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Preface

The renormalization group (RG) has nowadays achieved the status of a meta-theory,
which is a theory about theories. The theory of the RG consists of a set of concepts
and methods which can be used to understand phenomena in many different fields
of physics, ranging from quantum field theory over classical statistical mechanics
to nonequilibrium phenomena. RG methods are particularly useful to understand
phenomena where fluctuations involving many different length or time scales lead to
the emergence of new collective behavior in complex many-body systems. In view
of the diversity of fields where RG methods have been successfully applied, it is
not surprising that a variety of apparently different implementations of the RG idea
have been proposed. Unfortunately, this makes it somewhat difficult for beginners
to learn this technique. For example, the field-theoretical formulation of the RG
idea looks at the first sight rather different from the RG approach pioneered by
Wilson, the latter being based on the concept of the effective action which is itera-
tively calculated by successive elimination of the high-energy degrees of freedom.
Moreover, the Wilsonian RG idea has been implemented in many different ways,
depending on the particular problem at hand, and there seems to be no canonical
way of setting up the RG procedure for a given problem. Fortunately, in the last
decade the development of the so-called functional renormalization group (FRG)
method has somewhat unified the field by providing a mathematically elegant and
yet simple way of expressing Wilson’s idea of successive mode elimination in terms
of a formally exact functional differential equation for the suitably defined generat-
ing functionals of a given theory. While the basic ideas of the Wilsonian RG as well
as the field-theoretical RG are explained in many excellent textbooks, a pedagogic
introduction to the Wilsonian RG using its modern formulation in terms of the FRG
seems not to exist in the literature. It is the purpose of this book to fill this gap.

The book is subdivided into three parts. In Part I, which consists of the first
five chapters, we introduce the reader to the basic concepts of the RG. This part
is elementary and requires only previous knowledge of some introductory equi-
librium statistical mechanics. In the four chapters of Part II we then give a self-
contained introduction to the FRG. Since we are aiming at applications of the
FRG to nonrelativistic quantum many-body systems, we start in Chap. 6 with an
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viii Preface

introduction to functional methods, defining various types of generating functionals
and vertex functions. With these preparations, we derive in the central Chap. 7 of
this book formally exact FRG flow equations of general field theories involving
fermions, bosons, or mixtures thereof. We also discuss in detail how to include the
emergence of finite vacuum expectation values of some of the field components into
the FRG. In the following two chapters we discuss the two most common truncation
strategies of the FRG flow equations, namely the vertex expansion in Chap. 8, and
the derivative expansion in Chap. 9. Finally, in Part III of this book we apply the
FRG method to nonrelativistic fermions. This part consists of three chapters: we
first discuss the purely fermionic FRG in Chap. 10, and then present in Chaps. 11
and 12 partially bosonized FRG flow equations for interacting Fermi systems, where
certain types of interaction processes are represented by suitable bosonic fields. The
selected topics of Part III reflect our own research. We would like to emphasize,
however, that the formulation of the FRG method developed in Chap. 7 is rather
general and should be useful beyond the limited scope of our own research interest.

This book is based on a special topics course taught by one of us (P.K.) at the
Goethe-Universität Frankfurt during the summer semesters 2006 and 2008. The
course consisted of two 90-min lectures and one two-hour tutorial each week. The
complete material in Part I and the first two chapters of Part II can be covered in 13
weeks provided the audience is familiar with the functional integral formulation of
quantum many-body theory as developed on the first 100 pages of the textbook by
Negele and Orland. The exercises at the end of Chaps. 1–7 are sometimes nontrivial
and should be solved by the students at home. A complete discussion of the solutions
of all exercises requires 11 or 12 two-hour tutorials.

We would like to thank several people who, in one way or the other, helped us to
complete this book. First of all, we are grateful to Andreas Kreisel, who skillfully
used the open source vector graphics editor inkscape to create a large part of the fig-
ures presented in this book and helped us to optimize our presentation. We also thank
our collaborators on topics related to the functional renormalization group: Alvaro
Ferraz, Hermann Freire, Nils Hasselmann, Thomas Kloss, Sascha Ledowski, and
Andreas Sinner. In particular, the long-term collaborations with Sascha Ledowski
and Nils Hasselmann influenced some of the presentations in Part II and Part III of
this book. We have also profited from many useful comments and suggestions from
some of the students who attended the courses on the renormalization group taught
by one of us at the Goethe-Universität Frankfurt; we especially thank Christopher
Eichler, who made several useful suggestions. Finally, we would like to thank Nico-
las Dupuis, Holger Gies, Carsten Honerkamp, Christoph Kopper, Brad Marston, Jan
Martin Pawlowski, Oliver Rosten, and Manfred Salmhofer for illuminating discus-
sions on the functional renormalization group. We are extremely grateful to Manfred
Salmhofer for his comments on Chaps. 6 and 10.

Our greatest intellectual debt is to Sudip Chakravarty, Konstantin Efetov, Subir
Sachdev, and Kurt Schönhammer, who have been our teachers and mentors. Many
of their questions, suggestions and ideas have found their way into this book.
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Last but not least, we thank the Sonderforschungsbereich SFB/TRR49 and the
DAAD/CAPES PROBRAL program for financial support, and Christine Dinges for
patiently producing the first LATEXversion of the manuscript from the original hand-
written lecture notes. We will maintain a web page

http://itp.uni-frankfurt.de/∼rgbook/

where we will list all errors and points of confusion which will undoubtedly come
to our attention.

Frankfurt am Main Peter Kopietz
July 2009 Lorenz Bartosch

Florian Schütz
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Part I
Foundations of the Renormalization Group

In Part I of this book, we introduce the basic concepts of the renormalization group
(RG) idea. We start in Chap. 1 with a short review of the phenomenology of phase
transitions and the concept of scaling, which motivated the development of the
Wilsonian RG. We then give in Chap. 2 a self-contained introduction to the mean-
field approximation and the leading fluctuation correction to mean-field theory, the
so-called Gaussian approximation. In the central Chap. 3 of this Part I, we introduce
the basic ideas and concepts of the Wilsonian RG. Of course, there exist already
excellent textbooks where these topics are covered and our presentation is influ-
enced by the books by Ma (1976), Goldenfeld (1992), and Cardy (1996). However,
our presentation does not strictly follow any of these works; for example, in contrast
to Cardy and Goldenfeld, we introduce diagrammatic perturbation theory from the
very beginning in order to prepare the reader for the functional RG introduced in
Part II of this book. For completeness we also give in Chap. 5 a brief introduction
to the field theoretical RG, using the classical ϕ4-theory describing the Ising univer-
sality class as an example.

Historically, the RG idea has first been developed in the context of quantum field
theory. The so-called field-theoretical RG goes back to the work by Stueckelberg
and Petermann (1953) and by Gell-Mann and Low (1954), who studied the ambigu-
ities in the regularization procedure of the divergencies encountered in perturbative
quantum field theory. They realized that in the so-called renormalizable field theo-
ries, where all divergencies encountered in perturbation theory can be absorbed in
a finite number of renormalized coupling constants, the ambiguities in the energy
scale which one is forced to introduce in the renormalization procedure can be used
to relate the behavior of the theory at small and large energies. However, renormaliz-
ability is a rather strong assumption about the structure of a theory. In fact, the lattice
models used to describe condensed matter systems are often not renormalizable. The
lattice spacing itself provides a natural cutoff and there is no reason why one should
assume renormalizability. Often, no divergencies appear and it makes perfect sense
that even an infinite number of couplings in an effective field theory can depend on
the cutoff, such as the lattice spacing.

Motivated by the challenge to understand the experimentally established uni-
versality of continuous phase transitions, in the 1970s another version of the RG
idea was developed by Wilson (1969, 1971a,b, 1972, 1975), and others (Wilson
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and Fisher 1972, Wilson and Kogut 1974, Ma 1973, 1976, Fisher 1974, 1983,
Wegner 1976, Di Castro and Jona-Lasinio 1976). In 1982 the physics Nobel Price
was awarded to Wilson for his contributions to the development of this method;
we shall therefore call this method the Wilsonian RG. For a recent review of the
foundations of the Wilsonian RG with interesting historical remarks, see Fisher
(1998). The Wilsonian formulation of the RG idea is based on the concept of a
scale-dependent effective action, which is obtained by eliminating the high-energy
degrees of freedom with energies above the cutoff scale Λ. Such a procedure can
be carried out without making any strong assumptions about the structure of a the-
ory (such as renormalizability), so that the Wilsonian RG is more general than the
field-theoretical RG. In fact, in many applications of the RG in statistical mechanics
and condensed matter, there are no infinities and the RG serves as a nonperturbative
method for treating strongly interacting many-body systems. Moreover, generaliza-
tions of the Wilsonian RG idea turn out to be useful to study the dynamics of systems
far from equilibrium (Goldenfeld 1992, McComb 2004).
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Chapter 1
Phase Transitions and the Scaling Hypothesis

In the vicinity of continuous phase transitions, thermodynamic quantities and
correlation functions typically behave as power laws characterized by universal
exponents, which are independent of microscopic parameters of a system. The
development of the Wilsonian RG in the 1970s was driven by the desire to gain
a microscopic understanding of this universality. In this introductory chapter we
briefly review the phenomenology of phase transitions, define the critical exponents,
and discuss the relevant scaling laws. For a more detailed discussion of these topics,
we refer the reader to other reviews and textbooks (Fisher 1983, Binney et al. 1992,
Goldenfeld 1992, Ivanchenko and Lisyansky 1995, Cardy 1996, McComb 2004,
Kardar 2007).

1.1 Classification of Phase Transitions

In thermal equilibrium the thermodynamic behavior of a macroscopic system can
be derived from the relevant thermodynamic potential. For a quantum system with
Hamiltonian Ĥ that is coupled to a heat bath with temperature T and a particle
reservoir characterized by a chemical potential μ, one should calculate the grand
canonical partition function Z(T, μ) and the corresponding grand canonical poten-
tial Ω(T, μ),

Z(T, μ) = e−Ω(T,μ)/T = Tr[e−(Ĥ−μN̂ )/T ] , (1.1)

where N̂ is the particle number operator and the trace is over the relevant Fock
space containing an arbitrary number of particles. In the thermodynamic limit,
where the volume V approaches infinity while the average density n = 〈N̂ 〉/V is
held constant, we expect that the (generalized) free energy f (T, μ) = Ω(T, μ)/V
approaches a finite limit independent of V . More generally, for a system whose
macroscopic state is characterized by a set of k coupling constants g1, . . . , gk , the
partition function in the thermodynamic limit is expected to be of the form

Z(g1, . . . , gk) = e−V f (g1,...,gk )/T . (1.2)

Kopietz, P. et al.: Phase Transitions and the Scaling Hypothesis. Lect. Notes Phys. 798, 5–22
(2010)
DOI 10.1007/978-3-642-05094-7 1 c© Springer-Verlag Berlin Heidelberg 2010
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For example, for a system of electrons subject to an external magnetic field with
magnitude h in the z-direction, one should add to the Hamiltonian the magnetic
energy due to the spin degrees of freedom and thus replace Ĥ − μN̂ → Ĥ −
μN̂ − hM̂ in the exponent of Eq. (1.1). Here, M̂ is the operator representing the
component of the total magnetization in the direction of the magnetic field.1 In this
case k = 3 with g1 = T , g2 = μ, and g3 = h.

In the k-dimensional coupling space spanned by g1, . . . , gk , the generalized free
energy f (g1, . . . , gk) is almost everywhere analytic. However, in the thermody-
namic limit it can happen that there are points, lines, or other manifolds in cou-
pling space with dimension smaller than k where f (g1, . . . , gk) exhibits some kind
of nonanalyticity. These are the phase boundaries separating different phases of
the system. The domains in coupling space where f (g1, . . . , gk) is analytic are
called the phases of the system. Depending on the type of nonanalyticity at the
phase boundaries, one distinguishes different types of phase transitions. In general,
f (g1, . . . , gk) is continuous at the phase boundaries, but its derivatives with respect
to the gi can be discontinuous. A phase transition is called discontinuous (or first
order) if at least one of the partial derivatives ∂ f/∂gi is discontinuous at the phase
boundary. On the other hand, if all ∂ f/∂gi , i = 1, . . . , k, are continuous at the
phase boundary, the phase transition is called continuous (or second order). Differ-
ent phases are often (but not always) characterized by different symmetries. One
usually tries to characterize phases with lower symmetry quantitatively in terms of
a suitable order parameter, which is chosen such that it is nonzero only in the phase
with lower symmetry. Let us illustrate these concepts with two examples:

Example 1: Paramagnet–Ferromagnet Transition

The phase transition in some magnetic insulators from a paramagnetic state to a state
with ferromagnetic long-range order in the absence of an external magnetic field
is an example for a continuous phase transition. The thermodynamic state of the
system in a magnetic field can be described in terms of the two relevant parameters
T and h. The order parameter is the spontaneous magnetization, which is defined in
terms of the expectation value 〈M̂〉 of the magnetization operator per unit volume
in the thermodynamic limit,

m = − lim
h→0

∂ f (T, h)

∂h
= lim

h→0

[
lim

V →∞
〈M̂〉
V

]
. (1.3)

1 Throughout this work we measure the temperature and the magnetic field in units of energy,
which amounts to formally setting the Boltzmann constant and the Bohr magneton equal to unity.
h is then the Zeemann energy and the magnetization operator M̂ is dimensionless and gives the
component of the total angular momentum in the direction of the field in units of �.
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If m is finite, the state of the system has lower symmetry than the Hamiltonian,
which for h = 0 is at least invariant under the reversal of the direction of all spins.
Since the magnetization remains finite for T < Tc even without external magnetic
field, this phenomenon is called spontaneous symmetry breaking. The order of limits
in Eq. (1.3) is important: Only if one first takes the thermodynamic limit V → ∞,
the zero-field limit can be finite. If the magnetic system can be described by an Ising
model whose one-dimensional version is introduced in Exercise 1.1, then the ferro-
magnetic state breaks the up–down (Z2) symmetry of the Hamiltonian. The typical
behavior of the spontaneous magnetization curve m(T ) as a function of temperature
is shown in Fig. 1.1. In the vicinity of the critical temperature Tc where m first
becomes finite, the magnetization curve follows a universal power law,

m(T ) ∝ (Tc − T )β, T ≤ Tc , (1.4)

where the magnetization exponent β is universal in the sense that it has the same
value for a whole class of systems which is characterized by rather general prop-
erties such as symmetry and dimensionality. While the critical behavior described
above is quite general, there are exceptions to this rule in low-dimensional sys-
tems (such as the one-dimensional Ising model introduced in Exercise 1.1), where
the effect of fluctuations can prohibit spontaneous symmetry breaking at any finite
temperature.

Fig. 1.1 Typical behavior of the spontaneous magnetization of a system exhibiting spontaneous
ferromagnetism for temperatures T below a critical temperature Tc

Example 2: Liquid–Gas Transition

The phenomenon that upon heating a liquid begins to boil at a certain transition
temperature and transforms into a gas is familiar to everybody. This is an example
of a first-order phase transition between two phases with the same symmetry. If
one plots the density n = −∂ f (T, μ)/∂μ as a function of temperature for different
values of the pressure p, one obtains the curves shown in Fig. 1.2. As we lower
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the temperature keeping the pressure p < pc fixed at a value smaller than a certain
critical pressure pc, there is a critical temperature Tc below which gas and liquid
can coexist in a certain regime of densities. At the critical end point (Tc, pc, nc)
shown in Fig. 1.2, the density interval where coexistence of gas and liquid is pos-
sible collapses to a single point. The shape of the coexistence curve for densities
|n − nc| 	 nc is again characterized by a universal power law, with the same expo-
nent as observed in the ferromagnet–paramagnet transition in uniaxial ferromagnets
(which can be described by an Ising model). For p < pc the quantity n − nc is thus
analogous to the magnetization in Example 1 and plays the role of an order parame-
ter for the liquid–gas transition. For a nice discussion of similarities and differences
between the paramagnet–ferromagnet transition and the liquid–gas transition, see,
for example, the review by Fisher (1983). In Exercise 1.2 the coexistence curve of
the liquid–gas transition marked in Fig. 1.2 will be calculated approximately within
the van der Waals theory, which provides a simple mean-field description for the
liquid–gas transition.

Fig. 1.2 Curves of constant pressure (isobars) in the temperature-density plane of a simple fluid
exhibiting a liquid–gas transition. The critical point is denoted by a black dot and the red curve
marks the boundary of the coexistence regime. In the vicinity of the critical point the shape of
the coexistence curve can be described by the same power law as the magnetization close to Tc in
Fig. 1.1, see Eq. (1.4). Note that in general the coexistence curve is not symmetric with respect to
n − nc → −(n − nc), corresponding to reflection on the temperature axis

In the two examples above the phase transition is driven by thermal fluctuations
and occurs at a finite temperature. In quantum systems one encounters sometimes
phase transitions at zero temperature which are triggered by varying some nonther-
mal control parameter such as the density or an external magnetic field (see, e.g.,
Sachdev 1999, 2000). These so-called quantum phase transitions can be classified
analogously into first order and continuous ones. We shall give some examples for
quantum phase transitions in Sect. 1.4.
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1.2 Critical Exponents and Universality of Continuous
Phase Transitions

As the temperature approaches the critical temperature Tc of a continuous phase
transition, an increasing number of microscopic degrees of freedom are coupled to
each other and effectively act as a single entity. The correlation length ξ denotes
the typical length scale of the regions where the degrees of freedom are strongly
coupled. For example, in the vicinity of the paramagnet–ferromagnet transition
(with the temperature slightly larger than the critical temperature) microscopic spins
within regions of linear size ξ tend to point in the same direction, while spins
belonging to different regions whose distance is large compared with ξ remain
uncorrelated. At the critical point associated with a continuous phase transition,
the correlation length ξ is infinite and there are fluctuations on all length scales, so
that the system is scale invariant. As a consequence, thermodynamic observables
are homogeneous functions of the relevant thermodynamic variables so that they
exhibit power-law behavior. The exponents which characterize the leading behavior
of thermodynamic observables for T → Tc are called critical exponents. For sim-
plicity, consider the paramagnet–ferromagnet transition. It is convenient to measure
the distance from the critical point on the temperature axis in terms of the reduced
temperature

t = T − Tc

Tc
. (1.5)

Historically, one introduces the critical exponents α, β, and γ to characterize the
asymptotic behavior of the following observables for t → 0,

Specific heat: C(t) ∝ |t |−α ,
Spontaneous magnetization: m(t) ∝ (−t)β , t ≤ 0 ,
Magnetic susceptibility: χ (t) ∝ |t |−γ .

(1.6)

Moreover, the shape of the critical isotherm giving the magnetic field dependence
of the magnetization m(h) at T = Tc for a small magnetic field h defines another
critical exponent δ,

Critical isotherm: m(h) ∝ |h|1/δ sgn (h) , t = 0 . (1.7)

According to the scaling hypothesis to be discussed in Chap. 1.3, the above thermo-
dynamic exponents α, β, γ , and δ can all be related to the scaling behavior of the
singular part of the free energy for small t and h.

In addition to these thermodynamic exponents, one usually introduces two more
exponents ν and η via the behavior of the order-parameter correlation function
G(r − r ′) for large distances r − r ′. For a magnetic phase transition with Ising
symmetry, G(r − r ′) is defined as follows. Let us denote by m̂(r) the operator
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representing the local magnetization density at space point r . By translational invari-
ance the thermal average

m = 〈m̂(r)〉 ≡ Tr e−Ĥ/T m̂(r)

Tr e−Ĥ/T
(1.8)

is then independent of r , so that δm̂(r) = m̂(r) − 〈m̂(r)〉 = m̂(r) − m. The order-
parameter correlation function is then defined by the thermal average

G(r − r ′) = 〈m̂(r)m̂(r ′)〉 − 〈m̂(r)〉〈m̂(r ′)〉
= 〈
δm̂(r)δm̂(r ′)

〉
, (1.9)

which depends only on the difference r − r ′. It is sometimes more convenient to
Fourier transform G(r − r ′) to wave vector space,

G(k) =
∫

d Dre−i k·r G(r) . (1.10)

Typically, one finds for the asymptotic behavior of G(r) for distances large com-
pared with the correlation length ξ ,

G(r) ∝ e−|r|/ξ√
ξ D−3|r|D−1

, |r| � ξ . (1.11)

For T → Tc the correlation length ξ diverges with a power law,

ξ ∝ |t |−ν , (1.12)

where ν is called correlation length exponent. When the system approaches the crit-
ical point, the correlation length diverges and the regime of validity of Eq. (1.11) is
pushed to infinity. Precisely at the critical point ξ is infinite and the order-parameter
correlation function decays with a power that is different from the power in the
prefactor in Eq. (1.11); in D dimensions we write

G(r) ∝ 1

|r|D−2+η , T = Tc . (1.13)

To motivate the above definition of the correlation function exponent η, note that in
wave vector space Eq. (1.13) implies for k → 0,

G(k) ∝ |k|−2+η , T = Tc . (1.14)
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We shall show in Chap. 2.3 that for systems whose critical fluctuations are in some
sense weakly interacting,2 the exponent η vanishes so that G(k) ∝ k−2. Hence,
a finite exponent η indicates strongly interacting critical fluctuations. Because in
Eq. (1.13) the exponent η can be viewed as a correction to the physical dimension
D of the system, η is sometimes called an anomalous dimension.

It turns out that the numerical values of the critical exponents are not simply
given by rational numbers as one might have expected on the basis of dimensional
analysis. Moreover, the exponents are universal in the sense that entire classes of
materials consisting of very different microscopic constituents can have the same
exponents. As a consequence of this, a uniaxial ferromagnet and a simple fluid for
example are believed to have exactly the same critical exponents. All materials can
thus be divided into universality classes, which are characterized by the same crit-
ical exponents. The universality class in turn is determined by some rather general
properties of a system, such as its dimensionality, the symmetry of its order param-
eter, or the range of the interaction. For example, in Table 1.1 we list the critical
exponents for the Ising universality class in two and three dimensions and for the
XY and Heisenberg universality classes in D = 3. Although experimental evidence
for the universality of the critical exponents had already emerged in the 1930s, a
microscopic understanding of this universality was only achieved in the 1970s with
the help of the renormalization group, which also provided a systematic method for
explicitly calculating critical exponents in cases where mean-field theory fails.

Table 1.1 Critical exponents of the Ising, XY, and Heisenberg universality classes. The corre-
sponding symmetry groups of the order parameter are Z2 for the Ising universality class, O(2) for
the XY universality class, and O(3) for the Heisenberg universality class. The small subscripts
in the first line denote the dimensionality. While the exponents of the two-dimensional Ising uni-
versality class are exact, the exponents in three dimensions are only known approximately. The
numbers for Ising3 and the error estimates are from the review by Pelissetto and Vicari (2002).
For XY3 we give rounded values for α, γ, ν, and η up to two significant figures, as compiled
in Pelissetto and Vicari (2002, Table 19). The values for β and δ are obtained using the scaling
relations (1.33b) and (1.33d). For Heisenberg3 we quote the results by Holm and Janke (1993)

Exponent Ising2 Ising3 XY3 Heisenberg3

α 0 (log) 0.110(1) –0.015 –0.10
β 1/8 0.3265(3) 0.35 0.36
γ 7/4 1.2372(5) 1.32 1.39
δ 15 4.789(2) 4.78 5.11
ν 1 0.6301(4) 0.67 0.70
η 1/4 0.0364(5) 0.038 0.027

2 More precisely, η = 0 for systems whose critical behavior can be obtained within the so-called
Gaussian approximation, which will be discussed in Chap. 2.3.
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1.3 The Scaling Hypothesis

It turns out that under quite general conditions (to be discussed below) only two
of the six exponents α, β, γ, δ, ν, and η are independent, so that we can obtain the
thermodynamic exponents α, β, γ , and δ from the exponents ν and η related to the
scaling of the correlation function using so-called scaling relations. The latter follow
from the scaling behavior of the free energy and the order-parameter correlation
function in the vicinity of a continuous phase transition. The scaling relations can
be obtained microscopically with the help of the renormalization group. Historically,
the scaling form of the free energy (Widom 1965) and of the correlation function
(Kadanoff 1966) was formulated as a hypothesis before the renormalization group
was invented.

Let us first discuss the scaling form of the free energy. For simplicity, consider
again a magnet with free energy density f (t, h), which is a function of the reduced
temperature and the magnetic field. In the vicinity of a continuous phase transition,
we expect that f (t, h) can be decomposed into a singular and a regular part,

f (t, h) = fsing(t, h) + freg(t, h). (1.15)

Sufficiently close to the critical point, the singular part fsing(t, h) is assumed to
be determined by power laws characteristic of a given critical point. According to
the scaling hypothesis for the free energy, its singular part satisfies the following
generalized homogeneity relation,

fsing(t, h) = b−D fsing(byt t, byh h) , (1.16)

where b is an arbitrary (dimensionless) scale factor and the exponents yt and yh are
characteristic for a given universality class. It is now easy to show that with this
assumption the four thermodynamic exponents α, β, γ , and δ can all be expressed
in terms of yt , yh and the dimensionality D of the system. Using the fact that b is
arbitrary, we may set byt = 1/|t |, or equivalently b = |t |−1/yt . Then we obtain from
Eq. (1.16),

fsing(t, h) = |t |D/ytΦ±

(
h

|t |yh/yt

)
, (1.17)

with the scaling functions Φ±(x) ≡ fsing(±1, x). We obtain the desired relations
between the thermodynamic exponents α, β, γ , and yt , yh by taking appropriate
derivatives of Eq. (1.17) with respect to t and h and then setting h = 0, assuming
that close to the critical point the derivatives of the free energy density are dominated
by its singular part,
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C ≈ T −1
c

∂2 fsing

∂t2

∣∣∣∣
h=0

∝ |t | D
yt

−2 = |t |−α , (1.18a)

m ≈ − ∂ fsing

∂h

∣∣∣∣
h=0

∝ (−t)
D−yh

yt = (−t)β , (1.18b)

χ ≈ ∂2 fsing

∂h2

∣∣∣∣
h=0

∝ |t | D−2yh
yt = |t |−γ , (1.18c)

where we have used the definition (1.6) of the critical exponents α, β, and γ . Hence,

α = 2 − D

yt
, (1.19a)

β = D − yh

yt
, (1.19b)

γ = 2yh − D

yt
. (1.19c)

To express the exponent δ associated with the critical isotherm in terms of yh and
D, we consider the derivative of Eq. (1.17) for finite h > 0,

m(t, h) ≈ −∂ fsing

∂h
= |t | D−yh

yt Φ ′
±

(
h

|t |yh/yt

)
, (1.20)

where Φ ′
±(x) = dΦ±(x)/dx . If the scaling functions Φ±(x) are known, we may

solve Eq. (1.20) for h = h(t,m) to obtain the scaling form of the thermal equation
of state. To obtain a finite value of m for t → 0, the scaling function Φ ′

±(x) must

behave as x
D
yh

−1 for x → ∞. We thus obtain for the critical isotherm

m(h) ∝ h
D
yh

−1 = h1/δ , (1.21)

and hence,

δ = yh

D − yh
. (1.22)

We may now eliminate the two variables yt and yh from the four equations (1.19a),
(1.19b), (1.19c), and (1.22) to obtain two scaling relations involving only the exper-
imentally measurable exponents α, β, γ , and δ,

2 − α = 2β + γ ,

2 − α = β(δ + 1) .

(1.23)

(1.24)

In order to express also the exponents ν and η in terms of yt and yh , we need
another scaling hypothesis involving the correlation function G(r). We assume
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that sufficiently close to the critical point, G(r) is dominated by the singular part
Gsing(|r|; t, h) which satisfies (Kadanoff 1966)

Gsing(|r|; t, h) = b−2(D−yh )Gsing

( |r|
b

; byt t, byh h

)
. (1.25)

For simplicity, consider the case h = 0. Setting again b = |t |−1/yt , we obtain

Gsing(|r|; t, 0) = |t | 2(D−yh )
yt Ψ±

( |r|
|t |−1/yt

)
, (1.26)

with Ψ±(x) = Gsing(x ; ±1, 0). For |t | �= 0 and |r| → ∞, we expect Gsing(|r|) ∝
exp[−|r|/ξ ], so that Eq. (1.26) implies for the correlation length

ξ ∝ |t |−1/yt = |t |−ν , (1.27)

where we have used the definition (1.12) of the correlation length exponent ν. We
conclude that

ν = 1

yt
. (1.28)

Using Eq. (1.19a) to express yt in terms of the specific heat exponent α, we obtain
from Eq. (1.28) the so-called hyperscaling relation

2 − α = Dν . (1.29)

Finally, we relate the critical exponent η to yh and D by observing that for |t | → 0
the function Gsing(|r|; t, 0) can only be finite if Ψ±(x) is proportional to |x |−2(D−yh )

for large x . We therefore obtain at the critical point

Gsing(|r|; 0, 0) ∝ |r|−2(D−yh ) = |r|−(D−2+η) , (1.30)

where we have used the definition (1.13) of the correlation function exponent η. We
therefore identify 2(D − yh) = D − 2 + η, or equivalently

η = D + 2 − 2yh . (1.31)

Expressing yh in terms of the susceptibility exponent γ using Eq. (1.19c), we obtain
another hyperscaling relation

γ = (2 − η)ν . (1.32)

Equations (1.29) and (1.32) are called hyperscaling relations because they con-
nect singularities in thermodynamic observables with singularities related to the
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correlation function. It turns out, however, that the underlying scaling hypothesis
(1.25) is only valid if the dimension D of the system is smaller than a certain upper
critical dimension Dup, which depends on the universality class (for the Ising uni-
versality class Dup = 4). As will be discussed in Sect. 2.3.4, for D > Dup the
Gaussian approximation is sufficient to calculate the critical behavior of the system.
The failure of hyper-scaling for D > Dup is closely related so the existence of
a so-called dangerously irrelevant coupling (Fisher 1983, Appendix D).3 If hyper-
scaling is satisfied, we may combine the two thermodynamic scaling relations (1.23)
and (1.24) with the two hyperscaling relations (1.29) and (1.32) to express the four
thermodynamic exponents α, β, γ , and δ in terms of the two correlation function
exponents,

α = 2 − Dν , (1.33a)

β = ν

2
(D − 2 + η) , (1.33b)

γ = ν(2 − η) , (1.33c)

δ = D + 2 − η

D − 2 + η
. (1.33d)

If one considers not only static but also dynamic (i.e., time-dependent) phenom-
ena in the vicinity of a critical point, one observes that temporal correlations of the
order parameter decay slower and slower as one approaches the critical point, a phe-
nomenon which is called critical slowing down. The typical decay time of temporal
order-parameter fluctuations is called correlation time τc. One usually observes that
in the vicinity of a critical point, τc diverges as a power law

τc ∝ ξ z ∝ |t |−νz , (1.34)

where z is called the dynamic exponent.

1.4 Scaling in the Vicinity of Quantum Critical Points

Although quantum mechanics can be essential to understand the existence of ordered
phases in matter (e.g., superconductivity and magnetism are quantum effects), it
turns out that quantum mechanics does not influence the asymptotic critical behav-
ior of finite temperature phase transitions. The reason is that sufficiently close to
the critical point, classical thermal fluctuations are always dominant. To understand
this, note that according to Eq. (1.34) the typical energy scale Ec associated with
temporal fluctuations vanishes in the vicinity of a continuous phase transition as a
power law,

3 To understand this rather subtle point, the reader should read the following two chapters and
carefully do Exercise 3.3.3 at the end of Chap. 3.
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Ec = �/τc ∝ |t |νz ∝ |T − Tc|νz . (1.35)

As pointed out many years ago by Hertz (1976), in quantum systems static and
dynamic fluctuations are not independent, because the Hamiltonian Ĥ determines
not only the partition function, but also the time evolution of any observable Â via
the Heisenberg equation of motion,

i�
d Â

dt
= [ Â, Ĥ ] . (1.36)

In quantum systems the energy Ec associated with the correlation time is therefore
also the typical fluctuation energy for static fluctuations. Quantum mechanics should
be negligible for Ec 	 T , because quantum effects are then washed out by thermal
excitations. According to Eq. (1.35), this condition is always satisfied sufficiently
close to Tc, so that a purely classical description of order-parameter fluctuations is
sufficient to calculate the critical exponents.

On the other hand, there are many interesting systems which exhibit phase tran-
sitions at zero temperature when some nonthermal control parameter r is fine-tuned
to a critical point rc. These so-called quantum phase transitions can be associated
with a nonanalyticity of the ground state properties of the system at r = rc. The
corresponding point in the relevant parameter space is called a quantum critical
point. Some of the most interesting phenomena in condensed matter systems are
related to quantum critical points, for example:

(a) Anderson localization: Electrons in disordered systems undergo a metal–
insulator transition as a function of the disorder strength. The nonthermal con-
trol parameter r is in this case some measure for the disorder strength, such as
the elastic mean free path in units of the inverse Fermi wave vector.

(b) Quantum Hall effect: The quantization of the Hall conductance in the two-
dimensional electron gas in semiconductor heterostructures for certain values of
an external magnetic field is an example of a class of quantum phase transitions
where the magnetic field plays the role of the nonthermal control parameter r .
Alternatively, one can fix the magnetic field and vary the density, so that r is the
density.

(c) Paramagnet–ferromagnet transition in uniaxial ferromagnets in a transverse
magnetic field: In some magnetic insulators with an easy axis (such as LiHoF4),
one can generate a quantum phase transition by applying a transverse magnetic
field perpendicular to the easy axis. In this case the transverse magnetic field
plays the role of the nonthermal control parameter r . The critical behavior of
these systems can be described by using an Ising model in a transverse magnetic
field.

(d) Mott–Hubbard transition: This metal-insulator transition occurs in strongly cor-
related electronic systems. The strength of the interaction plays here the role of
the nonthermal control parameter r . Experimentally, the strength of the interac-
tion can be controlled by external pressure or by chemical doping.
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(e) Fermi-liquid spin-density wave transition: In some magnetic conductors (such
as the heavy fermion material CeCu6−x Aux ), it is possible to induce a quantum
phase transition from a Fermi liquid state to a spin-density wave state with long-
range magnetic order by varying the strength of the interaction.

For a detailed introduction to the fascinating field of quantum phase transitions,
we refer the reader to the book and review articles by Sachdev (1999, 2000, 2006,
2009) and to the review by Vojta (2003). Here, we would only like to motivate a
generalized scaling hypothesis for the singular part of the free energy density in the
vicinity of a quantum critical point. Therefore, we note that in quantum systems the
time acts in some sense as an extra dimension and thus increases the effective dimen-
sionality of the system. This intuitive idea can be made mathematically precise by
expressing the partition function as an imaginary time functional integral over a
suitably defined field Φ(τ, r) representing fluctuations of the order parameter,4

Z =
∫

D[Φ] exp

{
−

∫ 1/T

0
dτ

∫
d DrL[Φ(τ, r)]

}
. (1.37)

Here, L[Φ(τ, r)] is the Lagrangian density for the order-parameter field. Apart from
the spatial point r , the field Φ(τ, r) depends on the imaginary time τ which takes
values in the interval [0, 1/T ]. Obviously, the imaginary time direction acts like an
extra dimension, which becomes infinite for T → 0. But according to Eq. (1.34),
in the vicinity of a quantum critical point characterized by the dynamic exponent
z, time scales as (length)z , so that the scaling properties of the quantum system are
identical with those of an effective classical system in dimension D + z. Due to
the extra dimensions, the homogeneity relations have to be modified for continuous
quantum phase transitions. At T = 0, we obtain instead of the classical relation
(1.16) for the scaling of the singular part of the free energy density,

fsing(g, h) = b−(D+z) fsing(byg g, byh h) , (1.38)

where g = |r − rc|/rc and 1/yg = ν can be identified with the correlation length
exponent. At finite temperature, Eq. (1.38) should be generalized as follows,

fsing(g, h, T ) = b−(D+z) fsing(byg g, byh h, bz T ) . (1.39)

The interplay between classical and quantum fluctuations in the vicinity of a
quantum critical point leads to interesting finite temperature crossovers (Hertz 1976,
Chakravarty et al. 1988, 1989, Millis 1993, Sachdev 1999, Continentino 2001). In
particular, there is a quantum critical region where the physics is dominated by ther-
mal excitations of the quantum critical ground state. In systems which do not exhibit

4 The microscopic origin of Eq. (1.37) will become clear in Chaps. 11 and 12 where we use so-
called Hubbard–Stratonovich transformations to describe collective fluctuations and spontaneous
symmetry breaking in quantum systems.
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any long-range order at finite temperature (such as the (one-dimensional) Ising chain
in a transverse field or two-dimensional systems where the symmetry group of
the order parameter is continuous), there are three different regimes as shown in
Fig. 1.3: a quantum critical fan emerging from a quantum critical point, which is
bounded by a thermally disordered regime and a quantum disordered regime. If the
system exhibits long-range order at finite temperature, the corresponding diagram
contains in addition a regime where classical critical behavior can be observed, as
shown in Fig. 1.4. The finite temperature crossovers of quantum phase transitions
have been studied with the help of conventional Wilsonian RG methods (Hertz 1976,
Chakravarty et al. 1988, 1989, Millis 1993, Continentino 2001). However, these

Fig. 1.3 Different regimes in the vicinity of a quantum critical point (QCP) where there is no
long-range order at T �= 0. Here r is some nonthermal control parameter, such as an external
magnetic field or the density. The dotted curves indicate the crossover lines at T = Ec ∝ |r − rc|νz

Fig. 1.4 Different regimes in the vicinity of a quantum critical point (QCP) for a system exhibiting
long-range order at finite temperature
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works focused on the thermodynamic quantities; the calculation of momentum- and
frequency-dependent correlation functions is more difficult and requires functional
RG methods (Hasselmann et al. 2007, Sinner et al. 2008). Modern functional RG
methods have only very recently been used to study quantum phase transitions (Wet-
terich 2007, Jakubczyk et al. 2008). One of the main goals of this book is to show
that the functional RG is a convenient and powerful tool to calculate momentum-
and frequency-dependent correlation functions near quantum critical points.

Exercises

1.1 Exact Solution and Scaling Properties of the One-Dimensional
Ising Model

One of the most important model systems in statistical physics is the Ising model
which in one dimension allows for a relatively simple exact solution. Let us
therefore consider the one-dimensional Ising model of N spins si = ±1 (with
i = 1, . . . , N and periodic boundary conditions) in a magnetic field h. Denoting the
coupling constant for ferromagnetic nearest neighbor interactions by J , its Hamil-
tonian reads

H = −J
N∑

i=1

si si+1 − h
N∑

i=1

si .

(a) Write the partition function Z as a product of terms of the form f (si , si+1) ≡
exp[(J/T )si si+1 + (h/2T )(si + si+1)] and show that the partition function can
also be written as Z = Tr

[
TN

]
, where the transfer matrix T is defined by

T =
(

e(J+h)/T e−J/T

e−J/T e(J−h)/T

)
.

(b) Diagonalize T and show that Z = λN
+ + λN

− , where λ+ > λ− are the two
eigenvalues of T. Evaluate λ+ and λ− and show that in the thermodynamic limit
N → ∞, the free energy per spin, f ≡ F/N , is given by

f = −T ln λ+ = −J − T ln

[
cosh(h/T ) +

√
sinh2(h/T ) + x

]
,

where x = e−4J/T is a temperature-like quantity which vanishes for T → 0.
Argue that although there is no phase transition at any finite temperature, there
is a critical point at zero temperature, that is, x = 0.

(c) By differentiating f with respect to h, calculate the average magnetization per

spin, m ≡ 1
N

〈∑N
i=1 si

〉
. Sketch m(h) for different values of T .
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(d) For h = 0, calculate and sketch the magnetic susceptibility χ (T ) ≡ (
∂m
∂h

)
T

and
the specific heat C(T ) = −T ∂2 F/∂T 2.

(e) Due to its critical point at zero temperature, the critical properties of the one-
dimensional Ising model are a little special (Fisher 1983). To discuss scaling
properties, it is advantageous to subtract the zero field, zero temperature ground
state energy from f and introduce f̃ = ( f + J )/T . Suitable scaling variables
can be chosen to be the temperature-like quantity x = e−4J/T introduced above
and h̃ = h/T . Determine a scaling function, its scaling eigenvalues yx and
yh̃ , and derive the thermodynamic exponents αx , βx , γx , and δx . The index x
should remind you of the fact that all thermodynamic exponents are defined
with t = (T − Tc)/Tc replaced by x , e.g., C(x) ∝ ∂2 f̃ /∂x2 ∝ x−αx . Discuss
your exponents and compare with your results in (d).

(f) Use hyperscaling relations to make a prediction for the critical exponents η and
νx . Verify your predictions by generalizing the above transfer matrix method
and evaluating the spin–spin correlation function 〈si s j 〉 ≡ Z−1 ∑

{sl=±1} si s j

exp(−H/T ) for h = 0 which you should express as 〈si s j 〉 ∝ exp(−|i − j |/ξ ).
(Hint: For i < j you can write the correlation function as 〈si s j 〉 = Z−1

Tr
[
Tiσ zT j−iσ zTN− j

]
, where σ z is a usual Pauli matrix.)

1.2 Critical Exponents of the van der Waals Gas

To take into account interaction corrections to an ideal gas of atoms, van der Waals
proposed the following equation of state (with a, b > 0),

(p + a (N/V )2)(V − Nb) = N T .

Roughly speaking, the coefficient b represents effects due to a hard core repulsive
interaction and decreases the effective volume of the system. At larger distances,
the interaction between the atoms is attractive and leads to a reduction of the pres-
sure. Because the interaction is always between pairs of molecules, this correction
is expected to be proportional to the square of the density n = N/V .

(a) Using the van der Waals equation of state, it is possible to describe the discon-
tinuous liquid–gas transition and the critical end point. Sketch p(V ) for repre-
sentative values of T . Rewrite the equation of state as a cubic polynomial in
V and argue that at the critical point (pc, Vc, Tc), the van der Waals equation
of state reduces to (V − Vc)3 = 0. Compare coefficients and express a and b
through pc and Vc.

(b) Calculate the free energy F(T, V ) by integrating −p(T, V ) along an isotherm
with respect to V . You may adjust the temperature-dependent additive constant
by comparing your result in the limit V → ∞ with that of an ideal gas. Using

the relation CV = −T
(
∂2 F
∂T 2

)
V

, calculate the specific heat at constant volume.

What do you obtain for the critical exponent α defined by CV ∝ |t |−α?
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(c) The exponent γ is defined by κT ≡ − 1
V

(
∂V
∂p

)
T

∝ |t |−γ (with V = Vc). The

exponent δ is defined at T = Tc by p − pc ∝ (n −nc)δ ∝ −(V − Vc)δ . Calculate
the critical exponents γ and δ.

(d) As you might have noticed, the van der Waals equation of state predicts regions

in the phase diagram where the compressibility κT ≡ − 1
V

(
∂V
∂p

)
T

does not sat-

isfy κT ≥ 0. This instability is of course unphysical and can be traced back to
the fact that the van der Waals equation does not allow for phase separation. A
simple remedy is the Maxwell construction: Draw a line parallel to the V -axis
which cuts the graph p(V ) in such a way that the two areas enclosed by this line
and p(V ) are equal. In the inner part of the graph (ranging from Vliquid to Vgas),
the pressure p(V ) is now replaced by the horizontal line. Justify the Maxwell
construction by considering an isotherm of F(T, V ) = − ∫

p dV + const(T ).
By allowing for phase separation, you can now reduce the free energy F(T, V )
for Vliquid < V < Vgas, turning the free energy convex. Apply the Maxwell
construction to your above sketch and mark the coexistence curve in the p–V
diagram (where F is nonanalytic).

(e) To obtain the critical exponent β, write V = Vc(1 + v) and T = Tc(1 + t)
and expand p(T, V ) for small t and v. You need to keep terms up to order
O(t, tv, v3). You should justify this later on. Apply the Maxwell construction to
obtain the coexistence curve. Go ahead and calculate the coefficient β defined
by Vgas − Vliquid ∝ |t |β with t ≤ 0. (You may consult Goldenfeld (1992) if you
need more help.)
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Chapter 2
Mean-Field Theory and the Gaussian
Approximation

The Wilsonian renormalization group (RG) was invented in order to study the effect
of strong fluctuations and the mutual coupling between different degrees of freedom
in the vicinity of continuous phase transitions. Before embarking on the theory of
the RG, let us in this chapter describe two less sophisticated methods of dealing
with this problem, namely the mean-field approximation and the Gaussian approx-
imation. Within the mean-field approximation, fluctuations of the order parameter
are completely neglected and the interactions between different degrees of freedom
are taken into account in some simple average way. The Gaussian approximation
is in some sense the leading fluctuation correction to the mean-field approximation.
Although these methods are very general and can also be used to study quantum
mechanical many-body systems1, for our purpose it is sufficient to introduce these
methods using the nearest-neighbor Ising model in D dimensions as an example.
The Ising model is defined in terms of the following classical Hamiltonian,

H = −1

2

N∑
i j=1

Ji j si s j − h
N∑

i=1

si . (2.1)

Here, i and j label the sites r i and r j of a D-dimensional hypercubic lattice
with N sites, the variables si = ±1 correspond to the two possible states of the
z-components of spins localized at the lattice sites, the Ji j denote the exchange
interaction between spins localized at sites r i and r j , and h is the Zeeman energy
associated with an external magnetic field in the z-direction. The above model is
called classical because it does not involve any noncommuting operators. By simply
rotating the magnetic field in the x-direction we obtain a quantum Ising model, as
discussed in Exercise 2.1. The quantum mechanical origin of magnetism is hidden in
the exchange energies Ji j . Due to the exponential decay of localized wave functions,
it is often sufficient to assume that the Ji j are nonzero only if the sites r i and r j

1 For example, in quantum many-body systems the self-consistent Hartree–Fock approximation
can be viewed as a variant of the mean-field approximation, while the Gaussian approximation is
usually called random phase approximation.

Kopietz, P. et al.: Mean-Field Theory and the Gaussian Approximation. Lect. Notes Phys. 798,
23–52 (2010)
DOI 10.1007/978-3-642-05094-7 2 c© Springer-Verlag Berlin Heidelberg 2010
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are nearest neighbors on the lattice. Denoting the nonzero value of Ji j for nearest
neighbors by J , we obtain from Eq. (2.1) the nearest-neighbor Ising model

H = −J
∑
〈i j〉

si s j − h
N∑

i=1

si . (2.2)

Here, 〈i j〉 denotes the summation over all distinct pairs of nearest neighbors. In
order to obtain thermodynamic observables, we have to calculate the partition
function,

Z(T, h) =
∑
{si }

e−βH ≡
∑

s1=±1

∑
s2=±1

. . .
∑

sN =±1

exp

⎡
⎣β J

∑
〈i j〉

si s j + βh
∑

i

si

⎤
⎦ ,

(2.3)
where we have introduced the notation β = 1/T for the inverse temperature.2 While
in one dimension it is quite simple to carry out this summation (see Exercise 1.1),
the corresponding calculation in D = 2 is much more difficult and until now the
exact Z(T, h) for h �= 0 is not known. For h = 0 the partition function of the two-
dimensional Ising model was first calculated by Onsager (1944), who also presented
an exact expression for the spontaneous magnetization at a conference in 1949. A
proof for his result was given in 1952 by C. N. Yang. See the textbooks by Wannier
(1966), by Huang (1987), or by Mattis (2006) for pedagogical descriptions of the
exact solution for h = 0. In dimensions D = 3 there are no exact results available,
so one has to rely on approximations. The simplest is the mean-field approximation
discussed in the following section.

2.1 Mean-Field Theory

2.1.1 Landau Function and Free Energy

Mean-field theory is based on the assumption that the fluctuations around the aver-
age value of the order parameter are so small that they can be neglected. Let us
therefore assume that the system has a finite magnetization,3

m = 〈si 〉 ≡
∑

{s j } e−H/T si∑
{s j } e−H/T

, (2.4)

2 The inverse temperature β = 1/T should not be confused with the order-parameter exponent β.
Because these notations are both standard we shall adopt them here; usually the meaning of the
symbol β is clear from the context.
3 For lattice models it is convenient to divide the total magnetic moment by the number N of
lattice sites and not by the total volume. For simplicity we use here the same symbol as for the
magnetization in Eq. (1.3), which has units of inverse volume.
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where we have used the fact that by translational invariance the thermal expecta-
tion values 〈si 〉 are independent of the site label i . Writing si = m + δsi with the
fluctuation δsi = si − m, we have

si s j = m2 + m(δsi + δs j ) + δsiδs j = −m2 + m(si + s j ) + δsiδs j . (2.5)

We now assume that the fluctuations are small so that the last term δsiδs j which is
quadratic in the fluctuations can be neglected. Within this approximation, the Ising
Hamiltonian (2.1) is replaced by the mean-field Hamiltonian

HMF = m2

2

∑
i j

Ji j −
∑

i

(
h +

∑
j

Ji j m
)

si

= N
z J

2
m2 −

∑
i

(h + z Jm)si , (2.6)

where the second line is valid for the nearest-neighbor interactions, and z = 2D
is the number of nearest neighbors (coordination number) of a given site of a D-
dimensional hypercubic lattice. As the spins in the mean-field Hamiltonian (2.6) are
decoupled, the partition function factorizes into a product of N independent terms
which are just the partition functions of single spins in an effective magnetic field
heff = h + z Jm,

ZMF(T, h) = e−βN z Jm2/2
∑
{si }

eβ(h+z Jm)
∑

i si

= e−βN z Jm2/2
∏

i

[
eβ(h+z Jm) + e−β(h+z Jm)

]

= e−βN z Jm2/2
[
2 cosh[β(h + z Jm)]

]N
. (2.7)

Writing this as

ZMF(T, h) = e−βNLMF(T,h; m) , (2.8)

we obtain in mean-field approximation

LMF(T, h; m) = z J

2
m2 − T ln

[
2 cosh[β(h + z Jm)]

]
. (2.9)

As will be explained in more detail below, the function LMF(T, h; m) is an exam-
ple for a Landau function, which describes the probability distribution of the order
parameter: the probability density of observing for the order parameter the value
m is proportional to exp[−βNLMF(T, h; m)]. The so far unspecified parameter m is
now determined from the condition that the physical value m0 of the order parameter
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maximizes its probability distribution, corresponding to the minimum of the Landau
function,

∂LMF(T, h; m)

∂m

∣∣∣∣
m0

= 0 . (2.10)

From Eq. (2.9) we then find that the magnetization m0 in mean-field approximation
satisfies the self-consistency condition

m0 = tanh[β(h + z Jm0)] , (2.11)

which defines m0 = m0(T, h) as a function of T and h. The mean-field result for
the free energy per site is thus

fMF(T, h) = LMF(T, h; m0(T, h)) . (2.12)

The mean-field self-consistency equation (2.11) can easily be solved graphically. As
shown in Fig. 2.1, for h �= 0 the global minimum of LMF(T, h; m) occurs always at a
finite m0 �= 0. On the other hand, for h = 0 the existence of nontrivial solutions with
m0 �= 0 depends on the temperature. In the low-temperature regime T < z J there
are two nontrivial solutions with m0 �= 0, while at high temperatures T > z J our
self-consistency equation (2.11) has only the trivial solution m0 = 0, see Fig. 2.2.
In D dimensions the mean-field estimate for the critical temperature is therefore

Tc = z J = 2D J . (2.13)

For D = 1 this is certainly wrong, because we know from the exact solution (see
Exercise 1.1) that Tc = 0 in one dimension. In two dimensions the exact crit-
ical temperature of the nearest-neighbor Ising model satisfies sinh(2J/Tc) = 1
(Onsager 1944), which yields Tc ≈ 2.269J and is significantly lower than the
mean-field prediction of 4J . As a general rule, in lower dimensions fluctuations
are more important and tend to disorder the system or at least reduce the critical
temperature.

