (6.3c) 

We will prove (6.3c) below. When (6.3a), (6.3b) or (6.3c) holds, an exceptional 

body wave does not exist so that a subsonic surface wave exists. 

We next consider several cases for which an exceptional body wave exists. 

 

Case II-1. When 

15 25 0s s′ ′= = , (6.4) 

an exceptional body wave exists with 551/X s′= , 0p =  and 1 0a = . Equation 

(3.8) simplifies to (5.5) and (5.6). Thus the discussion following (5.7) applies here. 

 

Case II-2. When 

12 15 0s s′ ′= = , (6.5) 

an exceptional body wave exists with 111/X s′= , 0p =  and 3 0a = . Equation 

(3.8) simplifies to (5.5) in which 

2
25 22

2
4 442

55 25

0
1

( ) 0

1

Xs Xs p

K p p Xs p
X

Xs Xs p

′ ′ −
′= − −

′ ′− −
,  111 /X s′= .  (6.6) 

Again, 4 ( )K p  is a quadratic equation in 2p  shown in (5.7) so that the discussion 

following (5.7) applies here. 

 
Case II-3. When 

12 25 15 11 55 0s s s s s′ ′ ′ ′ ′= = = − = , (6.7) 

an exceptional body wave exists with 0p = , 11 551 / 1/X s s′ ′= =  and 3 1/a a  is arbi-

trary. Equation (3.8) simplifies to (5.14) so that a subsonic surface wave exists. 
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Case II-4. When 

12 25 0s s′ ′ ≠ , (6.8) 

the second the third equalities in (6.2) can be solved for X as 

11 25 12 15 12 55 15 25
25 12

1 1 1
( ) ( )s s s s s s s s

X s s
′ ′ ′ ′ ′ ′ ′ ′= − = −

′ ′
.  (6.9) 

Thus an exceptional body wave exists if (6.8) and  

12 11 25 12 15 25 12 55 15 25( ) ( )s s s s s s s s s s′ ′ ′ ′ ′ ′ ′ ′ ′ ′− = −  (6.10) 

hold. This proves the earlier statement that an exceptional body wave does not 

exist if (6.3c) holds. When (6.8) and (6.10) hold, X is given by (6.9), 0p =  and 

3 1 12 25/ /a a s s′ ′= − .  

The determinant in (3.8) reduces to 

2
66 46

2
12 25 22

2
46 442

11 15 12

15 55 25

0 1

0
1

0 0

1 0

1 0

p Xs p p Xs

Xs Xs p Xs p

p Xs Xs p
X

Xs Xs p Xs

Xs Xs Xs p

′ ′− − − −
′ ′ ′− −

−Γ = ′ ′− −
′ ′ ′− −
′ ′ ′− −

.  (6.11) 

Let 

15 11 12

55 15 25

1

1

Xs Xs s
w

Xs Xs s

′ ′ ′− −
= = =

′ ′ ′−
, say.  (6.12) 

This means 

15 55( 1) 0Xs w Xs′ ′+ − = , 11 15( 1) 0Xs wXs′ ′− + = , 12 25 0s ws′ ′+ = . (6.13) 

The determinant in (6.11) remains the same if we add to column one w times 

column two and add to row four w times row five. Using (6.13) we have 
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11 12 13

25 12 22

13 332

55 25

0

0 0
1

0

0 0 0

0 1 0

p E E E

Xs E E

pw p E E
X

p pw

Xs Xs p

−
′

−Γ = − −
− −

′ ′− −

.  (6.14) 

In the above, ijE is the 3×3 matrix at the upper right corner of the determinant Γ  

in (6.11), i.e., 

2
66 46

2
22

2
46 44

1

0

0

Xs p p Xs

p Xs p

Xs Xs p

 ′ ′− − −
 ′= − − 
 ′ ′ − 

E .  (6.15) 

The determinant Γ  in (6.14) can be written in the form of (5.5) in which 

( )2 2
4 55 22 33 13 22 11 22 12 12( ) ( 1)[ 2 ( )] TK p X Xs E E wE E w E E E E− ′= − − + − − y Ey , 

                    (6.16a) 

[ ]12 25, ,T Xs p Xs′ ′=y . (6.16b) 

4 ( )K p in (6.16a) is a quadratic equation in 2p in the form of (5.7) so that the dis-

cussion following (5.7) applies here. 

 

Case II-5. When 

12 25 0s s′ ′= = , (6.17) 

an exceptional body wave exists in which X is given by (3.12) and 0p = . There 

are two solutions for the X. For each X, 3 1/a a  is provided by the first equality in 

(6.2).  The determinant in (3.8) reduces to (6.11) with 12 25 0s s′ ′= = . Following 

the derivation from (6.12) to (6.16), it can be shown that Γ  has the form of 

(5.5) in which 4 ( )K p  is shown in (6.16a).  Since 12 25 0s s′ ′= = , Ty Ey in (6.16b) 

simplifies to 

2
22

T p E=y Ey . (6.18) 
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7. Monoclinic Materials with the Symmetry Plane at x3=0 

When the material has a symmetry plane at 3 0x =  we have 

14 15 24 25 46 56 0s s s s s s′ ′ ′ ′ ′ ′= = = = = = .  (7.1) 

Equation (3.11) reduces to 

3 1611 12

1 55 45

( / )10 0

1 0 0 0 ( / )

a p X sXs s

a Xs p X s

′′ ′ −− −
= = = = =

′ ′− −
.  (7.2) 

It is not difficult to see that (7.2) can be satisfied for any choice of sαβ′ . Hence an 

exceptional body wave always exists for monoclinic materials with the symmetry 

plane at 3 0x = . We now consider several special cases below. 

 

Case III-1. When 

12s′ ≠ 0, (7.3) 

we have 551/X s′= , 45/p X s′=  and 1 0a = . Equation (3.8) reduces to 

2
45 4( ) ( )p Xs K p′Γ = − , (7.4)  

2
16 66 26

2
4 12 26 222

11 16 12

1
1

( )

1

Xs p Xs p Xs p

K p Xs Xs p Xs p
X

Xs Xs p Xs

′ ′ ′− − − −
′ ′ ′= − −

′ ′ ′− −
,  551/X s′= .  (7.5) 

4 ( )K p  is a quartic equation in p. If it has a real root, the transonic state is not of 

Type 1, and a subsonic surface wave exists. 

 

Case III-2. When 

12 0s′ = , (7.6) 

we have either 551/X s′=  or 111/X s′= . For 551/X s′= , the result is identical to 

Case III-1 with 12 0s′ =  in (7.5). For 111/X s′= , we have 16/p X s′=  and 3 0a = .  

Equation (3.8) reduces to 

2 2 2 2 2
16 22 44 55 45( ) ( )[( )( 1) ( ) ]X p Xs p Xs p Xs Xs p Xs− ′ ′ ′ ′ ′Γ = − − − − + −  (7.7) 
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This is in the form of (4.1) in which 4 ( )K p  has a real root. Hence the transonic 

state is not of Type 1, and a subsonic surface wave exists. 

 

Case III-3. When 

12 11 55 0s s s′ ′ ′= − = , (7.8) 

we have 11 551/ 1/X s s′ ′= =  and either 45/p X s′=  and 1 0a = or 16/p X s′=  and 

3 0a = . Equation (3.8) reduces to 

2 2 2 2
16 45 22( ) ( ) ( )X p Xs p Xs p Xs− ′ ′ ′Γ = − − − .  (7.9) 

This is in the form of (4.1) in which 4 ( )K p  has a real root. Hence the transonic 

state is not of Type 1, and a subsonic surface wave exists. 

 

Case III-4. When 

12 16 45 11 55 0s s s s s′ ′ ′ ′ ′= − = − = , (7.10) 

we have 11 551/ 1/X s s′ ′= = , 16 45/p X s s′ ′= =  and 3 1/a a  is arbitrary. Equation 

(3.8) reduces to (7.9) with 16 45s s′ ′=  so that the statement following (7.9) applies 

here. 

In summary, the existence of a subsonic surface wave is assured except when 

12s′ ≠ 0 and the quartic equation (7.5) has no real roots. 

8. Orthotropic Materials 

Orthotropic materials are special monoclinic materials. We could specialize the 

results obtained in the previous section for monoclinic materials with the symmetry 

plane at 3 0x =  by adding the condition 

16 26 45 0s s s′ ′ ′= = = . (8.1) 

Equation (7.2) reduces to 

3 11 12

1 55

10 / 0

1 0 0 0 /

a Xs s p X

a Xs p X

′ ′− −
= = = = =

′−
.  (8.2) 
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Equation (8.2) can be satisfied for any choice of sαβ′ . Hence an exceptional body 

wave always exists for orthotropic materials with the symmetry planes coinciding 

with the coordinate planes. We now specialize Cases III-1 through III-5 below. 

 

Case IV-1. When 

12s′ ≠ 0,  (8.3) 

we have 551/X s′= , 0p =  and 1 0a = .  Equations (7.4) and (7.5) apply here with 

45 0s′ =  and 4 ( )K p  reduces to 

2
66

2
4 12 222

11 12

1
1

( )

1

p Xs p p

K p Xs p Xs p
X

Xs p Xs

′− − − −
′ ′= − −

′ ′− −
,  551/X s′= .  (8.4) 

4 ( )K p  is a quadratic equation in 2p  in the form of (5.7) so that the discussion 

following (5.7) applies here. 

 

Case IV-2. When 

12 0s′ = ,  (8.5) 

we have either 551/X s′=  or 111/X s′= . For 551/X s′= , the result is identical to 

Case IV-1 with 12 0s′ = in (8.4). For 111/X s′= , we have 0p =  and 3 0a = .  

Equation (7.7) reduces to 

2 2 2 2 2
22 44 55( )[( )( 1) ]X p p Xs p Xs Xs p− ′ ′ ′Γ = − − − + .  (8.6) 

This is in the form of (4.1) in which 4 ( )K p  has a real root. Hence the transonic 

state is not of Type 1, and a subsonic surface wave exists. 

 

Case IV-3. When 

12 11 55 0s s s′ ′ ′= − = , (8.7) 

we have 11 551/ 1/X s s′ ′= = , 0p =  and 3 1/a a  is arbitrary. Equation (7.9) with 

16 45 0s s′ ′= = applies here. 

In summary, the existence of a subsonic surface wave is assured except when 

12s′ ≠ 0 and the quadratic equation (8.4) has no real roots. 
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9. Conclusion 

We have presented explicit conditions for the existence of an exceptional body 

wave in monoclinic and orthotropic materials. This approach is not necessarily the 

best way to determine if a subsonic surface wave exists. There have been studies 

on the explicit expression of the secular equation for the surface wave speed 

/Xυ ρ=  of a surface wave in an anisotropic elastic material (see [19-22] and 

the references therein). The secular equation is a polynomial in X of degree three 

for cubic, hexagonal and orthotropic materials, of degree four for monoclinic ma-

terials with the symmetry plane at 3 0x =  or at 1 0x =  and of degree five for 

monoclinic materials with the symmetry plane at 2 0x = . One could study if a real 

and positive root for X exists from the secular equation. The present approach is 

simplest in determining the existence of a subsonic surface wave when an excep-

tion body wave does not exist. 

It should be noted that the analysis presented in Section 3 is related to the 

analysis of one-component waves in plates [22] and one-component Rayleigh 

waves, Stoneley waves, Love waves, slip waves and waves in a layered plate [23]. 
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Abstract. A linear model of the microstructured continuum based on Mindlin the-

ory is adopted which can be represented in the framework of the internal variable 

theory. Fully coupled systems of equations for macro-motion and microstructure 

evolution are represented in the form of conservation laws. A modification of 

wave propagation algorithm is used for numerical calculations. Results of direct 

numerical simulations of wave propagation in periodic medium are compared with 

similar results for the continuous media with the modelled microstructure. It is 

shown that the proper choice of material constants should be made to match the 

results obtained by both approaches. 

1. Introduction 

The classical theories of continua describe the behaviour of homogeneous materi-

als. In reality, however, materials are always characterized by a certain micro-

structure at various scales. The character of a microstructure can be regular (like in 

laminated composites) or irregular (like in polycrystalline solids or alloys). Even 

more, regularity and irregularity may be combined like for some FGMs. The char-

acteristic scale of a microstructure must always be compared with the spatial scale 

of excitation. The choice of proper mathematical models is extremely important in 

order to describe the wave fields with needed accuracy. 

In general terms, the starting point for describing a microstructure could be ei-

ther the discrete or the continuum approach. In the discrete approach the volume 

elements are treated as point masses with interaction [1]. Or, especially for lami-

nated composites, the effective stiffness theory has been used [2]. The homogeni-

zation methods based on properties and geometry of constituents are widely used 
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for static and quasi-static problems [3]. From the viewpoint of continua, the 

straight-forward modelling leads to assigning all the physical properties to every 

volume element dV in a solid which means introducing the dependence on space 

coordinates. Thus, the governing equations are so complicated that can be solved 

only by numerical methods. 

Another way is to separate macro- and microstructure in continua. Then the 

conservation laws for both structures should be formulated separately [4, 5] or in a 

more sophisticated way the microstructural quantities could be introduced into one 

set of conservation laws for the macrostructure [6]. Quite recently it has been 

shown that the generalization of such theories can be obtained by using the con-

cept of dual internal variables [7]. 

To check the capabilities of the theory, it is useful to compare the theoretical 

predictions with results of direct numerical simulation of wave propagation 

through a certain known microstructure. In what follows, the derivation of a mi-

crostructure model is presented in the one-dimensional setting. The concept of 

dual internal variables is applied for the physical description of continua with mi-

crostructure. The finite volume wave propagation algorithm is used for both direct 

numerical simulation and the microstructure modeling. Results of direct numerical 

simulations of wave propagation in a periodically layered medium are compared 

with similar results for the homogeneous medium with a modelled microstructure. 

2. Governing Equations 

The governing equations of thermoelasticity are local balance laws for linear mo-

mentum and energy [8]. In the one-dimensional case these governing equations 

are reduced to (no body forces) 

( )0  0,v
t x

σρ∂ ∂− =
∂ ∂

 (2.1) 

( )2
0

1
 0,

2
v E σ v  Q

t x
ρ∂ ∂ + − − = ∂ ∂ 

  (2.2) 

complemented by the second law of thermodynamics 

( )/     0.
S

Q K
t x

θ∂ ∂− + ≥
∂ ∂

 (2.3) 
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Here t is time, ρ0 is the matter density, v is the physical velocity, σ is the Cauchy 

stress, E is the internal energy per unit volume, S is the entropy per unit volume, θ 

is temperature, Q is the material heat flux, and the "extra entropy flux" K  vanishes 

in most cases, but this is not a basic requirement. 

3. Internal Variables 

Up to now the microstructure was not specified. In the framework of the phe-

nomenological continuum theory it is assumed that the influence of the micro-

structure on the overall macroscopic behaviour can be taken into account by the 

introduction of an internal variable φ, which we associate with the integral distrib-

uted effect of the microstructure, and a certain dual internal variable ψ. We sup-

pose that the free energy depends on the internal variables φ, ψ and their space de-

rivatives W = W*(ux, φ, φx, ψ, ψx). Then the constitutive equations follow 

* * * * *

: ,    : ,   : ,   : ,   : . 
x x x

W W W W W

u
σ τ η ξ ς

φ φ ψ ψ
∂ ∂ ∂ ∂ ∂= = − = − = − = −
∂ ∂ ∂ ∂ ∂

 (3.1) 

We include into consideration the non-zero extra entropy flux [9] 

1 1 .K θ ηφ θ ςξ− −= − −ɺ ɺ  (3.2) 

It can be checked that the dissipation inequality in the isothermal case reduces 

to 

( )     (    )  0.x xτ η φ ξ ς ψ− + − ≥ɺ ɺ   (3.3) 

In the non-dissipative case the dissipation inequality can be satisfied by the 

choice 

( )  (    ),           , x xm mφ ξ ς ψ τ η= − = − −ɺ ɺ  (3.4) 

where m is a coefficient. The latter two evolution equations express the duality be-

tween internal variables: one internal variable is driven by another one and vice 

versa. 

The simplest free energy dependence is a quadratic function [10] 

2
* 2 2 2 20 1 1 1

   ,  
2 2 2 2x x x

c
W u A u B C D

ρ φ φ φ ψ= + + + +  (3.5) 

where A, B C, D, and c are material constants. 
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Here we include only the contribution of the second internal variable itself. In 

this case, the evolution equation for the internal variable φ is a hyperbolic equation 

[7] 

( )2     . xm D φ τ η= −ɺɺ  (3.6) 

As a result, we can represent the equations of motion in the form 

2
0 0    ,tt xx xu c u Aρ ρ φ= +  (3.7) 

       , tt xx xI C Au Bφ φ φ= − −  (3.8) 

where I = 1/(m 2D) is  an internal inertia measure. In terms of stresses introduced 

by Eq. (3.1), the same system of equations is represented as 

2 2

0 2 2
,        .

u
I

x xt t

σ φ ηρ τ∂ ∂ ∂ ∂= = − +
∂ ∂∂ ∂

  (3.9) 

It is worth to note that same equations are derived in [11] but based on different 

considerations. 

3.1 Single Wave Equation 

The governing equations (3.7) and (3.8) can be reduced to one equation. We can 

determine the first space derivative of the internal variable from Eq. (3.8) and its 

third derivatives from Eq. (3.7). Inserting the results into the balance of linear 

momentum (3.7), we obtain a higher order equation [9] with clearly separated 

wave operators which describe the influence of the microstructure 

2 2 2

0

    (  )     (  ) . tt xx tt xx xx tt xx tt

A C I
u c u u c u u c u

B B Bρ
 

= − + − − − 
 

  (3.10) 

3.2 System of Equations 

At the same time, in terms of strain and velocity, Eq. (3.7) is rewritten as 

2
0 0    . t x xv c Aρ ρ ε φ= +  (3.11) 
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The particle velocity and the strain are related by the compatibility condition 

  , t xvε =  (3.12) 

which form the system of equations for these two variables. 

Similarly, introducing a microvelocity w as follows: 

 :  , xw Dψ= −  (3.13) 

and using Eq. (3.6) with m =1, we have 

  , t xwφ =  (3.14) 

that is nothing else but the compatibility condition at micro-level. It follows from 

Eqs. (3.14) and (3.8) that 

       .x xxIw C A Bφ ε φ= − −ɺ  (3.15) 

Integrating the latter equation over x, we arrive at 

( )     t xIw C A B dxφ ε φ= − +∫  (3.16) 

Thus, we have two coupled systems of equations (3.11), (3.12) and (3.14), 

(3.16) for the determination of four unknowns: ε, v, φ, and w. These two systems 

of equations are solved numerically to describe the microstructure dynamics. 

4. Numerical Simulations  

4.1 Algorithm Description 

There are many computational methods used to describe wave propagation 

phenomena (see, e.g. [12]). In our computations we apply a modification of the 

wave propagation algorithm [13] that was successfully applied to the simulation of 

wave propagation in  inhomogeneous media with rapidly-varying properties [14]. 

In simulations of wave propagation in a layered medium with known location of 

inhomogeneities, the numerical scheme is the same as described in [14]. However,  

the wave propagation algorithm is modified in order to solve the coupled systems 

of equations in the modelling of the microstructure. This modification is needed to 

treat the source terms which appeared in equations due to their coupling.  
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4.2 Linear Waves 

As an example, the propagation of a pulse in an one-dimensional medium which 

can be represented as an elastic bar is analysed. This bar is assumed homogeneous 

except of a region of length d, where periodically alternating layers of size l are 

inserted. The density and longitudinal velocity in the bar are chosen as ρ0 = 4510 

kg/m3 and c = 5240 m/s, respectively. The corresponding parameters for the mate-

rial of the inhomogeneity layers are ρ1 = 2703 kg/m3 and c1 = 5020 m/s, respec-

tively. The shape of the pulse before the crossing of the inhomogeneity region is 

formed by an excitation of the strain at the boundary for an limited dimensionless 

time period (0< t < 100) 

(0, )  (1  cos( ( 50) / 50)) .t tε π= + −   (4.1) 

The time step used in calculations is by definition a unit. The length of the 

pulse L = 100 ∆x is comparable with the size of inhomogeneity (l = 128 ∆x).  Us-

ing the notion of the bar, it must be stressed that l and L are much smaller than the 

diameter of the bar [15]. 

 

Fig. 4.1 Scattering of a pulse by a periodic multilayer. 
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Direct numerical simulation of linear elastic wave propagation in the medium 

with variable properties shows that the pulse holds its shape up to the entering into 

the inhomogeneity region. After the interaction with the periodic multilayer, the 

single pulse is separated into many reflected and transmitted parts as it can be seen 

in Fig. 4.1. Normalized time shown in Fig. 4.1 is measured in hundreds of time 

steps. During the propagation in the periodic medium, the amplitude of the pulse 

is diminished due to multiple reflections. 

The same pulse propagation was simulated by the microstructured model de-

scribed above with the following choice of material parameters: A = 49 ρ0c
2, I = 

ρ1, C = Ic1
2, B = 24.6 A2

ρ0c
2. In this case, there is no assumption of periodicity of 

microstructure, however, in calculations of the pulse propagation, the internal 

length l for the microstructure is kept the same as in the case of periodic multi-

layer. The ratio of scales l and L together with the value of the parameter A deter-

mines the contribution of the microstructure to the macromotion.  

Here the coupled systems of equations (3.11), (3.12) and (3.14), (3.16) are 

solved simultaneously. It should be noted that no boundary conditions for the in-

ternal variable are prescribed. A non-zero solution for the microstructure is in-

duced due to the coupling.  

Results of numerical simulation are presented in Fig.4.2, where the correspond-

ing transmitted pulses from the solution of the problem with periodic multilayer 

are also shown. 

 

Fig. 4.2 Transmitted pulses.  
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As one can see, the adjustment of material parameters in the microstructure 

model allows us to reproduce the first pulse with perfect accuracy while the sec-

ond one is essentially smaller in amplitude, because of the absence of a reflected 

trail in the case of the microstructure model. 

4.3 Weakly Nonlinear Waves 

We consider again the propagation of a pulse in a layered 1D medium (elastic bar) 

where the length of inhomogeneity l = 4 ∆x is much smaller than the length of the 

pulse L = 100 ∆x.  The properties of materials are the same as previously with a 

weak nonlinearity for the less stiff material (cf. [16]) 

( )2
0  1  ,x xc u Nuσ ρ= +  (4.2) 

where N is a parameter of nonlinearity. 

Direct computations in this weakly nonlinear case (N = 0.04) show that the ini-

tial bell-shaped pulse is transformed in a train of soliton-like pulses propagating 

with amplitude-dependent speeds (Fig. 4.3) like for the celebrated KdV case. 

 

Fig. 4.3 Transformation of a bell-shaped pulse in a weakly nonlinear periodic medium (af-
ter 4600 time steps). 
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If we return to the microstructure model then the linear governing equations 

(3.7), (3.8) must be modified. Instead of the free energy function (3.5), a cubic 

function is used: 

2 2 2
* 2 2 2 2 3 30 0 01 1 1

   ,
2 2 2 2 6 6x x x x

c c c
W u A u B C D M Nu

ρ ρ ρφ φ φ ψ φ= + + + + + +  

 (4.3) 

where M  and N are new material constants (see [17]). 

Now the governing equations yield (cf. (3.7), (3.8)) 

2 2
0 0 0    ,tt xx x xx xu c u c Nu u Aρ ρ ρ φ= + +   (4.4) 

       .tt xx x xx xI C M Au Bφ φ φ φ φ= + − −   (4.5) 

Besides dispersive effects (see [10]), the governing equations (4.4) and (4.5) 

include also nonlinear effects in macro- and microscale. The dispersive effects are 

analysed in [10] while the influence of nonlinearities is described in [18]. It is not 

surprising that the balance between the dispersive and nonlinear effects can occur 

resulting in emergence of solitons.  

For numerical simulation, the system of equations (4.4), (4.5) can be repre-

sented in the form of a single (4th order) equation (like Eq. (3.10)). The initial 

value problem for such a model nonlinear equation is solved by the pseudospectral 

method [18]. The initial pulse-type excitation leads to the train of solitons similar 

to that shown in Fig. 4.3. 

5. Conclusions  

If we know all the details of a given microstructure, namely, size, shape, composi-

tion, location, and properties of inclusions as well as properties of a carrier me-

dium, the classical wave theory is sufficient for the description of wave propaga-

tion. Usually our knowledge about the microstructure is limited – we know only 

the characteristic scale of microstructure and its physical properties. Then the ac-

curacy of classical theories is not sufficient and the more advanced theories of 

continua should be used.  

In the paper, we have compared results of direct numerical simulations of wave 

propagation in given layered media with the corresponding results obtained by a 

continuous model of the microstructure. The presented model looks like a promis-

ing variant of the theory, complicated enough to describe various effects of the 
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microstructure. This model can be naturally extended to include non-linear effects 

and dissipation [19]. However, numerical simulations demonstrate that the 

straight-forward numerics and the modelling on the basis of continuum theories 

need a careful matching of material coefficients. 

Some general remarks should be made in addition. The concept of dual internal 

variables introduced in [7] permits to model consistently microstructure(s) for 

both dissipative (not analysed here) and non-dissipative processes (see above). 

Such an approach gives an excellent basis to clarify the structure of generalised 

continuum theories such like linear Cosserat, micromorphic, and second gradient 

elasticity theories. This will be a subject of our forthcoming publications. 

      Once the wavefields in microstructured materials are described with needed 

accuracy, the respective mathematical models can also be used for solving the in-

verse problems. In linear cases, the dependence of phase velocities on the micro-

structure can be used for determining the material properties. In nonlinear cases, 

when the balance between dispersive and nonlinear effects supports the propaga-

tion of solitary waves, the algorithms for solving the inverse problems can be 

based on the analysis of shapes of solitary waves. It has been shown namely [17] 

that the nonlinearity of the microstructure leads to asymmetric solitary waves. 

This property can be used for constructing an algorithm which determines the pa-

rameters of the microstructure from measured asymmetry (see [17]). 

Acknowledgements: Support of the Estonian Science Foundation is gratefully acknowledged. 
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Abstract. The generation and propagation of anti-plane surface waves on an in-

homogeneous half-space of depth dependent shear modulus and mass density, is 

discussed in this paper. The radiation of surface waves an anti-plane line load is 

analyzed by an application of the reciprocity theorem. Next the governing equa-

tion for free surface waves is reformulated in a form that is amenable to a surface 

wave solution in the high frequency range. The boundary condition on the free 

surface yields an equation for the velocity of surface waves, in terms of the wave 

number and derivatives of the functions defining the depth dependence of the 

shear modules and the mass density. This equation does not always have a real-

valued solution, and when it does the amplitude of the corresponding wave motion 

does not always display the decrease with depth that would define a surface wave. 

Numerical examples are presented to illustrate these observations. 

1. Introduction 

In recent years there has been a renewed interest in horizontally polarized (anti-plane) 

surface waves along the flat surface of an elastic body, whose shear modules and mass 

density depend on the distance from the flat surface. 

It is well known that anti-plane surface waves do no exist on a homogenous body 

with a free surface. A boundary condition that represents some constraint on the sur-

face is required to support anti-plane surface waves. The best known example are 

Love waves which can exist due to the presence of an elastic layer.  

In this paper we consider the existence of anti-plane surface waves on a half space, 

but one with smoothly varying depth dependent properties. It is shown that there are 
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limitations on the depth dependence of the shear modules and the mass density for sur-

face waves to exist. For the case that anti-plane surface waves do exist, we will deter-

mine, by a novel method based on the reciprocity theorem, the amplitudes of the sur-

face waves radiated by a time-harmonic line load applied to the free surface of the 

half-space.  

For applications in seismology, the dependence of µ and ρ on depth has been dealt 

with numerically by replacing the continuous inhomogeneity by a representative layer-

ing which may, however, produce effects on the interfaces, or by a formulation which 

is amenable to the Runge-Kutta technique, see [1, p. 267]. It appears that no analytical 

solution for surface waves, are available for general depth dependence of µ and ρ. For 

in-plane surface (Rayleigh) waves, a special depth dependence, exp (αz), when taken 

for both the elastic constants and the mass density, does give a solution for the 

Rayleigh waves on a halfspace with a free boundary, see [2,3]. However, this ap-

proximation does not support anti-plane surface waves on a free half-space.  

In [4] the governing equation for the anti-plane displacement has been formulated 

in general terms, and an appropriate substitution has been used to reduce the governing 

equation to one that is amenable to a WKBJ solution see [5, p.25]. The corresponding 

high frequency surface-wave solution was subsequently used to satisfy the condition 

on the traction-free boundary. The resulting equation relates the velocity of the anti-

plane surface waves to the wave number of such waves. The equation shows that the 

velocity of surface waves also depends on the value of the shear modulus and its first 

three derivatives at z = 0, as well as on the value of the mass density and its first order 

derivative at z = 0. A WKBJ solution for a layer of inhomogeneous material discussed 

by Brekhovskikh, was applied in [6] for the determination of the reflection coefficient 

of acoustic and electromagnetic waves in inhomogeneous layered media. Some inter-

esting papers on antiplane shear waves by Shuvalov et al. [7,8] that address the deter-

mination of antiplane wave solutions, follow the model presented by Brekhovskikh 

[6]. Reference [7] is concerned with general properties of dispersion spectra in a 

monoclinic plate. Reference [8] deals with the propagation of antiplane surface waves 

in semi-infinite elastic media with vertically periodic continuous and/or discrete varia-

tion of material properties. In contrast to these references, the model presented in this 

work directly addresses the determination of high frequency antiplane surface wave 

solutions in a general inhomogeneous halfspace without equivalent layering.  

In [4] it has been shown that the existence of a surface wave speed does not neces-

sarily mean that a corresponding surface wave whose amplitude decays with depth 

also exists. The conditions for a surface wave are briefly reviewed in this paper. The 

results are illustrated for a specific example of depth dependence of the shear modulus 

and the mass density. 
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2. Governing Equations 

The relevant material properties are the shear modulus µ(z) and the mass density 

ρ(z), where z is the distance from the free surface of a half space. We have 

0( ) ( )z g zµ µ=  and 0( ) ( )z h zρ ρ= ,  (1) 

where 

0(0) 1g g= =    and   0(0) 1h h= =   (2)  

The analytical form of the surface wave is taken as  

( )( , , ) ( ) i kx tv x z t V z e ω−= , (3) 

Thus the wave propagates in the x-direction, the displacement is in the y-direction, 

and V(z) is assumed to be real-valued, and  

lim ( ) 0
z

V z
→∞

= , (4) 

in order that Eq. (3) represents a surface wave. Also, V(z) must satisfy  

2
2 2

2
( ) ( ) ( ) ( ) ( ) 0

d V d dV
z k z V z z V z

dz dzdz

µµ µ ρ ω+ − + =   (5) 

with boundary condition 

0

(0) 0
z

dV

dz
µ

=

=  (6) 

3. Generation of Anti-Plane Surface Waves 

The generation of anti-plane surface waves requires the application of a mechanical 

excitation to the surface of the body. A prototype mechanical excitation is that due 

to a time-harmonic antiplane line-load. Such a load does not only generate surface 

waves, but also body waves. It may, however, be expected that in the two-

dimensional configuration of a line load applied to the free surface of a half-space, 

the body waves will decay as 1/r1/2, where r is the distance from the point of applica-

tion of the line load, while the surface waves do not display geometrical decay.  
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For an inhomogeneous solid, the usual mathematical techniques for determina-

tion of the radiated field, such as Fourier transform methods, do not work. A new 

technique for the determination of the radiated surface waves is presented in this 

paper, in the application of the reciprocity theorem [9].  

For an elastic body of volume V and boundary S, the reciprocity theorem re-

lates two elastodynamic states, State A and State B, defined by forces, fi , stress 

tensors τij, and displacements ui, by integrals over the volume V and the boundary 

S. For the steady-state time-harmonic case, where 

( , ) ( ) i t
i if t f e ω−=x x , ( , ) ( ) i t

i iu t u e ω−=x x , ( , ) ( ) i t
ij ijt e ωτ τ −=x x ,  (7) 

The reciprocity theorem has been derived in [9] in the following form 

( ) ( )A B B A B A A B
j j j j ij j ij j i

V S

f u f u dV u u n dSτ τ− = −∫ ∫ , (8) 

where n is the unit vector along the outward normal to S. It is shown in [9] that the 

reciprocity theorem as stated by Eq. (8) applies to isotropic, anisotropic as well as 

inhomogeneous solids. Extensions to linear viscoelasticity have also been worked 

out. 

For the two-dimensional configuration shown in Fig 1, elastodynamic State A 

is defined by the line load Fo and the surface waves that radiate in both the posi-

tive and negative x-directions. We have  

( ) ( )A
yf F x zδ δ=   (9) 

Using the general expression given by Eq.(3), the force radiates surface waves of 

the following form 

0x >  ( )A ikxv RV z e=   (10) 

0x <  ( )A ikxv RV z e−= ,  (11) 

where R is the radiation constant that will be determined by reciprocity considera-

tions. Note that the term exp(-iωt) has been omitted. 

For the configuration shown in Fig 1, the reciprocity relation reduces to the form  

( ) ( ) 0A B B A B A A B
y y xy xy x

v S

f v f v dV v v n dSτ τ− = − =∫ ∫                             (12)  
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Fig. 1 Contour for the application of the reciprocity theorem. 

As shown in Fig 1, the contour for integration along S is chosen as a rectangle 

with integrations at x b= , 0z∞ > ≥ and x a= , 0 z≤ < ∞ . The part of the con-

tour at z → ∞ is left out since the surface waves have exponentially vanished as 

z → ∞ . By taking the line load slightly inside the half-space the contribution from 

the traction-free surface vanishes, and we are left with a contribution from the line 

load in the left-hand side of Eq. (12). 

For State B, which is the virtual state, we choose a free surface wave propagat-

ing in the positive x-direction. 

( )B ikxv V z e=  (13) 

( ) ( )B ikx
xy ik z V z eτ µ=  (14) 

Substitution of the expressions for States A and B into Eq.(12) yields 

0
2 2 2 2

0

( ) ( ) ( ) 2 ( ) ( )ikb ikbF ikR z V z e e dz z V z dzµ µ
∞

∞

  = − − 
  
∫ ∫  (15) 

It is noted that waves propagating in the same direction in the integral along 

x=b cancel each other, while the counter-propagating waves in the integral along 

x=a produce a contribution that allows the calculation of R. The result is 

1

2

i F
R

k I
=  , (16) 

where 

2

0

( ) ( )I z V z dzµ
∞

= ∫  (17) 

For given ( )zµ we have to determine V(z) to calculate the integral in Eq. (17), 

and to obtain the final result.  
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4. Determination of V(z) 

Equation (5) was considered in some detail in Ref. [4]. To render the equation ame-

nable to solution the authors of [4] eliminated the second term by the substitution 

1
( ) ( )

( )
V z V z

g z
=  (18) 

After some manipulation Eq. (5) then simplifies to 

2
2

2
( , ) 0,

d V
q z V

dz
ω ω− =  (19) 

where 

2 2 2

1 1 ( )
( , )

S

f z
q z

c c
ω

ω
= − +  (20) 

2 2 ( )
( )

( )

z
c c z

z

µ
ρ

= =  (21) 

22

2 2

1 1 1 1
( )

2 4

d g dg
f z

g dzdz g
 = −  
 

  (22) 

Next a postulated solution of Eq. (19) in the form 

0

( ) exp
z

V z A dzφ
  = − 
  
∫  (23) 

was considered. Substitution of Eq. (23) into (18) and the result in Eq. (19) yields 

2 2 0
d

q
dz

φφ ω− − =  (24)  

Following Heading [5] a solution was sought of the form 

( ) ( ) ( )0 1 2 2

1 1
, , ,z z z Oφ φ ω ω φ ω φ ω

ω ω
 = + + +  
 

,  (25) 

for the case that ω is large and positive and q(z, ω) tends to a limit as ω → ∞ . 

Substitution in Eq.(24), only keeping terms of order ω2 and ω, yields 
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1/2
0 qϕ =   (26) 

1/ 2 1/2
1 ( / ) / 2dq dz qϕ =  (27) 

The high-frequency approximation to ( )V z then becomes 

0

1/4

1/2
1/4

0

( ) exp ,
zq

V z A q dz
q

ω
  = − 
  

∫  (28) 

where q(z,ω) is defined by Eq.(20), and qo is 

0 2 2 2

1 1 (0)

s o

f
q

c c ω
= − +  (29) 

For details we refer to Ref. [4]. The expression for the actual displacement fol-

lows from Eqs. (18) and (28) as  

0

1/4

1/ 2
1/2 1/4

0

( ) exp ( , )
( , )

zqA
V z q z dz

g q z
ω ω

ω
 

= −  
 

∫   (30) 

It may be checked that Eq. (30) reduces to the right result for the homogenous 

case. The stress τxz corresponding to Eq. (30) is  

( ) ( ) ( )xz z ik z V zτ µ= , (31) 

while τyz becomes  

1/ 4
3/2

1/2 5/4

1 1
( )

2 4
o

yz

qdV A q dg dq
z q

dz g dz dzg q
τ µ ω

 = = − + + 
 

  (32) 

It follows from Eq. (20) that  

3 2

2 1dq dc df

dz dz dzc ω
= + , (33) 

where c(z) and f(z) are defined by Eqs. (20) and (21), respectively. Also 

1/2 1/ 2

0 0 1/2 1/2 3/2

( ) 1 1 1

( ) 2

dc d g z dg g dh
c c

dz dz h z dz dzg h h

  
= = −  

   
  (34) 

3 2 3

3 2 2 3

1 1 1

22

df dg dg d g d g

dz dz dz gg g dz dz
 = − + 
 

  (35) 
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For a traction-free surface at z = 0, τyz as given by Eq. (32) must vanish at z = 0. 

At z = 0, we have 

0 01,       1g g h h= = = = , (36) 

and we define for simplicity of notation  

1,
dg

g
dz

=   1

dh
h

dz
= ,  

2

22

d g
g

dz
= ,  

3

33

d g
g

dz
=   (37) 

By virtue of Eq. (22) and Eqs.  (34)-(35), we obtain at z = 0 

0

2
2 1

1 1
(0) ,

2 4
f f g g= = −  3

1 1 1 2 3
0

1 1

2 2z

df
f g g g g

dz =

= = − +   (38) 

1 0 1 1
0

1
( )

2z

dc
c c g h

dz =

= = −  (39) 

By introducing Eqs. (36)-(39) into Eq. (32), and by multiplying the result by cs, 

taking into account that ω = kcs, and by introducing a characteristic length L, the 

condition τyz = 0 at z = 0 yields  

( )
( ) ( )

( )
( )

3 2
2 2 2 2 2 3

0 0 1
1 1 12 2 2 2 2 2

0 0 0

1 1 1
1 1 0

2 4 4
S S Sc f L c f L c f L

kL g L g L h L
c c ckL kL kL

   
   − + + − + + − + =
   
                           

             (40) 

It should be noted that in addition to depending on kL, i.e the surface wave is 

dispersive, cs also depends on the first three derivatives of g(z) and the first deriva-

tive of h(z) at z = 0. Equation (40) is the anti-plane surface waves dispersion rela-

tion.  

5. Results and Discussion 

In accordance with Eq. (3), the functional form of the displacement of the anti-

place surface wave is of the form  

{ }( , , ) ( ) exp ( )sv x z t V z ik x c t= −  (41) 

where we have used ω=kcs, V(z) is given by Eq. (30), and cs is the solution of Eq. 

(40). In order to compute the radiation constant R from Eq. (16), we must have an 
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expression for V(z) which is real-valued and represents a surface wave, while cs 

should also be real valued. 

For V(z) to be real valued and represent a surface wave, we must have q>0, 

where q is defined by Eq.(20). Thus  

2

2 2

( )
1sc f z

c k
< +  (42) 

On the other hand Eq. (42) indicates that for a real value of cs the first term of 

(42) should be real-valued, i.e,  

2

2 2

(0)
1sc f

c k
≤ +   (43) 

These conditions are not necessarily contradictory but they must be satisfied at 

the same time. A real-valued solution of Eq. (40) is also restricted by conditions 

on other terms, for example we should probably have g1 ≤ 0. These restrictions 

have been illustrated by an example in Ref [4]. For that example it is possible to 

obtain a real-valued solution for cs, but it is found that q(z,ω) becomes negative at 

a certain depth, and hence V(z) would not be real-valued and decaying with depth.  

Hence it is recommended that for selected profiles g(z) and h(z) it should first be 

checked that Eq. (40) produces a real valued cs. If cs is indeed real-valued, it 

should be checked that q > 0, to determine the surface wave displacement and 

stress profiles.  

As a sample example let us consider 

{ }2( ) 1 1 exp[ ( / ) ] exp[ ( / )],     ( ) 1g z z L z L h zα β= + − − =   (44) 

It may be checked that  

1 2 3 12 3
0,    2 ,    6 ,    0g g g h

L L

α αβ= = = − =   (45) 

The profile for µ(z)/µo = g(z) is shown in Fig 2. Using Eq. (45), cs follows from 

(40) as  

2 2/3

2 2
0

 1 3
1

4( ) ( )
sc

c kL kL

α αβ
  = + −  

  
  (46) 
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Fig. 2 Shear modulus profile given by Eq. (44) for α = 5 and β = 0.5. 
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Fig. 3 (a) Calculated surface wave dispersion curve and (b) displacement and stress profiles. 

To check that for the example of Eq. (44), the condition (42) is satisfied, 

we write 

2/32 2 2 2
0 0

0 12 2 2 2 2
0

1 1
1 ,

4
s sc c c c

f f
c c c k c

    = = + − −   
     

 (47) 

where Eq. (46) has been used. According to Eq. (44), we should then have 

2 2
0
2 2/3

0 12

( )
1

,
1 1

1
4

f z
c k
c

f f
k

+
<

  + − −  
   

  (48) 

within the penetration depth of the surface wave. For the example given by Eq. 

(44) we clearly have that c0
2/c2 < 1. Hence the condition (48) implies that Eq. (42) 

will be satisfied if 
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2/3

0 1

1
( )

4
f z f f

 > − − 
 

  (49) 

For the example of Eq. (44) we have f0 = 2α/L2 and f1 = -3αβ/L3, and hence the 

condition (49) depends on the values of α and β. Figure 3(a) shows the velocity of 

surface waves. The dimensionless anti-plane displacement V(z)/A, where V(z) is 

defined by Eq. (30) and the dimensionless stress ( ) /xz ozτ µ ,which follows from  

Eq. (31) are shown in Fig. 3(b). For the results of Fig. 3, the surface wave velocity 

is obtained from Eq. (46) as cs/co = 1.0472 at kL = 6, where c0 = 3040 m/s and L = 

1 mm. The calculated surface wave velocity is seen to decrease with kL and it ap-

proaches the transverse wave velocity at z = 0. The stress and displacement pro-

files are seen to decrease with z as expected for a surface wave. 
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Abstract. Resonance ultrasound microscopy is developed for quantitatively mea-

suring local Young’s modulus of solid surfaces, using monocrystal langasite 

(La3Ga5SiO14) as a probing oscillator. The langasite oscillator is acoustically iso-

lated so that the contact with the specimen only affects the vibration, making the 

quantitative measurement possible. The vibrational analysis is proposed to calcu-

late the local stiffness and local damping from the resonance frequency and inter-

nal friction of the oscillator, respectively. This method is applied to a polycrystal-

line copper and a SiC fiber as illustrative examples. 

1. Introduction 

Young’s modulus is the most important engineering stiffness. It is required in de-

signing any structures, including micro/nano electromechanical systems. Usually, 

it is obtained by a tensile test and by ultrasonic velocity measurements, for which 

specimens must be large enough and have simple shapes such as plate, sphere, 

rectangular parallelepiped, and so on. It has never been straightforward to measure 

Young’s modulus in a localized area.  Since the local Young’s modulus is more 

sensitivity to the presence of small defects, it can also be useful for assess-ing the 

integrity of small structures. 

Surface probing techniques have been developed for measuring Young’s 

modulus in a local area. Yamanaka et al. [1, 2] developed ultrasound atomic-force 

microscopy (UAFM), where an AFM cantilever contacts with the specimen sur-

face. The resonance frequency of the bending vibration of the cantilever varies 

depending on the elastic stiffness of the contacting material, providing an elastic 

image with high spatial resolution. Rabe et al. [3, 4] also presented a similar 
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Fig. 2.1 RUM probe with a 
monocrystal langasite oscillator. 

methodology called atomic-force acoustic microscopy. These methods with an 

AFM cantilever achieved high-resolution elastic-stiffness microscopy (~ 50 nm). 

However, quantitative evaluation of the local stiffness is still difficult because the 

cantilever is not isolated acoustically. Namely, many ambiguous components par-

ticipate in the resonant system, not only the cantilever and the specimen but also 

the piezoelectric transducer attached to it to excite the vibration, the mechanical 

properties of the material at the gripping end, and the gripping condition. 

We propose an alternative Young’s modulus microscopy, resonant ultrasound 

microscopy (RUM). It uses a bar-shape langasite oscillator. The vibrations are ex-

cited and detected by a noncontacting line antenna [5], and the oscillator is acous-

tically isolated from any other materials except for the specimen. Thus, the elastic 

properties of the specimen are extracted unambiguously, realizing the quantitative 

measurement. The isolated oscillator significantly contributes to the modeling to 

deduce Young’s modulus from the resonance frequency change. Furthermore, the 

internal-friction change of the oscillator indicates the local damping property of 

the specimen. We can thus simultaneously construct elastic and anelastic images 

of solids. This paper presents the principle of RUM and shows examples of elastic 

and anelastic imaging for polycrystalline copper and SiC fiber. 

2. Isolated Langasite Oscillator 

Figure 2.1 shows the schematic of the RUM 

probe, consisting of the langasite oscillator, 

monocrystal diamond tip attached at the end 

of the oscillator, a fixture gripping the oscilla-

tor, a line antenna embedded in the fixture, 

and a cylindrical guide surrounding the fix-

ture. The langasite oscillator is a rectangular-

column-shape single crystal, and its longitu-

dinal direction is along the [100] direction of 

the trigonal system. The cross-sectional area 

is A=0.6x0.6 mm2 and the length L=7.0 mm. 

We selected the [100] direction to be aligned 

in the longitudinal direction of the oscillator 

because Young’s modulus in this direction is 

small, providing higher sensitivity to the material’s stiffness [5]. A conical 

monocrystal diamond tip is attached at the center of the bottom surface of the 
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oscillator, which contacts the specimen. The fixture holds the oscillator at the center 

nodal point. The line antenna measures the resonance frequency contactlessly. Therefore, 

the langasite oscillator is acoustically isolated except for the contact with the specimen, 

so that the change in the resonance frequency solely and directly gives the elastic stiff-

ness of the specimen. The biasing force for the contact is kept unchanged, being inde-

pendent of surface roughness; it principally equals the oscillator weight plus the fixture 

(0.59 mN). This configuration is an important advantage of RUM, because the stable bi-

asing force allows us to analytically calculate the effective Young modulus [6]. 

The resonance frequency is measured by the superheterodyne spectroscopy method 

[7, 8]. We apply a burst signal of frequency Dω  (~ 50 Vpp amplitude and 100 µs dura-

tion) to the generation wire of the antenna. The quasistatic electric field is induced in the 

longitudinal direction near the center area of the oscillator bar, owing to the converse 

piezoelectric effect, where the maximum stress occurs for the fundamental resonant 

mode. After the excitation, the oscillator vibrates with the resonance frequency Rω , and 

the vibrational amplitude decays. The detection wire of the antenna receives the ringing 

signal via the piezoelectric effect, which is mixed with the reference signal of the driving 

burst to produce the beating signal with the differential frequency of Rω − Dω . The am-

plitude is integrated over a long interval by the analog integrator. When the driving fre-

quency equals the resonance frequency, the integrated amplitude takes a large value. 

Thus, by scanning the driving frequency and acquiring the integrated amplitude, we ob-

tain a spectrum with a sharp peak, from which the resonance frequency is determined by 

fitting the Lorentzian function. 

The contacting point is moved using the 3-axis stage. At a measuring point, the reso-

nance frequency is first measured in a noncontacting state. Then, the stage lifts the 

specimen up to make the contact and the resonance frequency in the con tacting condi-

tion is measured; the frequency change between them is recorded. The probe is separated 

from the specimen, and the stage moves the specimen to the next measuring point. The 

probe never scratches the specimen surface. 

 

Fig. 3.1 Modeling the contact interface by a spring with complex spring constant, Kɶ . 
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3. Vibrational Analysis 

The contact problem of the isolated oscillator can be modeled as a resonator of a 

bar oscillator connected with the rigid wall through a spring and a damper as 

shown in Fig. 3.1. The spring constant K and the damping constant ηΚ are associ-

ated with Young’s modulus Espe and internal friction ζspe of the specimen at the lo-

cal contacting area as well as those of the oscillator (E[100] and ζLGS) and the tip 

(Etip and ζtip). Considering the boundary conditions at the free end (top) and the 

spring end (bottom), we derive the frequency and damping equations as follows [5]: 

tan( )oscK K L Lβ β= ,  (3.1) 

( ) ( )( ) ( )( )2 2

0

1
2

2
LGS

K m L p L p
p

ςη ς ς β β = − + − − 
 

.  (3.2) 

Here, β denotes the wavenumber in the longitudinal direction and 

Kosc=E[100]A/L is the spring constant of the oscillator for a static load.p=K/Kosc in-

dicates the contribution of the contact stiffness to the resonator system; a larger p 

causes a larger frequency change. ζLGS, ζm, and ζ0 are internal friction of the oscil-

lator, measured internal friction at the contact condition, and the loss due to the 

propagation of sound wave into the specimen, respectively. Assuming a Hertzian 

contact with isotropic bodies [9], the effective Young’s modulus EHertz and internal 

friction ζspe are obtained by [5] 

12 23 1 1

6
spe tip

Hertz
spe tip

K
E

FR E E

ν ν
−

 − −
= = + 

 
 

,  (3.3) 

2 2

2 2

1 13
1

2 1 1
spe tip spe tip

spe K tip
tip tipspe spe

E E

E E

ν ν
ς η ς

ν ν
 − −

= + ⋅ − ⋅ 
− −  

.  (3.4) 

Here, E and ν are Young’s modulus and Poisson’s ratio, and the subscripts spe 

and tip indicate quantities of the specimen and the tip, respectively. Thus, we can 

determine the effective modulus and internal friction of the specimen at the local-

ized contact area by measuring the resonance frequency change and the internal-

friction change between before and after the contact. 

   Equations (3.3) and (3.4) are applicable to contact with isotropic materials. 

However, the materials show elastic anisotropy at a localized area because of crys-

tal symmetry, oriented defects, segregation of precipitates, and so on. It is then 
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necessary to discuss the applicability of the isotropic approximation. Willis [10] 

derived the elastic field caused by a contact between an indenter and an anisot-

ropic half-space solid using Fourier transformation. Following his analytical 

method, we derived the contact stiffness for anisotropic solids: 

1
3

3
0

8
Willis

I
E

I
= , (3.5) 

Here, I0 and I1 are given in detail elsewhere [11] and they depend on all inde-

pendent elastic constants of the specimen and the tip. Figure 3.2 compares the ef-

fective Young’s modulus calculated using anisotropic elastic constants (EWillis) and 

that calculated assuming elastic isotropy (EHertz) for contact between the 

monocrystal diamond and hexagonal and cubic materials. These two moduli prin 

cipally show a good correlation. Materials with high elastic anisotropy cause lar-

ger difference between them, although the difference is smaller than ~10%. There-

fore, the stiffness evaluation with RUM could involve 10% error associated with 

the elastic anisotropy. 

Fig. 3.2 Comparison between the effective Young’s modulus determined by considering 
elastic anisotropy of the contacting materials (EWillis) and that determined by assuming 
elastic isotropy (EHertz). Various cubic and hexagonal crystals are involved. 
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4. Elastic and Anelastic Imaging 

Figure 4.1 shows the elastic and anelastic images of a polycrystalline copper. We 

first measured the crystallographic orientations of individual grains using electron 

backscatter-diffraction (EBSD) method and calculated the anisotropic effective 

Young’s modulus (Fig. 4.1(a)). Then, we measured the resonance frequency 

change and internal friction of the same area to obtain the stiffness and internal-

friction images as shown in Figs. 4.1(b) and (c), respectively.  Young’s modulus 

images by EBSD and RUM show a good agreement, indicating high capability of 

quantitative stiffness measurement with RUM. The RUM modulus shows a low 

stiffness at the grain boundary indicated by the arrow in Fig. 4.1(b). The grain 

boundary shows higher internal friction (Fig. 4.1(c)). The softening at grain 

boundary is possible due to highly distorted lattice structure, where dislocations 

are densely formed and absorbs the acoustic energy.  

We applied this method to a silicon-carbide fiber (SCS-6) embedded in Ti-alloy 

matrix as shown in Fig. 4.2. This fiber has an annular structure; carbon core, inner 

carbon coating, chemical-vapor-deposited β-SiC, and outer carbon coating. The 

RUM images in Fig. 4.3 clearly show the difference of the stiffness among the in-

dividual components. The microstructure of the fiber was studied by trans-

mission-electron microscopy in detail by Ning and Pirouz [12]. The inside region 

of the core consists of blocks of turbostratic carbon (TC) with 1–50 nm size, 

whose chemical bonds are similar to those of graphite. They are randomly ori-

ented. The inner and outer carbon coatings also consist of TC blocks with 30-50 

nm size, but their c axes are predominantly aligned in the radial direction. The 

basal planes of TC grains are in alignment with the longitudinal direction of the 

fiber, along which the covalent bonds appear. Therefore, the carbon coating layers 

show higher modulus than in the carbon core. 

Young’s modulus in the SiC region is smaller than the expected value of 327 

GPa calculated using reported values for the bulk β-SiC (Young’s modulus of β-

SiC is 447 GPa). This will be caused by microdefects introduced during the CVD 

deposition process. The RUM measurement provides the stiffness in a localized 

region, where the stress field increases the degree of the stress concentration near 

defects if any and lowers the apparent stiffness more significantly than in the case 

of the application of a uniform stress field. 

 



 

51 

50 µm

(a) (b)

ζspe
0.01 0.025110 140EWillis (GPa)110 140EWillis (GPa)  

Fig. 4.1 Elastic and anelastic images. (a) The effective Young’s modulus image calculated 
by crystallographic orientation determined by the EBSD method. (b) Effective image 
modulus measured by RUM. (c) Internal friction image measured by RUM. 

 

Fig. 4.2 Scanning-electron microscopy image of SCS-14 fiber embedded in a Ti-6Al-4V matrix. 
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20                           350

-SiC
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carbon core
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Fig. 4.3 Images by SEM (left), stiffness images by RUM (center), and three-dimensional 
stiffness images by RUM (right). 

(c) 
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5. Conclusions 

An isolation of vibrating oscillator is achieved using the langasite monocrystal and 

the stiffness microscopy is successfully developed. Currently, the spatial resolu-

tion is 200 nm. Although it may involve the error up to 10% caused by material’s 

elastic anisotropy, it can provide the local stiffness and local internal friction 

quantitatively as has been confirmed by the stiffness image obtained by electro-

backscattering diffraction measurement.  This microscopy is applied to a single 

SiC fiber and clearly shows the stiffness difference among the components. The 

stiffness in the SiC region is much lower than that expectation, which is explained 

by microdefects introduced during the deposition of the SiC phase. 
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Abstract. The non-classical nonlinear phenomena are based on anomalously high 

local nonlinearity of micro- and macro-scale defects and thus are defect-selective, 

i.e. appeal directly to the vulnerable (faulty) areas within material or a product. 

The paper suggests an overview of the mechanisms and manifestations of the non-

classical acoustic phenomena which lay the foundations of the new approaches to 

ultrasonic NDE and defect-selective imaging.  

1. Introduction 

A traditional view on nonlinear ultrasonics is concerned with classical idea of elastic 

wave distortion due to material nonlinearity: waveform deformation caused by a local 

velocity variation accumulates with propagation distance and provides progressive tran-

sition of a harmonic wave into sawtooth- or N-type waves. As a result, the spectrum ac-

quires higher (ultra-) harmonics of the fundamental frequency which deliver information 

on the matter. In classical (crystalline or free from defects isotropic) media, the material 

nonlinearity is quite low and normally only few harmonics are observable so that classi-

cal nonlinear non-destructive evaluation (NDE) is basically “second harmonic” NDE. 

In imperfect (damaged) materials, nonlinear response is provided by the higher-order 

Contact Acoustic Nonlinearity (CAN) [1]: strongly nonlinear local vibrations of defects 

due to mechanical constraint of their fragments which efficiently generate multiple ultra-

harmonics and support multi-wave interactions. Another contribution to non-classical 

nonlinear spectrum comes from resonance properties of planar defects [2]. Similar to 

resonance behaviour of an air bubble in liquid, vibrations of a certain mass of material 

around a cracked defect are managed by reduced stiffness which provides a specific 

characteristic frequency of the defect and brings the nonlinear resonance scenario into 

elastic wave-defect interaction.  
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In this paper, basic mechanisms responsible for frequency conversion by nonlinear 

defects are discussed and major features of CAN spectra derived. Experimental meth-

odologies of nonlinear laser vibrometry (NLV) and nonlinear air-coupled emission 

(NACE) are developed and used to study non-classical spectra in elastic wave-defect 

interaction. Applications for defect-selective imaging and NDE are demonstrated for a 

series of hi-tech materials and industrial components.  

2. Phenomenology of Harmonic Generation via CAN 

2.1 “Clapping” Mechanism 

Consider a pre-stressed crack (static stress 0σ ) driven with longitudinal acoustic 

traction ~σ which is strong enough to provide clapping of the crack interface. The 

clapping nonlinearity comes from asymmetrical dynamics of the contact stiffness: 

the latter is higher in a compression phase (due to clapping) than that for tensile 

stress when the crack is assumed to be supported only by edge-stresses.  

Such behaviour of a clapping interface can be approximated by a piece-wise 

stress (σ )-strain ( ε ) relation [3]: 

[1 ( )( / )]C H C Cσ ε ε= − ∆ ,  (2.1.1) 

where ( )H ε is the Heaviside unit step function; 0[ ( / ) ]C C d d εσ ε >∆ = − , and C  

is the intact material (linear) stiffness.  

The bi-modular pre-stressed contact driven by a harmonic acoustic strain 

0( ) cost tε ε ν=  is similar to a “mechanical diode” and results in a pulse-type 

modulation of its stiffness ( )C t  (Fig. 2.1). It also provides an unconventional 

nonlinear waveform distortion: a half-period rectified output (Fig. 2.1) instead of 

the saw-tooth like profile in classical materials. Since ( )C t  is a pulse-type peri-

odic function of the driving frequency ν  (Fig. 2.1, right), the nonlinear part of the 

spectrum induced in the damaged area ( ( ) ( ) ( )NL t C t tσ ε= ∆ ⋅ ) contains a number 

of its higher harmonics nν  (both odd and even orders) whose amplitudes are 

modulated by the sinc-�envelope function [3]: 

( )( ) ( ) ( ) ( )( )0 1 t 2 t t 1 tnA C sinc n cos sinc n sinc nτε π = ∆ ∆ + ∆ − ∆ ∆ + − ∆  ,  

 (2.1.2) 

where / Tτ τ∆ =  ( 0
0( / ) cos( / )T Arcτ π ε ε=  is the normalized modulation pulse 

length.  
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Fig. 2.1 Mechanical diode model (left); stiffness modulation and waveform distortion (right). 

 

Fig. 2.2 CAN higher harmonic spectrum (left) and dynamic characteristics (right). 

The spectrum of the nonlinear vibrations (2.1.2) is illustrated in Fig. 2.2, left 

and contains a number of both odd and even higher harmonics arising simultane-

ously as soon as 0ε ε> (threshold of clapping). The sinc-modulation in (2.1.2) is 

amplitude dependent: as the wave amplitude 0ε  increases, τ  grows from 0 to 

/ 2T . This affects dynamic characteristics of the higher harmonics (Fig. 2.2, 

right) and provides their oscillations due to the spectrum “compression” effect. 

2.2 Nonlinear Friction Mechanisms 

For a shear wave drive, the surfaces of the contact interface are mechanically coupled 

by the friction force caused by the interaction between asperities. If the driving ampli-

tude is small enough, the interface shear motion is constrained by the interaction be-

tween neighbouring asperities that prevents the contact surfaces from sliding (micro-

slip mode). The mechanical diode model for the micro-slip motion is shown in 
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Fig. 2.3, left and demonstrates a step-wise increase in tangential stiffness as the 

neighbouring asperities interact. This interaction is independent of the direction of 

shear motion and causes stiffness variation twice for the input signal period (Fig. 2.3, 

right). Such a constraint introduces a symmetrical nonlinearity and provides only odd 

harmonic generation. Like for the clapping mechanism, their amplitudes are sinc-

modulated due to pulse-type stiffness variation (Fig. 2.4): 

 2 1 0

2 2( 1)
2 sinc sincN

N N
A C

T T T

τ τ τε+
 +   = ∆ +    

    
 (2.2.1) 

and exhibit similar non-power dynamics. 

 

Fig. 2.3 Mechanical diode model (left), stiffness modulation and waveform distortion in 
micro-slip mode (right). 

 

Fig. 2.4 Sinc-modulated odd higher harmonic CAN spectrum in micro-slip mode. 
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When the amplitude of tangential traction is greater than the contact static fric-

tion force the micro-slip motion changes for sliding. An oscillating shear wave 

drive is accompanied by a cyclic transition between static and kinematic friction 

(stick-and-slide mode) so that the contact stress-strain relation follows a hysteric 

loop [3]. The contact tangential stiffness changes symmetrically (independent of 

the direction of motion) between the static (for a stick phase) and dynamic values 

(in slide phase) twice over the input strain period that provides odd higher har-

monics generation. Similar to the above, the CAN features sinc-spectrum modula-

tion and non-power dynamics. 

3. CAN Nonlinear Resonance Modes  

Besides the higher harmonic generation, the experiments [2, 4] also revealed dif-

ferent scenarios of CAN dynamics which expand considerably nonlinear spectra 

of cracked defects. These scenarios exhibit the forms of dynamic instability, i.e. an 

abrupt change of the output for a slight variation of the input parameters. To illus-

trate the feasibility of the new nonlinear vibration modes and ascertain their basic 

spectral patterns, we assume that the crack exhibits both resonance and nonlinear 

properties and thus is identified as a nonlinear oscillator [2]. Its characteristic fre-

quency ( 0ω ) is determined by a linear stiffness and an associated mass of the ma-

terial inside the damaged area. The contact nonlinearity is introduced as displace-

ment (X) dependent nonlinear interaction force ( )NLF X . The driven vibrations 

(driving force 0( ) cosf t f tν= ) of the nonlinear oscillator are found as a solution 

to the nonlinear equation: 

2
0 ( ) ( )NLX X f t F Xω+ = +ɺɺ  (3.1) 

In the second order of the perturbation approach 0~ cos( )NLF ν ω−                         

that accounts for the interaction between driving and natural frequency vibrations. If 

0 0ν ω ω− ≈ , the resonance increase in the output at  0 / 2ω ν≈  is observed (subhar-

monic generation). The higher-order terms in the interaction correspond to the fre-

quency relation 0m nν ω−  that provides resonance output at 0 / ( 1)m nω ν≈ + . For 

1n = , the crack generates ultra-subharmonics (USB) of the second order / 2mν ; the 

higher order USB correspond to the higher values of n.  

In reality, a damaged area has a more complicated structure that can be conceived 

as a set of coupled nonlinear oscillators. If the frequency of the driving acoustic wave 

is α βν ω ω≈ + , the difference frequency components α βν ω ω− ≈  and  β αν ω ω− ≈  
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provide cross excitation of the coupled oscillators. It results in a resonant generation of 

the frequency pair αω , βω  centred around the subharmonic position. The higher-order 

nonlinear terms in (3.1) expand the CAN spectrum which comprises multiple ultra-

frequency pairs (UFP) centred around the higher harmonics and USB [2].  

The USB and UFP belong to the class of the instability modes and can be inter-

preted, respectively, as a half-frequency and combination frequency decay of a high-

frequency phonon (driving frequency signal). The resonance instability manifests in 

the avalanche-like amplitude growth beyond the input threshold [5]. The reverse am-

plitude excursion results in bistability [4]: the input amplitudes for the up and down 

transitions are different (amplitude hysteresis). Such dynamics is a distinctive signa-

ture of the nonlinear acoustic phenomena associated with nonlinear resonance. 

4. Experimental Study of Non-Classical CAN Spectra  

The examples of the USB and UFP spectra observed in damaged materials by using 

nonlinear laser vibrometry (NLV) [6] are shown in Figs. 4.1, 4.2.  

The USB spectrum in Fig. 4.1 is measured in a cracked area of a polystyrene plate 

driven at ~1.3.kHz with a shaker. The higher harmonic pattern changes abruptly for 

the USB spectrum as the driving amplitude grows beyond a certain threshold value. 

The “wavy” amplitude modulation in Fig. 4.1 indicates involvement of the CAN 

mechanisms into USB generation. 

Fig. 4.2 shows a section of the nonlinear spectrum measured in a glass-fiber rein-

forced composite (GFRP) with an impact damage for a 20-kHz excitation beyond the 

UFP-threshold. One can identify the positions of the second (40 kHz) and third (60 

kHz) harmonics as well as ultra-subharmonics (50 & 70 kHz). The UFP lines are cen-

tred around the USB positions and distanced by ∆ ≅ 1.2 kHz. The UFP signals with 

larger ∆  and smaller amplitude are also seen in Fig. 4.2. 

The experimental results on the nonlinear dynamics obtained with fractured flaws 

are summarized schematically in Fig. 4.3 for a defect represented by a pair of coupled 

oscillators (normal frequencies 1ω  and 2ω ) [6]. At low amplitude of the driving exci-

tation (frequency ν ), the nonlinear spectrum follows the non-resonant scenario of the 

previous section and results in the higher harmonic generation. As the input amplitude 

exceeds the threshold value, resonance instability generally leads to activation of the 

USB components first. 
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 Fig. 4.1 USB spectrum in cracked area of polystyrene plate. The arrow indicates driving 
frequency. 

 

Fig. 4.2 UFP spectrum in impact damaged area of GFRP-specimen. Driving frequency is 20 kHz. 

 

Fig. 4.3 Schematic of nonlinear dynamics of a cracked defect presented as a pair of coupled 
nonlinear oscillators. 
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The threshold amplitude depends on the driving frequency: a minimal threshold re-

quires frequency matching to the main subharmonic resonance ( 2ν ω= ). The fre-

quency zones for the USB generation expand readily as the excitation amplitude in-

creases. Further increase of acoustic excitation above a given threshold gives rise to 

the UFP spectra. A direct transition to the UFP-instability is also possible when the 

sum-frequency resonance matching conditions are satisfied. The V-shaped zones in 

Fig. 4.3 are typical for parametric resonance modes [5] and indicate that the frequency 

matching is not required for high driving amplitudes. Finally, the multiple UFP bring 

the system to a quasi-continuous spectrum which indicates a build-up of chaotic vibra-

tions. 

5. CAN Application for Nonlinear Imaging and NDE 

The nonlinear spectra discussed above are produced locally in the damaged area while an 

intact part of material outside the defects vibrates linearly, i.e. with no frequency varia-

tion in the output spectrum. Thus, nonlinear defects are active sources of new frequency 

components rather than passive scatterers in conventional ultrasonic testing. This makes 

nonlinearity a defect-selective indicator of damage presence and development. The high 

localization of nonlinear spectral components around the origin is a basis for nonlinear 

imaging of damage.  

The NLV [6] uses a sensitive scanning laser interferometer for detecting nonlinear vi-

brations of defects. The excitation system includes piezo-stack transducers operating at 

20 and 40 kHz. After a 2D-scan and FFT of the signal received, the C-scan images of the 

sample area are obtained for any spectral line within the frequency bandwidth of 1 MHz.  

Figure 5.1 shows imaging results for an oval delamination on top of a piezo-actuator 

embedded into a GFRP composite. Such “smart” structures are likely to be used for ac-

tive structural health monitoring of aerospace components. The actuator itself was used 

as an internal excitation source fed with a few volt input. The higher harmonic images 

selectively reveal the boundary ring of the delamination where clapping and rubbing of 

the contact surfaces are, apparently, expected. On the contrary, the driving frequency (50 

kHz) image indicates only a standing wave pattern over the area of the actuator.  

Fig. 5.2, left shows fatigue cracking produced by cyclic loading in Ni-base super-

alloy. Such a crack of ~ 1.5 mm length, with average distance between the edges of only 

≈ 5µm, is clearly visualized in the USB-image (Fig. 5.2, right) whereas linear NDE us-

ing slanted ultrasonic reflection failed to detect such small cracks. 
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Fig. 5.1 Fundamental frequency ( ω ) and higher harmonic imaging of a delamination in a 
“smart” structure. 

 
Fig. 5.2 Right: USB-image of 5µm-wide fatigue crack in Ni-base super-alloy; left: crack photo. 

Similarly to all nonlinear modes discussed, the UFP-components generally display a 

strong spatial localization around the defects and are applicable for the detection of dam-

age. The benefit of the UFP-mode is illustrated in Fig. 5.3 for a 14-ply epoxy based 

GFRP composite with a 9.5J-impact damage in the central part. The linear image at driv-

ing frequency of 20 kHz reveals only a standing wave pattern over the whole sample 

(Fig. 5.3, left). The image at the first UFP-side-lobe of the 10th harmonic of the driving 

frequency (198.8 kHz) yields a clear indication of the damaged area (Fig. 5.3, right). 

The scanning laser vibrometer suffers from variation of optical reflectivity; e.g. the 

measurements fail in the damaged areas with particularly strong scattering of laser light. 

Our experiments demonstrated that planar defects as localized sources of nonlinear vi-

brations efficiently radiate nonlinear airborne ultrasound. Such a nonlinear air-coupled 

emission (NACE) is proposed as an alternative (and in many cases superior) methodol-

ogy to locate and visualize the defects in NDE [7]. 

A practical version of the NACE for nonlinear imaging of defects uses a high-

frequency focused air-coupled (AC-) ultrasonic transducer as a receiver [8].  

 

ωωωω    2ω2ω2ω2ω 

500 µm 7 / 2ν  
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Fig. 5.3 Nonlinear imaging of impact damage in central part of GFRP plate: left - linear (20 
kHz-image); right - UFP – image. 

 

Fig. 5.4 Nonlinear imaging of an impact induced damage in multi-ply (+450; -450) GFR-
plate: NLV (left); NACE (9th-11th) higher harmonic image (right). 

 

Fig. 5.5 NACE imaging in steel specimens: (9-11th) harmonic imaging of 50 µm-wide fa-
tigue crack (left); (5x40 mm) hammer peening area in steel plate (right). 

In Fig. 5.4, the NACE imaging results are compared with NLV of multiple im-

pact damage on a reverse side of a carbon fibre-reinforced (CFR-) multi-ply (+450; 

-450) composite plate (175x100x1 mm). Both techniques reliably visualize the de-

fects with similar sensitivity. 
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Fig. 5.5 (left) shows the (9-11th) harmonic NACE image of the 50µm-wide fa-

tigue crack in a steel plate (150x75x5 mm) with two horizontally located grip 

holes for cyclic loading at some distance from the crack. The image reveals that 

the NACE detects not only the crack itself but also the fatigue structural damage 

in the plasticity areas between the crack and the grip holes. 

To verify the NACE sensitivity to micro-damage induced by plastic deforma-

tion, the NACE inspection was implemented for a steel specimen with a cold work 

area (5x40 mm) produced by hammer peening. The image in Fig. 5.5, right con-

firms that the NACE develops even without serious cracked defects and clearly 

discerns the micro-damage induced by plastic deformation.  
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Abstract. The interaction of two counterpropagating waves in an inhomogene-

ously prestressed material (a structural element) and in a physically nonlinear ma-

terial with essentially changing continuous properties is studied theoretically. The 

influence of the parameters of a two-parametric prestressed state and the exponen-

tially changing material properties on the profiles of boundary oscillations, evoked 

in the specimen with two parallel boundaries by the counterpropagating waves is 

clarified. Algorithms for qualitative and quantitative ultrasonic nondestructive 

characterization of two-parametric prestress and for qualitative characterization of 

essentially and exponentially changing properties of the elastic material with 

quadratic nonlinearity are proposed. Utilization of these algorithms in practical 

applications of ultrasonic nondestructive characterization of inhomogeneous mate-

rials is illustrated on the basis of numerical simulation data. 

1. Introduction 

The progress in material science and technology requires very precise determination of 

the physical properties and states of materials. The utilization of ultrasonic waves is 

one of the very promising methods for this purpose [1-3].  Ultrasonic wave speed 

measurements are widely used to infer the homogeneous properties and states of sol-

ids. The inhomogeneity in materials leads to the necessity of extracting more informa-

tion from the data of ultrasonic nondestructive testing [4-5]. This motivates to develop 

new ultrasonic techniques based on interaction of waves in the material, on nonlin-

ear effects of wave propagation, on the data about distortion of wave profiles by 

propagation, etc. 
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In this paper counter-propagation, reflection and interaction of two ultrasonic 

waves in an inhomogeneously prestressed material (structural element) and in a mate-

rial with essentially changing continuous physical properties is investigated. It is 

shown that material inhomogeneity generates distortion in the profiles of interacting 

waves. This phenomenon enables to propose enhanced algorithms for qualitative and 

quantitative ultrasonic nondestructive characterization of inhomogeneous materials. 

Established ultrasonic methods are illustrated by two model problems. 

The first model problem is: the ultrasonic nondestructive characterization of inho-

mogeneous two-parametric prestress in the physically nonlinear elastic material (struc-

tural element). 

A two-dimensional specimen or a structural element with two parallel boundaries is 

considered. In the civil engineering applications such objects may be, for example, the 

plates with different types of supports, thin-walled open sections, etc. The specimen is 

undergoing two-dimensional prestress that corresponds to plane strain. Two counter-

propagating longitudinal one-dimensional harmonic waves are excited simultaneously 

on opposite boundaries of the specimen. Wave motion is studied theoretically using 

nonlinear theory of elasticity and the perturbation technique. The nonlinear part of the 

obtained solution describes nonlinear effects of wave motion that are sensitive to the 

nonlinear physical properties of the material and to the parameters of prestress. Analy-

ses of the influence of prestress on the nonlinear distortion of the profiles of boundary 

oscillations enables to pose the problems of qualitative and quantitative nondestructive 

characterization of prestress in the material. 

The second model problem is the ultrasonic nondestructive characterization of the 

nonlinear elastic material with essentially changing continuous physical properties. 

Man-made materials like composite materials called functionally graded materials 

(FGMs) [7-8] are considered. The possibility for qualitative nondestructive characteri-

zation of the exponentially graded nonlinear elastic FGMs is studied in detail. This 

group of FGMs is widely used not only in the thermal-protection systems of space 

planes but also in electrical, chemical and many other technologies. 

The ultrasonic counterpropagating waves are excited in a specimen simultaneously 

on two parallel boundaries. The one-dimensional problem is governed theoretically by 

the equation of motion in the form of the second order partial differential equation with 

variable space coefficients. The analytical solution to this equation is unknown and 

therefore it is solved numerically using the programme package Maple. 

