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Preface

All real surfaces, both those occurring naturally, and those fabricated artificially
and with great care, are rough to some degree. It is therefore of interest, and often
of importance, to know the extent to which this roughness affects physical pro-
cesses occurring at a surface. A particularly interesting class of physical processes
occurring at a rough surface is the scattering of electromagnetic waves from it, or
their transmission through it. In this case the degree of the surface roughness is
referred to the wavelength of the waves incident on it.

The study of the scattering of electromagnetic waves from rough surfaces has
been actively carried out for more than a century now, since Rayleigh's investi-
gations of the scattering of a monochromatic plane wave incident normally on a
sinusoidal interface between two different media. 1 The first theoretical treatment
of the scattering of an electromagnetic wave from a randomly rough surface was
due to Mandel'shtam/ in the context of the scattering of light from a liquid sur-
face. In these pioneering studies the angular dependence of the intensity of the
scattered field was calculated by perturbation theory as an expansion in powers
of the surface profile function though the first nonzero term, a single-scattering
approximation. For the next 70 years single-scattering approximations, either the
small-amplitude perturbation theory introduced by Rayleigh and extended to the
scattering of electromagnetic waves from a two-dimensional, randomly rough, per-
fectly or finitely conducting surface by Rice,3 or the Kirchhoff approximation,4 in
which scattering from a rough surface is treated as reflection from the plane tangent
to the surface at each point, dominated theoretical investigations of rough surface
scattering.

The past 20 years have seen many advances in this field. They include im-
provements in analytic and computational approaches to rough surface scattering.
These have simplified the incorporation of multiple scattering into theories of
rough surface scattering, which has led to further improvements in analytic and
computational methods, and to the prediction and observation of interesting new
optical phenomena not captured by single-scattering approximations. There is
now an increasing interest in the study of moments of the scattered field higher
than the second. The techniques of rough surface scattering theory have been ap-
plied to the theory of near-field optical microscopy. Finally, techniques have been
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developed for the fabrication of one- and two-dimensional randomly rough sur-
faces with specified statistical properties, and for the characterization of surface
roughness.

The development of this field has been driven in part by applications of the
scattering of electromagnetic waves from random surfaces encountered in nature,
for example, the scattering ofelectromagnetic waves from the sun and from planets,
the propagation of radio waves over the Earth's terrain and over the ocean, and the
remote sensing of such features of the Earth's terrain as snow, ice, and vegetation
canopy. It has also been driven by applications in which the scale of the surface
roughness is comparable to the wavelength of the electromagnetic waves incident
on it, as in the transmission characteristics of waveguides with randomly rough
walls, the calibration of laser radar standards, the detection of surface defects, the
design of microstructured surfaces for directional illumination and thermal control,
and in situmonitoring of manufacturing processes for the control of such dynamic
processes as polishing, etching, film growth, strain relaxation, phase transitions,
and interdiffusion.

However, a major driving force for the development of both theory and exper-
iment in the field of rough surface scattering during the past 20 years has been
the recognition that the introduction of multiple scattering into the theory of the
scattering of electromagnetic waves from randomly rough surfaces yields a va-
riety of effects that have no counterparts in the results obtained on the basis of
single-scattering theories. These include enhanced backscattering, the presence of
a well-defined peak in the retroreflection direction in the angular dependence of the
intensity of the light scattered from a randomly rough surface; enhanced transmis-
sion, which is the presence of a well-defined peak in the antispecular direction in
the angular dependence of the intensity of the light transmitted through a randomly
rough surface; satellite peaks, which are sharp peaks on both sides of the enhanced
backscattering and transmission peaks that arise when the scattering system, e.g.
a film with a randomly rough surface, supports two or more surface or guided
waves; peaks in the angular intensity correlation function of light scattered into
the far field from a randomly rough surface; and interesting coherence properties
of light scattered or emitted into the near field of a random surface. All of these
effects have now been observed experimentally. They are examples of a broader
class of multiple-scattering phenomena that go under the name of weak localiza-
tion,and are caused by the coherent interference of multiply-scattered waves, both
quantum, and classical.

The initial theoretical studies" and subsequent experimental studies? of these
multiple-scattering effects were carried out for randomly rough surfaces char-
acterized by rms heights of the order of 5-10 nm, and transverse correlation
lengths of the order of 100 nm, i.e. surfaces with nanoscale roughness. Subse-
quent experimental? and theoreticaf work was devoted to the study of surfaces
that were significantly rougher than these, e.g. surfaces with microscale rough-
ness. Nanoscale has a somewhat elastic definition. In this volume we have adopted
a rather liberal interpretation of this term, extending it in some cases to what
purists might consider the microscale regime or beyond. This is because some of
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the methods developed for treating scattering from surfaces with this larger scale
of roughness, especially computational methods, can also be used in the study of
scattering from surfaces with nanoscale roughness, and some of the results ob-
tained in studies of surfaces with the larger scale roughness also apply to surfaces
with nanoscale roughness.

Theoretical and experimental studies of rough surface scattering can be divided,
roughly speaking, into studies of the direct scattering problem and studies of the
inverse scattering problem. In the direct problem one is given the surface profile
function in the case of a deterministically rough surface, or its statistical properties,
in the case of a randomly rough surface, and the task is to solve Maxwell's equations
and the associated boundary conditions to obtain the scattered field in response to
a prescribed incident field. In the inverse problem one is given experimental data
for the angular or spatial dependence of the intensity of the scattered field or, in
some cases, of the amplitude and phase of the scattered field, and its dependence
on wavelength and polarization, and the task is to invert these data to obtain the
surface profile function responsible for them, or some statistical property of the
surface profile function such as the power spectrum of the surface roughness or its
rms height. Both types of scattering problems are treated in this volume, with the
direct problem receiving the majority of the attention, which is simply a reflection
of the greater amount of work that has been devoted to this type of problem.

The first several chapters are devoted to the direct scattering problem. In the
first chapter, J. M. Bennett introduces definitions of surface roughness, and pro-
vides a historical account of the development of various experimental methods for
characterizing it, with descriptions of these methods, and describes the forces that
stimulated these developments.

Central to the solution of the direct problem is the ability to solve the equa-
tions of scattering theory: Maxwell's equations and the associated boundary con-
ditions. There are two general approaches to the solution of this calculational
problem: the use of approximate theories of rough surface scattering, usually
single-scattering theories, and numerically exact computational approaches that
take multiple-scattering into account.

One of the two most frequently used approximate theories of rough surface
scattering is the Kirchhoff approximation, a single-scattering approximation. A
derivation of this approximation, and of the closely related tangent plane approxi-
mation, is presented by A. G. Voronovich in Chapter 2, together with a discussion
of some generalizations of it.

In Chapter 3, C. J. R. Sheppard obtains simplified expressions for the scattering
of a scalar plane wave from a two-dimensional random surface in the Kirchhoff ap-
proximation by introducing the concept of three-dimensional spatial frequencies.
The results are used to obtain useful expressions for the bidirectional reflectance
distribution function (BRDF) and for the total integrated scattering (TIS).

The other most commonly used approximate approach to the theory of rough
surface scattering is small-amplitude perturbation theory. In this theory, the scat-
tering amplitude and the intensity of the scattered field are expanded in powers
of the surface profile function, often only up to the lowest order term. Underlying
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this approximation is the Rayleigh hypothesis, which is the assumption that
expressions for the field in the medium of incidence and in the scattering medium
outside the selvedge region, which satisfy the boundary conditions at infinity, can
be used to satisfy the boundary conditions at the interface between these two re-
gions. This hypothesis is discussed by A. G. Voronovich in Chapter 4, where he
argues that, in fact, it can be used even when the rigorous conditions for its validity
are not satisfied.

Small-amplitude perturbation theory is not limited to the approximation where
only the leading nonzero contribution in powers of the surface profile function is
retained. K. A. O'Donnell has used small-amplitude perturbation theory to study
the scattering of light from one-dimensional randomly rough surfaces. He has
been able to extend such calculations to obtain results that are valid through the
eighth order in the surface profile function. Through such high-order calculations
he has found new features in the scattering spectrum that are not seen in lower-
order calculations. This work is described in Chapter 5. In Chapter 6, G. Berginc
describes the application of small-amplitude perturbation theory to the scattering
of light from and its transmission through a two-dimensional randomly rough
interface between two semi-infinite media, and a film bounded by two random
surfaces.

The development of powerful computers with great speed and large memories
have enabled calculations of scattering from rough surfaces to be carried out that
are largely free from the restrictions that govern the validity of approximate theories
such as the Kirchhoff and small-amplitude approximations. This development does
not eliminate the need for calculations based on these approximations in regimes
where they are applicable, due to their relative simplicity, but affords a means to
validate the results obtained by these approximations, and to incorporate multiple-
scattering effects into the theory of rough surface scattering in a manner free from
approximations, which can lead to improved approximate analytic theories.

In Chapter 7, J. T. Johnson surveys numerically exact approaches that have been
developed for the solution of the problem of the scattering of electromagnetic
waves from one- and two-dimensional randomly rough surfaces, with recommen-
dations for when such approaches should be used. In Chapter 8, J. A. De Santo
describes three kinds of integral equation methods that can be used in solving
both scalar and electromagnetic scattering problems when the scattering surface
is two-dimensional.

The discussion of the direct scattering problem up to this point is purely the-
oretical. However, in Chapter 9, K. A. O'Donnell describes experimental studies
of angular distributions of light scattered from weakly rough, one-dimensional,
random metal surfaces. Fabrication of such surfaces is described, together with
the measurement techniques used in the study of the scattering from them. Experi-
mental results for the mean differential reflection coefficient, for angular intensity
correlation functions, and second harmonic generation of light scattered from these
surfaces are presented. In Chapter 10, T. A. Germer discusses the measurement
and interpretation of surface roughness by angle-resolved optical scattering from
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a single interface and from the two interfaces of a dielectric film. In the latter
case the polarization of the scattered light is used to obtain information about the
roughness of the two interfaces.

Many of the theoretical studies of the scattering from one- and two-dimensional
randomly rough surfaces are based on the assumption that the scattering surface is
defined by a surface profile function that is a single-valued function of its argument
that is differentiable an arbitrary number of times, and constitutes a stationary,
zero-mean, isotropic, Gaussian random process. However, not all randomly rough
surfaces of interest are of this type. Surfaces with fractal dimensions are ubiquitous
in nature, and are characterized by a divergent root-mean-square slope. In Chapter
11, J. A. Sanchez-Gil et ale describe theoretical studies of the light scattered from
randomly rough one-dimensional self-affine metal surfaces with a nanoscale lower
cutoff. A different type of randomly rough surface is represented by an ensemble
of particles with simple geometries seeded onto planar surfaces. Such surfaces are
interesting for basic science reasons, because they allow calculations to be carried'
out in a controlled way for different sizes, shapes, densities, or optical properties
of the particles. They are also of interest in applications such as the degradation
of mirrors by particle contamination, optical particle sizing, and the fabrication of
biosensors. F. Moreno, et al. present an overview, in Chapter 12, of experimental
and theoretical work on the scattering of light by particles on surfaces, proceeding
from the case of a single particle on a surface to the case of an ensemble of particles
on a surface. The scattering of light from a randomly rough surface that bounds an
inhomogeneous dielectric medium is one of the major unsolved problems of rough
surface scattering theory. In Chapter 13, K. K. Tsi et al. investigate the multiple
scattering of waves by large volume concentrations of random distributions of
nanoparticles, and describe ways in which the scattering problem can be solved
when the particles are on or are buried in a substrate that has a randomly rough
surface.

The mean intensity of a scattered field is a two-point amplitude correlation func-
tion of the scattered field in the limit as the two points at which the field and its com-
plex conjugate are determined merge. However, two-point correlation functions of
the scattered field for noncoincident points, sometimes called mutual coherence
functions, occur in a variety of contexts in rough surface scattering. These include
studies of angular and frequency intensity correlation functions, which reveal sym-
metry properties of speckle patterns and the statistics of the scattered field, and
studies of the coherence properties of the scattered field, i.e. the properties of light
that are most closely related to interference and diffraction. In Chapter 14, T. A.
Leskova and A. A. Maradudin describe how taking into account multiple scatter-
ing introduces new features into angular and frequency intensity correlations not
present in the results obtained in the lowest order of small-amplitude perturbation
theory, some of which have now been observed experimentally. In Chapter 15,
J. J. Greffet and R. Carminati study the coherence of the field scattered from a
rough surface or of a thermal field generated by an interface, in both the near
field and the far field, and discuss the role of surface plasmon polaritons in the
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structure of the speckle pattern in the near field. They point out that in modeling
the detection of an optical near field the role of the tip used as the detector must
be taken into account, and present examples to illustrate this.

The' direct scattering problem is not the only one of interest in rough surface
scattering. The inverse problem, although it is less intensely studied, is another
important and challenging one. In Chapter 16, E. R. Mendez and D. Macias describe
algorithms for inverting far-field scattering data obtained from measurements on
one-dimensional rough surfaces to obtain the surface profile function. As input
one ofthe algorithms uses the angular dependence of the intensity of the scattered
light, while another uses the angular dependence of the amplitude and phase of the
scattered field. A different type of inverse problem is discussed by A. A. Maradudin
in Chapter 17, namely how to design a one- or two-dimensional randomly rough
surface that produces a specified angular or wavelength dependence ofthe radiation
scattered from it.

The chapters constituting this book present an up-to-date survey of many aspects
of rough surface scattering that are relevant to the scattering of electromagnetic
waves from surfaces with nanoscale roughness. Yet, as one reads through them it
is clear that there remain several areas of the subject that are in need of further
development. These include, for example, improved algorithms for calculating the
scattering of electromagnetic waves from, and their transmission through, two-
dimensional randomly rough penetrable surfaces; the extension of these algorithms
to the case that the random surface bounds an inhomogeneous substrate; the solu-
tion of the inverse problem from far-field data for the amplitude and phase or the
intensity of light scattered from two-dimensional rough surfaces; the experimental
observation of higher-order angular intensity correlation functions; experimental
and theoretical studies of the coherence and other correlation functions of light in
the near field; and the determination of methods for designing and fabricating sur-
faces that produce scattered or transmitted light with specified properties that are
more complex than those considered to date. If some reader of this volume is mo-
tivated to tackle one or another of these problems, all of us involved in producing
this volume will feel that the effort was worth it.

Finally, I wish to thank the authors for the thought and care they have put into
the preparation of their contributions.

Alexei A. Maradudin
Irvine, California

March, 2006
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Endnote

This volume presents up-to-date surveys of many aspects of rough surface scatter-
ing that are relevant to the scattering of electromagnetic waves from surfaces with
nanoscale roughness. Both the direct and inverse scattering problems are consid-
ered, perturbative and computational approaches to their solution are described,
and experimental methods and results are discussed.
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1
Characterization of Surface Roughness*

JEAN M. BENNETf

Michelson Laboratory, NavalAir Waifare Center, ChinaLake, CA 93555

1.1. Introduction

1.1.1. Definition ofNanoscale Roughness

This book is concerned with the interactions between light and matter on the
nanoscale level (dimensions of the order of atoms and molecules). These interac-
tions are being studied, measured, and modeled. The particular emphasis is on the
interactions of light with surface topography, i.e., surface roughness, not chemical
interactions.

It is appropriate to define what range ofsurface roughness constitutes "nanoscale
roughness." There are two parts to surface roughness - the heights offeatures above
and below the mean surface level, and the lateral separations of these height features
(Fig. 1.1). The former are generally given in terms of a root-mean-square (rms)
value or an average value and are called the "surface roughness," while the latter
are distances measured along the surface in the mean surface plane and are called
"surface spatial wavelengths." The words "surface spatial" are very important to
distinguish this quantity from the wavelength of the incident light beam illumi-
nating a surface in a light scattering measurement or making an interferometric
(optical) measurement of surface roughness.

In the nanoscale roughness region, the range of surface heights that can be mea-
sured by appropriate instruments varies from subnanometers (rvO.01nm) (fractions
of the spacing between atoms (rvO.4- 0.6 nm) to more than 1 j.lm (>1,000 nm).
Depending on the type of surface, heights larger than the nanoscale region can
reach values of millimeters. Many types of surfaces have heights that are a fractal
quantity and can be treated by the theory of fractals. 2-4

Surface spatial wavelengths, on the other hand, are much longer and can vary
from rvO.1 JLm (100 nm) to 1 mm (l,OOOj.lm or 1,000,000 nm), depending on
the surface roughness. The surfaces that have the largest roughness and smallest
surface spatial wavelengths will have the steepest slopes. Some special synthetic

* Most of the material in this chapter is taken from the book: Jean M. Bennett and Lars
Mattsson, Introduction to Surface Roughness and Scattering, 2nd edn. (Optical Society of
America, Washington, D.C., 1999)
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FIGURE 1.1. Schematic representation of a one-dimensional profile of a rough surface show-
ing surface heights and surface spatial wavelengths. The vertical axis has been greatly
expanded compared to the horizontal axis (Fig. 23 in Ref. 1).

surfaces that have been made to test various scattering theories have much larger
slopes than surfaces normally encountered in the real world. Thus, the ratio between
surface spatial wavelengths and surface heights can vary from ~ 10,000 for the
smoothest surfaces to ~10 for rough surfaces with steep slopes.

1.1.2. Early Beginnings: Visual Surface Inspection versus
Quantitative Measurements

Prior to the 1940s and World War II, roughness on the surfaces of lenses and other
optics was "eyeballed" by looking for a gray cast to the surface, caused by light
scattering from residual fine grinding marks. Normally, by the time a lens had
the correct shape and focal length, the surface was completely polished out and
there was no gray. Now, more sensitive instruments show that the smooth surface
contained a network of tiny scratches left by the abrasive particles in the polishing
compound (often rouge or iron oxide).

In the same time frame, mass produced, interchangeable parts were starting
to be made by the machining industry. Shape and also surface finish became
important. Large coordinate measuring machines were being developed that used
a ball touch-probe mounted on a movable arm to contact the part and measure
its shape. Surface finish was determined by visually comparing the finish on a
machined part with one of a set of standards - small blocks of metal machined
by different processes (grinding , milling, lapping, buffing, polishing, etc.) that had
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different roughnesses (groove depths). Sometimes a lOx magnification loupe was
used. Often the machinist ran his fingernail over the standard block and machined
part to see if they felt similar. This "fingernail test" was in general use prior to and
during World War II.

Although visual surface inspection was and is still important, quantitative mea-
surements were essential. Lord Kelvin already recognized this fact in the nineteenth
century when he commented: "When you can measure something and express
it in numbers, you know something about it." Kelvin's statement is frequently
paraphrased as "if you can measure something, you can make it better." This is
the primary reason that increasingly sophisticated quantitative surface metrology
techniques have been developed over the years - to make optical components
"better." In most cases, "better" has meant lower haze and scattering and clearer,
sharper images in an instrument. A very important point is that all the improved
surface characterization techniques were developed in response to commercial
needs. Thus, industry needshavebeen the impetusfor newfabrication techniques
which, in turn, require improved surfacemetrology techniques. For example, mass-
produced optical or machined parts required sensitive measurements to determine
their shapes and performance. As the specifications became tighter, the measuring
instruments had to be more accurate. The shape of flat and spherical optical sur-
faces had been measured since the nineteenth century by a variety of well-known,
exceedingly sensitive, interferometric techniques, but the measurement of surface
finish was in its infancy.

In the early twentieth century, crude portable "profilometers" were developed to
give a semi-quantitative measurement of the surface roughness on machined sur-
faces. These were small, pocket-sized instruments that had an arm with a diamond-
tipped probe sticking out of a box. The probe touched the surface and was drawn
across it for a distance ~ a few millimeters to a few centimeters. As the probe
followed the contours of a surface, an analogue signal was recorded. It could be
printed out as a wiggly line on a graph paper, to be compared to another wiggly line
on the "reference surface," or an internal analogue circuit could average the signal
variations to give a "roughness average" (Ra) value. Mechanical profilers have
considerably improved in the intervening years, but even today a mechanical pro-
filer must be calibrated in a way that is traceable to NIST (the National Institute of
Standards and Technology). NIST certification is essential for calibrating all pro-
filers that are used in industries producing parts with specified surface roughness.
NIST will not certify any instruments that measure surface scattering and calculate
a corresponding roughness using an appropriate theory because scatter-measuring
instruments cannot be directly compared to profile-measuring instruments!

1.1.3. Beginnings ofQuantitative Metrology in the 1940s

Prior to World War II, the best optics came primarily from Europe. However, at the
start of the War, US optics industries such as Eastman Kodak, Bausch and Lomb,
Corning Glass Company, American Optical Company, and others had to gear up
to fill US military needs. There were major problems with the quality of military
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binoculars, cameras, telescopes, periscopes, and other optical instruments. The
images in these instruments were hazy and it was often difficult to see the cross
hairs or reticules used for aligning the instruments. Mary Banning' at the Institute
of Optics of the University of Rochester expanded on the earlier work of John
Strong" and mass-produced single and multilayer antireflection coatings for lenses
which greatly reduced the reflections between lens elements in an optical system
and thus the ghost reflections in the image plane. She also produced multilayer
coatings for other applications.

About the same time, McLeod and Sherwood? at Eastman Kodak Company
proposed the first semi-quantitative method for characterizing finish of polished
optical surfaces. A series of polished optical flats were to be diamond-scribed
with scratches of increasing "badness" that would be visually compared with no
magnification to the sizes of scratches on a finished optical component. The scratch
sizes were to go from a barely perceptible #10 to a very large #80. It was hoped
that the different "badness" of the scratches would correlate with the measured
scratch widths, but the appearance critically depended on the method used to
make the scratches. Along with the scratches were a corresponding series of digs,
or small pits, with numbers from #10 to #80. A #10 dig was to have a diameter
of 100 microns, or 0.1 mm; thus the dig number was to be one-tenth of the dig
diameter measured in microns. The sets of standard scratches and standard digs
were to be sold in boxes to optical companies and used for checking the surface
imperfections on polished optics. The Army adopted the scratches and digs exactly
as McLeod and Sherwood had proposed and designated them as the standard MIL-
0-13830A, the so-called Scratch and Dig Standard. This standard has had a long
and colorful history (see Chap. 9 of Ref. 1) and has created many arguments, much
confusion, expense, and frustration among the users. It is no longer a military
standard. However, a commercial US standards-writing body, the Opto-Electronic
and Optics Standards Council (OEOSC), has adopted the old standard, slightly
clarified some parts, and has turned it into a commercial standard. Nothing better
has come along to assess the "visual appearance" of an optical surface.

1.1.4. Metrology Advances in the 1950s and 1960s

The us military, particularly ARPA (Advanced Research Projects Agency) and
DOE (Department of Energy) provided an impetus for metrology development in
the late 1950s and 1960s. The Navy was trying to find a rapid measurement method
that could be used to detect wakes of underwater submarines by measuring the
scattering of radar waves from ocean surfaces. The hope was that a scattering
map of the ocean surface would show submarine wakes. This problem was trans-
ferred to optics laboratories - to relate scattering from a surface to its roughness.
The simplest scattering measurement was to collect a large solid angle of surface
scattering, so-called total integrated scattering (TIS) (see Chap. 4 of Ref. 1). The
theory for scattering of radar waves from rough surfaces was already well known
but had to be modified for optical measurements because the reflection coeffi-
cient for optical surfaces is smaller than the 100% reflection coefficient of radar
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waves being scattered from water surfaces. The theory was appropriately modi-
fied, instruments were built, and many TIS measurements were made on optical
and machined surfaces over the last 40 years. TIS has become an ASTM standard
measurement protocol and is used in the US and elsewhere (see Chap. 9 of Ref. 1).
Even though TIS is now a routine optical surface characterization technique, the
original problem - finding a method for detecting submarine wakes - has never
been solved!

Other military efforts in this same period involved the production and char-
acterization of large optics to use as beam directors to send intense laser beams
to outer space with minimum scattering losses (beam divergence). Large single-
point diamond-turning machines were built in several government laboratories and
much effort was spent on optimizing methods for producing low scatter mirrors.
The optics group at Michelson Laboratory, China Lake, characterized many proto-
type mirrors produced on these diamond-turning machines by measuring surface
profiles and TIS.

A comparable effort was also started to increase the resistance of large
multilayer-coated beam director mirrors and other optics subjected to high power
laser radiation. Improved polishing and coating techniques were developed along
with sophisticated laser damage test facilities to measure failure of mirrors and
coatings under intense laser radiation. An annual Laser Damage Symposium was
started to enable researchers around the world to share their results. Now, thirty-
seven years later, the Boulder Laser Damage Symposium is still going, with some
of the original people still on the organizing committee.

1.1.5. Further Metrology Advances in the 1970s and 1980s

Industries were driving the metrology effort during this period. The machining
industry needed closer control of surface shape and finish. Improved multiaxis
CNC (computer numerically controlled) machines were being built that enabled
parts to be completely fabricated automatically based on instructions input on
punched paper tape into a rudimentary computer. Modern CNC machines use
considerably more sophisticated computer systems. Also, larger, more accurate,
coordinate measuring machines checked surface shape and more sophisticated me-
chanical profilers came on the market. The British company, Rank Taylor Hobson,
produced a landmark mechanical profiler, the Talystep step height measuring in-
strument for quality control measurements (see Fig. 1.2). It was primarily intended
to measure small steps on machined surfaces and roughnesses in the microinch
range (from fractions of a micron to several microns) as required by the specifica-
tions on machined surfaces. The 1"V4D-I00 mg loading on the sharp diamond probe
always left a track on the surface, as did the probes of all the other profilometers
(loadings were often several grams).

Since tracks on high quality optical surfaces were not acceptable, in the late
1960s and early 1970s several groups started quantifying the scratch depths and
widths made in thin film coatings by commercial mechanical profilers.f-" But it
was not until 1981 that comprehensive studies were published showing that a
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FiGURE 1.2. Talystep mechanical profiler and the associated electronic circuits used to
nondestructively profile optical surfaces. A scanning electron micrograph of the standard
stylus is shown at the lower left; a micrograph of a specially made, sharp stylus is at the
lowercenterand enlarged at the lowerright (FromRef. 10).

mechanical profiler could be used to nondestructively profile soft optical coat-
ings by greatly reducing the stylus loading.!? also the performance of different
mechanical profilers was later compared. II

In this same time frame , the microelectronics industry was developing circuits
on silicon wafers , data were being stored on floppy disks and magnetic tapes, and
the optics industry and the diamond-turning groups were demanding nondestruc-
tive methods for quantitatively measuring surface finish. This fueled a two-pronged
attack - development of optical, noncontact profilers and formulating scattering
theories that would give more statistical information about surface finish. Three
main types of optical profilers were developed that later became commercial prod-
ucts and are briefly described in Sect. 1.2.4. The first of these, chronologically, was
Sommargren's common path optical heterodyne interferometer.F The second was
the phase measuring interferometer developed by Wyant and Koliopoulos.P About
the same time, Eastman and Zavislan14,15 proposed the third type of interferometer,
based on the principle of differential interference contrast.

The demand for more statistical information to be obtained from scattering
measurements spurred the development of both scalar and vector scattering the-
ories. The basis for the scalar scattering theories was the work originally pub-
lished in 1919 by Chinmayanandam.l" which was considerably expanded and
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popularized in the scalar theory "Scattering Bible" by Beckmann and Spizzichino
in 1963.17 Church was the recognized expert for both scalar and easy-to-understand
vector scattering theories for surfaces having small roughness, beginning in the
mid 1970s18- 2o and continuing through the early 1990s.21 He was primarily con-
cerned with scattering from bare metal surfaces, particularly diamond-turned sur-
faces. Carnigliaf proposed a scalar scattering theory for multilayer dielectric
coatings, but it had limited use. First-order vector scattering theories were much
better for describing polarization effects in angle-resolved scattering and scatter-
ing from multilayer-dielectric coatings. Many groups developed vector scattering
theories during the 1970s and 1980s. Elson, one of the prolific theorists, first
worked on surface plasmon theory-' along with several others including Kroger
and Kretschmann.i" Later, Elson published a landmark paper on scattering from
multilayer-dielectric coatingsf' followed by others.26,27 Bousquet and coworkersf
also presented a much-referenced theory about scattering from multilayer films.
Starting in the mid 1970s, Maradudin and his colleagues 29,3o published important
scattering theory papers (see also the chapters in this book) but they are not gen-
erally used for analysis of experimental data. Scattering theories have also been
developed in various laboratories and are used for interpreting the angle-resolved-
scattering measurements made there. These include two laboratories in Marseilles,
France: the laboratory of the Rasignis 31,32 and the one of Amra and Pelletier.P
plus others elsewhere that were established later. Although many theories deal
with scattering from smooth and rougher optical surfaces, some are specifically
designed to explain scattering from synthetic surfaces. These cannot be applied to
normal optical surfaces.

Another very important event dating back to the early 1980s was the inven-
tion and subsequent development of the scanning tunneling microscope (STM) by
Binnig and Rohrer34,35 following the original proof-of-concept instrument demon-
strated by Young in 1971.36-

38 Originally developed to look at single atoms or
molecules on electrically conducting surfaces, it was later used to look at the
structure of gold-coated surfaces by Dragoset et al.39 However, the STM was not
practical for measuring most optical surfaces because nearly all metals have a
thin, nonconducting surface oxide layer, and dielectrics do not conduct at all un-
less they are overcoated with gold or platinum. About four years after Binnig and
Rohrer's STM was announced, Binnig, Quate, and Gerber'" proposed an instru-
ment to measure the topography of nonconducting materials with the aid of an
STM. After that initial proposal, many other clever people contributed to making
a whole family of scanning probe microscopes that can measure, among other
things, surface topography, friction, temperature, magnetic domains, and varia-
tions of optical properties. The atomic force microscope (AFM) is the most useful
of these instruments for looking at fine topographic structure on optical surfaces.

1.1.6. Recent Developments from the 1990s to the Present

The tremendous increase in computing speed and memory of today's comput-
ers has made possible the greatly improved surface metrology instruments of
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today. Second, larger and more sensitive CCD arrays and similar area detectors
are now available. Although it took a few years to develop the 1980s demonstra-
tion proof-of-principle laboratory instruments into commercial products, with the
advent of modem computers they have become rapid, automated, user-friendly
instruments. Currently, the phase measuring interferometer, the white light in-
terferometer (the original Michelson interferometer concept applied to surface
topography measurements in the 1990s), and the Nomarski-type scanning pro-
filer form the workhorses of today's noncontact surface topography measuring
instruments.

Instruments to measure light scattering from optical surfaces are not gener-
ally available. However, one-of-a-kind instruments that measure angle-resolved
scattering (ARS) and total integrated scattering (TIS) are constantly being built
in various research laboratories. An exception is a commercial instrument using
ARS at oblique incidence to measure roughness of machined surfaces." A new
model with increased sensitivity is now able to read surface roughness in the
> 2.5nm rms range. A new instrument to measure scattering and/or emittance (ra-
diation emitted from the sample) has recently been introduced.f See Sect. 1.2.7
for more information. Specialized instruments have been developed for inspection
of defects and contamination on silicon wafers using light scattering technology
(but generally without a sophisticated theory) and are in use in most silicon wafer
fabrication laboratories.

Commercial scanning probe microscopes that are capable of measuring many
surface properties have been available since the mid 1990s and are greatly im-
proved from earlier models. Now they are automated, user-friendly, i.e., requiring
a minimum of skill to operate, and exceedingly rapid. The AFM is still the instru-
ment most used to inspect small areas (< 100 J1m x 100 J1m) of optical surfaces,
particularly surface films. Specialized forms of the AFM have been built to operate
remotely in clean rooms of silicon wafer fabrication laboratories to give detailed
images of defects found with a light scattering instrument.

1.2. Current Surface Metrology Techniques and Instruments

1.2.1. Questions to Answer Prior to Taking Measurements

Before any measurements are undertaken, various questions need to be answered:
(1) What is the purpose of the characterization? (2) What is the sample size and
shape? (3) How many samples are there and how much money is available for the
measurements? (4) What is the condition of the sample surface?

(1) The person with the sample may not know what the best measurement tech-
nique would be. He just wants to know, "What is the roughness of the surface?"
Depending on what "the surface roughness" will be used for, there are numerous
possible methods for making a measurement; they will not, in general, agree be-
cause the instruments measure roughness in different surface spatial wavelength
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regions, as will be explained later in this section. For example, if the sample is a
prototype of a component to be used in a high performance, low scatter optical
system, scattering (not topographic roughness) should be measured. If the sample
has a very low scatter, surface contamination is extremely important since a few
average size dust particles (diameters rv l um) will produce more scattering than
the rest of the surface! If a new surface finishing method is being developed (new
polishing method, single-point diamond turning, magnetorheological polishing,
etc.), an optical or mechanical profiler measurement would be appropriate. If a
new coating technique is being developed, a small area of the coating should be
measured with an atomic force microscope to show the "lumpiness" of the coat-
ing. If the sample is a tiny replacement plastic eye lens or a soft or hard contact
lens, probably the surface should be inspected in a high-quality optical microscope
using the differential interference contrast technique.
(2) Depending on the sample size, shape, and quality, some measurement tech-
niques may not be possible. For example, if the sample is a several-meter-size
component of a segmented telescope mirror, it will not fit under the measuring
heads of normal laboratory instruments. If the project is sufficiently important and
there is money available, often special instruments can be built to make the mea-
surement. If the sample is not compatible with a vacuum environment, it cannot be
observed or measured in a scanning electron microscope or a transmission electron
microscope.
(3) If there are many samples of the same type, all of which need to be measured,
careful, individual measurements are not possible. Depending on the importance
of the project and the funding available, a special automated instrument can be
built that will do all the measurements automatically and only inform the user
when samples are out of the surface specification range. If the particular kind
of measurement that is desired is very expensive and requires a skilled operator
to make the measurement, it is sometimes possible to substitute another kind of
measurement that is cheaper and yields similar information.
(4) If the person who has the sample is unaware of the surface condition and wants
rapid results, often the metrologist does not take the time to inspect the surface
condition, but immediately proceeds to take the desired measurements. If the results
are not carefully inspected to see that they look reasonable, it is possible that the
entire "roughness value" is caused by contamination on the surface or mishandling
marks, so that the measurements are meaningless! In some cases, contamination
on the sample surface cannot be removed without damaging the surface. In such a
case, the only solution is to provide a clean sample.

1.2.2. Relations Between Surface Metrology Techniques

Figure 1.3 shows examples of certain types of structure that may be present on
optical surfaces. The first line shows the structure of a deposited film, whose
heights and lateral dimensions (surface spatial wavelengths) are small compared
to the illuminating wavelength. (In all the three illustrations, the vertical scale (rv a
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FIGURE 1.3. Schematic representation of different kindsof structure thatcan be presenton
opticalsurfaces. The vertical scaleof surface heights has beengreatlyexpanded relative to
the horizontal scaleof surface spatialwavelengths.

few nanometers or less) is small compared to the horizontal scale.) The instrument
used to measure the structure of a film of this sort must be able to completely
resolve the structure or else the measurement will be meaningless.

The second line in Fig. 1.3, "Polishing marks, grain structure, scratches" is the
most common type of roughness on polished optical surfaces. If the horizontal and
vertical scales were equal, the scratches would appear as shallow V's instead of
sharp vertical spikes. This type of structure covers the entire surface and produces
so-called microirregularity scattering.

There are other kinds of possible surface structure such as a sine wave or pseudo-
sine wave in one or more directions, unidirectional grinding marks (most often seen
on metal samples), single-point diamond turning marks in the form of concentric
circles or arcs of circles (turned off center, i.e., "fly cut"), grids made with square
wave or v-shaped grooves, and other types of special surface structure made to test
various types of theories.

The third line in Fig. 1.3 is the so-called optical figure, or departure of the
actual surface from its ideal shape. This is often called "form" or "waviness" and
is the largest component of the surface roughness, with the thin film "lumpiness"
being the smallest component. Optical figure is generally measured in some sort
of interferometer with results given in fractions of a wavelength. An optical figure
of A/500 peak-valley, measured at a wavelength in the visible spectral region,
is an excellent figure on an optic. However, converted to nm, it is 1.3 nm, while
microirregularity roughnesses are sometimes smaller than one-tenth this much.
Optical figure is not generally considered part of surface roughness, unless one is
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FIGURE 1.4. Relation between different parameters used to characterize optical surfaces.
The two primarily measured quantities are surface profiles and angle-resolved scattering
(Fig. 19 in Ref. 1).

concerned with mid-spatial frequency (or mid-spatial wavelength) roughness on
very large mirrors that can have spatial wavelengths of em or longer.

The conclusion to draw from this example of the three scales of roughness is that
the instrument chosen to take the measurement should have a lateral resolution and
profile length (spot size for scattering measurements) appropriate for the kind of
roughness that is being measured. All three scales of roughness are normally super-
posed on a surface. For example, a coated surface would have the tiny roughness
bumps of the coating superposed on the longer spatial wavelength roughness com-
posed of polishing marks. Then, the entire surface would be slightly wavy (optical
figure), illustrating deviations of the actual surface from the desired shape.

Figure 1.4 shows the relations between different kinds of measurements that can
be made on optical surfaces. These blocks assume that the surface heights are small
compared to the light wavelength, so that first-order scalar or vector scattering the-
ory is valid. Scalar scattering theory is less useful because polarization information
is missing. Normally, the starting measurements are profile (area topography) mea-
surements or scattering measurements. Both types of measurements can be used
to determine (band-width limited) parts of the power spectral density function, the
so-called master curve for a surface, by the way of intermediate functions and ap-
propriate Fourier transforms. (The lower block marked (Fourier transformationj/
is shorthand for the square of the magnitude of the Fourier transform.) However,
it is not possible to go from a power spectral density function to a surface profile
because the phase information about the relation of the various kinds of surface
structure to each other is missing.
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FIGURE 1.5. Idealized power spectral density function (PSD) plotted versus surface spatial
frequencies (reciprocal of surface spatial wavelengths). Arrows between vertical dashed
lines indicate surface spatial frequency ranges measured by different instruments or tech-
niques (Fig. 35 in Ref. 1).

Figure 1.5 shows a one-dimensional synthetic power spectral density (PSD)
function that has the general shape of many that have been measured for isotropic
polished optical surfaces. The horizontal (x) axis is surface spatial frequency (re-
ciprocal of the surface spatial wavelength); in this representation the optical figure
(long spatial wavelengths or low spatial frequencies) is on the left-hand end of
the x-axis. The fine structure from thin films on the surface (short spatial wave-
lengths or high spatial frequencies) is on the right-hand end of the x-axis. The
magnitude of the various roughness components is given on the y-axis. Note that
the magnitude of the optical figure is many orders of magnitude larger than the
magnitude of the "lumpiness" of a thin film coating. The magnitude of the mi-
croirregularity roughness lies between these two limits. Also on this graph are
shown various vertical bands (ranges of surface spatial frequencies) that are typi-
cally measured by different kinds of surface measuring instruments or techniques.
Notice that the profilers have a slightly larger spatial frequency range than do
the ARS measurements, but the atomic force microscope has the largest spatial
frequency range of all. However, these spatial frequency ranges may be slightly
misleading because a single measurement taken with the AFM has a maximum
size of 100 JLm x 100 JLm (spatial frequencies 0.01 JLm-1 x 0.01 JLm-1) but with
the typical 1024 x 1024 data points in the image only resolves features down to
a size of f"'V0.1 /.lm x 0.1 /.lm (spatial frequencies 10/.lm-1 x 10/.lm-I ) . To ob-
tain the extra decade of higher spatial frequencies, smaller image sizes must be
measured '(the number of pixels in the image does not change because that is the
number of pixels on the detector). But smaller image sizes sample even less of the
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surfacearea,makingit evenmoreimperative to coat the surfaceuniformly. All sur-
facesmeasuredwith an AFM,optical,or mechanical profilers shouldbe carefully
inspected prior to the measurements to make sure that the area being measured
represents the overall structure on the surface. The basic problem of generating
a PSD from measurements made on the same surface using different instruments
that measurein overlapping spatialwavelength bandsis that the segmentswill not
necessarily overlap.P

The precedingdiscussion applies to a PSD calculatedfrom line profiles. There
are also two-dimensional PSDsthat can be calculatedfromarea topographic maps
or ARS data. If a surface is isotropic, it is often possible to fit a measured one-
dimensional PSD to a relation proposed by Church and Takacs" that contains
constants A, B, and c. The fittedconstantsare then used in anotherrelation, also
proposedby Churchand Takacs, to calculatethe two-dimensional form ofPSD,45
as summarizedin Sect.4.D of Ref. 1.The result is an area PSDmap of the surface.
For an isotropic surface, the PSD map has circular symmetry with a spike at the
center (contribution from the optical figure). A radial line taken in any direction
can look similar to the curve in Fig. 1.5 except that it is displaced vertically on
the y-axis. However, if, for example,a surfacehas unidirectional structure in two
orthogonal directions, the PSD would have structure along narrow bands in two
orthogonal directions, such as the one shownin Fig. 34 of Ref. 1.

Figure 1.6presentsmore information about specific typesof surfacemeasuring
instruments and techniques including the AFM, optical and stylus profilers, and
ARSandTISscatteringmeasurements. It is probablymisleading to showa rangeof
spatialfrequencies foraTISmeasurement becausethisentirebandiscombinedinto
oneTISmeasurement. Thisiswhythereis nocorresponding bandonthePSDgraph
showninFig. 1.5.ARSmeasuredatnormalincidencewouldhavea narrowerspatial
frequency bandthan the onefor a largeangleof incidence(fora givenillumination
wavelength). It is alsoimportanttorealizethatthermsroughness valuesdetermined
byARS (orTIS) dependon someformof first-order scattering theorythat assumes
that the surface is covered by many tiny grooves (such as multiple diffraction
gratings)that are orientedat differentangles to each other. Each gratinghas some
groove spacing and some phase associated with the surface structure. Therefore,
the gratings oriented at different angles to each other have different amplitudes
and phases. In a profile or areal topography measurement, slices of the structure
on the surface are measured and then, through the Fourier transformprocess, are
converted intopowerspectraldensitycomponents. Anexampleofhowthisprocess
works is illustratedin Chap. 4 of Ref. 1.

The range of surface heights (roughnesses) that can be measured (shown in
parentheses abovethe solid bars)dependson the specific instrumentor technique.
Toobtain the widerange of surfaceroughnesses shownfor the opticalprofiler, the
phase measuring interferometer measures small roughnesses and the white light
interferometer measures larger roughnesses. For the ARS and TIS techniques,
the minimum surface height depends on the sensitivity of the instrumentand the
amount of scattered light present in the system. The maximum surface height is
limited by the theory (the assumption that the surface roughness must be much
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FIGURE 1.6. Ranges of roughness (numbers inparentheses) andsurface spatialwavelengths
(horizontal bars) accessed by different measuring techniques. The horizontal axis is a log
scaleof surface spatialwavelengths (Fig.22 in Ref. 1).

smaller than the illuminating wavelength), so this value depends on the illuminating
wavelength and how close to the limit one wishes to push the theory.

1.2.3. Surface Inspection and Imaging

For all kinds of surface characterization, the surface of the sample must be visually
inspeqted to see what is on it. There may be contamination or unexpected structure
present that would interfere with the measurement. A decision needs to be made
whether to clean the sample to remove contamination or to obtain another sample
if the current one has additional unexpected structure.

Visual inspection can be as simple as observing the sample by eye, either under
ordinary room light, in bright sunlight, or in a darkened room and using a directed
white light beam or laser source. Since what is being observed is light scattered
from surface imperfections, the most effective angle is very close to the direction of
specular reflection where the scattered light is a maximum. Visual inspection will
also show whether a supposedly flat sample has appreciable curvature or waviness
that would interfere with the measurement. A convenient way to do this if the
sample is reasonably smooth and gives a nice specular reflection is to observe the
reflection from an object having parallel bars or a regular grid, such as the pattern
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formed by a window frame or a pattern in a ceiling. To easily detect waviness,
slightly rotate the sample and see if the shape of the lines or bars changes. A
piece of a silicon wafer makes a good specimen to demonstrate the effect. The
visual observation should always be done in a reasonably dust-free environment
(dependingon the type of surface being characterized).Remember to always hold
the sample tightly in glovedfingersand do not breatheon it or "speak to it," to keep
from putting spit marks on the surface. If it is necessary to transport the sample
outside of its protective container for any distance, a good way to do it is to hold
the sample so the surface is facing down; in this way,dust cannot settle on it.

If visual inspectionis notadequateto see thedesiredsurfacedetail,progressively
higher magnifications can be used, starting with a magnifying glass or a lOx
loupe. If available,a light microscopeused at a low magnification, preferablywith
differential interference contrast or dark field viewing, is ideal. By observing the
samplesurfaceunder the microscopeand manuallytranslatingit, the entire surface
of a small sample can be easily scanned. A higher magnification can be used to
obtain more detail on a particular defect. Scanning electron microscopes are not
helpful because it is very difficult to show detail on smooth surfaces; also, the
sample must be coated with a conducting metal filmin many SEMs. Furthermore,
the surface will become more contaminated for longer inspection times.

An image of the sample surface is often desired. A film or digital camera may
be used for low magnification photographs, preferably with oblique illumination
to bring out surface detail. For higher magnification (50x-250x), a differential
interference contrast (Nomarski) microscope is ideal.t" (see also Chap. 2B in
Ref. 1). Figure 1.7 shows a schematicdiagram of a Nomarskimicroscope with an
overall view in Fig. 1.7(a) and a detail of the two sheared images on the sample
surface in Fig. 1.7(b). White light from an illuminator (often followed by a green
filter) passes through a polarizer and then through a Wollastonprism, where it is
split into twobeamspolarizedorthogonallytoeachother.Themicroscopeobjective
lens focuses this light into two overlappingspots on the surface whose centers are
separated by a small distance, typically r-v 1 tuu, that depends on the magnification
of the lens. Any small defects or slope variations on the surface will introduce a
relative phase difference between the two beams. The reflected beams again pass
throughthe lens and theWollastonprism,interferingin the imageplane.Each color
or shadein the image is associatedwitha specificrelativephasechangebetweenthe
two beams. By using a retarder/polarizer combination, the background color can
be canceled, leavingthe part of the image that is causedby surfacedefects, i.e., any
features that have differences in height or optical constants from the surrounding
surface.Surface"detail is best seen on surfaceshavingmoderateto highreflectance.
However, with sufficient care, structure on a bare glass surface (4% reflectance)
can also be seen.

Figure 1.8 shows Nomarski micrographs of four typical types of structure on
optical surfaces.The imageon the left (molybdenumpolished)representsa normal
polished surface that has different sizes of polishing scratches going in random
directions, and also some isolated point defects. The second image (fused quartz
bowl feed polished) is of a supersmooth optical surface made by a special bowl
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MOLYBDENUM FUSED QUARTZ MOLYBDENUM
POLISHED BOWL FEED POLISHED POLISHED

L-J

100 11m

COPPER
DIAMOND TURNED

FIGURE 1.8. Nomarski micrographs of various typesof surface structure thatcan occuron
optical surfaces.

feed or recirculating feed polishing process'" that leaves no visible surface defects.
The tiny surface scratches are buried beneath a smooth, redeposited layer of fused
silica. The third image (molybdenum polished) is of well-polished polycrystalline
molybdenum that shows the grain structure on the surface of the material.t? The
fourth image on the right (copper diamond turned) shows a single point diamond-
turned copper surface. Structure on this surface is a combination of the adjacent
groves of the cutting tool, larger spaced, deeper machine vibration grooves, and
grain structure of the polycrystalline copper sample. Many other kinds of surface
texture can easily be seen on other surfaces.

Analogue and digital enhancement of Nomarski micrographs bring out even
more detail on smooth surfaces, such as that of a silicon wafer shown in Fig. 1.9.
In this way, the original featureless Nomarski micrograph can be transformed into
the image in Fig. 1.9(f) that shows a structure whose heights are close to the atomic
spacing in the silicon lattice . Note, however, that since the lateral resolution is not
very large (each image covers r- I mm x I mm on the surface), individual atoms
are not being imaged. Although it is relatively easy to photograph structure on
surfaces, it is quite difficult to measure heights of the structure on the microscope
images (see Chap. 2B in Ref. 1). One optical profiler can measure these heights
using the Nomarksi principle ofmeasuring surface slopes (see Sect. 1.2.4) although
without obtaining an image of the surface .

There is a problem using a Nomarski microscope to observe or photograph a
surface that is made up of a structure having variations in the optical constants.
These produce different phase changes on reflection and thus appear to have differ-
ent heights on the surface, even if the surface is perfectly flat. Randomly oriented
crystallites in a material such as polycrystalline beryllium can also have different
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FIGURE 1.9. Nomarskimicrographs of the same place on a singlecrystal silicon wafer sur-
facewiththedataprocessedindifferentways:(a)bright-fieldreflectionimage; (b)Nomarski
image,no enhancement; (c)analoguecontrastenhancementof (b); (d) backgroundintensity
leveling of (c); (e) digital contrast enhancement of (d); and (f) nonlinear digital contrast
enhancementof (e) (Fig. 4 in Ref. 1).

phase changes on reflection on a polished surface and produce the same effect as
a stepped surface.

Other more specialized types of microscopes can be used to form images of
certain kinds of surfaces. The confocal microscope is excellent for showing the
structure of fibrous materials such as paper (see Chap. 2E in Ref. 1); a TEM will
show structure of multilayer films on cross sections of appropriately prepared
samples, and an AFM can be used in various modes to show surface structure at a
high lateral resolution (Sect. 1.2.6).

1.2.4. Optical Profilers

To obtain information about the actual topography of a surface, either in a line
(profile) or as an area, either an optical profiler or a mechanical profiler may be
used . The optical profiler is noncontact, so does not touch the surface, while a
mechanical profiler has a diamond probe that contacts the surface and often leaves
a line where it has moved across the surface.The optical pro filers have either a linear
detector array for measuring a profile or an area array for obtaining an area map,
so they take data in parallel. Mechanical profilers take data sequentially, so they
are much slower. Most surface topography is now measured with optical profilers.
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FIGURE 1.10. Schematicrepresentation of theaveraging effectof a one-dimensional surface
profilemade by a noncontactoptical profiler(square bars) comparedwith a profile made
witha stylus probe. The verticalaxis hasbeengreatlyexpandedcomparedto the horizontal
axis (Fig. 12 in Ref. 1).

In spite of all the advantages optical profilers have over mechanical profilers,
one disadvantage is that optical profilers have a lower lateral resolution for the
same linear profile length, as shown in Fig. 1.10. The detector array used in optical
profilers has a fixed number of pixels, normally 1024 x 1024, for images taken
with all microscope objectives. The surface area corresponding to one pixel in the
array depends on the wavelength of the illumination, microscope magnification,
diffraction limit of the microscope objective, spacing between pixels, and other
factors (see Chap. 3 in Ref. I). A mechanical profiler has more flexibility and the
user can choose the sampling interval, so that more data points can be measured per
scan line than the fixed number ofpixels in the detector array. Also, the sharp probe
of a mechanical profiler has a better lateral resolution than the diffraction limited
microscope objectives used for the optical profilers. The net result , as shown in
Fig. 1.10, is that the measured rms roughness for one profile made by an optical
profiler is smaller than the value measured by a sharp-pointed ('" I {tm radius)
diamond stylus on a mechanical profiler for the same place on the surface. A
better lateral resolution can be obtained with an optical profiler by using a higher
microscope magnification, but the total profile length will be shorter.

We will now describe the three main types of optical profilers that are cur-
rently in use. But first the historically important instrument that still has the lowest
noise level of any of the optical profilers will be described. This instrument was
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FIGURE 1.11. Schematic diagram of the optical measuring head of the Sommargren inter-
ferometer (modified from Ref. 12).

developed by Gary Sommargren while he was at Lawrence Livermore National
Laboratory and was described in a 1981 publication.F Later, a limited number of
instruments were manufactured by the Zygo Corporation.i" A schematic diagram
of this instrument is shown in Fig. 1.11. The common path interferometer uses a
single mode He-Ne (632.8 nm) laser beam with its center frequency split by an ax-
ial magnetic field on the laser tube into two Zeeman components with a frequency
difference of 2 MHz. The two-component, collinear beam is then split into two
spatially separated, orthogonally polarized beams by a Wollaston prism which are
then focused by a microscope objective onto the sample surface. The reference
beam lies on the mechanical axis of a precision rotary table on which the sample is
mounted face down. The test beam is offset by rv160 J.1m. During a measurement,
the table slowly rotates through a full circle. The test beam describes a small circle
on the sample whose circumference is 1 mm. During the rotation, the two beams
are recombined spatially but are slightly displaced from the incoming beam. The
small phase differences between the test and reference beams are measured by a
heterodyne technique, and are then converted into height differences. The circle
is then unwrapped and is plotted as a linear profile. With low noise electronics,
a profile repeatability of 0.006 nm can be consistently obtained. (Other optical
profilers have a noise/repeatability level of rvO.1 nm.)

A majority of commercial optical profilers use the principle of phase measuring
interferometry (PMI) for accurately measuring small surface roughnesses (less
than "A/2). Often the PMI principle is combined with a white light interferometer
into one instrument. The original PMI instrument was developed by James C.
Wyant and his PhD student Chris Koliopoulos at the Optical Sciences Center,
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FIGURE 1.12. Schematic diagram of the phase measuring interferometer (modified from
Veeco-WYKO literature, Ref. 51).

University of Arizona and described in a paper in 1985.13 Information about the
current PMI family of instruments can be obtained from Veeco Instruments, Inc.51

A schematic diagram of this instrument is shown in Fig. 1.12 (Chap. 3, Ref. 1). The
so-called 2D version that produces a line profile will be described here, although
the more common type is now the 3D version that measures area topography
on a sample. A beam of white light passes through a narrow-band red filter, is
reflected by a beam splitter, and is focused by a microscope objective onto the
sample surface (test surface). A beam splitter that is located between the objective
lens and the test surface reflects part of the incident beam to a small, aluminized
reference surface. After reflection from the test and reference surfaces, the beams
recombine at the beam splitter, again pass through the objective lens and form
interference fringes on the surface of a photodiode detector array. The fringes can
also be seen in the eyepiece. The reference surface is slightly tilted relative to
the test surface to form a small number (3 or 4) straight-line fringes. During the
profile measurement, the objective lens, beam splitter, and reference surface are
oscillated parallel to the optic axis with a piezoelectric transducer that sweeps the
interference fringe pattern across the detector array. The array is read four times per
oscillation. The number of oscillations is user selected and is normally between 4
and 64. In the analysis, the phase of the interference fringe pattern on each detector
pixel is determined by an algorithm known as "averaging of buckets." The phase
differences on the pixels are converted into height differences, and the profile is
displayed on the monitor screen. The detector has a constant number of pixels, so
the profile length and lateral resolution will vary depending on the magnification
of the objective lens. The lowest magnification 1.5x lens produces an 8.87-mm-
long profile and the highest magnification 200 x lens in a Linnik interferometer
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FIGURE 1.13. Schematic diagramof a whitelight interferometer showing a photograph of
the instrument, schematic diagram of the optical components, and a plot of the electrical
signal from one pixel as the optical path of the beam splitter-reference surface changes
relative to the optical path of the beam splitter-sample - see text (modified from Veeco-
WYKO literature, Ref. 51).

configuration yields a 66-/lm-Iong profile . The roughness of the reference surface
in the PMI instruments is "-'0.6-0.8 nm rms and limits how smooth surfaces can
be that are measured with this type of instrument unless one of several correction
methods is used to eliminate the reference surface roughness.V If the roughness
of the reference surface is eliminated, the instrument has a noise level and gives
approximately repeatable roughness values "-'0.1 nm rms.

The white light interferometer (WLI) follows the Michelson interferometer de-
sign but is used for a different application. The first commercial instrument became
available around 1993. The WLI, shown schematically in Fig. 1.13, operates on a
different principle from the PMI (Chap. 3 in Ref. 1 and references therein.) The
white light source contains a continuum of all wavelengths in the visible spectral re-
gion and the reference surface is perpendicular to the optic axis of the instrument,
in the configuration of a Michelson interferometer. During a measurement, the
beam splitter and reference surface move in one direction away from the surface.
Consider one tiny spot on the sample surface that is imaged on one pixel of the
detector. At the start of the scan, the distance from the sample to the beam splitter
is less than the distance from the beam splitter to the reference surface. Because
of the white light illumination, there are no interference fringes because the dif-
ferent wavelengths have different equal path length distances and hence do not
produce coherent interference fringes unless the path lengths of both arms of the
interferometer are equal. Thus, there is a constant signal , as shown in the graph
at right that plots the detector signal for one pixel as a function of optical path
difference (between the beam splitter and sample surface and beam splitter and
reference surface). As the equal path position is approached, the constant signal
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gradually changes to an oscillatory one because all the wavelengths are producing
their interference maxima and minima coherently. When the two paths are exactly
equal, the amplitude of the oscillation is a maximum. As the equal path length con-
dition is passed, the oscillations damp out, and the signal again becomes constant.
The envelope containing the signal oscillation normally has a Gaussian shape. The
maximum of the envelope is analytically determined. Because the height of the
beam splitter is correlated with the electrical signal, the equal path condition for
the one pixel has been determined and can be saved. To obtain the maximum accu-
racy, various algorithms are used to determine the height above a preset reference
level corresponding to the peak of the oscillatory signal. The same process occurs
simultaneously for all the other pixels in the detector array, although the height
corresponding to the oscillation maximum height is different because of the topog-
raphy undulations on the sample surface. The result of the WLI measurement is a
topographic map of a small surface area. Since the number of pixels in the detector
array is constant, the size of the measured area, lateral resolution, and sampling
distance will depend on the magnification and resolution of the microscope objec-
tive and other instrumental factors. The WLI does not have the small roughness
limitation of the PMI instruments but the original instrument did not have as good
height sensitivity because simple algorithms were used to locate the maxima of the
oscillation envelope. Now much more sophisticated algorithms are being used so
the height sensitivity has considerably improved. The maximum surface heights
that can be measured with a WLI depend on the maximum translation of the beam
splitter-reference surface unit and the mechanical rigidity of the instrument, and
is normally several mm.

The third type of interferometer uses the principle of the differential interference
contrast microscope that had been described in 1955 by Georges Nomarski/" In
the 1984-1985 time frame, Jay Eastman and Jim Zavislan14,15 proposed a profiling
instrument that measures surface slopes (i.e., height differences between adjacent
data points) and then integrates them to obtain a surface profile. As described in
Chap. 3B of Ref. 1, a linearly polarized laser beam passes through a Wollaston
prism where it is split into two beams that are slightly spatially separated and or-
thogonally polarized. A microscope objective lens focuses the two beams onto the
sample surface as in a Nomarski microscope. The beams reflect from the surface,
pass again through the Wollaston prism, are spatially combined, and continue to
a polarizing beam splitter where interference fringes are formed. The polarizing
beam splitter separates the two beams into their two polarized identities and di-
rects them to two detectors. The difference between the detector signals divided
by their sum is proportional to the height difference or surface slope between the
average levels of the areas illuminated by the two beams. In taking a profile, the
microscope objective lens-Wollaston prism combination moves along the surface
to a maximum user-set length (currently 100 mm). The surface slopes are then
integrated to produce a profile. If a topographic area image is desired, a translation
stage steps the sample surface one unit in the y-direction, another scan is taken, and
the process is continued. This is not a true topographic map because the surface
height is assumed to be zero at the start of each scan.
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1.2.5. Mechanical Profilers

Commercial mechanical profilers are primarily used in the machining industry
and only a few models are designed specifically for profiling optical surfaces.
These have stylus loadings that can be set to a few mg force so the stylus will not
damage soft optical surfaces and coatings. Although most mechanical profilers
are partly automated and require minimum operator skill, the sample must still be
leveled so the profile remains within the height sensitivity range of the detector,
a linear variable differential transformer (LVDT). Also, mechanical profilers take
data sequentially along a line, so they are considerably slower than optical profilers.
If the stylus speed is too fast, the stylus skips over parts of the surface and misses
finer surface detail. If the stylus speed is too slow and the sampling distance is
short, nonlinear drift can occur during data acquisition that cannot be corrected,
yielding a curvature artifact on the surface. Additionally, the large number of
data points may overfill the allocated memory and will be too large to process
rapidly.

Once a surface has been profiled either with an optical or a mechanical profiler
and height differences above or below a mean surface level have been determined,
statistical properties of the surface can be calculated from the digitized data in-
cluding root-mean-square (rms) roughness, peak-to-valley (PV) roughness, height
and slope distribution functions, autocovariance function, power spectral density
function, and many others (see Chap. 4 in Ref. 1).

1.2.6. Atomic Force Microscopes (AFM)
The AFM was originally developed to study single atoms and molecules, but has
been adopted by the optics community to use for studying fine detail on small
surface areas «100 /Lm x 100 /Lmto ~1 /Lm x 1 /Lmor smaller). The operating
principles of a commercial AFM are illustrated in Chap. 2D in Ref. 1, in Ref. 53,
and in company literature. These instruments are able to operate in the contact mode
with a tiny diamond probe touching the surface and moving over it in a raster mode
and also in the noncontact or "tapping" mode in which the diamond probe oscillates
above the surface and only touches it during a small fraction of the oscillation. Other
scanning probe technologies have been incorporated into commercial AFMs. The
most useful ones for surface characterization are the lateral force (friction) mode
to show grain structure on a very smooth, polycrystalline surface, and the phase
contrast mode that emphasizes, for example, grain boundaries in a deposited metal
film (see Chap. 2D in Ref. 1).The standard AFM probes have radii ~10-50 nm and
there are also special sharper probes with radii in the 4-10 nm range that can resolve
even smaller lateral structure. A superpolished Zerodur (low expansion glass)
surface was scanned with a 10 nm radius probe.P" The harder ,B-Si02 crystallites
with an average measured diameter of 11 nm, could be easily seen because they
slightly protruded from the fused silica matrix, giving an overall roughness of
0.16 nm rms. The same surface had been previously profiled with an ~40 nm
radius probe but the ,B-Si02 structure was not seen and the measured roughness
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was 0.065 nm rms. The structure on this Zerodur surface may be the finest surface
detail profiled on an optical surface.

1.2.7. Total Integrated Scattering and
Angle-Resolved Scattering

There are several commercial ARS instruments including one-of-a-kind instru-
ments that have been built for special purposes. One instrument" is intended for
measuring machined surfaces but is now being used to measure rougher optical
surfaces. It has a near infrared light-emitting diode as a light source at a large angle
of incidence and measures light scattered at different angles close to the specularly
reflected beam in the plane of incidence. The rms roughness is calculated from
first-order scattering theory. The original instrument measured roughness in the
range from rv25 nm to rvO.25 /.Lm, although rougher surfaces could be measured
with suitable empirical calibration. Recently it has been redesigned to measure
smoother surfaces with roughnesses as small as rv2.5 nm rms.

Another scatter-measuring instrument has recently been introduced.f ARS or
light emitted from a surface can be measured simultaneously at closely spaced
angles in the reflection hemisphere (or sphere) at a wavelength of 635 nm. There are
six measurement ports in a geodesic structure on the hemisphere, with a pentagon-
shaped lens as the first element of a multi-element lens on each port. Six 640 x
480 pixel video cameras (14 bit digitization increment giving a dynamic range
of 1:16,000) take images at the rate of 15 frames/s (60 ms acquisition time).
All cameras are synchronized so the images can be stitched together forming a
complete hemispherical array of data points, having an angular resolution ofO.15°.
A variety of software analysis programs are available.

All scattering measurements for small roughness surfaces rely on a theory to
relate the scattered light from the surface to a roughness value. The assumptions
of these theories are that the surface heights are small and the lateral correlation
lengths are large compared to the illuminating wavelength (i.e., small surface
slopes). The scattering is assumed to come from "correlated roughness" in which
all the surface microirregularities act together, compared to scattering from isolated
particles or point scatterers (see Ref. 1, Chap. 4 including the references). There
are many scattering theories in the literature; some of these are used to interpret
scattering measurements made in the laboratories of the groups that have developed
the theories.

1.2.8. Surface Contamination and Cleaning

As mentioned in Sections 1.2.1 and 1.2.3, surfaces should be visually inspected
before they are measured. It is much better to keep a surface clean than to have
to clean it later. Thus, surfaces should be stored face down in dust-tight boxes,
preferably in clean areas. If any cleaning is necessary, the surfaces should be
inspected before, during (if possible), and after they are cleaned.
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Cleaning optical surfaces is more of an art than a science. Many techniques are
available depending on the type of surface and the type of contamination to be
removed (see Chap. 8 in Ref. 1 and the references therein). If a surface is simply
dusty, it can often be cleaned by directing a jet of clean air or dry nitrogen onto the
surface or by using a hand air blower. Unprotected soft metal surfaces (silver, gold,
aluminum, platinum, copper, etc.) will be damaged if they are touched by anything
solid during the cleaning process. It is possible to carefully squirt a metal surface,
held vertically, with a solvent such as water, alcohol, acetone, tricholorethylene,
benzene, or another organic solvent. Alcohol (ethanol or methanol) is the best
general purpose solvent. It drains off a clean surface in a thin sheet and drops of
liquid can be blotted off the sample edge. Acetone is such an excellent solvent that
it will dissolve many kinds of contamination that other solvents will not remove.
It is also very fast drying. If drops of acetone are allowed to dry on a surface,
white spots will remain that cannot be removed by any solvent, including acetone.
A jet of clean air can be used to chase a solvent drop off the surface. However, an
isolated drop indicates that there is still contamination remaining on the surface.
Isolated particles on a hard surface can sometimes be removed by a cotton swab
moistened in alcohol. Care is needed not to leave a larger footprint of dried residue
on the surface.

Uncoated glass substrates can be washed in detergent, with or without ultra-
sonic agitation, rinsed with copious amounts of ultrapure water, spun, dripped, or
air blown dry. Any paper, cloth, etc. that touches the wet surface will probably leave
a smear that will affect the quality of deposited coatings. Other more specialized
cleaning techniques are discussed in Chap. 8 of Ref. 1. When handling optics, un-
powdered, polyethylene clean-room gloves should be worn. These gloves dissolve
in acetone, so gloves of another material should be worn when using acetone. In
summary, never handle optics with bare hands because dirt and oils on the fingers
can affect the adhesion of coatings. Never talk to an optical surface unless a face
mask is worn because spit marks can easily strike the surface (they can be removed
with water but not with organic solvents). Also, no cleaning is better than bad
cleaning.

1.3. Current and Future Surface Metrology Requirements

1.3.1. General Comments

There are many current unsolved surface metrology needs as well as desired future
capabilities. These are for optical applications and also for other fields such as mi-
croelectronics, communications, medical optics, and military and space applica-
tions. They apply to integrated circuit technology, miniaturized components at the
micro- and nanolevel such as MEMS (microelectronic and mechanical systems),
components for optical fibers, ultraviolet and soft x-ray mirrors, and steep aspher-
ics from normal size to meter size or larger. There are also current requirements to
measure surface finish on difficult-to-reach surfaces such as gear teeth, undercut
steps, and cavities. Some measurements simply require an accept-reject decision



1.Characterization of Surface Roughness 27

for mass production applications. In other cases, initial inspection of starting com-
ponents (for example, large, expensive silicon wafers) is mandatory to keep from
producing defective circuits.

It may be possible to customize or adapt existing metrology instruments, but
new concepts are also urgently needed. Polarization information would be useful in
scatter-mapping ofcomponents, either to detect defects or for remote sensing appli-
cations. New theories are necessary, for example, to fill the gap between first-order
scalar and vector theories for small roughness and theories that cover large rough-
ness and steep slopes. There is no microirregularity scattering theory for the region
between the small and large roughness theories where the roughness is compara-
ble to the illuminating wavelength. Better theories are needed for scattering from
isolated particles (and clusters of particles) to be able to obtain information about
sizes, shapes, particle densities, and composition from scattering measurements.

Advances in surface metrology are made by three routes: (a) Graduate students
and their professors work on research problems at universities. This research often
has a relaxed time frame, and sometimes no direct applications unless it is funded
by a grant from a Department of Defense organization. (b) Research on press-
ing problems to meet industrial and military requirements is done in government
laboratories and by industries with government contracts. Industrial laboratories
also do short term applied research to develop new products that can be sold in a
year or so. The short term research is necessary so the stockholders can see how
their money is being spent and see the finished product. (3) Show stoppers are
major problems holding up a large military program. Massive amounts of money
are poured into such projects because the necessary research and development
was not done previously in a timely manner. The bottom line is that military and
industrial needs drive most of the development of new surface metrology that is
required to measure new state-of-the art products.

New and improved surface metrology instruments are made possible by ad-
vances in unrelated fields. Integrated circuits with narrower line widths and minia-
ture components in electronic circuits have made possible greatly increased com-
puting capabilities in tinier packages. Parallel computing capabilities, i.e., linking
many small computers together in parallel to perform repetitive operations, has
made possible additional increases in computing speed. In the future, optical inter-
connects and all optical computers will greatly increase computing speed because
the information will travel at the speed of light instead of at the speed of electrons.
New metrology instruments are benefiting and will benefit in the future from all
these advances in computers so they can be automated, faster, more accurate, and
more user friendly.

New types of optical components have also become available. New types of
detectors include high-density, high-performance array detectors that are spin-offs
from the digital camera and video camera industries. Light emitting diodes (LEDs)
and liquid crystal displays are cheap and readily available. The traditional cathode-
ray tube monitors and low intensity, direction-sensitive, monochrome liquid crystal
displays on laptop computers have been replaced with brighter, higher quality flat
panel displays. Since the power requirements for these new units are much reduced,
battery-operated devices are now possible.
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Conventionaloptical light sources have also greatly improved. The bright, en-
ergy efficientquartz-halogenlamps are used for optical applications,for example,
as light sourcesin metrologyinstruments,for microscopeilluminators,and also for
other applications such as in searchlights and lighthouses, replacing much larger,
lower brightness, tungsten-filamentbulbs. Automobiles now have quartz-halogen
headlightbulbsand stripsof red LEDs as brake light warningdevices.Red,yellow,
and green LEDs are used in long-lifetime traffic lights and "white" LEDs (com-
binations of red, yellow,and blue) are found in bright, long-life flashlightbulbs.

Miniature polarization components are being developed as part of nanosized
optical systems. Although the extinction ratios of these components are not as
good as for conventional, high-quality polarizers, they are more than adequate for
the specific applications. There are also many piezo-electric and similar devices,
making possible repeatable micromechanicalmotion.

All of the above components are available to be incorporated into the next
generation of surface characterization instruments. The challenge is to interest
creative, hardworking, clever people with innovative ideas to develop new types
of instruments.

1.3.2. Metrology ofMicrocomponents

OpticalMEMS(microelectronicmachines)are interferometersandcontrollersthat
primarilyuse opticalcomponentssuch as tiny interferometers,mirrors, lenses, and
polarizersalong withmechanicaldevicesto movethem. Surfacesof interferometer
mirrors need to be smooth, flat, and have low scatter coatings. Currently there are
no instruments to test them. Optical fibersused as light pipes for communications,
medicaloptics,and otherapplications,oftenhavespecialrequirementssuchas hav-
ing low dispersion of travellingmodes and preservingpolarizationproperties.The
surfacebetweenthe core and the claddingmust be as smooth as possible to prevent
excessivescattering, leakage into the cladding, and loss in the fiber. Signals should
be coupled into and out of fibers with maximized coupling efficiency. This means
that thesurfacesof thecouplersshouldbe smoothandlowscatter.Integratedoptical
components on silicon wafers have tiny features that need to be measured during
and after fabrication including undercut steps, film thicknesses, etch depths and
line widths. In the machining industry, there are tiny mating surfaces such as gear
teeth thatmusthavecontrolledsurfaceroughnessto maximizelubricationandmin-
imizeexcessivefriction.These andotherapplicationsrequire the ability to measure
feature dimensions, surface roughness, and scattering of very tiny components.

1.3.3. Metrology in the UVand Soft X-Ray Regions

The timetable for achieving integrated circuits with progressively narrower line
widths (now approachingsubmicronwidths), and the correspondingsizes of com-
ponents is requiring lithographic projection optics to be made of materials that
transmit extreme ultraviolet (EUV) and soft x-rays. (Sometimes mirrors must be
used instead.) Calcium fluoride, the primary candidate material at these short
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wavelengths, cannot be polished as well as high quality fused silica. Since ARS
is predicted to be inversely proportional to the fourth power of the wavelength,
a surface having a given roughness will scatter four times as much at half the
wavelength. Thus, techniques used for polishing EUV-transmitting materials must
be greatly improved and ARS systems must be able to measure scattering in the
EUV. Scattering theories must be further developed. Materials for high reflectance
multilayer coatings must be found that can be used to produce low absorption, high
reflectance, and low scatter multilayer coatings at EUV wavelengths. Because of
the extremely short wavelengths, these multilayer films will be only a few atomic
layers thick and must have extremely uniform thicknesses. Properties of these
coatings must also be measured. '

1.3.4. Metrology ofSteeply-Curved Spherical
or Aspheric Surfaces

Increasing numbers of optical systems now require steeply curved spherical or
aspheric surfaces to increase light gathering power or to reduce the number of
optical elements required. There are some new metrology instruments that can
measure the optical figure of small areas of these surfaces, and then stitch them
together by using appropriate stitching algorithms. 55 The instrument that measures
each small area is currently a standard interferometer'" that measures surface shape
but not surface roughness. The current generation of metrology instruments cannot
handle very small or very large steeply curved surfaces. In the future, this type of
instrument will be improved to meet customer requirements.

1.3.5. Polarization ofScattered Light
for Target Discrimination

Current military projects are looking at new methods to distinguish targets from
backgrounds by remote sensing from satellites. Passive infrared radiation has been
used for this purpose for many years in night vision instruments (for example to
detect a camouflaged tank with its motor running in a forest). One of the methods
being considered is to detect the polarization of the scattered light that is produced
when a signal beamed from an active airborne system strikes a target. To achieve
real-time data processing, such a system would have to be extremely sensitive and
have high-throughput polarizers and analyzers with moderate extinction ratios.
While this application does not require a theory to interpret the results, other
applications using polarized scattered light do need a theory.

1.3.6. Automated, Rapid-Response Systems
with Accept-Reject Capabilities

There are current requirements, and there will be many more in the future, for in-
struments and entire systems to operate remotely, without human intervention, to
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measure certain surface parameters and decide whether to accept or reject a partic-
ular item, or to instantly stop production before a catastrophic failure occurs. These
systems require rapid data acquisition of topography, dimensions, feature heights,
surface or bulk scattering, or other properties. Such systems are starting to look fea-
sible, but clever sample handling, instrument mounting, and extremely fast number
crunching of large data files are required. The instrument designer and programmer
must take into account all possible scenarios in the automated system. At first the
systems will be custom built, but as the demand grows they may later be made into
product lines. There will be other pressing surface measurement problems in the
future that will be needed to characterize instruments that are currently only ideas
in clever people's minds. It has been said that if someone can think up a device
that will perform a certain function, someone else will figure out how to build and
test it. This is the way of the future for surface characterization instruments.

1.4. Summary

This chapter contains a brief history of the origins of surface characterization
instruments along with the circumstances that expedited their development. We
have described the current collection of useful, commercially available instruments
and have mentioned some current and future requirements for more sophisticated
instruments and techniques. Although this is primarily a metrology-oriented pre-
sentation, surface scattering theories are essential for interpreting measured scat-
tering data. Surface characterization could be considerably improved if theories
were better able to interpret the scattering measurements. Many other surface char-
acterization topics that have been omitted from this brief presentation can be found
in Ref. 1. Let us hope that, in another decade, all the current surface metrology
problems will have been solved and that the next generation of surface character-
ization instruments will be much more accurate, user-friendly, faster, and operate
remotely, if desired.
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The Kirchhoff and Related
Approximations

A. G. VORONOVICH
NOAA/Earth SystemsResearchLaboratory, 325Broadway, Boulder, CO 80305

2.1. Introduction

The Kirchhoff approximation (KA) is one of the two classical approaches in the
theory of wave scattering. It represents the short-wavelength limit, which is similar
to the semi-classical approximation. It is impossible to encompass in one standard-
size paper all the aspects of the KA. Such questions as the criterion for the validity
of the KA, shadowing and multiple reflections, statistical aspects, practical appli-
cations and comparisons with experiments are not even mentioned here. Instead
this paper provides a review of some foundations of this approximation as well as
some other approaches that appear naturally as its generalizations.

For the reader's convenience the paper tries to be self-contained; it avoids refer-
encing textbooks for derivations of a few auxiliary relations such as the Helmholtz
or Stratton-Chu formulas. They appear naturally in the context of the problem un-
der consideration. Thus, this text can be used by a newcomer to the field. However,
the sections related to the treatment of the problem of the scattering of electromag-
netic waves seem to contain some novel results, which the author hopes might be
of some interest to experts as well.

2.2. The Helmholtz Formula

The basis for developing the Kirchhoff approximation is the Helmholtz formula. It
allows calculating the field at any point within a volume based on the values of the
field on the boundary of the volume. Both the field itself and its normal derivative
at the boundary are assumed to be known in this case. The volume may represent a
compact domain or can be a half-space. The latter situation is depicted in Fig. 2.1.
Usually the surface bR is chosen to coincide with a physical boundary; however,
in principle it may be arbitrary. Let the scalar field u satisfy the wave equation

(1)
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FIGURE 2.1. Geometry of the scatter-
ing problem. Q(R)

R.

where K = to / c is a wavenumber and Qrepresents sources of radiation. Generally,
K may have a positive imaginary part which is usually assumed to be small. In
this case a solution has to remain bounded at large distances. This is called the
limiting absorption principle. The introduction of small absorption allows avoiding
singularities and/or making appropriate integrals convergent (as in Eq. (3)). In
the final formulae one can usually set the absorption to zero so that K becomes
real.

Let us introduce a free space Green function for the wave equation

(2)

(3)

(4)

On Fourier transforming this equation one finds

f
ei~(R-R*) d~ eiKIR-R*1

G(R - R*) = K2 _ K 2 (2rr)3 = - 4rr IR - R*I'

where the integral is easily calculated in spherical coordinates. Another represen-
tation for the Green function follows after integration over Kz using the residue
theorem

G(R - R*) = __i_f eik(r-r*)+iqklz-z*, dk.
8n2 qk

Here r, r, are horizontal- and z, z, vertical-projections of the 3D vectors R, R*,
respectively, and k is the horizontal projection of the 3D wave vector n: The
function qk represents the vertical component of the wave vector corresponding to
a horizontal projection k:

(5)

The representation of the Green function in terms of a 2D Fourier transform,
Eq. (4), is called the Weyl formula. Note that the order of arguments in the integral
in Eq. (4) can be changed, and the difference r - r, can be replaced by r, - r,
without affecting the result.

Let us multiply Eq. (2) by u, Eq. (1) by G and subtract the results:

V (uVG - GVu) = U(R)d(R - R*) - Q(R)G(R - R*). (6)
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Now we can integrate over the half space above the surface L using the Gauss
theorem

f VAdR= f A·nd~R, (7)

where the surface integral proceeds over the boundary of the integration volume
and n is an external normal to the boundary. In our case part of the boundary
includes a hemi-sphere of a sufficiently large radius encompassing all the sources
and the observation point in Fig. 2.1. Now we have to use the limiting absorption
principle again. Since K includes an arbitrarily small positive imaginary part, the
Green function G decays exponentially at infinity, the solution u remains bounded
in the worst case, and despite the fact that the surface area grows like a radius
squared the integral over the hemi-sphere tends to zero when its radius goes to
infinity. Thus, Eqs. (6),(7) give

(8)

Here we used usual notation for the normal derivative, namely a/an == nV, and
took into account that the normal n in Fig. 2.1 is in fact the inner normal, which
leads to the appropriate changes of sign. The first term in Eq. (8) represents an
incident field which would be generated by the sources Q in the homogeneous
space,

(9)

In what follows we will simply assume that the incident field represents a plane
wave. The second and the third terms in Eq. (8) represent the scattered field gener-
ated by distributions of dipole and monopole sources with surface densities equal
to -u and au/an, respectively.

Equation (8) is called the Helmholtz formula. It allows calculating the field at
any observation point R* if the field u and its normal derivative au/an on the
surface L are both known. Of course, those two values are not independent. A
boundary condition at infinity for our second-order wave equation has already
been used: this is the choice of the causal Green function Eq. (3) selected with
the help of the limiting absorption principle. Thus, only one value, u or au/ an
(or some linear combination of them) at the surface L can be assigned; the other
value has to be determined in terms of the first one. This requires the solution of
a certain integral equation (or a set of equations), and is equivalent to the solution
of the scattering problem under investigation.

Let us assume now that the observation point R* is in the lower half space. In
this case the first term on the right-hand side of Eq. (6) does not contribute to
the integral over the upper half space, and the left-hand side of Eq. (8) vanishes.
Equation (8) with R* belonging to the lower half space and u(R*) on the left-hand
side replaced by zero is called the extinction theorem, since it claims that the
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FIGURE2.2. Tothe calculation of the limit-
ing values of the field.

n

R. h

(10)

distribution of the dipoles and the monopoles on the surface cancels the incident
field beyond the surface.

2.3. The Limit of the Observation Point Tending
to the Surface

Another pillar in developing the KA is taking the limit in the Helmholtz formula,
Eq. (8), when the observation point tends to the surface: R* ~ l; (see Fig. 2.2.)
For application to electromagnetic waves we will need a slightly more general
result when the normal derivative of the Green function is replaced by its gradient:

iK IR - R I - 1 . R
V G(R - R ) = * (R - R )e1K1R

- *'.
R * -4rr IR - R* 1

3 *

Let us assume that the observation point R* tends to the surface along the normal
from outside so that h -+ +0. One has

where 88 represents a circle on the surface with a small radius B. In this case
Eq. (10) gives

(12)

When calculating the integral over S8 one can replace u by the constant value Uo
corresponding to the center of the circle Ro, and the piece of the generally uneven
surface within the circle by a plane, and can integrate using polar coordinates:

f uV'RG(R - R*)d:ER

1
8 121r

r cos q;e + r sin q;e 18
h

~ Uo ~ 2 3/2 Y r dr dqJ - UoD 2 h2 3/2 Zn r dr,
o 0 4rr (r + h ) 0 4rr (r + )
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where ex ,yareunit vectors along the x-and y-axes. The first integral above vanishes
due to the angular integration, and we find

f UVRG(R - R*) dER ~ -UO" t 2 h 23/22JTrdrio 4Jr(r + h )

Uo r: x dx
=-"2" Jo (1 + x2)3/2· (13)

Now we can set the observation point onto the surface taking the limit h ~ +0
with the value of e kept fixed. The upper limit of the integral in Eq. (13) tends
then to infinity, and the integral itself tends to unity. Note, that if the observation
point tended to the surface from below, so that h ~ -0, then the signs in Eqs.
(12),(13) would have changed. Now we can take the limit B ~ 0 which reduces
to replacement of the integral over L / S, in Eq. (11) by a principal value integral.
Thus we obtained the relation

f u(Ro) flim uVRG(R - R*)dLR == =F--n + v.p. uVRG(R - Ro)dLR.
R*~RoE:E 2

(14)
The upper (minus) sign here corresponds to the case of the observation point
tending to the surface from the side to which normal is pointing, and the lower
(plus) sign to the case when the observation point tends to the surface from the
opposite side.

One can easily see that if the gradient of the Green function in Eq. (11) is
replaced by the Green function itself then the integral over S, will tend to zero
when B --+ O. Thus, no extra terms appear in this case and one can simply replace
R* by Ro,

The integrand here is regular since the IR - Rol-1 singularity of the Green function
is compensated by the surface area element. The limit in Eq. (15) does not depend
on the side of the surface from which the point R* tends to Ro.

2.4. Kirchhoff Approximation for the Neumann Problem

(16)REb.

The simplest problem to analyze is the case of the Neumann boundary condition,

au
-=0,
an

The Helmholtz formula Eq. (8) in this case gives

u(R*) == u(in)(R*) - f u(R) oG(R - R*) dER.
anR

(17)



R, Ro E ~. (18)
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Now we can take the limit where the observationpoint R* tends to Ro using Eq.
(14) with the upper sign. Thus one finds

!u(Ro) = u(iO)(Ro) - !u(R) aG(R - Ro) dER,
2 80R

This is an integral equation with respect to the unknownvalue of the surfacefield
u(R).

If the surface ~ is a plane, then aG(R - Ro)/ 8oRo = 0, and

(19)

(20)

provides an exact solution to Eq. (18). In the high-frequency limit one can hope
that the solutionof the integral equation Eq. (18) at point Ro is influencedmainly
by the points in the vicinity of Ro (one has to assume, of course, that multiple
reflections are absent). If the curvatureof the surface at this point is not too large,
one can approximatethe surface in the vicinity of R, by a plane and use Eq. (19)
as an approximatesolution.The other wayto look at this approximation is to solve
Eq. (18) by iteration,

(in) f (in) 8G(R - Ro)u(Ro) = 2u (Ro) - 4 u (R) d~R + ·...
aOR

On neglectingin Eq. (20) all higher-orderterms we obtain the KA, Eq. (19).
Now we can explicitlycalculate the total field u at any point R* by substituting

Eq. (19) into Eq. (17)

(21)

(22)

2.5. Scattering Amplitude

It is convenientto fix a certain basis of incident and scattered waves and describe
scatteringin termsof a scatteringamplitude(SA)withrespectto this basis.Wewill
be interested mostly in wave scattering from infinite, uneven, plane on average
surfaceslocatedin the area adjacentto the levelz = O. In this case a naturalchoice
is the following basis of plane waves:

(
0 ) 1 °ko °u in = _ e1 r-lqoZ

J(jQ

so that

1 °ko ° f 1 ik °u(r, z) = - e1 r-lqoz + S(k, ko)- e' r+lqkz dk.
~ v'iik

(23)

(24)
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Here we introduced the notation qo = qko' and omitted the asterisk which previ-

ously indicated the coordinates of the observation point. The factors q~1/2, q;1/2

are introduced here to make the resulting formulae for SA more symmetric. Such a
normalization corresponds to waves with a unit energy flux in the vertical direction.
The SA S(k, ko) is a complex quantity that represents the amplitude of the process
of the scattering of a downward propagating plane wave with the horizontal pro-
jection of the wave vector equal to kointo an upward propagating plane wave with
the horizontal projection of the wave vector equal to k. Since an arbitrary incident
field can be expanded in terms of a superposition of plane waves, calculation of
SA is essentially equivalent to the solution of the scattering problem. The first
statistical moment of the SA gives the so-called average reflection coefficient, and
the second moment is directly related to the scattering cross-section, which can be
measured experimentally [6].

Let the surface L be described by the equation

z = h(r). (25)

It is assumed in Eq. (24) that the observation point is in the upper half-space beyond
the excursions of the surface: z > max h(r). Substituting into Eq. (17) the Weyl
representation of the Green function Eq. (4) and comparing the result with Eq.
(24) one finds

S(k, ko) = 8~2 ~! U(R)(qk - kVh)e-ikr-iqkh(r) dr, (26)

where the surface density u(R) is a solution of Eq. (18) corresponding to the
incident plane wave Eq. (22). We have used here that the unit normal Dr is given
by the formula

N-V'h
Dr == .,Jl + (Vh)2

(27)

where N = (0, 0, 1) is a unit vector directed in the positive direction of the z-axis
and Vh is a 2D vector in the horizontal plane, whence

~dEr= (~-Vh.V)dr.aDr az (28)

On substituting for u(R) in Eq. (26) the KA Eq. (19), one finds

S(k, ko) = _1_ ! (qk - kVh)e-i(k-ko)r-i(qk+qo)h(r)~. (29)
JqkqO (2rr)2

The term proportional to Vh here can be integrated by parts by the use of the
relation

Vhe-i(qk+qo)h(r) == __i_Ve-i(qk+qo)h(r).

qk +qo
(30)
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This results in the followingreplacement in Eq. (29):

k-koVh --+ ---.
qk +qo

(31)

Finally,one finds

S(k, ko) = _1_ K
2 + qkqo - kko! e-i(k-ko)r-i(qi+qo)h(r)~. (32)

JqkqO qk + qo (2n)2

Equation(32) is the expressionfor the SA for the Neumannproblemin the KA.
Since the KA has a coordinate-invariant nature, the SA in Eq. (32 ) possesses the
following two transformational properties.Namely, if the surfaceprofileis shifted
horizontally by a constant vector d,

h(r) --+ h (r - d) ,

then the SA is transformedaccording to the relation

Sh(r-d)(k, ko) = Sh(r)(k, ko) . e-i(k-ko)d.

(33)

(34)

Similarly, if the surface profile is shifted in the vertical direction by a constant
value H,

then

h(r) --+ h (r) + H, (35)

(36)

The transformational properties, Eqs. (34),(36), have a purely geometric origin
and are exact. They can be easily verifiedby appropriate shifts of the coordinate
system.

2.6. The Tangent Plane Approximation

This approximation is basedon the samephysicalassumptionsas the KAandoften
leads to the identical results. However, its derivationdoes not require solution of
the integral equation, and it can be obtained directly from the Helmholtz formula
basedonthefollowing considerations. If theplanewavegivenbyEq. (22)impinges
upon the plane z = 0, one finds for the resulting total field

u = (1 + V(qo))u(in)

au. (in)- == -lqo (1 - V(qo)) u ,
8z

(37)

(38)

where V(qo) is the reflection coefficient. Now we can try to approximate the
uneven surface 1: at each point by a plane tangent to the surface at this point and
assumethat the total fieldand its normalderivative at the point are locallygivenby
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Eqs. (37),(38). We substitute those expressions into the Helmholtz formula Eq. (8)
and find for the scattered field

usc(R*) = - f (1 + V (qt» u(in) aG(R - R*) dER
OUR

-if qt (1- V(qt»u(in)G(R - R*)dER • (39)

Here qt = qt(R) represents the modulus of the projection of the incident wave
vector (ko, qo)onto a local normal to the surface. Substituting for Uin the expression
given by Eq. (22), for the Green function the Weyl representation Eq. (4), and
proceeding exactly as in the preceding Section, we find the following expression
for the SA:

S(k, ko) = -2~ f [(-qk + kV'h) (1 + V(qt»
qkqo

+qt (1 - V(qt» (1 + (Vhf)1/2] e-i(k-ko)r-i(qk+qo)h(r) (2~)2' (40)

where

(41)

(42)

(44)

As we saw, the KA requires smoothness of the surface profile on the scale of
a wavelength. For such surfaces one can try to evaluate the integral in Eq. (40)
by the stationary phase method. The stationary points are determined from the
requirement that the gradient of the exponent be equal to zero, whence

V'h=_k-ko .
qk +qo

We do not need to assume here that there is only one stationary point: Eq. (42)
may have multiple solutions. However, all the stationary points correspond to the
same values of V'h and qt. We will approximate the preexponential factor in Eq.
(40) by its value calculated at the stationary points. A simple calculation gives

S(k, ko) = V(qt) K
2

+ qkqo - kko f e-i(k-ko)r-i(qk+qo)h(r)~, (43)
(qk + qo)JqkqO (2n)2

where the expression for qt follows after substitution ofEq. (42) into Eq. (41)

q, =JK2 + qk~O - kko.

Equation (43) provides a general expression for the SA of the scalar waves in the
tangent plane approximation. Strictly speaking, the expression (Eq. (40» is more
general. However, the difference between them, probably, exceeds the accuracy of
the Kirchhoff-tangent plane approximation itself.
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2.7. Scattering of Electromagnetic Waves from the Interface
Between Dielectric Half-Spaces

We will assume now that the upper half-space in Fig. 2.1 corresponds to a medium
with a (complex) dielectric permittivity £1 and the lower half-space to a medium
with a dielectric permittivity £2. The magnetic permeability of both media is as-
sumed to be equal to unity. In this paper we will be interested in calculating the
scattered field in the upper half-space only.

The electromagnetic field in both half-spaces is governed by the Maxwell equa-
tions

i~H = V x E
c

-i~£E = V x H,
c

with the boundary conditions

n x E(I) = n x E(2)

n x H(1) = n x H(2)

(45)

(46)

(47)

(48)

that express continuity of the tangential components of the electric and magnetic
fields across the boundary (superscripts 1 and 2 here and below refer to the upper
and the lower half-space, respectively). It follows from Eqs. (45) and (46) that in
this case the normal components of the fields at the boundary satisfy the equations

n . 0(1) = n . 0(2). (49)

The Maxwell equations (45)-(46) have solutions in the form of plane waves with
two polarizations. Similar to Eqs. (22),(23) we will select the following basis for
the incident and scattered waves in the upper medium

E(se) = e~e)(k) (qk1»)-1/2 eikr+iq~l)z

(50)

H(in) = h~n)(ko} (qci1») -1/2 eikor-iq~\ H(se) = h~e)(k) (qk1») -1/2 eikr+iq~\

(51)
where the index a = 1, 2 refers to the vertical and horizontal polarization, respec-
tively. The unit polarization vectors ea , h, are given by the following expressions

(52)

(53)
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Here N = (0, 0, 1) is a unit vector in the positive direction of the z-axis, K(1) =
.J8iw/c, and

1mqk1
) ~ 0. (54)

One can easily check that the Maxwell equations are satisfied for each of these
four sets of plane waves.

The scattering amplitude is introduced by the following representation of the
fields in the upper half-space:

H . eikor-iQ61)Z f eikr+iqkl)Z

~ = h~n)(ko) m + SaP(k, ko)h~C)(k) flf dk (56)
v £1 (1) (1)

qo qk

(here and in what follows summation over a repeated index is assumed). The SA
is now a 2 x 2 matrix Sa,B(k, ko), which describes the amplitude of the process
of scattering of the downward propagating incident plane wave of polarization
f3 = 1, 2 and horizontal projection of the wave vector equal to ko into an upward
propagating plane wave of polarization ex = 1, 2 and horizontal projection of the
wave vector equal to k. Clearly,Eqs. (55),(56) represent a solution of the Maxwell
equations for an arbitrarymatrix S. The expressionfor S followsfrom the boundary
conditions. In the case of the plane boundary z =°the SA reduces to specular
reflection,

(58)

S12 = S21 = 0,
(57)

where VI and V2 are the Fresnel reflection coefficients for vertical and horizontal
polarizations, correspondingly,

c2qi1) - Cl qi2)

VI == (1) (2) ,
£2qk + £lqk

while

(59)1mqi2
) ~ 0, K(2) == ,J82~

c

is the vertical projection of the wave vector in the second (lower) half-space.
Apparently, the reflection coefficients can be considered as functions of q(l) only.

To obtain the expression for the SA in the tangent plane approximation we can
use the general expression Eq. (43) for each polarization. However, this will be
correct only if the waves correspond to the waves of the vertical and horizontal
polarization in the basis associated with the local tangent plane. For this reason
the original incident polarization vectors in Eqs. (52),(53) should be first projected
onto the polarization vectors associated with the local tangent plane, then formula



(60)
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Eq. (43) is applied to each polarization in the local basis, and then the resulting
fieldis projectedagain on thepolarizationvectorsof the scatteredfieldin Eqs. (52),
(53). This results in the expressionEq. (43), where the scalar reflectioncoefficient
V is replaced by the 2 x 2 matrix R(k, ko)

R(k, ko) == T1(D, k) (V10(qt) 0) 1'- ( 1<0)V
2
(qt) 2 0, ,

with

1 (k2N (l)k
T ( k)

- . 0 - qk . 0
1 0, - 1

kJ[K(l)]2 - ql -K< )k· N x n

1 (k2N (l)kT ( k) _ 0 • n + qo o : n
1.2 n, 0 - 1

koJ[ K(l)]2 _ ql K< )ko · N x n

(61)

-K(1)ko· N X.D )

k5N . n + qri1)ko · n .

(62)

Here n is givenby Eq. (27), Vh by Eq. (42) and c, by Eq. (44) with K == K(1). One
can check that T1,2 are orthogonal matrices. As a result we obtain the following
explicit expression for the SA of the electromagnetic waves in the tangent plane
approximation:

1 1
S(k, ko) == ---------------

(qk1) + q~l)) q2)q~l)kko[K(l)]2 - qk1
)q&l) + kko

(

k2q(1) + q(l)kk
x 0 k 0

-K(l)N . k x ko

(

k2q(l) + q(l)kk
x 0 k 0 0

K(1)N . k x ko

where

(63)

[K(l)]2 + q~1)q61) - kko
2

(64)

Note, that in the backscatteringcase k = -ko one has to remove an uncertainty in
the preintegral factor of Eq. (63). The reason is that for normal incidence the 3D
wave vector and the normal to the plane are parallel and the polarization plane is
undetermined.

It is easy to see that expression Eq. (63) satisfies the reciprocity relation [1]:

(~ o ) T (1-1 S(k, ko) == S (-ko, -k) 0 (65)



2. The Kirchhoff and Related Approximations 47

Now, as in the case of scalar waves, we will try to build the KA for electromag-
netic waves based on the integral equations for the surface fields. To formulate
those equations we will use the Stratton-Chu formula.

2.8. The Stratton-Chu Formula

This formula is the Helmholtz formula applied to the case of electromagnetic
waves. It allows expressing the electric and magnetic fields in the medium in
terms of their surface values. Let us write down the Helmholtz formula Eq. (8) for
the o-th component of the electric field:

R* E upper half-space
R* E lower half-space.

(66)

One has an obvious identity

Calculating the double vector product it is easy to check that

(67)

(68)

(69)

(70)

where the index a on the right-hand side means the a-th component of the cor-
responding vector expression. To transform the second term in Eq. (67) we will
need the following identity:

f a({J dR == f na({JdLR'aXa

where ({J is an arbitrary smooth scalar function. Equation (69) immediately follows
after the Gauss theorem Eq. (7) is applied to the vector field Xk == 8ka({J,

f~ (okaqJ)dR =f nk (8ka({J)dLR,
OXk

which coincides with Eq. (69). Applying the Gauss theorem one more time and
using Eq. (69) one finds

(71)



48 Voronovich

At the last step we took into account that according to Eq. (45) 8Ek/8xk = o.
Finally, calculating the double vector product we find

(0 x E) x VG = E(nVG) - n(EVG). (72)

Substituting Eqs. (67),(68),(71),(72) into Eq. (66), replacing V x E in Eq. (68) by
the use of the Maxwell equation Eq. (45), and returning to the vector notation, we
obtain the Stratton-Chu formula:

E(in) - i: f (0 x H) GdER - f (oE) VRGdER - f (0 x E) X VRGdER

R* E upper half-space
R* E lower half-space,

(73)

where G = G (R - R*). Applying the same result to the magnetic field H, and
taking into account that in replacing V x H we have to use Eq. (46), one finds

H(in)+ ei: f (0 x E) GdER - f (oH) VRGdER - f (0 x H) X VRGdER

_ {H (R*), R* E upper half-space (74)
- 0 R* E lower half-space.

2.9. The Integral Equations for the Electromagneuc Case

To obtain the equations for the surface values of the fields we have to set the
observation point R* in Eqs. (73),(74) on the surface using the limiting formulae
given by Eqs. (14),(15). Taking into account also that

(nE) n + (n x E) x n == E, (75)

we find the equations

~E{l)(Ro) = E(in)(Ro) - iw f (0 x H) G(1) (R - Ro)dl:
2 c

- v.p. f (oE(l») VRG(l) (R - Ro)dE

-v.p. f (0 x E(l») x VRG(l)(R - Ro)dE (76)

~H(Ro) = H(in)(Ro) + iwCI f (n x EO») G(l) (R - Ro)d1:
2 c

- v.p.f (oH) VRG(I) (R - Ro)dE - v.p.f (0 x H)

X VR GO) (R - Ro)d1: (77)
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~E(2)(Ro) = i(V f (0 x H) G(2) (R - Ro)dI:
2 c

+V.p. f (oE(2») VRG(2) (R - Ro)d1:

+v.p. f (0 x E(2») x VRG(2)(R - Ro)d1: (78)

~H(Ro) = H(in)(Ro) - i(V 82f (0 x E(2») G(2) (R - Ro)dl:
2 c

+v.p.f (oH) VRG(2) (R - Ro)dI:

+v.p,f (0 x H) x VRG(2) (R - Ro)d1:. (79)

The boundary condition, Eq. (47), is

o x E(l) = 0 x E(2). (80)

We took into account in Eqs. (76)-(79) that the magnetic field is continuous at the
interface. For this reason a superscript to H is not assigned. Although the tangential
components of the electric field are also continuous at the interface, the normal
components are not, and the superscript to E(l,2) indicates the field on the upper and
lower side of the interface, respectively. When writing Eqs. (78), (79) for the lower
medium we used the same Eqs. (73), (74) and took into account that there are no
sources in the lower half-space so that E(in) = H(in) = 0, and the sign of the normal
has to be changed. Also, when applying Eq. (14) one has to choose for the lower
medium the plus sign.

Apparently, not all of Eqs. (76)-(80) are independent, and this set of equations
represents generally an overdetermined system. One might expect that those equa-
tions have a unique solution even when the second medium represents a compact
body with inner resonances, since surface values of the field represent physical
measurables within the first medium.

Let us consider Eqs. (76)-(79) for the case of the plane z = o. One can see
that the integral terms do not vanish even in this case. This means that the surface
electromagnetic field depends not only on the values of the incident field at the
same point, but on the fields in the vicinity of the given point. One possibility
would be to evaluate the resulting integrals by the stationary point method. One
can see that in the lowest order no derivatives of the interface profile higher than
the first enter the result. Essentially this means that the profile is approximated at
each point by a plane. It is obvious that this approach is equivalent to the tangent
plane approximation.

Another possibility is to make use of the fact that the relation between the
surface field and the incident field for the case of the plane z ~ 0 becomes local
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in the Fourier domain. For surfaces with sufficiently small slopes one can try to
approximate the argument of the Green functions in (76)-(79) as follows:

If one also neglects the terms explicitly proportional to Vh, then all the integrals
become convolutions, and the Fourier transform will lead to an explicit solution.
This approximation constitutes the Meecham-Lysanov approach, which was sug-
gested for the Dirichlet problem in [2], [3]. We will try to build an approximate
solution for the electromagnetic problem based on this idea, keeping track of the
higher-order corrections.