2.1.2 Thermodynamic Critical Exponents

For temperatures close to Tc and small β|h| the value m0 of the magnetization at
the minimum of LMF(T, h; m) is small. We may therefore approximate the Landau
function (2.9) by expanding the right-hand side of Eq. (2.9) up to fourth order in m
and linear order in h. Using

ln[2 cosh x] = ln 2 + x2

2
− x4

12
+ O(x6) , (2.14)
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Fig. 2.1 Graphical solution of the mean-field self-consistency equation (2.11) for h > 0. The inset
shows the behavior of the corresponding Landau function LMF(T, h; m) defined in Eq. (2.9). For
T > Tc or h sufficiently large the Landau function exhibits only one minimum at finite m0 > 0.
For T < Tc and h sufficiently small, however, there is another local minimum at negative m, but
the global minimum of LMF(T, h; m) is still at m0 > 0

we obtain from Eq. (2.9),

LMF(T, h; m) = f + r

2
m2 + u

4!
m4 − hm + . . . , (2.15)

with

f = −T ln 2 , (2.16a)

r = z J

T

(
T − z J

)
≈ T − Tc , (2.16b)

u = 2T
( z J

T

)4
≈ 2Tc , (2.16c)
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Fig. 2.2 Graphical solution of the mean-field self-consistency equation (2.11) for h = 0. The
upper figure shows the typical behavior in the disordered phase T > Tc, while the lower figure
represents the ordered phase T < Tc. The behavior of the Landau function is shown in the insets:
while for T > Tc it has a global minimum at m0 = 0, it develops for T < Tc two degenerate
minima at ±|m0| �= 0

where the approximations are valid close to the critical temperature, where |T −
Tc| 	 Tc and z J/T ≈ 1. Obviously, the sign of the coefficient r changes at T = Tc,
so that for h = 0 the global minimum of LMF(T, h; m) for T > Tc evolves into a
local maximum for T < Tc, and two new minima emerge at finite values of m, as
shown in Fig. 2.2. The crucial point is now that for a small reduced temperature
t = (T − Tc)/Tc the value of m at the minima of LMF(T, h; m) is small compared
with unity, so that our expansion (2.15) in powers of m is justified a posteriori.
Taking the derivative of Eq. (2.15) with respect to m, it is easy to see that Eq. (2.11)
simplifies to

∂LMF(T, h; m)

∂m

∣∣∣∣
m0

= rm0 + u

6
m3

0 − h = 0 . (2.17)
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The behavior of thermodynamic observables close to Tc is now easily obtained:

(a) Spontaneous magnetization: Setting h = 0 in Eq. (2.17) and solving for m0, we
obtain for T ≤ Tc (with r ≤ 0),

m0 =
√

−6r

u
∝ (−t)1/2 . (2.18)

Comparing this with the definition (1.6) of the critical exponent β, we conclude
that the mean-field approximation predicts for the Ising universality class β =
1/2, independently of the dimension D.

(b) Zero-field susceptibility: To obtain the mean-field result for the susceptibility
exponent γ , we note that for small but finite h and T ≥ Tc we may neglect the
terms of order m3

0 in Eq. (2.17), so that m0(h) ∝ h/r , and hence the zero-field
susceptibility behaves for t → 0 as

χ = ∂m0(h)

∂h

∣∣∣∣
h=0

∝ 1

r
∝ 1

T − Tc
. (2.19)

It is a simple exercise to show that χ ∝ |T − Tc|−1 also holds for T < Tc. The
susceptibility exponent is therefore γ = 1 within mean-field approximation.

(c) Critical isotherm: The equation of state at the critical point can be obtained by
setting r = 0 in Eq. (2.17), implying

m0(h) ∝
(

h

u

)1/3

, (2.20)

and hence the mean-field result δ = 3.
(d) Specific heat: The specific heat C per lattice site can be obtained from the

thermodynamic relation

C = −T
∂2 fMF(T, h)

∂T 2
, (2.21)

where the mean-field free energy per site fMF(T, h) is given in Eq. (2.12). Set-
ting h = 0, we find from Eq. (2.17) for T > Tc that fMF(t, 0) = f because
m0 = 0 in this case. On the other hand, for T < Tc we may substitute Eq. (2.18),
so that

fMF(t, 0) = f − 3

2

r2

u
, T < Tc . (2.22)

Setting r ≈ T − Tc and taking two derivatives with respect to T , we obtain

C ≈ −Tc
∂2 f

∂T 2
, T > Tc , (2.23a)
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≈ −Tc
∂2 f

∂T 2
+ 3

Tc

u
, T < Tc . (2.23b)

Note that according to Eq. (2.16c) u ≈ 2Tc so that 3Tc/u ≈ 3/2. We conclude
that within the mean-field approximation the specific heat is discontinuous at Tc,
so that C ∝ |t |0, implying α = 0. Note that the mean-field results are consistent
with the scaling relations (1.23) and (1.24), 2 − α = 2β + γ = β(δ + 1).

In order to obtain the exponents ν and η, we need to calculate the correlation
function G(r), which we shall do in Sect. 2.3 within the so-called Gaussian approx-
imation. However, a comparison of the mean-field results α = 0, β = 1/2, γ = 1,
and δ = 3 with the correct values given in Table 1.1 at the end of Sect. 1.2 shows
that the mean-field approximation is not suitable to obtain quantitatively accurate
results, in particular in the physically accessible dimensions D = 2 and D = 3.

2.2 Ginzburg–Landau Theory

Our ultimate goal will be to develop a systematic method for taking into account the
fluctuations neglected in mean-field theory, even if the fluctuations are strong and
qualitatively change the mean-field results. As a first step to achieve this ambitious
goal, we shall in this chapter derive from the microscopic Ising Hamiltonian (2.1) an
effective (classical) field theory whose fields ϕ(r) represent suitably defined spatial
averages of the fluctuating magnetization over sufficiently large domains such that
ϕ(r) varies only slowly on the scale of the lattice spacing. The concept of an effec-
tive field theory representing coarse-grained fluctuations averaged over larger and
larger length scales lies at the heart of the Wilsonian RG idea. It turns out that in the
vicinity of the critical point the form of the effective coarse-grained action S[ϕ] is
constrained by symmetry and can be written down on the basis of phenomenological
considerations. Such a strategy has been adopted by Ginzburg and Landau (1950)
to develop a phenomenological theory of superconductivity which is particularly
useful to treat spatial inhomogeneities.

2.2.1 Exact Effective Field Theory

To derive the effective order-parameter field theory for the Ising model, let us write
the partition function of the Hamiltonian (2.1) in compact matrix form,

Z =
∑
{si }

exp

⎡
⎣β

2

∑
i j

Ji j si s j + βh
∑

i

si

⎤
⎦ =

∑
{si }

exp

[
1

2
sT J̃s + h̃T s

]
,

(2.24)
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where s and h̃ are N -dimensional column vectors with [s]i = si and [h̃]i = βh,
and J̃ is an N × N -matrix with matrix elements [J̃]i j = J̃i j = β Ji j . We now use
the following mathematical identity for N -dimensional Gaussian integrals, valid for
any positive symmetric matrix A,

(
N∏

i=1

∫ ∞

−∞

dxi√
2π

)
e− 1

2 xT Ax+xT s = [det A]−1/2e
1
2 sT A−1s , (2.25)

to write the Ising interaction in the following form (we identify J̃ = A−1)

e
1
2 sT J̃s =

∫
D[x] exp

[− 1
2 xT J̃−1x + xT s

]
∫
D[x] exp

[− 1
2 xT J̃−1x

] , (2.26)

where we have introduced the notation

∫
D[x] ≡

N∏
i=1

∫ ∞

−∞

dxi√
2π

. (2.27)

In fact, the identity (2.26) can be easily proven without using the formula (2.25) by
redefining the integration variables in the numerator via the shift x = x′ + J̃s and
completing the squares,

− 1

2
(x′ + J̃s)T J̃−1(x′ + J̃s) + (x′ + J̃s)T s = −1

2
x′T J̃−1x′ + 1

2
sT J̃s . (2.28)

In a sense, Eq. (2.26) amounts to reading the Gaussian integration formula from
right to left, introducing an auxiliary integration to write the right-hand side in
terms of a Gaussian integral. Analogous transformations turn out to be very useful to
introduce suitable collective degrees of freedom in quantum mechanical many-body
systems; in this context transformations of the type (2.26) are called Hubbard–
Stratonovich transformations (Hubbard 1959, Stratonovich 1957, Kopietz 1997).
The Ising partition function (2.24) can now be written as

Z =
∫
D[x] exp

[− 1
2 xT J̃−1x

]∑
{si } exp

[
(h̃ + x)T s

]
∫
D[x] exp

[− 1
2 xT J̃−1x

] . (2.29)

For a given configuration of the Hubbard–Stratonovich field x, the spin summation
in the numerator factorizes again in a product of independent terms, each describing
the partition function of a single spin in a site-dependent magnetic field h + xi/β.
Therefore, this spin summation can easily be carried out,
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∑
{si }

exp
[
(h̃ + x)T s

] =
N∏

i=1

⎡
⎣ ∑

si =±1

e(βh+xi )si

⎤
⎦ =

N∏
i=1

[2 cosh(βh + xi )]

= exp

[
N∑

i=1

ln [2 cosh(βh + xi )]

]
. (2.30)

The partition function (2.29) can thus be written as

Z =
∫
D[x]e−S̃[x]∫

D[x] exp
[− 1

2 xT J̃−1x
] = 1√

det J̃

∫
D[x]e−S̃[x] , (2.31)

where

S̃[x] = 1

2
xT J̃−1x −

N∑
i=1

ln [2 cosh(βh + xi )] . (2.32)

To understand the physical meaning of the variables x, we calculate the expectation
value of its i-th component

〈xi 〉S̃ ≡
∫
D[x]e−S̃[x]xi∫
D[x]e−S̃[x]

. (2.33)

Introducing an auxiliary N -component column vector y = (y1, . . . , yN )T to write

xi = lim
y→0

∂

∂yi
exT y , (2.34)

and performing the Gaussian integration using Eq. (2.26), we have the following
chain of identities,

〈xi 〉S̃ = lim
y→0

∂

∂yi

∫
D[x] exp

[− 1
2 xT J̃−1x

]∑
{si } exp

[
(h̃ + x)T s + xT y

]
∫
D[x]e−S̃[x]

= lim
y→0

∂

∂yi

∑
{si } exp

[
1
2 (s + y)T J̃(s + y) + h̃T s

]
∑

{si } exp
[

1
2 sT J̃s + h̃T s

]
=

∑
{si } e−βH [J̃s]i∑

{si } e−βH
= 〈[J̃s]i 〉 , (2.35)

or in vector notation,

〈x〉S̃ = J̃〈s〉 . (2.36)
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In order to introduce variables ϕi whose expectation value can be identified with the
average magnetization m = 〈si 〉, we simply define

ϕ = J̃−1x , (2.37)

so that the expectation value of the i-th component of ϕ is

〈ϕi 〉S̃ = [J̃−1〈x〉S̃]i = 〈si 〉 = m . (2.38)

Substituting ϕ = J̃−1x in Eqs. (2.31) and (2.32), we finally obtain the following
exact representation of the partition function,

Z =
∫
D[ϕ]e−S[ϕ]∫

D[ϕ] exp
[− 1

2ϕT J̃ϕ
] =

√
det J̃

∫
D[ϕ]e−S[ϕ] , (2.39)

where the effective action S[ϕ] ≡ S̃[x → J̃ϕ] is given by

S[ϕ] = β

2

∑
i j

Ji jϕiϕ j −
N∑

i=1

ln

⎡
⎣2 cosh

[
β
(

h +
N∑

j=1

Ji jϕ j

)]⎤⎦ . (2.40)

Equation (2.39) expresses the partition function of the Ising model in terms of an
N -dimensional integral over variables ϕi whose expectation value is simply the
magnetization per site. The integration variables ϕi can therefore be interpreted
as the fluctuating magnetization. The infinite-dimensional integral obtained from
Eq. (2.39) in the limit N → ∞ is an example of a functional integral. The resulting
effective action S[ϕ] then defines a (classical) effective field theory for the order-
parameter fluctuations of the Ising model. We shall refer to the integration variables
ϕi as the fields of our effective field theory.

It should be noted that Eq. (2.38) does not precisely generalize to higher order
correlation functions. If we proceed as above and use the identity

xi1 xi2 . . . xin = lim
y→0

∂

∂yi1

∂

∂yi2

. . .
∂

∂yin

exT y (2.41)

to carry out the same transformations as in Eq. (2.35), we arrive at

〈ϕi1ϕi2 . . . ϕin 〉S = 〈si1 si2 . . . sin 〉 + {
averages involving at most

n − 2 of the spins si1, ..., sin

}
, (2.42)

where the lower order correlation functions involving n − 2 and less spin variables
arise from the repeated differentiation of the y-dependent terms in the exponent of
the second line of Eq. (2.35). Fortunately, for short-range Ji j these additional terms
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can be neglected as long as the distances between the external points i1, . . . , in are
large compared with the range of Ji j . For example, for n = 2 we have

〈ϕiϕ j 〉S = 〈si s j 〉 − [J̃−1]i j ∼ 〈si s j 〉 . (2.43)

We thus conclude that we may also use the effective action S[ϕ] given in Eq. (2.40)
to calculate the long distance behavior of correlation functions involving two and
more spins.

2.2.2 Truncated Effective Action: ϕ4-Theory

The effective action given in Eqs. (2.39) and (2.40) is formally exact but very com-
plicated. In order to make progress, let us assume that the integral (2.39) is domi-
nated by configurations where the integration variables ϕi are in some sense small,
so that we may expand the second term in the effective action (2.40) in powers of
the ϕi , truncating the expansion at fourth order. Keeping in mind that physically ϕi

represents the fluctuating magnetization, we expect that this truncation can only be
good in the vicinity of the critical point, where the magnetization is small. Whether
or not this truncation is sufficient to obtain quantitatively correct results for the crit-
ical exponents is a rather subtle question which will be answered with the help of
the RG.4 With the expansion (2.14) we obtain

S[ϕ] = −N ln 2 + β

2

∑
i j

Ji jϕiϕ j − β2

2

∑
i

[
h +

∑
j

Ji jϕ j

]2

+β
4

12

∑
i

[
h +

∑
j

Ji jϕ j

]4
+ O(ϕ6

i ) . (2.44)

Since our lattice model has discrete translational invariance, we may simplify
Eq. (2.44) by Fourier transforming the variables ϕi to wave vector space, defining

ϕi = 1√
N

∑
k

ei k·r iϕk , (2.45)

where the wave vector sum is over the first Brillouin zone of the lattice, which may
be chosen as 0 ≤ kμ < 2π/a, where a is the lattice spacing and μ = 1, . . . , D
labels the components. Imposing for convenience periodic boundary conditions, the

4 It turns out that the quartic truncation of the expansion of Eq. (2.40) can be formally justified
close to four dimensions. In the physically most interesting dimension D = 3 the term involving
six powers of the ϕi cannot be neglected. However the truncated ϕ4-theory is in the same univer-
sality class as the original theory and the effect of all couplings neglected can be absorbed by a
redefinition of the remaining couplings.
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wave vectors are quantized as kμ = 2πnμ/L , with nμ = 0, 1, . . . , Nμ − 1, where
Nμ is the number of lattice sites in direction μ such that

∏D
μ=1 Nμ = N is the total

number of lattice sites. Using the identity

1

N

∑
i

ei(k−k′)·r i = δk,k′ , (2.46)

we obtain for the Fourier transform of the terms on the right-hand side of Eq. (2.44),

β

2

∑
i j

Ji jϕiϕ j = β

2

∑
k

Jkϕ−kϕk , (2.47)

β2

2

∑
i

[∑
j

Ji jϕ j

]2
= β2

2

∑
k

J−k Jkϕ−kϕk , (2.48)

β4

12

∑
i

[∑
j

Ji jϕ j

]4
= β4

12N

∑
k1,k2,k3,k4

δk1+k2+k3+k4,0

×Jk1 Jk2 Jk3 Jk4ϕk1ϕk2ϕk3ϕk4 , (2.49)

where Jk is the Fourier transform of the exchange couplings Ji j ≡ J (r i − r j ),

Jk =
∑

i

e−i k·r i J (r i ) . (2.50)

Because ϕi and Ji j are real and J (−r) = J (r), we have ϕ−k = ϕ∗
k and J−k = Jk. In

Fourier space Eq. (2.44) thus reduces to

S[ϕ] = −N ln 2 − β2 Jk=0h
√

Nϕk=0 + β

2

∑
k

Jk(1 − β Jk)ϕ−kϕk

+ β4

12N

∑
k1,k2,k3,k4

δk1+k2+k3+k4,0 Jk1 Jk2 Jk3 Jk4ϕk1ϕk2ϕk3ϕk4

+O(ϕ6
i , h2, hϕ3

i ) .

(2.51)

Finally, we anticipate that sufficiently close to the critical point only long-wavelength
fluctuations (corresponding to small wave vectors) are important. We therefore
expand the function Jk appearing in Eq. (2.51) in powers of k. From Eq. (2.50) it is
easy to show that for nearest-neighbor interactions on a D-dimensional hypercubic
lattice with coordination number z = 2D,

Jk = J [z − k2a2] + O(k4) = Tc

[
1 − k2a2

z

]
+ O(k4) , (2.52)
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where Tc = z J is the mean-field result for the critical temperature, see Eq. (2.13).
The coefficient of the quadratic term in Eq. (2.51) can then be written as

β Jk(1 − β Jk) = a2(r0 + c0k2) + O(k4) , (2.53)

where we have assumed that |T − Tc| 	 Tc and the constants r0 and c0 are defined
by

r0 = T − Tc

a2Tc
, (2.54)

c0 = 1

z
= 1

2D
. (2.55)

In the limit of infinite volume V = NaD → ∞, the discrete set of allowed wave
vectors merges into a continuum, so that the momentum sums can be replaced by
integrations according to the following prescription,

1

V

∑
k

→
∫

d Dk

(2π )D
≡

∫
k
. (2.56)

It is then convenient to normalize the fields differently, introducing a new (contin-
uum) field ϕ(k) via5

ϕ(k) = a
√

Vϕk . (2.57)

Defining

f0 = − N

V
ln 2 = −a−D ln 2 (2.58)

and the (dimensionful) coupling constants

u0 = 2aD−4(β Jk=0)4 ≈ 2aD−4 , (2.59)

h0 = β2 Jk=0h

a1+D/2
≈ βh

a1+D/2
, (2.60)

where the approximations are again valid for |T − Tc| 	 Tc, we find that our lattice
action S[ϕ] in Eq. (2.51) reduces to

5 The different normalizations of lattice and continuum fields are represented by different positions
of the momentum labels: while in the lattice normalization the momentum label k is attached to the
dimensionless field ϕk as a subscript, the label of the continuum field ϕ(k) is written in brackets
after the field symbol.
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SΛ0 [ϕ] = V f0 − h0ϕ(k = 0) + 1

2

∫
k

[
r0 + c0k2

]
ϕ(−k)ϕ(k)

+u0

4!

∫
k1

∫
k2

∫
k3

∫
k4

(2π )Dδ(k1 + k2 + k3 + k4)ϕ(k1)ϕ(k2)ϕ(k3)ϕ(k4) ,

(2.61)

where it is understood that the momentum integrations in Eq. (2.61) have an implicit
ultraviolet cutoff |k| < Λ0 	 a−1 which takes into account that in deriving
Eq. (2.61) we have expanded Jk for small wave vectors. The functional SΛ0 [ϕ]
is called the Ginzburg–Landau–Wilson action and describes the long-wavelength
order-parameter fluctuations of the D-dimensional Ising model, in the sense that
the integration over the fields ϕ(k) yields the contribution of the associated long-
wavelength fluctuations to the partition function. The contribution of the neglected
short-wavelength fluctuations to the partition function can be taken into account
implicitly by simply redefining the field-independent part f0 and the coupling con-
stants r0, c0, and u0 of our effective action (2.61). Moreover, also the prefactor√

det J̃ = e
1
2 Tr ln J̃ of Eq. (2.39) can be absorbed into a redefinition of the field-

independent constant, f0 − 1
2V Tr ln J̃ → f0. Actually, for periodic boundary con-

ditions the eigenvalues of the matrix J̃ are simply given by Jk/T ≈ Jk=0/Tc = 1,
so that at long wavelengths and to leading order in T − Tc we may approximate

the factor
√

det J̃ by unity. The functional integral (2.39) representing the partition
function of the Ising model can thus be written as

Z =
∫

D[ϕ]e−SΛ0 [ϕ] . (2.62)

It is sometimes more convenient to consider the effective action SΛ0 [ϕ] in real space.
Defining the real-space Fourier transforms of the continuum fields ϕ(k) via

ϕ(r) =
∫

k
ei k·rϕ(k) , (2.63)

and using the identity

∫
k

ei k·r = δ(r) , (2.64)

we obtain from Eq. (2.61),

SΛ0 [ϕ] =
∫

d Dr
[

f0 + r0

2
ϕ2(r) + c0

2

[∇ϕ(r)
]2 + u0

4!
ϕ4(r) − h0ϕ(r)

]
. (2.65)

For obvious reasons the classical field theory defined by this expression is called
ϕ4-theory. In the first part of this book, we shall use this field theory to illustrate the
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main concepts of the RG. Strictly speaking, the identity (2.64) is not quite correct
if we keep in mind that we should impose an implicit ultraviolet cutoff Λ0 on the
k-integration. Roughly, the continuum field ϕ(r) corresponds to the coarse-grained
magnetization, which is averaged over spatial regions with volume of order Λ−D

0
containing (Λ0a)−D spins.

The quantity e−SΛ0 [ϕ] is proportional to the probability density for observing an
order-parameter distribution specified by the field configuration ϕ(r). According to
Eq. (2.62), the partition function is given by the average of e−SΛ0 [ϕ] over all possible
order-parameter configurations. With this probabilistic interpretation of the effective
action (2.65), we can now give a more satisfactory interpretation of the mean-field
Landau function LMF(T, h; m) defined in Eqs. (2.8) and (2.9). Let us therefore eval-
uate the functional integral (2.62) in saddle point approximation, where the entire
integral is estimated by the integrand at a single constant value ϕ̄0 of the field which
minimizes the action SΛ0 [ϕ]. Setting ϕ(r) → ϕ̄ in Eq. (2.62) we obtain

Z ≈
∫ ∞

−∞

dϕ̄√
2π

e−SΛ0 [ϕ̄] , (2.66)

with

SΛ0 [ϕ̄] = V
[

f0 + r0

2
ϕ̄2 + u0

4!
ϕ̄4 − h0ϕ̄

]
. (2.67)

Note that in Eq. (2.66) we still integrate over all configurations of the homogeneous
components ϕ̄ of the order-parameter field; the quantity e−SΛ0 [ϕ̄] is therefore pro-
portional to the probability of observing for the homogeneous component of the
order parameter the value ϕ̄. Requiring consistency of Eq. (2.67) with our previous
definitions (2.8) and (2.15) of the Landau function, we should identify

SΛ0 [ϕ̄] = βNLMF(T, h; m) = βN
[

f + r

2
m2 + u

4!
m4 − hm

]
, (2.68)

which is indeed the case if

ϕ̄ = a1−D/2m , (2.69)

keeping in mind the definitions of f , r , and u in Eqs. (2.16a), (2.16b), and (2.16c)
on the one hand, and of f0, r0, and u0 in Eqs. (2.58), (2.54), and (2.59) on the other
hand. For V → ∞ the value of the one-dimensional integral (2.66) is essentially
determined by the saddle point of the integrand, corresponding to the most probable
value of ϕ̄. The physical value ϕ̄0 of the order-parameter field is therefore fixed by
the saddle point condition,

∂SΛ0 [ϕ̄]

∂ϕ̄

∣∣∣∣
ϕ̄0

= r0ϕ̄0 + u0

6
ϕ̄3

0 − h0 = 0 , (2.70)
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which is equivalent to the mean-field self-consistency equation (2.17).
In summary, the mean-field Landau function defined in Eq. (2.8) can be recov-

ered from the functional integral representation (2.62) of the partition function by
ignoring spatial fluctuations of the order parameter; the corresponding saddle point
equation is equivalent to the mean-field self-consistency equation (2.11). Because
of its probabilistic interpretation the Landau function cannot be defined within the
framework of thermodynamics, which only makes statements about averages. The
concept of a Landau function is further illustrated in Exercise 2.2, where the Landau
functions of noninteracting bosons are defined and calculated.

2.3 The Gaussian Approximation

While the mean-field approximation amounts to evaluating the functional integral
(2.62) in saddle point approximation, the Gaussian approximation retains quadratic
fluctuations around the saddle point and thus includes the lowest-order correction
to the mean-field approximation in an expansion in fluctuations around the sad-
dle point. In the field-theory language, the Gaussian approximation corresponds to
describing fluctuations in terms of a free field theory, where the fluctuations with
different momenta and frequencies are independent. In condensed matter physics,
the Gaussian approximation is closely related to the so-called random phase approx-
imation. It turns out that quite generally the Gaussian approximation is only valid if
the dimensionality D of the system is larger than a certain upper critical dimension
Dup, which we have already encountered in the context of the scaling hypothesis in
Sect. 1.3, see the discussion after Eq. (1.32). Because for the Ising universality class
Dup = 4, the Gaussian approximation is not sufficient to describe the critical behav-
ior of Ising magnets in experimentally accessible dimensions. Nevertheless, in order
to motivate the RG it is instructive to see how and why the Gaussian approximation
breaks down for D < Dup. For simplicity, we set h = 0 in this section.

2.3.1 Gaussian Effective Action

To derive the Gaussian approximation, we go back to our Ginzburg–Landau–Wilson
action SΛ0 [ϕ] defined in Eq. (2.65). Let us decompose the field ϕ(r) describing the
coarse-grained fluctuating magnetization as follows,

ϕ(r) = ϕ̄0 + δϕ(r) , (2.71)

or in wave vector space

ϕ(k) = (2π )Dδ(k)ϕ̄0 + δϕ(k) . (2.72)

Here, ϕ̄0 is the mean-field value of the order parameter satisfying the saddle point
equation (2.70) and δϕ(r) describes inhomogeneous fluctuations around the saddle
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point. Substituting Eq. (2.71) into the action (2.65) and retaining all terms up to
quadratic order in the fluctuations, we obtain in momentum space

SΛ0 [ϕ̄0 + δϕ] ≈ V
[

f0 + r0

2
ϕ̄2

0 + u0

4!
ϕ̄4

0

]
+

[
r0ϕ̄0 + u0

6
ϕ̄3

0

]
δϕ(k = 0)

+ 1

2

∫
k

[
r0 + u0

2
ϕ̄2

0 + c0k2
]
δϕ(−k)δϕ(k) . (2.73)

This is the Gaussian approximation for the Ginzburg–Landau–Wilson action. To
further simplify Eq. (2.73), we note that the second line on the right-hand side of
Eq. (2.73) vanishes because the coefficient of δϕ(k = 0) satisfies the saddle point
condition (2.70). The first line on the right-hand side of Eq. (2.73) can be identified
with the mean-field free energy. Explicitly substituting for ϕ̄0 in Eq. (2.73) the saddle
point value,

ϕ̄0 =
{

0 for r0 > 0 ,√−6r0/u0 for r0 < 0 ,
(2.74)

we obtain for the effective action in Gaussian approximation for T > Tc, where
ϕ̄0 = 0 and δϕ = ϕ,

SΛ0 [ϕ] = V f0 + 1

2

∫
k

[
r0 + c0k2

]
ϕ(−k)ϕ(k) , T > Tc . (2.75)

On the other hand, for T < Tc, where r0 < 0, we have

r0

2
ϕ̄2

0 + u0

4!
ϕ̄4

0 = −3

2

r2
0

u0
, (2.76)

r0 + u0

2
ϕ̄2

0 = −2r0 , (2.77)

and hence

SΛ0 [ϕ] = V

[
f0 − 3

2

r2
0

u0

]
+ 1

2

∫
k

[−2r0 + c0k2
]
δϕ(−k)δϕ(k) , T < Tc .

(2.78)

With the help of the Gaussian effective action given in Eqs. (2.75) and (2.78),
we may now estimate the effect of order-parameter fluctuations on the mean-field
results for the thermodynamic critical exponents. Moreover, because the Gaussian
approximation takes the spatial inhomogeneity of the order-parameter fluctuations
into account, we may also calculate the critical exponents ν and η associated with
the order-parameter correlation function.
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2.3.2 Gaussian Corrections to the Specific Heat Exponent

Because in the thermodynamic limit both the Gaussian approximation and the mean-
field approximation predict the same contribution from the homogeneous fluctu-
ations represented by ϕ̄ to the free energy6, Gaussian fluctuations do not modify
the mean-field predictions for the exponents β, γ , and δ, which are related to the
homogeneous order-parameter fluctuations. Within the Gaussian approximation, we
therefore still obtain β = 1/2, γ = 1, and δ = 3. On the other hand, the Gaus-
sian approximation for the specific heat exponent α is different from the mean-field
prediction α = 0, because the fluctuations with finite wave vectors give a nontrivial
contribution Δ f to the free energy per lattice site, which according to Eqs. (2.75)
and (2.78) can be written as

e−βNΔ f =
∫

D[ϕ] exp
[
−c0

2

∫
k
(ξ−2 + k2)δϕ(−k)δϕ(k)

]
. (2.79)

Here, we have introduced the length ξ via

c0

ξ 2
=

{
r0 for T > Tc ,

−2r0 for T < Tc .
(2.80)

In Sect. 2.3.3 we shall identify the length ξ with the order-parameter correlation
length introduced in Sect. 1.2. Recall that for T > Tc we may write δϕ(k) = ϕ(k)
because in this case ϕ̄0 = 0. To evaluate the Gaussian integral in Eq. (2.79), it is
convenient to discretize the integral

∫
k in the exponent with the help of the underly-

ing lattice and use the associated lattice normalization of the fields, which according
to Eq. (2.57) amounts to the substitution δϕ(k) = a

√
V δϕk. Then we obtain from

Eq. (2.79),

e−βNΔ f =
∫ ∞

∞

dδϕ0√
2π

⎡
⎣ ∏

k, k·n̂>0

∫ ∞

∞

dReδϕk√
2π

∫ ∞

∞

dImδϕk√
2π

⎤
⎦

× exp

[
−c0a2

2

∑
k

(ξ−2 + k2) |δϕk|2
]
, (2.81)

where the product in the square braces is restricted to those wave vectors k whose
projection k · n̂ onto an arbitrary direction n̂ is positive. This restriction is necessary
in order to avoid double counting of the finite k-fluctuations, which are represented
by a real field ϕi whose Fourier components satisfy ϕ−k = ϕ∗

k . Since the integrations

6 Recall that the mean-field approximation for the free energy is fMF(t, 0) = f0 for T > Tc, and
fMF(t, 0) = f0 − 3

2
r2

u for T < Tc, see Eq. (2.22). Taking the different normalization of SΛ0 [ϕ]
into account, these expressions correspond to the field-independent terms on the right-hand sides
of Eqs. (2.75) and (2.78).
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in Eq. (2.81) treat the real and the imaginary parts of δϕk as independent variables,
we have to correct for this double counting by integrating only over half of the
possible values of k. The functional integral is now reduced to a product of one-
dimensional Gaussian integrals, which are of course a special case of our general
Gaussian integration formula (2.25) for N = 1,

∫ ∞

−∞

dx√
2π

e− A
2 x2 = A−1/2 = e− 1

2 ln A . (2.82)

We thus obtain from Eq. (2.81) for the correction from Gaussian fluctuations to the
free energy per lattice site,

Δ f = T

2N

∑
k

ln
[
c0a2(ξ−2 + k2)

]
, (2.83)

where it is understood that the sum is regularized via an ultraviolet cutoff |k| < Λ0.
The corresponding correction to the specific heat per lattice site is

ΔC = −T
∂2Δ f

∂T 2
= − T

2N

∂2

∂T 2

{
T
∑

k

ln
[
c0a2(ξ−2 + k2)

]}

= − T

2N

∂

∂T

{∑
k

ln
[
c0a2(ξ−2 + k2)

]
+ T

[
∂

∂T

1

ξ 2

]∑
k

1

ξ−2 + k2

}

= T 2

2

[
∂

∂T

1

ξ 2

]2 1

N

∑
k

1

[ξ−2 + k2]2
− T

[
∂

∂T

1

ξ 2

]
1

N

∑
k

1

ξ−2 + k2
. (2.84)

In the thermodynamic limit, the lattice sums can be converted into integrals using
Eq. (2.56) so that for n = 1, 2

lim
N→∞

1

N

∑
k

1

[ξ−2 + k2]n
= aD

∫
k

1

[ξ−2 + k2]n

= K DaD
∫ Λ0

0
dk

k D−1

[ξ−2 + k2]n
= K DaDξ 2n−D

∫ Λ0ξ

0
dx

x D−1

[1 + x2]n
. (2.85)

Here, the numerical constant K D is defined by

K D = ΩD

(2π )D
= 1

2D−1π D/2Γ (D/2)
, (2.86)

where ΩD is the surface area of the D-dimensional unit sphere. Using the fact that
according to Eqs. (2.54) and (2.80) the derivative of the square of the inverse corre-
lation length with respect to temperature is given by



2.3 The Gaussian Approximation 43

∂

∂T

1

ξ 2
=

⎧⎨
⎩

c−1
0

∂r0
∂T , for T > Tc

−2c−1
0

∂r0
∂T , for T < Tc

⎫⎬
⎭ = At

c0a2Tc
, (2.87)

where

At =
⎧⎨
⎩

1 , for T > Tc ,

−2 , for T < Tc ,
(2.88)

we obtain from Eq. (2.84) for |t | ≡ |T − Tc|/Tc 	 1,

ΔC = K D

2

A2
t

c2
0

(
ξ

a

)4−D ∫ Λ0ξ

0
dx

x D−1

[1 + x2]2

− K D
At

c0

(
a

ξ

)D−2 ∫ Λ0ξ

0
dx

x D−1

[1 + x2]
. (2.89)

Keeping in mind that close to the critical point the dimensionless parameter Λ0ξ

is large compared with unity, it is easy to see that the second term on the right-
hand side of Eq. (2.89) can be neglected in comparison with the first one, because
the dimensionless integral is for D > 2 proportional to (Λ0ξ )D−2, and has for
D < 2 a finite limit for Λ0ξ → ∞. On the other hand, the behavior of the
first term on the right-hand side of Eq. (2.89) depends on whether D is larger
or smaller than the upper critical dimension Dup = 4. For D > Dup the inte-
gral depends on the ultraviolet cutoff and is proportional to (Λ0ξ )D−4, so that
ΔC ∝ (ξ/a)4−D(Λ0ξ )D−4 = (Λ0a)D−4 which gives rise to a finite correction to
the specific heat. Hence, for D > 4 long-wavelength Gaussian fluctuations merely
modify the size of the jump discontinuity in the specific heat, but do not qualitatively
modify the mean-field result α = 0. On the other hand, for D < 4 the first integral
on the right-hand side of Eq. (2.89) remains finite for Λ0ξ → ∞,

ID =
∫ ∞

0
dx

x D−1

[1 + x2]2
= (D − 2)π

4 sin( (D−2)π
2 )

, (2.90)

so that to leading order for large ξ ∝ |r0|−1/2 ∝ |t |−1/2 the contribution from Gaus-
sian fluctuations to the specific heat is

ΔC = K D

2
ID

A2
t

c2
0

(
ξ

a

)4−D

∝ |t |−(2−D/2) . (2.91)

This is more singular than the jump discontinuity predicted by mean-field theory
and implies α = 2 − D/2. We thus conclude that in Gaussian approximation the
specific heat exponent is given by
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α =
{

2 − D
2 for D < Dup = 4 ,

0 for D ≥ Dup .
(2.92)

It should be noted that within the Gaussian model considered here the scaling rela-
tions 2 − α = 2β + γ = β(δ + 1) [see Eqs. (1.23) and (1.24)] are violated for
D < 4. This failure of the Gaussian approximation will be further discussed in
Sect. 2.3.4.

2.3.3 Correlation Function

Next, we calculate the order-parameter correlation function G(r i − r j ) of the Ising
model and the associated critical exponents ν and η in Gaussian approximation. We
define G(r i − r j ) via the following thermal average,

G(r i − r j ) = a2−D〈δsiδs j 〉 ≡ a2−D

∑
{si } e−βHδsiδs j∑

{si } e−βH
, (2.93)

where δsi = si − 〈si 〉 = si − m is the deviation of the microscopic spin from its
average. Using the identity (2.43) we can express G(r i − r j ) for distances large
compared with the range of the Ji j as a functional average over all configurations of
the fluctuating order-parameter field,

G(r i − r j ) = a2−D〈δϕiδϕ j 〉S ≡ a2−D

∫
D[ϕ]e−S[ϕ]δϕiδϕ j∫

D[ϕ]e−S[ϕ]
. (2.94)

The prefactor a2−D is introduced such that G(r i − r j ) can also be written as

G(r i − r j ) = 〈δϕ(r i )δϕ(r j )〉S , (2.95)

where the continuum field ϕ(r) is related to the real-space lattice field ϕi via

ϕ(r i ) = a1−D/2ϕi , (2.96)

which follows from the definitions (2.63), (2.45), and (2.57), see also Eq. (2.69).
Expanding δϕi and δϕ j in terms of their Fourier components δϕk defined analo-
gously to Eq. (2.45), we obtain

G(r i − r j ) = a2

V

∑
k1,k2

ei(k1·r i +k2·r j )〈δϕk1δϕk2〉S

= 1

V

∑
k1

ei k1·(r i −r j )G(k1) , (2.97)
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where

G(k1) = a2〈δϕk1δϕ−k1〉S = a2〈|δϕk1 |2〉S (2.98)

is the Fourier transform of G(r i − r j ). In the second line of Eq. (2.97) we have used
the fact that by translational invariance the functional average is only nonzero if the
total wave vector k1 + k2 vanishes,

〈δϕk1δϕk2〉S = δk1,−k2〈δϕk1δϕ−k1〉S . (2.99)

In the infinite volume limit, it is more convenient to work with the continuum fields
ϕ(k) = a

√
Vϕk introduced in Eq. (2.57); then the relations (2.98) and (2.99) can be

written in the compact form,7

〈δϕ(k1)δϕ(k2)〉S = (2π )Dδ(k1 + k2)G(k1) . (2.100)

Let us now evaluate the functional average in Eq. (2.98) within the Gaus-
sian approximation where the long-wavelength effective action SΛ0 [ϕ] is given by
Eqs. (2.75) and (2.78). Similar to Eq. (2.81), we write the Gaussian effective action
for finite V as

SΛ0 [ϕ] ≈ SΛ0 [ϕ̄0] + c0a2

2

∑
k

(ξ−2 + k2) |δϕk|2

= c0a2
(
ξ−2 + k2

1

) ∣∣δϕk1

∣∣2 + terms independent of δϕk1 , (2.101)

where in the second line we have used the fact that the terms k = k1 and k = −k1

give the same contribution to the sum. Using the fact that within the Gaussian
approximation fluctuations with different wave vectors are decoupled, the evaluation
of the functional average in Eq. (2.98) is now reduced to simple one-dimensional
Gaussian integrations. Renaming again k1 → k, we see that the Gaussian approxi-
mation G0(k) for the Fourier transform of the correlation function G(k) is for k �= 0,

G0(k) = a2

∫ ∞
−∞

dReδϕk√
2π

∫ ∞
−∞

dImδϕk√
2π

|δϕk|2 exp
[−c0a2(ξ−2 + k2) |δϕk|2

]
∫ ∞
−∞

dReδϕk√
2π

∫ ∞
−∞

dImδϕk√
2π

exp
[−c0a2(ξ−2 + k2) |δϕk|2

]
=

∫ ∞
0 dρ ρ3 e−c0(ξ−2+k2)ρ2∫ ∞
0 dρ ρ e−c0(ξ−2+k2)ρ2

= 1

c0(ξ−2 + k2)
= 1

Atr0 + c0k2
, (2.102)

7 In a finite volume V the singular expression (2π )Dδ(k = 0) should be regularized with the
volume of the system, (2π )Dδ(k = 0) → V .
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where At is defined in Eq. (2.88) and in the second line we have introduced ρ =
a |δϕk| as a new integration variable. In particular, at the critical point, where r0 = 0,
we obtain

G0(k) = 1

c0k2
, T = Tc . (2.103)

Comparing this with the definition of the correlation function exponent η in Eq. (1.14),
we conclude that in Gaussian approximation

η = 0 . (2.104)

Next, let us calculate the correlation length exponent ν and justify our identifi-
cation of the length ξ defined in Eq. (2.80) with the correlation length. Therefore,
we calculate the correlation function G(r) in real space and compare the result with
Eq. (1.11). For V → ∞ the Fourier transformation of the correlation function in
Gaussian approximation can be written as

G0(r) =
∫

k
ei k·r G0(k) = 1

c0

∫
k

ei k·r

ξ−2 + k2
. (2.105)

Although there is an implicit ultraviolet cutoff Λ0 hidden in our notation, for
min{|r|, ξ} � Λ−1

0 the integral is dominated by wave vectors much smaller thanΛ0,
so that we may formally move the cutoff to infinity. To evaluate the D-dimensional
Fourier transform in Eq. (2.105), let us denote by k‖ the component of k parallel to
the direction of r , and collect the other components of k into a (D − 1)-dimensional
vector k⊥. Then the integration over k‖ can be performed using the theorem of
residues. Introducing (D − 1)-dimensional spherical coordinates in k⊥-space we
obtain

G0(r) = K D−1

2c0

∫ ∞

0
dk⊥k D−2

⊥

exp

[
−
√
ξ−2 + k2

⊥|r|
]

√
ξ−2 + k2

⊥
. (2.106)

Although for general D the integration cannot be performed analytically, the leading
asymptotic behavior for |r| 	 ξ and for |r| � ξ is easily extracted. In the regime
|r| 	 ξ , the exponential factor cuts off the k⊥-integration at k⊥ ≈ 1/|r|. Since for
|r| 	 ξ this cutoff is large compared with 1/ξ , we may neglect ξ−2 as compared
with k2

⊥ in the integrand.8 The integral can then be expressed in terms of the Gamma-
function Γ (D − 2) and we obtain

8 For D ≤ 2 this approximation is not justified because it generates an artificial infrared diver-
gence. In this case a more careful evaluation of the integral (2.106) is necessary. Because for D ≤ 2
our simple Gaussian approximation is not justified anyway, we focus here on D > 2.
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G0(r) ∼ K D−1

2c0

Γ (D − 2)

|r|D−2
, for |r| 	 ξ . (2.107)

In particular, at the critical point where ξ = ∞, this expression is valid for all r . A
comparison with Eq. (1.13) confirms again η = 0.

In the opposite limit |r| � ξ the integration in Eq. (2.105) is dominated by the
regime k⊥ � (ξ |r|)−1/2 	 ξ−1. Then we may ignore the k2

⊥-term as compared with
ξ−2 in the denominator of Eq. (2.106) and approximate in the exponent,

√
ξ−2 + k2

⊥|r| ≈ |r|
ξ

+ ξ |r|k2
⊥

2
, (2.108)

so that

G0(r) ∼ K D−1

2c0
ξe−|r|/ξ

∫ ∞

0
dk⊥k D−2

⊥ e− ξ |r|k2⊥
2 . (2.109)

The Gaussian integration is easily carried out and we finally obtain

G0(r) ∼ K D−1

2c0
2

D−3
2 Γ

( D − 1

2

) e−|r|/ξ√
ξ D−3|r|D−1

, for |r| � ξ . (2.110)

This has the same form as postulated in Eq. (1.11), justifying the identification of
ξ in Eq. (2.80) with the order-parameter correlation length. Hence, within Gaussian
approximation we obtain

ξ =
√

c0

|Atr0| ∝ |t |−1/2 , (2.111)

implying for the correlation length exponent in Gaussian approximation

ν = 1/2 . (2.112)

Note that for D < Dup = 4, where the Gaussian approximation yields α = 2− D/2
for the specific heat exponent [see Eq. (2.92)], the Gaussian results η = 0 and ν =
1/2 are also consistent with the hyper-scaling relations (1.29) and (1.32) connecting
ν and η with the thermodynamic critical exponents, α = 2 − Dν = 2 − D/2 and
γ = (2 − η)ν = (2 − 0) × 1

2 = 1.

2.3.4 Failure of the Gaussian Approximation in D < 4

The Gaussian approximation amounts to the quadratic truncation (2.73) of the
Ginzburg–Landau–Wilson action S[ϕ] defined in Eq. (2.40). The important ques-
tion is now whether the Gaussian approximation is sufficient to calculate the critical
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exponents or not. As already mentioned, the answer depends crucially on the dimen-
sionality of the system: only for D > Dup = 4 the critical exponents obtained
within the Gaussian approximation are correct, while for D < Dup the Gaussian
approximation is not sufficient. To understand the special role of the upper critical
dimension Dup = 4 for the Ising model, let us attempt to go beyond the Gaussian
approximation by retaining the quartic term in the expansion of S[ϕ] in powers
of the field. As shown in Sect. 2.2.2, for small wave vectors our effective action
then reduces to the ϕ4-theory SΛ0 [ϕ] defined via Eq. (2.61) or (2.65). At the first
sight it seems that if we assume that the coupling constant u0 associated with the
quartic term in Eqs. (2.61) and (2.65) is arbitrarily small, then we may calculate the
corrections to the Gaussian approximation perturbatively in powers of u0. However,
this strategy fails in D < 4 in the vicinity of the critical point, because the effective
dimensionless parameter which is relevant for the perturbative expansion is

ū0 = u0ξ
4−D

c2
0

= 2(2D)2

(
ξ

a

)4−D

, (2.113)

where we have used Eq. (2.59) to approximate u0 ≈ 2aD−4. The fact that the per-
turbative expansion of the interaction in the effective action (2.61) is controlled by
the dimensionless coupling ū0 can be made manifest by introducing dimensionless
wave vectors

k̄ = kξ , (2.114)

and dimensionless fields

ϕ̄(k̄) =
√

c0

ξ 2+D
ϕ(k̄/ξ ) . (2.115)

Assuming for simplicity T > Tc so that r0 = c0/ξ
2, it is easy to show that in terms of

these dimensionless variables our effective Ginzburg–Landau–Wilson action (2.61)
takes the form

SΛ0 [ϕ̄] = V f0 + 1

2

∫
k̄

[
1 + k̄

2]
ϕ̄(−k̄)ϕ̄(k̄)

+ ū0

4!

∫
k̄1

∫
k̄2

∫
k̄3

∫
k̄4

(2π )Dδ(k̄1 + k̄2 + k̄3 + k̄4)ϕ̄(k̄1)ϕ̄(k̄2)ϕ̄(k̄3)ϕ̄(k̄4) .

(2.116)

Because the coefficient of the quadratic fluctuations in this expression is fixed to
unity for small wave vectors, the coefficient ū0 in front of the quartic part directly
gives the relative strength of the quartic interaction between the fluctuations as com-
pared with the free field theory described by the Gaussian part. The crucial point
is now that close to the critical point the correlation length ξ ∝ |t |−ν diverges,
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so that below four dimensions the effective dimensionless coupling ū0 defined in
Eq. (2.113) becomes arbitrarily large for T → Tc, no matter how small the bare
coupling constant u0 is chosen. As a consequence, for D < 4 any attempt to cal-
culate perturbatively corrections to the Gaussian approximation is bound to fail for
temperatures sufficiently close to Tc. Because the critical exponents are defined in
terms of the asymptotic behavior of physical observables for T → Tc, they cannot
be obtained perturbatively for D < Dup = 4. Obviously, this problem can only be
solved with the help of nonperturbative methods, where all orders in the relevant
dimensionless coupling ū0 are taken into account. The most powerful and general
method available to deal with this problem is the RG.