Analyses of the results of numerical simulations verifies the fact that the profiles of 

the recorded boundary oscillations are informative about the variable material proper-

ties. This enables to propose a method for qualitative nondestructive characterization 

of FGMs with essentially  changing continuous properties. 
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2. Problem Formulation 

The intention is to excite simultaneously two ultrasonic longitudinal waves in a 

material (specimen, structural element, etc.) with inhomogeneous properties. This 

means a certain geometrical constraint - a specimen must have two parallel sur-

faces. Objects with parallel surfaces are widely used in civil engineering and ma-

chinery. Two different specimens are considered: (i) the physically nonlinear elas-

tic material (structural element) undergoing inhomogeneous prestress and (ii) the 

physically nonlinear elastic FGM (structural element) with essentially changing 

continuous properties. In both cases the small but finite deformations of the mate-

rial are described by the nonlinear theory of elasticity [9] in Lagrangian rectangu-

lar coordinates XJ, J = 1, 2, 3. The second Piola-Kirchhoff stress tensor TKL(XJ,t), 

K,L = 1, 2, 3, where t denotes the time is used for stress characterization. The 

physical and geometrical nonlinearity of the problem is taken into account. 

2.1 Prestressed Material 

The material of most structures is itself isotropic and homogeneous but the inho-

mogeneity may be introduced by prestress. This process is studied theoretically by 

the assumption that the components of the displacement vector at this present state 

U*
K(XJ,t) are expressed by the formula 

( ) ( ) ( )* 0, , ,K J K J K JU X t U X U X t= +  (2.1.1) 

where U 0
K(XJ) and UK(XJ,t) are displacements evoked by prestress and wave mo-

tion, respectively. 

The equilibrium of the specimen undergoing static plane strain (U*
3(XJ,t) = 

U0
3(XJ) = 0) is described by a system of two elliptic second-order partial differen-

tial equations [10] 

( ) ( )
( ) ( )
( ) ( )

0 0 0 0 0 0
1 , 2 , , 3 , 4 , ,

0 0 0 0 0 0
7 3 , 3 , , 4 , 3 , ,

0 0 0 0 0 0
3 , 4 , , 6 5 , 5 , ,

1 2 2

0.

I I J J I I I J J I I IJ

I I J J I JJ I J J I J II

I J J I J JJ I I J J J JI

k U k U U k U k U U

k k U k U U k U k U U

k U k U U k k U k U U

+ + + + +

+ + + + +

+ + + + + =

  (2.1.2) 
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Here indices I = 1, J = 2 specify the first equation and I = 2, J = 1 the second 

equation. The coefficients kn, n = 1, 2, … ,7 are certain functions of the Lamé con-

stants λ and µ, the elastic constants of the third order ν1, ν2 and ν3 and the density 

ρ0 [10]. Indices I and J after a comma indicate differentiation with respect to XI 

and XJ, respectively. 

The quasi-one-dimensional problem of longitudinal wave propagation in two-

dimensional specimen is governed by the equation of motion [10] 

( ) 2
1 1,11 2 1,1 3 1,1 1,11 1,1 0.ttf U f U f U U c U−+ + + − =   (2.1.3) 

The coefficients of Eq. (2.1.3) are functions of prestress and material properties [10]. 

2.2 Functionally Graded Material 

Considerable interest is generated in recent years for man-made materials like 

composite materials called functionally graded materials (FGMs) with essentially 

changing continuous physical properties. Here, FGMs with physical properties 

that are described by the theory of elasticity with quadratic nonlinearity [9] are 

considered. The variables in space material properties are the density ρ, the second 

order elastic Lamé coefficients λ and µ and the third order elastic coefficients ν1, ν2 

and ν3. In the case of one-dimensional deformations the elastic coefficients are 

grouped to the linear elastic coefficient α = λ + 2µ and to the nonlinear elastic co-

efficient β = 2(ν1 + ν2 + ν3).  

The one-dimensional response of the material to the external loading is gov-

erned by the equation of motion [11] 

( ) 2
8 , , 9 , 10 , 11 ,1 0,X XX X X ttk U U k U k U k U+ + + − =  (2.2.1) 

where U denotes the displacement, t the time and the indices after the comma in-

dicate differentiation with respect to the coordinate X or the time t, accordingly. 

The coefficients of the Eq. (2.2.1) are functions of the variable in space material 

properties ρ, α and β [11]. 

The specimen of the exponentially graded material is considered. The thickness 

of the specimen with two parallel boundaries is denoted as h and the variation of 

essentially changing continuous properties of the specimen are determined by the 

formula 
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( ) ( )( )0 11 12 21 22( ) 1 exp exp ,X X X hγ γ γ γ γ γ = + − + − −   (2.2.2) 

where γ = ρ, α, β, respectively.  

Three different schemes of inhomogeneity are studied. The scheme A – a 

symmetric exponential variation of material properties nearby both boundaries, the 

scheme B - exponential variation of material properties just nearby the boundary X 

= 0 and the scheme C -  the same just nearby the boundary X = h. 

3. Counterpropagating Waves 

The wave process in the prestressed material is governed by Eq. (2.1.3). To solve 

this equation it is necessary to determine the coefficients, i.e., to have some pre-

liminary information about the prestressed state of the specimen. This information 

may be obtained from the observation data of the loading scheme of the specimen 

(structural element). Here the problem is solved by assumption that the type of 

prestressed state and the physical properties of the material are known. Theoreti-

cally, unknown parameters of the prestressed state are determined by the solution 

to the set of Eqs. (2.1.2). As it was mentioned above, the small but finite deforma-

tions of the specimen are described by the nonlinear theory of elasticity. Conse-

quently, the strain is small. This enables to introduce a small parameter ε and to 

solve both governing Eqs. (2.1.2)  and (2.1.3) making use of the perturbation tech-

nique. 

The prestressed state is described by the perturbative analytical solution to the 

Eqs. (2.1.2) in the form of series 

( ) ( ) ( )00
1 2 1 2

1

, ,mm
K K

m

U X X U X Xε
∞

=

=∑  (3.1) 

with a small parameter | ε | « 1. Solutions to Eqs. (2.1.2) are sought in the form of 

polynomials with respect to coordinates X1 and X2 for a special case of prestress 

that corresponds to the pure bending with compression or tension. The result is 

that the problem of ultrasonic nondestructive characterization of the prestressed 

state turns to determination of the constant coefficients of polynomials.  

Now it is possible to solve Eq. (2.1.3) with known space dependent variable 

coefficients. Again, the perturbation technique is used and the solution to equation 

(2.1.3) is sought in the form  
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( ) ( ) ( )1 1 2 1 1 2
1

, , , ,nn

n

U X X t U X X tε
∞

=

=∑ . (3.2) 

Equation (2.1.3) is solved following the perturbation procedure under the initial 

conditions equal to zero and the boundary conditions in terms of particle velocity.  

The obtained analytical solution, which is too cumbersome to be pre-

sented here, describes the initial stage of counter-propagation of waves with 

arbitrary smooth initial profiles in a specimen undergoing pure bending with 

tension or compression. 

The wave motion in FGMs with essentially changing continuous properties 

is governed by the Eq. (2.2.1). The analytical solution of this equation is un-

known. Counter-propagation of longitudinal harmonic waves in exponentially 

graded FGMs is studied numerically making use of the symbolic manipulation 

software Maple. 

4. Nondestructive Material Characterization 

The effects of wave-wave, wave-material and wave-prestress interaction accom-

pany counter-propagation of waves in materials. All these effects may be success-

fully employed by ultrasonic nondestructive characterization of materials with 

complex properties. Wave-wave interaction is on principle a nonlinear phenome-

non. In the linear case the superposition of waves occurs. Another nonlinear phe-

nomenon is the wave-prestress interaction. Theoretically, deformation fields 

evoked in the material by the wave motion and prestress are bounded, provided 

the geometrical nonlinearity of the problem is taken into account. The wave-

material interaction is a fundamental phenomenon and this takes place regardless 

the models (linear or nonlinear) of wave propagation in the material. 

Ultrasonic nondestructive characterization of inhomogeneous materials leads 

to the necessity of extraction of more information from the wave propagation 

data. Therefore the interest may be directed to utilization of different interaction 

phenomena and accompanied nonlinear effects for enhancement of nondestruc-

tive testing techniques. One possible way in this direction is illustrated below by 

two examples. 
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4.1 Inhomogeneous Prestress 

The idea is to solve the problem of nondestructive determination of material in-

homogeneity (prestress) on the basis of the data about counter-propagation and in-

teraction of waves in the specimen. It is assumed that the geometry of the speci-

men (structural element) and the physical properties of the material are known. 

The inspection confirms the fact that the specimen is undergoing prestress that 

corresponds to the pure bending with tension or compression (Fig. 4.1). The solu-

tion (3.1) to Eq. (2.1.2) describes this case as a two-parametric prestressed state 

characterized by the main domain of the component of the second Piola-Kirchhoff 

stress tensor T22 = a + bX1. The purpose is to evaluate constants a and b on the ba-

sis of wave interaction data. 

Harmonic waves with the same amplitude and frequency are excited in terms of 

particle velocity on opposite boundaries of the specimen undergoing two-

parametric prestress. The evolution of wave profile is recorded on the same 

boundaries in terms of stress. 

The linear part of the solution (the first term in solution (3.2)) describes simul-

taneous propagation of two harmonic waves in the prestress free physically linear 

material where the interaction of waves is determined by superposition of wave 

profiles. 

The nonlinear effects that accompany counter-propagation of harmonic waves 

are sensitive to the nonlinear physical properties of the material and to the parame-

ters of prestress. The main part of these effects is described by the second term in 

solution (3.2).  Nonlinear effects include evolution of the second harmonic, influ-

ence of the prestress to the evolution of the first harmonic, nonlinear interaction 

between two first harmonics and influence of the nonlinear physical properties of 

the material to the wave propagation. Evolution of the third and the higher har-

monics are neglected here as the higher orders are small phenomena. 

 

 

Fig. 4.1 Loading scheme of the prestressed specimen (N – normal force, M – couple). 
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Fig. 4.2 Evolution of nonlinear effects in a prestressed material. 

The informative nonlinear part of boundary oscillations evoked by the coun-

terpropagating harmonic waves with equal amplitudes in the prestressed physi-

cally nonlinear elastic material (duralumin, thickness h = 0.1 m) is illustrated in 

Fig. 4.2. Oscillations coincide on both boundaries. It is possible to distinguish 

two intervals on the time axis – the interval of excitation and the interval of in-

teraction. Essential is, that the nonlinear wave interaction amplifies the bound-

ary oscillation amplitude in the interval of interaction. This phenomenon facili-

tates utilization of nonlinear effects of wave interaction in nondestructive 

characterization of prestress. 

4.1.1 Qualitative prestress characterization 

Nonlinear parts of boundary oscillations in the prestress free material are charac-

terized by constant but different values of the amplitudes in the interval of excita-

tion and interaction. These amplitudes are sensitive to the linear physical proper-

ties of the material (density, Lamé constants) and less sensitive to the value of the 

excitation frequency. Homogeneous prestress (T22 = a) modulates the boundary 

oscillation (Figs. 4.2). The shape and the depth of modulation are informative 

about the sign and the value of prestress. The oscillation profiles on both bounda-

ries coincide. The inhomogeneous prestress (T22 = a + b X) modulates oscillations 

on different boundaries in different way. 

The analysis of the influence of prestress on the boundary oscillations leads to the 

conclusion that nonlinear effects caused by counter-propagation of two harmonic 

waves enable to pose the problem of qualitative nondestructive characterization of 
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prestress in the material. It is possible to determine qualitatively the presence and 

the nature of prestress and to distinguish (i) prestress free material, (ii) homogene-

ously prestressed material, (iii) material undergoing pure bending and (iv) material 

undergoing arbitrary prestress.  

4.1.2 Quantitative prestress characterization 

The dependence of the depth of modulation of nonlinear boundary oscillations 

provoked by counter-propagation of two harmonic waves in the material enables 

to pose a problem of quantitative characterization of inhomogeneous prestress. 

The plots of nonlinear oscillations on the boundaries of the prestress free mate-

rial are composed on the basis of the analytical solution (3.2). Two first local 

maxima of the boundary oscillation amplitudes on both boundaries are determined 

and characterized by the values of instants τ1 and τ2.  

The next step is to compose plots of boundary oscillation amplitudes versus 

prestress parameters a and b for both instants τ1 (Fig. 4.3) and τ2. 

In order to evaluate the unknown real values of prestress parameters a and b in 

a physical experiment, the counterpropagating harmonic waves are excited in a 

prestressed specimen and the oscillation profiles are recorded on both boundaries. 

The difference of the values of oscillation amplitudes on opposite boundaries is 

determined for both instants τ1 and τ2. Resorting to the corresponding plots, two 

possible values of the parameter b are determined making use of the calculated 

differences. The value of the parameter a and the final value of the parameter b are 

determined making use of the value of the recorded oscillation amplitude on one 

of the boundaries at the instant τ1 or τ2. 

 

Fig. 4.3 Boundary oscillation amplitude variation at the instant τ1 versus prestress parameters 
a and b (solid line – X = 0, dashed line – X = h). 
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4.2 Functionally Graded Material 

The problem of ultrasonic nondestructive characterization of functionally graded 

materials (FGMs) with essentially changing continuous physical properties is 

solved on the basis of the equation of motion of the material (2.2.1). It is assumed 

that the geometry of a specimen  and the type of physical properties of the mate-

rial are known. Here, the exponentially graded nonlinear elastic material is stud-

ied. Due to analytical complexity the problem of counter-propagation of harmonic 

waves in the material is treated numerically using the symbolic manipulation 

software Maple. 

The loading scheme of the prestress free specimen is similar to that in Fig. 4.1 

(no N, no M). Material properties vary into the depth of the specimen (along the 

axis X ≡ X1) in accordance with three different schemes described above. One-

dimensional wave motion is excited simultaneously on boundaries X = 0 and X = h 

in terms of stress and the evoked boundary oscillations are recorded in terms of 

particle displacement. 

Numerous numerical experiments are posed and analysed. The material is char-

acterized by the density ρ = 6000 kg/m, the linear elasticity α = 400 GPa and the 

nonlinear elasticity β = -1000 GPa. Variation of material properties is determined 

by the values of constants γi1 = 1, γi2 = 150 m-1 (i = 1, 2) in Eq. (2.2.2).  The exci-

tation frequency equals to ω = 1.5391 . 106 rad/s. 

Analyses of the results of numerical simulations (Fig. 4.4 et al.) lead to the 

conclusion that the changes of boundary oscillation profiles caused by variable 

density and linear elasticity are of the same order while changes caused by nonlin-

ear elasticity are the higher order small phenomena. The changes in material prop-

erties are clearly reflected in changes of boundary oscillation profiles. 

 

Fig. 4.4 Oscillations on opposite boundaries of the specimen with exponentially graded 
properties (solid line – X = 0, dashed line – X = h). 
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Consequently, on the basis of boundary oscillation profile data, it is possi-

ble to propose a method for qualitative nondestructive characterization of 

FGMs with essentially changing continuous properties. This qualitative 

method enables to distinguish specimens made by (i) homogeneous material, 

(ii) symmetrically distributed material properties, (iii) asymmetrically distrib-

uted material properties and also distinguish the most relevant property of the 

material responsible for inhomogeneity. 

5. Conclusions 

In this paper a relatively simple method is proposed for nondestructive ultrasonic 

characterization of materials with continuously variable properties. The method is 

based on utilization of the data about nonlinear counter-propagation, interaction 

and reflection of ultrasonic waves in the material (specimen, structural element). 

In comparison with single wave experiments, the amount of information avail-

able from multi-wave propagation, reflection and interaction data increases essen-

tially. This is demonstrated by model problems of counter-propagation of two 

harmonic waves in the physically nonlinear elastic material (structural element) 

undergoing two-parametric prestress and in the exponentially graded physically 

nonlinear elastic material. 

The information embedded in nonlinear effects of boundary oscillations evoked 

by counterpropagating waves is sufficient to solve qualitative and quantitative 

problems of nondestructive characterization of two-parametric inhomogeneous 

prestress. 

Qualitative nondestructive characterization, i.e. identification of the type of in-

homogeneity (symmetric, asymmetric, etc.) of physically nonlinear material with 

essentially changing continuous properties (FGMs) may be implemented on the 

basis of data of boundary oscillation profile distortions. 
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Abstract.  This paper presents a review of recent work at Northwestern University 

in the area of ultrasonic characterization of thin film material properties. Contact 

and non-contact ultrasonic methods that are used to characterize the mechanical 

properties of micro- and nano-structured thin films are briefly described.  Specifi-

cally, the methods used are: Line-focus Acoustic Microscopy, narrowband and 

broadband Photoacoustic guided wave methods, and Photoacoustic bulk-wave 

pump-probe techniques. Applications to several free-standing thin-films and 

thin-film on substrate systems are discussed. 

1. Introduction 

Characterization of the thickness and mechanical properties of thin films and coat-

ings is of great industrial importance.  The microelectronics industry uses thin 

films and multi-layered components in semiconductor chips and surface acoustic 

wave devices. In many MEMS applications, the mechanical properties of thin 

membranes are critical to the proper performance of micro-devices. Thin film 

coatings are also used on conventional engineering materials such as steel to ob-

tain enhanced surface hardness properties and to act as thermal barriers in engine 

components, for instance. 

The mechanical properties of thin films can be investigated using tensile tests, 

bulge tests, and nano-indentation tests, but these are intrusive and not nondestruc-

tive.  Nondestructive ultrasonic techniques such as acoustic microscopy using high-

frequency contact piezoelectric transducers can be used to characterize both the 

thickness and the mechanical properties of films and coatings.  Photoacoustic tech-

niques, where high frequency ultrasound is launched via rapid thermal expansion in 
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materials, are nondestructive and also noncontact. The high temporal and spatial 

resolution of photo-acoustic techniques enables in-situ nondestructive evaluation 

of mechanical properties of ultra-thin films.  

At Northwestern University, we use a suite of ultrasonic methods to character-

ize the mechanical properties of thin films. The techniques include (i) contact 

acoustic microscopy using a line-focus acoustic microscope (LFAM); (ii) broad-

band and narrowband photoacoustic (PA) guided-wave acoustic microscopy, and 

(iii) bulk-wave pump-probe techniques. In all these techniques, the velocities of 

bulk and/or surface acoustic waves are measured and are related to the elastic 

properties of the thin films. In this paper, we will briefly introduce the basic as-

pects of the experimental and analytical methods. Applications to several micro- 

and nano-structured films are described and discussed. 

2. Line-Focus Acoustic Microscopy 

Line-focus acoustic microscopy (LFAM) has proved to be an accurate method to 

determine the mechanical constants of isotropic or anisotropic films that are on an 

elastic substrate. An acoustic microscope was first used for the quantitative char-

acterization of materials by Weglein [1]. He proposed a method that uses a point-

focus acoustic beam to determine the film thickness by measuring the velocity 

variation of the leaky Rayleigh wave propagating in a thin film/substrate structure. 

Compared to point-focus beams, a line-focus beam generates wave modes propa-

gating along the normal to the line, and thus it is particularly useful for measuring 

velocities and elastic constants in anisotropic materials. Kushibiki and Chubachi 

first systematically established the theoretical and experimental methods for 

LFAM, and applied it to characterize a variety of materials [2]. The LFAM has 

since then been used for characterization of mechanical properties of various thin 

films with thicknesses in the micrometer range [3-6]. 

LFAM experiments are generally based on measuring the so-called V(z) curve, 

which is an output of the measured voltage as a function of the distance between 

the focal plane of the acoustic transducer and the specimen surface denoted by the 

z-distance. The measurement and analysis of the V(z) curves provides information 

about the velocities of the transducer generated leaky surface acoustic waves 

(LSAW) on the sample surface. A simple interference model by ray theory has 

been established for the determination of characteristics of the LSAW that 

propagate along the interface between the coupling water and the solid sample.  
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(a)    (b) 
Fig. 1 (a) Polar plot of anisotropic SAW velocity for plain and UNCD-coated silicon wafer. 
(b) Comparison with analytical fit for various values of UNCD Young’s modulus. 

The LSAW velocity is calculated from the periodicity z∆ of the interference sig-

nal appearing in the V(z) curves and is given by:  

( )2
1 1 2LSAW w wv v v f z= − − ∆  (1) 

where wv  is the acoustic velocity in water, and f  is the operating frequency of 

the transducer. The experimental procedure of LFAM is as follows: first the V(z) 

curves are obtained by adjusting the distance between the transducer and sample 

surface; secondly the fringe interval z∆  is determined by filtering and fast Fourier 

transform; thirdly LSAWv  is measured at different acoustic frequencies so as to get 

a dispersion curve of the LSAW. The mechanical properties of the thin films are 

then evaluated by least-square fitting the measured dispersion curves to an appro-

priate theoretical model by iterating over the material properties. 

Figure 1 shows a representative result for UNCD-coated and plain Silicon wa-

fer [7].  It is seen that the UNCD layer stiffens the system in comparison to the 

uncoated silicon wafer. The six8fold symmetry is of the underlying silicon wafer 

(the UNCD grain structure being on the order of 3-5nm, it is essentially isotropic). 

A two-layer model was used to obtain the effective Young’s modulus of the 

UNCD coating, which is estimated at 900GPa from Fig. 1(b). 

3. Photoacoustic Methods 

Photoacoustic methods can be broadly classified as bulk-wave and guided-wave 

techniques. The technique using a femtosecond laser to launch longitudinal acous-

tic waves with extremely high frequency (usually higher than gigahertz) resulting 
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from transient photothermal reaction is sometimes called picosecond ultrasonics 

or femtosecond transient pump-probe technique [8]. Of particular interest in this 

work are the femtosecond laser generated bulk acoustic waves that propagate per-

pendicular to the film and are reflected from the film and substrate interface. 

Guided acoustic waves including surface acoustic wave (SAW) and Lamb waves 

are also intrinsically related to the elastic properties of layered materials through 

their dispersive nature. Photoacoustic guided waves have been applied to charac-

terize the mechanical properties thin films and hard coatings with thicknesses 

ranging from hundreds of nanometers to tens of microns [9-12]. In the following, 

we describe bulk-wave and guided-wave PA methods of materials characterization. 

3.1 Broadband Guided-Wave PA Method 

Similar to the LFAM, the PA laser ultrasonic method can also be used to obtain the 

dispersion curves of surface acoustic waves (SAW) in thin films. It is a direct and con-

venient non-contact way of thin-film characterization and many applications have 

been introduced. To launch a broadband SAW on the sample, a pulsed high power 

pump laser is line focused on the surface to generate a SAW pulse with a frequency 

bandwidth that is mainly determined by the laser pulse duration and the laser focal 

spot size (Fig. 2). The shorter the pulse is and the smaller the spot size, the higher the 

frequency of the generated acoustic wave. In our work, a regen amplified femtosecond 

laser is used as the generation laser. A stabilized balanced Michelson interferometer is 

used for the optical detection of the acoustic pulses. The broadband ultrasonic wave 

disperses as it propagates along the surface. By measuring the ultrasonic wave train at 

two different source to receiver distances, the dispersion curve can be calculated after 

phase deconvolution of the signals. After fast Fourier transform of the two signals, 

discontinuities for the phase spectra are corrected by phase unwrapping. The phase 

velocity spectrum is then given by:  

( ) ( )2SAWv f f L fπ ϕ= ∆ ∆  (2) 

where L∆  is the spacing between the two measurement positions and ( )fϕ∆  is the 

phase difference after phase unwrapping. Since a single broadband measurement is ade-

quate to generate the entire dispersion curve, the broadband PA method is a faster tech-

nique for thin film characterization as compared to the LFAM. 
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Pulsed laser generated broadband guided-waves in free-standing thin plates have been 

used in the past to measure the dispersion relation of Lamb wave modes, and in turn to 

determine the elastic properties of the materials. In particular, the antisymmetric A0 lamb 

mode, which is quite easy to detect with photoacoustic methods, can be correlated with 

small-deflection plate theory, when the acoustic wavelength is much larger than the 

thickness of the film. A simple expression for the acoustic phase velocity of A0 mode in 

thin films can be derived as [12]: 

2
0A

D
v k

k h

ω σ
ρ ρ

= = +     (3) 

where ω is the frequency, k the wavenumber, h is the plate thickness, D is the flexural 

rigidity, σ is the in-plane stress (typically residual stress) and ρ is the density. It is 

known that the above simplified model gives good results in determining the phase 

velocity when kh < 0.5. 
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Fig. 2 Broadband guided-wave photoacoustic setup. 
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(a)    (b) 
Fig. 3 (a) Dispersive guided wave signal for thin film sample #1; (b) Measured dispersion 
curves (dots) and linear fitted curves (lines) for specimens #1-#4. The measured flexural ri-
gidities are 4.82,5.82,3.64,1.76×10-9 Nm; and the residual stresses are 235, 299, 334, 242 
MPa, respectively. 
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Several free-standing layered thin film structures with various thicknesses and in-plane 

extent were fabricated using standard microfabrication processes. A photomask was de-

signed to create several rectangular free-standing films on (100) Si wafers. Silicon nitride 

was grown on both sides of the wafer with Low Pressure Chemical Vapor Deposition 

(LPCVD). The wafer was patterned and the silicon was etched to leave a free-standing 

film of silicon nitride of thickness ranging from 200-400nm and lateral dimensions rang-

ing from 100-2000 µm.  Aluminum films ranging from 300-500nm in thickness were 

subsequently e-beam evaporated onto the silicon nitride.  

Figure 3(a) shows the measured time traces of the broadband A0 mode for 

specimen #1 at two source-to-receiver positions, from which the strong dispersive 

nature is distinguished. Fig. 3(b) shows the experimentally determined A0 mode 

dispersion curves for four different specimens [13]. The solid lines in Fig. 3(b) 

correspond to the linear fitting of experimental data, and give the flexural rigidity 

and residual stresses of the films. The derived mechanical properties are listed in 

the figure. The measured tensile residual stresses range from 230 to 330 MPa. 

3.2 Narrowband Guided-Wave PA Method 

In some cases, it is better to use a narrowband guided-wave PA method.  Unlike 

the broadband approach, where data have to be collected at multiple source-to-rec 

eiver distances, the narrowband PA technique can be used on a much smaller 

footprint. Narrowband acoustic waves can be generated using lasers in a number 

of ways [11,12]. 
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Fig. 4 Optical layout of the narrowband photo-acoustic microscope. 



Ultrasonic Characterization of the Mechanical Properties of Thin Films and Coatings 

 

83 

The technique used here (Fig. 4) requires the coherent interference of two 

crossed pulsed laser beams that are obtained from a microchip laser (parameters: 

480 ps pulse width, 13.2 µJ energy, and 1064 nm wavelength). The beams are fo-

cused onto the surface of the thin film to be tested resulting in an intensity grating 

due to coherent interference.  The rapid thermal heating that ensues in the thin 

film leads to generation of acoustic waves with a fixed wavenumber ‘k’ given by 

[12]: 

( )4
sin / 2

e

k
π θ

λ
=  (4) 

where, λe is the generation laser beam wavelength and θ is the angle between the 

two crossed laser beams.   The resulting guided waves were detected with a 

Michelson interferometer.  By varying the angle, θ, the film can be probed over a 

range of wavenumbers.  Dispersion curves can thus be obtained for the films. 

Photo-acoustic data were obtained for several two-layer Al/Si3N4 thin film sam-

ples. Dispersion curves of guided acoustic modes over a range of  kh values were 

obtained by adjusting the angle between the two crossed generation beams.  Fig-

ure 5a shows a representative time trace of the So mode obtained for a wavenum-

ber of 159,000 1/m (corresponding to a grating spacing of 39.5 µm). As expected, 

the frequency content of the Ao mode is significantly lower than that of the So 

mode. The Ao mode signal has a peak frequency of 8.6 MHz corresponding to a 

phase velocity of 339 m/s. The So mode waveform, on the other hand, has a peak 

frequency of 176 MHz, corresponding to a velocity of 6952 m/s.    

Figure 6 shows the experimentally measured dispersion curves for the So and 

the Ao modes respectively.  As expected from small kh values, the former is non-

dispersive and the latter is dispersive.  Up to three thin film parameters can be ex-

tracted by minimizing the least-squares error between the experimentally meas-

ured dispersion data and the asymptotic expressions.  Assuming that the Poisson’s 

ratios for the two materials are the same as the bulk values, and independently 

measuring the layer thicknesses using ellipsometry and profilometry, it is possible 

to obtain the Young’s moduli of the two materials and the thickness-average re-

sidual stress.  For the two-layer 420 nm Al/236 nm Si3N4 thin film sample, the 

measured values are: Young’s modulus of Aluminum equal to 80MPa, Young’s 

modulus of  silicon nitride equal to 196 MPa, and residual stress of 188MPa. Re-

sults obtained for additional film ratios of 510 nm Al/ 250 nm Si3N4 and 510 nm 

Al/ 397 nm Si3N4 ranged from 47-82 GPa for the Aluminum Young’s modulus 

and 192-268 GPa for the Si3N4  
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Fig. 5 So mode propagating on 420 nm Al/236 nm silicon nitride. (a) Left: displacement vs 
time (ns) and (b) Right: spectrum in Mhz. 
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The measured modulus for aluminum is within the range of 50-90 GPa ob-

tained by Lim [14] on evaporated films. The measured modulus of the silicon ni-

tride is also within the range of 250 GPa that is cited for LPCVD grown films, and 

values of 210 GPa and 290 GPa for Plasma Enhanced Chemical Vapor Deposition 

films and Low Pressure Chemical Vapor Deposition films respectively [15]. The 

literature values for the modulus of aluminum and silicon nitride on the nanometer 

scale appear to vary greatly. However, the results of the modulus for aluminum 

and silicon nitride obtained from the photo-acoustic experiments are in the same 

range as published values.   

3.3 Bulk-Wave PA Method 

Another photoacoustic technique using an ultrashort femtosecond laser pump-

probe method has been developed to quantitatively characterize the mechanical 

and thermal properties of thin films [8]. Basically, the pump-probe technique in-

volves the excitation of the sample by a strong pump pulse and monitoring the 

subsequent relaxation processes by a weaker probe pulse, which is delayed with 
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respect to the pump pulse by means of a variable optical delay line. Typically, the 

intensity of the reflected probe beam is monitored. The relative variations of the 

surface reflection coefficient due to the thermal and acoustic response are typi-

cally on the order of 10-7 to 10-5. Highly sensitive lock-in detection is therefore 

applied by setting its reference frequency to the modulation frequency of the pump 

pulse. In our experiments, the laser pulses with a pulse duration of ~100 fs and a 

repetition rate of 80 MHz are generated from a Ti:sapphire laser. The laser beam 

is split into two beams of unequal intensity. The intense pump beam is used as a 

heating source while the lower power beam is used as the detection beam to moni-

tor the change in reflectivity on the sample surface. The probe beam passes 

through a gold-coated retroreflector mounted on a micro-positioning motorized 

stage to vary the optical delay length. As the delay path length of the probe beam 

increases, a time delay is achieved between the arrivals of the pump and the probe 

pulses. The reflected probe beam, which contains a snapshot of the transient in-

formation of the sample surface, is sent into a balanced photodetector and the 

weak signal is amplified by the lock-in amplifier. By moving the delay stage, the 

laser induced transient reflectance change on the sample surface is recorded at 

various times. The ultrashort laser pulse launches bulk acoustic waves of very 

high frequency normally into the thin films, which then reflect off boundaries. 

These high frequency acoustic echoes are typically found embedded within a 

large transient thermal signal.  Since non-dispersive bulk acoustic waves are 

measured, the pump-probe technique provides a direct measure of the properties 

of the thin film. 

Cr/Si Thin Films: Next, magnetron-sputtered chromium thin films deposited on 

the <100> silicon wafers were investigated using broadband PA guided wave and 

bulk-wave pump-probe techniques [7]. The dotted line in Fig. 7(a) shows the 

measured SAW phase velocity dispersion curve for a 308nm Cr thin film on silicon 

wafer substrate using the guided-wave PA approach. 
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Fig. 7 Cr-Si thin film on substrate: (a) Guided-wave PA and (b) bulk-wave PA results. 
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From the experimental dispersion curve measurements, the Young’s modulus 

for the Cr film is calculated as 234±5 GPa and its Poisson’s ratio is 0.21 (using the 

bulk value for its density).  

Bulk-wave pump-probe experiments were also conducted on the Cr thin films. 

Fig.7(b) shows the thermo-reflectance variation as a function of time (pump-probe 

delay). An obvious acoustic echo can be clearly distinguished from the thermal 

decay. The measured longitudinal wave velocity in Cr is estimated around 6620 

m/s. The estimated Young’s modulus is about 275 GPa. 
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Abstract. The objective of this research is to locate and evaluate wall thinning in 

pipe elbow by a non-contact guided wave technique with laser source as a transmit-

ter and air-bone transducer as a receiver, respectively. Wall thinning of carbon steel 

pipe is one of the most serious problems in nuclear industry; especially the one in 

carbon steel pipe elbow caused by FAC (Flow-Accelerated Corrosion). Therefore, 

development of a robust NDE technique for the pipe elbows is essential for safe op-

eration of nuclear power plants. Specimens used in this study were carbon steel 

which is widely used in real nuclear power plants. The geometry of wall thinning 

was given as 120mm extent, 80mm-length and 5mm-depth. The L(0,1) and L(0,2) 

dominant modes group shows a promising variation in the ultrasound guided wave 

data analysis based on the response obtained by the laser generation/air-coupled de-

tection system. The trends of these characteristics and subsequent signal processing 

were used to estimate the size and location of wall thinning.  

1. Introduction 

Carbon steel is one of the principal structural materials in power plants. Since local 

wall thinning caused by FAC occurs inside the elbows by flowing high temperature 

and high pressure water with high velocity, it can make a big disaster if this defect 

grows without any regular inspection. Therefore structural evaluation of elbows with 

local wall thinning becomes more important in order to maintain the integrity of 

coolant piping systems [1, 2].  
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Most inspections were carried out using point by point examination. This method is 

inefficient and also takes a lot of time to inspect a large area structures. In these situa-

tions, the developed method for solving the drawbacks compare to conventional tech-

nique is the inspection using guided waves. 

An ultrasonic guided wave technique is one of powerful tools to detect the reduc-

tion and has lots of benefit over conventional ultrasonic methods due to such features 

as lower cost, ease of operation, and testing speed. Moreover, broad-band, multi-mode 

guided waves, such as those generated by a laser system, have the potential for detect-

ing flaws in various sizes [3-5]. For the purpose of this study, the characteristic of the 

guided wave will be shown, when it passed through the elliptical defect of elbow, a la-

ser generation/ air-coupled transducer ultrasonic hybrid systems were employed as a 

way of detecting the defect of elbow by using guided wave. In addition, linear slit ar-

ray were used for the directivity of laser-generated guided wave and the determination 

of wavelength. Air-coupled transducer as guided waves detector was controlled to de-

tect specific mode among guided waves by adjusting its receiving angle to a leak di-

rection of selected mode. 

2. Selective Generation and Reception of Guided Wave Mode 

The problem in laser based guided wave testing is the difficulty to generate a de-

sired mode due to the dispersive nature of Lamb waves [6]. While the excitation 

of a particular mode is made by a laser pulse, the different components of the 

wave will travel with different speeds and at least two modes are present even at 

low frequency range. This could make the evaluation of defect difficult due to in-

terpretation of received signal. In this study, the selective generation and reception 

of guided wave modes are achieved by the technique that used the relation of dis-

persion curves and linear slit array [7]. Figures 1(a) show the process of selective 

generation using this linear slit array. The elements gap (∆s) in Figure 1(a) is 

equal to the wavelength of generated modes and illustrated as the diagonal line 

with a slope of ∆s/d in Figure 1(a). 

The active modes lie on at the intersection points between the line and the 

phase velocity of dispersion curves, and therefore it is possible to generate spe-

cific modes selectively by adjust the elements gap. The method to receive the 

modes generated by the above-mentioned technique is to rotate the air-coupled 

transducer by the angle based on Snell’s law for the propagation velocity in air 

(Cair) and the phase velocity of the specific mode (Cp) as shown in Figure 1(b). 

In this study, the velocity of wave in air is 340 m/s and the phase velocity of 

modes is obtained in Figure 1. 
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(a) Phase velocity of selected mode in dis-
persion curve. 

 

(b) Determination of receipt angle for specific 
mode. 

Fig. 1 Optional receipt of guided wave mode. 

Table 1 Theoretical values of L(0,1) and L(0,2) modes at 8mm wavelength on each defect. 

Wavelength
[mm] 

Mode Frequency [kHz] 
Phase velocity 

[mm/µsec] 
Receiving angle 

[θ ْ] 

L (0,1) 305 3.2 6.09 
8mm 

L (0,2) 382 3.6 5.4 

This study adopted the modes of L(0,1) and L(0,2) as the suitable modes 

for experiments due to readily excited, received experimentally at low fre-

quency-thickness and only slightly dispersive [8]. Table 1 shows frequen-

cies, phase velocities, reception angles of L(0,1) and L(0,2) modes at 8mm 

slit spacing. In the process of this calculation, the velocity of wave in air 

was 340 m/s and the phase velocity of modes was obtained from the disper-

sion curves in Figure 1. 

3. Specimen and Experimental Setup 

The specimen used in the test was 8.5mm thick carbon steel elbow. To 

evaluate the guided wave interaction with defect in elbow, through compared 

with defect region and defect-free region. An elliptical defect with a con-

stant width 120 mm and depth 5 mm was machined on the inner surface of 

8.5 mm thick elbow having diameter of 218 mm. Figure 2 shows the shape 

of the side and front mentioned defect on carbon steel elbow. 
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Fig. 2 Shape of defects in 8.5mm thick elbows. 

 

Fig. 3 Schematic diagram of experimental setup. 

A schematic diagram of the apparatus used to perform experiment is shown in 

Figure 3. As shown in this figure, the laser and air-coupled transducer were posi-

tioned on the same side of the test elbows and act as the generator and detector of 

the guided wave signal scanning at 10mm steps along the longitudinal direction. A 

wavelength of fiberized Nd:YAG pulse laser system was used to generate ultrasonic 

waves is 532 nm and this pulse laser system emited energy of 32mJ at one pulse. 

The beam of this laser illuminated a linear array slit and transmitted beam act as line 

source on the elbow. The guided wave generated by this source propagated separa-

tion distance start at 160mm to end at 380mm between the source to the receiver, 

perpendicular to the surface of the elbow, and was subsequently detected using the 

air coupled transducer with a standoff from 5 mm the outer surface of elbow. In ad-

dition, the received signals from the air-coupled transducer were magnified by the 

amplifier and displayed through the signal averaging scheme with 1000 sampling 

data on the screen of oscilloscope. Here, the interval between slits, the width and the 

number of slits were fabricated 8 mm, 4 mm and 7 respectively. 
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4. Experimental Results 

4.1 Characteristic of L(0.1), L(0.2) Modes in Defect Region of Elbow 

Figure 4 shows the variation of amplitude in defect region. After scanning to right 

and left direction as shown in this figure, it is possible to evaluate defect by the 

variation of L(0,1) and L(0,2) modes. The signal of L(0,1) mode is appeared 16cm 

to 40cm in regardless of defect region, but amplitude of L(0,2) mode is disap-

peared 23cm and 33cm to start defect region. This result indicates that the signal 

on defect region and passed by defect region is affected by defect. 

 

 

(a) Scanning to right direction. 

 

(b) Scanning to left direction. 

Fig. 4 Guided wave signals of L(0,1), L(0,2) mode in elbow with defect region. 

 

(a) Frequency spectrum of L(0,1). 

 

(b) Frequency spectrum of L(0,2). 

Fig. 5 Signal characteristics of L(0,1) and L(0,2) mode on frequency spectrum. 
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(a) Magnitude of right direction. 

 

(b) Magnitude of left direction. 

 

(c) Synthesis of right and left maximum magnitudes. 
 

Fig. 6 Maximum magnitude using line scan technique on defect region. 

Figure 5 shows the characteristics of the frequency spectra of L(0,1) mode with 

the frequency of 381kHz (Theoretical value is 376kHz) and L(0,2) mode with 

434kHz (Theoretical value is 423kHz) distinctly. The plots in Figures 5 (a)-(b) are 

frequency spectra of these modes in the 0~1MHz range. 

In analysis of the frequency spectra were obtained by performing a Fast-Fourier Trans-

form (FFT) of the time-domain waveforms, the magnitude of L(0,1) mode with the center 

frequency of 381kHz in the defected region is increased by 13%. 
However, the L(0,2) mode of waves propagating in the defected region suffers a dra-

matic attenuation. The maximum decrease in center peak magnitude of the signal with fre-
quency of 434 kHz is 81% 
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4.2 Defect Localization along the Longitudinal Direction 

As shown in a experimental setup of figure 3, guided waves are received with a 

constant source/receiver separation along the longitudinal direction. The air-

coupled transducer is passed by the center of defect for obtaining clear characteris-

tics of defect. Figures 6 shows the results from line scan of right and left direction, 

synthesis of right and left maximum magnitudes using pitch-catch method in de-

fect region. The maximum magnitude of the frequency spectrum in L(0,1) and 

L(0,2) modes were plotted as a function of the scan position by scanning at 10mm 

steps along the longitudinal direction respectively. 

The defect region in figure 6(a)-(b), as a depth of elliptical defect in increased, 

magnitude of L(0,1) mode is increased linearly but it isn’t distinguished clearly 

from start point of defect region. Maximum magnitude of the L(0,2) mode is de-

creased rapidly in the defect region, so is the factor that can distinguish defect re-

gion. Figure 6(c) is synthesized from right and left maximum magnitude. The 

L(0,1), L(0,2) mode show inverse characteristic and the L(0,2) mode has relation 

more accurate between depth of defect and variation of signal. As a result of 

maximum magnitude, we estimate the relative depth of elliptical defect. 

5. Conclusions 

The possibility for estimating thickness reduction using the group velocity of 

guided wave was applied to the elbow. As a result, to evaluate the thickness re-

duction using the group velocity, mode identification was conducted by time-

frequency analysis. In the elbow, L(0,1) and L(0,2) modes were appeared in de-

fect-free region, but amplitude of L(0,2) mode were disappeared in wall-

thinning and characteristic the maximum magnitude of frequency spectrum of 

L(0,2) mode is varied in the defect region. So we could know that it is possible 

to evaluate wall-thinning of elbow by using the ratio of L(0,2) to L(0,1) for the 

magnitude quantitatively. 
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Abstract. This paper summarizes the design and fabrication of several novel ul-

trasound transducers for measuring surface and Lamb waves. The experimental 

setup and measurement method for each developed transducer are also addressed. 

According to piezoelectric materials being used, two types of ultrasound transduc-

ers are discussed which are PVDF focusing transducers and micro-machined PZT 

transducers. For the PVDF transducers, a defocusing measurement along with a 

V(f,z) waveform processing technique are developed which allow accurately de-

termination of dispersion curves of either surface waves of a layered medium or 

Lamb waves of a thin plate. Elastic properties of coating layers and thin plates are 

therefore non-destructive determined. For the micro-machined PZT transducers, a 

differential type wave velocity measurement is developed which is extremely sen-

sitive to small wave velocity variation. Hence, the mechanical and dielectric load-

ing effects of a fluid to the Lamb waves of a piezoelectric plate are experimentally 

and theoretically characterized, which can be used for acoustic sensing of fluids.  

1. Introduction 

Ultrasonic transducers are key components in the engineering applications of 

all kinds of ultrasounds and elastic waves. The dominant way of constructing 

ultrasound transducers is still using piezoelectric materials for electrically 

generating and receiving acoustic waves in a wide range of frequency as well 

as measurement methods. We will discuss the using of two different piezo-

electric materials, the polyvinylidene fluoride (PVDF) films and the PZT ce-

ramics, for fabricate a number of ultrasound transducers of different purposes 
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and applications. Corresponding experimental setup and measurement method 

for each developed transducer are also established so that the potentials of the 

transducers can be explored for the purpose of non-destructive evaluation or 

acoustic sensing.  

2. PVDF Focusing Transducers 

2.1 Fabrication of Focusing PVDF Transducers 

PVDF and its copolymer Poly(vinylidene fluoride-trifluoroethylene) 
[P(VDF-TrFE)] have been widely used in making ultrasound transducers 

since their acoustic impedance is much closer to that of human tissues and 

water. It is expected to have better impulse response and broad-band charac-

teristics. There are basically two approaches in fabricating PVDF-based fo-

cusing ultrasound transducers: to permanently deform a piezoelectric poly-

mer film into a concave shape [1] and to form a piezoelectric polymer film 

by spin-coating on a concave surface of a substrate [2]. The latter is favor-

able for transducers of higher operating frequency and/or lager aperture an-

gle. In this work, we proposed a modified method which can spin-coat a 

P(VDF-TrFE) copolymer film from its precursor solution and simultane-

ously heats up the film by an infrared lamp to achieve thermal crystalliza-

tion. In this way, both point-focused and line-focused PVDF transducers are 

obtained with a wide range of transducer frequencies and aperture angles. 

Figure 1(a) and (b) show one SEM image of a spin-coated piezoelectric 

film and its measured ferroelectric hysteresis loop, respectively. The film 

has a thickness of 6 µm and shows excellent piezoelectric characteristics. 

The construction of a point-focused PVDF transducer is shown in Fig. 2. 

Two transducers have been made; one has a radius of curvature of 5 mm and 

a full opening aperture angle of 30o. The pulse/echo reflected waveform and 

the frequency spectrum of this focusing transducer are shown in Fig. 3(a) 

and (b), respectively. The central frequency is 52 MHz and the -6dB band-

width is 44 MHz. The second transducer has a radius of curvature of 11 mm 

and a full opening aperture angle of 95o. The central frequency and -6 dB 

bandwidth are 14 MHz and 20 MHz, respectively. 
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(a)

 

Aluminum substrate 

P(VDF-TrFE) copolymer film 

 (b)  

Fig. 1 (a) Spin-coated P(VDF-TrFE) film on an aluminum baking substrate and (b) its 
ferroelectric hysteresis loop. 

 

Fig. 2 Construction of a P(VDF-TrFE) focusing transducer. 

(a)    (b)  

Fig. 3 A (a) pulse/echo reflected waveform and (b) its frequency spectrum of a point-focus 
PVDF transducer. 
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2.2 Defocusing Measurement and V(f,z) Waveform Processing 

A defocusing measurement method for Lamb wave dispersion curves are 

shown in Fig. 4. Figure 4(a) shows schematically the experimental setup 

where a sample is placed in a water tank and the P(VDF-TrFE) point-focused 

transducer can perform standard pulse/echo reflective waveform measure-

ments at different defocusing distance. Figure 4(b) shows few of the defocus-

ing waveforms measured from a 250 µm stainless steel plate sample. The de-

focusing measurements are carried out in a much dense step of distance 

interval of 10 µm. Following the V(f,z) waveform processing method [3], the 

measured waveforms are first Fourier transformed with respect to time (t) into 

frequency (f) domain to yield the V(f,z). The V(f,z) can be viewed as a function 

of two variables, f and z. For a specific and fixed frequency, f, the V(f,z) can 

be considered as a standard V(z) curve in conventional acoustic microscopy. 

The oscillation period of a V(f,z) curve, ∆z, can be determined by doing Fou-

rier transform again with respect to z and hence transformed into 1/z domain. 

An image plot of double Fourier transform data is shown in Fig. 4(c). A peak 

coordinate searching algorithm can be applied to trace continuous modes in 

the entire (f - 1/∆z) image plane.  

As indicated in Fig. 4(c), both A0 and S0 modes as well as other high order 

modes are observed. Figure 4(d) shows the measured dispersion curves for S0 

and A0 modes and their comparison with their theoretical counterparts. Notice 

that the Rayleigh wave velocity of the plate can be easily obtained from the 

overlapping of S0 and A0 modes. 

However, in order to accurately determine both two elastic constants with-

out any ambiguity due to inversely curve-fitting on the dispersion curves, it is 

better to measure either longitudinal or transverse bulk waves in a more direct 

approach. Therefore, the high-frequency focusing transducer with a small ap-

erture angle of 30o is used for directly measuring longitudinal wave in the 

thickness direction of a thin plate. The pulse/echo waveform is shown in Fig. 

5. Longitudinal wave velocity can be accurately determined from the time-of-

flight. Finally, both Young’s modulus and shear modulus can be determined in 

a more accurate and straightforward way. A series of measurements have been 

carried out on a number of stainless steel and glass plates with thickness from 

125 µm to 250 µm, and the measurement accuracy in both Young’s modulus 

and shear modulus is within 5 %. 



Measurement of Surface and Lamb Waves with Application on Acoustic Sensing and… 

 

99 

 
 

A0 S0 

(f’, 1/∆z’) 

(c) 

 

Fig. 4 (a) Experimental setup of a defocusing measurement method and (b) measured 
waveforms, (c) an image plot from V(f,z) signal processing, and dispersion curves of Lamb 
waves. 
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Fig. 5 Longitudinal wave measurement of a 210 µm thick glass plate.  
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3. Micro-machined PZT Transducer and Measurement 

3.1 Fluid Loading Effects of Leaky Lamb Waves 

Lamb waves are 2D guided plate waves propagating in a thin plate. There exist a 

number of modes of Lamb waves and each mode has a specific frequency-

wavelength or frequency-velocity relationship called dispersion curve. When a 

plate is immersed in a fluid, the Lamb waves become leaky Lamb waves which 

have slightly different wave velocities and wave attenuation along propagation di-

rection due to shedding energy to the adjacent fluid. The variation of wave veloc-

ity and the attenuation of a leaky Lamb wave are called fluid-loading effect which 

is mostly due to mechanical coupling at the solid/fluid interfaces and dominated 

by the fluid’s elastic properties. For a piezoelectric plate immersed in a fluid, addi-

tional loading effects are induced from the electrical coupling between electrical 

fields in the plate and the fluid, and are related to the dielectric and conductive 

properties of the fluid. Inversely, if one can characterize the nature of the loading 

effects, leaky Lamb waves can be applied to acoustic sensing of both mechanical 

and electrical properties of a fluid.  

Theoretical analysis on leaky Lamb waves of a piezoelectric plate to reveal the 

quantitative dependence of wave velocity and attenuation as functions of the elas-

tic and electrical properties of a loading fluid can be carried out with rigorous par-

tial wave analysis [4] or approximate perturbation analysis [5]. However, since the 

velocity variation and wave attenuation are usually small, it is still a grand chal-

lenge to the precision and accuracy of an acoustic wave measurement system. 

3.2 Miniature PZT Transducer and Differential Measurement 

To precisely measure the fluid loading effects of leaky Lamb waves, a new type of dif-

ferential measurement method and new PZT line transducers are developed. Figure 6 

shows schematically the measurement method which utilizes four PZT transducers in 

contact with a piezoelectric plate. Two of them are for wave generation and the other 

two for wave receiving. These transducers are laboratory-made from a PZT-5H piezo-

electric ceramic. The original PZT plate has a thickness of 0.5 mm and both surfaces 

coated with Au/Cr electrodes. A precision wafer dicing saw machine cuts the PZT plate 

into long slender bars of a width, height, and length of 0.2 mm, 0.5 mm, and 12.7 mm, 
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respectively. The long PZT bar is glued to a brass block for electrically conducting and 

mechanically backing. The brass block is then embedded into an epoxy matrix con-

tained by an aluminum case. A SMA connector is mounted on the aluminum case and 

its signal line is connected to the brass block and the inner electrode of the long PZT 

bar. A minimal amount of epoxy is applied on the side walls of the PZT bar to 

strengthen its position as well as to electrically isolate the brass block. Finally, thin 

metal films of chromium (50 nm) and gold (200 nm) are thermally evaporated on the 

surface of PZT transducer. The Au/Cr film covers the outer electrode of the PZT ele-

ment and connects it to the aluminum case or the grounding metal of SMA connector.  

The differential measurement as shown in Fig. 1 first fixes the sample plate in a fix-

ture and then partially immerses the plate in a fluid. The transmitting transducer pair 

then launches Lamb waves which are then received by the receiving transducer pair. 

The Lamb waves from the transmitters to the receivers can be divided into two parts. 

From the transmitters to the air/liquid interface, the acoustic wave is a free mode Lamb 

wave since there is no fluid loading. From the air/fluid interface to the wave receivers, 

however, the waves become leaky Lamb waves subjected to fluid loadings. In Fig. 6, 

Lo denotes the distance between transmitters and receivers, and x the distance from re-

ceivers to the air/fluid interface. The time-of-flight of Lamb waves traveling from 

transmitters to receivers is,  

o

o

L x x

c c
τ −

= + ,  (1) 

where co and c are the phase velocities of free-mode and leaky Lamb waves, respec-

tively. During the measurements, the assembly of transmitters, receivers, and sample 

plate are always kept in the same configuration but can move vertically by a servo-

controlled linear stage. The waveform measurements starts from a small value of x and 

then gradually pushing the sample-plate/transducers assembly into the fluid for wave 

measurements. In Eq. (1), taking differentiation of τ with respect to x gives,   

1
1

o

d
c

dx c

τ
−

 
= + 
 

. (2) 

Therefore, with given co the leaky Lamb wave velocity, c, can be determined from 

the linear correlation between change in time-of-flight (∆τ) and change in distance x 

(∆x). It is essentially a differential type of measurement which is very sensitive to 

the change in wave velocity and much less vulnerable to measurement errors and 

environmental noises. 
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Figure 8 shows the measurement results on an X-cut LiNbO3 plate and the 

wave is propagating along 40o azimuthal angle measured from the z-axis of the 

plate. Figure 8(a) shows the experimental and theoretical leaky Lamb wave veloci-

ties of S0 mode at 3 MHz as a function of the dielectric constant of permittivity of 

the fluid, which is a mixture of water and ethanol with different concentration ra-

tio. As predicted by the partial wave analysis, the leaky Lamb wave velocity is de-

creasing for about 400 m/sec with increase of fluid permittivity from 20 to 80. 

Figure 8(b) and 8(c) show the functional dependence of leaky Lamb wave velocity 

and attenuation on the electric conductivity of a salt water of different concentra-

tion. One can see the wave velocity is almost monotonously decreased for increas-

ing fluid’s conductivity by the wave attenuation is increasing first and then drop 

back to lower value. This is known as conductivity shielding effect. 

 

 

Fig. 6 A differential measurement method of leaky Lamb waves. 
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Fig. 7 Design and construction of line-PZT transducer. 
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Fig. 8 Electrical loading effects on S0 mode of leaky Lamb waves at 3 MHz of on a X-cut LiNbO3.  
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Abstract. A brief overview is provided of guided elastic waves at periodically 

structured surfaces, with particular attention given to their folded dispersion rela-

tions, the occurrence of band gaps, their coupling to bulk elastic waves, and their 

interaction with light. Two examples of physical situations and the dynamic be-

havior they give rise to are used to illustrate these ideas. The first pertains to the 

dispersion relation for guided waves at a periodic array of thin coplanar slits in a 

solid, and the role that they play in the scattering of bulk waves. Next, behavior 

for laser generated dispersive Rayleigh and Sezawa modes in a patterned thin film 

structure on a substrate is discussed. 

1. Introduction 

Acoustic waves at periodically structured surfaces and interfaces are of impor-

tance in geophysics, materials science, microelectronic and many other areas. The 

periodic structuring induces coupling between modes whose wave vectors differ 

by a reciprocal lattice vector, which renders surface and interfacial waves disper-

sive, and gives rise to band gaps. While this phenomenon is common for bulk 

waves in periodic structures, surface and interface waves exhibit specific effects 

not encountered with bulk waves. Most importantly, periodicity induces interac-

tion between surface and bulk modes. As a result, true surface waves only exist 

within a limited frequency range. Above a certain frequency threshold, surface 

modes disappear or turn into so-called “leaky-” or “pseudo-” surface modes which 

are attenuated via radiation of bulk waves.  

The periodicity-induced attenuation of surface waves at a sinusoidally corrugated 

surface was predicted by Brekhovskikh [1] in what was perhaps the first study of 

surface waves in periodic structures. Subsequently, surface waves at periodically 
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corrugated surfaces have attracted considerable attention from both theoreticians 

[2-4] and experimentalists [5-7]. In particular, Brillouin scattering measurements 

on small amplitude gratings on Si [5,6] revealed the expected bandgaps at the Bril-

louin zone (BZ) boundary, as well as quasi-bandgaps in the leaky region inside the 

BZ caused by the hybridization between the zone-folded leaky Rayleigh mode and 

the longitudinal resonance 

The past few years have seen an explosion of activity in the study of guided 

acoustic waves in periodic structures, largely related to the general progress in the 

field of phononic crystals [8]. Researchers have studied a wide range of structures 

more complex than an elastic half-space with a corrugated surface and have eluci-

dated a number of new and interesting phenomena. 

In this paper we consider two examples illustrating both general concepts and 

specific phenomena particular to the structures studied. We start by discussing 

guided interfacial waves at a periodic arrangement of coplanar slits in a solid 

[9,10], and the role that a leaky branch of these waves plays in the scattering of 

bulk waves at the interface. This problem has attracted considerable attention over 

the years, but a clear picture of the dispersion relation of these guided modes has 

only emerged recently. Next, we consider surface acoustic waves (SAWs) in a pe-

riodically patterned thin film structure on a silicon substrate [11,12]. An “active” 

light scattering technique referred to as laser-induced transient gratings has al-

lowed us to produce good quality dispersion curves and elucidate a number of fea-

tures such as large bandgaps inside the BZ resulting from the hybridization of 

zone-folded Rayleigh and Sezawa surface modes [12]. We will highlight the 

common features shared by the surface and interfacial waves in the two structures 

studied, and also point out some of their differences in behavior. While in the first 

part of the paper the discussion is based on the results of numerical modeling, the 

second part presents experimental data accompanied by a largely heuristic inter-

pretation. It should be mentioned, however, that the plain wave expansion 

method presented in the first part can be easily adapted for the numerical 

analysis of the structure studied in the second part of the paper, which presents 

a subject for future work. 

The purpose here is not to summarize a completed body of research, or to 

provide a broad survey of the field. Indeed, some important areas of research 

such as guided waves in structures with 2D periodicity and in periodically struc-

tured plates are left outside the scope of this article. Our intention is merely to 

sketch some aspects of a rich and exciting field, and hopefully stimulate further 

investigations aimed at filling in the bigger picture. 
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2. Guided Waves at a Periodic Array of Coplanar Slits 

There is an extensive literature on the scattering of elastic waves by a periodic ar-

rangement of coplanar slits in a solid, see e.g. references [9,10,13-15]. This is a 

model which can be taken to represent e.g. fracture, mine stoping or the dry con-

tact between solids. Figure 1 depicts the physical situation we consider. Two iden-

tical semi infinite elastically isotropic solids on opposite sides of the 0z =  plane 

are bonded to each other within regularly spaced strips parallel to the y  axis, each 

of width b , and between the strips, the surfaces of the two solids are unattached. 

The repeat distance of this arrangement in the x  direction is D .  

The translational symmetry of the system is broken by this interface. The 

abrupt change in the z -direction gives rise to reflection, mode conversion and in-

terfacial waves. In the x -direction, the translational symmetry of the interface is 

limited to integrals multiples of D , and as a result, in the scattering of waves at 

the interface, the wave vector component xk is preserved only to within an integral 

multiple of the reciprocal lattice vector 2 /G Dπ= . As is common practice in 

such situations, one restricts xk  to the first BZ /xk Dπ< , and “folds” the re-

gions of the dispersion relation lying beyond the zone boundaries into the first 

zone, to constitute a stack of higher lying branches to the dispersion relation. For 

some purposes, though, an extended zone description is also useful. 

The situation has reflection symmetry through the 0z =  plane, and this allows 

one to treat separately wave fields which are symmetric and anti-symmetric with 

respect to reflection through this plane. An incoming plane wave from one side 

and its resultant scattered field is then taken as the superposition of symmetrically 

and anti-symmetrically disposed pairs of incoming waves and their scattered 

fields. We assume that the sagittal plane for the waves is perpendicular to the slits, 

and we are thus dealing with a plane strain problem of L and sagittally (SV) polar-

ized T waves, in which the displacement field is confined to the xz -plane and in-

dependent of y . Fig. 1 depicts a pair of symmetrically incident T waves of wave 

vectors ( ),x zk k= −k  and ( ),x zk k=k , and angular frequency ω  incident on the 

interface at an angle θ  and giving rise to scattering, with the displacement field 

being ( ) ( ), expx z i tω−u . 

The solids are of density ρ  and their L and T acoustic slownesses are respec-

tively 1/ LVα =  and 1/ TVβ = . The scattered field conforms to the Sommerfeld 

radiation conditions, and at the interface the combined incident and scattered field 

satisfies the boundary conditions (BC) of continuity of displacements xu , zu  and 

traction forces within the joined regions, and the vanishing of traction forces 
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within the unattached regions. In our calculations we employ a coupling parameter 

( )0 1xη≤ ≤ , with ( ) 1xη =  in the joined regions and ( ) 0xη =  in the unattached 

regions. Allowing ( )xη  to vary continuously rather than abruptly at the junctions 

between attached and unattached regions, avoids unphysical singular behavior at 

the junctions, and gives one control over the convergence of the Fourier series rep-

resentation of the scattered field.  

The scattered field is a superposition of an infinite number of Bloch harmonics, 

i.e. outgoing L and T waves of the same frequency and having wave vectors 

( ),n n
x zk kα±  and ( ),n n

x zk k β±  respectively, where 

; 0, 1, 2,...n
x xk k nG n= + = ± ±  

( )22 2n n
z xk kα ω α= −  ,  ( )22 2n n

z xk kβ ω β= −  (1) 

The amplitudes of these outgoing L and T waves are respectively nA , and nB  

depending on the value of ω  and xk , some of the n
zkα  and n

zk β  are real, and the 

remainder imaginary. The choice of sign ( ± ) is dictated by the Sommerfeld ra-

diation conditions. For small ω , there is only one outgoing homogeneous T 

wave in each half space, the rest of the partial waves being evanescent. As ω  is 

increased, successive critical values or thresholds are crossed, where evanescent 

waves change to homogeneous. These are represented by the lines labeled L0, 

T0 and T-1 in Fig.2 

 

Fig. 1 Scattering of a symmetrically incident T wave at a periodic set of slits. 
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A numerical solution to this problem is obtained by imposing a finite cut off on 

the expansion, limiting n  to the range N n N− ≤ ≤ , where 47N =  in our calcu-

lations. The values of the 2 1N +  coefficients nA , and equal number of nB  are de-

termined by imposing the boundary conditions at a discrete set of 2 1N +  equally 

spaced points px  in the interval / 2 / 2pD x D− < < . This yields 

( )( )22 2
0 2 / 2n n n

n n n x z xB A k k kαδ ω β= + −   (2) 

; 0, 1,...,
N

pn n p
n N

M A m p N
=−

= = ± ±∑   (3) 

where pnM  and pm  are functions of ( ), , , , , , , ,n n n
p p x z zx x k k k n Dα βη ω β . The 

solution of (3), 

( )( )22 2
0 2 / 2n n n

n n n x z xB A k k kαδ ω β= + −   (4) 

yields the nA , and substitution into (2) yields the nB  for the symmetrical field. 

Similar analyses yield the scattering matrix Mɶ  and scattering amplitudes nAɶ  and 

nBɶ  for anti-symmetrically incident T waves, and incident L waves. 

2.1 Interfacial Waves 

The matrices M  and Mɶ  become singular under certain conditions, leading to the ex-

istence of interfacial waves (IW), i.e. guided waves in the subsonic spectral range 

0 /xkω β< < , and contained within the first BZ, which consist entirely of evanes-

cent partial wave components. In the supersonic or radiation domain, /kω β> , there 

occur near-singular features associated with pseudo-interfacial waves (PIW). These 

consist predominantly of evanescent partial wave components, but through a weak 

coupling to the 0n =  T bulk wave continuum, are leaky rather than perfect guided 

modes. They feature prominently in the scattering of bulk waves at the interface.  

Figure 2 depicts the dispersion relation, in terms of dimensionless frequency 
ˆ /Dω ωβ π=  and wave vector ˆ /x xk k D π= , for Poisson’s ratio 0.3ν = , and 

/ 0.16b D = . The anti-symmetrical field interfacial wave A persists down to ˆ 0xk = , 

approaching asymptotically and degenerating with the 0T  threshold at this lower limit. 

Its dispersion curve is horizontal at the BZ boundary ˆ 1xk = , corresponding to zero 

group velocity, and phase velocity there approaches the Rayleigh velocity in the limit 

/ 0b D → . 
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Fig. 2 Dispersion relation for 0.3ν =  and / 0.16b D = . The dispersion relation is sym-
metric about the zone centre ˆ 0xk =  and zone boundary ˆ 1xk = . The inset is a blow up of 
the region near the BZ boundary. 

At the BZ boundary there is a second anti-symmetrical IW A’, separated from 

A by a band gap. A’ penetrates through the 0T  threshold, and becomes the pseudo-

interfacial wave PA, which lies a little below the 1T−  threshold. PA is able to ab-

sorb from and radiate into the T wave continuum, and it exists therefore as a reso-

nance rather than a true singularity. At the L0 wave threshold, a second channel 

opens up for PA to radiate into, and it becomes a much broader resonance, sharp-

ening up again only near the BZ centre. 

2.2 Pseudo Interfacial Waves in Scattering 

The pseudo interfacial wave PA has a pronounced effect on the frequency dependence 

of the transmission and reflection of bulk waves at the interface, mainly resulting from 

the rapid variation of the phase of 0Aɶ  and 0Bɶ  for anti-symmetrically incident L and T 

waves in the vicinity of this mode. Figure 3 shows the frequency dependence, near 

resonance scattering, of the reflection amplitude 0 0 / 2T
TR B B= + ɶ , for a T wave in-

cident from one direction on the interface at an angle 7 / 24θ π= . It has been calcu-

lated by decomposing this wave into symmetrically and anti-symmetrically incident T 

waves. There is a sharp kink at ˆ / 2 0.6215ω = , which corresponds to the 1T−  thresh-

old. Below this value both 0B  and 0Bɶ  are in magnitude unity, since there is only one 

outgoing channel on each side of the interface into which to radiate, the 0n =  L mode 

being evanescent. At ˆ / 2 0.6145ω =  there is a sharp resonance due to the fact that 

near PA the phase of 0Bɶ  undergoes a rapid increase through approximately 2π . This 

causes T
TR  to drop sharply to zero as the relative phase passes through π , rise rap-

idly to unity as the relative phase passes through zero, and then level off.  
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Fig. 3 Reflection amplitude T
TR  for a T wave incident at angle 7 / 24θ π=  near the PA 

resonance, for 0.3ν = , and / 0.5b D = . 

 

Fig. 4 (a) Schematic cross-section of the sample (not to scale); (b) An example of the signal 
waveform with the Fourier spectrum of acoustic oscillations shown in the inset. 

3. SAW’s in a Periodically Patterned Thin Film 
Structure on Silicon 

In this section, we discuss measurements of surface acoustic modes in a structure 

depicted in Fig. 4(a), comprised of alternating copper and oxide strips on a silicon 

wafer. Acoustic waves in periodically patterned layered structures exhibit some-

what different behavior than interfacial waves considered in the previous section, 

or SAWs at periodically corrugated surfaces. Most importantly, guided modes in 

layered structures are dispersive even in the absence of the periodicity. Moreover, 

layered structures often support multiple acoustic modes. Periodicity induces cou-

pling between the modes leading to “avoided crossing” bandgaps inside the BZ. 

This behavior differs from that of symmetric and anti-symmetric interfacial modes 

that remain uncoupled because the periodic structuring of the interface does not 

break the symmetry. 
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3.1 Experiment 

The laser-induced transient grating technique also referred to as Impulsive Stimu-

lated Thermal Scattering [16] is particularly well suited for studying surface wave 

propagation in periodic structures, as it allow one to measure waves inside the 

structure of interest as opposed to measuring transmission through the structure as 

is more common in traditional acoustics. 

The transient grating set-up with optical heterodyne detection has been de-

scribed in details elsewhere [16,17]. In short, two excitation pulses derived from a 

single laser source are crossed at the sample surface to form a spatially periodic 

intensity pattern. Absorption of the excitation light followed by rapid thermal ex-

pansion generates counter-propagating acoustic modes at the wavelength defined 

by the periodicity of the excitation grating. Detection of the acoustic waves is per-

formed via diffraction of the quasi-cw probe beam focused at the center of the ex-

citation pattern. Measurements were performed in two configurations, with the ex-

citation grating wavevector parallel and perpendicular to the Cu and SiO2 strips. 

A typical signal waveform for the grating wavevector parallel to the Cu 

lines is presented in Fig. 4(b). High frequency oscillations are due to surface 

acoustic modes while the slowly decaying component is the contribution of 

the “thermal grating” associated with the periodic temperature profile [16]. 

The decay of the acoustic oscillations is caused mainly by the finite size of the 

excitation spot, as the counter-propagating SAW eventually leave the probing 

area. The Fourier-spectrum of acoustic oscillations reveals the presence of two 

surface acoustic modes as is not uncommon for film/substrate structures: the 

fundamental mode and the weak second-order mode, often referred to as 

Rayleigh and Sezawa waves, respectively. 

Acoustic dispersion curves presented in Fig. 5(a) are, again, quite typical for a 

structure comprising a “slow” film on a “fast” substrate, with the Sezawa mode 

emerging from under the “cut-off ” determined by the velocity of the sagitally po-

larized bulk transverse wave T. Fig. 5(a) also shows calculated dispersion curves 

for a homogeneous layer with effective elastic properties. 

3.2 Surface Wave Dispersion and Bandgaps Inside the BZ 

Measurements with the grating wavevector perpendicular to the strips reveal a to-

tally different picture. Acoustic dispersion curves measured in this configuration 

are shown in Fig. 5(b). As discussed in Section 2, in this case it is instructive to 
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present the data in terms of the reduced wavenumber. As expected, the dispersion 

curves form a bandgap at the BZ boundary. It should be noted, however, that this 

is not a true bandgap as it overlaps with the left side of the middle dispersion 

branch. A much larger bandgap is formed inside the BZ. In order to elucidate the 

origin of this bandgap, dispersion curves for acoustic wavevector parallel to the 

copper lines from Fig. 5(a) are re-plotted in Fig. 5(b) versus the reduced  wavenu- 

mber. It is evident that the bandgap arises as a result of the “avoided crossing” of 

the Sezawa mode and the zone-folded Rayleigh mode. 

 

Fig. 5 SAW dispersion curves (symbols) measured with wavevector (a) along copper strips 
and (b) perpendicular to the strips, i.e. in the direction of periodicity. Dotted lines correspond 
to bulk wave thresholds. Solid lines in (a) were obtained by “effective medium” calculations. 
Solid lines in (b) correspond to the dispersion curves from (a) replotted vs. reduced 
wavenumber. 
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Fig. 6 (a) Signal waveforms and (b) corresponding spectra measured at wavenumbers 1.42 µm-1 
(top) and 1.60 µm-1 (bottom). Corresponding reduced wavenumbers are 0.67 and 0.50 µm-1

, 

respectively. Inset in (b) shows the weak 3rd mode peak magnified by a factor of 10. 
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Why is one bandgap so much larger than the other? Ref. [12] offers a qualitative 

explanation based on the fact that in counter-propagating Rayleigh waves the direc-

tion of the particle motion is opposite (i.e. clockwise vs. counterclockwise) while in 

the counter-propagating Rayleigh and Sezawa waves it is the same. The conjecture 

is that the interaction between the modes is stronger in the latter case. However, the 

issue still awaits detailed numerical modelling to be resolved decisively. 

3.3 Pseudo Surface Mode 

As can be seen from Fig. 5(b), the upper dispersion branch mostly lies above the T 

line i.e. in the “leaky” region. However, in the experiment significant attenuation 

caused by the coupling to bulk waves is only observed above the L threshold. This 

point is illustrated by Fig. 6 showing two signal waveforms and corresponding 

spectra. The high frequency mode corresponding to the top waveform lies above 

the T threshold but below the L threshold and one can see that this mode has a 

long lifetime exceeding the time window of the measurement. As mentioned 

above, in the absence of attenuation the lifetime of the acoustic oscillations is de-

termined by the “walk-out” of the acoustic wavepackets which is controlled by the 

group velocity. Since the dispersion curve of the upper branch is almost flat the 

group velocity is very low thus leading to a long lifetime. However, as soon as the 

upper branch crosses the longitudinal threshold, labeled “L” in Fig. 5(b), it be-

comes severely attenuated and decays almost completely within 10-15 ns follow-

ing the excitation (see the lower waveform in Fig. 6). In view of the discussion in 

Section 2.1, the fact that attenuation increases sharply upon crossing the L 

threshold while a mode situated between T and L thresholds may be fairly long-

lived does not appear entirely surprising. Again, detailed numerical modelling is 

desirable for the decisive interpretation of the results. 

Acknowledgments: This work is based partly on research supported by the National Research 
Foundation.  
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Abstract. In this work acoustic cloaking shells are explained and analyzed. Al-

though the materials requirements for building these devices are materials with 

anisotropy in the mass density, it is explained how realize them with layers of iso-

tropic metafluids based on sonic crystals. The cloaking efficiency as a function of 

the number of the number of layers is also studied. 

1. Introduction 

In a work by Cummer and Schurig [1] it was predicted that acoustic cloaking is possi-

ble in a two-dimensional (2D) geometry by means of a cloak made of an acoustic ma-

terial having a strong unnatural mass anisotropy. This result in acoustics follows a pre-

vious analogous result discovered by Pendry et al. [2] in electromagnetism by using a 

material with equivalent requirements for the permittivity and permeability tensor 

components. However, while electromagnetic (EM) cloaking has been experimentally 

demonstrated by using a metamaterial specially designed [6], its acoustic counterpart 

has not been demonstrated yet. Moreover, the demonstration of acoustic cloaking 

is still waiting for some proposal of engineered material (metamaterial) that 

accomplishes the requirements on mass anisotropy predicted [1]. 

In this regards, the work by Milton et al. [7] describes conceptually how the mass 

anisotropy could be possible by spring loaded masses. Besides, a recent advance in the 

physical realization of metamaterial with mass density anisotropy has been performed 

by these authors by demonstrating that such property can be made possible by using 

non-symmetric lattices of solid cylinders [8]. 

In this work an acoustic cloak that could be physically realizable is presented. In 

brief, the proposed cloak is based on a multilayered structure consisting of two layers 

with the same thickness and made of two different acoustic isotropic metamaterials. 
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These metamaterials are built with sonic crystals (i.e., periodic arrays of sonic scatter-

ers) based on two types of elastic cylinders that have to accomplish certain require-

ments on their mass density and effective sound speed. Numerical experiments based 

on multiple scattering method are present to support the exact performance of the pro-

posed cloak.  

2. Acoustic Cloaking in 2D 

The solution reported by Cummer and Schurig for the acoustic cloaking in [1] requires a 

fluid material with an anisotropic density and a scalar bulk modulus. Moreover, these pa-

rameters must be dependent on the radial distance to the hidden object. The predicted 

functional form is  
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where 1R and 2R  are the inner and outer radii of the cloaking shell, B is the bulk 

modulus of the shell, rρ  and ϑρ  are the components of the diagonal mass density ten-

sor, and the quantities with subscript b are those of the surrounding background that is a 

fluid or a gas. Materials with such uncommon properties do not exist in nature and, there-

fore, some engineered material must be introduced to accomplish them.  

In previous work [8] it has been shown that, in the low frequency limit, arrangements 

of cylinders in non-symmetric lattices leads to acoustic metamaterials with anisotropic 

mass density and scalar bulk modulus, as required by the previous equations. The lattices 

considered in the mentioned work are single-cylinder lattices and, as a consequence, 

when the mass density of the cylinder is larger (smaller) than that of the background, the 

effective mass density tensor is always larger (smaller) than that of the background. This 

is an important drawback because in equations (1) one component of the mass density 

tensor is the reciprocal of the other and consequently the radial (angular) component of 

the mass tensor is always larger (smaller) than that of the background.  