Let us Fourier transform Eqs. (76)-(80). First, using the representation given
by Eq. (4) one finds

1
VRG(R - Ro)=--

8rr2

f (k + . ( )N) (1 +~ (iqk leo - Zl)m) ik(ro-r) dkx qks1gn zo - Z L...J e-.
m=l m! qk

(82)

Note that the even powers of Iz - Z*I here are always associated with the even
powers of qk which, after integration over k, reduce to the appropriate derivatives
of 0 (ro - r). Those terms do not contribute to the integrals in Eqs. (76)-(79), which
are principal values. The odd powers of lz - z,I in Eq. (82), being multiplied by
the function sign(zo - z), produce the odd powers of (zo - z), Let us introduce
for any function ({J(r) of the horizontal vector r its corresponding Fourier trans-
form ({Jk

f -ikr dr
qJk = qJ(r) e (2Jr )2 ' (83)

(84)

The function tp could be a vector or a scalar; in particular, it can be the elevation
h(r). For example, if

qJ(ro) = v.p. f A(r)VRG (h(r) - h (ro))dr,

and we use for G an approximation that includes only the first term of the series
in Eq. (82), one finds

(85)
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Similarly, if

lp(ro)=f A(r)G (h(r) - h (ro» dr,

then

m == f dro e-ikrof dk A eik1r ( __i_) f ~ eiHro-r) dr + O(h 2)
rk (2rr)2 1 k 1 8rr2 q;

i 2== --Ak + O(h ).
2qk

Using these relations and also taking into account that

ndI: == (N - Vh)dr,

(86)

(87)

(88)

(93)

we transform Eqs. (76)-(79) into the following system of equations:

1 (1) (in) W 1 k (1) 1 ( (1)) (1)
- Ek == Ek - - --mN X Uk+ --mNEk + --m N X Ek X k + Tk
2 C 2qk 2qk 2qk

(89)

1 (2) W 1 (2) k 1 (2)
-Uk == --e2~N X Ek - ~NHk - ~(N X Hk) X k -l- Uk .
2 c 2~ 2~ 2~

(92)

Here the terms T~1,2), U~1,2) include all the terms of Oth"), with n ~ 1. These
terms can be represented as

T~,2) = if t(l,2)(k, ~)hk-~d~+ O(h2
) ,

U~l,2) = if u(l,2)(k, ~)hk-~d~+ O(h2 ) ,

where the O(h 2) terms are due to the corresponding terms from Eqs. (85) and (87),
and
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(2) _ to 1 (2) k
t (k,~) - --(2) (k -~) x H~ + (k - ~)E~ (2)

c 2qk 2qk

+(k -~) x E(2») x~ _ ! (q(2) _ q(2») E(2)
~ 2qi2) 2 ~ k ~

(1) _ W 1 (1) k
u (k,~) - --81(i) (k -~) X E~ - (k - ~)H~(i)

c 2qk 2qk

k 1 ((1) (1») (1)
-«k - ~) x H~) x (i) + - q~ - qk H~

2qk 2

(2) _ W 1 (2) k
U (k,~) - -82(2) (k -~) X E~ + (k - ~)H~(2)

c 2qk 2qk

k 1 (2) (2») (1)
+«k - ~) X H~) X (2) - - q~ - qk H~.

2qk 2

The boundarycondition Eq. (80) takes the form

N x E~l) - i f (k - ~) x Ekl)hk_~d~

= N x E~2) - if (k -~) x Ek2)hk_~d~.

(95)

(96)

(97)

(98)

Equations (89)-(92) can be solved by iteration. In the lowest order one neg-
lects T~1,2), U~I,2) and the O(h) terms in Eq. (98). Projecting Eqs. (89)-(92) on
N one calculates first NE~1,2) and NUk • Then one multiplies Eqs. (89)-(92) by xN
and calculates the surface fields:

(99)

(100)

To obtain the correspondingexpression for E~2) one has to replace £2 by £1 in the
last term in Eq. (100).

Letusnowcalculatethescatteringmatrixinamannersimilarto thecalculationof
the SA in Sects.3, 4. Weassumethat the incidentfieldis givenby the plane waves,
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Eqs. (50),(51),withpolarizationindexequalto f3, andexpresstheGreenfunctionin
Eqs. (73), (74) by usingtheWeylrepresentationEq. (4). Thenweprojecttheelectric
(or magnetic)spectralcomponentof the fieldcorresponding to the horizontalwave
vector k on the polarizationvector e~c)(k) (or h~c)(k». Note, that the third terms
in Eqs. (73),(74)do not contributesince theyproduce longitudinalcomponentsof
the field, which are, in fact, compensated by appropriate contributions from the
second and the fourth terms.Let us neglect first the Vh term in the expressionfor
the normal n: ndb = (N - Vh) ~ Ndr. Then we find

Sap(k, ko) = 2J;r> f [-~N x H~ + (N x Ei1») x (k + qk1)N)] e~C)(k)

x e-i(k-nrl-iqil)h(rd~ d~. (l01)
(21l')2

In the lowest-order approximation, according to Eqs. (99), (100), E~ and H~ are
proportional to E~m), H~n). Due to Eqs. (50),( 51),(83) one has

(102)

and a similarexpressionfor H~in) with the polarizationvector e~n)(ko) replacedby
h~n)(ko). Substituting this equation into Eqs. (99), (100) and then into Eq. (101)
we find

S (k k ) = f e-i(k-~)rl-iqkl)h(rl) e-i(~-ko)r2-iq61)h(r2)<I> (k k . t:) drl dr2 dt:
af3 ' 0 af3 ' 0, 5" (21l' )4 5" ,

(103)
where the explicit expressionfor matrix <I> can be easily calculated; however, we
will not need it in what follows.

To calculate the scattering matrix in the next approximation we have to take
into account the T, U terms in Eqs. (89)-(92), replacingE~, H~ in Eqs. (94)-( 97)
by the lowest-orderapproximation. Also, we have to take into account the O(Vh)
term in the expression for the normal n when calculating the scattering matrix
from Eq. (73) (or Eq. (74». The calculations are formidable. However, what we
will need is only the general structure of this term. Trackingcorrespondingterms
it is easy to see that the correctionterm (markedhere by a prime)has the following
structure:

Note, that according to Eqs. (93)-(97),

(105)
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Making the change of integration variables ~ -+ ~ + ~1/2, k1~ ~ - ~1/2, we
find

S~p<k, 1\0) = ! e-i(k-~)rl-iq~l)h(rl) e-i(~-ko)r2-iq~l)h(r2)

x <I>~.8 (k, 1\0; ~ + ~tl2; ~ -~tl2) h~l ei~l(rl+r2)/2 ~~:~: d~d~1. (106)

2.10. Nonlocal Small-Slope Approximation

Examination of the higher-order terms shows that continuation of the calculations
will result in the following expression for the scattering matrix:

S(k, 1\0) = ! e-i(k-nrl -iqkh(rl) e-i(~ -kO)r2 -iqoh(r2)

(
rl + r2 ) drjdr,

x F k,ko;--;~ --4 d~,
2 (2n)

where

F (k, ko; r1 ; r
2; ~ ) = <I> (k, ko;~) + ! <1>1 (k, ko;~; ~t> h~l ei~l~~1

+! <l>2(k,ko;~;~1'~2)h~lh~2ei(~lH2)~d~1d~2+'" (108)

is a functional of elevations. We have omitted in Eq. (107) polarization indices,
considering the functions F, <1>, <l>n to be appropriate matrices. We have also omit-
ted the superscripts (1, 2) to the vertical wave numbers q(l,2), assuming they always
refer to the upper half-space. Note that the kernels <l>n can be assumed to be sym-
metric functions of ~l, ~2, ••• ~n.

Looking at the derivation of the expansion Eq. (108) one can conclude that this
expansion is uniquely defined. However, this is not the case, and certain parts of
the terms in Eq. (108) can be transferred into each other. The physical reason for
this is discussed in [4], and we will also reproduce appropriate transformations
used in this work below.

The structure of the higher-order terms in Eq. (108) follows from the trans-
formation property Eq. (34). The horizontal shift h(r) ~ h (r - d) leads to the
substitution h~ -+ h~e-id~.The change of integration variables rl,2 - d ~ rl,2 in
Eq. (107) ensures that Eq. (34) is satisfied.

According to Eqs. (105), (106) one has

<1>1 (k, ko; ~; 0) = O. (109)

Equation (109) is related to the transformation property Eq. (36). The vertical shift
h(r) --+ h(r) + H leads to the replacement h~ --+ h~ + H 8 (~). Since the first two
exponents in Eq. (107) ensure fulfillment of Eq. (36), the functional F should be
invariant with respect to this transformation. Since H is arbitrary, this requires that



2. The Kirchhoffand RelatedApproximations 55

<l>n l;k=O = O. Taking into account the symmetry of the kernels <l>n with respect to
~k one can represent <l>n as follows

<I> = ~ t(at> ... t(an)q;(a1 ....an)
n L..J 51 5n n '

ak=x,y

(110)

where ~n are nonsingular functions.
Consider, for instance, thecontribution fromthe secondtermin Eq. (108) using

also the representation Eq. (110):

(111)

Let us replace the integration variable~ by ~ + ~1 /2 and introducethe function

(ad (k k . t· t ) - <1>'"(ad (k k . t ~1 • t )q;1 ,0'5'51 - 1 ,0,5 + 2'51 .

This function in turn will be representedas a sum of two terms:

q;~ad (k, ko;~; ~l) = cp~ad (k, ko;~; k -~)

+ L (k(Pl) - g(Pl) _ g~Pl») ~qJ~al'Pl),

{Jl=X,y

(112)

(113)

where ti.q; is a regular function. Since the first term in Eq. (113) does not depend
on ~1, its integrationover ~1 results in the appearance of Vh:

S(l)(k k ) = ! drl dr2 dt e-i(k-~)rl-iqkh(rd e-i(~-ko)r2-iqoh(r2)
1 ,0 (2rr)4 5

x(-i) L q;~al)(k,ko;~;k-~)v(al)h(rl). (114)
al=X,y

Now using a transformation of the type of Eq. (30),

(-i)Vh(rd e-iqth(rl) = -.!:.- V
r1

e-iqth(rl),

qk

in Eq. (114) we can integrate over r 1 by parts:

(115)
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According to Eqs. (110),(112),

~ (k(ad - e(ad) m(ad (k k . e· k - e) - <I> (k k . k + ~ ·k _ e)L..J 5"""1' 0, 5 , 5 - 1 ,0, 2' 5'
al=X,y

(117)
As a result we have found that the contribution from the first term in Eq. (113) has
the structure of the first term in Eq. (108) and can be included in it.

The contribution from the second term in Eq. (113) is

S(2)(k k ) = f dr1dr2 de e-i(k-~)rl-iqkh(rl) e-i(~-ko)r2-iqoh(r2)
1 ,0 (2rr)4 5

X L (k(llil - ~(ftil - ~?l») ~~~al.lll)~~al)h~l ei~lrl ~l. (118)
al,Pl=X,y

By using the identity

(k - e _ e) -i(k-~-~drl _ . t7 -i(k-~-~drl
5 51 e - 1vrl e , (119)

we can integrate by parts over r1 again, which results in the replacement of the
factor (k(Pd - ~(Pd - ;~Pl») in Eq. (118) by

-qkVh (rl) = -iqk f ~2h~2 ei~2rl d~2. (120)

Now, the change of integration variable ~ ~ ; - (;1 + ;2) /2 leads to an expres-
sion that has the structure of the third term in Eq. (108) with

(J;ial,Pl)(k,ko;~;~1,~2) = -iqk~~(al'Pl)(k,ko;~ - ~1 ;~2;~1)' (121)

Thus, the second term in Eq. (108) can be eliminated by incorporating it into the
first and the second terms (before its inclusion into the second term the right-hand
side of Eq. (121) has to be symmetrized with respect to ;1, ;2.)

It is shown in [4] that by using similar transformations one can also eliminate
the third term in Eq. (108) by transferring appropriate parts of it into the zeroth-
and the third-order terms. Neglecting the third- and higher-order terms in Eq. (108)
leads to the main ansatz of the nonlocal small-slope approximation:

S(k k ) = f <I> (k k . e) e-i(k-~)rl-iqkh(rl) e-i(~-ko)r2-iqoh(r2) drldr2 de
, 0 , 0, 5 (2rr)4 5,

(122)
where the kernel function <I> is now considered to beindependent ofthe elevations h.
This function can be determined by the requirement that in the limit of small el-
evations Eq. (122) reproduces the two lowest orders of perturbation theory [4].
Perturbation theory provides an expression for the scattering matrix in the follow-
ing form:

S(k, ko) = B(k, k)8(k - ko) - 2i (QkQo)1/2 B(k, ko)h k - ko +

+(QkqO)1/2 f B2(k, ko; ~)hk-~h~-ko ~ +·.. · (123)
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The expressions for the kernel functions B, B2 are known for many scattering
problems [6]. For the electromagnetic problem they can be found,e.g., in [5].
Expanding Eq. (122) into a power series with respect to h, comparing the result
with Eq. (123), and using some relations between B, B2, one finds the following
explicit expression for the kernel <1>:

<I> (k, ko;~) = 2 (QkQO)1/2 (B (k, k
o)

+ B2(k, ko;ko) - B2(k, ko;~)
qk + qo 2qo

B2(k, ko;k) - B2(k, ko;~»)+ .
2qk

Equations (122),(124) constitute the nonlocal small-slope approximation.

2.11. Relation to other Approaches

The drawback of the nonlocal small-slope approximation is the rather high order
of integration. One can try to simplify the representationgiven by Eq. (122) using
the following considerations. Let us represent the contribution from the second
term in Eq. (124) as follows:

f (B 2(k, ko; ko) - B2(k, ko; ~)) e-i(~-ko)rz-iqoh(rz) dr2

=f e-iQoh(rz)(B2(k, ko; ko) - B2(k, ko;ko+ iVrJ)e-i(~-ko)rz dr2

=f e-i(~-ko)rz(B2(k, ko; ko) - B2(k, ko; ko - iVrz))e-iQoh(rz) dr-. (125)

As a result of the action of the operator in Eq. (125) on exp (iqoh(r2») a term linear
in h will appear as well as terms proportional to the products of derivatives of h
of different orders. Let us make an approximationthat neglectsall the products of
the derivatives:

(B2(k, ko;ko) - B2(k, ko;ko - iVr2»eiQOh(r2)

~ -iqoeiQOh(r2)(B2(k, ko;ko) - B2(k, ko;ko - iVr 2 » h(r 2). (126)

Similarly

f (B2(k, ko;k) - B2(k, ko;~)) e-i(k-~)rl-iQkh(rtldrl

~ -iQk f e-i(k-~)rl-iQkh(rl)(B2(k, ko; k)- B2(k, ko; k + iVr1))h(rddrl' (127)

Now integration over ~ produces 8 (r. - r2), and we find in this approximation

2 (q q )1/2 f drS(k, ko) = k 0 __ e-i(k-ko)r-i(qk+qo)h(r) {B(k, ko)
qk + qo (2rr)2

+ ~ f [B2(k, ko;k - ~) + B2(k, ko;ko + ~)

+2 (qk +qo) B(k, ko)] h~ei~rd~ } . (128)
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Here the following relation between B, B2 following from the representation Eq.
(123) and the transformation property Eq. (36 ) was used [4]

B2(k, ko; k) + B2(k, ko; ko) + 2 (qk + qo) B(k, ko) == O. (129)

Equation (128) is called the small-slope approximation [6]. By expanding the expo-
nent in powers of h one verifies that the result matches the perturbation expansion
Eq. (123) up to the second-order terms.

The expansion of the expression in the square parentheses in Eq. (128) in powers
of ~ starts from the terms of O(~) due to Eq. (129). Let us extract from this
expression the linear terms representing

B2(k, ko; k - ~) + B2(k, ko; ko + ~) + 2 (qk + qo) B(k, ko)

== _ ( dB2(k, ko; 1]) I _ dB2(k, ko; 1]) I ) ~ + T (k, ko;~). (130)
d1] 17=k d1] 17=ko

The linear term after integration over ~ produces a term that is proportional to Vh.
This term can be integrated by parts as in Eqs. (29),(30). As a result one finds

2 (q q )1/2 f drS(k, ko) == k 0 __ e-i(k-ko)r-i(qk+qo)h(r)
qk + qo (2n )2

X[R(k,ko)+~f T(k,ko;~)h~ei~rd~], (131)

where

R(k, ko) = B(k, ko)

+ ~ ( dB2(k , ko; 1]) I _dB2(k, ko; 1]) I ) k - ko. (132)
4 d1] 17=k d1] 17=ko qk + qo

If one neglects the second term in Eq. (131), the result will correspond to the general
expression for the SA in the ~-tangent plane approximation, Eq. (43), with the
preintegral factor replaced'"'-iby R(k, ko). Based on the results presented in [5] one
can check that the matrix R coincides with the matrix R in Eq. (60) up to terms of
the first order in (k - ko). It is important that application to the case of small rough-
ness, where the exponential can be expanded in a power series, leads gen~rally to
the wrong answer even for the terms of O(h), since the factor i (qk + qo) R (k, ko)
generally does not coincide with 2i (qkqO)1/2 B (k, ko) from Eq. (123). Those fac-
tors are close only in the near-specular direction. Thus, the KA does not correctly
describe scattering at large angles, i.e. the Bragg scattering (which is consistent
with the assumption of the smoothness of the roughness). This drawback induced
development of different "unifying" theories, which are able to handle both the
Kirchhoff- and the Bragg scattering within a single theoretical scheme.

The expansion of the kernel T (k, ko;~) in powers of ~ starts from the terms
of order O(~2). This means that the contribution of this term in Eq. (131) de-
pends on the curvature and higher-order derivatives of the surface profile. The term
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associated with T in Eq. (131) can be called a curvature correction. In [7,8] another
choice of matrices R, T was suggested, with the matrix Ressentially coinciding
with R from Eq. (60). The matrix T is modified to match the perturbation expan-
sion Eq. (123) up to the first-order terms O(h). This approach is called the local
curvature approximation. Some numerical tests and comparisons of it with other
approximations can be found in [9].

Another possible approach is called the tilt-invariant approximation. It was
suggested in [10] for the Dirichlet problem. This approach can be illustrated as
follows. Consider the Neumann problem and represent the solution ofEq. (18) as
an iterative series:

u(R) =2u(in)(R)+ 2~(-2)nf aG(R - Rn) •.. aG(R2 - Rd u(in)(RddLR .
L an an i, ... ,n
n=l Rn R}

(133)

Assuming that the incident field corresponds to a point source u(in)(R) =
G (R - Ro), and calculating the field at the point R using Eq. (21), we obtain
the following representation for the Green function for the Neumann problem
GNeum:

GNeum(R) = G (R - Ro)

+~(-2)nf aG(R-Rn ) ••• aG(R2-Rd
G(Rt_Ro)dLR . (134)

L an an I. ..,n
n=l R, R}

The Green function here is represented in a coordinate- invariant form. The expres-
sion for the SA follows after substitution for the first and the last Green functions
in Eq. (134) the Weyl expansion Eq. (4). To make the result tractable the rest of
the Green functions are represented as power series in the elevations h. At this
point the coordinate-invariant property is lost. Since the normal derivatives of the
Green functions on the surface vanish in the case of a plane surface, all the expan-
sions depend in fact on the curvature and higher derivatives of the surface profile
and start from the terms of O(h). Thus, the n-th term in the sum in Eq. (134)
is of O(hn- 1) . The first terms of the resulting expansion were calculated for the
Dirichlet problem in [10].

2.12. Conclusion

We presented here derivations of the Kirchhoff approximation for the problem
of wave scattering from rough surfaces, using as examples the scalar Neumann
and the vector electromagnetic cases. It was demonstrated how extensions of the
KA lead to other approaches, such as the small-slope, tilt-invariant, and the local
curvature approximations. Other theories not mentioned in this paper were also
tried in the literature; they were reviewed, in particular, in a recent paper!'. It is
clear, however, that not all the possibilities are exhausted yet. The specific geometry
of the problem, with scattering being confined to a 2D plane-like manifold, opens
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additionalpossibilitieswhichare not present in the general case of 3D scattering.
If this paper encourages the reader to try hislherown ideas in this area, the author
will considerhis task fulfilled.
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3.1. Introduction

This chapter describes surface scattering in terms of direction cosines, or, equiv-
alently, in terms of three-dimensional (3D) spatial frequencies.' This approach
results in simplified expressions and provides a physical interpretation. It is also
directly applicable to investigation of 3D imaging (including holography, tomog-
raphy, microscopy, interferometry, surface profiling and shape measurement). It
is notable that different areas of optics tend to have their own adherents with
their own literature, and few connections between the areas are exploited. Imag-
ing is usually based on diffraction theory, which is distinguished from scatter-
ing theory mainly on the basis that diffraction takes place from objects large
compared with the wavelength and scattering from structures of the order of
the wavelength in size. This distinction breaks down for microscopic imaging
where the resolution limit can be sub-wavelength. Both diffraction and scatter-
ing also have a geometrical optics limit for large structures, smooth surfaces, and
so OD.

3.2. Plane Waves

The amplitude of a scalar plane wave at the point r == xi + yj + zk can be written
as (the time dependence exp (-iwt) is suppressed)

U(r) == exp[inok(px + qy + sz)] == exp(inokp · r),

where k = 2rr/ A, no is the refractive index of the medium, and the vector p is

p == pi + qj + sk,

with p, q, s direction cosines so that

(1)

(2)

(3)

61
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the plus and minus signs representing forward and backward propagating waves,
respectively. The vector p can be regarded as a normalized three-dimensional
spatial frequency vector. Then

p2+ q2 + s2 = 1

represents the surface of a sphere, called the Ewald sphere.

3.3. Scattering

(4)

If a scalar plane wave is scattered by some scattering structure, the scattered angular
spectrum of plane waves can in general be written in spherical coordinates

(5)

where S (e1 , 4>1; e2, 4>2) is the scattering function. The incident and scattered waves
are each specified by two degrees of freedom, so that the scattering function has
in general four degrees of freedom. The scattering structure can be, for example, a
surface, a particle, e.g. a sphere, a medium with varying refractive index or a turbid
medium. Scattering can occur in either the forward or the backward direction. The
scattering can be expressed in terms of the direction cosines as

U2(P2, q2) = [Sj(P1, ql; P2,q2) + Sb(P1, q1;P2,Q2)]UI (PI, Q1), (6)

where Sf, Sb are the scattering functions for forward and backward scattering,
respectively.

Scattering can be calculated rigorously by a number of alternative techniques
such as the modal method, the coupled-wave theory, the waveguide model and by
integral equations. These different approaches are equivalent, but one or another
technique may be numerically superior according to the geometry or material of
the scattering structure. However, there are several limitations of rigorous scat-
tering theory. These methods tend to break down for large angles of incidence
or scattering, or for very deep structures. Investigation of total integrated scatter
(TIS) and also image modeling are computationally intensive, because the scat-
tered waves must be integrated over angles of incidence or scattering, or both. It is
difficult to identify trends in the scattering behavior. In general the inverse problem
of reconstructing the scattering object from scattering data seems intractable.

So we are led to consider an approximate theory. For forward scattering we can
use the Born approximation or the Rytov approximation. For backward scattering
we can use the Kirchhoff approximation or the Rayleigh approximation. In the
Rayleigh approximation, the height change is assumed small, but polarization
effects are easily incorporated. For the present work, we may be interested in large
height changes, so this approximation is not considered further. In the Kirchhoff
approximation for surface scattering, the surface is considered to be made up of
planar patches, the curvature of which is negligible. The slope of the surface is
assumed to be not too large, so that multiple scattering and shadowing effects
can be neglected. But the height change can be large, as long as the conditions
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mentioned are satisfied. The Kirchhoff approximation does not predict enhanced
backscattering, but for TIS or imaging modeling the contribution of enhanced
backscattering is small after the integration process.

The standard derivation for surface scattering in the Kirchhoff approximation
is that of Beckmann and Spizzichino.? They found that the reflection coefficient p
for surface scattering from a surface of infinite conductivity is

p = ~ fi expfiv - r)dx dy,

where A is the area of projection of the surface,

r == xi + yj + ~ (x, y) k

(7)

(8)

represents the surface profile ~ (x, y) , and v and the "F- factor" F3 are expressed
in coordinates (}l, (}2, ljJ as

v == nok[(sin (}l - sin (}2 cos ljJ) i-sin (}2sin ljJj - (cos (}I + cos (}2)k] (9)

1 + cos (}l cos (}2 - sin (}I sin (}2 cos ljJ
F3((}1; (}2, ljJ) == . (10)

cos (}l(cos (}I + cos (}2)

Here (}l , (}2are the angles of incidence and scattering, and ljJ is the meridional angle
(the angle of the plane of scattering from the plane of incidence). The geometric
significance of v and F3 is not too clear from these expressions.

For scattering by a surface, we are only concerned with backward scattering,
Sb, so we will omit the suffix in the following. We introduce the direction cosines
PI, ql, SI; P2, q2, S2 for the incident and scattered waves.' We also introduce the
scattering vector knoP == kno (pi + qj + sk), where the normalized spatial fre-
quencies are given by

P == P2 - PI,

q==q2-ql,

s == S2 - SI. (11)

Note that Sl is negative, and for scattering in the backward direction, S2 and there-
fore s, are positive. Then, in some cases, the scattering function can be expressed
in terms of p, q, S only, as S == T (p) == T (p, q, s). The cases when this occurs
include those when the Born or Kirchhoff approximation is valid, for the symmet-
rical case of a sphere, or for a thin grating. In general the scattering function has
four degrees of freedom, but, if the Kirchhoff approximation is valid, these reduce
to three degrees of freedom. Thus T (p) is constant for all angles of incidence,
providing p, q, S are kept constant. The vectors PI, P2 represent Ewald spheres,
with centers separated by the vector P, which intersect in a circle, the scattering
function in the Kirchhoff approximation being constant for incident and scattered
waves represented by points on this circle. The scattering function is given in terms
of the reflection coefficient by

T == pA cos 01, (12)
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so, substituting in for the angles of incidence and scattering

T(p) = ~; Ii ~(x, y)exp(-inokp· r)dxdy. (13)

We immediately appreciate that this expression is much simpler than that of
Beckmann and Spizzichino.? It also has the advantage that it is invariant under
a rotation about the axis. However, we can continue by expressing the double
integral as a triple integral over a 8-function:4- 7

T(p) = ~; ffi: 8[z - ~(x, y)] exp(-inokp · r)d3r. (14)

This can be recognized as the 3D Fourier transform of the surface profile:

p2
T(p) = 2s F{8[z - ~(x, y)]}, (15)

(16)

(17)

(18)

where F {.} denotes the Fourier transformation operation, that is the scattering
function is given by the 3D Fourier transform of the profile, multiplied by a ge-
ometric factor that is independent of the form of the surface. Then taking the
factor 1/s inside the Fourier transform, we have

inokp2
T(p) = -~F{b(r)},

where b (r) represents the bulk of the surface. Finally, by the differentiation theorem
of Fourier transforms, we have

in
T(p) == -F{V2b(r )}.

nok

Thus we see that the scattering function is given simply by the Fourier transform
of a scattering potential"

in
V (r) = -V2b (r).

nok

Expressing the scattering function in terms of the normalized spatial frequencies
has resulted in a much simpler form for the scattering function. It also provides a
simple explanation of the so-called memory effect. The scattering function for a
surface that is not too rough is almost independent of s, as the Fourier transform of
the small height is stretched out. The relationships between p and the coordinates
f)1, f)2, 4J are

p = sin f)2 cos 4J - sin ()1,

q == sin ()2 sin 4J ,
s == cos {)2 + cos f)1• (19)
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For a particularplane of incidencethere are only threedegreesof freedom so that
there is a unique relationship between fh, 8z, </J, and p. We can simply obtain an
expression for 81 and </J in terms of p. However, explicit expressions for 81, 8z, </J

in terms of p are quite complicated. Introducing the radial spatial frequency .e

we then have

eZ = sinz81 + sinz8z - 2 sin81 sin8z cos </J.

(20)

(21)

Foran isotropicsurface,the statisticsof T (p) reduceto a function of twovariables,
eand s, and 81, 8z, </J are related for a constant valueof e.

3.4. Significance of the Three-Dimensional
Spatial Frequencies

The vectorp can beregarded as a vectorformedfromthe threedirectioncosines,or
as a normalized spatialfrequency vector. Thegeometrical significance is illustrated
in Fig. 3.1, whichshowsa sectionthroughthe 3D spatialfrequency space.9- IZ For
normal incidence, the spatial frequencies lie on the surface of a sphere of radius
unity that passes through the origin, eZ + s (s - 2) = O. For specular reflection,
p = q = 0, andso thespatial frequencies lie on thes-axis.Thusthe factorpZ /2s in
(15)reducesto s/2. This is consistentwith the well-known propertyfirstdescribed
by Darwin'f in the connectionof X-ray diffraction, that a plane of atoms (which
can be represented by a 8-function) does not reflect radiation independently of

2

FiGURE 3.1. The geometrical significance of the
normalized spatial frequency vector p.

normal incidence

2

s
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angle but as 1I cos (). Thus a perfectly conducting plane does not behave as a
perfect reflector, but the surface of a perfectly conducting solid does.

All scattered waves, for any angle of incidence, have a value of p that lies within
a sphere of radius 2, centered at the origin. Backscatter is represented by spatial
frequencies on the surface of the sphere 12 + S2 == 4. The region outside of this
sphere cannot represent propagating waves. The figure shows a shaded region of
toroidal shape. This represents skew rays, which are scattered out of the plane of
incidence. The boundary of this volume, l (2 - i) == s2, represents illumination at
grazing incidence.

It should be noted that for the assumed case of a surface with isotropic statistics,
scattering in the Kirchhoff approximation reduces to a function of only two vari-
ables l, s instead of the three trigonometric variables. Thus use of the 3D spatial
frequencies shows very simply how the scattering data change with angle of in-
cidence. Further, measurements out of the plane of incidence give in principle no
further information if the Kirchhoff approximation is satisfied. This is not true if
the ranges of illumination and scattering angles are restricted to a finite range, say
to ±a.Then for measurements in the plane of incidence only, for information to
be obtained for a large continuous range of transverse spatial frequencies, s must
be in the range between 1 + cos a == 2 cos2 (aI2) and 2, giving III in the range
between 0 and 4 sin2 (aI2) (1 + cos2(aI2». On the other hand, if measurements
out of the plane of incidence are included, the range of s is increased to cover from
2 cos a to 2, with III in the range from 0 to 2 sin a.

3.5. Polarization Effects

So far we have been concerned with the case of scalar waves. For light waves
no depolarization occurs for scattering by 1D rough surfaces for either TE or TM
polarized waves, with plane of incidence normal to the direction of constant surface
height.

In general, the depolarization can be calculated in terms of the polarization an-
gles {Jl,{J2, being the angles of the electric field vector of the incident and scattered
radiation, respectively, from the intersection of the wavefront with the reflecting
plane (Ref. [2], p.169). It is straightforward to show that

. {J pql,2 - QPl,2
Sin I 2 == .

, It,2 Ipl Jl - p2/4

It is seen that if the conditions,

(22)

(23)P « PI,

Q« ql,

are satisfied, then fJI ~ fJ2. In this case, for given values of PI and ql, S is related
to them by

2 2 4 2PI + ql == - s . (24)



(25)
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The polarization factor P2 of the scattered wave can then be written in terms of
the polarization factor PI of the incident wave (Ref. [2], p.I7I)

tan 2fh + PI
P2 == .

PI tan 2,81 - 1

The depolarization thus does not depend only on p, q, and s, but also on the
direction cosines of the incident wave.

3.6. Random Surfaces

3.6.1. Statistics ofSurface Scattering

We take our surface as that generated by a continuous stationary random process
with a height ~ which is distributed normally with mean value

and distribution

(~) == 0 (26)

(27)1 (~2 )w(~)== --exp -- ,
a-J2rr 2a 2

where a is the standard deviation (the root-mean-square value of ~). The charac-
teristic function associated with the height variation is

where

x (s) = exp [ - ~(nokSaf] = exp(-h2 /2),

h == noksa.

(28)

(29)

The autocorrelation coefficient is taken as C (x, y). The 20 normal distribution of
the two random variables ~1 and ~2 at points 1 and 2 is, with C12 the autocorrelation
coefficient between the points,

1 [ ~t-2C~I~2+~i]
W(~l, ~2) = / exp - 2 2 (1 _ C2 )' (30)

2rra2V 1 - Cf2 a 12

so that the joint characteristic function of the distribution is

(31)

The mean value of the scattering function for a large surface iS2,14

p2 floo(T (p)) = - (exp(-inoks~)} exp [-inok(px +qy)] dx dy
2s -00



(32)
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SA2

= -2X(s)8(p)8(q)
2no
SA2

= -2 exp(-h2j2)8(p)8(q).

2no

Thus the mean of the scattering function, which is in general a complex quantity,
vanishes except for p = q = 0, corresponding to specular reflection. For p or
q i= 0, the mean is zero, and the scatteringfunction, which is in general complex,
corresponds to diffuse scattering.

The modulus square of the mean value is for a surface of large area A

I(T (p)}1
2 = A (~:YIi: x(s)x*(s) exp [-inok(px + qy)] dx dy

= A~2 (p2)2 exp(-h2)8(p)8(q).
no 2s

The mean-squarevalue of the scattering function is

(33)

(TT*) = A (~:)
2

Ii: (exp [-inoks(~l - ~2)]}
X exp [-inok(px + qy)] dx dy

= A (~:) 2 Ii: X2(S, -s)

x exp [-inok(px + qy)] dx dy. (34)

The varianceof the scatteringfunction is then2,14

D{T} = A (~:Y li:[X2(S, -s) - X(s)X*(s)]

x exp [-inok (px + qy)] dx dy, (35)

where X and X2 are the characteristicfunctions describing the surface.
The usualmeasureof scatteringfrom a roughsurfaceis the BRDF(bidirectional

reflectance distributionfunction),definedas the scatteredpowerperunitsolidangle
divided by the input power.!" Then, the total BRDF is7

n2

BRDF = --.!L.
2

(TT*).
AA

(36)

Neglecting the coherent component to the BRDF, we have for the incoherent
part

n2

BRDFinc = --.!L.
2

D {T} ,
AA

(37)
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so that

BRDFinc = n~ (p2)2f/ DO

[X2(S, -S) - X(s)X*(s)]
A 2s -00

x exp [-inok(px + qy)] dx dy. (38)

Thus the BRDF is dimensionless and independent of the area of the surface.
For a surface described by a normal distribution function, using Eq. (35) we

have

n
2 (p2)2

BRDp· == --.Q - exp(-h2)
me A2 2s

X Ii:{exp[h
2C(x,

y)] - I}

x exp [-inok(px + qy)] dx dy. (39)

For an isotropic surface roughness, let us assume that the autocorrelation coefficient
can be written as C (Lt) where t == P/ L, and L is some characteristic distance.
Then we have

where Co == nokL and

T3 (c, h) = 21DO

{exp[h2C( Lt)] - l}Jo(ct)tdt,

the suffix 3 refers to the 3D case.

3.6.1.1. Smooth Surface

(40)

(41)

For a smooth surface for which h « 1, expanding the exponential function
of the autocorrelation coefficient as a power series and retaining the first
two terms?

BRDFinc = ~~ (~:) 2 h2exp(-h2
)

X Ii:C(x,y)exp[-inok(px+qy)]d.xdy

n4rr 2

= ~4 p4exp(-h2)G(p, q), (42)
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where G (p, q) is the power spectral density of the surface profile

G(p,q)=a 2Ii:C(x, y)exp[-inok(px +qy)]dxdy. (43)

If h « 1 then the exponential term in Eq. 42 is also approximately unity giving

n41f 2
BRDFinc = ~4 p

4G(p,
q), (44)

so that investigation of the image spectrum in the appropriate region can give the
power spectral density.

It should be noted that this last equation is true for any distribution function of
surface heights. We have for expansion of the characteristic function in terms of
the moments

" (inoks)j~
X(s)==L..J ., ~J,

. J .
.I

(45)

where ~ j is the j th moment of the surface height variation. If neks ~ is small, then
expanding as a power series

. _ (noks)2~2
X(s)==1+1noks~- + ...

2
so that

X(s)X*(s) == 1 - h2+ ....
Similarly for the joint characteristic function

_ "" (inoks)j(-inoksi ( j I)
X2(S, -s) - L..JL..J ·'1' ~1 ~2

.i l J ..

== 1 - h2[1 - C(x, y) + ...]

giving

X2(S, -s) - X(s)X*(s) == h2C(x, y) + ....

(46)

(47)

(48)

(49)

This is true for any distribution function, the mean height having canceled out so
that the distribution function does not need to be symmetric.

3.6.1.2. Rough Surface.

If on the other hand we have a rough surface h » 1, the only contributions are
from the region where x == y == 0, and, assuming an isotropic surface, the autocor-
relation coefficient can be expanded as a power series, assuming it is continuous
in slope, to give

p2
C (p) == 1 - L2 + ... , (50)
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where L is identified in terms of the power series expansion. Then

BRDF. == _1 (p2)2 (!--)2 exp [_ (!--)2] (51)
me 411 2s lh 2h'

where

c == col == noklL. (52)

Thus for a fixed h, the BRDF depends on the ratio hfc, or equivalently o f L,
However, inverting (43)

C(x,y) = (;~)2II G(p,q)exp[inok(px+qy)]dpdq. (53)

For an isotropic surface, we can transform to polar coordinates, and by expanding
the resulting Bessel function kernel in a power series

n4k4a 2

C(p) == 1- ~p2,
811a 2

where a~ is the second moment of the power spectral density, so that

and is seen to be directly related to aGo

3.6.2. Gaussian Autocorrelation Coefficient

The autocorrelation coefficient is now assumed to be normal:

where L is the correlation length. Then the BRDF iS2,7

where

(54)

(55)

(56)

(57)
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and the suffix 3 refers to the 3D case. Again we can investigate the case of a smooth
surface (h « 1), giving

c
2(p2)2 (C2)

BRDF· =.....Q.. - h2exp -- .
me 4Jr 2s 4

Also for reasonably small values of h, expanding the outer exponentiaf

so that

c
2(p2)2 00 h

2j (C2
)

BRDFine =.....Q.. - exp(-h2
) L -.,-. exp ----:- .

4Jr 2s 1=1 J.J 4J

In the specular direction, for e= 0, the incoherent part of the BRDF is16

(59)

(60)

(61)

where Ei is an exponential integral and y is Euler's constant. For large h,

The function T3 can be written as

where'?

00 (h
2)2j (C2

)P c h - . ex ---
3 (, ) - ~ (2j)!2j P 4(2j) ,

00 (h2)2j+l (C2 )

Q3(C,h)=~(2j+l)!(2j+l)exp -4(2j+l ·

Thus P, Q are even and odd functions in h2, respectively. Then

P3 (0, h) = Chi(h2
) - Y - In(h2

) ,

Q3 (0, h) = Shi(h 2
) ,

where Chi, Shi are hyperbolic cosine and sine integrals, respectively.

(63)

(64)

(65)

(66)



(67)

(68)
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The root-mean-square value of the scattering function is, from (34) and (31)

TRMS = LJ1iA. (~;) exp(-h2/ 2){T3(C
2

, h2
)} 1/2,

As
= ""2 exp(-h2/2), l = O.

The condition which must be satisfied for the second of these expressions to be
valid is that the contribution from the incoherent component is negligible compared
with the coherent component, that is when

A 2
Jr L2 » T3(O, h )

exp(h2)

» h2 '

or, if A/(Jr i 2) «exp(h2) / h2
, then it is valid even for l == O.

The total BRDF, including the coherent part is, for an infinite surface,

(69)

where 8 (l) is a radial delta function in cylindrical coordinates. The first component
is the diffuse component, and the second component is the coherent specular com-
ponent. The relative strength of the coherent specular and scattered components is
for large surfaces independent of the area of the surface.

3.6.3. Measurement ofSurface Roughness

Surface roughness can be studied either by direct investigation of the scattering
statistics, or by measuring the surface profile and investigating the statistics of the
profile. The scattering statistics can be measured by angular-resolved scattering
(ARS).17,15 In this case, we measure the BRDF as a function of incidence and
scattering angles. The data can be presented as a function of the normalized spatial
frequency vector p. Only values of p2 ~ 4 represent real angles of incidence and
scattering. For incident and scattering angles limited within an angle ex relative to
the surface normal, we also have 2 cos ex ~ s ~ 2.

For an isotropic surface described by a continuous stationary random process
with a normal distribution of surface heights and a Gaussian autocorrelation coeffi-
cient, the BRDF (57) is given by a product of a function ofp and a function of c, h.
For different values of a, L, the scale of the function of c, h varies relative
to the value of p. It should be noted that there are thus scaling parameters
in both longitudinal (height) and transverse directions. Thus we distinguish
between smooth and rough surfaces, and between coarse and fine roughness.
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FIGURE3.2. The surface dependent partsof the scattered and coherent components of the
BRDF, for l =0, corresponding to thespecular direction, givenbyexp(-h2)[Ei(h2) - y -
In(h2

) ] and exp(-h2
) , respectively. The surface exhibits a normal distribution of surface

heights and a Gaussian autocorrelation coefficient. Constant numerical factors and terms
dependent on p are suppressed.

Figure 3.2 shows the variation in the function of h for the coherent and scat-
tered components of the BRDF in the specular direction, given by exp(-h2) and
exp(-h2)[Ei(h2) - y - In(h2)], respectively, from (32) and (62). We see that the
coherent component decays monotonically with h. The scattered component ex-
hibits a maximum value at h ~ 1, and then decays as 1/h. Thus when this is
multiplied by the function of p (i.e. by s /2), it will tend to a constant value.
Figure 3.3 shows the variation of the scattered component of the BRDF given by
the function of c, h, given by exp( -h2)T3(C, h) from (57). It exhibits a maximum
on the l = 0 axis. The importance of this function is that it is valid, within the
Kirchhoff approximation, for surfaces of any magnitude of roughness or corre-
lation length. Alteration of the values of a and L just changes the scale of this
function relative to the observed spatial frequencies p.

We now investigate the behavior for some special cases.

3.6.3.1. Smooth Surface, neko = ho« 0.5

In this case the condition for a smooth surface (h « 1 ) applies for all s ~ 2. Then
from (69) and (42), we have

where ho = noka. It is seen that s appears only in a term that is a property of
the optical system only, and not of the particular surface. Integrating over axial
and transverse spatial frequencies we can obtain expressions for the power in the
specular and diffuse components. This is analogous to the total integrated scatter
(TIS) method of roughness measurement.
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FiGURE 3.3. The surface dependent part of the scattered component of the BRDF, given
byexp (_h 2) T3 (c, h). Thesurface exhibits a normal distribution of surface heights anda
Gaussian autocorrelation coefficient. Aconstant numerical factor and term dependent onp
aresuppressed.

3.6.3.2. Rough Surface, ho » 0.5 sec ex

Now the surface is so rough that the monotonicallydecaying region of the BRDF
completely fills the observedrange of spatial frequencies. Wenow have from (69)
and (51)

BRDF = 8~ {2 (~;) 2 C~Yexp [-~ G~YJ + S2 exp(_h
2

)
8 ~l) J.

(71)
For large h the specular component becomes weak. Observation of the variation
of the BRDF allows a / L to be determined.

3.6.3.3. Fine Surface, Co « 1/ sin ex

In the case of a small correlation length, we can assume c « I over the whole
observable region of spatial frequencies, so that from (40) and (62), we have

I
BRDF = - exp (_h 2

)
8:Tr

X {2 (~)'c5[Ei(h') - y -In(h')] +",(l)ll1' (72)

and it is seen that for the scattered component f. appears only in the term that
is a property of the optical system only, so we can integrate over e. For a
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fine and smooth surface

S2
BRDF = -{p4(coho)2 + 28(f)ll}. (73)

161l'

For a fine and rough surface, the condition that must be satisfied is now LIa «
0.5 cot(aI2), and then

BRDF= 8~ {2 (~:) 2 C~)2 + s2exp(- h2)8(i )/ i I. (74)

3.6.3.4. Coarse Surface, Co » II sin a

If the correlation length of the surface is large, then variation in f2 can be neglected
over the region where the surface spectrum is appreciable:

s2
BRDF = - exp( -h2)[c~T3(C, h) + 28(f)ll].

161l'

Then for a coarse and smooth surface

BRDF= 1~: {C5h
2exp (-:) +28(i)/i}.

For a coarse and rough surface, for Llo » cot(aI2)/2, we have

S2 {( L)2 [1 (fL)2J 28(f)1BRDF=- - exp -- - +2exp(-h)-.
161l' sa 4 sa f

(76)

(77)

3.6.4. Imaging ofSurface Roughness

Measurement of the BRDF loses the relative phase of the scattered components,
and hence the surface profile cannot be recovered without using phase retrieval
techniques. On the other hand, the surface profile can be recovered by various
techniques such as confocal profilometry'" and interferometry. These imaging
techniques can be characterized by a coherent transfer function (CTF) , which
also has a support p2 ~ 4, 2 cos a ~ S ~ 2 for an objective lens of semi-angular
aperture ct. The image amplitude is then given by the 3D Fourier transform of
the spatial frequencies (scattered components) transmitted through the system.
Thus the relative phase of these components is retained in the imaging process.
In interferometry, the phase of the image is measured. In confocal microscopy
the image intensity only is measured, but nevertheless the profile can be extracted
from these 3D intensity image data.!"

3.6.5. Inversion ofScattering Data

For a smooth surface the power spectral density, and hence the autocorrelation
coefficient, can be determined directly from the scattering data. Even for rougher
surfaces, for a normally distributed surface height the simple form ofBRDF can be
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recognized as a Fourier transform, so that the scattering data, measured by altering
both incidence and scattering directions so that s is kept constant, can be inverse
transformed to determine the autocorrelation coefficient. For a fixed value of s we
can write, by inverting the BRDF,

exp{-h2[1 - C(x, y)]} - exp[-h2
]

=Ii: BRDFinc (:2YeXP[-inok(PX + qy)]dpdq. (78)

Denoting the integral in this equation by 1 (x, y), the condition C (0, 0) = I allows
us to determine the RMS surface height

h2 = -In[l - 1(0,0)]. (79)

It should be noted that this requires measurement of the absolute value of the
BRDF. Then the autocorrelation coefficient is given by

In[l - /(0,0) + Itx, y)]
C(x, y) = 1 - In[l _ 1(0,0)] · (80)

Whilst this equation is exact within the Kirchhoff approximation, the approach is
only applicable for intermediate values of roughness, as for very rough surfaces it
breaks down because the scattering becomes insensitive to the form of the auto-
correlation coefficient except for values of x, y very close to zero. In practice, the
value of h can be reduced by increasing the value of s, which requires an increased
range of measurement angles or a longer wavelength.

For very rough surfaces it is still possible to obtain information concerning the
behavior of the autocorrelation coefficient for small distances. Fractal behavior,
associated with a cusp in the autocorrelation coefficient, is indicated by a cusp in
I (x, y). Hence the existence and properties ofan inner scale offractal behavior can
in some cases be determined. For determination of statistics rather than the actual
profile, the autocorrelation coefficient and BRDF are both real and symmetric
functions, so that knowledge of phase information is unnecessary.

3.6.6. Statistics of the Scattered Field

Let us now consider the statistics obeyed by the scattered field. Beckmann and
Spizzichino/ show that the statistics satisfy a distribution p (u), where u is a nor-
malized amplitude, which depends on two parameters, B representing the relative
strength of the constant to random components, and K, the asymmetry factor, which
is the square root of the ratio of the imaginary to real components of the random
part. For normally distributed surface heights we find that, using the approximation
of Beckmann and Spizzichino.i

K = [coth(h2/2)] 1/2,

=1, £#-0.

l = 0,

(81)
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FIGURE 3.4. Therelationship betweenBand K, withnormalized roughness h as parameter,
fora surface exhibiting a normaldistribution of surface heights anda Gaussian autocorrela-
tioncoefficient, predicted by theexactKirchhoff theory andthe Beckmann approximation.
The behavior of the Rayleigh, Rice and Hoytdistributions are also shown.

and for the 3D case

B == (JrL2A)-1 [Ei(h2) - y -In(h2)] - I ,

== 0, l # 0.

.e == 0,

(82)

Beckmann calculated the value of K by neglecting the interdependence of the real
and imaginary components of the variance of the scattering function. Goodman'"
has calculated the variance of the real and imaginary parts of the scattered field
directly, so that for i == 0

rrL2As2

D{Tr } = 4 exp (-h2)[Chi(h2) - Y - In(h 2)]

n L 2As 2

D {1i} = 4 exp (-h2)Shi(h2). (83)

We obtain

[
Shi(h2) ] 1/2

K = Chi(h 2) _ Y _ In(h2) ,

= 1, .e # o.

.e == 0,

(84)

Thus for .e #- 0, when there is no specular component, the statistics are circular
(Rayleigh). For f == °there are both specular and random components. The values
of Band K given by the exact theory and using the Beckmann approximation are
illustrated in Fig. 3.4. For large values of h the statistics become circular, but for
values of h larger than about 1.5 they satisfy approximately a Rice distribution

(85)

where 10 is a modified Bessel function of order zero.
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3.6.7. Limitations of the KirchhoffApproximation

The usual theory for image plane speckle''' assumes that there are at least several
correlation areas within the point spread function of the imaging system, so that
the central limit theorem can be invoked to give an image field which is a Gaussian
random variable. We take the number of correlation areas within the point spread
function to be

4

(86)== --- ==-

N == ----
nekl, sino

4 4

nokioL Co

where io, Co refer to values for the transverse cut-off frequency for coherent imag-
ing. The RMS value of the scattering function varies as exp(-c2/8), i.e. at the
cut-off for confocal imaging it has a value exp(-2/N 2) , so that if N is large the
scattering function varies slowly with transverse spatial frequency over the pass-
band of the optical system. It should be noted that the treatment presented earlier
makes no assumption as to the value of L, although the total area of the surface is
assumed to contain many correlation areas.

The application of the Kirchhoff approximation relies on the assumption that
the radius of curvature of the surface is large compared with the wavelength.
The curvature is always smaller than the second derivative of the surface profile.
From the theory of stochastic processes, the distribution of the second derivative
of a normal process is itself normal. The distribution function of the second
derivative is

1/ _ [2 [(~1/)2L4]
w(~ ) - rc: exp 2

2a y2rc 8a
(87)

so that the standard deviation of the second derivative is

(88)
1/ 2a

a == L2.

The second derivative is unlikely to have a value greater than two standard
deviations so that the Kirchhoff approximation will be valid for almost all points
on the surface if

(nokL )2
---»811".

noka
(89)

This can be written as

(90)

and as the maximum value of i is 2 sin a and the minimum value of s is 2 cos a,
the approximation is valid over the whole of the nonzero region of the transfer
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function if

c2

h » 16Jr sinatana,

which is more restrictive the larger is the angular aperture.

(91)

3.7. Fractal Surfaces with an Outer Scale

In early work on the scattering of light by rough surfaces, a Gaussian autocorrela-
tion coefficient was assumed. However, autocorrelation coefficients ofexponential
form have been experimentally observed. Elson and Bennetr" pointed out that an
exponential correlation is physically unacceptable as it results in an infinite mean
square slope. This is an indication of fractal behavior, and of course in practice
there has to be a limitation in the range of scales over which the fractal nature
exists.

We therefore explore scattering by surfaces with exponential correlation. These
are, in fact, special cases of a more general surface with correlation given by a
modified Bessel function of the second kind.

Thus an exponential autocorrelation coefficient, for separation p, is of the form

C(p) = exp(-p/L). (92)

Still assuming rotational symmetry, this can be generalized to

(93)p ~ 0,2 «r (P)C(P)=r(m-l) 2L Km-l L '
where K is a modified Bessel function of the second kind and m is a constant ~ 1.
This expression has been normalized to give a value ofunity for the autocorrelation
coefficient for zero separation. The power spectral density (PSD) is then

(94)
4rra 2 L2(m - 1)

G(l) = (l + c2)m '

where a is the rms surface height and c = noklL can be regarded as a normal-
ized radial spatial frequency. For high spatial frequencies we see that the PSD is
proportional to c-2m • It thus behaves in this range as a fractal surface, and the
fractal dimension is

D =4-m. (95)

For 1 < m < 2, it is a fractal with an outer scale L. For m = 3/2, corresponding
to D = 5/2, this reduces to the exponential correlation, the so-called Brownian
fractal, and for m = 2, to a marginal fractal,

(96)
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For m == 4/3, corresponding to D == 8/3, i.e. the case of Kolmogorov turbulence."
the correlation function is

2Jl'3
1/6 .[( 3p )2/3]

C(p) == -y-Al 2L ' (97)

where Ai is an Airy function. For m > 2, the surface becomes a subfractal. For
large m, the power spectral density tends to a Gaussian

(98)

Scattering by a fractal structure with an outer scale has been investigated by
Uscinski et al.,22 and also by Jakeman.P although they did not consider rough
surface scattering specifically, or 20 surfaces.

We can normalize L so that the power spectral density has the same value for
small spatial frequencies for all values of m. We thus introduce

T==2L~. (99)

Plots of the PSO and the correlation function for different values of m are shown
in Fig. 3.5.
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FIGURE3.5. The powerspectralden-
sity and the autocorrelation coeffi-
cientforfractalsurfaceswithanouter
scale.
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3.7.1. Scattering by a FractalSurface with an Outer Scale

For scattering by a surface with Gaussian distribution of surface heights and a
fractal power spectrum, we can calculate the BRDF as previously. For the particular
value of m = 3/2 we then have24,25

00 h2r

=f; rlr2(1 + c2Jr2)3/ 2 '
(100)

For f, = 0, corresponding to the specular direction

00 h2r

T3 (c, h) = L-2.
r=1 rlr

(101)

Fig. 3.6 shows the form of the function exp(-h2)T
3(c, h). The behavior is

broadly similar to that described earlier for Gaussian correlation functions.
Fig. 3.7 shows the behavior for l = 0, corresponding to the specular direction,
for different values of m. The curves tend to that for a Gaussian correlation func-
tion for large values of m, whereas for smaller values of m they decay more quickly
with h.

We now turn to the important case of rough surfaces, corresponding to h » 1.
Then the dominant contribution to the integral of (100) is from small values of t.
Thus the correlation function can be expanded as a power series, and the second
term of the integral neglected, so taking

p
C(p) == 1 - - + ... ,

L
p 2: 0, (102)

LL
o
a:co

c = noklL

2

3

5_
h=nokso3~

FIGURE 3.6. The surface-dependent part of the scattered component of the BRDF for a sur-
face exhibiting a normal distribution of surface heights and an exponential autocorrelation
coefficient. A constant numerical factor and term dependent on p are suppressed.
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FIGURE 3.7. Thesurface-dependent partsofthescatteredcomponent oftheBRDF, for l = 0,
corresponding to the speculardirection, for a surfaceexhibiting a normal distribution of
surfaceheightsand a K-distribution autocorrelation coefficient, for differentvaluesof the
parameterm. Constantnumerical factors and termsdependent on p are suppressed.

the BRDF is

It is seen that for all rough surfaces with correlation functions that have a nonzero
first power term in their power series expansion, the same form of BRDF results.
The behavior is different from that for surfaces with Gaussian correlation function
as the BRDF is a function of c/ h2 rather than c/ h .

The surface for m = 3/2 exhibits a simple cusp at the origin, but for other values
of m in the range 1 < m < 2 the behavior is more complicated. For small t we can
use the approximation, valid for 0 < v < 1 and small x ,

where

d=_l_~
r(v)2VV~'

so that

(
p )2(m-l)

C(p) = 1 - d
2 L '

and for h » 1

T3(c, h) = 2exp(h2)i oo
exp {_h2d2t2(m- l ) } Jo(ct)tdt.

(104)

(105)

(106)

(107)
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It is noticed that the exponential term is of the same form as a super-Gaussian,26

but that as the exponentis less than unity it shouldreallybe called a sub-Gaussian.
For c = 0, corresponding to scatteringin the speculardirection,

T (0 h) (h2 1 1 (1)
3, = exp ) (hd)2/(m-l) (m _ 1) r m - 1

= [a~)r/(m-l) (l08)

Thevalueofa (m) doesnotchangeappreciably inmagnitudeuntilm approaches ei-
therunity, corresponding to anextremefractal, or two,corresponding to a marginal
fractal.The powerlawof the decayof T3 withh increasesstronglyas m decreases.

The behaviorfor large h can be describedby

1 1 (1)T3(C, h) =exp(h
2)

(hd)2/(m-l) (m _ 1) r m _ 1 !(w),

where

(m - 1) 100

!(w) == 1 exp{_q2(m-l)}Jo(2(m - 1)1/2(m-l)wq)qdq
Sf (m-l) 0

with

2c
w==-------

(~hd)l/(m-l)

and

q = ! (hd)l/(m-l) t.
2

(109)

(110)

(111)

Forrationalvaluesform, theintegral! (w ) canbeevaluated in termsofgeneralized
hypergeometric functions. It is found that as m --+ 1,

Ltm4 d f (w )} = exp (- :) 10 (:). (112)

(113)

For particular values the hypergeometric functions may reduce to simpler forms.
As before, for the Brownianfractal m == 3/2

1
! (w) == 3/2.

[1+(~)2]

For the marginal fractal m == 2, the cusp disappears and the behavior for large h
varies similarlyto a Gaussiancorrelationfunction:

As m decreases, the peak becomes sharper relativeto the decay.
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The behavior for large h and small c can be determined by expanding the Bessel
function in Eq. (110) in a power series and retaining the first two terms. We
obtain

1 (m - l)I/(m-l) r (~) 2

f(w) = 16 - 16 r (_1)W + ... ,
m-l

1 1 r (~) 2

16 - 4(hd)2/(m-l) r (_1)C + ....
m-l

(114)

These equations predict that for fixed and large h the scattering varies as cm- 1/ h.
Thus the scattering spreads out more quickly with h for higher fractal dimension,
with proportionally more power being scattered through high angles.

3.8. Total Integrated Scatter (TIS)

Total integrated scatter (TIS) measurements are an established technique for mea-
suring the roughness of surfaces. 17 The surface is illuminated with a plane wave,
and the scattered light collected. Then, if the surface is illuminated normally, the
TIS, defined as the total scattered power normalized by the total reflected power,
has been shown to be related to the rms surface heightby25,27

TIS == 1 - exp[ -4(noka)2]. (115)

The TIS can be calculated by integrating over the power scattered at different
angles. The angular scattering can be described by the bidirectional reflectance
distribution function (BRDF)15. As before, under certain circumstances, scattering
can be calculated by the Kirchhoff approximation.v''' which assumes that the
radius of curvature of the surface is large compared with the wavelength, and
neglects multiple scattering and shadowing effects.

For normal incidence the factor

giving

(~;) = 1, (116)

(117)

and we have the relationships between the differentials in solid angle wand the
normalized spatial frequencies

2JTldl
dw = = -2JTds.
~

(118)
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Integrating the coherent specularcomponentover the solid angle around the axis,
the normalizedcoherent power is, for any finite angular semi-aperturea

sina

f 2Jr£d£
P; = JI=e2 exp[-(noka )2].ed.e

1-£2
o

= exp[-4(noka )2], (119)

thus agreeing with the results of Bennett and Porteus.F
Integratingthe scatteredcontributionover semi-angularaperturesfrom ao to a,

we have for the normalizedscatteredpower'"

1+cosao

r, = f 1exp[-(hosf]T3 [coJs (2 - s), hos] ds,

l-l-coso

(120)

where Co = cll = nekl. and ho = h]« = noka are independentof s.
For the particular case of a long correlation length, the light is scattered over

small angles so we can put, for the case when ao = 0,

with d small, so that

S=2-d, (121)

(122)
00 2

f Co 2 rx:r, = 2 exp(-4ho)T3(COV 2o, 2ho)ds

o
where, as the exponentialdecays quickly, the upper limit of the integral has been
replaced by infinity, and after performing the integral and then the summation in
T3, we obtain

Ps = 1 - exp(-4h~). (123)

The totalpower,specularand scattered,is thus from (119) and (123) unity,satisfy-
ing conservationof energy. Thus (123) also gives the TIS, agreeing with (8.1).We
note that if the collection aperture is not high enough to collect all the scattered
light, the total scattered plus specular power is not unity. In addition, for shorter
correlation lengths, some of the scattered power will go into evanescent waves,
which cannot be collected. Thus it is more convenient to define TIS as the ratio
of the scatteredpower to the reflectedincident power,15 althoughdefiningit as the
ratio of the scatteredpower to the sum of the coherent and scatteredpowers'? has
the advantageof being definedin terms of measurablequantities.

Wecan continue to consider various other special cases. For a smooth surface,
such that ho« 1, we can retain only the first team of the expansionof T3 in (120),
giving

l-l-cosce,

2 f (CDS)2 [1 2 ]P, = 4ho -8- exp -4cos(2 - s) ds.

1+cosa

(124)
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The integral tends to unity for large Co, so that the scattered power is given by 4h~,

agreeing with (115) for small hOe Thus the factor

l+cosao

r. ! (cos )2 [1 2 ]f = - = -- exp --cos(2 - s) ds
4h6 8 4

l-l-coso

(125)

can be considered as a correction factor, describing the effects of the finite range of
collection angles on the measured surface roughness. This factor can be expressed
in terms of the error function. For high apertures the correction factor is close to
unity if Co = nokl: is greater than about 4.

For a very rough surface, ho» 1,

r, = l+!cosao~ exp [ (2 - S)C6] ds
2(hos)2 4h6S

l-l-coso

[ ( )2 ] [()2 ]1 ~ 2~ 1 ~ 2 a
= exp - 4" h

o
tan "2 - exp - 4" h

o
tan 2" . (126)

It is seen, as has been pointed out many times previously, that the scattering depends
on the ratio colho rather than on the parameters separately.

The correction factor is in general

l+cosao 2

f= Ps2 = ! ~(co) eXP[-(hos)2]T3[coJs(2-s),hos]ds, (127)
4ho 8 ho

l+cosa

which is shown in Fig. 3.8 for ao == 0 and a == n /2. If the correlation length is
too small or the RMS surface height too large for the TIS to be proportional to the
roughness, the correction factor allows the correct roughness to bepredicted.

3.9. Dielectric Medium

So far we have assumed that the surface is a perfect conductor. Consider now
scattering by the rough surface of a dielectric medium. First consider reflection
from a plane interface between media of refractive indices no and n2. The angu-
lar reflectivity can be derived from Maxwell's equations giving, for parallel and
perpendicular polarizations, respectively

n2c -nOC2
PII = ,

n-c + nOC2
noc -n2C2

Pl.. == ,
noc + n2c2

(128)
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FIGURE 3.8. The correction factor f = Ps/4h6 as a function of normalized rms height
ho, with normalized correlation length Co as parameter, for total integrated scatter for a
surface exhibiting a normal distribution of surface heights and a Gaussian autocorrelation
coefficient.

whereC, C2 are the valuesof cos () in the two media.This can be expressedexactly
as29,30

PII = tanh [~ In ( n2
C
)] ,

2 nOC2

Pl.. = tanh [~In ( noc )] .
2 n2C2

Puttingn == n2/no and introducing Snell's law

C2 = .!.Jn2 - 1+c2 ,
n

we have30,31

(129)

PII = tanh [~ln (n 2 _n:c+ c2 ) ] '

P1- = - tanh [ ~ In ( n
2

- ; + C

2)

] • (130)

Next, assumingthe reflection coefficient is small, we linearize by approximating
the hyperbolic tangent tanhx by x. We then use a binomialexpansionfor values
of the refractiveindex ratio n close to unity, to give

PII = (2C~c~ 1) Inn = (S2s~ 2) Inn,

1 2
Pl.. = --Inn == --Inn, (131)

2c2 s2
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where s = 2 cos () is the axial normalized spatial frequency. It is found that the
reflection coefficient for normal incidence predicted by this approximation agrees
remarkably well with that calculated from the Fresnel equations, in fact being
correct to better than 2% for the large refractive index ratio of 1.5. We also find
that the approximation gives a good prediction for the angular variation when the
reflection coefficient is small, as long as the angle of incidence is not large. The
range of validity is determined by the condition

(132)

(134)

(136)

(135)

We note that in the approximate expressions the effects of refractive index and
angle of incidence are separated, and that the reflectivity depends on the ratio of
the refractive indices rather than on the individual values.

The Brewster angle according to the approximation occurs at 45°. A change in
refractive index of 0.1 gives rise, according to the exact theory, to a shift of less
than 3° from this value. These approximate values for the reflection coefficients
have been applied to multilayer thin film stacksv'''

The reflectivity is given by the modulus squared of the reflection coefficient.
For unpolarized light, the reflectivity R is thus

R = P~ : pi = (lIn nY(2C
4

- ~c2 +1) = (lIn nYC4-::2 +8) .
(133)

The agreement is good, even for comparatively large angles, for a refractive index
ratio of 1.01. For a refractive index ratio of 1.1 the agreement is still good for small
angles of incidence.

We can also consider quantities PI = (PI! - P1J/2andp2 = -(PI! + P1J/2.For
small angles of incidence, the reflection coefficients have been defined so that Pl-

is negative, and P" and P1. are of opposite sign. Thus PI can be regarded as the
mean reflection coefficient. We obtain

1
PI = 2" Inn,

1 (1-C2
) 1 1 (4-S 2

)P2 = - In n -- = - In n tarr' () = - In n -- .
2 c2 2 2 s2

The approximation for PI shows no angular dependence and is a good description
of the behavior for small refractive index ratios and moderate angles of incidence.
For P2 there is again good prediction of the exact behavior for weak reflectors and
angles of incidence which are not too large.

The scattering function for a rough surface on a dielectric medium can be now
obtained by substituting (131) into (17):

in (S2 - 2)
1I1(p) = - -2- InnF{V2b(r)}

nok s
in 2 2

T-t(p) = --21nnF{V b(r)}.
nok s
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For small angles of incidence (s ~ 2), these become equal, but of opposite sign.
Taking the mean reflection coefficient as T(p) = [1I,(p) - T.1(p)]/2, we obtain

in
T(p) = -lnnF{V2b(r)}. (137)

2nok

Effectively, we have assumed that the angle of incidence is constant over the surface
profile. The mean reflection coefficient is then equivalent to

T(p) = ~:k F {V2 [~lnn(r)]} . (138)
We thus recognize the scattering potential as

V(r) =~V2 [!lnn(r)].
nok 2

We have discussed elsewhere" how these expressions can be applied for scattering
from a general spatial variation of refractive index.

3.10. Conclusions

We have shown how the expressions for scattering by a rough surface in the
Kirchhoff approximation can be expressed in a very simple form by introduction
of direction cosines, or equivalently, of 3D normalized spatial frequencies p. Ac-
cording to the Kirchhoff approximation, the scattering function can be expressed
as a function of p. Thus different values of incidence and scattering angles that
correspond to the same value of p have the same value of the scattering function.
This can be used as a test of the validity of the Kirchhoff approximation.

A convenient way of illuminating at different angles of incidence is by using
a microscope objective with a mask in its back focal plane. Then investigation
of the scattered radiation in the back focal plane allows the scattering function to
be measured. As the phase is maintained across the back focal plane, in principle
the phase of the scattering function can also be measured using an interferometric
technique.

The approach described in this chapter brings together the concepts of scattering
and imaging. Although we do .not have space to consider these connections in
detail here, we mention that we can consider the imaging of surface roughness,
including the effects of speckle and the properties of surface profiling methods.
Further, consideration of surface profiling techniques has suggested algorithms19,32

for reconstruction of surface profiles from scattering data.
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4
Rayleigh Hypothesis

A. G. VORONOVICH

NOAA/Earth SystemsResearchLaboratory, 325 Broadway, Boulder, CO 80305

4.1. Introduction

Consider a wave incident onto a rough surface b from above (see Fig. 4.1). We
will assume that the wave is a scalar and that the Dirichlet boundary condition

u == 0, (1)

for the total field at the surface holds, although the results presented here should not
depend on the nature of the field or on the boundary condition. From the Helmholtz
formula [1], Eq. (8), the following representation for the field

R* E upper half-space
R* E lower half-space

(2)

(3)

is obtained, where

au
{l(R) = -a-'

DR

is the normal derivative of the total field and G is the free-space Green function

iKR . f dkG(R) == __e_ == __1_ eikr+iqklzl_.

4rrR 8rr2 qk

Here R == (r, z), where rand z are the horizontal and vertical components of the
radius vector, while k is the horizontal, and qk

(4)

is the vertical component of the wave vector (see Eqs. (3),(4) from [1]). The second
term in Eq. (2) represents the scattered field generated by the monopole sources
with surface density J.L located on the surface:

(5)

93
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Q(R)•?J
upperhalf-space

R.

lower half-space

• A r

FIGURE 4.1. Illustration of the geometry of the problem. Secondary monopole sources
located on the surface radiate in all directions.

On substituting into Eq. (2) the Weyl representation Eq. (3), and assuming that
z, > maxh(r), where

z == h(r)

is the equation of the boundary, one finds

u(sc)(R*) = f S(k) eikr.+iqtZ. dk,

where

(6)

(7)

S(k) == __i _ / Jl (R)e-ikr-iqkh(r) (1 + (V'h)2)1/2 dr. (8)
811 2qk

The scattering amplitude (SA) S introduced here is slightly different from the one
used in [1]. However the definition Eq. (8) simplifies the formulas used in this chap-
ter by removing normalization factors that are insignificant in the present context.
It is important that the observation point R* was assumed to be located above the
excursions of the roughness. If this point were located within the roughness (e.g.,
R* E AB, see Fig. 4.1), then we would find

u(SC)(R*) = f Sup(k) eikr.+iqtz·dk +f Sdn(k) eikr.-iqtz. dk, (9)

where

and

Sdn(k)=-+ { /L(R)e-ikr+iqth(r) (1 + (V'h)2) 1/2 dr. (11)
811 qk Jh(r»z*

Seemingly, in this case the field consists of both upward and downward propagating
waves, corresponding to the first and the second terms in Eq. (9), respectively.
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Nevertheless, when calculating scattering from small surface roughness,
Rayleigh? used the representation given by Eq. (7), which consists of waves prop-
agating only upwards, to calculate the scattered field within the roughness as well,
in particular at the points belonging to the boundary. Such a possibility is called
the Rayleigh hypothesis (RH). Since then the RH has been considered in a large
number of papers. The RH has a few different aspects. First, could the RH be
justified, at least in certain cases or, in view of the representation Eq. (9), since
it ignores the downgoing component of the scattered field, is it fundamentally
wrong? Second, if the RH is at least sometimes correct, could one use the repre-
sentation given by Eq. (7) to calculate the expansion of the SA in a power series
of elevations h? By this we mean the calculation of the coefficient functions of
the expansion (i.e., functions B, B2 , . . • from [1], Eq. (123)), and not the issue of
the convergence of the resulting series since, in practical applications, we always
use it as an asymptotic expansion. Third, could one use the RH for a numerical
evaluation of the SA? These issues will be addressed below. The reference list to
this paper is' not intended to be complete; an interested reader will easily track the
chain of references starting from the most recent ones.

4.2. Is the Representation Given by Eq. (7)
Fundamentally Wrong?

At first sight it is: the accurate calculation given by Eq. (9) clearly shows that within
the roughness there are both upward and downward propagating waves, and Eq. (7)
contains only upward propagating waves [3]. This conclusion was supported by a
finding of Petit and Cadilhac", who demonstrated that for sinusoidal elevations

h == a cos px (12)

of sufficient steepness, ap > 0.448, the integral in Eq. (7) diverges. More pre-
cisely, since they considered periodic 2D undulations, the integral reduces to the
corresponding infinite sum

where

n=oo
u(sc)(x*, z*) == L s; eiknx*+iqnz*,

n=-oo

(13)

kn = ko+ pn, qn = JK2 - k~,

and the divergence of the sum Eq. (13) was proven. Thus, it looked like the RH was
proven to be wrong, both from physical and mathematical perspectives. On the
other hand, three years later Millar proved that the sum in Eq. (13) converges for
all points of the upper half space (including the boundary) for sufficiently gentle
undulations [5], and two years later [6] he established that convergence takes place
for slopes smaller than the critical slope found by Petit and Cadilhac:

ap < 0.448. (14)
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If the series in Eq. (13) converges for all points above the roughness, the corre-
sponding expression certainly provides an exact solution of the wave equation and
the representation Eq. (13) appears to be exact in this case. This seems strange,
since the downward propagating waves in Eq. (9) in principle exist for gentle un-
dulations as well, and should not crop up only after the slope exceeds the critical
value. How can one resolve this quandary?

In fact, the reasoning regarding up- and downward propagating waves implicitly
assumes that the up- and downward propagating waves are physical entities, and
the representation of the field in the form of Eq. (9) is unique, so that the second
term representing downgoing waves cannot be reexpanded in terms of the upward
propagating waves. However, this is not necessarily correct. Let us assume now
that the observation point (r*, z.) is located at the same level Z*, but is beneath the
surface (e.g., it lies on the ray (-00, A) or (B, 00) in Fig. 4.1.) According to the
extinction theorem, Eq. (2), on the lower line one has

and a certain linear combination of downward propagating waves on the left-
hand side is represented on the right-hand side in terms of a linear combination
of upward propagating waves. The up- and downward propagating waves are
defined uniquely if one can measure the field in the vicinity of the whole plane
z, = const. However, in the case shown in Fig. 4.1, part of the plane, namely
the segment AB, is excluded. In other words, if the field (and its gradient) is
measured only on a part of the infinite plane z, == const, there are situations when
one cannot figure out whether it is coming from above or from below. This seems
to be counterintuitive: if we see something, we know that it is in front of us, and
not behind. Still, Eq. (15) shows that confusing situations may exist. Thus, the
representation Eqs. (7) and (9) do not contradict each other, since the downward
propagating waves in Eq. (9 ) can be reexpanded in terms of upward propagating
waves.

Now let us also look at this issue from another perspective. Note, that a solution of
the Helmholtz equation is an analytic function of the coordinates. This immediately
follows from the Helmholtz formula Eq. (2): the Green function in the integrand
can be expanded into an absolutely convergent series in powers of the coordinates
(r, - xo)n 1(y, - Yo)n2 (z, - zo)n3 at any observation point Ro belonging to the
upper half-space provided IR* - Rol < ro = minREE IR - Ral, i.e. if the sphere
with the center at Ro does not intersect the boundary 1:. This series converges
uniformly with respect to R E 1:. For this reason the series according to Eq. (2)
can be integrated term-by-term over d1: with the weight J.t(R) thus providing
within the sphere IR* - Rol < '0 the representation for u(R*) in the form of a
convergent power series.

The simplest estimate based on Eq. (8) readily gives

(16)
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FIGURE 4.2. Thecircleofconvergence of theexpansion
of the solutioninto powers of coordinates.

whence

hmax = max h(r), (17)

(18)

so that the series in Eq. (13) converges absolutely for z, > hmax• Let us assume for
simplicity that the points R* and Ro lie on the same vertical .r, = Xo and the point
zo is located slightly above the excursions of the undulations: zo > hmax. Let us
expand the exponentials in Eq. (13) in powers of (z, - zo)and let us assume first
that the point z, is also above the undulations: zo > z, > hmax • Using the absolute
convergence of the resulting series as well as the functional series in Eq. ( 13), we
can exchange the orders of summation and find

n~ s, eiknx.+iqnz. =~ [ :! n~ s, dknxo+iqnZO (iqn)k] (z, - zol. (19)

The internal series in the square parentheses here converges due to the estimate
given by Eq. (18). Although we have assumed that zo > hmax , in fact due to the
analyticity of the field the series over k on the right-hand side ofEq. (19) converges
for Izo - z; I < ro, where ro is the radius of the circle which is centered at (xo, zo)
and touches the boundary (see Fig. 4.2.)

Although both the series over n on the left-hand side and the series over k on
the right-hand side represent the same value of the scattered field at the point
(x,; z.), the areas of convergence of both series are different. In contrast to the
right-hand side, the series over plane waves on the left-hand side converges for
z, > hmax; however, it may diverge for z, < hmax• A formal interchange of the
orders of summation over k and n on the right-hand side of Eq. (19) will result
in the expression on the left-hand side accompanied by a change of the area of
convergence. Thus, the representation of the scattered field Eq. (13) should, strictly
speaking, include a recipe for how the corresponding expression is supposed to
be calculated. The RH tacitly assumes that Eq. (13) is calculated as a functional
series, i.e. in the most natural way: by sequentially summing the exponentials.
However, this is not the only possibility. If one is allowed to rearrange the terms
one way or another, the convergence area may change. This emphasizes that di-
vergence of the series in Eq. (13) does not correspond to an inadequacy of the field
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representation; it is simply a matter of the proper way of calculating the functional
series.

4.3. Convergence of the Rayleigh Series

The estimate Eq. (16) is too rough; it leaves open the question of convergence
of the Rayleigh series Eq. (13). However, this estimate can be easily refined and
the asymptotic behavior of the spectral amplitudes Sn can be determined without
solving the scattering problem. Assuming that the surface profile is an analytic
function one can estimate the integral in Eq. (8) by the saddle point method. For
large k the exponent in the integrand of Eq. (8) becomes

-ikx - iqkh(x) ~ -ikx + Ikl h(x).

Consider the case k ~ +00. The equation for the stationary point Xs is

(20)

(21)

Using the standard formula of the saddle point method and omitting the pre-
exponential factor, which is unimportant for determining the convergence criterion,
one finds the following asymptotic form for the spectral amplitudes:

k ~ +00. (22)

Hence

k ~ +00. (23)

Thus, the integral in Eq. (7) converges for all boundary points provided

Re[-ixs + h(xs )] < minh(x), (24)

and diverges otherwise. Consideration of the case k ~ -00 results in the same
condition. Applying this criterion to the sinusoidal profile Eq. (12) gives

whence

and

-ap sin px, == i,

px, == -i In (2- +J 1 + 1)
ap (ap)2

Re[-ixs + a cos pXsl

1 (1 ~) J1 + (ap)2== --In - + -- + 1 + < -a.
p ap (ap)2 p

(25)

(26)

(27)
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Simple analysis shows that inequality (27) holds when

~2 - 1
ap < -- == 0.448, (28)

2~

where ~ = 1.544 is the root of the equation e~ = (~ + 1)/(~ - 1). Many other
examples of the application of the criterion (24) can be found in [7].

Let us consider now elevations of the type

ah(x), (29)

(30)

where hex) is an analytic function and a is some real amplitude parameter. For
a ---* 0 the solution of Eq. (21) in the lower half-space of the complex plane
will tend to infinity: 1m Xs ---* -00 and Re(-ixs ) ---* -00. Let us assume that the
function hex) is such that h(x)/ h'(x) remains bounded when 1m Xs ---* -00 (this
condition will hold, for instance, if h(x) is a sum of an arbitrary finite number of
sinusoids). Then

. [.. h(Xs ) ]Re[-IXs + ah(x s )] == Re -IXs +1-- -+ -00,
h'(xs )

and for sufficiently small a criterion (24) will be satisfied [8].
When estimating the integral in Eq. (8) by the saddle point method we assumed

that the function JL can be analytically continued into the complex domain. Such a
possibility was proven in [5,6]. Note also, that criterion (24) does not depend on
the wavenumber in the medium K; it applies equally to the Laplace equation.

4.4. Rayleigh Hypothesis and the Perturbative Expansion
of the SA

The possibility of applying representation (7) for boundary points greatly simplifies
calculation of the expansion of the SA in a power series with respect to elevations h.
The problem simply reduces to substitution of the representation into the boundary
condition. For example, in the case of the Dirichlet problem (Eq. (1» and an
incident plane wave one finds

eikor-iqoh(r)+ f S(k) eikr+iqkh(r) dk = O.

We can represent this equation as follows:

S(k) + f S(k') ei(k'-k)r (eiqk'h(r) - 1)~ dk'
(21l')2

(31)

(32)= - f ei(ko-k)r-iqoh(r) (2~)2 .

One can solve this equation by iteration, expanding all exponentials in power
series; the calculation is very simple. A more cautious way of calculating the power
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series expansion of the SA, not relying on representation (7), would be application
of a perturbative analysis to the corresponding boundary integral equation. The
calculations in this case are much more extensive; this is especially true in the case
of electromagnetic waves [1].

The question arises: will the coefficient functions of the power expansion of
the SA (i.e., the functions B, B2 , ••• from [1], Eq. (123)) calculated by those two
different approaches coincide? The answer is affirmative [10]. One way to make
sure this is true is to notice that when calculating the field at the boundary based on
the scattering amplitude one rather uses the analytical dependence of the field on
coordinates, i.e. the right-hand side of Eq. (19). Moreover, only a finite number
of k-terms is required to calculate the expansion of the SA for any finite power
of h, and it does not matter whether the right- or left-hand side of Eq. (19) is
used. Another way to prove this is as follows. Let us consider elevations of the
type Eq. (29). Then use of representation (7) is justified, and one can legitimately
substitute it into the boundary conditions obtaining equations of the type of (31).
As demonstrated above, this allows an unambiguous calculation of the power
series expansion of SA. The assumption of the elevations being analytical does
not impose any restrictions here.

One can make sure that Eq. (31) holds per se and provides correct expressions
for coefficient functions B, B2, ••• by a direct calculation also. Introducing

'" i ( 2)1/2Jl(r) = --2 1+ (Vh) Jl(r),
8Jr

according to Eq. (8), we find

S(k) = ~ f 'j1(r) e-ikr-iqkh(r) dr.
qk

(33)

(34)

On the other hand, substituting into Eq. (2) the spectral representation of the Green
function Eq. (3), and setting R* = R E l:, we obtain

Let us represent this equation as follows:

f dr',u(r')f dk cos [qk(h~~ - h(r'))] eik(r-r')

+ if dr',u(r')f dk sin [qk Ih;: - h(r') I] eik(r-r') = _eikor-iqoh(r),

(36)
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The modulus sign in the first term associated with the cosine function can be
dropped since cosine is an even function. Let us consider the second term associated
with the sine function on the left-hand side of this equation:

f dr'JL(r')f dk sin [qk Ih(:~ - h(r')I]eik(r-r)

= f dr'tt(r') f dk~ (-l)n q2n /h(r) - h(r,)/2n+leik(r-r')=0 (2n + I)! k

= ~ (-l)n f dr'tt(r')/h(r) - h(r,)/2n+l (K 2 + V~)n f dk eik(r-r').=0 (2n + I)! r

(37)

Integrating by parts with respect to r' and then integrating with respect to k and r'
we obtain

00 (l)n
(37) = (21T)2 L - [(K 2+ V;)n tt(r') /h(r) - h(r,)/2n+l] . (38)

n=O (2n + I)! r'=r

For smooth profiles one has

tt(r') /h(r) - h(r,)/2n+l rv (r - r,)2n /r - r'l ' r' ~ r. (39)

On the other hand, the differential operator in Eq. (38) includes no more than 2n
spatial derivatives. For this reason all expressions in the square parentheses in Eq.
(38) vanish. Apparently, the presence of the modulus sign in Eqs. (37)-(39) does
not matter, and we find

f dr'JL(r')f dk sin [qk Ih~: - h(r')IJ eik(r-r)

=f dr'JL(r')f dksin[qdh~:-h(r'»)Jeik(r-r) =0 (40)

for any smooth functions Ii, h. Thus, the modulus sign in the second term on the
left-hand side of Eq. (36) can be omitted, and as a result it can be omitted in
Eq. (35), too. In this case Eq. (35) transforms into Eq. (31). One can compare the
transformations above with those made in Eq. (82) of [1].

The calculation above assumed that both integrals associated with the sine and
cosine functions in Eq. (36) exist. This will be the case if criterion (24) holds.
Alternatively, we can suppose that both tt and h are represented as asymptotic
expansions with respect to h and assume that the transformations above involve
only powers ofelevations not exceeding a certain finite value. Then the calculation
above proves that Eq. (31) holds for any finite power of h.
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4.5. Application to Numerical Analysis

Direct substitution of representation (7) into boundary conditions could also be
used for the numerical solution of the corresponding scattering problem. The
question arises: is this approach limited to the situations where the RH holds?
The answer to this question is negative, and representation (7) can be used beyond
the domain of validity of the RH.

The set of functions

(41)

which are called metaharmonic functions, or a topological basis, is complete in
L2 [11]. To prove this it is sufficient to demonstrate that if the functions ({Jk(r) for
all k are orthogonal to a function !(r) from L2, then! = O. Let

j f (r)eikr+iqth(r) dr = 0, (42)

where the bar stands for complex conjugation. We will multiply this equation by
the functions

i 1 ik '___e-1 r*-lqkZ*

8rr2 qk '

where (r*, z*) = R* are parameters, and we will assume that

Z* < minh (r).

(43)

(44)

(46)

Due to Eq. (44) the integrand in Eq. (42) exponentially decays for k ~ 00, and we
can integrate over k, interchanging orders of integration over k and r. By replacing
k by -k and using Eq. (3), we find

u(R*) =f f (r)G(R - R*) dr = O. (45)

Apparently, u(R*) as a function of R* represents a solution of the wave equation.
Since u(R*) is an analytic function and vanishes for z, < min h (r), it is identically
equal to zero in the entire lower half space z :::; h(r), including the boundary. The
field generated by monopole sources (with density f (r) in the present instance) is
continuous through the boundary (see, e.g., [1]); hence, u(R*) equals zero on the
upper side of the surface z = h(r) also. A solution of the wave equation consisting
of outgoing waves only vanishing on the boundary does not radiate energy and
vanishes identically in the entire upper half-space:

1 IVuI2dR* = -ju au d~R = O.
z>h(r) aOK

The integral over an infinite hemisphere closing the volume vanishes because due
to the limiting absorption principle outgoing waves decay exponentially at infinity.
Thus, u(R*) vanishes identically, and the same is true for the monopole density
f (r).
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If the boundary value JL in Eq. (5) is matched in the L2 sense, it follows im-
mediately from this equation that the scattered field at any internal point R* is
calculated exactly. Using the completeness of the set of outgoing waves, Eq. (41),
on the boundary in L 2 one can try to calculate the SA for a periodic surface with
period L from the equations [12]

L 00 2( f L s, eiknx+iqnh(x) - eikox-iqoh(x) dx == O. (47)
10 n=-oo

Strictly speaking, a unique solution of these equations should exist. However,
numerical realization of the appropriate algorithm in the cases when a signifi-
cant number of inhomogeneous harmonics are included in the sum in Eq. (47)
requires accurate evaluation of integrals with exponentially large integrands, and
will generally lead to linear sets with large condition numbers. For this reason
consideration of steep undulations and cases with significant shadowing usually
cannot be treated by this method.

Using the collocation method instead of estimating the boundary condition
mismatch in L2, Eq. (47) leads to the linear set

NL s, eiknxj+iqnh(xj) == eikOxj-iqoh(xj),

n=-N

j==I,2, ... ,2N+l. (48)

The existence of converged solutions should generally require validity of the RH.
If, however, instead of plane waves, Eq. (41), one uses other basis functions,
which are certain linear combinations of the former, convergence may berecovered
and the collocation method will give correct results [11,13]. Note also that the
collocation method should not necessarily fail even when the RH is not valid [14].
If the scattered field corresponds mostly of homogeneous modes, the solution of
Eqs. (48) will give accurate enough results. However, if one increases N including
sufficiently strong inhomogeneous modes, the solution provided by Eqs. (48) will
fail sooner or later. Performance of the method depends also on the positions of
the collocation points [13].

Extensive comparisons between the numerical performance of different basis
functions in the context of different methods of solution of the scattering problem
were made in [15,16].

4.6. Conclusion

Representation of the scattered field in the form Eq. (13), which looks like it
consists of outgoing waves only, in fact places no such restriction on the field.
The Rayleigh hypothesis consists not only of ansatz (13) but also (and this is
even more important) of the statement that series (13) converges if it is calculated
by sequentially adding the exponentials. Such convergence is guaranteed above
the roughness; however, it mayor may not take place if the observation point
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is within the roughness. However, if one is allowedto identically transform and
rearrange the terms in Eq. (13), this expression will give a correct result at any
point.Thisis quitesimilarto analyticcontinuation: differentrepresentations of the
same function may have differentareas of validity. For instance, if one is bound
to calculatethe series

u(x) = 1 - eix + e2ix _ e3ix + ... (49)

(50)

by summing up the exponentials, the resultexistsin the upperhalf space1mx > 0
only. If one represents u(x) as a powerseriesof x, the series will converge within
the circle [r] < n . Finally, in the form

1
u(x) = l+eix '

this function can be evaluated everywhere. When calculating the coefficients in
the expansion of the SA in powersof elevations one neversumsup infinite series,
and the issueof convergence is irrelevant. The Rayleigh hypothesis can always be
used for such calculations.
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Small-Amplitude Perturbation Theory
for One-Dimensionally Rough Surfaces
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Ensenada, Apartado Postal 2732, Ensenada, Baja California, 22800Mexico

5.1. Introduction

There has been considerable interest in the scattering of light from rough surfaces
having surface height fluctuations small compared to the illumination wavelength.
This case of weak roughness is important in practical applications such as scat-
tering from the residual roughness of polished optical surfaces.' There has also
been interest in scattering from weakly rough metal surfaces when the excita-
tion of surface plasmon polaritons is significant. 2,3 Under appropriate conditions,
a vertical roughness of only a few nanometers can produce remarkably strong
scattering effects arising from polariton excitation. This line of research has been
driven more by fundamental interest, and studies have often addressed the unusual
features such as backscattering enhancement that appear in the diffuse scattering
distributions.

A theoretical approach that is suitable for scattering from weak roughness is
perturbation theory, in which the perturbation parameter is the ratio of the surface
height fluctuation to the illumination wavelength. The leading-order terms of this
theory have been known for many years and have been widely employed. It is only
more recently that theoretical approaches have developed sufficient sophistication
to produce perturbation terms beyond the leading order. One such theory is infinite-
order perturbation theory, which includes a number of approximations, as was de-
veloped in the original works on polariton-related backscattering enhancement.2,3

Other perturbation methods have also appeared that can determine, in principle at
least, the exact perturbation term of any particular order.4,5 It is stressed that the
exact terms are quite different from their counterparts in the approximate infinite-
order theories, and that their sheer complexity can make it difficult to evaluate
them in high perturbation orders.

In the work presented here, the objective is simply stated: to determine the
mean diffuse intensity scattered by a rough surface to as high an order as possible,
while keeping exact perturbation terms in all calculated orders. This objective is
appealing because no scattering mechanisms will be omitted and no artifacts will be
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introduced, apart from whatever effects arise from the inevitable truncation of the
series. The theoretical approach is described in Sect. 5.2 and is an extension of the
fourth-order formulation of Ref. 4 to sixth and eighth order in the surface roughness
parameter," It may be anticipated that the perturbation terms will be complicated
in the higher orders, and that they will require considerable computational effort
to evaluate. To simplify the analysis, the random roughness will be assumed to
be a one-dimensional Gaussian process. Still, this assumption is not unrealistic,
and comparisons with a number of related experimental results7,8 will later be
presented.

The theoretical approach described here may be applied to a surface having
an arbitrary dielectric constant and roughness power spectrum. However, our
main interest is in the consequences of surface wave excitation, so that calcu-
lations are presented for metal surfaces with roughness power spectra that pro-
duce significant coupling of the incident wave to surface plasmon polaritons.
This interest provides justification for taking the perturbation theory to a high
order because surface plasmon polaritons may be scattered many times by the
surface roughness, until the excitation finally emerges from the surface as a
contribution to the diffusely scattered light. We ask: what features will these
multiple-scattering processes produce in the diffuse scattering distributions? Will
there be any unusual or unanticipated effects revealed by the new perturbation
terms?

These questions are addressed here as follows. Many of the perturbation terms
contain contributions to the backscattering enhancement peak and, in calculations
in Sect. 5.3 for a Gaussian roughness spectrum, it is shown that they predict
a broadening of the peak with increasing surface roughness. In Sect. 5.4, it is
discussed that the theory does indeed predict an entirely unexpected effect: a peak
in the diffuse scatter that is centered at the specular angle. This remarkable peak
arises from eighth-order perturbation terms and is produced by multiple scattering
processes resembling those producing backscattering enhancement. Finally, in
Sect. 5.5, the theory is employed to elucidate the origin of backscattering peaks
that have appeared in experiments.

5.2. Theory

As shown in Fig. 5.1, a plane wave of frequency to is incident at angle Oi on the rough
surface of a medium having dielectric constant 8 == 81 + i 82. The surface profile
is given by the one-dimensional random process ~ (x) and, with the incident wave
vector in the plane of Fig. 5.1, all scattered wave vectors lie in the plane of incidence.
The objective is to determine the mean diffuse intensity I (Os 18i ) , which is a function
of the scattering angle Os of Fig. 5.1. The case of p polarization is considered
throughout the analysis because this is the case in which surface plasmon polaritons
may be excited; the surface waves have wavenumber ±ksp == ±(w/ c)J81/(81 + 1)
for polaritons traveling to the right (+) or left (- ) along the surface.
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FIGURE 5.1. Scattering by a rough surface. The
incident and scattering angles (); and 8s are posi-
tive as shown.

The profile ~ (x) is taken to be a stationary Gaussian random process of zero
mean, with the Fourier transform

t(k) =1:dx ~(x) exp(-ikx).

It is then readily shown that

(t*(k) t(k')) == 2rr a 2 8(k - k') g(k) ,

(1)

(2)

(3)

where (·) denotes an ensemble average, a is the standard deviation of the roughness,
and g(k) is the power spectrum of ~(x).

The amplitude scattered by the surface is simply related to the transition matrix
T(qlk) of scattering theory, with q=(w/c)sin()s and k=(w/c)sin()i. In direct
perturbation theory, T(qlk) is expanded into a power series

T(qlk) =f: (_i)n T(n)(qlk)
n=l n!

where T(n)(qlk) is of nth order in ~(x). In particular, T(n)(qlk) may be expressed
in the form

(4)

T(2)(qlk) == _1100
dp A(2)(qlplk) t(q - p) t(p - k), (5)

'ln -00

T(3)(qlk) =~ /-00( dpdr A(3)(qlplrlk)t(q - p)t(p - r)t(r - k),
(2rr) 100

(6)

and so on. The quantities A(n) may be determined from rigorous scattering theory
which, in the present case, is the reduced Rayleigh equations for p polarization."
This task is a substantial one and is not reproduced here, but the terms A(n) follow
in a straightforward way from the recursion relations of Ref. 4. It is notable that
the algebraic forms of the A(n) are neither unique nor reciprocal, and it is nec-
essary to transform them to exhibit their manifestly reciprocal forms." However,
when calculating a physically meaningful quantity such as a scattered amplitude or
intensity, the numerical result is unique and, largely for convenience, we employ



(7)

110 O'Donnell

the nonreciprocal forms obtained from Eqs. (3.19) and (3.22) of Ref. 4. The in-
terpretation of Eqs. (4)-(6) is that T(l)(q Ik) represents the transfer of the incident
state k directly to the scattered state q, T(2)(q Ik) represents the process k~ p~ q
via an intermediatestate p, T(3)(q Ik) includes processesk~ r~ p~ q via states
rand p, and other terms introduce higher scattering processes. Integration over
all intermediate states then serves to obtain the total contribution from k to q.

In order to determine I (Os IOi), one must first square and then ensemble average
Eq. (3). Including all necessaryfactors, the mean diffuse intensity I (Os IOi) is given
by

I(OsIOi) = ~(~r cos2(Os) COS(Oi) \Go(q)!2 (IL\T(qlk)\2) IGo(k)1
2

,

where, assuming that ~(x) is Gaussian, we have that

(I~T(qlk)12) == (IT(l)(qlk)12)

+_1 (I~T(2)(qlk)12)_ _ 2_Re{T(l)* (q lk) T(3)(qlk))
2!2 I! 3!
1 2+- (IT(3)(qlk)1 2) - -Re{~T(2)*(qlk) ~T(4)(qlk)}

3!2 2!4!
2

+-Re(T(l)*(qlk) T(5)(qlk))
I! 5!
1 2+- (1~T(4)(qlk)12)- -Re(T(3)*(qlk) T(5)(qlk)}

4!2 3!5!
2

+-Re (~T(2)*(qlk)~T(6)(qlk))
2!6!

2
- I! 7!Re (T(l)*(qlk) T(7)(qlk)) , (8)

and the flat surface Green's function Go(k) is given by

G is
o(k) = eao(k)+a(k) , (9)

withao(k) == J(w/c)2 - k2 and a(k) == J e(w/c)2 - k2• In Eq. (8) wehaveretained
all nonzerotermsof the form (T(n)*(qlk) T(m)(qlk)) for(n + m) ~ 8. The assump-
tion of Gaussian statistics guarantees that only terms with even (n + m) survive
in Eq. (8) because all odd-orderedmoments of the Gaussianprocess ~(x) vanish."
The specular reflection is associated with (T(qlk)) and, in Eq. (7), we have taken
~T(qlk)= T(qlk) - (T(qlk)) to isolate pure diffusescatter.The Gaussian surface
assumption also similarly implies that (T(n)(q Ik)) is nonzero only for even nand,
consequently, it is essential to take ~T(n)(q Ik) == T(n)(q Ik) - (T(n)(qIk)) in Eq. (8)
for even n to remove the specular reflection.

It is now necessary to substitute expressions of the form of Eqs. (4)-(6) into
Eq. (8), substitute for the Fourier transforms as in Eq. (1) and, after averaging,
apply the Gaussian moment theorem to the moments of the profile function
{(x). It is then found that the contribution of (T(n)*(qlk) T(m)(qlk)) to Eq. (7) is
proportional to (a /"A)n+m where "A is the illumination wavelength, so that Eq. (8)
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exhibits all contributions of second order (the 1-1 term), fourth order (2-2 and 1-3
terms), sixth order (3-3, 2-4, and 1-5 terms), and eighth order (4-4,3-5, 2-6, and
1-7 terms) in o l): The physical interpretation of the n-m term ofEq. (8), based on
the discussion of Eqs. (4)-(6), is that it represents the interference term between
the scattering contributions of n-fold scattering sequences and m-fold scattering
sequences.

There are integrations over Dirac delta functions as well as variable changes that
must be performed to put the terms into a simplified form; these manipulations are
lengthy and were carried out using computer-based symbolic manipulation. The
resulting full set of terms is too long to be presented but may be found in Appendix
A of Ref. 6, and here the discussion is confined to general comments. The number of
terms in each order in Eq. (8) (taken throughout our discussions to be the number of
terms produced by application of the Gaussian moment theorem to the moments
of ~(x» are 1, 5, 42, and 396 in, respectively, the second, fourth, sixth, and eighth
orders in a (and there would be 4575 and 60,885 terms in, respectively, the tenth
and twelfth orders). The terms contain one-dimensional integrals in the fourth
order in a and, at most, two- and three-dimensional integrals in, respectively, the
sixth and eighth orders. The integrals cannot be done analytically and numerical
quadrature is necessary for exact term evaluation.

In general, the n-m term integrand contains expressions involving A(n)* and
A(m\ accompanied by factors of the roughness spectrum g(.). To perform the inte-
grals numerically, it is first necessary to 'evaluate the integrands efficiently. How-
ever, directly coding the recursion relations for A(n) is inefficient because many
redundant calculations are performed. Thus the recursion relations were rewritten
so as to remove this redundancy. Complications also arise because the integrands
often present narrow peaks. In the numerical integration, when the integration vari-
ables bring an intermediate argument of any A(o) to within a few resonance widths
~8 =kspc2/[ 2cl (cl + 1)] of ±ksp, the integrand usually becomes large. Thus an
adaptive integrator was developed, based on a modified Genz-Malik algorithm,10

that continued sampling the integrands in such regions until the total residual error
calculated was at most 10-3 of the integral value.

5.3. Gaussian Roughness Spectrum

We now consider a case in which the roughness power spectrum has the Gaussian
form

(10)

which has been employed in a number of previous theoretical works, 2-4,6,11 even
though no related experimental works have appeared. As in the theoretical works,
we assume that a =5 nm, e = -7.5 + 0.24i, A=457.9 nm, and a = 100nm is the
surface correlation length. This spectrum is sufficiently broad to produce cou-
pling of the incident wave to plasmon polaritons (g(ksp)1g(0)~0.58), as well as
coupling of counterpropagating polaritons (g(2ksp)Ig(O) ~ 0.11 ).
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FIGURE 5.2. Scattering from asurface having aGaussian roughness spectrum witha =5nm,
8 = -7.5 + 0.24 i, A= 457.9 nm, and a = 100 nm. Upper plot: /(n)(e s lei) for n as indicated.
Lower plot: comparison of /(8) (Os IOi) with results from Ref. 11.

We denote the mean diffuse intensity obtained by truncating Eq. (8) at order n
by /(n)(osIOi). With Oi == 20°, Fig. 5.2A shows /(n)(osIOi) for the cases n == 2, 4, 6,
and 8. A broad, featureless distribution is seen in /(2)(Os IOi), while /(4)(Os IOi) is
upwardly corrected and shows a distinct peak at the backscattering angle (Os == -Oi)'
Both of these results are consistent with similar calculations reported earlier in
Ref. 4. In the high-order contributions it is seen that, with respect to /(4) (Os IOi),
/(6)(8s IOi) is downwardly corrected, and that /(8)(8sIOi) then receives a modest
upward correction. Significant contributions arise from the 3-3 and 2-4 terms of
/(6)(Os IOi) and from the 4-4, 3-5, and 2-6 terms of /(8)(Os IOi).

Figure 5.2B shows comparisons of / (8) (Os IOi) with the results of Michel, 11 who
employed a Monte Carlo technique. In particular, in Ref. 11 the intensity scattered
by a realization of ~ (x) was calculated from exact numerical solution of the reduced
Rayleigh equations, and the result was averaged over an ensemble of N == 2000
realizations of ~ (x). Due to the finite value of N, there is noise in the results
analogous to the speckle noise of experimental data. Nevertheless, the Monte
Carlo results appear to fluctuate randomly about the curve of /(8)«(}s IOi), so that
the agreement is excellent.
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The detailed shape of the backscattering peak is a subtle issue for which the
higher-order corrections are significant. The peak width is the diffraction width
of the plasmon-polariton travel length along the surface and is affected by two
mechanisms.? First, the polariton is attenuated at the rate ~8 == ksp 82/[281(81 +
1)] due to Joule losses in the metal. In addition, as the polariton travels it may
be scattered by the roughness, thereby increasing its effective attenuation. It is
found that only the first mechanism contributes to /(4)«()s I()i) and, in the pole
approximation, it produces a backscattering peak of Lorentzian form in the quantity
(q - k) with angular width (taken as the full width at half maximum throughout this
chapter) ~()8 == 4~8/ cos ()i .4 In Ref. 2, the second mechanism was included by
writing the total decay rate as ~tot == ~8+ ~sp, where ~sp was of order a 2 and was
an estimate of the rate of roughness-induced damping; this theory then predicts a
Lorentzian peak having width 4~tot/ cos ()i. However, it is pointed out here that ~sp
is only an estimate and that the shape need not be Lorentzian. Further, Monte Carlo
approaches such as Ref. 11 have speckle noise and it can be difficult to discern
the structure of the peak. Thus the peak shape is an important issue that is well-
addressed by the high-order perturbation theory developed here. While previous
works have estimated the polariton attenuation explicitly, here the broadening of
the backscattering peak arises naturally and without approximation as higher-order
terms are introduced.