In the ordered phase where 〈ϕ(r)〉 = ϕ̄0 is finite the dimensionless interaction ū0

in Eq. (2.113) has a nice interpretation in terms of the relative importance of order-
parameter fluctuations, which is measured by the following dimensionless ratio,

Q =
∫ ξ d Dr〈δϕ(r)δϕ(r = 0)〉S∫ ξ d Dr ϕ̄2

0

=
∫ ξ d DrG0(r)

ξ Dϕ̄2
0

. (2.117)

Here, the integrals
∫ ξ d Dr extend over a cube with volume ξ D enclosing the ori-

gin, the mean-field value ϕ̄0 of the order parameter is given in Eq. (2.74), and the
correlation function in the numerator is evaluated in Gaussian approximation. Intu-
itively, the quantity Q sets the strength of order-parameter fluctuations in relation
to the average order parameter, taking into account that only within a volume of
linear extension ξ the fluctuations are correlated. If Q is small compared with unity,
then fluctuations are relatively weak and it is reasonable to expect that a mean-field
describition of the thermodynamics and the Gaussian approximation for the correla-
tion function are sufficient. Taking into account that for |r| � ξ the function G0(r)
decays exponentially, the value of the integral in the numerator of Eq. (2.117) is not
changed if we extend the integration regime over the entire volume of the system,
so that we arrive at the estimate,

∫ ξ

d Dr G0(r) ≈
∫

d Dr G0(r) = G0(k = 0) = ξ 2

c0
. (2.118)

But according to Eqs. (2.74) and (2.80) for T < Tc we may write

ϕ̄2
0 = −6r0

u0
= 3c0

ξ 2u0
, (2.119)

so that we finally obtain

Q = ξ 4−Du0

3c2
0

= ū0

3
. (2.120)
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Hence, our dimensionless coupling constant ū0 defined in Eq. (2.113) is pro-
portional to the ratio Q which measures the relative importance of fluctuations.
Obviously, for Q 	 1 fluctuations are weak and it is allowed to treat the inter-
action term in Eq. (2.116) perturbatively. On the other hand, in the regime Q � 1
we are dealing with a strongly interacting system, so that mean-field theory and
the Gaussian approximation are not sufficient. The condition Q 	 1 is called the
Ginzburg criterion (Ginzburg 1960, Amit 1974).

Exercises

2.1 Mean-field Analysis of the Ising Model in a Transverse Field

Below a few Kelvin, the magnetic properties of the rare-earth insulator lithium
holmium fluoride (LiHoF4) are well described by the Ising model in a transverse
field (also known as the quantum Ising model). Its Hamiltonian reads

Ĥ = −J
∑
〈i, j〉

σ z
i σ

z
j − Γ

∑
i

σ x
i .

Here, J > 0 is the exchange coupling for nearest-neighbor spins, Γ ≥ 0 denotes
the strength of the transverse field and σ z

i and σ x
i are Pauli matrices which measure

the x- and z-components of the spins residing on the lattice sites of a hypercubic
lattice. Let us denote the eigenstates of the σ z

i by | ↑ 〉i and | ↓ 〉i (with eigenvalues
si = ±1).

(a) Show that for Γ = 0 and in the above basis spanned by the eigenstates of the
σ z

i , the Hamiltonian Ĥ reduces to the Hamiltonian of the familiar classical Ising
model.

(b) Introduce g ≡ Γ/z J (where z = 2D is the coordination number) to tune a
quantum phase transition at T = 0. Show that for g = 0 (Γ = 0) and for
g → ∞ (J → 0) you get two qualitatively different ground states. These states
are called the ferromagnetic and the paramagnetic ground states. Why?

(c) To derive the mean-field Hamiltonian ĤMF of the quantum Ising model, write
σ z

i = mz + δσ z
i with the fluctuation matrix δσ z

i = σ z
i − mz and

mz = 〈σ z
i 〉 = Tr [σ z

i e−β Ĥ ]

Tr [e−β Ĥ ]
.

Expand the term σ z
i σ

z
j in Ĥ to linear order in δσ z

i and neglect terms quadratic
in the fluctuation matrices.

(d) Calculate the eigenvalues of the single site mean-field Hamiltonian and use
these eigenvalues to evaluate the partition function ZMF and the Landau func-
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tion LMF. Minimize the Landau function with respect to the magnetization mz

to obtain a self-consistency condition for mz
0 = mz

0(T, Γ ).
(e) Following the procedure outlined in Sect. 2.1.1, solve the mean-field consis-

tency equation graphically. Analyze in particular regions in parameter space
where mz �= 0 and draw the phase boundary (in the T -g-plane) separating this
ferromagnetic phase from the paramagnetic phase with mz = 0. What kind of
phase transitions can you identify?

(f) For T = 0 calculate mz explicitly and sketch mz as a function of g. Determine
the mean- field value for the critical exponent βg defined by mz ∝ (gc − g)βg .

(g) Calculate also mx = 〈σ x
i 〉 and for T = 0 sketch mx as a function of g.

2.2 Landau Functions for the Free Bose Gas

Consider N noninteracting bosons in a D-dimensional harmonic trap with Hamilto-
nian Ĥ = ∑

m Emb+
mbm, where Em = �ω(m1 + · · · + m D), and mi = 0, 1, 2, . . . .

The partition function in the canonical ensemble is given by Z N = TrN e−β Ĥ ,
where the trace runs over the Hilbert space with fixed particle number N . It can
be expressed as Z N = ∑∞

n=0 Z N (n), where Z N (n) = TrN (δn,b+
0 b0

e−β Ĥ ) has a fixed
occupation of the single particle ground state. We define the dimensionless Lan-
dau function for Bose–Einstein condensation via Z N (n) = e−NLBEC

N (n/N ). Provided
LBEC

N (q) is smooth and has an absolute minimum at q �= 0 in the thermodynamic
limit, the single particle ground state will be macroscopically occupied.

(a) Using TrN Â = ∫ 2π
0

dθ
2π Tr

[
ei(N−N̂ )θ Â

]
, where N̂ = ∑

m b†
mbm and the trace on

the right-hand side runs over the entire Hilbert space containing any number of
particles (this is the so-called Fock space), show that the dimensionless Landau
function LBEC

N (q) is given by

LBEC
N (q) = − 1

N
ln

[∫ 2π

0

dθ

2π
eiθN (1−q)−∑

m�=0 ln(1−e−(εm+iθ ))
]
.

Here, εm ≡ Em/T . What is the physical interpretation of LBEC
N (q)?

(b) Show that alternatively, we can write Z N = ∫
d2φ e−NLSSB

N (φ), where d2φ =
d[Reφ] d[Imφ] and the Landau function for spontaneous symmetry breaking is
given by

LSSB
N (φ) = |φ|2 − 1

N
ln

[
N

π

N∑
n=0

(N |φ|2)n

n!
e−NLBEC

N (n/N )

]
.

Hint: Carry out the partial trace over m = 0 by using coherent states |z〉 =
ezb+

0 |0〉, i.e., eigenstates of b0, b0|z〉 = z|z〉. Recall that Trm=0 Â = ∫
d2z
π

e−|z|2
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〈z| Â|z〉 (see e.g., Shankar 1994, Chap. 21). You will also need the overlap
〈n|z〉 = zn√

n!
with a state of fixed boson number.

(c) Show the recursion relation Z N = 1
N

∑N
k=1 Z N−k Z1(k), where Z1(k) =∑

m e−kεm = [1 − e−k/τ ]−D , and the dimensionless temperature is τ = T/(�ω).
Hint: Show for the generating function Z(u) ≡ ∑

N Z N uN = ∏
m(1 −

ue−εm )−1, by expressing it as a trace over Fock space. Take derivatives on both
sides of this equality and express the right-hand side again in terms of Z(u).

(d) Show that Z N (n) = Z N−n − Z N−n−1.
Hint: Derive a relation between the generating functions Z(u) and h(u) :=∑

N Z N (n)uN .
(e) Plot LBEC

N (q) and LSSB
N (φ) for N = 10 and D = 3 as a function of

√
q and φ,

respectively, evaluating the expressions derived above numerically for different
temperatures τ . What is the temperature at which the Landau functions start to
develop nontrivial minima? More details and a discussion of N → ∞ can be
found in Sinner et al. (2006).
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Chapter 3
Wilsonian Renormalization Group

In this central chapter of Part I we introduce the basic concepts of the RG method
invented by Wilson and coauthors in a series of pioneering articles (Wilson 1969,
1971b,c, 1972, Wilson and Fisher 1972, Wilson and Kogut 1974, Wilson 1975). A
very nice introduction to the basic concepts of the Wilsonian RG can also be found
in the book by Goldenfeld (1992), which has influenced our presentation.

For a microscopic derivation of the critical behavior of thermodynamic observ-
ables, we have to calculate the partition function Z of the system. For Ising models,
this amounts to performing the nested spin summations in Eq. (2.3). More generally,
we shall consider many-body systems whose partition function can be expressed in
terms of some suitably defined functional integral over a field Φ representing the
relevant degrees of freedom,

Z(g) =
∫

D[Φ]e−S[Φ;g] , (3.1)

where S[Φ; g] is an effective action depending on a set of coupling constants
g1, g2, g3, . . ., which we collect into a vector g = (g1, g2, g3, . . .). We have shown
in Sect. 2.2 how the partition function of the Ising model can be written in such a
form. In that case the field Φ can be identified with the fluctuating order-parameter
field ϕ defined in Eq. (2.37). However, Eq. (3.1) is more general: the partition func-
tion of any quantum mechanical many-body system consisting of bosons, fermions,
or mixtures thereof can also be written in this form. The fields depend not only on
the position r , but also carry an (imaginary) time label τ , see Eq. (1.37). We shall
explain this in detail in Part II, where we develop the general functional RG method
for these systems. Of course, for boson–fermion mixtures the field Φ has several
components representing the different types of degrees of freedom. Unfortunately, in
almost all cases of interest the integration in Eq. (3.1) cannot be performed exactly,
so we have to rely on approximations. Moreover, simple approximations such as the
mean-field theory developed in Sect. 2.1 or the Gaussian approximation introduced
in Sect. 2.3 are not reliable if the dimensionality of the system is smaller than its
upper critical dimension Dup. The Wilsonian RG method provides us with a general
strategy to attack this difficult problem.

Kopietz, P. et al.: Wilsonian Renormalization Group. Lect. Notes Phys. 798, 53–89 (2010)
DOI 10.1007/978-3-642-05094-7 3 c© Springer-Verlag Berlin Heidelberg 2010
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3.1 The Basic Idea

The basic idea underlying the Wilsonian RG is conceptually very simple, although
from the technical point of view it is usually rather difficult to carry out the RG
procedure in practice – after all, we would like to solve a strongly interacting many-
body problem close to the critical point! The strategy is to perform the integration
over the degrees of freedom represented by the field Φ in Eq. (3.1) iteratively in
small steps by integrating over suitably chosen subsets of fields and calculating the
resulting change of the effective action. One iteration of the RG procedure consists
of the following two steps:

Step 1: Mode Elimination (Decimation)

The first RG step consists of the elimination of the degrees of freedom (also called
modes) representing short-distance fluctuations involving a certain interval of small
wavelengths. Sometimes, this is also called the decimation step. If we represent the
partition function via a functional integral of the type (3.1) and work in momen-
tum space, this means that we integrate over all fields Φ(k) with wave vectors k
belonging to a certain high-momentum regime.1 There is considerable freedom in
the choice of the high-momentum regime, and the most convenient choice depends
on the model of interest and on the requirements on the accuracy of the calculation
at hand. For example, for the ϕ4-theory defined by SΛ0 [ϕ] in Eq. (2.61) it is often
convenient to integrate over fields ϕ(k) whose wave vectors lie in the momentum
shell Λ < |k| < Λ0. Formally, the separation into a small wave vector and a large
wave vector regime amounts to writing the field Φ as a sum of two terms,

Φ = Φ< +Φ> , (3.2)

where the “smaller part” Φ< (slow modes) contains fluctuations with wave vectors
smaller than a certain scaleΛ, while the “greater part”Φ> (fast modes) contains the
complementary fluctuations involving large wave vectors. A simple way to imple-
ment the above decomposition is by multiplying the Fourier components Φ(k) in
momentum space by 1 = Θ(Λ− |k|) +Θ(|k| −Λ) and writing

Φ(k) = Θ(Λ− |k|)Φ(k) +Θ(|k| −Λ)Φ(k) , (3.3)

so that
Φ<(k) = Θ(Λ− |k|)Φ(k) , (3.4a)

Φ>(k) = Θ(|k| −Λ)Φ(k) . (3.4b)

1 For quantum systems the fields Φ are not only labeled by the position (or wave vector), but also
by imaginary time (or frequency). Then the degrees of freedom involving large frequencies should
also be eliminated iteratively. This gives additional freedom for the implementation of the mode-
elimination procedure, see the seminal work by Hertz (1976) on quantum critical phenomena.
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However, such a sharp cutoff in momentum space sometimes leads to technical
complications, which can be circumvented by smoothing out the boundary between
integrated and unintegrated momenta (Wilson and Kogut 1974), or by implementing
the partial integration over short-wavelength fluctuations differently. For example,
for low-dimensional spin systems it can be advantageous to carry out the mode elim-
ination in real space, see Sect. 3.2. Formally, the mode-elimination step corresponds
to the integration over the “larger field” Φ> in the functional integral,

Z =
∫

D[Φ<]
∫

D[Φ>]e−S[Φ<+Φ>;g]

=
∫

D[Φ<]e−S<Λ [Φ<;g<] , (3.5)

where S<Λ is simply defined by

e−S<Λ [Φ<;g<] =
∫

D[Φ>]e−S[Φ<+Φ>;g] . (3.6)

The coupling constants g< = (
g<1 , g<2 , g<3 , . . .

)
in S<[Φ<; g<] will in general be

different from the original couplings g = (g1, g2, g3, . . .), except in the case where
S[Φ] is Gaussian so that the modes with different wave vectors (or frequencies) are
not coupled. In practice the functional integration in Eq. (3.6) cannot be carried
out exactly, so that approximations are necessary. Moreover, the set of nonzero
coupling constants g< in S<Λ[Φ<; g<] will in general be different from the cou-
plings g in the initial action. For example, the effective ϕ4-theory defined by the
action SΛ0 [ϕ] given in Eqs. (2.61) and (2.65) depends on the four coupling con-
stants g = ( f0, r0, c0, u0). We identify in this case Φ → ϕ. Due to the presence
of the quartic interaction, the integration in Eq. (3.6) cannot be performed exactly.
However, even without explicitly doing the integration, we know from the structure
of the perturbative expansion of S<Λ[Φ<; g<] in powers of the fields ϕ< that after
the mode-elimination step the exact effective action must be of the form

S<Λ[ϕ<; g<] = V f < + 1

2

∫ Λ

k

[
r< + c<k2 + c<4 k4 + c<6 k6 + . . .

]
ϕ<(−k)ϕ<(k)

+u<

4!

∫ Λ

k1

∫ Λ

k2

∫ Λ

k3

∫ Λ

k4

(2π )Dδ(k1 + k2 + k3 + k4)ϕ<(k1)ϕ<(k2)ϕ<(k3)ϕ<(k4)

+u<6
6!

(
6∏

i=1

∫ Λ

ki

)
(2π )Dδ

(
6∑

i=1

ki

)
ϕ<(k1)ϕ<(k2)ϕ<(k3)ϕ<(k4)ϕ<(k5)ϕ<(k6)

+ terms involving ϕ8, or ϕ4 and higher powers of k2, (3.7)

where the notation
∫ Λ

k means that the upper limit for the integration is given
by the reduced ultraviolet cutoff Λ = Λ0/b. In contrast to our original action
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SΛ0 [ϕ; f0, r0, c0, u0], which depends only on four coupling constants, the new
effective action depends on infinitely many coupling constants g< = (

f <, r<, c<, c<4 ,
c<6 , u<, u<6 , . . .

)
, which are generated via the integration over the short-wavelength

fluctuations ϕ>. Obviously, the new couplings g< are functions of the initial
couplings f0, r0, c0, u0 defining the original model. In other words, the mode-
elimination procedure thus defines a noninvertible mapping of the original coupling
space spanned by ( f0, r0, c0, u0) onto the infinite-dimensional space spanned by the
couplings g< = (

f <, r<, c<, c<4 , c<6 , u<, u<6 , . . .
)

which is necessary to completely
specify the new effective action S<[Φ<; g<]. Fortunately, a truncation of the cou-
pling space retaining only the four coupling constants f <, r<, c< and u< turns out
to be sufficient to obtain the leading corrections to the mean-field results for the
critical exponents to first order in ε = 4 − D. For more accurate calculations it is
necessary to retain a larger number of coupling constants which can be technically
quite demanding. In Part III of this book we shall show that the functional renormal-
ization group offers an efficient method to keep track of the RG flow of infinitely
many coupling constants.

Step 2: Rescaling

In the second step of the iterative RG procedure, we rescale wave vectors and fields
and express the functional S<[Φ<; g<] in terms of rescaled quantities such that it
has the same form as before the mode elimination. The combined effect of mode
elimination and rescaling should then be taken into account via a modification of
the coupling constants. Therefore, we define rescaled wave vectors k′ via

k′ = bk , (3.8)

where the dimensionless parameter b = Λ0/Λ defines the “step size” of the RG
transformation.2 In Fourier space, the rescaled field Φ ′(k′) is related to the original
field Φ<(k′) via

Φ ′(k′) = ζb
−1Φ<(k′/b) , (3.9)

2 For quantum systems the field depends not only on wave vectors but also on frequencies ω.
Then we should also rescale ω′ = bzω, where the value of the dynamic exponent z depends
on the low-energy dynamics of the underlying quantum system and on the critical point under
consideration. The fact that we choose here for b and z the same notations as in the formulation of
the scaling hypothesis in Sect. 1.3 (see Eqs. (1.16) and (1.38)) is not accidental, because we shall
show later that the parameters b and z in the scaling hypothesis are indeed identical with b and z
in the rescaling step of the RG transformation.
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where the so-called field rescaling factor ζb is in general a product of two
b-dependent factors,3

ζb = bDΦ

√
Zb . (3.10)

The first factor bDΦ is determined by the so-called canonical dimension DΦ of the
field Φ(k) which measures how many powers of inverse length are needed to make
Φ(k) dimensionless. The value of DΦ follows from the bare action by simple dimen-
sional analysis. For example, the continuum field ϕ(k) in the Ginzburg–Landau–
Wilson action (2.61) has units of (length)1+D/2, so that in this case Dϕ = 1 + D/2.

The second factor
√

Zb in Eq. (3.10) cannot be deduced by dimensional analysis
and is closely related to the correlation function exponent η defined in Eq. (1.13)
and the so-called wave function renormalization factor Z in quantum mechanical
many-body systems. We shall explain this in more detail in Sect. 4.2.3. While there
is some freedom in the choice of Zb, for our simple ϕ4-theory it is convenient to
choose

Zb = c0

c<
, (3.11)

so that after the rescaling step

ϕ<(k) = ζbϕ
′(k′) = b1+D/2

√
c0

c<
ϕ′(k′) . (3.12)

The Gaussian part of the effective action S<[Φ<; g<] in Eq. (3.7) then reads

1

2

∫ Λ

k

[
r< + c<k2 + c<4 k4 + c<6 k6 + . . .

]
ϕ<(−k)ϕ<(k)

= 1

2

∫ Λ0

k′

[
r ′ + c0k′2 + c′

4k′4 + c′
6k′6 + . . .

]
ϕ′(−k′)ϕ′(k′) , (3.13)

with the new coupling constants

r ′ = b2 Zbr< , (3.14a)

c′
4 = b−2 Zbc<4 , (3.14b)

c′
6 = b−4 Zbc<6 . (3.14c)

Note that the factor Zb is chosen such that after one iteration of the two RG steps the
coefficient c0 of the quadratic term in the expansion for small wave vectors does not

3 For multicomponent fields ζb is in general a matrix acting on field space. For simplicity we
assume here that our field Φ has only a single component, or that for multicomponent fields the
matrix is proportional to the unit matrix.
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change under the combined operation of decimation and rescaling. If we ignore the
couplings c′

4, c′
6, . . ., then the second line in Eq. (3.13) indeed has precisely the same

form as the Gaussian part of the bare action SΛ0 [ϕ] given in Eq. (2.61), but with the
bare coupling r0 replaced by the renormalized coupling r ′. The mode-elimination
step defines r< as a function of the bare couplings.

The combination of the mode-elimination step with the rescaling step defines
now a mapping between the initial couplings g = (g1, g2, g3, . . .) of a given model
system with action S[Φ; g] and a modified set of couplings g′ = (

g′
1, g′

2, g′
3, . . .

)
appearing in the new effective action S′[Φ ′; g′]. Let us write this mapping as

g′
i = Ri (b; g1, g2, g3, . . .) , i = 1, 2, 3, . . . , (3.15a)

or in compact vector notation,

g′ = R(b; g) . (3.15b)

The function R(b; g) represents an RG transformation, acting on the (in general
infinite-dimensional) space of coupling constants that specifies a specific model sys-
tem. In general R(b; g) is a very complicated nonlinear function of the couplings
g, whose precise form depends also on the length rescaling factor b. Mathemati-
cally, the set of transformations R(b; g) labeled by the continuous parameter b is
a semigroup, which is characterized by the same composition law as a group, but
does not require that each transformation has an inverse. The group composition law
follows from the fact that two successive transformations with scale factors b and b′

are equivalent to a single transformation with scale factor b′′ = b′b, so that the two
iterated transformations

g′ = R(b; g) and g′′ = R(b′; g′) , (3.16)

are by construction equivalent with

g′′ = R(b′; R(b; g)) = R(b′b; g) . (3.17)

The nonexistence of an inverse transformation follows from the fact that many
different microscopic models can have the same long-wavelength properties. For-
mally, the elimination of the short-wavelength fluctuations generates a projection of
the coupling space defining the microscopic model onto a reduced coupling space
associated with a new effective model with the same long-wavelength properties.

The complete RG procedure is now defined by iterating the above two-step
procedure, defining for given initial couplings g(0) = g a chain of renormalized
couplings g(n) via

g(n) = R(b; g(n−1)) = R(bn; g) . (3.18)
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For n → ∞ the total rescaling factor bn diverges, which means that we have inte-
grated out all degrees of freedom, so that in principle we can identify the field-
independent part f (n) of the resulting effective action for n → ∞ with the exact
free energy density of the system. Of course, in almost all physically interesting
cases the RG transformation (3.15b) can only be carried out approximately, so that
we cannot calculate the exact free energy in this way. The crucial point is, however,
that the iteration of rather simple approximate RG transformations R(b; g) with an
RG step size b > 1 of the order of unity can generate nonperturbative expressions
for various physical quantities. Under certain conditions (which will be discussed in
Chap. 4), results based on simple approximate RG transformations are quantitatively
accurate even in the critical regime, so that the controlled calculation of the critical
exponents becomes possible.

In practice, there are many different ways of implementing the RG procedure:
for example, the mode-elimination step can be performed in real space, in wave
vector space, or (for quantum systems) in frequency space. Moreover, there is some
freedom in the choice of the RG step size b and there are many possibilities of
introducing a cutoff Λ separating long-wavelength from short-wavelength fluctua-
tions into a given model. Unfortunately, there is no unique implementation of the
RG procedure which can be used as a black box in all situations. Instead, special
versions of the RG procedure have proven to be useful to study certain classes of
problems. Let us briefly list some important cases:

(a) Migdal–Kadanoff real space RG: For spin systems where the spins are localized
on lattice sites it can be useful to perform the mode-elimination step directly in
real space by performing partial traces over the Hilbert spaces associated with
certain blocks of spins. After mode elimination, one then obtains an effective
coarse-grained spin Hamiltonian where the spin blocks are replaced by new
effective spins associated with a diluted lattice with a larger lattice spacing. In
the second RG step, length scales are then reduced such that the lattice spac-
ing has again the original size. This procedure has been suggested by Migdal
(1975) and by Kadanoff (1976), and is therefore called the Migdal–Kadanoff
RG procedure. Unfortunately, in more than one dimension the Migdal–Kadanoff
procedure requires approximations whose accuracy is difficult to estimate (see
Exercise 3.2). Nevertheless, for certain types of systems (such as some quan-
tum spin models which cannot be described in terms of a local field theory
with a well-defined Gaussian part) the Migdal–Kadanoff RG is still the most
convenient implementation of the RG. In order to explain the basic ideas of
the Migdal–Kadanoff RG, we shall use it in Sect. 3.2 to calculate the partition
function of the one-dimensional Ising model, whose exact solution has been
obtained in Exercise 1.1 via the transfer matrix method.

(b) Momentum space RG: For translationally invariant systems whose critical prop-
erties can be described by an effective field theory with a well-defined Gaus-
sian part, perhaps the most popular implementation of the RG is based on the
mode elimination in momentum space, as explained above. In the simplest case,
one introduces a sharp boundary between the integrated and the unintegrated
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momenta as in Eqs. (3.4a) and (3.4b). Such a sharp cutoff is very convenient to
evaluate the lowest-order fluctuation correction to the Gaussian approximation
(the so-called one-loop approximation). Since this approximation is sufficient
in many problems in condensed matter physics and statistical mechanics, the
momentum shell RG with a sharp cutoff has been very popular and successful in
this field. On the other hand, beyond the one-loop approximation, the sharp cut-
off in momentum space leads to very cumbersome integrations and unphysical
nonanalyticities, so that it is better to smooth out the boundary between the inte-
grated and unintegrated regimes in momentum space (Wilson and Kogut 1974).
Unfortunately, for a smooth cutoff the integrations appearing in the Wilsonian
RG can only be performed numerically, so that for two-loop calculations even
condensed matter physicists often abandon the Wilsonian RG and go back to the
field-theoretical RG if the model under consideration is renormalizable.

(c) Functional renormalization group (FRG): In a seminal paper, Wegner and
Houghton (1973) realized that if the mode-elimination step in the momentum
space RG is carried out in infinitesimal momentum shells Λ − dΛ < |k| < Λ,
then the resulting change of the effective action can be expressed in terms of
a formally exact functional differential equation describing the evolution of the
effective action as a function of the cutoff Λ. This so-called Wegner–Houghton
equation is equivalent to an infinite hierarchy of coupled integro-differential
equations for the correlation functions of the theory, which are obtained by
expanding the effective action in powers of the fields. Of course, usually this
hierarchy of flow equations cannot be solved exactly, so that approximations are
necessary in order to calculate the critical properties of the system. Still, it is
very useful to have formally exact equations describing the mode-elimination
step in the Wilsonian RG, because it opens the way for new approximation
strategies and in some cases simplifies conceptual problems such as renormal-
izability proofs of quantum field theories (Polchinski 1984, Keller and Kopper
1991, 1996).

Due to some technical complications related to the sharp cutoff, the Wegner–
Houghton equation has not been widely used to solve problems of physical
interest. However, in the past 20 years alternative exact FRG flow equations
describing the mode-elimination step of the Wilsonian RG have been derived
which circumvent some of the technical complications inherent in the Wegner–
Houghton equation (Wetterich 1993, Morris 1994). One of the purposes of this
book is to give a self-contained introduction to these FRG methods.

(d) Numerical implementations of the RG: In condensed matter physics two impor-
tant numerical implementations of the RG have been developed. The first is
the numerical RG approach (usually abbreviated NRG) for quantum impurity
systems, which has been developed by Wilson (1975) to study the Kondo prob-
lem describing a single localized spin S = 1/2 coupled to a bath of non-
interacting conduction electrons. Due to the coupling to the bath, the quan-
tum dynamics of the spin is nontrivial and can only be obtained by means
of nonperturbative methods. The mode-elimination step is then carried out
numerically by eliminating states in the Hilbert space of the system corre-
sponding to certain energy windows. For a comprehensive introduction to this
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method see the book by Hewson (1993) or the more recent review article
by Bulla et al. (2008).

The second mainly numerical RG approach is the density matrix renormaliza-
tion group method (White 1992, Peschel et al. 1999, Schollwöck 2005), which
is particularly useful to study one-dimensional quantum systems. Roughly, this
DMRG is a sort of real-space RG approach where the density matrix of the
system plays an essential role for the selection of states to be eliminated by
the RG iteration. In this book we shall not further discuss these numerical RG
methods.

(e) Continuous unitary transformations: Another implementation of the RG idea
which directly manipulates the Hamiltonian of the system is the method of con-
tinuous unitary transformations, also called flow equation method, which was
proposed independently by Wegner (1994), and by Głazek and Wilson (1993,
1994). In this method one defines a family of unitary transformations depending
on a certain continuous flow parameter which iteratively transform the Hamil-
tonian into diagonal form or at least block-diagonal form. For a survey of this
method, see the recent book by Kehrein (2006).

3.2 Real-Space RG for the One-Dimensional Ising Model

The Migdal–Kadanoff real-space RG is perhaps the best starting point for gaining
an intuitive understanding of the basic concepts underlying the RG. For other ped-
agogical introductions to this method see (Maris and Kadanoff 1978, Chaikin and
Lubensky 1995, McComb 2004). Here we shall explain this method by using it to
solve the one-dimensional Ising model with nearest-neighbor interactions. It turns
out that for this model the mode-elimination step can be performed exactly, which
should not be surprising because we already know from Exercise 1.1 that the model
can be easily solved using the transfer matrix method.

3.2.1 Exact Decimation

The Hamiltonian of the one-dimensional Ising model with ferromagnetic nearest-
neighbor coupling J in a magnetic field h can be written as

H = −J
N∑

i=1

si si+1 − h
N∑

i=1

si − E0 , (3.19)

where si = ±1 and we assume periodic boundary conditions, so that si+N = si .
For later convenience, we have subtracted an arbitrary constant E0 which defines
the zero of energy. Introducing the dimensionless couplings

g = β J , h̃ = βh , f̃ = βE0

N
, (3.20)
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the partition function of our model can be written as follows,

Z =
∑

s1=±1

. . .
∑

sN =±1

exp

[
g

N∑
i=1

si si+1 + h̃
N∑

i=1

si + N f̃

]

=
∑

s1=±1

. . .
∑

sN =±1

exp

[
N∑

i=1

(
gsi si+1 + h̃

2
(si + si+1) + f̃

)]

=
∑
{si }

(
egs1s2+ h̃

2 (s1+s2)+ f̃
) (

egs2s3+ h̃
2 (s2+s3)+ f̃

)
. . .

(
egsN s1+ h̃

2 (sN +s1)+ f̃
)

=
∑

s1=±1

. . .
∑

sN =±1

Ts1s2
Ts2s3

. . . TsN s1 = Tr
[
TN

]
, (3.21)

where the four numbers

Tss ′ = exp

[
gss ′ + h̃

2
(s + s ′) + f̃

]
(3.22)

are arranged to form the 2 × 2 transfer matrix,

T =
(

T1,1 T1,−1

T−1,1 T−1,−1

)
= e f̃

(
eg+h̃ e−g

e−g eg−h̃

)
. (3.23)

Assuming that N is even, a possible implementation of the RG mode-elimination
step is now to carry out a partial summation over all sites with even labels in
Eq. (3.21),

Z =
∑

s1s3...sN−1

(∑
s2

Ts1s2 Ts2s3

)(∑
s4

Ts3s4 Ts4s5

)
. . .

(∑
sN

TsN−1sN TsN s1

)

=
∑

s1s3...sN−1

[T2]s1s3 [T2]s3s5 . . . [T
2]sN−1s1 = Tr

[
(T′)N ′]

, (3.24)

where N ′ = N/2 is the number of sites after mode elimination, and the new transfer
matrix is simply

T′ = T2 = e2 f̃

(
e2g+2h̃ + e−2g eh̃ + e−h̃

eh̃ + e−h̃ e2g−2h̃ + e−2g

)
. (3.25)

After the mode-elimination step, the partition function of our model has the same
form as the partition function of an effective Ising model with a new transfer matrix
T′ and a new lattice with half as many lattice sites as our original model and twice
the original lattice spacing a′ = 2a. This mode-elimination procedure is illustrated
in Fig. 3.1. We now define new coupling constants g′, h̃′, and f̃ ′ by demanding that
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Fig. 3.1 Pictorial representation of the mode-elimination step in the Ising chain corresponding to
Eq. (3.24) where all even sites are eliminated

our new transfer matrix T′ should be of the same form as the original one given in
Eq. (3.23), i.e.,

T′ = e f̃ ′
(

eg′+h̃′
e−g′

e−g′
eg′−h̃′

)
= e2 f̃

(
e2g+2h̃ + e−2g eh̃ + e−h̃

eh̃ + e−h̃ e2g−2h̃ + e−2g

)
. (3.26)

A priori it is not clear whether after mode elimination the transfer matrix can be
parameterized in terms of the same number of parameters as the original trans-
fer matrix. In fact, in two and higher dimensions the mode-elimination step in the
Migdal–Kadanoff RG usually generates interactions beyond the nearest neighbors
so that the new transfer matrix does not have the same form as the transfer matrix
of the original nearest-neighbor model, see Exercise 3.2. Fortunately, for our one-
dimensional Ising model the mode-elimination procedure does not generate new
couplings. Mathematically, this implies that the matrix equation (3.26) can uniquely
be solved for the new parameters g′, h̃′ and f̃ ′ as functions of the original couplings
g, h̃, and f̃ . To obtain the explicit solution, we note that the matrices in Eq. (3.26)
are symmetric, so that this matrix equation is equivalent to the following three non-
linear equations for our three unknowns g′, h̃′, and f̃ ′,

e f̃ ′+g′+h̃′ = e2 f̃
(

e2g+2h̃ + e−2g
)

= 2e2 f̃ +h̃ cosh(2g + h̃) , (3.27a)

e f̃ ′+g′−h̃′ = e2 f̃
(

e2g−2h̃ + e−2g
)

= 2e2 f̃ −h̃ cosh(2g − h̃) , (3.27b)

e f̃ ′−g′ = e2 f̃
(

eh̃ + e−h̃
)

= 2e2 f̃ cosh h̃ . (3.27c)

Let us now explicitly solve these equations for f̃ ′, g′, and h̃′. Therefore, we take the
logarithm of both sides of Eqs. (3.27a), (3.27b), and (3.27c) to obtain

f̃ ′ + g′ + h̃′ = 2 f̃ + h̃ + ln[2 cosh(2g + h̃)] , (3.28a)

f̃ ′ + g′ − h̃′ = 2 f̃ − h̃ + ln[2 cosh(2g − h̃)] , (3.28b)

f̃ ′ − g′ = 2 f̃ + ln[2 cosh h̃] . (3.28c)

Subtracting Eq. (3.28b) from Eq. (3.28a) yields for the new magnetic field,
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h̃′ = h̃ + 1

2
ln

[
cosh(2g + h̃)

cosh(2g − h̃)

]
. (3.29)

Adding Eq. (3.28c) to half of the sum of Eqs. (3.28a) and (3.28b) we obtain for the
renormalized free energy,

f̃ ′ = 2 f̃ + 1

4
ln

[
16 cosh2 h̃ cosh(2g + h̃) cosh(2g − h̃)

]
. (3.30)

Finally, we subtract Eq. (3.28c) from half of the sum of Eqs. (3.28a) and (3.28b) and
obtain for the new dimensionless nearest-neighbor interaction,

g′ = 1

4
ln

[
cosh(2g + h̃) cosh(2g − h̃)

cosh2 h̃

]
. (3.31)

For simplicity, we now set the magnetic field equal to zero, h̃ = 0. Eq. (3.29)
then implies that the new magnetic field h̃′ also vanishes, while the RG equation
(3.31) for the renormalized coupling constant becomes

g′ = ln
(√

cosh 2g
)
. (3.32)

To rewrite this relation in a more convenient form, we exponentiate both sides, so
that eg′ = √

cosh 2g or e−g′ = 1/
√

cosh 2g, and hence

eg′ + e−g′ =
√

cosh 2g

(
1 + 1

cosh 2g

)
, (3.33a)

eg′ − eg′ =
√

cosh 2g

(
1 − 1

cosh 2g

)
. (3.33b)

Dividing Eq. (3.33b) by (3.33a) and using the identity cosh 2g = 2 cosh2 g − 1 =
1 + 2 sinh2 g we finally obtain

tanh g′ = tanh2 g , (3.34)

while the RG equation (3.30) for the rescaled free energy simplifies for h̃ = 0 to

f̃ ′ = 2 f̃ + ln
(

2
√

cosh 2g
)
. (3.35)

Using Eq. (3.34) and the identities cosh(2g) = cosh4 g − sinh4 g and cosh g′ =
1/

√
1 − tanh2 g′, we may rewrite the argument of the logarithm in Eq. (3.35) as

follows,
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√
cosh 2g = =

√
cosh4 g − sinh4 g = cosh2 g

√
1 − tanh4 g

= cosh2 g
√

1 − tanh2 g′ = cosh2 g

cosh g′ , (3.36)

so that Eq. (3.35) can also be written as

f̃ ′ = 2 f̃ + ln (2 cosh g) + ln

(
cosh g

cosh g′

)
. (3.37)

All three terms on the right-hand side of Eq. (3.37) have a simple interpretation: the
first term 2 f̃ describes the change of the free energy per site due to the reduction
of the number of sites. Since after the mode-elimination step the number of sites
N ′ = N/2 has been reduced by a factor of two, the free energy per site increases
by the same factor. The term 2 f̃ can thus be interpreted as a contribution from the
rescaling of the number of sites. The second term ln (2 cosh g) on the right-hand side
of Eq. (3.37) can be interpreted as the contribution from N/2 noninteracting spins
to the free energy per site. However, the spins which are eliminated are not free,
which is taken into account by the last term on the right-hand side of Eq. (3.37) via
the change of the coupling constant. It is important to realize that the RG procedure
does not modify the partition function, it just calculates it iteratively, so that with
N ′ = N/2,

ZN (g, f̃ ) = ZN ′ (g′, f̃ ′) . (3.38)

On the other hand, since our initial value f̃ = βE0/N is just an additive constant,
the partition function for a system of N spins satisfies

ZN (g, f̃ ) = eN f̃ ZN (g, f̃ = 0) . (3.39)

Combining Eqs. (3.38) and (3.39), we obtain the RG equation for the partition func-
tion

ZN (g, 0) = e−N f̃ + N
2 f̃ ′Z N

2
(g′, 0) = e

N
2 ( f̃ ′−2 f̃ )Z N

2
(g′, 0)

= (
2
√

cosh 2g
) N

2 Z N
2

(g′, 0) =
(

2 cosh2 g

cosh g′

) N
2

Z N
2

(g′, 0) , (3.40)

where in the second line we have used Eqs. (3.35) and (3.37).
The above recursion relations are exact: we have been able to map the problem of

calculating the partition function of the original one-dimensional Ising model with
Hamiltonian H (g, h̃, f̃ ) on an N -site lattice with lattice spacing a onto the problem
of solving an effective Ising model on a lattice with only N

2 sites and twice the lattice
spacing, but with renormalized Hamiltonian H ′(g′, h̃′, f̃ ′). The fact that H ′ has pre-
cisely the same form as H is a special property of the one-dimensional Ising model.
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In higher dimensions, the mode-elimination step in the Migdal–Kadanoff RG gen-
erates new couplings describing longer range interactions between the spins. As a
result, one cannot write down exact RG equations describing the mode-elimination
step and has to rely on approximations, see Exercise 3.2. This is certainly a weak
point of the Migdal–Kadanoff RG procedure. On the other hand, as first pointed out
by Wegner and Houghton (1973), for a quite general class of problems which can be
formulated in terms of functional integrals exact RG equations describing the mode-
elimination step can be written down if the mode elimination step is performed in
infinitesimal steps. This functional renormalization group (FRG) approach will be
explained in detail in Part II of this book. Although the resulting functional dif-
ferential equations typically cannot be solved exactly (see, however, Sect. 11.5 for
a nontrivial exception), the FRG approach opens new possibilities for approxima-
tions, so that rather simple truncations of the exact FRG equations usually yield
nonperturbative results.

3.2.2 Iteration and Fixed Points of the RG

At the first sight the rescaling step of our general RG procedure is still missing.
However, this is only partially true, because by expressing all dimensionful quan-
tities after the mode elimination in terms of the new lattice constant a′ = 2a,
we implicitly take the canonical dimension of the coupling constant into account.
For example, the first term 2 f̃ on the right-hand side of the flow equation (3.37)
for the rescaled free energy f̃ is due to the rescaling of the number of sites
N ′ = N/2 = L/a′, where L is the length of the system. Because the spin variables
in real space are not rescaled in the above RG transformation, the corresponding
correlation function G(r) also does not scale at the critical point, which according
to Eq. (1.13) implies D −2+η = 0, or η = 2− D = 1 in D = 1. As pointed out by
Fisher (1983), the fact that even without spin rescaling (corresponding to η = 1 in
D = 1) one obtains a sensible zero temperature fixed point for the one-dimensional
Ising model should be considered as a lucky accident; in D > 1 one usually needs
a nontrivial spin-rescaling factor in order to obtain an RG fixed point.

Let us now iterate the RG equation (3.34) for the coupling constant g = J/T in
the absence of a magnetic field. Suppose that the physical temperature is small but
finite (0 < T 	 J ), so that the quantity

x0 = tanh

(
J

T

)
= tanh g (3.41)

is close to unity. After one step in our RG procedure we obtain from Eq. (3.34) that
the coupling g1 of the new effective Ising model is given by

tanh g1 = x1 = x2
0 . (3.42)



3.2 Real-Space RG for the One-Dimensional Ising Model 67

Stable Unstable

Fig. 3.2 Graphical representation of the RG flow described by the recursion relation (3.43). The
arrows indicate the direction of change of the variables xn as the RG is iterated

The new parameter g1 is therefore smaller than the initial value g. Since g1 is the
ratio of the exchange coupling and the temperature, we can interpret this in two
possible ways: either the new exchange coupling becomes smaller at constant tem-
perature, or the temperature becomes larger while J is fixed. In the latter picture
the RG maps the initial low-temperature Ising model onto a new high-temperature
Ising model. Iterating the RG n times, we obtain a sequence of temperatures
T, T1, T2, T3 . . . which are determined by

xn+1 = x2
n , xn = tanh

(
J

Tn

)
. (3.43)

The flow of successive xn as a function of the initial x0 is conveniently represented
graphically as the RG flow diagram shown in Fig. 3.2. Obviously, the recursion
relation (3.43) has two fixed points which are invariant under the RG transformation:
a stable fixed point at x∗ = 0 describing the Ising model at infinite temperature, and
an unstable fixed point at x∗ = 1, which determines the critical behavior of the Ising
model for T → 0. At any finite initial temperature (0 < x0 < 1), the RG maps
the Ising model to an effective model at infinite temperature. But at sufficiently
high temperatures the spins are only weakly correlated and there is certainly no
spontaneous magnetization. We therefore expect that this is also the case at any finite
T > 0. To see this explicitly, let us consider the correlation length ξ . Recall that ξ is
defined in terms of the asymptotic behavior of the correlation function G(r i −r j ) for
|r i − r j | → ∞, or, equivalently, in terms of the behavior of its Fourier transform
G(k) for small wave vectors. Since r i and r j are well separated, we can always
choose sites i and j which are not eliminated in the RG mode-elimination step.
Now, eliminating modes does not effect the correlations between any modes which
are not integrated out.4 As a consequence, only the rescaling step (which changes
the unit of length) modifies the value of ξ . Since ξ has units of length and all length
scales shrink by a factor of 1/b under the rescaling transformation, we conclude that
after one complete iteration of the RG the correlation length transforms as

ξ ′ ≡ ξ (x ′) = ξ (x)

b
. (3.44)

4 The invariance of the correlation length under the mode-elimination step can be shown mathe-
matically via the following chain of identities,
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Original Chain:

Decimation:

Rescaling:

Fig. 3.3 Pictorial representation of the change of the correlation length under the RG transforma-
tion. After decimation the new lattice constant is a factor of b larger than the old one, while the
correlation length is constant. After rescaling, all length scales are scaled down by a factor of 1/b

The transformation behavior of the correlation length is illustrated graphically for
b = 2 in Fig. 3.3. According to our recursion relation (3.43), we have x ′ = x2, so
that Eq. (3.44) implies

ξ (x2) = ξ (x)

2
. (3.45)

This functional equation has the solution

ξ (x) = − a0

ln x
, (3.46)

where a0 is an arbitrary length scale. At low temperatures, where g = J/T � 1,
we may approximate x = tanh g ≈ 1 − 2e−2g . Identifying a0 = a with the lattice

G(r i − r j ) ≡ a2−D〈δsiδs j 〉 ≡ a2−D

∑
{si } δsiδs j e−H̃ (s1,s2,...sN )∑

{si } e−H̃ (s1,s2,...sN )

= a2−D

∑
s1,s3,...,si ,...,s j ,...,sN−1

δsiδs j
∑

s2,s4,...,sN
e−H̃ (s1,s2,...sN )∑

s1,s3,...,si ,...,s j ,...,sN−1

∑
s2,s4,...,sN

e−H̃ (s1,s2,...sN )

= a2−D

∑
s1,s3,...,si ,...,s j ,...,sN−1

δsiδs j e−H̃ ′(s1,s3,...sN−1)∑
s1,s3,...,si ,...,s j ,...,sN−1

e−H̃ ′(s1,s3,...sN−1)
,

where H̃ = βH and the reduced Hamiltonian H̃ ′ is defined by

e−H̃ ′(s1,s3,...sN−1) ≡
∑

s2,s4,...,sN

e−H̃ (s1,s2,...sN ) .

Apparently the mode-elimination step eliminates modes which by the definition of the correlation
function have to be eliminated anyway. Consequently, the correlation function and the correlation
length ξ do not change under the explicit mode-elimination process.
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constant, we obtain for the low-temperature behavior of the correlation length of the
one-dimensional Ising model,

ξ ∼ a

2
e2J/T , (3.47)

which agrees with the exact low-temperature result for the correlation length
obtained in Exercise 1.1. Obviously, for any finite temperature the correlation length
is finite, so that the system is disordered. In the zero temperature limit the correlation
length diverges. The point T = 0 is therefore a critical point of the one-dimensional
Ising model. The corresponding critical exponents and the scaling functions have
been calculated explicitly in Exercise 1.1. Note that the critical point corresponds
to the unstable RG fixed point x∗ = 1 in Fig. 3.2. We shall show in Sect. 3.3.2 that
there is a general connection between critical points of continuous phase transitions
and unstable RG fixed points.

3.2.3 Infinitesimal Form of RG Recursion Relations

So far, we have eliminated every second spin, so that after one iteration of the RG the
system has N ′ = N

2 sites and lattice spacing a′ = 2a. But there is no unique way
of implementing the decimation procedure; we may just as well eliminate blocks
of two neighboring spins as shown in Fig. 3.4. In this case N ′ = N/3 and a′ =
3a. More generally, we may eliminate blocks of b spins, so that after one mode-
elimination step the lattice has N ′ = N/b sites and lattice spacing a′ = ba. The RG
recursion relations for the parameters of the new Ising model after mode elimination
can be obtained in analogy with Eq. (3.24) by expressing the partition function in
terms of the renormalized T-Matrix as

Z = Tr
[
TN

] = Tr
[
(Tb)N/b

] ≡ Tr
[
(T′)N ′]

. (3.48)

The recursion relations for any integer b can be obtained again by demanding that
T′ = Tb is again of the same form as the original T-matrix,

Fig. 3.4 Pictorial representation of a mode-elimination step in the Ising chain where blocks of two
neighboring spins are eliminated
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T′ = e f̃ ′
(

eg′+h̃′
e−g′

e−g′
eg′−h̃′

)
=

[
e f̃

(
eg+h̃ e−g

e−g eg−h̃

)]b

. (3.49)

Setting for simplicity h̃ = 0, this implies for the renormalized coupling constant
(see Exercise 3.1),

tanh g′ = (tanh g)b , (3.50)

and for the renormalized free energy per site,

f̃ ′ = b f̃ + ln

[
2b−1(cosh g)b

cosh g′

]

= b f̃ + (b − 1) ln (2 cosh g) + ln

(
cosh g

cosh g′

)
. (3.51)

Eqs. (3.50) and (3.51) generalize Eqs. (3.34) and (3.37) for arbitrary b. Although
these equations have been derived for integer b, they can be analytically continued
for any real b. Using this freedom, we may set

b = el = 1 + l + O(l2) (3.52)

with infinitesimal l, and consider the limit l → 0, where the discrete recursion
relations become differential equations. Setting g′ ≡ gl and xl = tanh gl with initial
value gl=0 = g, and expanding for small l,

xl = xb
0 = x1+l+O(l2)

0 ≈ x0[1 + l ln x0 + O(l2)] , (3.53)

we obtain from Eq. (3.50)

xl − x0

l
= x0 ln x0 + O(l) . (3.54)

Iterating this equation and taking the limit l → 0 this reduces to the differential
equation

dxl

dl
= xl ln xl . (3.55)

Integrating this differential equation with initial condition x0 = tanh g up to a finite
l, we obtain the coupling constant xl = tanh gl of the effective Ising model which
results from the elimination of b − 1 = el − 1 spins. Eq. (3.55) can be explicitly
integrated by separation of variables; the result is

xl = xel

0 , (3.56)
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which agrees of course with Eq. (3.53). The right-hand side of the differential RG
flow equation (3.55) is called RG β-function, which is usually denoted by

β(x) = x ln x . (3.57)

Note that the RG fixed points where dxl/dl = 0 correspond to the zeros of the
β-function, in our case x∗ = 0 and x∗ = 1.

If we use the variable gl instead of xl = tanh gl , then Eq. (3.55) looks more
complicated: abbreviating ∂l = ∂/∂l and using ∂l tanh gl = ∂l gl/ cosh2 gl we obtain

∂l gl = cosh gl sinh gl ln(tanh gl) . (3.58)

At low temperatures, where gl � 1, this simplifies to

∂l gl ≈ 1

4
e2gl ln

(
1 − 2e−2gl

) ≈ −1

2
, (3.59)

which yields for the dimensionless temperatures tl = 1/gl = Tl/J ,

∂l tl ≈ t2
l

2
, (3.60)

with solution

tl = t0
1 − t0

2 l
. (3.61)

Since Eq. (3.60) has been derived under the assumption tl 	 1, the solution of
Eq. (3.61) can only be trusted up to l � l∗ where t∗ = tl∗ is of the order of unity.
Roughly, this is the scale where the denominator in Eq. (3.61) vanishes, l∗ = 2/t0.
But at high temperatures of order J , the correlation length should be of the order
of the lattice spacing, so that according to Eq. (3.44) the correlation length in units
of the lattice spacing can be estimated to be proportional to b∗ = el∗ = e2/t0 at low
temperatures, in agreement with our previous result (3.47).