Therefore, a material having certain mass density in the radial direction and its recip-

rocal along the tangential direction cannot be engineered by using the theory developed 

so far. However, we suggest below a path to get the actual realization of such property by 

using periodic structures. 
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3. Multilayered Design 

We arrive at the solution to this problem by exploring the possibility of building 

anisotropic materials based on sonic crystals with two types of materials cylinders, 

following a combination of two approaches previously introduced. Unfortunately, 

the practical realization of conditions (1) is impossible to achieve because of the 

limitation imposed by the close packing condition of the lattice. Therefore, in a 

natural way, we conclude that a multilayered composite structure made of two ma-

terials could overcome such problem and give a solution. It is interesting to note 

that an approach similar to this was also proposed to get EM cloaking [10]. How-

ever, while the EM cloak only verifies a reduced set of the conditions imposed for 

EM cloaking, the one reported here exactly matches the conditions for acoustic 

cloaking. 

Let us consider a cloaking shell consisting of a multilayered structure that is 

made of alternating layers of materials of type 1 and 2, as shown in Figure 1. For 

any periodic system the bulk modulus (in the homogenization limit) does not de-

pend on the type (isotropic or anisotropic) of lattice; in fact, it has been shown in 

[8] that the effective bulk modulus at large wavelength can be determined by per-

forming a volume average of its reciprocal. This volume average, for a one-

dimensional multilayered system of materials 1 and 2, becomes  

1 2

1 2

1

eff

d d

B B B
= +  (3.1) 

where 1B  ( 2B ) is the bulk modulus of material 1 (2) and 1d  ( 2d ) is the length 

of layer 1 (2). 

To obtain the tensor associated with the effective speed of sound we need to 

first calculate the dispersion relation ( )K K ω=  of the system; i.e., the wavenum-

ber as a function of the frequency. This calculation follows, for example, a proce-

dure explained in textbooks like [12], 
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Fig. 1 Behavior of a one-dimensional periodic system in the low frequency limit. The effec-
tive medium is an anisotropic fluid-like material. 

The effective speed of sound is defined (in the low frequency limit) as the ratio 

between the angular frequency ω  and the wave number K . This ratio can be ob-

tained by making a power series expansion of the trigonometric functions up to 

second order in their arguments. It is easy to show that the effective speed of 

sound tensor that follows is 
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Where the quantities ρ⊥  and ||ρ are the components of the density tensor 

and are 
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The components c⊥  and ||c  define the diagonal components of the speed tensor 

for the propagation along the perpendicular and parallel directions, respectively, to 

the layered system. These relations define a way to design a multilayered shell sat-

isfying the conditions (2.1), as is explained in detail in [22]. The solution reported 

there is analyzed here. 

The proposed cloak is schematically shown in Figure 2, where the 1D structure is 

transformed into a circular-shaped shell that it is expected to cloak a rigid core placed 

in its interior. To check the functionality of the multilayered cloak we have performed 

multiple scattering simulations by using the method developed in [14, 15].  
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Fig. 2 Schematic view of the cloaking shell. It consists of a circular-shaped multilayered 
structure made up of two different materials of the same thicknesses. 

 
Fig. 3 Pressure map for a planar wave incident on a rigid cylindrical scatterer surrounded by a 
multilayered acoustic shell made up of 50 layers (left panel) and 200 layers (right panel). The 
radius of the shell is twice that of the core (R2 = 2R1). 

Maps of the acoustic pressure are represented by the real part of the complex 

amplitude P and are shown in Figure 3 for the case of a rigid core of radius 1R  

that is placed inside a multilayered shell of radius 2 12R R= . The full structure is 

submitted to an acoustic field of wavelength 1 / 2Rλ = . 

The performance of two different shells are depicted in Figure 3 where the 

left panel corresponds to a shell made of 50 layers and the right panel to one 

composed of 200 layers, where each layer of thickness d  is composed of two 

alternative layers of thickness of material 1 and 2. The cloaking effect is evident 

in both representations, but that corresponding to 200 layers is considerably 

more effective. 

These results can be compared with the case of the rigid cylinder with no cloak 

that is represented in the left panel of Figure 4, where the incident wave is strongly 

scattered by the cylinder. On the other hand, in the right panel of Figure 4 is de-

picted the acoustic cloaking by a  extremely thin cloak, its thickness being two or-

der of magnitude smaller than the hidden cylinder, but it is also made of 200 lay-

ers. This result is very promising because it indicates the possibility of building 

cloaks as thinner as the available technology allows. 
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Fig. 4 Left panel: pressure map for a planar wave incident on a rigid cylindrical scatterer of 
radius R1. Right panel: map corresponding to the same scatterer surrounded by an extremely 
thin cloak shell (R2-R1 = 0.01R1) made of 200 layers. 

 

Fig. 5 Upper panel Interaction of a point source with a rigid cylinder. Lower panel 
Cloaking of the rigid cylinder from the point source. 

In Figure 5 the interaction of a rigid cylinder with a point source is shown in the 

upper panel. It is clear that there is a strong reflected field due to the short wavelength 

of the incident field. In the lower panel the rigid object is surrounded by the cloaking 

shell and then the interaction with the point source disappears. This is a demonstration 

of the fact that the cloaking effect is independent of the nature of the incident field. 
Now, it is also interesting to analyze the cloaking effect as a function of the number 

of layers employed in the fabrication of the cloak. The resulting behavior is important 
in order to simplify as much as possible the fabrication of the cloaking shell. We have 
studied the backscattered field as a typical parameter characterizing the cloak's per-
formance and it is represented (in a logarithmic scale) in Figure 6 as a function of the 
frequency for different number of layers. 
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Fig. 6  Frequency response of the backscattered pressure for a rigid cylinder surrounded by a 
cloaking shell consisting of a multilayered structure as described in Figure 2. N is the number of 
layers in the structure. The case of the bare rigid cylinder without the shell is also represented. 

It is remarkable in Figure 6 that only 50 layers are able to reduce in more than 

one order of magnitude (for a wide range of frequencies) the back scattered field 

in comparison with that for the corresponding naked rigid cylinder. Other interest-

ing cases like a penetrable and a void regions are not reported here but we expect 

results analogous to those already published [13]. 

4. Acoustic Cloaking in 3D 

In three dimensions the cloaking conditions for the acoustic parameters was 

derived in [19,20], yielding 
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The same approach used previously for the two dimensional case could be applied 

here, however now the cloaking shell should be a multilayered spherical fluid-like 

structure which, obviously, is more difficult to achieve in practice. Each of the fluids 

used in the structure can be made of lattice of elastic spheres. 
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The acoustic parameters ( )r rρ  and ( )B r   have a similar radial dependence in two 

and three dimensions, however the angular components of the density tensor ϑ ϕρ ρ=  

are now constant. This difference is not important for designing a multilayered 

cloaking shell and it can be achieved in a similar way as it was done in [22]. 
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Abstract. Using the finite difference time domain method, we investigate theo-

retically the band structure and phonon transport in a new type of phononic crystal 

constituted by a periodic array of cylindrical dots deposited on a homogeneous 

membrane. One new finding is the possibility of an absolute low frequency gap 

(as compared to the Bragg gap), similarly to the case of locally resonant struc-

tures. The existence of the low frequency gap requires very appropriate geometri-

cal parameters, whereas it persists for various combinations of the materials con-

stituting the plate and the dots. Besides, the band structure can exhibit one or more 

higher gaps when increasing the height of the cylinders. The results are discussed 

for different shapes of the cylinders such as circular, square or rotated square. The 

band structure can also display an isolated branch with a negative slope, useful for 

the purpose of negative refraction phenomena. We discuss the condition for wave 

guiding through different types of linear defects inside the phononic crystal. Fi-

nally, we investigate phonon transport between two substrates connected by 

a periodic array of particles and discuss different features appearing in the 

transmission spectrum.  

1. Introduction 

The study of phononic crystals [1-2], constituted by a periodical repetition 

of inclusions in a matrix background, has received a great deal of attention 

during the last decade [3]. Associated with the possibility of absolute band 

gaps in their band structure, these materials have found several potential 
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applications, in particular in the field of wave guiding and filtering as well 

as in the field of sound isolation. The band gaps may originate from the 

Bragg reflections resulting from the periodicity of the structure or be due to 

the existence of local resonances in each unit cell. In addition to infinite 

phononic crystals, several recent works have also been devoted to the study 

of acoustic waves in free or supported plates of 2D phononic crystals [4-9]. 

The existence of band gaps in such geometries may be useful for the purpose 

of introducing functionalities such as wave guiding and filtering in inte-

grated high frequency devices. It is also worth noticing that, in the case of 

non metallic nanostructured materials, the thermal transport is mediated by 

phonons and, therefore, the knowledge and engineering of phononic band 

structure is a necessary step for the purpose of heat management.  In particu-

lar, the existence of band gaps and/or the lowering of group velocities due to 

the bending of the dispersion curves are detrimental for phonon transmission 

and hence thermal conductivity.  

In this paper, we are dealing with a new type of finite thickness phononic 

crystal constituted by a square array of cylindrical dots deposited on a thin 

homogeneous plate. One new finding of this work is the possibility of a low 

frequency gap where the wavelengths in the constituting materials are much 

larger than the typical lengths in the structure such as the period of the lat-

tice or the thickness of the plate. The existence and evolution of this gap as a 

function of the geometrical and material parameters of the structure have 

been thoroughly discussed in a recent paper [10]. The band structure can 

also display one or more higher gaps depending on the height of the cylin-

ders [10]. These results will be briefly recalled in this paper. Let us mention 

a recent paper by Wu et al [11] where a study on a similar structure has been 

carried out independently. Besides, we show the possibility of an isolated 

dispersion curve useful for negative refraction phenomena. The evolution of 

the dispersion curves and the band gaps will be discussed for different 

shapes of the cylinder’s section, namely circular, square, and rotated square. 

We also study the possibility of confinement and wave guiding when a guide 

is created inside the phononic crystal by removing or modifying a row of 

dots. Finally, we calculate the phonon transmission between two substrates 

connected by a periodic array of particles and discuss the features appearing 

in the transmission spectra [12]. The calculations presented in this paper are 

based on the Finite Difference Time Domain (FDTD) method. 
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2. Dispersion Curves and Band Gaps 

2.1 Cylindrical Dots of Circular Shape 

The physical model considered is a square lattice of cylindrical dots deposited on 

a plate (Fig. 1a) with lattice parameter a. The filling factor is defined as β= S/a², S 

being the section area of the dots. The height of the cylinders is denoted by h and 

the thickness of the plate by e. The materials constituting the dots and the plate are 

assumed to be isotropic or of cubic symmetry with their crystallographic axes ori-

ented along the coordinate axes x, y and z (Fig. 1a). In the following illustrations, 

the lattice parameter a is taken equal to 1μm, unless stated otherwise. However, 

since the frequencies scale inversely with the lengths, the results can be transposed 

to different frequency domains. 
 

 

Fig. 1 (a) Phononic crystal made of a square lattice of dots deposited on a homogeneous 
plate. The dashed cube represents one unit cell of the periodic structure. (b) Band structure 
in the frequency range [0, 2.5] GHz for steel cylinders on a silicon plate, calculated in the 
first irreducible Brillouin zone of the phononic crystal. The parameters are a=1µm, 
h=0.6�µm and e=0.1�µm. (c) Magnification of (b) in the frequency range [0, 0.4] GHz. 
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Fig. 2 Evolution of the band structure for different values of the height of the dots: (a) 
h=0.6µm, (b) h=1.5µm and (c) h=2.7µm. The other geometrical parameters are e=0.2µm 
and β=56.4%. 

Figure 1b gives an example of the band structure for propagation in the (x, 

y) plane, along the high symmetry axes of the first Brillouin zone, for a pho-

nonic crystal constituted by an array of circular steel cylinders on a silicon 

(Si) plate and the following geometrical parameters: filling factor β=0.564, 

height of the cylinders h=0.6μm and thickness of the plate e=0.1 μm. The 

band structure is displayed in the frequency range [0, 2.5] GHz and magnified 

for its lowest part ([0, 0.4] GHz) in Fig.1c. A new feature with respect to usual 

phononic crystals is the existence of a low frequency gap, extending from 

0.265 GHz to 0.327 GHz, where the acoustic wavelengths in all constituting 

materials are more than 10 times larger than the size of the unit cell. This re-

sult resembles the low frequency gap in the so-called locally resonant materi-

als [13-14] where the opening of the gap results from the crossing of the nor-

mal acoustic branches with a flat band associated with a local resonance of the 

structure rather than from the Bragg reflections due to the periodicity of the 

structure. Actually, the occurrence of the low frequency gap in our structure is 

closely related to the relative motion of the dispersion curves and, in particu-

lar, to the relative bending of the shear horizontal (branch #2) and symmetric 

Lamb (branch #3) modes when changing the geometrical parameters of the 

structure. From a detailed study [10] of the shift and bending of both branches #2 
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and #3 with these parameters (in particular with the thickness of the plate and 

the height of the dots), it was found that the existence of this low frequency 

gap requires a very appropriate choice of the geometrical parameters such as 

those chosen in figure 1 (see also figure 2). On the contrary, we have shown 

[10] the persistence of this gap against very ifferent combinations of the mate-

rials constituting the dot and the plate among a set of five materials (tungsten, 

steel, silicon, aluminum and epoxy). One can notice the persistence of this gap 

even if the constituting materials are identical. This supports the origin of the 

gap as being related to the geometrical rather than physical parameters of the 

structure. On the other hand, the central frequency of the gap is very depend-

ent upon the choice of the materials and happens at lower frequencies when 

we combine a high density material (tungsten) in the cylinders with a low den-

sity material (epoxy) in the plate. 

The band structure in Fig. 1 displays also a higher Bragg gap, around 2 

GHz, which is in accordance with the period of the structure as usual. We have 

investigated the behavior of this and other higher gaps in the band structure as 

a function of the geometrical parameters h, e and β, along the high symmetry 

axes ΓX and ΓM of the irreducible Brillouin zone. In figure 2, we show the 

evolution of these gaps as a function of the height of the dots while keeping 

the other parameters constant (β=0.564 and and e=0.2µm). For h=0.6µm 

(Fig.2a), we note the existence of three gaps. The lowest one at [0.5193, 

0.5717GHz] closes for h>1.0µm. Besides, the band structure exhibits two 

higher gaps respectively in the frequency ranges [1.560, 1.887GHz] and 

[2.092, 2.328GHz]. When increasing h to 1.5µm (Fig. 2b) and then to 2.7µm 

(Fig. 2c), the central frequencies of these gaps move downwards together with 

the dispersion curves, whereas new absolute band gaps appear at higher fre-

quencies. It is interesting to remark that, up to a certain frequency range, the 

opening of the gaps results from the bending of the dispersion curves rather 

than their folding, similarly to the case of locally resonant materials where the 

opening of the gaps results from the crossing of the normal acoustic branches 

with almost flat bands. 

2.2 Negative Slope Branch  

An interesting feature of the band structure in figure 2a (reproduced in Fig. 

3a) is the existence of an isolated branch with a negative slope around the fre-

quency 2.18 GHz. This branch can be useful for investigating the phenomenon 

of negative refraction which has been widely studied in phononic crystals of 
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infinite extent [15-16] but not yet in phononic crystals of finite thickness. In 

particular, this branch satisfies some of the conditions to perform sound focus-

ing by a flat lens. Indeed, as shown in figure 3b, the equifrequency surfaces 

(EFS) of the phononic crystal in the vicinity of 2.18 GHz are almost circular 

around the Γ point of the Brillouin zone. These EFS display decreasing fre-

quency as one increases the wave vector, which means that the wave vector 

and group velocity are antiparallel whatever the direction of propagation of 

the acoustic wave.  

Moreover, we present in Fig. 3a the dispersion curves of the Lamb modes 

for a homogeneous plate of thickness e=0.2µm. One can see that the sound 

line associated with the symmetric Lamb mode is almost linear in the fre-

quency range of interest which means that its EFS are also circular. This line 

intersects the negative slope branch of the phononic crystal at 2.089 GHz. At 

this frequency one obtains a superposition of the quasi-circular EFS of both 

the homogeneous plate (representing the incident medium) and the phononic 

crystal and both media have the same phase velocities (or indices of refrac-

tion). This means that if an incident wave is generated at this frequency by a 

source situated in the plate in front of the phononic crystal, it will undergo the 

phenomenon of negative refraction and focusing at the back of the phononic 

crystal. Nevertheless, the conditions for realizing a satisfactory focusing still need 

to be investigated, since for instance the waves impinging the phononic crystal at 

different incident angles will undergo different transmission coefficients. 

 

Fig. 3 (a) Band structure of Fig. 2a represented with black dots. The red open dots corre-
spond to the band structure of a homogeneous silicon plate of thickness e=0.2µm. The red 
solid line is the sound line associated to the symmetric Lamb mode. (b) Equifrequency sur-
faces (EFS) around the Γ point of the Brillouin zone. 
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2.3 Confined Phonons in a Waveguide 

In this section, we study the possibility of propagating confined modes in a linear 

waveguide inside the phononic crystal. The geometrical parameters are the same as in 

Fig. 1, i.e. β=56.4%, h=0.6µm and e=0.1µm that ensures the existence of the largest for-

bidden gaps. The FDTD calculation is performed by using a super cell containing five 

unit cells in the y direction. The guide is created by removing one row of dots in the third 

unit cell, thus constituting a linear waveguide in the x direction. 

The width of the waveguide, δ, has been chosen as a variable parameter to investigate 

the existence and number of localized modes in the band gap. Figure 4a shows the band 

structure in the ΓX direction for the waveguide structure with δ=0.55a. The dispersion 

curve exhibits three additional branches inside the higher gap ([1.287, 2.106GHz]) while 

no supplementary branches appear inside the lowest gap. Increasing the width of the 

waveguide leads to the lowering of the frequencies of the confined modes. Fig. 4b shows 

the band structure for a waveguide with δ=1.05a which presents one new mode in the 

lowest band gap ([0.2652, 0.3279GHz]). To show the confinement of such modes inside 

the waveguide, we focus on the points C and D of the dispersion curves. The maps of the 

displacement fields associated with both modes are respectively sketched in Figs. 4c and 

d. In both cases, the acoustic field is essentially confined in the area of the waveguide and 

does not leak out into the rest of the structure. 

 

Fig. 4 (a) Band structure along the ΓX direction of the Brillouin zone calculated with a su-
percell containing (1x5) unit cells. The waveguide is formed by removing one row of dots 
in the third unit cell. The red hatched areas indicate the location of the absolute band gap of 
the perfect structure. The dispersion curves are calculated for a waveguide width of 
δ=1.05a. (b) Same as (a) for a waveguide of width δ=0.55a. (c) and (d) Maps of the 
modulus of the elastic displacement field for the modes denoted as C and D. The confine-
ment is shown in three-quarter, top, and lateral views. The red color corresponds to the 
maximum displacement, whereas the blue color corresponds to the minimum.  
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2.4 Cylindrical Dots of Circular Shape 

The dots in the phononic crystal are now assumed to be parallelepipeds of square 

section. Thus, the band structure can be modified by rotating the dots along the z 

axis. In the illustrations given in figure 5, the phononic crystal is constituted by 

steel rods on a silicon plate and the following geometrical parameters have been 

used: a=1µm, h= 0.6 µm, e=0.1µm and the side of the square c=0.7µm. The fill-

ing fraction which is chosen equal to 49% allows us to rotate the rods between 0 

and 45°. Figure 5a presents the dispersion curves when the sides of the square are 

parallel to the x and y axes. 

The band structure is very similar to the one presented in figure 1 for cylindri-

cal dots of circular shape. It exhibits a low frequency gap that occurs between 

0.233 and 0.285 GHz, and a high frequency gap in the frequency range [1.327, 

2.120GHz], the latter being divided in two parts by an almost flat band at 1.610 

GHz. The evolution of these gaps when the rods are rotated by an angle of 15, 30 

and 45° are respectively presented in figures 5b and c. The lower gap (Fig. 5b) 

shifts towards higher frequencies and widens (from 0.052 to 0.079GHz) when the 

rods are rotated from 0 to 45°. The higher gap (Fig. 5c) remains almost unchanged 

except for the fact that the flat band moves downwards and leaves the band gap 

when the rotation angle reaches 30°. Therefore, the position of the flat band can be 

tuned inside the gap by changing the rotation angle and may be used in view of a 

selective filtering transmission through such a structure. 

 

 
Fig. 5 (a) Band structure in the frequency range [0, 2.5] GHz for square rods of steel on a 
silicon plate. The parameters used for the calculation are a=1µm, c=0.7µm, h=0.6µm and 
e=0.1µm. (b) and (c) Evolution of the low and high frequency gaps as a function of the an-
gle of rotation of the rods. 



Band Structure and Phonon Transport in A Phononic Crystal Made of A Periodic array … 

 

135

3. Phonon Transport between two Substrates across  
a Periodic Array of Particles  

This section is devoted to some preliminary results about the phonon transmission 

between two silicon substrates through a set of particles [12]. A few simulations 

have been performed when the substrates are connected by a two-dimensional ar-

ray of dots. However, to avoid a huge computational time, most of the simulations 

are done in the geometry of Figure 6a where the dots are replaced by a one-

dimensional set of plates. Figure 6b presents an example of the transmission coef-

ficient in a case which is well-adapted for a physical discussion. The parameters 

are a=1µm, h=1.4�µm and d=0.2µm. The regular oscillations appearing in the 

whole spectrum, and in particular in the low frequency part of the spectrum, can 

be associated with Fabry-Perot resonances along the height of the plates. The fre-

quencies of the peaks and their separation are closely related to the height h and 

the nature of the plates, but almost independent of the nature of the substrates and 

the period a. The separation between these peaks would decrease if one increases 

the height of the plates. Two examples of the displacement field, respectively for a 

peak and a dip in the transmission coefficient, are presented in Fig. 6c and d.   

The spectrum in Fig. 6b displays also regular transmission gaps, around 5, 10 

and 15 GHz, which can be associated to the period of the structure and the nature 

of the substrates, but are almost independent of the material constituting the plates. 

In addition, close to a zero of transmission, one may find a narrow peak for which 

the displacement field (Fig. 6e) shows an enhancement both inside the particles 

and in the vicinity of the interfaces between the substrates and the particles. There-

fore, this selective transmission is believed to be the result of coherent coupling 

between the diffracted waves excited on both interfaces and the Fabry-Perot reso-

nant modes inside the junctions.    

Finally, above some threshold frequency, the transmission spectrum displays 

randomly fast oscillations. It is likely that this behavior happens when the plates 

can support transversely exited modes whose number increases when going to 

higher frequencies. 

In figure 7, we give another example of the transmission coefficient for 

thicker plates, namely d=0.4µm.  The main effect with respect to the previous 

case is to reduce the contrast in the Fabry-Perot oscillations and, more impor-

tantly, to decrease the threshold frequency above which the spectrum contains 

fast oscillations. 
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Fig. 6 (a) Two Silicon substrates connected by a one-dimensional array of Al plates. (b) 
Phonon transmission coefficient calculated with the following parameters: a=1μm, h=1.4
μm and d=0.2μm.  (c), (d) and (e) Maps of the displacement field at three specific fre-
quencies 3.412GHz, 2.604GHz and 5.294GHz, labeled 1, 2 and 3 in figure b. 

 

Fig. 7 Same as in figure 10b for h=1.4μm and d =0.4μm. 
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4. Conclusions 

Using a FDTD method, we have studied the band structure of a phononic crystal 

constituted by a periodic array of dots deposited on a thin membrane. One major 

finding of this work is the possibility of a low frequency absolute band gap in 

which the acoustic wavelength in any constituent material is at least ten times lar-

ger than the characteristic lengths in the structure. The occurrence of this gap re-

quires an appropriate choice of the geometrical parameters whereas it exists for a 

large variety of materials constituting the phononic crystal. However, the central 

frequency and the width of this gap are dependent upon the material properties. 

More particularly, in view of acoustic isolation, it would be suitable to choose a 

high density material for the cylinders and a low density material for the plate. 

The band structure can also display one or more higher gaps depending on the 

height of the cylinders. The band structure has been discussed for cylindrical dots 

of circular or square shapes. In the latter case, the band gaps can be tuned by rotat-

ing the squares with respect to the crystallographic axes of the crystal. Depending 

on the parameters, the band structure can also display an isolated dispersion curve 

with a negative slope which may be useful for studying the phenomena of nega-

tive refraction in such a finite thickness phononic crystal. In presence of a linear 

waveguide created by removing a row of cylinders, we have shown the possibility 

in any band gap of well confined modes without a significant leakage in the rest of 

the structure. In a forthcoming work, we have studied in detail the existence of 

confined modes as well as their ability to contribute to transmission for different 

types of waveguides obtained by changing the geometrical or material parameters 

of the dots along a row. Finally, in the last part of the paper, we studied the pho-

non transmission between two substrates across a periodic array of particles and 

discussed the different features appearing in the spectra. In particular, we showed 

the existence of a series of zero of transmission associated to the excitation of 

a surface wave at the substrate boundary, as well as the possibility of a narrow 

transmission peak next to the zero resulting from the coupling of the surface 

waves at both boundaries with a Perot-Fabry resonance inside the particles 

connecting the substrates 
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Abstract. Material parameters directly determining band gaps for general three-

dimensional phononic crystals are derived from the basic wave equations. These 

parameters include the mass density ratio, shear modulus ratio and Poisson’s ratios 

of the scatterer and matrix materials. The effects of these parameters on phononic 

band gaps are discussed by computing two-dimensional systems with different 

filling fractions and lattice forms for both anti-plane and in-plane wave modes. 

The results show that the mass density ratio predominantly determines the band 

gap for the anti-plane mode, while that both mass density ratio and shear modulus 

ratio play equally important roles in controlling the band gaps for the in-plane 

mode. The maximum band gap will appear at both large density ratio and shear 

modulus ratio for either anti-plane or in-plane wave mode; but band gaps may ap-

pear in other situations depending on the filling fraction and lattice forms. Unlike 

one-dimensional phononic crystals, neither acoustic impedance ratio nor 

wave velocity ratio of the two-dimensional systems can determine the band 

gap independently. The analysis of the paper is relevant to the tuning of 

band gaps. 

1. Introduction 

Phononic crystals, a kind of periodic composites which possibly exhibit com-

plete band gaps in their transmission spectra, have received considerable atten-

tion in recent years because of their unique physical properties and promising 

applications [1]. From the view of the application, tuning of the band gaps of 

phononic crystals is of importance. It has been found that the gap-width is 

strongly dependent upon the structural geometries of phononic crystals, includ-

ing the scatterer’s shape, lattice form, filling fraction, et al.[2-7]. For instance, a 
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triangle lattice and/or a square-section of scatterers are favorable to yield a 

wider band gap [5-7]. 

On the other hand, phononic band gaps are also determined by material com-

binations. Kushwaha et al [5, 6] showed that the band gaps become wider with 

the increase of the differences in both shear modulus and density when the val-

ues in the scatterer are higher than those in the matrix. They and Sigalas et al [8] 

indicated that a low-velocity material surrounded by a high-velocity material is 

more favorable to generate band gaps. Based on the comparison of some spe-

cific phononic crystals, Kee et al [9] concluded that the material parameters re-

lated to band gaps are the impedance and velocity, and that the contrast of the 

impedance is more important than that of the velocity. Recently Liu et al [10] 

argued that the density ratio rather than the contrast of the elastic constants is 

the dominant factor. It is noted that all these investigations were based on the 

calculation of band structures for the systems with particular material combina-

tions. Some conclusions are even somewhat conflicting. In this paper, we will 

begin with the basic wave equations and derive the material parameters directly 

determining band gaps for general three-dimensional (3D) cases. Then the ef-

fects of these parameters on phononic band gaps are discussed in details by 

computing the two-dimensional (2D) cases with different filling fractions and 

lattice forms for both anti-plane and in-plane wave modes. For comparison, the 

results of the one-dimensional (1D) cases are also presented. 

2. Theory 

Consider a general periodic structure consisting of isotropic elastic scatterers 

embedded in an isotropic elastic matrix. Introduce the coordinate normalized by 

the lattice constant a , i.e. ( )1 , ,a x y z−=r . Then harmonic wave equations may 

be written as 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 2
, , ,, ,

i j j i j j ii j
a u u u uρ ω λ µ  − = + +   r r r r r r r , (2.1) 

where i, j=x, y, z; ( )iu r  is the displacement components; ( )ρ r  is the mass den-

sity; ( )µ r  and ( )λ r  are the Lamé’s constants; and the double subscripts imply 

the summation from 1 to 3. Let ( )h r  represent ( )ρ r , ( )µ r  or ( )λ r . We can 

write 2( ) ( )h h h=r r  with ( ) 1h =r  in the scatterers and 1 2( ) /h h h=r  in the ma-

trix, where the subscripts 1 and 2 refer to the scatterers and matrix, respectively. 

Then (2.1) can be rewritten as 
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( ) ( ) ( ) ( ) ( ) ( ) ( )( )2
2 , , ,, ,

i j j i j j ii j
u u u uω ρ κ λ µ  − = + +   r r r r r r r ,  (2.2) 

where 2 2 22 / (1 2 )κ ν ν= −  with 2ν  being the Poisson’s ratio; and t2a cω ω=  

is the normalized frequency with t2 2 2c µ ρ=  being the transverse wave 

velocity. 

Equation (2.2) can be solved by using the plane wave expansion (PWE) 

method or wavelet method [11]. Here we will introduce the PWE method. 

Expand ( )h r  as  

 ( ) ieh h⋅=∑ G r
G

G

r ,  (2.3) 

where i 1= −  and hG  is the Fourier coefficient which is given by 

( ) ( )
( ) ( )

1 2

1 2

1 , 0

1 , 0

h h f f
h

h h P

 + − ==  − ≠
G

G

G G
,  (2.4) 

in which f is the filling fraction; and ( )P G  is the structural function related to 

the scatterer’s shape. According to Bloch-theorem, the displacement field can be 

expressed as 

( ) ( )ie , , ,i iu u i x y z⋅= =k r
kr r , (2.5) 

where k is the Bloch’s wave vector. Since ( )kiu r  is also a periodic function, it 

can be expanded in Fourier series as (2.3). Then we have 

( ) ( )ie , , ,i iu u i x y z+ ⋅
+= =∑ k G r

k G
G

r . (2.6) 

Substituting (2.3) and (2.6) into (2.2), we obtain 

( ) ( )

( ) ( )

( ) ( )

1 2 1 2

2 2

1

2

1 2

2

2
2 1 2

2 2 1 2

2 1 2

i ij j

j i

ji j

u u

u

ω ρ µ

κ λ

µ

+ +

+

 
= + + + 
 


+ + + +



+ + + + 



∑ ∑

∑

∑

G k G G k G
G G

G
G

G k G
G

k G k G G

k G k G G

k G k G G

. (2.7) 
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Equation (2.4) shows that 
1

ρG , 
1

µG  and 
1

λG  involve the material parameters 

( 1 2ρ ρ , 1 2µ µ  and 1 2λ λ ), filling fraction f and structural function ( )P G  

which is related to the scatterer’s shape and lattice form (G). 1 2λ λ  may be re-

written as ( )( )1 2 1 2 1 2=λ λ µ µ κ κ . Consequently, we can conclude that the 

band gaps are determined by two kinds of parameters: (a) structural parameters, 

including the filling fraction f, the scatterer’s shape and the lattice form (G), and 

(b) material parameters, including the mass density ratio 1 2ρ ρ , the shear 

modulus ratio 1 2µ µ , and Poisson’s ratios 1ν  and 2ν . In this paper we will ex-

amine the influences of the material parameters on the band gaps. 

If we consider a 2D system consisting of infinite cylinders parallel to the z-

axis embedded in a matrix with the wave vector lying in x-y plane, then the anti-

plane wave mode can be separated from the in-plane one. For the anti-plane 

mode, we have 

( ) ( ) ( ) ( )2
z zu uω ρ µ − = ∇ ∇ r r r r . (2.8) 

Obviously, the material parameters for the anti-plane mode are only the mass 

density ratio 1 2ρ ρ  and the shear modulus ratio 1 2µ µ . 

Equation (2.7) can be rewritten in an eigenvalue equation. Then solution to 

this eigenvalue equation yields the dispersion curves from which we can get the 

band gaps. 

3. Results and Discussion 

The band gaps have been calculated for 2D phononic crystals with cylindrical 

scatterers in a square or triangle lattice. For the anti-plane mode, the band gap be-

tween the lowest two frequency bands is considered. This is the first potential gap 

for all phononic crystals. And for the in-plane mode, the band gap determined by 

the third and forth lowest bands is considered. This is the second but the most ap-

plicable potential band gap for most phononic crystals. The normalized gap-width 

cω ω∆  (gap-width to mid-gap frequency ratio), which represents the more valu-

able band gap is calculated for both modes. We illustrate the variation of the gap-

width in the logarithmic plane of 1 2ρ ρ  and 1 2µ µ  for some selected values of 

the filling fraction and Poisson’s ratios. The 3D figures presented in this paper can 

provide a guide for the tuning of phononic band gaps by appropriate choices of the 

material combinations. 
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3.1 Anti-Plane Mode 

Fig. 3.1 shows the normalized gap-width of the first band gap varying with 1 2ρ ρ  

and 1 2µ µ  in a square lattice (Fig.3.1a) and a triangle lattice (Fig.3.1b) with 

f=0.4. The maximum band gap appears at both large 1 2ρ ρ  and 1 2µ µ and be-

comes wider as these two parameters both increase. However, the band gaps 

mainly appear at large values of 1 2ρ ρ , that is to say, the density ratio predomi-

nantly determines the band gaps. This result is similar to that of Kushwaha et al 

[5, 6]. But the analysis in the last section indicates that band gaps are determined 

by the ratios of the material parameters rather than their differences as mentioned 

by Kushwaha et al [5, 6].  

   

(a)                                   (b) 
Fig. 3.1 Variation of normalized gap-width in the logarithmic plane of 1 2ρ ρ  and 1 2µ µ  
for the anti-plane mode, f=0.4. (a) square lattice; (b) triangle lattice. 

  

(a)                                 (b) 
Fig. 3.2 Variation of normalized gap-width with the filling fraction f for the anti-plane 
mode. (a) square lattice; (b) triangle lattice. 
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Band gaps also appear at large 1 2ρ ρ  and small 1 2µ µ  for both square and 

triangle lattices. For the square lattice, band gaps appear at both small 1 2ρ ρ  and 

1 2µ µ  but not at small 1 2ρ ρ  and large 1 2µ µ ; while it is contrary for the trian-

gle lattice. To show the existence and width of the band gaps appearing at both 

small 1 2ρ ρ  and 1 2µ µ  as well as at small/large 1 2ρ ρ  and large/small 1 2µ µ  

for various filling fractions, we plot the normalized gap-width varying with the 

filling fraction in Fig. 3.2 for three cases: (i) 1 2 0.01ρ ρ = , 1 2 0.01µ µ =  (dashed 

lines); (ii) 1 2 0.01ρ ρ = , 1 2 100µ µ =  (solid lines); and (iii) 1 2 100ρ ρ = , 

1 2 0.01µ µ =  (dotted lines). It is shown that band gaps may appear in case (iii) for 

most values of the filling fraction and in case (ii) for only some particular values 

of the filling fraction. The gap is very narrow in case (ii) and thus is of little 

significance. No band gap appears in case (i) for the triangle lattice; while 

band gaps appear in this case for the square lattice with the width increasing 

with the filling fraction. 

The above analysis also shows that neither the impedance ratio nor the wave 

velocity ratio can determine band gaps independently. For instance, in Fig. 3.1a, 

band gaps appear at large 1 2ρ ρ  and small 1 2µ µ , but not at small 1 2ρ ρ and 

large 1 2µ µ . However, the impedance ratios ( ) ( )2 1 1 2ρ µ ρ µ  in these two situa-

tions could be close and even the same. Therefore, only the impedance ratio alone 

cannot control band gaps. Similarly, only the wave velocity ratio cannot control 

the band gaps as well. As shown in Figs. 3.1, the band gaps appear at both larger 
1 2ρ ρ  and 1 2µ µ , where the transverse wave velocity ratio ( ) ( )2 1 1 2ρ µ ρ µ   

may be either larger or smaller than 1. This result is different from that of 

Kushwaha et al [6] and Sigalas et al [8]. 

3.2 In-Plane Mode 

Fig. 3.3 shows the normalized gap-width for 1ν = 2ν =0.2 with the filling fraction 

f=0.4. The maximum band gap appears at both large 1 2ρ ρ  and 1 2µ µ , and be-

comes wider with the two parameters increasing. However, unlike the anti-plane 

mode, the band gap for the in-plane mode at large 1 2ρ ρ  and small 1 2µ µ  is very 

narrow and thus is of little importance. So we can conclude that the density ratio 

1 2ρ ρ  and the modulus ratio 1 2µ µ  may play almost equally important roles in 

controlling the band gaps of the in-plane mode. This result is different from that of 

Kee et al [9]. 
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(a)                                       (b) 
Fig. 3.3 Variation of normalized gap-width in the logarithmic plane of 1 2ρ ρ  and 1 2µ µ  
for the in-plane mode, 1ν = 2ν =0.2, f=0.4. (a) square lattice; (b) triangle lattice. 

  

(a)                                 (b) 
Fig. 3.4 Variation of normalized gap-width with the filling fraction f for the in-plane mode, 

1ν = 2ν =0.2. (a) square lattice; (b) triangle lattice. 

To examine the existence of the band gaps in other cases, we take 

1ν = 2ν =0.2 and present the normalized band-gap width versus the filling 

fraction in Fig. 3.4 for three cases (i), (ii) and (iii) as in Fig. 3.2. Narrow 

band gaps may appear in case (iii) (the dotted lines) for both square and tri-

angle lattices with lower or mod erate filling fractions. Similar to Fig. 3.2a, 

the width of the band gap appearing in case (i) for the square lattice in-

creases with the filling fraction, see the dashed line in Fig.3.4a. No band gap 

is found for other situations. 

Detailed calculations also show that the influences of the Poisson’s ratios 

on the band gaps are slight in a square lattice but not negligible in a triangle 

lattice. And the influence of the Poisson’s ratio of the matrix material is 

more pronounced. 
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4. One-Dimensional System 

For comparison to the 2D case, we consider a 1D phononic crystal consisting of two 

elastic solid layers stacked alternatively. An elastic wave propagates normally to the 

layer. The dispersion relation of the system can be written in the following form [12] 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2cos cos cos sin sinkh t t b t t gω ω ω ω ω= − ≡ , (2.9) 

where k is the wave number; 1 2h h h= +  with jh  being the thickness of the compo-

nent layers; j j jt h c=  with jc  being the transverse or longitudinal wave velocities of 

the component materials; ( )21 2b Z Z= +  with ( ) ( )2 2 1 1Z c cρ ρ=  being the im-

pedance ratio for a transverse or longitudinal wave. One can easily rewrite (2.9) in a 

form which is explicitly dependent on the mass density ratio 1 2ρ ρ , shear modulus 

ratio 1 2µ µ  and Poisson’s ratios 1ν  and 2ν  (Poisson’s ratios involved only for the 

longitudinal mode). Solution of | ( ) | 1g ω >  yields the band gaps.  

Figs. 4.1 and 4.2 illustrate the normalized band-gap width versus the mass density 

ratio 1 2ρ ρ  and the shear modulus ratio 1 2µ µ  for the transverse and longitudinal 

modes with the filling fraction f=0.4 and some selected values of the Poisson’s ratios. 

It is observed that the band gaps can be determined independently by the impedance 

ratio ( ) ( )1 1 2 2ρ µ ρ µ . Wide band gaps can be obtained at either a large or a small 

impedance ratio. The band gaps of the longitudinal wave are somewhat dependent on 

the Poisson’s ratios, while those of the transverse wave are not. In fact, the band struc-

ture for a 1D system determined by (2.9) is mainly dependent on the value of the pa-

rameter b, which is a function of the impedance ratio Z for either transverse or longitu-

dinal wave. Therefore the band gaps in 1D case are basically determined by the 

impedance ratio. This behavior is quite different from the 2D case considered before. 

  

Fig. 4.1 Variation of normalized gap-width in the logarithmic plane of 1 2ρ ρ  and 1 2µ µ  
for the transverse mode in 1D case with f=0.4. 
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(a)                                  (b) 
Fig. 4.2 Variation of normalized gap-width in the logarithmic plane of 1 2ρ ρ  and 1 2µ µ for 
the longitudinal mode in 1D case with f=0.4. (a) 1ν = 2ν =0.2; (b) 1ν =0.4, 2ν =0.2. 

5. Concluding Remarks 

In this paper, the material parameters determining band gaps for general 3D pho-

nonic crystals are derived from the basic wave equations. The influences of these 

parameters on phononic band gaps are discussed in details by computing 2D pho-

nonic crystals with different filling fractions and lattice forms for both anti-plane 

and in-plane wave modes. For comparison, the results for 1D phononic crystals 

are also presented. From the results we have following conclusions:  

For the general 3D case, the material parameters determining phononic band 

gaps include the mass density ratio, shear modulus ratio, and Poisson’s ratios of 

both scatterer and matrix materials. In particular, only the mass density ratio and 

shear modulus ratio are involved for the anti-plane mode in the 2D case. 

For the anti-plane mode the mass density ratio predominantly determines the 

band gap; while for the in-plane mode both the mass density ratio and the shear 

modulus ratio may play equally important roles in controlling the band gaps. 

In all considered cases, the band gaps easily appear at both large mass density 

ratio and shear modulus ratio and become wider with both of these two parameters 

increasing. That is to say, to get a wide band gap, it is favorable to embed a large-

density stiff material into a small-density soft material. No band gap can appear 

when both of these two parameters are close to 1. 

Band gaps may also appear in other situations depending on the filling fraction, 

lattice forms and Poisson’s ratios. For example, besides the case of both large 

mass density ratio and shear modulus ratio, band gaps in a square lattice can also 
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appear in other situations except the situation of a small mass density ratio and a 

large shear modulus ratio. For a triangle lattice, band gaps do not appear at both 

small mass density ratio and small shear modulus ratio. 

For both anti-plane and in-plane modes, neither the impedance ratio nor the 

wave velocity ratio can determine the band gaps independently. In this aspect, 2D 

phononic crystals are quite different from 1D systems where the acoustic imped-

ance ratio can determine the band gaps almost independently. A wide band gap 

can be obtained in the 1D phononic system with a larger acoustic mismatch (i.e. 

large or small impedance ratios). 
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Abstract. An elastic solid with frequency-dependent anisotropic mass density was 

developed to represent an acoustic metamaterial to study wave propagation. The 

band gaps of the material were related to the frequencies for which the mass den-

sity of the equivalent elastic solid becomes negative. Reflection and transmission 

of a pressure wave impinging on the metamaterial with a finite width were inves-

tigated using the equivalent elastic solid. It was found that the impinging pressure 

wave can induce a strong shear-dominated wave mode accompanied by a weak 

extension-dominated wave in the metamaterial oriented in some directions. Since 

the fluid-like medium cannot transmit shear waves, the shear-dominated mode in 

the metamaterial may be trapped inside the metamaterial, and, thus, the fluid-like 

material behind the metamaterial can remain basically undisturbed. 

1. Introduction 

Metamaterials have recently generated much excitement among physicists and engi-

neers. A metamaterial is usually regarded as a material that contains man-made micro-

structures that give rise to unusual properties which are not found in natural materials. 

Extensive references on electromagnetic and acoustic metamaterials can be easily 

found, for example, in [1-8]. 

A one-dimensional lattice system that consists of periodically distributed local 

resonators was employed by Huang et al [9, 10] as an acoustic metamaterial. When the 

lattice was represented by a classical elastic solid, the effective mass density of the 

equivalent solid was found to become negative in certain frequency range that is near 

local resonance frequency of the resonator. It was found that the frequencies associ-

ated with negative effective mass densities are in the band gap of the metamaterial.  
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Recently, Huang and Sun [11] have considered a 2D metamaterial that possesses an 

anisotropic effective mass density. Their design of the metamaterial is shown in Fig. 

1.1a. It is basically a 2D composite material with a specific microstructure in the form 

of a cavity with an internal mass connected in two directions by two different springs 

to the host matrix. For simplicity, this metacomposite is represented by the lattice 

model as shown in Fig. 1.1b. The longitudinal stiffness of the matrix is represented by 

the spring constant K1 and the shear stiffness is represented by the shearing spring con-

stant G, and the mass of the surrounding matrix is lumped into a single mass m1. This 

model was first used by Milton et al. [12] to demonstrate the existence of anisotropic 

mass concept. It should be noted that another type of acoustic metamaterial with ani-

sotropic mass density is a solid containing periodic microstructures formed with a 

fluid-like material considered by Torrent and Sánchez-Dehesa [13].  

 If the 2D lattice model shown in Fig. 1.1b is modeled as a homogeneous classical 

elastic solid, then the effective mass density of the representative elastic solid becomes 

frequency-dependent in order to match the dispersion curves of the original metamate-

rial. Further, the effective mass density can be shown to follow the property of second-

order tensors. If in the original configuration, the two springs (k21 and k22) connecting 

the internal mass to the host medium are different in stiffness then the representative 

homogenous elastic solid would possess an anisotropic mass density which may as-

sume negative values for wave frequencies that are close to the local resonance fre-

quencies of the internal mass [11]. In general, two modes of wave motion are excited 

in the metamaterial; one is dominated by extensional deformation and the other by in-

plane shear deformation. For each mode, there are two branches representing the 

acoustical and optical modes, respectively. 

In the present study, we employ the representative elastic solid with a frequency 

dependent anisotropic mass density to study the wave reflection and transmission into 

and out of the metamaterial. Attention is focused on how the anisotropic mass density 

can be used to alter the wave motion in the metamaterial. 

(a)   (b)  

Fig. 1.1 (a) A 2D metamaterial with microstructures in the form of elastically connected in-
ternal masses. (b) Representative mass-in-mass lattice model. 
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2. Elastic Solid with Anisotropic Effective Mass Density 

2.1 Representative Elastic Solid 

An effective elastic continuum model was derived by Huang and Sun [11] to rep-

resent the lattice model of Fig. 1.1b. Let x1, x2 be a set of rectangular Cartesian co-

ordinates of reference in principal directions and x, y be an arbitrary Cartesian co-

ordinate system (see Fig. 1.1). The equations of motion for the continuum with 

anisotropic mass density ijρ  in the principal coordinate system can be directly ob-

tained from the classical theory of elastodynamics. We have 

2

2

j ij
ij

j

u

t x

σ
ρ

∂ ∂
=

∂ ∂
, (i, j = 1, 2) (2.1.1) 

where 

11 ,1effρ ρ= , 22 ,2effρ ρ= , 12 21 0ρ ρ= =  (2.1.2) 

in which 

, 2 2
, 12 2

2 2

1eff
eff

m m k
m

V L k m
γ γ

γ
γ

ρ
ω

 
= = +  − 

, (γ = 1, 2) (2.1.3) 

In the equations (2.1.3), V = L2 is the volume of the unit cell including the cav-

ity, and meff,1 and meff,2 are the effective masses for plane harmonic waves propa-

gating in the x1 and x2 directions, respectively. These expressions were derived for 

a one-dimension one-resonator lattice system [9].  Since the four components of 

the effective mass density given in (2.1.2) form a second order tensor, for an arbi-

trary coordinate system, the components in the new coordinate system are ob-

tained from the usual coordinate transformation law: 

2 2
,1 ,2 ,2 ,111 12

2 2
,2 ,1 ,1 ,221 22

( )

( )
eff eff eff eff

eff eff eff eff

C S CS

CS S C

ρ ρ ρ ρρ ρ
ρ ρ ρ ρρ ρ

 + − 
=    − +    

 (2.1.4) 

where cosC δ≡  and sinS δ≡ and δ  is the angle between the x-y axes and the 

principal axes.  
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The equivalent 2D elastic solid for the lattice system (Fig. 1.1b) is orthotropic 

with the constitutive equations: 

11 11 11

22 11 22

12 33 12

0 0

0 0

0 0 2

Q e

Q e

Q e

σ
σ
σ

    
    =    
        

  (2.1.5) 

in which 11 1Q K=  and 33Q G= . In the x-y coordinate, the constitutive equations 

can be derived by using coordinate transformation and written as 

2

xx xx

yy yy

xy xy

e

Q e

e

σ
σ
σ

   
   

 =    
   
   

 (2.1.6) 

where [ Q ] is obtained from coordinate transformation of [Q]. 

2.2 Dispersion Curves 

In the present study, we adopt the following material properties of metamaterials 

for numerical results. 

Masses: 1 0.263 /m Kg m= , 2 0.527 /m Kg m=  (2.2.1) 

External spring constants: 1 210 /K GN m= , 82 /G GN m=  (2.2.2) 

Internal spring constants: 21 20 /k GN m= , 22 100 /k GN m=  (2.2.3) 

Lattice spacing: 0.01L m=  (2.2.4) 

The components of the anisotropic effective mass density in the principal direc-

tions are obtained from equations (2.1.3), and plotted in Fig. 2.1. They are obvi-

ously frequency dependent. 

To verify the validity of the elastic continuum model, we compare the dispersion 

curves of harmonic waves propagating in the principal directions (x1 and x2) , respec-

tively, with those of the original lattice model. The results are shown in Fig. 2.2. For each 

direction, there are two wave modes, namely, the longitudinal mode (L) and transverse 

shear mode (S). For each mode there are two branches, namely, the acoustic mode and 

the optic mode (e.g., AC-L and OP-L). It is evident that they match perfectly for the 

acoustic mode and fairly well for the optical mode. 
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Fig. 2.1 Components of the effective mass density in principal directions with respect to 
wave frequency. 

 

Fig. 2.2 The dispersion curves obtained from the mass-in-mass lattice model shown in 
Fig.1.1b (blue lines: Longitudinal mode; green dots: Shear mode) and the anisotropic con-
tinuum model (red lines) for the x1 direction (left figure) and the x2 direction (right figure). 

3. Wave Reflection and Transmission 

Of particular interest is the wave reflection and transmission between the metama-

terial and other “ordinary” media. We consider a pressure wave in a fluid-like ma-

terial (FL-mat) impinging on the acoustic metamaterial that is oriented in an arbi-

trary direction. Because of the anisotropy of the mass density tensor, both 

longitudinal wave and transverse shear waves are induced in the metamaterial. 

These two modes of wave have different stop bands and may be stopped sepa-

rately by selecting the local resonance frequencies of the resonator (the local 

spring-mass in the cavity). It is conceivable that a metamaterial slab may be used 

to stop the longitudinal wave and only allow the shear wave to pass through it. 

Since the transverse shear wave cannot be transmitted into a FL-mat, thus, no dis-

turbance would be able to propagate into the FL-mat behind the slab of the meta-

material. Thus, it (the FL-mat) would remain undisturbed. 
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3.1 Wave propagation from a Fluid-Like Material to the Metamaterial 

Consider a FL-mat interfaced with the metamaterial as shown in Fig. 3.1. The 

equations of motion for plane waves propagating in the x direction in the equiva-

lent elastic medium that represents the 2D metamaterial can be obtained from 

equation (2.1.1) after performing coordinate transformation. We have 

2 22 2

11 12 11 132 2 2 2

y yx x
u uu u

Q Q
t t x x

ρ ρ
∂ ∂∂ ∂

+ = +
∂ ∂ ∂ ∂

 (3.1.1) 

2 22 2

12 22 13 332 2 2 2

y yx x
u uu u

Q Q
t t x x

ρ ρ
∂ ∂∂ ∂

+ = +
∂ ∂ ∂ ∂

 (3.1.2) 

The FL-mat is assumed to have mass density ρf and bulk modulus λf  with the 

normal stress given by [14] 

x
xx f

u

x
σ λ ∂

=
∂

 (3.1.3) 

and the equation of motion by 

2

2
xx x

f

u

x t

σ ρ∂ ∂
=

∂ ∂
 (3.1.4) 

 

Fig. 3.1 An illustration showing wave propagation from a FL-mat into a metamaterial. “A” 
represents the amplitude of the reflected and transmitted waves, “q” is the wavenumber. 
Subscript “R” means the reflected wave, “T” the transmitted wave, “L” for “extension-
dominated longitudinal mode” and “S” for “shear-dominated mode”. 
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Consider a plane harmonic incident wave of unity amplitude of the form in the 

FL-mat:  

, exp[ ( )]x I Iu i q x tω= −  (3.1.5) 

in which q and ω denote wavenumber and angular frequency, respectively. For 

brevity, we shall henceforth omit the time harmonic term, exp[-iωt]. The reflected 

wave is then given as 

, exp[ ]x R Rx Ru A iq x= −  (3.1.6) 

Two modes of the transmitted plane wave in the metamaterial are expected. 

One mode is dominated by longitudinal (extensional) deformation and the other is 

dominated by shearing deformation. The displacement fields of the transmitted 

wave are expressed in the form 

, exp[ ] exp[ ]j T TLj TL TSj TSu A iq x A iq x= + , (j = x, y) (3.1.7) 

in which qTL and qTS are wavenumbers and the subscripts are defined in the 

caption of Fig. 3.1. 

The wave number for incident and reflected waves is related to the angular fre-

quency as 

I R f fq q ω ρ λ= =  (3.1.8) 

Substitution of the transmitted wave solution (3.1.7) in equations (3.1.1) and 

(3.1.2) yields, respectively, 

2
11

2
12

2 2
11

2 2
13

( exp[ ] exp[ ])

( exp[ ] exp[ ])

( exp[ ] exp[ ])

( exp[ ] exp[ ])

TLx TL TSx TS

TLy TL TSy TS

TL TLx TL TS TSx TS

TL TLy TL TS TSy TS

A iq x A iq x

A iq x A iq x

Q q A iq x q A iq x

Q q A iq x q A iq x

ω ρ
ω ρ

− +

− +

= − −

+ − −

 (3.1.9) 

and 

2
12

2
22

2 2
13

2 2
33

( exp[ ] exp[ ])

( exp[ ] exp[ ])

( exp[ ] exp[ ])

( exp[ ] exp[ ])

TLx TL TSx TS

TLy TL TSy TS

TL TLx TL TS TSx TS

TL TLy TL TS TSy TS

A iq x A iq x

A iq x A iq x

Q q A iq x q A iq x

Q q A iq x q A iq x

ω ρ
ω ρ

− +

− +

= − −

+ − −

 (3.1.10) 
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The two equations above have to hold for any x. Thus, we obtain 

2 2
11 12 11 13( ) ( )TLx TLy TL TLx TLyA A q Q A Q Aω ρ ρ+ = +  (3.1.11) 

2 2
11 12 11 13( ) ( )TSx TSy TS TSx TSyA A q Q A Q Aω ρ ρ+ = +  (3.1.12) 

from equation (3.1.9), and 

2 2
12 22 13 33( ) ( )TLx TLy TL TLx TLyA A q Q A Q Aω ρ ρ+ = +  (3.1.13) 

2 2
12 22 13 33( ) ( )TSx TSy TS TSx TSyA A q Q A Q Aω ρ ρ+ = +  (3.1.14) 

from equation (3.1.10). 

At the interface, x = 0, continuity conditions on displacement and stress must 

be satisfied. We have  

(1) Displacement continuity: , ,x FL mat x Metamatu u− =  at x = 0. This condition yields 

1 R TLx TSxA A A+ = +  (3.1.15) 

(2) Stress continuity: , ,xx FL mat xx Metamatσ σ− =  at x = 0. 

In the FL-mat, the normal stress is given by 

[ ] [ ]( ), exp expxx FL mat f I I R R Riq iq x iq A iq xσ λ− = − −  (3.1.14) 

In the metamaterial, we obtain 

, 11 12 13

11

13

(2 )

( exp[ ] exp[ ])

( exp[ ] exp[ ])

xx Metamat xx yy xy

TL TLx TL TS TSx TS

TL TLy TL TS TSy TS

Q e Q e Q e

Q iq A iq x iq A iq x

Q iq A iq x iq A iq x

σ = + +

= +

+ +
 (3.1.17) 

Equating (3.1.16) and (3.1.17) at x = 0 yields 

11 11

13 13

f R R TL TLx TS TSx

TL TLy TS TSy f I

q A Q q A Q q A

Q q A Q q A q

λ

λ

+ +

+ + =
 (3.1.18) 

(3) Shear traction free boundary: , 0xy Metamatσ =  at x = 0. 

This boundary condition is necessary since the FL-mat does not resist shear 

stresses. The shear stress in the metamaterial is 
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, 13 23 33

13

33

(2 )

( exp[ ] exp[ ])

( exp[ ] exp[ ])

xy Metamat xx yy xy

TL TLx TL TS TSx TS

TL TLy TL TS TSy TS

Q e Q e Q e

Q iq A iq x iq A iq x

Q iq A iq x iq A iq x

σ = + +

= +

+ +
 (3.1.19) 

The shear traction free condition leads to 

13 13 33 33 0TL TLx TS TSx TL TLy TS TSyQ q A Q q A Q q A Q q A+ + + =  (3.1.20) 

First, we solve for the unknown wave numbers qTL and qTS using equations 

(3.1.11) through (3.1.14).  From equations (3.1.11) and (3.1.13) we have 

2 2
11 12 12 222

11 13 13 33

( ) ( )

( ) ( )
TLx TLy TLx TLy

TL
TLx TLy TLx TLy

A A A A
q

Q A Q A Q A Q A

ω ρ ρ ω ρ ρ+ +
= =

+ +
 (3.1.21) 

By denoting TLx TLyA Aα = , equation (3.1.21) can be written as 

1 1
2 22 2

11 12 12 22

11 13 13 33

( ) ( )
TLq

Q Q Q Q

ω ρ α ρ ω ρ α ρ
α α

   + +
= =   + +   

 (3.1.22) 

Equation (3.1.22) leads to the following equation 

* 2 * *
1 2 3 0B B Bα α− + =  (3.1.23) 

where 

*
1 11 13 12 11B Q Qρ ρ= −  (3.1.24) 
*
2 12 13 22 11 11 33 12 13( ) ( )B Q Q Q Qρ ρ ρ ρ= + − +  (3.1.25) 
*
3 12 33 22 13B Q Qρ ρ= −  (3.1.26) 

Thus, the wave number qTL for the transmitted extension-dominated mode is given by 

equation (3.1.22) with α determined by equation (3.1.23). Similarly, from equations 

(3.1.12) and (3.1.14), we obtain the wave number for the shear-dominated mode as 

( )
1

2 2
11 12

11 13
TSq

Q Q

ω ρ β ρ
β

 +
=  +  

 (3.1.27) 

in which TSx TSyA Aβ = and, like α , it satisfies equation (3.1.23).  
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It is now possible to solve the amplitudes of the reflection and transmitted waves 

based on equations (3.1.15), (3.1.18), and (3.1.20) which are the continuity conditions at 

the interface. For numerical studies, we adopt the following material properties for the 

FL-mat:  

37900 /f Kg mρ = , 2210 /f GN mλ =  (3.1.28) 

Two cases with different wave frequencies are investigated: 

Case (1):  

52.1 10 /rad sω = × , 4 3
,1 3.0 10 /eff Kg mρ = − × , 3 3

,2 9.5 10 /eff Kg mρ = ×  

Case (2): 

53.6 10 /rad sω = × , 2 3
,1 4.5 10 /eff Kg mρ = × , 4 3

,2 1.9 10 /eff Kg mρ = ×  

For Case (1), the wave frequency is selected so that the effective mass in the x1 direc-

tion is negative and that in the x2 direction is positive. The amplitudes of the reflected and 

transmitted waves when the incident wave strikes the metamaterial from the FL-mat are 

obtained and shown in Fig. 3.2a. It is known that a displacement field in general has the 

form exp[ ( )]u A i qx tω= − . In this equation, the wavenumber q is generally complex 

and responsible for wave attenuation. In addition, the amplitude A can also be complex 

so that 

exp[ ]A A iψ=  (3.1.29) 

where ψ represents the phase angle. It is therefore conceivable that the steady-state re-

flected and transmitted waves could be in a different phase relative to that of the incident 

wave. In this study, it is the absolute value of the wave amplitude that is of interest to us. 

The symbols in the legend are defined based on the deformation mode at δ = 0. For 

example, |ATLx| denotes the amplitude of the displacement component in the x direction 

of the transmitted extension-dominated wave. The ratio |ATLx|/|ATLy| is always larger than 

unity at δ = 0 because this is how the symbol is defined.  As the angle δ increases, the 

content of shear motion also increases, and ratio |ATLx|/|ATLy| may become less than unity, 

and the wave becomes shear-dominated. It is expected that the pressure wave is totally 

reflected in this case when δ = 0 because of the effect of the band-gap associated with the 

negative effective mass density in the x direction. More details were discussed in Refs. 9 

and 10 for one-dimensional acoustic metamaterials. 
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Fig. 3.2 Amplitudes of the reflected and transmitted waves when an incident wave of unity 
amplitude strikes the metamaterial from a FL-mat. (a) case 1; (b) case 2. 

An interesting phenomenon is observed in Case (2) presented in Fig. 3.2b. Note 

that when δ is in between 60o and 70o, the pressure wave from the FL-mat is 

mostly transmitted and converted to a strong shear-dominated mode (i.e., |ATLy|/ 

|ATLx| is larger than unity). Potential applications of this behavior will be discussed 

in the next subsection. 

3.2 A Metamaterial Sandwiched between two FL Media 

When the acoustic metamaterial is subjected to a pressure wave, two modes of 

wave motion are generated. They propagate at different wave numbers and speeds. 

If the metamaterial is sandwiched between two FL-mat media, then these two 

waves would both experience multiple reflections and transmissions as depicted in 

Fig. 3.3. Numerical solutions for this multiple reflection/transmission problem can 

be readily obtained. Details of the idea are discussed as follows. 

For waves propagating from the metamaterial to the FL-mat, the general form of 

the incident wave in the metamaterial is a combination of two propagating modes for 

which the displacement fields can be expressed in the form 

, exp[ ] exp[ ] ( , )j I ILj IL ISj ISu A iq x A iq x j x y= + =  (3.2.1) 

The reflected wave in the metamaterial and the transmitted wave in the FL-mat can be 

obtained in a similar manner as described in Section 3.1. We express the displacement 

fields of the reflected and transmitted waves as 

, exp[ ] exp[ ] ( , )j R RLj RL RSj RSu A iq x A iq x j x y= − + − =  (3.2.2) 
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Fig. 3.3 A schematic showing wave propagation through a metamaterial. “A” denotes the 
amplitude of the reflected or transmission wave. 

and 

( )* *
, exp[ ]x T TLx TSx TLu A A iq x= +

,  (3.2.3) 

respectively. Here the star sign (*) denotes the quantity associated with the FL-mat. As 

depicted in Fig. 3.3, wave reflections and transmissions continue to take place after the 

wave enters the metamaterial. It is noted that a reflected wave at the boundary subse-

quently becomes the incident wave to the other interface which produces the next re-

flected wave. Based on continuity conditions, the relation between the (n+1)th and the 

(n)th reflected waves in the metamaterial is obtained for the L-mode as 

( )

( )

( )

( )

( )

( )

1

1
11 13 11 13

1* *
33 13 13

1 0 1 1 0 0

0

3 0 0

n n
RLx RLx

n n
RL RL f RL RLy IL IL RLy

n n
RL RL IL ILTLx TLx

A A

Q q Q q q A Q q Q q A

Q q Q q Q q Q qA A

λ

+

+

+

   − −   
         =      
      

         

 (3.2.4) 

The wavenumbers of the reflected and incident waves in the metamaterial are iden-

tical, i.e., RL IL Lq q q= = . Equation (3.2.4) can be used to obtain the amplitudes of the 

waves when the waves propagate from the metamaterial to the FL-mat. We obtain  

( 1) ( ) (1)

( 1) ( ) (1)
, ,

* ( 1) * ( ) * (1)

...

n n
RLx RLx RLx

nn n
RLy ij L RLy ij L RLy

n n
TLx TLx TLx

A A A

A T A T A

A A A

+

+

+

     
     

   = = =        
     
     

 (3.2.5) 

where (1)
RLxA  and (1)

RLyA  are the amplitudes of the initial transmitted wave as indicated in 

Fig. 3.3, and  
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1

, 11 13 11 13

13 33 13 33

1 0 1 1 0 0

0

0 0
ij L L L f TL L L

L L L L

T Q q Q q q Q q Q q

Q q Q q Q q Q q

λ

−− −   
     =     
      

 (3.2.6) 

Similarly, we obtain the amplitudes for the S-mode wave by replacing subscript L with 

subscript S in equations (3.2.5) and (3.2.6). 

The recurrence relations given by equations (3.2.5) and (3.2.6) provides the amount 

of reflection and transmission of the wave when it hits the FL-mat/metamaterial each 

time and can be used to estimate the total amounts of waves that are re-

flected/transmitted back to the first and second FL-mats, respectively. The total am-

plitude of the waves that are reflected or transmitted back to the first FL-mat for 

an incident wave of unity amplitude is given by 

( ) ( ) [ ] ( ) [ ]
( ) [ ] ( ) [ ]
( ) [ ] ( ) [ ]

1 3 3* * *

5 5* *

2 1 2 1* *

exp 2 exp 2

exp 4 exp 4 ...

exp 2 exp 2 ...

R TLx L TSx S

TLx L TSx S

n n
TLx L TSx S

A A iq d A iq d

A iq d A iq d

A n iq d A n iq d+ +

+ +

+ + +

+ ⋅ + ⋅ +

 (3.2.7) 

The total amplitude of the waves that pass through the metamaterial is  

( ) [ ] ( ) [ ]
( ) [ ] ( ) [ ]
( ) ( ) ( ) ( )

2 2* *

4 4* *

2 2* *

exp exp

exp 3 exp 3 ...

exp 2 1 exp 2 1 ...

TLx L TSx S

TLx L TSx S

n n
TLx L TSx S

A iq d A iq d

A iq d A iq d

A n iq d A n iq d

+

+ + +

+ − ⋅ + − ⋅ +      

 (3.2.8) 

where d is the thickness of the metamaterial. 

 

Fig. 3.4 Amplitudes of the total reflected and transmitted waves when a metamaterial is 
sandwiched between two FL-mats. (a) case 1; (b) case 2. In both cases n = 4. 
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Fig. 3.4 shows the numerical results of the total reflection and transmission ob-

tained from equations (3.2.7) and (3.2.8) with n = 4. It was found that the solu-

tions given by these two equations sufficiently converge for n ≥ 4. It is seen that 

the steady-state pressure wave impinging the metamaterial can be almost totally 

“reflected” as demonstrated by Case (1) (see Fig.3.4a) if the metamaterial is ori-

ented with δ =0o. From the results of Case (2) presented in Fig. 3.4b, a pressure 

wave from a FL-mat striking the metamaterial can be nearly totally suppressed by 

orienting the metamaterial at an angle around δ = 65o. This phenomenon is not the 

result of a total reflection at the first fluid/solid interface. As indicated by the re-

sult of Fig. 3.2b, the incident longitudinal wave from the FL-mat is transmitted 

into the metamaterial in two wave modes; one of them is a shear-dominated wave 

whose amplitude of the y component is ATLy, and the amplitude achieves the 

greatest amplitude at δ = 65o. The shear-dominated wave in the metamaterial can-

not be easily transmitted back to the FL-mat and may be trapped. It is conceivable  

that this wave mode conversion capability provided by the metamaterial may be 

used to partially isolate the FL-mat behind it from acoustic disturbances. 

4. Conclusion 

Harmonic wave propagation in a 2D acoustic metamaterial is studied using an 

equivalent elastic solid with a frequency-dependent anisotropic mass density. In 

general, two modes of wave motion are excited in the metamaterial; one is domi-

nated by extensional deformation and the other by in-plane shear deformation. For 

each mode, there are two branches representing the acoustic mode and optical 

mode, respectively. Since there are two direction-dependent stopping bands which 

may be selected to cover different frequency ranges, impinging waves can be se-

lectively stopped from propagating into the metamaterial. For example, a pressure 

wave impinging on an acoustic metamaterial may be stopped directly by designing 

the gap frequency. Moreover, the impinging pressure wave can be converted into a 

strong shear-dominated wave mode accompanied by a weak extension-dominated 

wave. The shear-dominated wave motion can hardly be transmitted into a fluid-

like medium and, thus, the FL-mat behind the metamaterial can remain mostly 

undisturbed. 
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Abstract. The diffraction of elastic waves on a two-dimensional finite phononic 

crystal is investigated by a plane wave technique. It is first remarked that a full so-

lution to the phononic crystal problem requires that all modes of the periodic 

structure (Bloch waves) are indentified and incorporated in the solution, including 

evanescent Bloch waves. An extended plane-wave expansion (PWE) method is 

used to obtain the complex band structure of the phononic crystal, but also the 

band structure of diffracted waves in the incident and exit media. Complex isofre-

quency curves are presented and show sharp variations of the Bloch wave vector 

with the angle of propagation. Finally, the complex band structures are used to 

formulate a reflection/transmission problem similar to the one leading to Fresnel 

formulas for homogeneous media. Some examples of diffracted field computa-

tions are given. 

1. Introduction 

Phononic crystals [1,2] are two- or three-dimensional periodic structures that are made of 

two materials with different elastic constants. They possibly give rise to absolute stop 

bands under specific geometrical conditions, depending on the choice of materials. In 

addition, their unique dispersion properties can be used to design efficient waveguides or 

to obtain unusual refraction properties. Band structures are usually employed to describe 

infinite phononic crystals, as they provide information regarding any wave propagating 

in the periodic medium. Such solutions of the periodic and monochromatic wave 

equation are referred to as Bloch waves. Band structures for Bloch waves record the 
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occurrence of band gaps and measure dispersion. However, it is well-known that evanes-

cent waves must be considered in propagation problems whenever scattering, diffusion, 

or diffraction by a finite object is investigated [3,4]. In experiments, of course, actual 

samples are always of a finite dimension. Even in the context of infinite phononic crys-

tals, evanescent waves appear very naturally within frequency band gaps: since no waves 

can propagate within a band gap, only evanescent waves are left to explain the exponen-

tially-decreasing transmission of acoustic waves. The purpose of this paper is to discuss 

the role of evanescent Bloch waves in the diffraction by phononic crystals. Our analysis 

is based on the recognition that as finite periodic structures, phononic crystal samples can 

be viewed as two- or three-dimensional diffraction gratings. 

2. Diffraction in Phononic Crystals  

The problem of diffraction by a square-lattice silicon-void phononic crystal is considered 

for definiteness and depicted in Figure 1(a). A plane and monochromatic wave is inci-

dent on the phononic crystal. As it impinges on the phononic crystal, it is diffracted in the 

incident medium (here homogeneous silicon) in either propagative or evanescent plane 

waves. Inside the phononic crystal, it is addi tionally converted to Bloch waves, again ei-

ther propagative or evanescent. This conversion is dictated by the boundary conditions 

separating the incident medium from the phononic crystal itself, where the fields have to 

be matched. This boundary is obviously not uniquely defined. By convention, we decide 

to tile space using the unit cell of the phononic crystal, as depicted in Figure 1(b). The 

unit cell is here a square with lateral dimension a. Outside the phononic crystal the unit 

cell is the plain square, while inside the phononic crystal it has an additional hole in the 

center, with diameter d=0.85a. At the exit of the phononic crystal, conversion again oc-

curs to propagative and evanescent plane waves. For simplicity, the exit medium is taken 

to be identical to the incident medium. As a consequence, the plane wave bases in both 

media are the same. 

The mathematical treatment of the diffraction problem then proceeds as follows. The 

displacement and the stress fields inside the phononic crystal are expanded over the 

complete basis of the evanescent Bloch waves which will be described in the next sec-

tion. Since the surrounding medium is homogeneous silicon, grating plane wave solu-

tions are used to represent the incident plus the reflected wave fields, and the transmitted 

wave field. Specifically, these grating solutions are given by the reciprocal lattice wave 

vectors combined with the dispersion relation for propagation in homogeneous silicon. 

Boundary conditions at the interface between silicon and the phononic crystal then allow 

us to obtain the reflection and transmission coefficients for all diffracted waves, by solv-

ing a Fresnel-type matrix problem. 
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Fig. 1 (a) Diffraction on a finite size square-lattice phononic crystal made of holes in silicon. 
The pitch of the structure is a and the diameter of the holes is d=0.85a. A plane wave is 
incident on the phononic crystal and is diffracted in either propagative or evanescent plane 
waves. (b) Tiling of space used to solve the diffraction problem. The dotted line figures 
the matching boundaries considered in the computation of reflection and transmission 
coefficients. 

3. Complex Band Structures 

Though it has long been known that the Bloch-Floquet wave vector can as-

sume both real values, for propagating Bloch waves, and complex values, for 

evanescent Bloch waves, the problem of obtaining all complex solutions for 

phononic crystals has not been treated in depth so far, to the best of our 

knowledge. It is certain that the layer multiple scattering (LMS) method natu-

rally allows to retrieve such complex wave vector solutions [5,6], since this 

on-shell method allows one to assume a given monochromatic frequency and 

solve for the wave vector. However, this method lacks the generality (in terms 

of arbitrary materials and scatterer shapes) of the plane wave expansion 

(PWE) method [7,8], for instance. Conversely, whereas the computation of 

band structures by the LMS method is naturally conducted at a fixed fre-

quency, in the PWE method one usually obtains eigenfrequencies for a fixed 

(real) Bloch-Floquet wave vector within the first Brillouin zone. The same re-

mark applies as well to mesh-based methods such as the finite element method 

(FEM) [9], for instance. We have specifically chosen to extend the classical 

plane wave expansion (PWE) method so that it includes complex wave vectors 

in the direction of propagation [10]. The new complex PWE method has been 

used to generate band structures for two-dimensional silicon-void phononic 
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crystals. Both propagative and evanescent solutions are found at once. The de-

cay constants within band gaps are thus found and shown to depend on the 

wave polarization. The complex graphs also allow us to identify clearly the 

different branch systems in the band structure and to connect bands below and 

above band gaps. Further-more, the distribution of the acoustic fields of eva-

nescent modes can be computed. Their transformation from below to above a 

band gap and within is observed to be perfectly continuous along any complex 

branch of the band structure. 

 

(a) 

 

(b) 
Fig. 2 Complex band structure of the 2D phononic crystal in (a) the ΓX and (b) the ΓM direction 
of the first Brillouin zone.  
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(a) 

 

(b) 
Fig. 3 Complex band structure of homogeneous silicon crystal in (a) the ΓX and (b) the ΓM 
direction of the first Brillouin zone. 

Figure 2 displays the band structure of the phononic crystal of Figure 1 for 

waves polarized out-of-plane, i.e. for which the only non vanishing displacement 

is u3. In this case, there is only one independent stress component which we 

choose to be T3=T3n where n is a unit vector in the direction of observation. The 

real part of the Bloch wave vector is shown in the center of the diagrams and is re-

stricted to the first Brillouin zone. The imaginary part is shown on the left-hand 

side (for negative values) and on the right-hand side (for positive values). The 

points marked by triangles are the purely-real ω(k) solutions found with the usual 
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PWE method. It can be observed that many complex bands are not revealed by the 

traditional analysis; such bands are the seat of evanescent Bloch waves. 

Figure 3 displays the complex band structure of homogeneous silicon, again re-

stricted to the out-of-plane polarization only. A two-dimensional periodicity iden-

tical to the one of the phononic crystal has been considered. Of course, this perio-

dicity is only artificial, but through this trick, the propagative and evanescent 

diffracted solutions attached to a surface enclosing this medium are revealed in a 

form that is directly compatible with the Bloch waves of the phononic crystal in 

Figure 2. The straight line in Figure 3 – folded at the Brillouin zone boundaries – 

is the usual pure shear wave of silicon, while the curved lines arise from adding 

reciprocal lattice vectors to the wave vector k. 