The details of the peak of Fig. 5.2A are shown in Fig. 5.3A, where the nearly
Lorentzian form appears in /(4)«()s I()i). It is also seen in that a strong sixth-order
broadening correction has produced an unphysical double peak in /(6)«()s I()i). In
the next order, however, /(8)«()s I()i) presents a more reasonable single peak once
again. The peak shape is not Lorentzian but instead has a sharp central region and
a broad base, which arise in a subtle way from the sum of the intensity contribu-
tions of multiple scattering processes (the 2-2, 3-3, and 4-4 terms of Eq. (8», as
well as from the interference between processes of different order (the 2-4, 3-5,
and 2-6 terms); only the 1-1, 1-3, 1-5, and 1-7 terms do not contribute to the
peak.

We now consider the broadening of the peak with increasing a. In these cal-
culations, the perturbation terms employed earlier are simply scaled by the ap-
propriate power of a and recombined to determine the intensity. The background
is then subtracted by curve-fitting the broad envelope and the width of the iso-
lated backscattering peak is determined. The results are shown in Fig. 5.3B. The
width ~()8 == 0.64° is essentially identical to the a-independent peak width of
/(4)«()s I()i). The peak width of /(6)«()s I()i) rises with increasing a, and the width
from /(8)«()s I()i) shares the same initial increase, but then rises less rapidly. The ar-
rows indicate the value of a for which the peaks become unphysical (i.e., contain
multiple maxima, as noted for /(6)«()s I()i) in Fig. 5.3A) so that, for larger values
in the range of a plotted, higher-order perturbation terms are required and the
curves are probably not accurate. If the pattern of behavior continues, the tenth
order would increase the peak width and we speculate that an exact calculation
would lie somewhat above the curve for /(8)«()s I()i). For comparison, the prediction
of the approximate theory of Ref. 2 is also shown in Fig. 5.3B and, relative to
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FIGURE 5.3. Upper plot: backscattering peaks in /(n)(os 10;)from Fig. 5.2 for n as indicated.
Lower plot: peak width from /(n)(es lei) as a function of surface roughness a. Arrows indicate
points where peak shape becomes unphysical for larger a .

the baseline provided by !:i.()£, it predicts only one-half of the broadening seen in
/(8)«()s I()i).

Thus the approach utilized here provides a direct means of studyirig the shape
of the backscattering peak. In passing, it is notable that MichellI exhibits one
remarkable case of this Gaussian spectrum for a == 16 nm with peak width approx-
imately eight times /).()£. Such strong effects are well beyond the limitations of the
eighth-order calculations developed here.

5.4. Enhanced Specular Peaks

There is an unexpected and remarkable effect that is predicted by the eighth-order
perturbation terms. In particular, the new effect is a peak in / «()sI()i) that is centered
on the specular angle.6,12 It is stressed that this peak has no relation whatsoever to
the specular reflection from the surface because, as noted in writing Eq. (8), the
specular reflection has been subtracted to isolate pure diffuse scatter in / «()sI()i).
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The enhanced specular peak is instead a feature of the diffuse scattering distribution
that arises from constructive interference of multiple scattering contributions, in
a manner similar to the mechanisms that produce backscattering enhancement. It
originates in the 4-4 term ofEq. (8) and thus, in its leading order, relies on a 4-fold
scattering sequence.

There do not seem to have been experimental observations of this enhanced
specular peak although, in principle, it would be a straightforward matter to observe
it by blocking the specular reflection itself and scanning a detector near specular to
resolve the peak (the specular reflection has angular width inversely proportional
to the illuminated surface area, and may thus be made arbitrarily narrow). In their
respective leading orders, the specular peak has twice the angular width of the
backscattering peak.

In this section we present a discussion of this specular peak. It is studied with
the perturbation theory and its physical origins are described. In cases presented
here, the peak becomes distinct when the perturbation theory is on the verge of
producing unphysical results, presumably due to the truncation of the series of
Eq. (8) at eighth order. Thus, to further support the existence of the peak, we also
present calculations for stronger roughness based on nonperturbative Monte Carlo
techniques.

5.4.1. Gaussian Spectra

The specular peak is indeed present in /(8)(()s I()i) for the case of the Gaussian
spectrum such as the one discussed in Sect. 5.3, although it is of such low contrast
in Fig. 5.2A for a =5 nm that it is not clearly seen. By simply increasing a to
7.5 nm, while keeping all other surface parameters fixed, the specular peak rises
distinctly to 5% of the height of the surrounding distribution. This case is shown
in Fig. 5.4A where a nearly Lorentzian peak is seen at the specular angle. It has a
width of 1.25°, which is essentially 2 ~()e, and is due to the 4-4 term ofEq. (8). It
can also be seen that the backscattering peak appears with unphysical secondary
minima in Fig. 5.4A, indicating that yet higher-order terms are needed to produce
an accurate distribution. These terms may also modify the height and shape of
the specular peak, but they could not possibly remove it for all a. Thus, despite
the unphysical nature of /(8)(()s lei) in Fig. 5.4A, the specular peak is a real effect.
However, it has not been possible to find values of a and a that produce both a
distinct specular peak and a physically reasonable backscattering peak.

These two criteria may by satisfied by instead employing a nonperturbative
Monte Carlo approach'? similar to the work of MichellI discussed earlier. The
roughness a has been increased to 10 nm and a has been reduced to 40 nm to
produce the modest but distinct specular peak in the distribution of Fig. 5.4B.
The backscattering peak of Fig. 5.4B is considerably broadened and has a width
of 4.8°, well above the leading-order perturbation width of 0.61°. The width of
the low specular peak is difficult to estimate but is approximately 6°, so it too is
considerably wider than the leading-order width of 1.20

• While the values of a and
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FIGURE 5.4. Results for enhanced specular peaks in cases with Gaussian roughness spectra.
Upper plot: /(8)(OsIOi) for Oi =20°, a =7.5 nm, and a = 100nm. Lower plot: from Monte
Carlo calculations, / (Os IOi)for OJ = 10°, a =10 nm, and a =40 nm.

a were chosen through trial and error to produce a distinct specular peak, specular
peaks are still apparent for considerable range of these parameters.

5.4.2. Physical Origins

The 4-4 term of Eq. (8) contains a total of 96 distinct perturbation terms, of which
only four are associated with the specular peak. This may be shown by discarding
terms and recomputing results until only the critical terms remain, as discussed in
Ref. 6. The key contributions to the 4-4 term may be written as

a
8 /00

(2n)3 dp [F(q, p, k) + g(q, p, k)] g(q - p) g(p - k),

-00

(11)
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with

Fiq, p, k) = [F*(q, p, k) + F*(q, q + k - p, k)]F(q, p, k) (12)

and

Q(q, p, k) = [G*(q, p, k) + G*(q, q + k - p, k)]G(q, p, k), (13)

where

and

F(q, p, k) =1:dr A(4)(qlq +rip + rlk + rlk)g(r)

G(q, p, k) =1:dr A(4)(qlplp + rlplk)g(r).

(14)

(15)

The contribution to the 4-4 terms is unusual in that integrals over the amplitude
A(4) are first performed (Eqs. (14)-(15)), and products of these integrals are then
integrated again in Eq. (11) to determine the 4-4 term contribution.

It remains to ask what scattering processes are described by these terms. This
requires more effort and the arguments are subtle; thus we do not describe the
analysis here and the reader is referred to Ref. 6 for details. In particular, nu-
merical studies show that the significant contributions to the integrals occur when
the arguments of the integrands read either as A(4)(ql - kspl + kspl - ksplk) or
A(4)(qI+kspl-kspl+ksplk) which implies that, respectively, the scattering pro-
cesses k -+ -ksp-+ +ksp-+ -ksp-+ q or k -+ +ksp-+ -ksp-+ +ksp-+ q are the
contributing sequences. Further, it is shown that the first process or the second
process aloneis sufficient to produce a specular peak. However, if both are present,
the interference between the processes produces an additional contribution to the
height of the specular peak.

Inasmuch as the theory employed here is formulated in terms of wavenumber, the
significance of the scattering mechanisms just described is clear and unambiguous.
However, it is still an open issue as to what is occurring in the surface itself, and here
we put forth the following model that uses the appropriate wavenumber sequences.
In particular, one must search for scattering paths that interfere constructively at
the specular angle. Thus consider the scattering paths that involve four points
on the surface as shown in Fig. 5.5. Paths A and B lie in the plane of the mean
surface, and are each linked by k -+ -ksp-+ +ksp-+ -ksp~ q. In the usual far-field
approximation, the phase delay along path A is

tPA == k Xl - q X4 + {31-4 , (16)

where Xn is the coordinate of point n, and {J1-4 is the total phase delay along the
path 1-+ 2~ 3 -+ 4 . Path B is chosen with the same points 2 and 3 but new points
l' and 4', producing the phase delay

4>B = k Xl' - q X4' + fJI'-4' . (17)
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FIGURE5.5. Thethreetypesof scattering processes thatcontribute to theenhanced specular
peale

Now if path B is chosen with (X4' - Xl' ) = (X4 - Xl), so that {JI'-4' = {J1-4, the phase
difference ~l/>BA == l/>B -l/>A is then

(18)

It is clear that ~l/>BA vanishes for q = k and the contributions interfere constructively
at specular. There are many possible paths of type B; for all possible points I' and
4' between points 2 and 3, constructive interference occurs as long as the condition
(X4 - Xl) = (X4' - Xl' ) is met.

By symmetry, one may also link the four points of Fig. 5.5 with the second
sequence k~ +ksp~ -ksp~ +ksp~ q and draw identical conclusions. Thus if
the surface supports this second sequence, as is the case for the Gaussian roughness
spectrum, there is constructive interference and another contribution to the specular
peak is produced. However, it was pointed out in Ref. 6 that the perturbation theory
also indicates that there is constructive interference between the contributions of
the two scattering sequences. Thus consider path C of Fig. 5.5, which is similar to
path B, but is linked with the second sequence. It is readily shown that the phase
difference ~l/>CA == l/>c -l/>A is

~l/>CA = (q - k)(XI - Xl') + (q + k)~x, (19)

where ~X == (X4 -Xl) = (X4' -X}'). It is only when the path closes on itself (~x ==
0) that the phase difference takes the form of Eq. (18). Thus, for a recurrent
scattering path, the interference between processes A and C is fully consistent
with a specular peak contribution. The specular peak is thereby seen to arise from
three sources: paths linked by k~ -ksp~ +ksp~ -ksp~ q, others linked by
k~ +ksp~ -ksp~ +ksp~ q, as well as the interference between contributions
arising from the two wavenumber sequences.

Thus it is plausible that these are the physical scattering paths on the surface
that produce the enhanced specular peak. It is to be stressed that the specular
effect is quite remarkable for the same reasons that backscattering enhancement
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has attracted so much attention. In particular, the constructive interference between
the contributions of these multiple scattering paths prevails to the extent that, even
after averaging over the randomness of a rough surface, the specular peak rises
distinctly in the diffuse scatter.

5.4.3. Rectangular Spectra

With the intent of improving the contrast of the enhanced specular peak, we now
consider another form of the surface power spectrum g(k). The approach taken
is to construct a spectrum that is nonzero only in regions essential to the cou-
plings associated with the peak. It is hoped that this approach will maintain these
couplings, while it will discourage other unessential scattering processes, thereby
leading to an improved peak contrast.

5.4.3.1. The Spectrum

We now consider the wavenumbers of the surface roughness required to support
the essential sequence k~ -ksp~ +ksp~ -ksp~ q. The first coupling of k =
(w/c) sin Oi to -ksp may be represented by the grating equation

-ksp = k + kr1 , (20)

where kr1 represents a wavenumber that is present in the surface roughness spec-
trum. Similarly, the coupling of -ksp to +ksp requires a roughness wavenumber
kr2 satisfying the coupling equation

+ksp = -ksp + kr2 , (21)

while the coupling of+ksp to -ksp requires a roughness wavenumber kr3 satisfying
the equation

-ksp = +ksp + kr3 • (22)

Finally, the outward coupling of -ksp to the escaping wave q = (w / c) sin Os is
expressed by

q = -ksp + kr4 , (23)

where kr4 is the essential roughness wavenumber.
The proposed spectrum is shown in Fig. 5.6, where g(k) consists of two rectan-

gles of height gl and half-width L\1 centered on ±ksp, and two rectangles of height
g2 and half-width 82 centered on ±2kspo The rectangles at ±ksp provide rough-
ness wavenumbers for the inward and outward coupling of Eqs. (20) and (23);
it is readily shown that the width 111 maintains coupling as long as IOil and lOs I
are less than Omax =arcsin[(cjw)111J. The rectangles at ±2ksp provide roughness
wavenumbers to satisfy Eqs. (21) and (22). The ratio g2/gl may be considered
a parameter that controls the relative amounts of counterpropagating polariton
coupling and inward/outward coupling.
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FIGURE 5.6. Surface powerspectrum g(k) proposed toproducetheenhanced specular peale

The preceding arguments have considered only the sequence k~ -ksp~

+ksp~ - ksp~ q. However, if g(k) of Fig. 5.6 supports this sequence, it is read-
ily shown that the sequence k~ +ksp~ -ksp~ +ksp~ q is also supported. This
may be proven by inverting the signs of all plasmon polariton wavenumbers in
Eqs. (20)-(23), and then noting that all necessary roughness wavenumbers are
still present in g(k). It is concluded that the spectrum of Fig. 5.6 produces the
essential couplings, and is then a prime candidate for producing a distinct specular
peak.

5.4.3.2. Results

We now consider a case with a == 2 nm and, once again, A== 457.9 nm and
s==-7.5+0.24i. It follows that ksp == 1.074 (w/ c), and the spectral parame-
ters chosen are ~ 1 == (w / c) sin(17°) (which maintains coupling to Omax == 17°),
~2==O.10(w/c), and g2/g1==1.5. The diffuse intensity /(8)(OsIOi) is shown in
Fig. 5.7A for 0i == 9° where, due to the outward polariton coupling, a distinct dis-
tribution appears for lOs I:::; Omax. Not only does a peak fall at backscattering but
also, more notably, a clear specular enhancement peak appears at Os == Oi . This
specular peak appears with good contrast, rising to a height of one-fifth of that of
the surrounding distribution. In this case both peaks have a physically reasonable
appearance, unlike what was seen in Fig. 5.4A. The scatter at large lOs I is mostly
single scatter as in q ==k + k., where k, are roughness wavenumbers from the two
rectangles centered at ±ksp in g(k) of Fig. 5.6. For the most part, this scatter arises
from the 1-1 term of Eq. (8), although higher terms make small corrections. It is
clear that the single scatter is well-isolated from the plasmon polariton coupling
region with lOs I:::; Omax, and that this isolation significantly improves the contrast
of the specular peak.

However, if a is increased, the backscattering peak soon becomes unphysical,
presumably due to the higher-order terms missing in Eq. (8). In order to show
a result for stronger roughness where the eighth-order theory is inappropriate,
we now present a result obtained from the Monte Carlo approach described in
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FIGURE 5.7. Meandiffuse intensities exhibiting specular peaksat Os =Oi for the spectrum
G(k) of Fig. 5.6, ()i= 9°, and otherparameters as in maintext. Upperplot: /(8)(Os lei) from
perturbation theoryfor a =2nm. Lowerplot: / «()s I()i) fromMonte Carlocalculations with
a=3.5nm.

Sect. 5.3. The result shown in Fig. 5.7B has a = 3.5 nm but all other parameters
are as in Fig. 5.7A. The general levels of I(8sI8i ) have increased and show clear
backscattering and specular enhancement peaks, with the specular enhancement
being quite distinct. Peak widths are also considerably wider than in Fig. 5.7A,
and the 1.10 backscattering peak width of Fig. 5.7A has increased to 1.70 in
Fig. 5.7B. In addition, the specular peak width of 1.20 in Fig. 5.7A has-increased
to 2.7 0 and has thus been roughness broadened to 2.2 times its leading-order
width. This broadening indicates that terms of tenth and higher orders produce large
broadening contributions to the specular peak, even for a modest roughness of only
a=3.5nm.

In summary, the spectrum of Fig. 5.6 does indeed produce enhanced specular
peaks having improved contrast. More generally, the high-order perturbation the-
ory has served well in predicting this new effect and in suggesting this form of
g(k), while Monte Carlo calculations are more appropriate for cases with stronger
roughness where the specular peak appears with higher contrast. While we are
unaware of experimental observations of the enhanced specular peak, there are
experimental techniques available that have produced surfaces with rectangular
power spectra." An extension of these techniques could be used to produce a
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spectrum of the form of Fig. 5.6,which would be an important step in attempts to
produce the first experimental observation of this remarkable effect.

5.5. Comparisons with Experiments

It is perhaps counterintuitive that the experimental observations ofpolariton-related
backscattering enhancement that have appeared have not employed the "natural"
Gaussian spectrum of Eq. (10) but, because of the relative ease of surface fabrica-
tion, they have instead used rectangular spectra. 7,8 In this section, calculations for
such spectra are presented for comparison. Two cases are considered of backseat-
tering effects that rely on, respectively, the 2-2 and the 4-4 perturbation terms. In
passing, it is notable that an effect that relies on the 3-3 term is also possible,6,13
but this is not discussed here.

5.5.1. The 2-2 Effect

We now consider the case when g(k) is composed of only two rectangles centered
at ±ksp (as in Fig. 5.6, but with the rectangles at ±2ksp removed). In couplings
as in Eq. (20), the rectangle at positive (or negative) k guarantees that +ksp (or
-ksp) is excited, as long as 10i I~ Omax. Similarly, as in Eq. (23), g(k) guarantees
that both +ksp and -ksp are coupled to diffuse scatter emerging for lOs I~ Omax. For
this spectrum, a backscattering peak should appear that arises from interference
between the wavenumber sequences k -+ +ksp~ q and k -+ -ksp -+ q; these pro-
cesses represent double scattering and the backscattering peak should thus, in the
lowest order, appear in the 2-2 term of Eq. (8).14

The particular parameters employed here are chosen to be consistent with
the first experimental observations of polariton-related backscattering enhance-
ment," Specifically, we set the limits of the rectangles of g(k) at ±0.83 wlc
and ±1.29wlc, and we assume that A== 612nm and 8==-9.0+ 1.29i (gold),
so that ksp~ 1.06wlc is centered in g(k). The results are shown in Fig. 5.8 for
Oi == 10° and a == 8.3 nm. Here /(4)(Os IOi) exhibits a clear backscattering peak ap-
pearing in a distribution for lOs IS 13.5° that arises from the 2-2 term. The phys-
ical mechanism is double scattering involving a pair of points 1 and 2 on the
surface; as shown in Fig. 5.8, for the scattering sequence k -+ +ksp~ q link-
ing them from 1 to 2, there is a time-reversed sequence k~ -ksp -+ q link-
ing them from 2 to 1. It is straightforward to show that the two associated
contributions have zero phase difference at backscattering and, upon averag-
ing over all such pairs of points on a random surface, the scattering contri-
butions interfere constructively to produce the peak.!" The limited bandwidth
of g(k) constrains the outward coupling ±ksp -+ q to IOsl:s 13.5°, and similarly
the polariton launching k -+ ±ksp only occurs for 10il ~ 13.5°. The scattering for
Os ~ -41° is single scatter k -+ q from the 1-1 term; the 1-3 term makes a small
downward correction to this distribution. The result for /(2)(Os 10i) is not shown,
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FIGURE 5.8. Upper plot: for a rectangular spectrum spanning 0.83 (VIc to 1.29(VIc,
/(n) (Os IOi) for Oi =10°, a =8.3 nm, A=612nm , and e=-9.0 + 1.29i.Lower plot: the two
lowest-orderscatteringprocesses that contribute to the backscattering peak.

but contains only the distribution for ()s ~ -41° and remains zero for all other ()s in
Fig. 5.8.

It is seen in Fig. 5.8 that /(6)(()s I()i) has a central distribution of reduced height
as compared to /(4)«()s I()i), which is due to a negative 2-4 term, while /(8)«()s I()i)
receives positive contributions there that arise from the 4-4 and 2-6 terms. For
Os::: -41°, a number of high-order terms contribute (1-3,3-3,1-5,3-5, and 1-7)
but the overall contribution is small. Upon comparing /(8)(8s 18i) to /(4)(8s I()i),
there is a slight increase in the peak width, and the steep walls at 18s 1== 13.5°
receive reductions in slope, although these subtle effects are not easily seen in
Fig. 5.8. It is thus clear that the effects remain much as in /(4)«()s I()i), and that terms
of higher order modify the height of the distribution but otherwise produce only
subtle changes in its shape.

The qualitative comparison with the experimental result is extremely good (see
Fig. 7 of Ref. 7). The experimental curve is somewhat higher, although such dis-
crepancies can easily arise from differences in e or from errors in the experimentally
determined value of a. The fact that /(8)«()s I()i) receives small corrections, as com-
pared to /(6)«()s I()i), suggests that the numerical convergence of the series is rapid
enough so that /(8)«()s I()i) should be close to the exact result. Indeed, we do not
compare with the other results of Ref. 7 taken with a == 10.9 nm; here /(8)«()s I()i)
receives a large correction and consequently it is probably not close to the exact
result.
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FIGURE 5.9. Upper plot: for a rectangular spectrum spanning 0.91 w/c to 1.42 w/c,
/(8) (Os 10;) for OJ = 19°, a = 14.8nm, A=674nm, and 8=-12.6 + 1.16i. The inset shows
the backscattering region, where /(8)(Os 10;) (solid curve) is compared to experimental
results (dashed curve). Lower plots: the two fourth-order scattering processes that con-
tribute to the backscattering peak. The solid line below the surface denotes the nonresonant
wave.

5.5.2. The 4-4 Effect

We now consider a backscattering effect that arises from the 4-4 term of the eighth-
order theory. An experimental observation of this effect has indeed appeared,"
although the origin of the effect was not recognized. For consistency with these
experiments, we assume that the limits of g(k) lie at ±0.91 to]«: and ±1.42 w/c,
and that Oi == 19°, A== 674 nm, a == 14.8 nm, and 8 == -12.6 + 1.16i (gold). Thus
ksp~ 1.04 to / c is well off-center in the rectangular region, which implies that the
direct excitations of +ksp and -ksp are no longer simultaneous. In particular, from
coupling equations such as Eq. (20), it is verified that +ksp (or -ksp) is directly
excited for Oi between -22° and 7° (or - 7° and 22°).

The intensity /(8)(Os IOi) is shown in Fig. 5.9. In a manner similar to Fig. 5.4A,
there is a single-scatter contribution for Os ~ - 36° from the 1-1 term. The 2-2 term
also makes a strong contribution, but it appears far from backscattering at - 7° ~
Os ::: 22°. These angular limits are the outward coupling limits of -ksp as may be
readily verified from q == -ksp + k~+) where the superscript indicates that k, is taken
from the positive-k part of g(k), so it is clear that -ksp is strongly excited. The
1-1 and 2-2 contributions receive corrections from higher-order tenus in the same
manner discussed in Sect. 5.5.1.
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The inset in Fig. 5.9 shows the backscattering region in more detail. There is
a backscattering peak that arises from the 4-4 term (more specifically, from the
triple integral of Eq. (A7) of Ref. 6). The experimental results of Ref. 8 are also
shown for comparison. The experimental peak is somewhat lower and wider then
the calculation; these differences can, in a high-order term, easily arise from small
errors in a or e. Generally, the qualitative agreement is good and, in both theory
and experiment, the effect is well-isolated and unambiguous.

The scattering process involves two polaritons and a nonresonant wave as
also shown in Fig. 5.9. The incident wave is first roughness-coupled to -ksp
as in -ksp= k + k;~). The polariton is scattered into a nonresonant wave knr ,

knr=-ksp+k;1), which is then coupled to +ksp as +ksp=knr+k;j); thus the
counterpropagating polaritons are linked via a two-step process. Finally +ksp is
outwardly coupled to a propagating wave as q = +ksp+ k;~). For the process in-
volving points 1 through 4 in Fig. 5.9, there is another process as shown in which
these points are linked in the reverse order; the interference of the contributions
from these two processes produces the peak at backscattering.

This interpretation may be verified by using a pole approximation" in the 4-4
integrand for the two resonant polariton excitations and evaluating the remaining
one-dimensional integral numerically, which produces accurate results. It follows
that the width of the peak should be D,.()e ~ 1.00°, which is close to the 1.02° width
of the numerical results of Fig. 5.9. However, these calculations are lengthy and
are not presented here.

5.6. Conclusions

A perturbation theory has been presented for the mean diffuse intensity scattered
by a surface with one-dimensional Gaussian roughness. All perturbation terms
through eighth order in the surface roughness parameter a have been evaluated
without approximation. This approach has the advantage that no physical processes
will be omitted and no artifacts will be introduced, apart from whatever effects
arise from the unavoidable truncation of the perturbation series.

The theory has been applied to rough metals when a is a few nanometers and
there is strong surface plasmon-polariton excitation. Under these conditions there
is often a backscattering enhancement peak, to which many of the perturbation
terms contribute. In calculations for a Gaussian roughness power spectrum, it has
been shown that the terms of sixth and eighth order predict a broadening of the
backscattering peak with increasing surface roughness. For rectangular roughness
spectra such as those employed in experiments, it has been discussed that the
theory predicts distinct backscattering peaks that first appear in the fourth or even
in the eighth perturbation order, depending on the parameters of the spectrum.

The eighth-order terms of the perturbation theory also predict an entirely new
effect: a second peak in the mean diffuse scatter that falls at the specular angle.
This specular peak, which bears no relation to the surface's specular reflection,
appears with twice the angular width of the backscattering peak in their respective
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leading orders. It hasbeendiscussed thatthespecularpeakarisesfromconstructive
interference of multiple-scattering contributions, in a manner that resembles the
physical processes producing backscattering enhancement. Through supporting
calculations based on Monte Carlo techniques, suggestions are made for surface
parameters that may lead to the firstexperimental observations of this neweffect.
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6.1. Introduction

Electromagnetic wave scattering from randomly rough surfaces and films has
emerged as a distinct discipline of considerable research in many areas including
radio-physics, geophysical remote sensing, ocean acoustics, surface optics, and
plasmonics.l"!" Wave behavior on rough surfaces is an old subject that has under-
gone a tremendous transformation in the past ten years. In plasmonics, we study
optical processus and their applications for building ultra-small waveguides and
highly efficient sensors. Basic building blocks in plasmonics research are metal
nanoscale structures that confine light. A main tool for studying such structures
is wave scattering simulation for nanoscale objects. The purposes of this chap-
ter are to delineate a coherent outline of the small-amplitude perturbation theory
for two-dimensional surfaces and to present both the physical and mathematical
framework and the relevant theoretical technique. The small-amplitude pertur-
bation theory was one of the earlier theories used, it was originally developed
by Rice. 15 This theory still remains of interest'< 16-19 because perturbative terms
of order higher than one can produce enhanced backscattering or improve the
accuracy of predictions in an emission model. The Rice method can be used to
determine all orders in the perturbative development, but very few works use terms
of higher-order for the scattering of electromagnetic waves from two-dimensional
rough surfaces due to the calculation complexity. The standard method developed
by Rice is difficult to apply when we consider second or third-order of scattered
fields as a function of the surface height. The second order has been given in a
compact form by Voronoviclr" in his work on the small-slope approximation, and
only recently the third-order has been presented." However, a different way"
exists to obtain small-amplitude perturbation which dates back from the work of
Brown et ale 21 Using both the Rayleigh hypothesis and the extinction theorem, we
can obtain an integral equation, called the reduced Rayleigh equation, which only
involves the incident and the scattered field alone. In this method the field trans-
mitted through the surface is eliminated and the scattered field can be expressed as
a function of only the incident field. This reduced equation has been extensively
used by Maradudin et al. to study localization effects by a conducting surface,22-24
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coherent effects in reflection factor,25 scattering by one-dimensional/" and two-
dimensional conducting surfaces in terms of Green function's development." The
phenomenon of backscattering enhancement which has been predicted manifests
itself as a well-defined peak in the retro-reflection direction when looking at the an-
gular dependence of the intensity related to the diffuse component of the scattered
field. In the case of small-roughness metallic surfaces this peak was explained
by the infinite perturbation theory,22-24 and further developments'" have shown
that the major contribution for the enhanced backscattering peak comes from the
second-order term in the field perturbation. Observations'" of surface backscatter-
ing enhancement phenomena from metallic randomly rough surfaces have been
reported experimentally and stimulated critical discussions.

Similar studies have been done in the case of thin films or slabs bounded by rough
surfaces, 14, 29 but only in the two-dimensional case. Early works mainly focused on
two-dimensional randomly rough slabs due to the calculation complexity.* Fruitful
results were reported in numerical and experimental studies. But to address prac-
tical application-oriented situations, scattering theory of three-dimensional rough
slabs must be studied. In order to calculate the three-dimensional case it becomes
necessary to derive an extension of the reduced Rayleigh equation for this system.
In this chapter, we show the existence of a set of four equations, which we also
call reduced Rayleigh equation. We derive the corresponding equations for a slab
where the boundaries are rough surfaces. Next, a perturbative development up to
third-order is obtained in a compact matrix form for this three-dimensional sys-
tem. This third-order term is mandatory if we need the expression of the scattering
cross-section up to fourth-order approximation. As in the one-dimensional case,
the results of the incoherent scattering cross-section show a well defined peak in
the retroreflection direction.

We determine the perturbative development up to the third-order term in the
surface height, for a rough surface alone, and for slabs with rough surfaces. We
introduce the Mueller matrix and the definition of the statistical parameters for
the rough surface. We then obtain the bistatic matrix in terms of a perturbative
development.

Using these results, we show by means of numerical simulations, what are the
different mechanisms responsible of the enhanced backscattering. For a metallic
surface, the phenomenon is produced by the interference of waves which excite
a surface plasmon polariton along a certain path and then follow the same path
but in the reverse direction. For a dielectric bounded by a metallic plate with one
rough surface, the enhanced backscattering'" is produced by a similar mechanism
where the surface plasmon polariton is replaced by a slab guided wave. In this
case the incident wave excites first a guided mode due to surface roughness, and
then the roughness transforms the surface wave into a bulk wave. Furthermore,

* We mention the work'? where they consider a three-dimensional film. Their method has
in principle the same domain of validity as the small-amplitude perturbation theory, the
difference comes from their use of a sophisticated development called Wiener-Hermite
expansion to write down the scattered fields.
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if the slab supports several guided modes, recent investigations14,18 have shown
the presence of additional peaks, called satellite peaks, in the angular distribution
of the incoherent intensity. When the slab is bounded by two rough boundaries,
the enhancement of backscattering can be produced by two kinds of interaction:
the classic one, where the wave is scattered two times by the same boundary,
and another one where the wave is transmitted by the first rough surface, then
scattered by the second rough surface and finally by the first one. Before closing
this introduction, we want just to add a remark: in this chapter we also try to
demonstrate that in metals, such as silver or gold, plasmon-polariton resonances
are responsible for unique and remarkable optical phenomena.

6.2. Derivation of the Reduced Rayleigh Equations

The reduced Rayleigh equation was obtained for a two-dimensional surface by
Brown et al.21 using the extinction theorem and the Rayleigh hypothesis. This
equation allows us to calculate only the scattered field from the rough surface.
In order to compute the transmitted field from the rough surface, we use an-
other reduced Rayleigh equation derived by Greffet." However, because these
two equations were established in the case where there is no up-going field inside
the medium, we cannot use them to obtain the field scattered by a slab with a
rough surface on its upper side. To generalize these equations to a slab, we con-
sider all the fields shown in Fig. 6.1. In this case, we derive four reduced Rayleigh
equations, which involve the following fields Eo ' Et, Ei, Et. We consider that
the electromagnetic waves propagate with a frequency to, and in the following the
factor exp( -iwt) will be omitted. We work with both polarizations and we use
a Cartesian coordinate system r == (x, z) == (x, y, z), where the z-axis is directed
upwards, and we consider a boundary of the form z == h(x). Moreover, we suppose
that there exists a length L for which h(x, y) == 0, if Ix I > L /2 or Iy I > L /2; L
may be arbitrary large but finite.

6.2.1. Propagation Equations and Boundary Conditions

The electric field E satisfies the Helmholtz equations in the two media:

(V 2 + f oK6)EO(r) == 0

(V 2 + flK~) E 1(r ) == 0

for z > hex),

for z < hex),

(1)

(2)

where Ko == io]c. Since the system is homogeneous in the x == (x, y) directions, we
can represent the electric field by its Fourier transform. Using the Helmholtz equa-
tion, we deduce the following expression for the electric field9, 13 in the medium 0:
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z

Z= h(x)

FIGURE 6.1. A randomly roughsurfacewitha systemof incidentwaves comingfromboth
sidesof the interface(medium0 and 1).

where (see Fig. 6.2), we have the expressions

1

ao(p) == (€oK~ - p2)"i ,

k~± == p ± ao(p)e z•

(4)

(5)

With this definition, we made implicitly the assumption that the Rayleigh hypoth-
esis is correct. This representation is only valid when z > max[h(x)] and in that
case EO- (p ) represents the incident wave amplitude. In order to be correct we need
to add an explicit dependence on the z-coordinate. However, explicit calculations
in the case of infinite conducting surfaces.F and for a dielectric medium' with-
out this hypothesis, have shown that the perturbative developments are identical.
The validity of this hypothesis is by no doubt a matter of convergence domain as
discussed by Voronovich.v'"

In the medium 1, we have a similar expression:

where we have
1

al(p) == (€l KJ- p2)2 ,

k~± == p ± al(p)ez.

(6)

(7)

(8)
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k 0+p

oo(p)

p

FIGURE6.2. Decomposition of the wave vector k~+ .

The vectors E(p) are decomposed on a two-dimensional basis due to the fact that
V·E(r) = o. This leads to the conditions

(9)

We define the horizontal polarization vectors H for TE and V for TM in medium
Oby

(10)

(11)

with similar expressions for the medium 1:

(12)

(13)
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We decompose the waves in medium 0 on the basis [p]o- == (e~-(p), eH(p», and
[p ]0+ == (e~+(p ),.eH(P». In this scheme, the expressions are:

(14)

and for medium 1 on the basis [p]l- == (e~-(p), eH(p» and [p]l+ == (e~+(p),

eH(P», the expression are

(15)

The electric E(x, z) and magnetic fields B(x, z) = ~V x E(x, z) obey the fol-
lowing boundary conditions:

n(x) x [Eo(x, hex»~ - E1(x, hex»~] = 0,

n(x)· [EoEo(x, hex»~ - E1E1(x, hex»~] = 0,

n(x) x [Bo(x, hex»~ - B1(x, hex»~] = 0,

n(x) == ez - Vh(x) .

(16)

(17)

(18)

Substituting the field Fourier transforms, Eq. (3) and Eq. (6), into the boundary
conditions Eqs. (16)-(18), we obtain the following expressions:

(19)

(20)

(21)

(22)

where the summation includes the two possible signs, a = ±, linked to the propa-
gation directions. We will also use the condition V . EO(x , z) = V . E 1(x, z) which
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yields the relation

f d2 f d
2
p~ _P_kOa. EOa(p)exp (ikOa.r )=~ __k la. Ela(p)exp (ikla.r ).6 (2rr )2 P P x 6 (2rr )2 P P x

(23)

6.2.2. Field Elimination

Equations (19)-(21) and (23) are linear in the fields EO-, EO+,E I - , E I+.To elimi-
nate E I - or E I+ in these equations, we shall take the following linear combination
of their left and right members:

f d2x [k~b x (Eq. (19)) + (Eq. (21)) - k~b(Eq. (20))

-n(x)(Eq. (23))] exp (_ik;b . r x ) , (24)

with k~b == u + ba I (u )ez,and where we must fix b = ± according to the choice of
the field we want to eliminate. Using the vectorial identity, a x (b xc) = b(a . c)
- c(a . b), we get for the right member of Eq. (24):

~ ff d2x (~~2 [- (k~b +k~a) · n(x) E1a(p)+ (k~b - k~a) · E1a(p)n(x)

-n(x)· Ela(p) (k;b - k~a)] exp (-i (k;b - k~a) . r x ) . (25)

We discuss now the different cases depending on the relative signs of a and b:

(1) If a = -b, we can use an integration by parts (given in Appendix 6.7) to
evaluate n(x) == ez - Vh(x). This leads to

n(x) = ez - Vh(x) +--+ n(x) = t z + (n - p) . (26)
tba, (u) - aal (p))

We can notice that the denominator (ba, (u) - aal (p)) does not present any
singularity because a = -b. For the first term in integral (25) we get

-bE1a(p)
- (k lb + k1a) . n(x) Ela(p) = [u2- p2 +al (U)2 - al (p )2] ,

u P (a I (u) + a I (p ))

= O. (27)

Using Eq. (7), the last equality can be easily verified. For the sum of the second
and third terms of Eq. (25), we obtain

(k;b - k~a) . E1a(p) n(x) - n(x) . Ela(p) (k;b - k~a) = 0, (28)

due to

k i b _ k1a
n(x) = up. (29)

bal(U) - aal(p)

(2) If a = b, we can use the integration by parts only if al (u) f=. al (p). And we
have to consider three cases:
(a) u f=. p and u i= -p, similarly as in the first case by using an integration

by parts, we show that Eq. (25) is zero.
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-f d2x (k~b + k:,a) 0 n(x) E1a(p) exp (-i (k~b - k~a) · r x)

= - f d2x2k~b o n(x)E1a(p)

=~2bal(u)f d2xE1a(p )

= -2bcxl(U)L2Ela(p), (30)

because f d2xVh(x) == 0, and

(c) U == -p:f:. 0, thenk;b -k:: = 2u,

f d2xn(x) exp(-i(k~b _k~a) .rx ) = f dx(ez - Vh(x» exp(-2iu ox)

=ezf d2xexp(-2iu · x)x - ex f dy [exp(-2iu 0 x)h(x, y)]:::~/2

-ey f dx[exp(-2iu,x)h(x'Y)]~::~/2
= ez8(u ) when L --* +00
== 0 since u :f:. O. (32)

This result shows us that expression (25) is also zero in that case.
We can now write the above results in the following form:

-f d2x (k~b + k~a) 0 n(x) E1a(p) exp (-i (k~b - k~a) 0 r x )

== -2bcxl(U)da,bdu,pL2Ela(p)

== - 2bcx l (U) da,b(2n)2d(u - p)E1b(u)

when L ~ +00, (33)

where du,p is the kronecker symbol, and d(U - p) == L 2 j(2n)2 du,p, is the Dirac
function.

After an integration on p and a summation on a, expression (25) leads to

-2bcxI(U)Elb(U). (34)

We see that we can eliminate the field E1-(u) or E1+(u) depending on the choice
made for b == ±.
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Now, we consider the left member ofEq. (24), we can write

'""Ifd2 d
2

p [- (k;b + kO
p
a) . n(x) EOa(p ).+ (k;b - kO

p
a) . EOa(p )n(x)6 x (2rr)2

-n(x)· EOa(p) (:~k;b -k~)] exp (-i (k;b -k~) 'Fx ) .

(35)

Using an integration by parts, we replace n(x) by (26), and we get

" (u - p)
n(x)~ ez +------

(baI(u) - aao(p» (bal (u) - aao(p»
(36)

In this case, we do not need to discuss the relative sign between a and b because
we have bal(U) - aao(p) =/; 0, because fO =/; fl. We obtain

_ (k;b +k1a) . n(x) EOa(p) = _"2 - p2 +a1("i - ao(p)2 EOa(p),
P bal(U) - aao(p)

(E1 - Eo)KJ EOa(P), (37)
bastu) - aao(p)

where we use definitions (4) and (7).
The remaining terms of Eq. (35) lead to

(k;b - k~) · EOa(p)n(x) - n(x). EOa(p) (:~k;b - k~ )

= (k;b - k~a) . EOa(p)n(x) - n(x). EOa(p) (k;b - k~a)

+n(x) . EOa(p) (k lb _ EOklb)
U EI P

k~b_kr: .EOa(p)(E1-EO)k;b. (38)
bal(U) - aao(p) EI

With the following expression:

(40)

I(baI(U) - aao(p)lu - p)

bat(U) - aao(p)

[
kib ]

x KJ EOa(p) - ~ (k;b - k~) . EOa(p)

2bal(U) Ib
= E (u).

(€I - fo)

[(alp) =f d2xexp(-ip,x-iah(x», (39)

and taking into account expressions (34), (37)-(38), the resulting linear combina-
tion (24) leads to

f d2p6 (2rr)2

This expression represents in fact four equations, depending on the choice for a
and b = ±. The last step is to project Eq. (40) on the natural basis of E1b(U), which
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is given by [u]Ib == (e~(u), eH(U)). This basis has the property to be orthogonal
to k;b and to eliminate the second term of Eg. (40). Let us notice, that in order to
decompose EOa(p ) on [p lOa , we have to define a matrix MIb,Oa (u Ip) transforming
a vector expressed on the basis [p lOa into a vector on the basis [ul l b, multiplied
by a numerical factor (EO EI)t KJ. This matrix is given by the expression

1 (elb(U) . eOa(p)
Mlb,Oa(ul ) == (E E )2 K2 V V

POlO,.. ( ) "'Oa( )
eHU ·eV P

6.2.3. The Reduced Rayleigh Equations

(41)

(43)

Now, we will go into more detailed discussion of the reduced Rayleigh equations.
Equations (10)-(13) imply that the matrix M takes the form

M1b,oa(ulp) = (lIuIII IP1' + abal(u)aO(p)u · p -bEd KOal(U)(U x P)z) .
a E{ Koao(p) (u x p)z (EO EI)t KJ u.P

(42)
The reduced Rayleigh equation resulting from Eq. (40) can be expanded as follows:

L f d
2
p [(bal(U) - aao(P)lu - p) Mlb.Oa(ulp)~(p)

a=± (2Jl')2 ba, (u) - aao(p)
1

2b(EoEl)2 al(U) E1b(U),
(El - EO)

where we suppose that EOa(p), E1b(u) are respectively decomposed on the basis
[p lOa and [u] lb. We can derive a similar equation where EOb is now eliminated, by
exchanging EO and El in (42) and (43), owing to the symmetry of the equation, we get

L f d
2
p [(bao(u) - aal(p)lu - P)jfb.la(ulp) Ela(p)

a=± (2Jl')2 bao(u) - aat (p)
1

2b (Eo Ed'! al(u) EOb(u), (44)
(El - EO)

i/b,ta(ulp) = (11u11I 1Pl' + abao(u) al(p)u · P -b Et Ko ao(u)(u x P)z) .
a EJ K0 a 1(p ) (u x p)z (EO Et ) t K'5 u.p

(45)
We will show how these equations greatly simplify the perturbative calculations
of plane wave scattering by a rough surface. Another helpful compact notation is
given by the following new matrices M h :

M~b.Oa(ulp) == [(bal(U) - aao(p)lu - p) Mlb.Oa(ulp), (46)
bat(u) - aao(p)

~b.la(ulp) == [(bao(u) - aal(p)lu - P)i/b.la(ulp). (47)
bao(u) - aal(p)
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6.3. The Diffusion Matrix

We consider the scattering of an incident plane wave by a rough surface. From the
previous formalism, we define an incident plane wave defined by a wave vectork~~:

(48)

We define the diffusion operator R:

(49)

We represent the diffusion operator in a matrix form, using the vectorial basis
described above. This leads to the expression

We can now write the field in medium 0 using decomposition (3):

6.4. A Perturbative Development

Our aim now is to obtain a perturbative development, thus we have to determine a
perturbative expansion of the given boundary problem. A direct approach which
uses an exact integral equation named the extended boundary condition (EBC)
(see Ref.s, 32) requires tedious calculations. Another issue is to use the Rayleigh
hypothesis in the boundary conditions. This is the method generally used to obtain
the small-amplitude development. IS, 16,20 It is very important to notice that a great
deal of simplifications can be achieved if we are only interested by the field outside
the slab. Brown et ale 21 show that an exact integral equation can be obtained (under
the Rayleigh hypothesis), which only involves the scattering matrix R(p Ipo). The
proof is based on the extinction theorem which decouples the fields inside and
outside the media. In this section, this integral equation will be obtained from the
previous development, including a generalization to the case of bounded media.

6.4.1. Case of One Rough Surface

Working in the framework of a small perturbation regime, we look for an asymp-
totic perturbative development of R in powers of the height h:

R(p Ipo) = ItO) (p Ipo) + It I
)(p Ipo) + R(2)(p Ipo) + It3)

(p Ipo) + .... (51)



(53)

(54)
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We can easily prove that this development takes the following form (see Ap-
pendix B):

R(p Ipo) = (21l')28(p - Po)-yO)(Po) + ao(po) X(l)(p Ipo) h(p - Po)

f d2Pl ~2)
+aocpo) (2Jr)2 X CPlplIPo)h(p - Pl)h(Pl - po)

If d2Pl dp2 -;;(3)

+ao(po) (2Jr)2 (2Jr)2 X (PIPllp2IPo)h(p - p})

x h(P1 - P2)h(P2 - Po), (52)

where h(p) is the Fourier transformt of h(x):

h(p) == f dx exp(-ip ·x)h(x).

We will now prove how powerful are the reduced Rayleigh equations for the three
following configurations. The R matrix satisfies an exact integral equation under
the Rayleigh hypothesis, and we get compact formulas suitable for numerical
simulations.

6.4.1.1. A Rough Surface Separating Two Different Media

We consider a rough surface delimiting two media which are semi infinite, (see
Fig. 6.3). We suppose that there is no upward field propagating in the medium 1,
so we get E 1+ = O. With the choice, b = +, in Eq. (43), we obtain the following
integral equation for the scattering matrix Rs EO,El (p Ipo) for a single surfacel (the
subscript s means a single surface located at z = 0)

f d2P -1+,0+ - -1+,0-
(2Jr)2Mh (ulp) RS€O,ft(P Ipo) + M h (ulpo) = o.

This equation has been already obtained making use of the extinction theorem."
Wecan notice that, since the right member of the Eq. (54) is null, wecan simplify the

d li f h . M 1+,0+ M 1+,0- b l' ()1 h h incidsecon me 0 t e matnces, , , y a tactor E1 '2, t en t ey comer e
with the M,N matrices derived by Celli et al.21

To construct a perturbative development, we expand in Taylor series the term
expuo h(x)) inside l(alp) (Eq, (39)), which yields

a 2 ia 3

I (a Ip) = (2Jr)28(p) - io h(l\p ) - 2: h(2)(p) + 3! h(3)(p) + · · " (55)

h(n)(p) == f d2x exp(-ip · x)hn(x), (56)

t Weuse the same symbolfor a functionand its Fouriertransform,their argumentsdenoting
the difference.
t Wedenote explicitlythe permittivitydependanceofRs by the subscript EO, El because in
the following section we will use theRs matrix with different permittivity values.
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z

e~t(p)

x

FIGURE 6.3. A two-dimensional random rough surface delimiting two dielectric media 0
and 1.

and we collect the terms of the same order in h(x). Let us define the matrix

(57)

the classical specular reflectioncoefficientsfor (TM) and (TE) wavesare given by
the diagonal elements of the matrix

(58)

Substituting Eq. (55) into Eq. (54), we construct for lisEO,El a perturbative de-
velopment of the well known form (52), and the coefficients of the perturbative
developmentare given by

yO)( ) = _ al(pO) - ao(po) [MI+,o+( I )]-1. MI+,o-( I )
Po ()+ ( ) Po Po Po Poal Po ao Po

-10
= V (Po), (59)

and
y;(1) .~

XSEO,El (uIPo) = 21 Q (uIPo), (60)
-;;(2) -+ --
XsEo,El(UlpIIPo) = al(u)Q (ulpo)+ao(po)Q (uIPo)

-2 P(Ulpl) .~ (PIlpo), (61)
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-;;(3) i [( 2 2)~Xs EO,El (U/Pl/P2/PO) = -3" a1(u) + ao(po) Q (u/Po)

+2 al (u )ao(po) Q- (U1Po)]

+i P(Ulpl) -g<2)(Pl/P2IPo) + i (al (u)
- -+

- aO(P2)) P(ulp2) . Q (P2IPo), (62)

(65)

(66)

(63)

(64)

where we have the expression

(1(ulpo) == al~) - ao(u) [M1+,0+(U/U)]-1 . [M1+,0- (ulpo)
ao(po)

±Ml+·o+(ulpo)' -g<°)(po)] ,

and, after some simple algebra, we obtain

~(uIPo) = (El -Eo) [Dto(U)r
1

x (El IIuIIII~oll - Eoal(u)al(po)ii· Po -EJ KOa l (U)(ii x Po)z)

-EJ Koal (po) (u x Po)z EOKJ u.Po

x [~(Po)rl,

- - (El - EO) [-+ ]-1Q (ulpo) = D 10(u)
ao(po)

(

Eo al (Po) Ilu////poll - EI at (u) aJ(po) u·Po
x 1

-E6 KoEI a5(po) (u x Po)z

-EJ Koal (u) al (Po)(ii x Po)z )

EO K6al (Po) u.Po

x [D70(po)r
1

,

- [-1+ 0+ ]-1 -1+ 0+P(ulpl) == (aI(u) - ao(u)) M ' (ulu) M' (uIPI)

= (El - EO) [~o(U)rl

x ("U lillf il +al(u)ao(p)ii· PI -EJ KOa l (U)(ii x Pl)Z) . (67)

E~2 Koao(p) (u x PI)Z KJ u.PI

It can be easily shown that X(l) is the well known first-order term in perturbation
theory which was obtained by Rice. I5 We can prove after some lengthy calculations
that Eqs. (61),(62), are identical to those found by Johnson.!" Thus expressions
Eqs. (61),(62), are a compact manner to write the second- and third-order terms of
the perturbative expansion; moreover, they are well adapted for numerical com-
putations. However, we notice that only the first term K<1) is reciprocal. Since
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z

x

FIGURE 6.4. A slab formed with a bottom two-dimensional randomly rough surface and an
upper planar surface.

the second- and third-order perturbative terms are included in an integral, the
ffici -;;(x2) -;;(X3) . h h be nut i . Icoe cient , , are not unique; owever t ey can e put Into a reciproca

form (see Appendix B).
It is worth to notice that we can follow an analogous procedure to calculate the

transmitted field. By taking b = - in Eq. (44), we get

f d2p jf-,l-(ul )E1- ( ) = -2 (EO El)! al(u) EJ-(u). (68)
(2rr)2 h P P (El - Eo)

This equation was already obtained with the extinction theorem.'!

6.4.1.2. A Slab with a Rough Surface on the Bottom Side

We consider a slab delimited on the upper side by a planar surface and on the
bottom side by a rough surface, (see Fig. 6.4). Since there is no incident upward
field in medium 2, the scattering matrix we have obtained in the previous section is
sufficient to determine the scattering matrix of the present configuration. In order
to get a proof, let us give some definitions as explained in Fig. 6.5. The scattering
matrix for an incident plane wave coming from the medium 0, and scattered in the
medium 1, is given by the following expression:

-=-:-0 2 -10
V (p /Po) == (2rr) 8(p - po) V (Po), (69)

(70)

where V
IO

is defined by Eq. (58). The transmitted wave in medium 1 is given by

-:=0 2 ao(po) -10
T (p /Po) = (2rr) 8(p - Po)-- T (Po),

al (Po)
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fO
EO-

VOEo-
fl

fO
E1+

y1E1+

fl
EO-

'T1E1+

fO fO

fl fl

FIGURE6.5. Definitions of scattering matrices for a planar surface.

(71)

When the incident waveis comingfrommedium 1,we havesimilarlythe following
equations:

-1 2 -10
V (p Ipo) = -(2rr) 8(p - po) V (po),
-1 2 -10
T (p Ipo) == (Zzr ) 8(p - Po) T (Po).

(72)

(73)

(75)

(76)

The scatteringmatrix R~€l ,€Z for the rough surface h which is located at z = - H§,
and separating respectively two media of permittivity EI and E2 is given by

-H . -
R, €l ,€z (p Ipo) = exp(l(al (p) + aI (Po)) H) R, €l ,€Z (p Ipo). (74)

It is worth noticing that the phase term comes from the translation z = - H, (see
Eq. (217)), and RS€l,EZ denotes the scatteringmatrixRs EO,El of the previoussection,
where we have replaced EO by El, and El by E2. Furthermore,we define the product
of two operator 11 and B by

- - f d
2
P I - -

(A · B)(p Ipo) == (2Jl')2 A(p IPl) · B(Pl!PO).

then we easily prove for the configuration shown in Fig. 6.4 that (we use for the
fields the notation of Fig. 6.1),

E I + = liH
•~ • EO- RH VI E 1+s €l ,€Z + S €l ,€2 • • ,

§ Throughout this chapter, the symbol H in upper index is related to the height of a surface,
in lower index to the polarization of the electromagnetic field.
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EO+ = yo .EO- +]il . E 1+, (77)

where EO-(p) = (2rr)2 8(p - Po)E i(Po). These equations have been recently
used by Fuks 17 to calculate in the first order the field scattered by a layered medium.
In fact, as we shall see below, these equations allow us to obtain all orders of the
field perturbation. Expression (']6) is analogous to the Dyson equation usually used
in random media.' So, we are led to define the scattering operator U

which satisfies the equation

- - -1 -H -
U = 1 + Y . RS E1,E2 • U .

(78)

(79)

Rd(p Ipo) is the expression of the global scattering matrix for the upper planar
surface and the bottom rough surface and we get

(80)

With Eqs. (77),(78), the scattering matrix can be written as follows:

(81)

We improve development (79), by summing all the specular reflections inside the
slab. This is done by defining the operator It°) which satisfies the equation

(82)

where R~(o~ is the zeroth-order term of the perturbative development given by
1, 2

(83)

where yH 21 is the scattering matrix for a planar surface located at the height
z=-H

V
H 21

(U) == exp(2 i a l (U) H)D;(po) [D~l(PO)rl , (84)

D~l (Po) = (E2 al (Po) ± EI a2(PO) 0 ) (85)
- 0 a1(Po) ± a2(PO)

The term exp(2 i a1(u) H) comes from the phase shift induced by the translation
of the planar surface from the height z = 0 to z = - H (see Appendix B).The
diagrammatic representation ofEq. (82) is shown in Fig. 6.6. It is in fact a geometric
series which can be summed, and we get the expressions:

-;-;{O) 2 -;-;iO)
·U (p Ipo) = (2rr) 8(p - Po)U (Po),

-(0) [- -10 -H21 J-1
U (Po) == 1 + y (Po)· v (Po)

(86)

(87)
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U(O)

FIGURE 6.6. Diagrammatic representation of the operator cf°).

From the previous results, Eq. (79) can be written as follows:

U = ItO) U(O). Vi . dRH . U+ S€1,€2'

where

(88)

(89)

In order to obtain the perturbative development of Rd , we substitute the expansion

-H = R H (0) liH (1) liH (2). RH (3)
Rs €1 ,€2 S €1 ,€2 + S €1 ,€2 + S €1 ,€2 + S €1 ,€2 ' (90)

into Eqs. (81) and (88), and we get the following terms:

"R(O) == yo 'it. RH (0) . U(O) • -ro
d + S€1,€2 '

(91)

(92)

(93)

(94)

Usingdevelopment (52)for R:€l ,€2' anddefinitions(69)-(70), (72)-(73), weobtain
after some calculations a development of form (52) for Rd with the following
coefficients:

-(0) (-10 -H21) [- -10 -H21 ]-1X b (po) = V (po) + V (po) 1 + V (Po)· V (Po) . (95)

This matrix is diagonal, and its coefficients are identical to the reflection coeffi-
cients for a planar slab.' The other coefficients are

X(I)( I ) = "T10
( ). IfO)( i XH(l) ( I i IfO)( ). "T10

( )
d P Po P P S €1 ,€2 P Po Po Po , (96)



6. Small-Amplitude Perturbation Theoryfor Two-Dimensional Surfaces 145

z

x

(97)

(98)

FIGURE6.7. A slab formed withan upper two-dimensional randomly roughsurface and a
bottomplanarsurface.

-(2) -10 -(0) [-H (2)
Xd (plpl!po) = T (p). U (p). XsE1,E2(p lp 1IPo)

-H (1) -;-;{O) -10 -H (1) ]
-a1(P1)XsE1,E2(plp1)·U (PI)· V (PI)· XSE1,E2(Pl!PO)

-;-;{O) -10
X U (Po)· T (Po),

~3) -10 -;-;{O) [-H (3)
Xd (plp1lp2IPo) = T (p). U (p). XsE1,E2(p lp l lp 2IPo)

-H (2) -;-;{O) -10 -H (1)
- a1(P2) XSE} ,E2 (p Ip11p2) . U (P2)· V (P2)· XSEl ,E2 (P2Ipo)

-H (1) -;-;{O) -10 -H (2)
-aI(PI)XS€I,€2(plpI)· U (PI)· V (PI)· XSE1,E2(PI lp 2IPo)

-H (1) ~O) -10 -H (1)
+ al (PI) al (P2) XS E1, E2 (p IPI) . U (PI)· V (PI)· XS E1, E2 (Pllp2)

-;-;{O) -10 -H (1) ] -;-;{O) -10
X U (P2)· V (P2)· XSE1,E2(P2IPo) . U (Po)· T (Po).

In these expressions, we have

and the subscripts E1, E2 in Xs E} ,E2 denote that we substitute EO by f1, and f1 by e:
in (60)-(62).

6.4.1.3. A Slab with a Rough Surface on the Upper Side

We consider a slab delimited on the upper side by a two-dimensional rough surface,
and on the bottom side by a planar surface. This system is described in Fig. 6.7. To
derive the reduced Rayleigh equation in this case, we combine the two following
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equations:

! d2p -1+0+ - 0 -1+0- 0
(2Jr)2M h' (ulp) Ru(P/Po)E -(Po)+Mh' (u/Po)E -(Po)

1

2 (EOEl)2 al(u) El+(u), (100)
(EI -EO)

! d2p -1-0+ - 0 -1-0- 0
(2Jr)2M h' (ulp)Ru(plpo)E -(Po)+Mh' (uIPo)E -(Po)

}

2 (EOEl)2 al(u) E1-(u), (101)
(EI - EO)

with

(102)

(103)

where V
H

21 is given by (85), and Ru is definedas the global scatteringmatrix for
the upper rough surface and the bottom planar surface.

The reduced Rayleigh equation for the scattering matrix Ru is given by the
followingexpression:

! (~~2 [M~+'o+(ulp)+ yH2\U).M~-,0+(UIP)] Ru(Plpo)

[
- 1+ 0- -H21 -1- 0- ]

= - M h ' (uIPo) + V (u)· M h ' (uIPo) .

By using the expansion of [(alp) in power series, we can then write the pertur-
bativedevelopment

X(O) (Po) = _ ['A:i+'O+(POIPO) _ yH21(pO)' M1-,0+(polpo) ]-1
u €o,€} at (Po) - ao(po) al (po) + ao(po)

x [ Ml+,O-(Polpo) + yH21(pO)' Ml-,O-(Polpo) ]

at (Po) + ao(~o) -al (Po) + ao(po)

(
- 10 -H21) [- -10 -H21 ]-1

= V (Po) + V (Po) 1 + V (Po)· V (Po) ,(104)

~1) .-++
Xu (uIPo) == 21Q (uIPo) (105)
-;;(2) --+ -+-
Xu (UIPlIPo)=CXl(U)Q (uIPo)+cxo(Po)Q (uIPo)

-2 p+ (ulpl) .~+ (Pllpo) (106)

-(3) i [( 2 2 -::::++Xu (ulpllp2Ipo) = -3" at (u) + CXo(Po» Q (uIPo)

+ 2al(u)aO(po) Q--(U1Po)]

+ i r: (ulpl) XC2
)(p t lp 2Ipo)

+i [a1(u) p-(ulp2) - aO(P2)r: (UIP2)] ·~+ (P2Ipo) (107)
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with the following expressions:

[

-1+ 0+ -1- 0+ ]-1
-ba i M' (ulu) -H21 M' (ulu)
Q (uIPo) == -- - V (u) . ----

2cxO(PO) CXl(U) - CXO(U) CXl(U) + CXO(U)

[
- 1+ 0+ -;;(0) -1+ o-

X M ' (uIPo)· XSEO,El (Po) +aM' (uIPo)

-H21 (-1- 0+ -(0) -1- 0- )]+ b V (u)· M ' (uIPo)· XSEO,El (Po) +aM' (uIPo) ,

(108)

[

-1+ 0+ -1- 0+ ]-1
-± M '(ulu) -H21 M' (ulu)
p (ulpl) == - V (u) . ----

al(u) - ao(u) al(u) +ao(u)

x [Ml+,o+(UIPI) ± VH 2\U} .M1-,o+(UIPd] , (109)

where, a == ±, b == ± denote the sign indices. After some calculations, we

obtain

(112)

(113)



148 Berginc

where

11,b = IlullllPoII F~(u)Ft(Po),

Ba,b ·Fa ( ) Fb ( )" "= v u v Po u- Po,

ca·b
= F~(u)Ft(Po)u. Po,

7,b = F~(u)Ft(Po) (u x Po)z,

lr,b = F~(u)Ft(Po) (u x Po)z,

(114)

(115)

(116)

(117)

(118)

(
F:O(po) 0) (- -H21 ) (- -10 -H21 )-1

Fil(Po) = 1 ± V (Po) 1 + V (Po)· V (Po) .

(119)

The explicit expression of the matrix p± is the following one:

P+(u\po) = (EI - EO) [D~o(U)rl ·

(
I\UIIIIPII~:(U) +al(u)ao(p) Fi(u)u . PI

£~2 Ko ao(p) F:(u) (u x Pl)Z

-EJ Koal(u) Fi(u)(u XPI)Z) (120)
KJ F!i(u)U. PI

P-(uIPo) = (EI - Eo) [Dio(u)r
l

.

(
lIulilip ~~i(U) + al(u)ao(p) FJ(u)u · PI

EO 2 Ko ao(p) Fii(u) (u x P1)Z

-EJ Koal(u) F:(u)(u x PI)Z) . (121)
KJ Fii(u) u.PI

The first-order term was derived by Fuks et al.17 They have noticed that for this
order, the matrix differs from the one obtained for a surface separating two semi-
infinite media by only the factors F±. Likewise, for higher-orders, we see that
Eqs. (110),(111) differ from Eq. (64) by only F±, similarly for Eqs. (112),(113)
with respect to Eq. (65), and Eqs. (120),(121) with respect to Eq. (67). So when
the thickness H becomes infinite, and the absorption Im(£l) -# 0, or if £1 = £2,we
have V

H21
= 0, thus F± = 1, and in that case we recover matrix (64)-(67) for a

rough surface between two semi-infinite media.

6.4.2. Case of Two Rough Surfaces

The slab is bounded by two weakly rough surfaces. The structure is shown in
Fig. 6.8, where the two rough surfaces separate three media.
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z

e~-(po)
ES(p)

x

FIGURE6.8. Aroughsurfacewithanincidentwavecomingfromthemedium0 andscattered
by a slab with two randomly roughsurfaces.

These three media are characterized by isotropic, homogeneous dielectric con-
stants EO, E1 and E2, respectively. The two boundaries of the rough surfaces are
located at the heights z = h1(x), Z = - H + h2(x ), x = (x, y). When the slab has
two rough boundaries, the enhancement of backscattering can be produced by two
kinds of interaction. The classic one, where the wave is scattered twice by the
same boundary, and another'l'(see Fig. 6.9) where the wave is transmitted at a
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FIGURE 6.9. Mechanisms responsible of enhanced backscattering.
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point A of the surface without being diffused, then the wave is scattered by the
second rough surface at a point B and by the first one at C. If the wave follows
the same path in the reverse direction and excites the same guided mode, then the
phase difference between the two paths is ~cP = r BC . (k +ki ) , where r BC is the
distance between Band C. This phase difference between these two waves is zero
and independent of the random position of the points Band C in the antispecular
direction (k = -ki ) which produces the backscattering peak.

In this section, we study the perturbative development of the scattered fields
as a function of the surface elevations hi and h2• In a perturbative expansion
of the scattering matrix, the terms which contain an expression such as h7 h~

will be denoted Itnm). The perturbative development of Ii can be written as
follows:

R = R(OO) +R!)O) +R(OI)+It11)+R(20) + It°2) +R(21)+ItI2) +R(22)+It30)

+R(03) +. .. (122)

To obtain the reduced Rayleigh equations, we follow the same calculation proce-
dure we have given in the case of one rough surface, whose equations are

f d2p -1+0+ - . -1+0- .
(2JT)2 M h ' (ulp)·R(pIPo)·E'(Po)+Mh· (uIPo)·E'(po)

1

_2_(E_O_E1_)2_a_1_(U_) E 1+(u),
(El - EO)

f d2p -1-0+ - . -1-0- .
(2JT)2 M h ' (ulp)·R(pIPo)·E'(po)+Mh· (uIPo)·E'(po)

1

2(EOE1)2 a 1(U) E 1_ )
(u ,

(E1 - EO)

(123)

(124)

where M~b,oa are given by the Eqs. (45)-(46) . In order to obtain a single equa-

tion for R(p Ipo), we find a relation between E 1- and E 1+. We already know the
expression of the scattering matrix for a single rough surface separating two ho-
mogenous media of permittivity El and E2, translated along the z-axis to the height
z = -H. This matrix is denoted by RSEIlE2(plpo) (see Eq. (74)), and we have the
following expressions:

-H . -
RSEIlE2 (p Ipo) = exp(1(a1 (p) +al (Po)) H) RSEIlE2(P Ipo). (125)

The phase term in Eq. (125) is given by the translation z = - H of the rough
surface h2(x ). We obtain the following relation:

(126)
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Combining Eq. (126) with Eqs. (123)-(124), we obtain the integral equation for
the operator R(p Ipo)

f d2p [MI+,o+ I f d2Ul al(u) RH \ MI-,o+ ]
(2n)2 h (u p) + (2n)2 al(ul) Sfl.f2(U u})· h (uIIp)

- [-1+0- f d2UI al(U) -H -1-0-]
xR(plpo)=- M h ' (u!Po)+ (2n)2 al(Ul) RSfI,f2(U!Ul)·Mh ' (ulpo)J'

(127)

Expanding [(alp) in powers of hI (Eqs. (55),(56» and using the perturbative

development of R~1'E2 in powers of h2 (Eq. (52», we get the expression

-H 2 -H(O)
Rs El ,E2 (p Ipo) = (2rr) 8(p - Po) X s El ,E2 (Po)

-H(l)
+ao(PO)XSE1,E2(plpo)h2(p - Po)

f d2Pl -H(2)
+ao(po) (2n)2 XSfI ,f2(p lp l IPo) h2(p - Pl)h2(Pl - po)

If d2Pl dP2 XH(3l
+ ao(po) (2n)2 (2n )2 S fl ,f2 (p Ip Ilp2lPo)

x h2(p - Pl)h2(Pl - P2)h2(P2 - Po), (128)

where XH(O) is given by Eq. (99). We define the following notation:

1/nO)(p Ipo) = ~n)(p Ipo), (129)

-(On) -en)
R (p Ipo) = Rd (p Ipo), (130)

-(nO) -en)
X (plpo) = Xu (plpo), (131)

X(on)(plpo) = ~n)(plpo), (132)

where 1/n) is given by Eqs. (91)-(94), and XCn
) by Eqs. (96)-(98) and Eqs. (105)-

(107).
We finally obtain the perturbative development (122), and we have

1/10)(p Ipo) = ao(po) X(lO) (p Ipo) n, (p - Po), (133)

1/01)(p \Po) = ao(po) X(Ol)(p\Po)h2(p - Po), (134)

(135)
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-;;(20) f d2
PI -;;(20)

R (plpo) = lXO(PO) (2rr)2 X (pIPlIPo)hl(P - Pl)h1(Pl - PO),

(136)

-;;(02) f d
2
P1 ~02)

R (plpo) = lXO(PO) (2rr)2 X (pIPlIPo)h2(p - Pl)h2(Pl - PO),

(137)

-;;(21) If d
2
p l dp2

R (P IPo) = lXo(Po) (2rr)2 (2rr)2

[
-;;{ 21)112

X X (plpllp2IPo)h 1(p - Pl)h1(PI - P2)h 2(P2 - PO)

-;;(21)121+ X (p Ipt!P2IPo) h, (p - PI) h2(PI - P2) h, (P2 - PO)
-;;(21)211 ]

+X (pIPllp2IPo)h2(P - Pl)h1(PI - P2) h1(P2 - PO) ,

(138)

In theseexpressions, superscripts in sometermsindicatetheorderof appearance of
the functions hI and ha.For example,in x<21)121 the superscript121 indicatesthat
this coefficient is associated with the product hI (p - PI) h2(PI - P2) hI (P2 -
Po). We have the following expressions:

X (11)21( 1 1 ) = -T10( ). ~U0)( ). X H
(1) ( 1 )P PI Po P . P SEl,E2 P PI

[
-- -;;(10) -+ ]

X -E· D 10(Pl) . X (PIlpo) + is (PIIPo)
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-(21)112 -+ -(11)12 1 [ --
X (plp1Ip2IPo)==iP (plpl)'X (p1Ip2Ipo)+"2 CXl(P)P (plp2)

-+ ] -;-;(01)- CXO(P2) P (p Ip2) . X (P2Ipo) (144)

-;-;(21)121 . -+ -(11)21
X (plpllp2IPo)==lP (plpl)'X (P1Ip2IPo),

-(12)122 . -+ -(02)
X (p Ipllp2lPo) == 1 P (p Ipl) . X (Pllp2Ipo),

(145)

(146)

(147)

(148)

-;;(12)221 -10 -;-;{O) [-H(l) _--
X (p\pllp2IPo) == T (p). U (p) -XsE1,E2(p lp l ) ' E' D 10(Pl)

-(11)21 -H(2)
X X (Pllp2IPo) + XSE1,E2(p lp l lp 2)

x (-E. D~o(P2) . X(lO)(P2lpo) + i s+(P2!PO)) ]. (149)

The matrices € and S±(pllpo) are given in Appendix C, P± by Eqs. (120),(121),

and tr: by Eq. (87).

6.5. The Mueller Matrix Cross-Section
and the Surface Statistics

When we consider an observation point in the far-field limit, the saddle-point
method yields an asymptotic expression for the scattered field E S == EO+ given by
Eq. (50) :

ES(x )==exp(iKollrll)-/( I ).Ei ( )
, z IIrII P Po Po , (150)
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FIGURE 6.10. Definition
of the scattering vector.
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with

- Kocos(}-
f(p Ipo) == 2. R(p Ipo),

1l'1

x
p = KO"jj;TI'

(151)

(152)

where () is the angle betweenez and the scattering direction (see Fig. 6.10). In order
to describe the incident and the scattered waves, we define the modified Stokes
parameters:

IE~(p)12

IE~(p)12

2Re(E~(p)E~(p))

21m(E~(p)E~(p))

IE~(Po)12

IEk(Po)12

2Re(E~(po)E~(po))

21m(E~(po)E~(po))
(153)

The analogue of the scattering matrix for these parameters is the Mueller matrix,
deflned/ by

(154)

This matrix can be expressed as a function/ of ](p Ipo). To keep a matrix
formulation in the following calculations, we define a new product between
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two-dimensional matrices with the definition:

] 0g == (fvv fVH) 0 (gVV
fHV fHH gHV

fvvgtv fVHgtH

fHvg~v fHHg~H

2Re(fvvg~v) 2Re(fvHg~H)

2Im(jvvg~v) 2Im(fvHg~H)

Re(fvvgtH)

Re(fHvg~H)

Re(fvvgtv + fHVgtH)

Im(fvvgtv + fHVgtH)

(157)

(155)

(156)

-Im(fvvgtH)
-Im(fHvgtH)

-Im(fvvg~H - fVHg~v)

Re(fvvg~H - fVHg~v)

This product allows us to express the matrix Mas:

M(p Ipo) == ](p Ipo) 0 ](p Ipo),

KJcos2
() - -

(2Jr)2 R(plpo) 0 R(plpo).

Following Ishimaru et al.,33 we define the Mueller matrix cross-section per unit
area u == (aU):

4Jr -u== -M, (158)
A

and the bistatic Mueller matrix" -;:y == (Yij):

1 -
-;:y == M, (159)

A cos eo
where A is the unit area and eo is the incidence angle. These matrices are the
generalization of the classical coefficients. In fact, if we assume, for example, that
the incident wave is vertically polarized we have

1 I s 1
2 Iii 1

2
A cos 0

0
Ev(p) = "jj;:ij2Yll(plpo) Ev(p) ,

lis 1
2 Iii 1

2
A cos 0

0
EH(p) = "jj;:ij2Y21(plpo) Ev(p) .

(160)

(161)

Thus Yl1 and Y21 are respectively the classical bistatic coefficients Yvv and YHV.
We remark that we have computed the full Mueller matrix, giving us all the infor-
mation on the diffuse process, in particular, for circular polarization. Thus, we can
also define the cross-section and the bistatic coefficients for an incident circular
polarization. As an example, taking the incident wave right circularly polarized,
we have

. 1 t
II (Po) == - (1 1 0 - 2) .

2
(162)
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If we put a right-hand side polarizer at the receiver, we get

1
1 1
4 0

2

101
101
o 0 0 .

202

(163)

The right to right bistatic coefficient YTr is

YTr = ~ (YII + YI2 + 2 YI4 + Y2I + Y22 + 2 Y24 + Y4I + Y42 + 2 Y44), (164)

where Y;j are coefficients of the matrix 'Y = (Yi,i).
In a similar way, we can obtain the right to left bistatic coefficient:

Ytr = ~ (YII + YI2 + 2 YI4 + Y2I + Y22 + 2 Y24 - Y4I - Y42 - 2 Y44). (165)

Up to now, we have made no hypothesis on the nature of the rough surface.
Let us define the statistical characteristics of the function h(x). We suppose that
it is a stationary, isotropic Gaussian random process defined by its moments. We
suppose that, in the case of two surfaces, hI (x) and h2(x ), they are given by

(h;(x)) = 0,

(h;(x) h;(x')} = Wi(x - x'),

(hI (x) h2(x ' )) = 0,

(166)

(167)

(168)

where i = 1, 2, and the brackets denote an average over the ensemble of re-
alizations of the functions h I (x) and h2(x). We note that the surface height
correlation function Wi(x) is not necessarily a Gaussian function. In the fol-
lowing sections, we use a Gaussian form for the surface-height correlation
function Wi (x) :

(169)

where a is the root mean square height of the surface, and 1 is the transverse
correlation length. In momentum space, eqs. (166)-(168) lead to

(h;(p)) = 0, (170)

(h;(p) h;(p')) = (2rr)2 d(p + p') W;(p), (171)

(hI (p) h2(p')} = 0 (172)

(hiP+1(x )) = 0, with p being a positive integer (173)

(h;P+\x)) = 0, (174)

with

Wj(p) == f d2x W(x) exp(-ip · x)

= na? I; exp(_p2 1; /4).

(175)

(176)
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We can now define the bistatic coherent matrix:

yOh == A 1 (J (f(p !Po)} 0 (f(p !Po»)
cos 0

KJcos 2
() - -

= A (2n)2 cosOo (R(pIPo)) 0 (R(pIPo)}, (177)

and the incoherent bistatic matrix

. h 1
;ymco (p Ipo) == ---

A cos ()o

x[(!(plpo) 0 !(plpo)) - (!(plpo)) 0 (!(plpo))],

KJ cos?()

A (2n)2 cos ()o

x [(R(p Ipo) 0 R(p Ipo)} - (R(p Ipo)} 0 (R(p Ipo)}] .

(178)

6.5.1. Case ofOne Randomly Rough Surface

From Eq. (52), and the property of a Gaussian random process, we obtain

-e-coh KJcos2
() -=coh -e-coh

, (p Ipo) = 8 8(p - Po)R (Po) 0 R (Po) (179)
cos 0

-=coh -(0) f d
2p1

R (Po) == X (Po)+ Ko cos00 (2n)2 W(PI - Po)

x(2)(polp1IPo) + ... , (180)

where Jtoh(Po) is a diagonal matrix describing the reflection coefficients of the
coherent waves. For the incoherent part of the scattered waves, we have

-incoh( , ) = Kg cos
2

() cos ()o [10-1)( , ) + 1(2-2)( , ) + 1(3-1)( , )]
, P Po (2n )2 p Po P Po P Po ,

(181)

where

-;(1-1) -(1) -;-;(1)
1 (p Ipo) == W(p - Po) X (p Ipo) 0 X (p Ipo)

-;(2-2) f d
2
PI -;-;(2)

1 (p!Po) == (2n)2 W(p - Pl)W(Pl - Po)X (plpJlpo)

[
- (2) -;-;(2) ]o X (plp1Ipo) + X (pip + Po - P1lpo)

-;(3-1) [-(1) ~3)
1 (p Ipo) == W(p - Po) X (p Ipo) 0 X (p Ipo)

~3) -(1) ]+ X (p 'Po) 0 X (p Ipo) ,

(182)

(183)

(184)
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with

-(3) f d
2
PI [ ~3)

X (Plpo) == (21l')2 W(PI - PO)X (pIPolpllpo)

(
- (3)

+W(p - PI) X (plp1lPo - P + P1IPo)

~3) )]+ X (plp1Iplpo) .

6.5.2. Case ofTwo Randomly Rough Surfaces

(185)

In this section, we give the procedure to get the incoherent bistatic scattering matrix
for a three-dimensional structure which combines two randomly rough surfaces.
The incoherent bistatic matrix is given by the contribution of three terms:

;;yincoh(p Ipo) == ;;y~ncoh(p Ipo)+ ;;y~coh(p Ipo) + ;;y~~Oh(p Ipo), (186)

where

-incoh( I ) = K5 cos
2

0 [(It)O) 0 K10)}
'Yu p Po A (2n)2 cos 00

+ (K20
) 0 R(20)} + (K30

) 0 KIO
)}] (187)

corresponds to the incoherent bistatic matrix for the slab where only the upper
surface has a roughness (hi(x) == 0), its expansion is developed up to order four
in the rms-height elevation a1. Similarly, we define the matrix

-incoh KS cos2
()

'Y d (P Ipo) = A (21l')2 COS 0
0

X [(KOI
) 0 KOI»)+ (R(02) 0 K02»)+ (K03

) 0 KOl»)] . (188)

where only the bottom surface is rough (hI (x) == 0), and the perturbative devel-
opment is calculated up to order four in terms of a2. The last contribution ;;y~doh

contains terms which describe the scattering process between the two rough sur-
faces, in this case only the leading terms are retained:

-incoh K5 cos
2

0 [(KIO) 0 KI2)} + (li(12) 0 KIO)}
'Yud (p Ipo) = A (21l')2 cos00

+ (KOI
) 0 K21

)} + (K21
) 0 KOl»)

+ (Kll
) 0 R(ll)} + ··.J . (189)

All terms up to the order at ai are included. If the values of al and a2 are of
the same order of magnitude, these terms will be comparable to the order four
in expressions (187), (188). Thus we can suppose that in expansion (189) the
following terms which are of order at a:], af at, and at at will be negligible
compared to those retained. However, due to the complexity of the perturbative
development, these terms of order six have not been calculated.
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When we combine Eq. (171), and 8(0) == A/(2n)2, with the previous develop-
ment, we obtain thefollowing expressions for eqs. (187)-(189):

K0
4 cos2 0 cos00

~~ncoh(p Ipo) ==
(2n )2

x [11
0-lO\p

Ipo) + 1
20-20)

(p Ipo) + 1
30-lO)

(p IPo)] , (190)

Kri cos2 0 cos00

(2rr )2

x [101
-

0l
\ P IPO) +102

-
02

)(p lpo) +103
-
01

)(P IPo)] , (191)

Kri cos2 0 cos00

(2rr)2

x [11
2-lO)(PIPo)

+ 11l-1l\plpo) + 1
21-0l)(PIPo)]

, (192)

where

110
-

10)(p Ipo) == WI(p - Po)x(lO)(p Ipo) 0 X(lO)(p Ipo) (193)

-(20-20) ! d2PI -(20)
I (plpo) = (2rr)2 W1(p - pdW1(Pl - Po)X (pIPllpo)

o [x<20)(p Iptlpo) + X(20\p Ip +Po - P1IPo)] (194)

130
- lO\ p Ipo) = W1(P - Po) [x<lO)(pIpo) 0 r

30)(p
Ipo)

+ X(30)(p Ipo) 0 r lO
)(p IPo)] , (195)

/(01-01) (p Ipo) == Wz(p - Po) X(OI)(p Ipo)0 r°l)(p Ipo) (196)

I(02-0Z)(p Ipo) ! d
2
PI -;;(02)= (2rr)2 W2(p - Pl)W2(Pl - Po)X (PIPllpo)

o [r
02\Plpllpo) + X(02)(plp + Po - P1IPo)] (197)

103-01)(plpo) = W2(P - Po) [X(Ol)(PIPo) 0 r
03)(plpo)

+X(03)(plpo) 0 r01\PIPo)] , (198)

112-lO\plpo) = W1(p - Po) [X(l2\Plpo) 0 rlO)(plpo)

+rlO)(Plpo) 0 r
12)(PIPo)]

, (199)

1 21-01)(p
Ipo) = W2(p - Po) [ X(21)(p Ipo) 0 r01)(p Ipo)

+X(Ol\plpo) 0 r
21)(PIPo)]

, (200)
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I(II-II)(p Ipo) f d
2
PI [ -;;(11)12= (21l')2 Wl(P - Pl) W2(Pl - PO)X (plpt/po)

o (X(ll)12(Plpt/po) +-rll
)2\ p lp +Po - PtlPO))

+ W2(p - PI) W1(PI - PO)-r11
)21(p /p tlp o)

o (X(1l)2\p IP1!PO) +-rll
)12(p !p +Po - Pt/PO))]

(201)

with

-r30
)(p Ipo) ==

-r03
)(p Ipo) ==

-r12
)(p Ipo) ==

-r21
)(p Ipo) ==

6.6. Numerical Examples and Analysis of the Phenomena

In the preceding sections we have described a small-amplitude perturbation method
to compute the scattering matrices for a weakly rough surface between two me-
dia, and for slabs which include one or two weakly rough surfaces. The sur-
face variations are assumed to be much smaller than the incident wavelength
and the slope of the randomly rough surface are relatively small. In this para-
graph, we evaluate numerically the incoherent bistatic coefficients given by
Eqs. (181)-(184) and (190)-(201) for different values of the parameters which
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characterize the configurations presented in the preceding sections, and we ana-
lyze the different wave phenomena. In the following sections, medium 0 will be the
vacuum (EO == 1).

6.6.1. A Randomly Rough Surface Separating Two Different
Semi-Infinite Media

The rough surface is regarded as a random Gaussian process. The distribution
of surface heights is supposed to be described by a Gaussian function. And
we assume that the surface correlation function is also Gaussian, the correla-
tion length is defined by the distance over which the correlation function falls
by lie.

We consider polarized light of wavelength A== 457.9 nm which is normally
incident (°0 == 0°, cPo == 0°) on a two-dimensional weakly rough silver surface
(see Fig. 6.3) characterized by the roughness parameters, respectively, the root
mean square height of the surface and the correlation length a == 20 nm, I == 200
nm, E == -7.5 + iO.24. The perturbative development is given by Eqs. (60),(67).
In Fig. 6.11, we present the results for an incident wave linearly polarized, the
scattered field being observed in the plane of incidence (cP == 0°). The single scat-
tering contribution associated with the term /(1-1) is plotted as a dotted line, the
d bl . ibuti ~12-2) d h d I· h . ~13-l)ou e-scattenng contn unon as a as e me, t e scattering term as
a dash-dotted line, and the sum of all these terms ~incoh by the solid curve.

We observed an enhancement of the backscattering which corresponds to the
physical process in which the incident light excites a surface electromagnetic wave.
In fact, the surface polariton propagates along the rough surface, then it is scat-
tered into a bulk wave due to the roughness, at the same time, a reverse partner
exists with a path traveling in the opposite direction. These two paths can interfere
constructively near the backscattering direction to produce apeak.22-24 It is worth
noticing that for a two-dimensional randomly rough surface, the surface plasmon
polariton exists for a TM incident polarization. A TE polarized incident wave can
excite a TM surface wave, and this surface wave is scattered into bulk wave with
both polarization modes as can be seen in Fig. 6.11. This phenomenon can be easily
explained. In the one-dimensional case, we know that the enhanced backscattering
for a metallic weakly rough surface appears only for a TM incident wave due to
the fact that plasmon polaritons can only be propagated with TM modes. In the
two-dimensional case, we work with both polarization modes and the depolar-
ization phenomenon implies that an incident TE wave can excite a TM plasmon
mode which can be transformed into a TE or TM bulk electromagnetic wave.
Thus, the enhanced backscattering is present independently of the polarization
mode of the incident and scattered waves.l" Let us notice that the backscattering
enhancement is only produced by the term 12

-
2
), because only in that case, we

have a constructive interference of the wave propagating along a path and its time
reversal.
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-(2-2)
In expression (181), the peak is produced by the term I . We see that the

- -+ -(2)
term P(ulp1)· Q (P1Ipo) in XsEo,El(plp1IPo) contains a factor of the form

[ + ]-1 1D10 V(Pl) == ,
E1a O(P l) + foal (PI)

(206)

which is close to zero except when PI is near the polariton resonance mode Pr,
which is given by Dio v(p r) == O. When we observe the field scattered far away
from the backscattering direction (p + Po t= 0), the terms ~21o E (p Ip1IPo) and
-;;(2) , 1

XS€Q,€l (p Ip +Po - P1IPo) containing Dtov are nonzero when PI ~ Pr and P +
Po - PI ~ Pro Since these domains are disjoint, the product 0 of these two terms is
approximatively zero. When we are near the backscattering direction (p +Po ~ 0),
the terms inside brackets are almost equal and produce the backscattering
enhancement. The enhancement factor is not equal to 2 because the matrices
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Q+(p Ipo) and Q- (p Ipo) in X;2:
0

, El do not contain [DiDv(Pl)]-l, they produce a
significant contribution whatever the scattering angle is.

If the incident wave is now circularly polarized, we see in Fig. 6.12 that enhanced
backscattering also takes place. We have not displayed the left to left, and left to
right polarizations because the media are not optically active. As a consequence,
the results are the same whether the incident wave is right or left polarized.

6.6.2. A Film with a Randomly Rough Surface
on the Upper Side

We consider a dielectric slab (see Fig. 6.7) with a mean thickness H = 500 nm, a
dielectric constant El = 2.6896 + 0.0075i, deposited on a planar perfectly con-
ducting substrate (E2 = -(0) and illuminated by a linearly polarized light of
wavelength A= 632.8 nm, which is incident normally (4)0 = 0°, eo = 0°). The
upper two-dimensional Gaussian randomly rough surface is characterized by the
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third-order by r -1) (dash-dotted line).

statistical parameters a == 15nmandI == 100nm.Forthisthree-dimensional struc-
ture, thereexistsan up-going wavein the material, whichis not presentin the case
of the two-dimensional structure. The scattering diagramsare shownin Fig. 6.13
withthe samecurvelabelingas before. The fieldis observed in the incidentplane.
The perturbative development is given by Eqs. (105),(107) and Eqs. (110),(121).
For the first case, we choose an infinite conducting plane (E2 == -(0). Thus the
coefficients F± (Eq. (119)) take the following expression:

± 1 ± exp2iao(po) H
Fv(Po) == . ,

(El ClO(Po) + EO Cll(Po)) + (El ClO(PO) - EO Cll(PO))e21ao(Po) H

(207)
± 1 + exp2iao(po) H

FH(po) = (ao(po) + at(po» + (ao(po) _ at(po»e2iao(Po)H. (208)
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We choose the thickness of the slab so that the slab supports only two guided
wave modes, piE = 1.5466 Ko, and piE = 1.2423 Ko for the TE polarization.

These modes are resonance modes, they verify [F~]-l(pii) = o.
For the TM case, we have three modes given by the roots of the following

equation [F~]-l(PTM) = 0, these modes are P}M = 1.6126 Ko,piM = 1.3823 Ko
and P~M = 1.0030 Ko.As described in Ref,14,29,30 these guided modes can produce
a classical enhanced backscattering with satellite peaks which are symmetrically
positioned. The satellite peak angles are given by the equation

1
sinO~m = - sin 00 ± _ [pn _ pm],

Ko

where p", p" describe one of the guided modes. When n = m, we recover the
classical enhanced backscattering. For the TE polarization, we have only
two guided waves and the satellite peaks can only exist at the an-
gles 0~2(TE) = ± 17.7°. For the TM polarization we have three angles:
0~2(TM) = ±13.3°, 0~3(TM) = ±37.6°, and 0~3(TM) = ±22.3°. The satellite
peaks are produced by the term 12

-
2
) . In the case of TM polarization we do not

obtain any significant contribution to satellite peaks. However, for the TE to TE

X 10-4 TE toTE
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FIGURE 6.14. Details of second-order TE to TE contribution to the scattering shown in
Fig. 6.13. The dotted-lines indicate the angle position of the two satellite peaks.
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scattering shown in Fig. 6.14, we prove the existence of the satellite peaks at the
angle ()~2(TE) == ± 17.7° positioned along the dotted line in the figure. The peaks
are attenuated because the polarization modes TM and TE are propagating at the
same time, so the incident wave is split between the two polarization modes. In
the case of TM polarization mode, we find more propagating modes than in TE
polarization mode, as a consequence the corresponding peaks for TM polarization
exist but they are too attenuated to be visible in the scattering figure.

Now, by increasing the slab thickness (see Fig. 6.15), the satellite peaks dis-
appear for all the polarization modes, but we see a new phenomenon called the
Selenyi fringes.l" 34,35 For a slightly random rough surface, the slab produces
fringes similar to those obtained with a Fabry-Perot interferometer illuminated by
an extended source. The roughness modulates amplitude fringes but their local-
ization remains the same as for the interferometer. Their position is mainly given
by classical optics. Next, instead of doubling the slab thickness, we have replaced
the infinitely conducting plane by a silver plane (E2 == -18.3 + O.55i). We see in
Fig. 6.16 that the enhancement of backscattering is also decreased, and that there is
no more satellite peak corresponding to TE to TE scattering. For a rough dielectric
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slab bounded by a conducting plane the enhanced backscattering is present for
both TE and TM incident waves, even for a two-dimensional structure because
guided waves exist for these two polarization modes. The qualitative effect of the
two-dimensional randomly rough surface is particularly sensitive when we study
a three-dimensional thin film. For instance, in the case of two-dimensional slabs,
satellite peaks 14,29 appear on each side of the enhanced backscattering peaks. How-
ever, for three-dimensional structures, the coupling between TE and TM modes
drastically attenuates these peaks.

We showed that a three-dimensional system with a two-dimensional randomly
rough surface deposited on a silver surface can display satellite peaks in scattering
of electromagnetic waves when the randomness is introduced into the slab owing
to a two-dimensional weakly rough surface. The position of these peaks are pre-
dicted accurately, the computer simulations of the small-amplitude perturbation
theory up to fourth-order in the surface profile function corroborate these peaks as
multiple-scattering phenomena for a three-dimensional slab. We proved that the
slab thickness and the conductivity of the plane are key parameters in order to
observe satellite peaks.
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6.6.3. A Slab with Two Randomly Rough Surfaces

We consider a three-dimensional system, which is'constituted of an air-dielectric
film whose dielectric constant is El = 2.6896 + i 0.0075(EO = 1), deposited on a
silver surface with E2 = -18.3 + i 0.55. The vacuum-dielectric interface is a two-
dimensional Gaussian randomly rough surface, whose parameters are 0'1 = 15 nm
and i1 = 100 nm. The dielectric-silver boundary has a Gaussian roughness defined
by 0'2 = 5 nm and i2 = 100 nm. The incident wave has an arbitrary polarization
and its wavelength is A = 632.8 nm. The conditions of validity of the small-
perturbation theory are satisfied? with the following set of parameters:

2n I El 1

1

/

2

al « 1,
EO A

0'1
-« 1t, '

2n I E211/2 a2 « 1
El A

0'2
-« 1.
i2

(210)

(211)

The thickness of the film is H = 500 nm and supports two-guided wave polaritons
for the TE polarizations at PiE = 1.5534 Ko, and piE = 1.2727 Ko, and three
guided-modes for the TM polarizations at PfM = 1.7752 Ko, PiM = 1.4577 Ko
and PfM = 1.034 Ko·

In this paragraph, we use the theory developed in the previous sections to com-
pute the incoherent bistatic coefficient yincoh(p Ipo) given by Eqs. (194), (197),
(201), (202)-(205) where the integrals involved in these expressions are evaluated
using Legendre quadrature. The results are shown in Figs. (6.17-6.20), where the
incoherent bistatic coefficients are drawn as functions of the scattering angle ()
for two different angles of incidence and a linearly polarized incident wave. In
Fig. 6.17, the wave is normally incident and the scattered field is observed in
the incident plane (l/J = 0°). The single scattering contribution on each surface,

. d . h h r 10-10) -;(l01-01). I d d d I· h d blaSSOCIate WIt t e terms + ,IS P otte as a otte me, t e ou e-
. .. -;(20-20) -;(02-02) -;(11-11) .

scattenng contribution I + I + I as a dashed line, the other
-;(30-10) -(03-01) -;(12-10) -(21-01) . .

terms I + I + I + I as a dash-dotted line, and the total
contribution yincoh by the solid curve. We observe an enhancement of the backseat-
tering which corresponds to the classical physical process according to which the
incident light excites a guided-mode through the roughness of the slab and is then
scattered into a bulk wave which is also due to the roughness effect. During the
same process, the light can follow this path in the opposite direction where one
possible configuration is shown in Fig. 6.9. These two paths can interfere construc-
tively near the backscattering direction to produce a peak. These paths are identical
for the two waves under consideration, they have the same degree of interaction

-(30-10)
with the rough surface. A term such as I cannot produce the peak because the
first wave interacts three times with the upper rough surface while the second wave
interacts only once. This analysis shows that the effect giving rise to backscatter-
. -;(20-20) -;(02-02) -;(11-11) .
mg enhancement comes only from the terms I + I + I , WhICh
contain the paths indicated in Fig. 6.9. However, it is worth noticing that these
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FIGURE 6.18. Details of the second-order contributions of Fig. 6.17. 7(11-11) is the solid
-(20-20) -(02-02)

curve, I is the dashed curve and I is the dotted curve.

terms also contain paths which do not produce the enhanced backscattering, for
. h ~l20-20). . h he incidInstance t e term contams a scattenng process were t e met ent wave
is only scattered once by the upper rough surface although the scattering process
. .. . -;(20-20) -(02-02) -;(11-11)
IS of order two In h i- ThIS IS the reason the terms I + I + I
are not null away from the antispecular direction. We see here the interest of the
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FIGURE 6.19. Same parameters as in Fig. 6.17, the incident angle is eo = 20°.

perturbation method, which allows us to analyze the different contributions due to
the analytical calculation. Thus we can explain the mechanisms of the backseat-
tering enhancement.

In order to separate the different contributions to the backscattering peak, we
. . ~20-20) ~02-02) ~11-1l) ..

have drawn the contributions 1 , 1 , 1 separately In FIg. 6.18 as
a dashed-line, dotted-line and solid curve, respectively. We see that each term
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d h h O I di . Th -;(120-20)pro uces an en ancement near t e antIspecu ar irecnon, e terms ,

102
-

02
) are the classic ones, 14,18 their associated fields do not interact with both

rough surfaces; however, they produce a peak due to the scattering on the same
-;(20-20) -;(02-02) .

rough surface: the upper one for 1 and the bottom one for 1 . USIng

h ° ° I· h h ib ° ~I11-11)19 ak It e computation simu anon, we prove t at t e contn ution t es pace
and has the same magnitude as the other terms for the chosen input parameters.
The mechanism of this interaction is shown in Fig. 6.9. Recent papers!" have also
explored the satellite peaks phenomenon which occurs when the wave follows
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two reverse paths but with different guided-mode excitations. In Fig. 6.18, this
-(02-02)

phenomenon appears for the TM to TM polarization due to the term I , and
is produced by the roughness of the lower surface. A similar phenomenon occurs
for the other terms, but it is too low to give a significant contribution.

We show in Figs. (6.19) and (6.20) the numerical results of the small-amplitude
perturbation method for 00 == 20°. We clearly see the peak which is now located
at Os == -20°. Due to the incidence angle, we observe a dissymmetry in the small-
order contributions.

In the presented structure, we have chosen a smaller roughness for the second
randomly rough surface, however we see that the second surface has a scattering
effect comparable to the first one.

These computer simulations allow us to prove the existence of the different
phenomena occurring in rough films or slabs.

6.7. Discussion

In this chapter, we have presented four generalized reduced Rayleigh equations
which are exact integral equations. These equations offer a systematic method
to compute the small-amplitude development without lengthy calculations in the
cases of two-dimensional or three-dimensional systems, and the scattering matrices
are only two-dimensional. All the theoretical calculations have been made up
to order three in the height elevation, which allows us to obtain all the fourth-
order cross-section terms. The method of reduced Rayleigh equations provides
a convenient starting point for the small-amplitude perturbation theory, but also
for nonperturbative numerical solutions because the equations we find are exact
integral equation. Reduced Rayleigh equations leads to a computer simulation
approach which is free from the limitations imposed by the Rayleigh hypothesis.

We have calculated the perturbative development for different structures com-
posed of rough surfaces separating homogeneous semi-infinite media. The nu-
merical results show an enhancement of the backscattering for co- and cross-
polarizations for all the structures we have presented. For three-dimensional rough
slabs, we have focused on less-known mechanisms that occur in the cases that the
randomly rough surfaces enclose bounded structures. These structures possess a
discrete number of guided waves at the frequency of the incident electromagnetic
field. In the slab cases, for some configurations and definite polarizations, we
have determined the physical mechanisms of the creation of satellite peaks which
result from interference of different waveguide modes. This general formulation
is extended to the configuration including two randomly rough surfaces. We can
conclude in this case that up to order four in the perturbative development, the
backscattering enhancement peak is produced by a double scattering mechanism
and also when the wave is scattered by one of the rough surfaces and then by
the other.

We have illustrated both analytically and numerically the occurrence of back-
scattering enhancement peaks and satellite peaks in three-dimensional structure
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with one or two weakly rough surfaces. The simulation computation can give some
favorable experimental conditions and it will be very interesting to observe these
results experimentally. In the very near future, we can hope that highly integrated
optical devices will use metallic or metallo-dielectric microstructures which enable
propagation of plasmon polariton waves, strong guidance, and manipulation of
light.

Acknowledgments. It is my pleasure to thank my coworkers, Claude Bourrely
and Antoine Soubret, without whom the results described above, would not have
possible.

Appendix

A Expression ofVh(x)

We need to calculate the following integral:

f d2x exp(-i (k~b - k~a) · T x)Vh(x).

Since Vh(x, y) is zero for [x] > L/2 or Iyl > L/2, we can fix the integration
limits. We choose the boundary limits xi in X such that IXII > L/2, and (u -

p)x xi = 2rrmx, with m, E Z. Similarly, we choose the boundary YI in y such that
IYzI > L/2 and (u - p)y YI = 21fmy, with my E Z. Thus, integral (212) is

i:,i:,dx dy exp(-i(u - p) · x) Vh(x)exp(-i(bal(U) - aal(p »h(x»

"jYI [eXP(-i(U - p). x - i(bal(u) - aal(p))h(X))]X=+XI=ex dy .
-YI -l(ba l (u) - aal (p)) X=-Xl

"jXI [eXP(-i(U - p). x - i(bal(u) - aal(p))h(X))]Y=+YI+ ey dx .
-Xl -l(bal (U) - aal (p)) Y=-YI

j

XI jYI -i(u - p)
- dx dy-.-----

-Xl -YI -l(bal (u) - aal (p))

x exp( -i(u - p) . x - i(bal (u) - aal (p ))h(x))

f 2 (u - p) . lb 1
= - d x exp(-l(k -k a) ·rx).

(bal(U) - aal(p)) U p

The term in the square bracket cancels due to the choice made for x, and Yl. From
the previous calculations, we can now substitute Vh(x) by

Vh(x)+----+- (u-p) .
(ba, (u) - aal (p))

(215)
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B Perturbative Development and Reciprocity Condition

As noticed by Voronovich," the scattering operator Ii has a very simple law of
transformation when we shift the boundary in the horizontal direction by a vectord:

RX~h(x-d)(P Ipo) == exp[ -i(p - Po) . d] RX~h(x)(PIpo), (216)

when we translate the surface by a vertical shift H ez:

Rh+H(P\Po) == exp[-i(ao(p) + ao(po» H]Rh(p\Po). (217)

Now, using Eq. (216), we can deduce some properties for the perturbative devel-
opment of the scattering operator. The generalization of the Taylor expansion for
a function depending on a real variable to an expansion depending on a function,
which is in fact a functional can be expressed in the following form:

R(p\po) == It°)(p\po) + It1)(p\po) + R(2)(p\po) +It
3)(plpo) +"',

(218)
where we have

Applying this perturbative development on each side of (216), and taking their
functional derivative defined by

8h(ql) . . . 8h(qn)'

we obtain for all n ~ 0 in the limit h == 0:

Itn)(p\ql\" ·lqn\Po) == exp(-i(P-ql'" ·-qn-PO) .d)Itn)(p\ql\·· ·Iqnlpo).
(223)

We get

and we define the X matrices by the relations

R(O)(p Ipo) == (21l')2 8(p - Po)yO)(Po),

R(l)(p Ipo) = cxo(Po) x<l)(p Ipo) h(p - Po)

(225)

(226)
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where cxo(Po) is defined for a matter of convenience.
Let us now discuss the reciprocity condition. If we define the antitranspose

operation by

(~ b)aT (a -c)
d - -b d ' (229)

the reciprocity condition for an incident and a scattered waves in the medium 0
reads:"

-=aT
R (plpo)

cxo(Po)

R(-Pol- p)

cxo(p)
(230)

(231)

Using the previous functional derivative, we would like to prove that each order
of the perturbative development satisfies this condition. It is easy to show that

[
- (1) l" ~1)X (plpo) == X (-Pol- p),

thus yO is reciprocal, but the same conclusion cannot be extended to yn) when
n ~ 2. For example, in the case n == 2, using Eq. (230), we can only deduce that

f d2Pl [-(2) ]aT
(2rr)2 X (plpdpo) h(p - pdh(Pl - po)

f d2pl -(2)
== --2 X (-Pol- Pll- p)h(p - Pl)h(PI - po)·

(21l')
(232)

From this, we cannot deduce a result similar to Eq. (231) for Y2). This fact is
well illustrated with the following identity, which can be demonstrated with a
transformation of the integration variables.