The infinitesimal form of the RG equation for the free energy per site can be
obtained analogously from Eq. (3.51),

∂l f̃l = f̃l + ln(2 cosh gl) + ∂l

[
ln
(cosh g0

cosh gl

)]
l=0

= f̃l + ln(2 cosh gl) − (tanh gl)∂l gl

= f̃l + ln(2 cosh gl) − sinh2 gl ln(tanh gl) . (3.62)

The first term on the right-hand side in the last line is due to the fact that at RG
step l the number of sites Nl = N/b = Ne−l has decreased by a factor of e−l . In
D dimensions, the corresponding flow equation for the free energy per unit volume
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would start with a term ∂l f̃ = D f̃ + . . .. More generally, the RG flow equation of
any coupling gl which can be made dimensionless by multiplication with a factor
(length)Dg contains a term of the form

∂l g = Dgg + . . . , (3.63)

where Dg is called the canonical dimension (also called engineering dimension) of
the coupling gl . The value of Dg follows from simple dimensional analysis; the
first term on the right-hand side of the differential RG flow equation (3.63) simply
expresses the fact that the RG rescaling step changes the length scale. As already
pointed out at the beginning of Sect. 3.2.2, in the Migdal–Kadanoff RG the length
rescaling step is implicitly performed by introducing dimensionless couplings by
multiplying the dimensionful couplings with a factor depending on the reduced lat-
tice spacing, as is obvious from Eq. (3.62).

3.3 General Properties of RG Flows

In this section we shall discuss some basic properties of RG flows which are inde-
pendent of any specific model. In particular, we explain the deep relation between
fixed points of the RG transformation and critical points of the underlying physical
system, which is the key to understand the microscopic origin of the scaling hypoth-
esis formulated in Sect. 1.3. We also show how the linearized RG flow around RG
fixed points determines the critical exponents, and discuss some global properties
of RG flows.

3.3.1 RG Fixed Points and the Critical Surface

Given a general RG transformation R(b; g) acting on the (possibly infinite) set
of couplings g = (g1, g2, g3, . . .), a fixed point of the RG is a special point
g∗ = (

g∗
1 , g∗

2 , g∗
3 , . . .

)
in coupling space which is invariant under the transformation

R(b; g), i.e.,

g∗ = R(b; g∗) . (3.64)

To understand the physical significance of RG fixed points, recall that in Sect. 3.2
we have found that the RG transformation for the one-dimensional Ising model has
two different fixed points illustrated in Fig. 3.2: an unstable fixed point associated
with the critical point of the Ising model at zero temperature, and a stable fixed point
describing completely decoupled spins at infinite temperature. From Eq. (3.47) it is
obvious that the correlation length at the zero temperature fixed point is infinite;
on the other hand, at infinite temperature the spins are uncorrelated, so that the
correlation length vanishes. The fact that at a fixed point of the RG the correlation
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length is either infinite or zero is not a special property of the Ising chain: any RG
fixed point describes either a critical system with infinite correlation length, or a
completely decoupled system with vanishing correlation length. To see this, note
that according to Eq. (3.44) the correlation length ξ transforms under one iteration
of the RG as

ξ (g′) = ξ (g)

b
, (3.65)

with arbitrary b > 1. Let us emphasize that Eq. (3.65) is an exact and quite general
scaling relation which holds by definition for any mode-elimination process in the
Wilsonian RG procedure. To see this, note that the correlation length can be defined
via the correlation function G(k) for small wave vectors.5 In particular, |k| should
be chosen much smaller than the cutoff Λ, such that we may formally integrate out
degrees of freedom between Λ and Λ0, leaving the correlation function unchanged.
More precisely, using Eq. (2.98) we have

G(k) = a2

∫
D[ϕ] |ϕk|2e−S[ϕ;g]∫
D[ϕ] e−S[ϕ;g]

= a2

∫
D[ϕ<] |ϕk|2

∫
D[ϕ>]e−S[ϕ<+ϕ>;g]∫

D[ϕ<]
∫
D[ϕ>] e−S[ϕ<+ϕ>;g]

= a2

∫
D[ϕ<] |ϕk|2eS<[ϕ<;g<]∫
D[ϕ<] eS<[ϕ<;g<]

, (3.66)

which does not depend on whether we have already eliminated modes explicitly (as
in the last line) or not. Using now the fact that at the fixed point g = g

′ = g∗, we
conclude from Eq. (3.65) that

ξ (g∗) = ξ (g∗)

b
, (3.67)

which can only be satisfied if ξ (g∗) is either infinite or zero. Fixed points with
ξ = ∞ describe critical points associated with continuous phase transitions and
are therefore called critical fixed points, while fixed points with ξ = 0 are called
trivial fixed points. In general, a given RG transformation will have several fixed

5 If we write the exact correlation function in Fourier space as G(k) = [c0k2 + Σ(k)]−1, and
expand the so-called self-energy functionΣ(k) in powers of k, then a simple calculation analogous
to the one in Sect. 2.3.3 implies that the correlation length is given by c0/ξ

2 = ZΣ(0) with
Z−1 = 1 + ∂Σ(k)/∂(c0k2)|k=0. We shall derive these relations in Sect. 4.2.3, see Eqs. (4.97) and
(4.98). In Gaussian approximation Σ(k) = Atr0 (see Eq. (2.102)), so that c0/ξ

2 = ZΣ(0) ≈ Atr0

reduces to our previous result (2.80). For a system where all fluctuations with wave vectors with
|k| > Λ = Λ0/b have been eliminated via the RG the self-energy ΣΛ(k) and ZΛ depend on the
cutoff Λ, so that we may define a cutoff-dependent length ξΛ by setting c0/ξ

2
Λ = ZΛΣΛ(0). By

definition, in the limitΛ → 0 the length ξΛ can be identified with the physical correlation length ξ .
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points or even a continuum of fixed points forming a certain manifold in coupling
space. For example, the RG flow of coupling constants for the two-dimensional
Ising model on the square lattice is characterized by the three fixed points shown
in Fig. 3.5. Obviously, each fixed point has its own basin of attraction, which is
the set of points in coupling constant space which flows into the fixed point when
the RG is iterated. The basin of attraction of the critical fixed point C where the
correlation length is infinite is called its critical surface or critical manifold. It turns
out that the correlation length is not only infinite precisely for the special values
g∗ of the coupling constants associated with a critical fixed point, but also on the
entire critical surface which is mapped into g∗ by iterating the RG transformation.
Therefore all couplings on the critical surface describe a physical system precisely
at the critical point. To see this, suppose we adjust the bare couplings g of some
system such that they lie on the critical surface of a certain critical fixed point.
For the Ising model with nearest and next-nearest-neighbor interactions we may
fine-tune the temperature until we hit the critical surface of the critical fixed point
C shown in Fig. 3.5. Suppose now that we iterate the elementary RG step n times
and keep track of the correlation length ξ (g(n)), where g(n) denotes the value of the
renormalized coupling constants after n iterations. From Eq. (3.65) we obtain

ξ (g) = bξ (g(1)) = b2ξ (g(2)) = . . . = bnξ (g(n)) . (3.68)

Assuming now that the initial values g of the couplings lie on the critical surface,
then by definition limn→∞ g(n) = g∗. But for a critical fixed point ξ (g∗) = ∞, so
that Eq. (3.68) implies that also the original correlation length ξ (g) must be infinite.

Fig. 3.5 Projected RG flow of the square lattice Ising model in the plane spanned by the dimen-
sionless couplings g1 = β J and g2 = β J ′ representing nearest (J ) and next-nearest-neighbor
(J ′) interactions. There are two trivial fixed points (the zero-temperature fixed point S0 and the
infinite-temperature fixed point S∞) and one critical fixed point (C). All points flowing into the
critical fixed point C constitute its critical manifold and are characterized by an infinite correlation
length. Monte Carlo calculations supporting the qualitative features of this schematic flow diagram
can be found in Swendsen (1984)
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3.3.2 Local RG Flow Close to a Fixed Point: Classification
of Couplings and Justification of the Scaling Hypothesis

One of the most fundamental insights provided by the RG is the connection between
critical exponents and the local behavior of the RG flow in the vicinity of a given RG
fixed point. Consider a general RG transformation of the form (3.15b) and a certain
fixed point g∗ satisfying the fixed point condition (3.64). Subtracting Eq. (3.64)
from Eq. (3.15b) we obtain

δg′ ≡ g′ − g∗ = R(b; g) − R(b; g∗) . (3.69)

Assuming now that the deviation δg = g − g∗ from the fixed point in coupling
space is sufficiently small, we may expand the right-hand side of Eq. (3.69) to linear
order in δg and obtain the linearized RG flow in the vicinity of the RG fixed point
g∗ = (

g∗
1 , g∗

2 , g∗
3 , . . .

)
,

δg′ = R(b; g∗)δg , (3.70)

where R(b; g∗) is a matrix in coupling space with matrix elements

Ri j (b; g∗) = ∂Ri (b; g)

∂g j

∣∣∣∣
g∗
. (3.71)

Note that each fixed point of a general RG transformation R(b; g) is characterized
by a different matrix R(b; g∗). To classify the linearized RG flow in the vicinity of
a given fixed point, it is useful to determine the eigenvalues of the matrix R(b; g∗).
However, there is no reason why the matrix R(b; g∗) should be symmetric, so that
in general it cannot be diagonalized and we should distinguish between left and
right eigenvectors. For our purpose we need only the left eigenvectors vT

α and the
corresponding eigenvalues λα(b), which we label by an index α = 1, 2, 3, . . .. By
definition, the left eigenvectors satisfy the eigenvalue equation

vT
αR(b; g∗) = vT

α λα(b) . (3.72)

To discuss the RG flow in the vicinity of the fixed point g∗, it is useful to project the
coupling vector δg onto the left eigenvectors vT

α of the matrix R(b; g∗),

uα = vT
α δg =

∑
i

vα,iδgi . (3.73)

These special linear combinations of the coupling constants are called scaling vari-
ables, because they do not mix under the linearized RG transformation (3.70), which
follows simply from Eqs. (3.72) and (3.73),



76 3 Wilsonian Renormalization Group

u′
α = vT

α δg′ = vT
αR(b; g∗)δg = λα(b)vT

α δg = λα(b)uα . (3.74)

The crucial point is now that the semigroup property imposes a strong constraint on
the b-dependence of the eigenvalues λα(b). According to Eq. (3.17) the composition
of two RG transformations satisfies

R(b′; R(b; g)) = R(b′b; g) = R(bb′; g) = R(b; R(b′; g)) , (3.75)

implying for the transformation matrices associated with the linearized RG flow
around a given fixed point,

R(b; g∗)R(b′; g∗) = R(bb′; g∗) = R(b′; g∗)R(b; g∗) . (3.76)

For different values of b all members of the continuous family of matrices R(b; g∗)
therefore commute, so that their eigenvectors vT

α are independent of b. Moreover,
Eq. (3.76) implies that the eigenvalues satisfy

λα(b)λα(b′) = λα(bb′) . (3.77)

This functional equation has the solution

λα(b) = byα , (3.78)

with some b-independent exponent yα . To linear order in the deviations from the
fixed point, the RG equation for the scaling variables uα defined in Eq. (3.73) is
therefore

u′
α = byαuα , (3.79)

or with b = el in differential form

duα
dl

= yαuα , (3.80)

where one should keep in mind that corrections of order u2
α are neglected on the

right-hand side. The yα are called the renormalization group eigenvalues associated
with the scaling variables uα . By construction, the fixed point now corresponds to
u∗
α = 0. Eq. (3.80) describes the growth or decay of particular linear combinations

uα = ∑
i vα,i

(
gi − g∗

i

)
of couplings in the vicinity of a given fixed point g∗. Obvi-

ously, for yα > 0 a small initial deviation uα,0 �= 0 from the fixed point grows
exponentially when the RG is iterated so that the RG flow is repelled from the fixed
point; scaling variables uα with positive yα are therefore called relevant. On the
other hand, for yα < 0 small initial deviations from the fixed point decrease as
we iterate the RG, so that the corresponding scaling variables are called irrelevant.
Finally, there are marginal scaling variables with yα = 0; in this case one has to
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retain the corrections of quadratic order in the coupling constants in order to decide
whether the RG flow in coupling space approaches a given fixed point or flows away
from it. In the former case the coupling is called marginally irrelevant, while in the
latter case it is called marginally relevant.6

The exponents yα associated with relevant couplings are closely related to the
critical exponents. The precise relation depends on the relevant scaling variables
of the system and on the nature of the fixed point. For simplicity, consider here
the nearest-neighbor Ising model in a magnetic field h, which can be described by
the effective field theory S[ϕ] in Eq. (2.40). To obtain the critical behavior of the
system below four dimensions, we may use the simpler ϕ4-theory SΛ0 [ϕ] defined
in Eq. (2.65). We shall show in Chap. 4 that in D < 4 the critical RG fixed point
which determines the critical behavior of the system is characterized by two relevant
scaling variables: a thermal variable tl , which is proportional to the deviation of
the temperature from the critical temperature, and a suitably defined magnetic field
variable hl . The RG equations describing the linearized flow in the vicinity of the
critical fixed point are then of the form

∂l tl = yt tl , ∂l hl = yhhl , (3.81)

with positive exponents yt and yh . The solutions are simply

tl = t0eyt l = t0byt , hl = h0eyhl = h0byh . (3.82)

Taking into account that after the rescaling step the volume V ′ = V/bD shrinks
by a factor of 1/bD , we conclude that the singular part of the free energy density
transforms under the RG as

fsing(t0, h0) = b−D fsing(tl, hl ) = b−D fsing(byt t0, byh h0) , (3.83)

which is precisely the scaling hypothesis (1.16) for the free energy. Due to the lin-
earization of the RG flow equations (3.81) and the neglect of marginal and irrelevant
couplings, Eq. (3.83) applies only to the singular part of the free energy density,
which is dominated by the scale dependence of the relevant scaling variables in the
vicinity of the RG fixed point.

Next, let us justify the scaling hypothesis for the correlation function given in
Eq. (1.25). Therefore, we should calculate how the correlation function transforms

6 Since the matrix R(b; g∗) is in general not symmetric, one cannot exclude the possibility that
some of its eigenvalues are complex, so that the associated exponents yα are also complex. In
this case more complicated RG flows are possible, such as limit cycles or even chaotic RG flows.
Although this possibility was discussed by Wilson (1971a), for a long time no models exhibiting
this type of behavior could be found. However, recently some models whose RG flows exhibit limit
cycles have been constructed (Glazek and Wilson 2002, LeClair et al. 2003) and a physically rele-
vant model exhibiting a cyclic RG flow has been found (Moroz et al. 2009), see also the discussion
at the end of Sect. 3.3.3.



78 3 Wilsonian Renormalization Group

under the RG. For simplicity, consider the Fourier transform G(k) of the correlation
function of the Ising model, which according to Eq. (2.100) can be written as a
functional average,

(2π )Dδ(k1 + k2)G(k1; g) = 〈δϕ(k1)δϕ(k2)〉S ≡
∫
D[ϕ]e−S[ϕ]δϕ(k1)δϕ(k2)∫

D[ϕ]e−S[ϕ]
,

(3.84)

where the effective action S[ϕ] is defined in Eq. (2.40) and g is the infinite set of
coupling constants defining the lattice action S[ϕ]. But according to Eq. (3.9), after
one iteration of the RG the fields with momenta smaller than the cutoff should be
rescaled as δϕ(k) = ζbδϕ

′(k′) with k′ = bk, so that

〈δϕ(k1)δϕ(k2)〉S = ζ 2
b 〈δϕ′(k′

1)δϕ′(k′
2)〉S′ = ζ 2

b (2π )Dδ(k′
1 + k′

2)G(k′
1; g′) . (3.85)

Keeping in mind that δ(k′) = δ(bk) = b−Dδ(k), we obtain from Eqs. (2.100) and
(3.85)

G(k; g) = ζ 2
b

bD
G(k′; g′) . (3.86)

To determine the field rescaling factor ζb, we note that the field term h0ϕ(k = 0)
in our effective action (2.61) is invariant under the RG transformation, because it
involves only the k = 0 component of the field which is not affected by the RG.
Hence,

h0ϕ(k = 0) = hlϕ
′(k′ = 0) = hl

ζb
ϕ(k = 0) . (3.87)

This implies hl = ζbh0 and hence

ζb = byh . (3.88)

Finally, we use again the fact that the singular part of the correlation function is
dominated by the scaling of the relevant couplings tl and hl and obtain

Gsing(k; t0, h0) = b2yh−DGsing(bk; byt t0, byh h0) , (3.89)

which is the Fourier transform of the scaling hypothesis (1.25) for the correlation
function. Recall that in Sect. 1.3 we have shown that the scaling relations (3.83) and
(3.89) imply that the correlation length exponent ν = 1/yt can be identified with
the inverse of the eigenvalue of the thermal scaling variable, see Eq. (1.28). In this
way the numerical values of the critical exponents are related to the linearized RG
flow in the vicinity of critical fixed points.

The scaling relation (3.89) does not depend on the irrelevant scaling variables
uα with yα < 0. On the other hand, microscopic lattice models are usually
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characterized by infinitely many coupling constants with negative scaling dimen-
sions, implying the existence of infinitely many irrelevant scaling variables. For
example, the expansion of the exact order-parameter field theory S[ϕ] for the Ising
model defined in Eq. (2.40) in powers of the fields contains infinitely many terms
with a negative scaling dimension. From Eq. (2.51) it is obvious that the terms in
this expansion depend on the Fourier transform Jk of the exchange coupling. Each
term in the expansion of Jk in powers of k defines a different coupling constant,
such as the couplings c′

4 and c′
6 in Eqs. (3.14b) and (3.14c).

As the RG is iterated there is an enormous reduction of the dimensionality of the
coupling space and all irrelevant terms drop out. The leading singular behavior of
physical observables is controlled by a small number of relevant (and marginally
relevant) couplings. But what is then the effect of the irrelevant couplings? It turns
out that the effect of irrelevant couplings can be implicitly taken into account by
redefining the numerical initial values of the relevant couplings. Let us illustrate
this with a simple example, following Polchinski (1984). Consider a toy model
whose RG flow can be described by one relevant coupling u = ul and one irrelevant
coupling v = vl , with RG flow equations,

∂lu = εu + A(u, v) , (3.90a)

∂lv = −λv + B(u, v) , (3.90b)

where for small u, v the functions A(u, v) and B(u, v) have an expansion

A(u, v) = a1u2 + a2uv + a3v
2 + . . . , (3.91a)

B(u, v) = b1u2 + b2uv + b3v
2 + . . . . (3.91b)

Assuming yu = ε > 0 and yv = −λ < 0, the coupling u is relevant, while v
is irrelevant. The linearization of the RG flow around the fixed point (u∗, v∗) =
(0, 0), where du/dl = dv/dl = 0, corresponds to setting A = B = 0. In this
case the solution of Eqs. (3.90a) and (3.90b) with initial condition ul=0 = u0 and
vl=0 = v0 is simply ul = u0e+εl and vl = v0e−λl , such that ul grows exponentially
while vl vanishes exponentially for l → ∞. Even if we include the effect of the
functions A and B the flow is still attracted by a one-dimensional submanifold which
is determined by integrating the flow equations from (u0, v0) = (±δ, 0) with small
δ > 0. However, before the deviation of the flow from this submanifold is damped
away, it will cause the relevant coupling ul to run a little faster or slower than it
would run for v0 = 0. This is shown graphically in Fig. 3.6 where we have integrated
the flow equations (3.90a) and (3.90b) for parameters given in the figure caption.
The net effect of the irrelevant coupling is that the value of ul(u0, v0) is changed by
a finite constant Δul = |ul (u0, v0) − ul (u0, v0 = 0)|. We can therefore absorb the
effect of the irrelevant coupling v0 by redefining the initial value u0 of the relevant
coupling u.

In some cases, however, the effect of the irrelevant couplings cannot be implicitly
taken into account via a finite redefinition of the relevant ones. This happens if the
scaling functions exhibit a singular dependence on some special irrelevant coupling,



80 3 Wilsonian Renormalization Group

Fig. 3.6 RG flow of the toy model with RG flow equations (3.90a) and (3.90b), ε = λ = 1,
A(u, v) = −uv, and B(u, v) = −u2 in the u–v-plane. While the initial relevant coupling u0 is
chosen the same for all three trajectories, we have chosen different initial values v0,i (with i = 1,
2, 3) for the irrelevant coupling vl . Clearly, independent of the irrelevant initial value v0 the flow
approaches the critical one-dimensional submanifold as the flow progresses. For the parameters
chosen here, a positive initial value v0 of the irrelevant coupling vl causes the relevant coupling ul

to run a little slower and thus changes its value at a given RG time l by a finite amount. This can
be seen explicitly by considering the three points Pi , which all correspond to the same l. The shift
Δul = |ul (u0, v0) − ul (u0, v0 = 0)|, however, can be compensated by a redefinition of the initial
value u0

so that we cannot simply set it equal to zero. The corresponding irrelevant coupling
is then called dangerously irrelevant. An example is the quartic interaction u in
the ϕ4-theory (2.65) above four dimensions. In Chap. 4 we shall derive the RG
flow equation for this coupling within the so-called one-loop approximation. The
Ginzburg criterion discussed in Sect. 2.3.4 suggests that for D > 4 the quartic
coupling u is indeed irrelevant, which means that yu < 0. Nevertheless, we cannot
ignore u in the scaling of the free energy, so that we should replace Eq. (1.16) by

fsing(t, h, u) = b−D fsing(byt t, byh h, byu u) . (3.92)

The crucial point is now that for small u the singular part of the free energy exhibits
a singular dependence on u, e.g. for h = 0 we have

fsing(−1, h = 0, u0) ∝ u−1
0 , (3.93)

such that

fsing(t, h = 0, u) ∝ |t |(d−yu )/yt /u = |t |2/u . (3.94)

This implies α = 0 which (for D > Dup) is the exact result. The critical exponents
β and γ will be discussed Exercise 3.3, see also (Goldenfeld 1992, pp. 359–361).
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3.3.3 Global Properties of RG Flows and Classification
of Fixed Points

In the previous section we have shown that the local properties of the RG flow near
a given fixed point determines the critical exponents. More precisely, the critical
exponents can be expressed in terms of the eigenvalues of the matrix associated
with the linearized RG flow in the vicinity of the fixed point. The fact that these
eigenvalues are independent of the initial values of the couplings is the origin of
universality. In this section we shall discuss the global behavior of RG flows. Usu-
ally, any point in coupling space flows under the iterated RG to some fixed point.
The state of the system described by this fixed point represents the phase at the
original point in the phase diagram. Since the critical exponents are determined by
the RG flow in the vicinity of special types of critical fixed points (see below), all
Hamiltonians whose couplings lie within the basin of attraction of a given critical
fixed point have the same critical exponents; this is the microscopic reason for the
existence of universality classes. The phases of the system and possible transitions
between them are determined by the global topology of the RG flows connecting
the fixed points.

It is convenient to classify the different types of fixed points according to the
number of independent relevant couplings, corresponding to the RG flow away
from the fixed point. Recall that relevance/irrelevance is not a global property, but is
always defined with respect to a given fixed point. Another criterion for classifying
RG fixed points is the value of the correlation length ξ , which according to our gen-
eral considerations in Sect. 3.3.1 must be either zero or infinite at a fixed point. Let
us briefly list the most important types of fixed points, following mainly Goldenfeld
(1992):

(a) Critical fixed points: These are characterized by two independent relevant cou-
plings and an infinite correlation length. For example, at the Gaussian fixed point
describing the critical behavior of the Ising model in dimensions D > 4 the
couplings r ∝ t and h are relevant. The RG flow close to this fixed point in the
infinite-dimensional space of all couplings is shown schematically in Fig. 3.7.
The two relevant couplings r and h drive the RG flow away from the fixed
point, so that the manifold in coupling space covered by the RG trajectories
that flow away from the fixed point is two-dimensional. The dimensionality of
this manifold is called the codimension of the fixed point. Critical fixed points
therefore have codimension 2. In order to flow precisely into the fixed point, one
has to fine-tune the initial conditions: for given initial values g0 of the irrele-
vant couplings, there is a special point (r0(g0), h0(g0)) of the relevant couplings
which is mapped into the critical fixed point C by the RG. By definition, the
critical manifold of C is the set of all points in coupling space that flows into
C under the RG, see Sect. 3.3.1. Trajectories which start slightly off the critical
manifold initially flow towards C, but ultimately are repelled from it. However,
in a large range of logarithmic flow parameters l = ln b these slightly off-critical
trajectories remain close to the fixed point, so that the physical properties of a
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Fig. 3.7 Typical RG flow in the vicinity of a critical fixed point which is characterized by two
relevant couplings r and h. The axis labeled g represents the (possibly infinite) set of marginal and
irrelevant couplings of a given model. The dot marked by a C is the critical fixed point

system corresponding to a slightly off-critical initial condition in coupling space
is dominated by the local properties of the associated critical fixed point.

(b) Multicritical fixed points: These are critical fixed points (ξ = ∞) with more
than two relevant couplings. In the special case of three relevant couplings,
one calls such a fixed point tricritical. To reach a multicritical fixed point, the
initial condition of all relevant couplings have to be fine-tuned to move the ini-
tial parameters on the critical surface of the fixed point. Experimentally, this is
achieved by adjusting the experimentally controllable external parameters, such
as the magnetic field, the temperature, or the pressure. However, the number of
external parameters which can be controlled experimentally is finite, so that in
practice multicritical points of higher order than three are hard to study experi-
mentally.
An exception seems to be the Fermi surface characterizing the normal state of
interacting electrons at zero temperature, which forms a (D − 1)-dimensional
continuum in D > 1 dimensions. To calculate the Fermi surface within the
framework of the RG, one has to introduce a continuum of relevant coupling
constants rl(kF ) for each point kF on the Fermi surface, which all have to be
fine-tuned to flow into a fixed point associated with the true Fermi surface of
the system (Kopietz and Busche 2001, Ledowski and Kopietz 2003, Ledowski
et al. 2005, Ledowski and Kopietz 2007).7 The Fermi surface in D > 1 can
therefore be viewed as a property of a multicritical point of infinite order. In fact,
as recently pointed out by Shiwa (2006), there is a formal similarity between
the RG theory for the Fermi surface and the so-called Brazovskii universality
class (Brazovskii 1975, Hohenberg and Swift 1995) describing classical systems
where the fluctuation spectrum has a minimum at some nonzero wave vector
(such as cholesteric liquid crystals), so that infinite-order multicritical points
appear also in classical systems.

7 In Sect. 10.4 we shall discuss the problem of calculating the Fermi surface within the framework
of the FRG in more detail.
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(c) Sinks: These are fixed points without relevant directions, so that RG trajectories
can only flow into them. Sinks correspond to stable bulk phases of matter and
describe a state with vanishing correlation length. As an example, the RG flow
diagram of the three-dimensional Ising ferromagnet in a magnetic field shown
in Fig. 3.8 has two sinks S+ and S− corresponding to infinite temperature and
h = ±∞. These stable fixed points describe the simple fact that an infinite
positive or negative magnetic field aligns all spins along its direction. If we start
the RG procedure at any point in the coupling space with h �= 0, successive RG
iterations will drive the system to one of the sinks with the appropriate sign of h.
Because the sinks are associated with infinite temperature, the corresponding
correlation length vanishes.

Fig. 3.8 RG flow of the three-dimensional ferromagnetic Ising model with dimensionless nearest-
neighbor coupling g = β J in a magnetic field. The critical fixed point is denoted by C, while the
two fixed points S+ and S− at h = ±∞ and T = ∞ are sinks. The paramagnetic fixed point P
is an example for a continuity fixed point, while the ferromagnetic fixed point F is a discontinuity
fixed point

(d) Fixed points with one relevant coupling: The fixed points P and F in Fig. 3.8
have only one relevant direction in coupling space, the magnetic field. The para-
magnetic fixed point P is an example for a continuity fixed point: it represents a
phase of the system with ξ = 0, which becomes unstable when the field corre-
sponding to the relevant coupling is switched on. The ferromagnetic fixed point
F is called a discontinuity fixed point: for all points in its basin of attraction the
magnetization jumps discontinuously as the h = 0 line is crossed, corresponding
to the phase boundary where the two phases with up and down magnetization
can coexist. At the fixed point ξ = 0.

(e) Multiple coexistence fixed points: These are fixed points with more than one
relevant coupling describing the coexistence of more than two phases with
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ξ = 0. In the case of two relevant couplings, such a fixed point is called a
triple point, which is the ξ = 0 version of a critical fixed point.

(f) Fixed lines and higher-dimensional fixed-point manifolds: Although most RG
flows describing physical systems are controlled by isolated fixed points as
described above, in some cases one obtains a continuum of fixed points in cou-
pling space. A famous example is the RG flow diagram of the two-dimensional
classical XY-model with nearest-neighbor exchange coupling J , which exhibits
a line of fixed points in the two-dimensional space of marginal couplings formed
by the dimensionless thermal coupling constant x = πβ J − 2 and the fugacity
variable y = 4πe−Ec/T , where Ec is an energy scale related to the creation of
vortex-like spin configurations in the system (see e.g., Chaikin and Lubensky
1995, Chap. 9). For small values of x and y the RG flow is

∂l x = −y2 , ∂l y = −xy . (3.95)

A graph of this RG flow is shown in Fig. 3.9. Obviously, the entire line y = 0
is a fixed line. A similar flow diagram is also found in the RG theory for the
one-dimensional electron gas (Sólyom 1979) for a half-filled band,8 as will be
discussed in more detail in Sect. 10.5.3.

Fig. 3.9 Graph of the RG flow defined via Eq. (3.95), which describes the flow of the marginal
couplings of the two-dimensional XY-model. The variable x = πβ J − 2 is the suitably shifted
inverse temperature, while y = 4πe−Ec/T is the fugacity associated with the creation of vortices

8 By comparing Fig. 3.9 with Fig. 10.9 in Chap. 10 we see that in the one-dimensional electron
gas the role of the coupling x is played by the momentum-conserving interaction constant gc in
the charge channel, while y corresponds to the so-called Umklapp component g3 of the interaction
involving momentum transfers of twice the Fermi momentum, see Eq. (10.136). The stability of
the fixed line for x > 0 corresponds in the one-dimensional electron gas to a stable metallic phase
called Luttinger liquid (Haldane 1981).
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(g) Exotic RG flows: As already mentioned in the footnote of Sect. 3.3.2, in principle
RG flows can also exhibit more exotic behavior such as limit cycles (where at
least some couplings satisfy gl+l0 = gl) or exhibit even chaotic behavior without
fixed points (Glazek and Wilson 2002, LeClair et al. 2003). A physically relevant
system which exhibits a cyclic RG flow has recently been discussed by Moroz
et al. (2009), who used functional RG methods to study the problem of three
interacting bosons or fermions in vacuum. They showed that for bosons with
U (1)-symmetry and for fermions with SU (3) symmetry the existence of three-
body bound states (so-called Efimov states) manifests itself in cyclic RG flows
of a suitably defined interaction vertex.

Exercises

3.1 Migdal–Kadanoff RG for the Ising Chain

One can exactly solve the Ising model in one dimension (the so-called Ising chain)
using the real-space RG, keeping only every b-th spin and tracing over intermedi-
ate spins. Fig. 3.4 illustrates this for b = 3. In the transfer matrix formalism, the
partition function can be written as Z = Tr[T]N = Tr[Tb]

N
b .

(a) For h = 0, g = β J , show that Tb = const × T′ with

T′ =
(

eg′
e−g′

e−g′
eg′

)
,

and the recursion relation g′(g) = Artanh(tanhb g).
Hint: You might find it advantageous to diagonalize the matrix T.

(b) Rewrite the recursion relation in terms of y ≡ e−2g and y′ ≡ e−2g′
as y′(y).

Determine the RG β-function and the fixed points and sketch the flow of y under
repeated transformations.

(c) Linearize y′(y) around the unstable fixed point y = 0 to show that y′ ≈ by.
Argue that the correlation length fulfills ξ (y) = bξ (y′) ≈ bξ (by). By an appro-
priate choice of b show that ξ ∝ y−1 = e2g = e2β J . Compare this with the exact
result obtained in Exercise 1.1.

3.2 Migdal–Kadanoff RG for the Two-Dimensional Ising Model

Consider the ferromagnetic Ising model on a square lattice with h = 0 and g = β J .
To solve this problem, construct an approximate RG transformation according to the
following procedure:

• Shift bonds on alternate rows and columns by one lattice spacing to obtain the
modified interaction g̃ = 2g (with b = 2, see figure).
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• Trace over the spins on the sites marked by the crosses to obtain a rescaled system
with a new interaction g′.

g′
g

~g

(a) What is the recursion relation g′(g)?
(b) Find the nontrivial fixed point g∗ of the transformation. What is the critical

temperature Tc? Sketch the flow of g under repeated transformations. Linearize
g′(g) around g∗ and determine the exponent yg in g′ − g∗ = byg (g − g∗). Argue
that the correlation length should fulfill ξ (g) = bξ (g′) ≈ bξ (g∗ + byg (g − g∗)).
Use this to obtain the critical exponent ν.

(c) Generalize the Migdal–Kadanoff bond-moving procedure to a hypercubic lattice
in D dimensions. What is the recursion relation in this case?

(d) Sketch the fixed point g∗(D) and the RG flow in the vicinity of D = 1 (i.e.,
for D = 1 + ε) and deduce the lower critical dimension Dlo for the Ising
model, which is defined as the largest dimension where the critical tempera-
ture vanishes; a finite temperature phase transition is therefore only possible for
D > Dlo. Compute the exponent yg to first order in ε.

3.3 Dangerously Irrelevant Coupling in ϕ4-Theory for D > 4

(a) Consider the Gaussian field theory in the presence of a magnetic field h,

SΛ0 [ϕ] = 1

2

∫ Λ0 d Dk

(2π )D
[r0 + c0k2]ϕ(−k)ϕ(k) − h0ϕ(k = 0) ,

where ϕ(k = 0) = V ϕ̄ and h0 = βh/a1+D/2, see Eqs. (2.60) and (2.61).
Integrate out the fields with momenta Λ0/b < |k| < Λ0 (trivial) and rescale
momenta and fields keeping c0 fixed to derive the RG recursion relations

r ′ = byt r0 , h′ = byh h0 ,

with yt = 2 and yh = 1 + D/2.
(b) Now add an interaction term of the form

Sn[ϕ] = un

n!

∫
d Dr [ϕ(r)]n ,
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where n = 2, 4, 6, . . . is an even integer and

ϕ(r) =
∫ Λ0 d Dk

(2π )D
ei k·rϕ(k) .

Using
∫

d Dr ei k·r = (2π )Dδ(k), write the interaction term in terms of the fields
ϕ(k) and carry out the rescaling step to derive the scaling relation u′

n = byun un +
O

(
u2

n

)
, with yun = D(1 − n/2) + n. Determine the dimension Dup(n) for which

yun becomes marginal, i.e., equal to zero. This dimension is called the upper
critical dimension, see also the discussion in Sect. 2.3.

(c) For D > Dup(4) = 4, the coupling u ≡ u4 is irrelevant and the critical behavior
of the Ising model is expected to be determined by the Gaussian fixed point.
Use the scaling relations and the above result for yt and yh to calculate all
critical exponents. Compare your result with the values obtained in Sect. 2.3
directly from the Gaussian approximation without using RG arguments. Which
exponents do and which do not agree?

(d) To track down the failure of the scaling argument for some exponents for D > 4,
argue that the magnetization has the scaling form

m(t, h, u) = byh−Dm(byt t, byh h, byu u) .

For h = 0 and b = |t |−1/yt , this yields the scaling relation

m(t, 0, u) = |t |−(yh−D)/yt m(±1, 0, |t |−yu/yt u) .

Close to the critical point, the last argument becomes small and one might be
tempted to set u = 0 to obtain the scaling result β = (D − yh)/yt . However,
according to Landau theory a finite u is needed to get a spontaneous magnetiza-
tion. Show explicitly that within Landau theory m(−1, 0, ũ) ∝ ũ−1/2. Use this
and the scaling form of m to obtain the correct (mean-field) value β = 1

2 . Can
you construct a similar argument for the exponent δ? Note that the existence of
a dangerously irrelevant variable for D > 4 implies the violation of the hyper-
scaling relation (1.29). You may consult Appendix D of the review article by
Fisher (1983) if you need some help.
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Chapter 4
Critical Behavior of the Ising Model Close
to Four Dimensions

In this chapter, we shall use the momentum space RG with a sharp cutoff to study the
critical behavior of the Ising model close to four dimensions, where the parameter
ε = 4 − D is small. In this case the critical exponents and other physical quantities
can be expanded in a series in powers of ε (Wilson et al. 1972). For sufficiently
small ε, a truncation of this expansion retaining only a small number of terms yields
quantitatively accurate results. Of course, in order to calculate the critical exponents
in the physically relevant dimension D = 3, one has to calculate as many terms
in the ε-expansion as possible and then extrapolate the series to ε = 1 (Guida
and Zinn-Justin 1998, Zinn-Justin 2002, Pelissetto and Vicari 2002). In order to
explain this method, we shall focus here on the calculation of the correlation length
exponent ν to linear order in ε. To this end, it is convenient to carry out the mode-
elimination step in momentum space, using a sharp momentum-shell cutoff. The
relevant integrals will be calculated perturbatively in powers of the interaction. In
order to keep track of the various terms generated in perturbation theory, it is useful
to represent them in terms of Feynman diagrams. We therefore begin this chapter
with a brief but self-contained introduction to diagrammatic perturbation theory.

4.1 Diagrammatic Perturbation Theory

In Chap. 2 we have shown that the partition function of the D-dimensional Ising
model can be written as a functional integral over a real field ϕ representing the
fluctuating magnetization,

Z =
∫

D[ϕ]e−S[ϕ] , (4.1)

where according to Eq. (2.51) the effective action is of the following form,

S[ϕ] = S0[ϕ] + Sint[ϕ] . (4.2)

The Gaussian part S0[ϕ] is quadratic in the fields, and the interaction part Sint[ϕ]
involves four and in general also higher powers of the fields. Throughout this chapter
we shall set the magnetic field equal to zero, so that only even powers of the fields

Kopietz, P. et al.: Critical Behavior of the Ising Model Close to Four Dimensions. Lect. Notes
Phys. 798, 91–121 (2010)
DOI 10.1007/978-3-642-05094-7 4 c© Springer-Verlag Berlin Heidelberg 2010
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appear in the effective action. For convenience, we have absorbed the factor
√

det J̃
appearing in Eq. (2.39) and the constant f0 in Eq. (2.61) into the definition of the
integration measure D[ϕ] in Eq. (4.1). From Eq. (2.61), we see that the Gaussian
part S0[ϕ] of our effective action can be written as

S0[ϕ] = β

2

∑
k

Ekϕ−kϕk , (4.3)

with the energy Ek given by

Ek = Jk(1 − β Jk) . (4.4)

Note that for small wave vectors k and for temperatures close to the mean-field
critical temperature T MF

c = Jk=0 = z J , we may approximate

Ek ≈ T MF
c a2(r0 + c0k2) = T − T MF

c + T MF
c c0(ka)2 . (4.5)

Retaining only the term involving four powers of the fields, the interaction part
Sint[ϕ] can be written as

Sint[ϕ] ≈ β

4!N

∑
k1,k2,k3,k4

δk1+k2+k3+k4,0U (k1, k2, k3, k4)ϕk1ϕk2ϕk3ϕk4 , (4.6)

with the momentum-dependent interaction energy

U (k1, k2, k3, k4) = 2β3 Jk1 Jk2 Jk3 Jk4 . (4.7)

Although for the RG transformation it is most convenient to work with continuum
fields ϕ(k) = a

√
Vϕk (see Eq. (2.57)), we shall here develop the perturbation theory

using the lattice normalization of the Fourier transformation with dimensionless
fields ϕk = 1√

N

∑
i e−i k·r iϕi (see Eq. (2.45)), which facilitates the counting of the

degrees of freedom.
To calculate the partition function Z perturbatively, we expand the exponential

in Eq. (4.1) in powers of the interaction part Sint[ϕ] of our effective action,

Z =
∫

D[ϕ]e−S0[ϕ]−Sint[ϕ] =
∞∑
ν=0

(−1)ν

ν!

∫
D[ϕ]e−S0[ϕ](Sint[ϕ])ν . (4.8)

Dividing both sides of this expression by the partition function in Gaussian approx-
imation,

Z0 =
∫

D[ϕ]e−S0[ϕ] , (4.9)
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we may rewrite Eq. (4.8) as

Z
Z0

=
∞∑
ν=0

(−1)ν

ν!
〈(Sint[ϕ])ν〉0 , (4.10)

where the Gaussian average of any functional F[ϕ] of the fields is defined by

〈F[ϕ])〉0 =
∫
D[ϕ]e−S0[ϕ] F[ϕ]∫

D[ϕ]e−S0[ϕ]
. (4.11)

Similarly, the correlation function of a product of n fields can be expanded as

Gn(k1, . . . , kn) ≡
∫
D[ϕ]e−S0[ϕ]−Sint[ϕ]ϕk1 . . . ϕkn∫

D[ϕ]e−S0[ϕ]−Sint[ϕ]

=

∞∑
ν=0

(−1)ν

ν!

〈
(Sint[ϕ])νϕk1 . . . ϕkn

〉
0

∞∑
ν=0

(−1)ν

ν! 〈(Sint[ϕ])ν〉0

. (4.12)

4.1.1 Wick Theorem

For the evaluation of Eqs. (4.10) and (4.12) we need to calculate the Gaussian aver-
ages of products of an arbitrary number of fields with different labels. These are
conveniently evaluated using the Wick theorem, which is the following property of
multidimensional Gaussian integrals,

〈
xi1 xi2 . . . xin

〉
0 ≡

(∏N
i=1

∫ ∞
−∞ dxi

)
e− 1

2 xT Ax xi1 xi2 . . . xin(∏N
i=1

∫ ∞
−∞ dxi

)
e− 1

2 xT Ax

= ∑
all pairs

(A−1)i p1 i p2
(A−1)i p3 i p4

. . . (A−1)i pn−1 i pn
.

(4.13)

Here, A is a real symmetric N × N matrix, x = (x1, . . . , xN )T is an N -component
column vector, and each of the external indices i1, . . . , in can take any value in
the set of integers {1, . . . , N }. The sum in the second line of Eq. (4.13) extends
over all possible ways of partitioning the n integers i1, . . . , in into pairs, (i p1 , i p2 ),
(i p3 , i p4 ), . . . , (i pn−1 , i pn ). For even n the sum has (n − 1)!! = (n − 1)(n − 3) · · · 3 · 1
terms, while for odd n the Gaussian integral vanishes by symmetry. In the special
case n = 2, there is only one pair and the Wick theorem reduces to

〈
xi1 xi2

〉
0 = (

A−1)
i1i2
, (4.14)
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while for n = 4 there are 3 possible pairings,

〈
xi1 xi2 xi3 xi4

〉
0 = 〈

xi1 xi2

〉
0

〈
xi3 xi4

〉
0 + 〈

xi1 xi3

〉
0

〈
xi2 xi4

〉
0 + 〈

xi1 xi4

〉
0

〈
xi2 xi3

〉
0 . (4.15)

The Wick theorem for quantum mechanical many-particle systems can be formu-
lated in a similar way in terms of Gaussian integrals involving either complex fields
for bosons, or anticommuting Grassmann fields for fermions (Negele and Orland
1988). To prove Eq. (4.13) we use again the identity (2.41) to write

〈
xi1 xi2 . . . xin

〉
0 = lim

y→0

∂

∂yi1

∂

∂yi2

. . .
∂

∂yin

〈
exT y

〉
0
. (4.16)

With the help of our Gaussian integration formula (2.25), we obtain for the Gaussian
average,

〈
exT y

〉
0

= e
1
2 yT A−1 y . (4.17)

Taking in Eq. (4.16) the derivative with respect to yi1 , we obtain

〈
xi1 xi2 . . . xin

〉
0 = lim

y→0

∂

∂yi2

. . .
∂

∂yin

[
N∑

i=1

(A−1)i1i yi e
1
2 yT A−1 y

]
. (4.18)

In order to obtain a finite limit y → 0, one of the remaining n − 1 derivatives must
act on the prefactor, so that

〈
xi1 xi2 . . . xin

〉
0 = lim

y→0

[(
A−1

)
i1i2

∂

∂yi3

∂

∂yi4

. . .
∂

∂yin

e
1
2 yT A−1 y

+ (
A−1

)
i1i3

∂

∂yi2

∂

∂yi4

. . .
∂

∂yin

e
1
2 yT A−1 y

+ . . .
+ (

A−1
)

i1in

∂

∂yi2

∂

∂yi3

. . .
∂

∂yin−1

e
1
2 yT A−1 y

]
, (4.19)

where the square bracket contains n−1 terms involving n−2 derivatives with respect
to the auxiliary variables yi . Taking two more y-derivatives, each of the n − 1 terms
can again be written as a sum of n −3 new terms involving only n −4 y-derivatives.
Iterating this procedure until no y-derivatives are left and taking the limit y → 0 we
obtain in total (n −1)!! = (n −1)(n −3) · · · 3 ·1 terms consisting of products of n/2
matrix elements of A−1 with all possible combinations of labels. This is precisely
what is meant by the sum over all pairs in Eq. (4.13). This completes the proof of
the Wick theorem.
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4.1.2 Feynman Diagrams and Linked Cluster Theorem

The perturbative evaluation of the Gaussian averages 〈(Sint[ϕ])ν〉0 appearing in the
perturbation series (4.8) for the partition function (or more complicated averages of
the form 〈(Sint[ϕ])νϕk1 . . . ϕkn 〉0 in the perturbation series (4.12) for the correlation
function) with the help of the Wick theorem leads even for rather small values of ν
to quite a few terms. To keep track of these terms, to classify them, and to develop
some intuition for their physical meaning, it is useful to represent them graphically
in terms of Feynman diagrams. For our simple classical field theory, these involve
the following graphical elements:

line : = 〈ϕkϕ−k〉0 = T

Ek
= 1

βEk
, (4.20)

vertex : = β

4!N
δk1+k2+k3+k4,0U (k1, k2, k3, k4) . (4.21)

Note that the sum of the four momenta attached to the vertex vanishes. Since the
interaction function U (k1, k2, k3, k4) defined in Eq. (4.7) is symmetric with respect
to the exchange of all labels, the ordering of the external lines attached to the black
circle in Eq. (4.21) is irrelevant.1 With the above dictionary, each term in the per-
turbation expansion is represented by a labeled Feynman diagram. The rules for
translating any diagram into a mathematical expression are given by the dictionary
in Eqs. (4.20) and (4.21) together with the convention that each closed loop cor-
responds to an independent momentum summation and that the sum of the four
momenta associated with the four legs attached to each interaction vertex vanishes.
For example, from Eq. (4.10) we obtain for the first-order interaction correction to
the partition function

1 The Feynman diagrams representing the perturbation series of quantum mechanical many-body
systems of nonrelativistic bosons or fermions are constructed from different graphical elements
(Negele and Orland 1988). In this case the lines representing the Gaussian average of a pair of
fields carry an arrow indicating the direction of the particle-number flow. Furthermore, the vertex
representing the two-body interaction has two incoming and two outgoing arrows, corresponding
to the annihilation and the creation of two particles. Formally, this is due to the fact that the func-
tional integral representation of the partition function of bosons involves a complex field, while the
fermionic functional integral involves pairs of anticommuting Grassmann fields.
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Z
Z0

≈ 1 − 〈Sint[ϕ]〉0 = 1 − 3 ×

= 1 − 3T

4!N

∑
k,k′

U (k,−k, k′,−k′)
Ek Ek′

. (4.22)

Note that the diagrams representing the interaction corrections to the partition func-
tion have no external legs, so that all solid lines must always end at a vertex.2 Such
diagrams without external legs are called vacuum diagrams. Symbolically, the per-
turbation series (4.10) for the partition function can be written as

Z
Z0

=
∞∑
ν=0

(−1)ν

ν!
〈(Sint[ϕ])ν〉0 = 1 +

∑
All vacuum
diagrams

, (4.23)

where the empty circle represents any vacuum diagram including the correct com-
binatorial factor and sign. All diagrams can be further classified into two types:
so-called connected diagrams, where all graphical elements are connected via lines
and vertices, and disconnected diagrams consisting of two or more connected parts.
Examples are shown in Fig. 4.1. Fortunately, all disconnected diagrams cancel if we
take the logarithm of Z/Z0, so that in the diagrammatic expansion of the (dimen-
sionless) free energy F = − lnZ , only connected diagrams need to be taken into
account,

F − F0 = − ln

( Z
Z0

)
= −

∑
All connected
vacuum diagr.

. (4.24)

We represent connected vacuum diagrams by a shaded circle to emphasize that in
a sense the density of graphical elements of connected vacuum diagrams is higher
than in the vacuum diagrams of Eq. (4.23). The relation (4.24) is called the linked
cluster theorem, which saves a lot of work in calculations beyond the leading order
because only connected diagrams have to be calculated. The simplest way to prove
Eq. (4.24) is based on the so-called replica trick (Negele and Orland 1988). Using
the fact that

2 Diagrams with external legs represent correlation functions and will be discussed in Sect. 4.1.3.
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(a) (b) (c)

Fig. 4.1 Diagrams representing interaction corrections to the partition function in second-order
perturbation theory. Diagrams (a) and (b) are connected, while the disconnected diagram (c) is
simply the square of the first-order correction in Eq. (4.22)

( Z
Z0

)n

= en ln(Z/Z0) = 1 + n ln

( Z
Z0

)
+ O(n2) , (4.25)

we may write

F − F0 = − lim
n→0

d

dn

( Z
Z0

)n

. (4.26)

The replica trick is based on the assumption that the ratio (Z/Z0)n can be obtained
for infinitesimal n by analytic continuation of the same ratio for integer n. The
crucial point is that for integer n the perturbative expansion of (Z/Z0)n can be
generated by introducing n copies ϕr , r = 1, . . . , n, of the field and writing

( Z
Z0

)n

=
∫
D[ϕr ]e−S(n)

0 [ϕr ]−S(n)
int [ϕr ]∫

D[ϕr ]e−S(n)
0 [ϕr ]

, (4.27)

where the Gaussian part of the replicated action is

S(n)
0 [ϕr ] = β

2

n∑
r=1

∑
k

Ekϕ
r
−kϕ

r
k , (4.28)

and the interaction part is

S(n)
int [ϕr ] = β

4!N

n∑
r=1

∑
k1,k2,k3,k4

δk1+k2+k3+k4,0U (k1, k2, k3, k4)ϕr
k1
ϕr

k2
ϕr

k3
ϕr

k4
.