4. Complex Isofrequency Plots 

We can further use the extended PWE method to obtain information of wave 

propagation at a given frequency, for any angle of propagation. In this view, 

we have solved the k(ω) problem while simultaneously varying the angle of 

propaga tion, to obtain the complex isofrequency plots displayed in Figures 4 

(for fa=4500 m/s) and 5 (for fa=6000 m/s). These plots can be related to Figure 2; 

for instance, for fa=4500 m/s there one purely real closed curve and one 

purely imaginary solution is visible (others appear outside the range of the 

right-hand-side plot). 

    

         (a)                                                    (b) 
Fig. 4 Complex isofrequency plots for the phononic crystal at the frequency given by 
fa=4500 m/s. The left panel (a) shows the real part of the complex Bloch wave vector, 
while the right panel (b) shows the imaginary part.  
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Fig. 5 Complex isofrequency plots for the phononic crystal at the frequency given by 
fa=6000 m/s. The left panel (a) shows the real part of the complex Bloch wave vector, 
while the right panel (b) shows the imaginary part.  

It can be observed that the various complex bands in the isofrequency plots are 

strongly dependent on the angle of propagation but also on the selected frequency. 

The square symmetry of the periodic structuration clearly impacts the anisotropy 

of these bands. 

5. A Diffraction Example 

Figure 6 displays some examples of computations of diffraction on the phononic 

crystal following the method described in Section 2. We have specifically chosen 

the operating frequency given by fa=4500 m/s as in Figure 4 and a phononic crys-

tal oriented for ΓX propagation. The angle of incidence is changed from normal 

incidence in order to reveal the +1 and -1 orders of diffraction. The generation of 

these orders of diffraction can especially be appreciated in Figure 6(e), where they 

are seen to cause a complex standing wave pattern on the left-hand side of the 

phononic crystal. Of course, this configuration is not intended to have any practi-

cal value and is only selected here for illustration purposes. Of particular interest 

is the possibility to combine band gap effects, in order to obtain high reflectivity 

for instance, with diffraction effects. It can be thought that two-dimensional or 

three-dimensional gratings possess more degrees of freedom than the traditional 

one-dimensional gratings, so that design possibilities are richer. Of course, this 

added capability as to be traded-off against increased complexity of modeling and 

numerical simulation. 



V. Laude, Y. Achaoui, S. Benchabane and A. Khelif 

 

172

     

k2a / (2π) = 0 (a) |u3|                                                   (b) |T3| 

      

k2a / (2π) = 0.1 (c) |u3|                                                   (d) |T3| 

      

k2a / (2π) = 0.2 (e) |u3|                                                   (f) |T3| 
 
Fig. 6 Examples of diffraction on the square-lattice phononic crystal. The frequency is chosen 
to be fa=4500 m/s as in Figure 4 and the wave vector component along the phononic crystal 
boundary is varied. The field maps are chosen in arbitrary units, with the out-of-plane 
displacement on the left-hand side and the vertical stress on the right-hand side. 



Complex Band Structure of Phononic Crystals and The Diffraction Problem 

 

173

6. Conclusion 

The diffraction of elastic waves on a two-dimensional finite phononic crystal made of 

hollow holes in silicon has been investigated by a plane wave technique. It has first been 

remarked that a full solution to the phononic crystal problem requires that all modes of 

the periodic structure (Bloch waves) are indentified, including both propagating and eva-

nescent Bloch waves. An extended plane-wave expansion (PWE) method has been used 

to obtain the complex band structure of the phononic crystal, but also the band structure 

of diffracted waves in the incidence and exit media. Complex isofrequency curves have 

been presented and we have found sharp variations of the Bloch wave vector with the 

angle of propagation. Finally, the complex band structures have been used to formulate a 

reflection/transmission problem similar to the one leading to Fresnel formulas for homo-

geneous media. Some examples of diffracted field computations have been given at a 

frequency lying above the first band gap of the phononic crystal. It has especially been 

observed that several diffraction orders can be excited as the angle of incidence on the 

phononic crystal is varied. These results suggest that phononic crystals can be regarded 

as two- and three-dimensional gratings where diffraction can be combined with band gap 

effects. We finally note that appropriate designs could lead to very efficient phononic 

diffraction gratings. 
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Abstract. Phononic slabs of an fcc phononic crystal consisting of close-packed 

(glued) rubber spheres in air, under the influence of mild dissipation in rubber, ex-

hibit large absolute transmission gaps. Proper size variation of the spheres in a se-

quence of crystal slabs can shift and enlarge the frequency gap readily to comply 

with a variety of filtering needs in a phononic application. The aspects of such a 

versatile phononic slab are presented in a realistic theoretical approach, by means 

of the layer multiple-scattering method developed for phononic crystals.   

1. Introduction 

The study of the propagation of waves in inhomogeneous media is a problem of 

wide interest because of the implications in technology and the broad view that 

can provide in understanding a large area of physical problems [1]. In particular, 

classical wave transport in periodic media can provide the means to control light 

(electromagnetic waves), sound (vibrations) or both with the development of 

novel materials, also known as classical spectral gap materials. Such a periodic ar-

rangement of scatterers can obviously open up several directional spectral gaps. 

When for all directions the spectral gaps overlap so that there is a forbidden range 

of frequencies in which the waves cannot propagate in any direction, we have a 

special type of material that exhibits an absolute frequency gap response. In this 

paper, we deal with composite materials whose elastic properties vary periodically 

in space, and are also known as phononic crystals [2]. 

Absolute frequency gaps in 3D phononic crystals can be more easily obtained 

in systems where solid high-density scatterers are placed in a low-density fluid 

host rather than solid. The problem is then how one can practically construct such 

a composition, given the fact that the scatterers are expected to float on the fluid 

host breaking up the periodicity. Self-assembled colloidal suspensions in a liquid 
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solution are definitely a good candidate, but nevertheless their use in broad appli-

cations is somewhat restricted. A close-packed periodic arrangement of glued 

scatterers in air is definitely an easy case that can be fabricated in reality. There-

fore, a system to be examined here is an fcc crystal of closed-packed rubber 

spheres in air.  

There are various methods available for the calculation of the elastic properties 

of phononic crystals [2], such as the traditional band-structure methods, which 

mainly deal with periodic, infinite, and nondissipative structures. However, in an 

experiment, one deals with finite-size slabs and the measured quantities are, usu-

ally, the transmission and reflection coefficients. Apart from that, realistic struc-

tures are dispersive and have losses. We remember that the usual band-structure 

calculation proceeds with a given wave vector k and compute the eigenfrequen-

cies within a wide frequency range together with the corresponding eigenmodes. 

On the contrary, on-shell methods proceed differently: the frequency is fixed and 

one obtains the eigenmodes of the crystal for this frequency. These methods are 

ideal when one deals with dispersive materials (with or without losses). More-

over, on-shell methods are computationally more efficient than traditional 

band-structure methods [3].  

The layer multiple-scattering method (LMS) for phononic crystals [4], is an on-

shell method that uses multiple scattering techniques analogous to those applied to 

the treatment of electron scattering in solids and subsequently to the treatment of 

light scattering in photonic crystals. Whether one is interested in the transmis-

sion/reflection or absorption properties of a slab of a crystal, or the frequency band 

structure of an (infinite) phononic crystal – the angular frequency ω of the elastic 

field is a given conserved quantity. Additionally, when one deals with a slab of the 

material parallel to a given crystallographic plane, the reduced wave vector k||, 

parallel to this plane, is also a given conserved quantity. In relation to the fre-

quency band structure, the question we ask is: for the given ω, k||, are there propa-

gating Bloch waves in the infinite crystal? These represent of course the eigen-

modes of the elastic field in the crystal. The method provides us with these 

propagating Bloch waves and at the same time with a number of evanescent waves 

which play an indirect role. By repeating the calculation for different values of ω, 

we obtain the frequency band structure over a selected region of frequency as re-

quired. From the above follows a number of advantages over the more conven-

tional methods of calculation, such as the plane-wave expansion method. (a) The 

elastic coefficients of one or more of the constituents of the phononic crystal may 

depend on the frequency, and they can be complex (incorporating absorption). (b) 

The computation time can be reduced considerably by parallel processing at the 
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same time of a number of frequencies. (c) One can calculate, with the same ease, 

the eigenmodes of the elastic field in the crystal and the transmittance/reflectance 

of a slab, for given ω, k||. (d) One can easily obtain the density of states and the 

local density of states of the elastic field. A multiple-scattering method is effective 

when the system under consideration consists of non-overlapping scatterers in a 

homogeneous medium. The shape of the scatterers can be arbitrary, but the calcu-

lations are simpler if one assumes that they are spherical, and in our work we as-

sume that this is indeed the case. All of the above will provide the means to inves-

tigate the interesting properties of an fcc crystal of closed-packed rubber spheres 

in air, a slab of which, under the influence of mild dissipation, exhibits an appre-

ciable omnidirectional phononic transmission gap. In what follows, the advantage 

of the scaling properties of the crystal is exploited by putting together heterostruc-

tures consisting of close-packed rubber spheres of different size intended to serve 

as a gap optimization mechanism. An arrangement which proves in a versatile 

manner its merits to competently reposition and enlarge the gap to almost any 

phononic application specs anticipated.  

2. On the Properties of Viscoelastic Phononic Crystals 

It is true that the crystal structure can be very important in the formation of ab-

solute phononic gaps [5]. Nevertheless, the physical origin of the widest of these 

gaps lies beyond the Bragg gaps at the Brillouin zone boundaries. In reality, 

there are also bands originating from resonant elastic modes of the individual 

scatterers: resonant states on neighbor scatterers that couple weakly with each 

other, resulting in corresponding relatively narrow bands. These bands originat-

ing from the “rigid-body” resonance modes of the individual scatterers hybridize 

with the continuum bands corresponding to an almost free propagation in an ef-

fective homogeneous medium [2, 4]. The opening of the hybridization gap is fa-

vored by an increased volume filling fraction, but at the same time it is com-

promised by the widening of the resonance bands which is also favored by an 

increased value of the same property of the crystal. As we will show later, this 

compromising effect will be taken care of by introducing dissipation on the scat-

terers of the crystal [6].  

The viscoelastic response of the system, we are going to study here, is accounted 

for by means of the Kelvin- Voigt model, which is well-suited for materials and 

ultrasonic frequencies of major interest. The problem of acoustic-wave scattering by 

a single viscoelastic sphere of radius S has been adequately addressed in the past [7] 
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according to the Kelvin-Voigt viscoelastic model. In such a case a case the 

sphere is considered to be elastic with modified shear and compressional com-

plex wavenumbers, the imaginary parts of which represent a measure of the loss. 

In particular, for an absorbing sphere in an inviscid fluid background, the 

complex compressional and shear wavenumbers are conveniently defined as 

0 0 0 0

22
,    ,

1 ( / )1 ( ) /
l t

l t ll

c q c q
q q

c c i ci c β ρα β ρ
= = = =

− − + 
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where q0=ω/c0 refers to the fluid environment with ω being the angular fre-

quency and c0 the respective speed of sound. The real parts of the complex 

Lamé parameters of the sphere, λ=λe – iλv and µ=µe – iµv combined with the 

sphere’s density ρ yield the compressional and shear wave speeds respectively 

( 2 ) / ,    / .l e e t ec cλ µ ρ µ ρ= + =  (2.2) 

The imaginary parts of the Lamé parameters are connected to the viscous losses 

α+2β, and β of the sphere as follows: α=ωλv, β=ωµv. 

Multiple-scattering effects within planes of spheres, sonic crystals, and slabs 

of the same are taken into account by the LMS method described in Ref. [4]. 

This method views the crystal as a sequence of planes of spheres parallel to a 

given surface: a crystallographic plane described by a two-dimensional (2D) lat-

tice {Rn}. The corresponding 2D reciprocal lattice is denote by {g}. In the host 

region between the nth and the (n+1)th planes, a Bloch-wave solution for the 

displacement field (harmonic time dependence is assumed), corresponding to 

a given frequency ω and a given reduced wave vector k|| within the surface 

Brillouin zone (SBZ) of the given surface, can be expanded into plane waves 

propagating (or decaying) to the left and to the right, as follows: 

{ }0 0( ; ) exp ( ) exp ( )  ,n n n ni iω + + − −   = ⋅ − + ⋅ −   ∑ g g g g
g

u k u K r A u K r A
�

 (2.3) 
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2 2 1/ 2
0 0( , [( / ) ( ) ] )cω± = + ± − +gK k g k g

� �
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and An is a point between the nth and the (n+1)th planes. It should be noted that, 

although both shear and compressional modes are considered within the spheres 
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and enter the calculation through the scattering matrix, only longitudinal waves 

exist in the fluid, which in our case it will be air. 

A generalized propagating or evanescent, Bloch wave satisfies the equation 

1 3= exp( )  ,n ni± ±
+ ⋅g gu k a u  (2.5) 

where a3= An-1- An and k= (k|| , kz(ω; k|| )) is the Bloch wave vector. There are 

infinitely many such solutions for given k|| and ω, corresponding to different 

values of the z component, kz(ω; k|| ), of the reduced wave vector k, but in prac-

tice one needs to calculate only a finite number (a few tens at most) of these 

generalized Bloch waves. We have propagating waves [for these kz(ω; k|| ) is 

real] which constitute the normal modes of the infinite crystal, and evanescent 

waves [for these kz(ω; k|| ) is imaginary] which do not represent real waves, but 

they are useful mathematical entities which enter into the evaluation of the re-

flection and transmission coefficients of a wave, with the same ω and k|| , inci-

dent on a slab of the crystal parallel to the given surface. The transmission and 

reflection matrices for a slab which consists of a stack of layers of spheres with 

the same 2D periodicity parallel to a given plane of the crystal are obtained from 

the transmission and reflection matrices of the individual layers in the manner 

described in Ref. [4].  

 

Fig. 2.1 The phononic band structure at the center of the SBZ of a (111) surface of an fcc 
crystal (of lattice constant a ) of close-packed lossless rubber spheres in air (a). The corre-
sponding transmittance curve of a slab of 16 layers parallel to the same surface is given in 
(b). In (c) the same transmittance curve is presented but with spheres of a low viscous level. 
d is the distance between successive (111) planes of the fcc crystal under consideration. 
Finally, (d) depicts the absorption (dashed line) and the scattering cross section of a single 
sphere with dissipation. 
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Knowing the transmission and reflection matrices for the slab we can readily 

obtain the transmission, reflection, and absorption coefficients of a plane acoustic 

wave incident on the slab. 

The system examined here is a crystal of rubber spheres in air. The physical pa-

rameters entering the calculations are the mass density of air is ρair= 1.2 kg/m3 and 

its respective speed of sound cair=334 m/s. The rubber spheres have a mass density 

ρ=1130 kg/m3, and cl=1400 m/s and ct=94 m/s are the compressional and shear 

speeds of sound, respectively. In addition, a mild viscoelastic level is considered for 

the rubber spheres with parameters α=0.5 MPa and β=0.01, which are typical values 

for commercial rubbers. We view the crystal as a succession of planes of spheres 

parallel to the (111) fcc surface. The radius of the spheres S=0.5 a0, where a0 (the 

distance between two touching spheres) is related to the lattice constant as a = a0√2. 

Figure 2.1 shows the frequency band structure normal to the fcc (111) plane (k|| =0) 

and the corresponding transmission spectrum for waves incident normally on a slab 

of the crystal consisting of 16 layers of lossless spheres. The results are obtained 

with an angular momentum cutoff lmax=7 (as a result of writing a plane wave as 

linear sum of spherical waves [4]) and 55 g vectors. The established convergence is 

within an accuracy of better than a tenth of a percent. One observes, besides a large 

Bragg gap extending from ωS/cair=1.223 to 2.065, a number of flat bands which de-

rive from the interacting sharp resonant modes localized on the individual rubber 

spheres. Because these bands are so narrow in the present case, they are hardly ob-

servable, except that they introduce small gaps, above and below the main gap, 

which result from the hybridization of these flat bands with the broadbands corre-

sponding to nearly free propagating waves. These narrow gaps are seen more clearly 

in the transmission spectrum (part b of Fig. 2.1). Within the main gap these flat 

bands manifest themselves as sharp peaks in the transmission spectrum. The oscilla-

tions in the transmission coefficient, over the allowed regions of frequency, are due 

to interference effects resulting from multiple reflection at the surfaces of the slab of 

the crystal (Fabry-Perot-type oscillations).  

When losses are present in the system, there are no true propagating waves and 

the band structure of the infinite lossless crystal is not of any help; therefore, the ef-

fect of dissipation is shown in the transmission spectrum, part c of Fig. 2.1. As ex-

pected from the results of the single sphere [6], the sharp peaks and dips of the reso-

nant states disappear and a ‘‘clean’’ sonic gap without any resonant mode spikes is 

obtained. The existence of the frequency gap means that sound does not propagate 

through the crystal when its frequency lies within the gap (the intensity of the wave 

decays exponentially into the crystal for these frequencies), and if it cannot enter 

into the crystal, it cannot be absorbed either. 
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Fig. 2.2 The reduced k zone associated with the fcc (111) crystallographic plane (left) and 
the corresponding SBZ (right). The (bulk) fcc Brillouin zone (shaded decatetrahedron) is 
also shown for comparison. 

The reduced zone of the 3D k (since the crystal is viewed as a sequence of identi-

cal crystallographic planes) is chosen as follows: (k|| , kz) where k||=(kx , ky) extends 

over the SBZ of the given crystallographic plane. This reduced k zone is by all 

means equivalent to the commonly used, more symmetrical bulk Brillouin zone, in a 

sense that a point in one of them lies also in the other or differs by a vector of the 3D 

reciprocal lattice. This scheme is presented in Fig. 2.2, for a better understanding on 

how all the possible symmetry lines are taken into account in order to plot the band 

structure of the crystal.  

In Fig. 2.3, the projection of the frequency band structure on the SBZ of the (111) 

plane of the fcc crystal along its symmetry lines is shown. This is obtained, for a given 

k||, as follows: the regions of frequency over which there are no propagating states in 

the infinite crystal (the corresponding values of all kz are complex) are shown in white, 

against the shaded areas which correspond to regions over which propagating states do 

exist. One clearly sees here how the sphere’s resonances lead to narrow hybridization 

gaps above and below the main gap, and flat bands in the gap regions. When losses are 

present, the crystal under investigation exhibits an appreciable omnidirectional trans-

mission gap extending from ωS/cair=1.595 up to 1.946.  

Touching rubber spheres, obviously, can trigger highly non-linear effects (clap-

ping). In our model, under the assumption of glued spheres, we predict that a linear in-

teraction will more or less suffice to describe the dominant physical phenomena re-

garding the transport properties of such a phononic arrangement. In any case, the 

present study does not include any nonlinearities. Finally, although one may consider 

this specific phononic crystal as a porous insulator [8], no additional degrees of free-

dom (slow compressional waves) predicted by Biot’s theory [9] are considered in our 

model and most certainly might have little (if they have) impact on the acoustic trans-

mission gap properties of a slab of the crystal. 
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Fig. 2.3 Projection of the frequency band structure on the SBZ of the (111) surface of 
the fcc phononic crystal described in the caption of Fig.2.1, along the symmetry lines 
(inset). Propagating waves in the air about a slab of the crystal exist for frequencies above 
a threshold value (a function of k||) ωinf = cair|k||| denoted by the dashed line.  

3. Slabs of Heterostructures and Gap Optimization 

Recently, rubber/air viscoelastic phononic crystals have drawn serious attention [10], be-

cause they exhibit very wide band gaps in their transmission spectra that extend to fre-

quencies in the audible range of the spectrum and they are a practical design of acoustic 

band gap sound barriers with small dimensions. In the past, certain full-band-gap en-

hancement techniques have been developed [11,12] to optimize the filtering spectrum of 

certain phononic crystals. The idea is to fabricate slabs of the crystal containing a mini-

mal number of planes in order to preserve accurately the transport properties of the full 

3D crystal. It has been shown that the number of 8 planes per slab safely preserves the 

transport properties and almost all underlying physics [13]. One then stacks a number of 

the slabs with spheres of different size each in such a way that the lower frequency edge 

of the absolute gap of one stack is at least equal or lower than the upper gap edge of the 

stack, or else the upper edge of one stack is at least equal or greater than the lower edge 

of the other. The former arrangement enhances the absolute gap to lower frequencies and 

the latter enhances it towards higher frequencies. The information to do so is coming 

from the projection of the frequency band structure in Fig. 2.3, which scales with S and 

provides the gap edges for different sizes of spheres, which stack in the close-packed 

(111) fcc arrangement. This is presented in Fig. 3.1. The actual omniderectional gap of a 

single viscoelastic stack has a gap width over the midgap frequency, ∆ω/ωMG=19.8%. 
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Fig. 3.1 Upper and lower edges of the absolute frequency gap of a close-packed fcc pho-
nonic crystal consisting of viscoelastic rubber spheres as a function of the radius of the 
spheres. (a) are the lower edges and (b) the upper, whereas 1 denotes the reference sphere 
size (this where lies the gap of 1 stack) and the gray dotted steps between the edges sig-
nify the scheme of overlapping gaps. ∆Ω< is the gap enhancement result towards the 
lower frequencies, and ∆Ω> is the corresponding result towards higher frequencies. They 
both require 4 stacks of different size of spheres. ∆Ω is a combination requiring 7 stacks. 

 

Fig. 3.2 Schematic representation of a combination of 5 stacks to form an optimized 
phononic slab of close-packed rubber spheres of different size.  

According to the above if one creates a sequence of 5 stacks as shown in Fig. 3.2 

will result to an absolute gap of 92% which is more than 4 times wider than the one of 

a stack. In Fig. 3.3, we present the basic combinations which result in widening the 

gap of the system and moving it up or down in the frequency range or both, with ap-

propriate minimum number of stacks for each case, which can lead up to gaps of 

160%. In theory one can go asymptotically up to 200%, which is the maximum. It is 

recommended that one should proceed with caution in pathological cases of having too 

many stacks, or pushing the scattering size parameter out of range, not to mention the 

probable change of viscoelastic properties as a function of size and frequency range. 

The cases considered here are safe and computationally accurate. One may note that 

local porosity effects are expected to be appreciably dissipated by rubber. 
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Fig. 3.3 Enhanced gap features for shifting up and down the gap in frequency or both. The 
number n (n -1 plus the reference stack with spheres of radius S0) of minimum stacks 
needed for each case as well as the size of the sphere for each stack (gray spheres) is repre-
sented in the above graph. The achieved gapwidth over midgap frequency is also given.  

4. Conclusions and Remarks on the Versatility 

On investigating the versatility of rubber/air viscoelastic phononic crystal slabs, it 

has been demonstrated that slabs of the above crystal (each of which is a finite 

part of a close-packed fcc crystal) with proper size variation of the spheres in a se-

quence of crystal slabs one can manipulate quite competently (this from where the 

term versatile comes) the absolute frequency gap of the crystal both in size and 

frequency. This has been only a small part of the capabilities of what such systems 

can do. One can also manipulate directional gaps by stacking slabs of different 

crystallographic orientation in order to make directional filters or sonic polarizers. 

And to say the least this is a good example of strong classical Anderson localiza-

tion due to size disorder. Physically this is the effect that is responsible for widen-

ing the phononic transmission gap [14]. Therefore a systematic introduction of 

disorder, namely size disorder, can trigger Anderson localization of acoustic 

waves over a region of frequency much wider than the absolute gap of the ordered 

phononic crystal. Finally, for practical purposes, this study may be considered a 

guide for proper size variation of a slab of a disordered crystal of reasonable 

thickness that will produce the desired effect. 
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Abstract. We report on the theoretical and experimental evidence for the occur-

rence of an omnidirectional elastic band gaps in one-dimensional phononic crystal 

structures. The structure is constituted by a periodically layered mirror deposited 

on a specific substrate that exhibits total reflection of waves for all incident angles 

and polarizations in a given frequency range. We study in this paper the influence 

of the nature and the filling fraction of the layered structures as well as of the sub-

strate nature on the omnidirectional band gap. By introducing a defect piezoelec-

tric layer in the finite size layered structure, selective resonance modes can occur 

within the omnidirectional bang gap under certain conditions. In this case, the 

elastic energy is confined to the defect layer.  The frequencies of the defect modes 

are sensitive to the nature of the material and to the layer thicknesses. We excite 

the localized mode in the defect layer via interdigital transducers deposited on the 

substrate surface. We show a high frequency one port resonator at 4.3 GHz with 

high phase velocity of 43 km/s. The omnidirectional character of the band gap is 

crucial to confine the elastic energy in the defect layer.  

1. Introduction 

Recently, phononic band gap materials, the so-called phononic crystals, have been 

made possible by using periodic structures, in analogy with electrons in semicon-

ductor crystals [1, 2]. These materials allow the propagation of elastic waves to be 

regulated. In other words, they play the role of perfect mirrors for elastic waves in 

 T.-T. Wu and C.-C. Ma (eds.), IUTAM Symposium on Recent Advances of Acoustic 

© Springer Science + Business Media B.V. 2010 

187
Waves in Solids, IUTAM Bookseries 26, DOI 10.1007/978-90-481-9893-1_17, 

mailto:abdelkrim.khelif@femto-st.fr


A. Khelif, A. Choujaa, S. Benchabane and V. Laude 

 

188

the frequency window of the band gap, i.e., forbidding the propagation of elastic 

waves for all polarizations and directions. This area of research has received much 

attention because of the fundamental interest in localization of elastic energy and 

of the potential applications of phononic band gaps. The omnisaw device is the 

first illustration of the capabilities of these new materials to confine the elastic en-

ergy and to control the dispersion of waves through the geometry.  The paper is 

organized as follows: first, we demonstrate the existence of a complete elastic 

band gap in Aluminium/Tungsten periodically layered structures deposited on 

a silicon substrate. The influence on the band gap of the filling fraction of the 

layers is presented.  The results for an AlN defect layer added on the structure are 

presented and discussed in section 3.  In section 4, we give a first theoretical and 

experimental result for a one port resonator based on the OmniSAW concept. 

2. Omnidirectional Elastic Band Gap 

In this section, we show the possibility of realizing one-dimensional structures that ex-

hibit the property of omnidirectional ‘complete’ reflection for elastic waves. In the fre-

quency range of forbidden propagation [3], the structure behaves analogously to 2D 

and 3D phononic crystals in which elastic waves are reflected for any incidence angle 

(equivalently, any incident wave vector) and any polarization.  We consider the super-

lattice structure described in Fig. 1, in which N periods of the couple of layers (Al/W) 

are deposited on a semi-infinite silicon substrate. For this kind of materials, it possible 

to decouple the sagittal (x,z) and transverse (y) polarizations. We have focused, in this 

case, on the sagittal polarisation of elastic waves propagating parallel to the interfaces. 

First, we examine the so-called projected band structure of the superlattice. This re-

fers to the diagram obtained by plotting the frequency versus the parallel wave vector, 

k//. Figure 2 displays the phononic band structure of six pairs of layers composed of Al 

and W with thicknesses d1 and d2, such that d1=d2=0.5D, D being the period of the 

superlattice (D=d1+d2). We display the frequency*period (f*D) as a function of the 

reduced parallel wave vector (k//*D). The grayed and black areas in the projected band 

structure, respectively, correspond to the pass bands and gaps of the structure where 

propagation of elastic waves is allowed or forbidden. It can be easily noticed that the 

band structure shown in Fig. 2 exhibits an absolute band gap for every value of the re-

duced parallel wave vector in the frequency range (1400 m/s<f*D<2300 m/s). It 

means that no acoustic wave with sagittal polarization is allowed to propagate in this 

region.  The two straight lines correspond to the shear and longitudinal velocities of 

the substrate (here silicon).  
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Fig. 1 Sketch of the superlattice structure. 

 

Fig. 2 Projected phononic band structure of a six-pair superlattice composed of Al and 
W with thicknesses d1 and d2, such as d1=d2=0.5D. The two non-dispersive modes 
(straight lines) show the signature of the longitudinal and transverse velocities of the 
silicon substrate.  

 

Fig. 3  Evolution of the band gap for an Al/W structure. 
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Three factors can influence the width of the Omnidirectional band gap: the filling 

fraction, the superlattice composition and the substrate nature. The first parameter that in-

fluences the width of the omnidirectional band gap is the filling fraction which is equal, 

in this case, to the thickness of one layer divided by the period, for instance, F=d1/D.  

Figure 3 gives the evolution of the gap versus the ratio d1/D, showing that, in this case 

the largest gap is obtained when the ratio is around 0.5. One can notice that for 

0.2<F<0.85 we still obtain an omnidirectional band gap in this material composition. The 

existence and the width of the band gap are also influenced the elastic parameters or the 

nature of the materials constituting the superlattice. As a general trend, a large band gap 

requires a huge contrast between the elastic constants and densities of the constituent 

materials. 

3. Defect Mode Structures 

In order to achieve mode confinement in the elastic band gap, we introduce a defect in the 

structure. This can be achieved by changing the thickness or the nature of a single layer. In 

the OmniSAW device we use a piezoelectric material such as AlN or ZnO to excite 

localized modes through the interdigital transducer (IDT) technology.    

In Figure 4 we plot the dispersion of a defect elastic mode calculated from the local 

density of state technique for an Aluminium Nitride (AlN) layer added on top of a W/Al 

omnidirectional mirror structure with filling fraction F = 0.5. 

The thickness of the AlN layer is equal to 1.1*D By comparing the dispersion curves to 

the band structure in Figure 2 for the complete band gap superlattice structure, we note that 

we have one defect mode occuring in the band gap with a frequency cut-off equal to 1800 

m/s. This mode is the fundamental mode, which can give the maximum electro-mechanical 

coupling coefficient. By increasing the thickness of the defect layer we can introduce more 

and more localized modes in the band gap.  We note that the defect mode at zero wave 

vector corresponds to the situation of “Bragg mirror” for a solidly mounted resonator. 

 
Fig. 4 Dispersion of a localized defect mode in the AlN layer with thickness equal to 1.1*D 
deposited on the omnidirectional mirror structure. 
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4. Omnisaw Devise Results 

Before starting to give the parameters and the numerical results of a one port resonator 

based on the OmniSAW concept [4], we start to design the band gap and give the value of 

the period to fix the frequency range in order to achieve a one port resonator operating 

around 4.5 GHz. From Figure 4 giving the defect dispersion diagram, we know that the 

frequency*period product should be around 1800 m/s. The exact resonance frequency of 

the surface also depends on the value of the IDT period or on the wavelength obtained from 

the value of the parallel wave vector. For the central frequency of 4.5 GHz, the period of 

the structure is equal to 0.4 µm and d1=200 nm and d2=200 nm (F=0.5). The complete band 

gap then extends from 3 to 6.5 GHz. The relative bandwidth equals 77%, which gives very 

large latitude and reduces the impact of any error on the geometrical parameters of the 

structured layers.  

After having designed the band gap and the thickness of the defect AlN layer, we have 

simulated the harmonic admittance of an infinite periodic electrode array deposited on top 

of the AlN surface. First, we assume that the thickness of the electrodes is negligible com-

pared to the pitch of the structure. We assume the filling fraction of the IDT is equal to 

50%. In figure 5, we plot the real and the imaginary parts of the harmonic admittance of the 

Omnisaw structure with an electrode period 5 µm. The thickness of the defect layer is equal 

to 0.45 µm.  The figure clearly shows the occurrence of an acoustic resonance at 4.3 GHz, 

which is confirmed in figure 6 by the experimental result where the measurement of S11 

exhibits the signature of the resonance at the same frequency estimated theoretically. The 

effective phase velocity of the acoustic mode in this case is 43000 m/s, which opens up 

novel possibilities for the design of surface acoustic wave devices operating at high fre-

quency but long wavelength. The effective phase velocity is more than ten times larger that 

the one achievable with piezoelectric substrates such as quartz or lithium tantalate. Whereas 

traditional photolithography with UV light limits usual SAW devices to around operating 

frequencies 2GHz, OmniSAW devices have the potential to operate above 10 Ghz with the 

same technological constraints for the electrode mask. 

 
Fig. 5 Real and imaginary parts of the harmonic admittance of the structure. 
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Fig. 6 Real and imaginary parts of S11 parameters. 

5. Conclusion 

In this paper we have theoretically and experimentally demonstrated the Omni-

SAW device concept for an operating frequency of 4.3 GHz. We have shown the 

occurrence of omnidirectional elastic band gaps in one-dimensional phononic 

crystal structures. The structure is constituted by a periodic arrangement of layer 

pairs deposited on a specific substrate that exhibits total reflection for waves of 

any incident angle and polarization in a given frequency range called the omnidi-

rectional frequency band gap. We have presented the influence of the filling frac-

tion of the layer pairs on the complete band gap. By introducing a defect piezo-

electric layer (AlN), selective resonance modes occur within the omnidirectional 

bang gap. In this case, the elastic energy is confined inside the defect layer. We 

have shown clearly the occurrence of an acoustic resonance at 4.3 GHz, which is 

confirmed by the measurement of the S11 electrical parameter. The effective phase 

velocity of the acoustic mode in this case is 43000 m/s, which opens new propects 

for surface acoustic wave devices operating at high frequency. 
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Abstract. We made a systematic investigation on the band structure of sound 

waves in three-dimensional phononic crystals consisting of periodic arrays 

of spheres with an opal structure. The opal structure is made with close-

packed solid spheres surrounded by air (or vacuum). We introduce a sinter-

ing parameter which characterizes the contact between adjacent spheres. For 

a proper range of parameters we find the existence of a complete band gap in 

the structure. We also find that several flat bands appear below the lowest 

eigenfrequency of vibration of the isolated sphere. To understand the vibra-

tional motion of the modes in these flat bands, their intensity distributions 

are also shown. 

1. Introduction 

Recently, a great deal of attention has been attracted to synthetic, three-

dimensional (3D) composite structures consisting of periodic arrays of mate-

rials. Such meta-materials are called phononic crystals when their elastic 

properties are emphasized. Coherent multiple scatterings arising from artifi-

cially designed periodicities allow phononic crystals to reveal interesting 

physical properties which do not exist in nature. One of the important prop-

erties is the existence of complete frequency gaps in which sound waves 

with wave vectors in any direction are prohibited to propagate. The perfect 

confinement of sound in these gaps suggests that phononic crystals can serve 

as cavities for sound and also leads to the potential applications to the design 

of new opto-acoustical devices which manipulate optical gaps. 
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A simple and hence widely studied 3D phononic crystal is a synthetic 

opal composed of self-assembled glass spheres with a sub-micron diameter 

that is expected to operate as a band gap material for both the visible lights 

and hypersonic waves.[1] The effects of hypersound of several GHz fre-

quencies in opal films (consisting of silica nano-spheres with diameters of 

about 100 nm) have recently been observed experimentally but rather indi-

rectly with a light scattering technique through the modulation of optical re-

flectivity.[2] Also Brillouin light scattering technique is applied to find pho-

nonic gaps in soft opals, i. e., the self-assembled FCC films of polystyrene 

spheres.[3] More direct experiments with ultrasound, such as transmission 

measurements, for example, should reveal the detailed acoustical proper-

ties of 3D phononic crystals. Such an experiment has recently been made 

with similar opal structures but of larger dimensions (~a few millimeters in 

diameter), i. e., mesoscopic opals. 

In the present paper we will theoretically study the properties of sound 

waves in 3D phononic crystals with an opal structure. More precisely, the 

phononic crystals we consider are composed of periodic arrays of aluminum 

spheres in air (or in vacuum), which also form a FCC lattice structure. 

In analyzing theoretically the vibrational properties of phononic crystals, 

the plane-wave expansion (PWE) and multiple-scattering (MS) methods 

have proved to be powerful tools. However, the MS method is applicable 

only to isotropic materials and the structures where no overlapping exist be-

tween scatterers.[4-7] The PWE method can be used to the systems where no 

large acoustic mismatch exists between constituent materials.[8] Synthetic 

opals which have recently been studied experimentally consists, however, of 

spheres connected each other by sintering. Also, as phononic crystals, they 

are composed of solid spheres surrounded by air, possessing large acous-

tic contrast. Therefore, neither the PWE nor the MS methods can be ap-

plied to the opals we study. Only possible numerical scheme employed is 

the finite-difference time-domain (FDTD) method.[9] 

In our analysis, we first introduce a so-called sintering parameter which 

characterizes the contact between adjacent spheres, and calculate the disper-

sion relations of sound waves in the perfect, periodic opals with the FCC 

structure. Next, we clarify the dependence of the band structure on the sin-

tering parameter in the LΓ −  direction which is important in experiments. 

Finally, we show the vibrational intensities distributions at several points in 

the band structure. 
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2. Model and Formulation 

For a lossless inhomogeneous elastic material, the equations of motion and 

constitutive law of elastic waves are given by 
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where ( )ρ r  is the mass density, ( ),iu tr ( 1,2,3i = ) the lattice displacement, 

( ),ijT tr the stress tensor, iF  the body force, and the summation convention over 

repeated indices is assumed. 

It should be noted that the mass density ( )ρ r  and elastic constants ( )ijmnc r  

depend on the position r . In the FDTD scheme which we will employ to solve 

Eqs. (1) and (2), they should be transformed into the difference equations both in 

time and space and are solved recursively under appropriate initial and boundary 

conditions (BCs).  

 

Fig. 1 (color online) (a) A conventional unit cell of face-centered cubic structure. All the 
faces are imposed on the periodic boundary conditions. The distance between adjacent 
spheres is D  The distributions of vibrational intensities are shown on the face shaded in 
context. (b) the irreducible Brillouin zone corresponding to the conventional unit cell (a). 
The dispersion relations of elastic waves in Fig. 2 are drawn along the Brillouin zone 
boundaries (red line). 
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First we calculate the dispersion relation of the sound waves in opals with 

the FCC structure. For this purpose we consider a conventional unit cell 

shown in Fig. 1(a). At the boundary surfaces we impose the periodic BCs for 

both the displacements and stresses, which are expressed as 

( ) ( ), ,i
i iu t e u t⋅+ = k ar a r , (3) 

( ) ( ), ,i
ij ijT t e T t⋅+ = k ar a r , (4) 

where k  is a Bloch wave vector and a  is one of the following lattice vec-

tors ( )1 2 ,0,0D=a , ( )2 0, 2 ,0D=a , ( )3 0,0, 2D=a , with D  the distance 

between the centers of the adjacent spheres.  

Briefly, the procedure of the calculation is as follows: First we specify a 

wave vector k  in the first Brilloin zone and this determines the periodic 

BCs through Eqs. (3) and (4). Next, in order to excite initial lattice dis-

placement an impulsive force F  with frequency spectrum covering the range 

to be probed is given at a point in the unit cell. Then Eqs. (1) and (2) are 

solved numerically using finite difference formulas and the time evolution of 

the displacements ( ),m ntu r  at several points mr  chosen at random in the unit 

cell are recorded at nt t= . A large number of u  data on the discretized time 

axis 1 2, , , Nt t t⋯ , ( 1N ≫ ), are then Fourier transformed into the frequency 

space. The positions of the peaks in the spectrum are identified to the eigen-

frequencies in the system. 

Next we calculate vibrational intensity distribution. This is made by giving 

an external force F of a Gaussian form with a central frequency 0ω  and a nar-

row width ω∆  in the frequency space. Explicitly, 

( ) ( )
( )

( ) ( ) ( )2 2 2
0

02
ˆ ˆexp exp exp

4

t
t i t d i t

ω ω ω
ω ω π ω ω

ω

   − ∆
   = − − = ∆ − −
   ∆   

∫F F F  (5) 

where F̂ is a constant vector which indicates the direction of the force applied. 

Then the vibrational intensity has been calculated according to the following 

formula after the vibration is well developed and is regarded as stationary. 

3
2

1
i

i

I u
=

=∑ . (6) 
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3. Numerical Results 

Numerical calculations have been developed for 3D arrays of aluminum spheres of a 

mm scale. The mass density ρ  and the elastic constants 11C  and 44C  in the isotropic 

approximation are 2.7 3g/cm , 109.9 10 210 dyn/cm× , and 26.3 10 210 dyn/cm× , respec-

tively, for aluminum.  The air surrounding the spheres is approximated as vacuum. An 

important disposal parameter is the sintering parameter χ  expressing the degree of 

the overlap between adjacent spheres,  

2
1

r

D
χ = − , (7) 

where r  is the radius of an aluminum sphere. A positive χ  means that adjacent 

spheres are overlapped each other. 

Fig. 2(a) shows for 0.01χ =  the band structure of bulk sound waves along the ir-

reducible Brillouin-zone boundaries shown in Fig. 1(b). In this calculation, both the 

longitudinal and transverse vibrations are simultaneously excited and detected.  We 

find the existence of a complete band gap at around / tDω =v 4.0-4.8 where the 

propagation of sound is prohibited.  In the experiments conducted recently, the propa-

gation characteristics of sound waves in the [111] direction have been investigated [2]. 

So we concentrate our attention to the band structure in this direction (the LΓ − direc-

tion in Fig. 2). The modes on the branches overlapped with solid lines (in the low fre-

quency region) have longitudinal polarization. For these longitudinal sound the band 

gap extends from 3.0 to 5.0 (in the normalized frequency), as determined by the width 

of gap at the Γ  point.  

Fig. 2(b) shows the similar band structure for 0.04χ = . In this case the complete 

band gap is not seen. This is because larger χ  means larger channels through which 

sound waves are transmitted effectively. Hence, coherent backscatterings of sound 

which induce band gaps become less probable. 

Fig. 3 shows the χ  dependence of the band structures along the LΓ −  direction 

(the [111] direction). For these results, the vibrations with longitudinal polarization are 

exclusively selected. Therefore, the transverse branches existing in Fig. 2, the lowest 

linear branch, for instance, are not present. Now we see the existence of two band 

gaps, i. e., a wider gap around / tDω =v 4.0 and a narrower gap near / tDω =v 8.0. 

The increase of χ results in the reduction of the width of the phononic band gap as 

clearly seen in this figure. For χ ≥ 0.06 these band gaps disappear completely (not 

shown here). An interesting observation is the fact that the upper edges of the lowest 

gap are almost independent of χ  but the lower edges are drastically shifted upward 

with increasing χ . That is because the branches below the 1st band gap are due to 
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collective motion of the spheres, while the ones above this gap stem from the vibra-

tions of isolated spheres. The collective motion is more sensitive to the interaction be-

tween adjacent spheres. 

We also find that there exist a few flat bands below the lowest vibrational fre-

quency of an isolated sphere, which is marked by an arrow in Fig. 2 (a). To make the 

vibrational motion of spheres at these flat bands clear, we have illustrated in Fig. 4 the 

vibrational intensities 
2

ii
I u=∑  at four frequencies shown by red dots in Fig. 2 (a). 

At point A ( / 2.082tDω =v ) only the sphere at the center vibrates and almost no 

oscillation is excited at the rest of four spheres surrounding it. Thus, the vibrational en-

ergy is strongly localized. In contrast, at point B ( / 2.722tDω =v ) the spheres at the 

center hardly vibrate, though the rest of spheres strongly oscillate. At point C 

( / 3.094tDω =v ) the vibrational amplitude extends over all of the spheres and hence 

the branch is sloped, or depends on the wave number. On the other hand, at point D 

( / 5.230tDω =v ) just above the lowest band gap and close to the lowest frequency of 

an isolated sphere, the spheres execute vibrations in a complicated manner. 

 

Fig. 2 (color online) Calculated band structures of opals consisting of aluminum spheres with 
FCC structure along the irreducible Brillouin zone boundaries shown in Fig. 1(b). (a) 0.01χ =  
and (b) 0.04χ = . 53.12 10 cm/st = ×v  is the velocity of transverse sound of aluminum. In 
Fig. 2(a), the solid lines in the LΓ − region represent the branches with longitudinal polarization 
and the arrow indicates the position of the lowest eigenfrequency of an isolated sphere.  
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Fig. 3 (color online) Calculated band structures of opals consisting of aluminum spheres 
with FCC structure along the LΓ − direction for several sintering parameters: χ = 0.01, 
0.02, 0.03, 0.04, and 0.05. Hatched regions show the band gaps for longitudinal sound.  

 

Fig. 4 (color online) Calculated vibrational intensity ( 2

ii
I u=∑ ) patterns in the hatched 

face of Fig. 1(a). Frequencies chosen are those labeled A to D in Fig. 2(a). 
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4. Concluding Remarks 

We have made a systematic investigation on the band structure of sound waves in 

three-dimensional phononic crystals consisting of periodic arrays of spheres with 

an opal structure. The opal structure is constructed by close-packed solid spheres 

(FCC structure) surrounded by air (or vacuum). We introduced a sintering parame-

ter which characterizes the connection between adjacent spheres. For a sintering 

parameter below 0.06 we find a complete band gap for only longitudinal sound in 

the opal structure consisting of aluminum spheres and for both longitudinal and 

transverse sound waves below 0.03χ = . We also find that several flat bands ap-

pear below the lowest vibrational eigenfrequency of an isolated sphere. The vibra-

tions of spheres in those flat bands proved to be strongly localized in a sphere 

without extending over neighboring spheres. 

Aknowledgements: The work at Hokkaido University was supported in part by the CASIO Sci-
ence Promotion Foundation, the Murata Science Foundation and the Grant-in-Aid for Scientific 
Research from the Ministry of Education, Science, Sports and Culture of Japan (Grant 
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Abstract. The authors demonstrated an artificial material composed of ordered 

semiconductor quantum dots (QDs) with functional acoustic properties. The pho-

nonic bandgap of this three-dimensional (3D) artificial crystal was characterized 

by Raman and transient reflectivity spectroscopies. The Raman spectra exhibited 

interferometric patterns caused by the coherent interference of acoustic-phonon-

related Raman signals, revealing the structural information of the crystal. In addi-

tion, the acoustic tunneling in the QD crystal was studied by the transient spec-

troscopy with the picosecond ultrasonic technique. The measured signals indicated 

that the QDs are responsible for the scatterings of the acoustic phonons at the 

bandgap frequency, while the QD crystal serves as a phononic meta material for 

low-frequency phonons. 

1. Introduction 

Semiconductor quantum dot (QDs) is sometime called artificial atom due to its 

unique characteristics for zero-dimensional charge confinement. With a controlled 

distribution of QDs, those “atoms” have capability to create new artificial materials 

with designed functionalities for electronic and biological applications [1-2]. In addi-

tion, the behaviors of phonons in a QD system are also dominated by the ordering of 
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QDs [1]. To understand and to manipulate the 3D QD ordering for phononic meta 

materials can open a lot of new possibilities for the controlling of the phonon-phonon, 

the electron-phonon, and the phonon-polariton interactions [3].  

In the past decade, the dynamics of coherent acoustic phonons in QDs has at-

tracted a lot of attention. Several literatures reported the observations of confined 

acoustic mode in QDs and also studied the exciton-coherent phonon interactions by 

femtosecond pump-probe technique [4,5]. A recent report by Devos et. al. demon-

strated an efficient generation of coherent acoustic phonons in self-assembled QD 

layers by laser excitation [6]. Those contributors revealed not only the fundamental 

interests in this issue but also its potential in phonon engineering [7]. However, the 

present studies on coherent phonons are restricted to either confined mode in QDs or 

collected propagating mode from a single QD layer. The structural effect on the co-

herent phonon dynamics in 3D regularized QDs has not been investigated so far. The 

purpose of this paper is to demonstrate and discuss the phononic bandgap induced by 

the ordering of semiconductor QDs using Raman and transient reflection spectro-

scopies. The measurement results showed a great contribution of ordered QDs to 

acoustic scatterings at the frequency of the mini-gap, while those ordered QDs also 

serve together as a phononic meta material for low-frequency acoustic phonons. 

2. Sample Structure  

The studied sample consists of 3D ordered SiGe QDs (QD crystal [3]) grown by 

templated self-organization. The templates were fabricated by extreme ultraviolet in-

terference lithography using a wavelength of 13.5 nm [8]. Reactive ion etching was 

employed to transfer the two-dimensional hole arrays with a periodicity of 90nm x 

100nm into the Si(001) substrate. This prepatterned substrate was then deposited by a 

sequence of Ge and Si layers for fabricating a stack of 11 QD layers. It is noted that 

the growth condition of the first QD layer (7ML) on the substrate is different from the 

other layers, resulting in a relatively large dot size in the first layer. Each subsequent 

island layer was grown by depositing 5 ML of Ge on top of the 10 nm Si spacer layer. 

The lateral and vertical periodicities of QDs were confirmed by TEM and X-ray 

analyses. In addition, AFM investigations indicated that the height and diameter of 

QDs are 2.96 ± 0.34 nm and 34.21 ± 2.98 nm, respectively. Furthermore, analysis of 

the x-ray diffraction measurements shows that the SiGe dots have a Ge content of 

60% [9]. The sample has a 100 nm-thick Si cap layer serving as a propagation layer 

for separating detected acoustic signals temporally. The details of fabrication and 

characterization of the studied QD crystal has been reported elsewhere [3,10]. 
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3. Experimental Results and Discussions 

3.1 Raman Measurement 

We first performed low-frequency resonant Raman scattering measurement on the QD 

crystal using an Argon laser (λ = 512 nm) and a Jobin Yvon T64000 spectrometer. The 

measured Raman spectrum shown in Fig. 1 exhibits a clear interferometric pattern due to 

the ordering of QD crystal. It is caused by the coherent interference of acoustic-phonon-

related Raman signals originated from the electrons in different QDs. These interferences 

depend on the electronic confinement within QD (form factor) and on the relative QD 

positions (structure factor) [1]. The form factor determines the spectral envelope. In the 

studied case, the weaker spatial confinement of electrons on the lateral dimensions re-

sults in a narrower momentum distribution and thus a restricted Raman spectral enve-

lope. With a limitation on low-frequency resolution, the Raman measurement reveals the 

information of ordered vertical arrangement of the QDs. The structure factor determines 

the oscillation period and contrast, which is proportional to [1] 

2 2( ) ( ) 2 ( ) ( ) cos[2 ( ( 1) / 2)]z z z z z z z z zH q k H q k H q k H q k q t N d+ ∆ + − ∆ − + ∆ − ∆ + −   

 (3.1.1) 

where qz is the wavevector of the phonons, ∆kz = 4nπ/λ (n is the refractive index of 

silicon) is the momentum change of Raman scattering, t is the thickness of the cap 

layer, d is the spacing between QD layers, and N is the number of layers. H is the usual 

interference function, 

sin( )
2( )

sin( )
2

Nd
Q

H Q
d

Q
= .  (3.1.2) 

Taking t = 100 nm, N = 11, and n = 4.23 [11], the structure factor can be calculated 

with a fitting parameter d = 10.97 ± 0.16 nm, as also shown in Fig. 1. Here the average 

sound velocity used in the calculation is determined by the literature values of sound ve-

locities [12] and the relative thickness of the Si spacer and the Si0.4Ge0.6 island layer. The 

vertical periodicity estimated by Raman measurement agrees well with the observations 

in TEM imaging and is crucial structural information for calibrating contributions of 

SiGe alloys to phonon scatterings, which will be discussed in details as follows. 
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Fig. 1 Low-frequency Raman spectrum of the QD sample. The bottom line is the calculated 
structure factor with a fitting parameter of d = 10.97 ± 0.16 nm, which was vertically 
shifted for clarity. The starred peaks are artifacts induced by the plasma absorption of the 
Argon laser. 

3.2 Transient Reflectivity Measurement 

To study the propagation properties of coherent acoustic phonons in the QD crys-

tal, the picosecond ultrasonic technique [13] was then adopted with a femtosecond 

pump-probe system. The light source was a mode-locked Ti:sapphire laser with 

~150 fs pulsewidth. Both optical pump and probe beams had the same wavelength 

of 780 nm and were focused onto the sample with a spot diameter of ~25 µm. The 

pumping fluence was ~200 µJ/cm2, while the fluence of the probe pulse was one 

order lower than the optical pump. This measurement was also done at room 

temperature. 

To generate and detect coherent acoustic phonons, an additional ~17 nm-thick 

Al film was coated on the sample surface. As we shined the sample with optical 

pump pulses, the transient temperature rise in the Al film induced thermal stress, 

which launches coherent acoustic phonons toward the QD crystal. The resultant 

coherent phonons have a broad-bandwidth with a central frequency determined by 

the thickness and sound velocity of the Al film [14]. When they propagates in the 

QD crystal, parts of phonons were scattered by the ordered QDs. The reflected 

acoustic phonons were detected by the optical probe pulse through the Al film 

again, while the transmitted ones can also be found in the measured transient 

signals due to backward Brillouin scattering [13]. 
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Fig. 2 Differential reflection changes of the QD crystal as a function of time delay. Differ-
entiation of the data is helpful to eliminate slowly varied background signal and thus clarify 
the acoustic dynamics. The inset is the magnified data for observing the features of acoustic 
echos clearly, where the red line is a typical fitting curve. 

Figure 2 shows the differential reflection changes as a function of time delay. 

To analyze the oscillation components, we performed Fourier transform for the 

differential data after 20 ps, as shown in Fig. 3. The spectrum obviously indicates 

three oscillation features (79, ~200, 344 GHz), which can be further divided into 

two parts according to their origins. The oscillation component with the lowest 

frequency (79.35 GHz) is contributed from the acoustic propagation in silicon. 

This frequency is determined by the momentum conservation between photons 

and phonons, and can be formulated as f = 2nVcosθ /λ, where n (λ �= 780 nm) = 

3.69 [11], V = 8440 m/s is the sound velocity of Si [12], and θ ~ 0o is the incident 

angle of the optical probe inside the material. With the reported material parame-

ters, f was calculated to be 79.85 GHz, agreeing well with our observations. The 

backward Brillouin oscillations can also be seen in the time-domain data clearly 

after a time delay of ~90 ps. 

Besides the Brillouin signals, the other oscillation features are attributed to the 

detection of coherent acoustic phonons by the Al film, which mainly occurs before 

~80 ps. From Fig. 2, we can find that the Al film vibrated at its natural frequency 

after optical excitation. It results in initial oscillations of ~200 GHz appearing at 0-

20 ps. The consequent acoustic phonons then propagated toward the QD crystal, 

and the “acoustic echo” can be observed at a delayed time after ~25 ps, corre-

sponding to the round trip time of the Si cap layer. The echo signals are empha-

sized in the inset of Fig. 2. From this figure, two high-amplitude acoustic echos 

following with a train of high-frequency oscillations can be found. They are 

denoted by Echos 1, 2, and PB individually. 
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Fig. 3 Fourier power spectrum for the transient data (Fig. 2) after 20 ps. The initial data was 
neglected in order to avoid the influence of huge oscillations near time zero on the data 
analysis. The splitting of spectral peaks near 200 GHz is due to multiple echos which were 
separated temporally. The inset shows the magnified power spectrum near 350 GHz and the 
calculated acoustic reflectivity with the reduced model. 

Echos 1 and 2 have an oscillation frequency of ~200 GHz. According to their 

arrival times at which the acoustic echos are sensed by the Al film, Echos 1 and 2 

originate from the reflection at the top and the bottom QD layers in the QD crys-

tal, respectively. The wavelength of 200 GHz acoustic phonons is 42 nm, which is 

~4 time longer than the vertical periodicity of the QD layers. It means that 200 

GHz is well below the first phononic bandgap of the QD crystal along the direc-

tion of phonon propagation. In addition, if we used a simplified 1D model (Rytov 

model [15]) to investigate phonon dispersion along the growth direction by con-

sidering uniform SiGe alloy layers, the calculated curve (not shown here) exhib-

ited a dispersion-free feature with an average sound velocity at ~200 GHz. Conse-

quently, the QD crystal can be accounted a homogeneously effective medium 

(phononic meta material) for 200 GHz acoustic phonons propagating along the di-

rection of the sample growth. From this viewpoint, the excited 200 GHz phonons 

would experience only two interfaces: top and bottom boundaries of the QD crys-

tal, so that two echos can be seen. 

Echo PB seems to be followed by Echo 1 so that it can be explained by the 

multiple scatterings of coherent phonons in the QD crystal. With the calculated 

dispersion relation for the QD crystal, Echo PB was attributed to the acoustic re-

flection at the first zone-edge mini-gap of the reduced Brillouin zone. Besides 

QDs, the wetting layers also scatter acoustic phonons and could thus open 

phononic bandgaps in an actual QD crystal. To characterize the contributions of 
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different scattering elements, we then compared the measured frequency of Echo 

PB with the calculated reflection spectrum, as shown in the inset of Fig. 3. The re-

flectivity was calculated by using transfer matrix method [7] with considerations 

of the multiple wetting layers, but without the existence of the QDs. This reduced 

model was used to examine the effect of the wetting layers on acoustic scatterings. 

The vertical periodicity of QD layers used in the calculation was obtained from 

the Raman measurement. From the inset of Fig. 3, the frequency of the spectral 

peak of the calculated reflectivity was found to be different from the experimental 

observations (~70 % of the calculated spectral width). This notable discrepancy 

thus shows that the wetting layers are not the only scattering elements for 344 

GHz acoustic phonons, i.e. other scattering origins should be considered. To in-

clude the effect of layered QDs, we applied an additional Si0.4Ge0.6 layer to the top 

of each wetting layer. It was regarded as an effective medium instead of laterally 

distributed dots. By fitting the spectrum of Echo PB, the thickness of the effective 

layers is 1.7-2.1 nm, which is twice thicker than the wetting layer and is ~60 % of 

the height of QDs. Our 1D calculation, therefore, indicated that besides the 

wetting layers, the QDs could play crucial role in the scatterings of coherent 

acoustic phonons at the mini-gap frequencies. 

4. Conclusions 

Raman and transient reflectivity spectroscopies were performed for studying the 

propagation properties of coherent acoustic phonons in a QD crystal. The ordering 

of QDs resulted in not only the interferometric patterns in the Raman spectrum but 

also acoustic echos at the frequency of phononic mini-gaps. By comparing those 

measurements, the structure information was extracted, and the contribution of 

QDs to the phonon scatterings can thus be characterized. Our demonstration thus 

shows future possibility for semiconductor QDs to create artificial nanocrystal 

with functional acoustic and thermal properties. 
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Abstract. Wave propagation characteristics of nonlinear one-dimensional pe-

riodic structures are investigated analytically, numerically and experimentally. 

A novel perturbation analysis is first applied to predict the band gap location 

and extent in terms of linear and nonlinear system parameters. Approximate 

closed-form expressions capture the effect of nonlinearities on dispersion and 

depict amplitude dependent cut-off frequencies. The predictions from the per-

turbation analysis are verified through numerical simulations of harmonic 

wave motion. Results indicate the possibility of input amplitude as a tuning 

parameter through which cut-off frequencies can be adjusted to achieve filter-

ing properties over selected frequency ranges. A periodic diatomic chain of 

stainless steel spheres alternating with aluminium spheres is experimentally 

investigated. The dynamic behavior of the chain is governed by Hertzian in-

teraction of spheres and by a compressive pre-load which can be adjusted to 

obtain linear, weakly nonlinear and highly nonlinear behavior. For a weakly 

nonlinear case, preliminary results in experiments show the tendency for a 

shift in the band gap edges by varying input amplitude. The paper is a work in 

progress, for which the experimental results for a weakly nonlinear system are 

interpreted by the perturbation analysis developed for a specific case of linear 

and nonlinear power law interaction of exponent 3/2. 
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1. Introduction  

The study of wave propagation in linear periodic structures of infinite extent has 

shown that for harmonic oscillation, these structures admit propagating and at-

tenuating wave solutions depending on the frequency of the motion. This includes 

the property of “Stop bands” where the waves attenuate allow periodic structures 

to behave as acoustic filters, wave-guides, resonators, etc.  A detailed study on 

techniques to analyze continuous linear periodic structures is given by Mead [1]. 

Under the assumption of linearity, periodic structures demonstrate interesting 

propagation properties; however, nonlinear periodic structures may exhibit en-

hanced wave transmission behavior. Localization and wave characteristics in 

nonlinear one dimensional elastic media have been studied by invoking continuum 

approximation [2-5]. The concept of nonlinear mode was introduced in [6] and 

was characterized by presenting periodic motions with all coordinates passing 

equilibrium points as well as extremum points simultaneously. Apart from con-

tinuous nonlinear systems, discrete nonlinear periodic systems, for example com-

posed by granular chains of spheres [7-10], have also been subjects of great inter-

est. Significant wave speed tunability has been demonstrated experimentally by 

varying the induced pre-load on one-dimensional nonlinear phononic crystals 

formed by chains of viscoelastic PTFE (polytetrafluoroethylene) and elastic 

(stainless-steel) beads [11].  

There exist a number of analytical methods to study wave propagation in 

nonlinear periodic structures such as nonlinear mapping [12] and harmonic bal-

ance [13]. A number of perturbation techniques have been documented as well, 

such as the Modified Lindstedt Poincaré method [14], homotopy perturbation [15] 

and several other analysis methods are described in detail by Nayfeh and Mook 

[16]. In this paper, a straight-forward perturbation analysis [17] similar in spirit to 

the Lindstedt Poincaré technique is applied to a discrete one-dimensional nonlin-

ear periodic chain with dynamics governed by a Hertzian contact model to obtain 

closed-form amplitude dependent dispersion relations. Next, the focus is subse-

quently placed on experimental validation of this amplitude dependent dispersion 

behavior. A diatomic chain consisting of aluminum spheres alternating with 

stainless steel spheres with a lever actuated preload system and piezoelectric ex-

citer is setup and tested. The paper then concludes summarizing the main findings 

of this work and presenting future directions of research. 
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2. Analytical Analysis of Dispersion 

2.1 Equations of Motion  

Consider a one-dimensional chain of identical masses subject to initial pre-load, 

which is a constant compressive force 0F  applied at the boundaries [8]. This re-

duces the distance between the mass centers by a magnitude 0δ , which is equal to 

the initial displacement of the mass centers. Figure 2.1 describes the schematic of 

the chain. The displacement of the thi mass from its equilibrium position is de-

fined by coordinate iu and positive direction is in the direction of wave travel. 

Hertz’s interaction law models the force between two masses by 3/ 2
0( )dF δ δ+∝ , 

where dδ is relative displacement between the masses. Assuming the Hertz con-

tact force law, the equation of motion governing the thi mass is given by [8], 

( ) ( )3 3
2 2

0 1 0 1 , 1 2i i i i iu A u u A u u N iδ δ− += + − − + − − ≥ ≥ɺɺ  (2.1) 

( )
( )

1/2

2

2

3 1

E R
A

mυ
=

−
 (2.2) 

where m is the mass of the sphere, R is the radius of the sphere,υ is the Pois-

son’s ratio and E is the elastic modulus.  

 

 

Fig. 2.1 A schematic of pre-loaded one-dimensional chain with Hertz force interaction 
model [8]. 
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2.2 Perturbation Analysis 

Described next is a perturbation analysis applied to the system governed by equa-

tions of motion given by Eq. (2.1). A more general approach of this novel pertur-

bation procedure applied to discrete systems is documented by Narisetti, Leamy 

and Ruzzene [16] wherein various one-dimensional unit cell configurations are 

examined and closed-form dispersion relations are obtained. Eq. (2.1) is trans-

formed by Taylor series expansion more suitable for perturbation analysis. It is as-

sumed that [10] 

1

0

1i iu u

δ
− −

<< . (2.3) 

With the Taylor series expansion, under the assumption of Eq. (2.3), Eq. (2.1) 

transforms into the following form, 

( ) ( ) ( )( )
( ) ( )( )

2 2

1 1 1 1

3 3

1 1

31 1
2 2 2

0 0 0

2

3 3
, ,

2 8 16

i i i i i i i i

i i i i

u u u u u u u u

u u u u

A A A

m m m

α β

γ

δ δ δα β γ

− + − +

− +

−−

= + − + − − −

+ − − −

−
= = =

ɺɺ

  (2.4) 

Introducing non-dimensional time tτ ω= and substituting the following 

displacement and frequency expansions about linear solution into Eq. (2.4), 

2 3
0 1 2

(0) 2 (1) 3 (2) 4

( )

( )i i i i

O

u u u u O

ω ω εω ε ω ε
ε ε ε ε

= + + +

= + + +
 (2.5) 

The following ordered equations are obtained,  

( )
2 (0)

0 2 (0) (0) (0)
0 1 12

: 2 0i
i i i

d u
u u u

d
ε ω α

τ − ++ − − =  (2.6) 

( )
( )( )

2 (1) 2 (0)
1 2 (1) (1) (1)

0 1 1 0 12 2

(0) (0) (0) (0) (0)
1 1 1 1

: 2 2

2

i i
i i i

i i i i i

d u d u
u u u

d d

u u u u u

ε ω α ω ω
τ τ

β

− +

+ − − +

+ − − = − +

+ − −
 (2.7) 
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( ) ( )
( ) ( ) ( )( )
( ) ( )( )

2 (2) 2 (1) 2 (0)
2 2 (2) (2) (2) 2

0 1 1 0 1 1 0 22 2 2

(0) (0) (0) (1) (1) (1) (1) (1) (0) (0)
1 1 1 1 1 1 1 1

3 3(0) (0) (0) (0)
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β β
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 (2.8) 

Next, a plane wave solution is imposed to yield the following generator solu-

tions and the distance between two adjacent cells is 02a R δ= − , 

( ((0) 0 0

( ((0) 0 0
1

) )

( 1)) ( 1))

2 2

2 2

j jj j
i

j jj j
i

ai ai

a i a i

A A
u e e e e

A A
u e e e e

τ τ

τ τ

κ κ

κ κ

− −

− −
±

± ±

= +

= +
 (2.9) 

The linear dispersion relation is obtained by substituting Eq. (2.9) into Eq. (2.6) [10], 

( )( )0 2 1 cos aω α κ= −  (2.10) 

The updated 1ε order equation after substitution of Eq. (2.9) into Eq. (2.7) is 

given by, 

( )
2 (1)

1 2 (1) (1) (1) ( ) ( ) (2 ) (2 )
0 1 1 1 22

: 2 . .j j j ji
i i i

ai aid u
u u u c e e c e e c c

d
τ τκ κε ω α

τ − ++ − − = + +  (2.11) 

where c.c. denotes complex conjugate of all the preceding terms and the coeffi-

cients 1c and 2c are given by, 

( )
2
0

1 0 1 22 , sin(2 ) 2sin( )
2

A
c c j

βω ω κ κ
 

= = − 
 

 (2.12) 

The homogenous part of Eq. (2.11) is similar to Eq. (2.6) and it can be shown 

that all the terms in the forcing function (i.e. RHS of Eq. (2.11)) with spatial-

temporal form of ( )j ai je eκ τ yield an unbounded solution for (1)
iu and therefore need 

to be eliminated (secular) [17]. By setting 1 0c = , the first order correction of fre-

quency 1 0ω = . But the remaining forcing in Eq. (2.11) always occurs 

at (2 ) 2j ai je eκ τ and hence a particular solution for (1)
iu  is found at this order for 

a subsequent substitution in the next ordered equation to find second order 

correction to the frequency. 
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( ) ( ) ( ) (2 ) (2 )
1 1

2
1 2 2

0

. .

, 2 (cos(2 ) 1)
4

i j ai j j ai j
i

s
s

u A e e B e e c c

c
B a

κ τ κ τ

ω α κ
ω ω

= + +
−

= = −
+

  (2.13) 

By substituting Eq. (2.12) and Eq. (2.9) into Eq. (2.8), the following equation 

results, 

( )
2 (2)

2 2 (2) (2) (2) ( ) ( ) (3 ) (3 )
0 1 1 1 32

: 2 . .j j j ji
i i i

ai aid u
u u u d e e d e e c c

d
τ τκ κε ω α

τ − ++ − − = + +
(2.14) 

Observing that the linear kernel of Eq. (2.14) is similar to Eq. (2.6) and that 

forcing term ( )j ai je eκ τ yields an unbounded solution for
(2)
iu , 1d is set to zero 

which yields an expression for frequency correction at second order. 

2.3 Dispersion Relations 

The closed form expression for frequency correction at second order in terms of linear 

and nonlinear parameters is given by, 

2 2 2 2
0

2
0

((3 2 )cos( ) 6 cos( ) 2 3 )

2

A a aγα β κ γα κ β γα
ω

αω
− − + +

=  (2.15) 

And 2
0 2ω ω ε ω= + where 0ω  and 2

ω are given by Eq. (2.10) and Eq. (2.15) re-

spectively. From Eq. (2.4), it is observed that the nonlinearity is present in quadratic as 

well as in the cubic form. The quadratic nonlinearity is hardening while the cubic is 

softening. It is seen that hardening stiffness increases the cutoff frequencies while the 

softening decreases the cutoff frequencies with increasing wave amplitude [16]. Figure 

(2.1a) depicts the dispersion trend predicted by perturbation analysis with change in 

amplitude for a generic Hertzian-modeled periodic chain. 

Figure (2.1b) depicts dispersion trends of a nonlinear Hertzian diatomic chain 

and the closed from expressions were generated by applying similar perturbation 

approach as explained above. Figure (2.2) shows the correction to lower and up-

per band gap limits with varying amplitude of the wave (assuming weakly 

nonlinear behavior throughout). 
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Fig. 2.1 (a) Monoatomic Chain (Hertzian) (b) Diatomic Chain (Hertzian) Dispersion vs. 
amplitude. Low amplitude  High Amplitude. 

 

Fig. 2.2 Upper and lower band-gap corrections with changing amplitude of the wave in a 
diatomic chain consisting of Aluminium and Stainless steel spheres.  

3 Experimental Results 

3.1 Experiment Setup 

We constructed an experimental setup to test the presence and tunability of 

acoustic band gaps in heterogeneous periodic (dimer) granular systems, and the 

effects of the nonlinearity in the overall acoustic response [15]. We assembled a 

one dimensional chain of 81 spherical beads composed of alternating aluminum 

(6061-T6, McMaster-Carr) and stainless steel (316-type, McMaster-Carr) in a 

horizontally mounted holder. We applied a fixed static precompression (F0=20 N) 
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to the chain to linearize the otherwise fully nonlinear dynamic response of the 

system. The aluminum beads were 19.05 mm in diameter, with an elastic 

modulus EAl=68.9 GPa, poisson ratio vAl=0.35 (Matweb, Aluminum 6061-T6; 

6061-T651), and mass m=9.73 g. The steel beads were similarly 19.05 mm in 

diameter, Es=193 GPa, vs=0.3 (Matweb, 316 Stainless Steel, annealed bar), and 

m=29.1 g. The chain of beads was kept in a one-dimensional configuration by 

four polycarbonate restraining bars (12.7 mm in diameter) that were held in 

place by a 12.7 mm thick polycarbonate guide plates placed approximately at 

168 mm intervals down the length of the chain.  

The chain was pre-compressed between two “walls” placed at the two ends 

of the system. Precompression was added by an actuated lever arm placed at 

one end of the chain that transfers force from a weight hanging on a horizontal 

bar mounted in the horizontal direction (Fig. 1(a,b)). The chain was excited at 

the desired frequencies by a P-820.10 (Physik Instrumente) preloaded piezo-

stack actuator placed at the other end of the chain. The chosen actuator has a 

resonant frequency of 22 kHz, maximum displacement to 45 m, and max i-

mum force up to 50 N. We drove the actuator with a sine function voltage sig-

nal from an Agilent 33220A signal generator passed through a Piezo Systems 

Inc. EPA-104 linear amplifier. The AC voltage post-amplifier was read by a 

standard voltmeter.  

The evolution of the force-time history of the excitations propagating in the 

dimer system was visualized by means of periodically placed piezo-sensors, 

sandwiched inside selected particles. We used 15 mm diameter, 0.9 mm thick 

discs (StemInc) with a resonant frequency of 2.2 MHz. These piezo-sensors 

were glued between two hemispheres with carved lodging for the wires pre-

serving the diameter (and mass) of the original bead [9]. Output was read by 

two synched Tektronix TDS 2024B oscilloscopes. The sensors were placed 

approximately 16 particles apart from each other.  

  

(a) (a) 

Fig. 3.1 (a) Schematic diagram and (b) Digital image of experimental setup. 
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3.2 Results 

To observe the change of the band edges in a dimer system as a function of input dy-

namic force amplitude, we fixed the input voltage of the actuator (keeping the system 

under constant static precompression) and burst a sine signal at a fixed number of cycles 

for a set frequency. We recorded the output at each of the sensors for the different cy-

cles. This process was iterated through the frequency range of the predicted band gap 

with increasing resolution near the predicted band edges, and repeated multiple times for 

different input voltages (and therefore different driving forces).  

Tests were run with 10-cycle and 5000-cycle bursts, and the maximum force was re-

corded for each sensor. Running the short 10-cycle burst tests allowed the wave packets 

at selected frequencies to travel across the entire length of the chain without interacting 

with the walls (and being affected by reflections). The 5000-cycle test was intended to 

study the effects of a quasi-continuous excitation.  Data was recorded 20 ms after turning 

on the actuator. Accordingly, the measured signal involves reflections from both bounda-

ries, and the excitation of the system as a whole. Figure 3.2 shows the force ratio trans-

mitted between the particle #34 and the first bead (next to the actuator) during a 5000-

cycle test as a function of frequency and input voltage. Figure 3.3 shows a result of force 

ratio transmitted through sensors at Particles 17 / Particle 1 for a 10 cycle test. A small 

shift of the band edges frequency is reported and a sharp transition can be seen as the in-

put amplitude reaches 50 V.  This value corresponds to a driving force amplitude of ~ 

23.5 N, comparable to the level of the precompressive force. In this regime, the dynamic 

response of the system is expected to be in the strongly nonlinear regime, which is not 

covered by the assumptions made in the perturbation analysis followed for this study. 

 

Fig. 3.2 Transmission diagram for a 5000-cycle burst test showing the output force ratio for 
bead #33 (counting from the actuator) normalized over the bead nearest to the actuator. The 
transmission and stop bands (acoustic and optical bands and the band gap in between) are 
plotted for different driving force amplitudes. 
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Fig. 3.3 Transmission diagram for a 10-cycle burst test showing the output force ratio for 
the bead #17 (counting from the actuator) normalized over the bead nearest to the actuator. 
The transmission and stop bands are plotted for different driving force amplitudes. A dis-
tinct transition can be seen around a driving voltage of 50V, which corresponds to an input 
amplitude being approximately equal to the precompression force (~20 N).  

4. Conclusions 

A novel perturbation procedure suitable for nonlinear discrete periodic sys-

tems has been applied to obtain approximate dispersion relation. Amplitude 

dependent dispersion (in the higher order estimation) for a discrete system 

whose dynamics are governed by Hertz interaction force is derived. It is ob-

served that the wave speed changes with increase in amplitude at certain fre-

quency leading to small changes in the band edges. Additional work is needed 

in order to correlate the analytical predictions with the experimental observa-

tions. Specifically, near term studies will verify that the applied preload actu-

ally leads to a weak nonlinearity within the theoretical assumption at the basis 

of the perturbation analysis. On the analytical point of view, the presented ap-

proach will be extended to investigate the strongly nonlinear behavior, so that 

the theory can predict the effect of a large range of amplitudes on the wave 

properties of the chain. 
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Abstract. In this paper, the Lamb waves inside phononic-crystal (PC) plates are 

investigated numerically and experimentally. Two types of PC plates are studied: 

flat PC plates that composed of binary constituents and surface-stubbed PC plates 

with single constituting material but periodic cylindrical stubs protruded on one of 

the plate surfaces. The dispersion and characteristic displacement of Lamb waves 

are analyzed. Further, resonant cavities and waveguides are defined and the re-

lated acoustic modes were investigated. The analyses help understand the funda-

mental of Lamb waves inside PC plates, cavities and waveguides. Thus new 

acoustic devices based on PC could be designed accordingly.  