(233)

We see that PI ~ P + Po - 2 PI is not the null function although the integral

is null. From this, we demonstrate that Tn) for n > 1 are not unique. Moreover

in using Eq. (233) we can transform yn) in a reciprocal form. This procedure is
illustrated in the one-dimensional case in26 and the results for the second-order in
the electromagnetic case are given in? and27 •
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C Scattering Matrix Coefficients

Wegivetheexpression of thematrices in thecaseof tworandomly roughsurfaces

€ == ~ «EOE~-'/2 ~) (234)

-± El - EO [-1- 0+ T;(OO) -1- 0- ]
S (plpo) == 2 ()( )'/2 M · (p Ipo). · X (p Ipo) ± M · (p Ipo) ·

ao Po Eo El

(235)

After somecalculations, we get

-+ (El - EO)
S (P Ipo)= ( )'/2

EO EI

(

EI IIpllllPoII F:(po)

x +Eoal(p)al(PO) Fi(Po)p, Po

-EO E:/
2

K oal (Po) r; (Po) (p x Po)z

x [Dto(Po)r' , (236)

_E~/2 Ko(¥, (p ) (¥, (Po)Fii (Po)(p x po))

-(EO Ed/2 KJ (¥, (Po)Fii (Po)p ·Po 1
(237)
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7
Computer Simulations of Rough
Surface Scattering

JOEL T. JOHNSON

Department ofElectrical and Computer Engineering and ElectroScience Laboratory, The
OhioState University, 1320KinnearRd., Columbus, OR 43212

7.1. Introduction

"Numerically exact" methods for rough surface scattering have increased in their
relevance to surface scattering studies over the past quarter century. This increase
in relevance follows the increase in computational power that has become readily
available over the same period, along with developments in approaches for reducing
the computational complexity of such methods. However, while computational
power has increased by several orders of magnitude, and the range of surface
scattering problems that can be studied numerically has followed directly, the
overall impact of numerical studies has been decidedly less dramatic, while still
of some import, as will be discussed throughout this chapter.

Several excellent review articles have been previously written on the subject
of numerical algorithms for rough surface scattering':", including two recent
contributionst': all these reviews are strongly recommended to the reader as ex-
cellent surveys of the variety of studies and approaches that have been used. Given
these articles, the current chapter is written as a more specific review of the author's
research in this area, with particular examples and recommendations provided from
the author's experiences. The discussions provided therefore should not be taken
as representative of all possible studies and techniques; again the reader is referred
to the cited review articles for broader information.

The next section provides a description of a few fundamental issues involved
in describing a rough surface scattering problem, while specific integral equation
formulation and matrix solution methods utilized in previous studies are described
in Sects. 7.3 and 7.4. Sample results are illustrated in Sect. 7.5 to demonstrate a
range of problems, and Sect. 7.6 provides summary recommendations from the
author's experience regarding use of numerical methods in future studies.

7.2. Fundamental Issues

Any numerical surface scattering simulation begins with a description of the prob-
lem to be solved, including properties of the surface and the background media
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1-0 Rough surface 2-D Rough surface

FIGURE 7.1. Geometries of one-andtwo-dimensional rough surfaces.

involved. Here the basic problem considered involves scattering from a rough in-
terface between two simple and homogeneous media. Typically the coordinate
system is defined so that the incident field approaches from above the interface,
and the resulting scattered fields are determined above the interface as well as
below the interface in the case of a penetrable lower medium. Typically it is the
scattered and/or transmitted fields in the far field of the surface that are of interest,
although it is quite simple to compute the resulting fields in the near field of the
rough surface, and a few studies have taken this route.

7.2.1. One- and Two-Dimensional Surfaces

A major factor in modeling rough surface scattering problems involves the choice
of a "one-" or "two"-dimensional surface model. Here a one-dimensional surface
refers to a surface with variations along one horizontal coordinate only, with the
surface profile constant along the other horizontal coordinate. Two-dimensional
surfaces alternatively have variations along both horizontal coordinates, as illus-
trated in Fig. 7.1.

The major advantage of the one-dimensional geometry is the fact that discretiza-
tion for a numerical method is required only in the coordinate along which the
surface varies. This results in a tremendous computational savings compared to
the two-dimensional case. Typically it is found that results using one-dimensional
surfaces show nearly identical physical behaviors to those from simulations with
two-dimensional surfaces, and in the majority of cases, use of one-dimensional
surfaces is found reasonable. The author is not aware of any cases where signif-
icantly different physical behaviors were obtained from two-dimensional versus
one-dimensional surface predictions, in cases where one-dimensional simulations
are relevant.

However there exists a set of physical scattering effects for which one-
dimensional models are certainly inadequate. These include studies of cross-
polarized scattering as well as studies of scattering outside the plane of incidence
(i.e. when the scattered field propagation direction in the far field lies outside
the plane formed by the incident field propagation direction and the normal to
the mean surface). For scattering within the plane of incidence, one-dimensional
models always predict zero cross-polarized fields, while it is well known that
such fields, though small, can result from two-dimensional surfaces. Although it
is possible to compute bistatically scattered fields outside the plane of incidence
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for a one-dimensional surface, the resulting fields are representative of bistatic
scattering only when the surface of interest is truly one-dimensional.

Due to the reduced computational complexity of numerical methods for one-
dimensional surfaces, the majority of rough surface scattering studies have utilized
this model. Only in the last decade have significant numerical studies using two-
dimensional surfaces been performed. The results to be shown in Sect. 7.5 will
include both one- and two-dimensional surface cases.

7.2.2. Description of the Rough Surface

A second fundamental issue involves the description of the rough surface to be
simulated. Although it is certainly possible to specify a deterministic rough surface
profile function if one is completely known, it is far more common to utilize a
stochastic model of the surface profile. In this case, the surface scattering problem
itselfbecomes stochastic, and it is statistics of the scattered fields that are of interest.

Assuming a stochastic surface model, it is noted that stochastic process de-
scriptions of a rough surface profile function can take a wide variety of forms, and
exhibit an extremely wide range of behaviors. A general stochastic process model
assumes knowledge of the infinite-dimensional probability density function of all
surface profile height random variables. Although a few alternate models have been
investigated, the majority of numerical studies make use of a stationary Gaussian
random process description of the rough surface; in this case, surface statistics
are completely specified through knowledge of the two-point covariance function
alone. While interest in the use of non-Gaussian process models is increasing, the
simplicity of the Gaussian random process model makes it highly preferable. It
is also found that many surfaces created through natural or uncontrolled methods
are reasonably modeled as Gaussian random processes, at least to an initial ap-
proximation. Simple algorithms for generating realizations of a Gaussian random
process with a specified covariance function are available and have been widely
used.

Note that one of the alternate models that has been explored involves modeling
the rough surface through a quasi-fractal description, where the fractal behaviors
extend only over a finite range of length scales. However, a subset of these quasi-
fractal surfaces can also be described as Gaussian random processes, and at present,
the author is not convinced of the advantages of a quasi-fractal model over these
similar Gaussian process descriptions.

Once a Gaussian random process model is adopted, the covariance function
must be specified, or equivalently, its Fourier transform, the power spectral den-
sity function. It is important to recognize that it is often roughness in length scales
comparable to the electromagnetic wavelength that strongly influences the scat-
tering process. Therefore it is important to describe surface roughness on these
scales accurately. The development of surface statistical models in terms of the
power spectral density is then often most useful, because the energy in varying
surface length scales is explicitly treated, rather than somewhat masked in a spatial
covariance function description.
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Although simple two-parameter covariance function descriptions ofsurface pro-
perties have been highlydesired, the rms height and correlation length parameters
involved are usually woefully inadequate for capturing real surface behaviors.
Again it is far better to attempt to describe the power spectral density function
over as wide a range of length scales as possible, to the extent that information
on the surface to be modeled is available. For purely theoretical studies, the two
parameter covariance functions remain widely used due to their simplicity, but
again , when modeling a real surface one must ensure that the description used is
realistic. Errors in the description of surface statistics can be much more important
than errors in any scattering models used, numerical or otherwise.

The boundary condition at the surface interface must also be considered; only
electromagnetic scattering is considered in this chapter, resulting in boundary con-
dition possibilities of perfectly conducting, finitely conducting, or penetrable. The
finitely conducting case here refers to treatment of the boundary by an "impedance
boundary condition", while penetrable includes the possibility oflossy media mod-
eled without such an impedance boundary condition. Perfectly conducting cases
with one-dimensional surfaces and in-plane scattering reduce to the Dirichlet and
Neumann boundary conditions depending on the polarization considered.

7.2.3. Finite Size Surface Effects

The numerical approaches described in this chapter all consider the surfaces mod-
eled to be of finite horizontal size, as shown in Fig . 7.2. Because typically scattering

.'

FIGURE 7.2. Two-dimensional canonical surface scattering problem including finite surface
sizeeffects.
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from a surface of infinite horizontal extent is of interest, numerically computed
results must be carefully examined to determine if finite surface size is influencing
the results. The obvious means for making such an assessment involves gener-
ating numerical results for progressively larger horizontal surface sizes while all
other parameters remain the same, and examining scattered field predictions for
convergence".

Finite surface size results in two clear problems: a reduction in the angular
resolution of scattered fields, as well as the potential influence of scattering and
diffraction from surface edges. The former case results simply by considering
scattered fields obtained from integrating surface fields over finite surface size
as having originated from an integration of surface fields over an infinite surface
multiplied within the integration by a rectangular "window" function. Because the
integration to obtain far-field results is essentially a Fourier transform between
space domain surface fields and angular domain scattered fields, inclusion of the
window function results in a convolution of the scattered field angular pattern
with the Fourier transform of the spatial domain window function. Smaller surface
sizes (or smaller windows) therefore result in a greater degree of angular averaging,
reducing the ultimate scattered field angular resolution obtained.

Because the average incoherent scattered power obtained from a stochastic sur-
face is typically a relatively smooth function of angle, such reduction in angular
resolution often has only a minor influence on the obtained results. However,
in some cases, a reduction in angular resolution is extremely problematic. For
example, when surface backscattering near low grazing angles under plane wave
illumination is considered (i.e. with the incident field approaching the surface
near horizontally), the rapid decrease in backscattering with angle that can occur
as grazing is approached becomes easily smoothed out as angular resolution de-
creases. The need for high angular resolution in this case requires use of large
surface sizes if true plane wave scattering is to be simulated. Reference [7] pro-
vides a discussion of the relationship between angular resolution and surface size.

The second problem with finite surface size involves diffraction effects from sur-
face edges. The use of a "tapered wave" instead of a plane wave is most commonly
followed to address this issue. Tapered waves reduce the incident field intensity
on surface edges, and thereby attempt to reduce the overall effect of surface edge
contributions. A number of tapered wave formulations are available'i"!', and gen-
erally it is found that this method is successful at reducing edge contributions to
manageable levels. An alternate approach treats surfaces edges with a material
of gradually changing resistivity (so called "R-cards"); although this method has
been utilized less frequently, it has also been shown to yield reasonable reduction
in surface edge contributions12,13• One advantage of the R-card technique is that
a larger percentage of surface profile function can potentially remain illuminated,
whereas the tapered wave method reduces the surface profile illumination near
surface edges. Again using the concept of a windowed Fourier transform, the ta-
pered wave approach thus further reduces the angular resolution of the scattered
field due to the effective additional reduction in surface size.

For two-dimensional surfaces, tapered wave descriptions must be chosen care-
fully to minimize corruption of field polarization properties, particularly in
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cross-polarized quantities. If it is considered that a tapered wave can be regarded as
a superposition of incident plane waves at varying incidence angles, the backseat-
tered field becomes an integration of the surface bistatic scattering coefficient over
a range of incidence angles. This is particularly important for cross-polarization,
because cross-polarized scattering near the backscatter direction is typically mini-
mum within the plane of incidence and rises rapidly out of the plane of incidence.
Thus, any angular averaging over bistatic scattering coefficients outside the plane of
incidence can cause significant increases in the obtained cross-polarized backseat-
tering. Tapered wave parameters must be chosen appropriately to minimize this
effect; typically this sets a limit on the cross range surface size that must be sim-
ulated if cross-polarized scattering is of interest. Often, two-dimensional surface
numerical simulations that produce reasonable copolarized scattering coefficients
remain inaccurate for cross-polarized quantities.

7.2.4. Other Physical Parameters

In formulating a rough surface scattering problem, it is also important that the
sensor to be utilized is modeled accurately. Properties such as the polarizations
of interest (here referred to as "horizontal" or "H" pol for that polarization per-
pendicular to both the mean surface normal and the wave propagation direction,
and "vertical" or "V" for the remaining polarization), the relevant incidence and
scattering angles, and the frequencies of interest must be known.

If examination of scattered fields as a function of frequency is of interest, it must
be decided whether any surface profile discretization is to be varying or fixed versus
frequency. The former can allow more efficient computations, since typically the
number of unknown quantities involved in a numerical simulation decreases as
the frequency decreases, but the latter can often result in a more clear and simple
description of the surface profiles involved. Such a decision is likely to be made
on the basis of the range of frequencies involved; for a moderate range (around an
octave approximately), using a fixed discretization may remain desirable.

A brief discussion of time domain algorithms for simulating rough surface scat-
tering, though they are not the focus of this chapter, is appropriate at this point.
With the methods to be described in Sect. 7.3, only time harmonic problems are
considered, so that results versus frequency are computed only through repeated
independent runs of the numerical model at each frequency of interest. Time do-
main methods seemingly can provide responses at multiple frequencies from a
single simulation, and thereby may appear more appealing in this case. However,
it should be considered that all numerical algorithms, whether in the frequency
or time domain, will require sampling the surface on the scale of the shortest
electromagnetic wavelength for which results are desired. In addition, rough sur-
face problems will also typically require that the surface profiles considered be at
least as long as several of the longest wavelengths to be considered. Therefore,
because the size of the problem involved for the time domain algorithm also scales
with the range of frequencies to be investigated, the advantages of time domain
algorithms for typical rough surface scattering problems are reduced, even when
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wide frequency ranges are of interest. The possibility of varying sample rates with
frequency in the time harmonic methods further reduces any potential gains from
a time domain approach.

The antenna pattern of any sources or receivers involved in a particular experi-
ment are also of importance. While plane wave illumination and reception is usually
of interest in theoretical studies, practical problems may involve specified transmit
and receive antenna patterns. These antenna patterns then influence surface size
needs and the angular resolution obtained as described in the previous section.

7.2.5. Other "Numerical" Parameters

The methods to be described also involve an additional numerical parameter based
on the sampling rate utilized in discretizing the surface fields. Typical expecta-
tions for the methods discussed are that sampling at approximately 4 to 16 points
per electromagnetic wavelength in the incident medium is needed for the "point
matching" approaches to be described in Sect. 7.3. The wide range specified al-
lows for varying amounts of accuracy, as well as the fact that differing surface
profiles contain varying amounts of energy in small length scales, which in turn
influences the discretization rate needed. The sampling rate to be chosen should
be appropriate both for the surface profile of interest and for the electromagnetic
field. However, unless there are known sharp features in a specific surface profile,
it is expected that surface variations can be smoothed to a scale of approximately
one quarter electromagnetic wavelength without overly influencing the obtained
scattering behavior": Surfaces without roughness on these scales are then treated
reasonably with the lower sampling rate, while those with roughness on these
scales can require a finer sampling to obtain accurate predictions.

A second issue involved in determining the discretization rate for surface fields
is related to the wavelength in the lower medium. In cases where the wavelength in
the lower medium is much smaller than that in the incident medium, questions can
arise regarding which wavelength to use in determining the sample rate. However, it
is clear that in the limit of highly conducting surfaces under an impedance boundary
approximation, it is the wavelength in the incident medium that matters. This is
also apparent if it is considered that any surface field variations on scales much
more rapid that those of the incident medium wavelength will result in evanescent
scattered fields in the incident medium. Thus if scattering into the incident medium
is of primary interest, such rapid variations in the surface fields are not important.
However it remains important to ensure that the required integrations within an
integral equation formulation are computed accurately. In this case, integrations
of matrix elements may be required, but no increase in the number of unknowns
is necessarily needed. References [15-17] provide further discussion of this point.
As with surface size, it is generally a good practice to ensure convergence with
the discretization rate by examining numerical results as the spatial resolution is
increased.

For stochastic problems, it is also commonplace to report averages of scat-
tered fields obtained through repeated computations over an ensemble of surface
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realizations. These "Monte Carlo" simulations are the primary tool for reporting
information on scattered field statistical properties. An issue then involves con-
vergence of results with respect to the number of realizations in the ensemble.
Again this convergence is usually examined through comparisonsof results from
independentensembles,and also by directlyexaminingthe statisticsobtained.It is
to be expected usually that incoherent scattered fields in time harmonicproblems
willexhibitreal and imaginaryparts that are uncorrelated(i.e. randomphase),with
each following a Gaussian probability density function. The resulting incoherent
power is then an exponential random variable, with a standard deviation equal
to the mean power. Deviationfrom these behaviorshowever is certainly possible
in unusual scattering situations", so that direct examinations of convergence are
usually appropriate.

7.2.6. Use ofApproximate Theories

Given the wide range of "artificial" parameters involved in numerical studies of
surface scattering (i.e. finite surface length, discretization rate, use of tapered
waves, etc.), it can be very difficult to have complete confidence in the results
achieved without extensive convergence studies. While several basic expected
behaviors have been described in this section to assist in this process, another
approachtohelpbuildconfidencein a particularmethodinvolvescomparingresults
withpredictionsfromapproximatetheoriesin limits where the approximatetheory
is known to be accurate.

While some users of numerical algorithmsmay feel that numericalapproaches
are inherently superior to the approximate theories, and that therefore approxi-
mate theories have no place in verifying their algorithms, in fact the opposite is
true.Approximatetheorieswhenusedappropriately usuallywillprovidefarhigher
accuracythanthat obtainedfroma numericalmethod,due to the superiorityof ana-
lyticalcomputationswhenpossibleoverdiscretizedmethods.Thereforeit is highly
recommendedto any userof a numericalmethodthat the methodbe validatedin an
appropriate limit by comparing with an approximate theory. If agreement cannot
be obtained, it is almostcertainly the numericalmethod that is yieldinginaccurate
predictions,likelydue to the one of the myriadpossible sourcesof error discussed.

An ideal approximatetheory for this purpose is the small perturbationmethod.
Once the problem description and choice of numericalparameters has been com-
pleted, the surfaceprofileof interestcan simplybe substitutedby a similar surface
profilewith small surfaceheight and short length scale variationscomparedto the
electromagnetic wavelength. Comparison of the numerically obtained results to
the analytical predictions of perturbation theory will yield some idea of the level
of accuracyof the numerical simulations.

A secondsimilarapproachinvolvescomparisonwithpredictionsfrom the phys-
ical optics theory. In this case, the numerical solution is abandoned and replaced
with a numerically evaluated physical optics theory. Comparisons are made of
numerically computed physical optics scattered powers with those predicted an-
alytically by the physical optics theory. The numerical computation of physical
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optics predictions is performed using discretization rates, surface sizes, and in-
cident fields identical to those to be used with the numerical method. Because
the physical optics approximation is used both in the "numerical" and analytical
techniques in this case, the results should be identical if effects of the numeri-
cal parameters are negligible. Again these comparisons can provide some idea of
the influence of the numerical parameters, and allow improvements in parameter
choices to be determined.

Once it is shown that the numerical configuration can yield appropriate results
in these tests, the user can have increased confidence for use of the numerical
solution, although every attempt to validate the predictions by other means should
continue to be pursued as well.

7.3. Integral Equation Formulations

The methods described in this chapter are all integral equation approaches for time
harmonic problems. The basic integral equation formulations have been described
in the literature numerous times (for example, [18-19] and [20] for the one- and
two-dimensional cases, respectively), and therefore are not repeated here.

Unknowns in these integral equations are the tangential electric and/or magnetic
fields on the interface. In two-dimensional surface problems, these fields are two
component vectors, resulting in four unknown scalar functions to be determined
in the penetrable case. This number is reduced to two scalar functions for a two-
dimensional perfectly conducting or impedance surfaces or for in-plane scattering
with a one-dimensional penetrable surface, and further reduces to a single scalar
function for a one-dimensional conducting or impedance surface. In some two-
dimensional surface studies, normal components of the surface fields at the in-
terface have also been retained as unknowns/! ,22, but this is not required if these
quantities are represented in terms of derivatives of tangential fields.

A variety of integral equations are available, and appropriate choices can im-
prove computational efficiency23,24 . For penetrable surfaces, integral equations
must be formulated for fields in the media above and below the surface profile.
The integral equations utilized in works by the author are the standard electric field
and magnetic field integral equations (labeled the EFIE and MFIE, respectively),
with the MFIE typically used in two-dimensional problems in the region above
the interface. Although combinations of these integral equations into a "combined
field integral equation" (CFIE) are sometimes suggested as providing improved
equation conditioning, preconditioning techniques for accomplishing the same
goal will be discussed in the next Section.

Discretization of integral equations into a matrix equation is accomplished
through the choice of "basis" expansion functions for the unknown scalar func-
tions, as well as "weighting" functions over which scalar products of the integral
equations are performed. A variety of these expansion functions are available,
ranging from simple "pulse" expansions which discretize the unknown function in
terms of a set of locally constant values, versus "entire domain" functions which
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span the entire surface. The accuracy of pulse expansions is often questioned, but
it is clear that the effects of this somewhat crude discretization can always be
reduced by increasing the number of points utilized. The advantage of the pulse
expansion is that it greatly simplifies computation of the required inner product
integrals in formulating a matrix equation. Such simplicity of the matrix elements
is highly advantageous in the efficient solution algorithms to be discussed in the
next section.

Entire domain basis methods will always require numerical integrations for the
computation of the required matrix elements; if the problem becomes sufficiently
large that these integrations cannot be stored in memory, then such integrations
will need to be repeated multiple times in a iterative matrix equation solution,
resulting in low computational efficiency. Integrations can sometimes be avoided
through the use of approximations for some matrix elements, but developing such
approximations requires extensive analytical work. While it is often argued that
entire domain functions may be able to be formulated such that only a small
set of such functions is required to accurately represent surface fields, this is only
likely to be true in cases where the range of roughness length scales is not large, for
example in cases involving high frequency examination of surfaces with roughness
on scales much larger than the electromagnetic wavelength. Because multi-scale
roughness is usually the norm rather than the exception when numerical solutions
of surface scattering are called for, the author's expectations are that pulse basis
methods will typically be at least competitive if not far more efficient than entire
domain basis methods. For this reason, pulse expansions are used exclusively in
the results to be illustrated in Sect. 7.5.

Weighting functions can still be chosen arbitrarily once an expansion function
is selected, although the accuracy of the formulation is typically expected to be
improved when the weighting and testing functions are chosen to be identical.
Given choice of pulse expansion functions, the corresponding weighting functions
are then pulses as well (the so-called point matching approach), and the inner
product integration involves integration over a pulse (i.e. constant over a small
portion of the surface) function. This integration is often simplified in terms of only
the value of the function at the center of the pulse multiplied by the pulse width, i.e.
a single point approximation of the integral. The accuracy of this approximation
degrades as the distance between the weighting and expansion functions decreases,
but typically remains acceptable for all but the "self' term (i.e. when the weighting
and expansion functions overlap). In cases where increased accuracy is needed,
numerical integration over the weighting pulse functions can be performed for a
subset of matrix elements; it is important that sufficient memory be available to
store the integrated results to avoid the need for repeated integrations. The need for
integrating matrix elements in the penetrable medium case discussed in Sect. 7.2.5
is an example of this requirement.

Integrations remain necessary for computing self terms in the formulation, and
are typically obtained through an analytical approximation of the Green's function.
Appropriate analytical self terms are well known in the one-dimensional case
(see [14]). In the two-dimensional case, analytical forms are not easily available,
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and numerical integrations are required/". Recently, an analytical formulation has
been developed for including second derivatives in two-dimensional surface self
tenns25, analogous to the one-dimensional "curvature" term discussed in [14].
However numerical integrations of any remainders are still required even after the
analytical forms are extracted.

7.4. Matrix Solution Methods

Once a matrix equation is formulated, its solution is required in order to determine
the unknown coefficients of the surface field expansion. When these are known
it is simple to compute whatever field quantities are desired (usually far field
scattering). The solution of a linear system of equations is a standard problem in
computational physics, and is discussed in numerous references. It is well known
that a direct solution of an N by N matrix equation requires an operations count
proportional to N 3 . Although parallel implementations of direct solution methods
are available for poorly conditioned matrix equations [26], iterative matrix equation
solutions are generally for more efficient, and preferred in cases with reasonably
conditioned equations.

7.4.1. Iterative Solution ofMatrix Equations

A variety of iterative matrix inversion algorithms are available/", including "sta-
tionary" and "non-stationary" algorithms. All iterative algorithms are based on a
repeated process for generating guesses at the unknown solution vector, along with
continued multiplication of these guesses by the matrix in order to determine the
degree of error in matching the right-hand side of the matrix equation. Iterative
matrix solutions therefore require an operations count proportional to N 2 times
the number of iterations; if the number of iterations can be made independent of
N, the overall solution is order N 2, and therefore dramatically more efficient than
the direct solution.

Stationary iterative algorithms are those in which the same operation is per-
formed on the current solution guess at each iteration to generate a new solution
guess. These algorithms are usually easier to understand and physically inter-
pret. Nonstationary algorithms on the other hand can be thought of as having
"iteration-dependent coefficients," and are typically based on attempting to gener-
ate a sequence of orthogonal search vectors in the solution space. Nonstationary
algorithms usually provide better performance over a range of possible matrices,
although stationary algorithms can converge more rapidly in some cases if the
matrix condition number is low.

Several stationary algorithms have been utilized for rough surface scatter-
ing, particularly in the one-dimensional case28. The "banded matrix iterative ap-
proach" (BMIA)29 is a stationary algorithm based on iteration on the contributions
of matrix elements outside of a banded region from the matrix diagonal. The
"forward-backward" or "method of ordered multiple interactions" approach30- 34
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is a stationary algorithm known as "successive over relaxation" in which the itera-
tive process results in a forward- and backward-sweeping process for interactions
among points on the surface. A Neumann iterative approach22,3s,36 is also a sta-
tionary algorithm; in this case, surface fields are written as a series of multiple
contributions from nonself points, and an iterative process used to compute these
multiple interactions. Generally all of these stationary algorithms are found to
work well for one-dimensional surface scattering, although convergence problems
can be found in cases where multiple interactions become important. Although
physical interpretations of these algorithms may be easily available, essentially
the algorithms used are stationary iterative approaches based on repeated matrix
multiplies, and are therefore order N2 algorithms.

Nonstationary algorithms have also been widely used. Due to the fact that most
matrices describing rough surface problems are nonsymmetric, the standard con-
jugate gradient algorithm is not applicable. However other algorithms such as
GMRES, Bi-CGstab, and QMR27 all are applicable to this case, with GMRES
having the best analytical convergence properties. However GMRES also requires
a significant amount of storage, while the Bi-CGstab algorithm avoids this re-
quirement and is generally found to have properties similar to GMRES. For these
reasons, the Bi-CGstab method is the most commonly used nonstationary iterative
solution algorithm in rough surface studies.

In some cases, nested iterative algorithms are utilized, typically with a nonstat-
ionary algorithm inside a stationary algorithm. This occurs when the original
matrix is approximated by a matrix whose matrix-vector multiply is more eas-
ily performed. The approximate matrix equation is then solved by an "inner"
nonstationary algorithm. The "outer" stationary algorithm then consists of correct-
ing for the approximation of the matrix. This involves modifying the right-hand
side of the inner iterative equation to include the difference between the exact and
approximated matrices multiplied by the current solution vector. This approach
can be advantageous if convergence of the inner algorithm is slow but convergence
of the outer algorithm is rapid. The "banded matrix flat surface iterative approach"
(BMFSIA)18 and "sparse matrix flat surface iterative approach" (SMFSIA)37 are
based on such nested algorithms.

7.4.2. Preconditioning

The rate at which iterative solutions converge is typically determined by the condi-
tioning properties of the matrix of interest. Better conditioned matrices are gener-
ally those in which the near diagonal elements of the matrix are much larger than far
off-diagonal elements, so choices of integral equation formulations to produce this
behavior are usually preferable. Convergence can also be improved through the use
of preconditioning matrices'",38; when used, the matrix equation is essentially left
multiplied by the inverse of the preconditioner matrix. If the preconditioner matrix
is chosen to approximate the original matrix while remaining easily invertible,
the condition properties of the new product matrix are improved. Preconditioners
can be utilized with both stationary and nonstationary methods, although in the
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case of physically based stationary methods, the iterative solution itself essentially
is based on identification of a preconditioner matrix". Within the iterative algo-
rithm, a step involving solution of a preconditioner matrix equation is required (i.e.
solution of an equation specifying the result of the preconditioner multiplied by
an unknown vector.) The right-hand side of this preconditioner equation typically
varies as the iterative algorithm progresses.

While standard mathematical techniques exist for formulating preconditioner
matrices'", the author believes that preconditioners for rough surface scattering are
best identified on the basis of physical insight. One insight that has been utilized
involves the expectation that coupling between points on a surface is strongest
for points located close to each other. Under this assumption, a preconditioner
is formulated that retains matrix elements corresponding to a specified distance
between the "source" and "test" points involved. The resulting preconditioner is
either banded or sparse, and methods for computing the inverse of such matrices
exist. For sparse matrices (i.e. the two-dimensional surface case), the storage re-
quired for the sparse matrix inverse can become large, so an iterative solution of
the preconditioner matrix equation may be required.

7.4.3. Physically Based Preconditioning

While these methods have been utilized in the literature, the author recommends
instead preconditioners that retain contributions from all pairs of surface points,
but under some approximation. This is because even though these contributions
may individually be weak, their sum when added over all surface points remains
important. This can be demonstrated by considering the case of a flat surface
profile.

Because the preconditioner matrix is designed to approximate the original ma-
trix equation, and because the original matrix equation fundamentally represents
a physical process for determining induced surface fields on a rough surface given
a specified incident field, solution of the preconditioner equation can be consid-
ered as an approximate solution of the rough surface scattering problem. However
due to the varying right-hand side of the preconditioner equation at each iteration,
the incident field to be utilized in the approximate surface scattering problem is
distinct from that of the original problem. In cases involving penetrable media,
an arbitrary right-hand side vector can represent fields impinging on the surface
from both above and below. In any case, a preconditioner can be formulated sim-
ply by attempting to approximately solve the rough surface scattering problem
with the incident fields corresponding to the specified right-hand side. As numer-
ous methods are available for these approximations, there are numerous potential
preconditioning algorithms.

A particular technique that is useful is physical optics. Once the right-hand side
vector is expressed in terms of a set of plane wave incident fields, surface fields for
each plane wave can be evaluated under the physical optics approximation, and
summed to produce a preconditioner solution. Note no explicit formulation of a
preconditioner matrix is required in this case, but the linear nature of the solution
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process ensures that such a matrix exists. Because the right-hand side vector is
expressed in the space domain, a quasi-Fourier transform operation is necessary to
interpret the incident field in terms of a set of plane waves. One limitation of this
step is that it must be assumed that the surface is flat to utilize an FFf algorithm
for this process. However even with this approximation, a preconditioner based
on this approach has been found effective in improving Bi-CGstab convergence
in penetrable two-dimensional surface problems for moderate height surfaces/".
The resulting preconditioner solution requires only a small set of FFf operations,
and therefore remains computationally efficient. Use of other approximate rough
surface scattering methods is also possible for this purpose.

An alternative technique for generating and solving preconditioners is based on
use of a flat-surface approximation for matrix elements, in which all arguments
involving surface heights within the Green's function exponential terms are re-
placed with zero. In this case, the resulting matrix equation assumes a Toeplitz
form, and therefore matrix-vector multiplies can be performed through a set ofFFT
operations. A generalization of this idea results in the "canonical grid" method to
be discussed in Sect. 7.4.4.1, but if the approximation is utilized for all nondiag-
onal matrix points, an effective preconditioner can result for surfaces of moder-
ate height. This technique has also been proposed as a stand-alone approximate
method". Although in the one-dimensional perfectly conducting case it is possible
to formulate an analytical solution of this preconditioner matrix equation in terms
of FFf operations'", more typically it is required to utilize a nonstationary algo-
rithm to solve the preconditioner equation. However, the efficiency with which
matrix multiplies can be performed within the preconditioner solution can still
make this an effective choice if the original matrix equation is poorly conditioned.

7.4.4. Accelerating the Matrix- Vector Multiply Operation

If reduction in the operation count below N 2 operations is desired, then more effi-
cient means must be developed for computing the matrix-vector multiply. Several
"acceleration" approaches have been proposed for this purpose in the past decade,
including the more general "fast-multipole method" which can be used for arbi-
trary electromagnetic scattering problems41- 45 , as well as the more recent "UV"
technique based on singular-value decompositions of the matrix equation". Typ-
ically these algorithms claim to achieve an operations count proportional to N or
N log N as N becomes large. This proportionality however is often achieved only
in the limit of very large N due to the addition of a fixed number of operations to
the computational workload in order to utilize the acceleration method.

Standard acceleration algorithms are based on approximations to the interactions
among surface points which are separated horizontally by more than a minimum
distance, called the "neighborhood distance" in what follows; this distance is then a
parameter of the algorithm. Note the use of subspace domain basis functions is im-
plied in this separation. Coupling between points within the neighborhood distance
is usually computed exactly, meaning that a banded (one-dimensional) or sparse
(two-dimensional) matrix multiply operation is part of the complete matrix-vector
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multiply. The efficiency of the algorithm depends on efficiently computing interac-
tions among points separated by distances larger than the neighborhood distance,
as well as retaining accuracy in evaluating these interactions when the neighbor-
hood distance is much smaller than the overall surface length. While it is possible
to formulate such algorithms for general kinds of objects (as in the standard fast
multipole method), acceleration methods for rough surface scattering can further
exploit the assumed quasi-planar nature of the scatterer.

Here the focus is placed on two specific acceleration algorithms: the "canonical
grid" method47,48 and the "novel spectral approach,,49,5o.

7.4.4.1. Canonical Grid Method

In the canonical grid (CAG) method, interactions among points separated by more
than the neighborhood distance are computed using a Taylor series expansion
of the Green's function in the difference between source- and observation point
heights. When this expansion is used along with a rectangular grid for resolving
the surface height, the resulting series terms involve translationally invariant func-
tions (i.e. functions of differences in horizontal coordinates only) multiplied by
polynomial expansions in surface height. An FFf algorithm can then be used to
simultaneously compute coupling between all surface points for a given term in
the Green's function expansion. The approach achieves an order N log N matrix
multiply, but can also require a large number of series terms for large height and/or
large slope surfaces. For this reason the canonical grid method is best used with sur-
faces whose heights and/or slopes are moderate compared to the electromagnetic
wavelength and unity, respectively.

Reference [40] derives the canonical grid expansion to arbitrary order for one-
dimensional surfaces, and also provides an efficient pseudo-code implementation
of the matrix multiplication process. It is found that the canonical grid expansion
can be interpreted as a power series expansion of the Fresnel phase term in the
Green's function, when the horizontal distance is taken as the leading order range
term. The quantity expanded is found to be proportional to the height difference
between two surface points relative to the wavelength, multiplied by the slope of
the line joining the two points. This expansion term can always be made smaller
by increasing the neighborhood distance, and thereby decreasing this slope, but at
the expense of increased within-neighborhood computations. Similar statements
apply for two-dimensional surfaces, although a simple form for series terms at
arbitrary order is not as easily available. Reference [48] provides the first three
series terms, while an algorithm for generating higher order terms to arbitrary
order has been developed in [25].

A simple method for estimating the number of canonical grid series terms needed
can be developed. First, the largest possible value of the Fresnel expansion term
is estimated, typically using a multiple of the surface rms height (possibly times
five or ten) in the Fresnel term numerator and the neighborhood distance in its
denominator. Given this Fresnel phase value, the number of power series terms
needed in an exponential phase function evaluated at the Fresnel phase value is
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foundtoestimatethenumberofcanonicalgridseriestermsneeded.Notein surfaces
with large heights but small slopes, use of the surfacecorrelationdistancemay be
more appropriate'in the denominatorof this estimation.

Typically, whenmore than two or three canonicalgrid series terms are required,
the number of FFT's needed by the algorithm becomes excessive, and use of the
method is not recommended. Thus the canonical grid method is usually ineffec-
tive for large height and/or large slope surfaces. However, when it is applicable,
the method is likely to be among the most efficient means possible for numeri-
cal simulations of this type. A multi-level expansion of the canonical grid series
has been proposed to address these limitations24,25, but remains expensive due
to the requirement of a three-dimension FFT computation with two-dimensional
surfaces.

Note theexpansionutilizedin thecanonicalgrid algorithmis alsousedin analyt-
ical approximations of rough surface scattering, including the operator expansion
method (OEM)52 and the small slope approximation (SSA)53. These three tech-
niques can be successively classifiedas purely analytical (SSA), quasi-numerical
(OEM), and purely numerical (CAG) algorithms essentially making use of the
same Green's function expansion.

7.4.4.2. Spectral Approach

One algorithmthat can address the limitationsof the canonical grid technique for
largeheight surfacesis basedon a "novel spectralapproach" (NSA)for computing
interactionsamong widely separatedpoints on the surface. In this case, a spectral
form of the Green's functionis used for points outside the neighborhooddistance;
the simplicityof the spectralformallowscontributionsfrommultiplesourcepoints
to a single observationpoint to be expressed in terms of a single spectral integra-
tion, and this integrationis easily updated as the observationpoint is modified. A
criticalfactor in the successof this techniqueis the computationalrequirementsfor
computing the spectral integration. These are reduced by deforming the spectral
integrationontoa complexcontour,with thecontourderivedto approacha steepest
descent path for the flat surface case when possible. The resulting discretization
and distance along the spectral contour are made manageableby this process, and
the number of points needed in the spectral integration is found to remain fixed
as the surface size increases. The overall algorithm is then order N. Reference
[54]providesa detailed reviewof the spectralparameters for the one-dimensional
surface case. Although the number of points needed for the spectral integration
increases with surface height, the increase is relatively slow and the algorithm
remains highly efficientin this case.

While the novel spectral approach has been widely used in conjunction with
the "forward-backward" iterativematrix solution, it remains simply an algorithm
for computing a matrix-vector multiply and can therefore be used in any itera-
tivematrix solutionmethod.For one-dimensional surfaces,the approachis highly
efficient, competitive with the canonical grid method for moderate height sur-
faces, and remains efficient as surface heights increase. Use of this algorithm is
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recommended for studies of one-dimensional surface scattering, although careful
choice of the spectral integration parameters should be made to ensure accurate
computations'",

Unfortunately, the gains of the NSA are not as dramatic in the two-dimensional
case. This is because the algorithm still requires a beneficial discretization of the
spectral path for coupling between all pairs of points in order to remain efficient.
The spectral path can be interpreted in terms of an angle space, with one angle
representing vertical deviations between points, and a second angle representing
horizontal deviations in the two-dimensional surface case. The expansion is typi-
cally developed by assuming a "forward propagating" direction, which is usually
parallel to one of the surface edges, and labeled as zero degrees in horizontal
angle. As coupling between all possible pairs of points is considered, the hori-
zontal angle then varies over both positive and negative angles that can become
large as the "width" of the surface increases. Developing an appropriate spectral
discretization over this wide range of angles results in a greatly increased num-
ber of spectral integration points required. References [55-56] describe means for
choosing the spectral integration parameters in this case. Essentially the algorithm
treats the width of the surface as a roughness parameter, and thereby is most effi-
cient for rectangular surface sizes with small cross-range dimensions. This can be
acceptable for some situations, although edge scatter effects and the corruption of
cross-polarized scattering cross-sections must be considered carefully.

Reference [57] describes a method for modifying the NSA algorithm in the two-
dimensional case to improve computational efficiency. In this case, three distinct
spectral integrations are used, one being the original "along range" spectral path,
and the remaining two being utilized in "cross range" for points within a mod-
erate distance of the observation point. This algorithm has been further extended
in the work of [58]. These techniques make the NSA method competitive with
other approaches for large height and/or large slope surfaces, although no detailed
comparisons of computationalloads with other algorithms (for example, the fast
multipole method) have been reported to date.

7.4.5. Parallelization

Even with the use of matrix-vector multiply acceleration algorithms, problems
involving very large surfaces and/or Monte Carlo averaging will often require the
use of supercomputing resources to allow results to be obtained in reasonable
times. The wide availability of parallel computing resources makes their use of
interest, although approaches for dividing the computational load among multiple
processors must be developed.

The applicability of parallel computers in Monte Carlo simulations is obvious:
if a simulation for a single surface realization can be designed to run on a sin-
gle processor, then multiple processors can be utilized in a parallel Monte Carlo
simulation. No communication among processors (except perhaps minimal control
communication) is required, and parallelization is perfectly efficient. Similar state-
ments apply to simulations involving frequency swept computations.
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In some cases, the size of the problem of interest becomes such that it can no
longer be run on a single processor. Simple algorithms for parallelization can still be
devised, based on division of the within-neighborhood multiply operation among
processors'", as well as on parallel FFf59 or spectral integration computations.
Cases requiring matrix element integrations can also benefit from parallel perfor-
mance of these computations, particularly if a multiple incidence angle simulation
is of interest, within which all processors utilize the same matrix but varying right-
hand sides16. Although development of the codes necessary for these operations
may seem challenging, in general the availability of numerous software libraries
for parallel communications makes code completion relatively straightforward.

7.4.6. Storage Issues

A final issue of importance for numerical techniques involves storage require-
ments. Even with parallel computers, it remains highly advantageous to keep a
single surface simulation within the memory limitations of single processor if
possible. Storage limitations are another motivation for resorting to iterative so-
lution of a matrix equation: consider that with N = 104 , the RAM storage needs
of a complex matrix approach 1.5 gigabytes. Iterative methods do not necessarily
require that the matrix be stored, only that an algorithm exist for performing the
matrix-vector multiply. In cases where the matrix elements are sufficiently simple
(no integration), these elements are easily regenerated when needed without a re-
quirement for storage. In cases where at least some fraction of the matrix elements
must be integrated, it is advantageous to store the integration results if sufficient
memory is available; memory limitations should therefore be considered when
designing the simulation of interest.

Both the CAG and NSA techniques have additional storage requirements. In the
CAG method, it is desirable to store all translationally invariant terms (actually
their FFT's) to avoid repeated computations. This storage requirement increases
with the number of canonical grid series terms, and again becomes impractical as
the number of series terms becomes large. The NSA method requires storage of
"source" terms on the spectral integration path. This is only a modest requirement
and typically is manageable.

7.5. Sample Results

To illustrate a range of problems which can be studied using numerical methods,
several examples from the author's previous work are discussed in this section,
with particular attention to the numerical parameters utilized in a given problem.
Two one-dimensional surface and three two-dimensional surface cases are shown.

Figure 7.3 is a plot of normalized incoherent backscattering cross-sections
(defined in [7]) from a one-dimensional surface study of low grazing angle
backscattering from impedance power-law surfaces. The surfaces are Gaussian
random processes with a power-law spectrum, originally intended to approximate
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FIGURE 7.3. Normalized backscattering cross-sections obtained from a one-dimensional
surfacesimulationoflowgrazinganglebackscattering withpower-law impedancesurfaces7•

Results illustratedare averages over 64 realizations with surfacelength 8192 wavelengths
and65536totalunknowns. Leftplotillustratesverification of thenumericalmethodthrough
comparisonwith the small perturbation method for small height surfaces, while right plot
illustratesa testof the "smallslopeapproximation" (SSA)analytical theoryfor largerheight
surfaces.

the sea surface, but also relevant for other near-fractal surface types. Backscatter-
ing results down to 10 grazing incidence were of interest, so a large surface size
was clearly called for in order to retain sufficient angular resolution. Studies of
this angular resolution suggested that a surface size of 8192 wavelengths was suf-
ficient with the tapered incident wave utilized, and a discretization of eight point
per wavelength resulted in 65 536 surface unknowns. Although these parameters
were chosen from analytical expectations, further confirmation of their use was
provided through comparison with predictions of the small perturbation method
(SPM) in the small height limit. The left plot in Fig. 7.1 illustrates this comparison,
and shows that the numerical results (averages over 64 realizations, and marked
by symbols in the plots) are matching the SPM well in this case, where the surface
rms height was set to 0.014 wavelengths through elimination of the low spatial
frequency content of the spectrum.

Results for larger height surfaces (with surface rms height 2.27 wavelengths)
were then computed given the confidence obtained from the SPM test; these re-
sults are compared with the SSA theory in the right plot. The results confirm the
well-known limitations of the SSA method at low grazing angles, although SSA
performance for vertical polarization was found to remain acceptable. Results were
computed using the CAG approach, which required 15 series terms in the larger
height case. Later simulations of these same results using the NSA algorithm'"
were far more efficient in the larger height case.

Given the smaller computational requirements in the one-dimensional surface
case, it is possible to extend surface scattering simulations beyond the typical
Monte Carlo studies of average scattered powers. Studies involving time evolv-
ing surfaces, frequency responses, or other physical behaviors can be easily
performed. Another example involves the formation of images of rough surface
scattering through the use of both frequency and angle swept computations'",
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FIGURE7.4. Radarimageof roughsurface NRCS values for a singlerealization of a Gaus-
sian correlated impedance surface'", Image amplitude in decibels is plotted. Surface rrns
heightis 0.8 wavelengths, correlation lengthis three wavelengths, and total surface length
is 64 wavelengths, at the center frequency of the image. Imagefeatures belowthe surface
profile indicatemultiple scattering effects.

Figure 7.4 illustrates such an image, obtained using a single Gaussian random
process realization with a Gaussian correlation function, rms height 0.8 center fre-
quency wavelengths, and correlation length three center frequency wavelengths.
Images were formed from a frequency sweep over ± 16% of the center frequency,
using 80 frequencies, and from the backscattering response at ±10° from normal
incidence, with angular step size 0.2°. The required 8000 evaluations of scattering
from this surface realization were performed with the NSA method. Because only
near normal incidence scattering was of interest, a modest surface size of 64 center
frequency wavelengths was possible, along with tapered wave incidence.

Although results are shown from only a single surface realization, the insight
provided by such images can be useful in assessing physical scattering effects.
In this case, most image features are associated with near specular points on the
surface profile (overlaid on the image), although some image features below the sur-
face profile are also observed. A ray tracing analysis confirmed that these features
result from multiple scattering interactions among surface points. Comparisons of
these images with those predicted by approximate surface scattering theories were
performed in [60] in order to assess the approximate theories.

Figure 7.5 presents incoherent normalized radar cross-section (NRCS) values
obtained from a two-dimensional surface backscattering study using penetrable
surfaces'". In this case, the boundary considered is between free space and a
medium with relative permittivity 4 + i, and again a Gaussian random process
surface with an isotropic Gaussian correlation function is used. The results shown
use surface statistics of 0.08 wavelengths rrns height, 0.48 wavelengths correlation
length, (Ka = 0.5, KL = 3, with K the electromagnetic wavenumber) or 0.16
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FIGURE7.5. Normalized backscattering cross-sections from penetrable dielectric surfaces
(E = 4 + i) froma two-dimensional surfacesimulation (numerical resultslabeled"MOM").
Gaussiancorrelatedsurfacestatistics indicatedin figure titles.Resultsare averaged over32
realizations using surface sizes of 16 by 16 wavelengths in the Canonical grid method'",
and compared to predictions from the "small slope approximation" (SSA) and "integral
equationmethod"(IEM)theories.

wavelengths nns height, 0.96 wavelengths correlation length (Ka = 1, K L =
6) as indicated in the plot titles. Though these surfaces may seem applicable to
classicalmodels, the relativelylargeslopesobtainedmakebothperturbationtheory
and physical optics inapplicable.

Numerical results for both HH and VV scattering combinations are shown
(labeled "MOM" for method of moments in the legend), and are compared with
predictions of the SSA and "integral equation method" (IEM)62 analytical theo-
ries. Due to the moderate range of incidence angles considered here (only to up
to 50° incidence) a surface size of 16 by 16 wavelengths was found appropriate;
each of four surface fieldcomponents was sampled into 128by 128points, result-
ing in 65536 unknowns in the simulation. Results shown are averaged over 32
realizations, found sufficientdue to the moderate surface heights considered. The
canonical grid method with two terms in the expansion was used, and found to
be of acceptable accuracy. Results from all three theories are found to be in good
agreement for these results.

One limitation of this study was the poor quality of the numerically computed
cross-polarized cross-sections, due to the extremely small expected values of
cross-polarization and the small surface size utilized. These problems resulted
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FIGURE 7.6. Normalized backscattering cross sections from two dimensional simulations
with perfectly conducting (left) and impedance (right) power-law surfaces using the canon-
ical grid method. Results in the left plot utilized surfaces of 64 by 64 electromagnetic
wavelengths (524 K total unknowns), and are averaged over 128 realizations. Results in
the right plot required surfaces of 128 by 32 wavelengths and finer sampling (2 M total
unknowns) to achieve sufficient accuracy, and are averaged over 32 realizations. Numerical
results are compared with predictions of the composite surface and physical optics (PO)
theories.

in significant out-of-plane bistatic averaging due to the incident tapered field, and
an overestimation of cross-polarized backscattering. This was confirmed through
comparison with SPM cross-polarized predictions in the small height limit.

A second limitation involves computations near normal incidence. Given the
strong specular response of these moderate height surfaces, a strong coherent
response is obtained at near normal angles. This specular response is not the
perfect plane wave obtained in analytical theories, but is rather spread over an
angular width due to the finite surface size of the numerical simulation, as well
as any further angular averaging due to tapered wave incidence. Computation of
the incoherent NRCS value requires removing these coherent contributions, but,
with only a small number of surface realizations available, removing the coherent
term to sufficient accuracy is not possible in these results. Therefore no result is
shown for backscattering near normal incidence. Generally it is found that accurate
computation of incoherent responses at angles where strong coherent responses
exist is difficult in Monte Carlo simulations.

Results from two distinct two-dimensional surface studies of backscattering
from power-law surfaces are shown in Fig. 7.6. Both cases utilize the same surface
description: Gaussian random processes with an isotropic power-law spectrum,
similar to those used in Fig. 7.3. Results in the left plot [63] consider grazing
angles from 30 to 90° (90° is normal incidence), and utilize perfectly conducting
surfaces, while those in the right plot are for impedance surfaces and are at grazing
angles less than'" 30°. Numerically computed results are indicated by the symbols
in the plots, while predictions of analytical theories are represented by lines. Sur-
face sizes used to generate results in the left plot were 64 by 64 wavelengths, and
with the two unknown scalar functions sampled into 512 by 512 points, a total of
512 K unknowns results. Averages over 128 realizations were performed using a
parallel Monte Carlo simulation, and the canonical grid method with two series
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terms was found applicable in this case for which the surface rms height was 0.73
wavelengths. Again comparisons with the small perturbation method were utilized
to ensure proper choice of numerical parameters for this case, and the surface size
used was found acceptable down to 30° grazing incidence. The larger surface sizes
utilized in this simulation resulted in improved accuracy in cross-polarized pre-
dictions, which are illustrated in the plots.

The smaller grazing angles of the right plot, however, required a modification of
surface size to extend the along range dimension. The resulting surface size utilized
was 128 by 32 wavelengths, which was found still to retain accuracy in computation
of cross-polarized cross sections. In addition, the smaller cross-section values
obtained necessitated a finer sampling rate of 16 unknowns per wavelength, so that
a total of 2 million surface unknowns resulted. The canonical grid method with two
series terms remained applicable. To reduce the total computational time, a parallel
algorithm was developed in which a group of four processors was used to perform
both the set of CAG method FFT operations as well as the within-neighborhood
coupling computation. Multiple sets of four processors were then used in a parallel
Monte Carlo simulation with 32 surface realizations to obtain the averaged results
shown.

Note that these highly expensive numerical simulations were well matched by
the approximate composite surface (or "two-scale" theory) of scattering from a
power-law type surface, even for the cross-polarization results. Use of the com-
posite surface model provided these results with around a factor of 105 reduction
in computations. Although the goal of these simulations was to seek an evaluation
of the composite surface theory, the results demonstrate that the approximate theo-
ries are often highly accurate, and that the use of numerical methods is an extreme
waste of computational and researcher resources when reasonable approximate
methods are available. It is also noted that the conclusions obtained regarding the
use of approximate theories for copolarized scattering in this case were consistent
with those obtained from one-dimensional surface studies 7,63 .

A final result illustrated in Fig. 7.7 demonstrates a case to which approximate
theories have only recently been extended, involving the "backscattering enhance-
ment" phenomenon of rough surface scattering for large slope surfaces65- 68 . The
surfaces considered in these plots are perfectly conducting, and are realizations
of a Gaussian random process with an isotropic Gaussian correlation function.
An rms height of one wavelength and correlation length of J2 wavelengths are
specified, so that the surface has very large slopes. In-plane incoherent bistatic
scattering patterns are shown as the incidence angle (indicated in the legend) is
varied from normal incidence to 70° from normal incidence; the scattering angle
(Os) of the plots is defined so that specular returns occur at positive angles while
backscattering occurs at negative angles. The strong backscattering enhancement
peak is observed in the smaller incidence angle cases, but is reduced dramatically
as the incidence angle increases. The surface size used in this case was 128 by
16 wavelengths in order to allow simulations down to 70° incidence while avoid-
ing cross-polarized cross-section corruption. The two-dimensional surface NSA
method was used to generate these results in a parallel Monte Carlo simulation
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FIGURE 7.7. Normalized bistatic scattering cross-sections from two-dimensional simula-
tions with perfectly conducting surfaces". Results shown are averaged over 150 realiza-
tions, and computed using theFBINSAmethod forsurfaces 128 by 16wavelengths using
262 K total unknowns. Gaussian correlated surfaces with rms height one wavelength and
correlation length .fi wavelengths areutilized.

over 150 surface realizations. For this large slope case, the CAG method could
notprovideefficientcomputations. Simulationsinvolving impedancesurfacesand
for other surface statistics are reported in [68]; these results have been utilized in
testing new analytical theories of the backscattering enhancementeffect'".

7.6. Conclusions and Recommendations for the Use
of Numerical Methods

Given the issues discussed here for numerical simulations of rough surface scat-
tering, it is appropriate to provide a few summary recommendations for readers
interested in this area.

First, it is recommendedthat the problem of interest be formulated thoroughly
before determining whether an approximate or numerical approach is warranted
for its solution. In this regard, all relevant sensor and surface parameters should
be specified, including particularly the statistics of the rough surface itself. In
purely theoreticalstudies surfacestatisticscan usually be specifiedas desired, but
when attempting to model particular surfaces, specification of surface properties
is likely to be the major problem of the model regardless of the electromagnetic
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methodused.The influence of any transmitor receiveantennapatternsshouldalso
be considered if attempting to model a practical measurement. It should also be
decidedwhatan acceptable levelof accuracyis; in measurements involving surface
scattering, an accuracyof approximately a factorof 2 in normalized cross-sections
is usually within the levelof uncertainty of the measurement.

Oncethe problemhas beenformulated, it is recommended to attemptto identify
anyavailable approximate theoryof surfacescatteringthat maybe applicable. The
reviewarticlescited, as wellas a more recent reviewarticle70, can be of assistance
in thisprocess.In addition, numerous studies(similarto thosereportedin Sect.7.5)
of the accuracy of several approximate theories have been performed, including
severalrecentcontributions71-73. If a reasonableapproximate theoryis available, it
will likely provideanswerswithin the desired accuracy with far less commitment
of computational and personnel resources. Therefore it is important for surface
scatteringresearchers, even those specifically interestedin numerical methods, to
remain aware of the most recent developments in approximate theories. Recent
years have seen great expansion in the range of problems that can be treated by
approximate methods70. Such methods can also be used for frequency sweep,
image formation, or other advanced simulations.

If a numerical solutionis called for, then all attemptsto producean accurateso-
lution should be made.The methodsdescribedin this chapterand in the literature
can be used to construct an efficientnumerical algorithm, so long as the limita-
tions of the methodsused are knownto the developer. The convergence and other
tests described in this chapter should be used to ensure that choice of numerical
parametersor other issues are not interferingwith the results obtained.

Given the current state of affairs in surface scattering studies, it appears that
only a subset of current problemsof interest should be treated with the numerical
approach. The main cases are those that involve either strongshadowing (i.e, low
grazingangle problems)or multiple-scattering (i.e. large slope)effects,for which
analytical theories continue to have difficulty. Another topic of interest involves
studies of scattering from objects in the presence of rough surfaces, for which
many one-dimensional and two-dimensional simulations have been performed
recently74-79. Note that in all these studies,the ultimategoal is improved physical
understanding of the scatteringprocess, so that new analytical techniques can be
developed, rather than continueduse of the numerical methodsthemselves.
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8.1. Introduction

All real surfaces are rough, the roughness being relative to the interrogating wave-
length Afor any physical situation. We confine our discussion here to acoustic and
electromagnetic problems, and limit the surface description to vertical height hand
one or two horizontal scales L. Practical problems in manufacturing or measuring
surfaces can include and often completely depend upon topics such as ripples,
polishing marks, and behavior of surface extrema. We thus limit our consideration
to acoustic and electromagnetic scattering from surfaces with vertical scales kh
(k == 2JrIA)) and horizontal scales kL or tangent scales hiL. This is broad enough
to discuss scattering from sea surfaces, terrain, atomic systems, and nanoscale
roughness, as well as both deterministic and random problems characterizing the
surface behavior.

Various mathematical techniques are used to model the scattering problem.
Approximations such as perturbation theory, the Kirchhoff approximation, and
Born or distorted-Born methods are popular. Although they have limited validity
they are comparatively simple to implement. With .the advances in computational
ability rigorous exact methods have become dominant. The most popular of these
are integral equations, and we confine this overview to these methods as well as
some approximations. Even with this restriction, there are several variants as well
as diverse solution methods. We present this review paper as a summary of the
variety of such methods.

In Sect. 8.2 we treat coordinate-space based integral equation methods for both
scalar and electromagnetic scattering problems. To distinguish them from other
methods below we characterize them relative to the two arguments in the kernel
of the integral term or equivalently the discretized sample spaces resulting in the
rows and columns of the matrix system or equivalently the fields and sources of the
problem. Here both are in coordinate space and the development is referred to as co-
ordinate coordinate or CC. This is the most common method and we label it to dis-
tinguish it from other methods we introduce later. The rough surface separates two
homogeneous media. For the scalar problem we have standard boundary integral
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equations where the boundary unknowns are the field and its normal derivative.
For the electromagnetic problem several integral equation versions are available.
The first version draws an analogy with the scalar case, and uses the boundary un-
knowns of the electric field E and its normal derivative N and results in a system of
equations which is highly sparse compared to the usual Stratton-Chu formulation
which follows from this version with some algebraic manipulations. The second
version is the Stratton-Chu equations where the boundary unknowns are the mag-
netic surface current n x E and the electric surface current -n x H where n is
the surface normal and H is the magnetic field. This formulation uses the scalar
free-space Green's function as does the first. Ifwe take the curl of the Stratton-Chu
equations we get the third version, the Franz equations, which also follow directly
from Green's theorem using the free-space dyadic Green's function.

In Sect. 8.3 we discuss spectral-space methods for both acoustic and electromag-
netic problems. Again we refer to the field-source or row-column interpretation.
Here either field or source or both are in spectral space (S) and the formalisms are
referred to as SC, CS, and SS. Each formalism has an advantage.

In Sect. 8.4 we treat the topic of inverse surface reconstruction, that is, the
reconstruction of the scattering surface from scattering data. Two scalar algo-
rithms for the Dirichlet problem are presented and some other methods are briefly
discussed.

In Sect. 8.5 we briefly present some solution methods. Since we only discuss
the integral equation formulation in this paper the most important methods are for-
mally exact numerical methods such as collocation or the Galerkin approach, and
approximate iterative techniques which often involve factorization of the integral
equation kernel.

Sect. 8.6 is a brief discussion of other approaches to this problem.

8.2. Coordinate-Space Methods

8.2.1. Scalar Problems

We first develop integral equations in coordinate-space (CC equations) for scalar
problems. The rough surface h(x t ) , (x t == (x, y)), separates two homogeneous
regions Vj(j == 1, 2) of different wavenumber kj and density Pi: For j == 1, z > h,
and for j == 2, Z < h. For the moment consider the surface to be infinite. In region 1
we have incident (1fr in(x )) and scattered (1frfC(x )) fields (where x == (x, y, z)) and
in region 2 a transmitted field (1fr2(X )). Fields in the jth region satisfy the scalar
Helmholtz equation (in index/summation notation with i == 1 - 3)

where

(1)

z > h, j == 1
z < h, j == 2.

(2)



(6)
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An incident plane wave satisfies the same equation in region 1. The free-space
Green's functions G j satisfy an analogous equation with a delta-function source

(aiai + k;)Gj(x, x') == -d(X -x'), (3)

and are explicitly given by

I exp(ik,;r)
Gj(x,x)== ,r==lx-x'l. (4)

4Jrr

Toderivethe integral equationswe use Green's theoremon 1/1:c and G1in region 1,
and 1/12 and G2in region 2, each integrationthus in a regionboundedby the surface
and a semicircleof radius R. Wealso use single(S)-and double(D)-layerpotential
integrals on the surface h with x h == (x, y, h) given by

(Sju)(x) =f1G j(X, x~)u(x~)dx;, (5)

and

(Djv)(x) =f1a~G j(X, x~)v(x~)dx;,
where u and v are densities and an is the normal derivative. Since the fieldssatisfy
a radiation condition, the results can be written as

(7)

and

(8)

where 8,; are the characteristic functions of the regions and N,; the normalderiva-
tives of the appropriate fields. These are fieldrepresentations,i.e. given the bound-
ary values, the scattered field in region 1 is given by (7) and the transmitted field
in region 2 by (8). The boundary values on the surface h are related using the total
field 1/11 in region 1

1/11 (x) == 1/Jin(x) + 1/Jsc(x ),

where 1/Jin is the incident field, and they are for the total fields

where P == P2/PI, and, for the normal derivatives,

Define the boundary field

and normal derivative

(9)

(10)

(11)

(12)

(13)
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then (7) and (8) become

81(X)1/!I(X) = W(x) + (DIF)(x) - (SIN)(x),

where

(14)

and

(16)

In the limit as x approaches the surface from above in (14) and from below in
(16), we use the continuity of the single-layer potential and the discontinuity of
the double-layer potential to form coupled integral equations on F and N. They
are

(17)

and

(18)

where the double-layer integrals must be evaluated using principal values (P).

These are the basic equations which must be solved for the general interface
problem. There are two equations for the two boundary unknowns F and N. Using
F and N the fields in each region are evaluated using (14) and (16). It is possible to
generate additional equations by taking the (exterior) normal derivative of (14) and
(16) and then passing to the surface limit. For bounded obstacles, combinations of
these latter equations with (17) and (18) are used to eliminate interior resonance
effects and W reduces to the incident field.

Perfectly reflecting Dirichlet (D) (F = 0 and p = 0) and Neumann (N) (N = 0
and p approach (0) problems follow from (17) and (18). The Neumann problem
yields a second-kind equation for F (here FN ) written symbolically as

(19)

and a first-kind equation for the Dirichlet problem for N (here ND ) given by

(20)

A second-kind equation for ND follows by taking the exterior normal derivative
of (14) and then the boundary limit. Again, symbolically the result is

(~I + anSI) ND = an W. (21)

The field value in region 1follows from (14).Since the surface is perfectly reflecting
there is no field in region 2.

Finally, note that we have been discussing infinite surfaces. For the integrations
to proceed as we have presented, no plane waves horizontal to the surface can be
present since otherwise the usual radiation condition on the scattered field 18 not
satisfied. In this case the equations must be modified or a more restrictive radiation
condition is necessary.19-21
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8.2.2. Electromagnetic Problems

Each i th component of the scattered (sc) field in region 1, Elc, satisfies (1) so that
Green's theorem proceeds as in the scalar case component by component. Using the
Silver-Mueller radiation condition the results are a straightforward generalization
of the scalar field equations from the upper and lower regions (7) and (8) for the
scattered electric field and its normal derivative Ni

sC and the transmitted electric

field E;2) and its normal derivative Ni(2). They are

(22)

and

(23)

(27)

using the same single and double layer potentials (5) and (6) (and with the same
scalar Green's functions) which now however operate on vector densities. The
total field in region 1 is the sum of incident (in) and scattered (sc) fields

Ej1)(x) == E;n(x) + E;C(x), (24)

and using (24) and its normal derivative in (22) we can write an equation on the
total field

where

is the analogue of (15). Coupled integral equations result if we let x approach the
boundary from above in (25) and from below in (23) to yield

1 (1) ((1») ((1»)zEi (Xh) == Wi(Xh) + P D1Ei (Xh) - S1Ni (Xh),

and

_~Ej2)(Xh) == P(D2Ei2»)(Xh) - (S2Ni(2») (Xh)· (28)

Tocombine (27) and (28) we need boundary conditions on the electric field 10,28,29,34

and its normal derivative.!" The usual transmission boundary conditions on the
electric field can be written as the continuity of the normal component of the
displacement field which is permeability times the electric field as

En . E(2)(Xh) == n . E(l)(Xh), (29)

(where E is the permeability ratio E2/E1) and the continuity of the tangential mag-
netic currents J == n x E

(30)

These are four equations for the three independent boundary unknowns which we
choose as the electric field in region 1. They can be algebraically solved using (29)
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and two of the three equations (30) or the four equations solved using a Moore-
Penrose pseudo-inverse to express the boundary fields in region 2 in terms of those
in region 1 as

Ej2)(Xh) = Aij(Xt )E.~l)(Xh)'

with summation over j from 1 to 3 where

Aij(xt ) = 8ij + (E-
1

- l)ninj,

(31)

(32)

and where dij is the Kronecker delta and the normals are unit normals. This is an
exact result and will be used in (27) and (28), but first we need boundary conditions
on the normal derivatives of the electric fields.

The boundary conditions on the normal derivatives of the electric fields follow
from the continuity conditions ofthe electric surface currents K = -n x H, which
are

(33)

Using Maxwell's equations with no primary (free) sources we derive the following
vector identity which holds for either region:

(34)

where to is circular frequency, repeated indices are summed from 1 to 3, and fl
will be set equal to Jll or Jl2 below. In (23) and (25) we have normal derivative
terms such as

(35)

which means to first take the normal derivative of E; and then set the result on
the surface. We want to use the opposite procedure, that is to first set the field E,
on the surface and then differentiate it. To accomplish this, introduce the bracket
notation

(36)

which means to set the field on the surface first, so that the quantity is only a
function of x and y. If we now differentiate with respect to x and y we get

(37)

and

(38)

where hx and hy are surface slopes. The equations follow if we note ft -rexample
that {Em} is a function of x as both an independent variable and a dependent
variable through h(xt). Equations (37) and (38) are just the chain rule of calculus.
Obviously (34) becomes with this bracket notation

(39)



8. Overview of Rough Surface Scattering 217

We can thus write the first term on the rhs of (39)

nm{aiEm} = nmait{Em}+ nmni{azEm} , (40)

(41)

where the it subscript refers to only transverse variables x and y or i == 1 and 2.
Finally, the divergence condition amEm = 0 also holds on the boundary which
yields

{azE 3} = -{axEl} - {ayE2 } .

Combining all the results we are able to write (39) as

n j{ajEi} = nmdit{Em} - nidpt{Ept} + i(wjl) {Ki } . (42)

The latter equation holds in both regions to give

nj{ajEj1)} = nmait{E~)} - niapt{E~I/} +iWJll{Kjl)},

and

{ E(2)} - d {E(2)} {(2)}. {K(2)}nj aj i -nm it m -niapt E pt +lWJl2 i .

(43)

(44)

The continuity condition on electric currents (33) thus yields a discontinuity con-
dition on the normal derivatives

where

{ (2)} {(l)}nj ajEi = Jlnj ajEi + Vi(Xt),

Vi(Xt) == nmait {E~)} -niapt{E~~)}

- Jlnmait{E~)} + un, apt{E~~)}.

(45)

(46)

The boundary fields in region 2 in (46) can be replaced by boundary fields in
region 1 using (31), and all the terms in (46) can be integrated by parts.

Choose the boundary unknowns as

Ei(Xh) = E?)(Xh), (47)

and

Then, (27) and (28) become

!Ei(Xh) = Wi(Xh) + P(D1Ei)(Xh) - (SlNi)(Xh),

and

(48)

(49)

-!Aij(Xt)Ej(Xh) = P(D2AijEj)(Xh) - Jl(S2Ni )(Xh) - (S2 Vi)(Xh). (50)

The term involving Vi in (50) can be integrated by parts to yield terms only on the
electric field. Defining the vector of six boundary unknowns

(51)
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the resulting matrix system of equations from (49) and (50) can be written in the
form

MX=W, (52)

where three of the four blocks of the matrix M are in diagonal form. Only the fourth
block arising from the electric field coupling in (50) is not diagonal. The result is
an exact 50% sparse matrix which has proved successful in computations. 25

Finally, note that these equations were developed for the electric field and its
normal derivative. Corresponding equations can be developed for the magnetic
field and its normal derivative.

The development above using boundary unknowns of the vector field and its
normal derivative is not the standard version of electromagnetic integral equations
which appear in the literature. These are referred to as the Stratton-Chu equations.
They follow from the previous series of equations by using vector identities in
each region ~i involving the two types of terms which appear in integrals such as
(49) and (50). They are

GnjajEi = iWJLGK; - nmEm8iG + nm8;(GEm ) , (53)

and

(54)

which are written in mixed notation and hold in each region with the appropriate
choice of parameters. The integral of the difference of terms involving the vector
derivative of G Em vanishes. Analogous vector identities on the magnetic fields are
found via the replacement E <===> Hand Jl ¢::=:> -E. The resulting electric field
equations in each region are written as

8 1(x )Ej1)(x ) = Wi(x) - iWJ11(SlK?»)(x)

+ /1 aiGl(X,x~)(nmE2»)(x~)dx;

-/1 [VGl(X,X~) x J(l)(X~)t dx;, (55)

and

8 2(x )E? )(x ) = ilIJJl2 (s2 Ki2»)
(x)

+f1aiG 2(X, x~)(nmE~»(X~)dx~

-/1[VG2(X, x~) x J(2)(X~)]i dx~. (56)

Terms such as nm Em are related to surface charge. Here we set them to zero
consistent with our choice of V . E = O. (Both could be included with nmEm

related to the divergence of the current.) The boundary conditions on the electric
fields are (31) and the boundary conditions on the currents are (30) and (33) and,
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taking the surface limits as x approaches the surface from above in (55) and from
below in (56), the result is

and

1 ."2 Ei(Xh) = W;(Xh) -IWJll(SlK;)(Xh)

- It [VGl(Xh.X~)x J(X~)]i dx~, (57)

1 .2AijEj(Xh) = IWJlz(SzK; )(Xh)

-It[VG2(Xh'X~) x J(x~)]idx~. (58)

If the currents J are expressed in terms of the electric fields, (57) and (58) are
boundary equations on the electric fields and the currents K. To find coupled
equations on only the currents it is necessary to first write equations analogous
to (55) and (56) for the magnetic field H and then to take the cross product of
those equations with the exterior normal and then take the surface limits of the
result. Computational applications have been developed.f Another application to
two-dimensional problems is,45 and fast solution methods for problems of this
type can be found in. 9

As an example, if we assume that the electric surface current is known, then we
can generate two different equations on the magnetic surface current. The first is
an equation of first kind of the general form

(59)

where Up contains incident field terms and the known surface current values, and
Bpqi is the antisymmetric Levi-Civita symbol. This general type of equation is
referred to as an electric field integral equation (EFIE). It is also possible to derive
an equation of second kind of the general form

(60)

where the Qp contains the incident field terms and the known surface current
values. This general type of equation is referred to as a magnetic field integral
equation (MFIE). Combinations of (59) and (60) are used for bounded body scat-
tering problems in order to eliminate the effects of internal resonances.

There is a third integral equation version of the electromagnetic scattering equa-
tions. They can be derived from the Stratton-Chu equations for the magnetic field.
Take the curl of these magnetic field equations and, using the Maxwell equations
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and the fact that the gradient terms in the Stratton-Chu equations vanish under the
curl operation, we get equations on the electric field. The equations have the form

81(X)E?)(x) = ErO)(x) + {v x /1 Gl(X'X~)J(l)(X~)t dx~

- (i/WEd {v x [v x /1 Gl(X, X~)K(l)(X~)]tdx~,(61)

and

82(X )E?)(x) = - {V x f1G2(X, X~)ll)(X~)tdx~

+ (i/WE2) {v x [v x /1 G2(X'X~)K(l)(X~)]t dx~,(62)

where E;O) contains the incident field terms. The general question of conditioning
the equations has been discussed in [12]. Similarly, by taking the curl of (55)
and (56) we derive equations on the magnetic field. They also follow from (61)
and (62) under the replacement E {:=} -J-L and E {:=} H. The surface limits of
these equations follows the same development as for the Stratton-Chu equations
depending on whether we want to generate equations on say the electric fields and
magnetic currents or fully on the currents. The equations also follow directly from
Green's theorem on the electric field and the tensor free-space Green's function
r ij 14 which satisfies the differential equation

8l8l fin(x, x') - 8i8mf mn(x,x') + k2 f in(x , x') = -8ijd(X - x'), (63)

and is explicitly given by

rij(x, x') == 8ijG(x, x') + k-28
i8iG(x, x'),

8.3. Spectral-Space Methods

The development in Sect. 8.3 yielded coordinate-space integral equations where
the arguments of the kernels of the equations were both in coordinate-space (CC).
Here we discuss in some detail a method which generates integral equations on
the same boundary unknowns, but where the "field" variable is in spectral-space,
which is the SC version of the equations." These will also be shown to be useful
later when we look at the problem of surface reconstruction. Another method,
called the CS method, which reverses the behavior of the variables, has also been
developed in [38]. It is useful when there are extended surface waves present.

8.3.1. Scalar Problems

It is possible to derive the SC method by using the Weyl representation for the free-
space Green's function in (14) and (16), but it is simpler to use Green's theorem on
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the fields 1/11 and 1/12 in regions 1and 2 along with appropriate up- and down-going
wave states for the regions, the latter of which in fact form the kernel of the Weyl
representation. The plane wave states in region 1 are

4>~(X) == exp(ik1M±. x), (65)

which satisfies the Helmholtz equation (1) for j == 1 where

M± == (-Mt , ±Mz), (66)

where Jf, == (Mx , My), M, == ml(Mt ) , and M, == J1 - M;- if Mf :s 1and M, ==
iJMl - 1 if Mt

2 ~ 1. The ± designation indicates plane waves which propagate
in an upward (downward) direction from the surface z == h(xt). We write Green's
theorem on 1/11 and l/Jt in the domain V1L defined by z ~ h(xt ) , -L/2 :s (x, y) S
L/2, and z :s Sl where SI is a constant and SI ~ max(h(xt)). The characteristic
function for this region is

(67)

where

8+(xt) == (}(x + L/2)(}(L/2 - x)(}(y + L/2)()(L/2 - y), (68)

where () is the Heaviside function. The result is

where

U±(L) == L -2 ffL/2 [n,ih<t>t(Xh)1ft1 (Xh) - <t>t(Xh)n,a,1ftI (Xh)] dx t ,
-L/2

are integrals on the upper side of h,

S~(L) == L -2 /l L

/

2

[az<t>t(XI)'l/!1 (Xl) - <t>t(xdaz1ft1 (Xl)] dxt.
-L/2

are integrals on Sl and

(69)

(70)

(71)

(72)

are integrals on the side or edge of the domain. In (72) one of the x or y integrations
can be carried out using the delta function which arises from 818+ and, for L
large, bounded surface fields, and bounded h we can write the asymptotic estimate
Et(L) rv O(L -1) where 0 is the order symbol. The integrals in (70) and (71)
behave like 0(1) for large L, so that asymptotically the side integrals vanish faster
than the integrals on hand SI and are dropped. (For periodic surfaces the integrals
cancel exactly due to the Floquet periodicity.) If we define the limits

U± == lim L 2U±(L), (73)
L~oo
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and

then (69) becomes just

st = lim L 2St(L),

L~oo

U± - S±
- l'

(74)

(75)

relating an integral on h to results on S1 and where the integrals in (75) are now
over the domain (-00,00). They are

u: =Ii: [n/a/<t>f(Xh)F(Xh) - ikl<t>f(Xh)N(Xh)] dx t • (76)

and

st =Ii: [az<t>f(xd1f!l(Xl) - <t>f(xdaz1f!l(xd] dx t , (77)

where F(Xh) is the boundary value defined by (12), and N(Xh) is the scaled bound-
ary value (ik1)-1N(Xh) with N(Xh) given by (13). Note that (75) relates the un-
known boundary values on h to values of the field and its normal derivative on
81 and represents an analytic continuation. Further, the terms are functions of the
spectral parameter M± from (65). Differentiating l/>~ we get

nloll/>~(Xh) = ik1nlMl±l/>~(Xh), (78)

and

oz4>t(Xl) = ±ik1ml (M t )4>t (Xl ), (79)

so that (76) and (77) reduce to

U± = ik l Ii: <t>f(Xh) [n/M/±F(Xh) - N(Xh)] dxt. (80)

and

Sf = iklIi: <t>f(Xl)[±ml(Mt )1f!l (Xl) - (ikl)-l a,1f!1 (Xl)] dx t · (81)

Using (9) and a further plane wave decomposition of the incident 1/Ji and scat-
tered 1/Jsc fields as

1f!i(X) =II I(fJt)exp(iktl3· x)dJ3t, (82)

where,6 = (,6" - pz) and pz = Jl - Pr if f3l :::: 1, and pz = iJpl- 1 if f3; ~ 1,
which represents downgoing plane waves (or decaying waves), and

1f!SC(X) = II R(at)exp(ikla·x)dat. (83)

where a = (at, a z), and a z represents either upward propagating plane waves
az = Jl - a; if a;:::: 1, or decaying waves in the positive z-direction,
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az == iJal- 1 when a; 2: 1. Note that (83) will only be used in the 81 inte-
gral which is above the highest surface excursion. It is not a use of the Rayleigh
Hypothesis.Using (9), (82), and (83) to evaluate (81), we can write (75) as

U± == 8 2ik-1 (M) {[(Mt ) (84)
j{ 1 mv t -R(M

t
) ,

where we use (80) for U±.The + equation in (84) uses lPt which is an upgoing
plane (or decaying) waveand effectivelyprojectsout the downgoingincident field
spectral amplitude I, Correspondingly, the - equation in (84) uses lPl which is
downgoing, and it projects out the upgoing reflected field spectral amplitude R.
The incident spectral amplitude [ can be used to create incident fields composed
of plane waves, cylindrical waves, spherical waves, or beams. For a single plane
wave, for example, we have

(85)

where M~ == cos q} sin Ui
, M~ == sin q} cos Ui

, and M~ == m1(~) == cos Ui in
terms of incident polar angle Ui and azimuthal angle cpi. The usual interpreta-
tion of (84) for direct scattering is that given the incident field I , the resulting
equationinvolving[ is one equationused to solvefor the twoboundaryunknowns
inU±.A secondequation is generatedfro~the transmittedfielddiscussed below.
Given the two boundaryunknowns F and N the term R can be evaluated, and the
scattered field can be found from (83). Alternatively if both [ and R are known
we have in (84) two equationsto findthe boundaryunknowns, or to findthe (now)
unknownsurface h as we discuss later.

An analogous development can be carried out for the transmittedfield. We use
Green's theoremon the transmittedfield 0/2 and the (transmitted) plane wavestates

lP"i(x) == exp(ik2P± . x), (86)

where both fields satisfy (1) for j == 2. Here, p± == (-P t , ±Pz) where P, ==
-II - p/ for p? s 1 and P, == i-lP/ - 1 if p? ~ 1. The domain is V2L where
z S htx.), -L/2 s (x, y) s L/2, and z ~ S2 where S2 is a constant below the
lowest surface excursion, S2 S min(h(x t».Again, as L ~ 00, the side integrals
are of lower asymptoticorder, and we get the representation

£± == si, (87)

where

c- =fi: [n/a/rP"f(Xh)'1fr2(Xh) - rP"f(xh)n/a/'1fr2(Xh)] dr, (88)

is an integral on the lower side of hand

S"f =fi: [azrP"f(X2)'1fr2(X2) - rPi'(X2)az'1fr2(X2)] dx t (89)

is an integral along 82. To proceed, differentiate the lPi in (88) and (89), use the
boundary conditions (10) and (11) and definitions (12) and (13) in (88), and the
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spectral representation for the transmitted field (for z ~ S2)

l!t2(X) = K
2II Tht)exp(ik2"Y' x)d"Yt. (90)

where" = (,t, - yz)with yz = .)1- y? when y? ::s 1and yz = i.)y? -1 when
y? ~ 1, and K = k2/ k1• Further, using Snell's law of conservation of ray parameter

Mt=KPt (91)

(95)

(94)

yields the following pair of equations from (87), (88), and (89)

Ii: 4>"t(Xh) [p-l [±JK2 - MI + hxMx + hyMy] F(Xh) - N(Xh)] dr,

= 8]'{2ki2JK2 - MI { T(K-1Mt) (92)
o.

Again, the + equation in (92) contains <pi which is an upgoing plane wave which
projects out the downgoing wave spectral amplitude T. The - equation in (92)
contains 4>:; which is downgoing and the zero on the right-hand side illustrates
that there are no upgoing (incident) waves from region 2. For direct scattering
problems there are thus two equations to solve for the boundary unknowns F and
N, the + equation (84) using (80) and the - equation from (92). The kernels of
both integral equations have arguments in a mixed spectral-coordinate domain and
the equations are referred to as SC equations. The other two equations in (84) and
(92) are used to evaluate the reflection R and transmission T spectral amplitudes.
For an arbitrary incident field spectral amplitude (not a delta function) there is an
overall energy flux conservation relation of the form

II Il(,Bt)12mmlCBt) d,Bt =II IR(at)12mml(at)dat

+pII IT(Mt)12mm2(Mt)dMt. (93)

where 9t represents "real part". This is used as a computational check.
For the Dirichlet problem F(Xh) = 0 and there is no transmitted field so that

(80) and (84) reduce to

11
00

± - ±
-00 kD(M"Xt)N(Xh)dx t = D (Mt ),

where we have explicitly written the Dirichlet kernel (which is just <Pt) as

k~(Mt, Xt) = exp[ -iklMt . x, ± ik1ml(Mt)h(Xt)],

to emphasize its spectral (row, field) and coordinate (column, source) arguments
and

± 2 -2 { -/(Mt )
D (Mt ) = 81l' k1 ml(Mt) D M

R ( t),

with RD referring to the spectral amplitude for the Dirichlet problem.

(96)
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For the Neumann problem N(Xh) == 0, again there is no transmitted field and
(80) and (84) reduce to

Ii: k~(Mt, Xt)F(Xh)dx t = N±(Mt ) , (97)

using the Neumann kernel

k~(Mt, Xt) == nlMl±k~(Mt, Xt),

and

± 2 -2 {1(Mt)
N (Mt) = 8Jr k1 ml(Mt) -RN(M

t),

where RN is the Neumann reflection spectral amplitude.

8.3.2. Electromagnetic Problems, Infinite Surface

(99)

For each component of the electric field the spectral-coordinate development pro-
ceeds in an analogous way to the scalar case. In particular, using Green's theorem
on Ejl) and 4>t (each of which satisfies (1) for j == 1) in the domain VIL yields,
after we let L ~ 00 so that the side integrals drop, a relation analogous to (75)
but with vector fields

where

Ui± =Ii: [n/iJ/cf1t(xh)Ei(xh) - ikl cf1t(xh)Ni(xh)] dx t

is an integral over hand

S~ =Ii: [iJzcf1t(xl)E?)(xd - cf1t(Xl)iJzE?)(Xl)] dxt.

(100)

(101)

(102)

which is an integral along SI where E, and N; are the obvious generalizations of
F and N. Differentiating the 4>t terms in (101) and (102) yields a relation similar
to (84)

(103)

where

Ui± =ikl Ii: cf1t(xh)[n/MfEi(xh)-Ni(xh)] dr., (104)

and where the vector spectral amplitudes follow from generalizations of (82) and
(83)

(105)
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and

(106)

Green's theorem on E}2) and cjJf in region V2L with L --+ 00 yields the gener-
alization of (87)

with

£; =Ii: [njOj4>i'(xh)E}2)(Xh) - 4>i'(Xh)njOJ E?)(Xh)] dx t ,

which is an integral over the lower part of the surface hand

(107)

(108)

(109)s~ =Ii: [Oz4>i'(x2)E?)(X2) - 4>i'(x2)ozE~2)(X2)] dxt.

an equation on S2.
Using the boundary conditions (31) and (45) and differentiating the cjJr in (108)

and (109) we first get

£; = ik2Ii: 4>i'(Xh) [nj pfAim(Xt)Em(Xh) - /LK- 1
Ni(Xh)

- (ik2)- l Vi (Xt )] dxt, (110)

and the latter term, using (31), becomes

Vi(xt) == nm8it{Am,E,} - ni8pt{AptEpt}

- J-Lnmait {Em} + J-Ln i apt {E pt }. (111)

Without going into details, each of the terms in (111) can be integrated by parts
and (110) has t~ interpretation as nondiagonal (coupled) in the E; fields and
diagonal in the N;. Further, evaluating (109) using the spectral representation of
the transmitted field

E?)(x) = K 2II 1i("Yt)exp(ikn ox)d"Yt> (112)

which is a generalization of (90), and using Snell's law (91) we get the result

£; = 8rr2ik11JK2 - M( {~(K-lM t
) (113)

Equations (113) have an analogous projection interpretation as (92). The result for
the direct scatterin~ problem is a total of six equations to solve for the boundary
unknowns E; and N; given by the + equation in (103) and the - equation in (113).
Again note that, as discussed in Sect. 2.2, a block matrix solution of the resulting
system has three of the four blocks diagonal, with the only coupling occurring in
the lower region integration in the E, field in (110). The - equation in (103) is
used to evaluate the scattered vector spectral amplitude R, and the scattered field
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by (106). The + equation in (113) yields the transmitted spectral density and thus
the transmitted field by (112). For a single plane wave of the form

(114)

(118)

If e, == 8i2 we have TE polarization and e, == aOi1 + bOi3 we have TH polarization,
where a and b are related to the angle of incidence.

8.4. Surface Inversion

The problems which have been discussed are direct scattering problems, i.e. given
the surface h find the scattered field. To do the latter we need the boundary val-
ues of the field and its normal derivative (or the currents). To find them we solve
the appropriate integral equations. The inverse problem of surface reconstruction
assumes something else is known and its knowledge will be used to infer the
surface. What is generally assumed known is some information which is gath-
ered away from the surface, i.e. remotely, for example the scattered field. The
incident field is assumed known. We illustrate two algorithms to reconstruct the
surface from these data. Both use the scalar Dirichlet problem from (94), (95), and
(96)48,49.

The first algorithm uses perturbation theory in surface height or, more accurately,
perturbation theory in the phase of k"E from (95), so that the small quantity is
t == kim, (Mt)h(Xt), and we assume t « 1. The difference of terms in (95) to first
order in t is

kiJ(Mt, Xt) - kv(Mr, Xt) == 2ik1ml (Mt)h(xt) exp( -iklMt . Xt). (115)

Using this result, the difference of the two equations (94) becomes with (96)

F[h(Xt)N(Xh)] == ik13[RD(M
t ) + I(Mt ) ], (116)

which states that the two-dimensional Fourier transform F of hN is equal to the
sum of incident plus reflected spectral amplitudes. (Note the k13 factor goes away
with scaled coordinates and height h). Similarly the sum of the two terms in (95)
yields to first order in t

""oJ 2 D
F[N(Xh)] == k1 ml(Mt)[R (Mt) - I(Mt ) ], (117)

i.e. the two-dimensional Fourier transform of the boundary unknown Nis propor-
tional to the difference of reflected and incident spectral amplitudes. If we take the
inverse Fourier transform of both (116) and (117) and simply divide the results we
get an approximate reconstruction of the surface h given by r which is

r(x ) = ik-1F-1[ml(Mr)(RD(Mt ) - I(Mt ) ) ] .

t I F-l[RD(Mt ) + I(Mt ) ]

Since we assumed our surface to be infinite the Fourier transforms are exact.
For finite but nonperiodic surfaces, the surfaces must be tapered to zero outside
some domain, and approximations must be introduced in addition to the use of
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perturbation theory. For periodic surfaces the results can be shown to reduce to
Fourier series. Note that in this development, the boundary value Nautomatically
dropped out in the division. The method has been implemented in one dimension
with good results. Even limited data windows over the incident and scattered angles
can produce useful results, so the method can be made practical.

The second method agaiILfor the Dirichlet problem assumes that the normal
~rivative boundary value N is approximated by the Kirchhoff approximation
NKA which, for a single incident plane wave yields

NKA(Xh) = 2n1Mj exp(iklM~ . x, - iklM~h(xt)), (119)

where the M) are defined following (85). Using (94), (95), and (96) and integration
by parts, the reflection spectral amplitude can be written as

RD(Mt) = ki[ml(Mt)b(Mt)]-l[M: . at + Mjb]D(Mt), (120)

where

b(Mt) = ml(Mt) + M~, (122)

and 'D is the "data" integral of the form

V(Mt) =~ fIco exp(-ik1at · x, - ik1b(Mt)h(Xt» dx t • (123)
4rr -00

This is not a Fourier transform since b is a function of M t , the "transform" vari-
able. However, if we fix b we get a two-dimensional Fourier transform, which is
restricted in at. Its inverse transform yields an approximation to the surface r(x t s b)
which depends on b and which occurs in the phase

exp(-iklbr(xt, b» = F-1['D(M t)] , (124)

and rix., b) is given by the arctangent of the inverse transform. Depending on the
choice of b, different surface reconstructions are possible. There is a constraint

(125)

which defines the Ewald sphere for these parameters. As b increases, the possible
values of lat Idecrease, which produces a low-pass filter on the data. Correspond-
ingly, as b decreases, the set of transform values lat Iincreases, and it can be shown
that this effectively includes more data for grazing incidence where the Kirchhoff
approximation loses validity. The method has been successfully implemented in
one dimension, and is able to reconstruct surface profiles with larger slopes than
the perturbation method."

Other methods to form an algorithm to reconstruct the surface are possible. 40,42

For example, there is an algorithm using a coupled system ofequations to first solve
for the boundary unknown N approximately, then uses a second equation which
relates Nto h. The equations are Volterra equations if only the forward propagating
wave term is included. A second example uses a phase perturbation method of
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higher order. Other authors do not attempt to reconstruct the pointwise behavior
of the surface, but rather settle for reconstructing specific surface parameters. If
one includes time variability in the problem, the surface reflected wavefield can
be recorded in one place, then time reversed and broadcast to a second place. The
displacement in the signal produces a sensitivity to rms height and correlation
function for a random surface, and this can be used to reconstruct these surface
parameters. 37

8.5. Solution Methods

All the methods we have discussed reduce to the solution of integral equations for
the boundary unknowns. Briefly these reduce to the solution of equations of the
form 2,u

AU(t)-l K(t,s)u(s)ds = ftt),

where we consider only one-dimensional examples for simplicity, A and I(t) are
assumed known, Kit, s) is called the kernel and is known, U is the unknown, Dis
the domain, and tED. For our cases the full vector corresponding to I was never
zero since it represented the incident field or a function of the incident field, and
A = 0 (first-kind equation) or A == 1/2 (second-kind equation).

If we pick a set of basis functions {({J1, ({J2, ••• , ({In} and assume that an approxi-
mate solution Un ~ U can be expanded in the basis as

(127)

we can define the residual error as

rn(t) = b;O...epj(t) -l Ktt , s)epj(s)ds) - f(t), (128)

and the object is to make 'net) as small as possible. For the method of collocation,
n points or nodes {t], ti. ... , tn} are chosen and we require that 'net;) = O. The
method is simple and straightforward to implement, and only requires the dimen-
sion of the integrations to be equal to the dimensionality of the problem. For the
Galerkin method, we require that

i==1, ... ,n, (129)

where (., .) denotes an inner product. Again it is comparatively simple to imple-
ment and it generally yields better results than collocation although it requires
the dimensions of the integrations to be twice the dimensionality of the problem.
Various kinds of Galerkin and collocation schemes can be formulated depending
on how the unknown is approximated over the domain, and rigorous error estimates
are available 27.

Another popular approximation method is to write an iterative series of (126)
with the first term approximating u under the integral as A-1 [ts). It is called the



230 DeSanto

Born approximation or field perturbation approximation in the physics literature.
Higher order iterations are also possible, and in the mathematics literature it is
referred to as a Neumann-type expansion. It yields an algorithm of the following
type from (126)

N

Au(n+l)(tk) = f(tk) +L K(tk, sm)u(n)(sm),
m=1

where the superscripts refer to the iteration number and for n = 0

U(l)(tk) = A-I f(tk).

(130)

(131)

If u under the integral is written as a complex phase term P as u = exp(iP)
and the phase term expressed in terms of a perturbation expansion, the resulting
approximation UR, called the Rytov approximation, can be written as

(132)

which is effectively a partial summation of terms in (130).
More general iterative methods are also available. Equation (126) can be reduced

to a matrix system of general form

Zu =f, (133)

where Z is called the impedance matrix. It can be composed of Green's functions
and/or their normal derivatives. All these iterative methods split the impedance
matrix in some way.1,30 For example, choose a splitting matrix Q whose inverse
exists. Multiply (130) by Q-l and rewrite the result as

(134)

where

The resulting algorithm is

u(n+l) = ZiU(n) + Q-l f.

Some simple choices of Q are

toQ == __(w-1D - L)D-1(w- 1D - U),
2-w

where to is the relaxation factor 0 < to < 2 and

Z == D - L - U,

(135)

(136)

(137)

(138)

where D is the diagonal part of Z, and Land U are the remaining lower and
upper triangular matrices. The resulting method is referred to as the symmetric
successive over relaxation (SSOR) method. If Q is chosen as

Q == (I - L)D-1(1 - U), (139)
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so that

Z = (I - L)(I - U) - LU, (140)

then the iterative scheme is

u(n+l) = (I - U)-l(1 - L)-l LUu(n) + (I - U)-l(I - L)-l f, (141)

which is referred to as the forward-backward method (because U and L define
source- field point combinations where the source is forward of the field point for
U and backward for L) or the method of ordered multiple interractions (MOMI).
Finally, the fast multipole method (FMM) uses a factorization of the impedance
matrix of the form

z = Z' + WTV, (142)

where Z', W, T, and V are chosen to be sparse. Generally Z' is chosen as rep-
resenting the nearest (matrix) neighbor interraction. There is also a factorization
method which factors the impedance method into the sum of a sparse matrix, a
block Toeplitz (flat surface) matrix and a remainder. The method is referred to as the
sparse matrix flat surface iterative approach. The factorization, while maintaining
its general form, is open to many variants.

Finally, it should be stressed that all these methods can be made to work with
some degree of accuracy provided the problem itself is well conditioned. If not,
then other more complicated methods must be found such as conditioning approx-
imations, forms of least squares methods involving minimization techniques, or
other regularization techniques.

8.6. Discussion

We briefly discuss some of the topics left out in the previous sections. We described
very general integral equation methods in these sections but they were confined
to scattering and transmission problems with a single deterministic infinite rough
surface separating different but still homogeneous media. If the media are not
homogeneous, then an additional volume integral term appears and the problems
are those of combined surface-volume equations. The dimensionality of the prob-
lem thus increases. There are different combinations of this rough boundary plus
volume problem. The pure rough surface problem can be mapped into a volume
problem. One approach which uses partial differential equations rather than inte-
gral equations can be used to replace the rough surface with a rough equivalent
layer which contains effective (constant) physical parameters such as density and
index of refraction 35. An example is an optical coating. This approach can also be
useful when the problem is propagation in a rough-walled waveguide where the in-
terior physical parameters vary. For these propagation problems what is often done
is to replace the Helmholtz equation (an elliptic partial differential equation) with
its forward propagating approximation called the parabolic approximation which
is a parabolic equation and can be marched in the forward direction where the
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Helmholtz equation cannot. Equivalent integral equations are Volterra equations
whose iterates are known to converge. The disadvantage is that backscattered fields
are ignored, and although this may be a small effect for each individual scattering,
over long ranges and many multiple scatterings, this can become significant. An
example occurs even when the angle of incidence is near grazing. The volume
problem can also become important if the problem to model is an optical layer
stack or a rough surface with a volume inhomogeneity buried below it.

We have presented results for infinite surfaces. Results for finite surfaces follow
from these in different ways depending on what the word "finite" means. One
possibility is to truncate the surface with a tapering of it to zero. The surface is
still infinite but is mostly flat, and the flat surface integration can be extended to
the full surface and approximated by usual flat surface results. If the surface is
actually finite in extent then the diffraction problem simplifies for plane waves,
for example, with the exterior diffraction integrals reducing to a plane wave since
they are now over a full sphere rather than a hemisphere. The result is diffraction
by a finite rough strip and the boundary values are related to the discontinuity of
the field across the strip. For periodic surfaces 15 the reduction of the equations is
straightforward. Again the plane wave integral terms reduce down to a single plane
wave since there is integration only in a single periodic cell, side integrals cancel
because of the Floquet periodicity, and the fields become infinite sum expansions
in Bragg modes.22,23 Rigorous methods for these problems can be found in [5, 6].
Within each period the surface could be a random variable, and the periodic surface
reduction is the simplest way to treat finite random surfaces. The questions of how
to treat surfaces which are "periodic" except for one or a finite number of the
"periodic" cells removed, or for a surface "periodic" only over a semi-infinite line
are much more difficult.

One of the concerns which increased the interest in rough surface scattering
was the phenomenon known as backscatter enhancement.' This is an intensity
peak in the retroreflection direction. There are two types of peaks which can
occur, one narrow in angle which occurs when surface waves are present and the
surface is shallow, the other broad in angle which occurs when the rms height is
approximately a wavelength. The effect was first observed experimentally.

Finally, there are other approaches to the scattering problem. Transport equation
methods have been applied to weakly random surfaces.' In the composite model
the surface is decomposed into a long-scale part and a small-scale component.P
The Kirchhoff approximation is used on the former and perturbation theory is
used on the latter. Phase perturbation methods such as the Rytov approximation
have been extended, as can perturbation methods involving the Green's function."
Boundary variation and analytic continuation can also be combined to yield scat-
tering results." There are also methods which directly use differential equations
rather than formulate integral equations from them. Feynman diagram methods
have also been used 50,14 as well as an expansion of the admittance operator using
a Dirichlet-to-Neumann map. 33

Many of the papers in our references below are themselves review papers which
elaborate and extend our discussion above. They are [17, 24, 31, 26,39,44,43],
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and [47]. These, along with some topical journal issues edited by Maradudin
and Nieto-Vesperinas F and texts by Beckmann and Spizzichino," Ogilvy,36 and
Voronovich'" in conjunction with the papers in this book provide a thorough
overview of the discipline.
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9
Experimental Studies of Scattering
from Weakly Rough Metal Surfaces

K. A. O'DONNELL
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Ensenada, Apartado Postal 2732, Ensenada, Baja California, 22800Mexico

9.1. Introduction

The surface of a weakly rough metal, with height fluctuations of a few nanometers,
can produce remarkably strong and unusual optical effects under appropriate con-
ditions. If the random roughness of a metal surface allows an incident light wave
to launch surface plasmon polaritons, the diffuse scatter emitted by the surface
will receive contributions when these surface waves are subsequently scattered
from the surface. Under such conditions, it has been predicted that effects like
backscattering enhancement may appear in the mean diffuse scatter emitted by the
surface.I'?These theoretical works use sophisticated methods to account for mul-
tiple scattering processes involving plasmon-polariton excitation. In particular,
the incident light wave may be roughness-coupled to surface waves, which may
themselves be scattered many times within the surface, to finally be roughness-
coupled out of the surface so as to contribute to the diffusely scattered light. Other
theoretical works have used direct perturbation' or Monte Carlo" techniques to
study such effects. This line of research has been extended to include theoretical
studies of angular correlation functions' and of the generation of diffuse second
harmonic light from weakly rough metals.P'

There has been a shortage of related experimental works. Certainly, there has
been considerable experimental effort directed toward scattering from the weak
residual roughness of polished optical surfaces.f However, the intent of the work
has often been to characterize the roughness or to better understand the various
means of polishing surfaces. In any case, effects of plasmon-polariton excitation
are not commonly seen in such work even for metallic optical surfaces, presum-
ably because the surface roughness is not appropriate to produce significant sur-
face wave excitation. There have also been many experiments done with strongly
rough metal surfaces and, even though backscattering enhancement is sometimes
observed, these effects are entirely unrelated to polariton excitation." On the other
hand, there have indeed been experimental observations of diffuse scatter arising
from plasmon-polariton excitation on metallic gratings'? or metal-coated coupling
prisms 11having incidental roughness. However, here the excitation is that of a spe-
cific surface wave mode, which occurs only for a particular illumination geometry.

237
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This physical situation is very different from that of a randomly rough free
space/metal interface where, over a wide range of incidence and scattering angles,
the roughness simultaneously provides the coupling mechanisms for excitation,
de-excitation, and multiple scattering of surface waves.