(4.29)
If we now expand Eq. (4.27) in powers of S(n)

int [ϕr ] and evaluate the resulting terms
using the Wick theorem, each solid line carries an extra replica index, k r −k , and
all lines attached to a given vertex carry the same replica index. As a consequence,
all lines in connected diagrams carry the same replica index, so that after summation
over

∑n
r=1, the contribution from any connected diagram to (Z/Z0)n is proportional

to n. On the other hand, the contribution of a disconnected diagram consisting of
kc > 1 connected pieces is proportional to nkc and hence does not contribute to
the limit in Eq. (4.26). As a result, only connected diagrams can contribute to the
logarithm of the partition function, which proves the linked cluster theorem (4.24).
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4.1.3 Diagrams for Correlation Functions and the Irreducible
Self-Energy

In contrast to the vacuum diagrams representing interaction corrections to the parti-
tion function, the terms arising in Gaussian averages of the type

〈
(Sint)νϕk1 . . . ϕkn

〉
0

which appear in the calculation of the correlation function Gn(k1, . . . , kn) defined
in Eq. (4.12) are represented by diagrams with n external legs associated with the
n fields ϕk1 , . . . , ϕkn . These diagrams are called open and we represent a general
diagram of this type by an empty circle with n external legs. The symbolic repre-
sentation analogous to Eq. (4.23) for the numerator in Eq. (4.12) is then

∞∑
ν=0

(−1)ν

ν!

〈
(Sint)

νϕk1 . . . ϕkn

〉
0 =

∑
All open
diagrams

. (4.30)

Each open diagram contributing to the right-hand side of this expression can be
classified according to whether or not it contains vacuum diagrams. Let us give
three examples to illustrate this:

Second-order contribution to G2(k,−k)
without vacuum parts

Second-order contribution to G2(k,−k)
with a vacuum part

Second-order contribution to G4(k1, k2, k3, k4)
without vacuum parts

Note that open diagrams with two external legs but no vacuum parts contributing to
G2(k,−k) are automatically connected, but open diagrams with four external legs
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contributing to G4(k1, k2, k3, k4) can be disconnected even if they do not contain
any vacuum parts, as shown in the above example. Given the factorization of any
open diagram into a product of an open diagram without vacuum parts (connected
diagram) and any number of vacuum diagrams, we may rearrange the infinite series
over all open diagrams with n externals legs on the right-hand side of Eq. (4.30) as
follows:

∞∑
ν=0

(−1)ν

ν!

〈
(Sint[ϕ])νϕk1 . . . ϕkn

〉
0

=

⎡
⎢⎢⎢⎢⎢⎣

∑
All open diagrams

without vacuum parts

⎤
⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎣1 +

∑
All vacuum
diagrams

⎤
⎥⎥⎥⎥⎥⎦ . (4.31)

To see that all combinatorial factors come out right, let us classify all open diagrams
according to the number of vertices ν ′ which are linked to the external legs. Here is
an example for the case of n = 2 external legs with ν = 7 and ν ′ = 4:

Obviously there are
(
ν

ν ′
) = ν!

ν ′!(ν−ν ′)! possibilities of choosing the ν ′ vertices which
are linked to at least one of the external legs. We can therefore write

∞∑
ν=0

(−1)ν

ν!

〈
(Sint[ϕ])νϕk1 . . . ϕkn

〉
0

=
∞∑
ν=0

ν∑
ν ′=0

(−1)ν
′

ν ′!
(−1)(ν−ν ′)

(ν − ν ′)!

〈
(Sint[ϕ])ν

′
ϕk1 . . . ϕkn

〉conn

0
〈(Sint[ϕ])ν−ν

′ 〉0

=
∞∑
ν ′=0

(−1)ν
′

ν ′!

〈
(Sint[ϕ])ν

′
ϕk1 . . . ϕkn

〉conn

0

∞∑
ν ′′=0

(−1)ν
′′

ν ′′!
〈(Sint[ϕ])ν

′′ 〉0 , (4.32)
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where in the last step we have rearranged the sum by introducing ν ′′ = ν−ν ′. Com-
paring with the graphical representation given in Eqs. (4.23) and (4.30) completes
our proof of Eq. (4.31).

According to Eq. (4.23) the second factor on the right-hand side of Eq. (4.31) is
nothing but the denominator in our perturbative expression (4.12) for the correlation
function. The sum over all vacuum diagrams therefore cancels in Eq. (4.12) and we
obtain

Gn(k1, . . . , kn) =
∑

All open diagrams
without vacuum parts

. (4.33)

Hence, in the perturbative calculation of the correlation function, all vacuum dia-
grams can be omitted.

Of particular interest is the correlation function with two external legs, which by
translational invariance is of the form,

G2(k, k′) = 〈ϕkϕk′ 〉 = δk,−k′ T G(k) = δk,−k′ T . (4.34)

Graphically, we represent G(k) by a thick line. The analogous quantity for quantum
mechanical many-body systems is called single-particle Green function or propa-
gator (Negele and Orland 1988). The factor of T in Eq. (4.34) is factored out for
convenience. With this normalization we obtain from Eq. (4.20) within Gaussian
approximation G(k) ≈ G0(k) = 1/Ek. The inverse Green function within Gaussian
approximation is therefore simply given by the energy Ek defined in Eq. (4.4). It is
useful to identify the exact inverse Green function G−1(k) with a modified energy,
which differs from the energy Ek by some self-energy Σk. We therefore write

G−1(k) = G−1
0 (k) +Σk = Ek +Σk . (4.35)

This relation between the exact Green function and the self-energy is called Dyson
equation. By expanding Σk instead of G(k) in powers of the interaction, we effec-
tively expand the inverse Green function; if we truncate the expansion of Σk at
some finite order in the interaction and then consider G(k) = [Ek + Σk]−1, we
resum infinite orders in the interaction, which is obvious if we expand

G(k) = 1

Ek +Σk
= 1

Ek
− 1

Ek
Σk

1

Ek
+ 1

Ek
Σk

1

Ek
Σk

1

Ek
− . . .

= G0(k) − G0(k)ΣkG(k) . (4.36)

A graphical representation of this geometric series is shown in Fig. 4.2.
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Fig. 4.2 Diagrammatic representation of the expansion (4.36) of the exact Green function in pow-
ers of the self-energy Σk . The thick line represents the exact G(k). Note that in the second line the
exact G(k) appears also on the right-hand side, so that iteration generates the geometric series in
the first line of Eq. (4.36)

The part of the diagrams in the first line of Fig. 4.2 contributing to the self-
energy Σk cannot be separated into two parts by cutting a single propagator line.
The self-energy Σk is therefore called one-line irreducible. Examples for second-
order contributions to the irreducible self-energy are shown in Fig. 4.3 (a) and (b),
while the second-order diagram (c) is not one-line irreducible and hence does not
contribute to the perturbative expansion of Σk.

Fig. 4.3 The diagrams (a) and (b) are second-order contributions to the irreducible self-energy
Σk . The external legs indicate the attached wave vectors and should not be counted as part of the
diagrams. The diagram (c) is one-line reducible (it can be separated into two parts by cutting the
middle propagator line), so that it does not contribute to the self-energy

4.2 One-Loop Momentum Shell RG

We are now ready to apply our general RG procedure to the effective classical field
theory describing the critical properties of the Ising model derived in Sect. 2.2.
At this point it is more convenient to use again the continuum normalization of
the fields, which according to Eq. (2.57) is related to the lattice normalization via
ϕ(k) = a

√
Vϕk. Consider the truncated Ginzburg–Landau–Wilson action SΛ0 [ϕ]

in Eq. (2.61), which describes the long-wavelength properties of the Ising model.
Setting for simplicity the magnetic field equal to zero, the partition function can be
written as

Z =
∫

D[ϕ]e−SΛ0 [ϕ], (4.37)

with the effective long-wavelength action given by
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SΛ0 [ϕ] = V f0 + 1

2

∫ Λ0

k

[
r0 + c0k2

]
ϕ(−k)ϕ(k)

+u0

4!

∫ Λ0

k1

∫ Λ0

k2

∫ Λ0

k3

∫ Λ0

k4

(2π )Dδ(k1 + k2 + k3 + k4)ϕ(k1)ϕ(k2)ϕ(k3)ϕ(k4) ,

(4.38)

where we have explicitly written out the ultraviolet cutoff Λ0. This truncated effec-
tive action depends on the four bare coupling constants f0, r0, c0, and u0, which are
related to the parameters of the underlying lattice model as given in Eqs. (2.54),
(2.55), (2.58), and (2.59). For simplicity, we shall focus on the disordered regime
T > Tc in this section.

4.2.1 Derivation of the RG Flow Equations

We first perform the mode-elimination step of the RG by integrating over all fields
whose wave vectors lie in the shell Λ < |k| < Λ0, as illustrated in Fig. 4.4. There-
fore, we adopt the procedure outlined in Sect. 3.1 and decompose

ϕ(k) = ϕ<(k) + ϕ>(k) = Θ(Λ− |k|)ϕ(k) +Θ(|k| −Λ)ϕ(k) . (4.39)

Substituting this into Eq. (4.38) we find that our Ginzburg–Landau–Wilson action
can we written as

SΛ0 [ϕ< + ϕ>] = S<Λ[ϕ<; f0, r0, c0, u0] + S>Λ,Λ0
[ϕ>] + Smix[ϕ<, ϕ>] . (4.40)

The “smaller part” S<Λ[ϕ<] of the effective action has the same form as the original
action (4.38), but with reduced ultraviolet cutoffΛ < Λ0 and with the original fields
ϕ(k) replaced by the “smaller component” ϕ<(k) of the fields,

Fig. 4.4 In one iteration of the mode-elimination step of the momentum shell RG all fields with
wave vectors in the shaded regime Λ < |k| < Λ0 are integrated out
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S<Λ[ϕ<; f0, r0, c0, u0] = V f0 + 1

2

∫ Λ

k

[
r0 + c0k2

]
ϕ<(−k)ϕ<(k)

+u0

4!

(
4∏

i=1

∫ Λ

ki

)
(2π )Dδ(

4∑
i=1

ki )ϕ
<(k1)ϕ<(k2)ϕ<(k3)ϕ<(k4) . (4.41)

The “larger part” S>Λ,Λ0
[ϕ>] of the action depends only on the “larger component”

ϕ>(k) of the field; moreover, the momentum integrations are restricted to the shell
Λ < |k| < Λ0,

S>Λ,Λ0
[ϕ>] = 1

2

∫ Λ0

|k|>Λ

[
r0 + c0k2

]
ϕ>(−k)ϕ>(k)

+u0

4!

(
4∏

i=1

∫ Λ0

|ki |>Λ

)
(2π )Dδ(

4∑
i=1

ki )ϕ
>(k1)ϕ>(k2)ϕ>(k3)ϕ>(k4) . (4.42)

Finally, the interaction part of Eq. (4.38) gives rise to a mixing term involving both
components of the field,

Smix[ϕ<, ϕ>] = 6
u0

4!

∫ Λ

k1

∫ Λ

k2

∫ Λ0

|k3|>Λ

∫ Λ0

|k4|>Λ
(2π )Dδ(

4∑
i=1

ki )

×ϕ<(k1)ϕ<(k2)ϕ>(k3)ϕ>(k4)

+ terms involving ϕ<(ϕ>)3 or (ϕ<)3ϕ>. (4.43)

The combinatorial factor of 6 is due to the
(

4
2

)
possibilities of picking two ϕ<-fields

out of the four available fields.
We now integrate over the “larger part” ϕ> of the field. Using the same notation

as in Eqs. (3.5) and (3.6), the partition function can then formally be written as

Z =
∫

D[ϕ<]e−S<Λ [ϕ<; f <,r<,c<,u<] , (4.44)

with the new effective action defined by

e−S<Λ [ϕ<; f <,r<,c<,u<] = e−S<Λ [ϕ<; f0,r0,c0,u0]
∫

D[ϕ>]e−S>Λ,Λ0
[ϕ>]−Smix[ϕ<,ϕ>]

, (4.45)

or equivalently,

S<Λ[ϕ<; f <, r<, c<, u<] = S<Λ[ϕ<; f0, r0, c0, u0]

− ln

(∫
D[ϕ>]e−S>Λ,Λ0

[ϕ>]−Smix[ϕ<,ϕ>]
)
. (4.46)
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Since the functional integration over ϕ> in the second line cannot be performed
exactly, we evaluate the integral approximately using diagrammatic perturbation
theory. In the simplest approximation, we retain in the perturbative evaluation of the
second term on the right-hand side of Eq. (4.46) only terms with one internal wave
vector integration. This is called the one-loop approximation because diagrammati-
cally each wave vector integration can be associated with a closed propagator loop.
For the free energy per unit volume, the one-loop correction is due to the quadratic
part of S>Λ,Λ0

[ϕ>] given in the first line of Eq. (4.42). The required integration in
Eq. (4.46) is therefore Gaussian and has already been carried out in Sect. 2.3.2. We
obtain

f < = f0 + 1

2

Λ0∫
Λ

d Dk

(2π )D
ln
[
a2(r0 + c0k2)

]
. (4.47)

Note that for Λ → 0 this expression would be equivalent to Eq. (2.83), taking
into account that in this chapter we consider the free energy per volume in units of
temperature, whereas Δ f in Eq. (2.83) is the free energy per lattice site. However,
in contrast to Eq. (2.83), the wave vector integration in Eq. (4.47) is restricted to the
momentum shell Λ < |k| < Λ0.

To obtain the new parameters r< and c< associated with the Gaussian part of
the action after mode elimination, we need to calculate the irreducible self-energy
due to Smix[ϕ<, ϕ>] to first order in u0. To derive this, we expand the integral in the
logarithm of Eq. (4.46) in powers of the mixed part Smix[ϕ<, ϕ>] of the effective
action,

∫
D[ϕ>]e−S>Λ,Λ0

[ϕ>]−Smix[ϕ<,ϕ>] =∫
D[ϕ>]e−S>Λ,Λ0

[ϕ>]
[

1 − Smix[ϕ<, ϕ>] + 1

2
S2

mix[ϕ<, ϕ>] + . . .

]
. (4.48)

To leading order, we may calculate the functional average with the Gaussian part of
S>Λ,Λ0

[ϕ>] given in the first line of Eq. (4.42). Denoting the corresponding Gaussian
average by 〈. . .〉0,>, we obtain for the logarithm of Eq. (4.48) to second order in the
interaction,

− ln

(∫
D[ϕ>]e−S>Λ,Λ0

[ϕ>]−Smix[ϕ<,ϕ>]
)

= − ln

(∫
D[ϕ>]e−S>Λ,Λ0

[ϕ>]
)

︸ ︷︷ ︸
f <− f0

− ln

[∫
D[ϕ>]e−S>Λ,Λ0

[ϕ>]−Smix[ϕ<,ϕ>]∫
D[ϕ>]e−S>Λ,Λ0

[ϕ>]

]

≈ f < − f0 − ln

[
1 − 〈

Smix[ϕ<, ϕ>]
〉
0,> + 1

2

〈
S2

mix[ϕ<, ϕ>]
〉
0,>

]
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≈ f < − f0 + 〈
Smix[ϕ<, ϕ>]

〉
0,>

−1

2

[〈
S2

mix[ϕ<, ϕ>]
〉
0,> − 〈

Smix[ϕ<, ϕ>]
〉2
0,>

]
. (4.49)

The term of first order in Smix[ϕ<, ϕ>] in the last equality gives the leading renor-
malization of the parameters r< and c< associated with the quadratic part of the
action,

1

2
(r< + c<k2) = 1

2
(r0 + c0k2) + 〈

Smix[ϕ<, ϕ>]
〉
ϕ<-fields amputated

0,>

= 1

2
(r0 + c0k2) + 6

= 1

2
(r0 + c0k2) + 6

u0

4!

∫ Λ0

Λ

d Dk ′

(2π )D

1

r0 + c0k′2 , (4.50)

where the subscript of the bracket in the first line denotes averaging with respect
to the “larger fields” in Gaussian approximation, and the superscript means that the
two “smaller fields” ϕ<(k1) and ϕ<(k2) in Eq. (4.43) should be dropped (or “ampu-
tated”). Comparing the wave vector independent terms on both sides of Eq. (4.50),
we obtain

r< = r0 + u0

2

Λ0∫
Λ

d Dk

(2π )D

1

r0 + c0k2
. (4.51)

Moreover, because the loop-integral on the right-hand side of Eq. (4.50) is indepen-
dent of k we conclude that to this order

c< = c0 . (4.52)

Finally, to obtain the new interaction constant u< after mode elimination, we
need to calculate the renormalization of the connected part of the four-field corre-
lation function G4(k1, k2, k3, k4) which is generated by the second-order term in
the last line of the expansion (4.49). This term is simply the Gaussian average of
(Smix − 〈Smix〉)2. With Smix given by Eq. (4.43), the averaging of this term contains
(apart from other terms of order u2

0 which are not interesting for our purpose) the
following term involving four powers of the “smaller field”,
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− 1

2

[〈
S2

mix[ϕ<, ϕ>]
〉
0,> − 〈

Smix[ϕ<, ϕ>]
〉2
0,>

]four ϕ<-fields

= −1

2
× 2 × 62

= −1

2
× 2 ×

(
6

u0

4!

)2
(

4∏
i=1

∫ Λ

ki

)
(2π )Dδ(

4∑
i=1

ki )ϕ
<(k1)ϕ<(k2)ϕ<(k3)ϕ<(k4)

×
∫ Λ0

Λ

d Dk

(2π )D

1

[r0 + c0k2][r0 + c0(k + k1 + k2)2]
, (4.53)

where the second factor of 2 in the second line is due to the two possibilities of
connecting the internal loop to the external legs. Note that the factor in the last
line of Eq. (4.53) depends on the external wave vectors k1 and k2 carried by the
fields. However, keeping in mind that the wave vector k in the loop integration is
restricted to the shell Λ < |k| < Λ0 while the magnitude of the external wave
vectors k1, . . . , k4 are smaller than Λ, it is plausible to set k1 = k2 = 0 in the last
factor of Eq. (4.53). Formally, this procedure can be justified by noting that the wave
vector dependence of the interaction can be described by an infinite set of irrelevant
couplings (with respect to the Gaussian fixed point) which therefore do not affect
the critical exponents, see the discussion in the last paragraph of Sect. 3.3.2. Setting
k1 = k2 = 0 in the last line of Eq. (4.53) and comparing the resulting expres-
sion with Eq. (4.41), we conclude that the mode elimination leads to the following
modification of the interaction,

u< = u0 − 3u2
0

2

Λ0∫
Λ

d Dk

(2π )D

1

[r0 + c0k2]2
. (4.54)

In summary, after eliminating fluctuations with wave vectors in the shell Λ <

|k| < Λ0, the partition function can be written in the form (4.44) involving only the
“smaller component” of the field, where the new effective action S<Λ[ϕ<; f <, r<, c<,
u<], which is defined via Eq. (4.46), is approximately given by

S<Λ[ϕ<; f <, r<, c<, u<] ≈ V f < + 1

2

∫ Λ

k

[
r< + c<k2

]
ϕ<(−k)ϕ<(k)

+u<

4!

(
4∏

i=1

∫ Λ

ki

)
(2π )Dδ(

4∑
i=1

ki )ϕ
<(k1)ϕ<(k2)ϕ<(k3)ϕ<(k4) , (4.55)

with the new coupling constants f <, r<, c<, u< given in Eqs. (4.47), (4.51), (4.52),
and (4.54). Note that Eq. (4.55) is approximate for several reasons: first of all, the
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values of the new couplings f <, r<, c<, u< have only been calculated within the
one-loop approximation; moreover, the integration over the “larger component” of
the field in Eq. (4.46) also generates terms involving six and more powers of the
“smaller field,” which we have neglected in the derivation of Eq. (4.55); finally, in
Eq. (4.53) we have ignored the momentum dependence of the quartic interaction
vertex.

Next, we perform the RG rescaling step with scale factor b = Λ0/Λ to rewrite
our effective action in the same form as the original one. Following the general
procedure outlined in Sect. 3.1, we introduce new wave vectors k′ = bk and the
rescaled field

ϕ′(k′) = ζ−1
b ϕ<(k′/b) , (4.56)

with the field rescaling factor given by

ζb = b1+D/2
√

Zb , Zb = c0

c<
, (4.57)

see Eqs. (3.8), (3.9), (3.10), and (3.11). Although within our simple one-loop
approximation c< = c0 and hence Zb = 1, it is instructive to explicitly retain
the factor Zb to emphasize that in general the field rescaling factor must be chosen
such that the coefficient in front of the k2-term in the Gaussian part of the action is
not changed after one complete iteration of the RG procedure,

1

2

Λ∫
d Dk

(2π )D
(r< + c<k2)ϕ<(−k)ϕ<(k)

= 1

2
b−D

Λ0∫
d Dk ′

(2π )D
(r< + c<b−2k′2)b2+D Zbϕ

′(−k′)ϕ′(k′)

= 1

2

Λ0∫
d Dk ′

(2π )D
(b2 Zbr< + c0k′2)ϕ′(−k′)ϕ′(k′) , (4.58)

see also the discussion after Eq. (3.14) in Sect. 3.1. Hence, after one complete itera-
tion of the RG, c′ = c0 and the new momentum-independent term r ′ in the Gaussian
part of the effective action is

r ′ = b2 Zbr< = b2 Zb

⎡
⎣r0 + u0

2

Λ0∫
Λ

d Dk

(2π )D

1

r0 + c0k2

⎤
⎦ , (4.59)

where we have used Eq. (4.51). Similarly, using Eq. (4.54) and the fact that
b−3Dζ 4

b = b4−D Z2
b , we obtain for the renormalized quartic coupling constant
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u′ = b4−D Z2
bu< = b4−D Z2

b

⎡
⎣u0 − 3u2

0

2

Λ0∫
Λ

d Dk

(2π )D

1

[r0 + c0k2]2

⎤
⎦ . (4.60)

Finally, keeping in mind that under rescaling the volume changes as V ′ = b−D V ,
we obtain from Eq. (4.47) for the renormalized free energy density

f ′ = bD f < = bD

⎡
⎣ f0 + 1

2

Λ0∫
Λ

d Dk

(2π )D
ln
[
a2(r0 + c0k2)

]⎤⎦ . (4.61)

4.2.2 The Wilson–Fisher Fixed Point

For a quantitative analysis of the above RG flow equations, it is convenient to work
with the equivalent differential equations describing the iteration of the RG pro-
cedure in infinitesimal steps, as explained in Sect. 3.2.3. To derive the differential
RG equations we set Λ = Λ0e−l in Eqs. (4.59), (4.60), and (4.61) and consider all
quantities as functions of the logarithmic flow parameter l = ln b = ln(Λ0/Λ). We
then take the derivative of these equations with respect to l. Consider first the flow
equation (4.59) describing the renormalization of r0. Defining rl = r ′ and

Zl ≡ Zb=el , (4.62)

and using the fact that

∂

∂l

Λ0∫
Λ0e−l

d Dk

(2π )D

1

r0 + c0k2
= K D

∂

∂l

Λ0∫
Λ0e−l

dk
k D−1

r0 + c0k2
= K DΛ

D

r0 + c0Λ2
, (4.63)

we obtain from Eq. (4.59)

∂lrl = (2 − ηl )rl + b2 Zl
u0

2

K DΛ
D

r0 + c0Λ2
. (4.64)

Here, the numerical constant K D is the surface area of the D-dimensional unit
sphere divided by (2π )D (see Eq. (2.86)), and we have introduced the so-called
flowing anomalous dimension,

ηl = −∂l Zl

Zl
= −∂l ln Zl . (4.65)

As will be discussed in more detail in Sect. 4.2.3, the correlation function exponent
η defined via Eq. (1.13) can be identified with the limit
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η = lim
l→∞

ηl . (4.66)

Of course, within our simple one-loop approximation Zl = 1 and hence ηl = 0, but
a more accurate two-loop calculation3 gives a finite value for ηl . Assuming now that
l is infinitesimally small and ignoring terms of order l, we may replace Λ → Λ0

and b2 Zl → 1 on the right-hand side of Eq. (4.64). To the same accuracy we may
set r0 → rl and u0 → ul in Eq. (4.64), so that we obtain

∂lrl = (2 − ηl)rl + ul

2

K DΛ
D
0

rl + c0Λ
2
0

. (4.67)

Integration of this differential equation for finite l yields the flowing coupling rl

resulting from the repeated iteration of the elementary RG step.
The derivation of the differential RG flow equations for the quartic coupling con-

stant ul and for the free energy density fl is analogous to the derivation of Eq. (4.67).
From Eq. (4.60) we obtain the infinitesimal version of the RG flow equation for the
quartic coupling constant ul ,

∂lul = (4 − D − 2ηl)ul − 3u2
l

2

K DΛ
D
0(

rl + c0Λ
2
0

)2 , (4.68)

and Eq. (4.61) yields for the flow of the free energy density,

∂l fl = D fl + K D

2
ΛD

0 ln
[
a2

(
rl + c0Λ

2
0

)]
. (4.69)

To get rid of numerical factors in the above equations, it is convenient to define
dimensionless couplings

r̄l = rl

c0Λ
2
0

, ūl = K D
ul

c2
0Λ

4−D
0

. (4.70)

Setting now explicitly ηl = 0, the coupled system of differential equations (4.67)
and (4.68) can be written as

3 As will be shown in Sect. 8.4 [see the discussion after Eq. (8.105)], in the symmetry-broken phase
one obtains already a finite result for ηl within the one-loop approximation, so that in this case a
one-loop calculation is sufficient to obtain a first estimate for the flowing anomalous dimension
(Sinner et al. 2008). It turns out that two-loop calculations within the Wilsonian momentum-shell
RG are rather difficult and for calculations beyond the one-loop approximation in renormalizable
theories it is more convenient to use the field theoretical RG (see e.g., Zinn-Justin 2002). For a
two-loop calculation of the RG β-function of ϕ4-theory using the FRG version of the Wilsonian
RG see (Kopietz 2001).
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∂l r̄l = 2r̄l + 1

2

ūl

1 + r̄l
,

∂l ūl = (4 − D)ūl − 3

2

ū2
l

(1 + r̄l )2
.

(4.71)

(4.72)

The associated RG flow in the ū-r̄ -plane is shown in Fig. 4.5. Obviously, above four
dimensions, the critical behavior of the Ising model is controlled by the Gaussian
fixed point G at (ū∗, r̄∗) = (0, 0). In this case the effective interaction vanishes at the
fixed point, so that the critical exponents are given by the Gaussian approximation,
in particular ν = 1/2 and η = 0, see Sect. 2.3.3. On the other hand, for D < 4
the Gaussian fixed point becomes unstable and a new critical fixed point emerges,
the Wilson–Fisher fixed point WF, which controls the critical behavior of the Ising
universality class below four dimensions. This is the reason for the breakdown of
the Gaussian approximation below four dimensions discussed in Sect. 2.3.4. If we
fine-tune the initial conditions such that the RG trajectory starts very close to the
critical surface, then in an intermediate interval lc � l � l∗ of the logarithmic flow
parameter the RG flow remains almost stationary in the vicinity of the critical fixed
point, as shown in Fig. 4.6. For D < 4 and ū0 	 ū∗, the scale lc is approximately
given by (see Hasselmann et al. 2004)

lc = ln(ū∗/ū0)

4 − D
. (4.73)

Fig. 4.5 Qualitative behavior of the RG flow in the ū-r̄ -plane generated by the one-loop flow
equations (4.71) and (4.72). The left figure (a) corresponds to D > 4, where the critical behavior of
the system is controlled by the Gaussian fixed point G. On the other hand, below four dimensions,
shown in (b), the critical behavior is determined by the Wilson–Fisher fixed point WF, which is
characterized by a finite value of the interaction
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Fig. 4.6 Flow of the couplings r̄l and ūl for a nearly critical system as a function of the logarithmic
RG flow parameter l obtained from Eqs. (4.71) and (4.72) for D = 3. The two characteristic RG
scales lc and l∗ separate three distinct regimes: In the initial regime 0 < l � lc the couplings r̄l

and ūl flow toward the values r̄∗ and ū∗ associated with the critical fixed point; in the intermediate
interval lc � l � l∗ the RG flow is very slow in the vicinity of the fixed point; finally, for l∗ � l the
trajectory rapidly flows away from the fixed point

To obtain a physical interpretation of lc and l∗, it is necessary to calculate the
momentum-dependent correlation function G(k), which we shall do in Sect. 8.3.
Let us anticipate here that the scale Λ0e−l∗ = ξ−1 can be identified with the inverse
correlation length (which vanishes at the critical point, corresponding to l∗ → ∞ on
the critical surface), while the interaction dependent scale Λ0e−lc = kc defines the
upper cutoff in momentum space where the asymptotic scaling G(k) ∝ |k|−2+η at
the critical point can be observed. The scale kc is usually called the Ginzburg scale
(Ginzburg 1960, Amit 1974, Hasselmann et al. 2007).

The crucial point is now that if we consider the dimensionality D as a contin-
uous parameter and assume that D is only slightly smaller than the upper critical
dimension Dup = 4, then the smallness of the parameter

ε = Dup − D = 4 − D (4.74)

justifies an expansion of the critical exponents in powers of ε. To see this more
clearly, consider the fixed point values ū∗ and r̄∗ of our dimensionless couplings,
which are obtained by setting the left-hand sides of Eqs. (4.71) and (4.72) equal to
zero,

0 = 2r̄∗ + 1

2

ū∗
1 + r̄∗

, (4.75)

0 = εū∗ − 3

2

ū2
∗

(1 + r̄∗)2
. (4.76)
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The solutions to first order in ε are easily obtained,

ū∗ = 2

3
ε + O(ε2) , (4.77)

r̄∗ = − ū∗
4

+ O(ε2) = −ε
6

+ O(ε2) . (4.78)

Because in the derivation of our one-loop RG equations we have ignored higher
orders in ul , it would be inconsistent to retain the correction of order ε2 in Eqs. (4.77)
and (4.78). It is now important that the fixed point values of ūl and r̄l are both
of order ε. If the initial values of ūl and r̄l are also chosen of order ε, then these
couplings remain of order ε on the entire critical surface, so that the one-loop
approximation underlying Eqs. (4.71) and (4.72) is justified. This procedure can be
systematically improved by retaining more loops in the RG flow equations, leading
to an expansion of critical exponents in powers of ε (Pelissetto and Vicari 2002).

Let us now proceed and calculate the scaling variables and the eigenvalues of
the linearized RG flow at the Wilson–Fisher fixed point for D < 4 to order ε.
Substituting r̄l = r̄∗ + δr̄l and ūl = ū∗ + δūl in our one-loop RG equations (4.71)
and (4.72), and expanding the right-hand sides to first order in the deviations δr̄l and
δūl from the fixed point, we obtain the linearized RG equations

∂l

(
δr̄l

δūl

)
=

(
2 − ε

3
1
2 + ε

12
0 −ε

)(
δr̄l

δūl

)
. (4.79)

Note that the lower off-diagonal element of the coefficient matrix vanishes to order
ε; in a more accurate calculation to order ε2 the zero in the lower off-diagonal ele-
ment would be replaced by a finite number of order ε2. Although the 2 × 2-matrix
in Eq. (4.79) cannot be diagonalized, it is easy to find its left-eigenvectors, which
according to our general considerations of Sect. 3.3.2 are needed to construct the
scaling variables. By inspection, one easily finds one of the left-eigenvectors of the
matrix in Eq. (4.79),

vT
u = (0, 1) . (4.80)

The corresponding eigenvalue

yu = −ε = D − 4 (4.81)

is negative for D < 4, so that the associated scaling variable

δūl = vT
u

(
δr̄l

δūl

)
(4.82)

is irrelevant at the Wilson–Fisher fixed point. To determine the other left-eigenvector
of the matrix in Eq. (4.79), we make the ansatz vT

t = (1, x), so that the correspond-
ing eigenvector equation reads
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(1, x)

(
2 − ε

3
1
2 + ε

12
0 −ε

)
=

(
2 − ε

3
,

1

2
+ ε

12
− εx

)
= yt (1, x) . (4.83)

This implies

yt = 2 − ε

3
(4.84)

and

x = 1 + ε
6

4
[
1 + ε

3

] = 1

4

[
1 − ε

6

]
+ O(ε2). (4.85)

Our second left-eigenvector is therefore

vT
t =

(
1,

1 + ε
6

4
[
1 + ε

3

]) =
(

1,
1

4

[
1 − ε

6

]
+ O(ε2)

)
, (4.86)

and the associated relevant scaling variable is, to first order in ε, the following linear
combination of δr̄l and δūl ,

tl = vT
t

(
δr̄l

δūl

)
≈ δr̄l + 1

4

[
1 − ε

6

]
δūl . (4.87)

But according to Eq. (1.28), the inverse of the exponent yt associated with the rele-
vant thermal scaling variable can be identified with the correlation length exponent
ν, so that to linear order in ε we obtain

ν = 1

yt
= 1

2 − ε
3

= 1

2
+ ε

12
+ O(ε2) . (4.88)

Using the fact that to linear order in ε the correlation function exponent η vanishes4,
the thermodynamic exponents slightly below four dimensions can be obtained with
the help of the scaling relations (1.33a), (1.33b), (1.33c), and (1.33d).

4.2.3 Wave Function Renormalization and Anomalous Dimension

To conclude this chapter, let us make some remarks about the physical meaning
of the flowing field renormalization factor Zl ≡ Zb=el appearing in our defini-
tion (4.57) of the field rescaling factor ζb and the associated flowing anomalous

4 A more accurate two-loop calculation to order ε2 yields η = ε2/54 + O(ε3) (see e.g., Pelissetto
and Vicari 2002).
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dimension ηl = −∂l ln Zl , see Eq. (4.65). Although within our simple one-loop
approximation Zl = 1 and hence ηl = 0, a more accurate calculation would yield
a nontrivial result for Zl . From the definition Zb = c0/c< in Eq. (3.11), it is clear
that only if the self-energy exhibits some wave vector dependence the factor Zl can
be different from unity. Given the fact that the one-loop diagram for the self-energy
shown in Eq. (4.50) is wave vector independent, it is not surprising that we have
obtained Zl = 1 in the one-loop approximation. On the other hand, as already
mentioned in the footnote after Eq. (4.66), for T < Tc the one-loop approximation
gives rise to a momentum-dependent self-energy, so that in this case one obtains
a nontrivial result for Zl at the one-loop level (Sinner et al. 2008). In Chap. 8
we shall explicitly write down exact and approximate FRG flow equations for the
momentum-dependent self-energy in the symmetry-broken phase of ϕ4-theory, see
Eqs. (8.18) and (8.104).

Let us begin by elaborating on the relation between the wave function renormal-
ization factor Zl and the flowing anomalous dimension ηl . The defining equation
(4.65) of ηl can also be written as a formal differential equation for Zl ,

∂l Zl = −ηl Zl , (4.89)

which integrates to

Zl = Z0e− ∫ l
0 dtηt . (4.90)

One should keep in mind that in general ηl depends also on Zl , so that Eq. (4.90)
should be understood as an integral equation for Zl . Suppose now that ηl approaches
a finite positive limit for l → ∞,

η = lim
l→∞

ηl . (4.91)

Then Eq. (4.90) implies that liml→∞ Zl = 0. Conversely, if the limit

Z = lim
l→∞

Zl (4.92)

is nonzero, then the integral in the exponent of Eq. (4.90) must approach a finite limit
for l → ∞, which is only possible if liml→∞ ηl = 0. Our notation anticipates that
the limit η = liml→∞ ηl in Eq. (4.91) can be identified with the critical exponent η
which we have introduced phenomenologically in Sect. 1.2 via the asymptotic long-
distance (or small wave vector) behavior of the correlation function, see Eqs. (1.13)
and (1.14). To see this, recall that according to Eqs. (3.86) and (4.57), the correlation
function in momentum space transforms under the RG as

G(k; g) = b2 Zl G(bk; g′) . (4.93)

But if η is finite, then Zl is proportional to e−ηl ∝ b−η for sufficiently large l.
Keeping in mind that for a critical system the coupling constants approach their
fixed point values g∗ for large l, we see that Eq. (4.93) reduces to the homogeneity
relation

G(k; g∗) ∝ b2−ηG(bk; g∗) . (4.94)
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This implies the critical scaling G(k) ∝ |k|−2+η postulated in Eq. (1.14), which
completes the proof that η = liml→∞ ηl can indeed be identified with the critical
exponent η. Note that η can be viewed as an interaction-dependent contribution to
the scaling dimension of the field and is therefore called anomalous dimension. The
scaling law (4.94) is anomalous in the sense that it does not follow from dimensional
analysis. If η is finite, then the scaling of the coupling constants of the system is not
only determined by their canonical dimension (which can be found by dimensional
analysis), but receives also a contribution from the anomalous dimension η. The
canonical and anomalous contributions combine to form the scaling dimension of a
given coupling constant.

On the other hand, for noncritical systems the limit η = liml→∞ ηl necessarily
vanishes. However, for finite l the flowing ηl is usually finite and positive such that
Z < 1. In fact, if we express the exact two-field correlation function G(k) in terms
of the irreducible self-energy,5

G(k) = 1

c0k2 +Σ(k)
, (4.95)

and expand Σ(k) to second order in k we obtain for small wave vectors k

G(k) = Z

c0(k2 + ξ−2)
, (4.96)

where

Z = 1

1 + ∂Σ(k)
∂(c0k2)

∣∣∣
k=0

(4.97)

and

c0

ξ 2
= ZΣ(k = 0) . (4.98)

The identification (4.97) of Z with the limit of Zl for l → ∞ in Eq. (4.92) follows
from the definition of Zb = c0/c> in Eq. (3.11), see also the footnote in Sect. 3.3.1.

The field renormalization factor also plays an important role in quantum mechan-
ical many-body systems and quantum field theories. In this context it is also called
wave function renormalization factor. In quantum field theories the self-energy
Σ(ω, k) depends also on frequency, and the wave function renormalization factor
Z is usually defined in terms of the frequency derivative of the self-energy. For
example, for normal Fermi liquids one defines for each wave vector k (Abrikosov
et al. 1963, Nozières 1964, Negele and Orland 1988),

5 Recall that in Sect. 4.1 we introduced diagrammatic perturbation theory using the lattice nor-
malization. The corresponding self-energy Σk appearing in the Dyson equation (4.36) has units of
energy. In contrast, here we use the continuum normalization where the self-energyΣ(k) has units
of 1/(length)2. We indicate the different normalizations of the self-energy by different positions of
the wave vector labels.
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Zk = 1

1 − ∂Σ(ω,k)
∂ω

∣∣∣
ω=0

. (4.99)

For wave vectors k on the Fermi surface kF , the function ZkF is usually called
quasiparticle residue, because it can be identified with the weight of the quasiparticle
pole in the single-particle Green function of a Fermi liquid. The vanishing of ZkF in
the normal state would imply the breakdown of the quasiparticle picture.6

Finally, let us point out that the wave function renormalization factor appears
also in second-order Rayleigh–Schrödinger perturbation theory of single-particle
quantum mechanics (see e.g., Sakurai 1994). Recall that in quantum mechanical
perturbation theory one expands the eigenvalues En(λ) and eigenstates |En) of a
Hamiltonian of the form H = H0 + λV in powers of the small parameter λ,
assuming that the eigenvalues εn and eigenstates |εn〉 of H0 are known. To gen-
erate the perturbation series, it is convenient to work with states |En) which are not
normalized to unity but whose projection onto the corresponding unperturbed states
|εn〉 is unity,

〈εn|En) = 1 , (4.100)

see Fig. 4.7. Assuming for simplicity that the states are nondegenerate, Rayleigh–
Schrödinger perturbation theory yields the formal expansion for the perturbed states
(Sakurai 1994),

|En) =
∞∑
ν=0

[
Qn

εn − H0
(εn − En(λ) + λV )

]ν
|εn〉 , (4.101)

where Qn = 1 − |εn〉〈εn| projects onto the subspace orthogonal to |εn〉. The corre-
sponding energies are

En(λ) = εn + 〈εn|λV |En)

= εn +
∞∑
ν=0

〈εn|λV

[
Qn

εn − H0
(εn − En(λ) + λV )

]ν
|εn〉 . (4.102)

Unfortunately, the right-hand sides of Eqs. (4.101) and (4.102) depend again on
En(λ), so that for a systematic expansion in powers of the small parameter λ one
has to reshuffle the terms corresponding to different powers of ν in the perturba-
tion expansion. This makes calculations within Rayleigh–Schrödinger perturbation

6 For example, for interacting fermions in one dimension ZkF = 0 for arbitrarily weak interaction.
The normal state of interacting fermions in D = 1 is therefore not a Fermi liquid and is called
Luttinger liquid (Haldane 1981).
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Fig. 4.7 In Rayleigh–Schrödinger perturbation theory the perturbed states |En) are normalized
such that their projection onto the unperturbed states |εn〉 is unity. To obtain properly normalized
states |En〉 = √

Zn |En), the length of the states |En) has to be reduced by a factor
√

Zn < 1

theory beyond the second order quite tedious. Nevertheless, in principle we can cal-
culate the perturbed states |En) to a given power of λ. Because of the normalization
condition (4.100), the states |En) are not normalized to unity and should be rescaled
at the end of the calculation by a factor Zn < 1 to obtain properly normalized states
|En〉,

|En〉 =
√

Zn|En) , (4.103)

where the wave function renormalization factor is given by

Zn = 1

(En|En)
. (4.104)

It is a simple exercise in quantum mechanics to show that (Sakurai 1994)

Zn = ∂En(λ)

∂εn
. (4.105)

From Fig. 4.7 it is obvious that Zn is in general smaller than unity. In fact, if a
perturbed state |En) is almost orthogonal to the corresponding unperturbed state
|εn〉, then the wave function renormalization factor is very small. A vanishing wave
function renormalization factor (corresponding to a finite anomalous dimension)
therefore means that the true eigenstates of the system cannot be reached perturba-
tively from the eigenstates of the corresponding noninteracting system.
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Exercises

4.1 One-Loop Flow Equations for the O(N)-symmetric ϕ4-theory

Consider the ϕ4-theory with an N -component (vector) field ϕ(k) ≡ (ϕ1(k), . . . ,
ϕN (k)) which is invariant under O(N )-rotations in field component space,

S[ϕ] = 1

2

∫ Λ0 d Dk

(2π )D
[r0 + c0k2]

N∑
i=1

|ϕi (k)|2 + u0

4!

∫
d Dr

N∑
i, j=1

ϕ2
i (r)ϕ2

j (r) .

Here, Λ0 is the initial ultraviolet cutoff and

ϕi (r) =
∫ Λ0 d Dk

(2π )D
ei k·rϕi (k) .

(a) In analogy to the discussion of the Ising-like ϕ4-theory with N = 1 eliminate
all modes with Λ < k < Λ0 perturbatively. Rescale momenta and fields appro-
priately to derive the recursion relations,

r ′ = ζ 2
b

bD

[
r0 + (N + 2)u0

6

∫ Λ0

Λ

d Dk

(2π )D

1

r0 + c0k2
+ O

(
u2

0

)]
,

c′ = ζ 2
b

bD+2
[c0 + O

(
u2

0

)
] ,

u′ = ζ 4
b

b3D

[
u0 − (N + 8)u2

0

6

∫ Λ0

Λ

d Dk

(2π )D

1

(r0 + c0k2)2
+ O

(
u3

0

)]
.

Note: Using Feynman diagrams, the interaction term can be represented by a

vertex of the form to denote the two independent summations

over field indices. Internal loops that are not connected to external legs by
solid lines then lead to free summations over a field component index and the
corresponding diagram is thus proportional to N.

(b) Demand c′ = c0 to determine the field rescaling factor ζb and derive differential
flow equations by setting b = el with l → 0,

dr̄

dl
= 2r̄ + (N + 2)ū

6(1 + r̄ )
,

dū

dl
= εū − (N + 8)ū2

6(1 + r̄ )2
,

where ε = 4 − D. For a convenient notation, we have introduced the dimen-
sionless couplings r̄ = r ′/c0Λ

2
0 and ū = K Du′/c2

0Λ
ε
0. Here, K D is the surface

area of a D-dimensional unit sphere divided by (2π )D , see Eq. (2.86).
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(c) Determine the fixed points of these flow equations and show that besides the
Gaussian fixed point, there is a nontrivial Wilson–Fisher fixed point with

ū∗ = 6ε

N + 8
+ O(ε2) , r̄∗ = −1

2

N + 2

N + 8
ε + O(ε2) .

(d) Linearize the flow equations around the nontrivial fixed points, sketch the flow
in the r̄ -ū plane for D < 4, and determine all critical exponents to linear order
in ε. Set D = 3 (i.e., ε = 1) and compare your results with the known critical
exponents of the 3D-Heisenberg universality class α = −0.10, β = 0.36,
γ = 1.39, δ = 5.11, ν = 0.70, and η = 0.027.

4.2 Logarithmic Corrections to Scaling

Close to four dimensions the one-loop RG flow equations for ϕ4-field theory are
given by

∂l r̄l = 2r̄l + Aūl

1 + r̄l
,

∂l ūl = εūl − Bū2
l

(1 + r̄l)2
.

For the Ising universality class, it was shown in Sect. 4.2.2 that A = 1/2 and
B = 3/2, see Eqs. (4.71) and (4.72). This result was generalized to the O(N )-
symmetric case in Exercise 4.1. For general N we have A = (N + 2)/6 and
B = (N + 8)/6. Here, we will discuss implications of the above flow equations
for D = 4, i.e., ε = 0.

(a) Show that (r̄∗, ū∗) = 0 is the only fixed point of the RG flow equations. To
obtain the relevant scaling variable use the substitution tl ≡ r̄l + Aūl/2 to
eliminate the linear term Aūl in the first equation, resulting in

∂l tl = yt tl − Aūl tl + . . . ,

∂l ūl = −Bū2
l + . . . .

In fact, up to the factor of A which for the Ising universality class equals 1/2,
the above variable substitution is the same as used in the context of scaling in
the vicinity of the Wilson–Fisher fixed point, see Eq. (4.87). The ellipses denote
higher-order terms in tl and ūl which can be neglected. Explain this in detail.
Why is ūl called a marginally irrelevant coupling?
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(b) Integrate the last equation to obtain ūl and use this result to determine tl .
Starting from a small t0 and ū0, we want to iterate the RG until tl = O(1).
In practice, this final value for tl should be large enough such that mean field
theory is applicable. On the other hand, it should be chosen small enough such
that neglecting higher-order terms as done above is still justified. To obtain the
l∗ where the iteration of the RG should be stopped solve your solution for tl
approximately for l as a function of t . You should obtain an l of the form l =
c1 ln[c2t] + c3 ln[1 + c4 ln(c5t)].

(c) To calculate the specific heat, recall that the singular part of the free energy
satisfies

fsing(t0, ū0) = e−Dl fsing(tl, ūl) .

Evaluate the right-hand side within mean field theory to derive the leading con-
tribution to the free energy. Use this result to show that the specific heat exhibits
the following logarithmic behavior,

C(t0, u0) ∝ (ln(tl∗/t0))(4−N )/(N+8) .

(d) Logarithmic corrections to scaling are quite ubiquitous at the upper critical
dimension. (This is especially important in systems where the upper critical
dimension is D = 3.) Verify this explicitly by evaluating the scaling behavior
of the correlation length ξ .
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Chapter 5
Field-Theoretical Renormalization Group

The concept of the RG was originally introduced in the context of quantum field
theory by Stueckelberg and Petermann (1953) and by Gell-Mann and Low (1954),
long before Wilson’s seminal works. Although the field-theoretical RG is less gen-
eral than the Wilsonian RG and can only be applied to so-called renormalizable
theories (we shall explain in this chapter what this means), calculations beyond the
leading order in the number of loop integrations are usually simpler within the field
theoretical RG if it is applicable. Here, we shall briefly introduce the main ideas of
the field-theoretical RG method.1 More detailed introductions can be found in the
authoritative book by Zinn-Justin (2002) or in many other textbooks on quantum
field theory such as (Sterman 1993, Peskin and Schroeder 1995, Zee 2003).

5.1 Divergencies and Their Regularization in Field Theory

By definition, in field theories, space-time is treated as a continuum, so that in
momentum-frequency space there is no ultraviolet cutoff. As a consequence, cor-
relation functions can be ultraviolet divergent if the dimensionality of space is high
enough because there is no upper bound for the momenta and frequencies circu-
lating around the closed loops encountered in perturbation theory. In the lattice
models of condensed matter physics this problem does not arise, because the finite
lattice spacing a always provides a physical ultraviolet cutoff Λ0 ≈ 1/a for all
momentum integrations. In order to make sense out of a (quantum) field theory,
one has to regularize the theory at least at intermediate stages of the calculation by
introducing an ultraviolet cutoff Λ0. Of course, eventually we are interested in the
limit Λ0 → ∞. In renormalizable field theories the infinities associated with this
limit can be absorbed through a redefinition of a finite number of coupling constants,
which can be fixed experimentally by making a finite number of measurements.

In order to compare the field-theoretical RG with the Wilsonian momentum shell
RG introduced in Sect. 4.2, we shall explain in this chapter the main ideas of the

1 The presentation in this chapter is influenced by a series of lectures on perturbative renormaliza-
tion given by G. Sterman in Fall 1987 at the State University of New York at Stony Brook.