1. Introduction 

Phononic crystal (PC) is a periodic composite structure comprised of two or more 

elastic materials which differ in mechanical properties. The existence of complete 

phononic band gaps, frequency ranges in which acoustic waves are forbidden to 

propagate, suggests many possible applications of phononic structures, such as 

acoustic lens, acoustic filters, and efficient waveguides. In the past decade, the band 

gaps for bulk waves in unbounded PC and surface waves in semi-infinite PC have 

been considerably investigated [1-3]. 

Similar to the surface waves that can be guided by the surface of a half space, 

Lamb waves are guided to propagate by a plate of finite thickness. Therefore, they 

are especially favorable in many applications for the guiding characteristics. Guided 

acoustic-wave energies are much more effective to be used than bulk acoustic 
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waves. For example, surface waves and Lamb waves are controlled generated and 

received by the patterning the source and detection to efficiently interact with envi-

ronmental physical quantities around their guiding surfaces, like surface-acoustic-

wave and Lamb-wave sensors. Recently, Lamb waves in two-dimensional PC plates 

have received increasing attention in the community of PC research because the re-

leased researches show that Lamb waves in two-dimensional PC plates also exhibit 

complete band gaps. [4, 5] As a result, many efforts has devoted to the studies of 

band gaps in PC plate and their applications, such as Lamb-wave filters, Lamb-wave 

resonant cavities for amplification of acoustic energy.  

In this paper, we report our investigation on PC plates and their applications util-

izing the band gaps. Two categories of PC plates are studied: flat PC plates that 

composed of binary constituents and surface-stubbed PC plates with single constitut-

ing material but periodic cylindrical stubs protruded on one of the plate surfaces. 

This paper is organized as follows. In Sec. 2, propagation of Lamb waves in flat PC 

plate and in that with a cavity is characterized. Section 3 demonstrates the propaga-

tion and waveguiding properties of Lamb waves in the surface-stubbed PC plates 

and the usage for frequency selection from broadband acoustic energy. Finally, Sec. 

4 briefly summarizes and concludes this work. 

2. Flat Phononic-Crystal Plates 

The basic type of PC plate is a plate composed of binary materials. The plate stud-

ied in this section has inclusions arranged periodically and two flat free surfaces.  

The dispersion and band gaps of a square lattice flat PC plate consisting of tung-

sten cylinders embedded in a silicon matrix were analyzed firstly and then reso-

nant cavities of acoustic waves inside the PC plate were mentioned.  

2.1 Dispersion and Complete Band Gaps 

A schema of the square lattice W/Si PC plate is shown in Fig. 1(a). The cylindrical 

inclusions are arranged to form a square lattice on the x1-x2 plane. The normal of 

the free surfaces of the plate is in the x3-axis. The [100] direction of the (001) sili-

con plate coincides with the x1-axis of the PC plates. The lattice constant a is de-

fined as 10 µm, and the radius r of tungsten cylinder is 2.5 µm. Thus, the filling 

fraction of square lattice crystal equals 0.196. We chose the thickness h as 10 µm 

for the obvious complete band gap. 
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Fig. 1 (a) The schema of a square lattice PC plate with circular cylinders embedded in a 
background material. (b) The dispersion of the W/Si PC plate.  

The band structures of PC plates are decided by the filling fraction, the ma-

terials, geometry conditions (i.e., lattice symmetry), and also thickness of 

plates [5, 6]. We adopted the finite-difference time-domain (FDTD) method 

[7] to analyze the dispersion of acoustic waves inside the W/Si PC plate. On 

the curves, every point represents one eigenmode of the phononic-crystal 

plate. Obviously, there is a range without any eigenmode, and thus the com-

plete band gap is identified as the range from 223.08 to 249.56 MHz. Be-

sides, a partial band gap is observed between 249.56 and 254.76 MHz at the 

ΓX-direction.  

In the PC, the finite size of thickness and inclusions support mode conver-

sion, and thus the eigenmodes can’t be simply decoupled into the in-plane 

modes or the anti-plane modes. However, they still can be classified as flex-

ural (anti-symmetric), longitudinal (symmetric) and transverse (shear horizon-

tal) waves, similar to the Lamb waves in the classical plates [6].  

The modes of the bands were investigated by calculating their displacement 

distribution. A segment consisting of four unit cells, as shown in Fig. 2(a), is 

defined to demonstrate the polarization. Two-dimensional vector plots were 

plotted to show the characteristic displacement distribution. Four eigenmodes 

were demonstrated in Figs. 2(b)-(e) to present the first four bands at the ΓX -

direction. They are points A, B, C and D in Fig. 1 with wave vector k of 

(π/a,0). The directions of cones indicate the direction of displacement vector, 

and the sizes reflect the magnitudes of vectors which were normalized to their 

maximum value. 
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Fig. 2 (a) A 2a×2a segment of the PC plate. The dashed-dot lines indicate the planes which 
the following vector plots lie on. (b) the displacement filed of A0 mode. Dashed lines indicate 
the boundaries of unit cells. (c) SH0 mode; (d) A0 mode of the folded band; (e) S0 mode. 

With the displacement distributions, these modes were classified. Fig. 2(b) 

shows the displacement distribution of point A in Fig. 1(b). The displacement 

components u1 and u3 dominate the behavior of the mode. Thus the first band ba-

sically corresponds to the lowest flexural (A0) mode in a plate. Fig. 2(c) presents 

the mode of point B. The eigenmode has a primary polarization in the x2-direction 

and this is the zero-th order mode of shear horizontal wave (SH0). The displace-

ment of point C is shown in Fig. 2(d). The main components consisting of u1 and 

u3 indicate that the third mode also belongs to the A0 mode, a folded band of the 

first band. The fourth mode of point D has a higher phase velocity than the previ-

ous two bands. Fig. 2(e) shows displacement mainly along x1-direction, and the 

field is symmetric with respect to the plane at x3=h/2. This is the lowest longitudi-

nal mode (S0). In summary, in this PC plate, the acoustic waves present similar 

modes as the Lamb modes in a classical plate. 

2.2 Resonant Cavities 

In the flat W/Si PC plate, the periodic tungsten cylinders scatter Lamb waves and result 

in band gaps. Within the range of band gaps, propagation is forbidden and thus Lamb 

waves can not penetrate the crystal. Based on the property, resonant cavities of Lamb 

waves were constructed. A cavity is a defect in the PC plate, and the defect allows some 

modes at the range of band gaps. We defined a dislocation by arranging extra space in 

the PC plate and formed a resonant cavity of Lamb waves. A typical resonant cavity is 

shown in Fig. 3(a). An extra space of ∆L is inserted and then the cavity length L is 

defined as the distance between two neighboring cylinders of the defect.  
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To investigate the property of the cavity, the supercell technique is used to analyze the 

dispersion. First, an extra dislocation of ∆L=7.5 µm is defined and thus the cavity has a 

length L=12.5 µm (i.e. 1.25a). A supercell of 10.75a×1a×1a is adopted to calculate the 

wave modes inside the range of band gaps. The dispersion is plotted in Fig. 3(b). We fo-

cused on the frequency range of 190-280 MHz to observe cavity modes inside the band 

gap. The boundaries of complete band gaps are marked with lines at 223.08 and 249.56 

MHz. Besides, a line at 254.76 indicates the upper limit of the partial band gap at the ΓX 

-direction. Numerous extended modes outside the band gap are not concerned, and the 

regions are presented in gray. Two noticeable flat bands appear at 232.40 and 247.66 

MHz, inside the complete band gap. Since the bands are horizontal, they have zero group 

velocity and present the resonant modes.  

In Fig. 3(b), the bands of Lamb waves in the perfect PC plate were plotted again as 

hollow circles. The X point presents wave vectors k=(π/a,0) for the perfect PC plate and 

k=(π/10.75a,0) for the cavity. Although the values of the boundaries of the Brillouin 

zone are not the same, the figure still is useful to observe the gap and resonant modes.  

 
Fig. 3 (a) A resonant cavity based on a PC plate. (b) The dispersion shows resonant modes 
of a cavity of L=1.25a. The transmission is on the right. The solid and dotted lines present 
results of Lamb waves propagating through the cavity and a ten-layer PC plate, respec-
tively. (c) The resonant modes excited by the source polarized at x3-direction on the top sur-
faces of plates. (d) The displacement field of the 232.40-MHz mode inside a cavity of 
L=1.25a.  
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The transmission of Lamb waves passing the resonant cavity is also shown in 

Fig. 3(b). A line source is defined along the x2-direction to launch an x3-

polarization wide-band wave packet. The displacement is recorded on the other 

side of the PC cavity to calculate the spectrum and the transmission. The trans-

mission for the cavity is plotted as the solid line; besides, the transmission of a 

ten-layer PC plate is also shown as the dashed line. In the transmission, two 

peaks of f=232.40 and 247.66 MHz are obtained in the solid line which is not 

obtained in the dashed line. This consists with the resonant modes shown in the 

dispersion. In addition, comparing the transmission with the dispersion of the 

PC plate (the dashed line and the hollow circles), two bands are not excite by the 

x3 polarization line source. Thus the ranges 202.40-223.08 and 274.40-282.04 

MHz become non-excitation gaps, and low transmission coefficient is obtained.  

The Fabry-Perot-type standing wave resonant condition, nλn/2=Ln, is useful 

to understand the resonant waves inside the PC cavities, [8, 9] where n is the 

order of the resonant modes, λn is the wavelength, and Ln is the equivalent 

cavity length for the nth order resonant mode. However, the resonant fre-

quency cannot be calculated simply according to the condition, because the 

waves can penetrate the geometric boundary of cavities and Lamb waves are 

dispersive. To figure out the relationship between the resonant frequency and 

the cavity length, we directly calculate the transmission of cavities with dif-

ferent length. The cavity length changes from 1a to 2.5a and the resonant fre-

quencies of all cavities are identified and marked in Fig. 3(c). The resonant 

modes are identifiable at the range 202.40 MHz to 254.76 MHz and they result 

in four curves. In these curves, the lower resonant frequency is obtained while 

the cavity length is increased. The variation consists with the trend expected 

by the Fabry-Perot condition. 

Further, for distinguishing the difference of these four curves, the displace-

ment distributions of these curves are calculated. One example is shown as Fig. 

3(d) for the mode of 232.40-MHz inside a cavity of L=1.25a, the point (a). The 

displacement field shows obvious u3 components which are anti-symmetric with 

respect to the plane at x3=h/2. This is the lowest order flexural mode (A0, n=1) 

with only a half of a complete wavelength inside the cavity. Similarly, we iden-

tified point (c) belongs to the second-order resonant flexural mode (A0, n=2), 

point (b) the first longitudinal resonant mode (S0, n=1), and point (d) the second 

longitudinal resonant mode (S0, n=2). The result could be used to design proper 

cavities for the specific resonant frequency, and further a magnified Lamb wave 

source was designed accordingly [9].  
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3. Stubbed Phononic-Crystal Plates  

This section investigates the PC plate structure with a stubbed surface [10, 11] in-

stead of the binary flat plate. The idea is to produce a periodic variation in the geo 

metries rather than the material properties, which generates similar influence on 

the acoustic waves as well. It can be shown that complete band gaps and related 

characteristics exist in the proposed periodic stubbed plates.  

3.1 Dispersion Relations of the Plate Modes 

Consider a thin plate (plate thickness of h1=1mm) with periodic cylindrical 

stubs on one of the plate surfaces [a unit cell of the structure is shown in Fig. 

4(a)]. The material chosen to constitute the whole structure is aluminum 6061. 

The cylindrical stubs are arranged in square lattice with a lattice constant a=10 

mm. The radius of the cylindrical stubs is r=3.5 mm, and the filling factor de-

fined as F=πr2/a2 is 0.385.  

For waves propagating with a Bloch wave vector along the boundaries of the 

irreducible part of the first Brillouin zone, the calculated band structure by using 

finite-element method (with Comsol Multiphysics software) is shown in Fig. 4(b). 

The band structure exhibits a complete band gap ranging from 114 to 143 kHz 

and three partial band gaps in the Γ-X direction. Furthermore, the band structure 

displays many flat bands which reveal the resonant characteristics of the PC plate.  

 

 

 

 
Fig. 4 (a) Schematic of a unit cell of the PC plate with a periodic stubbed surface. (b) Band 
structure of Lamb waves in the stubbed PC plate. 
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3.2 Complete Band Gaps and Resonant Modes 

To demonstrate the evidence of the complete band gap and resonance in 

the stubbed PC plate, a series of laser ultrasonic experiments are con-

ducted. The fabricated structure contains 16×10 stubs on one of the plate 

surfaces. In the experiments, Nd:YAG pulsed laser is applied on the PC 

structure to generate broadband wave energy, and a He-Ne laser interfer-

ometer is used to receive the signal of acoustic waves propagating in the 

structure. The source and receiver are spaced by four unit cells in the 

structure. Both the Γ-X and Γ-M directions are considered. The digitized 

sampling rate for the received wave signal is 50 MHz so good resolution of 

the spectrum is obtained. 

Shown in Fig. 5 are the measured reference spectra in the Γ-X and Γ-M 

directions, respectively. The reference spectrum is defined as the ratio of 

the spectrum measured on the stubbed PC plate to that measured on a uni-

form thin plate of thickness 1 mm. The spectra show very low intensity be-

tween 114 and 143 kHz which coincides with the predicted range of the 

complete band gap in Sec. 3.1. The spectrum measured along the Γ-X di-

rection also significantly drops off in the ranges that exactly conform to 

the partial band gaps. Moreover, in Fig. 5(a), there are peaks in the spec-

trum at the band-edge frequencies of 20, 100, 110, and 205 kHz, which 

demonstrate the evidence of resonances of the structure. 
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Fig. 5 Experimental measurement of reference spectra for the waves propagating in the 
stubbed PC plate structure along the (a) Γ-X and (b) Γ-M directions.  
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3.3 Waveguiding and Frequency Selection 

Since the Lamb waves with frequencies in the band gaps are expected to be only 

able to propagate along the line defect, one can make a channel based on the 

stubbed PC plate to guide the wave energy flow two-dimensionally if the band gap 

is complete. Accordingly, a design of a bent waveguide created in the stubbed PC 

plate used is proposed, and results of laser ultrasonic measurement are demon-

strated below. The bent waveguide is formed with two-graduation turns produced 

by removing some of the stubs from the stubbed PC plate, and the schematic of 

the designed and fabricated structure is shown in Fig. 6(a). When broadband elas-

tic waves are generated in the thin plate, all the waves with frequencies either out-

side or inside the complete band gap are incident. It may be judged that most of 

the energy of the waves with frequencies outside the complete band gap may 

propagate straightforwardly through the stubbed PC plate; however, for those in-

side the complete band gap, they can not keep going straight. The waves are, 

therefore, compelled to make a turn and propagate along the bent waveguide. For 

comparison, measurements of the ultrasonic signals are carried out at points a, b, 
c, and d, respectively, shown in Fig. 6(a). Note that the spectrum measured at 

point a (55 mm apart from the source) is regarded as the reference corresponding 

to the measurements at other points.  

Figure 6(b) shows the reference spectra of the measurements. For the meas-

urement at point b, which is 60 mm apart from point a, the reference spectrum ex-

hibits several peaks which associate with the resonance of the flat bands in the 

band structure [Fig. 4(b)]. Also, very low intensities are displayed in the ranges 

corresponding to the complete and partial band gaps. Since the periodic stubs are 

ordered between the points a and b, the measurement at point b is, therefore, in-

trinsically associated with the characteristics of waves in the perfect periodic 

structure. Observe the spectra measured at point c and point d located inside the 

waveguide. An interesting phenomenon is found that, in the complete band gap, 

the intensities of the spectra are obviously outstanding rather than sunken, with 

values about 0.3 and 0.2. That is to say, the original broadband acoustic signals at 

point a are separated into the resonant energy with frequencies outside the com-

plete band gap and guided energy within the complete band gap propagating along 

the bent waveguide. Based on the experimental results, we may conclude that the 

measured results conform to the prediction about the band gaps schemed in Fig. 

6(a), and the proposed phononic waveguiding structure may be characterized by 

the selection of acoustic frequency.  
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Furthermore, it should be noticed that, in Fig. 6(b) where the frequency range 

from 66 to 100 kHz, the measured spectra in the waveguide exhibit an obviously 

higher intensity in that range which corresponds to no band gaps. However, an 

outstanding signal is still found. This phenomenon is discussed in the following. 

On observing the band structure in Fig. 4(b), there are two frequency bands ex-

tended in the range from 66 kHz to 100 kHz. By calculating the displacement 

fields, the eigenmode shapes of the bands show the displacement fields are mainly 

governed by the vibrations associated with the symmetric (S0) and transverse (T0) 

plate modes in the frequency range. However, the broadband elastic waves gener-

ated by Nd:YAG pulsed laser are major in anti-symmetric modes, minor in sym-

metric modes, and lacked in transverse plate modes. Therefore, in Fig. 6(b), as 

considering the ranging from 66 to 100 kHz, the modes are not suitably coupling 

to and converted from the anti-symmetric modes that can be effectively generated 

by the pulsed laser to propagate in the stubbed PC plate; therefore, most of the en-

ergy excited with frequencies in this range can only stay in the non-stubbed re-

gions of the plate, i.e., the waveguides. As a result, for the laser ultrasonic excita-

tion, this frequency range behaves as a complete band gap. It is called the deaf 

bands. Based on the existence of the deaf band with selectivity due to the applied 

source, it is reasonable to claim that waves with frequency ranging from 66 to 100 

kHz should appear and be measured at points c and d in the experiment. Obvi-

ously, broadband signals can be separated into a lot of energy flows according to 

the wave properties in different frequency bands and can be measured at different 

positions through a proper design of the phononic structure. 

 
Fig. 6 (a) Paths of the waves with frequency respectively outside and inside the complete 
band gap propagating in the structure with a bent waveguide. (b) Comparison among the 
spectra measured at point b, c, and d. 
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4. Conclusion  

In summary, for the flat PC plates, the dispersion of the square lattice W/Si PC plate is 

calculated and a complete band gap is observed. By investigating the displacement dis-

tribution of eigenmodes, the flexural, longitudinal, and shear horizontal waves are 

classified and help understand wave propagation in the PC plate. The related resonant 

cavities were also investigated to show the relation between the cavity length and 

resonant frequencies. For the surface-stubbed PC plate, the evidence of the complete 

band gap and resonances in the plate is demonstrated. Based on the complete band 

gap, a stubbed PC plate with a bent waveguide is designed and applied to use for fre-

quency selection of Lamb waves. The experimental results by using the laser ultra-

sonic technique show that wave signals with the frequencies inside the complete band 

gap can be guided to follow the designed route. Finally, we note that the results of this 

paper could be further applied to innovated design of acoustic-wave devices. 
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Abstract. This paper reviews a phase-sensitive and fast-scanning laser probing 

system developed by the authors’ group for the diagnosis of radio frequency (RF) 

surface and bulk acoustic wave (SAW/BAW) devices. The system is based on the 

Sagnac interferometer, which is insensitive to low frequency vibration. From this 

feature, we can maximize the scanning speed without sacrificing the signal-to-

noise ratio of the measurement. It is demonstrated that high quality two-

dimensional (2D) image of SAW/BAW field patterns can be captured in minutes 

order. Currently the maximum applicable frequency is about 2.5 GHz. Because of 

the phase sensitivity, the measured field in the space domain is readily converted 

into the wavenumber domain by the 2D Fourier Transform. It is also demonstrated 

how effective the wavenumber domain analysis is for the purpose. 

1. Introduction 

Currently, use of laser probing systems[1-3] is essential for the research and develop-

ment of sophisticated radio frequency (RF) surface and bulk acoustic wave 

(SAW/BAW) devices, which are used widely in various communication systems[4]. 

For detecting acoustic vibration, the Michelson and Mach-Zender interferometers 

has widely been used[1,3]. The method detects surface vertical motion through the 

interference between two beams reflected by the vibrating surface and static mirror. 

The SAW/BAW field can be visualized by either scanning a laser beam-spot on the 

vibrating surface or by mechanically translating the device under test (DUT). 
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One of the drawbacks of this method is that the sensitivity is independ-

ent of the frequency of the vibration, and that the whole system is occa-

sionally affected by a low-frequency vibration caused by the scan. There-

fore, the scanning speed is limited so that the mechanical disturbance is 

minimized[1,3]. 

The knife-edge method has been also used for the purpose[4-7]. Since the 

method optically detects a surface micro-bending caused by the wave propa-

gation, the system is inherently insensitive to a low-frequency vibration. 

Thus together with a fast scanning technique, the system is made capable to 

capture high quality two-dimensional (2D) images of SAW field patterns in 

minutes order[6,7]. 

Although this method is effective in the characterization of SAW devices, 

it is not suitable for BAW device diagnosis, in which the vertical displace-

ment component is dominant. This is because the knife-edge method is, in 

principle, only sensitive to a surface bending. 

This paper reviews a phase-sensitive and fast-scanning laser probe system 

developed by the authors’ group, which is applicable to the diagnosis of RF 

SAW/BAW devices[8]. 

For the optical sensing, the Sagnac interferometer[9] composed of micro-

optic elements is employed. Although the Sagnac system is able to detect 

vertical motion of vibration similar to the Michelson/Mach-Zender interfer-

ometer, its significant difference is that owing to its intrinsic frequency de-

pendence, RF surface vertical motion can selectively be detected free from 

the mechanical disturbance. From this feature, we can maximize the scan-

ning speed without sacrificing the signal-to-noise ratio (SNR) and sensitivity 

of the measurement. 

As a demonstration, the system is applied to the characterization of RF 

SAW/BAW devices operating in 2 GHz range. It is shown that high quality 

two-dimensional (2D) image of SAW/BAW field patterns can be captured in 

minutes order. 

Because of the phase sensitivity, the measured field in the real space (x-y) 

domain is readily converted into the wavenumber (βx-βy) domain by the 2D 

Fast Fourier Transform (FFT). 

The wavenumber-domain analysis offers various information; the types 

and characteristics of spurious signals, and where and how the spurious sig-

nals are generated and propagated[10,11]. Here we apply this technique to 

the diagnosis of an RF BAW resonator, and its effectiveness is demon-

strated. 
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2. System Setup 

Fig. 1 shows the basic setup of the Sagnac interferometer for detecting vertical 

motion [8,9]. 

A linearly-polarized laser beam launched from a laser diode (LD, λ0=660 nm, 

Pmax=120 mW) is beam-shaped and applied to a λ/2 plate to adjust polarization of 

the incident laser beam 45o off from the base plane. 

The laser beam transmitted through the non-polarizing beam splitter (NPBS) is 

incident to the Sagnac loop composed two polarizing beam splitters (PBSs), two 

static mirrors and the λ/4 plate. 

First, the incident laser beam is divided into two beams at the PBS1 and illu-

minates the DUT after re-combination at the PBS2: s- beam with polarization 

normal to the base plane experiences reflections by two PBSs and mirrors while 

p-beam with polarization parallel to the base plane passes through two PBSs. 

Here we designate the difference in the arrival time to the surface as ∆τ. 

When the reflected beam arrives at the PBS2, the p-beam is converted to nor-

mal polarization and the s-beam is converted to parallel polarization due to two 

way transmission through the λ/4 plate. The incident beam is divided again into 

two beams at the PBS2, and they are recombined at the PBS1. 

Finally two beams are guided to high-speed photo detectors (PD, Newport 

D-200, fT=2.5 GHz) after transmitting the λ/4 plate and the PBS3. The arrange-

ment makes these two beams interfere after giving 90o optical phase difference be-

tween them[8,9]. The phase difference is important to detect not only amplitude 

but also phase information from the interference output. 

Since initially s- and p-beams propagate the identical Sagnac loop clockwise 

and counterclockwise, respectively, these two beams arrive at the detector at the 

same time. However, this is only true when the DUT surface is stationary. 

Let us assume that the surface of the DUT vibrates as a form of ARFsin(2πfRFt), 

where ARF  is the vibration amplitude, and fRF is the frequency. Due to asymmetry 

of the Sagnac loop, the surface vibration causes optical phase difference given by 

4πλο
-1ARFsin(πfRF∆τ)cos(2πfRFt), where λο is the optical wavelength. Since ARF is 

much smaller than λο, the PD output is proportional to the phase difference. Thus 

when ∆τ is set at close to (2fRF)-1, we can maximize the sensitivity and make the 

system insensitive to low frequency vibration. 

In the developed system, ∆τ is fixed at 1/6 ns for all the measurement targets 

since the frequency dependence is not so obvious. 
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Fig. 1 Sagnac interferometer for detecting vertical vibration. 

Fig. 2 shows the system setup of the fast-scanning laser probe system[7]. Measurement 

is carried out by the following procedure. The translation stage moves continuously along 

the longitudinal (x) direction between the specified starting and ending points. The high-

precision linear scale attached to the stage outputs two-phase pulse trains every 40 nm 

movement. Then analog output signals of the detection circuit are acquired by the high-

speed data-logger synchronously with the pulse trains. After one x scan is completed, the 

stage returns to the original position, moving simultaneously along the lateral (y) direction 

at a given step. This process is repeated until the two-dimensional scan is completed. 

In the present system, the translation stage moves at its maximum speed of about 

1.0 mm/s, and the sampling rate of 25 kS/s is theoretically achievable. 

Since the spatial resolution is limited by the employed objective lens, the sam-

pling interval of 40 nm step is generally too dense. So the N-divider circuit was pre-

pared and inserted between the linear-scale output and the data-logger (see Fig. 2). 

Here, N can be set arbitrarily by a program; when N = 25, for example, the data 

interval becomes 1 µm (=40 nm × 25) step. 

For the fast-scanning, data acquisition must be also performed in high speed. Fig. 3 

shows present setup of the detection circuit[12]. An RF signal is applied to the DUT, and 

the PD output is fed to the mixer after RF amplification. Then the output signal is down-

converted to the IF frequency fIF=10.7 MHz through the mixing with a local signal with a 

frequency of fLO and detected synchronously by an RF lock-in amplifier (Stanford Research 

SR844, fmax=200 MHz). The RF signal is also directly down converted to the IF frequency 

and fed to the lock-in amplifier as a reference signal.  This setup allows us to detect both 

amplitude and phase information of the output signal in high sensitivity upto 2.5 GHz. 
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Fig. 2 System setup. 
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Fig. 3 Detection circuit. 

By the way, when high spatial resolution is necessary, we must employ high 

magnification objective lens with extremely shallow focal depth to reduce the la-

ser spot size. In the case, tiny inclination of the measurement sample will cause 

severe defocus resulting in blurred images. Because of the fast mechanical scan-

ning, in situ auto-focusing is not applicable in our system. 

The authors developed a focus adjustment technique particularly for our laser 

probe[13]. The focus adjustment is carried out by the following procedure. First, 

the objective lens is manually adjusted into focus at three different points on a 

surface of a device, and the lens heights and their corresponding device positions 

are recorded. If the surface is flat enough, the relation between the lens height and 
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surface position (inclination) can be modeled mathematically by the recorded data. 

Then, in accordance with the measuring position during the fast mechanical scan-

ning, the height of the objective lens is controlled continuously by using the 

mathematical model. In practice, the lens height should be controlled monotoni-

cally to avoid problems occurring with the mechanical backlash. 

Fig. 4 shows the whole system developed. Owing to the Sagnac interferometer, 

which is insensitive to low frequency vibration, no tight anti-vibration systems are 

needed, and the optical system occupies only a small area of 66 × 56 cm2.  

3. Measurement Examples 

First, effectiveness of this laser probe was examined by using an RF BAW 

resonator[14] operating in a 2 GHz range. 

Fig. 5(a) shows a surface image of the RF BAW resonator used as the DUT. In 

the oval region, a piezoelectric AlN thin film is sandwiched in two Ru electrodes, 

and the structure is floating on the Si substrate through the air gap. The major axis 

length of the resonance area is 115 µm, and the minor axis length is 95 µm. 

Fig. 5(b) shows the return loss characteristic of the DUT. The main resonance 

frequency can be seen around 1,820 MHz, and nearby there are several spurious 

transverse resonances. 

Precision Stage

Optical 
System

RF  Lock-
in Amp.

Stage Controller
RF Source

LO SourceCCD 
Camera

Data LoggerRF-LNA PD

 

Fig. 4 Appearance of the developed laser probe. 
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(a) Chip photo    (b) S11 characteristic 
Fig. 5 DUT used for the experiment. 

                
(a) space (x-y) domain  (b) wavenumber (x-y) domain 

 
Fig. 6 Measured field distribution (1.816 GHz). 

Fig. 6(a) shows 2D image acquired by the laser-probe at 1,860 MHz. It took 

about 17 minutes to scan 500×750 (x× y) points with 0.4 µm step. The transversal 

resonance pattern is clearly observed in the oval region where the resonator is 

placed. For this measurement, the RF input power was set at 13 dBm, and the 

maximum amplitude is roughly estimated to 50 pm. 

Next, the wavenumber domain analysis is performed by using the integrated 

software developed by the authors[15]. 
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Fig. 6(b) shows the result in wavenumber (βx-βy) domain obtained by 

the FFT conversion of the data shown in Fig. 6(a). Horizontal and vertical 

directions represent βx, and βy components, respectively, where the origin 

(βx, βy)=(0,0) is located in the middle. Several concentric circles are seen. 

Lack of the angular dependence indicates isotropic propagation of acoustic 

waves.  

We extracted spectral data corresponding to each circle numerically, and 

the inverse FFT was applied to reconvert to real (x-y) space. 

Fig. 7(d) shows the result when only the inner portion in the FFT image 

was extracted as shown in Fig.7(a) and inverse Fourier transformed. The result 

is almost identical with Fig. 6(a). Since |ββββ | is small, this portion corresponds to 

the thickness vibration of the longitudinal wave. 

 

    

 

    

 

  

(a)Inner circles              (b) second largest circle    (c) outermost circle 
Extracted data in wavenumber domain. 

 

    

 

    

 

 

(b)Inner circles             (e) second largest circle      (d) outermost circle 
Field distribution reconverted from extracted data. 

Fig. 7 Selective observation of Lamb waves generated by the scattering. 
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Fig. 7(e) shows the result when the image processing was applied to the second 

largest circle in the FFT image (see Fig.7(b)). It is seen that the energy of the 

mode leaks through the upper electrode of the resonator. Since |ββββ | is relatively 

large, this circle corresponds the Lamb mode generated at the resonator edge. 

It should be noted that the AlN layer extends under the upper interconnecting electrode, 

which is not mechanically isolated from the AlN layer in the resonator area. 

Fig. 7(f) shows the result when this image processing was applied to the outer-most 

circle in the FFT image (see Fig.7(c)). Lamb wave generation at the resonator 

edge is clearly visible also in this case. 

Fig. 8(a)-(f) show the results when the same procedure with Fig. 7(e) was 

applied to the measured data at different frequencies. From comparison of these 

six figures, it is clearly seen that the energy leakage is very frequency-dependent. 

At frequency of 1,790MHz, 1,810.5MHz and 1,816MHz, the energy leakage 

through the upper electrode can be seen very clearly. 

Next, the laser probe is applied to the characterization of a ZnO/diamond SAW 

filter[16] operating at 2.441 GHz. In the measurement, an objective lens with 

magnifying power of 100× and long working distance was employed. 

Figs. 9(a) and (b) compare the results without and with the focus adjustment 

described in Section 3. Effectiveness of the focus adjustment is clearly visible; it 

compensated the surface inclination successfully, and SAW field distribution is 

only visible when the focus adjustment was applied. 

4. Conclusions 

The paper reviewed a phase-sensitive and fast-scanning laser probe system 

developed by the authors’ group, and demonstrated how effective the system is for 

the diagnosis of RF SAW/BAW devices. 

As a next step, we are attempting to speed up the measurement, to increase the 

maximum frequency, and to enhance the sensitivity. Calibration of the measured 

data, namely estimation of the absolute vibration amplitude, should be realized for 

further enhancement of the usefulness of this system. 
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(a) 1,790MHz  (b) 1,810.5MHz  (c) 1,816MHz 

   
(d) 1,817.5MHz  (e) 1,820MHz  (f) 1,840MHz 

 

Fig. 8 Scattered field distribution. 

 

 
 

(a) without focus adjustment 
 

 

 
 

(b) with focus adjustment 
 

Fig. 9 Measurement result for the ZnO/diamond SAW filter at 2.441 GHz. 
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Abstract. The analysis of surface acoustic waves in finite elastic solids is of fun-

damental and practical importance, giving the fact that those typical problems 

concerning solutions of the well-known wave propagation equations are hard to 

obtain.  In searching of an accurate analytical method, we compare this problem 

with the known bulk acoustic wave problems in finite plates and corresponding 

Mindlin and Lee plate theories which have been instrumental in solving these 

problems with accuracy and simplicity.  Analogous to power and trigonometric se-

ries expansions of displacements, we use exponential functions obtained from 

semi-infinite solutions of surface acoustic waves to represent the decaying dis-

placements along thickness direction.  We present a two-dimensional theory spe-

cifically for surface acoustic waves in finite solids with goals to use it for surface 

acoustic wave resonator analysis and design.  The two-dimensional theory for pie-

zoelectric plates is presented and considered through the effective elastic constants 

for simplification. 

1. Introduction 

Surface acoustic waves propagating in the vicinity of surface of semi-infinite elas-

tic solids have been well presented in many popular textbooks [1-4] and essential 

results and properties from these simple and elegant solutions have been widely 

used as foundations for further research on surface acoustic waves (SAW) [5-7].  

Since analytical solutions of practical problems concerning finite elastic solids are 

not available, approximations have been made for simplified equations, which are 

essentially one-dimensional and solvable, but less rigorous in comparison with the 

usual three-dimensional equations that can only be treated numerically [8-9].  
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Consequently, practical equations and methods concerning SAW in finite solids 

are also oversimplified, leaving accurate solutions based on a systematic approach 

similar to the sophisticated plate theories for bulk acoustic waves (BAW) in finite 

solids yet to be established. 

Noting the fact that accurate solutions from an infinite plate have been used for 

the development of two-dimensional theories, or plate theories, for BAW in finite 

plates by Mindlin [10], Lee [11], and Peach [12], we start with accurate solutions 

of surface acoustic waves in semi-infinite solids for a similar two-dimensional 

analysis.  Naturally, for isotropic materials, we expect the dominant SAW modes 

in a finite elastic solid will closely resemble to the two modes appearing in semi-

infinite solids, thus enabling the expansion of displacements in the known expo-

nential functions from semi-infinite solutions.  Then a two-dimensional theory for 

the analysis of SAW in finite elastic solids can be established based on the known 

three-dimensional solutions.  This implies that we are intended to use the eigenso-

lutions of Rayleigh waves for the construction of a two-dimensional theory by fol-

lowing earlier successes.  For isotropic materials, as we stated before, there will be 

only two dominant modes in a semi-infinite solid.  However, there will be three 

dominant modes in case of anisotropic materials.  All these will be reflected in 

the two-dimensional theory, which will be material-dependent in the order of the 

expansion and equations.  In case of piezoelectric materials, there will be four 

eigenmodes which will pose further challenges in the formulation and solution. 

2. Two-Dimensional Equations 

For SAW in a semi-infinite isotropic solid, solutions include the wave velocity 

and two parameters related to the decaying of displacements along the depth of 

solids for the calculation of vibration modes.  Since we assume the surface acous-

tic waves in finite anisotropic solids are dominated by modes appearing in the 

semi-infinite solid of the same material, following Mindlin [10] and Lee [11], we 

write displacements with three components as 

( ) ( ) ( ) ( )
3

1 2 3 1 3 2
1

, , , , , , 1, 2,3, 1,2,3,n
j j n

n

u x x x t u x x t x j nϕ
=

= = =∑   (1) 

with ,jx t  and ( )n
ju as the coordinates, time, and the nth-order displacements and 

expansion functions defined as 

( ) ( ) ( ) ( ){ }2 1 2 2 2 3 2exp ,exp ,exp , 1,2,3,n x k x k x k x nϕ β β β= =  (2) 
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where k is wavenumber and the decaying parameters ( 1, 2,3)n nβ =  are obtained 

from SAW solutions of semi-infinite solids.  In case of isotropic materials, there 

are only two decaying parameters and the displacement expansion is simplified 

accordingly.  The results have been presented before in our previous paper with 

complete analysis of mode shapes and frequency spectra [13].  For anisotropic 

materials, there will be three decaying parameters in general with complicated 

displacement expansion [14].  In this paper, we focus on rotated Y-cut quartz crys-

tals which are commonly used as substrates in SAW resonators.  

With displacements in (1) and basis functions for expansion in (2), corresponding 

strains in abbreviated notation [10, 11, 15, 16] are defined as 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

3

1 1,1 2 2 3 3,3
1

4 2,3 3 5 3,1 1,3 6 2,1 1

, , , ,

, , ,

1, 2,3, 4,5,6, 1, 2,3.

n n n n n n n
p p n n

n

n n n n n n n n n
n n

S S S u S k u S u

S u k u S u u S u k u

p n

ϕ β

β β
=

= = = =

= + = + = +
= =

∑

 (3) 

Consequently, for anisotropic materials the stresses are 

( ) ( ) ( )
3

1

ˆ ˆ, , , 1, 2,3,4,5,6; 1,2,3,n n n
p p n p pq q

n

T T T c S p q nϕ
=

= = = =∑  (4) 

where pqc  are elastic constants. 

For an elastic plate with thickness h shown in Fig. 1, stress equations of motion 

in variational form are 

( ) ( )
0 3

, 2
1

0,m
ij i j j m

mA h

T u u dx dAρ δ ϕ
=−

− =∑∫ ∫ ɺɺ  (5) 

and through integration over the thickness coordinate we have the corresponding 

two-dimensional equations as 

( ) ( ) ( ) ( )
3

, 2 2
1

, , 1, 2,3, 1,2,3,n n n m
ij i j j mn j

m

T T F A u i j nρ
=

− + = = =∑ ɺɺ  (6) 

where the two-dimensional quantities are defined as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

2 2 2 2 2 2

0

2

, , 0 0 ,

, , 1, 2,3; 1,2,3.

n n n n
ij ij n j n j j j n j n

h

mn m n

h

T T dx T k T F T T h h

A dx i j n

ϕ β ϕ ϕ

ϕ ϕ

−

−

= = = − − −

= = =

∫
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 (7) 
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Fig. 1 A finite elastic solid with coordinate system. 

With two-dimensional variables, we have the nth-order stresses in (7) as 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

3

1 1,1 2 2 3 3,3 4 2,3 3
1

5 3,1 1,3 6 2,1 1          ,

n n n n n n
p mn p p n p p n

m

n n n n
p p n

T A c u c k u c u c u k u

c u u c u k u

β β

β
=

= + + + +


+ + + +


∑
 (8) 

and equations of motion in (6) can be expanded to 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
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 (9) 

The integral (7) with known expansion functions from (2) are 

( ) ( )
0

2

1 1
1 , , , 1,2,3,

exp 2mn m n
m n m nh

h
A dx H m n

k H
ϕ ϕ

β β π β β λ−

 
= = − = = + +  
∫   

 (10) 

where λ is wavelength.  For a finite plate-like solid, we can always use the wave-

length as a measure of plate thickness. Since the value of ( )1,2,3m mβ =  is close 

to unity (1.0) for materials we have studied, larger H will make the integral in (10) 

to a simple expression 

( )
1

, , 1,2,3.mn
m n

A m n
k β β

= =
+

 (11) 
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Referring to Fig. 1, boundary conditions are 

 (12) 

where C is the cylindrical surface.  Basically it states that on the cylindrical 

surface we can specify either higher-order displacements or stress components. 

We now examine SAW travelling along the 1x  direction. For simplicity, and 

the solutions are assumed as  

( ) ( ) ( ) ( ) ( ) ( )
1 1 1 2 2 1 3 3 1sin , cos , cos ,m m m m m mikct ikct ikctu A kkx e u A kkx e u A kkx e= = =  (13) 

where ( ) ( )1,2,3 , , , ,m
iA i k k c= and t  are amplitudes, wavenumber, associated 

wavenumber, velocity, and time, respectively. It should be emphasized that the 

associated wavenumbers k  only appear in the trigonometric function arguments.  

By substituting (13) into (9), we have the equations in expansion as 
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T k T F A u A u A u

T k T F A u A u A u

β ρ

β ρ

+ +

− + = + +

− + = + +

ɺɺ ɺɺ ɺɺ

ɺɺ ɺɺ ɺɺ

ɺɺ ɺɺ ɺɺ

  

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )
3 3 3 1 2 3

6,1 3 2 2 13 2 23 2 33 2

3 3 3 1 2 3
5,1 3 4 4 13 3 23 3 33 3

,

.

T k T F A u A u A u

T k T F A u A u A u

β ρ

β ρ

− + = + +

− + = + +

ɺɺ ɺɺ ɺɺ

ɺɺ ɺɺ ɺɺ

 (14) 

With solutions of k  and the amplitude ratios from above 

( ) ( )
( ) ( ) ( )3
3

, , 1, 2,3, 1,2,3, ,9, 3 1 ,
n

k i

mi

i

A k
n k i m n k

A k
α = = = = − +⋯       (15) 

we can rewrite stresses as 
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( ) [ ]{
} ( ) ( )

( ) ( ) ( ){

9

1 1 11 1 12 1 2 14 1 3 2 11 4 12 2 5 14 2 6
1

3
3 11 7 12 3 8 14 3 9 3 1

6 1 66 1 1 2 65 2 2 66 2 4 5 65 6

         cos ,

n
n i i i n i i i i

i

ikct
n i i i i i i

n
n i i i i i n i i i i i

i

T A c c c A c k c c

A c k c c A k k k kx e

T A c k c k A c k c k

α β α β α α β α β α

α β α β α

β α α α β α α α

=

=

 = + + + + + 

 + + + 

   = − − + − −   

∑

( ) } ( ) ( )
( ) ( ) ( ){

( ) } ( ) ( )

9

1

3
3 66 3 7 8 65 9 3 1

9

5 1 56 1 1 2 55 2 2 56 2 4 5 55 6
1

3
3 56 3 7 8 55 9 3 1

         sin ,

         sin .

ikct
n i i i i i i i

n
n i i i i i n i i i i i

i

ikct
n i i i i i i i

A c k c k A k k k kx e

T A c k c k A c k c k

A c k c k A k k k kx e

β α α α

β α α α β α α α

β α α α
=

 + − − 

   = − − + − −   

 + − − 

∑

∑

 (16) 

The traction-free boundary conditions are 

( ) ( ) ( ) ( ) ( ) ( )1 1 6 1 5 1 0, 1, 2,3.n n nT x a T x a T x a n= ± = = ± = = ± = =  (17) 

By substituting (16) into (17), we have frequency spectra which is the most 

important solutions for finite solids we are interested. 

3. Surface Acoustic Waves in Piezoelectric Plates 

To develop a two-dimensional theory for the SAW in finite piezoelectric solids, 

we expand the displacements and electrical potential in known basis functions of 

the thickness coordinate as 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

4

1 2 3 1 3 2
1

4

1 2 3 1 3 2
1

, , , , , ,

, , , , , , 1, 2,3,

n
j j n

n

n
n

n

u x x x t u x x t x

x x x t x x t x j

ϕ

ϕ ϕ ϕ

=

=

=

= =

∑

∑
 (18) 

where ( ) ( ) ( )1,2,3 ,n n
ju j ϕ= and ( )1,2,3,4n nϕ =  are higher-order displacements, 

electrical potential components, and basis functions, respectively.  The basis func-

tion will be from SAW solutions of semi-infinite piezoelectric solids in the form 

( ) ( ) ( ) ( ) ( ){ }2 1 2 2 2 3 2 4 2exp ,exp ,exp ,exp , 1,2,3,4,n x k x k x k x k x nϕ β β β β= =   

 (19) 
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where decaying parameters ( )1,2,3, 4n nβ =  are obtained from a semi-infinite 

piezoelectric solid with propagating surface acoustic waves.  
Based on the piezoelectricity theory and displacements and electrical potential 

in (18) and (19), we have the corresponding strain and electrical field as 

( ) ( )
4 4

1 1

, , 1,2,3,4,5,6, 1,2,3,n n
p p n i i n

n n

S S E E p iϕ ϕ
= =

= = = =∑ ∑  (20) 

where ( )n
pS  and ( ) ( )1,2,3,4n

iE n =  are higher-order two-dimensional strain and 

electrical filed components, respectively.  With the given displacements and elec-

trical potential in (18), it is straight-forwarded to have the following components 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1,1 2 2 3 3,3 4 2,3 3 5 3,1 1,3

6 2,1 1 1 ,1 2 3 ,3

, , , , ,

; , , , 1, 2,3,4.

n n n n n n n n n n n n
n n

n n n n n n n n n
n n

S u S k u S u S u k u S u u

S u k u E E k E n

β β

β ϕ β ϕ ϕ

= = = = + = +

= + = − = − = − =
 (21) 

Consequently, we have the stresses and electrical displacements for an anisot-
ropic piezoelectric material as 

( ) ( )
4 4

1 1

ˆ ˆ, , 1,2,3,4,5,6; 1,2,3,n n
p p n i i n

n n

T T D D p iϕ ϕ
= =

= = = =∑ ∑  (22) 

with  

( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ, ,

, 1, 2,3, 4,5,6; , 1,2,3; 1, 2,3, 4,

n n n n n n
p pq q pk k i ip p ik kT c S e E D e S E

p q i k n

ε= − = +

= = =
  (23) 

where ,pq pkc e  and ikε are elastic, piezoelectric, and dielectric constants, respectively. 

With displacements and electrical potential in (18) and strains and electrical 

fields in (21), we follow Mindlin [10] and Lee [11] with the variational forms 

of stress equations of motion and charge equation of linear piezoelectricity to 

a piezoelectric solid as illustrated in Fig. 1  

( ) ( ) ( )
0 04 4

, 2 , 2
1 1

0, 0,m m
ij i j j m i i j m

m mA h A h

T u u dx dA D dx dAρ δ ϕ δϕ ϕ
= =− −

− = =∑ ∑∫ ∫ ∫ ∫ɺɺ  (24) 

where A  is the faces, or the domain of the solids, h is the thickness, and ρ  is the 

density of material.  Through integration of (24), we have 

( ) ( ) ( ) ( )

( ) ( ) ( )

4

, 2 2
1

, 2

,

0, , 1,2,3; 1,2,3,4,

n n n m
ij i j j mn j

m

n n n
i i

T T F A u

D D D i j n

ρ
=

− + =

− + = = =

∑ ɺɺ

 (25) 
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with two-dimensional quantities defined as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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2 2 2 2 2 2
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 (26) 

Now we have the stress and electrical displacement components as 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) ( )
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β β
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=

=
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∑

∑
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6 2,1 1 1 ,1 2 3 ,3           .m m m m m
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+ + − − −


  (27) 

As a result, the stress equations of motion and charge equations in terms of the 

higher-order stress and electrical displacement components are 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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T T k T F A u

T T k T F A u

D D k D D n
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+ − + =
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∑

∑

∑

ɺɺ

ɺɺ

ɺɺ

 (28) 

We now examine SAW travelling along the 1x  direction in a straight-crested 

manner. For simplicity, solutions are assumed as  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 1 1 2 2 1

3 3 1 4 1

sin , cos ,

cos , sin .

m m m mikct ikct

m m m mikct ikct

u A kkx e u A kkx e

u A kkx e A kkx eϕ

= =

= =
 (29) 

The usual solution procedure, which is to substitute (29) back into the 16 equations 

in (28), does not yield the results we are expected.  Namely, the associated wavenum-

bers are not conjugated complex numbers which can be utilized. The solutions of (28) 
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are to be examined for further interpretation and the construction of displacements 

and electrical potential.  

The approximation, on the other hand, can be made based on the fact that SAW 

velocity of piezoelectric solids can be obtained with the piezoelectrically stiffened 

elastic constants in the form of [5] 

1 1

11

, , 1,2,3,4,5,6,p q
pq pq

e e
c c p q

ε
= + =  (30) 

where 1 1, ,p qe e and 11ε are specific piezoelectric and dielectric constants, respectively. 

Accordingly, the two-dimensional equations can be simplified also. 

This approximation can be traced to the three-dimensional equation of charge 

of piezoelectricity with the truncation 

11 ,11 11 1,11 15 3,11 16 2,11.e u e u e uε ϕ = + +  (31) 

Through integration of this equation, we have 

( ) ( )11 1 15 3 16 2
1 2 1 2 2

11

,
e u e u e u

f x x f xϕ
ε

+ +
= + +  (32) 

where two arbitrary functions ( )( )2 1,2if x i =  are to be determined. Naturally, we 

can approximate the two-dimensional electrical potential with (32) as 

( ) ( ) ( ) ( )
9

3
3 11 1 16 1 15 1 1 2 1 2 2

111

 sin cos cos .
ikct

i i i i
i

e
A e kk x e kk x e kk x f x x f xϕ

ε =

= + + + +∑   

 (33) 

For typical piezoelectric devices with electrodes on the upper and lower faces 

shown in Fig. 1, we can conveniently treat the two arbitrary functions as the static 

electrical potentials and let  

( ) ( ) ( ) ( ) ( )
1 2 2 2 2 2

0
0, ,

h
f x f x h x x

h h

ϕ ϕ
= = − +   (34) 

where ( ) ( )0  and hϕ ϕ  are the potentials on the lower and upper faces.  The solution 

in (34) will enable the calculation of electrical parameters of a resonator with 

known electrical voltage on the electrodes, which can be discrete, or periodic, as 

in actual structures we are familiar with. 
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4. Numerical Examples 

As a numerical example, we study an AT-cut quartz crystal strip of H = 10 with straight-

crested surface acoustic waves.  The SAW velocity normalized by 66c ρ  vs. length is 

given in Fig. 2.  A similar study for different materials is done by Wang and Hashimoto 

[14].  The results show that velocities of SAW mode and its overtones are generally sen-

sitive to the plate length, while mode conversion occurs at certain lengths which should 

be avoided in the selection of substrates for SAW resonators.  This has been observed in 

our earlier studies with isotropic and anisotropic materials [13-14, 17].  Although there 

are complication factors such as the periodic electrodes affect the SAW propagation in 

finite anisotropic solids, proper selection of substrates is essential in resonator perform-

ance improvement.  To this purpose, the velocity spectra based on our two-dimensional 

analysis is of practical importance, and further refinement with the consideration of 

electrodes will be more useful [18]. 

 

 
Fig. 2 Normalized surface acoustic wave velocity vs. length in an AT-cut quartz plate with 
thickness H = 10.  The computed frequency spectra from the mechanical vibrations (circle ○) 
is compared the piezoelectrically stiffened constants (dot ●). 
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It is also clearly shown that the piezoelectricity has noticeable effect on the 

SAW velocity in a finite structure based on the analysis with the two-dimensional 

theory and piezoelectrically stiffened elastic constants. Our approximation is 

based on the fact that the piezoelectric effect through three-dimensional equations 

is very small [5], and we are expecting the same from the two-dimensional equa-

tions with stiffened elastic constants.  The results in Fig. 2 show that there are 

changes we cannot make adequate comparison at this moment. We expect the fur-

ther calculation on the frequency spectra in a much larger frequency and parame-

ter range will enable us to visualize the changes more clearly.  The simplified con-

sideration of piezoelectric effect will make the analysis of SAW resonators with 

larger number of pairs of periodic electrodes more convenient [19-21], particularly 

for the electrical circuit parameters which are more important in the design and 

applications. 

5. Conclusions 

A two-dimensional theory for the analysis of SAW in finite anisotropic solids is 

established based on the exponential expansion of displacements in the thickness 

direction with representative parameters from semi-infinite substrates.  The two-

dimensional theory is analogous to the well-known plate theories by Mindlin and 

Lee for the propagation of BAW in finite elastic solids.  These two-dimensional 

equations can be used for analytical solutions in a manner similar to plate equa-

tions for BAW problems, or they can be implemented in finite element method to 

improve the efficiency of numerical techniques.  The limited order of variables 

and the absence of correction procedure make the two-dimensional theory for 

SAW simple and effective in practical applications involving finite anisotropic 

piezoelectric solids.  With the calculated velocity (frequency) spectra and identi-

fied wave modes, the selection of substrates of SAW resonators can be optimal, 

thus easing the burden of trial-and-error iteration in the design process.  The ex-

tension of the two-dimensional theory to anisotropic materials and approximate 

consideration of piezoelectric effect through the stiffened elastic constants are the 

necessary steps for the refinement to meet the needs of SAW resonator design and 

optimization. 
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Abstract. In this work, electromagnetic wave is used to drive piezoelectric com-

ponents. We proposed and investigated three new techniques of transmitting elec-

tric energy wirelessly to piezoelectric components which include wireless drive of 

piezoelectric components by parallel plate capacitor structure, by focused electric 

field structure and by dipole antenna-like structure. The output power of the pie-

zoelectric component wirelessly driven by focused electric field structure is sig-

nificantly higher than that wirelessly driven by the other two structures. In the fo-

cused electric field structure, when the operating frequency is close to mechanical 

resonance frequency of the piezoelectric component operating in the thickness 

mode, a maximum real output power of 0.26 W and energy conversion efficiency 

of 1.02% have been achieved with an input power of 26 W and 1 cm electrode 

separation. Experimentally it has been found that the real output power achieved 

by the piezoelectric component depends on the frequency, vibration mode, and 

electrical load of the piezoelectric component, and electric field. We studied the 

electric field pattern by finite element method to assess the electric field on the 

surface of the piezoelectric plate. It is seen that the electric field on the surface of 

the wirelessly driven piezoelectric plate is non-uniform. We also derived and then 

proposed an equivalent circuit for the wirelessly driven piezoelectric component 

operating in the thickness mode, which can be used to analyze the vibration char-

acteristics of the wirelessly driven piezoelectric plate.  

1. Introduction 

Piezoelectric devices which include transducers [1], motors and actuators [2- 4], 

transformers [5], oscillators, filters, generators, sensors, [6] etc. have the advan-

tages such as compact size, high power density, high output force, high precision 

positioning, etc. They have applications in various areas such as precision 

 T.-T. Wu and C.-C. Ma (eds.), IUTAM Symposium on Recent Advances of Acoustic 

© Springer Science + Business Media B.V. 2010 

259
Waves in Solids, IUTAM Bookseries 26, DOI 10.1007/978-90-481-9893-1_24, 

mailto:ejhhu@ntu.edu.sg


J. Hu and S. Bhuyan 

 

260

positioning, particle manipulations, switching power supplies, communication sys-

tems and others. In most applications, electric energy is applied to the devices via 

lead wires soldered on the electrodes of piezoelectric components. But the lead 

wires may fall off at large vibration, high input voltage or high temperature, and 

this causes the breakdown of piezoelectric devices. The lead wires also hinder the 

applications of piezoelectric devices in rotary mechanisms and micro systems. The 

fundamental limitation of applying electric energy to the devices via lead wires 

soldered on the electrodes necessitates the pursuit of wireless drive of piezoelec-

tric components. To widen the application range of piezoelectric devices, wireless 

drives of piezoelectric components have been investigated by the author using a 

properly designed electric field [7-9].  It has been observed that the energy in an 

ac electric field can be transmitted to a piezoelectric plate. However, so far the 

output power of the driven piezoelectric component has not been high enough. 

Therefore, the methods of improving the output power of wirelessly driven piezoelectric 

components need to be investigated further. 

2. Experimental Methods 

We proposed and investigated three new techniques of transmitting electric energy 

wirelessly to piezoelectric components which include wireless drive of piezoelectric 

components by parallel plate capacitor structure, by focused electric field structure 

and by dipole antenna-like structure. Fig. 2.1(a) shows the experimental setup to 

measure the output power of the piezoelectric plate wirelessly driven by parallel 

plate capacitor structure. An ac input voltage is applied to two brass electrodes with 

dimensions of 5×2×0.3 cm3, mounted on a plastic plate with a separation distance of 

4 mm. The piezoelectric plate is inserted parallel into the gap between the two brass 

electrodes and the plate is aligned along the central axis of the gap. To measure the 

output power, two lead wires are soldered onto the output electrodes and a load re-

sistor is connected across the output electrodes of the piezoelectric plate. To transmit 

a large electric energy to the piezoelectric plate, a focused ac electric field structure 

is used as shown in Fig. 2.1(b). With a live electrode, a needle ground electrode is 

used to focus the ac electric field onto the piezoelectric plate. The needle ground 

electrode is placed below perpendicular to the live electrode which is suspended 

above the piezoelectric plate. In order to increase the driving power, the focused 

electric field structure is in series with an inductor. When the electric field generator 

and inductor are in electric resonance, the transmitted power is increased because of 

the large voltage across the focused electric field structure. 
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Fig. 2.1 Experimental setup to drive piezoelectric plate wirelessly by: (a) parallel plate 
capacitor structure, (b) focused electric field structure, (c) dipole antenna-like structure. 
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Fig. 2.2 Configuration of the piezoelectric plate wirelessly driven by E-field. 
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This experiment is performed under the following conditions. The live elec-

trode area is 30×30 cm2; the ground electrode is a metal needle whose tip is as-

sumed to have zero area; the distance between the live and ground electrodes is 1 

cm; the inductance (L) is 1.10 mH; input source voltage is 150 V rms; the medium 

between the live and ground electrodes is air. The earlier techniques such as fo-

cused electric field and capacitor-like structures are not robust for the application 

in rotary machines. Thus, the wireless drive of piezoelectric plate by dipole an-

tenna-like structure has been investigated further for the application in rotary ma-

chines. In Fig. 2.1(c), an electric dipole antenna-like structure is used to transmit 

electric energy to PZT plat. This experimental study is performed under the fol-

lowing conditions. The live and electrode have the same area of 50×50 cm2; the 

distance between the electrodes is 5 cm; input source voltage is 150 Vrms; piezo-

electric plate is placed at the center 6 mm away from the antenna plane. Fig. 2.2 

shows the configuration of the piezoelectric plate operating in the thickness mode 

wirelessly driven by electric field. The piezoelectric plate is made of lead zircon-

ate titanate (PZT) ceramic material (Fuju C201), and poled along the thickness di-

rection. Piezoelectric charge constant d33, mechanical Q, dissipation factor tanδ, 

and relative dielectric constant ε33
T/ε0 are 325×10-12 m/V, 2000, 0.3 and 1450, 

respectively. 

3. Theoretical Analyses 

3.1 Theoretical Calculation of Electric Field 

The finite element method (COMSOL Multiphysics) simulation has been carried 

out in order to assess the electric field on the surface of the piezoelectric plate op-

erating in the thickness mode wirelessly driven by electric field structure as shown 

in Fig.2.1(c). 

The calculated 2-D electric field pattern around the wirelessly driven piezoelec-

tric plate by an electric dipole antenna-like structure is shown in Fig. 3.1.1.  The 

distribution of electric field on the surface of the piezoelectric plate along the x-

direction is shown in Fig. 3.1.2. It is seen that the electric field on the surface of 

the wirelessly driven piezoelectric plate is non-uniform. For 2500 cm2 electrode 

area of the dipole antenna-like structure and input source voltage of 150 Vrms, the 

average value of the electric field on the surface of the piezoelectric plate is 

5.72×104 V/m, which is used in our calculation in Sec. 4. 
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Fig. 3.1.1 Simulated 2-D electric field pattern 
around the piezoelectric plate wirelessly 
driven by dipole antenna-like structure.  

Fig. 3.1.2 Calculated electric field on the 
surface of the piezoelectric plate. 

3.2 Equivalent Circuit Model 

To understand the operation principle and output power characteristics, an equiva-

lent circuit is derived for the wirelessly driven piezoelectric plate operating in the 

thickness vibration mode.  

According to Gauss’s law, the charge on the surface electrode of the piezoelec-

tric plate is 

( ) ( )3 0x D E xσ ε= −  (1) 

Where D3 is the electric displacement vector, ε0 is the permittivity of the free 

space and E(x) is the external electric field on the surface of the piezoelectric 

plate. So, the current flowing to the piezoelectric plate with an electrode area A 

can be obtained as: 

( )0 02di j VC nu EAω ε= + − ɶ  (2) 

where Cd is clamped capacitance, n is turn ratio, u0 is the vibration displacement 

of the piezoelectric plate. From Eq. (2) the equivalent circuit of the wirelessly 

driven piezoelectric plate operating in the thickness vibration mode as shown in 

Fig.3.2.1 is derived. 

When the piezoelectric plate operates near its resonance, the real power de-

livered to the electrical load resistor can be obtained from the derived equivalent 

circuit 
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Fig. 3.2.1 Derived equivalent circuit of the piezoelectric plate operating in the thickness 
mode wirelessly driven by electric field. 
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The vibration displacement of the wirelessly driven piezoelectric plate operating 

in the thickness mode can be obtained from the equivalent circuit as: 

( )2
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 (4) 

4. Results and Discussion 

4.1 Parallel Plate Capacitor Structure 

The frequency characteristic of output power of the piezoelectric plate which operates 

in thickness mode and has the optimum electrical load, is shown in Fig.4.1.1. The op-

timum load is the load resistance for which the output power at resonance is maximum 

for a given input source voltage. The size of the piezoelectric plate used in the experi-

ment is 30×8×2 mm3. It is observed that at the resonance frequency 772 kHz, a maxi-

mum output power is achieved. When the frequency of electric field in the gap is close 

to the mechanical resonance frequencies of piezoelectric plate, a relatively large vibra-

tion can be excited in the plate by the converse piezoelectric effect. This mechanical 

resonance generates a relatively large voltage by the piezoelectric effect.  
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Fig. 4.1.1 Frequency characteristic of the output power of the piezoelectric plate wirelessly 
driven by parallel plate capacitor structure.  

4.2 Focused Electric Field Structure 

Fig. 4.2.1 shows the electrical load characteristics of the output power of the pie-

zoelectric plate operating in the thickness vibration mode at resonance. The size of 

the piezoelectric plate used in this experiment is 8×3×2 mm3. It is seen that the 

output power at resonance reaches the maximum at an optimum load resistance.  

At resonance frequency 782 kHz and optimum load resistance 1365 Ω, a 

maximum output power of 0.26 W has been achieved by the piezoelectric plate 

operating in the thickness mode with a needle ground electrode, input voltage of 

150 Vrms, 1 cm electrode separation, and a live electrode area of 30×30 cm2. 

Fig. 4.2.2 shows the calculated frequency characteristics of vibration displace-

ment of the wirelessly driven piezoelectric plate when the electrical load resis-

tances are RL = ∞ (open circuit), RL = 0 (short circuit), and RL= 350 Ω (output 

power is maximum across the PZT plate). In the calculation, the dimension of the 

piezoelectric plate is 30×8×2 mm3, and the electric field is 1.2×106 V/m. It is 

found that a relatively large vibration displacement of 4.44 nm is achieved when 

the load branch is open circuited. 

The reason for this phenomenon can be explained by the equivalent circuit, de-

picted in Fig. 3.2.1. When the load branch is open circuited, the current i  thor-

ough the load resistance RL is zero. So, the motional current 2mI nυ=  is rela-

tively large. But, when the load branch is short circuited, all Si  passes thorough 

the load branch, and thus the motional current mI  is zero.  Hence the vibration 

displacement is relatively large when the load branch is open circuited, and the 

vibration displacement is zero when the load branch is short circuited.  
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Fig. 4.2.1 Electric load characteristic of the output power of the piezoelectric plate wirelessly 
driven by focused electric field structure.  

 

 

Fig. 4.2.2 Calculated vibration displacement characteristic of the piezoelectric plate wirelessly 
driven by focused electric field structure.   
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4.3 Dipole Antenna-Like Structure 

Fig. 4.3.1 shows the theoretical and experimental dependence of the output power 

on the electrical load at resonance frequency of the piezoelectric plate. The dimen-

sion of the piezoelectric plate used here is 30×8×2 mm3, and the electric field is 

5.72×104 V/m as shown in Fig.3.1.2, which is used in our calculation. In the ex-

periment, the resonance frequency decreases slightly as the load resistance in-

creases. It is around 772 kHz.  It is seen that the theoretical result well agrees with 

the experimental one, and the output power at resonance reaches the maximum at 

an optimum load resistance of 350 Ω. The optimum load resistance can be ex-

plained by the equivalent circuit of piezoelectric plate operating in the thickness 

mode, as shown in Fig. 3.2.1. A maximum power can be delivered to the electric 

load resistor, when  

0L

L

dP

dR
= . (5) 

Using eqs. (8) and (10), we get the following equation of the optimum load 

resistance for which a maximum power is delivered to the load. 

( ) ( ) ( ) ( )
( ) ( )

4 2 2 2 4 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2

2 2 2

1 2 0

d m d m d m d m d m d m m L

m m m m m

n C R C L n C L C C n C C C L C R

R L C L C

ω ω ω ω

ω ω

 ′ ′ ′ ′ ′ ′ ′+ + − + + − 

 ′ ′ ′ ′ ′− + + − = 

 (6) 

Using eq. (11), we found an optimum load resistance of 358 Ω for the wire-

lessly driven piezoelectric plate operating in the thickness mode, which well 

aggress with the measured value of 350 Ω.   
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Fig. 4.3.1 shows the effect of area of the piezoelectric plate on the output power at 
resonance with the constant thickness and optimum electric load of the piezoelectric 
plate operating in thickness mode wirelessly driven by dipole antenna-like structure.  
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Fig. 4.3.2 Effect of the area of piezoelectric plate on the output power at resonance. 

Fig. 4.3.2 shows the theoretical and experimental frequency characteristics of 

output power of the piezoelectric plate. It is seen that the theoretical results 

agree with the experimental results quite well, and the output power reaches the 

maximum at resonance frequency.  
It is seen that the measured output power at resonance becomes larger when the 

size of the piezoelectric plate is reduced. The change in output power at reso-
nance may be due to the change of electric field and equivalent resistance of the 
piezoelectric components. This experimental result shows the feasibility to drive 
micro-piezoelectric components wirelessly by using an electromagnetic wave. 

5. Summary 

In this work, new techniques of transmitting electric energy wirelessly to piezo-

electric components have been investigated both theoretically and experimentally. 

An equivalent circuit is derived, and electric field pattern is also studied for the 

wirelessly driven piezoelectric component operating in the thickness mode. It has 

been observed that the output power of the piezoelectric component wirelessly 

driven by focused electric field structure is significantly higher than that wire-

lessly driven by the other two structures i.e. parallel plate capacitor structure and 

dipole antenna-like structure. In the focused electric field structure, at resonance 

frequency 782 kHz and optimum load 1365 Ω, a maximum real output power of 0.26 W 
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and energy conversion efficiency of 1.02% have been achieved with an input volt-

age of 150 Vrms (to the series of the capacitor-like structure and resonance induc-

tance) and 1 cm electrode separation. It is found that the output power and vibra-

tion displacement of the wirelessly driven piezoelectric component depends on the 

frequency, electric load, size of live electrodes of the electric field structures. The 

method of wireless drive of piezoelectric component by dipole antenna-like struc-

ture is robust for the application in rotary machines. The wireless drive of piezo-

electric components technique provides a new method of driving micro-

piezoelectric components and piezoelectric devices in rotary machines. 
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Abstract. An AT-cut quartz plate with lateral tines was proposed as an angular 

velocity sensor. The plate itself formed the driving component while the lateral 

tines formed the angular velocity sensors. The angular velocity effect on the plate-

gyroscope was demonstrated via its effect on the electric potential at edge elec-

trodes, and on the admittance at driving electrode. The change in electric potential 

at edge electrodes varied with the magnitude and sign of the angular velocity. An 

AT-cut plate-gyroscope may offer advantages in terms of (a) frequency stability 

(b) frequency-temperature stability, and (c) separation of the driving component 

from the sensing component. The separation of the driving component from the 

sensing component allowed for a wider variety of tine geometries and modes for 

detecting angular velocity. Since the Coriolis force was a function of the dis-

placement velocities, the gyroscopic effect therefore a nonlinear problem, albeit 

weakly nonlinear. Furthermore the frequency responses of change in electric po-

tential at the edge electrode, and change in admittance at the driving electrode 

were shown to be affected by the nonlinear elastic constants.  

1. Introduction 

Quartz resonators have been shown to have better aging, jitter and phase noise charac-

teristics than the current MEMS resonators [1]. In addition, the AT-cut quartz resona-

tor is well known for its short term and long term frequency stabilities as well as its 

good frequency-temperature characteristics. These are important characteristics in a 

good vibratory gyroscope if they could be realized. A vibratory gyroscope is a type of 

gyroscope that senses angular velocity by the momenta of its vibrating masses. 

 T.-T. Wu and C.-C. Ma (eds.), IUTAM Symposium on Recent Advances of Acoustic 

© Springer Science + Business Media B.V. 2010 

271
Waves in Solids, IUTAM Bookseries 26, DOI 10.1007/978-90-481-9893-1_25, 

mailto:yyong@rci.rutgers.edu


Y.-K. Yong and J. Du 

 

272

When the gyroscope undergoes a rotation the momenta generate Coriolis forces that in 

turn effect changes in the electric potential or charge at its sensing electrodes. We 

study and analyze in this paper the use of a quartz plate resonator as an angular veloc-

ity sensor. Our analyses are valid also for langasite plate resonators since the two crys-

tals share similar characteristics. Langasite plate resonator-gyroscopes will have higher 

gyroscopic sensitivity than their quartz counterparts due to their higher electrome-

chanical coupling factors [2]. However at present the material properties of quartz are 

better known, and high quality quartz plates are available commercially at low cost. 

Currently most quartz gyroscopes are tuning fork types that use their vibrating tines 

as angular velocity sensors. These gyroscopes needed to overcome technical chal-

lenges from complex electrical leads, driving electrodes, sensing electrodes, mounting 

supports sensitivity, mechanical drift and low Q. The AT-cut quartz plate resonator-

gyroscopes may on the other hand have simple driving and sensing electrodes, simple 

electrical leads, low mechanical drift and high Q. The high energy trapping in an AT-

cut plate resonator generally isolates the active region of the resonator from the mount-

ing supports, and hence a gyroscope derived from such a resonator may have much 

less mounting supports sensitivity. The idea of using energy trapped modes to re-

duce mounting supports sensitivity was also proposed by Nakamura, et. al. [3], 

Abe, et. al. [4], and Nakamura, et. al. [5]. 

2. Principles of the Quartz AT-Cut Vibratory Gyroscope 

2.1 AT-Cut Quartz Plate-Gyroscope 

In order to illustrate the operational principles of the quartz AT-cut vibratory gyro-

scope we consider one resonator structure in Fig. 2.1 below consisting of three draw-

ings. The structural components of this resonator may be varied in geometry and di-

mensions to yield optimal gyroscopic responses. The separation of the driving 

component from the sensing component allows for a wide variety of gyroscopic sens-

ing designs. The sensing component was the tine that could vibrate in a variety of 

modes such as flexure, torsion, or extension, while the driving mode was the thickness 

shear mode of the plate. The top drawing shows the tines and plate resonator, the mid-

dle drawing shows the mounting support and bottom electrode details, and the bottom 

drawing shows the top electrode details. The bottom electrodes were grounded. The 

top electrode details consisted of the driving electrode at the center of plate, and sens-

ing electrodes at the edges near the tines. The sensing electrodes could be designed to 

sense changes in admittance if shorted, or sense changes in voltage if open circuited.  
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Fig. 2.1 AT-cut quartz plate-gyroscope structure: (top) plate and tine dimensions, middle) 
mounting support and bottom electrode details, and (bottom) top electrode details, including 
the dimensions. 
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Fig. 2.2 Gyroscopic sensing principles of the tines. 

2.2 Gyroscopic Sensing Principles of the Tines 

The energy for driving the tines are derived from the thickness shear driving 

mode of the plate. In order to maximize gyroscopic sensing, the tines must be 

designed to satisfy two criteria simultaneously: (1) the tines must vibrate and 

resonate well with the thickness shear mode, and (2) the Coriolis force generated 

by the momenta and angular velocity of the tines must excite another tine mode. 

This is illustrated in Fig. 2.2 for a flexure mode sensing. When the tine flexes in a 

X-Z plane (left), the tine momenta will interact with the angular velocity about say 

the X-axis to produce a Coriolis force in the X-Y plane. If the tine was designed to 

resonate well with the Coriolis force then the tine will sense the angular velocity. 

In general the Coriolis force is given by cross product of the momentum of 

displacement velocities uρ ɺ  and the angular velocity vector Ω  

2b uρ= ⊗ Ωɺ  (2.2.1) 

3. Nonlinear Analysis of the Vibratory Gyroscope 

The Coriolise force was observed from Eq. 2.2.1 to be nonlinear as it was depend-

ent on the displacement velocity; hence the vibratory gyroscope problem is inher-

ently nonlinear, albeit weakly nonlinear. Another source of nonlinearity was from 

the material constants when the gyroscopic effect was weak due to mechanical 

drifts and very small angular velocity.  
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3.1 Governing Equations for the AT-Cut Quartz Plate-Gyroscope 

Although the quartz crystal is weakly piezoelectric, its effects must be consid-

ered in our analysis because the sensing of angular velocity is based on small 

changes in admittance or voltage at the edge electrodes. Also, although the 

viscosity coefficients of quartz are small, they must be considered to allow for 

a mechanism to calculate changes in the quality factor Q via significant energy 

losses at the mounting supports. The Q plays an important role in the interac-

tion of the driving mode and the sensing mode: if the Q is very high for both 

the modes, the two modes will not “see” or “hear” each other even when their 

two frequencies are relatively near to each other.  

3.1.1 Strain-displacement, and electric field-potential relations 

, , , , , ,

,

1
( )

2ij j i i j k i k j k j k i

i i

s u u u u u u

E ϕ

= + + +

= −
 (3.1.1) 

, , ,ij i is u E ϕ  are respectively the mechanical strains, mechanical displace-

ments, electric field and electric potential. 

3.1.2 Constitutive relations 

( )ij ijkl ijklmn mn kl ijkl kl kij k

i ijk jk ik k

t C C s s s e E

D e s E

η
ε

= + + −

= +

ɺ

 (3.1.2) 

, , , , , ,ij ijkl ijklmn ijkl kij i ikt C C e Dη ε  are respectively the mechanical stress, linear 

elastic constants, nonlinear elastic constants, viscosity constants, piezoelectric 

stress constants, electric displacements, and dielectric permittivity. The values 

of the material constants of quartz are well known and could be found in the 

literature [6, 7, 8, 9].  

3.1.3 Equations of motion and electrostatics 
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ij jk i k j i i
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 (3.1.3) 
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4. Results of the AT-Cut Quartz Plate-Gyroscope 

Results were obtained for the plate-gyroscope of Fig. 2.1. Since the top elec-

trode was driven at +/- 1 V while the bottom electrode was grounded, the 

admittance of the quartz resonator has the same values as the current calcu-

lated at the top electrode. Fig.4.1 shows admittance frequency response 

curve of the plate-gyroscope (left) and the floating potential at the edge 

electrodes (right). 

4.1 Frequency Response of the Plate-Gyroscope to Angular Velocity 
about the Y-Axis 

Frequency response of the plate-gyroscope to angular velocity about the Y-axis 

was studied. While the plate-gyroscope was not optimized for sensitivity to 

angular velocity, we nevertheless found small changes in the electric potential 

at top edge electrodes and in admittance at the top driving electrode.  

 

  

Fig. 4 Frequency response of the AT-cut quartz plate-gyroscope: (left) Admittance at the 
top driving electrode, and (right) floating potential at the edge electrode. 
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 4.1.1 Changes in the electric potential at edge electrodes due to 
angular velocity about the Y-axis 

Angular velocities of 1 rad/s, and 10 rad/s were successively applied to the 

plate-gyroscope, and changes in the electric potential at edge electrode were 

observed in Figs. 4.1.1, and 4.1.2 respectively. 