The purpose of this chapter is to describe experimental studies of the conse-
quences of plasmon-polariton excitation on rough metal surfaces. It is possible
that the lack of relevant experiments is due to difficulties in fabricating suitable
surfaces; thus the work described here begins in Sect. 9.2 with a discussion of the
essential surface wave coupling mechanisms and the lithographic surface fabrica-
tion methods employed to produce them. The fabrication method produces highly
one-dimensional surface structures, with Gaussian height statistics and root-mean-
square roughness of a few nanometers. The power spectrum of the roughness is of
rectangular form and, to produce the effects of interest, covers a range of wavenum-
ber that includes that of the surface plasmon polariton.

Section 9.3 presents results for the mean diffuse intensity scattered by these
surfaces, which exhibit backscattering enhancement under a variety of condi-
tions. This effect occurs only for p polarization, as expected for effects related
to plasmon-polariton excitation on one-dimensional surfaces. It is seen that the
rectangular spectrum allows one to either produce or suppress the backscattering
peak and its associated distribution, according to the roughness couplings allowed
by the bandwidth of the rectangular spectrum. Section 9.4 considers experiments
in which the nonlinear response of the metal surface produces a diffuse scatter-
ing distribution of second-harmonic light. Here the rectangular spectrum is again
useful in indicating the origin of the features seen in the distributions. With the
power spectrum of the roughness centered on the wavenumber of the second-
harmonic plasmon polariton, a backscattering effect is observed in the diffuse
second-harmonic light. With the spectrum centered on the wavenumber of the
fundamental plasmon-polariton, the effects are stronger and the observed features
are attributed to a variety of nonlinear wave interactions. Finally, Sect. 9.5 returns
to linear optical effects and considers the angular correlation functions of inten-
sity scattered by the rough surface. Two distinct types of angular correlations are
observed and the effects related to plasmon-polariton excitation are studied.

9.2. Experimental Methods

9.2.1. Essential Couplings

The lowest-order scattering processes producing polariton-related backscattering
enhancement are shown in Fig. 9.1. The incident light wave of frequency (J) is
incident at angle ()i upon a rough surface having dielectric constant 8 == 81 +i82.

In path A of Fig. 9.1, it launches a plasmon polariton at point 1 traveling to, for
example, the right along the surface. This polariton then reaches point 2, where
it is scattered by the roughness to produce diffuse light escaping from the surface
at an angle Os' The time-reversed process may also occur (path B), in which the
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(8)

FIGURE 9.1. Multiple scattering paths on a rough metal surface.

two scattering events occur in the opposite order. Both paths share the same phase
delay suffered by the surface waves; the phase difference ~l/J between paths A and
B instead arises in the free space and it is a straightforward geometrical exercise to
show that ~l/J = (wlc)(sin Oi + sin Os )~x, where ~x is the distance along the mean
surface from point 1 to point 2. It is obvious that ~l/J vanishes at backscattering
(Os = -Oi) and the two contributions will interfere constructively and produce a
backscattering peak. Said differently, paths A and B both produce broad scattering
contributions in the upper half-space; these contributions are guaranteed to interfere
constructively at backscattering, while in other directions they will, in general,
interfere randomly. It is also notable that this same argument applies even if the
surface waves are scattered an arbitrarily large number of times within the surface.
Thus the initial surface wave launched from point 1 may be scattered into a long
sequence of other surface waves before it reaches point 2, but for any such path
1~2 there will always be a time-reversed partner 2~ 1 for which the the phase
difference will vanish at backscattering.

Although the previous arguments treat the couplings as occurring at points of
the surface, it is useful to consider these couplings in terms of the wavenumbers kr

present in the power spectrum G(k) of the random roughness. For example, the
initial launching of surface waves traveling to the right and left may be expressed
by the ±1st-order grating equations for diffraction from roughness wavenumbers

and

+ksp = k + kr1

-ksp = k - krz,

(1)

(2)

where k = (wIe) sin Oi, k;1 and kr2 are positive roughness wavenumbers, and ±ksp =
±(WIC),JSl/(Sl + 1) are the wavenumbers of plasmon polaritons traveling to the
right (+) or left (-). Similarly, with the plasmons ±ksp now excited, they may
themselves be scattered to a propagating scattered wave q = (wlc) sin Os through
two more coupling equations

and

q = +ksp - kr3 ,

q == -ksp + k.s,

(3)

(4)
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where kr3 and kr4 are two more positive wavenumbers present in G(k), and the
=fIst orders are chosen in Eqs. (3) and (4) to couple the evanescent waves ±ksp

to propagating waves. Equations (1)-(4) are indeed all couplings necessary to
produce the backscattering effect.

It is obvious from inspection that, for small angles (Le., small q and k), Eqs. (1)-
(4) predict that all kr's are near ksp. More generally, for 10;\ and lOs I less than
some angle Omroo it is readily shown that all couplings of Eqs. (1)-(4) are satisfied
by a continuous range of roughness wavenumbers within ±(wjc) sinOmax of ksp.

9.2.2. Rectangular Spectra

The early theoretical approaches assumed that G(k) was of Gaussian form, cen-
tered on zero wavenumber, and that the tail of G(k) near ksp was high enough to
produce the polariton coupling just described.l " However, even using sophisti-
cated lithographic techniques, it has not been possible to fabricate such a spectrum
and no comparable experimental results have appeared.

Fortunately, there is a different approach that has made experimental studies
possible.V It has just been made clear that, for angles less than some f)max, it
is sufficient to have a spectrum G(k) that is nonzero in a region of full width
2(wjc) sin f)max, centered on ksp• Indeed, the simplest possibility is that G(k) could
be of constant height within this region and zero elsewhere.

It is possible to fabricate surfaces having this rectangular spectrum using lithog-
raphy of photoresist. In particular, by exposing a photoresist-coated plate to many
sinusoidal intensity patterns, with each pattern having a different wavenumber
and phase, it has been possible to construct a satisfactory random surface profile.
The mathematical justification of this procedure invokes a central limit theorem
due to Rice 13 as follows. Photoresist responds by producing a surface relief h(x)
proportional to its total exposure and, assuming that a plate receives N sequential
exposures, incoherently summed, we have

N

h(x) == ex L In[l + M; cos(knx - ¢n)]~tn ,
n=l

(5)

where n denotes the nth exposure, In is the spatially averaged intensity, M; is the
modulation, k; is the exposure wavenumber, 4Jn is the phase, t:,.tn is the exposure
time, and ex characterizes the material response. Assuming that 4Jn is a random
variable uniformly distributed on the range (0, 2rr), it is straightforward to show
that

so that

N

(h(x)) == ex L In~tn ,

n=l

N

~h(x) == L c; cos(knx - 4Jn) ,
n=l

(6)

(7)
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where (.) denote an ensemble average, ~h(x)=h(x) - (h(x»), and Cn=alnMn
~tn. As discussed by Rice,13 if k; =nD.k, and if c; is specified by

(8)

it may be shown that D.h(x) has the power spectrum G(k) and Gaussian height
statistics as N ~ 00 and Slc ~ O. Thus Rice's theorem is a method of construct-
ing a random process dh(x) from its randomly-phased Fourier components, with
appropriate amplitude weighting to produce the desired spectrum G(k). The con-
vergence to Gaussian statistics can be quite rapid and, for the case of interest here
with en independent of n, dh(x) follows first-order statistics that appear Gaussian
for N as small as 10.14

In the fabrication experiments, surfaces were each given 500 to 8000 sinusoidal
exposures, which required a computer-controlled system. The photoresist plate was
exposed to the sinusoidal interference pattern in the intersection of two beams of
wavelength .442 nm produced by a Heed laser, in a geometry similar to those used
for holographic grating fabrication.!" The maximum wavenumber kmax desired in
the exposure series was obtained with the two exposing beams arriving at equal
but opposite angles with respect to the plate normal. The minimum wavenumber
required was produced by rotating the plate by an angle () so that the two beams
arrived asymmetrically with respect to the normal; the resulting wavenumber was
kmin = kmax cos (). Intermediate exposure wavenumbers were obtained by rotating
the plate to intermediate angles under computer control. The random phase lPn
of Eq. (7) was produced by a glass wedge in one exposing beam which, under
computer control, was positioned randomly for each exposure. A typical exposure
sequence lasted 2 to 10 h, depending on the number of exposures. The surface
standard deviation a obtained varied between 3 and 30 nm, with a decreasing
with increasing N as the total exposure contrast was reduced.

There are a number of subtleties that are required to produce high quality surfaces
with this technique. First, photoresist has high contrast and there is negligible
response for low exposures followed by a critical region where there is a steeply
sloped response with increasing exposure, which ends when all photoresist is
removed from the substrate. Thus care was taken to place the mean exposure at
the center of the steeply sloped response region. With uniform exposing times, the
resulting spectrum G(k) was found to be somewhat sloped; this was corrected by
empirically varying D.tn with wavenumber so as to flatten G(k). Another concern
is that surfaces produced with this method are periodic, as is clear from the Fourier
series ofEq. (7), which would limit the spatial averaging for the reduction of speckle
noise in the experiments. The periodicity was removed by randomly placing each
exposure wavenumber in a uniformly probable range within Sk of its nominal
value. Further, the surface one-dimensionality was slightly reduced by rotating the
plate about its normal to a random angle (typically <0.01°) for each exposure,
so as to produce a 1 mm correlation length in the direction in which the surface
would have been of constant height. With these techniques, surfaces typically
had a 35x 25 mm area available for speckle averaging in the diffuse scattering
experiments.
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FIGURE 9.2. Upperplot: surfacepowerspectrum G(k) determined from profilometry of an
experimental sample, normalized to have area a 2• The arrowsdenote the desiredkmin and
kmax• Lower plot: 25 /tm segmentof surfaceprofilometer data; the vertical scale extends
±70nm.

At this point, the photoresist plate was coated with an optically thick layer of
gold or silver using standard vacuum coating techniques. The surface was then
measured with a Talystep mechanical profilometer and the surface height data
were processed to determine G(k). An example of such data is shown in Fig. 9.2,
where a rectangular spectrum is clearly present. It is also seen that the surface
profile resembles a sinusoid having a randomly modulated envelope, as expected
for a narrowband random process.

9.2.3. Scattering Measurements

For a highly one-dimensional surface that is illuminated with a light wave per-
pendicular to the grooves of the surface, all diffuse scatter remains in the plane of
incidence. The samples employed here were of sufficient quality that all diffuse
scatter remained within 0.10° of the plane of incidence. The sample was mounted
on a rotation stage to set the angle of incidence; a detector arm of length 70 cm
was positioned by a concentric rotation stage to determine the angular dependence
of the diffuse scatter. Both rotation stages were computer-controlled. A few mm
diameter area of the rough surface was illuminated by the laser beam which, af-
ter reflection from the sample, focused at the position of the detector's field lens.
Several low-power lasers were used as sources in the work of Sect. 9.3, while a
pulsed laser was used to produce second harmonic generation in Sect. 9.4.

The detector's collection angle was typically set at 0.5° full width. This was
found to resolve the narrow structures observed while being large enough to re-
duce speckle noise. To further reduce speckle noise, the sample was moved under
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computer control in a raster fashion while the detector signal was averaged to pro-
vide each plotted data point. Considerable effort has also been made to provide ab-
solute normalization of all scattering data using procedures discussed elsewhere."
For an identically polarized incident wave of unit power, the diffuse intensity rep-
resents scattered power per unit planar angle in radians. All plotted results for
diffuse scatter also contain a gap within 1° of the specular angle, where data could
not be taken due to the glare of the specular reflection. Finally, scattering data have
been taken through what appears in results as the backscattering direction by tilting
the surface slightly so that the incident wave was no longer perpendicular to the
surface groove direction. This small tilt (0.5°) was just sufficient for the scattered
light to clear the final mirror of the illumination optics, and in cases checked no
noticeable effect on the data has been found.

9.3. Experimental Results

9.3.1. Ideal Spectrum

Results are now presented for light scattering in the optimal case in which ksp is cen-
tered in the rectangular region of G(k).12 The source employed was a HeNe laser
of wavelength A=612 nm. The surface used was prepared in gold and from the
dielectric constant it is estimated that ksp= 1.059 (wle) = 1.09 x 10-2 nm": The
surface was designed for a maximum coupling angle of Omax = 13.5°, from which
it follows that krnin = 8.5 X 10-3 nm" and kmax= 1.33 X 10-2 nm": Profilome-
try of the surface revealed a satisfactory rectangular spectrum and a = 10.9 nm as
the standard deviation of surface height. The skewness and kurtosis of the sur-
face height are, respectively, -0.30 and 3.0, which are close to those of an ideal
Gaussian variate (0 and 3).

The diffuse intensities (I p«()s I()i)} and (Is«()s I()i)} in p and s polarization are
shown in Fig. 9.3 for three values of 8i . First, in these results there is a considerable
amount of diffuse scatter directed to large lOs I. We attribute this to single scatter
from the surface roughness consistent with the grating equation

q=k+nkr , (9)

where q = (wle) sin Os, k = (role) sin Oi, n = ±1, and kr is a roughness wavenum-
ber falling between kmin and kmax. With n = 1, Eq. (9) is consistent with dif-
fuse scatter for Os ::: 56° when Oi = 0°, but all of these scattered modes become
evanescent for 8i ~ 10° and remain so for larger Oi. With n = -1, Eq. (9) pre-
dicts scattering for Os ~ 56° when Oi =0°, Os S 41° when 8i = 10°, and for Os
within the range (-79°, - 310) when Oi = 18°. All of these considerations are
closely consistent with the behavior of (I p(Os IOi)) and (Is(Os IOi)) at large lOs I in
Fig. 9.3. It is also worth noting that for 0i=0° and 10°, the evanescent modes
coupled to include the polariton resonances at ±ksp as described by Eqs. (1)
and (2).
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FIGURE 9.3. Scattering distributions (I pees lei)} (solidcurves) and (Is(e slei)} (dashed curves)
for ei as noted. The arrows denotes the backscattering direction (downward arrows) and
specular direction (upward arrows). The specularreflection is not shown.

Significantly different behavior is apparent in Fig. 9.3 at small lOs I. For Oi =0°
and 10°, (I p(Os 10i )} presents a compact shape with angular limits that remain
fixed at Os == ±13°, and a narrow peak of nearly twice the height of the remainder
of this distribution appears at the backscattering position. However, at Oi == 18°
this scattering distribution has disappeared in (I p(Os 10i)} and a much lower level of
scatter is seen near the specular angle that is only slightly higher than (Is(Os 10i )}.In
fact, (Is(Os IOi)} always presents alow curve that does not change form significantly,
and only proceeds into the direction of forward-scattering with increasing Oi.

The behavior at small lOs I is consistent with backscattering enhancement in
(I p(Os 10i») involving the surface polaritons. In particular, G(k) has been constructed
to allow the polaritons to outwardly couple to Os within angular limits at ±13.5°,
for all 0; allowing polariton excitation. The resulting distribution should remain
within these fixed angular limits as 0i is varied and, as seen in Fig.9.3 may
thus be easily distinguished from the motion of the single scatter consrsteut with
Eq. (9). It appears likely that the low scattering levels seen in (Is(Os 10;») near
the specular direction, as well as in (lp(OsIOi») for Oi=18° where the inward
polariton coupling has broken down, correspond to single scattering (according to
Eq. (9» from the low levels in G(k) at small wavenumber apparent in Fig. 9.2. The
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FIGURE 9.4. (lp(OsIOj)) for A=612nm and angles (OJ,Os) as shown. Backscattering en-
hancement persists at Os = -OJ. Thebreak in each curve at Os= OJ surrounds thespecular
reflection that rises above thescale of theplot.

absolute level of (lp(Os IOj») in the region attributed to polariton excitation is also
considerablystrongerhere than in theoreticalstudies.1- 4 It is likelythat this strong
scatter arises from the narrowwidth of G(k), as the area of G(k) within the width
of the polaritonresonance is far greater than wouldbefound for a broad Gaussian
spectrum with identical a.

The claim that the observed effects arise from polariton excitation receives
more support from more completedata sets. Figure 9.4 shows the diffuse intensity
(lp(Os 10j») for all (OJ , Os) within(±18°, ±24°).There is a remarkablesquareregion
in the (OJ, Os) plane where(Ip(Os IOj») abruptlyrisesfromlowlevels.Theboundaries
of this region fall at OJ or Os equal to ±13° where the polaritoncoupling limits are
expected; this indicates that nearlyall of the diffuse scatter seen in Fig. 9.4 arises
throughthe mechanisms involving the polaritondescribedby Eqs. (1)-(4). A weak
backscattering peak is visible in the scans at OJ=± 13°, and this peak quickly rises
to becomequite distinct for all intermediateOJ . The powercontainedin the diffuse
intensity (lp(OsIOj») for the range of Os shown in Fig. 9.4 is 0.0071 at OJ = 18°,
although this rises to 0.026 at OJ=13°, and then remains nearly fixedat 0.050 for
IOd::: u -.

9.3.2. Detuned Case

The case is now considered when G(k) still covers ksp, but is no longer centered
on it.15 To achieve this, the values of kmin and kmax quoted earlier were kept, but
the light source was nowtuned to a frequency w other than the optimalone, which
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moves ksp away from the center of the rectangle of G(k). The surface used here
was fabricated in gold with a = 15.5 nm and is indeed the sample of Fig. 9.2.

Figure 9.5 shows results for the surface's specular reflection in p polarization,
which illustrate the inward couplings of Eqs. (1) and (2). For A=674 nm, a sharp
decrease in the reflection appears at ()i ~ - 22.1o. We associate this with the onset
of the excitation of +ksp= 1.045 (w/c) via kmax as in +ksp= (w/c) sin()i + kmax.

A second decrease occurs at ()i~ - 7.3°, which is associated with excitation
of -ksp= -1.045 (w/c) via kmin as in -ksp= (w/c) sin ()i - kmin. As ()i increases
further, there is a flat region where both +kspand -kspremain excited via wavenum-
bers in G(k) between kmin and kmax until, symmetrically, at (Ji~7.3° the excita-
tion of +ksp ceases, and finally the excitation of -ksp breaks down at (Ji~ 22.1°.
As A decreases in Fig. 9.5, the excitation regions of +ksp and -ksp overlap more
closely (633 nm), appear to coincide (612 nm, the optimum case of Figs. 9.3-
9.4), and withdraw from one another (594 nm) until the flat region that indicates
simultaneous ±ksp excitation has disappeared (543 nrn).

It is of interest to consider the diffuse scatter in one of the cases of Fig. 9.5 when
the counterpropagating surface wave excitation is not necessarily simultaneous.
Particularly interesting behavior is exhibited by (I p«()s I()i)) with A= 674 nm, for
which results are shown in Fig. 9.6 for small angles. It is quite clear that two
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0.10

FIGURE9.6. (lp(BsIBj ) } forA=674nmand angles (Bj • Bs)asshown.Theopen region along
theplot's diagonal forBs = Bj surrounds thespecular reflection; backscattering enhancement
is apparent as thepeak in thecentral region forBs = -Bj •

scatteringdistributions in the (8j , 8s ) plane are interacting with one another. One
distributionapparentlyarises via +ksp because it is constrainedto 8j and Os within
the range (-22°, 7°), whilea similardistributionarises via -kspand is constrained
to OJ and Os within (-7°,22°). In the overlap of the two distributions a slightly
raised region is seen (IOil.:::: 7° and lOs I.:::: 7°); it is only there that backscattering
enhancementis clearly seen. The transition betweenregionsis remarkablyabrupt
(occurringover roughly 3°) apparentlybecauseof the narrowpolaritonresonance
and the sharp limits of G(k).

The essential qualities of the backscatteringeffect are immediately obvious in
this plot.First, whenpolariton-related scatter is insignificant (for IOj 1 or les I > 22°),
(Ip(es lej») immediately falls to low levels.There are regions that receivecontribu-
tions from surface waves travelingin only one direction (for example, witheither
10° <ej <22° or 10° <o, <22°, only -ksp contributes significantly) where scat-
tering levelsmay be large but backscatteringenhancementis not apparent.Only in
the region of overlap, wherecontributions from ±ksp are present, is backscattering
enhancementclearlyseen. It is of interestto considerthat tuningx has theeffectof
varying the amount of overlap between the two rectangular distributions present
in Fig. 9.6; in the ideal case of Fig. 9.4 with )...=612 nm, the twodistributionshave
overlapped perfectly.

9.4. Second Harmonic Generation

It has been known for many years that a flat metal surfacecan produce low levels
of second-harmonic light in a specularly reflected laser beam. Even though the
bulkof an evaporatedmetal has inversionsymmetry, there are contributions to the
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second-harmonic response that arise both from the surface and from the bulk of
the medium."

There are two pioneering theoretical studies that have considered related ef-
fects for a weakly rough metal in which a diffuse scattering distribution arises
in the second harmonic.t' Both works employed Gaussian roughness spec-
tra with one-dimensional surface roughness. In a broad distribution of second-
harmonic diffuse light, a pair of narrow peaks have been predicted that arise from
plasmon-polariton excitation at the fundamental frequencyf-? Including multiple
scattering effects, two additional peaks have been predicted that appear in the
backscattering direction and in the direction normal to the surface." The latter
two peaks are of particular interest here because they are related to the effects of
Sect. 9.3.

There have been few experimental works that have considered second-harmonic
generation from a free space/metal interface. The reason for the lack of experiments
is probably that detected signal levels have generally been too weak to provide
meaningful results. There have been some works that have employed coupling
prisms to enhance the effects.'" however, as mentioned in Sect. 9.1 these systems
are physically very different from a simple free space/metal interface. On the
other hand, the surfaces having rectangular spectra employed in Sect. 9.3 produce
unusually strong plasmon-polariton coupling, thus producing strong surface fields
that may compensate for the weak surface nonlinearity. Still, it is to be anticipated
that signal levels will be low.

The experimental geometry was as described in Sect. 9.2.3, but the laser
source and the detection techniques were considerably different. ANd:YAG
laser/regenerative amplifier system produced pulses of wavelength 1064 nm, pulse
length 100 ps, peak power 107 W, and repetition rate 1 kHz. The slightly conver-
gent incident beam illuminated a 2 mm width of the sample and, as before, the
sample was scanned to reduce speckle noise. The light scattered by the surface
passed through an infrared-absorbing filter and a 532 nm interference filter, and
was finally focused by a field lens onto a photon-counting photomultiplier. The
incident laser beam was set to p polarization in the cases presented here, and it
was verified that the second-harmonic scattering distributions were also p polar-
ized. An electronic counter was gated to accept photoelectric counts within a 5 ns
window coincident with each laser pulse and other photocounts were rejected. A
number of procedures were performed to test the validity of the detected signal.
For example, scanning the detector above the plane of incidence reduced the pho-
tocount rate to well under 1 S-I. Similar effects were observed if the counter gate
was set a few ns away from its synchronized position, or if the wavelength of the
interference filter was changed slightly. Further, it was verified that the photocount
rate depended quadratically on the fundamental laser power incident on the metal
surface, as expected for second-harmonic generation.

The rectangular roughness spectrum may be centered on the polariton wavenum-
ber at either the laser's frequency co or the harmonic frequency 2w. As will be seen
in Sects. 9.4.1 and 9.4.2, these two cases provide quite different results. Most
importantly, neither the backscattering peak nor the peak in the direction of the
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surface normal are present in the measurements presented here, and other unex-
pected phenomena appear.

9.4.1. Roughness Spectrum Centered on k;:

Results are now presented for the case with the harmonic plasmon wavenumber
k;; centered in the rectangular region of G(k ).18 The surface was fabricated in

silver, and we estimate from the dielectric constant that k;; = 1.052 (2mj c) =
1.24 x 10-2nm-1• The surface was designed for a maximum coupling angle
of emax= 12.2°, from which it follows that kmin =9.9 X 10-3 nm"! and k max=
1.49 X 10-2 nm:'. Mechanical profilometry of the surface revealed a satisfactory
rectangular spectrum with a = 11.1 nm.

This surface should be capable of producing the couplings required for the
backscattering peak predicted in [7]. The scattering mechanisms are as follows.
First, the incident light wave of frequency to interacts with the nonlinearity of the
metal to produce a field at 2m. The 2m field is then scattered by the roughness
to excite counterpropagating surface plasmon polaritons, which are then scat-
tered by the roughness to emerge from the surface as propagating waves. As
in the linear case of Sect. 9.3.1, the two distinct scattering processes involving
the right- and left-traveling polaritons interfere constructively in the backseat-
tering direction, producing the peak in the diffuse scatter. The nonlinear-
ity is thus required only for the first surface interaction; the subsequent
scattering processes are identical to those that would occur with the surface
illuminated at 2m.

The principal results for the 2w scattering distribution (I 2W(()s I()i)) are shown in
Fig. 9.7. It is seen that the distributions indeed resemble the results in the linear
case of Fig. 9.3; this observation supports the statement that the situation should
be similar to illuminating this surface at 2w. In particular, the single scattering for
large I()sIis similar to that of Fig. 9.3. Further, the polariton-related scatter is present
for I()sl~()max in Fig. 9.7 with ()i=3° and 10°; this distribution again disappears
as it should for ()i = 17° as the polariton coupling ceases. However, there is also
a striking difference between the linear and second-harmonic cases. In particular,
instead of the backscattering peak of the linear case, the second-harmonic case
produces remarkable minima there in Fig. 9.7. It is seen that the photon rates are
quite low (10 S-I), but the signal appeared to be well isolated using the techniques
described earlier. Considerable care has been taken in the normalization of the
data and, while the procedure is lengthy, we estimate the absolute scale to be
correct within a factor of 2. The area of each curve of Fig. 9.7 is approximately
5 x 10-23 crrr' /watt, which is far less than the specular second harmonic signal
from a flat silver surface at oblique ()i .16

Thus the striking result is the distinct backscattering minimum that is the op-
posite of the theoretical prediction. Our conditions differ from those of [7] which
assume that G(k) is of Gaussian form, and show backscattering results only for
larger f)i (35° and 45°). However, it is unclear how these differences could be



10
6; = 10° 12

8 10

6 8

6
4

4

2 2

i
6;= 17°

6 3.2x 10-22 8

6
4

4
2 2

-90 -60 -30 0 30 60 e, 90

FIGURE 9.7. For the incident angles (}j shown, the second-harmonic scattering distribution
(]2ltJ«(}s I(};)} in the case with G(k) centered on the harmonic polariton wavenumber k;;.
Dashed vertical lines indicate the backscattering direction.

significant. Certainly, their term producing the backscattering effect (the last term
of their Eq. (61)) is positive definite and could not produce a minimum. Monte
Carlo calculations have been reported for a slightly wider rectangular spectrum.'?
a backscattering minimum appeared for ()i = 0°, which became a minimum of
reduced depth for ()i =3° and finally a peak with ()i =15°. There is thus some sim-
ilarity to the experimental results, although there is little sign of variation of the
depth of the minima in Fig. 9.7. Other theoretical results!" even show backseat-
tering peaks for non-normal incidence for one model of the surface nonlinearity,
although calculations for another model exhibit persistent backscattering peaks for
all ()i shown and is thus consistent with Fig. 9.7.

These calculations demonstrate that much progress has been made toward un-
derstanding these unusual effects. Still, it may be said that the physical mechanism
responsible for the minimum remains an open issue. The backscattering peak of lin-
ear optics occurs because the scattering contribution arising via the right-traveling
polariton is random but identical to that of the left-traveling polariton at backseat-
tering. To produce the backscattering minimum seen here at 2w, one may modify
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this argument so as to introduce a phase shift between these two contributions, thus
producing destructive interference. It appears most fruitful to look for a physical
justification of a phase shift in the interaction required for the w incident field to
launch the 2w polaritons, as this coupling appears to be the most significant differ-
ence between the linear and nonlinear scattering situations. It may also be relevant
that a strongly rough metal surface is known to produce a minimum at backseat-
tering in its second-harmonic distribution.P A plausible physical reason for this
effect has been put forth,20 although the scattering mechanisms are quite different
in the case of strong roughness and do not involve surface plasmon polaritons.

9.4.2. Roughness Spectrum Centered on k~

The second case considered here is that with the fundamental polariton wave-
number k~ centered in the rectangular region of G(k).21 This surface was also
fabricated in silver, and we estimate from the dielectric constant that k~ ==

1.01 (wjc) ==5.96 x 10-3 nm- I • The surface was designed for a maximum cou-
pling angle of Omax == 15°, from which it follows that kmin ==4.43 X 10-3 nm:'
and kmax ==7.49 X 10-3 nm:'. Profilometry of the surface determined the surface
roughness a to be 28.3 nm.

This surface is capable of producing the couplings required by all other peaks
of [6] and [7]. This may be demonstrated through consideration of the coupling
principle implicit in [6] and [7]. In general, the surface nonlinearity acts upon
a pair of w-waves k~ and kr to produce a scattered 2w-wave q2w according to
the rule

2w kW kW
q == 1+ 2' (10)

from which the emission angle Os of q2w == (2w j c) sin Os may be calculated. Any
of the w-waves present at the surface can be taken as k~ or kC:, although stronger
waves should play more significant roles.

In particular, the two narrow peaks of [6] and [7] arise from the interaction
of the incident wave k~ == (w j c) sin Oi with the fundamental plasmon polaritonskr == ±k~. Because the roughness strongly excites ±k~, it is hoped that these
peaks should appear in the experiments. The more interesting peak of [7] is in the
direction normal to the mean surface. This was predicted to arise from the strongly
excited fundamental plasmons k~ == +k~ and kr == -k~. Obviously, Eq. (10) then
predicts q2w == 0, so this interaction would appear at the surface normal.

The scattering distribution ([2W(OsIOi)} is shown in Fig. 9.8 for Oi ==8°,13° and
17°. The signals are much stronger than in Fig. 9.7 and, when there is excitation
of k~ (Oi == 8° and 13°), there are two peaks that rise well above the scale. Indeed,
these two peaks fall at the Os calculated for the incident wave/±k~ interaction
described earlier, which indicates the origin of the peaks. However it is obvious
that the normal peak at Os == 0° is completely absent. Instead, a broad distribution
having a width of approximately 20° appears for small lOs I, which is far wider
than expected for the normal peak. In particular, the peak would have appeared
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with width similar to that of the two high peaks, as the widths are all governed by
that of the resonance at k~. Further data have been taken for other f)i and a ;21 the
appearance is similar to Fig. 9.8 and a normal peak has never been observed. It
may thus be summarized that all necessary conditions to produce the normal peak
have been satisfied, but there is no evidence whatsoever of the peak.

Still, with the help ofEq. (10), it is possible to investigate the origin ofthe features
seen in Fig. 9.8. For example, the interaction between the incident wave k~ =
(w jc) sin f)i and the waves of the lowest-order linear scatter k~ = (w jc) sin f)i ± k,
predicts that

q2W = 2(wjc) sinf)i ± k, , (11)
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where k; can lie between kmin and kmax. With q2w == (2w/ c) sin Os, it is then a simple
matter to calculate the resulting range of of scattering angles ()s to which coupling
is possible, which are shown as A± in Fig. 9.8. The coupling A+ seems to be
apparent at low levels for 0i== 13° and 17°, although in other cases A± overlaps
with other scattering contributions.

Because all scattering contributions besides A+ disappear in ([2w «()s I()i)) for ()i ==
17° when ±k~ is not excited, it is likely that other contributions rely on excitation
of ±k~. Consider, for example, the nonlinear interaction between k~ == ±k~ and,
once again, the single scatter kf == (w / c) sin Oi ± k., For k; between kmin and kmax,
the coupling ranges in ()s predicted by Eq. (10) are shown as B± in Fig. 9.8.
For ()i == 8° the couplings B± are clearly seen, at ()i == 13° B- is present while
B+ is mostly evanescent, and at ()i == 17° the scatter has disappeared, presumably
because ±k~ is not excited. These observations thus provide strong evidence that
these wave interactions are occurring on the surface.

Some of the stronger signal levels in Fig. 9.8 may be attributed to the excitation
of ±k;;. In particular, ±k;; can couple to propagating waves by simple roughness
scattering as in

q2w == ±k2w
T ksp T r (12)

where the sign of the roughness coupling is reversed to make q2w a propagating
wave. The coupling ranges produced for k; between kmin and kmax are shown in
Fig. 9.8 as C± and coincide with some of the higher levels of ([2w«()s I()i»), until the
coupling also disappears for ()i == 17°.Thus there is excitation of ±k;; that is linked
to fundamental plasmon excitation; this could arise in Eq. (10) with k~ == ±k~
and k~ == (w / c) sin ()i ± k, so that q2w== k;;, which is a special case of the B±
coupling described earlier.

The last interaction considered here, with coupling range denoted by 0 in
Fig. 9.8, is with kf == (w / c) sin f)i and with k~ being part of the distribution asso-
ciated with backscattering enhancement at frequency to for If)s I ~ f)max. The range
D spans small If)s I and, even though there are modest levels of scatter present,
the distribution there is broader than the coupling limits and it is unclear if the
observed scatter is related to the proposed process. However, for weaker a, the
experimental distribution does indeed produce scatter that is much more consistent
with the interval 0.21

Monte Carlo calculations have been recently reported for ([2w«()s I()i») with pa-
rameters as in the experimental results. I? For two different models of the surface
nonlinearity, the scattering levels differed considerably, but both models repro-
duced remarkably well the features of (/2w«()s I()i)} seen in the experiments. In par-
ticular, the two high peaks are present, and the other components of (/2w(f)s If)i)}
appear at similar positions and with similar relative heights. As in the experiments,
a distinct peak at ()s == 0° was not present throughout the results, although there was
a minimum there only for ()i == 0°. Unfortunately, it has not been possible to take
data under these conditions because of the glare of the specular reflection.
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9.5. Angular Correlation Functions

In this section, we return to the case of linear scattering at a fixed w, but with
a different question: When will the scattered intensity for a given pair of angles
(Oil, 0sl) be correlated with a second intensity for different angles (Oi2, Os2)?

The discussion is restricted to the case in which the illuminated surface is large
in the sense that many correlation cells of the surface are illuminated. The scat-
tered amplitude then arises from many essentially independent contributions; it
is permissible to invoke the central limit theorem and conclude that the scattered
amplitude is jointly Gaussian. Applying the Gaussian moment theorem'? it follows
that

(8/(OslIOil) 8/(Os210i2)) = 1 (A(OslIOi1) A*(Os210i2)) 1
2

+ 1 (A(OslIOi1) A(Os210i2)) 1
2

, (13)

where 81 == 1 - (I), and A is understood to be the diffusely scattered amplitude
from which the specular reflection has been subtracted. Equation (13) is a gener-
alization of the common circular Gaussian moment theorem!" and has a second
term that expresses the consequences of noncircular statistics. Thus, to investigate
correlations of intensity, it is necessary to address the two fundamental amplitude
correlations of Eq. (13).

A complete discussion would require a theoretical digression and thus the
results are simply stated. It is found that (A(OslIOil) A*(Os210i2)) is nonzero
only when (w/c)(sinOsl-sinOi1) = (w/c)(sinOs2-sinOi2). Similarly, it is also
found that (A(OslIOil)A(Os210i2)} is nonzero only when (w/c)(sinOsl-sinOil)=
-(wjc)(sin 8s2-sin 8i2). These statements have been justified rigorously in per-
turbation theory including all terms to fourth order in (a / A),23 although this result
ultimately relies on the statistical stationarity of the surface roughness and should
then be valid for all orders.

The interpretation of Eq. (13) is thus unusual because the two terms contribute
separately for different configurations. Defining 8 qk as (w / c)(sin Os - sin Oi), only
the first term contributes for two intensities that have equal 8 qk , while only the
second term contributes for two intensities that have opposite ~qk. For all other
angular configurations, the intensity correlation vanishes. Physically, ~qk may be
regarded as a measure of the deviation of geometry from the specular condition
(8 qk =0). Thus the first term ofEq. (13) implies that a correlation may be present
as long as this deviation is held constant, which may be regarded as the law of
speckle motion as 8i is varied. Further, the second term of Eq. (13) implies that
there can be another correlation between intensities having opposite deviations
from specular, which thus expresses the degree of symmetry of the speckle about
specular. For brevity in the following discussions, the first and second terms of
Eq. (13) are denoted by, respectively, C!/ and C-;./ .

To investigate these correlations, the experimental techniques of Sect. 9.2.3 were
modified. The incident beam of wavelength 612 nm was focused to a waist at the
surface having e-1 intensity diameter 67 usn, which served to make the speckle
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width large at the detector in the far field. To resolve the speckles, the detector
aperture size was reduced to a slit much narrower than a speckle. Data were taken
by placing the experiment in a configuration «()i, ()s) and recording the intensity
as the sample was translated to a series of spatial coordinates, thus producing
5.1 x 103 nearly independent realizations of scattered intensity. The geometry was
then configured to new angles consistent with the correlation conditions discussed
earlier, and the process was repeated. After data were taken for a total of 170
configurations, numerical computation of the correlations between the data sets
revealed the correlation functions of interest. The surface employed was, as in
Sect. 9.3.2, that of Fig. 9.2.

Data were taken for /).qk = 0.04 to / c which implies, for small angles, intensities
approximately 2° away from the specular reflection. In Fig. 9.9, the results are
plotted as a function of ()i2 for several values of ()i1. For ()i1 = 16.2°, C!/ and
C-;./ both remain small because ()i1 > Ornax. For smaller Oil producing polariton
excitation, a nearly symmetric pair of peaks is seen in C!/ (Oil = 6.3°), which
interact «()i1= 0.6°), and finally overlap «()i1= -1.10) to produce a single distinct
peak with the geometry set at backscattering. On the other hand, C-;./ is nonzero
but remains at quite low levels throughout the measurements. In each curve of C!/,
there is a point that represents the correlation between two identical intensities.
This peak appears on the right and obviously implies perfect correlation. The peak
on the left represents the correlation between two intensities related by reciprocity
with «()i2, ()s2) = (-()sl, -()il), for which perfect recorrelation is predicted. In the
experiment the degree of correlation for the reciprocal point is 0.99 until it reaches
unity when the reciprocal and autocorrelation points overlap at ()i1 = -1.1°.

There are several notable aspects of these data. The first is how rapidly the
intensity decorrelates; the peaks of ct/ in Fig. 9.9 are only approximately 3°
wide. Further, it is seen that C-;./ remains small throughout Fig. 9.9 and no peaks
appear that are comparable to those of C1/. The degree of correlation implied by
C~/ remains small, reaching at most 0.3, although this is not shown in Fig. 9.9.
This situation is completely different for a weakly rough surface without significant
plasmon-polariton excitation, where narrow peaks do not generally appear in C!/,
the degree of correlation throughout both C!/ and C-;./ is only slightly less than
unity, and ct/ and C-;./ are of similar height.P From an observational point of
view, in the absence of polariton excitation the speckles can be seen moving into
the forward direction with increasing ()i, while maintaining their appearance. In
this case the symmetry of the speckle about the specular reflection can be seen,
and is even more obviously present as symmetric noise in data taken as a detector
is scanned through specular. On the other hand, for a surface producing polariton
excitation as in Fig. 9.9, the speckles boil or decorrelate extremely rapidly with
increasing ()i, to the extent that speckle motion is much less clearly seen. Further,
the symmetry about specular is not apparent either visually or by scanning a
detector through the specular region. Thus the physical behavior of the speckle
pattern varies greatly, and these differences manifest themselves in C1/ and C-;./.

Finally, it is notable that there remains more work to be done in the study of
the correlation functions under a wide variety of conditions. It is stressed that C~/
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(or, in theoretical work (A(OslIOil) A(Os210i2)} ) remains poorly understood; it is
unclear if multiple scattering can produce interesting effects in C~l' or even if
it can be significant in cases other than that of extremely weak roughness. Also,
it is notable that a variety of other intensity correlation functions have been pre-
dicted theoretically when the Gaussian moment theorem of Eq. (13) is violated
due to a small surface illumination area," Attempts to observe these in the experi-
ments described here were unsuccessful, and using a smaller illuminated area was
impractical due to alignment difficulties.

9.6. Conclusions

Experimental results have been presented for the diffuse scatter from randomly
rough metal surfaces that produce significant plasmon-polariton excitation. To a
large extent this work relies on the ability to fabricate and characterize such sur-
faces, and here a novel approach has been employed to produce metal surfaces with
a rectangular roughness power spectrum that produces unusually strong effects.
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The surfaces are fabricated using photolithography in which the total exposure
is the sum of many sinusoidal interference patterns. The resulting roughness is
consistent with a Gaussian random process and is highly one-dimensional, which
simplifies the scattering experiments and allows comparison with theoretical works
using this convenient surface model.

For these surfaces, the effects related to plasmon-polariton excitation are clear.
In particular, with the rectangular spectrum centered on the plasmon-polariton
wavenumber, the mean diffuse scatter contains a backscattering peak. If the
plasmon-polariton wavenumber is shifted within the spectrum, the diffuse emis-
sion of the plasmon polaritons becomes more distinct, with the backscattering
peak being present for angles of incidence when counterpropagating plasmon
polaritons have been excited. Further, it has been shown that the form of the angu-
lar correlation functions of the diffuse intensity is strongly affected by plasmon-
polariton excitation.

The intense surface fields produced also make possible the study of the emission
of diffuse second harmonic light from the rough metal surfaces. For a rectangular
spectrum centered on the wavenumber of the second harmonic plasmon-polariton,
a backscattering effect appears as a distinct minimum in the second-harmonic
diffuse scatter. With the rectangular spectrum centered on the fundamental plas-
mon polariton wavenumber, the second-harmonic diffuse scatter is considerably
stronger and contains a number of nonlinear wave interactions that are discussed
in detail. Such investigations serve to demonstrate the wide variety of nonlinear
wave interactions possible on a metal surface and, ultimately, may lead to a better
understanding of the nonlinear mechanisms themselves.
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10.1. Introduction

Optical scattering measurements are extremely sensitive for locating and charac-
terizing defects, contamination, and roughness on smooth surfaces. Its sensitive,
high-throughput, and nondestructive nature has made optical scattering the pre-
ferred method for inspecting many materials whose surfaces must be pristine be-
fore manufacturing devices on them, such as polished silicon for the semiconductor
microelectronics industry, substrates for magnetic storage media, and glass used
for information display systems.' Optical scattering often limits the performance
of optics, such as those used for satellite telescopes or ring-laser gyroscopes.
Understanding and being able to measure roughness can aid manufacturers in de-
veloping these materials. Lastly, the morphology of thin films is determined by
the mechanisms of film growth and the interactions between the interfaces, and
measurements of the relative roughness and correlation between the interfaces can
yield significant information about the underlying physics in these systems. 2

Since there may be a number of different sources of optical scatter in a material
or thin film besides roughness, such as material inhomogeneity, subsurface de-
fects, or particles, it may be important to distinguish among the different sources
in order to properly interpret optical scattering measurements. Recent research
has demonstrated that the polarization of light scattering can be instrumental in
this application.' -7 Theoretical and experimental results have shown that differ-
ent scattering sources yield unique polarization signatures that can be used to
distinguish scattering sources or validate the interpretation of intensity data.

This chapter will discuss the measurement and interpretation of roughness by
angle-resolved optical scattering with an emphasis on utilizing information con-
tained in the polarization. In Sect. 10.2, we will describe how to quantify scattered
light in terms of its intensity and polarization properties. In Sect. 10.3, we will
discuss measurement methods. In Sect. 10.4, we will describe roughness of a sin-
gle interface, where we use the polarization information primarily to validate the
interpretation. In Sect. 10.5, we will describe the scattering by the two layers of
a dielectric film and show how the polarization can yield information about the
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relative amplitude and correlation between the roughness of the two interfaces.
In the final section, Sect. 10.6, we will make some remarks about extending the
technique to more interfaces.

10.2. Definitions

Angle-resolved measurements are concerned with quantifying light originating
from a source direction, defined by a polar angle Oi and azimuthal angle lPi, and
scattered into a reflected direction, defined by a polar angle Or and azimuthal angle
lPr. One quantity describing the directional dependence of scatter from a surface
is the bidirectional reflectance distribution function (BRDF), defined historically 8

as the differential radiance dLr (power per unit solid angle per unit projected
surface area) scattered by a uniformly illuminated, homogeneous material per unit
differential incident irradiance dEi (power per unit surface area):

(1)

Eq. (1), while often quoted, is of little practical use, because most materials are not
homogeneous and most illumination schemes are not uniform. That is, even if a
material does not have appreciable variation across its surface, any real specimen
has a finite extent. Likewise, while we can generate illumination that is approxi-
mately uniform within some region, that region of illumination must come to an
end, if not simply at the specimen edge. The biggest problem with this definition
is that diffuse materials often emit light outside of a finitely illur-: .ted region.
When we see Eq. (1), but ignore the words surrounding it, then we can easily
find ourselves coping with an apparently infinite BRDF in certain regions of the
sample.

An equivalent definition of the BRDF considers the average power (<I>r) scattered
into a solid angle n for a given incident power <l>i:

(2)

That is, the BRDF is the average fraction of light scattered per projectedsolid angle
for a finitely illuminated region. It is a distribution in the scattering direction and
a function of incident direction. It is also a function of wavelength, polarization,
and sample properties.

While the BRDF appears to have a term (i.e., cos Or) that might cause it to
diverge for large scattering angles, most surface scattering sources behave in such
a manner that the scattering per unit solid angle falls off in angle fast enough that
the BRDF not only remains finite, but approaches zero for Or -+ 900

• In real data,
however, this may not be true. Rayleigh scatter by air within the field of view of the
receiver, a primary background source in smooth surface scatter measurements, and
other sources of stray light do not vanish at large scattering angles. 9 Furthermore,
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small uncertainties in the scattering angle can lead to apparent uncertainties in the
BRDF, which do not translate to meaningful uncertainties for some applications.
A convenient property of the BRDF is that it obeys Helmholtz reciprocity:

(3)

The definition of the BRDF given in Eq. (2) does not fully characterize the scatter
properties of a material, though, because it fails to include any details of how scatter
depends upon incident polarization or what polarization the scattered light is. The
addition of information contained in the polarization makes measurements of the
polarization attractive.

To characterize polarization states, the Mueller-Stokes formalism is conve-
nient.l" Any intensity-like quantity (e.g., power, radiance, and irradiance) can be
quantified in terms of a Stokes vector, given by

«P==

<l>s + e,
<l>s - <l>p

<l>s+p - <l>s-p

<l>lcp - <I>rep

(4)

where <l>u is the power that we would measure if we used an analyzer that passes
only u-polarized light: s indicating that the electric field is perpendicular to the
plane defined by the direction of propagation and the surface normal, p indicating
that the electric field is parallel to that plane, s ± p indicating that the electric field
is ± 45° with respect to those directions, and lcp and rep indicating left- and right-
circularly polarized light, respectively. We can describe how a material interacts
with light, assuming that the material's effect upon the light is linear, using a
4 x 4 Mueller matrix, which relates an input Stokes vector to an output Stokes
vector. A Mueller matrix BRDF, F r , can then be defined as the Mueller matrix that
relates the average scattered Stokes vector power (<<Pr ) to the incident Stokes vector
power!' «Pi:

(5)

Note that we have rearranged Eq. (5), compared to Eq. (2), since one cannot divide
a Stokes vector by another Stokes vector. Furthermore, we cannot measure F, with
a single measurement.

In many applications, measurement of the full Mueller matrix BRDF is not nec-
essary to yield the information we need. Rather, a specific incident polarization,
which may depend upon incident and scattered directions, is chosen to maximize
differentiation among scattering mechanisms, and we measure the Stokes vector
of the scattered light. Sometimes, instead of reporting the Stokes vector elements,
a different combination of them is reported. One set of parameters consists of
the BRDF for the given incident polarization, In the principal angle of the polar-
ization ellipse, 11, the degree of circular polarization, Pr; and the total degree of
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polarization P. These parametersare related to the measuredStokes vector inten-
sity by

Ir == (<I>rl)} /«(2 <l>i cos Or)

1] == tan-1((~r2) / (<I>r1))/ 2

Pc == (<I>r3) / (<l>rl)}

P =J(4);1) + (4);2) + (4);3) / (4)£0)'

where <l>rj (j == 0, 1, 2, 3) is the j -th element of -Jlr • One reason these parameters
are particularlyuseful is that all of the informationabout the intensity is contained
in one parameter (Ir), and all of the information about the randomness of the
polarizationis containedin anotherparameter(P). In manycases, the parameter 1]

is all that is necessary to differentiate scattering mechanisms, since Pc is often
predicted to be negligible.

While the Stokes vector analysis has been used to distinguish and quantify
different scattering sources, at least for well chosen measurementconditions, the
Mueller matrix analysis has not yet been found to yield additional informationon
isotropic surfaces that warrants the added difficulty that the measurements entail.
However, it is not inconceivable that the Mueller matrix analysis will find itself
useful for patternedor other anisotropic samples.

10.3. Measurement Methods

Figure 10.1 shows a schematic diagram of an instrument used for performing
angle-resolved optical scatter measurements.12 While there are a varietyof guides
that exist for developingBRDFinstruments,I,13,14 we will summarizea numberof
their most importantfeatures.Wecan dividethese instrumentsinto three parts: the
source (elements(a)-(h) in Fig. 10.1), the sampleholder and goniometer(element
(i) in Fig. 10.1), and the receiver (elements (j)-(p) in Fig. 10.1). Details of the
design of each of these parts depend upon our application. In this discussion, we
willconcentrateonthoseissueswhichareimportantforpolarimetricmeasurements
of nanoscaleroughness.

The purpose of the source is to generate the beam of polarized incident light.
The source consists of a laser (a), which is modulated by an optical chopper (b).
The polarizationstate of the incident light is set by a fixedplane polarizer (c) and
a rotatable linear retarder (d). Elements (a)-(d), plus the various mirrors that are
needed to steer the beam around the table, generally impart some stray light on
the beam. In order that the beam incident upon the sample have as good a beam
profile as possible, the beam is spatially filtered with a lens and pinhole «e) and
(f)). Finally,a focusingelement (g) focuses the beamonto the entranceapertureof
the receiver (j). The focusing element can be a lens or a concave mirror. In order
to have the least amount of stray light at small scattering angles, a high-quality
concavemirror is usually preferred for this element. Finally, some baffling (h) or
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FIGURE 10.1. A schematic diagramof a polarization-resolved, angle-resolved scatterome-
ter: (a) laser,.(b) chopper, (c) sourcepolarizer, (d) sourcerotating retarder, (e) spatialfilter
lens, (f) spatial filter, (g) primarylens or mirror, (h) baffling, (i) sample, (j) receiveraper-
ture, (k) receiverlens, (1) receiverrotatingretarder, (m) receiver polarizer, (n) fieldstop, (0)
detector, and (p) lock-inamplifier.

enclosure is usually included. The baffling should not actually block any of the
beam, since that will generally scatter strongly and increase the stray light in the
system.

The sample holder and goniometer is designed to orient the sample (i) with
respect to the source. A simple system may employ a single rotation axis, enabling
scatter measurements in the plane of incidence. A more complex system with
more axes of rotation enables measurements out of the plane of incidence and as
functions of sample rotation. Lastly, linear translation of the sample may be needed
to assess sample uniformity by obtaining scatter measurements from multiple spots
on a sample.

The purpose of the receiver is to collect and analyze light over a known solid
angle about a given direction. The receiver rotates about the illumination spot on
the sample. The first element of the receiver is the receiver aperture (j). The area
A of this aperture and its distance R from the sample determines the collected
solid angle n == A / R2. A lens (k) in the receiver images the sample onto a field
stop (n), so that the size of the field stop aperture determines the sample field of
view. A smaller field of view reduces the amount of stray light accepted by the
receiver. It should be set so that it is as small as possible, but always so that the
field of view is larger than the illuminated area on the sample. The combination of
a rotating retarder (1) and a fixed polarizer (m) selects a specific polarization state
for analysis. A detector (0) is placed after the field stop, and a lock-in amplifier (p),
synchronized with the chopper, is used for phase sensitive detection of the signal.

The dynamic range of angle-resolved light scattering instrumentation presents
a challenge to accurate measurements of nanoscale roughness. Near the specular
direction, the intensity can be very high, and the BRDF measurement is limited
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by the diffraction-limited spot size of the incident light on the receiver aperture.
For a Gaussian beam focused onto the detector, the maximum measurable BRDF
at normal incidence is 1

JTD2

f/Ilax = 2)..2 ' (7)

where D is the diameter of the illumination spot at the sample, and A is the
wavelength of the light. For D = 5 mm and A= 550 nm, the maximum value of
the BRDF is about 108 sr-1. In the other extreme, the measured scatter signal is
limited by the Rayleigh scatter by air surrounding the sample. That is, the field of
view of the receiver will accept the scatter from the beam propagating through the
air. In the absence of a sample, this quantity is given approximately by 9

j,Rayleigh = 4rr
2(n

- 1)21Fov X { 1 for s-pol~za~on (8)
r A4N sin f) cos f)r cos2 f) for p-polarization,

where f) is the viewing angle measured from the incident direction, IFov is the
diameter of the field of view of the receiver, N is the number density of air,
and n is the index of refraction of air. At 20°C, standard atmospheric pressure,
A = 550 nm, viewing perpendicular to the beam propagation direction, s-polarized
incident light, and for IFov = 10 mm, Eq. (8) yields a BRDF of approximately
1.5 x 10-8 sr-1. With the reasonable assumption that we need to have signals
above this level (although it is conceivable that one could subtract this scatter from
data), the range of scatter levels extends a range of over 16 orders of magnitude.

The wide dynamic range can be obtained by a combination of multiple collection
apertures and multiple detectors. The smallest aperture should be on the order of
the beam diameter 2wo at the detector,

2AR
2wo = -. (9)

rrD

For R = 500 mm and D = 5 mm, the beam diameter is about 70 11m. As one
varies the direction away from the specular direction, larger apertures need to
be used, the largest typically spanning an angle from 0.5° to 2°. One cannot use
just two apertures, however, for a number of reasons. First, the ratio of areas in
these extremes is at least 5000, increasing the dynamic range requirements of the
detector. More importantly, a well-designed instrument will have sufficiently low
stray light at an angle where use of the small aperture encounters signals at the
noise floor of the detector, opening up to the largest detector may actually accept
the full specular beam to the detector. Therefore, any instrument should have a
range of apertures, each varying by a factor of 4 to 7 from the next. ,

In addition to using multiple receiver apertures" multiple detectors can signifi-
cantly expand the dynamic range of a scattering instrument. The detectors should
have overlapping ranges of use, and the least sensitive detector should be capable
of measuring the incident power. It is common to employ a silicon photodiode and
a photomultiplier tube, for example, as the two detectors.

Figure 10.2 shows a representative measurement of an instrument signature,
measured by scanning the receiver through the incident beam in the absence of
a sample. Three regimes can be observed: the coherent incident beam at small
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FIGURE 10.2. An instrument signature measured for an angle-resolved instrument at the
author's institute.

angles (0 < 0.06°), stray light at intermediate angles (0.06° < 0 < 1°), and
Rayleigh scatter at large angles (0 > 1°). The challenge of the instrument designer
(and to some extent, the user, who must maintain the instrument) is to create an
optical system that transitions to the Rayleigh scatter regime in as small an angle
as possible. Low scatter optics, well-placed baffling, and reduction of the field of
view of the detector to its minimum necessary size serve to reduce the stray light.
The effect of an aperture change can be seen in Fig. 10.2 near () == 10, where the
noise level appears to rise before the next aperture can be used.

We must also consider the effect of laser speckle. For a spatially incoherent
source of diameter D at the sample, the coherence length at the receiver aperture
will be approximately given by the same expression as Eq. (9), within a small
factor which depends upon the intensity profile over the source. If one considers a
source of diameter D, an aperture of diameter Ddeh and a source-aperture distance
R, there will be approximately

n D~et/4 (Jr DDdet )2N kl - -
spec e - Jrw5 - 2'AR

speckles entering the receiver.P Assuming Poisson statistics, the relative standard
deviation of the signals will be given by

(S)
2'AR

JNspeckle n D Ddet
(11)

For a D == 5 mm source, a Ddet == 5 mm aperture, R == 500 mm, and 'A == 550 nm,
the estimated relative standard deviation would be 0.7%. While this is an acceptable
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value for many measurements, reduction of the illumination spot diameter or the
detector aperture can easily place this value into a regime where laser speckle is
by far the largest source of measurement uncertainty.

There are a number of ways to overcome speckle noise, of which some appli-
cations may be able to take advantage. The easiest in many applications is simply
to make several measurements, either at different locations on the sample or at
different sample rotations. Constant motion of the sample during the measurement
can also effectively allow sampling over different surface realizations. Destroying
the spatial coherence of the light source can be performed by a number of methods,
including passing the beam through an ultrasonically vibrated multi-mode fiber.
Such a beam, however, will necessarily have poorer focusing characteristics, and
the angular resolution of the system will be degraded.

To perform measurements of the Mueller matrix BRDF, we must analyze the
scattered polarization for a number of incident polarizations. A common method
for obtaining the Mueller matrix is the w-5w scheme, developed by Azzam;"
whereby a quarter-wave retarder on the source «d) in Fig. 10.1) is rotated at fre-
quency to, while another quarter-wave retarder on the receiver «1) in Fig. 10.1) is
rotated at frequency 5w. The Mueller matrix elements are then linearly related to
the Fourier components of the signal. An improvement on this scheme uses 0.37A
retarders instead of 0.25)" retarders, in order to improve the path on the Poincarre
sphere taken by each of the rotating retarders.17,18 Other methods employ the use
of liquid crystal variable retarders'? and photoelastic modulators.j" Many mea-
surements do not require full measurement of the Mueller matrix. For example, in
most of the measurements presented in this chapter, only a single linearly polarized
source is used, and the Stokes vector of the scattered light is measured. In that case,
a rotating half-wave retarder can be used in the source to rotate the polarization
into the desired angle.

10.4. Roughness of a Single Interface

10.4.1. Theory

We will begin our discussion of measurements with roughness of the interface be-
tween a condensed state (usually a solid, but could be a liquid) and a gas or vacuum.
This case is the usual starting point for measurements of nanoscale roughness. If
we assume that the surface height function ~z(p) [p = (x, y)] is single valued,
has zero mean, is much smaller than the wavelength of the light, and that the slopes
a~z(p)/ax and a~z(p)/ay are much smaller than 1, the problem can be solved
by first-order perturbation theory. The solution was first proposed by Rice 21 in
1951, while a more complete solution was developed by Barrick22 in 1970. The
Mueller matrix BRDF from a rough surface in the smooth surface approximation
is given by

(12)
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where the Mueller matrix Q = M(q, qt) is nondepolarizing, and the function M
is given in the appendix. The scattering matrix q has elements

qss = (€ - 1)k2cos <Pr/[(kzi + k~i)(kzr + k~r)]

qps = -(E - l)kk~r sin <Pr/[(kzi + k~i)(Ekzr + k~r)]

qsP = -(E - l)kk~i sin <Pr/[(Ekzi + k~i)(kzr + k~r)] (13)

qpp = (E - l)(€kxyikxyr - k~ik~r cos <Pr)/[(Ekzi + k~i)(Ekzr + k~r)]'

where

k~fJ = k(E - sin2 ()fJ)1/2

kzfJ = kcosOfJ

kxyfJ = k sin OfJ (14)

(16)

k = 21f/"A

({3 = i, r). (IZ(~)12} is the two-dimensional power spectral density (PSD) of the
surface height function, where

Z(~)= lim ~ f d2p~z(p)exp(i~.p). (15)
A~oo vA l;

The surface wavevector ~ has elements Kx and Ky given by the diffraction equations

Kx == kxyrcos <Pr - kxyi

Ky == kxyrsin 4Jr.

In the above, we are ignoring, without loss of generality, the azimuthal angle of
the source direction, <Pi. That is, we are defining our x -axis to be the intersection
of the plane of incidence and the plane of the sample. The specular condition is
(Ji = (Jr and CPr = O. The surface wavevector (radians per unit length) is related to
the spatial frequency (cycles per unit length) by a factor of 21f , so PSDs are often
presented with respect to IKI/(21f).

The limit in Eq. (15) does not exist for a randomly rough surface ofinfinite extent.
It is precisely that issue that gives rise to the observed speckle pattern. In practice,
however, a nonzero solid angle is collected. The limit of IZ(~)12 integrated over
a finite region of spatial frequencies does, in fact, exist. Notice that the Mueller
matrix Q does not depend upon Z(~). So, while there will exist a speckle pattern
in the intensity, that speckle pattern does not exist in the polarization.

The expressions in Eqs. (13) appear to be very similar to Fresnel reflection
coefficients. In fact, Iqss 1

2 is given by

Iqssl2 == [Rs(Oi)Rs(Or)]1/2, (17)

where Rs(O), is the specular reflectance of the substrate for s-polarization and
incident angle o. Thus, in the absence of specific values of the dielectric constant E,

it is relatively straightforward to make measurements that can be used to obtain
Iqssl2.
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10.4.2. Limitations

An estimate of the maximum roughness amplitude that can be treated with the
first-order approach can be found by considering diffraction from a sinusoidal
grating.F' Within the Kirchhoff approximation, the ratio of the second-order
diffraction efficiency to the first-order diffraction efficiency is given by

(18)

(19)

where 8 = ka(cos Oi + cos Or), and a is the amplitude of the sinusoid. If we ask the
question, "When is the second-order diffraction intensity less than 5% of the first-
order diffraction intensity?" we find a characteristic amplitude a. Since the rms
roughness is given by a = a/,/2, we arrive at a practical estimate of the validity
of the first-order theory:

A
a <------

1O(cos Oi + cos Or)

The expression shows that the perturbative approach can be valid for relatively
large roughnesses, as long as the incident and scattering angles are large. This
behavior can be easily observed by noticing that nearly all materials become spec-
ularly reflecting when viewed at grazing incidence. The measurement scheme
where Bi and Brare held equal and fixed at large angles, while lPr is varied provides
a means for measuring the roughness of surfaces approaching the wavelength of
the light. 24

10.4.3. The Inverse Problem

The proportionality between the BRDF and the surface PSD, given in Eq. (12),
makes optical scattering an attractive method for measuring surface roughness
in the smooth surface limit. One need only solve Eq. (12) for (IZ(K)1 2) , taking
into account the incident polarization. For example, for s-polarized light, and
performing measurements in the plane of incidence, we can use Eq. (17) to obtain
the relatively simple expression

A4 (<I»
(IZ(K)1 2) = r . (20)

16rr2Q <I>i cos Oicos O?[Rs(Bi)Rs(Or)]1/2

The range of surface wavevectors IKI over which the measurement can be per-
formed is limited at small IK 1 by the range of angles over which the signal is
sufficiently above the instrument signature and at large 1K I by the wavelength of
the light. For example, if the minimum angle from the specular direction is 0.10,

and we are operating with A = 550 nm and an incident angle of Oi = 60°, the small-
est spatial frequency is IKlmin/(2n) ~ 1.5 mm-1, and the largest spatial frequency
is 1~lmax/(2rr) ~ 3 p.,m-1, a range spanning almost three orders of magnitude.

While roughness can contribute to elastic light scattering, many other sources
can also contribute and interfere with the results. For example, Rayleigh scatter
in the air, particles on the surface, subsurface defects, material inhomogeneities,
and stray light can contribute to varying degrees. Therefore, if we want to apply
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Eq. (12) to data to determinethe roughness statistics, it is importantthat we test the
basichypothesisthatroughnessis indeedcausingthe scatter. Therearea numberof
measurements we can make to check that the scatter is consistentwith roughness.

The firstof these consistency checks is angle scaling.That is, we can performa
scatteringmeasurementusingoneincidentangle,useEq. (12) toestimatethe PSD,
then try the samemeasurement using a differentincidentangle.The problemwith
this methodis that it can be quite deceptive. Scatterby materialinhomogeneities,
for example,has been shownto yield very similar results as roughness. 6,25,26 Just
as the scattering by roughness is proportional to the PSD of the surface height
function, the scattering by inhomogeneities is proportional to the PSD of the di-
electric constant across the surface. Since the dependence upon direction in both
cases depends upon those PSDs evaluated using the same diffraction equation,
what we end up showingmore than anythingelse is that the diffraction equation
works.

A second consistency check that is often used is wavelength scaling.' Here,
we perform the measurement at multiple wavelengths and, again, compare the
estimated PSDs determined from Eq. (12). Subsurface defects and material in-
homogeneities have scattering behaviors that are very similar, especially if the
dielectric constant of the material does not change appreciably. For this reason,
this methodis oftenemployedusing very widerangesof wavelengths, overwhich
the dielectricconstantof the materialvariessignificantly. Over such a wide range
of wavelengths, the measurement becomessubstantially moredifficult to perform,
becausewe need to switchopticalcomponents and detectors. It also fails to tell us
whetherany of the scatter results from roughness, just that it does not result from
roughness over the entire wavelength range. Despite these problems, it has been
consideredthe mainstayfor checkingfor roughness scatter, and was instrumental
in helpingrecognizethat manymirrormaterials, suchas berylliumand aluminum,
wereinherentlyhigh scatterers, regardless of howsmooththey were,becausethey
tend to exhibit a high degree of scatter from material inhomogeneity. 27

The third consistency check, polarization analysis, is much more powerfuland
relatively difficult to fool.7 Withthismethod,wearecheckingforconsistency with
theelementsof the scatteringmatrix,Eq. (13).Scattering by other sources,suchas
particles, subsurfacedefects, and material inhomogeneity, yield scatteringmatrix
elements that differ from those given in Eqs. (13). For example, the scattering
matrixelementsappropriate for subsurfacedefectsor materialinhomogeneity are
given by6,25,26 qsub = q qsub = q qsub = q andss ss'sp sp'ps ps,

q~~b = (E - l)(kxyikxyr - k~ik~r coscl>r)/[(Ekzi + k~j)(Ekzr + k~r)]' (21)

That is, only the pp-terms differ, and even then, only when OJ and 8r are both
nonzero. Purely s-polarized incident light, for example, will yield no discrim-
ination between these two scattering mechanisms. Thus, we must have some
p-polarizedlight incidenton the sampleand use largeincidentand scatteringpolar
angles. These restrictionsargue for measurements out of the plane of incidence.
For example, a useful measurement, which maps out the PSD over a wide range
of surfacewavevectors, is to set OJ = Or and vary cPr from 0° to 180°. The incident
polarizationis linear at an angle YJi and continuously variedfrom 45° to 135° over
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this range, such that when (jJr = 90°, the incident light is p-polarized (l1i = 90°).
That is,

l1i = 45° + (jJr/2.

The magnitude of the surface wavevector is then given by

IKI = 2k sinOrsin«(jJr/2).

(22)

(23)

At each angle, the Stokes vector can be measured. In many instances, we only
need to measure the linear components of the Stokes vector, because we expect
little circular polarization from surface roughness, if the material is non- or weakly
absorbing.

We can obtain reasonably good discrimination between scattering sources by
performing the measurement in the plane of incidence by measuring the Stokes
vector for 45° incident polarization. However, near the surface normal, that dis-
crimination disappears, and we are left confirming the roughness hypothesis at
the beginning and end of a scan, and hoping that at those angles near the surface
normal the trend continues.

We can also perform Mueller matrix measurements to distinguish scattering
sources. However, since s-polarized incident light has very little ability to discrim-
inate sources, we would not expect that Mueller measurements would improve our
confidence of the roughness hypothesis substantially from what we can obtain by
optimizing the incident polarization to that which gives the largest discrimination.

It is interesting to note that, because the scatter by roughness in the smooth
surface limit yields a deterministic polarization, the light scattered by such a rough
surface does not depolarize the light. 28 While we observe speckle fluctuations in
the intensity, especially if we use a small collection solid angle, little of those
fluctuations are observed in the polarization state. Thus, polarization me .ments
often appear quite noise-free in comparison to their intensity counterparts.

10.4.4. Example

To demonstrate the methodology described in Sect. 10.4.3, we present data ob-
tained from a thick metallic TiN layer grown on a silicon wafer. The thickness
of the layer, 110 nm, is thick enough and the material absorbent enough that we
can safely ignore any interfaces below the TiN. The light scattering measurement
was carried out using A= 532 nm light with OJ == Or == 60°, varying the scattering
azimuthal angle (jJr from near 0° to 170°. The polarization was varied as described
in Eq. (22). The results of the measurements are shown in Fig. 10.3, in terms of the
parameters given in Eqs. (6). The systematic uncertainties in the measurement are
less than the size of the symbols, and the random uncertainties can be estimated
by observing the variation of the data about a smooth curve.

We evaluated the polarization predicted by first-order vector perturbation theory.
We chose E = 1.6 + 4.6i so that the results matched in the specular direction, which
is equivalent to using specular ellipsometry to determine its value. The measured
polarization states agree very well with the predictions of the perturbation theory,
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FIGURE10.3. Results from out-of-plane (Oi = Or = 60°) polarized light scattering measure-
ments (symbols) for a TiN sample using 532 nm light: (top) the BRDF, In (middle) the
degrees of polarization and circular polarization, (open symbols) P and (closed symbols)
Pc, respectively, and (bottom) the principal polarization angle n. The incident polariza-
tion was varied as described in Eq. (22) in the text. The curves represent the polarization
states predicted for light scattered by (solid) a microrough surface and (dashed) material
inhomogeneity.

whichare shownas solid curves in Fig. 10.3.In particular,the measured P is close
to 1, within about 15%, the deviations of which may be due to stray light in the
experiment.The parameters Pc and 11 follow very closely to the curves.

Another likely scattering mechanismin metallic samples is scattering by mate-
rial inhomogeneity. We show 11 and Pc predicted by Eq. (21) for this mechanism
in Fig. 10.3, too. The data do not agree with such scattering. Scatter by particles,
which depends upon particle size, yield different behaviors, as well.6,29,30 It is
clear from the comparison that the data agree very well with the microroughness
theory and that the differentiation among the alternate scattering mechanisms is
unambiguous. Thus, the polarization measurement establishes the validity of the
microroughness interpretation, allowing us to convert the measured BRDF to the
PSD of the surface height function.
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FIGURE 10.4. The PSD of the surface height function derived from the data shown in
Fig. 10.3.

The result of converting the BRDF to PSD is shown in Fig. 10.4. The results show
fractal behavior for large n, where (IZ(~)12) ex 1~1-2.8, and a distinct peak in the
power spectrum near IKI/(2n) == 0.45 j.Lm-1. By integrating the two-dimensional
PSD, we can obtain an estimate of the rms roughness. The total rms roughness
over the bandwidth shown is about 2.6 nm.

The excellent agreement between the theory and experiment for microroughness
implies that the polarization of light scattered by microroughness is not determined
by the exact details of the surface height profile, but is a unique signature of the
scattering mechanism. It therefore suggests that scatterometers can be designed
to be blind to microroughness. For example, a device may be constructed with a
number of detectors, each viewing a particular scattering direction, and each with
a polarizer aligned to block the light from microroughness. 31 Such a device would
collect light over a large solid angle, be microroughness-blind, and therefore be
more sensitive to other sources of scatter, such as subsurface defects and particulate
contamination.

10.5. Roughness of Two Interfaces

In Sect. 10.4, we described measurements that only used the polarization to validate
the interpretation of the intensity. In this section, we will describe measurements
in which the polarization is not used to validate the model, but is used to extract
information about interface roughness. In this case, we are interested in the two
interfaces of a dielectric film. The methodology that we describe parallels that
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used by specularellipsometry 10,32 to determinefilm thickness. By performing an
ellipsometric measurement of lightdiffusely scatteredoutof thespeculardirection,
we moveawayfrom K == 0 and probe the variations in film thickness. That is, we
measure the relative interfaceroughness and its degree of correlation. 33,34

10.5.1. Theory

We now considera film, havingdielectricconstant Ef and mean thickness t lying
abovea substrateofdielectricconstantE. Thesurfaceheightfunctions of theburied
and exposedinterfacesare ~Z1 and ~Z2, respectively (leaving out the explicitde-
pendence on p). We apply first-order vector perturbation theory to this problem.
Thezero-order, unperturbed (~Z1 == 0 and~Z2 == 0) fields arefoundfromthesolu-
tion of the well-known problemof reflection froma dielectricfilm. The first-order
calculation consists of expanding the electric and magnetic fields on both sides
of each interface and the local surface normal to first order in the surface height
functions ~z j about their mean. The requirement that the tangentialelectric and
magneticfields be continuousacross the boundaryleads to relationships between
zero-orderand first-order fields. The theoryself-consistently handles the multiple
reflections thatoccurfor bothordersof the field. However, sinceit assumesthat the
filmthicknessis constant,it does not accountfor long-range noneonformalrough-
ness, which has sufficient amplitude to substantially vary the local filmthickness.
In order for the theory to be valid,the modulations of the surfaceheight functions,
~Z.i' mustbemuchlessthanthewavelength, A, andthesurfaceslopemustbesmall.

Elson35-39 described the solution to the first-order vector perturbation theory
for scatteringfrom interfacial microroughness in a dielectricstack.For the buried
interface(1), the scatteringmatrix q(1) to replace q in Eq. (12) has elements

(1) - 4( )k" k". [·(k" k", k k)] (1)quv - E- Ef zi zr exp 1 zi + zi - zr - zr t suv

(u, v =s, p), where

s~:) == -k2 cos4>r/(fsifsr)

s~~) == Efkk~i sin4>r/(fpifsr)

sg) == Efkk~r sin4>r/(fsi f pr)

s~i == -Ef(Ekxyikxyr - Efkzikzr cos4>r)/(fpi f pr)

r F(+)k F(-)k"pf3 == Ef pf3 zf3 - pf3 zf3

r F(+)k F(-)k"
sf3 == sf3 zf3 - sf3 zf3

p(±) == E K(".:f)k' - EK(±)k"
pf3 f f3 f3 f3 zf3

F(±) - K(".:f)k' - K(±)k"
sf3 - f3 zf3 f3 zf3

Kt) == exp(2ik;f3 t ) ± 1

(24)

(25)

(26)

(27)
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k;fJ = k(€f - sin2OfJ)1/2 (fJ = i orr). The Fouriertransfonn of the roughnessof the
m-th interface is given in Eq. (15), with ~z replaced with ~Zm. For the exposed
interface (2), the scattering matrix q(2) to replace q in Eq. (12) has elements

q~~ = (€f - 1)exp[-i(kzi + kzr)r]s~~ (28)

where

(2) - -k2F(+)P(+) ~ /(r.r )sss - si sr cos wx SI sr

(2)--kk"F(-)F(+) . ~/(r·r)sps - zi pi sr Slfl 'Yr pr sr

(2) - -kk" F(+)F(-) . ,h /(r·r )
Ssp - zr si pr Sltl 'Yr SI pr

(2) - _( k ·k F(+)F(+) - k"k" F(-)F(-) ~ )/(r·r )
Spp - €f XYI xyr pi pr zi zr pi pr cos o/r pi pr·

(29)

Just as the matrix elements for scattering by single-interface roughness given in
Eq. (13) are independentof the surface height function, those for scatteringby the
two interfaces of a dielectric film given in Eqs. (25) and (29) do not depend upon
the respectivesurfaceheight functions.Therefore, to firstorder,the scatteringfrom
a singlerough interface will not depolarizedlight. Furthermore,the fieldsresulting
from the scattering of each interface are independent of each other.

We can evaluate the special case of two interfaces that are totally conformal
(correlated and equal roughness) by coherently adding the scattering matrices
from each of them:

q(corr) =s'" +q(2). (30)

Similarly, if the two interfacesare equally rough,buthavea randomphase relation-
ship between them (i.e., they are uncorrelated), then we can add the two sources
incoherently:

(31)

(33)

In general, the surfaces may be neither correlated nor of equal roughness. In this
case, we replace the factor Q(IZI2} in Eq. (12) by

(IZI2}Q = (M(Zlq(l) + Z2q(2), Z~q(l)t + Ziq(2)t)}, (32)

wherewe havedropped theexplicitdependenceof Zm on K. Since the onlyrandom
variables are 2 1 and 2 2, Eq. (32) can be simplifiedto

(IZI2}Q = (IZII2}M(q(I), q(l)t) + (I Z212)M(q(2), q(2)t)
+2Re(ZlZi)ReM(q(l), q(2)t)
- 2Im(Z12i}ImM(q(1), q(2)t).

10.5.2. The Inverse Problem

Equation (33) is an overdetermined equation in the PSD of the two interfaces,
(IZI12) and (IZ212), and the cross-PSD, (ZIZi). That is, we can write Eq. (33) in
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the form (IZI 2}Q == DZ, where D is a 16 x 4 matrix

M(q(1), q(1)t)
M(q(2) , q(2)t)

D = 2ReM(q(1), q(2lt ) (34)

- 21mM(q(l), q(2)t)

where each row consists of a flattened 4 x 4 matrix, and Z is a 4-element column
vector

(35)Z==

(I Zl I
2

)

(I Z21
2

)

Re{ZlZ~)

Im(ZlZ~)

We can solve for Z in a least-squares sense by calculating the pseudoinverse,
D-1 == (DTD)-lDT. Thus, we can determine the roughness statistics for the two
interfaces ofa thin film from the measured Mueller matrix BRDF F, from Eqs. (12),

A,4
Z == (DTD)-lDTFr . (36)

16Jr2 cos Oi cos Or

(37)

Let us consider the simpler case ofa specific incident polarization state, specified
by a unit intensity Stokes vector S. The scattered Stokes vector will then be given
by left-multiplying S by Eq. (33):

(IZI2)QS == (I Z l I2)M (q(l) , q(1)t)S
+ (IZ212)M (q(2), q(2)t)S
+ 2Re(Zl Z~)ReM(q(l), q(2)f)S
- 2Im(ZlZ~)lmM(q(l), q(2H)S.

(38)

Equation (37) is a fully determined equation in the roughness statistics. That is,
Eq. (37) can be written as (IZI2)QS == O'Z, where 0' is a 4 x 4 matrix

M(q(1), q(1)t)S

0' == M(q(2), q(2)t)S
2ReM(q(l) , q(2)t)S

- 21mM(q(l) , q(2)t)S

and each row is the transpose of a 4-element vector. Equation (38) can be inverted,
provided the two surfaces scatter with different polarization states. Thus, the four
degrees of freedom of a measured Stokes BRDF fr map onto the four degrees of
freedom of the roughness statistics:

A,4
Z == (D')-lfr •

16Jr2 cos Oi cos Or

It is convenient for us to define a relative roughness

(39)

(40)
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and a complex correlation coefficient

(41)

Just as there is one constraint on a Stokes vector (SJ 2: Sf + si + S~), the param-
eter c must satisfy IcI ~ 1. For most realistic surfaces, c should have no imaginary
component. It is interesting to note that the intensity and the polarization state of
the scattered light separate in much the same way as for single interface roughness:
the polarization state uniquely determines X and c, while the intensity, once X and c
are known, determines the magnitude of the PSDs of the two interfaces. Another
point to note is that when IcI = 1, we will observe no depolarization. In this case,
there is no randomness in the ratio or relative phase of both sources, and so there is
no randomness in their sum. Depolarization only occurs when there is incoherence
between two sources.

10.5.3. Example

To demonstrate the application of the perturbation theory analysis for roughness
of a dielectric film, we consider the behavior of A= 632.8 nm light scattered by
a 52 nm Si02 (ff = 2.13) layer grown on a silicon (f = 15.07 + 0.15i) substrate.
We let the incident angle be Oi = 60° and scattering angle be Or = 60°.

Before we present experimental results, we will make a number of observations
about the theoretical predictions for four different limiting cases of interfacial
roughness (roughness of each interface alone, correlated, and uncorrelated rough-
ness). Figure 10.5 shows the scattered polarization state as a function of l/Jr for s-
and p-polarized incident light calculated for these cases. The results for s-polarized
incident light (left column of Fig. 10.5) show only a small amount of differenti-
ation between the roughness conditions, with none existing at l/Jr = 0°, 90°, and
180°. These results are similar to what we found for ~ single interface in Sect. 10.4.
Symmetry dictates the polarization for l/Jr = 0°, 90° , and 180°: for s-polarized light
incident upon an isotropic sample in the static approximation, the scattered field
must be antisymmetric about the incident plane and symmetric about the perpen-
dicular plane. Therefore, in the plane of incidence (l/Jr = 0° and 180°), the scattered
light must be s-polarized (ssp = sps = 0), while for l/Jr = 90°, the scattered light
must be p-polarized (sss = 0).

The results for p-polarized incident light (right column of Fig. 10.5) show a
significantly greater differentiation between the different limiting cases, as long
as we are sufficiently out of the plane of incidence (i.e., l/Jr 1= 0° or 180°). Again,
symmetry requires that the scattered light be p-polarized in the plane of incidence.
However, symmetry no longer exists about the perpendicular plane, so that for
l/Jr = 90°, each case can yield a different polarization. Previous measurements have
exploited this geometry to differentiate scattering from small particles, single rough
surfaces, and subsurface defects? We are often interested in extracting roughness
statistics from data over as a wide range of surface wavevectors as possible. Since
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FIGURE 10.5. Polarization parameters P, Pc- and 17 for scattering out of the plane of
incidence from (solid) correlated and equal roughness, (dashed) uncorrelated and equal
roughness, (dotted) roughnessof the exposed interface, (dash-dot) roughnessof the buried
interface, and (symbols)experimental results from a Si02layer grown on microroughsili-
con. The incident light was (left column) s-polarizedand (rightcolumn)p-polarized. Other
parametersin the model are described in the text.

there is little differentiation between cases near <Pr = 0°, the dynamic range of
available spatial frequencies is limited.

Figure 10.6 presents two schemes that differentiate between interfacial rough-
ness conditions for most scattering angles. One of these schemes uses circularly
polarized incident light (left column of Fig. 10.6). Another scheme changes the
incident polarization state as the viewing direction is varied. In the right column
of Fig. 10.6, the incident light is linearly polarized, varied according to Eq. (22),
as was done above for the single interface roughness measurements. We observe
a reasonably good differentiation between the different roughness conditions at
most scattering angles, using either of the two schemes, with somewhat better
differentiation observed for the varying incident polarization scheme.

Because measurements out of the plane of incidence generally require more
complicated instrumentation than those required for measurements in the plane
of incidence, we include two schemes that work reasonably well in the plane of
incidence. Figure 10.7 shows calculated polarization parameters for the different
roughness conditions evaluated in the plane of incidence (Oi = 60°, <Pr = 0°). Since
the scattering matrices are diagonal for this geometry, we do not show results
for s-polarized or p-polarized incident light. Incident light of either circular
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FIGURE 10.6. Polarization parameters P, Pc, and TJ for scattering out of the plane of inci-
dencefrom (solid)correlatedandequalroughness, (dashed) uncorrelated andequalrough-
ness, (dotted) roughness of the exposedinterface, (dash-dot) roughness of the buriedinter-
face, and (symbols) experimental results from a Si02 layer grown on microrough silicon.
The incident light was (left column) left circularly polarizedand (right column) linearly
polarized at an angle lJi = 45° + cPr/2. Other parameters in the model are described in the
text.

polarization or 45° linear polarization maps the four independent Mueller matrix
elements onto the four Stokes vector elements. While we observe discrimination
between the roughness cases in Fig. 10.7, it is relatively weak, with numerous
curves crossing near Or == 0°.

The results for polarized light scattering measurements from a 52 nm Si02 film
thermally grown on a photolithographically produced microrough silicon surface
are included in Figs. 10.5-10.7. The microrough surface consisted of a pseudoran-
dom distribution of nominally 8 nm deep circular pits having diameters of nomi-
nally 1.31 /lm and 1.76 /lm. 4ODetails of the experiment, its uncertainties, and the
sample are given elsewhere. 12,33 This system should exhibit conformal roughness,
at least for small surface wavevectors. The results shown in Figs. 10.5-10.7 indeed
behave most like the equal roughness model for all incident polarizations, though
a close inspection of the results reveals small discrepancies, which result from the
buried interface being smoother than the exposed interface. The relative rough-
ness of the two interfaces (X) and the correlation coefficient c can be extracted
using the technique outlined in Sect. 10.5.2. Figure 10.8 shows c and X as functions
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and (symbols) experimental results from a SiOz layer grownon microrough silicon. The
incidentlightwas(leftcolumn) leftcircularly polarizedand(rightcolumn) linearlypolarized
at an angle YJi == 45°. Otherparameters in the modelare described in the text.

of spatial frequency extracted from the data shown in Figs. 10.5-10.7. The indi-
cated uncertainties represent single standard deviations of the extracted results
obtained from the statistical uncertainties in the original data. The results obtained
from all incident polarizations are consistent with each other, showing X > 1 and
c ~ 1 for most spatial frequencies. Further validation of the method has been
achieved by performing the measurements at multiple wavelengths and incident
angles. 33 While measurements of the full Mueller matrix may allow different scat-
tering mechanisms to be distinguished and quantified using the analysis given in
Sect. 10.5.2, the results shown in Fig. 10.5 suggest that certain incident polarization
states do not allow for much differentiation.

Figure 10.8 includes the results using data obtained in the plane of incidence.
Large uncertainties and discrepancies result from the poor discrimination near
1 J.lm-1 . Comparison between the results ofFigs. 10.5-10.7 suggest that maximum
discrimination between different roughness conditions occurs in directions out of
the plane of incidence. Other calculations show that such improvements also tend
to occur for other scattering sources such as particles or subsurface defects. 6 While
other researchers have performed light scattering ellipsometry measurements in the
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plane of incidence, 41 we chose to make full use of the polarization by performing
such measurements in out-of-plane geometries.

It is noteworthy to point out that in Figs. 10.5-10.7, the theoretical predictions
for buried interface roughness and uncorrelated roughness are the most poorly
resolved. In both cases, the roughness of the bottom interface is present, and the
top interface is incoherent with the bottom interface. When sources are incoher-
ent, they add as intensities, rather than as fields, so that the smaller field has a
correspondingly smaller effect. Hence, when the dielectric contrast between the
substrate and the film is much larger than between film and the ambient environ-
ment, which is the case for our example, uncorrelated roughness of the top interface
will be more difficult to observe in the presence of buried interface roughness.

In many realistic cases, any correlations between two interfaces are expected to
be such that c is real and lies in the interval 0 :::; c :::; 1. Any imaginary component
to c implies a lateral offset in the roughness function. For this reason, it may be
reasonable to use Eq. (39) to obtain a starting point for the roughness statistics,
but to constrain 1m c == 0 and perform a least-squares fit of the theory to the data.
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We have also investigated a number of other systems, including a case of anti-
correlated roughness (nominal c == -1) and a case of offset roughness (nominal
c == exp(iK . R), where R is a lateral offset in the two roughness functions). 42,43

These cases were much more complicated to analyze. While the amplitude of the
roughness was small compared to the wavelength ofthe light, the lack of correlation
caused unacceptably large variations in the thickness throughout the film. Thus,
we find that the analysis presented here has much more rigid requirements in terms
of the tolerable roughness amplitude over which the theory is valid.

10.6. Final Comments

It is worth considering, at the end, whether it is worth extending this methodology
to three or more interfaces (that is, two or more films). After all, the space of valid
Mueller matrices can be shown to be spanned by four scattering matrices. For
example, we can decompose any valid Mueller matrix M into the sum

3 3

M = L ~:::>;kM(Uj, un,
';=0 k=O

(42)

where U j are the Pauli matrices given in the appendix, and the 16 coefficients obey
ajk == a;j. Therefore, one ought to be able to extract the roughness statistics for
up to four interfaces from a Mueller matrix scattering measurement. However, the
method would be very limited. In the specular direction, the scattering matrix for
any interface will not have any off-diagonal elements, so only two of the four basis
matrices are available. Since we cannot differentiate the different interfaces near
the specular direction, the technique would therefore have a very narrow range of
spatial frequencies over which to operate.

4 X 4 Matrix Product of Two Scattering Matrices

We define a 4 x 4 matrix product M( ql, q2) between two 2 x 2 scattering matrices,
such that its elements are given by

M(ql, q2)jk == !Tr(qlukq2U j )

(j, k == 0, 1,2,3) where the Pauli matrices are

(43)

Uo - (1- 0 Ul - (1- 0 U2 - (0- 1 -i)o .
(44)

This operation is distributive with addition

M(ql + q2, q3) == M(ql, q3) + M(q2, q3)

M(Ql, Q2 + q3) == M(ql, q2) + M(qI, q3)
(45)
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and associativewith multiplication by a scalar

M(kql, q2) = kM(ql, q2)

M(ql, kq2) = kM(ql, q2).

Although it is not commutative, the following relationship holds:

(46)

(47)

If ql i= q~, the matrix M(ql, q~) is complex. The Mueller matrix M(q, qt), which
is real, is the Mueller matrix equivalent of the scattering matrix q.
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11.1. Introduction

Since the early days of fractality,' the scattering of electromagnetic (EM) waves
from fractal surfaces has been a field of intense activity. Physical fractals appear
ubiquitously in nature, possessing fractal properties within a broad, however finite,
range of scales. Therefore the study of classical wave scattering from fractals is a
problem of interest not only from a fundamental point of view, but also from the
practical knowledge that probing technologies, such as surface optical characteri-
zation, remote sensing, radar, and sonar, can yield about a wide variety of systems.
In fact, it is now well understood that many naturally occurring surfaces exhibit
scale invariance, particularly in the form of self-affinity. 1-4

There exists a large amount of theoretical works devoted to far-field wave scat-
tering from fractal surfaces (cf. [5-13] and references therein). Most of them make
use of approximations, such as the Kirchhoff approximation (KA) or perturbation
methods, in order to obtain analytical expressions that are useful in certain regimes,
thereby imposing a constraint on the length scales over which fractality might be
present. Only very recent works are capable of dealing with arbitrarily rough metal
or dielectric surfaces7,8,11- 13 on the basis of the Green's theorem integral equation
formulation for rough surface scattering.lv !"

In addition to far field scattering, the near EM field on self-affine fractals has
attracted a great deal of attention. 13,17-27 Many theoretical works have exploited
dipolar approximations (either retarded and nonretarded) to describe the optical
response of fractal metal surface models.17- 23 Alternatively, full EM formula-
tions have been recently employed, albeit typically one dimensional for the sake
of numerical limitations.20,24- 28 To a large extent, the interest lies in the obser-
vation in the near field intensity distributions, through photon scanning tunnel-
ing microscopy (PSTM), of large concentrations of EM field intensity on bright
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spotS.22,29-34 The appearance of such localized optical modes is mediated by the
roughness-induced excitation of surface-plasmon polaritons (SPPs) on nanostruc-
tured metal surfaces or nanoparticle aggregates. SPPs are surface electromagnetic
waves bounded to a dielectric-metal interface and due to oscillations of the metal
electron plasma.35,36

Recall that the occurrence of large surface EM fields is indeed crucial to the EM
mechanism in surface-enhanced Raman scattering (SERS) and to other nonlinear
surface optical processes.18,20,21,23,24,26,34,37-40 Since the early days of SERS, it

was established that SERS signals are enhanced orders of magnitude with respect
to those of conventional Raman scattering,37-39 thus being amply employed as a
spectroscopic tool. The average enhancement factor, typically, rvl06 stems from
the combined action of two mechanisms of chemical (charge-transfer) and EM
origin. The latter is widely accepted to be the most intense in several experimental
configurations; it consists of surface-roughness-induced intensification of the EM
field both at the pump frequency and at the Raman-shifted frequency,38,39 mediated
in most configurations by the above-mentioned excitation of SPPs. Furthermore,
SERS single molecule probing has been recently reported,41-44claiming extremely
large local enhancement factors. It is evident that large local EM fields must
appear in the vicinity of the metal substrates such that a single, adsorbed molecule
can be SERS detected, even if large effective resonant Raman cross sections are
exploited/" SERS has been reported from a great variety of substrates: electrodes,
colloids, silver islands, rough surfaces and films, etc. Interestingly, many SERS
substrates posses scaling properties, physical fractalityr':" either self-similarity,
as the widely employed colloidal aggregates?,45,46 or self-affinity, as in the case
of deposited colloids, cold-deposited thin films, or evaporated or etched rough
surfaces.4,31,32,34,47

Here we describe in detail the rigorous Green's theorem formulation to study
the EM field scattered from nanostructured metal surfaces, restricted to one dimen-
sion for the sake of computational limitations. The scattering model is described
in Sect. 11.2. We focus on fractal surfaces exhibiting self-affinity from tens of
microns to the nanoscale. Actually, we analyze the influence on the near field
of the size of the lower scale irregularities as is reduced from rv50 nm to a few
nanometers. Near-field calculations are presented in Sect. 11.3. The statistics of
the surface-field enhancements is analyzed in Sect. 11.4, thereby discussing the
impact of nanostructured self-affine fractals on SERS in Sect. 11.5. Finally, the
main conclusions are summarized in Sect. 11.6.

11.2. Scattering Model

11.2.1. Scattering Geometry

The scattering geometry is depicted in Fig. 11.1. A monochromatic, linearly po-
larized incident beam of frequency to impinges at an angle 00 on a randomly
rough surface z == ~(x). The rough interface separates a dielectric from a semi-
infinite metal volume occupying the lower half-space [z < t; (x)], characterized,
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metal

FIGURE 11.1. Illustration of the scattering geometry.

respectively, by isotropic, frequency-dependent homogeneous dielectricfunctions
E>(W), E«W).

With the aim of solving this scatteringproblem for arbitrarily large roughness
parameters,we makeuse of the scatteringintegralequationsbasedon the applica-
tion of Green's secondintegraltheorem.IS It is well known that this fully vectorial
formulation is considerably simplified when restricted to lD surfaces and linear
polarization.lv" thereby being reduced to four scalar integral equations for the
only nonzerocomponentof either the electric field amplitude

E(s) == E(s)(r, w)y,

with

H(S) = H(s)(r w)x+H(s)(r w)z
- x' Z',

for s polarization; or the magnetic field amplitude

H(p) == H(p)(r, w)y,

with

E(p) == E~p)(r, w)x+ E~p)(r, w)z,

for p polarization.lv'" From now on, since a time harmonic dependence e- iwr is
assumed,thefunctional dependence on frequency willbe omittedunlessnecessary
for the sake of clarity.

11.2.2. Scattering Equations

Thesurfaceintegralequationsthat fullydescribetheEMlinearscatteringproblem,
in the geometryof Fig. 11.1,are

1jJ(i)(r) + _1 jOOy'dx' [1jJ(»(r') aG>(r, r') _ c«. r') a1jJ(»(r')]
4JT -00 an' an'

= 1jJ(»(r), z > ~(x), (la)

= 0, z < ~(x); (lb)
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__1 100
y'dx' [1/J«)(r')CJG«r, r') _ G«r, r') CJ1/J«)(r')]

4rr -00 an' an'
= 0, Z > {(x), (Ic)

= 1/I«)(r), Z < ~(x). (Id)

(3a)

(3b)

The function 1/1(r) is defined as

1/I(r) == E(s)(r), for s polarization; (2a)

== H(p)(r), for p polarization; (2b)

and the superscripts> and < denote the upper (z > ~) and lower (z < ~) semi-
infinite half-spaces. The normal derivative is defined as a/an == (0 . V), with 0 ==
y-l(-{'(x), 0,1) and y = (1 + ({'(x))2)1/2. The 2D Green's function G is given
by the zeroth-order Hankel function of the first kind Hcil).

Our monochromatic incident field of frequency to is a Gaussian beam of half-
width Wand incident angle 00 in the form

1/1(i)(x , z) = exp {I kE(xsin 00 - zcos (0)

[
(x cos 00 + z sin ( 0 )2 ]

x[I+w(x,z)]}exp W2 '

1 [2 2 ]w(x, z) = k';W2 W2 (x cas eo + z sin eo) - 1 ,

where k, = n~w/c and n~ = ,JE>.
In order to solve for the surface field and its normal derivative, two of the integral

equations (note that they are not independent), typically Eqs. (la) and (Ic), are
used as boundary conditions. Upon invoking the continuity conditions across the
interface

(4a)

(4c)

(4b)

(4d)

E(x) = E(>,S)(r) Iz=~(+)(x)= E«,s)(r) Iz=~(-)(x),

[
aE(>,S)(r)] = [aE«,S)(r)] ,

y-l F(x) =
an z=~(+)(x) an z=~(-)(x)

H(x) = H(>,p)(r) Iz=~(+)(x)= H<,p)(r) Iz=~(-)(x),

[
aH (>,p)(r ) ] = E> [aH«,p)(r)] ,

y-l L(x) =
an z=~(+)(x) E< an z=~(-)(x)

with ~(±)(x) = lim8--+o(~(x) ± e), two coupled integral equations are obtained for
each polarization. The resulting system of integral equations can be numerically
solved upon converting it into a system of linear equations through a quadrature
scheme,14,16 the unknowns being E(x) and F(x) for s polarization, and H(x)
and L(x) for p polarization. Once these source functions are obtained, Eqs. (Ia)
and (ld) permit to calculate the scattered electric (magnetic) field amplitude for s
(p) polarization at any point in the upper incident medium and inside the metal,
respectively.
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11.2.3. NearField

(5a)

[
H (p'» (r ' ) a2G>(r, r')

azan'

aG>(r, r') aH(p,»(r')]

az an'

In addition, from the latter integral equations, the corresponding expressions for the
magnetic (electric) field amplitudes for s (p) polarization can be simply obtained
by making use of Maxwell equations. These expressions can be useful in near
electric or magnetic field calculations. This is indeed the situation in SERS where
the near electric field locally excites the molecule vibrations that produce the
Raman-shifted radiation that is detected. Thus we include below the electric field
equations for p polarization.

In the incident medium, Eq. (l a) provides the only nonzero component of the
magnetic field. Use of Maxwell's equation V x H = -i~EEleadstothefollowing

electric field components:

" c 100

E(p'»(r) = E(p,l)(r) - i-- y'dx'
x x 4JrWE> -00

E~P'»(r) = 0 (5b)

() (p ") c 100
, , [ (p » , a2

G>(r , r')E p,> (r) = E ,l (r) +i-- y dx H' (r)---
Z Z 4JrWE> -00 axan'

_ aG>(r , r') aH(p,»(r')] .
ax an' (5c)

These equations can be rewritten in terms of the source functions H(x) and L(x)
as follows:

E(p'»(r) = E(p,i)(r) - !:!.-.l°OY' dx' {H(X')
x x 4c -00

[
z - {(x') (1)

X 2 (n . (r - r'))H2 tk, I r - r' I)
I r- r' I

- 1 H(l)(k€ I r - r' n]
y'k, I r - r' I 1

-L(x') Z - l;(x') H(l)(k€ I r - r' n} (6a)
r'k, I r - r' I 1

E~P'»(r) = 0 (6b)

E(p'»(r) = E(p,i)(r) - !:!.-.l°Oy 'dx' {H(X')
Z Z 4c -00

[
- (x - x') (1)

X 2 (n . (r - r'))H2 tk, I r - r' I)
Ir- r' I

- l;'(x') H(l)(k€ I r - r' n]
v'k, I r - r' I 1

+L(x') x - x' H(l)(k€ I r - r' n} , (6c)
y'k, I r - r' I 1



290 Sanchez-Gil et al.

where the explicit form of the Green's function has been taken into account, leading
to the appearance.of 1st and 2nd order Hankel functions of the first kind H1(1) , Hil).
For the Gaussian incident field given by Eq. (3), the electric field components
are

E~p,i)(r) =~H(p,i)(r) [ i cos 00(1 + w(x, z))
nc

- (i~(X sin00 - zcosOo) -~) sin 00(x cos 00 + Z sin (0)] (7a)
kE W kEW

E(p,i)(r) == 0 (7b)

E~P,i)(r) = ~H(P,i)(r) [isinOo(1 + w(x, z))
nc

+ (i~(X sin00 - zcosOo)-~) cos 00(x cos 00+Zsin (0)] . (7c)
kE W kEW

Equations (6) and (7) provide the electric field components in the incident
medium of the resulting p-polarized EM field, incident plus scattered from the
rough surface. The scattered electric field involves an additional surface integral
in terms of the source functions, previously obtained from the above mentioned
coupled integral equations. Analogous expressions, not shown here, for the corre-
sponding electric field components inside the metal can be obtained from Eq. (1d).
On the other hand, recall that a similar procedure can be straightforwardly devel-
oped to yield the magnetic field components in the case of s-polarized EM waves
as surface integrals in terms of the surface electric field (y-component) and its
normal derivative.

11.2.4. Surface Field

The calculation of the surface magnetic field intensity for s polarization can be
done in a simple manner by exploiting the connection between its normal and
tangential components on the upper (dielectric) medium

(s) ic -1 dE(x)
H (x) == --y --,

n W dx

H?)(x) = ic y-l F(x).
W

(8a)

(8b)

The corresponding expressions for the surface electric field components for p
polarization are given by24

(p) ic -1 dH(x)
E (x) = -y --,

n WE> dx

E}P)(x) = _~y-lL(x).
WE>

(9a)

(9b)
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As mentioned above, E(x), F(x), H(x), L(x) constitute the source functions of
the integral equations in this scattering configuration.

11.2.5. Self-Affine Fractals

As a model describing many naturally occurring surface growth phenomena ex-
hibiting self-affine fractality, we have chosen that given by the trace of a fractional
Brownian motion through the Voss' algorithm. 3,48,49 In addition, this model yields
self-affine fractal structures that resemble fairly well the properties of some SERS
metal substrates. 31,32,34 The ensembles of realizations thus generated are charac-
terized by their fractal dimension D == 2 - H (H being the Hurst exponent) and
rms height 8. In order to avoid the inherent ambiguity in the definition of the
rms height for self-affine fractals, 0 refers in our calculations to the rms height
defined over the entire fractal profile with length L f == 51.4 urn. Recall that 8
depends on the length ~x over which it is measured through 12 0 == 11-1t~x1t, I
being the topothesy. From each generated fractal profile with Nf points and length
L f' sequences of N points (with constant N / Nf ) are extracted to obtain similar
profiles with identical properties except for the lower scale cutoff as determined
by ~L == L f / Nf. (Strictly speaking, ~L should be given by the minimum length
scale above which the ensemble of such realizations exhibit self-affinity, resulting
in a value typically larger than the mere discretization cutoff3,20).

From now on, we will focus on the fractal dimension D == 1.9, for the in-
fluence of decreasing ~L is more significant for larger fractal dimensions. The
effect of varying D has been already studied on the far field'' and the near field,20
albeit for a relatively large lower cutoff ~L. The values of the lower scale cut-
offs hitherto considered are ~L == 51.4,25.7,12.85, and 6.425 nm, resulting from
sequences of N == 102,205,410, and 819 points extracted from profiles with
Nf == 1024,2048,4096, and 8192 points. The length of all realizations is thus
L == L f (N / Nf ) == 5.14 J.Lm. Actually, the final number of sampling points per
realization used in the numerical calculations is significantly higher for the sake
of accuracy: Np == n, N as obtained by introducing n, == 4 - 15 cubic-splined
interpolating points, the latter being chosen on the basis of numerical convergence
tests.