Kopietz, P. et al.: Field-Theoretical Renormalization Group. Lect. Notes Phys. 798, 123–139
(2010)
DOI 10.1007/978-3-642-05094-7 5 c© Springer-Verlag Berlin Heidelberg 2010
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field-theoretical RG within the context of classical ϕ4-theory close to four dimen-
sions. Formally, this theory can be obtained from the Ginzburg–Landau–Wilson
model given in Eq. (2.65) by removing the ultraviolet cutoff Λ0. With a slight
change of notation (which is adopted to the field theory context of this chapter),
the bare action of our model reads

S[ϕ0; m0, g0] =
∫

d DrL[ϕ0; m0, g0] , (5.1)

with Lagrangian density

L[ϕ0; m0, g0] = 1

2

[∇ϕ0(r)
]2 + m2

0

2
ϕ2

0(r) + g0

4!
ϕ4

0(r) . (5.2)

In the notation of Eq. (2.65) we have set ϕ0(r) = √
c0ϕ(r), m2

0 = r0/c0, and g0 =
u0/c2

0. The subscripts on ϕ0, m0 and g0 indicate that these are bare quantities, which
will be renormalized by fluctuation corrections. In wave vector space Eq. (5.1) reads

S[ϕ0; m0, g0] = 1

2

∫
k

[
k2 + m2

0

]
ϕ0(−k)ϕ0(k)

+g0

4!

(
4∏

i=1

∫
ki

)
(2π )Dδ

(
4∑

i=1

ki

)
ϕ0(k1)ϕ0(k2)ϕ0(k3)ϕ0(k4) . (5.3)

In contrast to the Ginzburg–Landau–Wilson action for the Ising model in Eq. (2.61)
the above field theory does not have an ultraviolet cutoff so that the momentum
integrations are unrestricted, which leads to ultraviolet divergencies in perturbation
theory. For example, the first-order correction to the irreducible self-energy is

δΣ = = g0

2

∫
k

1

k2 + m2
0

= g0

2
K D

∫ ∞

0
dk

k D−1

k2 + m2
0

= g0

2
K Dm D−2

0

∫ ∞

0
dx

x D−1

1 + x2
= ∞ for D ≥ 2 . (5.4)

Note that in the analogous expression (4.50) appearing in the Wilsonian RG the
wave vector integrations are restricted to the shell Λ < |k| < Λ0, whereas in field
theory the integrations are unbounded. Moreover, fluctuation corrections to corre-
lation functions with more than two external legs can also be ultraviolet divergent.
For example, the leading interaction correction to the effective interaction is
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δΓ = −1

2
= −3g2

0

2

∫
k

1[
k2 + m2

0

]2

= −3g2
0

2
K Dm D−4

0

∫ ∞

0
dx

x D−1

[1 + x2]2
= ∞ for D ≥ 4 . (5.5)

The analogous expression in the Wilsonian momentum shell RG given in Eq. (4.53)
is again finite due to the restricted wave vector integration.

In order to manipulate the divergent integrals appearing in the perturbation series,
we have to make them finite at intermediate stages of the calculation by introducing
some kind of ultraviolet cutoff. This is called regularization, not to be confused with
renormalization. At the end of the calculation we should somehow remove artificial
cutoffs to obtain a renormalized theory which is independent of the regularization
procedure. There are many ways of introducing a regularization. Some useful regu-
larization procedures are:

(a) Regularization via a momentum cutoff : The simplest strategy to regularize the
ultraviolet divergencies is to cut them off by “brute force” at some scale Λ. In
the simplest case, one chooses a sharp momentum cutoff, replacing

∫
d Dk

(2π )D
→

∫
d Dk

(2π )D
Θ(Λ− |k |) . (5.6)

However, for calculations beyond one loop the nonanalyticity of the sharp cutoff
gives rise to mathematical complications, so that in practice it is often better to
work with a smooth cutoff, for example a Gaussian momentum cutoff,

∫
d Dk

(2π )D
→

∫
d Dk

(2π )D
e−k2/Λ2

. (5.7)

(b) Dimensional regularization: Another possibility to regularize the ultraviolet
divergencies is to evaluate the Feynman diagrams encountered in perturbation
theory for some small enough dimensionality D. Divergencies then enter as
poles in 2 − D or D − 4. Away from the poles, the integrals can be defined
through analytic continuation in D.

(c) Lattice regularization: In this case one discretizes space (and time for quantum
systems) and replaces the spatial continuum by a lattice with finite lattice spac-
ing a. Then all momentum integrations are over a finite domain defined by the
first Brillouin zone of the lattice. While in continuum field theories one should
eventually take the limit a → 0, in condensed matter systems this regularization
is provided by nature via the physical crystal lattice.
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Of course, depending on the regularization scheme, different results for the diver-
gent Feynman diagrams are obtained. For example, if we regularize the loop inte-
gration in the first-order self-energy correction (5.4) using the Gaussian momentum
cutoff (5.7) we obtain in D = 4,

δΣ(Λ) = g0

2

∫
d4k

(2π )4

1

k2 + m2
0

e−k2/Λ2

= g0

2
K4m2

0

∫ ∞

0
dx

x3

1 + x2
e−αx2

(with α = m2
0/Λ

2)

= g0

2
K4m2

0
1

2

∫ ∞

0
dy

1 + y − 1

1 + y
e−αy (with y = x2)

= g0

4
K4m2

0

[
1

α
− eαE1(α)

]
, (5.8)

where the exponential integral E1(z) is defined by (Abramowitz and Stegun 1965)

E1(z) =
∫ ∞

z
dt

e−t

t
. (5.9)

Using the asymptotic expansion of E1(z) for small z,

E1(z) ∼ −γ − ln z + O(z) , (5.10)

where γ = 0.577 . . . is Euler’s constant, we finally obtain for Λ2 � m2
0 in four

dimensions,

δΣ(Λ) = K4

2
g0

[
Λ2

2
− m2

0 ln
( Λ

m0

)
+ O(1)

]
, D = 4 . (5.11)

Similarly, we obtain for the regularized correction δΓ to the interaction (5.5) in four
dimensions,

δΓ = −3

2
g2

0

∫
d4k

(2π )4

1(
k2 + m2

0

)2 e−k2/Λ2

= −3K4

4
g2

0

∫ ∞

0
dy

y

(1 + y)2
e−αy . (5.12)

For small α = m2
0/Λ

2 the integral in the second line can be approximated by ln(1/α)
to leading order, so that

δΓ (Λ) ∼ − 3K4
2 g2

0 ln
(
Λ
m0

)
+ O(1), D = 4 . (5.13)
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On the other hand, if we use dimensional regularization then the regularized
expressions for δΣ and δΓ look different. Assuming that the dimension D is suf-
ficiently small so that the integrals exist, we obtain for the regularized self-energy
correction (5.4) using the same substitutions as in Eq. (5.8),

δΣ(ε) = g0

2

∫
d Dk

(2π )D

1

k2 + m2
0

= g0

4
K D m D−2

0

∫ ∞

0
dy

y
D
2 −1

1 + y

= g0

4
K D m D−2

0 Γ
( D

2

)
Γ
(

1 − D

2

)
, (5.14)

where we have used (Abramowitz and Stegun 1965, p. 256)

∫ ∞

0
dy

yz−1

1 + y
= π csc(π z) = π

sin(π z)
= Γ (z)Γ (1 − z) . (5.15)

Substituting for K D the explicit expression given in Eq. (2.86) and using the fact
that for small ε = 4 − D > 0 we may approximate

Γ
(
1 − D

2

) = Γ
(−1 + ε

2

) = −2

ε
+ O(1) , (5.16)

we obtain slightly below four dimensions

δΣ(ε) = g0

2

m D−2
0

(4π )D/2
Γ
(

1 − D

2

)
∼ −g0

2

m2
0

8π2ε
+ O(1) , (5.17)

which looks rather different from the result (5.11) obtained via regularization with
Gaussian momentum cutoff. To evaluate the correction δΓ to the interaction in
Eq. (5.5) in dimensional regularization, we simply use

1(
k2 + m2

0

)2 = − ∂

∂m2
0

1

k2 + m2
0

(5.18)

so that with Eqs. (5.14) and (5.17) we can write

δΓ (ε) = 3g0
∂

∂m2
0

δΣ(ε) ∼ −3

2
g2

0
1

8π2ε
+ O(1) . (5.19)
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Again, the regularized result for δΓ (ε) obtained via dimensional regularization
looks rather different from the corresponding expression (5.13) obtained with Gaus-
sian momentum cutoff, so that at this point it appears almost like a miracle that by
using different regularization schemes we are eventually able to obtain unambigu-
ous results for physical observables from field theories which can be compared with
experiments.

5.2 Perturbative Renormalization

5.2.1 The Renormalized Lagrangian

As a first step towards our goal to use field theory to make predictions for exper-
imentally measurable physical quantities we introduce the so-called renormalized
Lagrangian, which is a function of the renormalized field ϕR , the renormalized mass
m R , and the renormalized coupling constant gR . These renormalized quantities are
defined in terms of the corresponding bare quantities ϕ0, m0 and g0 via the relations

ϕ0 = √
ZϕϕR , (5.20a)

m2
0 = Zmm2

R , (5.20b)

g0 = Zgμ
εgR , (5.20c)

where the dimensionless multiplicative renormalization constants Zϕ , Zm and Zg

will be determined iteratively order by order in perturbation theory, and μ in
Eq. (5.20c) is an arbitrary mass scale which is introduced to make the renormalized
coupling gR dimensionless. Our strategy is to absorb all infinities encountered in
perturbation theory into the relations between the bare quantities and the renor-
malized ones. The idea is that only the renormalized quantities have a physical
meaning and can be related to physical observables. We therefore require that the
renormalized quantities have finite values, while the bare quantities are infinite due
to the singularities contained in the Z -factors. In order to realize this strategy, let us
express our original Lagrangian density L[ϕ0; m0, g0] defined in Eq. (5.2) in terms
of renormalized quantities as follows,

L[ϕ0; m0, g0] ≡ 1

2

[(∇ϕ0
)2 + m2

0ϕ
2
0

]
+ g0

4!
ϕ4

0

= 1

2

[
Zϕ

(∇ϕR
)2 + Zm Zϕm2

Rϕ
2
R

]
+ Zg Z2

ϕ

μεgR

4!
ϕ4

R

= LR[ϕR ; m R, gR, Zϕ, Zm, Zg] , (5.21)

where the renormalized Lagrangian LR[ϕR ; m R, gR, Zϕ, Zm, Zg] should be consid-
ered to be a function of the renormalized field ϕR , mass m R , and coupling gR , and
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the associated dimensionless Z -factors. Alternatively, the renormalized Lagrangian
can be written as

LR[ϕR ; m R, gR, Zϕ, Zm, Zg] = 1

2

[(∇ϕR
)2 + m2

Rϕ
2
R

]
+ μεgR

4!
ϕ4

R

+1

2
(Zϕ − 1)

(∇ϕR
)2 + 1

2
(Zm Zϕ − 1)m2

Rϕ
2
R + (

Zg Z2
ϕ − 1

) μεgR

4!
ϕ4

R . (5.22)

Note that the first term on the right-hand side of Eq. (5.22) is of the same form as the
bare Lagrangian but with the bare quantities replaced by the renormalized ones. The
remaining three terms in the second line of Eq. (5.22) resemble the terms appearing
in the first line, but with different coefficients which all vanish if the Z -factors are
replaced by unity. These terms are called counterterms and are considered to be a
part of the interaction in perturbative renormalization. Each counterterm therefore
gives rise to a new interaction vertex, which we represent by the following graphical
elements,

Field counterterm:
1

2
(Zϕ − 1)(∇ϕR)2 = , (5.23a)

Mass counterterm:
1

2
(Zm Zϕ − 1)m2

Rϕ
2
R = , (5.23b)

Interaction counterterm:
μεgR

4!

(
Zg Z2

ϕ − 1
)
ϕ4

R = . (5.23c)

The structure of the above relation, namely

LR[ϕR ; m R, gR, Zϕ, Zm, Zg]={classical Lagrangian with bare quantities

replaced by renormalized ones} + {counterterms} ,
(5.24)

is very general. It is not only the starting point of renormalized perturbation the-
ory in our simple classical ϕ4-theory. A similar decomposition is also the starting
point of renormalized perturbation theory in quantum electrodynamics and quantum
chromodynamics.2 Of course, in this case one needs different graphical elements to
represent the theory and the counterterms.

2 For example, in quantum electrodynamics the classical Lagrangian is (see e.g., Peskin and
Schroeder 1995, p. 330)
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Let us point out that the strategy underlying field-theoretical perturbative renor-
malization has also been successfully adopted in condensed matter physics, where
it is sometimes called renormalized perturbation theory (see e.g., Hewson 1993,
Appendix L). For example, in order to calculate the true Fermi surface kF of
an interacting Fermi system, it is convenient to include the exact self-energy
Σ(ω = 0, kF ) at vanishing frequency as a counterterm into the quadratic part of
the Hamiltonian (Nozières 1964). The a priori unknown self-energy Σ(ω = 0, kF )
is determined self-consistently from the requirement that the self-energy calculated
from the residual interaction vanishes for momenta on the Fermi surface and for
vanishing frequency. For recent applications of this technique see (Neumayr and
Metzner 2003, Ledowski et al. 2005, Ledowski and Kopietz 2007).

5.2.2 Perturbative Calculation of Renormalization Factors

A priori it is not clear whether all divergencies encountered to all orders in per-
turbation theory can be absorbed in our three dimensionless factors Zi (where
i = ϕ,m, g). The fact that this is indeed possible amounts to the statement that
our theory is renormalizable. Let us now explain how to calculate the Zi iteratively
order by order in perturbation theory. From the form (5.22) of the renormalized
Lagrangian it is obvious that the Zi are functions of the renormalized mass m R ,
the renormalized coupling constant, gR , and the (arbitrary) mass scale μ. Moreover,
because we have to regularize the divergent integrals encountered in perturbation
theory, the Z -factors will in general also depend on the regularization procedure: for
regularization with momentum cutoff Λ the Zi will depend on Λ, while in dimen-
sional regularization they will depend on ε. In renormalized perturbation theory, we

L[ψ, A; m0, e0] = ψ̄(iγ μ∂μ − e0γ
μAμ − m0)ψ − 1

4
FμνFμν ,

where the four-component fieldψ represents the bare electrons, the bare photon field is represented
by the four-vector potential Aμ with field strength Fμν = ∂μAν − ∂ν Aμ, γ μ, μ = 0, 1, 2, 3 are
4 × 4-matrices, and m0 and e0 are the bare mass and the bare charge of the electron. This is
a U (1)-gauge theory, so that one needs an extra gauge fixing term, which only affects the photon
propagator; the effective bare Lagrangian contains then one additional parameter λ0 which fixes the
gauge, Leff[ψ, A; m0, e0, λ0] = L[ψ, A; m0, e0] − 1

2λ0(∂μAμ)2. The corresponding renormalized
Lagrangian is obtained by introducing the renormalized quantities ψ = √

ZψψR , Aμ = √
Z A AμR ,

m0 = Zmm R , e0 = ZeeR , and has four counterterms,

LR[ψR, AR ; m R, eR, λR, Zψ, Z A, Zm , Ze] = Leff[ψR, AR ; m R, eR, λR]

+i(Zψ − 1)ψ̄Rγ
μ∂μψR − (Zm Zψ − 1)m Rψ̄RψR − (Z A − 1)

1

4
FR,μνFμν

R

−
(

Zψ
√

Z A Ze − 1
)

eRψ̄Rγ
μAR,μψR .

Gauge invariance implies that there is no counterterm for the gauge-fixing term and that Ze =
Z−1/2

A , so that all divergencies can be absorbed into three renormalization constants Zψ , Zm and
Ze. The renormalized Lagrangian for quantum chromodynamics looks even more complicated (see
for example (Sterman 1993, Peskin and Schroeder 1995)).
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expand the Zi in powers of the renormalized interaction to obtain a series of the
form

Zi = 1 +
∞∑
ν=1

C (ν)
i (m R, μ,Λ or ε)gνR , i = ϕ,m, g, (5.25)

with dimensionless expansion coefficients C (ν)
i (m R, μ,Λ or ε). The notation “Λ

or ε” in the last argument means that for cutoff regularization these coefficients
depend onΛ, while for dimensional regularization they are functions of ε = 4 − D.
The crucial step is now to choose the coefficients C (ν)

i (m R, μ,Λ or ε) such that
the perturbative expansion in powers of the interaction part of the renormalized
Lagrangian LR[ϕR ; m R, gR, Zϕ, Zm, Zg] (which includes the counterterms) is finite
order by order in perturbation theory. In other words, any singularity encountered in
the perturbative expansion can be absorbed into one of the three factors Zϕ, Zm or
Zg . The fact that this really works to all orders in perturbation theory is equivalent
with the statement of renormalizability of the theory.

To see how this procedure works in practice, let us here explicitly calculate
the Z -factors to first order in the renormalized coupling. Consider first the cor-
rection to the mass, which is determined by the momentum-independent part of
the irreducible self-energy. According to Eqs. (5.11) and (5.17) the interaction part
(μεgR/4!)ϕ4

R of our renormalized Lagrangian (5.22) gives rise to the following self-
energy correction,

δΣ1 = K4

2
gR

{
Λ2

2 − m2
R ln

(
Λ

m R

)
+ O(1) , (cutoff regularization)

−m2
R
ε

+ O(1) . (dimensional regularization)
(5.26)

Note that in dimensional regularization the renormalized coupling is actuallyμεgR =
eε lnμgR = gR + O(ε lnμ), so that the nonsingular correction of order unity
depends on the regularization scheme. However, the mass counterterm
in Eq. (5.22), which should also be considered as part of the interaction, gives an
additional correction (ZϕZm − 1)m2

R to the self-energy, so that in total we obtain

δΣ = δΣ1 + (Zm Zϕ − 1)m2
R . (5.27)

Because to order gR the self-energy is momentum-independent, the leading correc-
tion to the field renormalization factor is of the order g2

R , so that we may approximate
Zϕ ≈ 1 to first order in gR . Expanding Zm = 1 + C (1)

m gR +O(g2
R), we obtain to first

order in gR ,

δΣ = K4

2
gR

{
Λ2

2 − m2
R ln

(
Λ

m R

)
+ O(1)

−m2
R
ε

+ O(1)

}
+ C (1)

m gRm2
R + O

(
g2

R

)
, (5.28)

where it is understood that the upper line in the bracket corresponds to cutoff reg-
ularization, whereas the lower line corresponds to dimensional regularization. The
singular partof C (1)

m is now fixed by demanding that the right-hand side of Eq. (5.28)
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remains finite for Λ → ∞ or ε → 0. This implies

C (1)
m = K4

2

{
ln

(
Λ

m R

)
− Λ2

2m2
R

1
ε

}
+ c(1)

m , (5.29)

where c(1)
m denotes the nonsingular part of C (1)

m which remains finite for Λ → ∞ or
ε → 0. Obviously, the requirement that perturbation theory remains finite fixes only
the singular part of the expansion coefficients C (ν)

i . To first order in the renormalized
coupling constant gR , the mass renormalization factor Zm is therefore given by

Zm = 1 + gR

[
K4

2

{
ln

(
Λ

m R

)
− Λ2

2m R
1
ε

}
+ c(1)

m

]
+ O

(
g2

R

)
, (5.30)

where K4 = 1/(8π2) and the finite part c(1)
m depends on the regularization scheme.

Next, let us calculate the singular part of the coupling constant renormalization
factor Zg . To this end we consider the leading correction to the interaction, which
according to Eqs. (5.13) and (5.19) is for large Λ or small ε given by

δΓ1 = −3

2
K4g2

R

{
ln

(
Λ

m R

)
+ O(1)

1
ε

+ O(1)

}
. (5.31)

Again, the interaction counterterm in Eq. (5.22) generates an additional

contribution to the renormalized coupling constant, so that in total

δΓ = δΓ1 + gR
(
Zg Z2

ϕ − 1
)
. (5.32)

But to order g2
R we may approximate

gR
(
Zg Z2

ϕ − 1
) ≈ g2

RC (1)
g , (5.33)

so that the total g2
R correction to the coupling constant is

δΓ = −3

2
K4g2

R

{
ln

(
Λ

m R

)
+ O(1)

1
ε

+ O(1)

}
+ C (1)

g g2
R + O

(
g3

R

)
. (5.34)

Demanding again that this remains finite for Λ → ∞ or ε → 0 fixes the singular
part of C (1)

g ,

C (1)
g = 3

2
K4

{
ln

(
Λ

m R

)
1
ε

}
+ c(1)

g , (5.35)



5.2 Perturbative Renormalization 133

where the nonsingular part c(1)
g remains undetermined. The coupling constant renor-

malization factor Zg to first order in gR is therefore

Zg = 1 + gR

[
3K4

2

{
ln

(
Λ

m R

)
1
ε

}
+ c(1)

g

]
+ O

(
g2

R

)
. (5.36)

As already mentioned (see the discussion after Eq. (5.27)), the field renormalization
factor is of the form

Zϕ = 1 + O
(
g2

R

)
, (5.37)

so that to first order in gR we may approximate Zϕ ≈ 1. Note that in dimensional
regularization the Z -factors are independent of m R . This iterative procedure of cal-
culating the renormalization factors can in principle be carried out to arbitrary high
orders in gR . The important point is that for doing the calculation to a given order
in gR we do not need to know in advance the counterterms to this order: they are
obtained to this order while doing the calculation. As anticipated, the singularities
encountered in perturbation theory can be absorbed in the renormalization factors
given by Eqs. (5.30) and (5.36). If we demand that the renormalized quantities are
finite, then the bare quantities are actually infinite if we remove the regularization.

5.2.3 Relating Renormalized Perturbation Theory to Experiments

Consider the expansion (5.25) of the renormalization factors Zi in powers of the
renormalized coupling constant gR . We have shown that the first-order coefficients
C (1)

m (m R, μ, ε) and C (1)
g (m R, μ, ε) have in dimensional regularization the form

C (1)
i (m R, μ, ε) = Z (1)

i

ε
+ c(1)

i , (5.38)

where the nonsingular parts c(1)
i depend on m R, μ and ε, while the residues Z (1)

i of
the singular part are given by Z (1)

m = K4/2 and Z (1)
g = 3K4/2. A similar decomposi-

tion is also obtained for the higher order expansion coefficients C (ν)
i (m R, μ, ε) with

ν > 1. The requirement that renormalized perturbation theory remains finite for
ε → 0 fixes only the residues Z (ν)

i of the singular parts of the expansion coefficients
C (ν)

i (m R, μ, ε), leaving their nonsingular parts c(ν)
i completely arbitrary. As a result,

the Z -factors depend on a lot of parameters,

Zi = Zi (m R, gR, μ, ε, c(1)
m , c(1)

g , c(2)
m , c(2)

g , c(2)
ϕ , . . .︸ ︷︷ ︸

Finite parts of counterterms

) . (5.39)
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Recall that in dimensional regularization one has to introduce an arbitrary mass
scale μ in order to define the dimensionless renormalized coupling constant gR in
arbitrary dimension. But how do we fix the coefficients c(ν)

i in order to get unique
predictions which can be tested experimentally? To answer this, we observe that
the bare Lagrangian really depends only on the two parameters m0, g0, because
according to Eq. (5.21)

L[ϕ0; m0, g0] ≡ 1

2

[(∇ϕ0
)2 + m2

0ϕ
2
0

]
+ g0

4!
ϕ4

0

= LR[ϕR ; m R, gR, Zϕ, Zm, Zg] , (5.40)

with ϕ0 = √
ZϕϕR , m2

0 = Zmm2
R , and g0 = Zgμ

εgR . Hence there can be only two
independent parameters in the renormalized Lagrangian that distinguish different
physical theories. As a consequence, the finite parts c(ν)

ϕ , c(ν)
m and c(ν)

g of the coun-
terterms as well as the mass scale μ can be chosen arbitrarily. In particular, we may
fix the finite parts c(ν)

i of the counterterms in some convenient way which simpli-
fies the calculations. This procedure is usually called choosing a renormalization
scheme. One possibility is so simply set the finite parts of all counterterms equal
to zero, c(ν)

i = 0. This renormalization scheme is called minimal subtraction. An
alternative scheme is the so-called momentum subtraction, where the finite parts of
the counterterms are chosen such that the self-energy Σ(k) and the (dimensionless)
renormalized effective interaction ΓR satisfy

Σ(0) = m2
R , (5.41a)

lim
k→0

∂Σ(k)

∂k2
= 1 , (5.41b)

ΓR = mε
RgR . (5.41c)

At this stage, the perturbation series generated from LR depends only on m R, gR ,
and μ. Now comes the input from experiment: in order to get a theory with predic-
tive powers, we proceed as follows:

(a) Pick two observable quantities, for example the mass mphys of some physical
particle and some physical scattering cross-section σphys. We then calculate these
observables perturbatively using renormalized perturbation theory to obtain rela-
tions of the form

mphys = f1(m R, gR, μ) , (5.42)

σphys = f2(m R, gR, μ) , (5.43)

where the functions f1(m R, gR, μ) and f2(m R, gR, μ) are truncated series expan-
sions to a given order in gR .

(b) Determine mphys and σphys from experiment and invert Eqs. (5.42) and (5.43) to
obtain m R and gR as functions of the physical parameters.
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m R = m R(mphys, σphys., μ) , (5.44)

gR = gR(mphys, σphys, μ) . (5.45)

(c) With m R and gR expressed in terms of physical observables, we can now use our
renormalized Lagrangian to calculate other physical observables. In this way our
theory has acquired predictive power. If our theory is correct, the results should
again agree with experiment.

From this algorithm it is clear why nonrenormalizable field theories do not have any
predictive power: In this case the divergencies cannot be absorbed in a finite num-
ber of counterterms. As a result, the theory depends on infinitely many parameters,
which can only be fixed by measuring infinitely many observables.

The relations (5.44) and (5.45) still depend on the arbitrary mass scale μ defin-
ing the renormalized dimensionless coupling constant. If we could calculate the
functions f1(m R, gR, μ) and f2(m R, gR, μ) in Eqs. (5.42) and (5.43) to all orders
in perturbation theory, they would be independent of μ, because we know that our
original theory depends only on two independent parameters. But in practice we
have to truncate the perturbation series at some finite order in gR . In this case the
functions f1 and f2 do not loose their μ-dependence, so that the values of m R and
gR still depend on the arbitrary mass scale μ. Fortunately, for renormalizable theo-
ries the residual μ-dependence is only logarithmic and is therefore very weak (see
e.g., (Sterman 1993)).

5.3 Callan–Symanzik Equation

The freedom in the choice of the mass scale μ in the definition of the renormal-
ized Lagrangian LR[ϕR ; m R, gR, μ] implies that correlation functions which are
calculated within the renormalized theory for different values of the renormalized
parameters m R, gR can be related to each other. This relation can be expressed in
terms of a partial differential equation, the Callan–Symanzik equation, which we
now derive. Let us therefore consider the so-called one-line irreducible vertex func-
tions Γ (n)(k1, · · · , kn) with n external legs, which we represent graphically by a
shaded circle with n external legs,

One-line irreducible means that any diagram contributing to the shaded circle can-
not be separated into two disconnected parts by cutting a single propagator line. In
the special case n = 2 the vertex function Γ (2)(k,−k) = Σ(k) can be identified
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with the irreducible self-energy introduced in Eq. (4.95); for n = 4 the vertex
Γ (4)(k1, k2, k3, k4) is usually called the effective interaction. We shall formally
define these vertices in Sect. 6.2. Taking into account that the bare and renormalized
fields are related by ϕ0 = √

ZϕϕR , the relation between bare and renormalized
irreducible vertices is

Γ
(n)

0 (k1, · · · , kn; m0, g0) = Z
− n

2
ϕ Γ

(n)
R (k1, · · · , kn; m R, gR, μ) . (5.46)

Obviously, the left-hand side of this identity is manifestly independent of the arbi-
trary mass scale μ, so that the explicit μ-dependence of the right-hand side must
also cancel against the implicit μ-dependence contained in Zϕ , m R and gR . Taking
the derivative of both sides of Eq. (5.46) with respect to μ while keeping the bare
parameters m0 and g0 constant we obtain

0 = d

dμ
Γ

(n)
0 (k1, . . . , kn; m0, g0) = d

dμ

[
Z

− n
2

ϕ Γ
(n)
R (k1 · · · kn; m R, gR, μ)

]

= d Z
− n

2
ϕ

dμ
Γ

(n)
R (k1 · · · kn; m R, gR, μ) + Z

− n
2

ϕ

d

dμ
Γ

(n)
R (k1 · · · kn; m R, gR, μ) .

(5.47)

Multiplying this equation by Z
n
2
ϕ μ and writing μ d

dμ = d
d lnμ we obtain

d

d lnμ
Γ

(n)
R (k1 · · · kn; m R, gR, μ) +

[
Z

n
2
ϕ

d Z
− n

2
ϕ

d lnμ

]
Γ

(n)
R (k1 · · · kn; m R, gR, μ) = 0 .

(5.48)
The factor in the square braces of Eq. (5.48) can be written as

Z
n
2
ϕ

d Z
− n

2
ϕ

d lnμ
= −n

2
Z−1
ϕ

d Zϕ
d lnμ

≡ −n

2
η(m R, gR) , (5.49)

where the anomalous dimension in the field-theoretical RG approach is given by

η(m R, gR) = d ln Zϕ
d lnμ

∣∣∣∣
m0,g0

. (5.50)

The subscripts indicate that the differentiation should be carried out keeping the bare
quantities m0 and g0 constant. Introducing also the Gell-Mann–Low β-function

β(m R, gR) = ∂gR

∂ lnμ

∣∣∣∣
m0,g0

, (5.51)
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and the function

γ (m R, gR) = ∂ ln m2
R

∂ lnμ

∣∣∣∣
m0,g0

= 1

m2
R

∂m2
R

∂ lnμ

∣∣∣∣
m0,g0

, (5.52)

Eq. (5.48) can be written in the form

[
μ
∂

∂μ
+ β

∂

∂gR
+ γm2

R

∂

∂m2
R

− n

2
η

]
Γ

(n)
R

(
k1, . . . , kn; m R, gR, μ

) = 0 . (5.53)

This is the Callan–Symanzik equation for the renormalized vertex functions. It tells
us how a change of the arbitrary mass scale μ appearing in the definition of the
renormalized coupling constant gR = Z−1

g μ−εg0 is compensated by a change of the
renormalized parameters ϕR , m R and gR such that the renormalized vertex functions
are independent of μ if the bare parameters are held constant.

Let us calculate the functions β(m R, gR) and γ (m R, gR) to leading order in
gR . Using dimensional regularization with minimal subtraction we obtain from
Eqs. (5.30) and (5.36)

Zm = 1 + 1

2

K4

ε
gR + O

(
g2

R

)
, (5.54)

Zg = 1 + 3

2

K4

ε
gR + O

(
g2

R

)
. (5.55)

These expressions are independent of m R , so that in dimensional regularization the
functions β(gR) and γ (gR) depend only on the renormalized coupling constant gR .
From the definition (5.51) we obtain

β(gR) = ∂

∂ lnμ

[
Z−1

g e−ε lnμg0
] = −εgR + ∂Z−1

g

∂ lnμ
μ−εg0

= −εgR + 3

2

K4

ε

∂gR

∂ lnμ
gR + O

(
g3

R

)
. (5.56)

In the second term of the last line we may approximate ∂gR

∂ lnμ = −εgR + O
(
g2

R

)
, so

that

β(gR) ≡ ∂gR

∂ lnμ
= −εgR + 3K4

2
g2

R + O
(
g3

R

)
. (5.57)
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Similarly, we obtain from Eq. (5.52)

γ (gR) = Zm
∂Z−1

m

∂ lnμ
= Zm

∂

∂ lnμ

[
1 − K4

2ε
gR + O

(
g2

R

)]

= −Zm
K4

2ε

∂gR

∂ lnμ
+ O

(
g2

R

) =− [1+O(gR)]
K4

2ε

[−εgR + O
(
g2

R

)]
. (5.58)

To leading order in gR we thus obtain

γ (gR) ≡ 1

m2
R

∂m2
R

∂ lnμ
= K4

2
gR + O

(
g2

R

)
. (5.59)

Finally, let us compare Eqs. (5.57) and (5.59) with the flow equations (4.71) and
(4.72) describing the change of the couplings ul and rl due to mode elimination and
rescaling in the Wilsonian RG. Setting μ = μ0e−l so that μ∂μ = −∂l and defining
ḡl = K4gR , the field-theoretical RG equation (5.57) for the renormalized coupling
constant can be written as

∂l ḡl = ε ḡl − 3

2
ḡ2

l , (5.60)

which is formally identical with the Wilsonian RG equation (4.72) provided we set
r̄l ≈ 0 in the second term of Eq. (4.72). This is consistent close to the Wilson–
Fisher fixed point where r̄l is of order ḡl . Note, however the conceptual difference
between ḡl and ūl : the coupling ḡl = K4gR is the renormalized field theoretical
coupling, while the flowing coupling ūl in the Wilsonian approach describes the
change of effective coupling as we eliminate degrees of freedom. Although at order
ḡ2

l or ū2
l the field-theoretical RG equation (5.60) is formally identical to the corre-

sponding Wilsonian RG equation (4.72), at higher orders in gR the corresponding
flow equations disagree. In fact, coefficients of g3

R and higher in the perturbative
field-theoretical β-function depend on the regularization scheme (Creutz 1983).

To compare the field-theoretical RG equation (5.59) to the Wilsonian flow equa-
tion (4.71) for the thermal variable r̄l , let us define the dimensionless coupling
t̄l = m2

R/μ
2, which satisfies

μ∂μ t̄l = −2t̄l + 1

μ2

∂m2
R

∂ lnμ
= [−2 + γ (gR)]t̄l , (5.61)

and to leading order in gl ,

∂l t̄l = 2t̄l − ḡl

2
t̄l . (5.62)

On the other hand, if we linearize the Wilsonian RG equation (4.71) we obtain
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∂l r̄l = 2r̄l + 1

2
ūl (5.63)

which obviously is not identical with the field-theoretical RG equation (5.62). How-
ever, in the vicinity of the Wilson–Fisher fixed point we may set ḡl → 2

3ε, so that
Eq. (5.62) reduces to

∂l t̄l = yt t̄l , yt = 2 − ε

3
, (5.64)

which agrees with the Wilsonian flow equation for the scaling field tl = δr̄l +
1
4

(
1 − ε

6

)
δūl defined in Eq. (4.87). We conclude that both field-theoretical and

Wilsonian RG yield the same results for critical exponents, although conceptually
and technically the two versions of the RG are rather different.

After this brief excursion into the field-theoretical RG, we will go back to the
Wilsonian RG and proceed in the second part of this book with the development of
modern functional RG methods.
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Part II
Introduction to the Functional

Renormalization Group

The mode-elimination step of the Wilsonian RG discussed in Chap. 3 requires inte-
grating over field components describing short-wavelength and high-energy fluctu-
ations. We have seen in Sect. 4.2 that in general this step can only be carried out
approximately and usually involves rather tedious calculations. It turns out, how-
ever, that if the mode elimination is carried out in infinitesimal steps, its effect
can be described mathematically via an exact hierarchy of functional differential
equations for certain types of Green functions or vertex functions. This has already
been discussed in the early days of the RG by Wegner and Houghton (1973), who
derived a formally exact functional differential equation describing the change of
the effective action due to an infinitesimal change of the cutoff Λ. This so-called
Wegner–Houghton equation is equivalent to an infinite hierarchy of coupled func-
tional RG flow equations involving all momentum-dependent vertices of the the-
ory. Unfortunately, the explicit solution of the Wegner–Houghton hierarchy of flow
equations leads to some technical complications, so that for practical calculations
the Wegner–Houghton equation has not been widely used in the literature. How-
ever, there are alternative and in practice more convenient ways of expressing the
Wilsonian mode elimination step in terms of formally exact functional differential
equations for certain generating functionals, which will be defined in Chap. 6. In the
past 20 years, approximate solutions of these formally exact RG flow equations have
been extensively studied; the work in this field is now summarized under the name
functional renormalization group (FRG) or exact renormalization group. In this sec-
ond part of this book, we give a self-contained introduction to the FRG, building on
the foundations presented in Part I. For other comprehensive reviews of the FRG,
see (Morris 1998, Salmhofer 1999, Bagnuls and Bervillier 2001, Berges et al. 2002,
Pawlowski 2007, Delamotte 2007). We shall assume in the rest of this book that
the reader is familiar with the functional integral approach to quantum many-body
systems, as described, for example, in the textbook by Negele and Orland (1988).

We begin in Chap. 6 with a summary of functional methods in many-body
physics; in particular, we introduce several generating functionals for different types
of Green functions and vertex functions and interpret them diagrammatically. In
Chap. 7, we then derive formally exact FRG flow equations describing the change of
the generating functionals due to an infinitesimal Wilsonian mode elimination step.
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While there are several equivalent formulations of the FRG involving different types
of generating functionals, in many cases it is advantageous to formulate the FRG
in terms of the generating functional Γ of the one-line irreducible vertices, which
can be obtained from the generating functional of the connected Green functions
via a Legendre transformation and is therefore also called the Legendre effective
action. The advantages of working with the Legendre effective action have already
been recognized in the older RG literature by Di Castro et al. (1974) and later by
Nicoll, Chang, and coworkers (Nicoll et al. 1976a,b, Nicoll and Chang 1977, Chang
et al. 1992). More recently, Wetterich (1993) has written down the exact FRG flow
equation for the Legendre effective action in a very concise form given in Eq. (7.54)
which is sometimes called the Wetterich equation.

Although the exact FRG equation for the generating functional Γ of the one-line
irreducible vertices looks deceptively simple, the explicit solution of this equation
is rather difficult and usually requires drastic approximations. Two different approx-
imation strategies have been developed: the first is based on the combination of the
local potential approximation with the derivative expansion (Bagnuls and Bervillier
2002, Berges et al. 2002, Pawlowski 2007). This approach has been very successful
to obtain accurate results for critical exponents (Bagnuls and Bervillier 2002, Berges
et al. 2002, Delamotte et al. 2004, Delamotte 2007) and is convenient to describe the
phases with broken symmetry (Birse et al. 2005, Krippa et al. 2005, Krippa 2007,
2009, Diehl and Wetterich 2007, Diehl et al. 2007a,b, 2009), because it is based
on an expansion of Γ in terms of invariant densities which automatically fulfill
all symmetry requirements. In Chap. 9, we shall give a brief introduction to this
method.

The other approximation strategy is based on the expansion of Γ in powers of
the fields (vertex expansion), leading to an infinite hierarchy of coupled integro-
differential equations for the one-particle irreducible vertices of the model under
consideration. This strategy was pioneered by Morris (1994) and has the advantage
of providing information on the momentum and frequency dependence of the ver-
tices at all momentum and energy scales, as will be explained in detail in Chap. 8.
For nonrelativistic fermions, the corresponding hierarchy of RG flow equations for
the irreducible vertices has been derived by Kopietz and Busche (2001) and inde-
pendently by Salmhofer and Honerkamp (2001), while for nonrelativistic bosons
the corresponding equations are given by Ledowski et al. (2004) and by Hasselmann
et al. (2004). Truncations of the exact hierarchy of flow equations for the one-line
irreducible vertices of nonrelativistic fermions have been extensively studied in the
condensed matter literature for various systems, such as two-dimensional Hubbard
models (Honerkamp and Salmhofer 2001b, Honerkamp 2001, 2003, Honerkamp
et al. 2004, Honerkamp and Salmhofer 2005, Kampf and Katanin 2003, Katanin
and Kampf 2003, 2004, Katanin 2004, 2009, Ossadnik et al. 2008), one-dimensional
systems (Busche et al. 2002, Meden et al. 2002, Andergassen et al. 2004, Ledowski
et al. 2005, Ledowski and Kopietz 2007), or quantum mechanical impurity models
(Hedden et al. 2004, Andergassen et al. 2006, Meden and Marquardt 2006, Karrasch
et al. 2007, 2008, Bartosch et al. 2009a). We shall discuss various versions of the
vertex expansion for fermions in Part III of this book. In particular, in Chap. 10
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we explicitly write down the coupled system of functional RG equations describing
the flow of the one-particle irreducible vertices of nonrelativistic fermions. These
equations follow as a special case of a more general “master flow equation” derived
in Chap. 7, which treats fermions, bosons, or mixtures thereof within a single uni-
fying “superfield-formalism” (Schütz et al. 2005, Schütz 2005, Schütz and Kopietz
2006).
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Functional renormalization group for Luttinger liquids with impurities, Phys. Rev. B 70,
075102. 142

Andergassen, S., T. Enss, and V. Meden (2006), Kondo physics in transport through a quantum dot
with Luttinger-liquid leads, Phys. Rev. B 73, 153308. 142

Bagnuls, C. and C. Bervillier (2001), Exact renormalization group equations: An introductory
review, Phys. Rep. 348, 91. 141

Bagnuls, C. and C. Bervillier (2002), Classical-to-critical crossovers from field theory, Phys. Rev.
E 65, 066132. 142

Bartosch, L., H. Freire, J. J. Ramos Cardenas, and P. Kopietz (2009), Functional renormalization
group approach to the Anderson impurity model, J. Phys.: Condens. Matter 21, 305602. 142

Berges, J., N. Tetradis, and C. Wetterich (2002), Non-perturbative renormalization flow in quantum
field theory and statistical physics, Phys. Rep. 363, 223. 141, 142

Birse, M. C., B. Krippa, J. A. McGovern, and N. R. Walet (2005), Pairing in many-fermion systems:
An exact renormalisation group treatment, Phys. Lett. B 605, 287. 142

Busche, T., L. Bartosch, and P. Kopietz (2002), Dynamic scaling in the vicinity of the Luttinger
liquid fixed point, J. Phys.: Condens. Matter 14, 8513. 142

Chang, T. S., D. D. Vvedensky, and J. F. Nicoll (1992), Differential renormalization-group gener-
ators for static and dynamic critical phenomena, Phys. Rep. 217, 279. 142

Delamotte, B. (2007), An Introduction to the Nonperturbative Renormalization Group, arXiv:cond-
mat/0702365. 141, 142

Delamotte, B., D. Mouhanna, and M. Tissier (2004), Nonperturbative renormalization-group
approach to frustrated magnets, Phys. Rev. B 69, 134413. 142

Di Castro, C., G. Jona-Lasinio, and L. Peliti (1974), Variational principles, renormalization group,
and Kadanoff’s universality, Ann. Phys. 87, 327. 142

Diehl, S. and C. Wetterich (2007), Functional integral for ultracold fermionic atoms, Nucl. Phys.
B 770, 206. 142

Diehl, S., H. Gies, J. M. Pawlowski, and C. Wetterich (2007a), Flow equations for the BCS-BEC
crossover, Phys. Rev. A 76, 021602(R). 142

Diehl, S., H. Gies, J. M. Pawlowski, and C. Wetterich (2007b), Renormalization flow and univer-
sality for ultracold fermionic atoms, Phys. Rev. A 76, 053627.

Diehl, S., S. Floerchinger, H. Gies, J. M. Pawlowski, and C. Wetterich (2009), Functional renor-
malization group approach to the BCS-BEC crossover, arXiv:0907.2193 [cond-mat.quant-gas].

Hasselmann, N., S. Ledowski, and P. Kopietz (2004), Critical behavior of weakly interacting
bosons: A functional renormalization-group approach, Phys. Rev. A 70, 063621. 142

Hedden, R., V. Meden, T. Pruschke, and K. Schönhammer (2004), A functional renormalization
group approach to zero-dimensional interacting systems, J. Phys.: Condens. Matter 16, 5279. 142

Honerkamp, C. (2001), Electron-doping versus hole-doping in the 2D t-t ′ Hubbard model, Eur.
Phys. J. B 21, 81. 142

Honerkamp, C. (2003), Instabilities of interacting electrons on the triangular lattice, Phys. Rev. B
68, 104510. 142

Honerkamp, C. and M. Salmhofer (2001), Temperature-flow renormalization group and the com-
petition between superconductivity and ferromagnetism, Phys. Rev. B 64, 184516. 142



144 Part II Introduction to the Functional Renormalization Group

Honerkamp, C. and M. Salmhofer (2005), Eliashberg Equations derived from the functional renor-
malization group, Progr. Theoret. Phys. 113, 1145. 142

Honerkamp, C., D. Rohe, S. Andergassen, and T. Enss (2004), Interaction flow method for many-
fermion systems, Phys. Rev. B 70, 235115. 142

Kampf, A. P. and A. A. Katanin (2003), Competing phases in the extended U-V -J Hubbard model
near the Van Hove fillings, Phys. Rev. B 67, 125104. 142

Karrasch, C., T. Hecht, A.Weichselbaum, Y. Oreg, J. von Delft, and V. Meden (2007), Mesoscopic
to universal crossover of the transmission phase of multilevel quantum dots, Phys. Rev. Lett.
98, 186802. 142

Karrasch, C., R. Hedden, R. Peters, T. Pruschke, K. Schönhammer, and V. Meden (2008), A finite-
frequency functional renormalization group approach to the single impurity Anderson model, J.
Phys.: Condens. Matter 20, 345205. 142

Katanin, A. A. (2004), Fulfillment of Ward identities in the functional renormalization group
approach, Phys. Rev. B 70, 115109. 142

Katanin, A. A. (2009), The two-loop functional renormalization group approach to the one- and
two-dimensional Hubbard model, Phys. Rev. B 79, 235119. 142

Katanin, A. A. and A. P. Kampf (2003), Renormalization group analysis of magnetic and super-
conducting instabilities near van Hove band fillings, Phys. Rev. B 68, 195101. 142

Katanin, A. A. and A. P. Kampf (2004), Quasiparticle anisotropy and Pseudogap formation from
the weak-coupling renormalization group point of view, Phys. Rev. Lett. 93, 106406. 142

Kopietz, P. and T. Busche (2001), Exact renormalization group flow equations for nonrelativistic
fermions: Scaling toward the Fermi surface, Phys. Rev. B 64, 155101. 142

Krippa, B. (2007), Superfluidity in many fermion systems: Exact renormalization group treatment,
Eur. Phys. J. A 31, 734. 142

Krippa, B. (2009), Exact renormalization group flow for ultracold Fermi gases in the unitary limit,
J. Phys. A: Math. Theor. 42, 465002. 142

Krippa, B., M. C. Birse, N. R. Walet, and J. A. McGovern (2005), Exact renormalisation group
and pairing in many-fermion systems, Nucl. Phys. A 749, 134. 142

Ledowski, S., P. Kopietz, and A. Ferraz (2005), Self-consistent Fermi surface renormalization of
two coupled Luttinger liquids, Phys. Rev. B 71, 235106. 142

Ledowski, S. and P. Kopietz (2007), Fermi-surface renormalization and confinement in two cou-
pled metallic chains, Phys. Rev. B 75, 045134. 142

Ledowski, S., N. Hasselmann, and P. Kopietz (2004), Self-energy and critical temperature of
weakly interacting bosons, Phys. Rev. A 69, 061601. 142

Meden, V. and F. Marquardt (2006), Correlation-induced resonances in transport through coupled
quantum dots, Phys. Rev. Lett. 96, 146801. 142
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Chapter 6
Functional Methods

Our derivation of exact FRG equations in Chap. 7 will be based on the concept of
generating functionals of several types of Green functions and vertex functions. For
a self-contained introduction to the FRG it is therefore necessary to properly define
the various generating functionals and develop some intuition for the meaning of the
associated correlation functions, which we shall do in this chapter. Moreover, we
shall use the invariance properties of generating functionals under shift and symme-
try transformations to derive so-called Dyson–Schwinger equations of motion and
Ward identities relating different types of correlation functions. Of course, com-
prehensive introductions to functional methods can be found in several excellent
textbooks (Negele and Orland 1988, Zinn-Justin 2002, Rammer 2007). In this con-
text we also mention the more specialized books by Vasiliev (1998) and by Fried
(1972, 2002), which emphasize the formulation of field theory in terms of functional
derivatives.

To describe fermions, bosons, or even mixtures thereof within a single formalism,
it is useful to have a compact notation which allows us to keep track of the combi-
natorial factors and possible minus signs in an efficient way. Let us therefore collect
all different field types of a given theory into a superfield Φ labeled by a superlabel
α, which denotes the different field types and, for a given field, all labels needed
to specify the field configuration, such as momentum, frequency, spin or additional
flavor labels (Schütz et al. 2005, Schütz 2005, Schütz and Kopietz 2006). A related
approach has been developed by Wetterich and coauthors (Baier et al. 2004, 2005,
Wetterich 2007). For purely fermionic systems, a similar notation has also been used
by Salmhofer and Honerkamp (2001). We assume that the correlation functions of
the system can be represented as a functional integral involving the exponential of
some general action S[Φ], with the integration measure normalized such that the
exact partition function of the system can be written as

Z =
∫

D[Φ]e−S[Φ] . (6.1)

Furthermore, we assume that the action can be decomposed as

S[Φ] = S0[Φ] + S1[Φ] , (6.2)

with some arbitrary interaction part S1[Φ], and a Gaussian part of the general form

Kopietz, P. et al.: Functional Methods. Lect. Notes Phys. 798, 147–180 (2010)
DOI 10.1007/978-3-642-05094-7 6 c© Springer-Verlag Berlin Heidelberg 2010
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S0[Φ] = −1

2

∫
α

∫
α′
Φα

[
G−1

0

]
αα′Φα′ ≡ −1

2

(
Φ,G−1

0 Φ
)
. (6.3)

The symbol
∫
α

denotes integration over the continuous components and summation
over the discrete components of the superfield label α, and the Gaussian propagator
G0 is a matrix in superlabel space. The bosonic components ofΦ are given by com-
plex fields, while the fermionic components are anticommuting Grassmann fields.
It is understood that the matrix G0 appearing in the Gaussian action (6.3) has been
properly symmetrized in the bosonic sectors and antisymmetrized in the fermionic
sectors. Assuming that the different sectors do not mix, the Gaussian propagator has
the symmetry

GT
0 = ZG0 = G0Z , (6.4)

where the statistics matrix Z is an infinite diagonal matrix in superlabel space with
matrix elements

Zαα′ = δαα′ζα, with ζα =
{

1 if α labels a boson,
−1 if α labels a fermion.