 

Fig. 4.1.1 Change in electric potential at the edge electrode as a function of excitation 
frequency for an angular velocity of 1 rad/s about the Y-axis. 

 

Fig. 4.1.2 Change in electric potential at the edge electrode as a function of excitation 
frequency for an angular velocity of 10 rad/s about the Y-axis. 
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4.1.2  Changes in the admittance at top driving electrode due to 
angular velocity about the Y-axis 

Changes were also observed in the admittance at the top driving electrode due to 

the angular velocities. As an example, Fig. 4.1.3 shows the change in admittance 

as a function of excitation frequency. 

 

Fig. 4.1.3 Change in admittance at the top driving electrode as a function of excitation fre-
quency for an angular velocity of 10 rad/s about the Y-axis. 

4.2   Models without Nonlinear Elastic Constants 

It was observed in section 3 that vibratory gyroscope is inherently a nonlinear 

problem since the Coriolis force is a function of the displacement velocity. The 

modeling efforts could be reduced if the material constants and strains were con-

sidered as linear, resulting in less iterations and computation time. The figure be-

low (Fig. 4.2.1) shows the changes in admittance of the previous figure (Fig. 

4.1.3) if the nonlinear elastic constants and nonlinear strains were neglected. A 

comparison of Figs. 4.1.3 and 4.2.1 (they are of the same scale and subjected to 

the same angular velocity of 10 rad/s) showed significant differences in the fre-

quency response of changes in admittance. Hence, nonlinear elastic constants and 

nonlinear strains should be included in the models when possible 
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Fig. 4.2.1 Change in admittance at the top driving electrode as a function of excitation frequency 
for an angular velocity of 10 rad/s about the Y-axis. Nonlinear elastic constants were neglected. 

5. Summary and Conclusion 

A novel design for an AT-cut plate-gyroscope was proposed. It was shown ana-

lytically that the angular velocity sensing function could be realized using an es-

sentially thickness shear mode and tines. Since the AT-cut plate resonator is tem-

perature stable, and well isolated from its mounting supports, the proposed plate-

gyroscope should have better temperature stability, and less dependency on the 

mounting conditions. Furthermore the electrode configurations will be as simple 

as those in an AT-cut plate resonator. The separation of the driving component 

from the sensing component allows for a wider variety of designs of the sensing 

component and function. 

Analytical results on changes in electric potential at the edge electrodes with 

angular velocity demonstrated the theoretical feasibility of the plate-gyroscope. 

The change in electric potential was dependent on the magnitude of the angular 

velocity and its sign. When negative angular velocity was applied, the change in 

electric potential changed sign too. The inclusion of nonlinear elastic constants 

causes significant differences in the frequency responses of the change in electric 

potential.  

Viscosity coefficients of quartz were included in the analysis to introduce a 

mechanism for modeling the changes in quality factor Q. The Q plays a role in the 

interaction of the driving mode and the sensing mode. 
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Abstract. The coupling-of-modes (COM) model was applied to the analysis of 

surface acoustic wave (SAW) devices in the 1980's. At that time, the COM pa-

rameters were calculated using perturbation techniques or extracted from experi-

mental data. With the improvements in computational resources it became possi-

ble to characterize the COM model's parameters using this robust harmonic 

admittance using FEM/BEM. The topic of this paper is on a method to accomplish 

the COM parameter characterization for RF type SAW, leaky SAW (LSAW), and 

buried interdigital transducer (BIDT) SAW devices.  

1. Introduction 

During the 1980's the coupling-of-modes (COM) model was applied to the analysis 

of Rayleigh type SAW devices [1, 2]. To characterize the COM model's parameters, 

perturbation, variational, and empirical methods were applied [3, 4, 5].  

During the 1990's the robust FEM/BEM and FEM/SDA models were intro-

duced [6, 7]. Due to the computational expense of analyzing finite devices, 

models such as the COM model and p-matrix model (PMA model) have re-

mained popular [6, 8, 9, 10]. 

To improve the predictive reliability of the COM model, the FEM/BEM model has 

been applied as a standard for characterization of the model [11, 12, 13].  

In the following sections, a method for the characterization of the COM model's pa-

rameters is described. Examples have been prepared for both conventional RF LSAW 

filters as well as the more recent devices, such as those buried/over-coated (BIDT) 

with SiO2 for the purpose of temperature compensation. 
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2. Harmonic Admittance Approximation 

The harmonic admittance is the admittance of a single electrode in an infinitely 

periodic grating with a harmonic excitation applied [14]. For example, the unit cell 

for such a structure, with period p, is illustrated in Fig. 2.0.1. The voltage and current 

of each individual electrode, Vn and In are harmonically related, Eq. 2.0.1 

( ) ( )2 / 2 /
0 0,j s x p n j s x p n

n nV V e I I eπ π− −= ⋅ = ⋅   (2.0.1) 

( , ) /n nY s f I V=  (2.0.2) 

For the purpose of characterizing the COM model's parameters, three approximations 

to the harmonic admittance are employed. 

The first is a physical rational approximation [15] represents the admittance 

of one or more surface modes, as well as a single neighboring bulk acoustic 

wave (BAW). This approximation includes the interaction between the SAW 

modes and the BAW. 

The second approximation is a spectral domain model, which is physically 

representative of one or more surface modes in an infinitely periodic grating, but 

is not physically representative of BAW modes. 

The third, and final, approximation is that of the COM model.  Like the spectral 

model, the COM model is physically representative of surface mode propagation, 

and when included the effect of BAW modes is included as a parasitic admittance. 

The COM model differs from the spectral model in it includes the reflective cou-

pling between counter propagating surface modes and may be applied to the 

analysis of non-periodic, and/or finite devices. 

S(x) a 

p 

h 

R(x) 

Vn = V0e
− jβx  

In = ∂I

∂x
⋅ p  

 

Fig. 2.0.1 Elementary cell represented by the harmonic admittance. 
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2.1 Physical Rational Approximation 

The physical rational approximation [15] is an analytic representation of the ad-

mittance of one or more surface modes' and a BAW mode. This approximation, 

Eqs. 2.1.1 – 2.1.4, physically represents the branch of the BAW mode as well as 

its interaction between the BAW and the surface modes. 

( ) ( )( , ) 2 sin ,gY s f j s s fω π ε= ⋅ ⋅ ⋅  (2.1.1) 

( ) ,

1 0

,
N K

n k
g k

n kn

R
s f cχε χ

χ χ= =

= + ⋅
−∑ ∑  (2.1.2) 

(1 )s f s fχ = − + − −  (2.1.3) 

2 , 2B B Bf f f f v p= =  (2.1.4) 

The variable vB is the cut off velocity for acoustic radiation into the bulk of the 

substrate by an infinitely long conventional IDT. The bulk mode whose velocity is 

represented by vB should be selected to coincide with the bulk mode with the 

greatest influence on the device. 

 Because this approximation includes SAW and a BAW mode it is able to accu-

rately represent the harmonic admittance function over a broad range of spectral 

frequencies. This makes this approximation well suited for the reliable extraction 

of the surface mode dispersive wavenumber and coupling coefficient. 

2.2 Spectral Domain Model 

The spectral domain model is representative of surface mode propagation in 

infinitely periodic gratings.  

An equivalence exists between the spectral domain model and the physical 

rational approximation, Eqs. 2.2.1 and 2.1.1 & 2.1.2. While the spectral domain 

model, Eqn. 2.2.1, does not represent the physics for BAW radiation, the effect of 

the BAW may be included as a parasitic admittance YB. 

,

2 2
1

( , )
_ ( )

N
s n

s B
n n

RY s f
j C s Y

s sω =

= ⋅ +
∆ − ∆∑  (2.2.1) 

0.5n ns s∆ = −  (2.2.2) 

( ) ( )( )
( )( ) ( )

cos /
sin

cos /
s

s

s

P a p
C s s

P a p

π
ε π

π
−

∞= ⋅ ⋅
−

 (2.2.3) 
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The variable, ε∞, respects the effective static dielectric constant. The pole 

amplitudes for the rational approximation and spectral model, Rχ ,n and Rs,n, in Eqs. 

2.1.2 and 2.2.1 are related by Eq. 2.2.4. 

, , ,2 sin( )s n n n B n nR j R D sχ χ π= ⋅ ⋅ ⋅ ⋅  (2.2.4) 

The detuned spectral wavenumber, ∆sn, is related to the poles locations of the 

physical rational approximation by Eq. 2.2.5. 

2 2 2(0.5 ) , 0.5n ns f f f fχ∆ = ± ∆ − + ∆ ∆ = −  (2.2.5) 

The variable, DB, is representative of the BAW wavenumber, which is implicit in 

the rational approximation, but missing in the spectral domain model. 

2 2
BD f s= ± ∆ − ∆  (2.2.6) 

2.3 COM Harmonic Admittance Model 

The COM model has been applied previously to represent the harmonic admit-

tance [12]. Eqs. 2.3.1-2.3.5 are representative of the electrical and acoustic 

wave amplitudes for a periodic grating of unit width, with a spectral excitation 

applied. 

-
0 e j xR

j R j S j V
x

β∂ δ κ α
∂

= − ⋅ + ⋅ + ⋅ ⋅  (2.3.1) 

-
0 e j xS

j S j R j V
x

β∂ δ κ α
∂

= ⋅ − ⋅ − ⋅ ⋅  (2.3.2) 

 02 2 ( )s

I
j R j S j C s V

x

∂ α α ω
∂

= − ⋅ − ⋅ − ⋅ ⋅   (2.3.3) 

, 2uv p s p pδ ω π β π π= − = −   (2.3.4) 
- 2 / - 2 /e , ej x p j x pR R S Sπ π= ⋅ = ⋅   (2.3.5) 

The right and left propagating waves are R and S, respectively. The COM 

model's parameters are the unperturbed detuning, δ, the distributed electrode 

reflectivity, κ, the transduction, α, and the spectral capacitance, C(s). The 

detuning is expressed in relation to the unperturbed velocity, vu. 
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Using the COM model, the harmonic solution to the admittance of a single 
electrode [12] is given by Eq. 2.3.6. 

2
2 2

( , ) 4 ( )s BY j p j C s Y
D

δ κβ δ α ω
β

 += − − + − 
  (2.3.6) 

2 2 2 /D s pδ κ π= ± − ≈ ± ∆   (2.3.7) 

The COM transduction coefficient, α, may be related to the pole amplitude, Rs, 

of the spectral model, by the comparison of Eqs. 2.3.6 and 2.2.1. 

2 2
, ( ) ( ) /s n n n nR pα δ κ π= ⋅ ⋅ +   (2.3.8) 

3. COM Model Characterization 

The COM parameters, in Eqs. 2.3.1- 2.3.4, are the unperturbed surface mode ve-

locity, vu, the periodic reflection coefficient, κ, which couples the forward and re-

verse propagating modes, the electro-mechanical COM transduction coefficient, 

α, the electrostatic IDT capacitance, C(s), and the BAW admittance, YB. 

The COM parameters are characterized at discrete frequencies. Interpolation is 

used to obtain a continuous representation. The strategy to characterize the COM 

parameters consists of first obtaining a physical rational approximation to the 

FEM/BEM's harmonic admittance. Second, the desired mode's pole position and 

amplitude, χn and Rχ,n , are isolated from the rational approximation. Next the 

COM detuned wavenumber, D, and transduction coefficient, α, are obtained by 

transformation of the rational approximation's pole position and amplitude. From 

the COM detuned wavenumber the COM reflection coefficient, κ, is extracted. 

Finally, the static capacitance, Eq. 3.0.1, and the remaining BAW admittance, 

Eq. 3.0.2 are evaluated. 

0

( , )
( ) lims

f

Y s f
C s

jω→
=   (3.0.1) 

2
2 2

( , ) (0.5, )

(0.5, ) ( ) 4

B B

s

Y s f Y f

Y f j C s j p
D

δ κω α
β

≈

 +≈ − −  − 

  (3.0.2) 
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Fig. 3.0.1 The real ( − ) and imaginary ( − − ) parts of the detuned wavenumber, D 

 

Fig. 3.0.2 The real (−) and imaginary (−) parts of α, and the Real (− −) and imaginary (− −) 
parts with the influence of the BAW suppressed. 

 

Fig. 3.0.3 The real (−) and imaginary (− −) parts of the remaining BAW harmonic 
admittance for YB(s = 0.5, f) = Y(s = 0.5, f) - Y(β = 0, δ). 
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3.1 Application of the Rational Approximation 

For the purpose of fitting to the numerically obtained harmonic admittance the 

form of the rational approximation in Eq. 3.1.1 may be used. 

0 0

( , )
M N

m n
g m n

m n

s f a bε χ χ
= =

= ⋅ ⋅∑ ∑  (3.1.1) 

The polynomial coefficients in Eq. 3.1.1 may be solved by a simultaneous, or 

linear least squares solution. Fig. 3.1.1 illustrates an example of the quality of fit 

provided by the physical rational approximation.  

Eq. 3.1.1 may be manipulated into the form of Eq. 2.1.2. The subsequent 

evaluation of the spectral domain poles, ∆sn, and residues, Rs,n, as well as their 

COM model equivalents, D and α, are evaluated by applying Eqs. 2.2.4, 2.2.5, 

2.3.7, and 2.3.8. 

Fig. 3.0.1 illustrates an example of the detuned wavenumber, Fig. 3.0.2 illus-

trates the transduction coefficient, and Fig. 3.0.3 illustrates the BAW admittance. 

The extracted COM transduction coefficient is effected by the neighboring BAW 

mode at ƒ = 0.5. The effect of the BAW mode must be suppressed. The suppres-

sion may be accomplished by assuming the transduction coefficient's frequency 

dependence is consistent with the phenomenological representation in Eq. 3.1.2. 

2 2 2sin( ) cos( )r n rs Dpα α π α≈ ⋅ = ⋅  (3.1.2) 

where αr is the transduction coefficient at resonance. In Fig. 3.0.2 the value of 

αr is indicated with a box, �. 

 

Fig. 3.1.1 The numerical results (symbols) and rational fit (lines) to the harmonic 
admittance at a frequency below resonance are illustrated. The � and the � symbols repre-
sent the real and imaginary parts of the numerical harmonic admittance. The spectral cut off 
frequency for the BAW is marked by the dashed line (- -). 



B. Abbott, K. Gamble, N. Naumenko, S. Malocha and M. Solal 

 

288

3.2 COM Reflection Coefficient 

Prior works have derived the parameters for the PMA and COM models by mak-

ing reasonable approximations regarding to the frequency dependence of the re-

flectivity [8], or the unperturbed velocity [13].  

When the reflection coefficient, κ in Eq. 2.3.7, is assumed to be a constant 

the derivative of the COM detuned wavenumber is unrelated to the reflection 

coefficient, Eq. 3.2.1.  

2 2D

f f

∂δ ∂
∂ ∂

=  (3.2.1) 

In the context of the COM formalism, the unperturbed detuning, δ, and the 

unperturbed velocity, vu, in Eq. 2.3.4, are continuous with frequency. In the 

vicinity of the stop band center there is a frequency, fv, where the detuning is 

zero, Eq. 3.2.2. 

( ) 0vfδ =  (3.2.2) 

Examination of Eqs. 2.3.7, 3.2.1, and 3.2.2 leads to a solution to the reflection 

coefficient, κ, which is consistent with the COM formalism, Eq. 3.2.3. 

2 2( )vD fκ = −  (3.2.3) 
2

0
vf f

D

f

∂
∂ =


=


 (3.2.4) 

To evaluate Eq. 3.2.3 a numerical method must be applied to solve Eq. 3.2.4 

for the complex valued fv and to evaluate D(fv). 

 

Fig. 3.2.1 The normalized perturbed (−) and unperturbed (− −) COM velocity. 
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In order for the resonance of a SAW device to manifests at the lower stop band, 

the sign of the real part of κ must be negative. 

The sign ambiguity for δ, in Eq. 2.3.4, may be resolved by ensuring the energy 

carried by the SAW dissipates as it propagates. As an illustration of a proper re-

sult, the normalized perturbed velocity, vp= f/s1, and the normalized unperturbed 

velocity, vu = vu/vB, are illustrated in Fig. 3.2.1. 

4. Results 

As a demonstration of the COM model, three devices have been constructed and 

modeled. These devices are (1) a one-port resonator on 46°YX LiTaO3, (2) a 

one-port BIDT type resonator on 128°YX LiNbO3, and a coupled-resonator filter 

(CRF) on 42°YX LiTaO3. 

4.1 46°°°°YX LiTaO3 One-Port Resonator 

The first example is a one-port resonator whose metallization is proportionately 

composed of Aluminum, and whose physical geometries of the one-port resonator 

on 46°YX LiTaO3 are given below. 

Table 4.1.1 46° YX LiTaO3 One Port Resonator 

Length Aperture Period h/p a/p 

400p 100p 1.08 um 0.197 0.4 

 

 

Fig. 4.1.1 Magnitude (−) and real (−) part of the measured admittance for a one-port 
resonator on 46°YX LT; accompanied by the magnitude (− −) and real (− −) part of the 
modeled admittance. 
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The small resonance seen in the experiment's conductance in the vicinity of 

1940 MHz is that of the SAW-BAW hybrid (SBH) mode [16]. As the COM model 

represents a single acoustic mode, the SBH resonance is not represented by the 

theoretical result. 

The electrode thickness and width are approximate values. The excellent 

agreement between results and calculations in Fig. 4.1.1 is, in part, the result of 

adjusting the model's parameters to account for the specifics of the fabrication 

processes used. 

4.2 128°°°°YX LiNbO3 BIDT One-Port Resonator 

The second example is a one-port resonator whose electrodes are proportionately 

composed of Copper, and which is buried under a planar overcoat of SiO2, Fig. 

4.2.1. The physical geometries of the one-port resonator on 128°YX LiNbO3 are 

presented in Table 4.2.1. 

 

 

 

 

 

 

 

 
Fig. 4.2.1 Elementary Cell of Buried IDT. 

 

Fig. 4.2.2 Magnitude (−) and real (−) part of the measured admittance  for a BIDT one-port 
resonator on 128°YX LN; accompanied by the magnitude (− −) and real (− −) part of the 
modeled admittance. 

 h 
 

hox SiO2 

Air 

128° YX LiNbO3 
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Table 4.2.1. 128° YX LiNbO3 BIDT One Port Resonator 

Length Aperture Period h/p a/p hox/p 

200p 80p 2.0 um 0.086 0.5 0.335 

In Fig. 4.2.2, the resonances in the vicinity of the stop band, are the result 

of transverse modes. 

The electrode thickness and width are approximate values. The excellent 

agreement between results and calculations in Fig. 4.2.2 is, in part, the result 

of adjusting the model's parameters to account for the specifics of the fabrica-

tion processes used. 

4.3 48°°°°YX LiTaO3 BIDT Coupled Resonator 

The third example is a two pole coupled resonator whose electrodes are pro-

portionately composed of Copper, and buried beneath a planar SiO2 overcoat. 

Due to the more complex structure of this device the physical geometries 

are not itemized.  The two port coupled resonator is specifically designed for 

on wafer measurement using RF probes. Fig. 4.3.1 illustrates a comparison 

between the COM model responses and measured responses for s11 and s12. 

 

 

Fig. 4.3.1 Response for the measured (− −) and modeled (−) s11, and the measured (−) and 
modeled (− −) s12.  
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5. Conclusion 

A method for charactering the COM model has been documented. The method 

relies upon a physical rational approximation of the harmonic. 

Using these characterized parameters, the COM model has been applied to the 

analysis of RF type SAW devices. These SAW devices include both conventional 

and BIDT SAW one-port and two-port resonator. Good agreement between the re-

sponses obtained using the COM model and the experimental measurements has 

been demonstrated. 
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Abstract. The simulation of wave propagation in periodic piezoelectric surface 

acoustic wave (SAW) structures was reported in this study. Firstly, space harmon-

ics method (SHM) was used to analyze Rayleigh SAW propagation under a peri-

odic Al grating. The results of SAW propagation analysis were applied to design a 

two-port resonator with Al grating on ST-cut quartz. The measured frequency re-

sponse of the two-port resonator was approximately similar to the simulation one. 

Then, the chemical interface of polyaniline/WO3 composites was coated on the 

SAW resonator for ammonia detection. The SAW sensor responded to the ammo-

nia gas and could be recovered using dry nitrogen. Detecting to 9.3ppm ammonia, 

the frequency shift was 5.9ppm, the noise level was 0.18ppm, and a signal-to-

noise ratio was 32.8. 

1. Introduction 

Ammonia is a toxic gas. The release of ammonia into the atmosphere has 

been causing global environmental issues [1]; therefore detection of ammo-

nia gas is an important task. Among all kinds of gas sensors, acoustic wave-

based sensors have been widely used for detection of the hazardous com-

pounds in environments. With the advanced microfabrication techniques, 

SAW devices offer significant advantages of real-time and sensitive re-

sponses. Therefore, it has greatly received attention on development of the 

SAW gas sensors [2, 3]. 
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The basic structures of the SAW devices consist of a piezoelectric substrate and 

periodic metal gratings. Due to the complexity of boundary condition, it is not 

easy to study SAW propagation with a consideration of mass loading effect of the 

periodic metal grating [4, 5]. Several analysis techniques have been developed for 

this purpose, including finite element method (FEM) [6, 7], Green’s function [8, 

9], and space harmonic method (SHM) [10, 11].  

The propagation analysis of SAW by FEM must reduce the models in size and 

is calculated in the limit of infinitely thin electrodes. Green function method is 

also limited by its complexity and computational cost. In SHM, the boundary in-

tegral equations are derived from method of weighted residuals for a period of 

each region, such as substrate, metal, and free space, and are solved to satisfy the 

periodic boundary conditions. Therefore, SHM can integrate along boundary so 

that it is easy to apply to arbitrarily periodic shaped structures.  

In this work, we report a sensor for measuring ammonia at room temperature 

near intensive farming. Ammonia detectors with a detection limit of 25ppm below 

40oC are required for this application [1]. However, the commercially available 

sensors, which are generally based on metal oxide semiconductor materials oper-

ating at 250-500oC, can not reliably detect an allowable concentration of ammonia 

[12, 13]. We used SHM to investigate Rayleigh SAW propagating based on ST-

cut quartz under the periodic Al grating. ST-cut quartz has been widely utilized to 

design SAW devices due to high temperature stability around room temperature. 

Al is a common material of the grating because of its well developed manufacture 

technique. We applied the results of propagation analysis to design a two-port 

resonator to detect ammonia at room temperature. The chemical interface was 

polyaniline/WO3 nanocomposite. Polyaniline film is easily prepared from aque-

ous solutions and is an effective interface for detecting ammonia [14, 15]. The ma-

terial of WO3 has also shown good responses to ammonia [16]. The combination 

of polyaniline and WO3 in the nanostructure forms has the potential to increase 

sensitivity to ammonia. In this work, responses of an SAW sensor to ammonia 

were measured by the frequency shifts of SAW.  

2. Theoretical Analysis 

The SHM method only requires analysis of one period and expresses the dis-

placements and the acoustic potential as the sum of space harmonics when it is 

used to analyze propagation under periodic gratings. The SAW propagates in the 

x1 direction with period p in this work. h is thickness of the metal grating. 
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In each region, the displacements Ui and the electric potentialϕ are written as: 

substrate： 
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free space： 
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where 4
s sU ϕ= . m denotes the space harmonic and n is the index of the partial 

waves inside the layer. A(m,n) is the weighting factor, βi(m,n) is the component of 

the normalized eigenvector corresponding to the m-th space harmonic, α(m,n) is 

the decay factor in the x3 direction, and γ is the normalized wave number.  

The wave equations under conditions of a quasi static approximation are as follows: 

substrate： 

, , 4, ,s s s s s s s
ij j ijkl k lj kij kj iT c U e U Uρ= + = ɺɺ      (i ,j, k, l=1, 2, 3)  (2.4) 

, , , 0s s s s s
i i ikl k lj ik ikD e U ε ϕ= − =  (2.5) 

metal： 

, ,
m m m m m

ij j ijrs r sj iT c U Uρ= = ɺɺ  (2.6) 

free space： 

, 0 , 0f f
i i iiD ε ϕ= − =  (2.7) 

where Tij is the stress, Di is the electric displacement, c is the elastic tensor, e is 

piezoelectric tensor, ε is the dielectric tensor, and ρ is the mass density. In equa-

tions (2.4)-(2.7), a dot denotes differentiation with respect to time and a comma 

denotes differentiation with respect to a space coordinate. 
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Substituting the equations of the displacements Ui and the electric poten-

tial ϕ into the wave equations, the α(m,n) and βi(
m,n) can be obtained. In gen-

eral, four α(m,n) are selected according to physical considerations in the sub-

strate region, six α(m,n) are applied in the metal region, and one α(m,n) is 

selected according to physical considerations in the free space.  
For the electrical boundary conditions, the potential and the normal com-

ponent of electric displacement must be continuous across the boundaries, 

and the potential must be a constant value on the metal region. Moreover, 

the electric potential on the metal strips is zero in the shorted grating, or the 

total charge on the metal region is zero in the open case. For the mechanical 

boundary conditions, the displacements and the stress across the boundary 

between the substrate and the metal region must be continuous, and the 

stress across the boundary between the metal region and the free space must 

be zero.  

Consequently, a matrix equation in the real and imaginary parts of the 

voltage V0 and the weighting factors A(m,n) can be obtained, it is as fol-

lows: 

0⋅ =C Y   (2.8) 

where 

( ) ( ) ( ) ( )

( ) ( )

,0 ,0 , ,
0 0

,10 ,10

[Re( ), Im( ),Re( ), Im( ),...,Re( ), Im( ),

,...,Re( ), Im( )]

m n m n

T

V V A A A A

A A

−∞ −∞

∞ ∞

=Y
 (2.9) 

The exact solution can be obtained by evaluating the normalized wave 

number and the normalized frequency, which satisfy the condition det|C| = 0. 

The stopband frequencies converge in a similar manner as described in [16] 

when m increases. Hence, the number of space harmonics m was truncated 

to 4 in this work.  

The dispersion curves of the Rayleigh wave under shorted and open Al 

grating on ST-cut quartz as a function of the normalized Al thickness, h/2p, 

are illustrated in Fig. 2.1. The stopband width for the shorted grating is nar-

rower than that for the open grating. It indicates the open grating shows the 

enhanced reflectivity. The sensitivity of the upper stopband edge to Al strip 

thickness is less than that of the lower stopband edge. The imaginary part of 

the normalized wave number also increases with the Al strip thickness. It 

indicates the thick Al strip thickness induces the large reflection. 
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(a) 

 
(b) 

Fig. 2.1 The dispersion curves of the Rayleigh wave under (a) shorted and (b) open Al grating 
on ST-cut quartz as a function of the normalized Al thickness. 

 

Fig. 2.2 COM parameters under the Al periodic grating on ST-cut quartz. : |κ12·2p| (solid line), 
κ11·2p( dashed line), and ( ) ( )2

02 sp Cξ ω  (dotted line).  
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The COM theory is based on the concept that the progressing wave and 
counter-progressing wave couple with each other in periodic structures. The pa-
rameters using in the COM theory include κ12 (mutual coupling coefficient), κ11  
(self-coupling coefficient), and ζ (transduction coefficient) that can be determined 
from the dispersion curves. The relative equations are as follows, 

11 2 2 1 ,
2
ls us

o

f f
p m

mf
κ π

 +
⋅ = − 

 
 (2.10) 

12
0

2 ,us lsf f
p

f
κ π −

⋅ =  (2.11) 

( ) ( ) ( )( ){ }
2

2 2
0 0 0 0 0 02

0 0

2 1
,

2 u l u l us ls us ls u l
s

p
f f f f f f f f f f

C f

ζ π
ω

= + + + − + +  (2.12) 

where f0 is the Bragg frequency and Cs is the static capacitance per grating pair. fus, f1s, 

fuo, and flo are four stopband edge frequencies of the dispersion curves for shorted and 

open gratings, respectively. 

Fig. 2.2 shows the relationships between the COM parameters and grating thickness. 

|κ12·2p| is determined by stopband width and corresponds to the reflection coefficient per 

period. The increasing thickness of the gratings broadens stopband width. Hence, the 

thick grating with large effective reflection is suitable for application of the resonator 

with a small size. κ11·2p corresponds to phase shift per periodic. The parameter of κ11·2p 

evidently varies with grating thickness above h/2p of 0.01. It is because the energy stored 

near the thick strip edges is not weak, which leads to large phase shift. The parameter of 

( ) ( )2

02 sp Cξ ω is also sensitive to grating thickness. Above h/2p of 0.01, 

( ) ( )2

02 sp Cξ ω  apparently increases with increasing metal grating thickness. 

3. Results and Discussion 

We designed and realized a two-port resonator with a shorted grating to investigate 

experimentally the accuracy of the theoretical results. Each of the input and output in-

terdigital transducers (IDT) of Al has 104.5 finger pairs, each of reflector has 150 Al 

strip gratings, aperture of IDT is 960µm, the thickness of Al is 300nm, and the center-

to-center distance between the IDTs is 605µm. The operating frequency of the resona-

tor is 98.47MHz. Fig. 3.1 illustrates the frequency response of the two-port resonator. 

It shows that measurement data is similar to the simulation one. The oscillation fre-

quency measured by the spectrum analyzer (4395A, Agilent, USA) and shown in Fig. 

3.2 was stably at 98.47MHz after SAW resonator being connected with the oscillator. 
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Fig. 3.1 Simulation (dotted line) and measurement (solid line) of frequency response of a 
two-port SAW resonator.  

 

Fig. 3.2 Oscillation of two-port SAW resonator in measurement. 

This study made use of a dual-device configuration shown in Fig. 3.3. A resonator 

coated with polyaniline/WO3 composites was used as a sensor, and a non-coated reso-

nator was used as a reference. All detection signals were taken the output difference 

between the sensor and the reference to reduce interference from the environment such 

as pressure, flow rate, humidity, etc. The SAW resonators were connected to the RF 

electronic oscillator circuits to generate RF signals. Dry N2 was the carrier gas. Mass 

flow controllers (Sierra, USA) were used to control flow rate at 110 ml/min. The dual-

device configuration was put into a sealed 5 cm3 sensing chamber. All detections were 

performed at room temperature. A frequency counter connected to a computer system 

via a RS-232 interface board monitored the frequency differences between the sensor 

and the reference. Just before the gas detection process began, the dual-device configu-

ration was exposed to dry nitrogen for 30min to stabilize the initial SH-SAW signals. 

The noise measurement was determined from data collected for 10min at 20 points per 

min, and noise was taken as the standard deviation of the residuals of the linear least 

squares fit through the data. 
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Fig. 3.3 Photograph of a dual-device configuration. 
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Fig. 3.4 Frequency responses of a SAW sensor to 40.2 and 9.3ppm ammonia. 

Fig. 3.4 shows the SAW responses for a sensor upon exposure to pure N2 and 

mixed NH3/ N2 gas streams. Several points are worth noting. First, the positive 

frequency shifts are approximately proportional to the concentration of NH3. Sec-

ond, the sensor has fast response time: for 40.2ppm NH3, 90% of the maximum 

frequency shift is attained in 110s. Third, NH3 reversibly binds to the chemically 

sensitive surface. Detecting to 40.2ppm ammonia, the frequency shift is 11.6ppm, 

the noise level is 0.16ppm, and a signal-to-noise ratio is 72.5. This sensor was also 

presented the sensitive response to 9.3ppm ammonia. The frequency shift is 

5.9ppm, the noise level is 0.18 ppm, and a signal-to-noise ratio is 32.8. 
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Fig. 3.5 Frequency responses of a SAW sensor to 26.2ppm ammonia. 

The real-time responses of a SAW sensor to 26.2ppm ammonia in dry nitrogen 

are shown in Fig. 3.5. This SAW sensor detects the presence of ammonia gas after 

ammonia is on. The response returns to its original condition when dry nitrogen 

purges. The response is also repeatable becausee each gas on/off cycle presents 

similar response. 

4. Conclusions 

In this work, SHM was applied to analyze the Rayleigh SAW propagating un-

der the periodic Al grating on the ST-cut quartz. The open grating shows the 

enhanced reflectivity. The thick Al strip thickness enlarges the attenuation. 

The SAW sensor coated with polyaniline /WO3 composites exhibited re-

sponses to ammonia at room temperature. The response could be recovered by 

dry nitrogen easily and presented reversibility and repeatibility. This helps us 

achieve our goal of developing SAW-based gas sensors that are sensitive to 

ppm-level ammonia at room temperature. 
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Three Dimensional Displacement Measurement of  
Transient Elastic Wave Propagation Using  
a Multidimensional Point-Wise Fiber Bragg 
Grating Displacement Sensor System 
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Department of Mechanical Engineering, National Taiwan University, Taipei 106, Taiwan 

ccma@ntu.edu.tw  

Abstract. A fiber Bragg grating (FBG) sensor setup method that can allow the 

FBG to detect out-of-plane or in-plane point-wise displacement is demonstrated in 

this study. Based on this method, we successfully establish a multidimensional 

sensing system which contains one out-of-plane displacement sensor and two in-

plane displacement sensors to measure the transient elastic wave propagation in a 

square thick plate subjected to impact loadings. The proposed system employs 

wavelength-optical intensity modulation techniques based on a long-period fiber 

grating filter and two FBG filters. The transient responses of out-of-plane particle 

motions measured by the FBG displacement sensor are compared with those ob-

tained simultaneously by a laser Doppler vibrometer (LDV). The experimental re-

sults show that the proposed FBG displacement sensor system is capable of per-

forming real-time measurement of three dimensional dynamic displacements for 

transient elastic wave propagation. 

1. Introduction 

For the last decade, fiber Bragg gratings (FBGs) have been employed as important 

optical sensors to measure physical quantities such as strain and temperature [1, 

2]. In most cases, since an FBG is completely mounted on the surface of a speci-

men, it is not used to measure the displacement of a specific point on an arbitrary 

surface. Traditionally, optical non-contact displacement sensors based on Doppler 

effect [3] or heterodyne grating interferometry [4] can provide high-precision out-

of-plane or in-plane displacement measurement. However, they are high in cost 

 T.-T. Wu and C.-C. Ma (eds.), IUTAM Symposium on Recent Advances of Acoustic 

© Springer Science + Business Media B.V. 2010 

303
Waves in Solids, IUTAM Bookseries 26, DOI 10.1007/978-90-481-9893-1_28, 

mailto:ccma@ntu.edu.tw


K. C. Chuang and C. C. Ma 

 

304

and often occupy much space. In an attempt to use a low-cost and small size FBG 

to measure the displacement, Chuang and Ma [5] recently proposed an FBG setup 

method and successfully used it to detect the out-of-plane or in-plane dynamic 

displacement.  

To investigate behaviors of transient elastic waves, Ma and Lee [6] studied 

three-dimensional transient elastic waves in a multilayered medium subjected to 

dynamic loadings by theoretical analysis, numerical calculation and experimental 

measurement by a commercial NBS (National Bureau of Standards) conical trans-

ducer. However, the conical transducer can only be used to measure the out-of-

plane motions. In this paper, we propose an FBG displacement sensor setup 

method to establish a multidimensional displacement sensor system [5] and use 

this system to measure the transient elastic wave propagation in a square thick 

plate subjected to impact loadings. In this work, the responses of out-of-plane 

FBG displacement sensor are demodulated by a long-period fiber grating (LPFG). 

For the in-plane FBG sensors, the FBG filter-based demodulation technique is 

employed to obtain larger sensitivity and signal-to-noise ratio (SNR). The meas-

ured out-of-plane displacement responses are compared simultaneously with those 

obtained by a laser Doppler vibrometer (LDV). The in-plane displacement meas-

urement ability is examined by two orthogonal FBG in-plane sensors. Finally, the 

resonant frequencies of the thick plate determined from the transient time-domain 

responses are discussed with the corresponding mode shapes predicted by FEM 

computations.  

2. Principle and Setup of the FBG Sensing System 

The configuration of the FBG displacement sensor system used in this study is il-

lustrated in Fig. 3.1. Light from a broadband source (BBS) is transmitted to an iso-

lator, a splitter, an LPFG, and two FBG filters. Each light enters a directional cir-

culator and is reflected back to the corresponding output channel by an FBG 

sensor. According to Bragg’s law, the Bragg wavelength Bsλ  of an FBG sensor is 

given by [5] 

eff( , ) 2 ( , ) ( , )Bs z t n z t z tλ = Λ  (2.1) 

where eff ( , )n z t  is the effective refractive index of the fiber core and ( , )z tΛ  is the 

Bragg grating period. The shift in Bragg wavelength due to dynamic strain can be 

expressed as 
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( , ) (1 ) ( , ) ( , )Bs e Bsz t p z t z tλ λ ε∆ = −  (2.2) 

where ( , )z tε  is the dynamic strain of the fiber, and ep  is an effective photoelas-

tic coefficient. By fixing one end of a length 0l  of fiber containing an FBG sensor 

to a stationary boundary and fixing the other end to a point on a movable object 

under measurement, the displacement of the object can be expressed by 

0

0
( ) ( , )

l
D t z t dzε= ∫ . (2.3) 

In order to estimate demodulation behavior, the transmittance of the FBG filter  

can be approximated by  

2( ) 1 exp[ 4 ln 2( ) ]Bf
f

f

F R
λ λ

λ
σ
−

= − −  (2.4) 

where Bfλ  is the Bragg wavelength of the filter, fR  is the maximum reflectivity, 

and fσ  is the grating full-width at half maximum (FWHM) of the FBG filter. The 

spectrum reflectance of the FBG sensor can also be approximated by a Gaussian 

function, given by 

2( , )
( , ) exp[ 4 ln 2( ) ]Bs

s
s

z t
S t R

λ λλ
σ

−
= −                                                        (2.5) 

where sR  is the maximum reflectivity and sσ  is the grating FWHM of the FBG 

sensor. When the intensity of the BBS transmitted into the FBG sensor is ( )iI λ  , 

the total light power  ( )dP t  detected on the photodetector (PD) can be expressed 

by  

0 0
( ) ( ) ( ) ( , ) ( )d d iP t I d k I S t F dλ λ λ λ λ λ

∞ ∞
= =∫ ∫  (2.6) 

where ( )dI λ  is the light intensity into the PD and k  is a parameter reflects the 

optical intensity attenuation through the light path, splitter or circulator. The de-

modulation behavior using the LPFG filter is similar to that of the FBG filter. The 

only difference lies on the spectrum of the LPFG, which has much larger linear 

portion than that of the FBG filter. 

Details regarding the FBG displacement sensor setup method can be found in 

Chuang and Ma [5]. To attach the out-of-plane FBG sensor to the surface of the 

specimen, one end of it is glued to the translation stage with strain gauge cement and 
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subsequently with a layer of epoxy glue to provide extra strength. The other end of the 

FBG sensor is cut at an angle to decrease return reflection loss. Then, a mix of epoxy 

resin and hardener is put on the sensing point. Within the first minute of the curing cy-

cle of the epoxy glue, the FBG displacement sensor is moved slightly up and down by 

the translation stage in order to reduce light reflection and the end face of the FBG 

sensor is finally glued to a point on the surface to be measured. If  Bfλ of the FBG or 

the transmittance peak of the LPFG filter attached to a translation stage is adjusted to 

the left of  ( ,0)Bs zλ  before the measurement, then ( , )Bs z tλ  will lie in the linearized 

positive slope spectrum of the FBG or LPFG filter. The PD output electrical signal 

will linearly increase as the FBG sensor is elongated and decrease as the FBG sensor is 

compressed under the measurement on the order of sub-micrometers. Moreover, the 

setup of the FBG sensor system also allows the FBG displacement sensor to detect the 

dynamic responses like acoustic vibration. 

3. Experimental Results and Discussion 

The experimental setup is shown in Fig. 3.1. Light from a broadband source (BBS) 

with a wavelength ranging from 1520 to 1570 nm is transmitted to an isolator, coupled 

by a 1 3×  splitter and divided into three paths. Each light beam enters a corresponding 

LPFG or FBG filter (FBG filters 1, 2, and LPFG filter) attached to a translation stage 

and a directional circulator and is reflected back to the output channel by the FBG sen-

sors, including one out-of-plane FBG displacement sensor and two in-plane FBG dis-

placement sensors. A photodetector (PDA10CS, InGaAs amplified detector, Thorlabs, 

Inc) then receives the optical intensity signal and transforms it into an electrical signal, 

which is recorded by an oscilloscope (LeCroy 64Xs). The original Bragg wavelengths 

of the FBG sensors as well as the LPFG filter and FBG filters are also depicted in Fig. 

3.1. All the FBG grating lengths are 10 mm.  

The proposed FBG displacement sensor system is employed to measure the tran-

sient elastic wave propagation on an aluminum square thick plate (made of 6061-T6). 

The aluminum thick plate is loosely placed on top of four silicon rubber pads to simu-

late the traction-free boundary. The dimension of the  thick plate and sensing locations 

of the three orthogonal FBG displacement sensors (consisting of one out-of-plane dis-

placement sensor (FBG1), and two in-plane displacement sensors (FBG2 and FBG3)) 

and LDV on the thick plate are shown in Fig. 3.2. The thickness of the thick plate is 

6.65 mm. Elastic transient waves are generated by a steel ball impacted vertically from 

a height onto point A (i. e., center of the surface of the thick plate) or B (as shown in 

Fig. 3.2) on the top surface.  
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The out-of-plane transient displacement responses measured by the proposed 

FBG displacement sensor can be verified by the LDV. Hence, the out-of-plane 

FBG displacement sensor (FBG1) is performed first. A 5/32 in. steel ball is 

dropped onto the square aluminum thick plate on location A. FBG1 as well as 

LDV are employed simultaneously to measure the transient displacement re-

sponses of the wave propagation. Fig. 3.3 shows the experimental results of the 

transient displacement responses. Five wave groups can be clearly observed in the 

measured waveforms, which represent five impacts of the steel ball. The maxi-

mum peak to peak value of  LDV is 2238.29 nm. Fig. 3.4 focuses on the time pe-

riod of 20 ms of the initial displacement response. The agreement between results 

measured from FBG1 and LDV is excellent. 

Since the dynamic measurement ability of the FBG is already demonstrated by 

the out-of-plane FBG displacement sensor, we now perform multidimensional 

measurement simultaneously using four sensors (i. e., FBG1, FBG2, FBG3, and 

LDV). Fig. 3.5 shows parts of the first wave group of the multidimensional dis-

placement responses of the square thick plate after a 3/16 in. steel ball has im-

pacted at location A. Again we can see that the out-of-plane response obtained 

from FBG1 agrees well with that obtained from LDV. The maximum peak to peak 

value of LDV is 3135.52 nm. Examining the out-of-plane transient responses in 

FIG. 3.5 and FIG. 3.4, we can see that the repeatability of the experimental results 

is excellent. It should be noted that the responses of the FBG in-plane displace-

ment sensors are normalized for comparison. 

 

Fig. 3.1 Experimental setup of the multidimensional FBG displacement sensor system. 
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Fig. 3.2 Illustration of sensing points on the square thick plate. 

The frequency spectrum can be constructed from taking the fast Fourier 

transform of the time-domain transient responses obtained by all the dis-

placement sensors. Fig. 3.6 shows the frequency spectra of the out-of-

plane transient responses presented in Fig. 3.5 to 20 kHz. It is clearly 

shown that the resonant frequencies determined from the transient re-

sponses obtained from LDV and FBG1 sensor are nearly the same. Thus, 

the measurement ability of the FBG sensor can be demonstrated by com-

parison with the LDV in either the time domain or the frequency domain. 

The frequency spectra of the in-plane transient responses presented in Fig. 

3.5 are shown in Fig. 3.7. It is noted that the resonant frequencies deter-

mined from the in-plane transient responses for FBG2 and FBG3 sensors 

are also nearly the same. 
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Fig. 3.3 Transient out-of-plane displacement response of the square thick plate for the 
impact location at A. 
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Fig. 3.4 Transient out-of-plane displacement response of the square thick plate within 20 ms. 
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Fig. 3.5 Transient multidimensional displacement responses of the square thick plate. 

In order to acquire complete information on the dynamic characteristics of the alumi-

num square thick plate, FEM computations are employed to provide three-dimensional vi-

bration mode shapes of the thick plate in resonance. The boundary condition of the thick 

plate for computations is assumed to be traction-free. For FEM calculations, the mass den-

sity of 6061-T6 aluminum is 2710 3/kg m , the Young’s modulus is 73.5 GPa , and the 

Poisson’s ratio is 0.34. It should be noted that a total of 46 modes can be obtained from 

FEM computations within 20 kHz. Fig. 3.8 presents the first 21 mode shapes. The defini-

tion of the three orthogonal directions (i.e., U, V, and W) is indicated in Fig. 3.2. The 

dashed lines and solid lines indicate the displacement in different phases. The nodal line is 

represented by a bold line. To discuss the relationship between the impact location, sensing 

locations, and nodal line, frequency spectra obtained from out-of-plane sensors (as shown 

in Figs. 3.6(a) and 3.6(b)) are considered. In fact, the first mode is not detectable due to the 

fact that the impact location is directly on the nodal line (see W column). Other than the 

reason due to impact location, the second mode is not detectable because the sensing loca-

tions of FBG1 and LDV are both on the nodal line. Since impact location A is far away 

from the nodal line of mode 3, the amplitude of mode 3 is relatively large compared to 

other detectable modes. 
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Fig. 3.6 Frequency spectrum of the out-of-plane responses for location A. 

 

Fig. 3.7 Frequency spectrum of the in-plane responses for location A. 
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Fig. 3.8 Parts of out-of-plane and in-plane vibration mode shapes. 

Fig. 3.9 shows parts of the wave group of the multidimensional displacement 

responses of the square thick plate after the 3/16 in. steel ball has impacted at loca-

tion B (as shown in Fig. 3.2). The maximum peak to peak value of  LDV is 

2780.64 nm. 

Fig. 3.10 shows the frequency spectra of the out-of-plane transient responses 

presented in Fig.3.9 to 20 kHz. The resonant frequencies determined from the 

transient responses obtained from LDV and FBG1 sensor are still nearly the same. 

Out-of-plane modes 16 and 19, which are not detectable when the impact location 

is at A, can be detected due to the fact that impact location B is not on the nodal 

line. The frequency spectra of the in-plane transient responses presented in Fig. 

3.9 are shown in Fig. 3.11. 

4. Conclusions 

In this study, we propose a setup method for a multidimensional FBG displacement 

sensor system and investigate its transient measurement ability by measuring the 

dynamic responses of a square thick plate impacted by steel balls. The out-of-plane 
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point-wise transient responses are measured by an FBG displacement sensor and 

LDV simultaneously and excellent agreement between these two measurements is 

obtained. The resonant frequencies determined from the frequency spectrum ob-

tained from taking the fast Fourier transform of the transient responses obtained 

by the proposed sensor system agree well with the relationship between the impact 

locations, sensing locations, and the nodal line of the mode shapes predicted by 

FEM computations. The experimental results show that the proposed FBG dis-

placement sensor system is capable of performing real-time measurement of three 

dimensional displacement of transient elastic wave propagation. 

 

0 10 20 30 40 50

Time (ms)

-0.06

0.00

0.06

0.12

-1000

0

1000

-0.4

0.2

0.8

-0.4

0.2

0.8

FBG1

LDV

FBG2

FBG3

 
Fig. 3.9 Transient multidimensional displacement responses of the square thick plate. 
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Fig. 3.10 Frequency spectrum of the out-of-plane responses for location B. 
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Fig. 3.11 Frequency spectrum of the in-plane responses for location B. 
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Abstract. In this paper we present a new paradigm by which modal analysis – which is 

well established in engineering structural dynamics – is applied to band structure calcula-

tions for phononic crystals, or periodic media in general. Our method, which we refer to 

as reduced Bloch mode expansion (RBME), is essentially an expansion employing a 

natural basis composed of a selected reduced set of Bloch eigenfunctions. This reduced 

basis is selected within the Irreducible Brillouin Zone at high symmetry points deter-

mined by the crystal structure and group theory (and possibly at additional related 

points). At each of these high symmetry points, a number of Bloch eigenfunctions are se-

lected up to the frequency range of interest for the band structure calculations. Since it is 

common to initially discretize the problem at hand using some choice of basis, reduced 

Bloch mode expansion constitutes a secondary expansion using a set of Bloch eigenvec-

tors, and hence keeps and builds on any favorable attributes a primary expansion ap-

proach might exhibit. We report phonon band structure calculations by the proposed 

method showing up to two orders of magnitude reduction in computational effort with 

negligible loss in accuracy. 

1. Introduction 

The study of wave propagation in phononic crystals, or periodic media in general, utilizes 

Bloch theory, which allows for the calculation of dispersion curves (frequency band struc-

ture) and density of states. Due to crystallographic symmetry, the Bloch wave solution 

needs to be applied only to a single unit cell in the reciprocal lattice space covering the first 

Brillouin zone (BZ) [1]. Further utilization of symmetry reduces the solution domain, even 

more, to the irreducible Brillouin zone (IBZ). There are several techniques for band struc-

ture calculations for phononic crystals (which are also applicable to photonic crys-

tals).These include the planewave method [2], the transfer matrix method [3], the finite dif-

ference method [4], the finite element (FE) method [5-6], among others (see [7] for a 

review). Some of the methods involve expanding the periodic domain and the wave field 
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using a truncated basis. This provides a means of classification in terms of the type of basis, 

e.g., the planewave method involves a Fourier basis expansion and the FE method involves 

a real space basis expansion. The pros and cons of the various methods are discussed in 

depth in the literature [7].  

Regardless of the type of system and type of method used for band structure calcula-

tions, the computational effort is usually high because it involves solving a complex eigen-

value problem and doing so numerous times as the value of the wave vector, k, is varied. 

The size of the problem, and hence the computational load, is particularly high for the fol-

lowing cases:  (a) when the unit cell configuration requires a large number of degrees of 

freedom to be adequately described, (b) when the presence of defects is incorporated in the 

calculations, thus requiring to model large supercells, and (c) when a large number of calcu-

lations are needed such as in band structure optimization [8]. All these cases suggest that a 

fast technique for band structure calculation would be very beneficial. 

Some techniques have been developed to expedite band structure calculations, exam-

ples include utilization of the multigrid concept [9], development of fast iterative solvers 

for the Bloch eigenvalue problem [5-6, 10], and extension of homogenization methods to 

capture dispersion [11–14]. In this paper we provide a fundamentally different approach 

for fast band structure calculations. We present reduced Bloch mode expansion, which is 

an expansion employing a natural basis composed of a selected reduced set of Bloch ei-

genfunctions1. This reduced basis is selected within the IBZ at high symmetry points de-

termined by the crystal structure and group theory (and possibly at additional related 

points). At each of these high symmetry points, a number of Bloch eigenfunctions are se-

lected up to the frequency range of interest for the band structure calculations. As men-

tioned above, it is common to initially discretize the problem at hand using some choice 

of basis. In this manner, reduced Bloch mode expansion constitutes a secondary expan-

sion using a set of Bloch eigenvectors, and hence keeps and builds on any favorable at-

tributes a primary expansion approach might exhibit. The proposed method is in line 

with the well known concept of modal analysis, which is widely used in various fields in 

the physical sciences and engineering2.  

In the next section, a description of the reduced Bloch mode expansion process and 

its application in a discrete setting using finite elements is given for a phononic crystal 

problem, followed by results and conclusions.  

                                                           
1 The same mode selection concept, but in the context of a multiscale two-field variational 

method, was presented in [13, 14]. 
2 The concept of modal analysis is rooted in the idea of extracting a reduced set of representa-

tive information on the dynamical nature of a complex system. This practice is believed to have 

originated by the Egyptians in around 4700 B.C. in their quest to find effective ways to track the 

flooding of the Nile and predict celestial events [15]. 
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2. Reduced Bloch Mode Expansion 

2.1 Method 

The starting point for the RBME method is the discrete generalized eigenvalue 

problem emerging from Bloch theory applied to a standard periodic unit cell 

model. This yields an equation of the form  

2( ( ) )ω− =K k M U 0ɶ  (2.1.1) 

where M and K are the global mass and stiffness matrices, respectively, Uɶ  is the 

discrete Bloch vector which is periodic in the unit cell domain, k is the wave vec-

tor, and ω is the frequency. Equation (2.1) is then solved at a reduced set of se-

lected wave vector points (i.e., reduced set of k-points), providing the eigenvec-

tors from which a reduced Bloch modal matrix, denoted Ψ , is formed. Several 

schemes are proposed for k-point selection, the simplest of which is the set of ei-

genvectors corresponding to the first few branches at the high symmetry points Γ, 
X, M for 2D and Γ, X, M, R for 3D, as illustrated in Fig. 2.1 for simple cubic cells 

(a detailed description of selection schemes is given in [16]). The matrix Ψ   is 

then used to expand the eigenvectors Uɶ , i.e.,  

( 1) ( ) ( 1)n n m m× × ×=U Ψ Vɶ ɶ , (2.1.2) 

where Vɶ  is a vector of modal coordinates for the unit cell Bloch mode shapes. In 

(2.1.2), n and m refer to the number of rows and number of columns for the matrix 

equation. For the k-point selection schemes proposed, m n<< . Substituting 

(2.1.2) into (2.1.2), and premultiplying by the complex transpose of Ψ , 

2 T* ( ) ω− =Ψ K k ΨV Ψ MΨV 0ɶ ɶ , (2.1.3) 

yields a reduced eigenvalue problem of size m m× , 

2( ) ω− =K k V MV 0ɶ ɶ , (2.1.4) 

where M  and ( )K k  are the generalized mass and stiffness matrices. The reduced 

eigenvalue problem given in (2.1.4) can then be solved for the entire region of in-

terest within the IBZ at a significantly lower cost compared to using the full model 

given in (2.1.1). 
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Fig 2.1 Unit cell in reciprocal lattice space with the irreducible Brillouin Zone, high sym-
metry k-points (solid circles) and intermediate k-points (hollow circles) shown. (a) 2D 
square unit cell, (b) 3D simple cubic unit cell. 

2.2 Results 

To demonstrate the reduced Bloch mode expansion approach, we consider a 

linear elastic, isotropic, continuum model of a 2D phononic crystal under plain 

strain conditions. As an example, a square lattice is considered with a bi-

material unit cell. One material phase is chosen to be stiff and dense and the 

other compliant and light. In particular, a ratio of Young’s moduli of E2/E1 = 

16 and a ratio of densities of ρ2/ρ1 = 8 are chosen. The topology of the mate-

rial phase distribution in the unit cell is shown in the inset of Fig. 2.2. The unit 

cell is discretized into 45 × 45 uniformly sized 4-node bilinear quadrilateral 

finite elements, i.e., 2025 elements. With the application of periodic boundary 

conditions, the number of degrees of freedom is n = 4050.  Fig. 2.2 shows the 

calculated band structure and density of states using 2-point expansion, that is, 

the selection is carried out at the Γ, X, M points in k-space. In the calcula-

tions, eight modes were selected at each of these selection points. As such, a 

total of 24 eigenvectors (m = 24) were used to form the Bloch modal matrix. 

The results for the full model are overlaid for comparison indicating excellent 

agreement, despite a reduction of model size from 4050 to 24 degrees of free-

dom. For models with a larger number of degrees of freedom, and a calcula-

tion with high k-point sampling, two orders of magnitude or more reduction in 

computational cost will be achieved (as shown in Fig. 2.3). 
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3. Conclusions 

Reduced Bloch mode expansion was presented as an approach for efficient and accurate 

calculation of band structures for periodic media such as phononic crystals.  This  modal  

analysis  approach  involves expanding the Bloch solution at all calculation k-points us-

ing, in its discrete form, a selected reduced set of Bloch eigenvectors to form the expan-

sion basis. This basis is selected within the irreducible Brillouin zone at high symmetry 

points determined by the crystal’s structure and group theory, i.e., the Γ, X, M, R points 

for the 3D simple cubic lattice. At each of the reciprocal lattice selection points, a number 

of Bloch eigenvectors are selected up to the frequency range (or dispersion branch num-

ber) of interest for the band structure calculations. Since it is common to initially discretize 

the periodic unit cell and solution field using some choice of basis, e.g., using finite ele-

ments, reduced Bloch mode expansion is practically a secondary expansion that keeps, 

and builds on, any favorable attributes a primary expansion approach might exhibit. 

Results presented for 2D plain strain phononic band structure calculations are in excel-

lent agreement with those obtained from the full model. Bloch mode shapes (not shown) 

and density of state predictions also agree. Two orders of magnitude in reduction of com-

putation time has been recorded for the proposed approach, and more savings are ex-

pected for models of larger size and for calculations based on more refined sampling of 

the reciprocal lattice space (or IBZ circuit lines). The proposed approach is also appli-

cable to discrete lattice dynamics calculations, and to photonic and electronic band 

structure calculations.  

 

Fig 2.2  Phononic band structure and density of states (DOS) calculated using full model 
(matrix size: 4050×4050) and reduced Bloch mode expansion model (matrix size: 24×24). 
The IBZ and eigenvector selection points are shown in the left inset. The 2D unit cell is 
shown in the right inset; the stiff/dense material phase is in black, and the complaint/light 
material phase is in white. The finite element method was used for the primary expansion. 
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Fig 2.3 Computational efficiency: ratio of reduced Bloch mode expansion model to full 
model calculation times, r, versus number of sampled k-points along the border of the IBZ, 
nk (for two 2D finite element meshes). 
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Abstract. The mechanism of opening a band gap in the free phononic crystal (PC) 

thin plate with or without a mirror plane is investigated. It is found that, in a PC 

plate with a mirror plane, the permitted modes can be separated into symmetric 

and antisymmetric modes, and the band gap in such a system can be opened by the 

interaction between the modes of the same kind and/or the breaking of the degen-

eracy of the mode at the edge of the Brillouin zone. However, for a PC plate with-

out a mirror plane, mode separation can no longer be performed, and interaction 

can occur between any two permitted modes. As a result, a new kind of band gap 

can be opened. 

1. Introduction 

In this study, we report on the opening of band gap of 1D PC plate with and with-

out mirror plane. In PC plate, because of the finite size in the thickness direction, 

elastic waves in a PC plate can be scattered not only by periodically arranged scat-

terers but also by the surface of the plate, which makes the mechanism for opening 

the Acoustic band gaps (ABGs) in a PC plate more complicated than that in a 

bulk-wave PC. As a consequence, the width of ABGs is sensitive both on the peri-

odic structure and on the thickness of the plate [1–3]. The relationship between the 

ABGs and the PC plate’s thickness and structure has been investigated by many 

researchers, and has shown that ABGs usually appear in a relatively thin PC plate 

with a large elastic contrast between the different components [3,4]. However, the 

understanding of how the structure changes the width of the ABGs in a PC plate is 
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still incomplete. We find that, as far as the symmetry is concerned, only two kinds 

of PC plates were studied in previous works. One of them is uniform along the 

thickness direction, which means the system is mirror symmetric around its mid-

dle plane. The other kind of system, which has been studied recently is the PC 

plate covered with a uniform substrate layer (PCS) [4–6]. This system is asymmet-

ric in the thickness direction. It was pointed out that the width of the ABGs in 

such a system can be adjusted by the thickness and by the elastic parameters of the 

material of the substrate [6,7]. We have pointed out in [4,5] that the band struc-

tures of the symmetric PC and PCS plate are quite different. Some phenomena, 

such as the energy conversion between the symmetric and antisymmetric Lamb 

modes in the transmission spectrum, can only take place in the PCS system. We 

concluded in [5] that the appearance of the ABGs in a PCS system can be seen as 

a result of the strong interaction between the different modes. 

2. Numerical Study 

We know that one kind of technique for opening a new band gap in bulk-wave 

PC is to change the configuration of the periodic unit cell. It is shown in [8,9] 

that ABGs can be adjusted by adding extra scatters. The main idea of this 

technique is to alter the symmetry of the PC structure. Expanding on this idea, 

we will give an understanding of the ABGs in a PC plate from a symmetric 

point of view in this paper. We will show that the difference in the band struc-

ture between the symmetric PC and the PCS plates mentioned above results 

from the break in the mirror symmetry of the plates around their middle 

planes. The special features of the band structures in a PCS system can also 

appear in other asymmetric PC plates. 

The numerical calculation is performed by the Eigen-mode-matching-

theory (EMMT) presented in [5], by which the band structure of the infinite 

plate, and the corresponding transmission coefficient of the system with finite 

periods can also be obtained at the same time. To use this method, the system 

is first cut into layers, waves in each layer are expressed as a superposition of 

plane wave function set, and then the boundary condition is used to connect 

the nearest layers. 

The schematic of studied PC plate is given in the figure 1, in which two dif-

ferent materials shown by dark grey (labelled A) and light grey (labelled B) 

are, respectively, Pb and epoxy in our calculation. We consider a symmetric 

structure as shown schematically in figure 1(a). 
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Fig. 1 One-dimensional PC plate constructed by elastic material A and B. 

The results for the system with tp = 0.5a and lAl = 0.4a, where a is the lattice con-

stant, are shown in figure 2, in which figures 2(a) and (b) are for the systems with tA1 = 

tA2 = 0.2a and tA1 = 0.1a, tA2 = 0.2a, respectively, which are the symmetric and asym-

metric plates. The three panels in figures 2(a) or (b) show the band structure (middle 

panel) and the transmission coefficient (energy flux) stimulated by the symmetric (left 

panel) and antisymmetric (right panel) 0th Lamb modes, respectively. For the trans-

mission coefficient, a finite system with 16 periods in the x direction connected by two 

uniform half-infinite plate (material B) is considered. Similarly to the results given in 

[7], from figure 2, we can find two intrinsic differences. Firstly, the crossover points 

between the different bands in the middle panel of figure 2(a) can no longer be found 

in figure 2(b). As a result, new band gaps, especially the lowest gap between the sec-

ond and the third bands, appear. Secondly, the transmission coefficient shows that the 

bands in figure 2(a) can be separated into two independent parts, which can only be 

excited by the symmetric and antisymmetric 0th Lamb waves separately. But, in figure 

2(b), such a separation can no longer be performed. 

It is known that the waves propagating in the freestanding uniform plate with a 

lossless boundary must satisfy the transverse resonance principle [10], which means 

the permitted modes are travelling waves along the x direction and resonant standing 

waves in the thickness direction. This suggests that the transverse component of the 

modes must experience a phase shift of some integral multiple of 2π during each round 

trip in the thickness direction. So, if the plate is symmetric around its middle plane, the 

reflection of the modes from each surface should be the same. This means that the 

permitted modes can be separated into two independent sets: the symmetric and the 

antisymmetric modes for a mixed mode or odd and even modes for the SH mode. 
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Fig. 2 Band structure and the transmission coefficient of the (a) symmetric and (b) asymmetric PC plate. 

For the periodic composite structure of the PC, the statement above is still true if 

the PC plate is mirror symmetric around its middle plane, which means that the per-

mitted modes can also be separated into the symmetric/antisymmetric modes for a 

mixed mode (or odd/even modes for SH mode). In this kind of system, the effect of 

the Bragg scattering by the periodic structure can lead to two changes in the band 

structure. The first one is the opening of the folding points of the modes at the edge of 

the Brillouin zone (BZ) and the second is the coupling effect between the modes that 

are of the same kind (symmetric or antisymmetric mode). To show this, we will still 

consider a symmetric structure as shown schematically on figure 1(a), but with a very 

small filling fraction so that the band structure is only slightly different from that of the 

uniform plate. The parameters of the system are chosen to be tp = 1a, tAl = tA2 = 0.05a, 

and lAl = 0.1a, respectively. The band structure of such a PC system is shown in figure 

3(b), and as a comparison, a band structure of a uniform plate is also shown in figure 

3(a). From the figure, we can clearly see that, because of the opening of the folding 

points of the mode at the edge of BZ (labelled B) and the coupling effect between the 

A0 and A1 modes (labelled C), a band gap appears. But the crossover point between 

A0 and S0 (shown as D1) and the point between S0 and A1 (shown as D2) still exists 
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in figure 3(b). This means the no interaction between the symmetric and antisymmetric 

modes can be induced by Bragg scattering. However, the situation is quite different for 

an asymmetric plate. In this kind of plate, the separation of the modes can no longer be 

performed. As a consequence, a coupling effect can occur between any two modes, so 

that Bragg scattering can not only open the folding point of the modes at the edge of 

BZ but also cause a coupling effect between different modes. The band structure of an 

asymmetric plate with a small filling fraction is shown in figure 3(c). From figure 3(c) 

we can observe that, besides the points B and C, the crossover points D1 and D2 in 

figure 3(b) have also opened. In fact, no crossover point can be found in figure 3(c), 

which means that the coupling between symmetric and antisymmetric modes can be 

caused by breaking the mirror symmetry of the plate. But here, no new band gap is 

opened by this effect.  

From the understanding mentioned above, we can conclude the following about the 

mechanism of opening the ABGs in a PC plate. For a symmetric PC plate, if the thick-

ness of the plate is relatively large (tp = 1a, for example), as shown in figure 3(b), the 

lowest band gap can be obtained by opening the degeneracy of points B2 and C 

(which are the folding points of S0 at the edge of BZ and the crossover point of mode 

A1 and A0, respectively) at the same time. When the thickness of the plate is thin 

enough, the lowest band gap can also be opened by just opening the folding points of 

the modes at the edge of BZ. An example of such an ABG is shown in figure 4(b). The 

structure of the system is the same as the one shown in figure 1(a) with parameters tp = 

0.5a, tAl = tA2 = 0.1a, and lAl = 0.1a, respectively. To get the lowest ABG of this kind, 

the plate must be thin enough so that the beginning frequency of the mode A1 is higher 

than the folding points of A0 and S0 (B2 and B3 in figure 4(a)). Note that the small 

width of the band gap in figures 3(b) and 4(b) results from the small filling fraction of 

the PC plate. It can be enlarged by increasing the size of the scatterers. 

 
Fig. 3 Band structure of the system shown schematically in figure 1(a) with tp = 1.0a. 
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Fig. 5 Band structure of a 2D hon-
eycomb PC plate with a thin layer 
uniform substrate. 

 

Fig. 4 Band structure of the system shown schematically in figure 1(a) with tp = 0.5a. 

For an asymmetric plate, because the interaction can occur between any two 

modes, a new kind of band gap can be opened. In figure 4(c), the lowest ABG be-

tween the second and third bands is an example of this kind of ABG. To obtain this 

gap, the mirror symmetry of the PC plate for figure 4(b) is broken by increasing tA1 

from 0.1a to 0.2a. By comparing figure 4(c) with figure 4(b), we can see that, as in 

figure 3(c), all of the crossover points marked by D1, D2 and D3 can no longer be 

found. This also shows that the coupling ef-

fect between modes is indeed a common 

feature in the asymmetric PC plate. We have 

to note that, to get the lowest ABG in such 

an asymmetric system, the PC plate should 

also be thin enough, so that the beginning 

frequency of mode A1 is higher than the 

crossover point D1. 

We have also studied a 2D asymmetric 

PC plate. Figure 5 shows a band structure 

for 2D honeycomb PC based on empty 

holes in silicon substrate (tp=0.5a, tA1=0.1a 

and r=0.48a, where a and r are the distance 

between the nearest holes and the radii of 

the holes). From which we can see that, be-

cause of the introduction of the structural 

asymmetry, a lowest band gap is opened in 

such high filled honeycomb structure. 
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3. Conclusion 

In conclusion, the mechanism for opening a band gap in a 1D PC plate is investigated. 

It is shown that, for a PC plate with a mirror plane, the permitted modes can be sepa-

rated into two independent parts, which are symmetric and antisymmetric modes. In 

such a system, the ABGs can be opened by both the interaction between modes of the 

same kind (symmetric or antisymmetric) and the opening of the folding points of the 

modes at the edge of BZ, or just by the latter mechanism if the plate is thin enough so 

that the interval between the two nearest isolated modes is large enough. However, for 

a PC plate without a mirror plane, the permitted modes can no longer be separated into 

two independent parts, and the interaction can occur between any two modes. As a re-

sult, a new band gap that is quite different from the one in the symmetric plate can be 

opened. The width of this kind of ABG is influenced by the degree that the system is 

away from the mirror symmetry. We have also presented the first result concerning the 

opening of lowest band gap in 2D PC asymmetric plate. 
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Abstract. This work introduces the so named radial sonic crystals, which are a 

new type of acoustic materials characterized by the fact that their acoustical prop-

erties are periodic in the radial direction, either in two dimensions or in three di-

mensions. These periodic conditions allow the application of Bloch theorem to the 

corresponding wave equation for sound propagation in spherical (3D) and cylin-

drical (2D) coordinates, respectively. The mentioned conditions leave the radial 

wave equation invariant under translation along r and can be achieved by using 

anisotropic fluid-like materials that can be engineered by using structures already 

proposed. We will report the rich variety of properties and potential applications 

of radial sonic crystals. 

1. Introduction 

In a general eigenvalue problem of the form Hψ=λψ Bloch's theorem applies 

when the operator H=H(r) is a differential operator invariant under certain set of 

translations, that is 

H(r+R)=H(r) 

for a given set of vectors R, called lattice vectors. 

In such case it can be shown that the eigenvectors ψ can be expressed as  

ψ=exp(k r)u   

where u being a periodic function with the periodicity of the lattice R. The 

vector k is the so called Bloch's vector, and the eigenvalues are functions of this 

vector, that is, λ=λ(k). 
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When the operator H corresponds to a differential wave equation (like the 

Schrödinger or Maxwell's equations) the eigenvalue λ is a function of the wave 

frequency ω, and then the solutions of the eigenvalue problem are of the form ω= 

ω(k), which constitutes the dispersion relation of the medium also called the 

band structure. This band structure gives information about how the propagation 

of waves inside the crystal is. 

Band structures have been studied for a wide variety of physical waves, like 

matter waves in semiconductors, electromagnetic waves in periodic dielectric or 

magnetic media (photonic crystals)  and acoustic waves in periodic distributions 

of sound scatterers (sonic crystals). In all these systems the periodicity of the ma-

terial was defined by the periodic spatial distribution of some material property, 

but always with a lattice vector R defined in rectangular coordinates. 

Here a new type of periodic medium will be defined: A radially periodic me-

dium. Though radially periodic systems have been widely studied in electromag-

netic systems, it has not been done in the framework of Bloch's theorem, and then 

nothing similar to the band structure has been obtained for these systems. This is 

due to the fact that, in general, wave equations in polar or spherical coordinates 

are not invariant under translations. But when the medium is anisotropic this in-

variance can be obtained. The following discussion will be focused in two-

dimensional acoustic waves, and other fields and dimensions will be considered at 

the end of the paper. 

2. Invariance of the Wave Equation 

The inhomogeneous acoustic wave equation in planar polar coordinates is 

2 2
2

0q
q

PB r B
q P

r r r r
ω

ρ ρ
∂  ∂ + − = ∂ ∂  

 

where an angular dependence of the form exp(iqθ) is assumed. In order to make 

the differential operator invariant under translations under the form r+nd, the co-

efficients of the operator should be periodic with periodicity d. It is clear that it 

cannot be done with any choice of the acoustic parameters B and ρ, because the 

terms r/ρ and rρ cannot be periodic at the same time. 

However a more general acoustic wave equation has to be considered when 

studying acoustic cloaking devices [1]. These materials are fluid like materials 

with anisotropic mass density, and the equation describing waves in such medium 

is, in polar coordinates 
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2 2
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0q
q
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r r r r
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ρ ρ
∂  ∂ + − = ∂ ∂  

 

note that now the density ρ is a tensor with a radial and an angular component, 

and that the differential operator can be made invariant under translations. 

This invariance can be achieved because the quantities  

2 2
2

0q
q

PB r B
q P

r r r r
ω

ρ ρ
∂  ∂ + − = ∂ ∂  

 

can be periodic at the same time, thus Bloch's theorem can be applied to obtain 

some kind of radial band structure. A medium satisfying these periodic conditions 

is called a “Radial Sonic Crystal” (RSC). 

In one dimensional periodic media the simpler case to analyze is the binary pe-

riodic system. Such a medium is made of two alternate materials, say type A and 

B, with homogeneous physical parameters. An example of the equivalent medium 

in RSC is shown in Fig. 1, where it can be seen that here the acoustic parameters 

increase with the radial coordinate. 

 

 

Fig. 1 Radial dependence of the acoustic parameters in a Radial Sonic Crystal 
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3. Band Structure 

The anisotropic acoustic wave equation with the material parameters defined in 

Fig. 1 becomes a homogeneous wave equation with constant coefficients  

( )
2

2 2
2

0q
q

P
q P

r
ω α β

∂
+ − =

∂
 

This wave equation has plane-wave solutions with a dispersion relation given 

by 2 2 2k qω α β= − . This dispersion relation is similar to that of a waveguide with 

a cutoff frequency given by /qω β α= . Then, it is expected that the periodic 

medium of alternating layers of type A and B presents some kind of low frequency 

band gaps. Note also that for high frequency the dispersion relation becomes 

linear and independent of q and the system behaves like the one-dimensional 

periodic multilayer 

The band structure is obtained in the same way as that of the one dimensional 

periodic medium, arriving to a dispersion relation given by 

1 1 2 2 1 1 2 2cos cos cos sin sinKd k d k d k d k dγ= +  

K being the Bloch wave number. The above relation defines the dispersion rela-

tion of the RSC as a function ω=ω(K) and is shown in Fig. 2. Note how the low 

frequency band gap appears for q different than 0. 

Infinite RSC are not possible in practice, and then finite slabs of them have 

to be used. In this work a finite shell of the RSC defined in Fig. 1 will be used. 

This RSC is a ten layers shell that will occupy the region defined by 

2d<r<<12d, corresponding to the region between the black vertical lines in 

Fig 1. Outside this region the medium is assumed to be a homogeneous and 

isotropic acoustic medium. 

To analyze the physical behavior of such system, let us assume that a general 

acoustic field is excited inside the shell. In this region, the medium is homogene-

ous and isotropic, and then the response to the field will be 

( ) 0, ( ) iq
q q

q

P r A H kr e ϑϑ =∑  



Radial Sonic Crystals 

 

337

where Hq are the Hankel functions, k=ω/c and c is the speed of sound in the ho-

mogeneous medium.  As a response to this field, inside the cavity there will be a 

“reflected” field 

( ) 0, ( ) ,iq
q q q

q

P r R A J kr e ϑϑ =∑  

where Jq are the Bessel functions. Outside the RSC there will be a “transmitted”

field 

( ) 0, ( ) iq
q q q

q

P r T A H kr e ϑϑ =∑  

The magnitude of the coefficients T will be indicative of the nature of the system. 

For the mentioned slab these coefficients have been plotted in the right panel of 

Fig. 2 in logarithmic scale together with the band structure. Note that these coeffi-

cients, for each q, are very small in the regions of frequency where there is a band 

gap. Also, there is some kind of Fabry-Perot like oscillations in the regions where 

the band structure is almost linear. Note also that there are some peaks in the 

transmission coefficient inside the band gaps. These peaks can be considered as 

localized states due to the presence of defects, where the defect here is the 

homogeneous cavity inside the RSC. 

 

Fig. 2 Left: Band structure of the RSC considered in the text. Right: Transmission coefficient of 
a finite slab made of RSC.  



D. Torrent and J. Sánchez-Dehesa 

 

338

4. Resonances 

In the right panel of Fig. 2 can be seen some resonance peaks due to the cavity 

formed by the RSC. Note that these resonances are different for different q, what 

makes these systems useful for building some kind of artificial q- poles. To see 

this effect, in Fig. 3 a point source oscillating at a frequency / 2 0.408d cω π =  has 

been placed outside two identical RSC. The frequency corresponds to a resonance 

of the q=1 mode and it is seen how this mode is excited from outside the cavity. 