Interestingly, this range of lower scale cutoff covers that of SERS substrates
that can be obtained by depositing fractal colloidal aggregates of Ag particles with
various diameters,32,34,46 as well as the cutoff of evaporated rough surfaces," ap-
proaching in the lower limit that of cold-deposited silver films. The fractal lower
scale cutoff, beyond which fractality is preserved, is actually larger than ~L, though
approximately subwavelength. The fractal upper scale cutoff is greater than the
Gaussian beam width (a few microns). The results collected below restrict to vac-
uum and silver as (incident) dielectric and (scattering) metallic media, respectively.
Similar considerations apply to other media, as revealed for water (dielectric) and
other noble metals (Au and Cu) in [20]. Bulk dielectric function data for Ag are
taken from [50]. It should be mentioned that in order to consider yet smaller lower
scale cutoffs (with large 8), leading to surface irregularities narrower than rvl0 nm,
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FIGURE 11.2. Surface electric (a) and magnetic (normal (b) and tangential (c)) field intensi-
ties on the center spot of the illuminated area (L = 5.14 urn) for s-polarized scattering with
eo = -10°, A = 629.9 nm, and W = L/4coseo, from Ag fractal surfaces with D = 1.9,
8 = 51.4 nm, and ~L = 51.4,25.7,12.85, and 6.425 nm. The KA field intensity is also
included (see text). (d) The corresponding surface profiles.

surface scattering effects yielding a larger imaginary part of the free electron
(Drude) contribution to the dielectric function should be included."

11.3. Near and Surface Field

We now turn to the investigation of the influence on the near EM field of the lower
scale cutoff of the self-affine fractal surfaces. 13,25 Near field intensity distributions
are relevant for the information they provide on the scattering process, and can be
measured through near-field optical microscopy.
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11.3.1. Surface Fields

First, we calculate the intensities of all the EM field components on the surface.
The resultsfor moderately roughfractalswith8 = 51.4 nmareshownin Figs. 11.2
and 11.3for sand p polarization, respectively. The corresponding surfaceprofiles
are shownin the bottom,Figs. 11.2dand Figs. 11.3d. The nonzerocomponents of
the EM field beingplotted are (cf. Sect. 11.2): the tangential, perpendicularto the
incidentplane,electric(respectively, magnetic) fieldandthe normaland tangential
(in the plane of incidence)magnetic (respectively, electric) field, in the case of s
(respectively, p) polarization. For the sake of clarity, only the central part of the
illuminatedsurface is shown.

p polarization

2

0.4

0.2
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...... KA
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-_. ~L=25.7 run
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FIGURE11.3. Surface magnetic (a) and electric (normal (b) and tangential (c)) field intensi-
ties on the center spot of the illuminated area (L = 5.14 urn) for p-polarized scattering with
00 = -10°, A= 629.9 nm, and W = L/4cosOo, from Ag fractal surfaces with D = 1.9,
~ = 51.4 nm, and ~L = 51.4,25.7, 12.85, and 6.425 nm. The KA field intensity is also
included (see text). (d) The corresponding surface profiles.
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Before analyzing the spatial distributions, let us recall what is expected within
the KA, namely, the sum ofthe incident and the specularly (locally) reflected fields.
Since the angular variation of the Fresnel coefficients for metals at this frequency
is small, the local variations of the specular field can be neglected. Therefore, the
KA field intensities are approximately given by those for a planar surface, namely

/ E(s,KA) /2 ~ / 1 + R s /2/ E(s,i) /2

/ H~s,KA) /2 ~ sin200 /1 + R s /2/ H(s,i) I
I H/s,KA) 12 ~ COS200 11 - R s 121 H(s,i) I,

for s polarization; and

IH(p,KA) 12 ~ 11 + R p 121 H(p,i) 1
2

/ E~p,KA) 12 ~ sin200 11 +n, 121 E(p,i) I

1E;P,KA) 12 ~ cos20
o 11 - u, 121E(p,i) I,

(lOa)

(lOb)

(IOc)

(IIa)

(lIb)

(IIc)

for p polarization, R, and R p being the corresponding Fresnel coefficients for
00 on a planar metal surface. The latter field intensities are plotted in Figs. 11.2
and 11.3. As expected, the KA does not hold even for the moderately rough surface
profiles used therein, nor does perturbation theory (recall that the planar surface
field intensities can be considered the zeroth-order approximation in the small-
amplitude perturbation expansion of the field), but they provide the background
about which the actual surface EM field intensities strongly vary.

In the case ofs polarization, Fig. 11.2, significant variations appear in the surface
EM field upon decreasing the lower scale cutoffdue to the evanescent components.
Fluctuations about the background distributions, Eqs. (10), become narrower and
steeper the smaller is ~L, namely, the smaller are the surface features. This effect
is more pronounced for the normal magnetic field, for which the expected KA
background is indeed very small. Interestingly, it should be noted that the electric
field intensity resembles with positive contrast the surface profile (the same is true
for the total, tangential plus normal, magnetic field intensity), which isnot the case
in general.52 Although not valid from a quantitative standpoint, small amplitude
perturbation theory can provide a qualitative explanation. The first-order term of
the surface electric field in powers of the surface height, which in turn gives the
first-order correction to the planar surface background,52,53 can be cast for this
particular scattering geometry, polarization and near normal incidence in the form
of a convolution integral involving the surface profile function. We have verified,
though not shown here, that by simply increasing the angle of incidence up to
00 = 40° the resemblance is slightly lost.

Upon illuminating with p-polarized light, see Fig. 11.3, the surface EM field
intensity distributions become more complicated, with larger variations from one
realization to another with diminishing ~L, and no resemblance whatsoever with
the surface profiles. These variations are considerably larger than those for the
far-field speckle patterns.P indicating the crucial role played by the evanescent
components. Furthermore, the excitation of SPPs propagating along the surface
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and reradiating into vacuum mediates the scattering process. In fact, the spatial
frequency of the large oscillations about the background in the surfaceEM field
intensity is related to the SPP wavelength/"; this is more easily observed in the
surfacemagnetic field in Fig. 11.3a(alsoin the totalelectric field, not shown here)
for the profiles withhigher~L. On the otherhand, the surface normal electricfield
component for the smaller~L (see Fig. 11.3b) reveals the appearance of narrow
and brightspots where an enhancement of the field intensity of nearly twoorders
of magnitude occur, despitetherelatively lowvalueof8.Thisclearlymanifests the
crucial role playedby the lowerscale cutoff in the excitation of localized optical
modes.P

11.3.2. Near Field Map: Localized Surface-Plasmon
Polaritons
It is thus seen that the effect of decreasing the nanoscale lower cutoff on self-
affine fractals can lead to the appearance of p-polarized localized SPPseven for
moderately roughrms heights. The effectcan be quantitatively more relevant for
very rough surfaces. Let us thus plot the EM field in the near vicinity of one
such rough interface. This is done in Fig. 11.4, where the near-field intensity
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FIGURE 11.4. Near field intensity images in p polarization «a) electric and (b) magnetic,
the former split into (c) x , horizontal component, and (d) z. vertical component, all of
them in a loglO scale) in an area of 0.5 x 0.5 11m2 close to a fractal surface with D = 1.9,
8 = 257 nm, and ~L = 12.85 nrn, where a strong localized optical mode is observed.
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maps in a logarithmic scale for p polarization are shown. All of the nonzero
EM field components are included for the sake of completeness; recall that it has
been reported that the magnetic field intensity can be also probed through PSTM
for certain experimental configurations.54 The actual surface profile, though not
explicitly depicted, can be inferred from the fairly black, metallic regions due to
the evanescent behavior of the EM fields inside metal with a small skin depth
(d ~ 25 nm).

A very bright spot is found at the local maximum in the central part of the
intensity map in Fig. 11.4a: The intensity field enhancement at such spot is
1E 1

2 / 1E(i) 1
2

r-v 104• Note that there seems to be a bright, though weaker, magnetic
field spot associated with the optical mode (see Fig. 11.4b), which is nonetheless
slightly shifted to the right with respect to the electric field maximum. The electric
field intensity decays rapidly upon moving into vacuum away from the bright spot,
faster than expected for the evanescent decay of SPP propagating on a plane. This
may help explain why localized optical modes experimentally observed through
PSTM yield considerably smaller enhancement factors.P leaving aside the fact
that no direct comparison with theoretical calculations for the actual experimen-
tal surface profile are available. With regard to the electric field orientation on the
bright spot, Figs. 11.4c and 11.4d indicate that the normal electric field component
is responsible for the bright spot; this component corresponds to 1Ez 1

2 in regions
near surface maxima and minima (see Fig. 11.4d) and to I Ex 1

2 near vertical sur-
face walls (see Fig. 11.4c). It can be also observed that, as expected, the normal
electric field is discontinuous across the interface, the tangential component being
continuous. The continuity of the (tangential) magnetic field for p polarization is
evident in Fig. 11.4a.

With regard to the physics underlying localized optical excitations, two mecha-
nisms have been proposed: Anderson localization of SPP or SPP shape resonances.
Theoretical results" rule out the former mechanism, whereas unequivocally con-
necting localized SPPs with SPP shape resonances occurring at either grooves or
ridges. Upon examining the near-field patterns of localized SPP for many different
ensembles (self-affine fractals and other Gaussian-correlated surfaces), striking
qualitative similarities are found with those for isolated defects of analogous sizes,
in strong correlation with their location at either grooves or ridges. This is evi-
denced in Fig. 11.5, where the p-polarized, near-electric-field map is shown for
isolated, metal Gaussian defects with dimensions close to those of the typical
grooves and ridges in the nanostructured surfaces being studied. In the case of
ridges, Figs. 11.5b and 11.5d, see also Fig. 11.4 above, the electric field is fairly
symmetric and normal to the surface, with a large peak at the very tip of the sur-
face, resembling a monopolar configuration. This configuration is enforced by the
boundary conditions, SPP polarization, and nonforbidden charge distribution at
the very end of the metal tip at adjacent walls. In contrast, as seen in Figs. 11.5a
and 11.5c, a SPP is trapped near the groove bottom with a dipole-like, opposite
charge concentration on either groove wall.27,28 This has been verified for a wide
spectral range in the visible and near-IR, and should be applicable to any disordered
nanostructured metal configuration supporting SPPs. It is not the case, however,
of subwavelength nanoparticle aggregates, where localized optical excitations are
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FIGURE 11.5. Near-field intensity images of the p-polarized electric field intensity (nor-
malized tothatof theincident field) forsingle Gaussian defects of lie-width A = 25.7 nm
andheight h = ± 257 nm(80 = 40°) in an area 0.5xO.5 Ilm2 close to either (c)a groove
or (d)a ridge, zoomed in (60 x 60 nrn-) in (a)and(b), respectively. Thesurface profile is
superimposed asa white curve. All gray scales span from 10glO a = -I (black) to2 (white).

observedand interpreted in the quasistatic approach as Anderson-localizedsurface
plasrnons.F

11.4. Surface Field Enhancement: Statistics

We now analyze the enhancement factor of the surface electric field intensity:25.26

(12)

stemming from the excitation of localized SPPs as shown above, which play a
decisive role in SERS and other surface nonlinear optical processes.17.20.23,26,40

The dependence on ~L of relevant statistical properties of the enhancement
factor of the surface electric field intensity (mean (a), and fluctuations So =
«a2)/(a)2 _1)1 /2) is analyzed from the calculations with normal incidence
over ensembles of Nrea = 100 self-affine fractal realizations; typically, Ndata =
NreaNp/2 ~ lOS are used in the calculations. Moreover, several pump beam
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FIGURE 11.6. Spectraldependence of the enhancement factor of the surfaceelectric field
intensity (a) obtainedfrom the results for Nrea = 100 self-affine Ag fractal profiles with
length L = 5.14 J.1m, D = 1.9, and 8 = 51.4 nm (hollow symbols) and8 = 257 nm (filled
symbols). (a)Mean,(b) fluctuations, and (c)normalized absorption. Circles: ~L = 51.4 nm;
squares: ~L = 25.7 nm; diamonds: ~L = 12.85 nm; and triangles: ~L = 6.425 nm. (The
result for 8 = 257 nm and ~L = 6.425 nm at A = 2 J.1m is not shownfor it does not satisfy
numerical convergence with the available Np.)

wavelengths in the visible and near IR are considered: A = 'ln c]» =629.9,826.6,
1064, 1512, and 2000 nrn.

The results for the spectral dependence of (a) and So , along with the normal-
ized absorption A, are presented in Fig. 11.6. First of all, note that throughout the
visible and near IR regions studied, both the mean and fluctuations decrease with
increasing ;L, as seen in Figs. 11.6a and 11.6b through the vertical variation for
fixed A; and as expected, a is always larger for higher 8. The spectral response
depends on the surface roughness parameters. For the rougher self-affine fractals,
(a) and ~a vary very smoothly over the frequency range shown, whereas maxi-
mum values are reached in the visible for the smoother self-affine fractals with a
significant decrease into the near IR. Leaving aside the variations associated with
large dispersion in the bulk dielectric function, as is the case of the strong damping
due to the onset of interband transitions for Ag at A < 300 nm, the spectral behavior
of the enhancement factor can be roughly explained through the optimization of
Sl'P excitation in the form of localized optical modes. The excitation mechanism
is favored by surface features with small, nanoscale lateral dimensions and large
heights. In terms of the increasing wavelength, light 'sees' surface features in-
creasingly narrower, but smaller. This interplay may lead to the decay of a in the
IR, which occurs at higher A for larger 8 (only barely perceivable at A = 2 urnfor
8 =257 nm). On the other hand, the total absorption spectra in Fig. 11.6c behave
similarly to the spectra of the moments of the enhancement factor. It is worth noting
that the small dissipative damping (less than 1%) occurring for planar Ag surfaces
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FIGURE 11.7. Spectraldependence of the SERS enhancement factor (EM mechanism) for
the same self-affine Ag fractalsas used in Fig. 11.6: (a) Average and (b) local maximum.

becomes huge (up to rv70%) for the rougher self-affine fractals with nanoscale
cutoff due to the excitation and subsequent damping of SPP.

11.5. Surface-Enhanced Raman Scattering

The EM part of the SERS enhancement factor contains the contributions from a
at both the pump frequency wand the Raman-shifted frequency WR, which we
approximate by the square of the former." namely

G~e:s == a(w)a(wR) ~ a 2(w). (13)

Roughly speaking, this approximation is justified provided that the Raman shift
l1w =1 to - WR 1is smaller than the typical line-width r spp of the localized SPP24;

with regard to the results presented below,20,26 this implies that even for the
smaller line-widths found at the rougher surfaces, r spp ,<: 0.2 eV, the obtained
SERS enhancement factors are valid for a reasonably wide range of Raman shifts
l1w rv 1600 nm"".

It is evident from Fig. 11.6 that mean enhancement factors can become large,
but seemingly not exceeding (a) rv 102. Fluctuations are in turn enhanced up
to Sa rv 103, which is crucial in obtaining large enhancement factors in SERS
and other nonlinear surface optical processes.17,23,26 In Fig. 11.7a, the spectral
dependence of the average SERS enhancement factor (EM mechanism), defined as
(G~e:s) = (a 2

) , is shown for the self-affine fractal Ag substrates considered here.
Incidentally, similar results are obtained for other widely used metal substrates
such as Au and Cu (except for wavelengths A < 600 nm below the corresponding
onset of interband transitions). Very large values are found, (G~e:s) :s 106, on the
order of those commonly inferred for SERS substrates.
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In addition to large (G~e:s)' it should be remarked that nanoscale cutoffs can
lead to very large local values of G~e:s' This is shown in Fig. 11.7b, where the
spectral variation of the maximum values of G~e:s is plotted for the same self-
affine Ag fractals as in Fig. 11.7a. The qualitative behavior of the local SERS
enhancement factor with respect to pump frequency, surface RMS height and
lower scale cutoff is analogous to that of the average SERS enhancement fac-
tor. Quantitatively, local enhancements can be considerably larger than average
values, reaching G~e:s rv 109 . These huge local enhancement factors can be re-
sponsible for the bright spots at which SERS single-molecule detection has been
claimed.41-44 Nonetheless our electromagnetically induced calculated values of
G~e:s in Fig. 11.7b lie a few orders of magnitude below those allegedly needed in
SERS single-molecule detection experiments;41-43 in this regard, the chemical en-
hancement mechanism can account for the difference through resonance Raman."
Incidentally, these EM active sites can also enhance dramatically other nonlinear
optical signals (fluorescence, second harmonic generation, etc.) of molecules ad-
sorbed nearby, favoring single-molecule detection. Although narrow (nanoscale)
surface features as high as possible are desirable, the roughness parameters for
the actual SERS substrates are likely a compromise between 8 and ~L; typically,
lower ~L leads to proportionally smaller d. This compromise yields different com-
binations of surface roughness parameters that could give rise to SERS activity, in
agreement with the variety of SERS metal substrates widely employed.32,46,47

11.6. Concluding Remarks

To summarize, we have investigated in this chapter the influence of the nanoscale
(in the region below a hundred nanometers) lower cutoff~L on the scattering oflight
from one-dimensional, self-affine fractal Ag surfaces with large fractal dimension.
Since no approximate methods are applicable for such roughness parameters, the
rigorous EM scattering formulation has been described based on the Green's the-
orem integral equations, extended to account for all EM field components in the
near field region.

Near-field distributions have been included for both sand p polarization (no
depolarization takes place in this scattering geometry). It has been shown that
nanoscale features have a strong impact on the near EM field distributions due to
the relevant role played by the evanescent components. The s-polarized surface
EM field intensity exhibits oscillations with higher frequency the smaller ~L is, but
no significant electric field enhancements are found in this polarization. Drastic
changes with decreasing ~L are found in the p-polarized, surface EM field stem-
ming from the roughness-induced excitation of SPPs. Large, narrow peaks (called
localized optical modes or localized SPPs) tend to appear with either increasing
rms height or decreasing nanoscale, predominantly enhancing the normal electric
field intensity (as expected from the SPP electric field orientation), and rapidly
decaying into both vacuum and metal. Near field intensity maps around localized
SPPs can help to interpret PSTM experimental results.
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Localized SPPs have a strong impact on the statistics of the enhancement fac-
tor surface electric field intensity. Its average and fluctuations exhibit a remark-
able increase upon diminishing the lower scale cutoff. In fact, the presence of
strong nanoscale irregularities is crucial to the excitation of localized SPP and to
the subsequent electric field enhancements; this has been investigated for very
rough, Gaussian-correlated surfaces,27,55 demonstrating that, strictly speaking,
self-affinity is not critical. Large average SERS enhancement factors, which ac-
count fairly well for typically reported values of 4-6 orders of magnitude, are
found over a wide spectral region in the visible and near IR. The inferred local
SERS enhancement factors ~ 109 due to localized SPP are consistent with the val-
ues claimed to occur in SERS single molecule detection. In addition to SERS, the
large field enhancements associated with such localized SPPs on self-affine fractal
metal surfaces can shed light onto other surface nonlinear optical phenomena.
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12.1. General Introduction

During recent decades the study of the scattering of electromagnetic waves by
rough surfaces has aroused the interest of many research groups and has been ap-
proached from different standpoints. Of the geometrical models developed either
to reproduce experimental results or to understand the physics involved in the phe-
nomena of scattering, particular mention should be made of the model consisting
of ensembles of particles with simple geometry seeded onto flat surfaces. What
makes these surfaces especially attractive is that they allow both controlled calcula-
tion for different sizes, shapes, densities, or optical properties, and the possibility
of experimental testing of such systems. But these surfaces are also interesting
for other reasons in certain specific areas, such as mirror degradation by parti-
cle contamination,' detection of surface defects in the semiconductor industry.i
construction of biosensors,' optical particle sizing," and near field optics.'

The problem of calculating the electromagnetic field scattered by these surfaces
is not a simple one because of the presence of a substrate breaking the existing
symmetry of the regular-shaped particle, and also because of the variability of
the particles. In an attempt to solve the scattering problem associated with par-
ticles on flat surfaces, several theoretical approaches have been developed, each
one corresponding to a particular set of conditions affecting the problem (small
particles, nonhomogenous particles, specific optical properties, etc). The simplest
system, in which the microstructure is much smaller than the wavelength, can be
modeled by a dipole. This approach is valid when the field within the particle
is nearly constant and holds when the scatterer is not too close to the interface.
As the particle-substrate separation decreases, the dipole model begins to fail be-
cause higher order multipoles become significant through particle-substrate inter-
action. Some authors 6- 8have used exact image theory (EIT) to derive the scattering
of electromagnetic waves from a small object above an interface separating two
isotropic and homogeneous media. Most simple models assume that the dipole is
illuminated by the superposition of the direct and reflected plane waves. The total
scattered field from the dipole is the superposition of the direct and image scattered
fields. Considering no multiple interactions between the dipole and the substrate,
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Jakeman" showed that the analytical expressions for the field scattered from small
particles (spheres, discs, and needles) distributed on a tilted interface gave first-
order agreement with those of the Rayleigh-Rice theory. Videen10 used similar
expressions to study the polarization state of small spheres near substrates. Other
authors have studied the multiple scattering effects between two small spherical
metallic particles on a flat conducting surface!' and the angular dependent polar-
ization of out-of-plane optical scattering produced by dipole-like particles above
and below a substrate. 12 For this kind of particle, several authors have performed an
exact calculation in order to determine the effect ofthe substrate on scattering. 13-15

These studies use the exact solution for the emission of a dipole close to a plane
interface and include the surface wave components of the scattered field, which in
the case of metallic substrates are identified as the surface plasmon polaritons.

In a first attempt to model particles of finite size, many researchers have con-
sidered particles whose shape conforms to regular geometries such as a sphere,
cylinder, and spheroid. For instance, Nahm and Wolfe16 used a double interaction
model to calculate the scattering by a sphere over a perfectly conducting mirror.
In this model, the sphere is illuminated by the beam both directly and after spec-
ular reflection from the surface. This secondary reflected beam is affected by the
reflection properties of the surface, and is partially obscured by the particle. In
some approximations, further interaction between the sphere and the mirror can
be assumed to be zero, so that the sphere scatters light as if it were isolated. Each of
these two beams generates two contributions to the total scattered field: one direct
and the other after being reflected by the mirror surface. Similar models include
Fresnel reflection coefficients to handle nonperfectly conducting mirrors'?"!" and
a geometrical shadowing factor to take into account the shadowing effect in both
incoming and outgoing beams." The latter correction has been applied to particle
sizing under the name of the modified double interaction model (MDIM), and
the assumptions and results will be discussed in detail in the third section. 20,21

Some authors 22,23 reduce the problem of light scattering by a sphere on a substrate
to the problems of scattering by a sphere in a homogeneous medium and of the
reflection of spherical waves by the substrate. They solve the first by using the
Mie theory, whereas for the second one they use an extension of Weyl's method to
calculate the reflection of dipole radiation by a flat surface. Videen expanded the
interaction field about the image location to solve the scatter from a sphere in front
of24 and behind/" a smooth arbitrary substrate, and later provided an exact theory
for an arbitrary particle system in front of26 and behind/" a perfectly conducting
substrate. Similar derivations for spheres resting on substrates have been provided
by Johnson28- 3o and Fucile et al.31 In this methodology, the boundary conditions
at the particle and at the surface are satisfied simultaneously by projecting the
fields in the half-space region not including the particle onto the half-space region
including the particle. For nonperfectly conducting substrates, some numerical
method or simplifying assumption must be used. Theoretical results for a cylinder
above a substrate calculated using this method32 were compared with experimen-
tal results.P Borghi et al.34 presented a method for treating the two-dimensional
scattering of a plane wave as an arbitrary configuration of perfectly conducting
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circular cylinders in front of a plane surface with general reflection properties.
Thi~ i~ based onthe plane-wave spectrum ofcylindrical fun~tit1n~ involved in the
decomposition of the field scattered by a cylinder. The substrate can be dielectric,
metallic, anisotropic or lossy media, or can be multilayered.

Much research on the problem of the scattering of electromagnetic waves by
particulate surfaces has been formulated in terms of exact integral equations for
the electromagnetic fields that are solved by standard numerical methods. It should
be stressed that the formulation is exact in the sense that no additional physical
assumptions or approximations are needed; Le., all limitations arise from the nu-
merical procedure and from the degree of similarity between the modeled and
real (observed) systems. Integral equations are derived from integral theorems that
combine differential Maxwell equations and appropriate boundary conditions. One
of the methods most widely used is the extinction theorem (ET) of physical optics"
which produces a surface integral equation relating both the incident field to the
sources on the surface, and these to the scattered fields. Although the ET method
was initially used to calculate the scattering by random rough surfaces, different
authors have extended it to calculate the far-field'? and near-field'? scattering by
small metallic particles on flat conducting substrates. The exact character of the
formulation takes into account multiple interaction between particle and substrate.
Saiz et al.38 and Valle et al.39 have studied the effect of particle size, particle
mean distance and the effect of the optical constants on the light scattering. The
method has also been used to study surface plasmon-polariton generation with
small particles on real metallic substrates.i" Madrazo and Nieto-Vesperinas41- 43

have established the ET method for multiply connected domains. This improve-
ment allows numerical simulation of the scattering from systems composed of
surfaces belonging to separated bodies of arbitrary shape and with different opti-
cal properties. A different integral method has been proposed by Greffet et al.,44
who use adequate Green functions to obtain a volume integral extended to the par-
ticle volume, including the substrate. They calculated the far-field and near-field
scattering produced by 2D particles deposited on a dielectric planar waveguide,
paying special attention to particle interaction.P and the near field correspond-
ing to a dielectric rod below a metallic surface under surface plasmon generation
conditions.

Many other approaches to the problem of scattering from particles on surfaces
can be found in the literature. Wriedt and Doicu46 solved the scattering from an
axisymmetric particle on or near a surface with a formalism based on the ex-
tended boundary condition method (EBCM) and the integral representation of
spherical vector wavefunction over plane waves. Special attention was placed on
the interaction between a particle and its image. Taubenblatt'" used a modified
version of the coupled dipole method (COM) to calculate the far-field scattering
intensity from a dielectric cylinder on a surface, when illuminated with a plane
wave with field vectors along the cylinder axis. Using the same method, Schmehl
et al.48 analyzed the scattering by features acting as contaminants on surfaces.
These studies reflect the considerable effort made to improve numerical techniques
in order to accelerate the computation or to obtain good convergence rates.
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Wojcik et al.49 showed numerical solutions of Maxwell's equations for problems
involving scattering from submicron objects on silicon wafers by considering time-
domain finite elements. Kolbehdary et al.50 analyzed scattering from a dielectric
cylinder partially embedded in a perfectly conducting ground plane.

One simple and fairly successful approach is the ray-tracing solution, or, in other
words, the application of the geometrical optics approximation. From a geometrical
viewpoint, a plane wave incident on a metallic object is a beam of parallel rays
of uniform density that is reflected by the sphere-substrate system. The scattered
field is obtained as the coherent sum of the group of rays emerging from the surface
with a common angle. This method has been shown to produce surprisingly good
fits with experimental data when the observation is far from the specular direction
(where the diffraction effects are too strong), even for particles whose size is of
the order of the wavelength. For instance, Saiz and co-workers'" have applied the
method to the analysis of the backscattering from particles on a substrate and of
the effect of different particle densities on scattering patterns. 52

The experimental and theoretical work presented in this chapter attempts to
provide an overview of the kind of results obtained in the analysis of light scattered
by particles on surfaces. All these results come from different stages of the research
performed by our group. Section 12.2 analyzes the near field scattered by a particle
on a flat substrate for both 10 and 20 geometries. In the former, a cylindrical
particle is selected and solutions are obtained by means of calculations based
on the extinction theorem. In the latter, spherical particles are chosen with sizes
much smaller than the incident wavelength, and calculations are made with a
modified version of the numerical electromagnetic code (NEe). Section 12.3,
which is devoted to the far-field case, describes several experimental techniques,
all applied to metallic spherical particles or cylinders on conducting substrates,
and presents different possibilities of obtaining information on the system from
the experimental measurements, that is, the inverse problem.

12.2. Near Field of Particles on Substrates

12.2.1. Introduction

This section presents the near field scattered by a particle on a flat substrate
and numerical analysis for both 10 and 20 geometries. For the 10 geometry,
the particle will be an infinite cylinder with a section diameter smaller than the
incident wavelength. The theoretical background introduced to solve the scatter-
ing problem associated with this geometry will prove useful for understanding
the electromagnetic effects involved in the more general 20 problem. In this
case, a spherical particle whose size is smaller than the incident wavelength
will be assumed to lie on the substrate. Although the cylindrical and spherical
particles are ideal shapes, the most important conclusions are valid for more
complicated particle geometries. Numerical results obtained by applying the
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FIGURE 12.1. Scattering geometry.

extinction theorem.P finite element method-' and a modification of the numerical
electromagnetic code t4, 15 will beshown.

According to the optical properties of the scattering system constituted by the
particle and the substrate, four major combinations can be considered: metal-
dielectric, metal-metal, dielectric-metal and dielectric-dielectric. All are of inter-
est in the framework of the general electromagnetic problem of wave scattering
by particles on substrates for both far- and near-field approximations. The latter
presents interesting features when the substrate is metallic because of the gen-
eration of surface waves (surface plasmonsj/" which has led to what is termed
subwavelength optics." The case of metallic particles opens up the physics of lo-
calized plasmons to applications in SERS (surface enhanced Raman spectroscopy),
biosensors, biomarkers, etc.56 Consequently, most of the results presented in this
section will correspond to the case of metallic substrate.

12.2.2. 1D Geometry

The scattering geometry is shown in Fig. 12.1. Both the cylinder and the substrate
are assumed to be made of the same metallic material . The reference system is
chosen so that the cylinder axis is parallel to the Y-directionand the flat substrate is
parallel to theXY-plane. The incident wave vector kois perpendicular to the cylinder
axis, and the components of the scattered electric field will be calculated at points
on the plane XZ (scattering plane, which is also perpen~dicular to the cylinder axis).
The calculations will be made for normal incidence, ko = (0, 0, -ko).

For the 1D-geometry of Fig. 12.1, numerical calculation of Maxwell's integral
equations derived from the application of the extinction theorem (see Sect. 7.11.1 of
ref. 35) has been used to obtain the electric- and magnetic-field components of the
scattered wave in the near field. The numerical treatment of the integral equations
requires the surface to bediscretized.V Furthermore, the surface length, L, has to
be finite but long enough to avoid edge effects . For the same reason, a Gaussian
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FIGURE 12.2. Evolution of IEy(x, z)1 for S-incident polarization. Cylinder diameter D =
O.5A. e = -11 + 1.5i.

incident beam of suitable width (more than ten times the cylinder diameter) is
chosen to illuminate the sample. The incident beam will be assumed to be linearly
polarized perpendicular (S polarization) or parallel (P polarization) to the scattering
plane, XZ. The cylinder diameter D will be restricted to values smaller than the
incident wavelength. This is because (as seen later for P-incident polarization)
the effects analyzed are more pronounced when D < A(nanosized particles in the
visible range), since for these diameters the cylinder generates surface waves on
the substrate more effectively.

In Fig. 12.2 the modulus of the total electric near-field component, Ey(x, z), is
plotted as a function of x for several values of z (height from the flat substrate)
when the cylinder is illuminated by an S-polarized Gaussian beam. For the case
of normal incidence, only one half of the scattering pattern is shown, since it is
symmetric with respect to the position of the cylinder, which is assumed to be
located at x == O.

For comparison, we have also plotted in Fig. 12.2 the modulus of Ey(x, z)
(continuous line) when the cylinder is isolated and the direction of the incident
beam is parallel to the Z-axis. 57 In this case, the total near electric field Ey(x, z)
has two contributions and can be expressed as

(1)

where E; is the electric field of the wave scattered by the cylinder, and E~ is the
electric field associated with the incident Gaussian beam. At normal incidence,
the interference of these two terms produces a ripple whose spatial period is equal
to the incident wavelength. For values of x » A, where E~ is negligible, the only
contribution comes from the wave scattered by the cylinder. This corresponds to
the small background observed between 17Aand 20A. When the cylinder is located
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on a flat substrate, Eq. (1) has to be rewritten as

Ey(x, z) == E;(x, z) + E~(x, z). (2)

Now the tenn E; of Eq. (2) is the result of the interference between the wave
scattered directly from the cylinder and that scattered and reflected off the substrate.
The term E~ comes from the interference between the incident Gaussian beam
and its reflection on the flat substrate. As is evident, the pattern changes as z
varies. The presence of the ripple is due to the interference between E~ and E;
in Eq. (2). A comparison of the near-field scattered patterns (broken lines) with
that of the isolated cylinder (continuous line) shows that the interference ripple
retains the same spatial period (== A), but damps faster than. in the isolated case.
In fact, when x » Athe background is hardly seen. This can be attributed to the
almost destructive interference of the two contributions of E; (the wave scattered
from the cylinder and reflected off the substrate undergoes a phase shift of the
order of n , and its amplitude is approximately equal to the incident wave). The
presence of the flat substrate tends to weaken the range of the wave scattered by the
cylinder.'! As a result, interaction between two cylinders is more easily produced
when they are isolated in space than when they are located on a flat substrate. In
the latter case, the two cylinders have to be very close. This is indeed an important
point when multiple scattering effects are analyzed for embossed surfaces.

In order to provide a complete picture of the near field for S-incident polarization
and for the geometry of Fig. 12.1, Fig. 12.3(a) shows a 2D surface plot53 of
the modulus of the y-component of the scattered electric field. For comparison,
Fig. 12.3(b) corresponds to the isolated cylinder case (no substrate underneath).

For P-incident polarization, Fig. 12.4 shows some near-field scattering patterns
for the modulus of the x-component of the electric field for a cylinder ofO.5A lying
on a flat substrate together with the isolated cylinder case (continuous line). When
the cylinder is isolated, it should be noted that the x-component of the scattered
electric field is very weak. Only in close proximity to the cylinder can a very small
interference ripple be observed. Its amplitude damps as x increases. For x » A,
the x-component of the scattered electric field has a negligible value.

When the cylinder is located on the flat substrate and z ::s D, the amplitude of
the interference ripple increases considerably. This gives a constant background
at points where the amplitude of the x-component of the incident field has a neg-
ligible value (x > 16A). From these results, it seems reasonable to assume that
the presence of the cylinder generates surface waves on the substrate (polaritons).
Propagation of these waves along the x -direction is due to the coupling of non-
radiative components of the scattered wave vector spectrum with the electronic
plasma oscillations in the metal surface. 54 The background in Fig. 12.4 at points
with x > 16A would correspond to the modulus of the electric field associated
with these surface waves. Under this assumption, the x-component of the near
total electric field can then be written as

Ex(x, z) = E;(x, z) + Ec;(x, z) + E~P(x, z), (3)
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FiGURE 12.3. Two-dimensional surface plot of IEy(x. z)1 for a cylinder on a flat substrate
(a) and for an isolated cylinder (b) when the incident wave is S-polarized. Optical and
geometrical parameters are the same as in Fig. 12.2. Scales are in microns.
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FIGURE 12.4. Evolution of IEx(x, z)1 for P-incident polarization. Cylinder diameter D =
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where the third term stands for the x -component of the surface wave electric field
generated by the cylinder. For z > 0, the general expression for this term can be
written as54

E~P = E~~ exp( -kzz) exp[i(kspx)], (4)

where E~~ is the amplitude of the surface wave, ksp is its propagation constant
along the x-direction, and k, is its damping constant along the z-direction.

From what has been stated for the isolated cylinder, the term E; (x, z) appears
very small. In this case, a good approximation of Eq. (3) for x > 5A is

Ex(x , z) ~ E~ (x, z) + E~P(x, z). (5)

In Fig. 12.5 IEx(x, z)1 as given by Eq. (5) is plotted together with the result
obtained from the numerical calculation of the integral equations for z == 0.25)".
The agreement is very good. Only a few small reasonable discrepancies appear at
points very close to, and far from, the cylinder. In the first case, they are due to the
term E; (x, z) of Eq. (3) and neglected in Eq. (5); in the second case, they are due
to the interference effect of the incident surface wave generated by the cylinder
and that reflected at the edge of the surface. 58 This produces a small ripple, which
slightly deforms the oscillations closer to the edge of the surface (this effect is not
included in the previous equations).

As shown for the x-component, the z-component of the near total electric field
can be written as

Ez(x, z) == E;(x, z) + E~(x, z) + E;P(x, z), (6)

In Fig. 12.6 IEz(x, z)1 is represented for two values of z < D together with the
isolated cylinder case (continuous line). In the latter case, the ripple comes from
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the interference of E~ and E; (E;P = 0). When the cylinder is on the substrate,
the three terms of Eq. (6) contribute to the total scattered field. For the isolated
cylinder, the z-component of the scattered field, unlike the x-component, has a
nonnegligible value and reaches a constant value for x » A. This value corresponds
to the scattered field in the far-field approximation.

When the cylinder is located on the substrate and x » A,the two contributions
contained in E~ (x, z) (direct and reflected off the substrate) tend to cancel each
other out if the cylinder size is smaller than Aand E~ is evaluated at points with
z < A (remember that r p(f)) ---+ -1 when f) ---+ 1C/2). Let us assume that in this
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FIGURE 12.6. Evolution of IEz(x, z)1 for P-incident polarization. Cylinder diameter
D = 0.5A. e = -11 + 1.5i.
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FIGURE 12.7. Comparison of IEz(x, z)1 obtained through numerical calculation (thick line)
with the analytical result of the modulus ofEq. (7) (thin line). Cylinder diameter D = O.5A.
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situation the following approximationholds:

Ez(x, z) ~ E:(x, z) + E;P(x, z). (7)

In this equation E~(x, z) is given by

E:(x, z) == [2x IiIk;" Iw~] exp [- x 2Iw~] {exp(-ikizz) + ro exp(ikizz)} , (8)

where ro is the Fresnel reflection coefficient of the z-component of the incident
Gaussian beam, and E~P(x, z) is given by an expression similar to Eq (4).

Figure 12.7 shows a comparison of IEz(x, z)1 as calculated from Eq. (7) and
that from the exact numerical methods for z == O.25A. As for the x-component,
when the surface wave generated by the cylinder reaches the edge of the sub-
strate, a reflectedsurface wavetraveling in the oppositedirection is generated.The
interference between these two waves produces a periodical modulation in the
x - and z-components of the electric field, whose spatial period is one half of
the wavelengthassociated to the surface wave, Asp == 2JrI ksp•

Followingtheanalysisof the local field,theevolutionof thex -andz-components
of the scatteredelectric fieldis studiedwhenz is variedand the x -coordinateis kept
fixed. As anexample,acylinderofdiameterO.2A willbeconsidered.InFig. l2.8(a),
a semilogarithmicplot of the evolution of IEx(x , z)1 with z is shown in the range
[O.lA-4A] for four valuesof x: A, 5A, lOA, and l5A.Forx == Aand 5A, it is difficult
to see any sign of the presence of the surface wave.As z increases, only a periodic
lobed structure appears. This is mainly due to the standing-wave behaviour of
the resulting fielddue to the interference of the incident waveand that reflectedoff
the substrate. For x == lOA, and l5A, IEx(x, z)1 has a clear linear evolution in the
range [O.lA-O.5A], which indicates the presence of the surface wave. The decay
rate (theparameterk; in Eq. (4))givesa valueof2, whichagreeswiththe theoretical
result for kz for a flatmetalliccylinderless interface.Forz > D.5A, the contribution
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FIGURE 12.8. Evolution of (a) IEx(x, z)1 and (b) IEz(x, z)1 for P-incident polarization.
Cylinder diameter D = O.2A. e = -11 + 1.5i.

of the surface wave becomes negligible, and Ex(x , z) is given approximately by
the first term of Eq. (5), i.e., the scattering from the cylinder on the substrate. In
Fig. 12.8(b) a semilogarithmic plot of IEz(x, z)1 as a function of z is represented
for the same values of x used in Fig. 12.8(a) (it should be remembered that the
contribution of the incident field to the total z-component of the scattered wave
field is very small). The linear behavior of IEz(x, z)1 is maintained in the range
[0.1),,-0.5),,] for the four values of the x-coordinate. Therefore, the contribution of
the z-component of the surface wave to the near field predominates. As is evident,
this predominance is greater as x increases. For instance, for x == 15)", the linear
behavior of \Ez(x, z)\ is maintained until z == )... For z > ).., the contribution from
the cylinder of the z-component of the scattered electric field begins to dominate.
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For P-incident waves,Fig. 12.9 showsa 2D surfaceplot of the near field gener-
ated by a metallic cylinder isolated (a) and on a flat metallic substrate (b).

12.2.3. 2D Geometry

All the resultspresentedabovefor the 1D geometryserveas a basis for the analysis
of the near field for the more realistic 2D case. In this section we present the near
field produced by a small particle (as compared to the wavelength) located on
a flat metallic substrate. As in the ID case, if this system is illuminated by a
monochromatic incident waveof wavevector ko, a componentof the nonradiative
part of the scattered wavevector spectrum (k > ko) can couple with the electron-
plasma oscillationsof the metallicsurface.For the 2D geometry, this couplingcan
excite a cylindrical surface polariton (CSP). Apart from the interest due to their
applications,56 this kind of surface waveis involved in the formationof periodical
structures on the surfaces of some materials during the action of intense laser
beams.V It should be noted that these cylindrical surface electromagnetic waves
correspondto the surfacewavesappearingin Sommerfeld'ssolutionto theclassical
problem of the field due to a dipole close to a surface/" Recently, Kosobukin'"
has developed a theory for the elastic scattering from insulating inhomogeneities
in a medium accompaniedby excitationof cylindricalsurfacephonon-polaritons,
and his theory provides an asymptoticdescription of the fields.

For the analysisof the near fieldof a small particleon a flatmetallic interface,a
substrate made of gold (s == -11.95 + 1.33i at A == 633 nm) with a small spheri-
cal isotropicgold particle (radius == 0.05A)will be considered. A monochromatic
(A == 633 nm) linearly polarized plane wave, either parallel or perpendicular to
the plane of incidence (XZ plane), is incident on the surface. In this case, the nu-
merical calculation of the total electromagneticfield scattered by the surface has
beencarriedout by meansof a modification of the numericalelectromagnetic code
developedby Burkeand Poggio.P" The method is based on an integral representa-
tion of the scattered field related to the linear current distribution induced by the
incident field, which in tum can be obtained by the application of the method of
moments.14

From the above considerations, the small spherical particle is represented by
threeequalorthogonalthin wiresof gold(lengthO.lA anddiameter0.01A)centered
at a point of height h ~ the particle radius. The current elements excited on the
conductingwires by the incident fieldcan be regardedas the three componentsof
the polarizationinduced in the particle.

Fig. 12.10 shows the squared modulus of the total electric field in a horizontal
plane when a linear polarized plane wave is normally incident, with polarization
along the Y-axis. The observation plane is parallel to the substrate and contains
the center of the particle. The spatial distribution of the field on that plane will
be of interest when other particles are present and interactionis to be considered.
Besides the central peak, the interferenceof the incident field with that due to the
particle is clearly seen. Two zones with different behavior can be distinguished
in the interference pattern. In the first area, which corresponds to the angular
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FIGURE 12.9. Two-dimensional surface plot of Ez(x , z) for a cylinder on a flat substrate
(a) and for an isolated cylinder (b) when the incident wave is P-polarized. Optical and
geometrical parameters are the same as in Fig. 12.2. Scales are in microns.
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1.268

FIGURE 12.10. IE(x , z)12 in a plane parallelto the substrate (z ~ particle radius) for normal
incidence and polarization parallel to the Y-axis. The plotted area is a 8A x 8A square
centered at the particle position .

interval ±20° around the X-axis in both directions, the interference contrast is low
and decreases rapidly with distance. In the second, corresponding to the remaining
plane , the contrast is higher and decreases slowly with distance. The maximum
contrast is in the direction of the polarization induced in the particle by the incident
wave (the Y-axis direction). If bulk waves are the dominant part of the field due
to the particle, the visibility of the interference should be higher along the X-axis
direction than along any other. Actually, the radiated field is attenuated close to the
surface because of the destructive interference between the directly emitted field
and that reflected off the substrate. Except for points very close to the particle,
the angles of incidence of such reflection beams are quite large, almost causing
a tt phase shift.'! On the other hand, along the Y-axis (maximum contrast) the
only component of the radiated wave is the radial component. This decreases with
distance as R-3

; it cannot, therefore, be responsible for the observed ripple . Thus,
it can be assumed that the main contribution to the interference with the incident
field comes from the surface waves.

In general, the electric field of esP's has components normal to the surface,
Ez, and radial components, E" parallel to the surface, described by Hankel
functions with angular numbers m = 0, I, depending on the polarization of the
incident light and the angle of incidence.?' The wave number ksp is a function of
the dielectric constants of the substrate (e2) and the medium above it (ed, with
the same dependence as that found in Sect. 12.2.2 for the 1D case of plane surface
plasmons.P" When a linear polarized plane wave is normally incident, only esP's
with angular number m = 1 can be excited. This implies that the plasmon field
has angular dependence sin(cp)(cp is the cylindrical coordinate) and its interference
with the incident field (along the Y-axis) takes the form I I ~ sin2

( cp) (I I being
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FIGURE 12.11. As in Fig. 12.10 but for an angleof incidence of 50°.

the interference term of the total intensity: I' = 2Re(Eo.Es ), where Eo is the
incident field and E, is the field due to the particle). This can be seen in Fig. 12.10,
where the maximum field due to the CSP is along the Y-axis direction (rp = 1C /2)
parallel to the induced dipole moment, in contrast to what would happen with a
dipole in free space. For tp = 0 or 1C, the plasmon field vanishes and the remaining
interference is caused by the weak radiated component. Besides the amplitude, the
two interference regions differ in their periods. For the radiated wave, the period
is A = 21C / ko . In the plasmon case and for distances not too close to the particle,
the separation of the maxima is Asp = 21C / Re(ksp). With the same incident polar-
ization (parallel to the Y-axis) but with an oblique incidence, the moment induced
in the particle changes in strength but not in orientation. Therefore, the excited
plasmon has the same spatial distribution and the change in the appearance of the
interference pattern will only be due to the obliquity of the incident plane wave.

This can be observed in Fig. 12.11, which represents the squared modulus of
the electric field for an angle of incidence of 50°.

A different situation occurs if the incident wave is P-polarized (electric field
parallel to the XZ-plane). Fig. 12.12 shows the squared modulus of the total field
for an angle of incidence of 50°. Here, the incident field excites a moment on the
particle with two orthogonal components'"

pz ~ sin(O)[l + r p exp(2ikohcos(O)],

Px ~ cos(O)[1 - r p exp(2ikohcos(O»),
(9)

rp being the reflection coefficient of the substrate for P polarization. The radiated
portion of the field is again negligible, for the same reason as before (except for
points very close to the particle, where it produces the central peak) . Figure 12.12
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2.1

FIGURE 12.12. IB(x .z)12 as in Fig. 12.10 but for an angle of incidence of 50° and incident
polarization parallel (P-polarization) to the plane of incidence (XZ-plane).

is very similar to Fig. 12.4c of Ref. 59. The latter shows the ripple generated on
a surface by the action of an intense laser radiation. A localized imperfection in
the surface excited a cylindrical surface polariton (phonon-polariton in the case
where the incident wavelength is resonant with the dielectric substrate) that inter-
feres with the incident beam . The strong fields melt the surface with the shape of
the interference ripple. The CSP excited by the vertical moment component has an
angular number m = 0, as can be derived from symmetry considerations, while the
CSP excited by the horizontal component has m = I, as in the case of() = 00. The
first CSP implies circular symmetry; there are no directions along which the field
associated with the plasmon vanishes. If the horizontal and vertical components of
Eo,the incident electric field, and E, due to the plasmon are explicitly taken into ac-
count, the interference term I' = 2Re(E~ . Es ) can be separated into four terms'" :

I~x' I;z. I~z' I;x (the term I~z,for instance, would correspond to the Ex component
excited by the pz moment, interfering with the incident field). These terms hold the
following angular dependences: I;x ~ cos2(rp), I;z' I;x ~ cos(rp), I;z ~ 1. How-
ever, in Fig. 12.12, no direction with ripple extinction is observed, and so the term
I;z clearly seems much greater than the others. Consequently, the polariton excited
by the vertical induced moment is larger than the polariton excited by the horizon-
tal moment. This is partly due to the dependence of the incident field on the angle
of incidence that causes pz > Px for () = 50 0

• Nonetheless, we have obtained the
same behavior for angles of incidence where pz < p«. This means that the excita-
tion ofCSP is more effective for the vertical than for the horizontal dipole moment
(I~z < I;z because the ratio of the normal to the parallel component of the electric
field for polaritons is54 Ez/ Ex ~ .jSi and, in our case, takes the value 3.5).
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FIGURE 12.13. Scattered intensity distribution ina rectangle (12)" x 8),,) forfour scatterers
ona metallic substrate separated by3.6)" in theX-direction and3.4)" in theY-direction for
anangle of incidence of 12° and P polarization (electric field parallel to theXZ-plane).

12.2.4. Concluding Remarks

Circularsurfacepolaritonsaresurfacewaveswhosewavelengthis smallerthan that
correspondingto the excitation wave.They propagatealong the metallicsurface in
the same way that conventionalwavesdo in free space.Thus, they can bereflected
and refractedand also undergointerferenceand diffraction.56Their physics has led
to a new field known as subwavelength optics with many applications in several
technologicalfields(photoniccircuits, data storage,bio-photonics,etc.). As an ex-
ample,Fig. 12.13showsthenear-fieldscatteringpatternfor a geometryof four scat-
tererson a metallicsubstratelocatedat thecomers of a rectangleofdimensions3.6>"
in the X-directionand 3.4>" in the Y-direction. The rectangle is centered on the ori-
gin of the axes. The angle of incidence is 12° and the incident waveis S-polarized.
Cavity effects due to CSP interference and diffraction are clearly visible.!"

12.3. Far Field of Particles on Substrates

12.3.1. Introduction

The purpose of this section is to showhow a system consistingof a particle located
on a flat substrate scatters light under the far-field approximation. This will be
done mainly from an experimentalpoint of view although theoretical models will
be introduced for comparison in order to extract the most important conclusions
about the physics of this electromagnetic problem, whose near-field optics has
been developed in the previous section.

The calculation of the far fieldproduced by particulate surfaces requires the ap-
plication of approximate or exact methods, each of which presents characteristics
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making them more or less suitable for certain given conditions. One important con-
sequence of the accessibility of theoretical solutions is that the inverse problem can
be approached experimentally. Any experimental scattering situation for which a
solution can be calculated allows a systematic comparison. In this way, confronta-
tion of theoretical and experimental results has led to a better understanding of the
mechanism of the scattering process, and several ways of obtaining information
about the scatters have been explored.

A wide variety of light scattering experiments involving particles on substrates
have been described. This is mainly due to the following reasons:

• Experiments have been designed for very different purposes, including surface
contamination research, particle sizing (both are parts of the so-called inverse
problem), or modeling of real surfaces (planetary dust surfaces, sea surface
among others)

• Experimental designs have very different requirements. This is true for near- and
far-field geometries, each of which involves a different approach to design. With
regard to far-field experiments we can find, for instance, measurements of the full
angular variations (upper hemisphere), and variable incidence backscattering (or
pure backscattering).

• The magnitudes experimentally measured vary from one experiment to another.
Very often only scattered intensity is measured, sometimes with emphasis on a
particular type ofpolarization, either in relation to the plane of incidence, defined
by the surface normal to the incident light, or to the scattering plane, defined by
the incident and observed directions, when light out of the incidence plane is
studied. In addition, a specific polarization parameter may be analyzed, such as
the degree of linear polarization or the depolarization ratios, but in some cases
the whole Mueller matrix has been measured. Recently, one interesting approach
chosen by some authors is the statistical analysis of time fluctuations of either
the intensity or the polarization of scattered light.

• Experiments also vary with respect to the size, shape, optical properties, and
surface density of the particles, protuberances or microstructures analyzed. This
not only affects the characteristics of the experiment, but also the nature of
the models used: single or multiple dipole models, models of the isolated Mie
particle, rough surface models, etc.

This section presents a group of results, all of which correspond to substrates
with metallic particles of size comparable to the wavelength. These results will be
compared to others obtained with the theoretical models described in Sects. 12.1
and 12.2. Results are first presented for regular particles (spheres or cylinders with
the axis normal to the scattering plane), followed by those for certain deviations
from the simple regular case, namely irregularities (surface defects, buried parti-
cles), size variability (polydispersity), or high surface particle density (producing
multiple scattering). Finally, a brief description is given of some results obtained
in statistical studies.



324 Moreno, Saiz, and Gonzalez

8i I

FIGURE 12.14. Geometry of the scatter system. A: Incident wavelength; R: Radius of the
particle; (Ji: Angle of incidence; (Js: Scattering angle; 8: complex dielectric constant of the
substrate and particle.

12.3.2. Regular Particles on Flat Substrates

When a particle whose size is of the order of the wavelength is located on a flat
substrate, the angular dependence ofthe scattered light shows a characteristic lobed
pattern with a maximum around the specular direction and a set of fairly visible
maxima and minima whose angular positions depend strongly, but not exclusively,
on the particle size.

A very useful model for this geometry was developed by Nahm and Wolfe16

and a modified version" can be summarized as follows. A particle is illuminated
by a direct beam of amplitude Ao and by its specular reflected beam, which is
affected by the corresponding Fresnel reflection coefficient f«(}i) and by the phase
shift 8«(}i) associated with the additional path length (see Fig. 12.14)

8(Oi) = (21f / 'A) 2h cos Oi, (10)

where h is the distance from the center of the particle to the substrate, and h == R
for the contact case represented in Fig. 12.14. Each of the two incoming beams
generates two contributions to the total scattered field. The first component in each
case is that directly scattered from the protuberance, and the second is that scattered
and reflected off the substrate, which is also affected by a Fresnel coefficient
f«(}s) and a phase shift 8(Os) similar to Eq.lO.

The four components constituting the scattered field for an incident amplitude
Ao can be written as

[E s ]1 == AoF(rr - (}i - (}s),

[Es]2 == AoF«(}i - (}s) [1 - S(Os )]1/2f(Os) exp {i8«(}s)} ,

[Es]3 == AoF«(}i - (}s) [1 - S«(}i)]1/2 f(Oi)exp {i8«(}i)} , (11)

[ES ]4 == AoF (1f -(}i -(}s)[I- S«(}i)]1/2[1- S«(}s)]1/2f«(}i)
x exp {i8(Oi)} f(Os)exp {i8(Os)} ,

where F(O) is the complex far-field scattering amplitude for the isolated particle
at an angle 0, and for the same radius, properties, and incident wavelength. These
amplitudes can be evaluated by means of standard light scattering programs.V
S«(}i) and S«(}s) are geometrical shadowingfactors accounting for the fact that the
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FIGURE 12.15. Scattering pattern corresponding to a cylinder on a substrate, both gold
coated, of approximate diameter D = 1.1 urn,for ei = 20°. Circles: experimental results.
Continuous line: results predicted by the model.

particle is obscuring its image both in the illuminating and scattering processes
and is, therefore, contributing to the total energy conservation. These factors are
easy to calculate for regular particles such as cylinders or spheres, and size the
shadow cast by a particle onto its imageparticle for a given incidence." Finally,
the total scattered far field will be given by

4

Er = L [Es ],;.

.i=1

(12)

A fast and accurate microsizing method'? was proposed and developed for
spherical and cylindrical metallic particles in 1996. This involves measuring the
minima angular positions of the lobed S-polarized far-field scattering patterns
at normal incidence. The particle mean diameter was fitted by comparing the
theoretically predicted positions and the experimental minima. This method was
later extended to the case of oblique incidence," providing empirical expressions
for sizing spheres and cylinders on substrates, based on the positions of their
scattering minima. The method is reliable in the interval (}i E [0°-30°]. Although
the use of exact integral methods for the calculation of the scattering patterns could,
in principle, increase this application interval, it should be noted that the flatness
of the substrate surface becomes important as the angle of incidence increases.
Therefore, any model used for sizing at high incidences should include information
about surface flatness and defects.

Figure 12.15 shows the case of a cylinder 1.IJ.!min diameter and for an angle
of incidence (}i = 20°. The positions of the minima are strongly dependent on the
size of the particle and also on the polarization chosen for the experiment.
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FIGURE 12.16. Position of the order m = 1 in the backward-scattering zone as a function
of the angle of incidence for a cylinder of approximate diameter D = 1.1urn, Squares:
experimental measurements (central values and error bars). Dots: positions predicted by
the model.

This method was improved by simply tracking the evolution ofa given minimum
in relation to the angle of incidence. This dynamic procedure requires longer
measuring times, but produces greater input of information, thereby increasing the
accuracy of the method by an order of magnitude. In Fig. 12.16, the experimental
tracking of the minimum labeled by (*b) in Fig. 12.15 is plotted together with
the theoretical values obtained for the cylinders giving the best fit (D == 1.077J..lm,
~D = O.OO4J..lm, for a cylinder of nominal diameter 1.IJ..lm). The minimum placed
in the forward side and labeled (*f) yielded similar results (D = 1.079J..lm, ~D =
O.005J..lm).

An interesting point suggested by the nature of this model is the possibility of
extending the method to other geometries. Once the scattered far field in the plane
of incidence is known for an isolated particle of given size, shape, and orientation,
and for a given wavelength, it can be implemented in Eqs. (11) used by the model
in order to obtain its particular pattern.

12.3.3. Quasi-Regular Cases: Buried Particles
and Surface Defects

The scattering produced by spherical particles or cylinders on substrates is very
sensitive to the characteristics (roughness, inhomogeneity, defects) of the substrate
itself. For example, when a silica fiber lying on a flat substrate is covered with gold,
the substrate rises an amount that depends on the thickness of the coating. In some
places the coating may produce a longitudinal folding of the gold layer. Here, we
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FIGURE 12.17. Scattering pattern corresponding to a cylinder of diameter D = 1.1urn on a
flat substrate for an incidence of (}i = 30° and s polarization. (a) Experiment (dashed) and
calculated (continuous) curves. (b) The same, assuming a partially buried cylinder, by a
fraction 8 = D/30.

comment on two interesting examples: the buried particle and the particle with a
neighboring protrusion, or bumped surface.

12.3.3.1. Buried Particles

Figures 12.17 show several scattering curves corresponding to a metallized fiber
sized approximately D == 1.1urn resting on a flat substrate. In both figures the
dashed line corresponds to the experimental results obtained for S-polarized light
with A == 0.633 urn and ()i == 30°. The continuous line represents the theoretical
results obtained with numerical programs based on the extinction theorem'" ap-
plied to the 1D case, i.e. a cylinder with light incident normal to the cylinder axis
and scattering observed within the plane of incidence. While in Fig. 12.17.a the
geometry introduced in the calculating program was exactly that of a cylinder ly-
ing on a substrate, in Fig. 12.17.b the calculation was performed for a surface in
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FIGURE 12.18. Experimental backscattering patternsobtainedatdifferentpointsof thefiber.
See text for details.

which the cylinder is buried an amount equivalent to D/30, in agreement with the
characteristics of the sputtering process applied to the sample.

The fit in the left-hand side of the plot (backward side) improves significantly
with burying. With regard to this experiment, it is noteworthy that an observation
in the far field provides information on a change in the geometry of a few tens of
nanometers (20 nm in this case).

12.3.3.2. Particle with a Bumped Surface Nearby

This is an interesting example of a situation in which a solution to a particular
inverse problem is provided by a combination of prior knowledge of the system
and use of an appropriate model into which geometrical proposals may easily
be introduced. In Fig. 12.18 two experimental backscattering plots are shown,
corresponding to two different points of a fiber on a gold-coated substrate (in pure
backscattering plots, Os == -Oi' i.e. incidence and observation beams overlap). The
line plotted in asterisks shows a perfectly regular and repetitive pattern, while the
line plotted with circles is obtained at a given point where something produces a
clear anomaly in the approximate interval [40°-60°]. A local distortion is observed
in the form of an extra minimum, suggesting that, whatever is taking part in the
scattering process affects a very particular angular range.

From Fig. 12.19 it is clear that each backscattering angle is associated with a
point on the substrate surface where a particular feature (for instance, a neighboring
bump (or dip) beside the cylinder) may strongly affect the light scattering in that
angular interval. .

Using the MDIM model, it is possible to obtain the scattering patterns for a
surface containing a Gaussian-distributed height for each distance z to the base of
the cylinder, thus producing a curved substrate, with different value h' for each
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FIGURE 12.19. Scheme showing how MDIM implements the presence of a bump (go < 0
corresponds to a dip).

position z (or angle Oi)

'rv ( h2(tan 0i - tan (0)2)
h (z) == h - goexp - 2 '

Wo
where 00 is the center of the affected angular interval, the parameter go is the
maximum height (or depth) of the bump (go> 0) or dip (go < 0), and ui; is its
width. In Eq. 13 tan 00 == zo!h, Zo being the central point of the bump, or dip,
measured from the cylinder'<.

The new variable h' produces a phase shift in some of the components involved
in the MDIM model. Figure 12.20 shows the pattern produced for ui; == 0.2 urn
and go == 0.4 urn,

The fit corresponds to a bump, which is in agreement with the fact that a gold-
sputtered layer may easily rise above the lower substrate (this was confirmed

o 15 30 45

e·1
60 75 90

FIGURE 12.20. Agreement between the experimental backscattering pattern obtained at a
point of the fiber (circles) and the results obtained with MDIM for a simulated bump of
ui; = O.2J.1m and go = O.4J.1m.
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by electron-microscope images). The presence of an extra minimum could be
explained in this way, constituting one of several examples of inverse problems
tackled with this technique.

12.3.4. Many Particles: Polydispersity, Shadowing
and Multiple Scattering

12.3.4.1. Introduction

For surfaces sparsely seeded with identical particles, the scattering patterns corre-
spond to those predicted for the isolated particle on the substrate. However, as the
surface density increases, the role of multiple scattering becomes more important,
and the pattern progressively loses the characteristic lobed structure. Eventually,
when particles begin to stack in layers, the surface behaves very much like a rough
surface, completely losing the single particle scattering signature.

The samples pictured in Figs. 12.21a and 12.21b represent this evolution,
where the mean distance d is intuitively used as an inverse measure of the den-
sity of the sample, d = (1/P)1/2, d being expressed in urn if p is expressed in
particles/Jlm2•

The loss of the single particle scattering signature can be observed in Fig. 12.22,
for samples similar to those shown in Fig. 12.21, from d = 1.5 urn to d = 4 J..Lm.
In this case, the Iss is measured , and plotted in log scale. The total scattering
increases, but the characteristic lobed pattern is replaced by an increasingly uniform
pattern.

Both evolution curves show that the importance of multiple scattering and its
effects increases significantly as d decreases. In fact, it has been demonstrated'": 11

that d has to be shorter for particles on substrates than for particles in space in
order to produce important multiple scattering effects. An explanation for this is the
destructive interference between direct scattering and substrate reflected scattering
from one particle to another.

Multiple scattering is not the only reason the lobed pattern is lost. In low surface
density particle experiments, it is possible to observe that the visibility of the
minima is lower than that calculated for the single scatterer on the flat substrate.
One reason for this is the size polydispersity associated with an ensemble of similar,
but not identical, particles. But other causes should be also mentioned: shape
polydispersity, microirregularities in the substrate, presence of particle clusters,
and also a persisting small amount of multiple scattering.

12.3.4.2. Polydispersity

A theoretical approach to the loss of visibility in the lobed pattern caused by
polydispersity'f leads to the conclusion that, in a first approximation, visibility
depends on the order of the minimum and the degree of polydispersity, but not on
particle size, so that approximate curves such as those shown in dashed lines with
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FIGURE 12.21. Scanning electron micrographs corresponding to (a) a sparse sample with
d = 6.51lm and (b) a dense sample with d = l .Sum.

circles in Fig. 12.23 may be plotted not only for spheres but also for cylinders with
incidence normal to the axis and observation within the plane of incidence.

In the case of a cylinder on the substrate, polydispersity must be understood
as the averaging effect produced by size variations in the illuminated length.This
polydispersity is the main cause of the loss of visibility for cylinders. Within
this experimental framework, it is possible to understand the results obtained for
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FIGURE 12.22. Evolution of a co-polarized scattering pattern as a function of the mean
distance between particles. Dense samples produce a progressive loss of visibility in the
lobed structure.
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FIGURE 12.23. Evolutioncurvesof the visibilityV(m). Thesecurvesare onlymeasurable at
the integervalues(circles)and are obtainedfroman approximate calculationand assuming
onlyonesourcefor thelossof visibility: sizepolydispersity r, that is expressedinpercentfor
each curve. Experimental values obtainedfor a cylinder sized D = I.I urn for m = 0 and
m = I areplottedin squares.Experimental valuesfora sampleof spheressized D = 3.2 urn
are plotted in triangles, showingevidenceof other sources for the loss of visibility.
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FIGURE 12.24. Evolution of the cross-polarized scattered intensity patterns for 8; = 0°
and s-incident wave as a function of the surface particle density, from the mean distance
d = 1.5!lm to d = 4!lm. Logarithmic scale.

a cylinder sized D = Ll um (two minima) and for spheres sized D = 3.21lm
(seven minima). The visibilities found are plotted in Fig. 12.23 for the cylinder
(squares), and for spheres (triangles). The number of orders available , depends, as
mentioned above, on the particle size. The values found for the cylinder fit with
one of the theoretical only-polydispersity curves, corresponding to r = 0.04 (4%
polydispersity), which is in agreement with an estimate made by the manufacturers
of the fiber for its size variations. For the spheres, because of the many causes of the
visibility loss (each affecting different parts of the scattering patterns), we cannot
expect the experimental values to follow a given curve . Instead, an upper-limit
estimate of 3% (in the 5th order) can be established, provided that higher values
would not allow to reach such values .

12.3.4.3. Multiple Scattering and Shadowing Effect

Fig. 12.24 is similar to Fig. 12.22, but here the measured cross -polarized intensity
lsp is plotted. This represents the increasing role of multiple scattering for this kind
of sample, since the incident polarization (perpendicular to the plane of incidence)
can be changed with respect to that plane (and measuring within that plane) only
by multiple scattering.

One numerical method of evaluating the power of the surface to produce multiple
scattering is to integrate the cross-polarized intensity over all scattering angles and
to measure that with respect to the co-polarized intensity. This can be approximated
by the following ratio in the plane of incidence (where specular light is not taken
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FIGURE 12.25. Evolution of the cross-polarization ratio for p-incident polarization as a
function of the mean particle distance d.

into account):

Bs=+90°

L Isp(Oi, Os)
Bs=-90°Ds = - - - - - -
Bs=+90°

L Iss (0;, Os)
Bs=-90°

(14)

These cross-polarization ratios are obtained for different samples, and also for
polarization parallel to the plane of incidence (D p).

In Fig. 12.25 the ratios are plotted for a fixed angle of incidence (Oi = 35°) as
a function of the mean distance d, producing a characteristic shape of increasing
interaction for decreasing mean distance. It should be noted that very short mean
interparticle distances are required to obtain high values of the cross-polarization
ratios.

An even more interesting dependence is discovered when the ratios are plotted
as a function of the angle of incidence. In Fig. 12.26, Ds is plotted as a function
of the angle of incidence and for samples with three different values of the surface
particle density (mean distance values d == 7.6 urn, 2.9 urn and 1.5 urn for the
dilute, intermediate and dense sample respectively). For dilute samples, D, remain
small, with almost no multiple scattering between particles and no depencedence on
Oi. For the intermediate sample, a significant increase is observed from Oi = 60°;
this is related to the way particles sized of the order of the wavelength scatter
strongly in a wide forward lobe that can reach other particles for such incidences.
From Oi = 75° onwards, cross-polarization effects tend to decay, suggesting that
particles no longer increase the amount of light directed onto their neighbors
through forward scattering, and receive less light instead. In other words, particles
tend to be inside the shadow cast by other particles, producing what we call the
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FIGURE 12.26. Cross-polarization ratios as a function of the angle of incidence for three
different samples of spherical particles with particle mean distance d = 7.6 urn (circles),
d = 2.91-lm (asterisks), and d = 1.51-lm (squares).

shadowing effect. In the dense sample, this effect is highly significant at relatively
low incidences. The substrate plays an important role at low incidences, but is
almost absent from the scattering process at high incidence angles, where the
dense surface behaves more like a smooth rough surface.

12.3.5. Light Scattering Statistics

As mentioned above, an interesting approach to solving the inverse problem is
statistical analysis of scattered light. The statistical techniques developed in this
field are particularly applicable to the extraction of information about the samples
in backscattering experiments. For particles on a flat or slightly rough surface, the
particle surface density can be considered the main source of multiple scattering.
For incident polarization, either parallel or perpendicular to the scattering plane,
multiple scattering processes may produce changes in the polarization plane of the
light detected within the plane of incidence. Consequently, a nonzero component in
the direction perpendicular to that of the incident one (cross-polarized component)
is observed when the average distance between particles, d, is short enough, i.e,
particle surface density, P == 1/d2, is high enough. Assuming a Gaussian regime
(high number of scatterers), the probability of detecting zero when observing the
cross-polarized component can be expressed as66

P(Icross=o)=exp [ - L;:b] =exp(-yab), (15)

where a and b are the semiaxes of the illuminated area (dependent on the width of
the incident beam and the angle of incidence), and L is the distance at which mul-
tiple scattering between two particles can be neglected. The parameter y includes
only intrinsic dependences on the sample, whereas the presence of a and b shows
the importance of the number of illuminated particles.
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FIGURE 12.27. Probability density function for the cross-polarized intensity associated with
light backscattered from a sample of spherical particles.

Experiments carriedout to fitstatisticalexpressions suchas Eq.15,requirea high
number of measurements from the sample.This can be accomplished by rotating
thesampleanddetectingtheintensityfluctuations." Aprobabilitydensityfunction
(PDF) is found for either the co- and cross-polarized intensity.

In Fig. 12.27 a particular case is shown for backscattered cross-polarized
detection.

The sample consisted of gold particles sized approximately 1urn, seeded on a
flat gold substrate.
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FIGURE 12.28. Dots show the values experimentally obtained for PC/cross = 0) for different
values of the spot size w. The curve corresponds to the fit of such point to Eq. 15.
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The probability valueat [cross == 0 (the highestvalue in thecurve, i.e. the smallest
relative error) can be assessed for different spot sizes, and y can be obtained from
Eq. 15. Figure 12.28 shows the evolution of P(Icross = 0) for six values of the
spot size and the fit to Eq. 15 is plotted as a continuous line. From this fitting,
y = 8.6 10-3 mm-2 is found, so that d can be obtained if L is known and vice
versa. For d = 8 urn, an estimate obtained from the electron microscope images,
a value of L ~ 1.25 urn is obtained, slightly larger than the particle diameter,
which is consistent for instance with results shown in Fig. 12.25 and with other
experimental work.66 Parameter y is now seen as a measurement of the interacting
capacity of the scatterers, given by their density and their ability to scatter light
onto each other, and this finally contributes to the cross-polarized light in the
backscattering direction.

12.3.6. Concluding Remarks

A system composed of a flat substrate seeded with particles can be analyzed in
the far-field regime through different approaches. Some of these have been pre-
sented here. First, we presented the scattering patterns obtained when observing
the angular dependences of the scattering intensity, and the evolution of some of
their features, such as the minima positions. We then described the observation of
backscattering as a function of the angle of incidence, which is highly sensitive to
small changes in the system. Finally, we showed some results corresponding to a
statistical analysis of the fluctuations associated with the scattered (or backseat-
tered) signal. All these methods provide information about the scattering system,
i.e, they are examples of how to tackle the more general inverse problem.
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rior for its financial support (projects BFM2001-1289 and FIS2004-06785) under
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13.1. Introduction

Electromagnetic scattering properties of particles are important issues for nan-
otechnology, terrestrial and planetary remote sensing, biomedical sensing and mi-
croscopy, wireless communication, astrophysics, and optical engineering. Scatter-
ing by a single particle is described by the Mie theory. For scattering by many
particles, the classical theory assumes independent scattering in which the scat-
tering intensity is set equal to the sum of scattering intensities from each particle.
The independent scattering model is applied to calculate the phase matrix which
is equal to the number density times the bistatic cross section of a single particle.
The phase matrix is then used in radiative transfer theory to treat multiple inco-
herent scattering. The approach ignores the coherent wave interaction among the
particles. The approach of independent scattering is particularly not valid for dense
media when there is a high concentration of particles. For this case, particles are
in close proximity of each other and the particles scatter collectively.

With the advent of computers, the electromagnetic problems are now often
solved by numerical methods such as discrete dipole approximation (DDA)l and
couple dipole (CD).2-6 In DDA and CD, an object or a dense medium are di-
vided by uniform grid line. Each small cubic box contains an electric dipole mo-
ment. Matrix equation is set up with the unknowns being the dipole moments of
the cubes. This method can be used to solve the scattering problem of arbitrary
geometry. However, it is computationally intensive because the entire geome-
try has to be discretized into fine cubic cells much smaller than a wavelength
and the grid cells are arranged periodically. Multiple scattering can be formu-
lated by using the Foldy Lax equation and using the T-matrix of Mie theory and
the translation addition theorem. The Foldy Lax equations have been rigorously
derived from Maxwell equations." The Foldy Lax equations are solved numerically.
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To distinguish such an approach from classical analytical theory, we call the ap-
proach numerical. Maxwell model of 3-dimensional simulations (NMM3D). The
advantage of Foldy Lax equations is that the vector spherical waves (partial waves)
are used as basis functions rather than fine discretization of each particle. The un-
knowns are the partial wave coefficients for each particle. Thus the number of
unknowns are many times less than that of fine discretization using cubic cells.
Such an approach has been adopted by several types of wave scattering problem
including light scattering and electron scattering.v '? In this chapter, we study
multiple scattering based on numerical solutions of Foidy Lax equations putting
particular emphasis on cases with high concentration of particles. We have also
implemented the numerical method on parallel computing allowing us to solve
cases of large number of particles. We used several thousand particles in our
simulations.

Recently the optical properties of noble metal nanoparticles have attracted con-
siderable interest. With the advances in nanotechnology, nanoparticles can be ap-
plied in a wide range of applications. The small size of nanoparticles allows them
to penetrate into small objects, e.g. body cells. Their chemically inert properties, to
avoid the problem of phototoxic and photo bleaching which existed in using organic
fluorescent dye, make them applicable in biological and biomedical applications,
such as optical spectroscopy,15-16biological sensing,17-21 and plasmon resonance
microscopy.22-23 Their applications are also studied in optical engineering, e.g.,
integrated optics circuits/" and optical data storage.F' Experiments have been per-
formed to investigate the plasmon resonant properties of nanoparticles.P""

In this chapter, the approach is applied to nanotechnology in which we study
plasmon resonance of scattering by metallic nanoparticles at optical frequency.

In Sect. 13.2, we cast Maxwell equation in the form of Foldy Lax equation. We
describe steps for the numerical solution, and the computations of the extinction,
the absorption and the phase matrix.

In Sect. 13.3, we study optical scattering by metallic nanoparticles. The plasmon
resonance for various concentrations of gold nanoparticles is studied. It is desirable
to have a high concentration of nanoparticles in applications. However, our results
indicate the plasmon resonance can disappear at high concentrations.

In Sect. 13.4, we illustrate the results of the bistatic scattering properties. This
relationship is described by the phase matrix. The phase matrix is obtained by
solving Foldy Lax equations for many realizations and then averaging the scattered
intensities over realizations.

In Sect. 13.5, we discuss the problem of optical scattering of nanoparticles above
a rough surface or below a rough surface

13.2. Formulation for Foldy Lax Equations

Consider N spherical particles randomly located in free space. The particles are
centered at '1, '2, ... ,'N and are of radius a. With an incident electromagnetic
plane wave with the incident direction k; = sin Oi cos <Pi X + sin Oi sin <PiY+ cos°Z
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and polarization A, the incident wave is written as

r:(r) == Aeik i :;:

== ikiofi ""' { (M)M(O) (k-) + (N)~N0) (k-)}e L...J amn mn rr, amn mn rri .
m,n

(1)

The exciting field coefficients of multiple scatterers can be expressed as the sum
of incident field and the scattered field from other scatterers':':

N

W(M)(l) == eik;ofia(M) + ""' ""' [A (k'---zro)T(M)(j)w(M)(j)
mn mn L...J L...J mnuv .I v tiv

j=l /lV
j#l

+ B (k'---zro)T(N)(j)W(N)(j)]
mnuv .I v u»

N

W(N)(Z) == eik;o'ia(N) + ""' ""' [B (k'---zro)T(M)(j)w(M)(j)
mn mn L...J L...J mnuv .I v u»

j=l /lV
j=l=l

+ A (k'---zro)T(N)(j)w(N)(j)]
mnuv .I v /lV'

(2a)

(2b)

where Amn/lv and Bmn/lv are the translation addition coefficients; w~~)(l) and
W(N)(l) denote the exciting field coefficients· r(M)(j) and r(N)(j) are the scatter-

mn ' /lV /lV - -
ing T-matrix of particle (j). We can write Eq. (2) in matrix form. A and B are

= (M)(j) =(N)(j)
matrices of Amn/lv and Bmn/lv, respectively; T and T are matrices of
T,(M)(j) and T (N)(j) respectively· li(M) and lieN) are matrices of a(M) and a(N) in Eq

uv /lV" mn mn .

(1) respectively· and w (M)(l) and w (N)(Z) are matrices of W(M)(l) and W(N)(Z) respec-
" mn mn '= = =(M)(j) =(N)(j)

tively. A, B, T and T are square matrices with dimension L rnax x L max,

and (j(M) , (j(N), W (M)(l) and w (N)(l) are column matrices with dimension Lmax x 1.

Then, we have

(M)(l) O-k - (M) ~ [= =(M)(j) (M)( ') = =(N)(j) (N)( 0)]
W = el t'Trii + f:f A(k"rl)T w ] + B(k"rl)T w ]

j#l

(3a)

(N)(l) O-k - (N) ~ [= =(M)(j) (M)( ') = =(N)(j) (N)( ')]
W = el t'T/a + f:f B(krl)T w ] + A(krl)T w J.

j#l

(3b)

We put equation (3a) and (3b) in a compact matrix form:

(Z) ~- =(j) (') Ok -
w ==L...Ja(krzrj)T w.l +e1i°'Zain

j=l
j=l=l

(4a)
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where

[W
(M)(l ) ]-(l)

w = w(M)(l)

[
-(M)]

Qin = ;(N)

(4b)

(4c)

(4d)

(5a)

= __ [A\kf) B(kf)](](kr) - _ _
B(kr) A(kr)

r U) = [r(:)(j) T(~)(j)] . (4e)

In Eqs. (4a)-(4e), ufl) and ain are column matrices of dimension 2Lmax x 1 and
-(i) =(j)
(j and T are square matrices of dimension 2Lmax x 2Lmax•

We solve the matrix equation using iterative method. In iterative method, the
matrix needs to be well conditioned. The matrix equations from Eq. (4) can be
rewritten using scattered field coefficients and internal field coefficients. It has
been shown that the condition number of the matrix equation with internal field
coefficients has a better condition number.!" Hence, the matrix equation with the
internal field coefficients is used in this chapter. After solving the internal field
coefficients, the scattered field coefficients can be found.

The relation between the exciting field coefficients and internal field coefficients
is

_(j) _ [C(M)(j)] _ =(j)-(j)
c - c(N)(j) - B w ,

(') =(j)
where c.l is a column matrix of internal field coefficients, and B is a diagonal
matrix, i.e.

and

[

= (M )(j ) ]=(j) B' 0
B = 0 B (N)(j)

(5b)

Let

S~M)(j) == -ika[jn(ka)[kjajn(k ja)]' - jn(k ja)[kajn(ka)]']

S~M)U) = - k ~a [k;a2 jn(kja) [kajn (ka)]' - k2a2 jn (ka)[kiajn (kja)l'] ,
.I
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then,

N
c(M)(l) = eik;r;;B(M)(l)a(M) + B(M)(I)"" [A (k~)S(M)(j)C(M)(j)

mn n mn n £...J £...J uvmn 1 J v J.LV
j=l J.LV
j=/:l

+ B (krlr·)S(N)(l)c(N)(j)]
J.Lvmn J v J.LV

N
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j=l J.LV
j=/:l

(6a)
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After solving the internal field coefficients, the scattered field coefficients are cal-
culated. In the observation direction ks = sin Os cos ~sx + sin Os sin ~s y+ cos 0sz,

the scattered field is

ikr N

E
S

(- ) _ ~" -jk.1j" {S(M)(j)C (0 Al) ·-n-lr - £...J e £...J Ymn amn mn s, ws l
kr . 1J= m,n

+ a~~)(j) Bmn(Os, ~s)i-n}. (7)

13.3. Extinction and Absorption Efficiency of Metal
Nanoparticles and Plasmon Resonance

In our simulations, the scattering of metal nanoparticles randomly located in a cubic
volume are studied. We applied NMM3D to solve the Maxwell equation in the
form of the Foldy Lax equation for the random medium. With the solved internal
field coefficients, absorption is calculated by using the internal fields and extinction
is calculated by applying optical theorem. The results for adhesive particles as well
as various concentrations are studied.

13.3.1. Formulations

Consider N nanoparticles of radius 80 nm spread throughout evenly in a cubic
box, which is shown in the Fig. 13.1. The optical constant of the gold particles is
stated in [32].

A plane wave with the direction ki = sin Oi cos ~iX + sin Oi sin ~iy+ cos°zis
incident onto the cubic box. The expression is given in (1). In the simulation, the
incident angle is Oi = 90° and ~i == 270°.

13.3.1.1. Extinction Cross Section

Extinction cross section represents the total power loss of the scatterers from
the incident wave. The power loss is the sum of the scattered power and the
absorbed power. The power loss is calculated from the imaginary part of the
scattering amplitude in the forward direction by optical theorem. Therefore,
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FIGURE 13.1. The simulated noblemetalnanoparticles by MonteCarlo.

the total extinction cross section can be found by calculating the imaginary part of
the scattering amplitude in the forward direction.

The scattered field can be expressed in terms of scattering dyadic:

(8)

where ki and ks are the~ave vector of the incident plane wave and the scattering

field, respectively, and F (ki , ki ) is the scattering dyad in the forward direction.
The relation between extinction cross section and scattering amplitude in the for-
ward direction is

4rr [ ="" ]o; == TIm ei . F(k i , k i ) · ei .

From Eqs. (7)-(8), we have

(9)

F (k k·). eo = ~ ~ e-ikfc,orj '" v [as(M)(j)C «() ~ )i-n- 1
s' l l k L...J L...J I mn mn mn s» ws

.i=l mn

+as(N)(j) B (0 ~) i-n ] (10)
mn mn s v 'l's •
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SubstituteEq. (10) into Eq. (9), the extinctioncross sectioncan be found:

a = 41l'ImI~e· ·~ e-ikk,.rj " 11 [as(M)(j)C «() A-.) i-n- 1
eN k k l ~ L..J,mn mn mn s-ws

1=1 mn

+ a~~N)(j)Bmn (t}s, cf>s) i-n] I. (11)

The extinction efficiency, UeN, is the ratio of the extinction cross section to the
total cross sectionarea of the particles,which is UeN = N aeN 2' where N,part is the

part1f a

numberof particlesand a is the radius of the particle.

13.3.1.2. AbsorptionCross Section

After solving the internal fieldcoefficient, the power absorbedby each particle is
given by14

w(q) = __1_" [lw(M)(q)1 2 (ReT(M) + IT(M)1 2
)

a 2nk2 L..J mn n n
" mn

+ Iw~j<q)12 (ReT!t) + IT~N)n] . (12)

The absorptioncross sectionis

N

aaN = - :2 L L {lw~~)(j)12 (ReT~M)(j) + IT~M)(j)n
j=l mn

+ Iw~)(j)12 (ReT~N)(j) + IT~N)(j)n} . (13)

The absorption efficiency, (JaN, is the ratio of the absorption cross section to the
total cross section area of the particles, that is (raN == ~N(J 2 •

part Jr a

13.3.2. Results and Discussions

13.3.2.1. Convergence Test for Numerical Parameters

We first perform convergence test by changing Nmax, which is the truncation of
the multipole expansion of n. A horizontally polarized plane wave where the
unit vectorof polarizationif = x, propagating along the y-axis, i.e. ()i = 90° and
lPi = 270°, is incidenton 1000gold nanoparticles withradius 80 nmin free space.
The fractional volume of the nanoparticles is 1%. The refraction indices of gold
are32 shownin Table 13.1.

The error norm of extinction and absorption are 0.2% and 0.5%, respectively.
Note that the error norm is definedas,

norm =
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TABLE 13.1. Therefraction indices of gold.

Wavelength (nm) k = n + ip e = k2

400
413.3
427.5
442.8
459.2
476.9
495.9
516.6
539.1
563.6
652.6
688.8
729.3
774.9
826.6

1.658 + il.956
1.636 + i1.958
1.616 + i1.94
1.562 + i1.904
1.426 + i1.846
1.242 + i1.796
0.916 + i1.84
0.608 + i2.12
0.402 + i2.54
0.306 + i2.88
0.166 + i3.15
0.16 + i3.8

0.164 + i4.35
0.174 + i4.86
0.188 + i5.39

-1.077 + i6.486
-1.157 + i6.407
-1.152 + i6.270
-1.185 + i5.948
-1.374 + i5.265
-1.683 + i4.461
-2.547 + i3.371
-4.125 + i2.578
-6.290 + i2.042
-8.201 + i1.763
-9.895 + i1.046

-14.414 + i1.216
-18.896 + i1.427
-23.589 + i1.691
-29.017 + i2.027

where a; is the calculated value and the subscript i denotes the Nmax for the
truncation. Fig. 13.2 shows that using Nmax = 2 gives results of sufficient accuracy.

13.3.2.2. Extinction and Absorption of Two Particles with Various Orientations

Figure 13.3 shows the extinction and absorption cross section of two particles.
The incident wave, ElfiC(r) = Aeiki:r, where A = xand ki = -:9, is incident hori-
zontally toward the two particles. The two particles are touching each other. The
touching particles are put in three different positions: (i) the two particles arranged
parallel to the incident light polarization, i.e. they are put along the x-axis; (ii) the
two particles arranged orthogonal to the incident light polarization, i.e. they are
put along the z-axis; (iii) the two particles arranged one behind another one, i.e.
they are along the y-axis.

All particles pairs are such that the point of touching is at the origin. The extinc-
tion and absorption cross section of single sphere is also shown for comparison.
In (i), the extinction peak shows red shift. There is broadening of the extinction
compared with those of single particle. In (ii), the extinction peak shows the blue
shift. The resonance frequency shift for these two configurations is similar to that
of silver nanocrystals in glass.33 This phenomenon shows that the extinction is po-
larization dependent. In (iii), a sharpened extinction resonance is observed. This
extinction peak is slightly shifted to the red. The absorption cross sections of (i) and
(ii) are about the same. Absorption is polarization independent. In (iii), it is larger
than (i) and (ii). Note that both extinction and absorption of (iii) are much larger
than (i) and (ii). This implies that in this orientation more energy is dissipated.

13.3.2.3. Extinction and Absorption of Gold Nanoparticles with Various
Fractional Volumes

Figure 13.4 shows the extinction and absorption of 2000 gold nanoparticles of
radius 80 nm and different fractional volume. When the fractional volume is low,
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FIGURE 13.2. Convergence test against Nrnax, the maximum number of multipole expan-
sions. The extinction efficiency (a) and absorption efficiency (b) are plotted against the
wavelength. A thousand gold nanoparticles of radius 80 nm randomly located in the free
space. Particles occupied 1% of volume.

i.e. less than 0.1%, the extinction shows a peak and the plasmon resonance behavior.
When the fractional volume is 0.01 %, the extinction is close to that of a single
particle. When the fractional volume increases, the extinction gradually broadens.
When the fractional volume further increases, there is a red shift. At 3% fractional
volume, the plasmon resonance disappears. These physical features ofdependence
of extinction have been observed in experiments.l" The corresponding extinction
and wavelength of plasmon resonance are shown in Table 13.2. In Table 13.2, the
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FIGURE13.3. Comparison of extinction efficiency (a)and absorption efficiency (b) for two
gold nanoparticles of radius80nm in free spacewith different locations, whichare either
put along the x -axis, y-axis or z-axis, and are plotted against the wavelength. The plane
wave incidentat an angleof Oi = 90° and cPi = 270°withhorizontal polarization.

peak extinction and resonance frequency is constant for fractional volume <0.1 %.
However, the peak extinction decreases more significantly when fractional volume
exceeds 0.5%. At the same time, the extinction demonstrates the red shift. This
phenomenon is more apparent for higher fractional volume. The red shift and
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full spectrum plotted for comparison.

the decrease of extinction of concentration can have important consequences in
applications.

Figure 13. 4(b) shows the absorption efficiency of the nanoparticles. The figure
shows that the absorption efficiency decreases slightly for increasing fractional
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FIGURE 13.4. (Continued)

volume when fractional is less than 0.1%. However, it decreases considerably
when the fractional volume exceeds 0.5%. When concentration increases, each
particle will absorb less energy. It should be noted that the frequency of the peak
absorption does not show any changes with the fractional volume.

Figure 13.4(c) shows extinction at fractional volume 3% using the dipole mode
and the quadrupole mode. The extinction for the sum of dipole mode and
quadrupole mode are also plotted. Result shows that the quadrupole mode only
has a small effect and that the dipole mode is dominant in this region. Hence, the
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TABLE 13.2. The corresponding extinctionand
wavelength of resonance(gold nanoparticles).

Fractional volume

Single particle
(for reference)
0.01%
0.05%
0.1%
0.5%
1%
3%

Peak wavelength(nm)

~539

~539

~539

~539

~653

~653

~729

Extinction

5.147

4.965
4.659
4.400
3.468
3.058
2.063

red shift of the plasmon resonance and the broadening extinction is due to the
dipole mode, the interactionof the electromagneticmodes.The absorptionat frac-
tional volume3% using the dipole mode is shownin Fig. 13.4(d).It is similar to the
extinctionthat the absorptionof energy is mainlydue to thedipolemode.The max-
imum absorption is obtained at A = 477 nm, which is due to the dipole mode. It is
noted that there is a small peak of absorptionfor quadrupolemode at A= 496 nm.

13.3.2.4. Extinction and Absorption of Silver Nanoparticleswith Different
Fractional Volume

The extinctionand absorptionof 2000 silver nanoparticleswithdifferentfractional
volume are shown Figs. 13.5(a)and 13.5(b).The radius of the particles is 40 nm.
The refraction indices of silver are given in Table 13.3.32

The behaviorof the plasmon resonance for silver nanoparticlesis similar to that
of the gold nanoparticles.The extinctionis close to that of the single particle when
the fractional volume is 0.01%. When the fractional volume is within 0.1%, the

TABLE 13.3. The refractionindices of silver.

Wavelength (nm)

332.4
335.1
339.7
344.4
354.2
364.7
375.7
387.5
400
413.3
427.5
442.8
459.2
476.9
495.9

k == n + ip

0.321 + iO.902
0.294 + iO.986
0.259 + i1.12
0.238 + i1.24
0.209 + i1.44
0.186 + i1.61

0.2 + i1.67
0.192 + i1.81
0.173 + i1.95
0.173 + i2.11
0.16 + i2.26

0.157 + i2.4
0.144 + i2.72
0.132 + i2.72
0.13 + i2.88

-0.711 + iO.579
-0.886 + iO.580
-1.187+ iO.580
-1.481 + iO.590
-2.030 + iO.602
-2.558 + iO.599
-2.749 + iO.668
- 3.239 + iO.695
-3.773 + iO.675
-4.422 + iO.730
-5.082 + iO.723
-5.735 + iO.754
-6.533 + iO.737
-7.381 + iO.718
-8.278 + iO.749.
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FIGURE13.5. Extinction efficiency (a)andabsorption efficiency (b)for2000silvernanopar-
ticlesof radius40nm withdifferent fractional volume.

extinction peak decreases with increasing fractional volume. On the other hand, the
extinction peak of gold nanoparticles only decreases slightly. When the fractional
volume further increases, the extinction of the silver nanoparticles case gradually
broadens and shows the red shift. The plasmon resonance disappeared when the
fractional volume is 3%, which is the same for that of the gold nanoparticle. The
extinction and the corresponding wavelength of plasmon resonance are shown in
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TABLE 13.4. The corresponding extinction and
wavelength of resonance (silvernanoparticles).

Fractional volume Peak wavelength (nm) Extinction

Single particle
(for reference)
0.01%
0.05%
0.1%
0.5%
1%
3%

~400

~400

~400

~400

~413

~428

No resonance

8.857

8.304
7.420
6.664
4.309
3.474

the Table 13.4. In Table 13.4, the resonance frequency is constant and the extinction
peak decreases steadily when fractional volume does not exceed 0.1%. However,
the peak extinction decreases more significantly and extinction demonstrates red
shift when fractional volume further increases from 0.5%.

Figure 13.5(b) shows the absorption of the nanoparticles; it decreases steadily
for increasing fractional volume when it does not exceed 0.1%. Nevertheless, it
decreases considerably when the fractional volume exceeds 0.5%. It shows that
each particle absorbs, less energy for higher concentration. Similar to that of the
gold nanoparticles, the frequency of the peak absorption does not change with
changing fractional volume.

13.3.2.5. Energy Absorption of Each Particle in the Collection

We next show in Fig. 13.6 the absorption of each particle for the case of 200 parti-
cles randomly distributed over a cubic box of size 2.05 J1m x 2.05 J1m x 2.05 J1m.
A plane wave is incident onto the cubic box with incident angle at (}i = 90°
and l/Ji = 270 0

• The position of the particle is determined by their centre loca-
tion (x, y, z) in the Cartesian coordinates system. We order the particles by its
y-coordinates because the propagation direction of the incident wave is along the
y-axis. It is possible to have two or more particles lying on the same y-plane,
i.e. Yl = Y2 = · . · .

Figure 13.6(c) shows the average absorption efficiency of 200 particles of radius
80 nm for reference. The fractional volume of the sample is 5%. Two cases are
studied: (i) the frequency with the maximum average absorption (A = 476.9 nm,
absorption efficiency =0.938) and (ii) the frequency of the minimum average
absorption (A = 826.6 nm, absorption efficiency =0.0642). The corresponding
absorption efficiency for a single particle is 1.843 (A =476.9 nm) and 0.052
(A = 826.6 nm).

Most of the particles in case (i) absorb more energy than those in (ii). It should
be noted that the average absorption in (i) is about 15 times that of (ii). Consider
case (i). The absorption of each particle depends on its y-position. The incident
plane wave makes its entrance at the boundary y ~ 2.05 J1m. Those particles that
are near the boundary at y ~ 2.05 J1m absorb the most energy. The particles in
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FIGURE13.6. Absorption of eachparticleplottedalongwithitsy-coordinates. Twohundred
gold nanoparticles of radius 80nm are randomly located in the free space.The fractional
volume is 5%. The wavelengths of incident light are 476.9nm (a) and 826.6nm(b). The
incidentangleisei = 900 and cPi = 2700

• Average absorption efficiency (c)for200particles
of radius80nm randomly locatedin free space.

this region absorb energy of the plane wave, so that less energy propagate into
the interior region. Thus, the particles near the boundary at y == 0 absorb the least
energy. About 55% of particles absorb less energy than the average absorption
energy among all particles. Comparing the absorption efficiency to that of the
single particle, only 10% of particles absorb more energy than the single particle
case. This is because of the mutual wave interaction of the neighboring particles.
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When the absorption efficiency is low, i.e, the absorption efficiency in (ii) is
one fifteenth of that in (i), the phenomenon that appears in case (i) disappears in
case (ii). For case (ii), the energy absorbed by each particle in all regions inside
the cubic box is roughly the same. As each particle absorbs much less energy,
most of the energy continues to propagate into the interior of the cubic box and all
particles absorb roughly the same energy. Note that the absorption efficiency of
200 particles (0.064) is slightly higher than that of the single particle (0.052). This
is caused by the excitation field in each particle that is enhanced by the scattered
field of neighboring particles.

13.4. Phase Matrix ofLight Scattering by Metal Nanoparticles

In this part, we will study the relationship between the incident wave intensity and
the scattering field intensity as a function of the direction of the scattered field. As
the particle size is larger than one-tenth of the wavelength, i.e, gold particle with
diameter 160 nm at frequency with wavelength about 800 nm, it is not applicable to
predict the Rayleigh scattering. Instead, we use NMM3D to formulate relationship
of the incident field and the scattered field in the sense of 1-2 polarization frame
system.
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We consider a plane wave incident onto a linear, isotropic, homogeneous
medium with randomly distributed nanoparticles. Since the random media is con-
sidered, averaging over realizations takes place. The plane wave is linear polariza-
tion and its polarized vector acts as 1or 2each time to calculate the response of
the scattered field. We study the col-polarization of the phase matrix in the cases
of 1 realization versus averaging over realizations, the denser medium versus less
dense medium, as well as resonance versus non-resonance.

13.4.1. Formulation ofPhase Matrix

Consider nanoparticles in a cubic box, which is shown in the Fig. 13.1. Fol-
lowing the steps of solving the multiple-scattering equations in part one, the
internal field coefficients, c~~)(l) and c<:n)(l). In Eq. (6), and hence, a~~M)(j)

and a~~N)(J) are solved. Using the far-field expression for the M mn and Nmn»

the scattered field E
S

by N particles with the scattered direction ks , where
ks = (sin Os cos l/Jsx + sin Os sin l/Js Y + cos 0sz), is calculated using Eq. (7). The
scattered field is averaged over realizations as

(14)

where a is the realization index, NT denotes the number of realizations, and
E;denotes the scattered field of the a th realization. The angular bracket stands
for the ensemble average. After solving the scattered field, the phase matrix is best
illustrated in the 1-2 polarization framel '

13.4.1.1. 1-2 Polarization Frame

Consider a volume containing many scatterers. The phase matrix is the matrix to
describe the relation between each polarization of the scattered intensity due to
the respective polarization of the incident wave. In the 1-2 system, they obey the
relation:

(15)

where the subscripts sand i denote the scattered field and the incident field. The
subscripts 1 and 2 denote the polarization of the electric field. The phase matrix is
the scattered cross-section normalized by the cross section area of all scatterers.

Let ki be the propagation direction of incident field and ks be the direction of
the scattered field. i i is the unit vector which is perpendicular to ki and ks • Then
2i is perpendicular to both ki and Ii'Let Ii = Is, then 2sis perpendicular to both
ks and Is. These relations can be written as
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FIGURE 13.7. The orthogonal system for polarization of 1-2 system.

The Ii, 2i, Is, and 2s can be related to vertical and horizontal polarization of
Vi, hi, Vs and hs by transformation, which will be shown in the latter part. The
orthogonal system for polarization of 1-2 system is shown in Fig. 13.7.

13.4.1.2. Scattering Cross Section

To simulate the phase matrix, we let the incident electric field be propagating in the
z-direction with polarization of the electric field e= y, i.e. E inc(1) = yeikZ, ki = Z,
Vi = X, and hi = y. Solving the Foldy Lax equation using internal field formulation
by iterative method, the scattered field can be found using Eq. (7). For this case
hs = -Is and Vs = 2s, then t; = s;V+ Ehsh. Therefore, the scattering cross
section is decomposed into vertical, V, and horizontal, h, polarization, i.e.

The phase matrix element can be computed by finding the scattering cross section
with at l/Js = 0° and 180° and l/Js == 90° and 270°.

• Phase Matrix Elements Due to Ii
Consider the x- zplane, i.e. ~s = 0° and 180°.

For ~s ==0°,ks==sinOsx + cosOsz, Vs=cosOsx - sinOsZ and its= y. So that

" " (ks X ki ) " " "
1s=1 i = " " =-y=-hs=-h i ,

Iks x kil
and 2i = ki X Ii = i\.

Similarly, the formulas for polarization vector for ~s = 180° can be obtained.
With these polarization vector relations, the phase matrix elements, P11 and P21,

become

(17a)

(17b)



(18a)

(18b)
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where O'hb and O'vb are found by Eq. (16) and N partJra2 is the cross section area
of particles. PI I and P21 are the co-polarization and cross-polarization due to Is,

respectively.

• PhaseMatrixElements Due to 2i

Consider the y- zplane, i.e. <Ps = 90° and 270°
For <Ps = 90°, ks = sin ()sY+ cos ()sz; Vs = cos ()sY- sin ()sz and hs = -x.

Then,
A A (ks X ki ) A A A A A A A

Is = Ii = A A = X = -hs = Vs ; 2i = k, X Ii = Y= hi;
Iks x kil

2s = ks x Is = vs .

The polarization of the incident wave, e= y, is the polarization of2s•With these
polarization vector relations, the phase matrix elements.Pi- and P22, become

O'hb
PI 2«()s ) = 2

NpartJra

O'vb
P22«()s ) = 2 '

N partJra

where P22 and Pl 2 are the co-polarization and cross-polarization due to 2s ,

respectively.

13.4.2. Results and Discussion

13.4.2.1. Phase Matrices of Single Realization and Average Realizations

The phase matrices of a single realization and averaged over realizations are shown
in Fig. 13.8. We used 50 realizations. There are 2000 gold nanoparticles of radius
80 nm randomly located in a cubic box. The wavelengths are 652 nm and 826 nm.
Referring to Table 13.2, these are the resonant wavelengths and non-resonant wave-
length, respectively. In the figure, the phase matrices of both single realization and
averaged realizations give similar patterns. However, there are many ripples in the
case of single realization. The scattering at different directions vary among differ-
ent realizations. The results are smoothened by averaging over realizations. Note
that the extinction and absorption efficiency do not vary as much over realizations.
This is because the extinction and absorption efficiency involve summations over
all direction and summations over all particles. These ripples do not occur in the
forward direction, () = 0°. It is because strong intensity propagates in this direc-
tion. The random phase effect due to the scattered waves from different positions of
the particles becomes insignificant. In the figure, we see the scattering in different
directions are uniform for the case of PII· However, there is a minimum at about
() = 90° in the case of P22, The minimum is more obvious at wavelength 826 nm in
spite of the strong intensity propagating in the forward direction. Note that polar-
ized vector i of incident field and scattered field are the same and are perpendicular
to both the propagation directions of incident field and scattered field. The polar-
ized vector 2of the scattered field is not the same as the 2of incident field and is
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FIGURE 13.8. The phase matrices (a) Pl1 and (b) P22 at frequency with wavelength 652 nm
and (c) PII and (d) P22 at frequency with wavelength 826 nm are plotted against (). The
cubic box consists of 2000 gold nanoparticles of radius 80 nm. The particles occupied 1%
in volume fraction.
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FIGURE 13.8. (Continued)

not perpendicular to the propagation direction of incident field. Large intensity
propagates in the forward direction which is due to the coherent field.