(6.5)

For example, to describe a system of nonrelativistic electrons we need a pair of
Grassmann fields ψσ and ψ̄σ for each spin projection σ . For a one-band model the
fields can be labeled by Matsubara frequencies iω and momenta k. For simplicity,
we shall collect iω and k into a collective label K = (iω, k). Then the superlabel α
assumes the values α = (ψ, K , σ ) and α = (ψ̄, K , σ ), where the first specification
denotes the field type, and the other labels give the energy, the momentum, and spin
carried by the field. The Gaussian part of the Euclidean action can in this case be
written as

S0[Φ] = −
∑
σ

∫
K

G−1
0 (K )ψ̄KσψKσ

= −1

2

∑
σ

∫
K

(ψKσ , ψ̄Kσ )

(
0 −G−1

0 (K )
G−1

0 (K ) 0

)(
ψKσ

ψ̄Kσ

)
, (6.6)

where the minus sign in the upper diagonal has been generated by anticommuting
the Grassmann fields, ψ̄KσψKσ = −ψKσ ψ̄Kσ , and G0(K ) is the imaginary fre-
quency propagator of noninteracting fermions with energy dispersion εk and chem-
ical potential μ,

G0(K ) ≡ G0(iω, k) = 1

iω − εk + μ
. (6.7)

We have normalized the Grassmann fields ψKσ and ψ̄Kσ such that the integration
measure in Eq. (6.6) is
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∫
K

= 1

βV

∑
ω,k

β,V →∞−→
∫

dω

2π

d Dk

(2π )D
. (6.8)

Comparing Eq. (6.6) with Eq. (6.3) we conclude that for nonrelativistic fermions
the infinite matrix G−1

0 has the following block structure in field space,

G−1
0 =

(
0 −Ĝ−1

0
Ĝ−1

0 0

)
, (6.9)

where the blocks Ĝ−1
0 are infinite diagonal matrices in frequency, momentum, and

spin space, with matrix elements

[
Ĝ−1

0

]
Kσ,K ′σ ′ = δK ,K ′δσ,σ ′ G−1

0 (K ) . (6.10)

The Kronecker delta symbol

δK ,K ′ = βV δω,ω′δk,k′ (6.11)

is normalized such that it reduces to the (D + 1)-dimensional Dirac δ-function
δK ,K ′ → (2π )D+1δ(ω − ω′)δ(D)(k − k′) in the limit β, V → ∞. Obviously, for a
theory involving only fermionic fields the matrix G0 is antisymmetric, GT

0 = −G0,
in agreement with the general symmetry property (6.4).

In order to obtain a manifestly antisymmetric propagator in Eq. (6.6), we have to
pay the price of doubling its number of field components. Such a parameterization
has also been introduced by Vasiliev (1998) as well as Salmhofer and Honerkamp
(2001); its advantages will become evident when we develop the functional methods
in this and the following chapter. In particular, we shall show in Chap. 7 that this
construction greatly facilitates the derivation of the proper combinatorial factors in
the vertex expansion of the FRG flow equations. Let us also emphasize that the
assumed form of the action given in Eqs. (6.2) and (6.3) is very general; it includes
interacting fermions or bosons as special cases, but applies also to more general field
theories involving fermion–boson mixtures or more general field theories involving
real bosonic or fermionic fields.1 The manipulations in the rest of this chapter are
independent of any particular model as long as the partition function can be rep-
resented as a functional integral (6.1) with effective action of the form (6.2) and
(6.3).

1 Real fermions are also called Majorana fermions, which are useful to construct a representation
of the spin algebra in terms of hermitian anticommuting operators, see for example the book by
Tsvelik (2003). For a recent application of this representation see (Shnirman and Makhlin 2003).
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6.1 Generating Functionals for Green Functions

6.1.1 Disconnected Green Functions

For the class of models whose correlation functions can be represented as functional
averages with respect to an action S[Φ] of the form (6.2) and (6.3), we define the
disconnected Green functions G(n)

α1...αn
with n external legs via the following func-

tional average,2

G(n)
α1...αn

= 〈Φαn . . . Φα1〉 =
∫
D[Φ]e−S[Φ]Φαn . . . Φα1∫

D[Φ]e−S[Φ]
. (6.12)

The functions G(n)
α1...αn

can be obtained as coefficients of the functional Taylor expan-
sion of the generating functional

G[J ] =
∫
D[Φ]e−S[Φ]+(J,Φ)∫

D[Φ]e−S[Φ]
, (6.13)

where we have introduced the notation

(J, Φ) =
∫
α

JαΦα . (6.14)

The generating functional G[J ] depends on the supersources J whose components
Jα are of the same type as the corresponding field componentsΦα , i.e., Jα is bosonic
for bosonic field components, and is a Grassmann variable if the corresponding
field component Φα is fermionic. This assures that all terms JαΦα in the sum (6.14)
commute with all other fields of the theory. Differentiating G[Φ] first with respect to
Jα1 , and then with respect to Jα2 , and so on until we reach Jαn , and setting after the
differentiation the sources equal to zero, we see that the disconnected Green func-
tions defined in Eq. (6.12) can be represented as derivatives of the corresponding
generating functional,

G(n)
α1...αn

= δnG[J ]

δ Jαn . . . δJα1

∣∣∣∣
J=0

. (6.15)

This relation is equivalent with the following functional Taylor expansion of the
generating functional (6.13),

2 Note that the ordering of the labels in the functional average 〈Φαn . . . Φα1 〉 is opposite to the
ordering of the labels of G(n)

α1 ...αn
. This convention has the advantage that the ordering of the

sources Jα1 . . . Jαn in the functional Taylor expansion (6.16) agrees with the ordering of the labels
of G(n)

α1 ...αn
.
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G[J ] =
∞∑

n=0

1

n!

∫
α1

. . .

∫
αn

G(n)
α1...αn

Jα1 . . . Jαn . (6.16)

It turns out that disconnected Green functions are not very convenient to work
with, because in general their perturbative expansion contains subdiagrams corre-
sponding to Green functions of lower order. For example, the perturbative calcula-
tion of G(4)

α1α2α3α4
= 〈Φα4Φα3Φα2Φα1〉 using the Wick theorem contains also discon-

nected contributions of the form

G(2)
α3α4

G(2)
α1α2

= 〈Φα4Φα3〉〈Φα2Φα1〉 = . (6.17)

Because these contributions can be expressed in terms of the exact two-field Green
function,

G(2)
α1α2

= 〈Φα2Φα1〉 = , (6.18)

they do not exclusively contain information about correlations involving four fields.
Note that in quantum systems the function G(2)

α1α2
corresponds to the single-particle

propagator and is represented graphically by an arrow pointing to the first index;
below we shall use a similar convention for all superfield correlation functions.

6.1.2 Connected Green Functions

By definition, the diagrammatic expansion of connected Green functions does not
contain diagrams which can be decomposed into two or more disconnected pieces.
Keeping in mind our discussion of the linked cluster theorem in Sect. 4.1.2, it should
not be surprising that the generating functional Gc[J ] of the connected Green func-
tions is simply related to the logarithm of the corresponding generating functional
G[J ] of the disconnected Green functions. For reasons which will become obvious
later on (see Eq. (6.39)) we normalize Gc[J ] as follows

Gc[J ] = ln
(

Z
Z0
G[J ]

)
= ln

(∫
D[Φ]e−S[Φ]+(J,Φ)∫
D[Φ]e−S0[Φ]

)
. (6.19)

Note that the functional integral in the denominator involves only the Gaussian part
S0[Φ] of the action. The connected Green functions G(n)

c,α1...αn
with n externals legs

are then defined similar to Eq. (6.15) in terms of functional derivatives of Gc[J ],

G(n)
c,α1...αn

= δnGc[J ]

δ Jαn . . . δ Jα1

∣∣∣∣
J=0

. (6.20)
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The corresponding functional Taylor expansion analogous to Eq. (6.16) is

Gc[J ] =
∞∑

n=0

1

n!

∫
α1

. . .

∫
αn

G(n)
c,α1...αn

Jα1 . . . Jαn . (6.21)

Graphically we represent the connected Green functions G(n)
c,α1...αn

by oriented ver-
tices (to take into account the ordering for fermions) with n external legs as shown
in Fig. 6.1. From Eqs. (6.19) and (6.20) one easily obtains the relations between the
connected and disconnected Green functions for n = 0, 1, 2,

G(0)
c = ln (Z/Z0) , (6.22a)

G(1)
c,α1

= G(1)
α1

= 〈Φα1〉 , (6.22b)

G(2)
c,α1α2

= G(2)
α1α2

− G(1)
α1

G(1)
α2

= 〈Φα2Φα1〉 − 〈Φα2〉〈Φα1〉 . (6.22c)

Fig. 6.1 Graphical representation of the connected Green function G(n)
c,α1 ...αn

with n external legs
defined via Eq. (6.20) or (6.21). Because for fermions the order of the external legs matters, we
represent G(n)

c,α1 ...αn
by an oriented circle where the arrow points to the leg associated with the first

label and the subsequent labels follow in the order defined by the arrow

In the language of probability theory (see e.g., Van Kampen 1981), the disconnected
Green functions G(n)

α1...αn
are the moments of the probability distribution defined

by Z−1e−S[Φ], while the connected Green functions G(n)
c,α1...αn

are the cumulants.
Because the zeroth-order expansion coefficient G(0)

c in the Taylor expansion of Gc[J ]
is given by the logarithm of the partition function, we know from the linked cluster
theorem for vacuum diagrams discussed in Sect. 4.1.2 that diagrammatically only
connected vacuum diagrams contribute to G(0)

c . To also prove that the higher-order
coefficients G(n)

c,α1...αn
with n ≥ 1 (corresponding to diagrams of the type shown in

Fig. 6.1 with n external legs) do not contain any disconnected parts, we proceed as
in the proof of the linked cluster theorem in Sect. 4.1.2 and use the replica trick,

Gc[J ] = ln

( Z
Z0

G[J ]

)
= lim

n→0

d

dn

( Z
Z0

G[J ]

)n

. (6.23)

Representing
(

Z
Z0
G[J ]

)n
as a functional over n-fold replicated fields Φr , r =

1, . . . , n as in Eq. (4.27), we see that only those diagrams survive in the limit n → 0
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whose contribution is proportional to n. But these are precisely the connected dia-
grams, which completes our proof.

It is instructive to calculate the generating functional Gc[J ] within the Gaussian
approximation, which we denote by G0c[J ]. In this case we ignore the interaction
part of our action and obtain with the notation (6.3),

G0[J ] = eG0c[J ] =
∫
D[Φ]e

1
2 (Φ,G−1

0 Φ)+(J,Φ)∫
D[Φ]e

1
2 (Φ,G−1

0 Φ)
. (6.24)

In the numerator we shift the integration variable Φ = Φ ′ − GT
0 J , so that the

argument of the exponential becomes

1

2

(
Φ,G−1

0 Φ
) + (J, Φ)

= 1

2

(
Φ ′ − GT

0 J,G−1
0

(
Φ ′ − GT

0 J
) )+ (

J, Φ ′ − GT
0 J

)
= 1

2

(
Φ ′,G−1

0 Φ ′) − (
J,GT

0 J
) + 1

2

(
GT

0 J,G−1
0 GT

0 J
)

+ (J, Φ ′) − 1

2

(
GT

0 J,G−1
0 Φ ′) − 1

2

(
Φ ′,G−1

0 GT
0 J

)
︸ ︷︷ ︸

cancel

= 1

2

(
Φ ′,G−1

0 Φ ′) − 1

2

(
J,GT

0 J
)
. (6.25)

The indicated cancellation follows from the identities

(
GT

0 J,G−1
0 Φ ′) = (

J,G0G−1
0 Φ ′) = (J, Φ ′) , (6.26a)(

Φ ′,G−1
0 GT

0 J
) = (Φ ′,ZJ ) = (J, Φ ′) , (6.26b)

where in the second equation we have used the symmetry (6.4) of the superfield
matrix G0. After the shift Φ = Φ ′ − GT

0 J in the numerator of Eq. (6.24), the
Gaussian integral of the field variables cancels and we obtain for the generating
functional of the connected Green functions in Gaussian approximation,

G0c[J ] = −1

2

(
J,GT

0 J
) = −1

2

∫
α

∫
α′

[G0]α′α Jα Jα′ . (6.27)

We conclude that in Gaussian approximation

[G0]αα′ = −δ
2G0c[J ]

δ Jαδ Jα′
= −〈ΦαΦα′ 〉 = −G(2)

0c,α′α = −G(2)
0,α′α . (6.28)
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Fig. 6.2 Graphical representation of the relation (6.32) between the exact propagator G and the
second functional derivative of Gc[J ]. The matrix element [G]α1α2 is either represented by a thick
arrow pointing from α2 to α1, or by an oriented circle enclosing the symbol G. We use the con-
vention that the arrow defining the orientation of the circle points to the first index of [G]α1α2

For later convenience let us introduce the matrix differential operator δ
δ J ⊗ δ

δ J in
superfield space with matrix elements

[
δ

δ J
⊗ δ

δ J

]
αα′

= δ

δ Jα

δ

δ Jα′
. (6.29)

With this notation Eq. (6.28) can be written as an identity between matrices in
superfield space,

G0 = − δ

δ J
⊗ δ

δ J
G0c[J ] . (6.30)

By analogy with the relation (6.28) we identify the second derivative of the exact
generating functional Gc[J ] at vanishing external sources with the exact superfield
Green function G,

[G]αα′ = −δ
2Gc[J ]

δ Jαδ Jα′

∣∣∣∣
J=0

= −G(2)
c,α′α , (6.31)

or in matrix notation

G = −
[
δ

δ J
⊗ δ

δ J
Gc[J ]

]
J=0

. (6.32)

This relation is shown graphically in Fig. 6.2. In the case of boson–fermion mix-
tures we assume that the matrix elements [G]αα′ are only nonzero if both α and α′

refer either to fermionic or bosonic fields. Then the commuting or anticommuting
property of the functional derivatives in Eq. (6.32) implies that the exact G satisfies
the same symmetry relation (6.4) as G0,

GT = ZG = GZ . (6.33)

It is convenient to parameterize interaction corrections to G0 in terms of a superfield
self-energy Σ, which we define via the matrix Dyson equation

G−1 = G−1
0 − Σ . (6.34)
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Note that here the sign convention for the self-energy is opposite to the sign conven-
tion for the corresponding self-energy Σk introduced in Eq. (4.35) for the classical
ϕ4-theory. The negative sign in Eq. (6.34) is customary in quantum many-particle
physics and has the advantage that all terms in the expansion of G in powers of Σ

are positive,

G = G0 + G0ΣG0 + G0ΣG0ΣG0 + . . . . (6.35)

A graphical representation of Eqs. (6.34) and (6.35) is shown in Fig. 6.3.

Fig. 6.3 Graphical representation of the Dyson equation (6.34) and its expansion (6.35). Thick
arrows pointing from α2 to α1 represent the exact propagator [G]α1α2 , while thin arrows represent
the corresponding propagator [G0]α1α2 in Gaussian approximation. The irreducible self-energy
[Σ]α1α2 is represented by a shaded oriented circle with the arrow pointing to the first index α1

To conclude this section, let us derive a representation of the functional Z
Z0
G[J ] =

eGc[J ] defined in Eq. (6.19) where the functional integration is formally replaced by
a functional differentiation with respect to the sources J . Using the “source trick”

(Φα)ne(J,Φ) =
( δ

δ Jα

)n
e(J,Φ) , (6.36)

we may write

e−S1[Φ] + (J,Φ) = e−S1[ δ
δ J ]e(J,Φ) . (6.37)

The term e−S1[ δ
δ J ] is now independent of the integration variables Φα and may be

pulled out of the functional integral in Eq. (6.19),

eGc[J ] = e−S1[ δ
δ J ] 1

Z0

∫
D[Φ]e−S0[Φ] + (J,Φ)

︸ ︷︷ ︸
eG0c [J ]= e

− 1
2 (J,GT

0 J)

, (6.38)

where we have used Eq. (6.24). We thus arrive at the identity

eGc[J ] = Z
Z0

G[J ] =
∫
D[Φ]e−S[Φ]+(J,Φ)∫
D[Φ]e−S0[Φ]

= e−S1[ δ
δ J ]e− 1

2 (J,GT
0 J) . (6.39)

From this expression it is obvious why it is convenient to normalize the functional
integral defining eGc[J ] with the Gaussian partition function Z0.
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6.1.3 Amputated Connected Green Functions

In Chap. 7 we shall derive formally exact flow equations for generating functionals
of Green functions with initial conditions corresponding to the limit G0 → 0. From
the representation (6.39) of Gc[J ] it is clear that Gc → 0 in this limit, which is
not a sensible starting point for approximations. The exact FRG equation for Gc is
therefore not very useful, so that we should consider other types of Green functions.
One possibility is to use so-called amputated connected Green functions, which are
generated by the functional Gac[Φ̄] defined by

eGac[Φ̄] = 1

Z0

∫
D[Φ]e−S0[Φ]−S1[Φ+Φ̄] , (6.40)

where Φ̄ is an auxiliary field of the same type as Φ which is not integrated over.
The amputated connected Green functions G(n)

ac,α1...αn
with n external legs are then

defined via

G(n)
ac,α1...αn

= δnGac[Φ̄]

δΦ̄αn . . . δΦ̄α1

∣∣∣∣
Φ̄=0

= , (6.41)

or equivalently via the functional Taylor expansion,

Gac[Φ̄] =
∞∑

n=0

1

n!

∫
α1

. . .

∫
αn

G(n)
ac,α1...αn

Φ̄α1 . . . Φ̄αn . (6.42)

To understand why the functions G(n)
ac,α1...αn

are called amputated, let us derive the
relation between the generating functionals Gac[Φ̄] and Gc[J ]. Therefore, we shift
the integration variables Φ in the definition (6.40) via the substitution Φ ′ = Φ+ Φ̄,
so that

eGac[Φ̄] = 1

Z0

∫
D[Φ ′]e−S0[Φ ′−Φ̄]−S1[Φ ′] . (6.43)

The Gaussian action with shifted argument can be written as

S0[Φ ′ − Φ̄] = −1

2

(
Φ ′ − Φ̄,G−1

0 (Φ ′ − Φ̄)
)

= −1

2

(
Φ ′,G−1

0 Φ ′) − 1

2

(
Φ̄,G−1

0 Φ̄
) + 1

2

(
Φ̄,G−1

0 Φ ′) + 1

2

(
Φ ′,G−1

0 Φ̄
)
. (6.44)

The last two terms in the second line are identical because
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(
Φ ′,G−1

0 Φ̄
) =

([
G−1

0

]T
Φ ′, Φ̄

)
= (

ZG−1
0 Φ ′, Φ̄

)
=

∫
α

ζα
[
G−1

0 Φ ′]
α
Φ̄α =

∫
α

Φ̄α
[
G−1

0 Φ ′]
α

= (
Φ̄,G−1

0 Φ ′) . (6.45)

Setting the auxiliary field to the value Φ̄ = −GT
0 J , the shifted Gaussian action

(6.44) can be written as

S0
[
Φ ′ + GT

0 J
] = −1

2

(
Φ ′,G−1

0 Φ ′) − 1

2

(
J,GT

0 J
) − (J, Φ ′) . (6.46)

The representation of Gac[Φ̄] given in Eq. (6.43) can therefore be transformed into

eGac[−GT
0 J] = e

1
2 (J,GT

0 J) 1

Z0

∫
D[Φ ′]e−S0[Φ ′]−S1[Φ ′]+(J,Φ ′)

︸ ︷︷ ︸
eGc [J ]

, (6.47)

which implies

Gc[J ] = Gac
[−GT

0 J
] − 1

2

(
J,GT

0 J
)
. (6.48)

Substituting again −GT
0 J = Φ̄ we obtain the following relation between the gener-

ating functionals of the amputated connected and the connected Green functions,

Gac[Φ̄] = Gc

[
− (

GT
0

)−1
Φ̄
]

+ 1

2

(
Φ̄,G−1

0 Φ̄
)
. (6.49)

The last term simply subtracts the Gaussian part of Gc, so that for a free field theory
(where S1 = 0) the generating functional of the amputated connected Green func-
tions vanishes identically. To understand why the functional derivatives of Gac[Φ̄]
in Eq. (6.49) can be identified with amputated connected Green functions, let us
consider the second functional derivatives G(2)

ac,αα′ , which we collect into a superfield
matrix

G(2)
ac =

(
δ

δΦ̄
⊗ δ

δΦ̄
Gac[Φ̄]

)T

Φ̄=0

. (6.50)

Using Eq. (6.49) and the fact that according to Eq. (6.32) the negative second
functional derivative of Gc[J ] at vanishing sources can be identified with the exact
superfield propagator G, it is easy to show that

G(2)
ac = G−1

0 − G−1
0 GG−1

0

= −[Σ + ΣG0Σ + ΣG0ΣG0Σ + . . .] , (6.51)
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where in the second line we have substituted the Dyson equation (6.34) in the form
G−1

0 G = 1+ΣG. The relation between the exact propagator G and G(2)
ac is therefore

G = G0 − G0G(2)
ac G0 . (6.52)

The relations (6.51) and (6.52) are shown graphically in Fig. 6.4. Obviously, the
external Gaussian propagator legs appearing in the diagrams of the perturbation
series of the connected Green function G are amputated in G(2)

ac , which explains the
name. For the higher-order amputated connected Green functions with more than

two external legs the term
(
GT

0

)−1
in the argument of Gc

[
− (

GT
0

)−1
Φ̄
]

in Eq. (6.49)

generates a similar amputation of the Gaussian propagators of all externals legs.

Fig. 6.4 The upper graph represents the relation (6.51) between the amputated connected Green
function with two external legs G(2)

ac and the irreducible self-energy Σ. The lower graph represents
the relation (6.52) between the connected Green function G and G(2)

ac

Next, let us derive a representation of Gac[Φ̄] in terms of a functional differential
operator which is analogous to the corresponding identity (6.39) for Gc[J ]. With the
help of the identity

e−S1[Φ+Φ̄] = e−S1[ δ
δ J ]e(J,Φ+Φ̄)

∣∣∣∣
J=0

, (6.53)

we obtain from the definition (6.40),

eGac[Φ̄] = e−S1[ δ
δ J ] 1

Z0

∫
D[Φ]e−S0[Φ]+(J,Φ+Φ̄)

︸ ︷︷ ︸
e− 1

2 (J,GT
0 J)+ (J,Φ̄)

∣∣∣∣
J=0

. (6.54)

Using the identity

e− 1
2 (J,GT

0 J)+ (J,Φ̄) = e− 1
2 (Z δ

δΦ̄
,GT

0 Z δ

δΦ̄ )e(J,Φ̄) = e− 1
2 ( δ

δΦ̄
,GT

0
δ

δΦ̄ )e(J,Φ̄) , (6.55)

we see that Eq. (6.54) can be written in the form
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eGac[Φ̄] = e− 1
2 ( δ

δΦ̄
,GT

0
δ

δΦ̄ ) e−S1[ δ
δ J ]e(J,Φ̄)

∣∣
J=0︸ ︷︷ ︸

e−S1[Φ̄]

. (6.56)

We thus conclude that the generating functional of amputated connected Green func-
tions can be written as

eGac[Φ̄] = 1

Z0

∫
D[Φ]e−S0[Φ]−S1[Φ+Φ̄] = e− 1

2 ( δ

δΦ̄
,GT

0
δ

δΦ̄ )e−S1[Φ̄] . (6.57)

In Sect. 7.2.3 we shall derive an exact FRG equation for a modified functional
Gac[Φ̄] where we “switch off” the free propagator, G0 → 0. From Eq. (6.57) it
is obvious that in this limit Gac[Φ̄] → −S1[Φ̄] which turns out to be a convenient
boundary condition for solving the FRG equations.

Finally, combining Eq. (6.57) with the relation (6.48) between Gac[Φ̄] and Gc[J ],
we obtain another representation of the generating functional of connected Green
functions in terms of a functional differential operator,

eGc[J ] = e− 1
2 (J,GT

0 J)
[
e− 1

2 ( δ

δΦ̄
,GT

0
δ

δΦ̄ )e−S1[Φ̄]
]
Φ̄=−GT

0 J
. (6.58)

Note that the differential operator in the exponent on the right-hand side of Eq. (6.58)
involves only two functional derivatives, in contrast to the differential operator
S1

[
δ
δ J

]
in Eq. (6.39).

6.2 One-Line Irreducible Vertices

From Figs. 6.3 and 6.4 it is obvious that the perturbative expansion of the con-
nected Green functions G(n)

c,α1...αn
as well as their amputated connected counterparts

G(n)
ac,α1...αn

contain subclasses of diagrams which can be separated into two parts by
cutting a single line associated with a Gaussian propagator. As already explained
in Sect. 4.1.3, these diagrams are called one-line reducible. It turns out that the
isolated propagators connecting different blocks of reducible diagrams can lead to
technical complications in FRG flow equations, in particular if one works with a
sharp cutoff in momentum space (Morris 1994). These complications can be avoided
if one decomposes the connected Green functions G(n)

c,α1...αn
into irreducible vertices

Γ (n)
α1...αn

and formulates FRG flow equations directly for these vertices. By defini-
tion, the diagrams contributing to Γ (n)

α1...αn
cannot be separated into two parts by

cutting a single propagator line. For n = 2 this is the graphical definition of the
irreducible self-energy, as discussed in Sect. 4.1.3. In order to properly define the
higher-order irreducible vertices, it is useful to construct the associated generating
functional Γ [Φ̄]. In the following we first define this functional and explain its
physical meaning. We then derive in Sect. 6.2.2 the so-called tree expansion giving
the decomposition of connected Green functions into irreducible vertices.
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6.2.1 Generating Functional of the Irreducible Vertices

We would like to construct a functional Γ [Φ̄] of some superfield variables Φ̄α such
that the irreducible vertices with n external legs can be expressed as usual via deriva-
tives of this functional,

Γ (n)
α1...αn

= δnΓ [Φ̄]

δΦ̄αn . . . δΦ̄α1

∣∣∣∣
Φ̄=0

= . (6.59)

We shall show shortly that the variables Φ̄α can be identified physically with the
expectation values 〈Φα〉 of our superfields Φα in the presence of external sources J .
We represent Γ (n)

α1...αn
graphically by an oriented shaded circle with n short external

legs, where the arrow attached to the circle points again to the first index and defines
the order of the external legs as in the graph for G(n)

c,α1...αn
shown in Fig. 6.1. The

functional Taylor expansion equivalent to Eq. (6.59) is

Γ [Φ̄] =
∞∑

n=0

1

n!

∫
α1

. . .

∫
αn

Γ (n)
α1...αn

Φ̄α1 . . . Φ̄αn . (6.60)

It turns out that the generating functional Γ [Φ] of the irreducible vertices can be
constructed from the generating functional Gc[J ] of the connected Green function
via a (functional) Legendre transformation as follows,

Γ [Φ̄] = L[Φ̄] − S0[Φ̄] = (J [Φ̄], Φ̄) − Gc[J [Φ̄]] + 1

2

(
Φ̄,G−1

0 Φ̄
)
. (6.61)

The functional Legendre transform L[Φ̄] of Gc[J ] is defined by

L[Φ̄] = (J, Φ̄) − Gc[J [Φ̄]] , (6.62)

where it is understood that on the right-hand side one should substitute J = J [Φ̄]
as a functional of the variables Φ̄ by inverting the relations

Φ̄α ≡ 〈Φα〉 = δGc[J ]

δ Jα
. (6.63)

The proof that the functional Γ [Φ̄] defined in Eq. (6.61) indeed generates the irre-
ducible vertices is based on the explicit construction of the relations between the
connected Green functions G(n)

c,α1...αn
and the vertices Γ (n)

α1...αn
defined via the func-

tional Taylor expansion of Γ [Φ̄ ] in Eq. (6.60). In order to derive these relations, let
us take the functional derivative of the Legendre transform L[Φ̄] of the generating
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functional Gc[J ] in Eq. (6.62) with respect to the field components Φ̄α . Taking into
account that the fermionic components of the sources Jα anticommute with Φ̄α , the
chain rule gives

δL[Φ̄]

δΦ̄α
= ζα Jα +

( δ J

δΦ̄α
, Φ̄

)
−

∫
α′

δ Jα′

δΦ̄α

δGc[J ]

δ Jα′︸ ︷︷ ︸
Φ̄α′

= ζα Jα . (6.64)

With the help of the statistics matrix Z defined in Eq. (6.5) the relation (6.64) can
be written in compact form as an identity between supervectors,

J = Z
δL[Φ̄]

δΦ̄
, (6.65)

whereas the complementary relation (6.63) can be written as

Φ̄ = δGc[J ]

δ J
. (6.66)

Using the relation (6.64), the chain rule in superfield space becomes

δ

δΦ̄α
=

∫
α′

δ Jα′

δΦ̄α

δ

δ Jα′
=

∫
α′

δ2L[Φ̄]

δΦ̄αδΦ̄α′
ζα′

δ

δ Jα′
, (6.67)

or in compact vector notation,

δ

δΦ̄
=

[
δ

δΦ̄
⊗ δ

δΦ̄
L[Φ̄]

]
Z
δ

δ J
, (6.68)

where the matrix differential operator δ

δΦ̄
⊗ δ

δΦ̄
is defined as in Eq. (6.29), i.e.,

[
δ

δΦ̄
⊗ δ

δΦ̄

]
αα′

= δ

δΦ̄α

δ

δΦ̄α′
. (6.69)

Applying the differential operator (6.68) to both sides of Eq. (6.66), we obtain the
following matrix identity in superfield space,

1 =
(
δ

δΦ̄
⊗ δ

δΦ̄
L[Φ̄]

)
Z
(
δ

δ J
⊗ δ

δ J
Gc[J ]

)
. (6.70)

The relation (6.70) is the superfield generalization of the well-known fact in mag-
netic systems that the second derivative of the Helmholtz free energy F(h) with
respect to the external magnetic field is the inverse of the second derivative of the
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Gibbs potential G(M) with respect to the magnetization M . In fact, all of the above
definitions have magnetic analogues.3

To prove that the functional Γ [Φ̄] defined in Eq. (6.61) indeed generates the
irreducible vertices, let us write Eq. (6.70) in the form

δ

δ J
⊗ δ

δ J
Gc[J ] = Z

(
δ

δΦ̄
⊗ δ

δΦ̄
L[Φ̄]

)−1

. (6.71)

This relation expresses the second derivative of the generating functional Gc[J ] of
the connected Green functions in terms of the second derivative of its Legendre
transform L[Φ̄] = Γ [Φ̄]+ S0[Φ̄]. Our strategy is to expand both sides of Eq. (6.71)
in powers of the fields to obtain the tree expansion of the connected Green functions
G(n)

c,α1...αn
in terms of the irreducible vertices Γ (m)

α1...αm
with m ≤ n. Before embarking

on the general case, consider the special case n = 2, which can be obtained directly
from Eq. (6.70) by setting the sources and the conjugate fields equal to zero after
the differentiation. Using the fact that according to Eq. (6.32) the second functional
derivative of Gc[J ] for vanishing sources is simply the negative Green function −G,
we obtain from Eq. (6.70),

[
δ

δΦ̄
⊗ δ

δΦ̄
L[Φ̄]

]
Φ̄=0

= −ZG−1 = −[GT ]−1 . (6.72)

Keeping in mind that Γ [Φ̄] = L[Φ̄] + 1
2

(
Φ̄,G−1

0 Φ̄
)

we obtain from Eq. (6.72),

[
δ

δΦ̄
⊗ δ

δΦ̄
Γ [Φ̄]

]
Φ̄=0

= −[GT ]−1 + [
GT

0

]−1 = ΣT , (6.73)

where we have used the Dyson equation (6.34). Taking matrix elements, and using
the fact that by definition

[
δ

δΦ̄
⊗ δ

δΦ̄
Γ [Φ̄]

]
α1α2,Φ̄=0

= Γ (2)
α2α1

, (6.74)

we conclude that the irreducible vertex with two external legs can be identified with
the irreducible self-energy in superfield space,

3 For a magnet with Hamiltonian Ĥ = Ĥ0 − hM̂ the role of a constant source J is played by the
uniform magnetic field h, while the expectation value of the magnetization operator 〈M̂〉 = M
corresponds to 〈Φ〉 = Φ̄. The Helmholtz free energy F(h) = −T ln Tr[e−β Ĥ0+βhM̂ ] corresponds
to −Gc[J ], while the Gibbs potential G(M) = h(M)M + F(h(M)) corresponds to L[Φ̄] defined
in Eq. (6.62). The magnetic version of the relations (6.65) and (6.66) is h = ∂G/∂M and M =
−∂F/∂h, while Eq. (6.70) corresponds to 1 = (∂h/∂M)(∂M/∂h) = (∂2G/∂M2) (−∂2 F/∂h2).



6.2 One-Line Irreducible Vertices 163

Γ (2)
α1α2

= [Σ]α1α2 = . (6.75)

6.2.2 Tree Expansion

The irreducible vertices with more than two external legs characterize the inter-
actions between the particles in the many-body system. For example, the vertex
Γ (4)
α1α2α3α4

with four external legs describes the true interaction between two particles
in the many-body system and is called the effective interaction. As a special case of
our general graphical notation for the irreducible vertices defined in Eq. (6.59) we
represent the effective interaction by the following symbol,

Γ (4)
α1α2α3α4

= . (6.76)

To obtain the general expansion of the connected Green functions in terms of irre-
ducible vertices, it is convenient to rewrite the right-hand side of Eq. (6.71) in terms
of the superfield matrix

U[Φ̄] =
(
δ

δΦ̄
⊗ δ

δΦ̄
Γ [Φ̄]

)T

−
(
δ

δΦ̄
⊗ δ

δΦ̄
Γ [Φ̄]

)T
∣∣∣∣∣
Φ̄=0

=
(
δ

δΦ̄
⊗ δ

δΦ̄
Γ [Φ̄]

)T

− Σ , (6.77)

which is a functional of the fields Φ̄ and satisfies U[Φ̄ = 0] = 0. Substituting the
functional Taylor expansion (6.60) of Γ [Φ̄] into Eq. (6.77) we obtain explicitly

U[Φ̄] =
∞∑

n=1

1

n!

∫
α1

. . .

∫
αn

Γ(n+2)
α1...αn

Φ̄α1 . . . Φ̄αn , (6.78)

where we have introduced the supermatrices Γ(n+2)
α1...αn

with matrix elements

[
Γ(n+2)
α1...αn

]
αα′ = Γ

(n+2)
αα′α1...αn

. (6.79)

The second functional derivative of L[Φ̄] whose inverse appears on the right-hand
side of Eq. (6.71) can then be written as

δ

δΦ̄
⊗ δ

δΦ̄
L[Φ̄] = δ

δΦ̄
⊗ δ

δΦ̄
Γ [Φ̄] − [

GT
0

]−1

= UT [Φ̄] + ΣT − [
GT

0

]−1 = UT [Φ̄] − [GT ]−1 . (6.80)
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Next we expand the inverse of this expression in powers of the matrix UT [Φ̄],

(
δ

δΦ̄
⊗ δ

δΦ̄
L[Φ̄]

)−1

=
(

UT − [GT ]−1
)−1

=
(

(UT GT − 1)[GT ]−1
)−1

= −GT
[
1 − UT GT

]−1
= −GT

∞∑
ν=0

[
UT GT

]ν
. (6.81)

Substituting this into Eq. (6.71) and using the fact that ZGT = G we obtain

δ

δ J
⊗ δ

δ J
Gc[J ] = Z

(
δ

δΦ̄
⊗ δ

δΦ̄
L[Φ̄]

)−1

= −G
∞∑
ν=0

[
UT [Φ̄]GT

]ν
. (6.82)

Setting on the left-hand side the sources equal to zero after the differentiation we
recover from the ν = 0 term on the right-hand side the identity (6.32) shown graph-
ically in Fig. 6.2. To obtain the desired tree expansion of connected Green functions
in terms of irreducible vertices, we now expand both sides of Eq. (6.82) in powers of
the sources. For the left-hand side we obtain from the functional Taylor expansion
of Gc[J ] in Eq. (6.21),

δ

δ J
⊗ δ

δ J
Gc[J ] =

∞∑
n=0

1

n!

∫
α1

. . .

∫
αn

(
G(n+2)

c,α1...αn

)T
Jα1 . . . Jαn , (6.83)

where the supermatrix G(n+2)
c,α1...αn

is defined as in Eq. (6.79),

[
G(n+2)

c,α1...αn

]
αα′ = G(n+2)

c,αα′α1...αn
. (6.84)

Note that with this notation the relation (6.31) simply reads GT = −G(2)
c . On the

right-hand side of Eq. (6.82) we substitute the expansion (6.78) of the functional
U[Φ̄] in powers of the fields Φ̄, so that Eq. (6.82) reduces to the identity

∞∑
n=0

1

n!

∫
α1

. . .

∫
αn

(
G(n+2)

c,α1...αn

)T
Jα1 . . . Jαn

= − G
∞∑
ν=0

[ ∞∑
n=1

1

n!

∫
α1

. . .

∫
αn

(
Γ(n+2)
α1...αn

)T
GT Φ̄α1 . . . Φ̄αn

]ν

= −
∞∑
ν=0

∞∑
n1=1

. . .

∞∑
nν=1

1

n1! . . . nν!

∫
α1

1

. . .

∫
α1

n1

. . .

∫
αν1

. . .

∫
ανnν

× ZGT

(
Γ

(n1+2)
α1

1 ...α
1
n1

)T

GT . . .
(
Γ

(nν+2)
αν1 ...α

ν
nν

)T
GT Φ̄α1

1
. . . Φ̄α1

n1
. . . Φ̄αν1 . . . Φ̄ανnν .

(6.85)
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We can now explicitly take the transposed of this matrix equation, resulting in

∞∑
n=0

1

n!

∫
α1

. . .

∫
αn

G(n+2)
c,α1...αn

Jα1 . . . Jαn

= −
∞∑
ν=0

∞∑
n1=1

. . .

∞∑
nν=1

1

n1! . . . nν!

∫
α1

1

. . .

∫
α1

n1

. . .

∫
αν1

. . .

∫
ανnν

× GΓ
(nν+2)
αν1 ...α

ν
n1

G . . .Γ
(n1+2)
α1

1 ...α
1
n1

GZ Φ̄α1
1
. . . Φ̄α1

n1
. . . Φ̄αν1 . . . Φ̄ανnν . (6.86)

It should be noted that the order of the supermatrices Γ(n+2)
α1...αn

has now been reversed.
Our strategy is to compare terms involving the same powers of the sources Jα on
both sides of Eq. (6.86). Therefore, we still have to express the expectation values
Φ̄α = 〈Φα〉 on the right-hand side in terms of the sources using the relation (6.63),

Φ̄α = δGc[J ]

δ Jα
=

∞∑
n=0

1

n!

∫
α1

. . .

∫
αn

G(n+1)
c,αα1...αn

Jα1 . . . Jαn . (6.87)

Substituting this into Eq. (6.86) we can compare the vertices involving the same
powers of the sources on both sides. However, we should be careful to identify terms
with the same symmetry under permutation of the field labels. For example, if all
fields are bosonic, then all Green functions G(n)

c,α1...αn
and vertices Γ (n)

α1...αn
can be cho-

sen to be symmetric under an arbitrary permutation of the labels, while for fermion
fields we require that all Green functions and vertices are antisymmetric. For the-
ories involving both bosons and fermions, we require symmetry with respect to
permutation of bosonic labels, and antisymmetry for fermionic labels. Before com-
paring the coefficients of a given power of the sources on both sides of Eq. (6.86),
we should therefore properly symmetrize the right-hand side. Therefore it is con-
venient to introduce a symmetrization operator S in the following way: Consider
any function Fα1...αn of n = n1 + n2 + . . .+ nν superlabels α1, . . . , αn . We assume
that the labels can be subdivided into ν ≥ 1 disjunct subsets s1 = {α1, . . . , αn1},
s2 = {αn1+1, . . . , αn2}, . . . , sν = {αn−nν+1, . . . , αn} such that the function Fα1...αn is
already symmetrized with respect to permutations of the ni labels in the index set
si , i = 1, . . . , ν. The action of the operator S on the function Fα1...αn is then

Sα1...αn1 ;...;αn−nν+1...αn {Fα1...αn } = 1

n1! · · · nν!

∑
P

sgnζ (P) FαP(1)...αP(n) , (6.88)

where P denotes a permutation of (1, . . . , n) and sgnζ is the sign created by per-
muting field variables according to the permutation P , i.e.,

Φ̄α1 · . . . · Φ̄αn = sgnζ (P) Φ̄αP(1) · . . . · Φ̄αP(n) . (6.89)
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The effect of S is rather simple: it acts on an expression already symmetric in the
index groups separated by semi-colons to generate an expression symmetric also
with respect to the exchange of indices between different groups. Totally the right-
hand side of Eq. (6.88) thus contains n!/(n1! · . . . · nν!) terms.4 With this notation,
we can write down an analytic expression for the relation between connected Green
functions and irreducible vertices resulting from the identification of the coefficients
of the same symmetrized products of the sources on both sides of Eq. (6.86),

G(n+2)
c,α1...αn

= −
∞∑
ν=0

∞∑
n1=1

. . .
∞∑

nν=1

1
n1!...nν !

∫
β1

1
. . .

∫
β1

n1
· · · ∫

βν1
. . .

∫
βνnν

×( ∞∑
m1

1=1

. . .
∞∑

m1
n1

=1

) · · · ( ∞∑
mν

1=1
. . .

∞∑
mν

nν=1

)
δn,

∑ν
i=1

∑ni
j=1 mi

j

×GΓ
(nν+2)
βν1 ...β

ν
n1

G . . .Γ
(n1+2)
β1

1 ...β
1
n1

GZ

×Sα1...αm1
1

;...;αn−mνnν +1...αn

{
G(m1

1+1)
c,β1

1α1...αm1
1

. . .G(mν
nν+1)

c,βνnν αn−mνnν +1...αn

}
.

(6.90)

On the right-hand side of this rather cumbersome expression, only connected cor-
relation functions with degree smaller than on the left-hand side appear. We can
therefore recursively express all connected correlation functions via their one-line
irreducible counterparts. This is the tree expansion. For fixed n, only a finite number
of terms contribute on the right-hand side of Eq. (6.90). The simplest case is n = 0,
where all summations and integrations can be omitted and Eq. (6.90) reduces to
G(2)

c = −GT . This relation has already been derived earlier in Eq. (6.32) and is
shown graphically in Fig. 6.2. For n = 1 only the single term with ν = 1, n1 = 1,
m1

1 = 1 contributes on the right-hand side of Eq. (6.90). Explicitly, the tree expan-
sion of the connected Green function with three external legs can be written as

G(3)
c,α1α2α3

=
∫
β1

∫
β2

∫
β3

[G]α1β1 [G]α2β2 [G]α3β3Γ
(3)
β1β2β3

, (6.91)

which is shown graphically in Fig. 6.5. The tree expansion of the connected Green
function with four external legs, corresponding to n = 2 in Eq. (6.90), is more
complicated. In this case the following three terms in the nested sum on the right-
hand side of Eq. (6.90) contribute,

term ν ni mi
j

1. 1 n1 = 1 m1
1 = 2

2. 1 n1 = 2 m1
1 = m1

2 = 1

3. 2 n1 = n2 = 1 m1
1 = m2

1 = 1 .

4 For example, the symmetrized form of a function Fα1α2 which is not symmetric with respect to
the exchange α1 ↔ α2 is Sα1;α2 {Fα1α2 } = Fα1α2 + sgnζ (P12)Fα2α1 , which corresponds to ν = n = 2
and n1 = n2 = 1 in Eq. (6.88). On the other hand, if the function Fα1α2 is already symmetrized,
then Sα1α2 {Fα1α2 } = Fα1α2 , corresponding to ν = 1 and n = n1 = 2.
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Fig. 6.5 Graphical representation of the tree expansion for the connected Green function with
three external legs given in Eq. (6.91). Connected Green functions are drawn as empty oriented
circles with the indicated number of external legs, as defined in Fig. 6.1. The irreducible vertices
are represented by shaded oriented circles, see Eq. (6.59)

The resulting tree expansion of the connected four-point function in terms of irre-
ducible vertices is explicitly,

G(4)
c,α1α2α3α4

= −
∫
β1

. . .

∫
β4

[G]α1β1 [G]α2β2 [G]α3β3 [G]α4β4Γ
(4)
β1β2β3β4

−
∫
β1

. . .

∫
β6

[G]α1β1 [G]α2β2 [G]α3β3 [G]α4β4Γ
(3)
β1β2β5

[G]β5β6Γ
(3)
β6β3β4

−
∫
β1

. . .

∫
β6

Sα1;α2

{
[G]α1β1 [G]α2β2 [G]α3β3 [G]α4β4Γ

(3)
β1β5β4

[G]β5β6Γ
(3)
β6β2β3

}
,

(6.92)

which is shown graphically in Fig. 6.6. From Figs. 6.5 and 6.6 it should now be
obvious why the expansion (6.90) is called tree expansion: The diagrams represent-
ing this expansion consist of vertices Γ (n) linked via full propagator lines without
loops. Diagrams of this type are called trees. The fact that the vertices Γ (n) are one-
line irreducible follows from the fact that by construction all one-line irreducible
diagrams appear as branches of the tree, so that the vertices where the branches end
must be one-line irreducible.

Finally, let us point out that in some textbooks (Negele and Orland 1988, Rammer
2007) the tree expansion is derived graphically by taking higher-order derivatives
of the fundamental relation (6.70) between the functionals Gc[J ] and L[Φ̄]. With
the help of our compact notation we have been able to derive an explicit analytic
expression for the tree expansion given by Eq. (6.90).

6.3 Symmetries

The vertices Γ (n)
α1...αn

defined above are rather abstract objects and depend in a com-
plicated manner on many superlabels. Those labels are in turn composed of multiple
variables: a space-time position X = (τ, x) or K = (iω, k) after Fourier transforma-
tion, as well as internal labels, e.g., for field type and spin. For practical calculations,
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Fig. 6.6 Graph of the tree expansion of the connected Green function G(4)
c,α1α2α3α4

with four exter-
nal legs given in Eq. (6.92). The symbol sgnζ (P34) denotes the parity under the exchange of the
labels α3 and α4, i.e., −1 for fermions and +1 for bosons or one fermion and one boson leg, see
Eqs. (6.88) and (6.89)
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it is often helpful to use symmetry arguments to simplify the functional form of these
dependencies.

6.3.1 General Properties

We define a symmetry transformation F as an invertible linear mapping between
the fields,

F : Φ �→ FΦ , [FΦ]α =
∫
β

FαβΦβ , (6.93)

that has the additional property of leaving the action and the functional integration
measure invariant, i.e.

S[FΦ] = S[Φ] , (6.94)

for all configurations of the field Φ, and D[FΦ] = D[Φ]. We exclude symmetry
breaking in this section, such that the interaction does not contain counterterms that
explicitly break a symmetry. The invariance property in Eq. (6.94) is then valid
separately for the bare interaction S0 and the interaction part S1. For a given system,
the set of all symmetry transformations forms the symmetry group G. We can distin-
guish between space-time and internal symmetries, if F only acts on space-time or
internal labels, respectively. Furthermore, if G (or a subgroup) only contains a finite
or countably infinite number of elements, the symmetry is discrete. For a continuous
symmetry on the other hand, we can choose a parametrization F(l1, . . . , lm) = F(l)
with continuous parameters li . In all relevant cases, this dependence is differentiable
and we can choose F(l) → 1 for l → 0.

For a given symmetry transformation F , we can change integration variables
according to Eq. (6.93) in the functional integral for the generating functional to
show that G[J ] is also invariant under the transformation,

G[J ] = 1

Z

∫
D[Φ]e−S[Φ]+(J,Φ) = 1

Z

∫
D[FΦ]e−S[FΦ]+(J,FΦ)

= 1

Z

∫
D[Φ]e−S[Φ]+(FT J,Φ) = G[FT J ] . (6.95)

Consequently,

Gc[FT J ] = ln

( Z
Z0

G[FT J ]

)
= ln

( Z
Z0

G[J ]

)
= Gc[J ] . (6.96)
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Similarly,

eGac[Φ̄] = 1

Z0

∫
D[Φ]e−S0[Φ]−S1[Φ+Φ̄] = 1

Z0

∫
D[FΦ]e−S0[FΦ]−S1[FΦ+Φ̄]

= 1

Z0

∫
D[Φ]e−S0[Φ]−S1[Φ+F−1Φ̄] = eGac[F−1Φ̄] , (6.97)

i.e., Gac[Φ̄] = Gac[F−1Φ̄]. Finally, in order to show a similar relation for the gen-
erating functional Γ of the one-line irreducible vertices, consider the symmetry
transformation of the relation Φ̄[J ] = δGc[J ]

δ J which is given by

Φ̄[FT J ] = δGc[ J̃ ]

δ J̃

∣∣∣∣
J̃=FT J

= F−1 δ

δ J

(
Gc[FT J ]

) = F−1 δGc[J ]

δ J

= F−1Φ̄[J ] . (6.98)

For the inverse relation, this implies J [F−1Φ̄] = FT J [Φ̄]. Using this in the defini-
tion of the effective action, we obtain

L[F−1Φ̄] = (J [F−1Φ̄],F−1Φ̄) − Gc[J [F−1Φ̄]] = (FT J [Φ̄],F−1Φ̄) − Gc[FT J [Φ̄]]

= (J [Φ̄], Φ̄) − Gc[J [Φ̄]] = L[Φ̄] . (6.99)

Finally, this implies,

Γ [F−1Φ̄] = L[F−1Φ̄] − S0[F−1Φ̄] = L[Φ̄] − S0[Φ̄] = Γ [Φ̄] . (6.100)

Summarizing, the generating functionals are invariant under all transformations
F of the symmetry group, i.e.,

G[FT J ] = G[J ] ,
Gc[FT J ] = Gc[J ] ,
Gac[FΦ̄] = Gac[Φ̄] ,
Γ [FΦ̄] = Γ [Φ̄] .