Note that the pole is oriented in the direction of the point source, which makes 

these systems potentially useful as antennas for sound source detectors. 

RSC are also possible in three dimensions, where the acoustic wave equation 

for radially symmetric problems is in this case. 

2
2

2 2
( 1) 0q

q
r

PB r B
l l P

r rr r ϑ

ω
ρ ρ

∂  ∂ + − + = ∂ ∂  
 

Therefore the periodicity in the coefficients implies that the quantities 

2

2
, , ,

r

B r

r ϑρ
ρ

 

have to be periodic. The same procedure to obtain the band structure for two di-

mensional RSC applies here. 

In principle the material properties of the RSC looks like impossible to build. 

However, recently [3, 4, 5] it has been shown that anisotropic and inhomogeneous 

fluid-like materials are possible to build in a wide range of frequencies.  

 
Fig. 3 Interaction between a punctual sound source and two RSCs at the resonance frequency 0.408. 
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5. Conclusions 

This work has introduced a new type of crystals called Radial Sonic Crystal, 

which are radially periodic systems in which Bloch theorem can be applied thanks 

to the used of acoustic metamaterials with mass anisotropy. These RSC are possi-

ble to build by using sonic crystals based on non-isotropic lattices. These new type 

of acoustic materials have a potential use as waveguides, sound isolators, q-pole 

generators and dynamically orientated acoustic antennas, between others. Elec-

tromagnetic systems radially periodic are also possible by using EM metamaterials 

with anisotropic parameters. They can be designed by using the same procedure 

employed here and can be defined in 2D as well in 3D. 
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Abstract. We investigate, using the Plane Wave Expansion method and an energy 

balance criterion, the polarization states of elastic waves in a two dimensional 

phononic crystal made of vacuum holes in a silicon host matrix. Pure modes can 

be identified for the out of plane polarization while a continuous variation of the 

in-plane polarization with the Bloch wave vector can be observed. The study is 

then extended to two-dimensional phononic crystal waveguides by using the su-

per-cell technique. The dependence of the elastic wave polarization state on the 

wave guide width is investigated and shows as well a continuous variation with 

the Bloch wave vector. Moreover, the variation of the width of the waveguide can 

be used to tune both the dispersion and the polarization of guided waves.  

1. Introduction 

Phononic crystals are inhomogeneous two or three dimensional periodic structures 

made of at least two materials exhibiting different elastic properties [1,2]. The 

propagation of elastic waves inside such a medium can give rise to directional or 

complete band gaps providing that the contrast between the mass density and elas-

tic constants of the two materials is large, that the filling fraction is high enough, 

and that the host material is arranged following an adequate lattice topology and 

specific geometrical shapes.  Within such a frequency band gap, a phononic crys-

tal can be seen as a mirror for incident waves, because of destructive interferences 

between waves scattered on the periodic inclusions. Phononic band gap effects 

have been reported for bulk [2, 3, 4] and surface [5, 6, 7] acoustic waves as well as 
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for slabs [8, 9]. Phononic crystals also allow for elastic wave confinement or guid-

ing through the introduction of point or linear defects. Phononic waveguides, 

resonators and stubs have been proposed as possible ways to create complex de-

vices based on coupling, filtering and wave guiding phenomena [10–13].  

For acoustic waves propagating in a fluid, where no transverse polarisation is 

possible, the calculation of the wave dispersion (and of the transmission coeffi-

cient in the case of a waveguide) is usually sufficient to characterize phononic 

structures. But in the case of waves propagating in a solid, both transverse and 

longitudinal polarizations can exist and are usually coupled. Taking the polariza-

tion states into account in the band diagram is hence a very relevant way to com-

plete the available information on elastic wave propagation. This has for example 

been shown by a previous study dedicated to the polarization effects in a perfect 

2D phononic crystal made of air inclusions in an epoxy matrix [14]. This work 

highlighted the influence of the filling fraction on the coupling between transverse 

and longitudinal polarizations in the sagittal plane. The continuity of elastic dis-

placement fields when the wave vector sweeps the Brillouin zone has also been 

investigated in order to study the repulsion level between different branches in the 

band diagram in a 2D PMMA/Ni phononic crystal [15]. No equivalent works have 

however been reported for phononic waveguides.  

In this paper, we report on the evolution of the polarization states of a two-

dimensional phononic crystal made of a square lattice of void inclusions in a sili-

con matrix. The Plane Wave Expansion method along with the energy balance cri-

terion are used to compute band structures displaying additional information re-

lated to the weighting of each polarization. The study is then extended to a 

phononic waveguide obtained by inserting a line defect in the initial phononic 

crystal thanks to the super-cell technique. The influence of the wave guide width 

on the guided modes dispersion relations as well as on their polarization properties 

is also investigated.  

2. Polarization States inside a Two Dimensional 
Phononic Crystal 

We consider a two dimensional phononic crystal made of a square lattice of cylin-

drical holes in (010) silicon with a 58% filling fraction. Band structures as well as 

modal distributions are computed using the Plane Wave Expansion method. The 

PWE method is based on the decomposition of the strain and displacement fields 

using the Bloch-Floquet theorem. 
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The elastic waves are then represented as the product of a periodic function 

given by a discrete sum over Fourier harmonics in the reciprocal-lattice space, 

with a time-harmonic exponential function with frequency and Bloch wave vector. 

The displacement field in the x direction then reads 

( )nexp( . )expx nx
n

u U i i= − − ⋅∑ G r k r  (1) 

where nG are the reciprocal lattices vectors, and k is the wave vector.  

The two dimensional Fourier series are here truncated to the 36 first harmonics 

to allow for a reasonable compromise between computation time and conver-

gence. In order to avoid possible confusions, we will use throughout this paper the 

notations ux, uy and uz the displacement fields instead of referring to transverse 

horizontal and shear and longitudinal polarizations that are dependent on the 

direction of propagation. The weighting of the polarization along the x direction is 

given by: 

( )
2

2

22 2

x

x

x y z

u dx
p =

u u u dr+ +

∫

∫
 (2) 

with the integral taken over the unit-cell. Similar expressions hold for the amounts 

of polarization along the y and the z axes.  

Figures 1-(b), (c) and (d) display the dispersion curves of elastic waves that 

propagates inside the phononic crystal schematized in Figure 1-(a). The crystal 

shows a complete band gap with a 30% fractional bandwidth. The three band 

structures actually display the same dispersion relations but with additional infor-

mation on the contribution of the three polarizations.  
It can be inferred from Figure 1 that the uz component is completely 

decoupled from the two in-plane components ux and uy. This is expected in a 

cubic material as silicon, where in-plane and out-of-plane components are 

decoupled. The in-plane components ux and uy are conversely strongly coupled, 

due to the scattering introduced by the two-dimensional periodic structuration of 

the propagation medium. For the same reason, the polarization varies as the 

Bloch wave vector sweeps the Brillouin zone for the in-plane components of the 

field only, while the polarization of uz remains constant for a particular branch 

over the whole Brillouin zone. 
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Fig. 1 (a) 2D phononic crystal consisting of a square lattice array of cylindrical holes in silicon. 
The three band diagrams depict the same dispersion relations, but the colouring of the bands 
shows the amount of polarization along the (b) x axis, (c) the y axis and (d) the z axis.   

3. Polarization States inside a Two Dimensional 
Phononic Crystal Waveguide 

We now consider a phononic crystal waveguides managed by removing a row of holes 

along the x direction from the initially perfect periodic structure presented in the previous 

section. Here again, the polarization properties of the obtained structure are investigated. 

The waveguide width is varied from 0.2a to a, with increments of 0.2a, where a is the 

lattice period to evaluate the influence of this parameter on both the wave guiding condi-

tions and on the defect mode polarization properties. The calculations are performed us-

ing the PWE method and the Super Cell technique. The considered unit-cell is in this 
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case seven times longer along the y direction than along the x direction compared to the 

cell used for the perfect phononic structure. The computed structure then consists of a 

guiding section surrounded by three holes on each side. The resulting 6 holes separation 

between two wave guiding sections in the computation ensures that neighboring 

waveguides are isolated in the y-direction, hence avoiding artificial branches that could 

be intro duced by adjacent waveguide mode coupling. The number of Fourier harmonics 

is multiplied by a factor of six in the y-direction to achieve similar conditions of 

convergence to the previous section.  

 

Fig. 2 Band structure along the ΓX direction for different line defect widths, w=0.2a, 0.4a, 
0.6a, 0.8a and a, for a waveguide created inside the 2D phononic crystal. For each width, 
the band structure is repeated three times to highlight the influence of the polarization.  
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Figure 2 displays the dispersion relations of waves guided along the x-

direction for frequencies falling within the complete band gap. The band struc-

ture is here again represented for the three polarizations and for each 

waveguide width.  The most striking point at first sight is that these phononic 

waveguides are multimode even for very low waveguide width (e.g. for exam-

ple for a width of 0.2a) and present at least two out-of-plane and two in-plane 

polarized branches. The overall number of guided modes obviously increases 

with the defect width. As a general rule, we can notice that if the polarization 

of the out-of-plane component uz remains constant, as no coupling with any 

other type of wave can happen due to the crystallographic symmetry of silicon, 

the repartition between ux and uy varies as the Bloch wave vector sweeps the 

ΓX axis. 

The coupling between the two in-plane components is here very strong and 

very few quasi-pure shear modes can be found, if we except for example for 

the branch labeled b1 for a waveguide width of 0.4a, or for modes close to the 

X point on branch labeled b2, amongst others. Computations of the displace-

ment field mode shape confirmed that the polarization varies continuously, 

though the individual behavior of each branch can be quite different and is 

highly dependent on the line defect width. A branch can for instance start as 

predominantly longitudinal at point Γ and reach point X with a longi-

transverse polarization (e.g. branch b4 for w=0.8a) or can enter and exit the 

Brillouin zone with the same polarization after having gone through a mixed 

polarization state, as in the case of branch b3 for a guide of width a.   

4. Conclusion  

In summary, we calculated the polarization states in a two dimensional silicon 

phononic crystal and in phononic crystal waveguides with different widths. 

The in-plane and out-of-plane polarizations are decoupled. The two in-plane 

polarizations are strongly coupled and the variation of the coupling is continu-

ous with regard to the wave vector. For the waveguides, this last property is 

also verified. However, by varying the width of the guide, branches fall into 

the band gap, and the polarization of the modes change or not with regard to 

the width of the guide depending on the frequency and the wave vector. 
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Abstract. The Mindlin-type model is used for describing longitudinal waves in 

microstructured solids. This model involves explicitly the internal parameters and 

therefore tends to be rather complicated. An hierarchical approximation is derived, 

which is able to grasp the main effects of dispersion with wide variety of parame-

ters. Attention is paid to the internal degrees of freedom of the microstructure and 

their influence on the dispersion effects. It is shown how the internal degrees of 

freedom can change the effects of dispersion.  

1. Introduction 

It is well recognized by modern science, that matter is not continuous but has an internal 

structure. Clearly this microstructure plays a significant role when modelling wave 

propagation – waves that have a wavelength shorter than a certain threshold value, “feel” 

the microstructure.  

There are two approaches in modelling the microstructure - one group of models are 

based on lattice theory [1-3], another on continuum theory [4-6].  

In the discrete approach the volume elements of the matter are treated as point masses 

with a defined distribution and some interaction between the discrete masses. The gov-

erning equations are then deduced following the Newton’s law.  

In the microcontinuum theory, the macro- and microstructure of the continua are 

separated. Then the conservation laws for both structures should either be separately 

formulated [4,5], or the microstructural quantities (cells) are separately taken into ac-

count in one set of conservation laws. Engelbrecht et al. [6] have derived the one-

dimensional model for longitudinal waves in microstructured materials based on 

Mindlin model [5]. This model will be the basis of our analysis. These governing 

equations of wave motion tend to be rather complicated and therefore there is a need 

for simplification. A slaving principle is used in order to derive a hierarchical 

asymptotic Whitham-type model.  
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An important effect caused by microstructure is dispersion. A wave packet can be 

viewed as a collection of harmonic waves. If such a wave travels through a microstruc-

tured material, then different harmonics “feel” the microstructure according to their 

wavelength and travel with different speeds. The variation of phase velocity with 

wavenumber is the hallmark of dispersion [7,8]. 

Generally if there is N particles per unit cell in discrete model, then N dispersion 

curves appear (3N in case of 3D model). The lower curve is called an acoustic 

branch, the upper curves are called optical branches and they only appear when there 

are at least 2 particles per unit cell. Optical branches are said to reflect the internal 

degrees of freedom [1,9].  

Because of the inclusion of the microstructure, the dispersion curves derived from the 

1D microcontinuum model, also give two distinct curves [4,6,9]. As in discrete model 

these curves are acoustical and optical modes where an optical modes are interpreted as 

internal degrees of freedom or “internal modes”[5,9]. The dispersion curve derived from 

the Whitham-type approximate model has only an acoustical branch. It means that the 

approximate model does not account directly for internal degrees of freedom. The au-

thors have shown that this approximation is acceptable with wide variety of parameters. 

However the question that remains is when the internal modes can be ignored.  

2. The Basic Model 

The basic model is that of Mindlin [5] and we follow the presentation of its ideas in [6]. The 

main idea is to distinguish between macro- and microdisplacements ( ),i iu x t  and 

( ),j iu x t′ ′ , respectively. Assuming that microdisplacement is defined in coordinates kx ′ , 

moving with a microvolume (cell), we define ( ),j k kj iu x x tϕ′ ′= , where kjϕ is an arbitrary 

function. It is clear that actually it is the microdeformation while n n n n/ .j i i j iju u u∂ ∂ ∂ ϕ= =  

Further we consider the simplest 1D case and drop the indices i and j. 

Now the fundamental balance laws can be formulated separately for macroscopic and 

microscopic scales. Introducing the Lagrangian L = K −W, formed from the kinetic 

and potential energies 

2 21 1
, ( , , ),

2 2t t x xK u I W W uρ ϕ ϕ ϕ= + =  (2.1) 

where ρ and I denote the macroscopic density and the microinertia, respectively,  we can 

use the corresponding Euler-Lagrange equations: 

0, 0.
t x t xt x t x

L L L L L L

u u u

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ϕ ∂ϕ ∂ϕ
          + − = + − =          

          
 (2.2) 
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Here and further, the indices x and t denote differentiation. 

The partial derivatives   

/ , / , / ,x xW u W F Wσ ∂ ∂ η ∂ ∂ϕ ∂ ∂ϕ= = =  (2.3) 

are recognized as the macrostress, the microstress and the interactive force, respectively.  

The simplest potential energy function describing the influence of a microstructure is a 

quadratic function 

2 2 21 1 1
,

2 2 2x x xW au A u B Cϕ ϕ ϕ= + + +  (2.4) 

where a,A,B,C denote material constants. Introducing Eq. (2.4) into Eq. (2.3) we get finally  

, .tt xx x tt xx xu au A I C Au Bρ ϕ ϕ ϕ ϕ= + = − −  (2.5) 

This is the governing system of two second-order equations that can also be represented in the 

form of one fourth-order equation 

( ) ( ) ( )2 2 2 2 2 2 2
0 0 1 0 ,tt A xx tt xx tt xxtt xx

u c c u p u c u p c u c u= − − − + −  (2.6) 

where material parameters 2 2 2 2 2
0 1/ , / , / , / ,Ac a c C I c A B p I Bρ ρ= = = =  are in-

troduced. The parameters c0, c1,cA are velocities while p is a time parameter. This is the basic 

linear equation governing 1D longitudinal waves in microstructured solids. It has been shown 

by Sun et al. that Mindlin type model can also be used for modeling wave dispersion in lay-

ered media [10]. 

An approximation of Eq. (2.6) can be obtained by using the slaving principle. It is sup-

posed that the inherent length-scale l is small compared with the wavelength L of the excita-

tion. The following dimensionless variables and parameters are introduced U=u/U0, X=x/L, 

T=c0t/L, δ=(l/L)2, ε=U0/L, where U0 is the amplitude of the excitation. In addition it is as-

sumed that I=ρl2I* and C=l2C*, where I* is dimensionless and C* has the dimensions of stress.  

Next the system (2.5) is rewritten in its dimensionless form and the slaving principle [11] is 

applied. Then we get finally  

2 2 2
1

2 2 2
0 0

1 ,A A
TT XX TT XX

B XX

c c c
U U U U

c c c

   
= − + −   
   

 (2.7) 

where cB
2=L2/p2=BL2/I. Note that cB involves the scales L and l and cA includes the interaction 

effects through parameter A.  Restoring dimensions, Eq. (2.7) yields 

( ) ( )2 2 2 2 2
0 1 .tt A xx A tt xx xx

u c c u p c u c u= − + −  (2.8) 

This is an example of the Whitham-type hierarchical equation.  
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3. Dispersion Analysis  

The dispersion relations for Eqs. (2.6) and (2.8) are 

( ) ( )( )
( ) ( )

2 2 2 2 2 2 2 2 2 2 2
0 0 1

2 2 2 2 2 2 2 2 2 2
0 1

,

.

A

A A

c c k p c k c k

c c k p c c k k

ω ω ω

ω ω

= − + − −

= − − −
 (3.1) 

In order to reduce the number of independent variables, the wave number, the fre-

quency and the propagation speeds are normalized defining ξ=pc0k, η=pω, γA=cA/c0, 

γ1=c1/c0. Using these new quantities the dispersion relations (3.1) assume the forms  

( ) ( )( )
( ) ( )

2 2 2 2 2 2 2 2
1

2 2 2 2 2 2 2 2
1

1 ,

1 ,

A

A A

η γ ξ η ξ η γ ξ

η γ ξ γ η γ ξ ξ

= − + − −

= − − −
 (3.2) 

where the parameters γA and γ1  have the values 0< γA<1 and 0< γ1<1 respectively.  

The characteristic dispersion curves are shown in Fig. 3.1. The full dispersion rela-

tion (3.2a), which is represented by the continuous line, represents two distinct 

branches – acoustical and optical. The acoustical branch is analogous to the case of 

elastic vibrations where all the cells move in unison. These are external modes. The 

optical branch reflects the role of the internal modes, which involve the distortion of 

the cells [5,9]. 

The optical branch is always concave, the acoustical branch can be either concave 

or convex or linear, which represents anomalous, normal or no dispersion respectively. 

This concavity and convexity of the acoustic dispersion curve shows explicitly the in-

fluence of basic material properties [12]. 

The full model (2.6) and approximate model (2.7) can be compared using nu-

merical analysis. The initial value problem in dimensionless form under periodic 

boundary conditions is solved using the pseudospectral method [13]. The initial profile 

is chosen U(X,0)=sech2(κX/2), where κ is the width of the profile. 

Figures 3.2 and 3.3 show the results of the numerical analysis. Figure 3.2 represents 

the case when acoustical branch is concave (anomalous dispersion).  It is clear from 

the numerical experiment that although there are small differences between the full 

model (2.6) and approximation (2.7), the approximation is able to display the main ef-

fects of dispersion i.e. the type of the dispersion.  

Figure 3.3 shows a numerical experiment in case when there is no dispersion in ap-

proximate dispersion relation (3.2b) and in the acoustic branch of the full dispersion 

relation (3.2a). The approximate model indeed shows no dispersion effects – the initial 
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profile moves with constant speed and shape. The full model (2.6) however displays a 

small effect of dispersion, which is due to the optical bra nch or internal modes. The 

dispersion effects do not appear immediately, but may take some time to appear. 

 

Fig. 3.1 The characteristic dispersion curves. Solid lines represent full dispersion relation, 
dashed line represents approximate dispersion relation. 

 

Fig. 3.2 The solutions of full model (solid line) and approximation (dashed line), in case of 
γA=0.9 and γ1=0.7. 

 

Fig. 3.3 The solutions of full model (solid line) and approximation (dashed line), in case of 
γA=0.9 and γ1=0.7. 
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4. Final Remarks  

The numerical analysis demonstrates that the full and approximate models 

give in most cases similar results. There are however conditions when ap-

proximate dispersion curve (3.2b) coincides well with the acoustic branch of 

the full dispersion curve (3.2a), but the numerical experiment gives different 

types of dispersion for the full model (2.6) and for the approximation (2.7). 

This is likely to be present when acoustic curve displays normal dispersion.  

These effects need further investigations and will be presented in further 

publications. 

Acknowledgements: The authors gratefully acknowledge the financial support from Estonian 
Science Foundation. 

References 

[1] Brillouin, L.: Wave Propagation in Periodic Structures. Dover Publications, INC, NY (1953). 
[2] Metrikine, A.V., Askes, H.: One-dimensional dynamically consistent gradient elasticity 

models derived from a discrete microstructure. Part 1: Generic formulation. Eur. J. Mech. 
A. Solids 21 (2002) 555-572.  

[3] Maugin, G.A.: Nonlinear Waves in Elastic Crystals. Oxford University Press (1999). 
[4] Eringen, A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15 909-923 (1966). 
[5] Mindlin, R.D.: Microstructure in linear elasticity. Arch. Rat. Mech. Anal. 16 51-78 (1964). 
[6] Engelbrecht, J., Berezovski, A., Pastrone, F., Braun, M.: Waves in microstructured materials 

and dispersion. Philos. Mag. 85(33-35) 4127-4141(2005). 
[7] Nettel, S.: Wave physics. Oscillations - Solitons - Chaos. New York: Springer (1995). 
[8] Main, I.G.: Vibrations and Waves in Physics. Cambridge University Press (1984). 
[9] Chen, Y., Lee, J.D.: Analysis of photon dispersion relations from atomic model to continuum 

theory. Nanotech 1 396-399 (2002). 
[10] Sun, C.-T., Achenbach, J.D., Herrmann, G.: Continuum theory for a laminated medium. 

J. Appl. Mech. Trans. ASME 35(3) 467-475 (1968). 
[11] Christiansen, P.L., Muto, V., Rionero, S.: Solitary wave solution to a system of Boussinesq-like 

equations. Chaos Solitons Fractals 2 45-50 (1992). 
[12] Peets, T., Randrüüt, M., Engelbrecht, J.: On modelling dispersion in microstructured solids. 

Wave Motion 45 471-480 (2008). 
[13] Salupere, A., Tamm, K., Engelbrecht, J.: Numerical simulation of interaction of solitary 

deformation waves in microstructured solids. Int. J. Non Linear Mech. 43 201-208 (2008). 



 

On the Role that Scholte Waves Play in Acoustic 
Propagation along a Fluid-Solid Interface 

Piotr Borejko 

Department of Civil Engineering, Vienna University of Technology, A-1040 Vienna, Austria 

piotr.borejko@tuwien.ac.at 

Abstract. The reflection of sound from a point source in a fluid at a plane inter-

face with an elastic solid, and sound propagation from a point source in a wedge 

of fluid supported by an elastic solid are investigated using the method of general-

ized ray. Time records of the acoustic pressure received at large ranges are evalu-

ated both for a fluid-solid interface alone and for a wedge of fluid overlaying an 

elastic solid when the shear wave speed in the solid is lower than the sound speed 

in the fluid (so-called “slow-speed elastic bottom”). The most prominent phase 

(large in amplitude and wide in time) is that constituted by Scholte waves. 

1. Introduction 

An important element of many problems in physical acoustics is the phe-

nomenon of acoustic reflection and transmission at an interface between two 

media, one (upper) fluid and the other (lower) an elastic solid. The general 

problem of determining the reflected and transmitted acoustic fields due to a 

spherical wave that radiates from a point source and impinges on a plane 

fluid-solid interface is surprisingly difficult and has occupied several re-

searches over the years[1-7]. 

The acoustic fields may be determined from the asymptotic solutions of 

wave equations at high frequencies, the acoustical theory known as geometri-

cal acoustics or ray acoustics[8]. It should be emphasized that the acoustic 

fields may differ significantly from the geometrical-acoustics approximation if 

either the source or receiver is near the interface (in acoustic wavelengths) or 

if the stationary phase path (the ray path) is near the critical angle. It is for this 

reason that the exact wave-theory solutions of wave equations with appropriate 
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boundary conditions (the general solutions) must be considered, constituting a 

valid representation of the entire acoustic field (i.e., including all wave-forms 

comprising the field[9]). 

The general solutions for the acoustic fields may be derived by applying 

the theory of generalized ray[10] which involves direct construction of inte-

gral representations for such solutions from the known source functions, the 

reflection and transmission coefficients for plane waves, the receiver func-

tions, and the phase functions. These integrals can then be evaluated exactly 

by applying the Cagniard method11. In the literature they are known as ray 

integrals, but they are quite different from ray integrals of the theory of 

geometrical acoustics[8]. 

Specifically, the generalized-ray method may be used to treat the fluid-solid 

interface problem. If both a point source and a point receiver are placed in a 

fluid, the general solution is then set as a sum of two ray integrals in which the 

first integral represents the entire field of the point source and the second one 

represents the entire reflected field (excited in a fluid by the source field 

which impinges on the interface). The latter integral thus represents not only 

the regularly reflected (according to Snell’s law) wave but also (depending on 

the wave speed ratios of the adjacent media, the distance of the source and re-

ceiver from the interface, and the distance between them measured along the 

interface[10]) the critically refracted longitudinal and shear waves (also called 

the head[11] (or lateral[12]) waves or the diffracted components of the re-

flected wave[9,13] ) and the pseudo-Rayleigh[14,15] and Scholte[11,16] (also 

called Stoneley[14]) interface waves. 

Although the problem of acoustic propagation in a wedge of fluid overlay-

ing a liquid or elastic bottom has already been tackled[17,18], the effect of a 

sloping slow-speed elastic bottom on the acoustic field within the wedge was 

not considered in detail. In this paper, we thus concentrate on the interpreta-

tion of this effect in terms of the generalized-ray theory, and in particular our 

emphasis is on the role that Scholte waves play in the field as observed by a 

submerged distant receiver. 

In Sec. 2, we review the generalized-ray theory of acoustic propagation 

from a point source in a wedge of fluid supported by an elastic solid. 

In Sec. 3, we present results of pressure-field calculations both for a 

fluid-solid interface alone and for a wedge of fluid supported by an elastic 

solid. In the two cases, a fluid overlaying a slow-speed elastic bottom with 

discontinuities at the interface both in the velocity and in the density is 

considered. 
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2. Theory 

Referring to Fig. 2.1, consider a wedge-shaped layer of homogeneous fluid of 

density ρ  and of sound speed c , bounded above by a horizontal pressure-

release plane and below by a sloping (acoustically penetrable) plane interface 

with a semi-infinite homogeneous elastic solid of density 2ρ  and of P and S 

wave speeds Pc  and Sc , respectively. These boundary planes intersect along 

the line of apex, and the apex angle is α . The origin O  of a Cartesian coordi-

nate system ( , , )x y z  is placed at the horizontal boundary at distance d  from 

the apex, and x , y  and z  are the range (normal to the apex), cross-range 

(parallel to the apex) and depth coordinates, respectively. An omnidirectional 

point source is located in the layer at depth 0z  directly below O , and the layer 

thickness at the source location is h . 
The acoustic field in the layer is represented by the velocity potential φ  

satisfying the inhomogeneous wave equation 

2
2 2

02
( ) ( ) ( ) ( ),c f t x y z z

t

φφ δ δ δ∂∇ − = − −
∂

 (2.1) 

where ( )f t  is a causal function of time t . The problem is to determine the 

time record of the pressure at a receiver placed in the layer at a range r  from a 

point source. A solution for this problem is obtained by applying geometric-

acoustic arguments of the method of images and a modified generalized-ray 

method. 

First, the acoustic field in the layer is expanded into a finite series of wave 

fields (the first is that radiated from a point source, the next two are those re-

flected once at either boundary, etc.) plus the wave diffracted at the apex. 

Thus, omitting the effect of diffraction at the apex, which in certain cases is 

negligible or entirely absent[19,20], the potential for the total field is then rep-

resented by 

0
1

.
N

k
k

φ φ φ±
=

= +∑   (2.2) 

In the above 0φ  is the potential for the incident (source) field; kφ±  is that for 

the multi-reflected field undergoing k  reflections, where the +/– sign meaning 

that the first reflection is at the sloping/horizontal boundary; and /N π α= , 

where α  is an integral submultiple of .π  
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Fig. 2.1 Geometry for a wedge of fluid having a sloping interface with an elastic solid. 

Next, the incident potential is expanded into an integral over plane waves, and 

the plane-wave reflection coefficients are used to synthesize an integral represen-

tation of the multi-reflected potential. The time-reduced (i.e., Laplace time-

transformed) potentials then are 

0 02 2

2 2

( )
exp( ) ,

8

( )
exp( ) .

8k k k l l

s f s
S sg d d

c

s f s
S sg d d

c

φ ξ κ
π

φ ξ κ
π

+∞ +∞

−∞ −∞

+∞ +∞

± ± ± ± ±−∞ −∞

=

= Π

∫ ∫

∫ ∫
 (2.3) 

In the above S  is the source function; k±Π  is a product of the reflection coeffi-

cients; ,ξ κ  and are the wave slownesses of the 0-th  field; ,l lξ κ± ±  are the local 

wave slownesses of the -thk±  field; and 0 , kg g±  are the phase functions of the 

0-th, -thk±  fields, respectively. In Eqs. (2.3); 0φ  is the particular solution of time-

reduced inhomogeneous wave equation (2.1); and kφ±  is the solution of time-

reduced homogeneous wave equation (2.1, ( ) 0f t = ), satisfying the boundary 

conditions for the layer. Substituting these solutions into time-reduced Eq. (2.2), 

we thus obtain the general solution of the Laplace transformed potential φ . 

Finally, the inverse Laplace transforms of 0φ  and kφ±  are evaluated exactly by 

applying the Cagniard method. Since /p tρ φ= − ∂ ∂ , where p  is the acoustic pres-

sure, the solutions for the pulses 0p  and kp±  thus obtained are 

0 0 0
0

( / ) ( ) ( ) ( ) ,

( ) ( ) ( ) ,

t
c

c t

t

k c k kt k

p
p f t R c p H t t f t I d

R

p p H t t f t I d

τ τ τ

τ τ τ± ± ±
±

= − = − −

= − −

∫

∫

ɺ ɺɺ

ɺɺ

  (2.4) 

where 2/(4 )cp cρ π= − . The superposition of these solutions 
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0
1

N

k
k

p p p±
=

= +∑  (2.5) 

yields the general solution of p  for a point source in a non-parallel layer of fluid, 

which is exact other than the omission of wave diffracted at the apex. The R  is 

the source-to-receiver distance; ( )H t  is the Heaviside step function; 0 , kt t±  are the 

minimum arrival times of the 0-th, -thk±  pulses, respectively; and 

1
( )

0
0 0
( ) 2Re ,

q dg
I S dq

d

τ
τ

τ

−

= ∫       
1

( )

0
( ) 2Re

q
k

k k

dg
I S dq

d

τ
τ

τ

−
±

± ±= Π∫  

are the ray-integral representations of the entire 0-th  and -thk±  fields, respec-

tively. The Re stands for “real part”; 1 1
0 , kg g− −

±  are the inverse phase functions; and 

q  is the wave slowness. 

Note that the pressure due to the incident and bottom-reflected pulses is 

0 1.p p p+= +  (2.6) 

This solution ignores entirely the existence of the upper boundary, and thus repre-

sents the exact solution of p  for a point source in a semi-infinite fluid z h<  

bounded below by a horizontal interface z h=  with a semi-infinite elastic solid 

z h> . Here h  is the height of O  above the interface, and a point source is placed 

at 0z z=  below O . The heights of the source and receiver above the interface 

then are S 0z h z= −  and Rz h z= − , respectively. 

3. Examples 

Solutions (2.5) and (2.6) were used to compute the received pressure records for 

1.0,ρ = 1.0,c = 2 2.2,ρ = P 1.78,c = S 0.73.c =  A fluid overlaying a slow-speed 

elastic bottom with discontinuities at the interface both in the velocity and in the 

density is thus considered. The ( )f t  in Eqs. (2.4) used for the computed examples 

is a parabolic ramp function10 so that the source pulse 0p  has the form of an isos-

celes triangle, where ∆  is the rise time of the pulse, 2∆  is the pulse duration and 

( / )cp R ∆  is the peak value of the pulse. 

The first calculations were carried out for the fluid-solid interface problem alone 

[solution (2.6)], and the time records of the pressure are shown in Fig. 3.1 for two 

large-range locations (in terms of the source height Sz ): S/ 200r z =  and 

S/ 400r z = . Each record exhibits four distinct wave-forms, enumerated in ascending 
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order according to their arrival times at the receiver: the critically refracted longitu-

dinal wave, the wave emitted from the source (the source pulse), the totally re-

flected wave, and the Scholte wave which is a very prominent wave-form on the 

response curve. (In the case of a slow-speed elastic bottom, both the critically 

refracted shear wave and the pseudo-Rayleigh wave are absent.) 

This problem was treated by de Hoop and van der Hijden[16] who applied a 

modified Cagniard’s method to derive integral representations for the incident and 

reflected acoustic fields, and computed the pressure records due to a source pulse 

of Heaviside form, but their computations were restricted to small values of S/r z . 
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Fig. 3.1 Pressure records due to a source pulse of triangular form ( S2 /ct z c= , / 2.0ct∆ = , 
and the vertical arrow indicates the arrival time of the source pulse); (a) at S/ 200r z =  
( R S/ 6.24z z = ); (b) at S/ 400r z =  ( R S/ 11.48z z = ). 
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Fig. 3.2 Pressure records due to a source pulse of triangular form ( /ct h c= , / 2.0ct∆ = , 
and the vertical arrow indicates the arrival time of the source pulse); (a) at down-slope 
location ( )

200
Dx  ( / 200r h = ); (b) at cross-slope location ( )

200
Cx  ( / 200r h = ). 
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The second calculations were done for a 3 degree wedge [solution (2.5)]. The 

point source and the two receivers were located on the bisecting plane of the 

wedge. Figure 3.2 shows the time records of the pressure received at two large- 

range locations (in terms of the wedge depth at the source location h ): ( )
200
Dx  

and ( )
200
Cx , where the D  and C  letters in parentheses attached to x  stand for down-

slope and cross-slope of the source, respectively, and the subscript 200 of x  is the 

value of /r h . The records exhibit three phases: the early time response composed 

of critically refracted longitudinal waves arriving along refracted ray paths, the in-

termediate time response composed of multi-reflected spherical waves arriving 

along ray paths, and the late time response composed of Scholte waves which is 

the most prominent phase in the records. Note that the method of normal modes 

cannot be extended to treat acoustic propagation in the present wedge because 

“penetrable” boundary conditions at the sloping interface preclude the separability 

of the Helmholtz equation[21]. 
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Abstract. Based on the superposition method, an analytic technique is developed 

for evaluation of the energy division among various modes in rectangular isotropic 

waveguide excited by loadings distributed on a portion of bounding faces. Results 

calculated for a square waveguide with uniform loading of constant magnitude are 

presented graphically. At each frequency there is more than one dominant mode. 

Backward modes are dominant for most feasible frequencies. Thus the loading 

considered is recommended for experimental investigations of these waves. 

1. Introduction 

Nowadays guided waves in infinitely wide plates, circular and hollow cylinders 

are well studied and successfully applied in long-range non-destructive evaluation, 

surface cracks determination, material properties measurement, etc. In order to 

develop NDE for waveguides of more complex cross section, it is necessary to 

find dispersion characteristics of a large number of propagating modes and to 

separate dominant modes that transfer the most of the energy depending on fre-

quency. The problem is considerably complicated by high modal density and intri-

cate structure of the wave field due to the interference of the bounding faces of fi-

nite cross section. To investigate dispersion characteristics of rectangular bars [1], 

rails [2], and L-shaped waveguides [3], computer simulations, as well as finite and 

boundary element methods are usually applied. In spite of a great number of nu-

merical and experimental results for wave dispersion in waveguides of finite cross 

section, a qualitative comprehension of the energy propagation process and 

effective mode excitation has been not achieved yet.  
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The purpose of this paper is to analyze dispersion characteristics of rectangular 

elastic waveguide, wave motions in which are excited by harmonic loadings on a 

portion of the bounding faces. The set of propagating modes at each frequency is 

determined analytically by means of the superposition method. To evaluate the 

energy division among various modes, an efficient technique is proposed. The pa-

per is organized as follows. Sec. 2 presents statement of the problem and a brief 

description of the solution process. In Sec. 3, the method developed is applied for 

numerical evaluation of amount of the energy going into each longitudinal mode 

excited in a square waveguide under the uniform normal loading. Main conclu-

sions are given in Sec. 4. 

2. Theoretical Analysis 

2.1 Statement of the Problem 

Consider an elastic waveguide of rectangular cross section made of homoge-

neous isotropic material with density ρ , shear modulus G  and Poisson’s ra-

tio ν . The waveguide is referred to rectangular Cartesian coordinates with 

z -axis directed along the waveguide axis and bounding faces x a= ± , 

y b= ± . Time-harmonic waves of frequency ω  are excited by loadings dis-

tributed uniformly on portion d z d− ≤ ≤  of faces y b= ± .  

Displacements ( , , )x y zu u u  are expressed in terms of scalar φ  and vec-

torψ
��

  potentials satisfying Helmholtz equations and a condition that ψ
��

 

is solenoidal 

2
2

2
1

0
c

ωφ φ∇ + = , 
2

2
2
2

0
c

ωψ ψ∇ + =
�� ��

, 0yx z

x y z

ψψ ψ∂∂ ∂
+ + =

∂ ∂ ∂
. (2.1.1) 

Here 2∇  is the three-dimensional Laplace operator, 1c  and 2c  are velocities of 

compressional and shear waves, respectively. Harmonic factor i te ω−  is omitted.  

Boundary conditions on the waveguide faces are written as follows 

0x xy xzσ τ τ= = =  at x a= ± ; 

2 ( , ), ,

0, ,y

GF x z z d

z d
σ

 ≤=  >
 0yx yzτ τ= =  at y b= ± . (2.1.2) 
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Function ( , )F x z  can be represented as Fourier transform with respect to propaga-

tion constant γ  

1
( , ) ( , )

2
i zF x z f x e dγγ γ

π

+∞

−∞

= ∫ , ( , ) ( , ) cos
d

d

f x F x z z dzγ γ
−

= ∫ . (2.1.3) 

A period-average power through the waveguide cross section is determined as 

d a

y y

d a

W P dxdz
− −

= ∫ ∫ , * *( ) Im ( , , )
4y y y y y y

i
P u u GF u x b z

ω σ σ ω= − − = − , (2.1.4) 

where *  denotes complex conjugate. 

2.2 Method of Solution 

Solution to the problem on forced motions in the rectangular waveguide consists 

of two steps: determination of a set of propagating normal modes in the 

waveguide with free faces, and evaluation of period-average power for each mode. 

Under the assumption that function F(x,z) is even in both coordinates, further 

theoretical analysis is limited to longitudinal wave motions, for which mode 

shapes are symmetric relative to middle planes of the waveguide. 

2.2.1 Normal modes in rectangular waveguide 

The superposition method is applied to construct an analytical solution to the 

problem on normal modes in a rectangular waveguide. The main idea of the 

method consists in using two ordinary Fourier series, each term of which identi-

cally satisfies Eqs. (2.1.1) and zero shear stresses on bounding faces. Thus dis-

placement, for instance ( , , ) ( , ) i z
y yu x y z U x y e γ=  has the form of 

( )

2 2 2
2 1 2

2
0 1 1 2

2 2 2
2 22 1 2

0 1 2
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( 1) sin

2 sinh sinh

sinh sinh
( 1) cos ,
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n n
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U a Y f q y

q q a q a

p p y p y
b X b x

p b p b

β γβ β

α γ α γ α

∞

=

∞

=

 + +
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− − ⋅ − + ⋅ 

 

∑

∑
  

 (2.2.1) 
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where following notations are introduced 

n

n

a

πα = , k

k

b

πβ = , 2 2 2 2
i k iq β γ= + − Ω , 2 2 2 2

i n ip α γ= + − Ω , 1, 2i = ; 

, 2
1c

ωΩ = , 2

1, 0,

1/ , 0;k
k

k
f

kβ
=

=  >
 2

1, 0,

1/ , 0;n
n

n
b

nα
=

=  >
 (2.2.2) 

Two sets of Fourier coefficients kY , nX  ( , 0,1,...)k n =  are determined such 

that normal stresses vanish on boundaries. Since the expressions for a coefficient 

of a term in one series will depend on all coefficients of the other series and vice 

versa, final solution requires solving an infinite system of linear algebraic equa-

tions 

( )2 2 22 2 2 2
0 2

2 2 2 2 2 2
0 1 2 1

22 2
( ) 0,n k n k

k k k n n
n n n n

Y a q X b
q q q

γα β α βε
α α α

∞

=

 Ω − Ω
 ∆ + − − =

+ + +  
∑  

( )2 2 22 2 2 2
0 2

2 2 2 2 2 2
0 1 2 1

22 2
( ) 0.n k n k

n n n k k
k k k k

X b p Y f
p p p

γα β α βε
β β β

∞

=

 Ω − Ω
 ∆ + − − =

+ + +  
∑  (2.2.3) 

Here 1/ 2iε =  for 0i = , and 1iε =  for 0i > ; 2 2
0 1 / (1 2 )ν νΩ = Ω − ; ( )k q∆ , 

( )n p∆  correspond to Rayleigh-Lamb dispersion equations for infinite plates 

of thickness 2a  and 2b , respectively. The determinant of system (2.2.3) 

governs dispersion relation between frequencies and propagation constants 

of normal modes for given values of ν  and /a b . Approaches fo correct re-

duction of the infinite system based on the asymptotic behavior of unknowns 

with large indices, as well as further details on the solution process and 

related references are given in [4]. 

2.2.2 Efficiency of mode excitation 

To evaluate the period-average power supplied with loading (2.1.2), let rep-

resent the displacement at faces y b= ±  by the Fourier integral. Taking into 

account (2.2.1), we have 

2
2

0

1 1
( , , ) ( , ) ( 1) cos ( ) .

2 2 2
i z n i z

nyy n n
n

u x b z U x b e d b b x X e dγ γγ α γ γ
π π

∞ ∞∞

=−∞ −∞

 Ω
= = −  

 
∑∫ ∫

 (2.2.4) 
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Here a bar over the integrand is introduced with the purpose of uniform-

ity of designations for functions being transformed. For given frequency 

ω , ( )nX γ  have poles at points mγ± ( )1,2,...,m M= , which are roots of the 

dispersion equation and correspond to propagating normal modes. Since 

( )nX γ  are analytic functions except for these points, the residue theorem 

can be applied to compute the integral in (2.2.4). Then 

2
2

0 1

Im ( , , ) ( 1) cos Re ( ) cos
2 m

M
n

y n n n m
n m

u x b z b b x s X z
γ γ

α γ γ
∞

== =

Ω
= −∑ ∑ . (2.2.5) 

Since period-average power yW  is a superposition of period-average 

powers ( )m
yW  for each propagating m  mode, according to (2.1.4), it is eas-

ily to obtain that 

2
( ) 2

0

( 1) ( , )cos Re ( )
2 m

a
m n

y n n n
n a

W Gb b f x x s X dx
γ γ

ω γ α γ
∞

== −

Ω
= − −∑ ∫ .         (2.2.6) 

Functions ( )nX γ  can be expressed as ( ) / ( )nd Dγ γ , where ( )nd γ  are 

smooth functions with no singularities at points mγ± , ( )D γ  is the determinant 

of system (2.2.3). Then Re ( ) ( ) / ( )
m

n n m ms X d D
γ γ

γ γ γ
=

′= . On the other hand,  

1
( ) ( )

( )
m

m n m
n

d
D d

d X
γ γ

γ γ
γ γ

=

 
′ = ⋅  

 
. (2.2.7) 

Finally, the period-average power for m  mode is calculated as follows 

1
2

( ) 2

0

1
( 1) ( , ) cos

2 ( )
m
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m n

y n n
n n a

d
W Gb b f x xdx

d X
γ γ

ω γ α
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−
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= −=

  Ω  = − −  
   

∑ ∫ .  

 (2.2.8) 

Expression (2.2.8) does not contain functions ( )nd γ , ( )D γ  and permits 

to evaluate the power simply by solving the finite system of equations 

corresponding to (2.2.3). 
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3. Numerical Results 

The method developed is applied for evaluation of the energy division among 

various modes excited by uniform normal loading of constant magnitude F(x,z)=1. 

Fourier representation of this function can be easily obtained, and according to 

(2.2.7) the period-average power for m  mode is calculated as follows 

1

( ) 2
2

0

sin 1
2

( )
m

m m
y

m

d d
W Gab

d X
γ γ

γω
γ γ γ

−

=

  
 = − Ω  
   

. (3.1.1) 

Let consider a square waveguide ( 0.25ν = ), where the loading is distributed on 

portion 1 1z− ≤ ≤  of faces 1y = ± . Owing to diagonal symmetry of the cross-section, 

longitudinal modes separate into breathing L-modes, Ux(x,y)=Uy(y,x), and screw S1-

modes, Ux(x,y)=-Uy(y,x). Calculations were performed for each mode type retaining 

10 equations in the finite system corresponding to (2.2.3). Comparatively small num-

ber of equations in the reduced system provides correct values for frequencies and 

propagation constants that qualitatively agree with experimental data [4]. Results ob-

tained are shown in Fig. 2.1, 2 /bγ πΓ =  vs 22 /b cω πΩ = . The dominant mode at 

each frequency is indicated by the heavier line superimposed on the dispersion branch. 

A bar over a symbol indicates that the reflection of a segment in the Re 0Γ =  plane is 

shown; the segments correspond to backward waves with phase and group velocities 

of opposite sign. 

Fig. 2.1 shows that most of the energy goes into one mode, but the dominant mode 

is not the same at all frequencies. So, in the frequency range 0 1.378< Ω ≤ , all of the 

energy does into (1)L -mode. At 1.379Ω = , there appears (1)
1S -mode (45% of the en-

ergy) and backward 
(1)
2S -mode (54% of the energy). At frequency 2 1.414Ω = =  of 

the Lamé mode, 96% of all the energy goes into the backward wave, while (1)
1S -mode 

transfers 3.3% and (1)L -mode – 0.7% of all the energy, respectively. For 2Ω > , the 

backward wave disappears, and most of the energy is transferred by (1)
1S -mode. As the 

frequency increases, (1)L -mode becomes more powerful; for 1.686Ω ≥ , it transfers 

more than a half of the energy, until 
(1)
3S - and (1)

2S -modes appear. At higher frequen-

cies, (1)L -mode never dominates. The mode behavior described is similar for all other 

modes. Therefore, based on these calculations some general conclusions can be made. 

Each propagating modes becomes dominant shortly after it appears, that is most of the 

energy goes into modes with small propagation constants. Redistribution of the en-

ergy in the vicinity of cutoff frequencies is similar to that observed for Rayleigh-

Lamb waves in the infinite plate under the same conditions of excitation [5]. 
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Backward waves are dominant for most feasible frequencies. Therefore, uniform nor-

mal loading can be recommended for experimental investigations of these waves. 

However, this loading is inappropriate for effective excitation of an edge mode (the 
(1)
1S -mode at high frequencies). Intensive motions in this mode are concentrated near 

the edges of the waveguide [4]. In a square waveguide excited by the uniform loading, 

the edge mode receives less than 1% of the energy. 

The same conclusions can be drawn from results calculated by means of the semi-

analytical finite element method and experimental data presented in [2] for a point 

loading on the face of a square waveguide. 

 

Fig. 2.1 Frequency spectrum for breathing L (―) and screw 1S  (---) modes in a square 
waveguide with dominant mode indicated, 0.25ν = . 
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Abstract.  The work is devoted to theoretical research of normal elastic and electroelas-

tic waves in anisotropic cylindrical waveguides class С6v hexagonal systems of not typi-

cal geometry cross-section from piezoactive and nonpiezoactive materials. Waveguides 

of the circular sections with sector cuts of any sizes and waveguides of the concentric 

ring sections with sector cuts are considered. Possibilities of using section geometry for 

changing structure and properties of spectrum of traveling and edge stationary normal 

waves are investigated. The approach  is based on exact analytical integration of the 

wave dynamics equations for linear elastic and electroelastic medium of hexagonal sys-

tem with the generalized wave potentials introduction and reducing the considered prob-

lem to a spectrum boundary problem in the section of a waveguide. The potentials ex-

pressed through special cylindrical functions of different types with fractional indexes are 

used for satisfaction the edge conditions on boundary parts of section.  

1. Introduction 

The problem of normal elastic and electroelastic waves propagation in anisotropic cylin-

ders from materials of hexagonal systems with the canonical circular or ring form of sec-

tion is investigated in works [1-3] on many aspects. The dispersion spectrums of normal 

elastic and electroelastic waves are investigated for cylindrical waveguides with non 

classic sections to a lesser degree. In particular, this problem is considered in works [4-7]. 

In this work the method and the analysis of the normal waves in cylindrical waveguides 

with not canonical section, particularly in circular and ring waveguides with sector cut of 

any angular measure in section are presented. The carried out researches are of interest 

for search of new fundamental laws and specific effects in waveguide properties of cyl-

inders anisotropic in an axial direction. The section geometry variation is considered to 

be the mechanism of dispersion spectrum properties controlling, such as values of critical 

frequencies and distribution of different free traveling waves modes, forms of wave dis-

placement, types of high-frequency short-wave localization. The laws found out as a 

result of this research can be used at hypersonic techniques designing. 
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2. Formulation 

2.1 Geometrical and Material Description of the Waveguides 

Extended transverse-isotropic cylindrical waveguides with longitudinal axis of elas-

tic symmetry are considered. The sector cut of any angular measure is contained in 

circular or concentric ring section. The waveguides in dimensionless cylindrical co-

ordinates system ( ), ,r zθ  occupy areas 1 {0 , , }V r R zα θ α= ≤ ≤ − ≤ ≤ −∞ < < ∞  or 

2 1 2{ , , }V R r R zα θ α= ≤ ≤ − ≤ ≤ −∞ < < ∞ . The complicate contour 0− +Γ = Γ ∪ Γ ∪ Γ  

of waveguide 1V section is the superposition of lines 0 { , }r R α θ αΓ = = − ≤ ≤ , 

1{ 0 , }r R θ α+Γ = ≤ ≤ = , 1{ 0 ,r R−Γ = ≤ ≤  }θ α= − . The contour of waveguide 

2V  section is 01 02 ,− +Γ = Γ ∪ Γ ∪ Γ ∪ Γɶ ɶ ɶ ɶ ɶ  where 0iΓ =ɶ  { , }ir R α θ α= = − ≤ ≤ , 

1 2{ , }R r R θ α+Γ = ≤ ≤ =ɶ , { }1 2 ,R r R θ α−Γ = ≤ ≤ =−ɶ . 

The analysis of full dispersion spectrum for considered piezoactive waveguides is 

based on exact analytical integration of the wave dynamics equations of linear  electroe-

lastic hexagonal system medium. They give amplitude functions (0)
ju , (0)ϕ  in elastic 

displacements vector components ɶ( )( )( )(0)
3Re expj ju u i t kxω= ⋅ − −  and quasistatic 

electric field potential ɶ( )( )(0)
3Re( exp )i t kxϕ ϕ ω= ⋅ − −  for harmonical electroelastic 

waves. In the matrix-operational form the stationary motion equations are given by 

(0) 0ijL Φ = ( ), 1, 4i j = ,                                                                           (2.1.1) 

 where (0) (0) (0) (0) (0)
1 2 3( , , , )Tu u u ϕΦ = , 2 2 2 2

11 11 1 66 2 44L c c c k= ∂ + ∂ − + Ω ,  

12 21 12 66 1 2( )L L c c= = + ∂ ∂ , 13 31 13 44 1( )L L ik c c= = + ∂ , 14 41 31 15 1( )L L ik e e= − = − + ∂ ,  
2 2 2 2

22 66 1 11 2 44L c c c k= ∂ + ∂ − + Ω , 23 32 13 44 2( )L L ik c c= = + ∂ ,  

24 42 31 15 2( )L L ik e e= − = − + ∂ ,  2 2 2 2
33 44 1 44 2 33L c c c k= ∂ + ∂ − + Ω ,  

2 2 2
34 43 15 1 2 33( )L L e e k= − = − ∂ + ∂ + , 2 2 2

44 11 1 2 33( )L kε ε= ∂ + ∂ − , ,j jx∂ = ∂ ∂  ɶ
* ,k kR=  

1/2
* *( / )R cω ρΩ = , pjc  – dimensionless related to *c  elastic constants, ρ  – den-

sity, pje  – dimensionless  related to * *c E  piezoelectric constants, pjε  – dimen-

sionless related to 2
* * *c Eε =  dielectric constants of piezoactive waveguide mate-

rial, *R  - normalizing parameter for ,ju  jx . 

The system of the wave amplitude equations for nonpiezoactive waveguide is given by 

(0) 0ijL Ψ =  ( ), 1,3i j = ,  (0) (0) (0) (0)
1 2 3( , , )Tu u uΨ = . (2.1.2) 

Some variants of boundary conditions are considered. The boundary conditions on 

the free surface 0Γ  with electrodes coverings for piezoactive waveguides of circular sec-

tion are given by: 

0 0 0 0
( ) ( ) ( ) ( ) 0r zu u uθ ϕΓ Γ Γ Γ= = = = . (2.1.3) 
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The conditions on the fixed surfaces 0Γ  with electrodes coverings are of the form 

0 0 0 0
( ) ( ) ( ) ( ) 0rr r rzθσ σ σ ϕΓ Γ Γ Γ= = = = . (2.1.4) 

The surfaces of sector cuts ±Γ  have thin flexible not extensible electroconductive 

coverings and corresponding conditions are given by 

( ) ( ) ( ) ( ) 0r zu uθθσ ϕ
± ± ± ±Γ Γ Γ Γ= = = = . (2.1.5) 

The conditions on the free internal and external cylindrical parts of boundary with 

electrodes coverings for piezoactive waveguides of ring section are of the form: 

( ) ( ) ( ) ( ) 0
j j j jrr r rzθσ σ σ ϕΓ Γ Γ Γ= = = = , 

( ) ( ) ( ) ( ) 0r zu uθθσ ϕ
± ± ± ±Γ Γ Γ Γ= = = = . (2.1.6) 

2.2 Obtaining an Analytic Form of Dispersing Relations 

By investigations waves conventionally are shared on the symmetric (S-type), when 

( , - ) ( , ),r ru r u rθ θ=  ( , - ) - ( , ),u r u rθ θθ θ=  ( , - ) ( , ),z zu r u rθ θ=  ( , ) ( , - )r rϕ θ ϕ θ=   

and antisymmetric (A-type) with ( , - ) - ( , ),r ru r u rθ θ= ( , - ) ( , )u r u rθ θθ θ= , 

( , - ) - ( , )z zu r u rθ θ= , ( , ) - ( , - ).r rϕ θ ϕ θ=  At a stage of construction the basic disper-

sion relation for full spectrum of the normal elastic and electroelastic waves, connected 

with the systems of the wave equations (2.1.1) (2.1.2) integration, the technique of gen-

eralized wave potentials jϕ  introduction is used. In piezoactive waveguides [3] general-

ized potentials jϕ  are related to complex amplitude functions of wave displacements 

( )0
1 2 3, ,ju x x x with formulas  

(0)
1 1 1 2 4u ϕ ϕ= ∂ + ∂ ,    (0)

2 2 1 1 4u ϕ ϕ= ∂ − ∂ ,    (0)
3 2u ϕ≡ ,    (0)

3ϕ ϕ≡ , (2.2.1) 

where 
3

1 2
1

( , )p pj j
j

F x xϕ β
=

=∑  ( 1,3)p = , 4 4 1 2( , )F x xϕ ≡ ; functions jF  are defined 

from the metaharmonic equations 2 2 0j j jD F Fγ+ =  ( )1, 4j = .  

At research of S-waves in piezoactive waveguides of circular section metaharmonical 

functions are introduced in the form: 

0

( , ) ( ) cos( )
n

j nj j n
n

F r A J rνθ γ ν θ+

∞
+ +

=

=∑ ( 1,3)j = , 

4 4 4
0

( , ) ( )sin( ),
n

n n
n

F r A J rνθ γ ν θ+

∞
+ +

=

=∑  (2.2.2) 

where (2 1) / 2n nν π α+ = + ; ( )
n

jJ rν γ+  - cylindrical Bessel functions of the first kind. 

They provide exact satisfaction to edge conditions on parts of a boundary surface ±Γ  of 

sector cut. For S-waves in waveguides of ring section functions jF  are of the form 
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0

( , ) ( ( ) ( ))cos( ) ( 1,3),
n n

j nj j nj j n
n

F r A J r B Y r jν νθ γ γ ν θ+ +

∞
+ + +

=

= + =∑
 

4 4 4 4 4
0

( , ) ( ( ) ( ))sin( )
n n

n n n
n

F r A J r B Y rν νθ γ γ ν θ+ +

∞
+ + +

=

= +∑ . (2.2.3) 

It is shown that for expressions of stresses amplitude functions the singularities occur 

in a point 0r =  - top of sector cut due to the presence of a terms kind ( )
n

jr J rα
ν γ±

−  if 

0nν α± − <  in corresponding expressions. 

The equations for obtaining critical frequencies of normal waves and the dispersion 

equations are received from edge conditions (2.1.3-2.1.6) by using method of orthogonal 

series. In particular, the sequence of dispersion equations for waveguides of circular 

section in case of S-waves are given by 

( ,1, ) ( ,2, ) ( ,3, ) ( ,4, )

( ,1, ) ( ,2, ) ( ,3, ) ( ,4, )
( )

( ,1, ) ( ,2, ) ( ,3, ) ( ,4, )

( ,1, ) ( ,2, ) ( ,3, ) ( ,4, )

( , ) 0

u n u n u n u n
r r r r
u n u n u n u n

u
n u n u n u n u n

z z z z
u n u n u n u n

k θ θ θ θ

ϕ ϕ ϕ ϕ

∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

Θ Ω = =
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

 ( 0, )n = ∞ ,             (2.2.4) 

where ( )( , , ) 1
1 1

( ) ( )
n n

u j n
r j n j j jR J R J Rυ υβ υ γ γ γ+ +

+ −
+

∆ = − ,…, ( , , )
3 ( )

n

u j n
j jJ Rϕ υβ γ+∆ = .  

Each of these dispersion equations describes independent partial spectrum of 

normal elastic or electroelastic waves with certain circle wave number, and the 

general spectrum is formed as superposition of all partial spectrums. This result 

has analogy to structure of the general dispersion spectrum of normal waves in 

waveguides with circular and concentric ring sections. 

3. Numerical Results 

In this section numerical results of the received dispersion equations, and also ex-

pressions for traveling and edge standing elastic and electroelastic normal waves 

in waveguides from ceramics BaCaTiO3 with normalized material constants 

11c =15.8, 12c =6.9, 13c =6.75, 33c =15.0, 44c =4.5, 31 3.1,e = − 33 13.5,e =  15 10.9e =  , 

11 88.5ε = , 33 80.5ε = and parameters 10 2
*c =10 ,N m 10

* =10 ,E N K  * =1.0 mR  

are presented. The basic properties of critical frequencies distributions are investi-

gated. Established that it is possible to receive various alternation orders and con-

centration of  critical frequencies distribution for traveling normal waves by angu-

lar sizes variation of circular waveguides section.  

The researches of high-frequency short-wave localization of normal elastic and 

electroelastic traveling waves are held. An asymptotic for phase velocities of all 
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modes from various partial spectrums is a volume elastic shear waves velocity in 

an axis of mechanical properties symmetry direction in case of the fixed cylindrical 

boundary surface of a circular nonpiezoactive waveguide.  

An asymptotic for phase velocity of lowest mode waves is the phase velocity of 

the generalized surface Rayleigh wave along an axis of elastic properties symme-

try in anisotropic semispace of class С6v hexagonal systems with a free surface in 

case of a free cylindrical boundary surface (Fig 3.3). 

 
 

(a) piezoactive circular waveguide. Solid lines 
represent critical frequencies for waves of lateral  
type, dotted lines represent critical frequencies 
for electroelastic waves of longitudinal type. 

(b) nonpiezoactive ring waveguide. Solid lines rep-
resent critical frequencies for waves of lateral  type, 
dotted lines represent critical frequencies for waves 
of longitudinal type. 

Fig. 3.1 S-waves critical frequencies distributions in waveguides with a fixed cylindrical surface. 

   

(а) piezoactive, waveguide, 
/ 4α π=  

(b) piezoactive, waveguide, 
/ 2α π=  

(c) nonpiezoactive, waveguide, 
/ 2α π=  

Fig. 3.2 S-waves dispersion spectrums in circular waveguides with a free cylindrical surface, 0n = . 

 

Fig. 3.3 S-waves normalized phase velocities in a waveguide of circular section with a free 
cylindrical surface, 2α π= , 0n = . 
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The change in the described laws is in tending phase velocity of lowest modes 

waves from all partial spectrum to velocity of an electroelastic Rayleigh wave 

along a corresponding direction in piezoactive semispace for piezoactive 

waveguides. Asymptotic velocities for waves of all other modes are the velocities 

of purely elastic shear waves in the aforementioned direction. The asymptotic 

phase velocity tending to the elastic or electroelastic surface Rayleigh waves ve-

locity is observed at two lowest modes from partial dispersion spectrum, and 

asymptotical velocity of other modes waves is the velocity of a volume elastic 

shear wave for ring waveguides.  

The obtained results can find application by working out methods of optimum 

excitation and reception the signals transferred by investigated waves. 

4. Conclusion 

Theoretical research of normal elastic and electroelastic waves in anisotropic cy-

lindrical waveguides class С6v hexagonal systems of not typical geometry cross-

section from piezoactive and nonpiezoactive materials had been conducted. The 

approach was based on exact analytical integration of the wave dynamics equa-

tions with the generalized wave potentials introduction. Numerical results were 

investigated for the waveguides from ceramics BaCaTiO3. It was shown, that the 

angular sizes variation is the mechanism of dispersion spectrum properties con-

trolling, such as values of critical frequencies and distribution of free traveling 

waves modes, types of high-frequency short-wave localization. 
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Abstract. Acoustic sensors frequently rely on the detection of small mass changes 

that results from binding of a coated layer coupled to the active sensor surface. 

Anti-symmetric flexural (ASF) modes are anti-symmetric type of guided waves 

propagating along the tip of wedge-shaped waveguides. Like surface acoustic 

waves, ASF can be a potential candidate for the purpose of acting as acoustic sen-

sors. This paper employs a combined numerical and experimental study for the 

dispersion behaviors of ASF modes propagating along wedge tips with a layer of 

coating. The numerical study is based on finite element method while the experi-

mental study employs a laser ultrasound technique. Velocity for the ASF mode 

propagating along the wedge tip with a slower coating is found out to start at the 

ASF velocity of the matrix wedge at the low frequency regime, and gradually in-

fluenced by the coating as the frequency increases. Enhanced loaded effects from 

the coating are founded due to the wedge tip geometry. In general, the numerical 

results show good agreement with the measurements.  

1. Introduction 

Surface acoustic wave (SAW) sensors are frequently used as physical, chemical or 

biological sensors. The sensor principle is based on the detection of small mass 

changes that result from the binding of a coated layer coupled to the active sensor 

surface. The propagation velocity of acoustic waves traveling through a layer at 

the sensor surface is very sensitive to additional mass loading. Thus, the change in 

the velocity is a measure of small mass changes at the sensor surface [1]. 
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Fig. 1 Wave motion pattern of an ASF mode. 
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Fig. 2 A schematic showing the geometry of a coated wedge tip. 

 

Discovered by Lagasse and coworkers [2, 3] in the early 1970’s through a nu-

merical study, wedge waves (WWs) are guided acoustic waves that propagate 

along the tip of a wedge, and their energy is tightly confined near the apex. As 

shown in Fig. 1, like Lamb waves, WWs with a displacement field that is anti-

symmetric about the mid-apex plane are called anti-symmetric flexural (ASF) 

modes. To date, no elasticity-based exact solution has been available for WW 

problems. By assuming the wedge to be a thin plate of variable thickness, 

McKenna et al. obtained a theoretical approximation for the prediction of the dis-

persion relation of a truncated wedge. [4] Also, Krylov and coworkers used a 

geometric acoustic approximation [5] and [6] to obtain the phase velocity of ASF 

modes. Experimental works employing piezoelectric transducers, miniature non-

contact electromagnetic acoustic transducers (EMAT) [7] and [8] and laser ultra-

sound techniques [9] – [11] have been conducted to investigate different aspects of 

ASF modes, including the influences of apex angles, apex truncation [10], fluid 

loading effects, and the effect of curvature of the wedge apex [11]. 
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For a flat matrix, the effects of a thin film coating on the propagating behaviors 

of guided waves are well known [12], however, not for the case of ASF modes. 

This paper describes a combined numerical and experimental investigation for the 

dispersion behaviors of ASF modes propagating along wedges with a layer of thin 

coating. 

2. Materials and Samples 

Two wedge samples are studied in this research; one without coating and one with a 

layer of coating on one side of the wedge tip. The wedge sample without coating is 

called a general wedge (GW), and the wedge sample with coating is called coated 

wedge (CW). Fig. 2 shows the geometry of the wedge tip with a layer of coating. 

Here, the apex angle is denoted as θ, the apex truncation is denoted as H, and the 

thickness of the coating is denoted as t. The aluminum GW sample with an apex angle 

of 30° is designated as Al30. The CW sample, with aluminum matrix coated with cop-

per film, is designated as AlCu30. Apex truncations (H) for the wedge samples are 8.4 

µm for the Al30 sample and 11.2 µm for the AlCu30 sample. These truncations are 

small compared with typical wavelengths of the investigated ASF modes.   

3. Laser Ultrasound Measurements 

A laser-generation/laser-detection ultrasound technique (LUT) is used for the 

measurements of ASF dispersion spectra. As shown in Fig. 3, the experimental 

configuration consists of a pulsed laser for ultrasonic wave generation and a laser 

optical probe to detect the acoustic waves. The excitation source is a Nd:YAG la-

ser with a power of approximately 100 mJ,  a wavelength of 532 nm, and a pulse 

duration of 6.6 ns. A commercial heterodyne Doppler laser optical receiver (OFV 

511 and OFV 2700, Polytec, Germany) is applied to detect the ASF modes propa-

gating along the tips of wedges. A B-scan scheme is used for the measurement of 

the dispersion behaviors of WWs. During scanning, the optical detector is located 

at a fixed point, while the generation laser beam is scanned along the wedge tip. 

Along the wedge tip, there are 200 scanning steps with a step size of 10 mm. A 

two-dimensional fast Fourier transform [13], first taken with respect to time and 

then with respect to the scanned position, is used to obtain the dispersion relation 

from the B-scan data. A more detailed description for the experimental technique 

and signal processing scheme can be found in [11]. 
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Fig. 3 A schematic showing the experimental configuration of LUT. 

4. Results and Discussions 

Dispersion curves of ASF modes are first presented for the Al30 sample, an aluminum 

wedge without coating. Fig. 4 shows the FE-simulated and LUT-measured ASF disper-

sion spectra for the Al30 sample. The three ASF modes are labeled as A1, A2, and A3, re-

spectively. For the Al30 sample with a small truncation, an FE mesh without apex trun-

cation is used as a close approximation. Without apex truncation, the ASF modes are 

known to be free of dispersion, which is also observed for the FE results in Fig. 4. Since 

these ASF modes are dispersion free, velocities for the three ASF modes are constant 

values over the investigated frequency range. Limited bandwidths without whole cover-

age of the whole investigated frequency range are observed for the three ASF modes. For 

example, the measured A1 mode covers a bandwidth from 0.2 MHz to 1.8 MHz, and 2.0 

MHz to 4.2 MHz for the A2 mode. The limited bandwidths can due to the laser excitation 

mechanism and also from the filtering effect of the signal processing scheme. Also, the 

measured ASF modes are nearly dispersion free, however, show minor dispersion with 

phase velocities slightly increase as the frequency increases due to the 8.4 µm truncation. 

In general, the FE-modeled ASF velocities agree well with the LUT measurements while 

the FE-simulated ASF modes are extended in the investigated frequency range.  

For a wedge with an apex truncation of 11.2 µm as the AlCu30 sample, a slight posi-

tive dispersion, or increasing velocity as frequency increases, is expected if it were the 

case of a common general wedge. However, while the wedge is coated a layer of film 

with slower velocity, the ASF dispersion becomes obviously negative or decreasing ve-

locity as frequency increases. Fig. 5 shows the measured and modeled dispersion curves 

for the AlCu30, a faster aluminum wedge matrix coated with a layer of slower copper 

Nd:YAG Laser 

Interferometer Oscilloscope 

Computer/ADC 

 Wedge sample  
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film on a side of its wedge tip. The three ASF modes for the AlCu30 are labeled CA1 

CA2 and CA3. ASF velocities for the coated wedge start at the ASF mode of the same 

order for the matrix wedge at the low frequency regime, and gradually influenced by the 

coating while frequency increases. Like the case of surface acoustic waves propagating 

along a flat surface with thin coating, loaded phenomenon are observed for the ASF 

modes in coated wedges. Moreover, enhanced loaded effects due to the wedge tip ge-

ometry are founded in the frequency range where the ASF wavelength is much larger 

than the film thickness. While the negative dispersion trends are considered for each of 

the CW/ASF modes, the FE-modeled dispersion spectra show good agreement with 

the measurement. The measured CW/ASF modes show limited bandwidths just like 

the CW case.   
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Fig. 4 Simulated and measured dispersion spectra for the Al30 sample. 
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Fig. 5 Simulated and measured dispersion spectra for the AlCu30 sample. 
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5. Conclusions 

Dispersion behaviors of anti-symmetric flexural (ASF) modes traveling in coating 

wedges (CW), and their relation with those of general wedges (GW), were inves-

tigated with a combined numerical and experimental study based on a laser ultra-

sound technique. Dispersion behaviors were observed for ASF modes propagating 

along the tips of a small truncation wedge with one of its surfaces coated with a 

layer. Transition behaviors of the ASF modes from those of a GW to those of a 

CW were characterized. Similar to the case of a flat matrix coated with a thin film, 

the phase velocity of the CW/ASF mode gradually approaches the velocity of the 

coated layer as frequency increase. Enhanced loaded effects due to the wedge tip 

geometry are founded in the frequency range where the ASF wavelength is much 

larger than the film thickness.  
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Abstract. Ultrasonic testing of a thick plate with a rectangular crack in a cladding 

is modelled analytically for a fully three-dimensional case. The effects of a corru-

gated interface and anisotropy are both taken into account. The wave scattering 

problem is solved by a hypersingular integral equation approach. A model for the 

ultrasonic transmitter and receiver is also included. Some preliminary numerical 

results for the change in signal response due to the presence of the crack are given. 

1. Introduction 

A situation that frequently occurs in the nuclear power industry is that of a thick 

plate or pipe with an austenitic cladding to reduce or prevent corrosion. A com-

mon method to apply the cladding is to use a welding process. From an ultrasonic 

testing point of view this leads to some complications. The cladding material is 

anisotropic, and the interface between the cladding and the base material is 

usually corrugated. 

For several reasons it is desirable to develop a mathematical model for ultra-

sonic testing of a component with a crack in a cladding. Such a model can be use-

ful for planning and qualification of testing procedures, and to increase the under-

standing of the influence of the cladding. Besides, using a good mathematical 

model is considerably cheaper than experiments, in particular when parameter 

studies are needed.  

The aim of this paper is to develop a fully three-dimensional analytical model 

for a thick plate with a rectangular crack in a cladding taking the effects of a peri-

odic interface as well as anisotropy into account. Previously, wave propagation in 

similar structures, with and without cracks, has been studied in [1-2]. 
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In this paper the fully three-dimensional problem is solved exactly in the sense 

that no restrictions are imposed on the frequency or the shape of the periodic inter-

face, although numerical results are only given for a sinusoidal surface. The re-

sults are believed to be valid, at least qualitatively, not only for a plate but also for 

a thick-walled pipe, as long as the radius of the pipe is sufficiently large. 

2. Problem Formulation 

The geometry of the wave propagation problem is depicted in Fig.2.1. A thick plate is 

composed of two layers of different generally anisotropic materials in welded contact. 

The crystal axes may be arbitrarily oriented. The interface 0S  is assumed to be periodic 

with a period a. This is believed to be a reasonable approximation, since real interfaces 

are more or less periodic. The layer of thickness 1d  is the base material. The cladding of 

thickness 2d  contains a rectangular crack CS  (sides 2c1 and 2 c2), which may be tilted 

arbitrarily with respect to the back wall 2S . An ultrasonic transmitter is placed on the 

free surface 1S  of the base material. All numerical examples given here are for a trans-

ducer working in pulse-echo mode, even though the analysis is valid for the case of tan-

dem inspection as well. Only the case of a transducer working at a fixed angular fre-

quency ω will be considered, although it is straightforward, but somewhat time-

consuming, to obtain results in the time domain. 

For time-harmonic conditions the displacement fields i
ju  in the two materials   

i = 1, 2 satisfy  

2 0,i i i
mj j

m

u
x

σ ρ ω∂ + =
∂

  (2.1) 

where iρ  is the corresponding density, and i
mjσ  is the stress tensor, which is related to 

the displacement by the constitutive relation 

.i i i
mj mjm j m

j

c u
x

σ ′ ′ ′
′

∂=
∂

   (2.2) 

The boundary conditions to be satisfied are 0j kj kt nσ= =  on 1S  (except directly be-

low the transducer), 2S , and CS . Furthermore, ju  and jt  are continuous on the inter-

face 0S , x3 = s(x1), which is assumed to be periodic, in fact, it is taken as sinusoidal in 

the following. Actually, real interfaces are more or less sinusoidal. It should be pointed 

out, however, that there is no fundamental difficulty in choosing some other periodic 

function, as long as it is differentiable. 
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Fig. 2.1 The geometry of a plate with a crack inside a cladding. 

3. The Green’s Tensor for the Structure without a Crack 

The first step of the solution is to determine the Green's tensor for the layered 

plate without a crack with a source in the cladding. The following integral repre-

sentations are used: 

1 0

1 1 ( ; ), in material 1,
( ; ) ( ; ) ( ; ) ( ; ) d

0, in material 2.
[ ] l l

mjl jl jl mjl mS S

G
G G n S ′

′ ′−

′′ ′ ′′′ ′′ ′ ′′Σ − Σ =  ′′
∫

x x x
x x x x x x x x

x
 

 (3.1) 

0 2

2 2

2

2

( ; ) ( ; ) ( ; ) ( ; ) d

( ; ), in material 1,

( ; ) ( ; ). in material 2.

[ ]mjl jl jl mjl mS S

l l

l l l l

G G n S

G

G G

′ ′−

′

′ ′

′ ′′ ′ ′′Σ − Σ

′′ ′ ′′ −=  ′′ ′ ′′ ′ ′′− +

∫ x x x x x x x x

x x x

x x x x x

 

  (3.2) 

Here ( ; )jlG ′x x  is the Green's tensor to be determined,  ( ; )i
jlG ′x x  are halfspace 

Green's tensors for material 1, 2i = , and i
mjlΣ  are the corresponding stress tensors. 

Following Krasnova [1] the halfspace Green's tensors as well as the scattered field 

in material 2, i.e. 2
l l l lG G′ ′− , are expanded as Fourier transforms in 1x  and 2x . In a 

similar way the surface fields jlG  and mmjl nΣ  at the interface can be expanded as 

Fourier transforms in 1x . Inserting the Fourier expansions for the Green's tensors 

and the surface fields into the integral representations, Eqs. (3.1)-(3.2), yields after 

some tedious algebra a set of simultaneous equations for the Fourier coefficients. 