13.4.2.2. Phase Matrices of 1% and 5%

The phase matrices of 2000 nanoparticles with radius 80 nm and fractional volume
1% and 5% are plotted in Fig. 13.9. Two frequencies are selected which is the
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FIGURE 13.9. The phase matrices Pl1 and P22 at frequency with wavelength (a) 652nm
and (b) 826nm are plottedagainst(). The cubicbox consistsof 2000gold nanoparticles of
radius 80nm. The particlesoccupiedeither 1% or 5% in volumefraction whichare stated
in the graphs.

resonant frequency (at A == 652 nm) and nonresonant frequency (at A == 826 nm)
for the case of 1% fractional volume. In Fig. 13.9(a), the intensity level for the
case of 1% volume fraction is much higher than that of 5% volume fraction at
this frequency. Note that at this frequency, the nanoparticles with 1% volume
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fraction are in resonant state whereas that of with 5% volume fraction are not. It
shows that the resonance of the system contributes to the scattering in all direc-
tions. The extinction efficiency for the 1% volume fraction is larger than that of
5% volume fraction. Note that the difference of the absorption efficiency between
the two cases is not significant when compared with the extinction efficiency.
The extinction efficiency for 1% volume fraction and 5% fraction at A= 652 nm
are 3 and 1.28, respectively. For the phase matrix, the strength of the scatter-
ing intensity for different angles at 1% volume fraction is about 2.3 times that
of 5% volume fraction for P22 and is about 3 times for P I I . This means reso-
nance of the system enhances more the scattering intensity for polarization i.
Note that the scattering intensity in the forward direction of 1% volume frac-
tion is six times that of 5% volume fraction, which is about the same for both
PIland P22.

When the frequency shifts to the lower frequency, i.e. A == 826 nm, both sys-
tems of 1% volume fraction and 5% volume fraction are not in resonance state.
The two results look alike, with similar intensity and similar pattern. The extinc-
tion efficiencies of 1% volume fraction and 5% volume fraction are 1.68 and 1.72,
respectively, and are almost the same. The scattering intensity is about the same for
P22 whereas the scattering intensity of 1% volume fraction is about 1.4 times that
of 5% volume fraction for PII· The scattering intensity in the forward direction
of 1% volume fraction is about twice that of 5% volume fraction. The difference
is larger than the other scattering direction. It means for lower density, more en-
ergy propagates through the nanoparticles in the forward direction than for high
density.

13.4.2.3. Phase Matrix in Resonant Mode and Nonresonant Mode

The phase matrix for resonant mode (at A == 652 nm) and nonresonant mode (at
A == 826 nm) for 1% volume fraction are shown in Fig. 13.10. The phase matrices
for 5% volume fraction at both frequencies are also shown for comparison. Note
that the scattering efficiency for 1% volume fraction at resonant mode and non-
resonant mode are 2.7 and 1.6, respectively. In Figs. 13.10(a) and 13.10(b), the
scattering intensities for PII and P22 are different between resonant mode and
nonresonant mode. The scattering intensities are higher at resonant mode than at
nonresonant mode. The phase matrices of PII and P22 for 5% volume fraction at
these two frequencies are shown in Figs. 13.10(c) and 13.10(d). The scattering
intensities are about the same. It means that resonance of the system contributes to
the scattering intensities in all directions including the forward direction. Note that
the ratio, PI I (A == 652 nm) / PII(A == 826 nm), for 1% fractional volume is 2.4, and
for 5% fractional volume is 0.9. The enhancement by the resonance in the forward
direction is larger than the scattering efficiency. There is a small peak near 0°. This
peak appears at A = 826 nm for 1% volume fraction and at A == 652 nm for 5%.
The resonance occurs at A == 652 nm for 1% volume fraction and this resonance
mode disappears for 5% volume fraction. However, we can see the extinction
efficiency for 5% volume fraction at A = 652 nm and A == 826 nm are 1.3 and 1.7,



13. Multiple Scattering of Waves by Random Distribution of Particles 365

180

180

135

135

90

90

45

45

=652nm (Plasmon resonance)
=826nm

=652nm (Plasmon resonance)
= 826nm

10
3

10
2

~ 10
1

i
a.

Z
::::-
cf 10°

10~1

(a)
10.2

0

10
3

10
2

10
1

(\1-....
i 10°a.

Z
:::::-

C\I
C\Ia..

10.1

10.2

(b)
10.3

0

FIGURE 13.10. The phase matrices (a) PH and (b) P22 for 1% volume fraction and (c) Pll

and (d) P22 for 5% volume fraction are plotted against (). The cubic box consists of 2000
gold nanoparticles of radius 80 nm.

respectively. Note that when the fraction volume increases, the resonance has a
red shift and the resonant peak will be flattened. Thus, it is approaching resonant
mode for 5% volume fraction at A= 826 nm. The small peak near the forward
direction occurs when the system is in nonresonant state, but it disappears when
the frequency shift to the resonant frequency. The small peak is at 16° for 1%
volume fraction and 12° for 5% volume fraction.
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13.5. Optical Scattering of Nanoparticles Below or Above
a Random Rough Surface

Recent advances on nanotechnologies have made optical scattering of noble
nanoparticles an important topic.25,35- 41 Optical scattering by nanoparticles has
a wide range of applications, e.g., optical data storage.f confocal laser scan-
ning microscopy." near-field scanning optical microscopy" and opto-plasmonic
tweezers of micro/nana object.'? Applications make use of optical enhancements
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on specific resonance wavelength that depends on the parameters of metal nanopar-
ticles, such as particle size, particle shape, dielectric constant, and arrangement of
the particles. The application of opto-plasmonic tweezers makes use of the radi-
ation field from the nanoparticles that induce the light-induced dielectrophoresis
force (L-DEP) on a dielectric object. The nanoparticles array is used instead of
bulk or thin film because the direction of oscillating dipoles for such arrays can be
controlled by the polarization of the incident light. The optical tweezers operate
with the light frequency at the resonant mode to obtain the best performance. There
are also studies of optical scattering by nanoparticles of nonspherical shapes. 38- 39

In many optical scattering applications, the nanoparticles with different shapes,
sizes and, arrangement are fabricated on a substrate. Jensen et al.4o measured the
extinction of silver nanoparticles arranged in a hexagonal array on a glass sub-
strate. The extinction peak shows a red shift with a thicker substrate on top of
the nanoparticles. These studies are useful for tuning the plasmonic resonance
frequency of the nanoparticles. With larger particles of size up to one third of the
wavelength; C. L. Haynes et al.4 made detailed studies on nanoparticles that were
arranged in either hexagonal or square arrays. The measured results show that
the resonant wavelengths possess a linear dependence on the lattice spacing. An
increase of interparticle distance gives an increase of resonant wavelength.

Often the nanoparticles are placed above a substrate or embedded in the sub-
strate. The substrate usually has a random rough surface. Thus it is important to
take into account the rough surface scattering effects in addition to the volume
scattering by the nanoparticles. In addition, the interaction between rough surface
scattering and volume scattering is also important.

To solve the scattering problem of particles on or buried in a substrate, we have
used two approaches, the finite element method (FEM)42 and the integral equa-
tion method'j'. In the FEM, periodic boundary condition is used in the horizontal
direction. The problem is divided into two regions. Region I is the homogeneous
region which is above the highest point of the rough surface. The scattered field in
this region is expanded in upward traveling Floquet modes. Region II is the region
below and consists of the rough surface as well as the medium below the rough
surface. The medium below the rough surface consists of random-positioned par-
ticles. Region II is divided into a number of first-order triangular elements that can
be adapted to the rough surface profile. Furthermore, since the field is expressed
by the triangular elements, the permittivity er can vary from element to element
that takes into account the volume inhomogeneities. By matching the boundary
conditions of the boundary between region I and region II, the unknown coeffi-
cients can be solved. We have shown the results of combined rough surface and
volume scattering effects using this method."

A second approach that we have used is the integral equation approach.P The
region-is divided into two regions. Region 0 is the region above the rough surface
and region 1 is the region below the rough surface. The particles can be located
either above the surface or below the surface. The fields of both region 0 and region
1 are expressed in the form of integral equations, which consist of the surface
integral of all surfaces. The surfaces include the random rough surface and the
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surfaces of theparticles. If theparticlesareabovetheroughsurface, theexpression
of the fields of region0 is the sum of the incidentfieldand the surfaceintegralof
both the rough surfaceand the surfaces of the particles. If the particlesare buried
underthe roughsurface, the expression of fieldin region 1is the summation of the
surfaceintegralof boththe roughsurfaceandthatof theparticles. Bymatching the
boundary conditionof all surfaces, coupledsurfaceintegralequationsareobtained
for rough surfacescattering and particlescattering. The integralequations are put
into coupledmatrixequationby surfacediscretizations.

Both the FEM approach and the surface integral equation approach can be
employed to solve the problem of optical scattering by nanoparticles above a
substrateor embedded in a substratewith randomrough surfaces.
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14.1. Introduction

The majority of the existing theoretical and experimental studies of multiple-
scattering effects in the scattering of light from a randomly rough surface have
been devoted to the reflectivity or transmissivity of such a surface or to its mean
differential reflection or transmission coefficients, i.e. to the first and second mo-
ments of the scattered or transmitted field. Recently, however, attention has begun
to be directed to the theoretical'<" and experimental"10,18,21-23 study ofmultiple-
scattering effects in higher moments of the scattered field, in particular in angu-
lar intensity correlation functions. These correlation functions describe how the
speckle pattern, formed by the interference of randomly scattered waves, changes
when the angles of incidence and scattering are varied.

The interest in these correlation functions was stimulated by the expectation
that, just as the inclusion of multiple-scattering processes in calculations of the
angular dependence of the intensity of the light that has been scattered diffusely
from, or transmitted diffusely through, a randomly rough surface, led to the pre-
diction of enhanced backscattering/" and enhanced transmission." their inclusion
in calculations of higher moments of the scattered or transmitted field would also
lead to the prediction of new effects.

This interest was also stimulated by the results of earlier theoretical26- 3o and
experimental31- 35 investigations of angular intensity correlation functions in the
scattering of classical waves from volume disordered media. In the theoretical
investigation/" it was predicted that three types of correlations occur in such scat-
tering' namely short-range correlations, long-range correlations, and infinite-range
correlations. These were termed CO), C(2), and C(3) correlation functions, respec-
tively. The CO) correlation function includes both the "memory effect''" and the
"time-reversed memory effect,"29, 30 so named because of the wave vector conser-
vation conditions they satisfy. The memory effect has been observed in volume
scattering experimenrs.F as has the time-reversed memory effect. 34 The C(2) an-
gular intensity correlation function has also been observed in volume scattering
experiments.P as has the C(2) frequency intensity correlation function.'! while the
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C(3) frequency intensity correlation function has been observed in the transmission
of microwaves through a long tube filled with polystyrene microspheres.P

In more recent work36, 37 a new angular intensity correlation function, the C(O)

correlation function, was predicted, but it has yet to be studied experimentally.
Much of the theoretical work on multiple-scattering effects in angular intensity

correlation functions in rough surface scattering has been carried out perturba-
tively for scattering from weakly rough random metal surfaces. Thus, Arsenieva
and Feng7 studied perturbatively the angular correlation function of the scattering
amplitude in the cross-polarized scattering of light from a two-dimensional ran-
domly rough metal surface. The squared modulus of this correlation function gives
the analogue of the C(l) angular intensity function studied earlier in the context
of scattering from volume disordered systems. By keeping only the contribution
from ladder diagrams they obtained what is now called the memory effect peak
in the envelope of the C(l) angular intensity correlation function, and related this
peak to the enhanced backscattering peak in the angular dependence of the light
scattered diffusely from the same surface.

The same angular amplitude correlation function was also studied perturbatively
by Freilikher and Yurkevich.f By keeping only the contribution from maximally
crossed diagrams they obtained what is now called the time-reversed memory
effect peak in the envelope of the CO) correlation function, and related it to the
enhanced backscattering peak.

It should be noted, however, that the analogue of the C(l) correlation func-
tion in rough surface scattering had been predicted 18 years prior to the work of
Arsenieva and Feng and ofFreilikher and Yurkevich in single-scattering theories of
the scattering of light from a randomly rough surface. 38,39 However, these single-
scattering calculations could not capture the memory effect and time-reversed
memory effect peaks predicted by the multiple-scattering calculations of this cor-
relation function.

The analogs of the C(2) and C(3) angular intensity correlation functions in rough
surface scattering were investigated theoretically by Malyshkin et al. l l , 12 by small-
amplitude perturbation theory for the scattering of p-polarized light from randomly
rough metal surfaces whose roughness was sufficiently weak that these correlations
were caused by the multiple scattering of the surface plasmon polaritons supported
by vacuum-metal interface and excited through the roughness by the incident field.

The work of Malyshkin et al. l l , 12 also revealed that in rough surface scatter-
ing the angular intensity correlation function possesses a contribution that they
called the C(lO) correlation that can be of the same order of magnitude as the C(l)

correlation function. This correlation function had been overlooked in the earlier
studies of Arsenieva and Feng," and of Freilikher and Yurkovich" because the an-
gular amplitude correlation function they investigated was equivalent to the use
of the factorization approximatiorr'" in calculating the angular intensity correla-
tion function. This approximation, which was not used in the work of Malyshkin
et al.1l , 12 is based on the assumption that the amplitude of the field scat-
tered diffusely possesses a circular complex Gaussian joint probability density
function. 40,41 It is good enough to describe the C(l) correlation function. However,



14. Multiple-Scattering Effects in Angular Intensity Correlation Functions 373

the fact that it fails to predictthe COO) correlation function showsthat the latter as-
sumptionis not universally valid. An indicationthat interesting correlationeffects
can occurwhenthe factorization approximation is not usedhad beenshownearlier
by Nieto-Vesperinas and Sanchez-GiI4- 6 in predictingwhat they called enhanced
long-rangecorrelationfunctions.

Malyshkinet al.11,12 alsoshowedthat there is an additional class of correlations
between the C(1) and e(2) correlations in the order in the surfaceprofile function
in whichtheyfirstappear in calculations of angularintensitycorrelationfunctions
by means of small-amplitude perturbation theory. The lowest order contribution
to the CO) correlationfunction is of the fourthorder in the surfaceprofilefunction,
while the lowest order contribution to the e(2) correlation function is of eighth
order. The lowest order contribution to the additional class of correlations found
by Malyshkin et. al. is of sixth order in the surface profile function, and these
correlations were therefore named the e(1.5) correlations. They arise when the
factorization approximation is not made, and are intimately connected with the
roughness-induced excitation of forward and backward propagating surfaceplas-
mon polaritonsat a dielectric-metal interfaceby the incident light, and introduce
peaks into the angular intensitycorrelationfunction.

More recently, Leskovaand Maradudin!? studied theoretically the analoguein
roughsurfacescatteringoftheC(O) correlationfunction thathadearlierbeenstudied
in the contextof the scatteringof classicalwaves in volumedisorderedmedia.36,37

In thischapterwepresentan introduction to theoretical andexperimental studies
of multiple-scattering effectsin angular intensitycorrelation functions in the con-
text of the scatteringof p- and s-polarizedlight from a one-dimensional, weakly
rough, random surface. A study of multiple-scattering effects in the scatteringof
light from two-dimensional random surfaces has been presented by Malyshkin
et al.12 and the reader interestedin this topic is referredto this paper. We will also
restrictourdiscussionto surfaceswhoseprofilefunctions obeyGaussianstatistics.
A briefdiscussionof angularintensitycorrelationfunctions of light scatteredfrom
non-Gaussian surfacesis presentedin [42].

14.2. The Correlation Function C(q, klq', k')
and Its Properties

For all of the scatteringsystemsconsideredin this chapter, the illuminatedsurface
is a one-dimensional randomsurfacedefined byX3 == ~ (Xl). TheregionX3 > ~ (Xl)
is vacuum, while the region X3 < ~(XI) is the scatteringmedium.

The surface profile function S(XI) is assumed to be a single-valued function
of Xl that is differentiable, and that constitutesa stationary, zero-mean, Gaussian
random process,definedby the properties

(~(XI)) == 0

(~(xl)~(xi)) == 82W(l x l - xi I).

(1)

(2)
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The anglebracketshereand in all that followsdenotean averageoverthe ensemble
of realizations of the surfaceprofilefunction, and 8 = (~2(XI)} t is the rms height
of the surface.

We will need the Fourier integralrepresentation of ~ (Xl):

(3)

The Fourier coefficient ~(Q) is also a zero-meanGaussian random process, and
possessesthe properties

(e(Q)} == 0

(e(Q)e(Q')} = 2n8(Q + Q')82g(IQI),

(4)
(5)

where g(1 QI) is the power spectrum of the surface roughness, and is the Fourier
transformof the surfaceheight autocorrelation function W(IXll),

00

g(iQI) = f dr. W(lxll)exp(-iQXl).

-00

(6)

In this chapter two forms of W(lxII), and hence of g(1 QI), will be considered.
They are the Gaussianform

W(IXII) = exp(-xl /a2
)

g(IQI) = ,Jiraexp(-a2Q2/ 4),

(7a)

(7b)

where the characteristic lengtha is the transverse correlationlength of the surface
roughness, and the West-Q'DonneIl43 form

sin QrnaxXl - sin QrninXl
W(IXll) = Qrnax> Qrnin (8a)

(Qrnax - Qrnin)Xl
n

g(iQI) = Q _ Q . [O(Qmax - Q)O(Q - Qmin)
max nun

+O(Qmax + Q)O(-Q - Qrnin)], (8b)

whereO(z) is the Heaviside unit step function. In the case of the latterpowerspec-
trum, if Qrnin and Qrnax are chosen to bracket the wave numbersof the surface or
guided wavessupportedby the scatteringsystem, light incident from the vacuum
on a surfacecharacterized by thispowerspectrumcanpreferentially exciteforward
and backwardpropagating waves of thesetypes,whichcan then beefficiently con-
vertedbackintoelectromagnetic volumewaves in the vacuum. Multiple-scattering
processes in which these waves play the role of intermediate states are strongly
enhancedthereby.

The surface X3 == ~(Xl) is illuminated from the vacuum by a plane wave of
frequency to, whose plane of incidence is the XIX3 plane. The single nonzero
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component of the electromagnetic field in the region X3 > ~(XI)max is given by

<I>~ (Xl, x3lw) == exp[ikxl - iao(k )X3]
00

Jdq ..)+ -Rv(qlk)exp[lqxl + lao(q X3].
21T

-00

(9)

(lOa)

(lOb)

Here <I>~(Xl, x3lw) is H{(Xl, x3lw) in the case of p-polarization (v == p),
and is Ef(Xl, x3lw) in the case of s-polarization (v == s), where H{ (Xl, x3lw)
(Ef(XI' x3Iw» is the single nonzero component of the magnetic (electric) field in
the vacuum region. The function ao(q) entering Eq. (9) is defined by

ao(q) == «wlc)2 - q2)~ Iql < oifc
1

== i (q2 - (wle)2) 2 Iql > tof c,

In writing Eq. (9) we have assumed a time dependence of the field of the form
exp( - iwt), but have not indicated this explicitly. The angle of incidence°o, mea-
sured counterclockwise from the x3-axis, and the scattering angle Os, measured
clockwise from the x3-axis, are related to the wavenumbers k and q by

k == (wlc) sin°o, q == (w / c) sin es • (11)

We are interested in the correlations that exist between the intensity fluctuations
8I(qlk) == I(qlk) - (I(qlk)} and the intensity fluctuations 8I(q'lk') == I(q'lk') -
(/(q'lk')},

C(q, klq', k') == (8I(qlk)8I(q'lk')} (12a)

== (/(qlk)/(q'lk')} - (/(qlk)}(/(q'lk')}, (12b)

where the intensity I (q Ik) entering these expressions is defined in terms of the
scattering matrix SeqIk) for the scattering of light of frequency co from a one-
dimensional random surface by7

(13)

where L I is the length of the xl-axis covered by the random surface. The scattering
matrix S(qlk) is related to the scattering amplitude R(qlk) appearing in Eq. (9) by

1

S(qlk) = a~(q) R(qlk),

aJ(k)

and possesses the property of reciprocity,

(14)

S(qlk) == S(-kl- q). (15)

We note that in several studies of angular intensity correlation functions, e.g. 18

a normalized correlation function

';: k' k' _ (81(q Ik)81(q'lk'))
u(q, Iq, ) - (/(qlk)) (/(q'lk')) (16)
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is considered. We have chosen to work with the nonnormalized correlation func-
tion (12) because the mean intensities (/(qlk)} and (/(q'lk')} appearing in the
denominator of Eq. (16) themselves display a structure, e.g. peaks, as functions
of q , k and q' , k', and this structure unnecessarily complicates the structure of the
correlation function (8/(qlk)8/(q'lk')) which is of primary interest here.

We can already obtain useful qualitative information about the correlation func-
tion C(q, klq', k') from Eqs. (12) and (13). Because the correlation of 8/(q Ik) with
itself should be stronger than the correlation of 8/ (q Ik) with 8/(q' Ik') when q' i= q
and k' i= k, a peak in C(q, klq', k') is expected when q' = q and k' = k. This peak
has come to be called the memory effectpeak. At the same time, since S(qlk) is
reciprocal, Eq. (15), a peak in C(q, klq', k') is also expected when q' = -k and
k' = -q. This peak is called the reciprocal memory effectpeak.In earlier work this
peak was called the time-reversed memory effect peak. This name had its origin
in the fact that the time-reversed memory effect was first predicted to occur in ran-
dom volume systems that were time-reversal invariant, e.g. aqueous suspensions
of polystyrene microspheres." In this case reciprocity and time-reversible invari-
ance are equivalent. However, because this effect also appears, due to reciprocity,
in systems that are not time-reversal invariant, such as the rough surface of a lossy
metal, it seems more appropriate to call it the reciprocal memory effect, and we
do so in this chapter.

In terms of the scattering matrix S(qIk) the correlation function C(q, klq', k')
takes the form

C(q, klq', k') = ~ (~)2 [(S(qlk)S*(qlk)S(q'lk')S*(q'lk'))
L I c

- (S(q Ik)S*(q Ik)} (S(q'lk')S*(q'lk'))]. (17)

In the form given by Eq. (17) C(q, klq', k') contains purely specular contributions,
i.e. terms proportional to 2rr8(q - k) and/or 2rr8(q' - k'). Such terms are uninter-
esting. If we note that due to the stationarity of the surface profile function (S(qIk))
is diagonal in q and k, (S(qlk)) = 2rr8(q - k)S(k), we can eliminate these terms
by rewriting C(q, klq', k') in terms of 8S(qlk) = S(qlk) - (S(qlk)). In addition,
if we use the relations between averages of products of random functions and
the corresponding cumulant averages,44,45 we can finally write the contribution to
C(q, klq', k') that is free from specular contributions as

C(q, klq', k') = :2 (~r [I(8S(qIk)8S*(q'lk')) 1
2

+ 1{8S(qlk)8S(q'lk'»)112

+ {8S(q Ik)8S*(qIk)8S(q'lk')8S*(q'lk')}c], (18)

where (... )c denotes the cumulant average.
The result given by Eq. (18) is convenient for several reasons. Due to the sta-

tionarity of the surface profile function ~ (Xl), the amplitude correlation func-
tion (8S(q Ik)8S*(q'lk')} is proportional to 2rr8(q - k - q' + k'). It therefore
gives rise to the contribution to C(q, k Iq', k') denoted by C(l)(q, k Iq', k'), which
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contains the memory and reciprocal memory effect peaks.i-" Since 27(8(0) = L 1,

when the argument of the delta function vanishes the C(l)(q, klq', k') correlation
function is independent of the length of the surface, because it contains [21l'8(0)]2.
The property of a speckle pattern that is reflected in the presence of the fac-
tor 2Tl8(q - k - q' + k') in C(l)(q, klq', k') is that if the angle of incidence is
changed so that k goes into k + Sk, the entire speckle pattern shifts in such a
way that any feature initially at q moves to q' = q + Sk. This is why the C(1)

correlation function was originally named the memory effect. In terms of the an-
gles of incidence and scattering we have that if 00 is changed to O~ = 00 + ~Oo,

any feature in the speckle pattern initially at Os is shifted to 0; = Os + ~Os, where
~Os = (cos 00/ cos Os )~Oo, to first order in ~Oo.

Due to the stationarity of the surface profile function, the amplitude correlation
function (8S(qlk)8S(q'lk')) is proportional to 2Tl8(q - k + q' - k'). It gives rise
to the contribution to C(q, k Iq', k') called C(10)(q, k Iq', k'). When the argument of
the delta function vanishes the C(lO)(q, klq', k') correlation function is also inde-
pendent of L1. The property of a speckle pattern that is reflected in the presence
of the factor 27(8(q - k + q' - k') in COO)(q, k Iq', k') is that if the angle of inci-
dence is changed in such a way that k goes into k' = k + Sk, a feature initially
at q = k - ~q will appear at q' = k' + ~q, i.e. at a point as much to one side
of the new specular direction as the original point was on the other side of the
original specular direction. For one and the same incident beam, k' = k, the COO)

correlation function therefore reflects the symmetry of the speckle pattern with
respect to the specular direction (in wave number space).

It should be emphasized that the preceding properties of the correlation functions
(8S(qlk)8S*(q'lk')) and (8S(qlk)8S(q'lk')), and their consequences for speckle
patterns, are consequences of the assumed stationarity of the surface profile func-
tion, which implies a surface of infinite length, and are therefore independent of any
approximations made in calculating these correlation functions. Thus, they will
be present in the results obtained in the calculations based on a single-scattering
approximation as well as in results obtained in calculations that take multiple-
scattering processes into account.

In Figs. 14.1(a) and 14.1(b) we have plotted the differential reflection coefficient
produced by the scattering of p-polarized light from a single realization of a one-
dimensional randomly rough silver surface for angles of incidence 00 = 0° and 10°,
respectively. The curves were calculated using a rigorous computer simulation of
the scattering problem.t" The overall shift of the speckle pattern in Fig. 14.1(a)
by about 10° is clearly visible in the speckle pattern plotted in Fig. 14.1(b). It is
also seen in Figs. 14.1(a) and 14.1(b) that each speckle pattern is symmetric with
respect to the specular direction.

The correlation function (8S(qIk)8S*(q'lk')8S(q'lk')8S*(q'lk')}c appearing in
Eq. (18) is proportional to 2Tl8(0) = L 1, and gives rise to the long-range and
infinite-range contributions to C(q, klq', k') given by the sum C(1·5)(q, klq', k')
+C(2)(q, klq', k') +C(3)(q, klq', k'). Its contribution to C(q, klq', k') is of 0(L1

1
) .

Therefore, in the limit of a long surface or a large illumination area the
long-range and infinite-range correlation functions are small compared to the
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FIGURE 14.1. Computer generated speckle pattern produced with a single realization of a
one-dimensional randomly rough silver surface defined by the Gaussian power spectrum
(7b) with a= 8 nm, a = 400 nm, when the surface is illuminated by p-polarized light of
wavelengthA = 612.7 nm (E(W) = -17.2 + iO.498). (a) 80 = 0°; (b) 80 = 100.

short-range correlation function, and vanish in the limit of an infinitely long surface.
Consequently, although they contain interesting multiple-scattering effects, 11,12

they are weak, and therefore will not be considered further here.
In conventional speckle theory40,41 the surface profile function is assumed to be

a stationary random process, and the random surface is assumed to be infinitely
long. Under these conditions the scattering matrix S(qlk) becomes the sum of a
very large number of independent contributions from different points on the sur-
face. According to the central limit theorem ~S(qlk) must therefore obey complex
Gaussian statistics. In this case Eq. (18) becomes rigorously'"

C(q, klq', k') = -.; (~)2 [I (oS(qIk)oS*(q'lk'») 1
2+ I(oS(qIk)oS(Q'lk'»)I2]

L 1 C

== C(l)(q, klq', k') + C(lO)(q, klq', k'), (19)

because all cumulant averages of products of more than two Gaussian random
processes vanish. The third term on the right-hand side of Eq. (18) therefore gives
the correction to the prediction of the central limit theorem due to the finite length
of the surface.

If it is further assumed, as is done in conventional speckle theory, where the
disorder is assumed to be strong, that 8S(qIk) obeys circular complex Gaussian
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statistics,40,41 then (dS(qlk)8S(q'lk')} vanishes, and the expression for
C(q, k Iq', k') simplifies to

,.. 1 (W)2 2C(q, klq', k') == 2 - 1(8S(qlk)8S*(q'lk'))1
L 1 C

== c(l)(q, klq', k'). (20)

Therefore,theoretical calculationsor experimental measurements of C(q, k Iq', k')
thatrevealtheexistenceof theC(10)(q, k Iq', k') correlationfunction, or its absence,
indicate whether 8S(qlk) obeys complex Gaussian statisticsor circular complex
Gaussianstatistics. The degreeof surfaceroughness neededfor 8S(qIk) to change
from a complex Gaussian process to a circular complex Gaussian process, and
hence for C(10)(q, k Iq', k') to vanish, will be discussedin Sect. 14.3.1.3.

The result given by Eq. (20) is often called the factorization approximation to
C(q, k Iq', k') [26].Wesee that this approximation suffices if it is only the memory
and reciprocal memory effects that are of interest. However, we also see from
Eq. (18) what is omitted when this approximation is made, namely a correla-
tion function C(10) whose magnitudecan be comparable to that of the correlation
function C(1» obtained with the use of the factorization approximation, and the
correlations definedby the third term on the right-handside of Eq. (18). In what
follows the factorization approximation will not be used.

We now turn to a discussion of the several contributions to the correlation
functionC(q, klq', k').

14.3. Determination of C(q, klq', k')

We have seen in the precedingsection that the correlation function C(q, k Iq', k'),
Eq. (18), is expressed in terms of the fluctuating part of the scattering matrix
~S(qlk) == S(qlk) - (S(qlk)), wherethe scatteringmatrixis expressedin termsof
the scattering amplitude R(qlk) by S(qlk) == (ao(q)/ao(k))! R(qlk). We begin a
description of the calculationof this correlationfunction by obtainingsomeuseful
general results that apply to any of the scattering structures considered in this
chapter.

Forall thescatteringsystemswewillbeconcernedwith,thescatteringamplitude
R(q Ik) is the solution of a reduced Rayleighequation."

00f ~ M(plq)R(qlk) = N(plk),
-00

(21)

where the forms of the functions M(plq) and N(plq) depend on the structureof
the scattering system and on the polarization of the incident light. A solution of
Eq. (21) is sought in the form'"

R(qlk) == 2rr8(q - k)Ro(k) - 2iGo(q)T(qlk)Go(k)Cio(k), (22)
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where Ro(k) is the Fresnel coefficient for the scattering of light from the scattering
system in the absence of the surface roughness, while Go(k) is the electromagnetic
Green's function for the scattering system in the absence of the surface roughness.
The transition matrix T(q Ik) is postulated to satisfy the equation

00

! dp
T(qlk) = V(qlk) + 2rr V(qlp)Go(p)T(plk)

-00

00

! dp
= V(qlk) + -T(qlp)Go(p)V(plk).

2n
-00

(23a)

(23b)

On combining Eqs. (21), (22), and (23b) we find that the scattering potential V(q Ik)
is the solution of the equation

00

! dq . V(qlk)
-2 {M(plq)[Ro(q) + 21Go(q)O:o(q)] - N(plq)}-.-
n 21o:0(q)

-00

M(plk)Ro(k) - N(plk)

2iG o(k)O:o(k)

It is convenient to define Go(q) by requiring that

Ro(q) + 2iGo(q)O:o(q) = -1,

so that

G ()
.1 + Ro(q)

o q = 1 .
2O:o(q )

The equation satisfied by V(qlk) then takes the form

00

! dq V(qlk)
2n [M(plq) + N(plq)] 2iao(q)

-00

N(plk) - M(plk)Ro(k)

2iGo(k)O:o(k)

(24)

(25)

(26)

(27)

We now define the electromagnetic Green's function in the presence of the
surface roughness as the solution of the equation

00

! dp
G(qlk) = 2n8(q - k)Go(k) +Go(q) - V(qlp)G(plk)

2n
-00

= 2rr8(q - k)Go(k) + Go(q)T(qlk)Go(q),

(28a)

(28b)

where T(qlk) is the solution of Eq. (23). By combining Eqs. (22) and (28b), and
making use of Eq. (25), we obtain the useful relation

R(qlk) = -2n8(q - k) - 2iG(qlk)O:o(k). (29)
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The scattering matrix is therefore given by

1 1

S(qIk) = - 2rr8(q - k) - 2iaJ (q)G(q Ik)aJ (k),

so that

(30)

(31)
1 1

8S(qlk) = -2iaJ(q)[G(qlk) - (G(qlk)}]aJ(k).

The correlation function C(l)(q, klq', k') is then obtained from Eq. (18) as

C(l)(q, klq', k') = 1~ (~)2 [ao(q)ao(k)ao(q')ao(k')]
L1 c

x 1[(G(qlk)G*(q'lk')} - (G(qlk»)(G*(q'lk'»)]1 2
, (32)

while C(lO)(q, klq', k') is given by

C(lO)(q, klq', k') = 1~ (~)2 [ao(q)ao(k)ao(q')ao(k')]
L 1 c

x 1[(G(qlk)G(q'lk'») - (G(qlk»)(G(q'lk')}]1 2
• (33)

Due to the stationarity of the surface profile function ~ (Xl), the ensemble-
averaged Green's function (G(qlk)} isdiagonal in q and k

where

(G(qlk)} = 2rr8(q - k)G(k). (34)

(35)
1

G(k)-----
- Gi)1(k) - M(k)·

The function M(k) in Eq. (35) is the averaged proper self-energy, which is obtained
from the pair of equations'?

(M(qlk)} = 27fo(q - k)M(k) (36a)
00 00

M(qlk) = V(qlk) + f ~= f : M(qlp)(G(plr»)[V(rlk) - (M(rlk»)].

-00 -00

(36b)

We now apply the preceding results to the determination of the C(1)(q, k Iq', k')
and C(lO)(q, klq', k') correlation functions for a system containing a single random
surface between vacuum and a medium that supports a single surface electromag-
netic wave, and for a film system with a random illuminated surface, that supports
two or more guided electromagnetic waves.

14.3.1. Correlations in Single-Interface Systems

The physical system we consider in this section consists of vacuum in the re-
gion X3 > ~(Xl) and a metal characterized by an isotropic, complex, frequency-
dependent, dielectric function E(W) = El(W) + iE2(w) in the region x, < ~(Xl). We
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are interested in the frequency range in which El(w) is negative, while E2(W) is al-
ways nonnegative. This is the frequency range in which surface electromagnetic
waves - surface plasmon polaritons - exist. 51

This system is illuminated from the vacuum by a p-polarized plane wave of
frequency to, whose plane of incidence is the XIX3 plane, Eq. (9). The Fresnel
reflection coefficient for the scattering of this wave from a planar vacuum-metal
interface is

where

Ro(k) = E(w)ao(k) - a(k) ,
E(w)ao(k) +a(k)

(37)

Rea(k) > 0, Ima(k) > O. (38)

The Green's function Go(k), obtained from Eqs. (26) and (37), is

Go(k) = iE(W). (39)
E(w)ao(k) +a(k)

Both Ro(k) and Go(k) have simple poles at

k _ ±~ [ E(W) ]
4

- C E(W) + 1 '

== ±[ksp(w) + i~E(w)] (40)

where, to the lowest order in E2(W),

(41)

(42a)

(42b)

Here ksp(w) is the wave number of the surface plasmon polariton of frequency
co supported by a planar vacuum-metal interface, while ~E(W) is the amplitude
decay rate of the surface plasmon polariton due to ohmic losses as it propagates
along the surface. The functions M(plq) and N(plq) entering Eq. (21) are

M( I) [a(p)ao(q) + pq] I( () ( )1 )p q == a p - ao q p - q
a(p) - Cto(q)

N( 1) == [a(p)ao(q) - pq] I(a( ) +a ()I - )
p q a(p) + Cto(q) p 0 q p q,

where
00

[(YIQ) = f dr, exp(-iQxl)exp(-iY~(Xl».
-00

(43)

The solution of Eq. (27) for the scattering potential V(qIk) through terms linear
in the surface profile function (the small-roughness approximation) is

E(W) - 1 "
V(qlk) = E2(W) [E(w)qk - a(q)a(k)R(q - k). (44)



14. Multiple-Scattering Effects in Angular Intensity Correlation Functions 383

In what follows we will approximate V(qlk) by an expression that is valid for
small lc] and Ikl, namely

I"V 1 - feW)w2
"

V(qlk) = E(W) 7i~(q - k). (45)

This is not an essential approximation, but it allows simpler expressions for
C(1)(q, klq', k') and C(lO)(q, klq', k') to be obtained than would be the case if
it were not made, without sacrificing any of the physics of the results.

In the vicinity of its poles at k == ±[ksp(w) + i~E(w)], the Green's function
Go(k) can be written in the form

C(W)
k + ksp(w) + i~E(w)'

(46)

(47)

where the residue C(w) at these poles is given by

lEI (w)1 3
/
2

C(w) == 2 •
E1(w) - 1

The results given by Eqs. (35) and (46) enable us to obtain a pole approximation
for the averaged Green's function G(k),

G(k) ~ C(w)
p - ksp(w) - i~(w)

C(W)
(48)

where we have defined the total amplitude damping rate of the surface plasmon
polariton ~(w) by

with

~sp(W) == C(W) 1m M(ksp(w».

(49)

(50)

The function ~sp(w) is the amplitude decay rate of the surface plasmon polariton
due to its roughness-induced conversion into volume electromagnetic waves in
the vacuum above the metal surface and into other surface plasmon polaritons. In
obtaining Eq. (48) we have neglected the small renormalization of the wavenumber
ksp(w) arising from the real part of the proper self-energy M(ksp(w», but have taken
into account that ~sp(w) can be comparable to, or larger than, ~E(W), The small
renormalization of the residue C(w) due to the surface roughness has also been
neglected. In the small roughness approximation represented by Eq. (45) the decay
rate ~sp(w) is given by (see Eqs. (36) and (50»

00

1 f dp~sp(w) == C(w)Im- -G(p)(V(ksp(w)lp)V(plksp(w»)
L 1 21l'

-00
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/

00 dp [1
xIm 21fg(lksp(w) - pl)C(w) p _ ksp(w) _ i~(w)

-00

- p + ksp(~) + i~(W)]
~ ~C2(W) [IEll~~~~~ 1r(~)

4
8

2[g(O) +g(2ksp(w)]. (51)

These approximations will be useful in the interpretation of the results to be ob-
tained in the remainder of this chapter.

Finally, we assume that the power spectrum of the surface roughness, g( Iq - k I),
can be written in the separable form52

00

g(lq - kl) = L l/Je (q)l/Je (k),
e=o

(52)

where {l/Je(q)} are a suitably chosen set of functions. For example, if g(lq - kl)

has the Gaussian form

l/Je(q) is given by17

g(lq - kl) = ~a exp[ _a 2(q - k)2/4], (53)

(54)

We now apply these results to the determination of C(1)(q, k Iq' ,k') and
C(10)(q, klq', k').

14.3.1.1. The Correlation Function C(l)(q, klq', k')

The difference (G(qlk)G*(q'lk')} - (G(qlk)}(G*(q'lk')} that enters the expression
(32) for C(l)(q, klq', k') can be obtained from the solution of the Bethe-Salpeter
equation."

(G(qlk)G*(q'lk')} = (G(qlk)}(G*(q'lk')}
00 00 00 00

/
dr / dr' / ds / ds'+ - - - -(G(qlr)}(G*q'lr')}(](l)(r, r'ls, s')}
2rr 2rr 2rr 2rr

-00 -00 -00 -00

x (G(slk)G*s'lk'»), (55)

where (/(l)(r, r' Is, s')} is the irreducible vertex function. The solution of Eq. (55)
can be written formally as

(G(qlk)G*(q'lk')} = (G(qlk)} (G*(q'lk')}

+G(q )G*(q') (r(l)(q, q' Ik, k'»)G(k )G*(k'), (56)
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where (f(l)(q, q'lk, k'») is the reducible vertex function. It is related to the irre-
duciblevertex function through

00 00

f ds f ds'(r(l)(q,q'lk,k')} = (/(I)(q,q'lk,k'») + 2rr 2rr (I(I)(q, q'ls, s'»)

-00 -00

x G(s)G*(s') (r(1)(s, s'lk, k'»). (57)

In writingEqs. (56)-(57) we haveused the fact that (G(qlk») is diagonal in q and
k, Eq. (34). On combining Eqs. (32) and (56) we findthat

C(i)(q, klq', k') = 1~ (~)2 [ao(q)ao(k)]IG(q)12IG(k)1 2

L1 C

x] (r(l)(q, q'lk, k')} 12IG(q')1 2IG(k')1 2[ao(q')ao(k')]. (58)

In what follows we will focus on the determination of (r(l)(q, q'lk, k'»).
Wewill approximate (/(l)(q, q'lk, k')} by the sum of the contributions from all

maximally crosseddiagrams in thesmall-roughness approximation. It is thecontri-
butions associated with thesediagrams that describethe phase-coherent multiple-
scattering processes that giverise to the effectswe seek, namely the memory and
reciprocal memory effect peaks. The definition of these diagrams and the rules
for writingthe contributions associated with them, in the case of scattering from
one-dimensional randomly rough surfaces, are given explicitly in [53]. Due to
the stationarity of the surfaceprofilefunction ~(Xl) each term in the expansion of
{/(1)(q, q'lk, k')} is proportional to 2Jr8(q - k - q' + k'), so that (/(1)(q, q'lk, k')}
is givenby

{/(1)(q, q'lk, k')} = 2n8(q - k - q' + k')

{

00

dPl ,
X Wg(lq - kl) +12i"Wg(lq - PiDG(Pi)G*(q + k - pd

x Wg(iP2 - Pi I)G(Pi)G*(q' + k - Pi)Wg(IPi - kl) + ·.. } (59)

where

21 1 - feW) 1

2
(W)4W(w)=8 - .

feW) C
(60)

Toevaluate this sum we use Eq. (52). In numerical calculations the upper limit on
the sum in Eq. (52) will be replaced by an integer N, which is increased until a
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convergent solution is obtained. With the use of this representation we obtain

(I(1)(q, q'lk, k')) = 2rr8(q - k - q' + k')

x {Wg(lq - kl) + W
Z to~ 4Jt(q)

xUI - WK(q' + k)r1K(q' + k)}U'4Jt'(k)} ,

where the elements of the (N + 1) x (N + 1) matrix K(Q) are given by

00

j dp *
Kel'(Q) = 2rr<Pe(p)G(p)G (Q - P)<Pe'(P)·

-00

(62)

The result given by Eq. (61) now has to be substituted into Eq. (57), which is then
solved by iteration. However in each of the integral terms in the iterative solution
we keep only the contribution associated with the first term on the right-hand side
of Eq. (61), and omit all contributions that contain the second term. The sum of
the resulting integral terms is

00

21C8(q - k - q' +k'){j ~~l Wg(lq - PlI)G(Pl)G*(q - q' - Pl)Wg(lpl- kl)
-00

00 00

j dPl j dp2 * ,+ - -Wg(lq - P2I)G(P2)G (q - q - P2)
2:rc 2:rc

-00 -00

xWg(lpz - PlI)G(pdG*(q - q' - Pl)Wg(lpl - kl) + ... }. (63)

This is just the sum of the contributions associated with all the ladder diagrams,
starting with the two-rung ladder diagram.P With use of representation (52), this
sum becomes

N N

2Jrd(q - k - q' + k')W2L L
e=o 1'=0

x<pe(q){[I - WK(q - q')]-lK(q - q')}ee'<Pl'(k). (64)

This contribution equals that of the second term on the right-hand side ofEq. (61)
when q' = -k'. Therefore, we cannot neglect it in comparison with the latter
contribution. On combining this result with the one given by Eq. (61), we finally
obtain our approximation to (r(l)(q, q'lk, k')):

(r(l)(q, q'lk, k')} = 21C8(q - k - q' + k'){ Wg(lq - kl)

N N

+W2L L <Pe(q){[I - WK(q' + k)]-lK(q' + k)}ee'<Pe,(k)
e=o e'=o
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FIGURE 14.2. A plot of the
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lightof wavelength A = 612.7
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(65)+W2t ~ cPe(q){[I - WK(q - q')r1K(q - q')}w cPd k)}.

The substitution of this result into Eq. (58) yields our approximation to
C(1)(q, k Iq', k').

To illustrate the result obtained in this way it is convenient to represent
C(l)(q, klq', k') in the form

tY)(q, klq', k') = 2rro(q - k - q' + k') ~l eg)(q, k, q'), (66)

where

cg)(q, k, q') == C(1)(q, klq', q' - q + k) (67)

is the envelope of the correlation function C(1)(q, k Iq', k'). It is independent of the
length of the rough surface. It is a function of 0; for fixed values of 00 and es , while
()~ is determined from the constraint represented by the vanishing of the argument
of the delta function in Eq. (66). In Fig. 14.2 we plot (61

)(q , k, q') as a func-
tion of e; for eo == 6.3 0 and es == 8.6 0 when p-polarized light of wavelength A ==
612.7 nm is incident on a randomly rough gold surface (E(W) == -9.00 + il.29).
The power spectrum of the surface roughness has the Gaussian form given by
Eq. (7b), with a == 100 nm. The rms height of the surface is 8 == 8 nm. The
envelope function cg)(q, k, q') displays peaks at q' == q (the memory effect)
and at q' == -k (the reciprocal memory effect). These are multiple scattering ef-
fects arising from the third and second terms on the right-hand side of Eq. (65),
respectively.

These results can be readily understood if we approximate the matrix K(Q),
Eq. (62) by the element Koo(Q), which can be quite a good approximation.F If,
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+ 2i.1\(w)+ Q (p +ksp(w»)2+ .1\2(w)

21l'iC2 21l'iC2(w)
'" 2i.1\(w) _ Q8(p - ksp(w» + 2i.1\(w) + Q8(p + ksp(w»,

(68)

in addition, we use the pole approximation (48) for G(p), which yields the result
that

G G* _ ~ C2
(w) 2i.1\(w)

(p) (Q p) - 2i.1\(w) - Q (p - ksp(w»2+ .1\2(W)

C2(w) 2i8(w)

we find that

2 2 48(W)
Koo(Q) = C (w)cPo(ksp(w)) 2 2·

Q +4~ (w)
(69)

Since Q equals q' + k in the second term on the right-hand side of Eq. (65),
and it equals q - q' in the third term, we see that (f(l)(q, q'lk, k')}, and hence
I(f(l)(q, q'lk, k')}12, has peaks at q' = -k and q' == q, as the result plotted in
Fig. 14.2 shows.

The single-scattering contribution to C~l)(q, k, q'), arising from the first term on
the right-hand side of Eq. (65), is a structureless function of e;.

The result obtained in this section indicates that an experimental determination
of C~1)(q, k, q') in the vicinity of either the memory effect peak or the reciprocal
memory effect peak yields essentially the same information as a measurement of
the mean differential reflection coefficient in the vicinity of the enhanced backseat-
tering peak, but without the experimental difficulties associated with placing a
detector at the position of the source.l" It is this feature of the correlation function
C(l)(q, klq', k') that emerged from the theoretical studies of it by Arsenieva and
Feng7 and by Freilikher and Yurkovich."

14.3.1.2. The Correlation Function COO)(q, klq'k')

In exactly the same way as Eq. (55) was derived in [50], the Bethe-Salpeter equa-
tion for (G(qlk)G(q'lk)} can be derived, with the result that

(G(qlk)G(q'lk')} = (G(qlk)}(G(q'lk')}

+ /00 dr /00 dr' /00 ds /00 ds' (G(qlr»)(G(q'lr'»)(/(lO)(r, r'ls, s')}
21l' 21l' 21l' 21l'-00 -00 -00 -00

x (G(slk)G(s'lk')}. (70)

The solution of this equation can be written formally as

(G(qlk)G(q'lk')} == (G(qlk)}(G(q'lk')}

+ G(q)G(q')(r(10)(q, q'lk, k')}G(k)G(k'), (71)
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where the reducible vertex function (r(lO)(q, q'lk, k')) is related to the irreducible
vertex function (/(10)(q,q'lk, k')) by

00 00

/
ds / ds'(r(IO)(q, q'lk, k'») = (I(10)(q, q'lk, k'») + 21f 21f (I(10)(q, q'ls, s'»)

-00 -00

xG(s)G(s') (r(10)(s, s'lk, k')}. (72)

On combining Eqs. (33) and (71) we find that the correlation function
C(10)(q, klq', k') is given by

(C(10)(q, klq', k'») = 1~ (~)2 [ao(q)ao(k)]IG(q)12IG(k)12
L 1 c

x I(r(lO)(q, q'lk, k'») 12IG(q')12IG(k')12[ao(q')ao(k')].

(73)

In the present case the irreducible vertex function will also be approximated in the
small roughness limit by the sum of the contributions from the maximally crossed
diagrams. On evaluating these contributions in a standard manner.P we obtain for
(I(lO)(q, q'lk, k')) the result

(/(10)(q, q'lk, k'») = 21fo(q - k +q' - k') { Wg(lq - kl)

00

/

dPI - , -+ ~Wg(lq - PlI)G(Pl)G(k - q - Pl)Wg(IPl - kl)

-00

00 00

/
dPI / dp2 - , -+ 2Jr 2Jr Wg(lq - P2!)G(P2)G(k - q - P2)Wg(lp2 - PI!)

-00 -00

xG(pdG(k - q' - Pl)Wg(IPl - kl) + ... },

where, with the approximation of V(qlk) given by Eq. (44),

- 2 [1 -E(W)]2 (W)4W(w) == 8 - .
E(W) C

We sum this series with the aid of the decomposition (52) and obtain

VIO)(q, q'lk, k'») = 21fo(q - k +q' - k'){ Wg(lq - kl)

+W2t~ c/>e(q){[I - WL(k - q')r1L(k - q')}u'c/>e'(k)} ,

where the elements of the (N + 1) x (N + 1) matrix L(Q) are given by

00

/

dp
Lee(Q) == 2:rr ¢e(p)G(p)G(Q - P)¢e(P)·

-00

(74)

(75)

(76)

(77)
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As in the calculation of (1(10)(q, q'lk, k'»), when the result given by Eq. (76) is
substituted into Eq. (72), and the resulting integral equation is solved by iteration,
in each integral term in the resulting expansion only the contribution associated
with the first term on the right-hand side of Eq. (76) is kept, and all contributions
that contain the second are omitted. The sum of the resulting integral terms is
given by

(

00

, , dPl - , -
27r8(q - k +q - k) 12;"Wg(lq - PI I)G(PI)G(q + q - PI)Wg(IPI - kl)

00 00

f dPl f dp2 - , -+ 2;" 2rr Wg(lq-P2I)G(P2)G(q+q -P2)Wg(lp2-Pl/)

-00 -00

xG(PI)G(q +q' - PIHVg(IPI - kd + ... }.

This is just the sum of the contributions associated with the ladder diagrams,
starting with the two-rung ladder diagram. We sum the infinite series (78) with the
aid of Eq. (52) to obtain the result that it is given by

N N

2rr8(q - k +q' - k')W2 L L cPl(q){[I - WL(q +q')]-lL(q +q')}ll,cPl,(k).
l=O l'=O

(79)

Thus, our approximation to (r(10)(q, q'lk, k'») is

(r(lO)(q, q'lk, k'») = 27r8(q - k + q' - k'){ Wg(lq - kl)

N N

+W2 L L cPl(q){[I - WL(k - q')]-lL(k - q')}ll'cPl,(k)
l=O l'=O

(80)

(81)

The second and third terms on the right-hand side of this equation are equal when
q' == -k'. Substitution of this expression for (r(lO)(q, q'lk, k'») into Eq. (73) yields
our approximation to COO)(q, q' Ik, k').

As in the case of C(l)(q, q'lk, k'), it is convenient to represent COO)(q, q'lk, k')
in the form

C" (10)( 'Ik k') - 2 ~( k ' k') 1 c"(10)( k ')q, q , - ito q - + q - - 0 q, ,q ,
L 1

where cgO)(q, k, q') == C(lO)(q, klq', q + q' - k) is the envelope of the correlation

function C(lO)(q, q'lk, k'). In Fig. 14.3 we plot cgO)(q, k, q'), as a function of 0;
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FIGURE 14.3. A plot of the
envelope function
C~lO)(q, k, q') as a function of
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for 00 == 6.3 0 and Os == 8.60
, when p-polarized light of wavelength A == 612.7 nm

is incident on the same randomly rough gold surface that was assumed in obtaining
the~lot presented in Fig. 14.2. For the parameters of the scattering system assumed,
cg )(q, k, q') is a structureless function of 0;, and is of the same order of magnitude

A (1) ,
as Co (q,k,q).

14.3.1.3. The Transition from Complex Gaussian to Circular Complex
Gaussian Statistics

We have already noted, in Sect. 14.2, that when the surface profile function is
assumed to be a stationary random process, and the random surface is assumed
to be infinitely long, conventional speckle theory40,4l assumes that the scattering
matrix becomes the sum of a very large number of independent contributions
from different points on the surface. The central limit theorem'f then yields the
result that S(q Ik) obeys complex Gaussian statistics. In this case the correlation
function C(q, klq', k') is rigorously given by C(q, klq', k') == C(1)(q, klq', k') +
C(10)(q, klq', k'). As the strength of the surface roughness increases, itis assumed in
conventional speckle theory that S(q Ik) obeys circular complex Gaussian statistics.
In this case C(q, klq', k') becomes rigorously C(q, klq', k') == C(1)(q, klq', k'), i.e.
C(10)(q, k Iq', k') vanishes. It is of interest to examine how rough the random surface
has to be in order that C(lO)(q,klq', k') is negligible. We can make an estimate of
this degree of roughness in the following way.20

We consider the scattering of an s-polarized plane wave of frequency w from
a randomly rough, infinitely long, surface defined by X3 == ~ (xr ). The region
X3 > ~ (Xl) is vacuum, while the region X3 < ~ (Xl) is a perfect conductor.

The surface profile function ~ (Xl) is assumed to be a single valued function
of Xl that is differentiable, and that constitutes a stationary, zero-mean, Gaussian
random process defined by Eqs. (1)-(2). We further assume that the surface height
autocorrelation function W(IXII) has the Gaussian form (7a).
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The single nonzero component of the electric field in the vacuum region X3 >
~ (XI)max is the sum of an incoming incident field and a superposition of outgoing
scattered waves

00

+ f ~: R(qlk)exp[iqxl + iaO(q)X3]. (82)

-00

A reciprocal phase perturbation theory for the scattering matrix S(qlk) =
[ao(q)/ao(k)]~ R(qlk) was constructed in [56], with the result that

00

S(qlk) = f dr, exp[-i(q - k)xd exp[-2iJao(q)ao(k)s(Xl)], (83)

-00

when only the term linear in ~(Xl) is kept in the exponent in the integrand. The
average (S(q Ik») is given by

(S(qlk») = 2Jr8(q - k)exp[-282ao(q)ao(k)]. (84)

The fluctuation 8S(qIk) can therefore be written as

00

8S(qlk) = f dx1 exp[-i(q - k)xd

-00

x {exp[-2iJao(q)ao(k)~(Xl)] - exp[ -2ao(q)ao(k)82]}. (85)

By the use of this expression for 8S(q Ik) we obtain for the correlators
(8S(qlk)8S*(q'lk'») and (8S(qlk)8S(q'lk'»)

(8S(qlk)8S*(q'lk'») = 2Jr8(q - k - q' + k')

x exp[ -2(ao(q)ao(k) + ao(q')ao(k'»82]

00

x f du{exp[8\lao(q)ao(q')ao(k)ao(k')W(lul)] - 1)

-00

x exp[i(q' - k')u]

(8S(qlk)8S(q'lk'») = 2Jr8(q - k + q' - k')

x exp[-2(ao(q)ao(k) + ao(q')ao(k'»82]

00

x f du{exp[-8\l ao(q)ao(q')ao(k)ao(k')W(lul)] - l}

-00

x exp[-i(q' - k')u].

(86)

(87)

It is seen from Eqs. (86) and (87) that in contrast to (8S(qIk)8S*(q'lk'») the average
(8S(qIk)8S(q'lk'») vanishes with increasing rms height 8 for a fixed value of the
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FIGURE 14.4. The normalized correlation functions g(l)(a) and gOO)(b), as functions of
"/Afor values of the transverse correlation length a = 300 nm, 500 nm, and 800 nm. The
incident light is s-polarized and of wavelength A= 632.8 nm. The scattering medium is a
perfect conductor. Furthermore, eo = 30°, es = 0°, and e; = 0°. In (a) the results for the
different correlation lengths could not be distinguished. 20

transverse correlation length a, due to the negative exponential under the integral
sign in the last line of Eq. (87).

In Fig. 14.4 we present plots of the normalized correlation function

g(l)(q, k/q'k') == I(8S(qIk)8S*(q'lk')) /2/ (8S(q/k)8S*(qIk))(8S(q'lk')8S*(q'lk'))

and

g(10)(q, klq', k') == I(8S(qIk)8S(q'lk')) 1
2

/ (8S(q/k)8S*(q/k))(8S(q'/k')8S*(q'lk'))

as functions of 8/}... for several values of a. From the plots presented in Fig. 14.4 we
see that E(lO)(q, klq'k') vanishes even for quite moderately weakly rough surfaces
(o/A ~ 0.1, a == 800 nm) for which I:(l)(q, kiq'k') is close to unity.

In Fig. 14.5 we plot the envelopes of the correlation functions C(l)(q, k Iq', k')
and C(lO)(q, klq', k') as functions of 8/}... for several values of a. We see that the
envelope of C(l)(q, k Iq', k') decreases with increasing 8/A, as does the envelope
of C(lO)(q, klq', k'), although the former function is still significantly larger than
the latter as 8/A increases.

In calculating the results plotted in Figs. 14.4 and 14.5, the value of q' was
chosen to produce the same values ofCg)(q, k, q') and cgO)(q,k, q') in the limit
of a weakly rough surface.

14.3.2. Correlations in Film Systems

up to now in this chapter we have considered only angular intensity correlation
functions arising in the scattering of (p-polarized) light from a one-dimensional
randomly rough surface bounding a semi-infinite metal. Such a system supports
only a single surface electromagnetic mode, and the peaks arising in C~l)(q, k, q')
are associated with the excitation of this mode.
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However, structures exist that support two or more surface or guided modes.
These include a metal film on a dielectric substrate, or a dielectric film on a metal-
lic substrate. When one of the interfaces in such a structure is randomly rough,
the existence of more than one mode of this type has been shown to give rise to
satellite peaks bracketing the enhanced backscattering peak in the angular depen-
dence of the intensity of light scattered diffusely from it.57 It may be expected,
therefore, that the angular intensity correlation function of the light scattered from
one of these film structures will also display a richer structure than is present in this
function in scattering from a system that supports only a single surface or guided
wave. The possibility that this should be the case was first noted by Freilikher
et al.57 in the context of the CO) correlation function. In subsequent theoretical
studies the angular intensity correlations of light scattered from a randomly rough
dielectric film on a perfectly conducting substrate, 14,15 or reflected from or trans-
mitted through a randomly rough, free-standing, thin metal film'" were calculated.
The resulting correlation functions indeed were found to have a richer structure
than the correlation functions calculated for the light scattered from the randomly
rough surface of a semi-infinite metal.

To illustrate the nature of the angular intensity correlation functions of light
scattered from a film system that supports two or more guided modes, in this
section we study the scattering of s-polarized light of frequency to, whose plane
of incidence is the X1X3 plane, from a system that consists of vacuum in the re-
gion X3 > ~ (Xl), a dielectric film characterized by a complex dielectric constant
Ed in the region -d < X3 < ~(XI), and a perfect conductor in the region X3 < -d.
The surface profile function ~(X1) is a single-valued function of Xl that is differen-
tiable, and constitutes a stationary, zero-mean, Gaussian random process defined
by Eqs. (1)-(2). The random roughness of the surface is characterized by the
Gaussian power spectrum (7b).
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The matrices M(plq) and N(plq) entering Eq. (21) are found to be58

eiad(p)d

M(plq) = () + ()/(ao(q) + ad(p)lp - q)
ao q ad P

e-iad(p)d

----/(ao(q) - ad(p)lp - q) (88a)
ao(q) - ad(p)

eiad(p)d

N(plq) = I(ad(p) - ao(q)lp - q)
ao(q) - ad(p)

e-iad(p)d

----/(-ao(q) - ad(p)\p - q), (88b)
ao(q) + ad(p)

where ao(q) has been defined in Eq. (10), ad(q) = [Ed(w2/c2) - q2]~, with
Read(q) > 0, Imad(q) > 0, and

00

I(yIQ) = f dr, e-iQXleiy{(xd.

-00

(89)

(92)

The reflection coefficient Ro(k) is given by

k
-iad(k) cos ad(k)d + ao(k) sin ad(k)d

Ro( ) = . ., (90)
lad(k) cos ad(k)d + ao(k) SIn ad(k)d

while the Green's function Go(k) is

G
isinad(k)d

o(k) = . (91)
iad(k) cos ad(k)d + ao(k) sin ad(k)d

Both Ro(k) and Go(k) have simple poles at the wavenumbers k = ±kt(w),
±k2(w), ... , ±kN(w) of the guided waves supported by the structure in the ab-
sence of the surface roughness. For a given value of Ed the number of these modes
depends on the frequency wand the thickness of the film. In the small roughness
approximation the scattering potential V(qlk) is given by

w2
"

V(qlk) = (Ed - 1)2~(q - k).
c

The correlation function C(l)(q,k Iq', k') is still given by Eq. (58), where the
reducible vertex function (r(1)(q, q'lk, k')} is given formally by Eq. (65), with W
now defined as

W = o21Ed - 11 2 (~:y. (93)

To make explicit the dependence of C(l)(q, k Iq', k') on its arguments we ap-
proximate the matrix K(Q) defined by Eq. (62) by the element Koo(Q), which
we will denote by K(Q). The reducible vertex function (r(l)(li' q'lk, k')) in this
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approximation becomes

(r(l)(q, q'lk, k')} = 2Jrd(q - k - q' + k'){ Wg(lq - kl)

W2 [K(q'+k) K(q-q')] k}
+ if>o(q) 1- WK(q'+k) + 1- WK(q _q') if>o() ,

where
00

K(Q) = f ~: ifJ5(P)G(P)G*(Q - p).

-00

(94)

(95)

(99)

(98)

The Green's function G(p), Eq. (35), has simple poles at the wave numbers of the
guided waves supported by the scattering structure, in the presence of the surface
roughness, at the frequency of the incident light. We exploit this circumstance by
making a pole approximation to G(p) of the form58

G(p) = " Cm(w). (96)
~ p - Pm(w) - i~m(w)

We will assume that the film supports two guided modes. The summation index n

takes the values -2, -1,1,2 and C-n(w) = -Cn(w), P-n(w) = -Pn(w), and
~-n(w) = -~n(w). Here Pl(W) and P2(W) are the wavenumbers of the two guided
waves, while ~1(w) and ~2(w) are their decay rates, due to their roughness-induced
conversion into volume electromagnetic waves and into each other. With the use
of Eq. (96) we find that

G(p)G*(Q - p) = G(p)G*(p - Q)

= 2niC~ { 8(p - ql) + 8(p + ql) } + 2niCi { 8(p - q2) + 8(p + q2) }
2i~1 - Q 2i~1 + Q 2i~2 - Q 2i~2 + Q

+2niC
l
C

2
{ 8(p - ql) + 8(p + ql)
i(~l + ~2) + (ql - q2) - Q i(~l + ~2) + (ql - q2) + Q

8(p - q2) 8(p + q2) } (97)
+ i(~l + ~2) - (ql - q2) - Q + i(~l + ~2) - (ql - qz)+ Q '

where only the terms that are large for small Q have been kept, and the approxi-
mation

~
---- ~ rr8(p - q)
(p _ q)2 + ~2 -

is used. It follows that the function K(Q), Eq. (95), becomes

2{ 2 a
2

2 4~1 2 a
2

2 4~2K(Q) = J1faW C e- T q1 + C e- T q2---
I Q2+ 4~i 2 Q2 + 4~~

+C
1C2[ ~1+~2 + ~1+~2 ]

(ql - q2 - Q)2 + (~l + ~2)2 (ql - q2 + Q)2 + (~l + ~2)2

X (e-~qi +e-~qi) },
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FIGURE 14.6. A plot of the envelope function C61
)(Q, k, q') as a function of 0; for 00 =

20° and Os = -10°, when s-polarized light of wavelength A = 632.8 nm is incidenton a
one-dimensional randomly rough surface of a dielectric film whosedielectric constant is
Ed = 2.6896+ iO.0075. The film is deposited on the planarsurface of a perfectconductor.
Its mean thickness is d = 500 nm. The powerspectrum of the surface roughness has the
Gaussian form (7b) with8 = 15nm anda = 100nm.

wherewe have usedEq. (54) and again havedroppedall terms that are small when
Q is small.

When the result given by Eq. (99) is substitutedinto Eq. (94), we find from the
first two terms on the right-handside of the formerequationthat the reduciblever-
texfunction (r(1)(q, q'lk, k')} is largewhenq' + k ~ oandwhenq - q' ~ o. This
is the origin of the reciprocalmemoryeffectpeak, and the memoryeffectpeak, re-
spectively. However, we see from the third and fourth terms on the right-handside
ofEq. (99) that (r(l)(q, q'lk, k')} is alsolargewhenq' +k = ±(ql - q2) and when
q - q' = ±(ql - q2). Thus, we see that the correlation function C(l)(q, k Iq', k')
acquires additional peaks whose angular positions depend on differences of the
wave numbers of the guided or surface waves. That is, there are now addi-
tional memory effect peaks, and additional reciprocal memoryeffect peaks. Such
peaks,of course,haveno counterpartsin the scatteringof light froma semi-infinite
metal.

In Fig. 14.6we presenta plot of the envelopefunctioncg)(q, k, q') as a function
of0; for fixedvaluesof00 andOs, fors-polarizedlightscatteredfromthefilmsystem
consideredin thissection.Thewavelength of theincidentlight is A= 632.8 nm,the
dielectricconstantof the filmis Ed = 2.6896+ iO.0075, and the mean thicknessof
the filmis d = 500 nm. The transversecorrelationlength of the surfaceroughness
is a = 100 nm, while the rms height of the surface is 8 = 15 nm. The angle 00 is
00 = 200,whileOs = -100. It is seenthat in additionto the memoryand reciprocal
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memory effect peaks cg)(q, k, q') displays the additional memory and reciprocal
memory effect peaks predicted by Eq. (99).

14.4. Frequency Correlation Functions

In the discussion of the correlation function C(q, klq', k') in the preceding sections
of this chapter, it was assumed that the incident and scattered field characterized
by the wave numbers (k, q) and (k', q') possessed the same frequency t», It is of
some interest to relax this assumption, and to examine the situation where the
fields characterized by (k, q) have the frequency co, while the fields characterized
by (k', q') have the frequency w'. It might be thought that the intensities entering
the correlation function will simply decorrelate when w' is unequal to to. However,
we will see that in fact the angular intensity correlation function acquires a richer
structure as a function of the scattering angle 0; for w' f:. to than it possesses when
w' = t». We examine this case in the present section.

Thus, the correlation function we consider is denoted by C(q, k;wlq', k';w'),
which is defined by

C(q, k;wlq', k';w') = (/(q, klw)I(q', k'lw'») - (/(q, klw»)(I(q', k'lw'»), (100)

where the intensity I (q, klw) is

1 w
I(q, klw) = --IS(q, klw)1 2

,
L 1 C

and

(101)

k = (wlc) sin 00 q = (wlc) sin Os (102a)

k' = (w'lc)sinOb q' = (w'lc) sinO;, (102b)

in terms of angles of incidence 00 and Ob, and angles of scattering Os and 0;.
As before, we eliminate uninteresting specular terms by introducing the fluctu-

ation 8S(q, klw) = S(q, klw) - (S(q, klw)} and working with the modified corre-
lation function

" 1 ouo'
C(q,k;wlq',k';w') = L2 - -

1 C C

x {(8S(q, klw)8S*(q, klw)8S(q', k'lw')8S*(q', k'lw')}

-(8S(q, klw)8S*(q, klw»)(8S(q', k'lw')8S*(q', k'lw'»)}. (103)

In what follows we will restrict our attention to the correlation function
C(1)(q, k; wlq', k':w') since it is this contribution to C(q, k; wlq', k':w') that dis-
plays the most dramatic consequences of including multiple-scattering processes
in the calculation of the former correlation function. It is given by

1 to io'
C(1)(q, k;wlq', k';w') = L

2
--1(8S(q, klw)8S*(q', k'lw')}12

• (104)
1 C c
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With the use of Eq. (31) this expressionbecomes

A (1) • ".' _ 16 oxo' " "C (q, k, wlq .k ,w) - 2:-2 [aO(q, w)ao(k, w)aO(q ,W )ao(k ,W)]
L 1 C

X I[(Gaiqlk)G:,(q'lk'») - (Gw(qIk») (G:,(q'lk'») 11 2
, (105)

whereao(q, w) is definedby Eqs. (10), and the Green's function Gw(qlk) is again
the solutionofEq. (28a),butnowwithits dependence on the frequency to indicated
explicitly.

The two-particle Green's function (Gw(qlk)G:,(q'lk')} satisfies the Bethe-
Salpeterequation

(Gw(qlk)G:,(q'lk'») == (Gw(qlk») (G:,(q'lk'»)

/
00 dr /00 dr' /00 ds /00 ds' * I I ((1) , , }+ 277: 277: 277: 277: (Gw(q Ir ») (Gw' (q Ir ») Iww' (r, r Is, s )

-00 -00 -00 -00
x (Gw(slk)G:,(s'lk'»)

=277:8(q - k)Gw(k)2:rc8(q' - k')G:,(k')
00 00

* , / ds / ds' ( (1) , , ) ( *, ')+ Gw(q)Gw,(q) 277: 2:rc Iww,(q, q Is, s) Gw(slk)Gw'(s Ik) .

-00 -00

(106)

The solutionof Eq. (106) can be writtenin terms of the reducible vertexfunction
(r~2,(q, q'lk, k'») as

(Gw(qIk)G:,(q'lk'») == (Gw(qlk»)(G:,(q'lk'»)

+ Gw(q)G:,(ql)(r~2,(q, q'lk, k/)}Gw(k)G';y(k/), (107)

where (r~12,(q, q'lk, k'») is the solution of

(r~2,(q, q'lk, k/)} = (I~~,(q, q'lk, k/)}

00 00

/
ds / ds' ( (1) , , } *, ( (1) , , }+ 277: 277: Iww,(q, q Is, s) Gw(s)Gw'(s) rww'(s, s Ik, k). (108)

-00 -00
On combining Eqs. (105) and (107) we find that the correlation function
C(1)(q, k; wlq', k'; w) is given by

A (1) • " • , _ 16 oxo' 2 2
C (q, k,wlq .k ,w) - 2"-2 [ao(q, w)ao(k, w)]IGw(q)1 IGw(k)1

L1 c

x] (r~2,(q,q'lk, k/)} 12IGw,(ql)12IGw,(k')12[ao(q', u/)ao(k', Wi)]. (109)

Weagainapproximate the irreduciblevertexfunction by thesumof thecontribu-
tionsfromall maximally crosseddiagrams. In evaluating this sumweapproximate
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the scattering potential V(q Ik) by the expression given by Eq. (45). As a result,
we obtain

(l~,(q, q'lk, k')} = 2Jro(q - k - q' + k'){ W(w, w')g(lk - ql)

00

+ W\w, w') f ~~l g(lk - PlI)Gw(Pl)G:'(q' +k - Pl)g(lPl - ql)

-00

00 00

+ W3(w, w') f ~~ f %2 g(lk - PlI)Gw(pdG:'(q' +k - pdg(lpl - P21)
-00 -00

x Gw(P2)G:,(q' + k - P2)g(lp2 - ql) + ... },

where

(110)

(111), _ 2[1- E(W)] [1- E(W')]* w
2w,2

W(w,w) - 8 -4-.
E(W) E(W') C

To sum the series (110) we use representation (52) for the power spectrum of the
surface roughness. The result can be written in the form

where

(l~~,(q, q'lk, k')} = 2Jro(q - k - q' + k'){W(w, w')g(lq - kl)

N N

+W2(w, w') L L lPe(q){I - W(w, w')K(w, w'lq' +k)]-l
e=o e'=o

xK(w, w'lq' + k)}ef/l/Je,(k),

00, ! dp *Kel'(w, to IQ) == 2rr 4>e(p)Gw(p)Gw,(Q - p)4>l'(p).

-00

(112)

(113)

When we substitute the result given by Eq. (112) into Eq. (108) and solve the
resulting equation by iteration, where only the first term on the right -hand side of
Eq. (112) is kept in the integral terms, we find that the reducible vertex function
becomes

(r~2,(q, q'lk, k')} = (l~~(q, q'lk, k')} + 2Jro(q - k - q' + k')

00

{ W2(w,w') f ~~ g(lq - Sll)Gw(Sl)G:,(q' - q + sl)g(lsl - kl)

-00
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The series in braces can be summed with the use of Eq. (52), with the result that

(r~21(q, q'lk, k')} = 2:rr8(q - k - q' + k'){W(w, w')g(lq - kl)

N N

+W2(w, w') L L 4Je(q){[I - W(w, w')K(w, w'lq' +»r'
e=o e'=o

xK(w, w'lq' + k)}ee'4Je'(k)
N N

+W2(w, w') L L 4Je(q){[I - W(w, w')K(w, w'lq - q')]-1
e=o e'=O

xK(w, w'lq - q')}ee4Je,(k). (115)

Substitution of this expression for (r~~,(q, q'lk, k')} into Eq. (109) yields our
approximation to C(l)(q, k; wlq'; k'; w').

It is convenient to represent C(l)(q, k; wlq', k': w) in the form

c(l)(q, k; wlq', k'; Wi) = 2:rr8(q - k - q' + k')~C61)(q, k; wlq'; Wi), (116)
L1

where

C~l)(q, k;wlq';w') == C(l)(q, k;wlq', q' - q + k;w'). (117)

In Fig. 14.7 we plot C61)(q , k; wlq'; w') for a silver surface whose roughness was
characterized by the Gaussian power spectrum (7b) with the roughness parameters
o== 5 nm and a == 100 nm. The incident light was p-polarized. The angles 00and Os
were fixed at 00 == 10° and Os == -5°. The frequency io corresponded to a vacuum
wavelength of light A == 612.7 nm. The envelope function is plotted as a function of
0; and B): == A- A' == (2Jl'cjw) - (2Jl'cjw'). The values of the dielectric function
of silver as a function ofwavelength were obtained from the experimental results of
Johnson and Christy." When A' == A, C61

) displays two peaks as a function of 0;.
The one corresponding to q' == q, or 0; == Os, is the memory effect peak. The peak
corresponding to q' == -k, or 0; == -00, is the reciprocal memory effect peak.
As OA increases from zero, each of these two peaks splits into two peaks, so that
cci1) now displays four peaks. As OA increases further, the two outer peaks shift
farther apart, while the two inner peaks approach each other. At a critical value
of 0)... the two inner peaks fuse, and C61) displays only three peaks. With a further

increase of OA, the central peak splits into two peaks, and C61
) again displays four

peaks.
This behavior can be understood in the following way. If we use the pole ap-

proximation (48) for the Green's function Gw(k), we find that

* C(w)C(w')
Gw(p)G"t<Q - p) c:::: - Q + ksp(w') _ ksp(w) - i(L\(w) + L\(w'»

x { p _ ksp(~) - iL\(w) + Q - P + ksp;W') - iL\(w') }
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FIGURE 14.7. A plot of the envelope function C~l)(q. k; wlq'; w') as a function of e; and
Ii" = " - A' = (2rrcjw) - (2rrcjw') for eo = 10° and es = -5°, when p-polarized light is
incident on a one-dimensional randomly rough silver surface characterized by the Gaussian
power spectrum (7b) with Ii = 5 nm and a = 100 nm. The frequency w corresponds to a
vacuum wavelength A= 612.7 nm.

C(w)C(w')

Q - ksp(w')+ ksp(w)+ i(L\(w) + L\(w'»

x { p + ksp(W

1
) + iL\(w) + Q _ p _ ksp~w') + iL\(w') } . (118)

If we set w' =w + ow, then in the limit of small ow and small Q Eq. (118)
reduces to

* C2(w) 2iL\(w)
Gw(p)Gw(Q - p) ~ - Q+ owk~p(w) - i2L\(w) (p - ksp(w»)2 + L\2(w)

C2(w) 2iL\(w)

Q - 8wk~p(w) + i2L\(w) (p + ksp(w» 2+ L\2(w)

2JriC2(w) k
Q+ owk~p(w) _ i2L\(w) o(p - sp(w»

2rriC2(w)

where the prime denotes differentiation with respect to to.

(119)
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If, in addition, we approximate the matrix K(o), w'l Q) by the element
Koo(w, w'IQ), we obtain from Eqs. (113) and (119) the result

iC2(w)l!J5(ksp(w» iC2(w)l!J5(ksp(w»
Koo(w, w'IQ) = Q + 8wk~p(w) _ i2~(w) + Q _ 8wk~p(w) + i2~(w) (120)

Now Q = q' + k in the second term on the right-hand side of Eq. (115), which
gives rise to the reciprocal memory effect peak, and Q == q - q' in the third term
on the right-hand side of this equation, which gives rise to the memory effect
peak. From these results we find that ccil)(q,k; wlq'; w') will now have reciprocal
memory effect peaks at q = -k ± 8wk~p(w), and memory effect peaks at q' =
q ± 8wk~p(w), for nonzero values of Bco = w' - to.

14.5. Experimental Results

Several experimental studies of angular intensity correlation functions for light
scattered from dielectric surfaces have been carried OU1.

21-23 In these studies,
which are limited to the to) correlation function, the existence of the memory
effect and the reciprocal memory effect is demonstrated, but results for the envelope
of CO) are not presented.

Experimental measurements of angular amplitude correlation functions of the
type (8S(qlk)8S*(q'lk'») have been carried out in the millimeter wave range for
one-dimensional'" and two-dimensional" randomly rough surfaces. The results
display peaks that in I(8S(qIk)8S*(q'lk'») 1

2 are the memory effect and reciprocal
memory effect peaks.

Up to the present time there has been only a single experimental study of the
correlation function C(q,k Iq', k') that has revealed the existence of the memory
effect and the reciprocal memory effect peaks in the C(1)(q, klq', k') correlation

0.02

0.00

-20 -10 o 10 20

Scattering Angle [deg]

FIGURE 14.8. Experimental results for the envelope functions cg)(q, k, q') (solid curve)
and e.~lO)(q, k, q') (dotted curve) as functions of 0; for 00 == 6.30 and Os == 8.60 when p-
polarized light of wavelength A = 612.7 nm is incident on a one-dimensional randomly
rough gold surface (f(W) == -9.00 + i1.29). The surface roughness is characterized by the
West-O'Donnell power spectrum (8b) with 8 == 115.5 nm, kmin = 8.56 X 10-3 nm' and
kmax == 13.3 X 10-3 nm- I • The peak in e.g)labeled ME is the memory effect peak; the peak
labeled RME is the reciprocal memory effect peak (after [18]).
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function, and the existence of the C(lO)(q, klq', k') correlation function. West and
O'Donnell!" have measured the envelope functions e~l)(q, k, q') and e~10)(q, k, q')
in the scattering ofp-polarized light from a weakly rough one-dimensional random
gold surface.

To enhance the excitation of the surface plasmon polaritons at the vacuum-metal
interface, West and O'Donnell fabricated their randomly rough gold surfaces on
the basis of the power spectrum given by Eq. (8b) instead of the Gaussian power

A (1) A (10)
spectrum given by Eq. (7b). Their results for Co (q, k, q') and Co (q, k, q') are
plotted in Fig. 14.8 as functions of 0; for fixed values of 0o and Os. The plot of
eg)(q, k, q') displays two peaks. One of them is the memory effect rak, the
other is the reciprocal memory effect peak. In contrast, the plot of ego (q, k, q')
is a structureless function of 0;. The existence of egO)(q, k, q') indicates that for
the randomly rough surface used in the experiments of West and O'Donell the
scattering matrix S(qlk) obeys complex Gaussian statistics.

14.6. Conclusions

In this chapter we have presented an introduction to the existing theoretical and
experimental studies of multiple-scattering effects in angular intensity correlation
functions. The results of these investigations have provided information that com-
plements that obtained in studies of features in the mean differential reflection and
transmission coefficients, such as enhanced backscattering and enhanced transmis-
sion, and satellite peaks; they have predicted unsuspected symmetries in speckle
patterns; and they have yielded information about the statistical properties of the
scattering matrix.

Despite these advances in our understanding of angular intensity correlation
functions, and of speckle patterns, there are interesting properties of these func-
tions, associated with multiple-scattering processes, that remain to be explored.
One is the existence of the e(1·5), e(2), (:(3), and (:(0) correlation functions. A com-
bined theoretical and experimental effort will undoubtedly be required to elucidate
the conditions under which any of these correlation functions can be observed,
e.g., the length of the surface and the form of the incident field. Another is the
nature of the correlation functions, and the statistical properties of the scatter-
ing matrix, when the surface profile function is no longer a Gaussian random
process but instead obeys some form of non-Gaussian statistics. Some of these
questions have been addressed on the basis of a random phase screen model.f
but investigations that take multiple scattering into account have yet to be carried
out. Yet another is the properties of higher-order correlation functions, such as
(8/(Qlk)8/(q'lk')8/(q"lk")). While these three examples hardly exhaust the list
of directions future studies of angular intensity correlation functions could take,
they serve to indicate the possibilities afforded by this still developing sub-field of
rough surface scattering.
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15.1. Introduction

Analysis ofthe speckle structure of a random field is a well-known topic. 1 With
the development of near-field microscopy, the subject has been revisited in the last
ten years. This paper addresses the structure of a random field in close proximity
to an interface. First, we give a general overview of the differences between the
structure of the field in the near field and in the far field. We emphasize the role
of the evanescent waves in the near field. The second part of the paper reviews
recent studies on field correlations in the near field for two cases: random thermal
fields and light multiply scattered. The third part of the paper is devoted to the
analysis of the speckle pattern above an interface in the single scattering regime. It
is shown that in that case, the speckle pattern is nonuniversal and strongly related to
the statistical properties of the surface. It is known that near-field images strongly
depend on the specific properties of each tip. It cannot be assumed in general
that the signal delivered by a near-field scanning microscope delivers a signal
proportional to the square of the local electric field. In the last part of the paper,
we derive from the reciprocity theorem a general form of the signal. In particular,
we emphasize the role of polarization and the influence of the tip on the spectral
response.

15.2. Role of Evanescent Waves in the Near Field

15.2.1. Angular Spectrum

In this section, we discuss the contribution of evanescent waves to the electric
field in the half-space z > 0 above an interface. The upper half-space is filled with
a medium with a dielectric constant 81 and a real refractive index nl = 8:/

2. To
proceed, we introduce a plane-wave expansion of the electric field valid in the
half-space z > 0:

(1)
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where y, = (elw2/c 2 -k~)1/2withthedetenninationIm(Yl) > oand Re(Yl) > o.
We have used the notation k = (kx , ky , kz) and kll = (kx , ky , 0). The amplitude of
the Fourier transform of the electric field in the plane z = 0 is denoted e(kll). Since
divE = 0, we have e(kll) · k ll = °so that only two components are needed to char-
acterize e(kll). We introduce two unit vectors that define the s- and p-polarizations:

e(kll) = es(kll)as(kll) + ep(kll)ap(kll),

where the unit vectors are given by

(2)

(5)

kll
as(kll) = az x - (3)

Iklll

kll + Ylaz
ap(kll) = as(kll) x k

j
, (4)

where we have used k1 = nlkO = nico]« and az is the unit vector along the z-axis
perpendicular to the interface. This plane wave expansion can be split into two
contributions: the propagating waves with wavevectors with real z-components
Yl, corresponding to parallel wavevectors Iklll < k1, and evanescent waves with
imaginary z-components, corresponding to large parallel wavevectors Ikill > k1.

At distances larger than a wavelength from the interface, evanescent waves can
be neglected. It follows that the spatial variations of the field have been filtered.
Propagation is a low-pass filter with a cut-off given by Ikllico = k1• We shall refer
to the near-field region when dealing with distances to the interface much smaller
than Al = 2n / k1 so that evanescent waves can be detected. The reader is referred
to [2] for a comprehensive introduction to the basics of near-field optics.

15.2.2. Field and Intensity Correlations in the Near Field

Let us now study the correlation function of the field. We consider that the field is a
random process, homogeneous in the plane (x, y) and spatially varying along the z-
axis. This corresponds, e.g., to the case of a thermal field generated by an interface.
This is also the case of a deterministic field scattered by a random medium limited
by an interface z = 0, either a rough surface or a medium with a random dielectric
constant such as a suspension of particles in water. The electromagnetic fields
used in the experiments are usually microwave fields generated by an oscillator
or optical fields generated by a laser. An interesting property of the fields is their
spatial correlation function. We shall specifically examine the role of surface waves
on the field correlation. Leaving aside polarization effects, we will consider a scalar
field \II(r).

From the Wiener-Khinchine theorem, the field correlation of a homogeneous
field in the plane (x, y), known as the cross-spectral density in the context of
coherence theory, can be written as the Fourier transform of the power spectral
density of the field denoted by G\II:

* f . d2kll(\II(R + r)\II (R)) = G\II(kll)exp[lk ll . r]-22·
( n)
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To define the power spectral density of the field, we first introduce a field \11A equal
to the field \II in the finite area A and null elsewhere. We can define its angular
spectrum

\11A(r) =f d2kll \11A(kll) expjitk] · r + y,z)].

The power spectral density is then given by

G (k) - u 1\11A(kll)!2
\II II - A~~ A .

(6)

(7)

(8)

To discuss the differences between the near field and the far field for the field
correlation, let us first consider a constant power spectral density. In other words,
the amplitudes \II(kll) in the plane z == 0 have a random phase and a constant
modulus. It follows immediately from Eq. (5) that the cross-spectral density of
the field is given by a delta of Dirac so that the field is delta-correlated. If we
now consider the same field but at a distance from the surface larger than a wave-
length, the evanescent waves can be neglected so that the correlation function is
given by

* l k1
kdk ki

(\II(R + r)\II (R») == G\II Jo(kr)- == G\II-JI(kIr),
o 2rr r

where k I == n I W / c. The typical length scale of this cross-spectral density is given
by the wavelength. When dealing with blackbody radiation in three dimensions,
one finds a cross-spectral density that varies like sin(kIr)/kir . For a Lambertian
source, the cross-spectral density is also given by sin(k I r) / kI r. The key difference
between the near field and the far field is the possibility of observing a correlation
length smaller than the wavelength in the near field. This is simply due to the
presence of surface waves with large wavevectors. Whether these surface waves
actually exist depends on the system. In what follows, we will consider different
physical systems.

In many cases, the field can be viewed as a Gaussian statistical process. This is
often observed for thermal light or for multiple scattering since the field is the result
of the superposition of many different independent random fields. The intensity
correlation is then simply related to the field correlation by virtue of the moment
theorem for circular complex Gaussian variables.'

15.2.3. Speckle Patterns due to Random Thermal Fields

We discuss briefly in this section the transition between far field to near field of the
cross-spectral density. We consider the cross-spectral density of the field emitted
by a half-space (z < 0). It can be computed" accounting for the optical properties of
the medium using stochastic electrodynamics.5,6 For a material with local dielectric
constant, the random current density is delta-correlated. It follows that the spatial
frequency spectrum of the sources contains arbitrary high wavevectors. Thus the
fields in the near field contain large wavevectors. A detailed asymptotic analysis
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is reported in [7]. It is found that in the near-field regime, the correlationlength is
controlled by the distance to the surface that plays the role of a cut-off frequency
as already discussed.

Anotherimportantfeature is thepolarizationdependence.The correlationfunc-
tions of the parallel and perpendicularcomponentsof the field to the interfaceare
different," This is all the more importantas electromagnetic modesalonga surface
such as surface plasmon polaritons or surface phonon polaritons are polarized.
The polarization state cannot be described using two components perpendicular
to a mean propagationdirection whendealing with vectors in the near field. Three
componentsare necessary. The scalarapproximationis obviouslyrarely appropri-
ate in the near field. A detailedstudy of polarizationin near fieldhas been reported
recently.f

15.2.4. Multiple Scattering

Speckle patterns in the near field have been observed in the first images of sur-
faces taken with scanningnear-fieldopticalmicroscopes. Wavyfluctuations of the
intensityareclearlyseen,for instance,in imagesreportedin [10, 11].Theyarepro-
duced by the interferenceof wavesscatteredby the roughnessof the surface.Their
visibilitystronglydependson the coherenceof the illuminationas firstpointedout
by de Fornel et al.12,13

A major application of the near-field scanning microscope has been the possi-
bility of imaging surfaceplasmons.Leaving aside what is now called plasmonics,
we will brieflyreviewsomeparticularexperimentsdesignedto study the structure
of the intensity over a random rough surface. Two types of systems have been
investigated: metallic surfaces with slightly rough surfaces and semicontinuous
films that can be viewed as clusters of nanometric metallic particles. Localized
states appearing as hot spots in the images have been observed by Tsai et al.,14
Zhang et aI.15 and by Gresillon et al.16 on semi continuous films. A theoretical
treatmentcan be found in [17, 18].Further studies have been reportedrecently by
Chebanov et al.19 Bozhevolnyi et ale have reported the observation of localized
states on slightly rough surfaces.20-22

The enhancement of the field due to surface plasmon polaritons has also been
studied in the context of surface enhanced Raman scattering. Numerical simula-
tions have shownthat fractal silver surfacesmay produce very large enhancement
of the field.23,24 Veryrecently,Leskovaet al.25 have studied the spatial coherence
of the field above a rough surface illuminatedby a plane wave. In particular, they
havefoundthat the spatialcoherencechangesrapidlywith the distanceto the mean
surfacedue to the role of evanescentwaves.

Morerecently, near-field measurements of the specklegeneratedby volumeran-
dommediahavebeenreported.The statisticsof theamplitudeandphaseof the field
transmittedbyarandommediumhasbeenstudied." Near-field measurementshave
been reported by Sebbah et al.27 in the microwave range and by Emiliani et al.28

in the optical range. In both results, the fieldcorrelationfollows the usual far-field
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form first derived by Shapiro'? proportional to sin(kr) exp( - r / I) / kr, where 1 is
the mean free path. With scattering centers much smaller than the wavelength,
one should expect smaller correlation lengths for measurements performed at a
subwavelength distance from the medium. They were not observed in these ex-
periments, presumably because of a lack of resolution of the tip or a distance
between the tip and the surface larger than A/IO. The subwavelength correlation
has been observed by Apostol and Dogariu.30,31 Another remarkable result re-
ported by Apostol and Dogariu is the non-Gaussian statistics observed in the near
field under some illumination conditions.V

15.2.5. Experimental Difficulties

Near-field experiments are difficult to analyze quantitatively. The key importance
of the tip used in near-field optical microscopy is experimentally observed by
comparing different images of the same surface taken with different tips. Large
differences are usually observed. It is thus difficult to analyze the signal with-
out a model for the actual tip being used. There are three different experimen-
tal issues: (i) Is the tip a passive probe? (ii) Does the tip respond equally to all
components of the electromagnetic field? (iii) Does the tip influence the spectral
response?

A key issue to address is whether the tip is a passive probe or not. This amounts to
assessing whether multiple scattering between the tip and the sample is negligible.
When using a dielectric tip, this approximation can be justified." 33 By contrast,
when detecting the field with a tip with a high dielectric constant and large volume,
the approximation is usually not valid.l" The passive probe assumption cannot be
used when studying localized resonant modes with a high quality factor. Indeed, in
these cases, the presence of the probe introduces radiative and nonradiative losses
that may significantly alter the mode. It is therefore extremely difficult to measure
quantitatively the enhancement of the fields in bright spots because the presence
of the probe introduces losses that tend to decrease the resonance.

The second key issue when detecting electromagnetic fields in the near-
field regime is the polarization sensitivity. Let us point out that the analysis of
the detection process of near fields must take into account the polarization of
the field and specific properties of the tip. The usual far-field assumption that the
signal is proportional to the intensity is no longer valid, although it can be used in
some cases." Obviously, the polarization dependence of the tip is essential when
detecting surface waves such as surface plasmon polaritons, which are polarized
fields.

The third issue deals with the measurement of spectra in the near field. We will
show that the spectral response of the tip has to be taken into account.

The last section of this paper will be devoted to the introduction of a model that
allows us to include the tip characteristics in the modeling of the signal in the weak
coupling regime.
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15.3. Nonuniversal Speckle Pattern Produced by a Slightly
Rough Surface

In this section, we will study the speckle pattern produced by a random rough sur-
face. As discussed in the introduction, near-field images often show wavy structures
even when imaging plane surfaces. We will show that these structures can be at-
tributed to the intensity speckle produced by the residual roughness of the surface.
This speckle pattern has two distinct properties as compared to the far-field de-
veloped speckle. It is nonuniversal and can be related to the statistical properties
of the surface." It is nonisotropic when the illumination is nonisotropic" . It has
also been pointed out that the speckle pattern can be nonisotropic under normal
incidence due to polarization effects. 36

15.3.1. Statistical Description ofa Random Rough Surface

In order to describe a random rough surface we assume that the height of the
surface z = S(rll) at a given point r = (rll' z)is a random variable with zero mean
value, characterized by a Gaussian probability density function and a correlation
function given by 82C(lfll - fill), where 8 is the roughness defined as the root mean
square height:

(S(rll») = 0

(S(rll)S(r~I») == d2C(lr n - r~II).

(9)

(10)

The brackets indicate the ensemble average. Let us emphasize that we assume an
isotropic stationary random process as seen in the form of the correlation function
which depends only on the distance If II - fill. The correlation length a charac-
terizes the correlation function C(lrll - fill). Let us now introduce the Fourier
transform of the restriction of the surface profile to a limited area A, SA(rll) and
the Fourier transform of the correlation function:

(11)

(12)

An important property is given by the Wiener-Khinchine theorem which relates the
Fourier transform of the correlation function g(kll) to the power spectral density:

(13)
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15.3.2. Amplitude of the Field Scattered by a Deterministic
Slightly Rough Surface
We consider a slightly rough surface separating two half-spaces filled with linear
homogeneous media. The upper medium is characterized by the real dielectric
constant 81 and the lower medium is characterized by the dielectric constant 82.
The interface is illuminated in transmission from medium 2. The amplitude of the
roughnessis much smaller than the wavelengthA1so that the fieldin medium 1can
be computed by using a perturbativeexpansionin powersof 81Al. Following[38],
we seek a perturbativesolution by writing the angular spectrum of the transmitted
field in the form

(14)

Using the boundary conditions, one finds that the zero-order field is related to the
incident field ei = ei,sas(k11) + ei,pap(k1,) by the Fresnel transmission factors:

[ :t::,'Sp:] = [yt~4Y4 2nl~2Y2] [:~,s ], (15)
ely~+e2yt i.p

where y; = [8ik5 - kf!]1/2 with the determination Im(y;) > 0 and Re(y;) > 0
and where the superscript i indicates that the function is evaluatedfor the incident
parallel wavevectork1,. The first-orderamplitude of the scattered field is given by

[e!:;] = S(k11 - kll)L(kll, k1,) [;~,s ], (16)et,p i.p

where L is an operator defined by

t i k" k"inc
s II· II

L(k ll, k11) = i(Y2 - Yl)
t; nl kO Y2 kll·(az x k11)

YIY2+lk 1l 1
2

t~ {yt Y2 k11· kll + Ikllllk111 }

YIY2+lk 1l1
2

(17)
where t~ and t; are the Fresnel transmission factors defined in Eq. (15) and the
caret denotes a unit vectorx= xl [x]. Wecan finallycast the scattered field to first
order in the form

E~l)(r) = f d2kl~ S(kll - kjl)L(kll, kjl)ei exp(iYIZ)exptik] · r). (18)
(2Jr)

The first term of the equation showsthat the spectrumof the scatteredfieldis given
by the spectrum of the surface translated by the parallel projection of the incident
wavevector. This translationbreaks the symmetryin thecase of an illuminationby a
plane wave.The rotational symmetrycan be restored by summingthe contribution
from all directions in the case of an isotropic illumination. The second term L
accounts for polarization effects. The third term exp(iYIZ) is a phase term for
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(22)
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propagating terms but a filtering term for evanescent waves. This term is essential
when studyingthe transitionbetweenthe near field to the far fieldregime.

15.3.3. Speckle Pattern Generated by a Slightly Rough
Surface in the Near Field

In whatfollows, weadopta simplified pointof viewto describethe specklepattern.
Weconsider the specklepattern generatedby the transmittedfieldat the interface
betweentwodielectricmedia.Westudytheintensitycorrelationfunction. Intensity
is defined by the square modulus of the electric field. The key property of the
speckle generated by a slightly rough surface is due to the fact that the field is a
hologram of the surface as first introducedin [40]. This property stems from the
interference structureof the intensity. Indeed, the intensitycan be writtenas

E(O) E(l) 2
I (rll ' z) = I t + t I .

To first order in 8/ A, we obtain

I (rll' z) = I(O)(z) + I(l)(rll' z)

= IE~O)(rll' z)1 2 + 2Re[E~O)*(rll' z) · E?)(rll' z)]. (20)

Note that the zero-ordertermis the intensitywhenthe roughnesscan be neglected.
It is a constantterm that does not contributeto the contrastin the image.It follows
that the spatialmodulationof the intensityis linearlyrelated to the surfaceprofile.
We now turn to the study of the relationship betweenthe structureof the speckle
pattern and the statisticalpropertiesof the surface. Let us first study the intensity
correlationfunction in the near field. From Eq. (20), we get

(I(rll)I(rll + RII )) == (I(O)(rll)I(O)(rll + RII )) + (I(l)(rll)I(1)(rll + RII )) , (21)

wherewehaveusedtheproperty (I(1») = 0 that follows from (S) = O. Wehavenot
included the correlation between the second-order term and the zero-order term
that involves only a constantcontribution independentof R II • InsertingEqs. (18),
(20) into Eq. (21), the intensitycorrelationfunctioncan be cast in the form

(1) (1) {/ d
2k

ll 2 .}(I (rll)I (rll + R II )} = Re (2rr)20 g(kll)F(kl\)exp(lkl\ · RI\) ·

In other words, the power-spectral density of the near-field intensity G/(kll) is
related to the power spectraldensity of the roughnessd2g(k

ll) by a linear filter

G/(k ll) = 82g(k ll)F(kll). (23)

ThefilterF is linearlyrelatedto theoperatorL definedinEq.(17).Theexplicitform
of the filterF is given in [35]. We note that the filterdepends on the illumination
conditions. Thus it includesall the information on the coherencepropertiesof the
illuminating beam.Theseresultsare illustratedin Fig. 15.1for a surfacegenerated
using the algorithmdescribedin [39] and a fieldcomputedusing the perturbative
approachoutlinedabove.
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(a) Surface profile
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(b) Image with coherent source (600 nm)
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FIGUR E 15.1. Near-field speckle pattern above a random rough surface with rms height
8 = 0.005>", Gaussian correlation function C(r) = exp(-r2/a2

) with a = 0.5>". (a) Sur-
face profile numerically generated . (b) Near-field intensity computed in a plane located at
>../10 above the mean surface. The surface is illuminated in total internal reflection with a
wavelength>" = 600 nm and a field linearly polarized along the x-axis. It is clearly seen in
the figure that the speckle pattern is not isotropic . Reprinted from [36].
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FIGURE 15.2. Near-field speckle pattern above a random rough surface with rms height
/J = 1 nrn, correlation length a = 120 nm and a deterministic profile (a parallelepiped with
height 15 nm, side 1200nm, refractive index n = 1.5). The incident beam is in the yz
plane. The field is linearly polarized along the x-axis. (a) Surface profile. (b) Near-field
intensity computed in a plane located 30 nm above the mean surface with a monochromatic
plane wave illumination. (c) Role of the temporal coherence: near-field intensity with a
white light plane wave illumination with a flat spectrum in the interval [400, 800] nm.
(d) Role of the spatial coherence. To reduce the spatial coherence of the illuminating beam
we use a superposition of incoherent monochromatic plane waves with different incidence
angles in the interval [45°,65°]. Reprinted from [36].

Another interesting feature is the speckle contrast C i. This quantity is de-
fined as

(24)

It is seen that the speckle contrast is proportional to the rms-roughness o.
In order to illustrate the influence of the coherence of the incident beam on the

speckle structure in the near field, we have simulated the near-field intensity above
a plane with a parallelepiped and a randomly rough component. Results are shown
in Fig. 15.2 .
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15.4. Detection of Optical Near Fields

In this section we address the measurement of optical near fields in scanning
near-field optical microscopy (SNOM). After pioneering works in the mid eight-
ies,41-43 SNOM techniques have developed rapidly and various schemes are now
available (for an overview, see the following textbooks'"). Current techniques allow
surface structure imaging with subwavelength resolution, as well as measurements
of confined electromagnetic fields, the latter making SNOM a particularly rele-
vant instrument in nanooptics. Let us mention the detection and local excitation of
surface plasmons on ordered'f or disordered22,46 surfaces, the local spectroscopy
of isolated molecules.f'r" the measurement of field modes in nanophotonics de-
vices,50 or the measurement of localized surface waves and speckle patterns on
disordered surfaces. 16,51 The last two examples are of particular interest in the
context of this book.

All SNOM techniques rely on the optical interaction between a sharp tip (local
probe) and the near field generated by a sample with subwavelength structures
(either by scattering or direct emission). For a given position of the tip, the far-field
intensity radiated by the tip-sample system is collected, using, e.g., a conventional
microscope objective or an optical fiber. Depending on the illumination geometry,
several schemes have been proposed: far-field illumination of the sample and
near-field collection of the signal by the local probe (etched fiber, apertureless tip,
etc.), near-field illumination through a metal coated tip with a small aperture and
far-field detection, near-field illumination and detection through the tip. In order
to understand the contrast, the relationship between the measured signal and the
local structure of the near field has to be known. It is the scope of this section to
establish this relationship and to discuss the influence of several parameters (such
as polarization or source spectrum) on the image formation.

Studying the contrast mechanism is a difficult problem because one has to han-
dle an electromagnetic interaction in the near field, between objects whose length
scales extend from the nanometer range (objects, tip apex) to macroscopic sizes
(the entire probe). In the early nineties, the first theoretical models and numerical
simulations were developed to understand the image formation and the underlying
physics. Powerful numerical methods and analytical models have been developed,
and have improved the understanding of the image formation and the influence
of various parameters (polarization, illumination and detection conditions, coher-
ence, etc.). For a review of the different methods and models, see [2, 52]. In
this section, we shall show how a general and exact expression for the signal
measured by a SNOM can be obtained. We will focus on the measurement of
confined electromagnetic fields generated by scattering (nanostructures, gratings,
rough surfaces, disordered films, etc.) or by direct emission from the sample it-
self (fluorescence, thermal emission, etc.). The fundamental tool is the reciprocity
theorem of electromagnetism, whose formulations are given in the appendix. This
theorem is widely used in the context of antenna theory.53 It was used in the
context of scanning-probe microscopy to model light emission by the scanning
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FIGURE 15.3. Left: Scheme of an experimental SNOM setup used for the near-field de-
tection of an electromagnetic field. The sourceand detectorpositions are denoted by f sou

and fdeh respectively. Right: reciprocal (fictitious) situation, in which the system (tip and
illumination and detection optics) is illuminated by a point source locatedat the detector
position.

tunneling microscope (STM),54 and more recently to study the image formation in
SNOM .2,55,56

The power of the method is to give an explicit expression for the measured
signal in SNOM . The model leads naturally to the concept of a response function
in near-field optical imaging. It allows a study of the influence of the relevant
parameters. We will illustrate this point by explaining the polarization behavior
and the spectral response of an apertureless SNOM using a sharp metallic tip.

15.4.1. General Expression for the Near-Field
Optical Signal

We consider the near-field measurement of the electromagnetic field scattered (or
directly emitted) by an arbitrary structure (e.g., a rough surface or a disordered
layer on a substrate). The experimental situation is sketched in Fig . 15.3 (left) .
The radiating structure is described by a monochromatic current density jexp(w).

This current density represents either a current induced in the structure by an
incident field, or a primary source (for example a fluorescent molecule, emitting
at a frequency w). The fields radiated by the current density jexp will be denoted
by Eexp (electric field) and "exp (magnetic field). Note that these fields are the
fields radiated in the presence of the tip and the illumination and detection optics
(represented by the square box in Fig. 15.3).

In order to obtain an explicit expression for the field Edet at the detector position,
we consider the fictitious situation sketched in Fig. 15.3 (right) . In this situation,
the tip and the illumination and detection optics are illuminated by a point source
with current density jrec(w), located at the position of the detector, in the absence
of the structure generating the field to be measured. We shall refer to this situation
as the reciprocal situation.The fields radiated at an arbitrary point in the reciprocal
situation will be denoted by Erec and "rec '
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15.4.1.1. Reciprocity Theorem

Let us consider the situation in Fig. 15.3. The reciprocity theorem of electro-
magnetism57-60 leads to (the general expression of this theorem is recalled in the
appendix):

where d2rll = dx dy and a, is the unit vector along the z-axis. The integral is
extended to a plane at a constant height z in the gap region (surface S represented
by the horizontal line in Fig. 15.3). The left-hand side in Eq. (25) is a component
of the electric field at the detector position. It is assumed that the detection is
performed at a frequency to, and uses an analyzer whose polarization direction
is that of the vector jree. The first term on the right-hand side represents a direct
illumination of the detector by the external source (e.g. a laser source) which
generates the incident field. The external source is represented by a point current
density jsou located at a point r sou.

15.4.1.2. Expression of the Detected Field

In order to simplify expression (25),we shall use the plane-wave representation (or
angular spectrum) of the fields (see for example chapter 2 in [59]). In the region
between the tip and the emitting structure (gap region), the electric field in the
experimental situation can be written as

(26)

where r = (rll' z) and y(kll) = (k2
- k~)1/2, with k == w/c and the determination

Re(y) > 0 and Im(y) > o. The integration on the wavevector k II is taken over the
interval 0 < Iklll < 00. The amplitudes of the plane waves propagating (or de-
caying) toward z > 0 are denoted by etp(kll ). The amplitudes of the plane waves
propagating (or decaying) toward z < 0 are denoted by e;p(k ll). All fields can
be expanded in the same way. The expansions of the fields Eree and Hree in the
reciprocal situation only have plane waves propagating (or decaying) along the
direction z < 0, because the half-space z < 0 does not contain any (primary or
induced) sources. Note that the presence of a flat substrate in the experimental
situation could be accounted for. This slightly changes the definition of the re-
ciprocal fields (the substrate has to be included in the reciprocal situation). For
tutorial reasons, we have restricted the present work to the simplest situation. The
complete situation is studied in [55].
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Inserting the angular-spectrum representation of the experimental and reciprocal
fields into Eq. (25) yields after tedious but straightforward algebra

Edet . jrec == Erec(rsou) . jsou - _2_ f y(kll) erec(-kll) . e~p(kll) d2k
ll , (27)

WILo

where the summation extends from 0 < Iklll < 00. An equivalent expression is
obtained by transforming the fields back into direct space. It reads

· · 2i 1[a ] + 2Edet . Jrec == Erec(rsou) . Jsou - -- ~Erec(rll' z) . Eexp(rll' z) d rll '
WILo S az

(28)
where the summation is taken over a plane at a constant height z in the gap
region (surface S represented by the horizontal line in Fig. 15.3). The field Etp
corresponds to the first integral in Eq. (26). It describes the field illuminating the
probe in the experimental situation, and contains only plane waves which propagate
(or decay) toward z > o.

Equations (27) and (28) are exact expressions for the electric field measured at
the detector in the experimental situation. They both describe the coupling between
this field and the field emitted by the structure under investigation (Eexp) by an
integral relationship involving the field in the reciprocal situation. Depending on
the situation under study, one expression or the other may be useful.

• Expression (28) (direct space) shows that thedetectedfieldisgivenbyanoverlap
integral between the experimental field and the z-derivative of the reciprocal
field. The latter can be identified with the response function of the instrument,
describing the localization of the detection process as well as the influence of
the experimental parameters (spectral or polarization response, for example).

• Expression (27) (Fourier space) describes how each spatial frequency K of the
experimental field is detected. The coupling factor is proportional to erec(- K),
showing that the detection of a given spatial frequency K is efficient only if that
frequency is present in the spectrum of the reciprocal field. In other words, a tip
producing high-spatial frequencies in its scattered field when it is illuminated
from the detector is able to detect the high spatial frequencies of a localized field,
when it is used as a probe.

In optics, one usually measures the intensity of the fields, which is proportional to
IEdet1

2
•Therefore, for a polarized detection, the SNOM signal is given by the square

modulus of Eq. (28). For an unpolarized detection one should add the intensities
corresponding to two orthogonal directions of the fictitious reciprocal source jrec.
The form of the relationship between the detected field and the measured near
field also allows us to study the measurement of near-field spatial correlations.
This point was discussed in [61].

Finally, let us put forward that an expression similar to Eq. (28) was derived as a
generalization of Bardeen's formalism, originally developed for electron tunneling
between two weakly coupled electrodes. This result shows that SNOM and STM
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(scanning tunneling electronmicroscopy) canbehandledwiththe sameformalism.
For more details on the derivation and its implications, see [62].

15.4.1.3. Calculationof the ResponseFunction

The result in Eq. (28) shows that the near-field measurement can be described
using a response function (ajaz)Erec. The key quantity is the reciprocal field. It
characterizes the detection process, including the role of the tip. In general, this
fieldis the solutionof a difficult scatteringproblem, involving complexstructures
(probe,detectionoptics).Numerical simulations are in manycases the onlywayto
solve this problem,at least in simplified geometries. Nevertheless, in some cases,
analytical models can be used to describe the near field generated by the probe
in the reciprocal situation. For example, in collection-mode techniques using an
etched fiber with a metal coating and a small aperture (aperture SNOM), the re-
ciprocalfieldis the fieldemitted by the aperturewhen it is illuminated by incident
modesin the fiber. Sucha field can be calculatednumerically.f but is alsoapprox-
imatelydescribedby the Bethe-Bouwkampmodel.64,65 Anothergood exampleis
the apertureless SNOMusingsharp metallictips.66 In thiscase, the reciprocal field
can be described by the field scattered by a perfectly conducting cone when it is
illuminated by an incident plane wave. Such a model was introduced in SNOM
by Cory et al.67 Close to the tip of the cone, in the zonecorresponding to kr « 1
where r is the distance from the tip (see Fig. 15.4), the electric field has an ana-
lytical expression. Such analytical (and approximate) expressions for near fields
scatteredby simple shapes can be found in refs.68,69

When the cone in Fig. 15.4 is illuminated by a point source located in the far
field (the incident field being a plane wave in this case), the electric fieldclose to
the tip apex (kr « 1) is given by68

1 . [ U0 8]E = k(krt- smf3 Ur +-- a(8o , 8, ex) ,
v 88

FIGURE 15.4. Tip shape used for modeling aper-
tureless SNOM. Perfectly conducting cone, with
serniangle IX .

Xk----.
y

z

(29)

Observation
point
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wherea is a function of the incidence angle()o, of theobservation angle() andof the
conesemiangle a. The other parameters arek = w/c, the polarization angleof the
incidentplanewave13 (13 = 0 forTE,or s-polarized illumination, 13 = n /2 forTM,
orp-polarized illumination). u, andUo arethe unitvectors in spherical coordinates.
v is a real andpositivenumber, satisfying v ~ 1,and depending on thecone angle
only. Note that the field close to the tip apexhas a spatial structure whichdoes not
depend on the illumination conditions (direction of incidence and polarization).
Theparameters ()o and 13 appearin an amplitudefactoronly. Moreover, let us point
out that at largerdistancesfromthe tip apex (or when 13 = 0), the singularterm in
Eq. (29) does not describethe field by itself. Subsequent terms of higher order in
kr have to be taken into account .t"

Expression (29) describes the reciprocal field close to the tip. It can be used
to calculate the response function (8/8z)Erec appearing in Eq. (28). The spatial
dependence of the z and x components of the response function is shown in
Fig. 15.5.

(a)

10

0

- 10

-4 - 2 0 2 4
(b) x(nm)

FIGURE 15.5. The z-component (left) and x-component (right) of the response function
(8/8z)Erec versus the lateral position p = (x, y) in a plane perpendicular to the cone axis.
Distance between the plane and the tip: z = I nm. The cone semi-angle is a = 3°.
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First, we see that the z-component dominates in amplitude (see Fig. 15.5 (left».
As a consequence, the z-component of the experimental field will be detected with
a higher signal level than the x-component (due to the dot product in Eq. (28».
Moreover, the full width at half maximum (FWHM) of the response function is a
measure of the potential resolution of the system (although a precise discussion
of the resolution should take into account the finite radius of curvature of the tip).
We see in Fig. 15.5 that the FWHM of the response function is of the order of the
distance between the observation plane and the tip. A consequence of this result
is that multiple scattering is not necessary to attain a high resolution (i.e. at the
nanometer scale).

15.4.2. Polarization Response

In order to illustrate the approach that has been developed, we will discuss the
polarization behavior of an apertureless SNOM using a metallic tip, on the basis
of experimental results.

Measurements of the signal versus the incident polarization, after reflection on a
flat silicon substrate were reported by Aigouy et ale .70 The detection is performed
in the normal direction, i.e., in the direction of the tip axis. The polarization of
the incident field is described by the angle fJ (fJ = 0 for s, or TE, polarization and
fJ = n /2 for p, or TM, polarization). The result is presented in Fig. 15.6 (see [70]
for details).

The result can be explained using Eq. (28). The field at the detector is described
by the integral involving the enhanced field close to the tip apex (the first term on the
right-hand side gives a negligible contribution in this experimental configuration).
When the tip is at a few nanometers from the substrate, the experimental field
(which illuminates the tip) is chiefly the enhanced tip field reflected by the substrate.
Therefore, the field Etp is proportional to the cone field in Eq. (29), which is itself
proportional to sin fJ. The measured signal, proportional to the square modulus of
the field at the detector, is proportional to sin2 fJ. This behavior is very close to the
experimental result (see Fig. 15.6). Note that this is not the behavior that would
be obtained by modeling the tip by a small sphere (dipole).

15.4.3. Spectral Response

Another interesting property of near-field detection is the spectral response. It was
shown experimentally that, for apertureless SNOM using metallic tips, the spectral
response in the visible is not flat, and depends on the tip geometry (cone angle for
a conical tip)." Experimental results for two different tips are shown in Fig. 15.7.
The measurement was performed in reflection, on a plane aluminum mirror (flat
spectral response in the visible with a reflection factor R = 0.9), in a confocal
configuration. The spectra are normalized by the spectra obtained with a far-field
setup, i.e., without the tip (see [71] for details).

The spectral response can also be explained using Eq. (28). The field close to
the tip apex is described by the cone model, Eq. (29). The frequency dependence
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FIGURE 15.6. Response of anaper-
tureless SNOM using a tungsten
tip, versus the incident polariza-
tion(described bytheangle{3).The
theoretical curve corresponds to a
signal proportional to sin2 {3 . From
[70].
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FIGURE 15.7. (a) SEMimageof thetwotungsten tipsusedtomeasure thespectral response
of an apertureless microscope. (b) Spectral response in the visible regime, for both tips.
From[71].

is to", where v depends only on the cone semiangle.P' This model is a good
description of the reciprocal field Erec•The experimental field Etp contains several
contributions. One of them is the field reflected by the interface (without interaction
with the tip) and the enhanced field at the tip apex reflected by the interface. This
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FIGURE 15.8. Theoretical spectral re-
sponse for several semiangles of the
conical tip. The signal is given by ex-
pression (28), with a reciprocal field
described by the cone model (29).
From [71].

last contribution is given by the product of expression (29) by a reflection factor
which does not depend on the frequency, in this particular case. In a confocal
configuration, as in [71] and in Fig. 15.7, the signal is given by the interference
between these two contributions. Therefore, it is proportional to the integral term
in Eq. (28), in which both Erec and Etp are described by the cone model Eq. (29).

As a result, the signal is proportional to w2v- 1. The signal predicted by the model,
for various semi-angles of the conical tip, is represented in Fig. 15.8, versus the
wavelength (A = 2rrc/w). The agreement with the measurements is excellent.

Finally, let us point out that the spectral response cannot be studied using an
electrostatic model for the field close to the tip apex, although such a model may
be able to predict the spatial structure of the near field at small distance.72

Also note that the experimental results cannot be explained using a point -dipole
model for the tip. Such a model would lead to a spectral dependence proportional
to w4 , in contradiction with the measurements. In view of these results, it seems
that the small-sphere (dipole) model for the tip, which has been used to described
apertureless setups,73 does not reproduce (even qualitatively) the polarization and
spectral response of such microscopes. The results in this section put forward the
importance of a realistic tip for the study of near-field spectroscopy applications.

15.5. Conclusion

The advent of near-field microscopy has motivated new experimental studies of the
speckle pattern in the near field. We have discussed the key issues involved in the
analysis of the speckle patterns in the near field. A major difference is the fact that
the length scale can be smaller than the wavelength. Unlike the far-field speckle
pattern, the near-field speckle pattern is nonuniversal in a numberof cases. It has
been shown that there is a linear filter that relates the power spectral density of the
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surface profile and the near-field intensity. Information on the speckle pattern can
thus be extracted from the intensity speckle pattern. Illumination conditions and
polarization affect significantly the observed patterns.

The effects of the evanescent waves and the effects of the coherence of the
illuminating field can be studied assuming that a near-field microscope yields a
signal proportional to the near-field intensity. However, this assumption is not
correct. Indeed, it does not take into account the properties of the tip used in the
detection process. Within the weak coupling regime, the relation between the signal
and the near field can be described by a linear response function characteristic
of the tip and the illumination and detection geometry. It follows that different
frequencies or different components of the field do not generate the same signal.
In order to analyze quantitatively measured speckle patterns, one should use the
appropriate response function.

Appendix: Reciprocity Theorem

Different expressions of the reciprocity theorem ofelectromagnetism can be found
in the literature. We shall recall two of them here. For a derivation of these expres-
sions, see [57-60].

Consider a scatterer, made of a linear material, and described by its constitutive
~ ~

dielectric and magnetic tensors f (r, w) and JL (r, w). Both tensors are assumed
to be symmetric (necessary condition for reciprocity).

In situation 1, the scatterer is illuminated by a monochromatic source occupying
a volume VI, and described by a current density j I (r, w). The resulting electric and
magnetic fields at any point rare E1(r , w) and H1(r , «i),

In situation 2 (another independent situation), the scatterer is illuminated by a
monochromatic source occupying a volume V2 , and described by a current density
j2(r, w). The resulting electric and magnetic fields at any point r are E2(r, w) and
H2(r , w).

The Lorentz Reciprocity Theorem

For any closed surface l:, with unit outward normal 0, closing a volume V con-
taining the scatterer (and which may contain the sources or not), one has

in which the dependence on to has been omitted in all fields. This expression was
first introduced by Lorentz.I" Equation (25) in the main text is a direct application
of this formula to the geometry in Fig. 15.3.
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Another Form ofthe Reciprocity Theorem

When the surface 1: is a sphere with radius R ~ 00, the surface integral vanishes
(because the integrand vanishes in the far field). One obtains

( j,(r)· E2(r)dV = ( j2(r)· E,(r)dV.
JV1 JV2

For point-dipole sources placed at points rl (situation 1) and r2 (situation 2),
one has

(A3)

where k = 1, 2 refers to the situation. This is another form of the reciprocity
theorem, which is widely used, for example, in antenna theory.P Introducing
these forms of the current densities into (A2) leads to

(A4)
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16.1. Introduction

One of the main motivations for studying rough surface scattering problems con-
sists in the desire to obtain information about the surface. The information obtained
can be ofa varied nature. One may be interested, for instance, on the surface profile
function, on the optical properties of the surface, or, for random surfaces, on some
statistical parameter of the height fluctuations. These are all inverse scattering
problems. This chapter contains a review of some aspects of this broad field.

To begin, we consider the interaction of an electromagnetic wave propagating
in air or vacuum with the irregular boundary of a homogeneous medium. The
response of the system, in the form of scattered light in reflection and transmission,
depends on the nature of the incident field (polarization, and spatial and temporal
characteristics), on the shape of the boundary, and on the frequency dependent
dielectric constant of the medium.

The incident field, as well as those reflected and transmitted, can be expressed as
superpositions ofplane waves. The linearity ofthe problem allows us to concentrate
on the response of the system to an elementary excitation, in the form of a linearly
polarized monochromatic plane wave. This response is given by the scattering
amplitudes in reflection Ra,8 (q"Ik,,) and transmission Ta,8(q"Ik,,), which represent
the amplitudes of the plane wave components propagating with parallel wavector q"
in response to the excitation by a plane wave with parallel wavevector k". Here
parallel refers to the plane of the surface in the absence ofroughness. The subscripts
ex and f3 denote the linear polarization components of the incident and scattered
light in which the electric field is parallel (p) or perpendicular (s) to the plane of
incidence, defined by the incident wavevector and the normal to the surface.

The direct scattering problem consists in the determination of Ra,8 (q ll lk ll) and
Ta,8(q" Ik,,) for a given geometry and optical properties of the media involved. The
classical approaches to solve the direct problem are described in [1]. Reviews on
recent progress can be found in [2-5]. One important inverse problem, consists in
the reconstruction of the surface profile function given these data. Optical detectors,
however, are not sensitive to the phase of the field, and respond only to its time-
averaged power. The inverse problem of recovering the surface profile function
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from intensity data is more challenging. Work on both of these problems will be
reviewed in this chapter. We will only consider inverse problems with far-field
data. Near-field scattering problems are treated elsewhere in this book.

Often, the surface is not known in detail, and can only be specified in statistical
terms. The surface profile function is then considered to be a realization of a zero-
mean stationary random process. It is then clear that the scattered fields are also
random. Speckle theory deals with the statistics of these random fields." Most
of the work on speckle has been done with simple, approximate models for the
interaction between the incident field and the surface. Rigorous work, on the other
hand, has concentrated mainly on the calculation of the first few moments of the
scattered field (e.g. (Ra,8 (q"lk ,, )) or (IRa ,8 (Qlllk ,, )12) ) . The inverse problem can
consist, in this case, in the determination of a statistical property or parameter of
the surface from an average property of the field. Reviews on these aspects of the
inverse problem are given in [7, 8].

To solve inverse scattering problems, one needs to solve first the direct problem.
This can be solved either approximately or with rigorous computer simulations.
Our aim, in this review, is to provide a concise overview of the field. The literature
is rather extensive and we will not attempt to provide a comprehensive account of
this broad field. The review is organized as follows. In the first section, we present
a simple method to treat the direct problem. The thin phase screen model will serve
as the basis on which we illustrate the different inversion schemes. We then survey
some established scattering techniques to estimate the standard deviation and the
power spectral density of surface heights. The following two sections deal with
the recovery of surface profile functions starting from far-field data. We consider
first the case in which complex amplitude data are available, and then the case in
which the phase information is lost. Finally, we present a brief discussion and our
main conclusions.

16.2. The Scattering Amplitude

In this section, we consider the direct problem of the scattering of light by rough
surfaces. To simplify the presentation, we center our attention on the case of
surfaces with one-dimensional roughness. The discussion is based on a simplified
model to describe the interaction of light with the rough surface. The inversion
procedures surveyed here can all be illustrated with this model. Relevant more
rigorous results, and results for the case of two-dimensional surfaces, will be
mentioned or referenced.

Since beams, or other more general fields, can be expressed as superpositions of
plane waves, we consider that the surface is illuminated by a monochromatic plane
wave of frequency to. A time dependence of the form e-iwt is assumed, but the
explicit reference to it is suppressed. The medium of incidence is vacuum, and the
surface is characterized by its profile and its complex, frequency-dependent dielec-
tric functions E(W) or, equivalently, by its complex refractive index nc == JE(W).
The plane of incidence is the xtx3-plane, and the one-dimensional surface is
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invariant along X2. Then, the scattering equations for p-polarized light, character-
ized by the magnetic fieldvector H(XI, X3) = (0, H2(XI , X3), 0), and for s-polarized
light, characterized by the electric field vector E(XI, X3) = (0, E2(XI , X3), 0), are
decoupled.

The electromagnetic field in the vacuum region X3 > ~ (Xl )max is given by the
sum of the incident plane wave and the scattered field:

1fr>(XI, X3) = 1frinc(XI, X3)+100

2dq R(q Ik)eiqxl+iao(q)x3, (1)
-00 1f

where 1fr>(XI, X3) == H{(XI, X3) for p-polarized light and 1/J>(XI, X3) == E2
(Xl, X3) for s-polarized light,

(2)

and ao(q) == [(wlc)2 - q2]!, with Reao(q) > 0, Imao(q) > O. The scattering
amplitude R(qlk) determines the amplitude of the wave scattered from the state
with parallel wavenumber component k == (wlc) sin 00 into the state with paral-
lel wavenumber component q. The states with Iql < wlc represent propagating
waves that are characterized by the scattering angle Os with q = (wic) sin Os.

The differential reflection coefficient (DRC), which is defined as the fraction of
the total flux incident onto the surface that is scattered into the angular interval des
about the scattering direction defined by the angle Os, is given by

(
aR) __1_ cos

2
Os R k 2

ao
s

- 2rrL
1

cosoo I (ql )1 , (3)

where L I denotes the length of the Xl-axis covered by the surface. The calculation
of R(qIk) is the central problem of rough surface scattering theory.We next outline
a simple approximate method to solve the direct problem.

16.2.1. The Thin Phase Screen Model

A thin-phase screen may be visualized as a layer of negligible thickness that intro-
duces upon reflection (transmission) phase variations in the reflected (transmitted)
wave, without introducing any amplitude variations.i-" We now describe this ap-
proximate way of relating the height variations on the surface with the phase
variations in the reflected (transmitted) wave.

Consider the reflection geometry depicted in Fig. 16.1(a). An incoming wave,
traveling in a direction defined by the angle of incidence 00 , is incident upon the
scatterer, and is scattered in a direction defined by the angle es' Suppose now that
both, the interface and the scatterer, are displaced vertically by a distance ~, as
indicated in Fig. 16.1(b). We are interested in the phase difference introduced by
this vertical displacement. The extra length traversed by the light when the scatterer
is displaced is indicated with the short-dashed line segments in Fig. 16.1(b). Thus
from the geometry shown in the figure we find that the change in the optical path
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FIGURE 16.1. Illustration of the changein the opticalpath of a reflected ray upon a vertical
displacement of a scatterer.

length due to this (negative) change in height is given by

¢b - ¢a = (~) (cos eo + coses ){ ' (4)

(5)

(6)

Note that for a positive displacement the sign of the phase change must be reversed.
Thus. for a surface with height variations S(XI) (see Fig. 16.1(c» the random phase
introduced upon reflection coincides with the result obtained with the Kirchhoff
approximation.L!"

For the transmission geometry we consider the situation depicted in Fig. 16.2(a).
A scatterer is placed on the interface separating two semiinfinite media with re-
fractive indices nd and no. The wave is incident from the dielectric medium with
refractive index nd in a direction given by the internal angle of incidence ed. After
interacting with the scatterer, the wave is scattered into the medium (usually vac-
uum) with refractive index no. in a direction defined by the angle of scattering Os'
Suppose now that both the interface and the scatterer are displaced vertically by a
distance S. The segments that are responsible for the phase difference are denoted
by the short-dashed lines in Fig. 16.2(b). From the figure we find that the optical
path difference between these trajectories is given by

¢b -¢a = (~)(ndcos(Jd -nocos(Js){'

Often, in practical situations, the medium with index nd is terminated by a lower
flat interface with a medium of refractive index no. That is, the sample consists of
a dielectric slab with a rough back surface [see Fig. 16.2(c»). In such a situation,
one must write the internal angle ed in terms of the angle of incidence (Jo on the
slab using Snell's law.

We can then conclude that, in the thin phase screen approximation, the scattering
amplitude is given by the following expression:

R(qlk) = Aof:dx l e-iVIXI-illJ { (xl ),

where Ao = 1f!oKo, 1f!o is the amplitude of the incident plane wave, KO is a con-
stant that accounts for the average reflectance or transmittance of the sample, and
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FiGURE 16.2. Illustration of the change in the optical path of a transmitted ray upon a
vertical displacement of a scatterer.

VI = (wjc)[sin Os - sin 00]' For a reflection geometry

V3 = (wjc)[cosOo + cosOs], (7)

(8)

while for the case of transmission through a dielectric slab with a rough surface

[ ( )
2 ]W no . 2

V3 = -;; nd 1 - nd sm 00 - no cos Os .

This simple model provides a useful relationship between the surface height
variations and the complex amplitude of the scattered field. The thin phase screen
model represents a good approximation when the surface has only lateral features
that are larger than the wavelength , small slopes, and does not produce significant
amounts of multiple scattering.

The analysis of the inversion schemes presented in the following sections is
based on the thin phase screen approximation. The model is adopted here not only
for simplicity, but also because it permits the analysis of a variety of situations
(such as transmission and reflection geometries) in a unified way. The extension
of this model to two-dimensional surfaces is straightforward.

16.3. Estimation of Statistical Properties of Surfaces

In many practical problems, the profile of the surface is not known and one can
only specify it in statistical terms . In dealing with the scattering of light by random
surfaces, one is faced with a problem of an electromagnetic nature, compounded
by the difficulties of modeling the statistical properties of the surface .

In this section we first present a brief review of the usual statistical mod-
els that characterize randomly rough surfaces. The surfaces are assumed planar
in the absence of the roughness, and can be classified as two-dimensional and
one-dimensional. In the former case , the departure of the surface from the plane
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(assumed to be the plane X3 = 0) depends on both of the coordinates Xl and X2 in
that plane. In the latter case it depends on only one of the coordinates in that plane,
say Xl. For consistency with the rest of the review, we present here the case of one-
dimensional surfaces. The two-dimensional case constitutes a simple extension of
these results.

It is normally assumed that the surface profile can be represented by a continuos
single- valued function of X1. The surface profile function is then considered to be
a realization of a stationary random process. Without loss of generality, it can also
be assumed to be a zero-mean process. Before considering the estimation of the
statistical properties of the surface, we present a phenomenological description of
the random scattered field and of the kind of averages employed. We then proceed
to evaluate the first few moments of the field and establish their connection with
the statistical properties of the surface.

16.3.1. Statistical Characterization ofRandom Surfaces
The n-order joint probability density function (PDF) of surface heights is denoted
by

where ~.i = ~(xF) denote the surface heights at specified points in space. The
characteristic function MZ(Wl, ... , wn ) is given by the n-order Fourier transform

of PZ(~l, .. · , ~n).

A complete description ofa random process would involve knowledge of the nth-
order joint probability density function for all n (see, e.g., [11] p. 60). Normally,
only a partial description of the process is possible. In some cases, this partial
description is sufficient to solve a given scattering problem. For instance, with the
usual experimental geometries and the theories based on the Kirchhof approxima-
tion or the thin phase screen model, knowledge of the second-order probability
density function is enough to specify the scattered field in statistical terms.

A basic quantity for the description ofthe random process is the two-point height
correlation function

(9)

where the angled brackets represent an average over an ensemble of realizations
of the surface, and

(10)

The parameter 8 represents the standard deviation or rms height of the surface. The
fact that the autocorrelation function W(IXI - xi I) depends on the coordinates Xl

and xi only through their difference is a reflection of the assumed stationarity
of ~(Xl).
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It is also useful to introduce the Fourier integral representation of the surface
profile function,

f dk 'k "-
~(Xl) = - e' Xl~(k),

2rr

where k is a wave vector. For stationary surfaces, the two-point correlation of the
Fourier coefficient ~(k) id given by

(12)

(13)

(14)

where 8(k + k') represents a delta function. The function g(lkl) appearing in
Eq. (12) is called the power spectrum of the surface roughness, and is defined
by

g(lkl) =f dr, e-ikx
, W(lx!l).

The power 'spectrum g(lkl) is a nonnegative function of Ikl, and is normalized
according to

f dk g(lkl) = 1.
2rr

A common assumption made in scattering theory is that the surface profile
constitutes a realization of a Gaussian random process. For such processes, the joint
probability density functions are known to all orders (see [11], p. 82) and, for zero-
mean processes, are completely determined by the two-point height correlation
function.

Another common assumption in scattering work is that the correlation function
W(IXII) is also Gaussian:

(15)

The parameter a is known as the correlation length of the surface.
Other kinds of correlation functions and power spectra have been considered,

including power law spectra and fractal surfaces (see e.g. [12-17]). On the other
hand, although many surfaces of practical interest have non-Gaussian statistics,
this problem has received less attention [18-21]. One of the chief difficulties in
theoretical studies of non-Gaussian random surfaces is that there are not many
random functions ~(x) for which the n-order joint PDF is known.

16.3.2. The Random Field and Its Averages

When coherent light interacts with a reflecting randomly rough surface the scattered
field is also a (complex, in this case) random process. The reflected light contains, in
general, a component that travels in the specular direction, and a diffuse component
that can appear over the whole of the hemisphere. The field associated with the
specular component has the same form and propagation behavior as the field
reflected by a flat surface but, of course, since part of the incident power is taken
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(a) (b)

FIGURE 16.3. Photographs showing thespeckle patterns produced bytheinteraction oflight
with a weak (a)and a strong (b)diffuser.

by the diffuse component, its power is diminished (see Fig. 16.3(a)). The diffuse
componentpresentsrandomintensityfluctuations; a phenomenoncalledspeckle,"
This random field is usually characterizedin terms of averagesand, at this point,
it is worth discussing the nature of these averages.

One possibility is to consider averagesover an ensemble of statisticallyequiv-
alent surfaces. This kind of average is well-suited for theoretical work, but is
impractical in the majority of experimentalsituations. Possible exceptions to this
are surfaces that evolve with time and surfaces that are large enough to permit
experimentswith several statisticallyequivalentsections. In both cases, an ergod-
icity assumption must be invoked. In experimental work, one normallyworkswith
a single realization of a surface and, to estimate the mean intensity, the speckle
fluctuations are smoothed by using a large area detector. Averages are then taken
over an angular region that, ideally, is small compared with the angular extent
over which the mean intensity varies, and yet, large compared with the speckle
fluctuations. An attempt to justify this assumedequivalencehas been given in [5].

In theoretical work, the mean intensity of the scattered light can be expressed
as the sum of the intensity associated with the average field, the so-called coher-
ent component, and another term that is called the diffuse component. Here, the
averages are taken over an ensemble of statisticallyequivalentsurfaces.

The coherent component is normally associated with the specular component
and the incoherent component with the diffuse component. To our knowledge,
however, there is no formal proof of the circumstances under which this is true;
with nonstationary surfaces, one can find examples for wich this correspondence
does not hold. However, since in most practicalcases this correspondenceappears
to be valid, we assume it here for simplicity.

From Eq. (3), the mean differential reflectioncoefficient is given by

(
aR ) 1 W cos?()s 2
- = - --- (IR(qlk)1 ).
a()s 2rrLie cos ()o

(16)
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Similarly, the coherent component is defined as

(aR) 1 W cos2
Os 2

- == - ---I{R(qlk))1
aos coh 2n LIe cos 00

== 8(Os - OoYR(Oo) , (17)

where we have assumed plane wave illumination and an infinite, stationary surface.
Here, R(Oo) represents the reflectivity (transmissivity) of the random surface. For
beams, R((0) represents the fraction of the incident power contained in the coherent
component:

/

]'(/ 2 (aR)
R(Oo) == - dOs .

-]'( /2 aos coh

The incoherent component is then defined as

(
aR ) 1 W cos2 0_ = s [(IR(qlk)1 2 ) _ I(R(qlk)}1 2 ] .
aos incoh 2n LIe cos 00

(18)

(19)

The visibility of the coherent component, i.e., its peak intensity in relation to
the diffuse component in the neighborhood of the specular direction depends on
(i) the size of the illuminated section of the surface and (ii) the standard devia-
tion of heights, 8. The power contained in the coherent component, however, is
independent of the size of the illumination and, for Gaussian processes at least, is
determined solely by 8, providing a means for estimating this parameter.f

For the case of surfaces whose height variations are much smaller than the
wavelength, the angular shape of the diffuse component is related to the power
spectral density of the surface.23,24 For rougher surfaces, the relation between
the angular distribution of the diffuse component and the statistics of the surface
is more complex. In the limit of surfaces with roughness parameter 8 » A, the
angular distribution represents a map of the distribution of slopes on the surface.

The speckle statistics convey very little information about the surface. Away
from the specular direction, the intensity fluctuations obey a universal lawf that
is independent of the roughness parameters. The field correlation function (which
defines, among other things, the average speckle size) is primarily determined by
the shape of the illumination patch on the surface, and is also fairly independent
of the roughness parameters. On the other hand, the motion and decorrelation
of the speckle pattern as the angle of incidence is changed does depend on the
roughness,26,27 and can indeed be used to estimate 8.

16.3.3. The Coherent Component

From Eq. (6), the average scattering amplitude can be written as

(R(qlk)} = Aoi: dr, e-iVIXl(e-iv3{(Xl»). (20)
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Since by assumption the surface is statistically stationary, the averaged quantity in
the integrand is independent of Xl. Then, the average scattering amplitude can be
written in the form

(21)

where RF(qIk) is the scattering amplitude corresponding to a flat surface of the
same material. The term in angled brackets on the right-hand side of this expres-
sion can be calculated if the characteristic function associated with the height
fluctuations is known. For the case of Gaussian phase fluctuations

(22)

so that

(23)

(24)

Finally, normalizing the reflectivity of the rough sample by the reflectivity of a flat
surface we obtain the result

R(Oo) _v2~2
----e 3
RF(Oo) - .

It should be mentioned that the same result is obtained for two-dimensional
surfaces, and with treatments based on the Kirchhoff approximation.F It is also
worth noting that the result represented by Eq. (24) is independent of the form
of the height correlation function and, thus, independent of the correlation length.
Departures from this result appear, gradually, as the lateral scale of the surface
becomes smaller than the wavelength. 28

Critical evaluations of several theoretical approaches of the coherent reflectance
of randomly rough surfaces 29- 31 indicate that, although the phase perturbation
theory/" provides a more accurate result for the case a < < A, the simple result
given by expression (24) represents a good model for the reflectivity of a broad class
of surfaces in the optical region of the spectrum. Equation (24) provides, then, an
established practical method for the estimation7,8,32,33 of (,. Although the result is
based on the assumption of Gaussian height fluctuations, our experience indicates
that the rms height of surfaces that are clearly non-Gaussian (e.g. surfaces with
skewed histograms of heights) can still be estimated fairly stably by this method.

Nevertheless, we point out that it is possible to find or design surfaces whose
reflectivity will show substantial departures from Eq. (24). Consider, for example,
a surface with negative exponential statistics. Since 0 < ~ (Xl, X2) < 00, the points
where ~ (Xl, X2) = 0 must be turning points of the process and have zero slope.
The scattering from these specular points produces constructive interference in the
specular direction (i.e., the phases are not random). Not surprisingly, for surfaces
that belong to this statistical class, the coherent component cannot be extinguished
by increasing the rms height of the surface! 3 .

For Gaussian (or "Gaussian-like") surfaces, as the rms height increases, the
coherent component will, at some point, be indistinguishable from the diffuse
background, precluding its measurement. In such circumstances, it is useful to



16. Inverse Problems in Optical Scattering 445

turn a reflective strong scatterer into a weak: scatterer by working at a large angle
of incidence (i.e., reducing V3). For the case of transmission, on the other hand, it
is best to work in normal incidence and immerse the sample in a medium of nearly
the same refractive index.

16.3.4. The Incoherent Component

We first consider the case d « A. The exponential containing ~(Xl) in Eq. (6) can
be expanded in powers of this variable. Then, the quantity within square brackets
appearing in the expression for the incoherent component (Eq. (19)) can be written
in the form

(~l(qlk») = IAol2(Ii: dr, e-iVtXt [ -iV3~(Xl) -1 ~2(Xl) + ...JI)
~ 2rrL 1 lAol2d 2g( lq - kl), (25)

where only the terms up to second order in the surface profile function have been
kept, and g(lql) represents the power spectral density of surface heights. Then,
the incoherent component of the mean differential reflection coefficient can be
written, approximately, as

(
8R) 2 w cos

2 Os 2
- == IAol --- 8 g(lq - kl).
aos incoh C cos 00

(26)

This expression illustrates the fact that for weakly rough surfaces the angular
scattering pattern provides a fairly direct map of the power spectral density of the
heights of the surface. The same conclusion can be reached using more formal
theories and two-dimensional surfaces. 23,24,32,33 With small amplitude perturba-
tion, for instance, the incoherent component can be expressed as the product of
the power spectral density (a "surface factor") and an "optical factor" that has a
cosine dependence on the angle of incidence, a cosine-squared dependence on the
angle of scattering, and also depends on the dielectric constant of the surface and
the polarization combination of the incident and scattered waves.P Expressions
for this optical factor for two-dimensional surfaces can be found, for example,
in [34, 35]. Measurements of the angular distribution of the scattered light have
become a standard method for characterizing optical surfaces, such as polished or
diamond-turned mirrors [32, 33].

The simple relationship between the power spectral density and the scatter-
ing pattern is, essentially, a single scattering approximation. It should be noted,
however, that even for surfaces with 8 « A, multiple scattering effects can be sig-
nificant.36 An interesting approach to estimate the power spectral density in the
presence of multiple scattering, based on a reverse Monte Carlo method, has been
reported by Malyshkin et al."
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Consider now the case 8 »A. The mean intensity (I(qlk») = (IR(qlk)12) can
be written as

With the change of variables xi = Xl + u, we can write

(28)

where

(29)

Due to the assumed stationarity of the surface, g(u) is independent of Xl.

Since (wjc)8 « 1, we can employ the approximation

(30)

(31)

(32)

which is obtained by expressing the difference S(XI) - ~(XI + u) in Eq. (29) in
powers of u and retaining only the leading nonzero term. Since surface curvature
effects are neglected, this is called the geometrical optics approximation.

This approximation leads to the result

22rrL I (VI)(/(qlk») = IAol -p~, - ,
V3 V3

where P~,(x) represents the PDF of slopes on the surface. For the case of reflection
from a surface, the mean DRC is then given by

(aR) / /2 cos? Os (SinOs - sin 00 )- = Ao P~I ,aos cos Oo[cos 00+ cos Os] cos Os + cos 00

and for the important case of reflection from a Gaussian correlated, Gaussian
surface, one has

(aR) _ IAol2 cos
2 Os e-(::::::~ffO} (33)

88s - ,$a~1 cosOo[cos80 +cos8s ] ,

where a~1 = -J28ja is the standard deviation of slopes on the surface. Apart from
the angular prefactor, the scattering pattern constitutes a map of the probability
density function of slopes of the surface. If, for instance, the rm- height 8 is
determined by an independent method, the far-field angular distribution of the
mean intensity can be used to determine the correlation length a.

For fully developed speckle patterns, the higher order intensity moments, such
as (I 2(qlk»), are determined by (I(qlk)), and provide no further information on
the scatterer.
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16.3.5. Angular Correlations

The evolution of speckle patterns produced by randomly rough surfaces as the
angle of incidence is changed does depend on the rms height. This information
is contained in the angular intensity correlation of the speckle pattern. Speckle
correlation techniques can be used to estimate 8 for cases in which the coherent
component is not detectable.26,27

Consider the amplitude correlation CR(q,klq', k') == (R(qlk)R*(q'lk'»). From
Eq. (6), we can write

where vi == q' - k' and, for the reflection geometry assumed in this subsection,
v~ == ao(q') +ao(k'). With the change of variable xi == Xl + u, we have

The technique is particularly useful in cases in which (R(qlk») is negligible (i.e.
when 8 > A). We then employ the geometrical optics approximation to write

(36)

where ~'(XI) denotes the derivative of ~(XI), and we have assumed that the heights
and slopes on the surface are uncorrelated. This is true for the case of a Gaussian
random process, I which is assumed here. With the use of Eqs. (28) and (30), the
amplitude correlation can be written in the form

For a fully developed speckle pattem.F' the intensity covariance defined as
CD.-/(q, klq', k') = (I(qlk)I(q'lk'») - (I(qlk»)(I(qlk») can be expressed in terms
of the amplitude correlation (see e.g. [11], p. 108):

(38)

With the help of relations (4.1) in [38] and (24a) in [39], we can finally write

(39)

Expression (39) shows that, as the angle of incidence is changed, the speckle
pattern translates angularly according to the law (q - k) = (q' - k') (the so-called
memory effect) and evolves or decorrelates through a factor that depends on 8.
This property forms the basis of a method for the estimation of the rms height in
the range 27 1 urn< 8 < 30 urn,
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16.4. Estimation of the Surface Profile from Complex
Amplitude Data

In the last section we introduced a simple scattering theory and illustrated the de-
pendence of the first few statistical moments of the field on the statistical properties
of the surface and, in particular, on its rms height. In the rest of the review, we
deal with the recovery of the surface profile function starting from monochromatic
far-field data. We begin, in this section, with the simpler problem of recovering the
profile from amplitude data. It is assumed that angle-resolved complex amplitude
data are available for several angles of incidence.

Inverse scattering procedures requiere the solution of the direct problem. Formal
inversion schemes are based on approximate solutions of the direct scattering
problem. In contrast to the large body of literature on the direct problem, only a
few inversion schemes have been reported. An iterative algorithm based on the
Kirchhoff approximation has been proposed by Wombell and DeSanto. 40 These
authors have also studied an algorithm based on small amplitude perturbation
theory." Both of these algorithms consider data corresponding to only one angle
of incidence, and seem to work well when the Kirchhoff approximation'? or the
small amplitude approximation" are valid.

Algorithms that make use of data corresponding to several angles of incidence
have been proposed by Quartell and Sheppard.42,43 These algorithms are inspired
by the actions of a confocal microscope in a profiling mode.r" 45 They are based on
the Kirchhoff approximation and seem to be more robust than the algorithms that
use only a single angle of incidence. More recently, an algorithm based on similar
notions has been studied by Macias, Mendez, and Ruiz-Cortes.t" This "wavefront
matching algorithm" is reviewed here.

16.4.1. Inversion Algorithm

As we have seen, for an incident plane wave (Eq. (2)), the response of the surface
can be characterized by the scattering amplitude R(qlk) (see Eq. (1)). Let us now
consider a situation in which the surface is illuminated by a converging beam. We
can write the incident field as a Debye integral"

where the parameters (~, 1]) are the coordinates of the point of convergence of the
beam, the pupil function Pinc(k) is assumed to be given by

Pinc(k) == reet (_k_) ,u.; (41)

rect (x) represents the rectangle function, kmax = (co / c) sin Bom,and Bomis the max-
imum value attained by the angles of incidence.
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Due to the linearity of the problem, it is clear that the scattered field
1/Jsc (Xl, X3; ~, 1]) can be written as a superpositionof plane wave solutions:

1/Isc (Xl, X3;~, 1]) = 100

2
dk

Pinc(k)e-ikHiao(k)~100

2
dq

R(qlk) eiqXl+iao(q)x3.
-00 n -00 n

(42)

In other words, if R(qlk) is known for all q and k, the response of the system to
an arbitrary incident field can be calculated.

Consider now a fictitious reference beam that arises from a diffraction-limited
spot centeredon the point of convergenceof the incidentfield(~, 1]). This reference
field is defined by the expression

1/Jref (Xl - ~; x3 - 1]) == fOO ~P Pref(p) eip(Xl-n eiao(p)(x3-~), (43)
-00 n

where

Pref(p) = rect (-p_) ,
2pmax

Pmax = (wlc) sin Osm, and Osm is the maximum value considered for the angles
of the reference field. This angle will be identified with the maximum angle of
detection (or scattering).

The wavefrontmatchingalgorithmconsiders the interferencebetweenthe refer-
enceand scatteredfields,integratedovera planeabovethe surface.The interference
term is given by twice the real part of the function

u (~, TJ) =i: ljIsc (Xl, X3; ~, TJ)[ ljIref (Xl - ~; X3 - TJ )]* dr.. (45)

It is postulated that Re{U(~, 1])} is an extremum when «. 1]) == (Xl, ~(XI». The
idea behind this is illustrated in Fig. 16.4,wherewe depict two different situations;
in Fig. 16.4(a),the focused beamis reflectedby a flat,horizontalmirror located on
the focusing plane. In Fig. 16.4(b), on the other hand, the mirror is located in an
out-of-focusplane. The reference beam emanates from the point (Xl, X3) = (0, 0).
It is clear that in the first situation the wavefronts of the reflected and reference
beams have the same curvature (they are perfectly matched), while in the second
one the curvatures are different. At least from an intuitive point of view, when
the two fields are in phase, the interference is constructive everywhere and the
integral should be maximized. On the other hand, when the wavefrontcurvatures
are different, some cancellation occurs. In this approximation, for a more general
surface, the functionRe{U (~, 1])} should also be a maximumwhenthe coordinates
of the focusing point (~, 1]) coincide with a surface point.

Substitution of Eqs. (42) and (43) into Eq. (45) yields."

foo dk 100
dq *U (~, YJ) = -2 Z-Pinc(k)Pref(q)R(qlk)<I>(q, kl~, 11),

-00 n -00 n
(46)
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Xl

(a)

Xl

(b)

FIGURE 16.4. Illustration of the reference and scattered field in the reflection of a focused
beam; (a) mirror in focus and (b) mirror out of focus.

where

<I>(q, kl~, rJ) = e-i(k-q)Hi[ao(k)+ao(q)]~ . (47)

The function U (~, rJ) can be visualized as some kind of potential that is obtained
through a double integral transform of the scattering amplitude R(qIk).

For the reconstruction of the surface profile function, the wavefront matching
algorithm searches of the extrema of the function

F(wm) (~, rJ) = 2ffie{U (t rJ)}, (48)

with U (~, rJ) given by Eq. (46). The basic idea is to use the scattering data to
calculate F(wm) (~, '1) and display it as a function of the two variables (~, rJ).

An alternative way of visualizing the effect of exploring the parameter space
(~, rJ) is in terms of the incident and reference beams . Since the point (~, rJ) repre-
sents the focal point of the incident field, and the central position of the diffraction
limited spot that gives rise to the reference field, the situation can be understood in
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FIGURE 16.5. Realization of a Gaussianrandomprocesswiththecorrelationlengtha = 2A
and standarddeviationof heights8 = A/2.

terms of the confocal scanning optical microscope.42,44,45 The function F(wm) (;, 17)
is then related to the signal obtained with an interferometric confocal scanning opti-
cal microscope.43,48 It is also worth mentioning that in our formalism, the standard
confocal signal F(conf) (~, 17) is given by the expression

(49)

16.4.2. Numerical Example

We now consider the specific example of the reconstruction of the profile of a
perfectly conducting surface. The surface, of length L 1 == 30A, is assumed to be a
section of a realization of a Gaussian random process with a Gaussian correlation
function. It was sampled at intervals of A/10 so that, in total, it is represented by
an array of N == 300 points. The statistical parameters assumed are, a correlation
length a == 2A and a standard deviation of heights 8 == 0.5A. The random profile
considered is shown in Fig. 16.5.

The scattering data were calculated by rigorous numerical methods based on
the solution of an integral equation"? for a chosen set of angles of incidence and
scattering. In this particular example we assume that complex amplitude scattering
data corresponding to 61 angles of incidence and 61 angles of scattering, equally
spaced in q and k, between -800 and 800 are available. So, the scattering amplitude
R(q Ik) is sampled to produce a 61 x 61 matrix. The sampling was chosen in accord
with the criterion given in [46]. The scattering amplitude calculated with this
surface for the case of p-polarization is illustrated in Fig. 16.6 as a function of both
k and q.

In Fig. 16.7(a), we show the function F(wm) (;, 17), defined by expressions (46)-
(48), calculated with the scattering data Rtq Ik) shown in Fig. 16.6. A series of
fringes resembling the surface profile can be observed. In order to facilitate the
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FIGURE 16.6. The scattering amplitude R(qlk) as a function of q and k corresponding to
the surface profile shown in Fig. 16.5for the case of p-polarization.
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FIGURE16.7. Grayscalemapsof the functions F(wm)(;.1/) (a)and F (conl)(;, 1/)(b). In both
cases,thesurface wasilluminated withp-polarized light.Thesolidlinesin reversed contrast
showthe original profile.
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visualization of the results, the actual profile used in this calculations is shown
using a solid black line. One can see that the brightest fringe coincides with the
surface profile function.

For comparison, the confocal signal F(conf), defined in Eq. (49), is shown in
Fig. 16.7(b). As expected, the profile falls fairly well within the bright regions of
the figure. Unwanted effects appear in the form of the white vertical streaks that
can be observed in the neighborhood of the turning points of the profile.50 From
anyone of these two maps, the surface profile function can be estimated fairly
reliably.

Similar results are obtained for the case of s polarization, the main difference
being that the contrast of the map of Fig. 16.7(a) is reversed. The algorithm can be
applied not only to the recovery of perfectly conducting surface profiles, but also
to dielectric and metallic ones and even multilayer systems." So far, only one-
dimensional surfaces have been studied but, in principle, the extension to surfaces
with two-dimensional roughness should be possible.

Despite the fact that the algorithm is based on simple notions about the in-
teraction of the light and the surface, it works well in a variety of situations. It
produces excellent reconstructions in cases in which single scattering is dominant.
The reconstructions deteriorate gradually as multiple scattering effects become
more important, and are sensitive to phase noise.f'

16.5. Estimation of the Surface Profile from Intensity Data

Since optical detectors are not phase sensitive, usually one only has access to
intensity data. This means that the phase information present in the scattered
field (arguably the most important) has been lost, and one cannot use the kind of
strategy reviewed in the previous section. Among other things, the solution of the
direct problem is no longer unique and the inversion strategies must be radically
different.

In this section, we review some recent investigations on the possibility of re-
covering the surface profile function from far-field intensity data. The problem
is approached as a nonlinear least-squares bounds-constrained optimization prob-
lem. Two kinds of representation of the objective variables have been considered;
a spectral representation.V and a representation based on spline curves.53 For sim-
plicity, and to illustrate the approach, we review only the spectral representation.

It is assumed that we have access to far-field angle-resolved scattered inten-
sity data corresponding to several angles of incidence. The goal is to retrieve the
unknown surface profile function from these data. Some constraints on the kind
of surface that we seek are introduced in order to reduce the search space.

The inverse scattering problem can be reformulated in terms the fitness (objec-
tive) functional
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where the symbol \I . 1\2 represents the Euclidean norm, and Nang is the number
of angles of incidence considered. Also, /(m)(q Iki ) is an angle-resolved far-field
scattered intensity pattern of the surface of interest (measured or calculated) and
/(c)(q Iki ; ~(c)(Xl)) is a calculated intensity pattern obtained by solving the direct
problem with a trial surface profile ~(c)(Xl). The functional f[~(c)(Xl)] can be
interpreted as an assessment of the closeness between the angular distributions
of intensity /(m)(qlk) and /(c)(qlk; ~(c)(Xl)). The goal then would be to find a
surface for which the condition /(c)(qlk) = /(m)(qlk) is satisfied. When this hap-
pens, and if the solution to the problem is unique, the original profile has been
retrieved.

Note that in our definition of the fitness functional we require that the proposed
surface reproduces the "measured" scattering data for several angles of incidence.
The satisfaction of these constraints should reduce the number of possible solu-
tions and, hopefully, produce a unique one. The inverse scattering problem can be
viewed, now, as the problem of minimizing f[~C(Xl)].

To deal with the scattering problem numerically, the surface must be sam-
pled. From the preceding discussion it seems natural to choose, as the parame-
ters of interest, the surface heights evaluated at the sampling points. Changing
these numbers independently, however, would lead to surfaces with abrupt height
changes, which does not correspond to the physical situation of interest. One way
to avoid this problem is to restrict the search space to randomly rough surfaces
that belong to a certain class. We are, thus, faced with a problem of constrained
optimization.

Consider the case in which the target surface as a realization of a stationary,
zero-mean one-dimensional Gaussian random process. With this assumption, the
random process is completely characterized by its two point correlation function,
which we also assume to be Gaussian. Surfaces belonging to this class can be gen-
erated numerically with the spectral method described in [49]. Correlated random
numbers that represent the surface heights at the sampling points can be obtained
through the expression

8 N/2-1 [M} + iNj ] [ {aq} 2}]1/2 .
i, = IT" L ./i ../iia exp - (-) exp {lqjXn}.

v L 1 j=-N/2 2 2
(51)

Here, N represents the total number of points on the surface, L I represents its
length, Xn = -L1/2 + (n - 0.5)~x are the sampling points spaced by ~X along
Xl, qj = -Jr1~X + 2Jr(j - 0.5)1L I are the sampling points in the Fourier space,
and ~n = ~ (Xn). The random sets {M} }and {N j } contain statistically independent
random Gaussian variables with zero mean and unit standard deviation. In order
to produce a set of real random numbers {~n}, it is required that the complex array
{M} + iN}} be Hermitian. The first and second derivatives of the surface profile
function, which are required for the direct rigorous scattering calculations, can be
obtained by differentiation of Eq. (51).
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16.5.1. Evolutionary Inversion Procedure
At least in principle, any of the optimization techniques reported in the literature
could be employed to minimize Eq. (50). However, the form of this equation
and the constraint imposed by the representation scheme of Eq. (51) suggest the
use of an algorithm belonging to the class of "direct search methods.'P' The main
characteristic of this kind of technique is that, throughout the optimization process,
one only needs to know the values of the fitness function and not its derivatives.

Evolutionary algorithms are a relatively recent set of direct search methods that
have been successful in the solution of ill-posed inverse problems in different
scientific disciplines. They are based on the Darwinian principle of variation and
selection. Examples of these heuristic population-based techniques are the genetic
algorithrns.f the evolution strategies.l'' and the genetic" and evolutionary pro-
gramming.l" Given the characteristics of the inverse problem studied here, the
evolutionary strategies seem to be the best-suited evolutionary algorithms for this
task.

Evolutionary strategies follow the canonical structure shown in the flow diagram
of Fig. 16.8. The starting point of the optimization process is the generation of a
random set PJL Ig=o of JL possible solutions to the problem which, in the present
context, are the set of Gaussian randomly rough one-dimensional surfaces {~n}

generated through Eq. (51). A secondary population PA of Aelements is generated
through the application of the "genetic" operations of recombination and mutation
over the elements of the initial population P/L. This represents the start of the main
evolutionary loop.

It should be mentioned that we have previously used Ato denote the wavelength
of the light, which is the usual notation in optical work. Due to the different context
in which the two quantities are employed, use of the same symbol to denote both
should not lead to much confusion.

Recombination exploits the search space through the exchange of information
between different elements of the population. Mutation, on the other hand, ex-
plores the search space through the introduction of random variations in the newly
recombined elements.

Once the secondary population has been generated, one needs to evaluate the
quality of its elements. For this, the direct problem must be solved for each of the
surfaces in the secondary population. A fitness value is associated to each surface
~j on the basis ofEq. (50). Only those elements of the secondary population leading
to promising regions of the search space will be retained, through some selection
scheme, as part of the population for the next iteration of the evolutionary loop.
The procedure is repeated until a defined termination criterion has been reached.
The respective sizes of the initial and the secondary populations remain constant
throughout the search process.

In the scheme reviewed here, mutations are introduced by changing some of the
elements of the Hermitian array employed in the generation of a given surface (see
Fig. 16.9). Provided that the new numbers, M, and N], are zero-mean Gaussian-
distributed random numbers with unit standard deviation, and the Hermiticity of
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FIGURE 16.8. Flow diagram of the evolutionary loop.

the array is conserved, the new surface will belong to the statistical class specified
for the search space.

The selection operator generates, through a deterministic process, the set of
surfaces that will serve as the population for the next iteration of the algorithm.
There are two selection procedures employed in evolution strategies. The first one
is known as the "elitist" or (JL + A) strategy, whereas the second one is called the
"nonelitist" or (JL, A) strategy. In the (JL, A) scheme, the elements to be selected
belong, exclusively, to the secondary population. An important consequence of
this is the possibility that the best elements of the new population are less fit
than the best element of the previous population. This possible deterioration of
the fitness values helps the algorithm avoid regions of attraction that could lead to
premature convergence to a local minimum. Ofcourse, if the deterioration persists,
the algorithm diverges.
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FIGURE 16.9. Schematic representation of the mutation operation.

16.5.2. Results ofa Numerical Experiment

The scattering data that serve as the input to the algorithm were obtained through
a rigorous numerical solution of the direct scattering problem." Since the time of
computation required to find the optimum increases with the number of sampling
points on the surface, and the direct problem needs to be solved many times, in
order to keep the problem to a manageable size we chose a surface with N == 128
sampling points. The surface profile used to generate these scattering data is shown
in Fig. 16.10. It constitutes a realization of a zero-mean stationary Gaussian-
correlated Gaussian random process with a 1/e-value of the correlation function
a == 2A and standard deviation of heights 8 == 0.5A. The surface was sampled
at intervals ~x == A/10. Far-field intensity data corresponding to four different
angles of incidence (eo == -60°, -30°,0°, and 40°) were available. In Fig. 16.11,
we show the scattering pattern produced by the surface shown in Fig. 16.10 for
the case of normal incidence.

To start the evolutionary loop, a set of surfaces belonging to the same statistical
class as the original surface (zero-mean stationary Gaussian-correlated Gaussian
random process with a == 2Aand 8 == 0.5A) were generated. This set constitutes the
initial population. We chose the typical values'" J-L == 10 and A == 100. For brevity,
we only present results obtained with the elitist strategy. Results obtained with the
nonelitist one are similar. The maximum number of iterations was g == 300, which
also provided the termination criterion.
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FIGURE 16.10. Profile usedin the generation of the scattering data.
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FIGURE 16.11. Scattered intensity produced by the surface depicted in Fig. 16.10for the
case of normal incidence.

The target profile was searched starting from 30 different, and randomly chosen,
initial states. Not in all of these attempts to recover the profile the algorithms
converged to the target surface. However, we found that a low value of f(~n)

corresponded, in most cases, to a profile that was close to the original one. So, the
final value of f (~n) was used as the criterion to decide whether the function profile
had been reconstructed or not.

In Fig. 16.12, we present results obtained without recombination using the eli-
tist strategy. The original profile is shown with the dotted curve, while the profile
retrieved with the elitist strategy is shown with the solid curve. We can see that, in
this case, the target profile has been retrieved quite well. It should be mentioned
that, often, the technique recovers profiles that are displaced horizontally or ver-
tically with respect of the original surface. These displacements of the recovered
profile are understandable, as the far-field intensity is insensitive to such shifts.
On the other hand, such displacements are unimportant for practical profilometric
applications.

An interesting result that demonstrates the lack of uniqueness of the solution
when intensity data are used is shown in Fig. 16.13. The dotted curve represents
the original profile, while the reconstruction obtained with the elitist strategy is
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FIGURE 16.12. Reconstruction of the surfaceprofileusing the (JL + A) (solidline) strategy.
The originalprofileis plotted with a dotted line.

represented withthesolidline.Forthisnumerical experiment, theinitialpopulation
was differentfrom the one used in the exampleof Fig. 16.12.One can see that, in
this case, the recoveredprofiledoes not resemble the original one. As explained
below, theseresultsillustrateacurioussymmetrypropertyof thescatteringproblem
for situationin which single scatteringis dominant.

The profilerecoveredin Fig. 16.13resembles the soughtprofile if we reflectit
with respect to the Xl and X3 axes; that is, if we replace ~(c)(XI) by _~(c)(-Xl)'

This is illustratedin Fig. 16.14. To better understand this property, let us consider
the direct scatteringproblemin the thin phase screen approximation.

The far-field scatteringamplitudeR(q Ik) is givenby Eq. (6). Considernowthe
profileZ(XI), definedas Z(XI) == -~( -Xl). The scattering amplitudeobtainedwith
this profilecan be writtenas

(52)

i 0.5

~
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FIGURE 16.13. Reconstruction of the surfaceprofileusing the (JL + A) (solidline) strategy,
startingfrom a differentinitial populationthan in Fig. 16.12. The originalprofileis plotted
with a dotted line.
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FIGURE 16.14. Reconstructed profile shown in Fig. 16.13, reflected on both axes. The
original profile is plotted with a dotted line.

With the change of variable u = -Xl, it can be readily shown that the intensity
patterns corresponding to {(Xl) and Z(X1) are equal:

/(qlk) = [/(qlk)]z· (53)

Thus, the validity of the thin phase screen approximation leads to multiple solutions
of the inverse scattering problem. It should be mentioned that, in general, the
rigorous solution of the direct problem does not have this kind of symmetry. It
is thus tempting to think that multiple scattering effects reduce the number of
possible solutions of the inverse problem.

16.6. Discussion and Conclusions

In this review, we have considered the retrieval of surface profile information
from monochromatic far-field angle-resolved data. After a brief discussion of the
direct problem; we reviewed some methods to estimate statistical parameters of
the surface, such as the rms height and the height correlation length.

A simple and practical method to estimate /; is based on the determination of the
strength of the coherent component. More elaborate techniques need to be used
for cases in which the coherent component cannot be detected. Information on
the lateral scale of the surface is contained in the angular distribution of the mean
intensity. For weakly scattering surfaces this distribution is, essentially, a map of
the power spectral density of surface heights, whereas in the limit of very rough
single scattering surfaces it is related to the PDF of slopes on the surface. A more
complex relation occurs in more general cases.

We have also considered the recovery of the surface profile function itself. Two
problems of different nature were discussed. The first, and simpler one, assumes
the availability of complex amplitude data, while the second one assumes that only
intensity data are available.
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The approach taken to solve the first problem is based on single scattering
assumptions about the interaction of the light with the surface.The resulting pro-
cedure is simple, and should also work with two-dimensional surfaces. The pro-
cessing of the complex amplitudedata involves, essentially, an integral transform
of the scattering amplitude. The method, however, breaks down when multiple
scatteringis important, and is also sensitiveto phase noise in the input data.

In the second case, when only intensity data are given, the phase information
is lost and the solution of the inverseproblem is not unique. A radically different
strategymustbeemployed.In our approach,theproblemis visualizedas a problem
of constrained optimizationand solved using evolutionary strategies. These algo-
rithmsareheuristic,involverandomsearchstrategies,andthereis noguaranteethat
they willconvergeto the correctsolution.Nevertheless, eventhoughnumericalex-
perimentshaveonlybeenconductedwithquiteshortone-dimensional surfaces,the
resultsareencouraging. Thesemethodsareableto retrievesurfaceprofilefunctions
in a varietyof situations,includingcases in whichmultiplescatteringis important.

An example that illustrates the potential of these heuristic procedures to solve
inverse scattering problems in the presence of multiple scattering is shown in
Fig. 16.15.The surface contains a triangular groove whose half-width and depth
are equal to A. In the region of the groove, the surface slopes are ±1, which
leads to significantamounts of multiple scattering.Let us first look at the results
obtainedwith the wavefrontmatchingalgorithmfor this surface. A gray scalemap
of F(wm)(~, rJ) for the case of normally incident s-polarizedilluminationis shown
inFig. 16.15(a).Adarkfringeis onlyclearlydefinedin theregionwherethe surface
is horizontal.As expected, in the region where multiplescatteringdominates, it is
difficultto infer the position of the interface.

An attempt to reconstructthe surfaceprofilefunctionfrom thesedata by search-
ing for the minimum at each position Xl is shownin Fig. 16.15(b)(small circles);
thefailureof thealgorithmin theregionwheremultiplescatteringoccursis evident.
In the same figure, we show the results obtained with a nonelitist hybrid evolu-
tionary strategy in which the surface was represented in terms of spline curves53

(crosses).The algorithmis hybrid becauseit couplesan evolutionary strategywith
the downhill simplexmethod of NeIderand Mead,59 which is a local search algo-
rithm. One can see that the reconstruction obtained with the hybrid algorithm is
reasonablyclose to the target profile.

Although the numericalstudies carried out so far are limited in many ways and
the evolutionary strategies lack mathematicalformality, we have found that these
algorithmsare able to find the correct solution in many cases. They have thus the
potential of becoming a practical tool for solving inverse problems when phase
informationis unavailable.
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FIGURE 16.15. Comparison of reconstructed profiles using the wavefront matching algo-
rithm and a hybrid algorithm that uses an evolutionary strategy coupled with the downhill
simplex method. (a) Gray scale map of F(wm)(~, 1/) for the case of normal incidence and
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The Design of Randomly Rough
Surfaces That Scatter Waves in a
Specified Manner
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17.1. Introduction

It is our aim in this chapter to provide an introduction to a form of the inverse
problem in rough surface scattering, and methods for its solution, that differs
somewhat from the usual form of this problem. In the usual formulation of this
problem scattering data, such as the angular and polarization dependence of the
intensity of the scattered field, are provided by experimentalists, and the surface
profile function, or some statistical properties of it, such as the power spectrum
of the surface roughness, or just the rms height of the surface, is extracted from
these data. The type of inverse problem we consider here is how to design a one-
or two-dimensional randomly rough surface that scatters in a specified manner a
wave or a beam incident on it. We consider two different cases: (i) the scattered
field is required to have a prescribed angular dependence of its mean intensity; and
(ii) it is required to have a specified wavelength dependence of its mean intensity
at a fixed scattering angle. Applications of each of these types of surfaces will be
presented.

We have chosen to work with randomly rough surfaces in designing optical dif-
fusers with specified scattering properties, rather than with deterministic surfaces,
because, as we will see, the use of such surfaces leads to precise algorithms for
designing them, something that we have found more difficult to find in dealing
with deterministic surfaces. Moreover, it is more convenient, and far more elegant,
to specify a whole class of surfaces that have the desired properties.

An experimentalist fabricates only a single realization of such a random surface
from an ensemble of an infinite number of possible realizations of that surface.
Does this mean that a deterministic surface has in fact been produced? Although
this is a bit of a philosophical question, we would argue that a deterministic surface
has not been fabricated. The fact that we know its profile does not mean that it is
not random. For example, few people would argue with the statement that a piece
of ground glass has a random profile. Is it made deterministic by a measurement
of it? Surely not. Consequently, we regard surfaces fabricated by the use of the
algorithms developed in our work as random. Their profiles are realizations of a
random process. We just happen to know the details of a particular realization.

467
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A more subtle question arises from the fact that in a theoretical study of scatter-
ing from a randomly rough surface the property of the scattered field of interest,
for example its intensity, is averaged over the ensemble of realizations of the
surface profile function. In contrast, in an experimental study of such scattering
the measurement is made on a single realization of the surface profile function
drawn from that ensemble. It is generally believed that the experimental result will
agree with the theoretical result if the surface is large enough, and the incident
field illuminates a large enough area of that surface. In this case, it is argued,
the mean intensity of the scattered field can be regarded as a spatial average of
the actual scattered intensity over an area that contains many realizations of the
surface roughness. The assumption that this spatial average is equivalent to the
ensemble average used in the design of our random surfaces is difficult to prove
rigorously, because some of the surfaces generated are not stationary. The validity
of this assumption is a very important question, as it arises in virtually all ex-
perimental work on rough surface scattering. A partial answer to it can be found
in [1], but it is a question that should be pursued in greater depth in the future.

17.2. A Surface That Produces a Scattered Field with a
Specified Angular Dependence of Its Mean Intensity

The earliest examples of efforts to design randomly rough surfaces appear to be
the efforts to devise a nonabsorbing optical diffuser that scatters light uniformly
within a specified range of scattering angles, and produces no scattering outside this
range. We will call such an optical element a band-limited uniform diffuser. Such
an element could have applications, for example, in projection systems, where one
wishes the illumination of a projection display to be concentrated in a specific area,
where the viewers are, rather than scattered over a wide area. Band-limited uniform
diffusers can also be useful in microscope illumination systems, in the fabrication
of displays and projection screens, and in Fourier transform holography. A brief
survey of early efforts to design and fabricate one- and two-dimensional surfaces
that act as band-limited uniform diffusers can be found in [2].

In this section we present a new approachv" to the design of a two-dimensional
randomly rough surface that, when illuminated at normal incidence by a scalar
plane wave, produces a scattered field with an essentially arbitrary prescribed
angular distribution of intensity within an essentially arbitrary domain of scattering
angles.

The physical system we consider consists of vacuum in the region X3 > ~(xII)'

where XII = (Xl, X2, 0) is a position vector in the plane X3 = 0, and the scattering
medium in the region X3 < ~(xII). The surface profile function ~(xII) is assumed to
be a continuous, single-valued function of XII that is differentiable with respect to
Xl and X2, and constitutes a random process, but not necessarily a stationary one.
The surface X3 = ~(x,,) is illuminated from the vacuum by a scalar plane wave of
frequency co, and it is assumed that the Dirichlet boundary condition is satisfied
on this surface.
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The differential reflection coefficient (8 R18Q s) is defined in such a way that
(8RI8Qs ) dQs is the fraction of the total time-averaged incident flux that is scat-
tered into the element of solid angle dQs about a given scattering direction. Since
the surface defined by the profile function ~(x,,) is randomly rough, it is the mean
differential reflection coefficient that is of interest to us. In the geometrical optics
limit of the Kirchhoff approximation, which we adopt because of its simplicity, it
is given by2

( aR ) = 2. (~)2 f d2uII exp(-iqll . ulI)aos S Ln c

x f d2xlI(exp[-iauli · V~(xlI)])

in the case of normal incidence. In this expression S is the area of the plane X3 = 0
covered by the random surface; qll = (w/c) sin Os (cos lPs, sin lPs, 0); Os and lPs are
the polar and azimuthal scattering angles, respectively; and a = (w/c)(1 + cos Os).
The angle brackets here and in the rest of this chapter denote an average over the
ensemble of realizations of the surface profile function ~ (xII)' Our goal is to find
the function ~ (xII) that produces a specified form of (a R/ aOs).

We begin by covering the Xl X2 plane by equilateral triangles of edge b (Fig. 17.1).
The vertices of these triangles are given by the vectors xlI(m, n) = mal + na2,

where m, n = 0, ±1, ±2, ... , and the basis vectors are al = (b, 0) and a2 =
(b12, J3b12). Each triangle is labeled by the coordinates of its center of grav-
ity. These are given by the mean values of the coordinates of its three vertices.
Thus, the triangle defined by the vertices (m, n), (m + 1, n), and (m, n + 1) is

(m,n+2) (m+i,n+2) (m+2,n+2)

(m,n) (m+l,n) (m+2,n) (m+3,n)

FIGURE 17.1. A segment of the XIX2 plane showing the equilateral triangles above which
the triangular facets are placed that generate the two-dimensional randomly rough surfaces
defined by Eqs. (2) and (3).
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the (m + 1/3, n + 1/3) triangle. Similarly, the triangle defined by the vertices
(m + 1, n), (m + 1, n + 1), and (m, n + 1) is the (m + 2/3, n + 2/3) triangle. As
m and n run through the values 0, ±1, ±2, ... , the (m + 1/3, n + 1/3) triangles
generated constitute the subset of triangles with horizontal bases and points at
the top, while the (m + 2/3, n + 2/3) triangles generated constitute the subset of
triangles with points at the bottom and horizontal tops. Together these two sets of
triangles cover the Xl X2 plane.

For xII within the triangle (m + 1/3, n + 1/3) the surface profile function is
assumed to be

(2)

while for xII within the triangle (m + 2/3, n +2/3) the surface profile function is

rex ) - b(O) +a(l) x +a(2) x (3)
., II - m+~,n+~ m+~,n+~ 1 m+~,n+~ 2·

The coefficients a(l,2~ 1 and a(l,2~ 2 are assumed to be independent identically
m+3,n+ 3 m+3,n+ 3

distributed random deviates. Therefore, the joint probability density function (pdt)
of the two coefficients associated with a given triangle,

(0 (Sl - a~~t.n+t) 0(S2 - a~~t.n+t)}

=(0 (Sl - a~~~.n+~) 0(S2 - a~~~.n+~)}
== f(sl, S2), (4)

is independent of the coordinates labeling the triangle.
It is now straightforward to show that Eq. (1) becomes

(5)

where (aR/ans)(ql, q2) is the mean differential reflection coefficient expressed
in terms of the components of the wave vector q". We invert this equation to obtain

1- s~
cosOs == --2'

1+slI

(
q l q2) 2 ( aR )f -, - = (1 + cos Os) - (-ql, -q2).
a a ans

With the changes of variables

ql
- == Sl,
a

we find that

. 2s
11sInOs == --2'

1+slI

where slI = (sf + s~)4 . Equation (6) then becomes

4 ( e« ) (2(W/C)Sl 2(W/C)S2)
f(sl, S2) == 2 2 - - 2 ,- 2'

(l+s,,) ans l+s" l+s"

(6)

(7)

(8)

(9)
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For generation of the surface profile function we also need the (marginal) pdf
(1) (1)

ofall and of a 2 +2 ,m+3,n+3 m+3,n 3

(10)

. . (2) (2) . (1) (1)
and the conditional pdf of a + 1 + 1 (a 2 2) givenall (a 2 2 ),

m 3,n 3 m+3,n+3 m+3,n+3 m+3,n+3

(11)

It is seen from Eqs. (2) and (3) that the coefficients a(1,2~ 1(a(1,2~ 2)
m+3,n+3 m+3,n+-iare the partial derivatives of ~ (xII) along the horizontal edge of the tnang e

(m + 1/3, n + 1/3) «m + 2/3, n +2/3» and along the normal to this edge in-
side the triangle. For generation of the surface profile function we also need
the joint pdf of the derivatives of ~ (xII) along the other edges of the triangles
and along the normals to these edges within the triangles, and the correspond-
ing marginal and conditional pdfs. Thus, if we denote the derivatives of t; (xII)
along the left edge of the triangle (m + 1/3, n + 1/3) and along the normal
to this edge inside the triangle by a(1) 1 1 and a(2) 1 l' respectively, where

m+3,n+3 m+3,n+3
a(1) - la(l) + ,J3a(2) a(2) - J3a(l) _ !a(2)

m+j,n+j - 2 m+j,n+j 2 m+j,n+j' m+j,n+j - 2 m+j,n+j 2 m+j,n+j'

the joint pdf of a (1+)1 + 1 and a(2) 1 1 is given by
m 3,n 3 m+3,n+3

(12)

(13)

(14)

In a similar fashion, if we denote the derivatives of ~ (xII) along the left edge of
the triangle (m + 2/3, n + 2/3) and along the normal to this edge within the trian-

I b (1) d (2) . (1) 1 (1)g e y f3 2 2 an f3 2 2' respectively, where f3 2 2 == -'2a 2 2 +m+3,n+3 m+3,n+3 m+3,n+3 m+3,n+3
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(15)

The marginal pdf !(Sl) = (d(Sl - p(1) 2 2)} is then given by
m+3,n+ 3

(16)

and the conditional pdf of fJ(2) 2 2 given fJ(1+)2 2 is
m+j,n+j m j,n+j

(17)

Finally, if we denote the heights of the surface at the three vertices of triangle
(m + 1/3, n + 1/3) by hm,n, h m+l,n, hm,n+l, we find that

b(O) 1 1 = (m +n + l)hm n - mh m+1 n - nh; n+l. (18)
m+3,n+ 3 '"

Similarly, if we denote the heights of the surface at the three vertices of triangle
(m + 2/3, n + 2/3) by hm+1,n, hm+1,n+l, hm,n+l, we find that

b(O) 2 2 = (n + 1)h m+1 n - (m + n + 1)h m+1n+l + (m + l)hm n+l. (19)m+j,n+j , , ,

The construction of a realization of the surface profile function proceeds in a
sequential fashion. We begin by assuming, with no loss of generality, that the
height of the surface at the vertex (m, n) is zero, hm,n == o. The marginal pdf !(Sl)

is used with the rejection method'' to obtain the coefficient a(1) 1 l' which yields
m+3,n+ 3

the heighthm+1•n. The conditional pdf !(s2Is1) is usedwith this valueof a~~t.n+t

as Sl and the rejection method to obtain the coefficient a(2) 1 l' and hence the
m+3,n+j

height hm n+l. The coefficient b(O) 1 1 is determined from h m n» h m+1 n» and, m+j,n+ 3 "

hm,n+l according to Eq. (18). The surface above the triangle (m + 1/3, n + 1/3)
is now specified.

The slope of the edge joining the vertices (m + 1, n) and (m, n + 1), namely
(hm n+l - hm+ 1 n)/b, is fJ(1) 2 2' If this value of fJ(1) 2 +2 is used as Sl in the, _' m+j,n+j _ m+3,n j

marginal pdf f (Sl) and in the joint pdf f (Sl , S2), the use of the conditional pdf
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1(s2Is1) with the rejection method gives the value of the slope /3(2) 2 2 in the
m+-,n+-

direction normal to the edge joinin~ (m + 1, n) and (m, n + 1), and hehce the
height hm+1 n+l. The values of a(1, ~ 2 are then obtained from the values of

(1 2) , • m+ 3,n+ 3 . (0)
f3 ' 2 2' From the heightshm+ 1 n » hm+ 1 n+l, and hm n+l the coefficient b 2 +2

m+'3,n+ 3 ", m+ 3,n '3

is determinedfrom Eq. (19). The surfaceabove the triangle (m + 2/3, n + 2/3) is
now specified.

Continuingthe constructionof the surface,the slopeof the edgejoining the ver-
tices (m + 1, n) and (m + 1, n + 1), namely (hm+1,n+l - hm+1,n)/b, is a~~1 n+!'

If this value of a(l) 4 1 is used as the value of Sl in the marginal pdf !(s;j a~d
..111+- n+- _

in the joint pdf f (Sl ~ 'S2)~ the use of the conditionalpdf f (s2Is1) together with the
rejection method gives the value of the slope a(2) 4 1 in the direction normal to

m+ 3,n+'3
the edge joining (m + 1, n) and (m + 1, n + 1), and hence the height hm+2,n . The

(1 2) . (1 2)values of a ' 4 1 are then obtained from these values of a ' 4 1 • From the
m+'3,n+'3 m+'3,n+'3

heights hm+.1,n, hm+2,n, and hm+l,n+l. the coefficient b~~1,n+~ is obtained from
Eq. (18). The surface above the triangle (m + 4/3, n + 1,3) is now specified.

By continuing in this fashion the surface profile function ~ (xII) above the first
row of equilateral triangles is constructed.

The surface profile function above the second, third, ... , row of equilateral
triangles is determined in the same fashion. In this way a single realization of
a two-dimensional rough surface is constructed. By construction it is a single-
valued function of ~(xlI)' It is also a continuous function of XII across each edge
joining two nearest neighbor vertices, because that edge is shared by two neigh-
boring triangles, and the surface profile function is therefore a continuous func-
tion of ~ (xII) in its entirety, whose statistical properties are defined by the joint
pdf f (Sl , S2).

To determine how well the angular distribution of the intensity of the field
scattered from the random surface generated by the methodjust described agrees
with the mean differential reflectioncoefficient (a R / af2s ) used as the input to this
method, a large number Np of realizations of the random surface is generated,
and for each realization the scattering problem for a scalar plane wave incident
normallyonit is solved.Thedifferentialreflection coefficient aR / aQ s is calculated
from each solution,and an arithmeticaverageof the N p results for aR / aQs yields
the mean differentialreflectioncoefficient (a R / af2s ).

Rigorouscomputer simulationcalculationsof scatteringfrom two-dimensional
random surfaces are computationally intensiveand time consuming.v" We there-
fore solve the scatteringproblem for each realizationof our random surface in the
Kirchhoffapproximation, but withoutpassing to the geometricaloptics limit of it.
At normal incidence the mean differentialreflectioncoefficient in this approxima-
tion is given by"

(20)
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(
. b(O) )

.J3b ~ ~ exp -la m+~,n+~
T2(qll) == 1-

2
- LJ LJ (1)

m=-N n=-N ql + aa +2 +2m 3,n 3

X exp [-i (ql + aa(l) 2 2) (m + ~ + 1) bm+3,n+ 3 2

.J3 ( (2) ) ( 1) ]-}- qi + aa 2 2 n + - b2 m+3,n+ 3 2

x {exp[-i (ql + aa~:~.n+~) ~] sine [ ~b (q2 + aa~:~.n+~)

+ ~ (ql + aa~:~,n+~)]

- exp [i (ql + aa(1) 2 2) ~] sine [J3b (q2 + aa(2) 2 2)
m+3,n+ 3 4 4 m+3,n+ 3

- ~ (ql + aa~:~,n+~)]} , (2ib)

with a = (wjc)(1 + cos e.), S == 8N2(J3b2j4), and sincx == sinxjx.
To illustrate the method for generating a two-dimensional randomly rough

Dirichlet surface that scatters in a specified manner a plane wave incident normally
on it, we apply it to the design of a surface that acts as a band-limited uniform
diffuser within a rectangular region of scattering angles. The mean differential
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reflection coefficient we seek in this case is

(25)

(23)

(26)

(24)

(22)(
s« )( )_ O(qlm - Iqtl) O(q2m - Iq21)

- ql,q2 - ,aos 2(Cqlm/W ) 2(cq2m/W )

so that from Eq. (9) we find that

4 O(slm(I + s~) ., lSI I) O(s2m(I + S~) - IS21)
f(SI, S2) == 2 2

(1 + SII) 4s lm 4s2m

where Slm == (cqlm/2w) and S2m == (cQ2m/2w). This result simplifies greatly when
the range of variation of Sl and S2 is small enough that s~ can be neglected with
respect to unity with little error, e.g. when ISlm I :s 0.15 and IS2mI < 0.15. When
this is the case Eq. (23) becomes

O(Slm - 1st!) O(S2m - IS21)
f (Sl , S2) == 2 2·

Slm S2m

The marginal pdf f(SI) is readily found to be

f( )
- O(Slm - lSI I)

Sl - ,
2slm

while the conditional pdf f(S21 Sl) is

f( I ) - O(S2m - IS21)
S2 Sl - .

2s2m

In Fig. 17.2 we present a segment of a single realization of the surface profile
function ~ (xII) determined by the approach described in this section for the case of
the band-limited uniform diffuser within a rectangular region of scattering angles,
for which !(Sl, S2) is given by Eq. (24).

In Fig. 17.3 we present a plot of the corresponding (a R / aOs) calculated
on the basis of the Kirchhoff approximation represented by Eqs. (20)-(21).

FIGURE 17.2. A segment of a single realization of a numerically generated surface profile
function for the band-limited uniform diffuser within a rectangular domain of scattering
angles, for which [ts«, S2) is given by Eq. (24).
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The wavelength of the incident field was A = 632.8 nm. The roughness pa-
rameters assumed were b = 20 11m, qlm = (wlc) sin 100 ~ 0.1736 (wlc), q2m =
(wlc) sin 60

~ 0.1045 (wlc). The results of Np = 3000 realizations of the surface
profile function were averaged to obtain the average indicated in Eq. (20). The
results presented show that the angular dependence of the intensity of the scat-
tered field is in very good agreement with that defined in Eq. (22). The intensity
of the scattered field vanishes for scattering angles outside the domain defined by
Eq. (22), and the cutoff is very sharp. For scattering angles within this rectangular
domain the intensity of the scattered field is very nearly constant.



478 Maradudin

A surface designed to produce the mean differential reflection coefficient given
by Eq. (22) with qlm = q2m was fabricated on photoresist, and the angular depen-
dence of the intensity of light transmitted through it was measured. The surface
was fabricated by superposing two orthogonal one-dimensional surfaces defined
by pdfs of the form given by Eq. (25), and generated by the approach described
in [9]. A surface designed to act as a band-limited uniform diffuser within a square
domain of scattering angles in scattering also acts as a band-limited uniform dif-
fuser within a square region of angles of transmission in transmission. However,
due to effects of refraction within the photoresist film, the value of qlm = q2m
defining the square domain of angles of transmission within which the mean dif-
ferential transmission coefficient is constant is different from the value it has in
scattering. In Fig. 17.4 we present a gray-level plot of the angular dependence of
the intensity of the light transmitted through the surface fabricated in the manner
described. It was obtained by the use of collimated white light. The use of white
light for illumination is a way of averaging over the speckles that would be present
in the intensity distribution of the transmitted light if monochromatic light were
used for illumination. It is an experimental equivalent of the ensemble averaging
used in obtaining Eq. (9). The resulting intensity distribution is seen to be strongly
band-limited within a square region of the (ql, q2) plane, although the corners are
a bit rounded, and is constant within the region.

Two-dimensional randomly rough surfaces that act as band-limited uniform
diffusers within circular.' triangular;' and elliptical':" regions of scattering angles,
as well as a surface that acts as a Lambertian diffuser," have also been designed
by the approach presented in this section, demonstrating the versatility of this
approach.

17.3. A Surface That Synthesizes the Infrared Spectrum
of a Known Compound

In correlation spectroscopy'v F the degree ofcorrelation between the transmission
or reflection of an unknown sample and that of a reference cell containing a known
compound is determined over a fixed spectral range, as a means of identifying
the unknown sample. In the case that the known compound in the reference cell
is toxic and/or corrosive, or is short-lived, it is useful to have an optical element
that synthesizes the infrared spectrum of the compound for usc in a correlation
spectrometer.

The production ofa synthetic spectrum requires the design ofa one-dimensional
rough surface with the property that at a fixed scattering angle the spectrum of the
light scattered from it accurately reproduces a desired spectrum.

The existing theoretical approaches to the solution of the design problem13- 15

have been based on surfaces in the form of grating-like structures of N lines,
each of width ~, whose depths relative to a base level are adjusted by an iterative
procedure to produce a wavelength dependence of the intensity of the scattered



17. TheDesign of Randomly Rough Surfaces That Scatter Waves 479

'" ".
(b)

200

::i

~

~
100.,

c..
.s

0
500

0 0

(e) (d)
200 200

::i ::i

~ ~

.~ .~., 100 ., 100c c
S S
oS oS

0 0
0 50 150 200 600 0 50 100 150 200 250

pixels pixels

FiGURE 17.4. A CCD camera image (a)anditsthree-dimensional (b)depiction ofanexper-
imental result for the mean differential transmission coefficient of white light transmitted
through a two-dimensional randomly rough photoresist surface thathas been designed to
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perpendicular directions [courtesy of E.E.Garda-Guerrero and E. R. Mendez).

field at the prescribed scattering angle that matches the infrared spectrum of a
given compound throughout the spectral range of interest.

In contrast to the deterministic approach to the design of a one-dimensional
rough surface that synthesizes a specifiedexperimental infrared spectrum adopted
in,13-15 in this section we present an alternative, probabilistic, approach to the
solution of this problem.

The physical system we consider initially consists of vacuum in the region
X3 > S(XI) and a perfect conductor in the region X3 < S(XI). The surface profile
function S(XI) is assumed to be a continuous single-valued function of XI that
constitutes a random process, but not necessarily a stationary one. The surface
X3 = s(xd is illuminated at normal incidence by an s-polarized plane wave of
frequency to, whose plane of incidence is the XIX3 plane. The intensity of the
scattered field is measured as a function of co in the far field at a fixed scattering
angle.

The starting point for our analysis is the expression for the single nonzero
component of the scattered electric field in the vacuum obtained'in the Fraunhofer
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approximation.!" which we write in the form

1

E{(XI, x3lw)sc = -Eo (~)2 exp{[i(w/c)r - rr/4)]
Zncr

x i: dx~ exp[-i(w/c)x~ sin Os - i(w/c)(l + cosOs)~(xD],

(27)

where Eo is the amplitude of the incident field, r = (xi '. 1/r = sin Os,
X3/r = cos Os, and Os is the fixed scattering angle, measured clockwise from the
X3-axis. The squared modulus of the scattered field averaged over the ensemble of
realizations of the surface profile function is

(IE;(XI, x3Iw)scI2) = IEol2(~)
Zncr

x i: dx~ i: dx~' exp[-i(w/c)sinOs(x~ -x~)l

x (exp[-i(w/c)(l + cosOs)(~(x~) - ~(x~»]). (28)

Our aim is to find a surface profile function ~(XI) for which the right-hand side of
this equation reproduces the frequency dependence of the expression on the left-
hand side, which we assume is given.

To this end we assume that ~(XI) has the form

nb < Xl < (n+ l)b, n == -N,-N+l, ... , N - 1,

(29)

where N is a large integer, the {dn } are independent identically distributed ran-
dom deviates, bi and b are characteristic lengths, and a is a characteristic slope
of the surface that will be determined later. Because the {dn } are independent
and identically distributed random deviates, the probability density function (pdf)
of dn , f(y) = (8(y - dn ) }, is therefore independent of n. The form of ~(XI)

given by Eq. (29) violates our initial assumption that it is a continuous func-
tion of Xl. However, we will see that the discontinuities of the surface profile
function at Xl == nb, where n = 0, ±l, ±2 ... , do not affect our determination
of ~(XI).

With the form of ~(XI) given by Eq. (29) it is straightforward to show that

(IE~(XI' x3Iw)scI2) = IEol
2(~) {2Nb 2 sinc2«wb/2c)(sinO

sZncr
+a(1 + cosOs»[1 - IF«wjc)(l + cosOs)bl)1 2

]

+ (2Nb)2sinc2(N(wb/c)(sinO
s

+a(l + cosOs»)IF«wjc)(l + cosOs)b1)12,

(30)
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where

F(v) =i: dyf(y)exp(-ivy). (31)

(32)

We now choose the slope ex such that the argument of each sine function in
Eq. (30) vanishes:

sin Os (Os)
ex = - 1 + cos Os = -tan 2 .

This result means that the direction of observation is the direction of specular
reflection from each segment of the surface.

Since sinc(O) = 1, we have obtained the result that

(IEf(Xl' x3Iw)scI2) = IEol
2(~) 2N(2N - 1)b2

2ncr

x [/F«W/C)(1 + cos Bs)bdl2 + 1 ] . (33)
2N -1

We define the experimental intensity I(w) by

(IEf(Xl' x3I w)scI 2
) = 2N(2N - 1)b2

1Eo1
2(~) I(w). (34)

Zxcr

It follows from Eqs. (33) and (34) that

I(w) = [IF«W/C)(1 + cos Bs)b, )12 + 1 ] , (35)
2N -1

so that
1

IF«w/c)(1 + cosOs)b1)!= [/(W) _ 1 ]"2.
2N -1

(36)

(37)

The problem of determining the surface profile function ~ (Xl) thus reduces to
obtaining the pdf of d.; f(y), from a knowledge of the modulus of its Fourier
transform F(v). Once the function f(y) has been determined, a long sequence of
{dnl is obtained from it by, e.g., the rejection method.' and a realization of the
surface profile function is constructed on the basis of Eq. (29).

If F(v) were known, the problem of obtaining f (y) would reduce to evaluating
a Fourier integral,

f(y) = foo dv F(v)exp(iyv).
-00 2n

However, we know only IF(v) I, which is given by Eq. (36). We are therefore forced
to use an iterative approach to obtain f(y) from IF(v)l. In fact, we use a modified
Gerchberg-Saxton algorithmI7, 18 for this purpose.

The function IF(v)1 is known only for positive values of v, in a range that we
denote by 0 < v < Vrnax. However, it is convenient for what follows to assume, with
no loss of generality, that /F(v)/ exists in the interval -Vrnax < v < Vrnax, and is an
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even function of v. Moreover, instead of working with Fourier integral transforms,
we will use discrete Fourier transforms. Thus, we introduce the definitions

(38)

(39)

(40)

k=-M,-M+1, ... ,M

n=-M,-M+1, ... ,M,

To = 2vmax

To
Vk= -k

2M
2rr

Yn =-n
To

and F(Vk) == Fi, f(Yn) == fn. It follows from Eqs. (38) and (40) that the domain
of existence of f(y) is -rrM/vmax < Y < n M/vmax• The discrete analogues of
Eqs. (31) and (37) are

2rr M
Fk = - L fnexp(-irrkn/M)

To n=-M

M
To '" .fn = -- L....J CkFkexp(lrrnk/M)

4n M k=-M

k=-M,-M+1, ... ,M (41)

n = -M, -M + 1, ... , M, (42)

where

C = {4k = -M, M .
k 1 k 1= -M, M

(43)

Because it is a probability density function, f(y) must be real, nonnegative, and
normalized to unity. The first of these conditions requires that the phase X(v) of the
functionF(v) = IF(v)1 exp[ix(v)] must be an odd function of v, X(-v) = -X(v).
The last of these conditions requires that X(0) = O.

The iterative determination of f(y) proceeds as follows. We generate, for pos-
itive values of k, a sequence of real random numbers {XO(Vk)}, drawn from a
uniform probability density function in the interval (-n, n), and define Xo(v-k) =
Xo(-Vk) = - XO(Vk), with Xo(O) = o. We then construct the complex functions
F~O) = IF(Vk)1 exp[iXo(vk)], and use them to evaluate the sum

(44)

which is real. To implement the constraint that f (y) be nonnegative each negative
coefficient f~O) is set equal to zero, while each positive f~O) is left unchanged. The
resulting set of values of f~O) is denoted by {f~O)} after it has been scaled to satisfy
the normalization condition

M
2n " -(0)T: L....J t; = 1.

o n=-M

(45)
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The {f~O)} are then used to generate a set of values {F~l)},

From the set {Fi1
)} we generate a new set {F~l)} according to F~l) == IF( vk)1

x exp[ iXl(Vk)]. From this set we obtain the set {f~1)} as

(47)

Each negative coefficient f~l) is equated to zero, while each positive f~l) is left
unchanged. After the resulting set of coefficients is scaled so that it is normalized
to unity, it is denoted by {~1)}. The {f~l)} are used to generate a set

from which we construct a new set {Fi2)} according to Fi 2
) == IF(Vk ) Iexp[ iX2(Vk)].

The iteration scheme then proceeds as before. Eight to ten iterations usually suffice
to obtain a good result for f(y).

To test how well a surface designed in this way scatters light with an intensity
whose frequency dependence reproduces the input spectrum I (w), we calculate
I (w) on the basis of the Kirchhoff approximation.i

where

1 ( tor ) 2
lew) = 2N(2N _ 1) 2rrc (IR(r, lJs)1 ), (49)

R(r, lJs)= n¥;N i: dlJexp l i(w/c) [rCOS(lJ - lJs)- (sinlJ +a(1 +coslJ))

x (n + ~) b - dnb, (1 +COSlJ)]}

x sinc«wbj2c)(sinO +a(l + cosO»). (50)

The integral in Eq. (50) has to be evaluated numerically.
To illustrate the approach outlined here for the design of a one-dimensional ran-

dom surface that synthesizes an experimental spectrum, we consider the synthesis
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FIGURE 17.5. A segment ofa singlerealization ofa numerically generated one-dimensional
random surface that has been designed to synthesize the infrared absorption spectrum
ofHF.

0.2
0.2

~0.1

~ 0.1 0.0
0 2 4

"(

0.0·••
-60 -40 -20 o

'Y

20 40 60

FIGURE 17.6. The probability density function f(y) used to generate the surface profile
function presented in Fig. 17.5.

of the infrared spectrum of HF in the region 3600-4300 cm-t. We designed a
surface that synthesizes this spectrum at a scattering angle Os = 15°. It consists of
2N = 5000 segments, each of length b = 10 tun, for a total length of 5 cm. The
characteristic depth b l is chosen to be b l = 0.1 us». A segment of one realiza-
tion of the resulting surface profile function ~ (Xl) is presented in Fig. 17.5. The
probability density function of dn , f (y), used to generate this surface is presented
in Fig. 17.6.
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FIGURE 17.7. (a) The infrared absorption spectrum ofHF from 3600 to 4300 em-I. (b) A
theoretical synthetic spectrum of HF calculated by the approach presented in this chapter.

The infrared spectrum of HF in the region 3600-4300 em -I consists of fifteen
sharp rotational lines superimposed on a broad vibrational background." It is
shown in Fig. 17.7(a). The intensity lew) calculated on the basis ofEqs. (49)-(50)
for scattering from a single realization of the surface profile function, so that no
ensemble averaging was carried out, is plotted in Fig. 17.7(b). It displays peaks at
the correct wavelengths, whose relative amplitudes are close to those of the peaks
in the experimental spectrum. The peaks in the theoretical spectrum are somewhat
wider than those in the experimental spectrum.

It may seem surprising that scattering from a single realization of a random sur-
face that was constructed by requiring that the meanintensity of the scattered field,
i.e. the intensity of the scattered field averaged over the ensemble of realizations of
the surface profile function, has a specified dependence on the wavelength of the
incident field, yields a theoretical spectrum in such close agreement with the input
experimental spectrum. The reason that it is not necessary to generate an ensemble
of realizations of the surface profile function, and evaluate the arithmetic average
of the intensity of the field scattered from each realization, is that the intensity is
calculated as a function of the wavelength at a fixed scattering angle that coincides
with the angle of specular reflection from each segment of the surface. In this case
no speckles arise that have to be averaged over, as is the case if the intensity is
calculated as a function of the scattering angle at a fixed wavelength. Averaging
over the ensemble of realizations of the surface profile function only smoothes out
the background noise that is clearly seen in Fig. 17.7(b). However, the random
surface has to be long enough in order that scattering from a single realization of it
produces a spectrum in good agreement with the experimental spectrum. The more
complicated the spectrum that we seek to reproduce is, the more complicated is
the resulting pdf f(y) and, as a result, the longer the surface should be to represent
well the statistics of the surface that are required. In the calculations carried out
here, we found that a value of 2N == 5000 sufficed for this purpose.
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It should also be emphasized that any realization of the surface profile function
obtained by the rejection method from the pdf f(y) plotted in Fig. 17.6 produces
a spectrum with the aid of Eqs. (49) and (50) that coincides with the one presented
in Fig. 17.7(b).

Realizations of the random surfaces considered in this section can be fabricated
by the method employed for this purpose in [15] and by the method proposed
in [9].

Thus, the results of this section indicate that treating one-dimensional rough
surfaces as randomly rough surfaces is an effective approach to the design of
optical elements that synthesize infrared spectra of known compounds.

17.4. Conclusions

The two types of randomly rough surfaces considered in this chapter, and the appli-
cations for which they were designed, while hardly exhaustive, indicate the breadth
of the technological opportunities presented by the ability to design surfaces with
specified scattering properties. The probabilistic approach to the design problem
described here, in which the inverse problem is formulated as a search for the
joint probability density function of the slopes of the triangular facets from which
a two-dimensional random surface is constructed, or for the probability density
function for the slopes or depths of the segments from which a one-dimensional
random surface is constructed, not only yields algorithms by means of which sur-
faces with specified scattering properties can be designed, but enables the statistical
properties of these surfaces to be studied as well.

An outstanding unsolved problem is that of fabricating, e.g. on photoresist,
randomly rough surfaces of the kind designed in Sect. 17.2. Methods exist for the
fabrication of surfaces of the kind designed in Sect. 17.3, and have been cited in
that section, but they are not applicable to the surfaces generated in Sect. 17.2. A
different approach has to be found.

The focus in this chapter has been exclusively on the design of randomly rough
surfaces with specified scattering properties. However, the methods used to solve
this design problem can also be applied to the design of randomly rough surfaces
that transmit light in a specified manner. Although some steps in this direction
have been taken,20,21 they have been limited to one-dimensional randomly rough
surfaces. The design of two-dimensional randomly rough surfaces with prescribed
transmission properties is an unexplored problem. It is an important one because
experimental studies of designer surfaces, and applications of such surfaces, are
more easily carried out in transmission, where the source and detector are on
opposite sides of the surface, than in reflection where they are on the same side of
the surface.

The design of surfaces with specified scattering or transmission properties is
thus still a work in progress. It is hoped that the brief review of accomplishments
to date, and opportunities for future studies presented here, will stimulate further
development of this new type of inverse scattering problem.
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