Thereby the Green’s tensor ( ; )jlG ′x x  is determined. 
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4. The Integral Equation for the Crack Opening Displacement 

Starting from the Green's tensor derived in the previous section an integral repre-

sentation for the crack opening displacement ( )ju∆ x  can easily be derived. The 

result is 

c

inc,2 2
c( ) ( ; ) d ( ) ( ).j mjl m l lS

u n S u u′ ′ ′∆ Σ = − +∫ x x x x x  (4.1) 

Here ( ; )mjl
′Σ x x is the Green's stress tensor for the structure without a crack, and 

inc,2 ( )lu ′x  is the displacement field that would have existed in material 2 if the 

crack had not been there. This field was determined by Krasnova [1] 

Transforming the Green's stress tensor to a coordinate system 1 2 3y y y , see 

Fig.1, operating with the traction operator with respect to the field point ′x  and 

taking the limit as 3y′  approaches zero yield an integral equation for the crack 

opening displacement. 

Next the crack opening displacement is expanded in Chebyshev functions mψ  

(see [2] for details) which exhibit, like the displacement field, a square root 

behavior at the crack tips: 

1 2 1 1 2 2
, 1

( , ) ( / ) ( / ),j jmm m m
m m

u y y y c y cγ ψ ψ
∞

′ ′
′=

∆ = ∑  (4.2) 

Inserting the expression for ju∆  into the integral equation and projecting onto 

the Chebyshev functions yield a linear system of equations for the unknowns 

jmmγ ′ . Hence, the crack opening displacement is determined. 

5. The Signal Response 

Next, the reciprocity result of Auld [3] is used to relate the crack opening 

displacement (COD) to the output voltage from the receiving probe: 

1 2

1 2

re
1 2 3 1 2 1 2

i
( , ) ( , )d d

4
,

c c

j jc c
u y y y y y y

P

ωδ σ
− −

Γ = ∆∫ ∫  (5.1) 

where P is the incident electric power to the probe, ju∆  is the COD due to the in-

coming field, and re
3 jσ  is the traction on the crack with the receiving probe acting as 

a transmitter in the absence of the crack. The quantity δΓ  denotes the extra electric 
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reflection coefficient from the receiving probe due to the presence of the crack; 

this is essentially the quantity measured in practice. 

Using the expansion of the COD, Eq. (4.2), and projecting onto the Chebyshev 

functions, Eq. (5.1) becomes 

3
re

1 1

i
,

4 jmm jmm
j mm

S
P

ωδ γ
∞

′ ′
′= =

Γ = ∑ ∑   (5.2) 

where re
jmmS ′  is a matrix determined from re

3 1 2( , )j y yσ . 

6. Numerical Results 

In this section some numerical results that illustrate the effect of the inter-

face will be given. The base material 1 has a thickness 1 30d =  mm and is 

regarded as an isotropic steel with density 1 8.4ρ =  g/cm3, and with logitudi-

nal wave velocity 5.9 mm/µs and shear velocity 3.2 mm/µs. The cladding 

has a thickness 2 5d =  mm and is assumed to be an austenitic transversely 

isotropic steel with density 2 8.5ρ =  g/cm3 and stiffness constants (in GPa) 
2
11c , 2

12 115c = , 2
33 250c = , 2

13 115c = , and 2
44 100c = . The crystal axes coincide 

with the coordinate axes. 

A 2 by 2 mm quadratic crack with sides parallel to the x2x3-axes and with 

its centre 2.5 mm above the back surface is used. The interface has a fixed 

period a = 5 mm. Ultrasonic vertically polarized shear waves are emitted in 

the x1x3-plane at 45° relative to the normal of the free surface from a 10 by 

10 mm transducer. The model of the transmitter was developed by Boström 

and Wirdelius [4]. Multiple reflection towards the free surface S1 is not 

taken into account. Only results for a fixed frequency of 1 MHz are given. 

This is computationally efficient and is believed to give a good idea of the 

influence of the parameters to be varied. 

Figure 6.1 shows a few results for the signal response (in dB) as a func-

tion of the position of the transmitter relative to the crack (in mm) for differ-

ent values of the amplitude (b) of the corrugation. Obviously, the corruga-

tion has only a minor influence on the quantitative response in this case, but 

it should be kept in mind that the contrast between the two materials is rela-

tively small. It is difficult, however, to draw any conclusions about any sys-

tematic behavior. 
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Fig. 6.1 The signal response from a crack as a function of the position of the transmitter for 
different values of the amplitude (b) of the corrugation. 

7. Concluding Remarks 

In this paper the effect of a corrugated interface on 3D wave scattering by a crack 

in a cladding has been investigated. A mathematical model has been developed, 

where the elastic wave propagation problem is solved exactly. It is believed that 

the model will provide a useful tool for planning and qualification of ultrasonic 

testing procedures. From systematic studies with varying values of the governing 

parameters it should also be possible to acquire a deeper understanding of the in-

fluence of the properties of the interface, the size, location, and orientation of the 

crack, the material parameters, etc. Obviously, much more numerical work is 

needed before any definite conclusions can be drawn. It is also desirable to obtain 

results in the time domain. This is, however, a straightforward extension. 
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Abstract. The pipeline systems are widely used in refinery and petro-chemical in-

dustries to carry high pressure, high temperature or even highly corrosive fluids. 

Leaks or sudden failures of pipes can cause injuries, fatalities, and environmental 

damage. Discover in recent years, the ultrasonic guided wave can propagate con-

siderable distances in pipe, especially the torsional mode. But some complex pipe-

lines features will distort the signals; even attenuate the transmitted energy sub-

stantially. To enable the torsional mode have the ability to detect the defects hided 

in the welded support. In this study, finite element method was adopted to estab-

lish FEM model of the complex features with defect firstly. The transient analysis 

and mode extraction technique were also used to analyze the characteristics, like 

mode conversion and dispersion, of the echo when torsional mode impinges onto 

the pipe features. Secondly, we use the wavelet transform as a signal processing 

tool to extract the signal of defect from the complex structures and then discuss 

the feasibility of defect detection of complex structures. The results show that 

guided wave technique with the wavelet transform performs the ability of defect 

inspection of complex structures in pipes. 

1. Introduction 

In many processing industries such as chemical, power plants, oil and gas refineries, 

etc., thousands of pipes have a wide distribution. Corrosions in pipes exposed to ag-

gressive corrosive environment can lead to serious injuries, fatalities and environ-

mental damage and these needs to be monitored at regular intervals. For the long 

length of pipe rested on the welded support bracket, the welded region is a candidate 

for corrosion section due to the water trapping. Wide area corrosion that leads to 
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wall thickness reduction at pipe supports is the most common cause of external pip-

ing corrosion failure. Consequently, pipe inspection plays an important role for 

avoiding a catastrophic situation of the pipeline system. Some inspection methods of 

measuring wall thickness, such as conventional ultrasonic, radiography and eddy 

currents require many measurements and access to the entire testing surface directly. 

It causes that the condition of the pipe in the hidden region, i.e., insulated, buried, 

coated or other inaccessible regions cannot be easily inspected without expensive 

preparatory work. Contrary to the localized inspection methods, guided wave tech-

nique can be used to inspect the hidden region of pipeline and allow reliable, rapid 

and low cost inspection to be performed. Many researches used guided wave for 

corrosion inspection in pipes. In 1997, site trials of the portable, dry-coupled piezo-

electric transducer system showed the ability of the L(0,2) mode of propagating over 

distances approaching 50 m in a 6 inch steel pipe [1]. In 2001, the T(0,1) mode had 

been employed at lower frequencies to perform the rapid screening of long sections 

of pipe for different discontinuity types and other pipe features [2]. In 2003, Cawley 

et al. [3] have discussed the progress of guided wave testing design for long range 

inspection of pipe from research work to a commercial testing system at frequencies 

below 100 kHz. To improve the guided wave pipe inspection technique, the ad-

vanced signal processing method and the interaction of guided waves with the com-

plex geometries are the major issues to study. The circumferential and longitudinal 

welded supports are one of the common examples of the complex geometry in pipes. 

The pipe supports are used to line the pipelines and integrate the manufacturing 

process for refinery, chemical and petro-chemical industrials. The bottom portion of 

pipe surface at the support is difficult to be evaluated by conventional ultrasonic 

methods or visual inspection. Unfortunately, very little work effort is reported on the 

effect of guided wave interacting with the pipe supports. In 2007, Cheng et al. [4] 

indicated that the reflection of the T(0,1) mode increased as the tightness of the 

clamp support increased. Moreover, the resonance effect was observed at a fre-

quency band of 18 to 22 kHz in the case of a clamp support with a rubber gasket at a 

specific contact condition.  

In this study, the interaction of torsional guided wave with longitudinal welded 

supports has been investigated by finite element method, firstly. Wave propagation 

can be visualized and the echoes from the welded supports have been collected. 

Secondly, the model of a defect on the pipe surface was built up to collect the sig-

nals related to defect at the welded support in a pipe for the purpose of understand-

ing the difference between the reflected signals of a normal support and a corrosive 

one. Finally, the time-frequency analyses of the reflection coming from different 

cases were compared each other by continuous wavelet transformed method.  
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3. Finite Element Simulation 

3.1 Finite Element Model 

The geometry of the finite element models is shown in Fig. 3.1 and the total length 

of the 2 sets of pipe is 4 m. The excitation signal and reflected signal from the 

support are monitored at line C. The distance between the end A and line C is 1 m. 

From Fig. 3.1(a) and 3.1(b), a longitudinal welded support and a longitudinal 

welded support with a notch are located on the position 2.5 m away from the end 

A in turn. The size of the longitudinal welded support is 260 mm in length, 100 

mm in high, and 7-mm in width; the circumferential distribution of the through-

thickness notch is 1/12 of the full circumference and the axial length is 25 mm. 

The FE models produced to investigate the propagation of T(0,1) mode through 

the longitudinal welded supports were built up by the commercial program 

ANSYS. A membrane finite element, SHELL 63, with 6 degrees of freedom at 

each node defined in ANSYS has adopted to simulate the vibration and propaga-

tion of torsional modes in pipes. In addition, there are 76 elements chosen around 

the circumferential section of the pipe. The longitudinal welded support is mod-

eled by SOLID 45 elements and the axial length of SHELL and SOLID elements 

is 5 mm. All the size of elements matched the convergence rules for wave propa-

gation simulation [5] and gave reliable results. 

As for the mode shape of T(0,1) mode, the excitation of T(0,1) mode was 

achieved by applied the same sequence at all of the nodes around the circumference 

of the end A of the pipe. A four-cycle 26 kHz tone burst in Hanning window was ap-

plied as a sequence of prescribed displacements in the circumferential dire ction of 

the pipe. The received signals at line C are separated into single-mode waveforms, 

such as T(0,1) or F(1,2) mode, by using a mode extraction technique. 

 
(a)                                                                         (b) 

Fig. 3.1 The geometry of the finite element models (a) for a normal support and (b) a corrosive support. 
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3.2 The Reflection of the Support Bracket 

The time records from the simulations on a 6 inch steel pipe are shown in Fig. 

3.2, 3.3 and 3.4. The reflection signals of guided wave modes from the sup-

port, the circumferential notch and the end of B are received at line C. For the 

model of a welded support without notch on the pipe, the signal processing to 

extract the 0-order mode T(0,1) is shown in Fig. 3.2(a). As for the longitudinal 

welded support is asymmetric, the reflected echoes are composed of the axi-

symmetric mode and the non-axisymmetric modes. Fig. 3.2(b) shows the sig-

nal when the same raw data are processed to extract the order 1 flexural F(1,2) 

and F(1,3) modes.  

Fig. 3.3(a) and 3.3(b) are the T(0,1) mode and the order 1 flexural modes 

for the model of a welded support with circumferential notch on a pipe, re-

spectively. By comparing the reflection in Fig. 3.2(a) and 3.3(a), the effect of 

the notch can be seen. Owing to the existence of the one-twelve circumferen-

tial notch, there is a bigger signal around 1.2 ms to 1.3 ms in the time domain. 

The amplitude of the torsional mode reflected from the welded support re-

duced and the amplitude of the flexural modes increased on the contrary.  

Moreover, the echoes of torsional mode and flexural modes are summed to-

gether and shown in Fig. 3.4(a) and 3.4(b) for a normal support and a corro-

sive support, respectively. In Fig. 3.4(a), the first wave packet E1 is the inci-

dent T(0,1) mode and the last wave packet E2 is the reflection of the pipe end 

B. The wave packets W1, W2, and W3 are the reflection signals of the longi-

tudinal welded support. The packet W1 is the direct echo, the packet W2 is de-

layed echo, and the packet W3 is the trailing echo. Similarly, Fig. 3.4(b) 

shows the echoes reflected from the circumferential notch and the welded 

support at the same time. The P1sign indicates the directed echoes reflected 

from the notch and the support. The P2 sign is the delayed echoes reflected 

from the bottom of the support and the P3 sign is the echoes included the trail-

ing echoes and the reverberation between the end A and the notch.  

To sum up, the time histories of the T(0,1) waves in the longitudinal 

welded support are related to the direct echo, the delayed echo, the trailing 

echo, and mode conversion. Both the delayed and trailing signals are leakages 

from the support and larger than the direct echo. When there is a notch at sup-

port on a pipe, the incident T(0,1) mode will convert more energy to the flex-

ural modes. Consequently, the flexural modes reflected from a normal support 

and a corrosive support is compared with each other by the following time-

frequency analysis.  



Defect Inspection of Complex Structure in Pipes by Guided Waves 

 

393

 

(a)                                                (b) 
Fig. 3.2 The time records of (a) T(0,1) mode and (b) order 1 flexural modes in the normal support model. 

 

(a)                                                (b) 
Fig. 3.3 The time records of (a) T(0,1) mode and (b) order 1 flexural modes in the corrosive support model. 

 

(a)                                                (b) 
Fig. 3.4 The summation of time records for (a) a normal support model and (b) a corrosive support model. 

4. Time-Frequency Analysis 

An advanced signal processing is needed to interpret the signals of guided 

wave reflected from the complex structure in pipes. Features extracted in a 

spectrum of time-scale vs. amplitude are being considered to apply to the non-

stationary signal analysis and continuous wavelet transform (CWT) is one of 

the time-frequency analyses. 
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4.1 Wavelet Transform [6] 

The wavelet transform analysis is implemented using the software Matlab. The 

continuous wavelet transform breaks down a signal x(t) into components (wavelet 

function Φ ). The continuous wavelet transform is defined as the sum over the 

whole signal duration time multiplied by the wavelet function which related to the 

two parameters-scale and shift. 

4.2 The Spectrum Analysis of Continuous Wavelet Transform  

The motivation for time-frequency analysis by continuous wavelet transform is to 

see the different behavior of the reflected signal between a normal welded support 

and a corrosive one. The two windowed time records in Fig. 3.4(a) and 3.4(b) are 

processing by the mother wavelet ‘dB4’ to get the spectrum of time-scale vs. am-

plitude. As shown in Fig. 4.1(a), the signal after 1.4 ms is larger than the signal 

distributed around 1.2 to 1.4 ms. And all the reflection show less dispersive behav-

ior in the corresponding spectrum of time-frequency analysis. The reflection of 

notch at support is composed of a great deal of torsional mode and flexural modes. 

From the results in Fig. 4.1(b), there is a big echo around 1.2 to 1.4 ms and the 

echo shows distinct dispersive behavior in the corresponding spectrum. 

 
        (a)                                                                           (b) 

Fig. 4.1 The spectrum of time-scale vs. amplitude, (a) a normal support model and 
(b) a corrosive support model. 
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5. Conclusions 

Using finite element method, a technique for guided wave simulation was devel-

oped to see the effect of the welded support on the pipe for T(0,1) mode propaga-

tion. The reflection of the welded support has been identified as three parts formed 

by the direct echo, the delayed echo and the trailing echo. Then to improve the 

ability of guided wave inspection technique, an advanced signal processing tool 

named continuous wavelet transform was adopted to analyze the signal reflected 

from the corrosive support. By comparing the spectrum of time-scale vs. ampli-

tude, the degree of dispersive behavior is different between the reflection of a 

normal support and a corrosive one.  
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Abstract. Surface acoustic wave (SAW) sensors with nanostructured sensing mate-

rials for gas detection are reported in this paper. The SAW sensors were fabricated 

based on a 128°YX-LiNbO3 substrate with an operating frequency of 145 MHz. A 

dual delay line configuration was adopted to eliminate external environmental fluc-

tuations. The camphor sulfonic acid doped polyaniline nanofibres and Pt coated 

ZnO nanorods were employed for the detections of humidity and hydrogen due to 

high surface-to-volume ratio, large penetration depth and fast charge diffusion rate. 

The nanostructured sensing materials were synthesized by the interfacial polymeri-

zation method. Finally, the SAW sensors were tested toward humidity and hydro-

gen. Results show our proposed SAW sensors exhibit fast response, good sensitivity 

and short-term repeatability while operating at room temperature. 

1. Introduction 

Over the past few decades, a number of research works focused on surface acoustic wave 

(SAW) devices because of small size, low cost and compatibility with the integrated cir-

cuit process. Moreover, SAWs are sensitive to surface perturbation such as mass loading, 

viscoelastic change, or electrical alternation since their acoustic energy is confined within 

one or two wavelengths near the surface. This feature contributes to make SAW devices 

be a real-time sensor with high stability, short response time and good reproducibility.  

For gas detection, a sensing material must be coated on SAW sensors. Recently, there 

are many investigations focused on the sensing characteristics of various sensitive mate-

rials, mainly conductive polymers [1-4] and metal oxide films [5-11]. Although the se-

lective films offer a feasible way to grab gas molecules in the environment, there is still a 
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detection limitation on account of less interaction area. Nanostructured materials such as 

nanorod, nanobelts, and nanofibers have received much attention due to their high sur-

face-to-volume ratio, large penetration depth, and fast charge diffusion rate. Therefore, 

the gas sensors with nanostructured sensing materials not only possess high sensitivity 

but also accelerate response and recovery time. 

In this paper, surface acoustic wave (SAW) sensors with nanostructured sensing ma-

terials for gas detection are reported. The SAW sensors were fabricated based on a 

128°YX-LiNbO3 substrate with an operating frequency of 145 MHz. A dual delay line 

configuration was adopted to eliminate external environmental fluctuations. The cam-

phor sulfonic acid (CSA) doped polyaniline (PANI) nanofibers [12] and Pt coated ZnO 

nanorods [13] were employed for the detections of humidity and hydrogen respectively. 

The nanostructured sensing materials were synthesized by the interfacial polymerization 

method due to simple fabrication and low cost. Finally, several experiments were carried 

out for evaluating the sensing performances of the fabricated sensors operated at room 

temperature, including temperature effect, the short-term repeatability and sensitivity. 

2. Experimental Details 

A two-port SAW resonator based on a 128°YX-LiNbO3 substrate was employed as 

gas sensors. The coupling-of-modes model was utilized to predict its device per-

formances prior to fabrication. The SAW resonators were fabricated by the micro-

electro-mechanical system process: interdigital transducers (IDTs) and reflectors 

were patterned by exposure and development after an aluminium film was deposited 

on the substrate. The wavelength, centre frequency and the delay line were designed 

to be 27 µm, 145 MHz and 4320 µm respectively. The number of electrode pairs of 

IDTs is 15, while the electrode number of the reflectors is 50. 

To eliminate external environmental fluctuations, the SAW resonators were 

mounted on a PCB and wire bonded with an amplifier to configure a dual delay line 

system shown in Fig. 1. The gain of the amplifier must be larger than the insertion 

loss of the SAW resonator and the total phase delay in the oscillator loop must be a 

multiply of 360°. The supplied voltage for the amplifier is 4 V. The dual delay line 

system which consisted of two counterparts in oscillator where one is coated with 

selecting material and the other is bare to execute common mode rejection, was real-

ized to eliminate external environmental fluctuations. To function as an active ele-

ment, the coated one contributes to a frequency shift by the interaction between 

sensing material and the target gas. By comparison, the reference one which has 

bare surface offers the signal of the environmental effects. 
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Fig. 1 Schematic diagram of a dual delay line configuration. 

In this study, two nanostructured sensing materials were synthesized by the interfa-

cial polymerization method due to simple fabrication and low cost. The camphor sul-

fonic acid (CSA) doped PANI nanofibers and Pt coated ZnO nanorods were chosen 

for the detections of humidity and H2 respectively. The selective materials were de-

posited selectively on the delay line between the two IDTs and then evaluated with the 

scanning electron microscope and the x-ray diffraction. The results are shown in Fig. 

2. A small PDMS hood with the content of about 0.34 cm3 was covered on the SAW 

resonators. Adhesives and silicon sealant were applied to seal any possible crevice to 

prevent gas leakage. The chamber was drilled to provide the gas entrance and exit. The 

frequency of the dual delay line system was acquired by a frequency counter. 

3. Measurement Results 

The fabricated dual delay line configuration was evaluated under the thermal and hu-

midity testing prior to the gas detection. Results show that the configuration indeed 

suppresses effectively the noise of temperature and humidity perturbations and en-

hances sensing stability. Then, some measurements were implemented for investigat-

ing the short-term repeatability of the sensors. At the initial stage, the steady state of 

the baseline frequency was reached, and afterwards nitrogen or mixed water vapour 

flowed into the chamber to alter the relative humidity (RH) inside the acrylic chamber. 

Testing cycles were implemented with constant exposure time and purge time to reach 

a new steady state or re-establish the baseline. The results shown in Fig. 3(a) indicate 

that the frequency shifts are 60, 80 and 110 kHz corresponding to the RH variation of 

20 %, 30 % and 45 %. The result also demonstrates that the SAW humidity sensor 

possesses good reaction response and recovery response.  
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(a) 

 
(b) 

Fig. 2 SEM images of (a) CSA-doped polyaniline nanofiber [12] and (b) ZnO nanorod [13]. 

The real-time responses of the dual-channel sensor to different H2 concentra-

tions are shown in Fig. 3(b). At the initial stage, the steady state of the base fre-

quency was reached, and then nitrogen or hydrogen was led into the PDMS cham-

ber. Testing cycles were implemented with constant exposure time and purge time 

to reach a new steady state or return to the baseline. The sensor was then exposed 

to different concentrations of hydrogen: 200, 500, 1500, 2500, and 6000 ppm at 

room temperature. The responses are 8.36, 12.66, 17.47, 20, and 26.2 kHz respec-

tively. It takes less than 15s to reach about 90% of the steady state, and the recov-

ery time is about 2 minute. The result shows that the frequency shift of the SAW 

hydrogen sensor increases quickly at low concentrations and the response tends to 

saturate at large concentrations. 
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Fig. 3 Short-term repeatability toward different (a) RH [12] and (b) H2 concentrations [13]. 

4. Conclusions 

SAW sensors with nanostructured sensing materials like the camphor sulfonic acid 

(CSA) doped polyaniline nanofibres and the Pt coated ZnO nanorods have been 

successfully developed for humidity and hydrogen detections. Some experiments 

are implemented to evaluate the performances of the sensors. Results show that 

temperature perturbation can be well suppressed by utilizing a dual delay line con-

figuration. In addition, the frequency shifts are 60, 80 and 110 kHz corresponding 

to the RH variation of 20 %, 30 % and 45 %, while the frequency shifts toward 

hydrogen concentrations of 200 ppm and 6000 ppm are 8.36 kHz and 26.2 kHz. 

The fabricated SAW sensors do provide high sensitivity, fast response and good 

repeatability while operating at room temperature.  
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Abstract. In this paper, characteristics of two-track surface acoustic wave (SAW) 

filters based on Cu electrode/(100) AlN/diamond structures were analyzed using 

the finite element method (FEM) and the transmission matrix method. To achieve 

optimum performance, the Chebyshev window function was used to modify the 

reflectivity distributions of reflectors. The SAW parameters for weighted reflec-

tors with various electrode thicknesses and different metallization ratios are re-

trieved using the FEM. The transmission matrix method was then employed to 

calculate the scattering parameters of weighted reflectors and two-track SAW fil-

ters. Simulation results show a two-track SAW filter with low insertion loss, good 

shape factor, good sidelobe suppression, small group delay, and flat passband can 

be tailored and applicable to the code division multiple access (CDMA) system. 

1. Introduction 

The increasing popularity in the global market of wireless and mobile communications 

systems has created a vast demand for electronic devices with designed specifications 

such as duplexers, IF and RF filters. The surface acoustic wave (SAW) device due to 

its miniature size, rugged structure and ease of mass production is a promising candi-

date for the design of IF and RF filters for wireless applications. [1–4] In this study, 

two-track SAW filters are proposed to design IF filters applicable to the code division 

multiple access (CDMA) system. Traditional transverse SAW filters cannot meet the 

specifications of CDMA IF filters because of the triple-transit interference (TTI) and 

other second-order effects. In the two-track SAW filter, if the input interdigital trans-

ducers (IDTs) in both tracks are identical but out of phase, then the output IDTs are 
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identical and in phase, and vice versa, which indicates that if there is no reflectors in 

each track the transmission coefficient will vanish, and the TTI effect can be elimi-

nated. This implies that the frequency responses of a two-track SAW filter are domi-

nated mainly by the reflectors. The detailed information about the two-track SAW fil-

ters can be found in elsewhere. [5] For a uniform reflector, the reflection 

characteristics, 3 dB bandwidth and sidelobe suppression are not sufficient to be em-

ployed for designing a CDMA IF filter. To overcome this problem, some researchers 

employed the window function to modify the reflectivity or line width distributions of 

reflectors to gain an improved suppression capability. [6–8] In this study, the Cheby-

shev window function, which has been widely used in the optimum design of antennas 

and filters, is proposed to modify the reflectivity distributions of reflectors.  

Recently, SAW devices in layered structures including a diamond layer have been 

employed for super high frequency applications. For example, the SAW device based 

on the (100) AlN/diamond structure can possess a high phase velocity of  10780 m/s 

and a relatively large electromechanical coupling coefficient (K2) of 2.4% in mode 1 

(Sezawa mode). [9] The increase of the phase velocity will increase the wavelength 

and correspondently the line width of the IDT. This indicates that without an im-

provement in the line width resolution limit technology of the IDTs the use of dia-

mond based structures can realize the SAW devices with width-modulated configura-

tions, such as single phase unidirectional transducers (SPUDTs) and width-controlled 

reflectors, which are applicable for double mode SAW (DMS) filters, two-track SAW 

filters, ladder filters, resonators, and sensors. [10–12]  

In this study, we attempt to design the two-track SAW filter with width-weighted 

reflectors in the (100) AlN/diamond structure. Cu IDT is applied due to its reflectivity 

is two times larger than conventional Al IDT. The finite element method (FEM) model 

is established to calculate the mutual-coupling coefficients and phase velocities of each 

electrode region with various metallization ratios (MRs) and different electrode 

thicknesses. The transmission matrix method is then applied to evaluate frequency 

responses of SAW filters. [5, 6] 

2. SAW Parameters Calculation 

In this study, the FEM is employed to compute effective phase velocity (Veff) and mu-

tual-coupling coefficient (k) of each electrode region with various MRs and different 

electrode thicknesses. Two vibration modes of SAWs, a symmetric mode and an 

asymmetric mode, can be observed using the FEM model. The eigenfrequencies of 

these two modes can be employed to evaluate k and Veff as given by [2] 
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where p is the period of an electrode and fsym and fasym are the resonance frequencies of 

the symmetric and asymmetric modes, respectively. For a free or metalized surface, 

both modes have the same resonance frequency; i.e., fsym = fasym. The constructed FEM 

model can be employed to calculate the parameters of coupling-of-mode (COM) the-

ory such as phase velocity, electromechanical coupling coefficient, mutual-coupling 

coefficient, and static capacitance of layered media. 

With given those COM parameters, reflection and transmission characteristics of 

reflection gratings and two-track SAW filters are calculated using the transmission 

matrix method. [5, 6] Detailed information of the transmission matrix and the associ-

ated procedure for the calculation of the S-parameters of the two-track SAW filter can 

be found in references. [3, 5, 6] 

3. Results and Discussions 

In this study, Cu IDT/(100) AlN/diamond structure was adopted to tailor the two-track 

SAW filters applicable for the CDMA system. The corresponding material constants 

were presented in references. [13, 14] Simulation results indicated that the sidelobe 

suppression level of reflectors with uniform width can not meet the requirements for 

CDMA IF filters. Accordingly, it is necessary to modulate the line width or reflectivity 

distributions of reflectors.  Figure 1 shows the calculated effective phase velocity and 

reflectivity of an electrode with various MRs and different electrode thicknesses. As 

the electrode thickness increases, the maximum value of the reflectivity increases 

while the effective phase velocity decreases. For the 0.2, 0.6, 0.8, and 1.5% curves, the 

maximum reflectivity values are 0.0129, 0.0152, 0.0177, and 0.04 with MRs being 

equal to 0.2, 0.325, 0.4, and 0.6, respectively. 

To enhance the sidelobe suppression of grating reflectors, the Chebyshev window 

function is employed to modulate the reflectivity distributions of reflectors. With the 

sidelobe level 60dB and the number of electrode 240, the generated Chebyshev distri-

butions of the reflectivity for the gratings with different electrode thicknesses are pre-

sented in Fig. 2. The maximum reflectivity values shown in Fig. 2 are obtained accord-

ing to the data presented in Fig. 1. By using the numerical interpolation method, the 

corresponding MR distributions of the gratings with different electrode thicknesses are 

presented in Fig. 3. The corresponding effective phase velocities calculated using the 

FEM are also presented in Fig. 3. 
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Fig. 1 Reflectivity and effective phase velocity of an electrode versus MR with different 
electrode thicknesses, hEs.  
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Fig. 2 Chebyshev distribution of the reflectivity for the gratings with different electrode 
thickness ratios.  
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Fig. 3 The retrieved MR and corresponding effective velocity for the weighted reflectors 
with Chebyshev distributions as presented in Fig. 2.  
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Fig. 4 Magnitude of reflection coefficients of weighted reflectors with various electrode 
thickness ratios.  
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Fig. 5 Transmission coefficient and group delay of two-track SAW filters with weighted re-
flectors for various electrode thickness ratios. 

According to Fig. 3, the reflection coefficients of weighted gratings calculated us-

ing the transmission matrix method are shown in Fig. 4. It can be seen that the 1.5% 

curve has the largest bandwidth among these four cases in Fig. 4, however with the 

poorest sidelobe suppression level. This implies that the larger the reflectivity, the lar-

ger the bandwidth and the poorer the sideband suppression level. The reflection char-

acteristics presented in Fig. 4 can not meet the requirements for the CDMA system. 

By multiplying the reflectivity distributions of gratings by different scaling factors, 

the transmission coefficients of the two-track SAW filters applicable for the CDMA IF 

filters are represented in Fig. 5. The corresponding filter parameters such as shape fac-

tor, insertion loss, sidelobe rejection, and modulated reflectivity range for different 

electrode thickness ratios are summarized in Table 1. It is shown that the specifications 

of CDMA IF filters can be satisfied if the maximum reflectivity of reflectors is around 

0.014. Thus, for the electrode thickness being equal to 0.2% the reflectivity is not large 

enough for the design of CDMA IF filters. 
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Table 1 The corresponding parameters of two-track SAW filters applicable for the CDMA system. 

hE (%) Shape factor Insertion loss (dB) Sidelobe suppression (dB) Group dalay(µs) 

0.6 1.48 14.38 54.85 1.04–1.57 

0.8 1.48 14.55 55.47 1.06–1.56 

1.5 1.48 14.47 56.82 1.05–1.56 

4. Conclusions 

In this paper, the Chebyshev functions are employed to design the grating reflectors with 

different reflectivity distributions to achieve a high sidelobe suppression response. The 

SAW parameters such as phase velocity, electromechanical coupling coefficient, mutual-

coupling coefficient, and static capacitance are calculated using the FEM and then substi-

tuted into the transmission matrix method to evaluate the corresponding scattering pa-

rameters. Simulation results indicate that two-track filters with weighted reflectors can be 

used to design the CDMA IF filters, provided that the maximum value of reflectivity is 

around 0.014. 
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Abstract. AlN films have been widely investigated for the application in surface 

acoustic wave (SAW) and films bulk acoustic wave (FBAW) devices. (100) AlN 

films have been deposited, but there is few research to study their acoustic proper-

ties. Different orientation piezoelectric films will form different acoustic proper-

ties. Bulk acoustic wave (BAW) and SAW properties of (100) AlN films were 

theoretically analyzed in this research. As regards the BAW properties, (100) AlN 

films can excite a pure shear mode (velocity=5867 m/s, K2=2.45%) and exhibited 

a great potential for FBAR liquid biosensors. As regards the Rayleigh SAW 

modes of (100) AlN films on diamond, especial for mode 1, the phase velocity is 

10474 m/s and the K2 is 2.31 % at the films thickness ratio (h/λ) is 0.3. (100) AlN 

films on diamond also can excite high velocity shear horizontal (SH) SAW modes. 

Especial for mode 0, the K2 curve shows a maximum value (1.27%) at h/λ=0.28 

and the velocity is 7496 m/s. Those research results provide an important theoreti-

cal basis for further application on FBAW and SAW devices. 

1. Introduction 

Aluminum nitride (AlN) thin films are widely used in the fabrication of SAW and 

FBAW devices because of its high acoustic velocity and suitable piezoelectric 

coupling factor. The crystalline orientation of piezoelectric thin films is a key is-

sue in optimizing the piezoelectric response. It usually shows (002) texture with c-

axis perpendicular to the substrate due to the lower surface free energy for (002) 

plane. Different orientations of piezoelectric films will form different acoustic 
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properties. For a FBAW RF-filter based on AlN, it is required to grow films with a 

perfect (002) orientation in order to excite optimally the longitudinal thickness 

mode. But in a liquid medium, longitudinally polarized wave resonators show sig-

nificant acoustic leakage into the liquid, which results in a substantial loss of reso-

lution. Shear mode wave does not produce any compressional motion in the liq-

uid; thus, no energy leakage occurs. Therefore, what kind of piezoelectric films 

can excite shear mode is very important for FBAW liquid or bio sensors.  

Diamond is a non-piezoelectric material for high velocity SAW devices due to 

the highest SAW velocity among all materials and it needs to add a piezoelectric 

layer on the top to excite SAWs. AlN is the highest SAW velocity among current 

piezoelectric materials. Therefore, AlN films on diamond will form a very attrac-

tive high velocity SAW substrate. Recently, (100) AlN films have been deposited, 

but there is few research to study its acoustic properties. In our research, we study 

the BAW properties (100) AlN films. Rayleigh SAW modes and shear horizontal 

(SH) SAW modes of (100) AlN films on diamond also were studied in this re-

search.   

2. Bulk Acoustic Wave Properties of (100) AlN Films 

The three-dimensional bulk acoustic wave equation, in general, is referred to as 

the Christoffel equation. The elements in the 3×3 Christoffel matrix are functions 

of material properties of piezoelectric materials and the propagation direction of 

acoustic waves. With the knowledge of material parameters and the propagation 

direction of acoustic wave, the stiffen Christoffel matrix can be solved numeri-

cally. Solving the Christoffel matrix gives us three eigenvalues and associated ei-

genvectors; the eigenvalue is the phase velocity and piezoelectric coupling con-

stant (K2) of the acoustic wave and the eigenvector tells us the corresponding 

vibration direction of the particle (mode). For more details of the calculations, 

please refer to reference [1-5]. 

By solving the Christoffel matrix of the (100) AlN films, we can obtain one 

pure longitudinal mode with phase velocity (c11/ρ)
1/2, one pure shear mode with 

phase velocity (c66/ρ)
1/2, and one stiffen shear mode with phase velocity [(c44 + 

e15
2/ε11)/ρ)

1/2 and K2 being equal to e15
2/c44ε11. With the AlN material properties 

given in Table 1, the pure longitudinal mode has the phase velocity 9911 m/s, the 

pure slow shear mode has the phase velocity 5597 m/s, and the fast shear mode 

has the phase velocity 5867 m/s with K2 2.45%. Therefore, the (100) AlN films 

provided a pure fast shear mode. 
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3. Surface Acoustic Wave Properties of (100) AlN Films 
on Diamond 

Following the similar approach as developed by Campbell [6], the matrix method 

is effectively employed here to calculate the Rayleigh and SH wave velocity and 

electromechanical coupling coefficients (K2) in a layered piezoelectric structure. 

For more details of the calculations and material constants, please refer to 

reference [7-9]. 

3.1 Rayleigh SAW Modes of (100)AlN/Diamond 

The phase velocity dispersion curves of first five Rayleigh SAW modes propaga-

tion in the IDT/(100)AlN/diamond structure are shown in Fig. 1. The phase veloc-

ity of each mode decreases as the films thickness ratio increased. For mode 0, the 

value of phase velocity is from the SAW velocity of diamond (10934 m/s) at 

h/λ=0. As the films thickness ratio (h/λ) is increasing, the phase velocity curve 

rapidly decreases. At h/λ=3, the velocity of the (100)AlN/diamond is 5438 m/s. 

Mode 1, mode 2, mode 3, and mode 4 show cutoff at the critical point, where the 

phase velocity is equal to the shear bulk wave velocity in diamond (12323 m/s). 

Mode 1 occurs at h/λ>0.175, mode 2 occurs at h/λ>0.298, mode 3 occurs at 

h/λ>0.585, and mode 4 occurs at h/λ>0.7101. The K2 dispersion curves of first 

five Rayleigh-type modes propagation in the (100)AlN/diamond structure are 

shown in Fig. 2. For mode 0, the K2 curve shows the optimal value (0.76%) at 

h/λ=0.1467 and the velocity is 9282 m/s. For mode 1, the K2 curve shows the op-

timal value (2.31%) at h/λ=0.3 and the velocity is 10474 m/s. For mode 2, the K2 

curve shows the optimal value (0.85%) at h/λ=0.5495 and the velocity is 11049 

m/s. For mode 3, the K2 curve shows the optimal value (1.59%) at h/λ=0.848 and 

the velocity is 10916 m/s. For mode 4, the K2 curve shows the optimal value 

(1.24%) at h/λ=1.1965 and the velocity is 10893 m/s. 

3.2 Shear Horizontal SAW Modes of (100)AlN/Diamond 

The phase velocity dispersion curves of SH SAW modes propagation in the 

IDT/(100)AlN/diamond structure are shown in Fig. 3. The phase velocity of each 

mode decreases as the films thickness ratio increased. Mode 0, mode 1, mode 2, 

mode 3 and mode 4 show cutoff at the critical point, where the phase velocity is 
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equal to the shear bulk wave velocity in diamond (12323 m/s). Mode 1 occurs at 

h/λ>0.37, mode 2 occurs at h/λ>0.64, mode 3 occurs at h/λ>0.91 and mode 4 oc-

curs at h/λ>1.12. As h/λ is increasing, the phase velocity curve decreases. The K2 

dispersion curves of SH modes propagation in the IDT/(100)AlN/diamond struc-

ture are shown in Fig. 4. Those curves become smoother and smaller as the mode 

increases. For mode 0, the K2 curve shows the optimal value (1.27%) at h/λ=0.28 

and the velocity is 7496 m/s. For mode 1, the K2 curve shows the optimal value 

(0.46%) at h/λ=0.7 and the velocity is 8400 m/s. For mode 2, the K2 curve shows 

the optimal value (0.27%) at h/λ=1.21 and the velocity is 8320 m/s. For mode 3, 

the K2 curve shows the optimal value (0.196%) at h/λ=1.7 and the velocity is 8331 

m/s. For mode 4, the K2 curve shows the optimal value (0.153%) at h/λ=2.19 and 

the velocity is 8346 m/s. 

4. Conclusion 

BAW and SAW properties of (100) AlN films will be theoretically analyzed in 

this research. As regards the BAW properties, (100) AlN films can excite a pure 

shear mode (velocity=5867 m/s, K2=2.45%) and exhibited a great potential for 

FBAR liquid biosensors. Rayleigh SAW properties of (100) AlN films on dia-

mond exhibited smaller films thickness ratios, higher phase velocities and larger 

K2 than the ones of (002) AlN on diamond. Especial for mode 1, the phase veloc-

ity is 10474 m/s and the K2 is 2.31 % at the films thickness ratio is 0.3. This struc-

ture also can excite high velocity SH SAWs. Especial for mode 0, the K2 curve 

shows a maximum value (1.27%) at h/λ=0.28 and the velocity is 7496 m/s. Those 

research results provide an important theoretical basis for further application on 

FBAW and SAW devices. 

 

Fig. 1 Calculated phase velocities dispersion curves of Rayleigh SAW modes propagation 
in the IDT/(100)AlN/diamond. 
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Fig. 2 Calculated electromechanical coupling coefficients (K2) dispersion curves of Rayleigh 
SAW modes propagation in the IDT/(100)AlN/diamond. 

 

Fig. 3 Calculated phase velocities dispersion curves of SH SAW modes propagation in the 
IDT/(100)AlN/diamond. 

 

Fig. 4 Calculated electromechanical coupling coefficients (K2) dispersion curves of SH 
SAW modes propagation in the IDT/(100)AlN/diamond. 
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Table 1 Material parameters of AlN films. 
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  AlN 
Density (kg/m3) ρ 3512 
Elastic stiffness 

(G Pa) 
c11 
c12 
c13 
c33 
c44 
c66 

345 
125 
120 
395 
118 
110 

Piezoelectric stress constant 
(C/m2) 

e15 
e31 
e33 

-0.48 
-0.45 
1.55 

Dielectric permittivity 
(ε0) 

ε11 
ε33 

9 
11 
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Abstract. Viscoelastic behaviors of polyethylene glycol (PEG) solution boundary 

layers were studied using a quartz crystal resonator technique.  The technique 

probes the solution boundary layer adjacent to the quartz crystal surface by detect-

ing resonant acoustic excitations that decay in the solution. Two different types of 

the electrode surfaces on the quartz crystal were used in the study; one is bare gold 

and another is gold plated with thiol-group (SH) attached polyethylene glycol 

(SH-PEG).  The results show that different surfaces have little effect on the meas-

ured viscoelastic properties of the solution boundary layer over a wide range of 

concentration.  Near the semidilute concentration of the solution, the viscosity of 

the boundary layer increases rapidly, following a power law with an exponent of 

1.5 in its concentration dependence.  The dynamic shear modulus of the boundary 

solution layer is nearly zero at the low concentration but rises rapidly as the con-

centration of the solution is approaching the semidilute concentration.  More de-

tailed experimental studies and theoretical modeling are needed in order to under-

stand these intriguing results.  

1. Introduction 

Although the properties of polymer solutions have been studied for quite a long time, the 

subject still draws considerable interests due to the important roles played by polymer so-

lutions in many different fields [1-5]. A number of import issues that remain to be re-

solved include how the properties of polymer solutions are affected by the presence of 

solid boundaries. The results from recent studies of boundary layers of simple molecules 
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such as water indicate that boundary effect can be significant; in some cases the presence 

of the boundary can completely change the structures or alter the phase of the boundary 

layers [4-8].  However, a quantitative description of how the viscoelastic properties of 

polymer solution boundary layers are affected by the boundary has not yet been 

achieved.  The aim of our work presented here is to investigate the viscoelastic behaviors 

of boundary layers of a commonly used polymer solution near a solid-liquid interface to 

elucidate the boundary effects to the properties of polymer solutions.    

2. The Technique  

To probe directly the viscoelastic properties of polymer boundary layers in solutions 

can be a challenge task since the presence of the liquid makes many techniques devel-

oped for studying solid-vapor interfaces difficult to use.  In this study we used a quartz 

crystal resonator, more commonly known as quartz crystal microbalance (QCM), 

technique which replies on the inverse piezoelectric effect of a quartz crystal [9-15].  

By applying an AC electric field across a quartz crystal, a shear deformation (strain) 

oscillation is excited in the crystal.  The resonance of such an oscillation is extremely 

sensitive to the media in contact with the surface of the crystal.  Assuming that an 

overlayer on the top of a quartz crystal can be described as a viscoelastic element 

which consists of a spring and a dashpot in parallel and setting the normal direction of 

the overlayer to be in y-direction while the direction parallel to the interface to be in x-

direction, the shear stress σxy  applied to the overlayer and its elastic response contrib-

ute to the stress/strain relation follow a relation [9-12]: 

( , ) ( , )x x
xy

u y t v y t

y y
σ µ η∂ ∂

= +
∂ ∂

 (1) 

where ux, vx are the shear displacement and the corresponding velocity of a small ele-

ment in the overlayer; µ and η are the elastic shear modulus and the viscosity of the 

overlayer, respectively.  The wave equation governing the shear waves propagating in 

the overlayer is 
2

* 2
2

( , )
( , )x

x

u y t
u y t

y
µ ρω∂

= −
∂  (2) 

where µ* = µ + iωη is a complex shear modulus of the overlayer.  Assuming a “no-

slip” boundary condition between the overlayer and the quartz crystal, a general solu-

tion of the wave equation (2) can be obtained.   From the general solution, the shifts in 

resonance frequency ∆f and dissipation factor ∆D are obtained [10-12].  The general 
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behaviors of ∆f and ∆D depend on a viscous penetration depth δ = (2η/ρω)1/2.  If the 

overlayer thickness is much smaller than δ, the dissipation factor vanishes, while ∆f/f is 

proportional to the layer thickness, a result widely known as Sauerbrey relation [9].  In 

this case, a mass deposited on the order of a few nano-grams or less can be detected, 

and the technique has been widely used for monitoring thin film depositions over the 

past several decades [9].  On the other hand, if the overlayer thickness is much larger 

than δ, the acoustic response of the QCM due to the contact with the overlayer can be 

described by 

2 2 2 2 2 2

2 2 2 2 2 2

1
( )

2 2q q

f
h

µ η ω µ µ η ω µρ ηω µ
πρ µ η ω µ η ω

+ + + −
∆ ≈ − −

+ +
 (3)  

2 2 2 2 2 2

2 2 2 2 2 2

1
( )

2q q

D
f h

µ η ω µ µ η ω µρ ηω µ
π ρ µ η ω µ η ω

+ − + +
∆ ≈ +

+ +
 (4)  

where ρq and hq are the density and thickness of quartz crystal electrode, respectively 

[9-12].  But the contributions to ∆f and ∆D are from the layer with thickness δ adjacent 

to the quartz crystal in the overlayer.  If the overlayer’s density and viscosity are simi-

lar to that of water and the resonant frequency of the quartz crystal is 10 MHz, the vis-

cous penetration depth δ is about a few hundred nanometers.  Thus, if a quartz crystal 

operated at such frequency is submerged in a solution with viscosity similar to that of 

water, the measured ∆f and ∆D essentially probe the viscoelastic properties of the solu-

tion boundary layer with a thickness of about a few hundred nanometers adjacent to 

the crystal-solution interface.   

Thus, by measuring ∆f and ∆D simultaneously on a thick solution overlayer, the 

viscosity and shear modulus of the solution boundary layer adjacent to the crystal sur-

face can be determined using Eqs. (3) and (4).   Fig. 1 is a plot of -∆f/∆D as a function 

of η and µ.   A close look of Fig. 1 as well as Eqs. (3) and (4) finds that in the viscous 

limit, µ ≅ 0, the ratio -∆f/∆D is a constant that depends only on the measuring fre-

quency (ω/4π).  Such a characteristic has been tested in the determination of the vis-

cosities of a number of simple molecular solutions, and good agreements have been 

found between the viscosity of the solution layer using QCM and that obtained using 

other techniques [9-15].  If the measured -∆f/∆D shows a systematic variation as a 

function of the solution conditions (e.g. the concentration), that would be an indication 

that the shear modulus of the solution layer cannot be neglected. Thus, the variation of 

-∆f/∆D as a function of solution condition can be used as a criterion for determining 

whether a solution boundary layer can be treated as purely viscous or not.  This ap-

proach allows experimentally determining the viscosity and shear modulus of solution 

boundary layers. 
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Fig. 1 The ratio -∆f/∆D as a function of η and µ calculated using  Eqs. (3) and (4).  Notice 
that in the viscous limit (µ ≅ 0) the ratio is a constant.  Beyond that limit, the ratio varies 
with the viscosity as well and the shear modulus.  

3. Experimental 

In this work, we used the quartz crystal resonator technique to investigate the 

properties and behaviors of boundary layers polyethylene glycol (PEG) solutions. 

PEG is a commercially important polymer which has a wide range of application 

in many different fields including biomedical and clinic research [16].  In the 

study, a freshly cleaned quartz crystal with a fundamental resonant frequency of 5 

MHz operated at its third harmonics (15 MHz) was used.  The details about the 

crystal surface preparation and experimental procedure can be found in Ref. 17.  

The electrodes on the quartz crystal were connected to a network analyzer 

(Agilent technologies E5061A) for measuring the acoustic responses from the so-

lution; the resonant peaks at the third harmonics of the fundamental frequency of 

the crystal were monitored to obtain ∆f and ∆D as a function of PEG concentration 

in solution.  The resonant frequency (fresonant) is measured by sweeping the driving 

frequency and monitoring the value of the frequency at which the response ampli-

tude is the largest.  The dissipation factor (D) is determined by dividing the fall 

width at half maximum (FWHM) of the resonant peak with the resonant frequency 

(D = FWHW/ fresonant).  A schematic illustration of the experimental setup used for 

measuring ∆f and ∆D and a general behavior ∆f and ∆D as a function of solution 

concentration are illustrated in Fig.2.  
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Fig. 2 An illustration of the experimental setup. 

The polyethylene glycol (PEG) samples used have molecular weight Mw=1 x 

104 g/mol and polydispersity index Mw/Mn = 1.06 were used.  In order to check if 

the measured results are sensitive to the molecule-substrate interaction, we used 

quartz crystal with bare Au electrodes and then platted Au surface with a layer of 

thoil-attached PEG (SH-PEG) repeating the experiment [16].  By comparing the 

results obtained using the quartz crystal with bare Au electrode surface and with 

SH-PEG plated Au surface, any significant effect of the surface interaction to the 

measured viscoelastic properties of the boundary solution layer can be addressed.   

4. Experimental Results and Discussion 

In Figs. 3 and 4 we plot the resonant frequency shift (∆fw) and the dissipation fac-

tor change (∆Dw) of the quartz crystals with the bare gold electrode and with the 

SH-PEG plated gold electrode as a function of the PEG concentration scaled by a 

semidilute concentration c*.  Here, ∆fw and ∆Dw are in reference with the resonant 

frequency fw and the dissipation factor Dw measured after crystals were submerged 

in pure water solution (before PEG was added); c* is defined as 

c*=3M/(4π<R2>1.5Nav), where M is the molecular weight, R is the gyration radius 

of the polymer coil, and Nav is Avogadro’s number [18,19].  At c* the chains of 
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PEG molecules are supposedly in contact but without significant entanglements.  

The measured ∆fw and ∆Dw can be related to ∆f and ∆D by adding the differences 

of the resonance frequency and the dissipation factor in pure water and in air.  ∆fw 

measured with SH-PEG plated quartz crystal has a constant shift comparing to that 

measured by un-plated crystal.  The shift is due to chemisorption of the SH-PEG 

layer directly onto the gold electrode surface [17].  This shift can be subtracted off 

from ∆fw by measuring the acoustic responses of the quartz crystal resonator right 

after the gold electrode surface being cleaned and then again after the SH-PEG 

was chemisorbed onto the gold surface [17]. 

Figs. 3 and 4 show that acoustic responses of the quartz resonator as a function 

of the PEG concentration change very little in solutions at the low concentration, 

and rise rapidly as the concentration is above about 0.1 c*.  The acoustic responses 

for the two different surfaces move together, except a small and constant shift in 

∆fw.  The constant shift was identified as due to  the chemisorpted first layer of 

SH-PEG.  The results indicate that beyond the adsorbed first layer, adsorptions of 

additional PEG and the concentration profiles of PEG layers for the two different 

surfaces are very close to each other.  Thus, different surfaces on a quartz crystal 

have little effect on the viscoelastic properties of the solution boundary layer with 

a thickness of about a few hundred nanometers.  

10-4 10-3 10-2 10-1 100

0

200

400

600

800

1000

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0

200

400

600

800

1000

 

 

-∆
f w

(H
z)

c/c*

 

 

-∆
f w

(H
z)

c/c*

 PEG/Gold
 PEG/PEG-SH-Gold

 

Fig. 3 Measured resonant frequency shift of the quartz crystal resonator as a function of 
concentration of PEG in solution.  The frequency shift is in reference with that measured in 
pure water.  (■) The surface of electrode is pure gold; (●) The surface of electrode is plated 
with a layer of SH-PEG.  SH-groups chemically bond to the gold electrode surface.  The 
lines are guides to the eye.  The inlet is a linear plot. 
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Fig. 4 Measured dissipation factor changes of the quartz crystal resonator as a function of 
concentration of PEG in solution.  The changes are in reference with that measured in pure 
water.  (■) The surface of electrode is pure gold; (●) The surface of electrode is plated with 
a layer of SH-PEG.   The lines are guides to the eye.  The inlet is a linear plot. 
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Fig. 5 The ratio -∆f/∆D as a function of the scaled PEG concentration. The lines are the 
guide to the eye. 
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Fig. 6 Viscosity of PEG solution boundary layer as a function of PEG concentration, de-
rived using Eqs. (3) and (4). 
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Fig. 7  Shear modulus of PEG solution boundary layer as a function of PEG concentration, 
derived using Eqs. (3) and (4). 

Fig. 5 plots the ratio -∆f/∆D as a function of the scaled PEG concentration.  The 

ratio is nearly a constant at the low concentration, but decreases noticeably as the 

concentration is above 0.1 c*.  Such a decrease indicates that the acoustic response 

of the boundary solution layer is not purely viscous; the shear modulus of the 

boundary layer contributes to the response as the concentration is close and above 

the semidilute concentration c*.  We thus use Eqs. (3) and (4) to derive the viscos-

ity η and the shear modulus µ of  the solution boundary layer from the measured 
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∆f and ∆D.  The results are plotted in Figs. 6 and 7.   The viscosity of the solution 

boundary layer is very close to that of pure water as the concentration is below 0.1 

c*.  This is not surprising since at such a dilute concentration, PEG molecules 

move nearly independently of each other, resulting in a very week concentration 

dependence of the viscosity. 

Comparing to the viscosity of bulk PEG solutions of about the molecular 

weight, the viscosity of the boundary layer display similar concentration depend-

ence.  At the concentration close to and above the semidilute concentration, the 

dependence of viscosity can be fitted with a power law with an exponent ap-

proximately equal to 1.5 [17].  Such an exponent is smaller than that obtained for 

bulk PEG solution, and is also smaller than that predicted by theory [17].  Our re-

cent studies further confirm that such a deviation exists for higher molecular 

weight PEG solutions.   

The shear modulus of the PEG solution boundary layer in contact to the quartz 

crystal surface derived from the measured ∆f and ∆D using Eqs. (3) and (4) show 

a similar concentration dependence as that for viscosity.  The shear modulus is 

nearly zero at the low concentration, but rises rapidly as the concentration is close 

to and above the semidilute concentration.  It should be noted that the shear 

modulus measured using the quartz crystal resonator technique is the dynamic 

elastic modulus of the boundary layer at the measuring frequency.  The measured 

rise in shear modulus for the boundary solution layer could be simply due to an 

increase in relaxation time in the boundary layer as the concentration increases.  

However, it is also possible that such a rise is due to the changes in the rigidity in 

the solution boundary layer because of the interaction of the layer with the bound-

ary and the geometric confinement to the layer from the boundary.  Several recent 

studies demonstrated that a thin boundary layer of water could behaves like a solid 

layer at the room temperature [6-8].  The results of the PEG solution boundary 

layers presented here suggest that similar phenomena might exist in polymer sys-

tems.  We are currently conducting studies using combined quartz crystal resona-

tor and atomic force microscopy techniques to explore further the nature of the 

elastic behaviors of PEG solution boundary layers. 

In summary, we present the results of a recent study of viscosity and shear 

modulus of polyethylene glycol (PEG) solutions using a quartz crystal resonator 

technique.  The results show that near the semidilute concentration of the solution, 

both the viscosity and shear modulus of the solution boundary layer rises rapidly.  

A more detailed quantitative study of such an intriguing behavior is apparently 

called for in order to understand the viscoelastic nature of polymer solution 

boundary layers in general and PEG solution boundary layers in specific. 
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Appendix I: Symposium Program 

 

 

 

 

Tuesday, May 26 

8:20-8:30 Opening Ceremony  

Section 1   Waves in General 

Chair: Jan D. Achenbach 

Center for Quality Engineering and Failure Prevention, Northwestern University, USA. 

08:30-08:55 Time-Reversed Waves and Super-Resolution  

Mathias Fink 

Institut Langevin, Laboratoire Ondes et Acoustique, 
ESPCI, 10 rue Vauquelin, 75005, Paris, France. 

08:55-09:20 Existence of Exceptional Body Waves and  
Subsonic Surface Waves in Monoclinic and 
Orthotropic Materials 

T. C. T. Ting 

Division of Mechanics and Computation, Durand 262, 
Stanford University, Stanford, CA 94305, USA. 

09:20-09:45 Deformation Waves in Microstructured Materials: 
Theory and Numerics 

Jüri Engelbrecht, Arkadi Berezovski, and Mihhail Berezovski 

Centre for Nonlinear Studies, Institute of Cybernetics at 
Tallinn University of Technology, Tallinn, Estonia. 

10:10-10:30 Coffee Break 
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Section 2   Waves and NDE (I) 

Chair: Arthur G. Every 

School of Physics, University of the Witwatersrand, South Africa. 

10:30-10:55 The Velocity of Anti-Plane Surface Waves on a Body with 
Depth-Dependent Properties 

Jan D. Achenbach 

Center for Quality Engineering and Failure Prevention, 
Northwestern University, Evanston, IL 60208, USA. 

10:55-11:20 Resonance Ultrasound Microscopy for 
Imaging Young’s Modulus of Solids 

Masahiko Hirao and Hirotsugu Ogi 

Graduate School of Engineering Science, Osaka University, 
Toyonaka, Osaka 560-8531, Japan. 

11:20-11:45 Nonclassical Nonlinearity in Solids for 
Defect-Selective Imaging and NDE 

Igor Solodov 

Department of Non-Destructive Testing,Institute for Polymer 
Technology, University of Stuttgart,Pfaffenwaldring 
32, 70569 Stuttgart, Germany. 

11:45-13:30 Picture Taken & Lunch 

Seminar Section 

Chair: Chin-Teh Sun 

School of Aeronautics and Astronautics, Purdue University, USA. 

13:30-13:35 Band Structure Calculations by Modal Analysis 

Mahmoud I. Hussein 

Department of Aerospace Engineering Sciences, University of 
Colorado at Boulder, Boulder, CO 80309, USA. 

13:35-13:40 Band Gap in Phononic Crystal Thin Plate with/without 
Mirror Plane 

Zhilin Hou1 and Badreddine Assouar 
1Department of Physics, South China University of Technology, 
Wushan, Guangzhou, 510640, China. 

2LPMIA, CNRS - Nancy University, BP: 239, Bd des Aiguillettes, 
54506 Vnadoeuvre les Nancy, France. 
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13:40-13:45 Radial Sonic Crystals 

Daniel Torrent and José Sánchez-Dehesa 

Wave Phenomena Group, Department of Electronics Engineering, 
Polytechnic University of Valencia, C/Camino de Vera s/n, 
Valencia, 46022, Spain. 

13:45-13:50 Polarization States in 2D Phononic Crystals and Waveguides 

Y. Achaoui1, A. Khelif2, S. Benchabane1 and V. Laude1 
1Institut FEMTO-ST, Université de Franche-Comté, CNRS, ENSMM, 
UTBM, 32 avenue de l’Observatoire, F-25044 Besançon Cedex, 
France. 

2Georgia Tech Lorraine, UMI Georgia Tech -CNRS 2958, 
Metz Technopôle 2-3, rue Marconi, 57070 Metz, France. 

13:50-13:55 Dispersion Analysis of Wave Motion in Microstructured Solids 

Tanel Peets  

Centre for Nonlinear Studies, Institute of Cybernetics at  
Tallinn University of Technology,  Akadeemia tee 21, 
12618 Tallinn, Estonia. 

13:55-14:00 On the Role that Scholte Waves Play in Acoustic Propagation along  
a Fluid-Solid Interface 

Piotr Borejko  

Department of Civil Engineering, Vienna University of Technology, 
Karlsplatz 13/E206/3,Vienna, A-1040, Austria. 

14:00-14:05 Forced Motions in Rectangular Elastic Waveguide 

A. A. Bondarenko1, V. V. Meleshko2 and A. N. Trofimchuk1 
1Department of Natural Resources, Institute of Telecommunications 
and Global Information Space of the NAS Ukraine, Chokolivs’ka 13, 
Kiev, 03186, Ukraine. 

2Department of Theoretical and Applied Mechanics,  
Kiev National Taras Shevchenko University, 
Volodymyrs’ka 60, Kiev, 01601, Ukraine. 

14:05-14:10 Normal Waves in Anisotropic Cylinders of 
Sector Cross-Section 

Storozhev Valeriy, Troyan Renata and Puzyrev Vladimir 

Mathematical Department, Donetsk National University,  
Universitetskaya 24, Donetsk, 83117, Ukraine. 
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14:10-14:15 Dispersion Behaviors of ASF Modes Propagating along 
Wedges Tips with Coatings 

Po-Shien Tung1, Sheng-Wei Tang2 and Che-Hua Yang1  
1Graduate Institute of Manufacturing Technology, 
National Taipei university of Technology, 1, Sec. 3, 
Chung-Hsiao E. Rd. Taipei 106, Taiwan, R.O.C. 

2Graduate Institute of Mechanical and Electrical Engineering, 
National Taipei university of Technology,1, Sec. 3, 
Chung-Hsiao E. Rd. Taipei 106, Taiwan, R.O.C. 

14:15-14:20 Scattering from a Rectangular Crack in a Cladding  

Per-Åke Jansson 

Department of Applied Mechanics, Chalmers University of Technology, 
SE-412 96 Gothenburg, Sweden. 

14:20-14:25 Defect Inspection of Complex Structure in Pipes by 
Guided Waves 

Ping-Hung Lee, and Shiuh-Kuang Yang 

Department of Mechanical and Electro-Mechanical Engineering, 
University of National Sun Yat-Sen, No. 70, Lienhai Rd,  
Kaohsiung, 804, Taiwan R.O.C. 

14:25-14:30 SAW Gas Sensor with Nanostructured Sensing Materials 

Yung-Yu Chen1, Tsung-Tsong Wu2, Tai-Hsu Chou2 
and Fu-Chun Huang2 
1Department of Mechanical Engineering, Tatung University,  
No.40, Sec. 3, Zhongshan N. Rd., Taipei, Taiwan. 

2Institute of Applied Mechanics, National Taiwan University,  
No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan. 

14:30-14:35 Acousto-Optic Response of Nematic Liquid Crystals to  
Interface Acoustic Waves 

Ching-Chung Yin, Kang-Che Huang and I-Han Chang 

Department of Mechanical Engineering, National Chiao Tong University, 
1001 Ta Hsueh Road, Hsinchu, 300, Taiwan, Republic of China. 

14:35-14:40 Design of IF Two-Track Surface Acoustic Wave Filters 
Using (100) AlN/Diamond Structures 

Ruyen Ro1, Chia-Chi Sung2, Ruyue Lee1 and Yuan-Feng Chiang2  
1Department of Electrical Engineering, I-Shou University, 
1, Section 1, Hsueh-Cheng Rd. ,Ta-Hsu Hsiang, 
Kaohsiung County 840, Taiwan, Republic of China. 

2Department of Engineering Science and Ocean Engineering,  
National Taiwan University, 1, Section 4, Roosevelt Rd. 
Da-an District, Taipei County 106, Taiwan, Republic of China. 
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14:40-14:45 Acoustic Wave Properties of (100) AlN and ZnO Films 

Sean Wu1, Zhi-Xun Lin2, Ruyen Ro3 and Maw-Shung Lee2 
1Department of Electronics Engineering and Computer Science, 
Tung Fang Institute of Technology, No. 110, Tung-Fung Rd., 
Hunei Shiang, Kaohsiung County, 829, Taiwan. 

2Department of Electronic Engineering, National Kaohsiung  
University of Applied Sciences,No. 415, Chien Kung Rd., 
Kaohsiung City 807, Taiwan. 

3Department of Electrical Engineering, I-Shou University, 
No. 1, Sec. 1, Syuecheng Rd., Dashu Township, 
Kaohsiung County 840, Taiwan. 

14:45-14:50 Study Mechanical and Viscoelastic Properties of 
Polymer Solutions near a Solid-Fluid Interfaces Using  
Combined Quartz Crystal Microbalance and 
Atomic Force Microscopy 

Ping Wang1, Jiajie Fang1, Yihong Kang2, Sheng Qin1,  
Osung Kwan2 and Da-Ming Zhu2,1 
1Department of Modern Physics, Univ. of Sci. & Tech. of 
China,Hefei, China 230027, China. 

2Department of Physics, University of Missouri, Kansas City, 
Missouri 64110, USA. 

15:00-15:40 Coffee Break 

Section 3   Phononic Crystals (I) 

Chair: Vincent Laude 

FEMTO-ST, Université de Franche-Comté, CNRS, ENSMM, UTBM, France. 

15:40-16:05 Guided Elastic Waves at Periodically Structured Surfaces and 
Interfaces 

A. G. Every and A.A. Maznev 

School of Physics, University of the Witwatersrand, PO Wits 2050, 
Johannesburg, South Africa. 

16:05-16:30 Metafluids Based on Sonic Crystals 

José Sánchez-Dehesa and Daniel Torrent 

Wave Phenomena Group, Department of Electronics Engineering, 
Polytechnic University of Valencia, Valencia, Spain. 
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16:30-16:55 Band Structure and Phonon Transport in a Phononic Crystal Made of 
a Periodic Array of Dots on a Membrane 

B. Djafari Rouhani, Y. Pennec and H. Larabi 

Institut d’Electronique, Microélectronique et Nanotechnologie, 
UMR CNRS 8520, Avenue Poincaré, Université de Lille1 Sciences et 
Technologies, 59652 Villeneuve d’Ascq, France. 

16:55-17:20 Material Parameters Determining the Band Gaps of 
Solid-Solid Phononic Crystals 

Xiao-Zhou Zhou1, Yue-Sheng Wang1 and Chuanzeng Zhang2 
1Institute of Engineering Mechanics, Beijing Jiaotong University, 
Beijing, 100044, China. 

2Department of Civil Engineering, University of Siegen, Siegen,  
D-57076, Germany. 

18:00-21:00 Visit Taipei 101 

 

Wednesday, May 27 

Session 4   Wave Electronics (I)  

Chair:  Yook-Kong Yong 

Civil and Environmental Engineering,Rutgers,the State University of New Jersey, USA. 

08:30-08:55 Phase-Sensitive and Fast-Scanning Laser Probe System for 
RF SAW/BAW Devices 

Ken-ya Hashimoto1, Nan Wu1, Keisuke Kashiwa1, Tatsuya Omori1, 
Masatsune Yamaguchi1, Osamu Takano2, Sakae Meguro2, 
Naoki Kasai2 and Koichi Akahane2 
1Graduate School of Engineering, Chiba University, 
Chiba 263-8522, Japan. 

2Neoark Co. Ltd, Hachi-Ohji, Tokyo 192-0015, Japan. 

08:55-09:20 SAW-Tags - New Generation 

Victor Plessky1 and Sanna Härmä2 
1GVR Trade SA, Ch. du Vignoble 31C, Bevaix, 2022, Switzerland. 
2Department of Applied Physics, Helsinki Univ. of Technology, 

P.O. Box 3500, FI-02015 TKK, Espoo, Finland. 
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09:20-09:45 A Two-Dimensional Analysis of Surface Acoustic Waves in 
Finite Piezoelectric Plates 

Ji Wang, Rongxing Wu and Jianke Du 

Piezoelectric Device Laboratory, Department of Mechanics and 
Engineering Science,School of Engineering, Ningbo University, 
818 Fenghua Road, Ningbo, Zhejiang 315211, China. 

09:45-10:10 Wireless Drive of Piezoelectric Components  

Junhui Hu and Satyanarayan Bhuyan 

School of Electrical & Electronic Engineering, Division of  
Microelectronics, Nanayang Technological University,  
Singapore 639798, Singapore. 

10:10-10:30 Coffee Break 

Session 5   Waves and NDE (II) 

Chair:  Igor Solodov 

Department of Non-Destructive Testing, Institute for Polymer Technology, 
University of Stuttgart, Germany. 

10:30-10:55 Counterpropagating Ultrasonic Waves for 
Inhomogeneous Materials Characterization 

Arvi Ravasoo 

Centre for Nonlinear Studies, Institute of Cybernetics at 
Tallinn University of Technology, Akadeemia tee 21, 
12618 Tallinn, Estonia. 

10:55-11:20 Ultrasonic Characterization of the Mechanical Properties of  
Thin Films and Coatings 

Sridhar Krishnaswamy 

Department of Mechanical Engineering, Northwestern University, 
Evanston, IL 60208, USA. 

11:20-11:45 Evaluation of Corrosion in Carbon Steel Pipes by 
Laser-Generated Guided Wave  

Do-Youn Kim1, Joon-Hyun Lee2, Younho Cho2, Jaesun Lee1  
and Jan D. Achenbach3 
1Graduate School of Mechanical Engineering, Pusan National 
University, Jangjeon-dong, Gumjeong-gu, Busan, 609-735, Korea. 

2School of Mechanical Engineering, Pusan National University, 
Jangjeon-dong, Gumjeong-gu, Busan, 609-735, Korea. 

3Walter P. Murphy and Distinguished McCormick School 
Professor, Center for Quality Prevention and Failure  
Prevention, Northwestern University, USA. 
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11:45-12:10 Measurement of Surface and Lamb Waves with 
Application on Acoustic Sensing and 
Non-Destructive Evaluation  

Yung-Chun Lee, Shi Hoa Kuo and Cheng-Hsien Chung 

Department of Mechanical Engineering, National Cheng-Kung 
University, #1 University Road, Tainan, 70101, Taiwan 

12:10-17:30 National Palace Museum  

18:00-21:00 Banquet 
 

Thursday, May 28 

Session 6   Phononic Crystals (II)    

Chair:  Thomas C. T. Ting 

Division of Mechanics and Computation, Stanford University, Stanford, USA. 

08:30-08:55 Behavior of Wave Motion in an Acoustic Metamaterial with 
Anisotropic Mass Density 

C. T. Sun and H. H. Huang 

School of Aeronautics and Astronautics, Purdue University, 
W. Lafayette, IN 47907, USA 

08:55-09:20 Complex Band Structure of Phononic Crystals and 
the Diffraction problem 

Vincent Laude1, Younes Achaoui1, Sarah Benchabane1 
 and Abdelkrim Khelif2 
1Institut FEMTO-ST, Université de Franche-Comté, CNRS, 
ENSMM, UTBM; 32 avenue de l'Observatoire, F-25044 
Besançon, France. 

2Georgia Tech Lorraine, UMI Georgia Tech -CNRS 2958, 
Metz  Technopôle, 2-3, rue Marconi, 57070 Metz, France. 

09:20-09:45 Versatile phononic slabs 

I. E. Psarobas 

Section of Solid State Physics, The University of Athens, 
Panepistimioupolis, 157 84 Athens, Greece. 
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09:45-10:10 Omnidirectional Band Gap Mirror for Surface Acoustic Wave 

Abdelkrim Khelif1,2, Abdelkrim Choujaa1,  
Sarah Benchabane1 and Vincent Laude1 
1Institut FEMTO-ST, Université de Franche Comté, CNRS, 
ENSMM, UTBM, Besançon, France. 

2GeorgiaTech-CNRS International Joint Laboratory UMI 2958, 
ECE, GT, Atlanta, USA. 

10:10-10:30 Coffee Break 

Session 7   Wave Electronics (II) 

Chair:  Ken-ya Hashimoto 

Graduate School of Engineering, Chiba University, Japan 

10:30-10:55 Novel High Frequency, Temperature Stable, 
Quartz Gyroscopes 

Yook-Kong Yong1, Mihir Patel1 and Jianke Du2 
1Department of Civil and Environmental Engineering, 
Rutgers University, 623 Bowser Road, Piscataway, 
NJ 0885e, USA. 

2Department of Engineering Mechanics, Ningbo University, 
Ningbo, China. 

10:55-11:20 COM Model Characterization for RF SAW Devices 

Ben Abbott1, Kevin Gamble1, Natalya Naumenko2, 
Svetlana Malocha1 and Marc Solal1 
1TriQuint Semiconductor, 1818 S. Hwy 441, Apopka, 

FL 32703, USA. 
2Moscow Steel and Alloys Institute, Moscow, Russia. 

11:20-11:45 Development of a Surface Acoustic Wave Sensor for 
Gas Detection 

Chi-Yen Shen, Cheng-Liang Hsu, Rume-Tze Tsai and 
Ming-Yau Su 

Department of Electrical Engineering, I- Shou University, 
No. 1, Section 1, Syuecheng Rd., Dashu Township, 
Kaohsiung County, Taiwan. 
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11:45-12:10 Three Dimensional Displacement Measurement of  
Transient Elastic Wave Propagation Using a Multidimensional   
Point-Wise Fiber Bragg Grating Displacement Sensor System  

Chien-Ching Ma and Kuo-Chih Chuang 

Department of Mechanical Engineering, National Taiwan University, 
Taipei 106, Taiwan. 

12:10-13:30 Lunch 

Session 8   Phononic Crystals (III) 

Chair:  José Sánchez-Dehesa 

Department of Electronics Engineering, Polytechnic University of Valencia, 
Spain. 

13:30-13:55 Phononic Quasicrystals 

Walter Steurer, Sofia Deloudi and Daniel Sutter-Widmer 

Laboratory of Crystallography, ETH Zurich, 
Wolfgang-Pauli-Strasse 10, 8006 Zurich,  
Switzerland. 

13:55-14:20 Band Structure of Three-Dimensional Phononic Crystals with an 
Opal structure 

Yukihiro Tanaka, Shin-ichiro Tamura and Takuro Okada 

Department of Applied Physics, Hokkaido University, 
Sapporo 060-8628, Japan. 

14:20-14:45 Bandgap Characteristics of a 3D Phononic Meta Material  
Composed of Ordered Quantum Dots 

Chi-Kuang Sun 

Department of Electrical Engineering,, National Taiwan University, 
Taipei 106, Taiwan. 

14:45-15:10 Analytical and Experimental Analysis of Bandgaps in  
Nonlinear One Dimensional Periodic Structures  

Nicholas Boechler1, Chiara Daraio1, Raj Narisetti2, 
Massimo Ruzzene2 and Michael J. Leamy3  
1Aeronautics & Applied Physics, California Institute of Technology, 

Pasadena CA, 91125, USA. 
2School of Aerospace Engineering, Georgia Institute of Technology, 

Atlanta GA, 30332, USA. 
3School of Mechanical Engineering, Georgia Institute of Technology, 

Atlanta GA, 30332, USA. 
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15:10-15:35 Lamb Waves in Phononic-Crystal Plates: 
Numerical  Studies and Experiments 

Tsung-Tsong Wu1, Jin-Chen Hsu2 and Jia-Hong Sun1 
1Institute of Applied Mechanics, National Taiwan University, 
Taipei 106, Taiwan. 

2Department of Mechanical Engineering, National Yunlin University 
of Science & Technology, Yunlin 640, Taiwan. 

15:35-16:00 Closing Ceremony 
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