(6.101)

Expanding both sides of these relations for the generating functionals in powers
of the fields, we obtain relations for the vertices, e.g., for the one-line irreducible
vertices,

Γ (n)
α1...αn

=
∫
β1

. . .

∫
βn

Γ
(n)
β1...βn

Fβ1α1 . . . Fβnαn . (6.102)

For continuous symmetries, we can take derivatives of the symmetry relations in
Eq. (6.101) with respect to the parameters li to obtain, e.g.,
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(
T(i)Φ̄,

δΓ

δΦ̄

)
= 0 , (6.103)

where the generators are defined by

T(i) = −i
∂F
∂li

∣∣∣∣
l=0

. (6.104)

6.3.2 Nonrelativistic Particles

To illustrate the most important symmetries, we will restrict ourselves in this sub-
section to a system of nonrelativistic particles with an action of the form given in
Eq. (6.6). We now explicitly discuss some important symmetry transformations of
this system:

(a) U (1)-gauge transformation: A global gauge transformation is given by

F(α) : ψσ (X ) �→ eiαψσ (X ) , ψ̄σ (X ) �→ e−iαψ̄σ (X ) , (6.105)

where the phase factor α is independent of the space-time point X = (τ, x).
In quantum field theory, this transformation is promoted to a local symmetry
with position-dependent gauge fields by including gauge fields into the theory.
Nonrelativistic systems are in general not invariant under local gauge transfor-
mations. However, in Sects. 11.4 and 12.4 we will see how local gauge transfor-
mations can nevertheless be used to derive important Ward identities between
vertex functions having different numbers of external legs.
A global gauge transformation is a continuous symmetry that depends on the
single parameter α. The corresponding generator T(α) acts only on the field type
indices,

T(α)

(
ψKσ

ψ̄Kσ

)
=

(
ψKσ

−ψ̄Kσ

)
. (6.106)

Written out explicitly, Eq. (6.103) then becomes

∫
Kσ

(
ψKσ

δ

δψKσ
− ψ̄Kσ

δ

δψ̄Kσ

)
Γ = 0 . (6.107)

The functional differential operator in this equation counts the difference between
the number of ψ and ψ̄ fields when applied to a monomial. Eq. (6.107) then
implies that an expansion of Γ in terms of monomials of the fields can only
contain terms with an equal number ofψ and ψ̄ fields. In other words, the global
gauge symmetry implies particle number conservation.
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(b) Translation: Spatial and time translations transform the fields according to

F(A) : ψσ (X ) �→ ψσ (X + A), ψ̄σ (X ) �→ ψ̄σ (X + A) , (6.108)

where A = (aτ , a). For a homogeneous system, A can take on all possible
values, and the symmetry is continuous. For lattice models on the other hand a
has to be a translational vector of the Bravais lattice, and the spatial part of the
symmetry is discrete. Written in terms of the Fourier transformed fields,

ψKσ =
∫

X
e−i K ·Xψσ (X ) , ψ̄Kσ =

∫
X

ei K ·X ψ̄σ (X ) , (6.109)

with
∫

X = ∫
dτ

∫
d D x and K · X = k · x − ωτ , the transformation reads

F(A) : ψKσ �→ ei K ·AψKσ , ψ̄Kσ �→ e−i K ·Aψ̄Kσ . (6.110)

For a homogeneous system, four generators T(i) with i = τ, x, y, z generate
continuous translations in the four space-time directions. Combining the result-
ing four Eqs. (6.103) in a vector notation, they read explicitly,

∫
Kσ

K

(
ψKσ

δ

δψKσ
− ψ̄Kσ

δ

δψ̄Kσ

)
Γ = 0 . (6.111)

Here, the differential operator yields the sum of all energy-momenta in a mono-
mial, where momenta of incoming and outgoing fields are counted with different
signs. Thus, in Γ only monomials can appear that conserve energy–momentum.
Hence, translational invariance in time and space implies energy and momentum
conservation for the vertices.
For a lattice system, Eqs. (6.102) and (6.110) yield

0 = [1 − e−i(K ′
1+···+K ′

n−Kn−···−K1)·A]

×Γ (2n)

(ψ̄,K ′
1,σ

′
1)...(ψ̄,K ′

n ,σ
′
n)(ψ,Kn ,σn )...(ψ,K1,σ1)

, (6.112)

which is valid for all A = (τa, a), where a is a translational vector of the Bravais
lattice. Thus, the vertex functions are only nonvanishing for momenta such that
the total momentum appearing in the exponential is part of the reciprocal lattice.
Combining particle number and energy–momentum conservation, we can thus
expand the generating functional Γ as
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Γ [ψ̄, ψ] =
∞∑

n=0

1

(n!)2

∫
K ′

1σ
′
1

. . .

∫
K ′

nσ
′
n

∫
Knσn

. . .

∫
K1σ1

×δ(G)
K ′

1+···+K ′
n ,K1+···+Kn

×Γ (2n) (K ′
1σ

′
1, . . . , K ′

nσ
′
n; Knσn, . . . , K1σ1

)
×ψ̄K ′

1σ
′
1
. . . ψ̄K ′

nσ
′
n
ψKnσn . . . ψK1σ1 . (6.113)

Here, the vertices are related to the ones defined in the abstract notation in
Eq. (6.60) by

Γ
(2n)

(ψ̄,K ′
1,σ

′
1)...(ψ̄,K ′

n ,σ
′
n)(ψ,Kn ,σn )...(ψ,K1,σ1)

= δ
(G)
K ′

1+···+K ′
n ,K1+···+Kn

×Γ (2n)
(
K ′

1σ
′
1, . . . , K ′

nσ
′
n; Knσn, . . . , K1σ1

)
. (6.114)

For a lattice system the δ(G)-function appearing in Eq. (6.113) is defined as,

δ
(G)
K ,K ′ =

∑
G

δK−K ′,G , (6.115)

where the sum extends over all vectors G of the reciprocal lattice. For a homo-
geneous system, the superscript G should be dropped.
If we omit the spin indices, the Taylor expansion (6.113) is also valid for spinless
fermions.

(c) Spin rotation: Nonrelativistic systems without spin-orbit coupling and in the
absence of an external magnetic field are invariant under rotations in spin space,
corresponding to the symmetry transformation

F(U) :

(
ψK↑
ψK↓

)
�→ U

(
ψK↑
ψK↓

)
,

(
ψ̄K↑
ψ̄K↓

)
�→ U∗

(
ψ̄K↑
ψ̄K↓

)
, (6.116)

where U ∈ SU (2) is generated by the Pauli matrices, U(l) = eiσ ·l , with σ =
[σ x , σ y, σ z]. Our general symmetry relation (6.103) involving the generators of
continuous symmetries then leads to the equation

∫
Kσσ ′

(
[σ ]σσ ′ψKσ ′

δ

δψKσ
− [σ ∗]σσ ′ψ̄Kσ ′

δ

δψ̄Kσ

)
Γ = 0 . (6.117)

Combining the z component of this equation with Eq. (6.107), we obtain

∫
K

(
ψKσ

δ

δψKσ
− ψ̄Kσ

δ

δψ̄Kσ

)
Γ = 0 . (6.118)
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The functional differential operator in this equation counts the difference of the
number of incoming and outgoing fields of a fixed spin projection σ . Thus only
monomials that conserve the particle number individually for a each spin projec-
tion can occur in an expansion of Γ . In other words, the spins of incoming and
outgoing fields have to be pairwise identical, and the expansion in Eq. (6.113)
can be written as

Γ [ψ̄, ψ] =
∞∑

n=0

1

n!

∑
σ1,...,σn

∫
K ′

1

. . .

∫
K ′

n

∫
Kn

. . .

∫
K1

×δK ′
1+···+K ′

n ,K1+···+Kn

×U (2n)
σ1...σn

(
K ′

1, . . . , K ′
n; Kn, . . . , K1

)
×ψ̄K ′

1σ1 . . . ψ̄K ′
nσnψKnσn . . . ψK1σ1 , (6.119)

where the vertices are symmetric under simultaneous permutations of the in and
outgoing indices,

U (2n)
σ1...σn

(
K ′

1, . . . , K ′
n; Kn, . . . , K1

)
= U (2n)

σP(1)...σP(n)

(
K ′

P(1), . . . , K ′
P(n); K P(n), . . . , K P(1)

)
. (6.120)

Here, P is a permutation of the integers 1, . . . , n. By symmetrizing the expan-
sion in Eq. (6.119) with respect to separate permutations of incoming and out-
going indices, we obtain the relation

Γ (2n) (K ′
1σ

′
1, . . . , K ′

nσ
′
n; Knσn, . . . , K1σ1

)
=

∑
P

sgnζ (P) U (2n)
σ ′

1...σ
′
n

(
K ′

1, . . . , K ′
n; K P(n), . . . , K P(1)

)
×δσ ′

1,σP(1) . . . δσ ′
n ,σP(n) , (6.121)

which connects the vertices defined via the expansions in Eqs. (6.119) and
(6.113). The form in Eq. (6.119) should for example be used in the presence
of a magnetic field when only a spin rotation symmetry around the axis of the
magnetic field is present. For full spin rotation invariance, we can further sim-
plify the form of the vertices by using the x-component of Eq. (6.117), which
explicitly reads

∫
Kσ

(
ψK σ̄

δ

δψKσ
− ψ̄K σ̄

δ

δψ̄Kσ

)
Γ = 0 , (6.122)

where σ̄ = −σ . Applying this to the expansion in Eq. (6.119) yields
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0 =
∞∑

n=1

1

n!

∑
σ1,...,σn

∫
K ′

1

. . .

∫
K ′

n

∫
Kn

. . .

∫
K1

δK ′
1+···+K ′

n ,K1+···+Kn

×U (2n)
σ1...σn

(
K ′

1, . . . , K ′
n; Kn, . . . , K1

)
×

n∑
r=1

[
ψ̄K ′

1σ1 . . . ψ̄K ′
nσnψKnσn . . . ψKr σ̄r . . . ψK1σ1

−ψ̄K ′
1σ1 . . . ψ̄K ′

r σ̄r . . . ψ̄K ′
nσnψKnσn . . . ψK1σ1

]
=

∞∑
n=1

1

(n − 1)!

∑
σ1,...,σn

∫
K ′

1

. . .

∫
K ′

n

∫
Kn

. . .

∫
K1

δK ′
1+···+K ′

n ,K1+···+Kn

×
[
U (2n)
σ1σ2...σn

(
K ′

1, . . . , K ′
n; Kn, . . . , K1

)
− U (2n)

σ̄1σ2...σn

(
K ′

1, . . . , K ′
n; Kn, . . . , K1

) ]
×ψ̄K ′

1σ1 . . . ψ̄K ′
nσnψKnσn . . . ψK1σ̄1 . (6.123)

The expression in the rectangular brackets vanishes for all momenta. Thus U (2n)

is independent of the first spin index σ1 and by the permutation symmetry in
Eq. (6.120) also independent of all other spin indices,

U (2n)
σ1...σn

(
K ′

1, . . . , K ′
n; Kn, . . . , K1

) = U (2n)
(
K ′

1, . . . , K ′
n; Kn, . . . , K1

)
. (6.124)

The generating functional for a system which is invariant under SU(2)-
transformations can therefore be written as

Γ [ψ̄, ψ] =
∞∑

n=0

1

n!

∑
σ1,...,σn

∫
K ′

1

. . .

∫
K ′

n

∫
Kn

. . .

∫
K1

×δK ′
1+···+K ′

n ,K1+···+Kn

×U (2n)
(
K ′

1, . . . , K ′
n; Kn, . . . , K1

)
×ψ̄K ′

1σ1 . . . ψ̄K ′
nσnψKnσn . . . ψK1σ1 . (6.125)

(d) Time and space inversion: In this case the action in real space is invariant under

F :

(
ψσ (X )
ψ̄σ (X )

)
�→

(
ζ ψ̄σ (−X )
ψσ (−X )

)
=

(
0 ζ
1 0

)(
ψσ (−X )
ψ̄σ (−X )

)
. (6.126)

In Fourier space this becomes

F :

(
ψKσ

ψ̄Kσ

)
�→

(
ζ ψ̄Kσ

ψKσ

)
=

(
0 ζ
1 0

)(
ψKσ

ψ̄Kσ

)
. (6.127)

For this transformation, the relation (6.102) implies
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U (2n)
(
K ′

1, . . . , K ′
n; Kn, . . . , K1

) = U (2n)
(
K1, . . . , Kn; K ′

n, . . . , K ′
1

)
. (6.128)

(e) Rotation and spatial inversion: For this spatial symmetry, the transformation
reads

F(R) : ψσ (τ, x) �→ ψσ (τ,Rx) , ψ̄σ (τ, x) �→ ψ̄σ (τ,Rx) , (6.129)

where R ∈ O(D) is either a D-dimensional rotation matrix, or the inversion
matrix −1, or a combination thereof. For an isotropic system any such matrix R
leads to a symmetry, whereas on the lattice the allowed matrices form a discrete
group called the point group of the lattice. In Fourier space one obtains,

F(R) : ψσ (iω, k) �→ ψσ (iω,RT k) , ψ̄σ (iω, k) �→ ψ̄σ (iω,RT k) ,
(6.130)

where RT = R−1 ∈ O(D). For this transformation, the relation (6.102) yields

U (2n)
(
ω′

1k′
1, . . . , ω

′
n k′

n;ωn kn, . . . , ω1k1
)

= U (2n)
(
ω′

1Rk′
1, . . . , ω

′
nRk′

n;ωnRkn, . . . , ω1Rk1
)
. (6.131)

6.3.3 Dyson–Schwinger and Skeleton Equations

Techniques similar to the ones presented above to derive symmetry relations can
be used to obtain Dyson–Schwinger equations. More precisely, performing a shift
Φ �→ Φ + Δ in the integration for the generating functional G and expanding to
first order in Δ, we obtain

(
ζα Jα − δS

δΦα

[
δ

δ J

])
G[J ] = 0 . (6.132)

By taking further functional derivatives of this relation, one can obtain so-called
skeleton equations which provide relations between vertices with a different number
of external legs.

As an example, let us consider a system of nonrelativistic spinless particles with
the bare action

S[ψ̄, ψ] = −
∫

K
ψ̄K [iω − ξk]ψK + 1

4

∫
K1

∫
K2

∫
K3

v(K1, K2; K3, K1 + K2 − K3)

× ψ̄K1ψ̄K2ψK3ψK1+K2−K3 . (6.133)

Note that the coupling v can be chosen to be antisymmetric for fermions and sym-
metric for bosons under independent exchange of incoming or outgoing momenta.
For α = (ψ, K ), Eq. (6.132) then reads explicitly



6.3 Symmetries 177

0 =
(
ζ j̄K + [iω − ξk]

δ

δ jK
− 1

2

∫
K1

∫
K2

v(K1, K2; K , K1 + K2 − K )

× δ3

δ jK1δ jK2δj̄K1+K2−K

)
G[j̄ , j] . (6.134)

We have used here the following notation for the source term

(J, Φ) = (j̄ , ψ) + (ψ̄, j) , (6.135)

to identify JψK = j̄K and Jψ̄K = ζ jK . Taking one further derivative with respect
to j̄K ′ before setting the external fields to zero and then converting the resulting
equation to one for connected Green functions, we obtain

Σ(K ) = iω − ξk − G−1(K ) = −ζ
∫

K ′
v(K , K ′; K ′, K )G(K ′)

−ζ
2

∫
K1

∫
K2

v(K1, K2; K , K1 + K2 − K )

×G(4)
c (K1 + K2 − K , K ; K2, K1)G−1(K ) , (6.136)

where the connected four-point function G(4)
c (K ′

1, K ′
2; K2, K1) is defined via the

functional Taylor expansion of the corresponding generating functional Gc[j̄ , j]
analogously to Eq. (6.113),

Gc[j̄ , j] =
∑

n

1

(n!)2

∫
K ′

1

. . .

∫
K ′

n

∫
Kn

. . .

∫
K1

δ
(G)
K ′

1+···+K ′
n ,Kn+···+K1

× G(2n)
c

(
K ′

1, . . . , K ′
n; Kn, . . . , K1

)
j̄K ′

1
. . . j̄K ′

n
jKn . . . jK1 . (6.137)

The tree expansion in Eq. (6.92) expressing the connected four-point function in
terms of the one-particle irreducible vertex Γ (4) then explicitly reads,

G(4)
c

(
K ′

1, K ′
2; K2, K1

) = −G
(
K ′

1

)
G

(
K ′

2

)
G(K2)G(K1)Γ (4)

(
K ′

1, K ′
2; K2, K1

)
.

(6.138)
Combining this with Eq. (6.136), we obtain

Σ(K ) = iω − ξk − G(K )−1 = −ζ
∫

K ′
v(K , K ′; K ′, K )G(K ′)

+ζ
2

∫
K1

∫
K2

v(K1, K2; K , K1 + K2 − K )G(K1)G(K2)

× G(K1 + K2 − K )Γ (4)(K1 + K2 − K , K ; K2, K1) . (6.139)

A graphical representation of this relation is shown in Fig. 6.7. Another applica-
tion of the general Dyson–Schwinger equation (6.132) for a theory involving both
bosonic and fermionic fields will be discussed in Chap. 11.3.
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4

Fig. 6.7 Skeleton equation for the irreducible self-energy of a system of spinless particles. The
exact self-energy is given by the sum of the one-loop Hartree-Fock type of diagram with bare vertex
(small black square) and a two-loop diagram involving the exact effective interaction (blue square).
All solid arrows represent exact propagators. Arrows pointing into a vertex represent incoming
fields ψ , while arrows pointing out of a vertex represent outgoing fields ψ̄ . The precise relation
between these graphical elements and the elements of the superfield diagrams in Sect. 6.1 will be
established in Fig. 10.1

Exercises

6.1 Generating Functions of a Zero-Dimensional Field Theory

To illustrate the machinery of the functional RG in a simple context, consider the
generating functions of the zero-dimensional field theory defined by the following
integrals over a single real variable ϕ,

egc( j) = Z

Z0
g( j) = 1

Z0

∞∫
−∞

dϕ e−s(ϕ)+ jϕ ,

egac(ϕ̄) = 1

Z0

∞∫
−∞

dϕ e−s0(ϕ)−s1(ϕ+ϕ̄) .

Here, s(ϕ) = s0(ϕ) + s1(ϕ), with the bare part s0(ϕ) = − ϕ2

2G0
, G0 < 0, and the inter-

action s1(ϕ) = u
4!ϕ

4, u > 0. This toy model describes a classical one-dimensional
anharmonic oscillator.

The full partition function as well as the partition function in the harmonic
approximation are given by Z = ∫ +∞

−∞ dϕ e−s(ϕ) and Z0 = ∫ +∞
−∞ dϕ e−s0(ϕ) =√

2π (−G0), respectively. Furthermore, we define the Legendre transform l(ϕ) =
j(ϕ)ϕ − gc( j(ϕ)), where j(ϕ) is obtained by inverting the relation ϕ = ∂gc

∂ j , as well
as the generating function of one-line irreducible vertices γ (ϕ) = l(ϕ) − s0(ϕ). The
vertices g(n), g(n)

c , g(n)
ac , l (n), and γ (n) are then the coefficients of the Taylor expansion

of the associated generating function, e.g., gc( j) = ∑∞
n=0

1
n! g(n)

c j n .

(a) Show the relations gac(ϕ̄) = gc
(−G−1

0 ϕ̄
) + ϕ̄2

2G0
and ∂2l

∂ϕ2
∂2gc

∂ j2 = 1.

(b) By definition, the vertices g(n) = In/I0 as well as the partition function Z = I0

can be obtained from the integrals
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In =
∫ +∞

−∞
dϕ ϕne−s(ϕ)

which can easily be evaluated numerically. In fact, all integrals In can be
expressed in terms of the confluent hypergeometric function U (a, b, z). Derive
the following explicit relations that yield all other vertices up to n = 4, once
g(0), g(2) and g(4) are known,

g(0)
c = ln[Z/Z0] , g(2)

c = g(2) , g(4)
c = g(4) − 3[g(2)]2 ,

g(0)
ac = g(0)

c , g(2)
ac = G−2

0

[
g(2)

c + G0
]
, g(4)

ac = G−4
0 g(4)

c ,

l (0) = −g(0)
c , l (2) = [

g(2)
c

]−1
, l (4) = − [

g(2)
c

]−4
g(4)

c ,

γ (0) = l (0) , γ (2) = l (2) + G−1
0 , γ (4) = l (4) .

(c) Calculate the lowest irreducible vertices perturbatively up to order u2,

γ (0) = u

8
G2

0 − u2

12
G4

0 , γ (2) = −u

2
G0 + 5u2

12
G3

0 , γ (4) = u − 3u2

2
G2

0 .
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Chapter 7
Exact FRG Flow Equations

We are now ready to derive FRG flow equations describing the mode-elimination
step of the Wilsonian RG exactly. Let us therefore introduce a cutoff Λ into
the matrix-propagator G0 appearing in the Gaussian part S0[Φ] of our initial
action given in Eq. (6.3). The cutoff scale Λ defines the boundary between long-
wavelength (or low energy) fluctuations and short-wavelength (or high energy)
fluctuations. The cutoff should be introduced in such a way that fluctuations with
wave vectors (or energies) below the cutoff scale are suppressed, while the short-
wavelength, high-energy fluctuations are not modified. There is considerable free-
dom in the implementation of the cutoff procedure, as will be discussed in Sect. 7.1.
Ultimately, we shall take the limit Λ → 0 where we recover our original theory.
The idea is to use the functional representations of the various types of generating
functionals introduced in Chap. 6 to obtain exact functional differential equations
describing the change of the generating functionals due to an infinitesimal change
of the cutoff Λ. We shall derive these surprisingly compact equations in Sect. 7.2
and then show in Sect. 7.3 how the exact FRG flow equation for the generating
functional Γ [Φ̄] of the irreducible vertices Γ (n)

α1...αn
can be reduced to an infinite

hierarchy of coupled integro-differential equations for these vertices. In the last
section, Sect. 7.4, of this chapter we show how to include the possibility of spon-
taneous symmetry breaking (which is accompanied by a finite vacuum expectation
value of some bosonic field) into the exact hierarchy of FRG flow equations for the
irreducible vertices (Schütz and Kopietz 2006).

7.1 Cutoffs

Consider the propagator G0 in the Gaussian part S0[Φ] of our general superfield
theory describing interacting fermions, bosons, or mixtures thereof, see Eqs. (6.1),
(6.2), and (6.3). Let us deform our theory by introducing a cutoffΛ into the Gaussian
propagator via the replacement

G0 → G0,Λ , (7.1)

Kopietz, P. et al.: Exact FRG Flow Equations. Lect. Notes Phys. 798, 181–208 (2010)
DOI 10.1007/978-3-642-05094-7 7 c© Springer-Verlag Berlin Heidelberg 2010
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where we require that

G0,Λ ∼
{

G0 for Λ → 0 ,
0 for Λ → ∞ .

(7.2)

This condition implies that when we remove the cutoff Λ, we recover our original
physical theory. On the other hand, if the cutoff is larger than all other intrinsic scales
of the system, then the Gaussian propagator is switched off such that the particles
cannot move. If we introduce the cutoff in momentum space, then we can think of
Λ as the boundary between short-wavelength fluctuations (|k| � Λ) which have
already been eliminated in the Wilsonian RG and the long-wavelength fluctuations
(|k| � Λ) which still have to be integrated out. This follows from the observation
that Λ acts as an infrared cutoff for the momentum integrations in the Feynman
diagrams generated by the theory with propagator G0,Λ, which prohibits the prop-
agation of fluctuations with momenta below the cutoff Λ. There are several ways
of implementing the condition (7.2). One possibility is to multiply the Gaussian
propagator G0 by a suitable supermatrix ΘΛ,

G0,Λ = ΘΛG0 , (7.3)

with boundary condition

ΘΛ ∼
{

1 for Λ → 0 ,
0 for Λ → ∞ .

(7.4)

Alternatively, we may introduce an additive cutoff function RΛ (regulator) into the
inverse Gaussian propagator, defining

G−1
0,Λ = G−1

0 − RΛ , (7.5)

or equivalently

G0,Λ = [1 − G0RΛ]−1G0 . (7.6)

In order to satisfy the condition (7.2), we require

|RΛ| ∼
{

0 for Λ → 0 ,
∞ for Λ → ∞ .

(7.7)

Of course, we can always express the multiplicative cutoff ΘΛ in terms of the addi-
tive regulator RΛ by comparing Eqs. (7.3) and (7.6), which yields

ΘΛ = [1 − G0RΛ]−1 , (7.8)
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or
RΛ = −G−1

0

(
Θ−1
Λ − 1

)
. (7.9)

But in practice one chooses either ΘΛ or RΛ to be some simple function inde-
pendent of G0. It is therefore more natural to think of Eqs. (7.3) and (7.6) as two
different classes of cutoff procedures.

There is no unique way of choosing the cutoff functions ΘΛ or RΛ. In fact,
depending on the system under consideration and the required accuracy, differ-
ent cutoff procedures can be advantageous. Moreover, the cutoff Λ need not be a
momentum scale. For example, for quantum systems one can also impose the cutoff
in frequency space, or even identify some other parameter with the cutoff, such as
the temperature (Honerkamp and Salmhofer 2001), the chemical potential (Sauli
and Kopietz 2006), or the strength of the interaction (Honerkamp et al. 2004). How-
ever, with the latter three cutoff schemes the intuitive interpretation of the cutoff as
the separation between eliminated and not-eliminated degrees of freedom is lost. In
fact, cutoff schemes using the temperature, the chemical potential or the interaction
strength do not give rise to the standard RG transformations in the sense defined by
Fisher (1983), who demanded that an essential part of any RG transformation should
be some mode-elimination procedure reducing the number of degrees of freedom.

In order to further specify the matrices ΘΛ and RΛ, let us assume that our theory
involves several types of fields (including several flavors of fermions and bosons)
which we label by a field-type index i . Our superlabel α is then decomposed as
α = (i, Ki ), where Ki denotes the set of quantum numbers which are necessary to
specify the configuration of the field of type i . In general, the matrix G0 will not be
diagonal in field space,1 but can be diagonalized by means of a suitable rotation in
field space. Let us denote the eigenvalues of G0 by G(i)

0 (Ki ), which describe the free
propagation of a particle associated with the field of type i .

A multiplicative cutoff of the form (7.3) can now be introduced by multiplying
the eigenvalues G(i)

0 (Ki ) of G0 by suitable cutoff functions Θ (i)
Λ (Ki ), so that the

eigenvalues of G0,Λ become

G(i)
0,Λ(Ki ) = Θ

(i)
Λ (Ki )G

(i)
0 (Ki ) . (7.10)

Note that in general we may introduce different cutoff functions for each field type.
This freedom can be used to construct special cutoff schemes for Bose–Fermi theo-
ries which do not violate the symmetries of the system (Schütz et al. 2005). To give
an example, suppose that for some classical field component i whose configuration
is completely specified by its momentum, we impose a smooth multiplicative cutoff

1 For example, for a theory involving only spin S = 1/2 fermions the index i enumerates the four
different field types ψ↑, ψ̄↑, ψ↓, ψ̄↓. The associated matrix G0 defined in Eqs. (6.9) and (6.10)
is not diagonal, but can be diagonalized by means of a proper rotation in field space. The corre-
sponding eigenvalues are simply the free fermionic propagators ±G0(K ) in Eq. (6.7). All labels
Ki should then be identified with the collective label K = (iω, k) denoting fermionic Matsubara
frequencies and wave vectors.
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Fig. 7.1 Smoothed unit step function in momentum space with step width of order ε. By mul-
tiplying the diagonal elements of the superfield matrix propagator in the momentum basis by
this function one obtains a cutoff-dependent Gaussian propagator G0,Λ satisfying the boundary
conditions (7.2)

in momentum space; in this case we should identify Ki → k and substitute for the
cutoff function

Θ
(i)
Λ (Ki ) → Θε(|k| −Λ) , (7.11)

where Θε(|k| −Λ) is a smoothed step function, where the step is smeared out over
an interval of order ε, as shown in Fig. 7.1. By construction, the functionΘε(|k|−Λ)
is unity for Λ = 0 and vanishes for Λ → ∞, so that the boundary condition (7.4)
is satisfied. We recover the sharp cutoff in momentum space used in Sect. 4.2 by
letting the step width shrink to zero,

lim
ε→0

Θε(|k| −Λ) = Θ(|k| −Λ) . (7.12)

It turns out that the exact FRG flow equations involve the derivative of the cutoff
function with respect to the cutoff,

δε(|k| −Λ) = − ∂

∂Λ
Θε(|k| −Λ) , (7.13)

which reduces to the Dirac delta function δ(|k| − Λ) for ε → 0. In this limit the
integration over |k| in the loop integrals can be trivially carried out, which makes a
sharp multiplicative cutoff for many applications very convenient. However, a sharp
momentum cutoff also has some disadvantages. First of all, the nonanalyticity of
such a cutoff can give rise to an unphysical nonanalytic momentum dependence of
various correlation functions. Although one can in principle take care of this prob-
lem by introducing corresponding flowing coupling constants (Hasselmann et al.
2004), in the symmetry-broken phase it is better to avoid a sharp multiplicative
cutoff (Sinner et al. 2008). Another technical complication of the sharp cutoff is
that in perturbative expansions it can give rise to ambiguous expressions of the type

I (x) = δ(x) f (Θ(x)) , (7.14)
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where f (Θ(x)) is some function of the step function Θ(x). Since at the point x = 0
where the δ-function is nonzero the functionΘ(x) is ambiguous, it is at the first sight
not clear how to interpret the right-hand side of Eq. (7.14). If the function f (Θ(x))
is known, it is easy to see that the correct interpretation of Eq. (7.14) is given by2

I (x) = δ(x) f (Θ(x)) = δ(x)
∫ 1

0
dt f (t) . (7.15)

In the context of the FRG this prescription has first been derived by Morris (1994)
and we shall therefore refer to Eq. (7.15) as the Morris-Lemma. To prove this, let us
regularize δ(x) and Θ(x) by their smoothed counter-parts δε(x) and Θε(x) defined
above and write Eq. (7.14) as

I (x) = lim
ε→0

∂

∂x

Θε (x)∫
0

dt f (t) . (7.16)

Exchanging the limiting procedure with the differentiation and assuming that the
function f (t) is continuous, we obtain

I (x) = ∂

∂x
lim
ε→0

Θε (x)∫
0

dt f (t) = ∂

∂x
Θ(x)

∫ 1

0
dt f (t) . (7.17)

With ∂
∂xΘ(x) = δ(x) this reduces to Eq. (7.15). Unfortunately, in the context of the

FRG the function f (Θ(x)) depends on the cutoff Λ and is in general not known a
priori, but has to be determined while solving the RG flow equations. For this reason
we cannot directly apply (7.15) unless we have further information about the func-
tion f (Θ(x)). This limits the practical usefulness of a sharp cutoff in momentum
space (or frequency space for quantum systems).

Finally, let us discuss possible implementations of additive cutoffs RΛ, which are
introduced into the inverse Gaussian propagator as in Eq. (7.5). Denoting again the
eigenvalues of the supermatrix G0 by G(i)

0 (Ki ), Eq. (7.5) is equivalent with the fol-
lowing relation between the corresponding cutoff-dependent eigenvalues G(i)

0,Λ(Ki )

and the eigenvalues R(i)
Λ (Ki ) of the cutoff matrix RΛ,

[
G(i)

0,Λ(Ki )
]−1

=
[
G(i)

0 (Ki )
]−1

− R(i)
Λ (Ki ) . (7.18)

For simplicity, let us assume again that the configuration of a certain field compo-
nent i is specified by its momentum. A possible choice of the regulator R(i)

Λ (Ki ) is
in this case

2 A special case of Eq. (7.15) is δ(x)Θ(x) = 1
2 δ(x), which amounts to setting Θ(0) = 1/2. Note,

however, that δ(x)Θ2(x) = 1
3 δ(x).
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R(i)
Λ (Ki ) → CΛΛ

z R(|k|z/Λz) , (7.19)

where z is some positive exponent and CΛ > 0 is some dimensionful constant (in
general cutoff-dependent) which has a finite limit forΛ → ∞. In order to satisfy the
boundary condition (7.7), the dimensionless function R(x) should be chosen such
that

R(x) ∼
{

0 for x → ∞ (corresponding to Λ → 0)
1 for x → 0 (corresponding to Λ → ∞)

. (7.20)

The proper choice of the exponent z, the prefactor CΛ and the cutoff function R(x)
depend on the problem under consideration. Usually it is advantageous to choose
the exponent z such that the cutoff in Eq. (7.19) matches the scaling of the energy
dispersion in the corresponding inverse free propagator.3 Several regulators R(x)
have been proposed in the literature (Berges et al. 2002). A particularly convenient
choice is the cutoff function proposed by Litim (2001),

R(x) = (1 − x)Θ(1 − x) , (7.21)

which has the advantage that often the resulting loop integrations are still elemen-
tary. Another possibility is the analytic function (Berges et al. 2002)

R(x) = x

ex − 1
, (7.22)

which is convenient for numerical solutions of the FRG flow equations.

7.2 Exact FRG Flow Equations for Generating Functionals

With the replacement G0 → G0,Λ the Gaussian part of our general action S =
S0 + S1 given in Eqs. (6.2) and (6.3) becomes cutoff-dependent,

S0,Λ[Φ] = −1

2

∫
α

∫
α′
Φα

[
G−1

0,Λ

]
αα′Φα′ ≡ −1

2

(
Φ,G−1

0,ΛΦ
)
, (7.23)

while the interaction part S1[Φ] remains independent of Λ. The cutoff dependence
of all generating functionals defined in Chap. 6 therefore arises exclusively from
the cutoff dependence of G0,Λ. This enables us to derive formally exact functional
differential equations for the generating functionals by simply differentiating their

3 For example, for classical ϕ4-theory the dispersion of the inverse Gaussian propagator is c0k2,
so that it is natural to choose z = 2. Moreover, it is convenient to choose in this case CΛ = c0/Zl ,
where Zl is the flowing wave function renormalization factor as a function of l = ln(Λ0/Λ), see
Eqs. (4.57) and (4.62) and the discussion in Sect. 4.2.3.



7.2 Exact FRG Flow Equations for Generating Functionals 187

representations as functional integrals or functional differential operators given in
Chap. 6 with respect to Λ. This section is devoted to the derivation of these equa-
tions, which form the basis of the FRG.

7.2.1 Disconnected Green Functions

Let us start from the functional integral representation (6.13) of the generating
functional of the disconnected Green functions, which for a given cutoff-dependent
Gaussian action S0,Λ[Φ] can be written as

GΛ[J ] = 1

ZΛ

∫
D[Φ]e−S0,Λ[Φ]−S1[Φ]+(J,Φ) , (7.24)

where

ZΛ =
∫

D[Φ]e−S0,Λ[Φ]−S1[Φ] (7.25)

reduces for Λ → 0 to the exact partition function of the system. Differentiating
Eq. (7.24) with respect to Λ we obtain

∂ΛGΛ = −
(
∂ΛZΛ
ZΛ

)
GΛ + 1

ZΛ

∫
D[Φ]

1

2

(
Φ,

[
∂ΛG−1

0,Λ

]
Φ
)

e−S0,Λ[Φ]−S1[Φ]+(J,Φ) .

(7.26)
Using the “source trick” (6.36) we may replace the quadratic form in the integrand
by the functional differential operator

(
Φ,

[
∂ΛG−1

0,Λ

]
Φ
)

→
( δ
δ J
,
[
∂ΛG−1

0,Λ

] δ

δ J

)
≡

∫
α

∫
α′

[
∂ΛG−1

0,Λ

]
αα′

δ

δ Jα

δ

δ Jα′
.

(7.27)
The differentiation can then be pulled out of the integral and we obtain the exact
FRG flow equation for the generating functional of the disconnected Green func-
tions,

∂ΛGΛ[J ] =
[

1

2

( δ
δ J
,
[
∂ΛG−1

0,Λ

] δ

δ J

)
− ∂Λ lnZΛ

]
GΛ[J ] . (7.28)

With the help of the matrix differential operator δ
δ J ⊗ δ

δ J defined in Eq. (6.29), the
first term on the right-hand side in Eq. (7.28) can alternatively be written as

( δ
δ J
,
[
∂ΛG−1

0,Λ

] δ

δ J

)
GΛ = Tr

[[
∂ΛG−1

0,Λ

] ( δ

δ J
⊗ δ

δ J
GΛ

)T]
, (7.29)

where the trace is over all components of the superfield label α.
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7.2.2 Connected Green Functions

To obtain the FRG flow equation for the generating functional Gc[J ] of the con-
nected Green functions we simply substitute the relation (6.19) between G[J ] and
Gc[J ] into Eq. (7.28). With our normalization of the generating functionals this
relation is

GΛ[J ] = Z0,Λ

ZΛ
eGc,Λ[J ] . (7.30)

Here Z0,Λ is the cutoff-dependent partition function in Gaussian approximation,
which can be obtained by setting S1[Φ] = 0 in Eq. (7.25) and can be written as

Z0,Λ =
∫

D[Φ]e−S0,Λ[Φ] ∝ e− 1
2 Tr[Z ln(−G−1

0,Λ)] . (7.31)

With the substitution (7.30) the left-hand side of the flow equation (7.28) becomes

∂ΛGΛ[J ] = ∂Λ

(Z0,Λ

ZΛ
eGc,Λ[J ]

)
= Z0,Λ

ZΛ
eGc,Λ[J ]

[
∂ΛGc,Λ + ∂Λ ln

(Z0,Λ

ZΛ

)]
.

(7.32)

To calculate the second functional derivatives of the functional eGc,Λ[J ] arising from
the right-hand side of Eq. (7.28), one should keep in mind that the second derivatives
generate two terms,

( δ
δ J
,
[
∂ΛG−1

0,Λ

] δ

δ J

)
eGc,Λ =

( δ
δ J
,
[
∂ΛG−1

0,Λ

] δGc,Λ

δ J

)
eGc,Λ

= eGc,Λ

{(δGc,Λ

δ J
,
[
∂ΛG−1

0,Λ

] δGc,Λ

δ J

)
+ Tr

[[
∂ΛG−1

0,Λ

] ( δ

δ J
⊗ δ

δ J
Gc,Λ

)T]}
,

(7.33)

where in the second line we have used Eq. (7.29). Substituting Eqs. (7.32) and (7.33)
into Eq. (7.28), we obtain the following exact FRG flow equation for the generating
functional of the connected Green functions,

∂ΛGc,Λ[J ] = 1

2

(δGc,Λ

δ J
, [∂ΛG−1

0,Λ]
δGc,Λ

δ J

)

+ 1

2
Tr

[
[∂ΛG−1

0,Λ]

(
δ

δ J
⊗ δ

δ J
Gc,Λ

)T]
− ∂Λ lnZ0,Λ . (7.34)

If we expand both sides of this equation in powers of the sources J and compare the
coefficients, we obtain an infinite hierarchy of coupled FRG flow equations for the
cutoff-dependent connected Green functions G(n)

c,Λ,α1...αn
. Unfortunately, the condi-

tion (7.2) that the Gaussian propagator G0,Λ should vanish for Λ → ∞ implies the



7.2 Exact FRG Flow Equations for Generating Functionals 189

vanishing of all higher-order connected Green functions in this limit, because then
all connections between the different parts of any Feynman diagram are switched
off. The generating functional of connected Green functions therefore satisfies the
boundary condition

Gc,Λ[J ] → 0 , for Λ → ∞ . (7.35)

Formally, this result can also be deduced from the functional derivative representa-
tion (6.39) of the generating functional Gc,Λ[J ]. In practice this boundary condition
is not useful, because it contains no information about the system, so that all physical
properties of the system have to be generated in the process of integrating the FRG
flow equations. It is better to have a boundary condition where the correlation func-
tions for Λ → ∞ reduce to some simple solvable limit, such as the noninteracting
limit or the result of the mean-field approximation.

7.2.3 Amputated Connected Green Functions

It turns out that the generating functional Gac,Λ[Φ̄] of the amputated connected
Green functions introduced in Sect. 6.1.3 satisfies a more useful boundary condition
in the limit Λ → ∞ where the Gaussian propagator is switched off. To see this,
recall that according to Eq. (6.57) this generating functional can be written as

eGac,Λ[Φ̄] ≡ 1

Z0,Λ

∫
D[Φ]e

1
2 (Φ,G−1

0,ΛΦ)−S1[Φ+Φ̄]

= e− 1
2 ( δ

δΦ̄
,GT

0,Λ
δ

δΦ̄ )e−S1[Φ̄] . (7.36)

From the second line it is clear that for Λ → ∞ where G0,Λ → 0 the generat-
ing functional of the amputated connected Green functions is simply given by the
negative of the interaction part of our initial action,

Gac,Λ[Φ̄] → −S1[Φ̄] , for Λ → ∞ . (7.37)

This is a more convenient starting point for approximations than the initial con-
dition (7.35) for Gc,Λ[J ]. To obtain an exact FRG flow equation for Gac,Λ[Φ̄], we
simply differentiate the representation of eGac,Λ[Φ̄] in the second line of Eq. (7.36)
with respect to the cutoff Λ,

eGac,Λ∂ΛGac,Λ = ∂ΛeGac,Λ = −1

2

( δ

δΦ̄
,
[
∂ΛGT

0Λ

] δ
δΦ̄

)
e− 1

2 ( δ

δΦ̄
,GT

0,Λ
δ

δΦ̄
)e−S1[Φ̄]︸ ︷︷ ︸

eGac,Λ

= eGac,Λ

{
− 1

2

( δ

δΦ̄
,
[
∂ΛGT

0,Λ

] δ
δΦ̄

)
Gac,Λ − 1

2

(δGac,Λ

δΦ̄
,
[
∂ΛGT

0,Λ

]δGac,Λ

δΦ̄

)}
,

(7.38)
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where in the second line we have carried out the functional differentiation as in
Eq. (7.33). We thus conclude that the generating functional of the amputated con-
nected Green functions satisfies the exact FRG flow equation

∂ΛGac,Λ[Φ̄] = −1

2

(δGac,Λ

δΦ̄
, [∂ΛGT

0,Λ]
δGac,Λ

δΦ̄

)

− 1

2
Tr

[
[∂ΛGT

0,Λ]

(
δ

δΦ̄
⊗ δ

δΦ̄
Gac,Λ

)T]
. (7.39)

As first pointed out by Keller and Kopper (1991) and further discussed by Morris
(1994), the flow equation (7.39) for the generating functional of the amputated con-
nected Green functions is identical with the flow equation for the cutoff-dependent
Wilsonian effective action derived by Polchinski (1984). For this reason, the exact
FRG flow equation (7.39) is sometimes called Polchinski equation. It turns out,
however, that in approximate calculations based on Eq. (7.39) with a sharp momen-
tum space cutoff, one encounters technical difficulties, because the first term on the

right-hand side involving the combination
(
δGac,Λ

δΦ̄
,
[
∂ΛGT

0,Λ

] δGac,Λ

δΦ̄

)
then generates a

singular term involving a Dirac δ-function which is not integrated over. This is the
reason why nowadays the formulation of the FRG in terms of the irreducible vertices
is preferred for explicit calculations.4 Nevertheless, the Polchinski equation (7.39)
seems to be advantageous for gaining nonperturbative insights into the structure of
the theory, such as renormalizability proofs (Polchinski 1984, Keller and Kopper
1991, Keller et al. 1992, Keller and Kopper 1996) or general properties of fixed
points (Rosten 2009).

7.2.4 One-Line Irreducible Vertices

For our general class of models with cutoff-dependent Gaussian propagators G0,Λ

the generating functional of the one-line irreducible vertices is defined as in Eq. (6.61),

ΓΛ[Φ̄] = LΛ[Φ̄] + 1

2

(
Φ̄,G−1

0,ΛΦ̄
)

= (JΛ[Φ̄], Φ̄) − Gc,Λ[JΛ[Φ̄]] + 1

2

(
Φ̄,G−1

0,ΛΦ̄
)
, (7.40)

where the cutoff-dependent source field JΛ[Φ̄] is defined as a functional of the field
Φ̄ via the usual relation5

4 Note that an expansion of the generating functional Gac[Φ̄] of amputated connected Green func-
tions in terms of normal-ordered monomials (defining so-called Wick-ordered vertex functions)
also avoids terms without loop integrations (Salmhofer 1998, 1999); this version of the FRG
hierarchy has been used by Halboth and Metzner (2000) to study the two-dimensional Hubbard
model.
5 In the case of spontaneous symmetry breaking the expectation value Φ̄0

α = limJ→0 〈Φα〉 of at
least one of the field components remains finite in the limit of vanishing sources. In this case it is
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Φ̄α = δGc,Λ[J ]

δ Jα
. (7.41)

It turns out that for Λ → ∞, where G0,Λ vanishes, the functional ΓΛ[Φ̄] as defined
in (7.40) simply reduces to the interaction part of the bare action,

ΓΛ[Φ̄] → S1[Φ̄] , for Λ → ∞ . (7.42)

To prove Eq. (7.42), we follow Morris (1994) and first derive a relation between
ΓΛ[Φ̄] and Gac,Λ[Φ̄]; the initial condition (7.42) for ΓΛ[Φ̄] follows then from the
initial condition (7.37) for Gac,Λ[Φ̄]. Substituting Eq. (7.40) into the relation (6.49)
between the generating functionals of the amputated connected and the connected
Green functions, we may write

Gac,Λ[Φ̄] = Gc,Λ[− (
GT

0,Λ

)−1
Φ̄] + 1

2

(
Φ̄,G−1

0,ΛΦ̄
)

= −ΓΛ[Φ̄ ′] + (J [Φ̄], Φ̄ ′) + 1

2

(
Φ̄ ′,G−1

0,ΛΦ̄
′) + 1

2

(
Φ̄,G−1

0,ΛΦ̄
)
, (7.43)

where J [Φ̄] = − (
GT

0,Λ

)−1
Φ̄, and the field Φ̄ ′ is defined as a functional of Φ̄ via

Eq. (7.41),

Φ̄ ′
α = δGc,Λ[J ]

δ Jα
=

∫
β

δΦ̄β

δ Jα

δGc,Λ[J ]

δΦ̄β

= −
∫
β

[G0,Λ]αβ
δ

δΦ̄β

[
Gac,Λ[Φ̄] − 1

2

(
Φ̄,G−1

0,ΛΦ̄
)]
, (7.44)

which in compact supervector notation can be written as

Φ̄ ′ = Φ̄ − G0,Λ
δGac,Λ[Φ̄]

δΦ̄
. (7.45)

Using this identity, the sum of the last three terms in the second line of Eq. (7.43)
reduces to

(J [Φ̄], Φ̄ ′) + 1

2

(
Φ̄ ′,G−1

0,ΛΦ̄
′) + 1

2

(
Φ̄,G−1

0,ΛΦ̄
) = 1

2

(δGac,Λ

δΦ̄
,GT

0,Λ
δGac,Λ

δΦ̄

)
.

(7.46)
We thus obtain the following relation between the generating functionals of the
amputated connected Green functions and of the irreducible vertices,

Gac,Λ[Φ̄] = −ΓΛ
[
Φ̄ − G0,Λ

δGac,Λ

δΦ̄

]
+ 1

2

(δGac,Λ

δΦ̄
,GT

0,Λ
δGac,Λ

δΦ̄

)
. (7.47)

more convenient to replace the last term on the right-hand side of Eq. (7.40) by 1
2

(
δΦ̄,G−1

0,ΛδΦ̄
)

where δΦ̄ = Φ̄ − Φ̄0. We shall discuss this case separately in Sect. 7.4.



192 7 Exact FRG Flow Equations

Finally, using Eq. (7.37) and the fact that by construction G0,Λ → 0 for Λ → ∞,
we see that in this limit

ΓΛ[Φ̄] → −Gac,Λ[Φ̄] → S1[Φ̄] , for Λ → ∞ , (7.48)

which completes the proof of Eq. (7.42).
To obtain an exact FRG flow equation for the functional ΓΛ[Φ̄], we simply take

the derivative of both sides of the definition (7.40) with respect to the cutoff Λ.
Keeping in mind that now the fields Φ̄ are kept constant rather than the sources J ,
we have

∂ΛΓΛ[Φ̄] = ∂ΛLΛ[Φ̄] + 1

2

(
Φ̄, ∂ΛG−1

0,ΛΦ̄
)
, (7.49)

where

∂ΛLΛ[Φ̄] = (∂Λ JΛ[Φ̄], Φ̄) − ∂ΛGc,Λ[JΛ[Φ̄]]

= (∂Λ JΛ[Φ̄], Φ̄) −
(
∂Λ JΛ[Φ̄],

δGc,Λ[J ]

δ J

)
︸ ︷︷ ︸

cancel due to Φ̄ = δGc,Λ/δ J

−∂ΛGc,Λ[J ]
∣∣∣

J=JΛ[Φ̄]

= −1

2
Tr

[[
∂ΛG−1

0,Λ

] ( δ

δ J
⊗ δ

δ J
Gc,Λ

)T]
J=JΛ[Φ̄]

+ ∂Λ lnZ0,Λ

−1

2

(
Φ̄,

[
∂ΛG−1

0,Λ

]
Φ̄
)
. (7.50)

In the last line we have substituted the exact FRG flow equation (7.34) for the gen-
erating functional Gc,Λ[J ] of the connected Green function for constant sources and
used the fact that Φ̄ = δGc,Λ/δ J . Substituting Eq. (7.50) into Eq. (7.49), we see that
the last terms on the right-hand sides cancel. Finally, using the fact that according
to Eq. (6.71) the second functional derivatives of Gc,Λ[J ] and LΛ[Φ̄] are inverse to
each other, we obtain the following exact flow equation for the generating functional
of the irreducible vertices,

∂ΛΓΛ[Φ̄] = −1

2
Tr

[[
∂ΛG−1

0,Λ

] ( δ

δΦ̄
⊗ δ

δΦ̄
LΛ[Φ̄]

)−1]
+ ∂Λ lnZ0,Λ . (7.51)

Recall that the definition (7.40) implies

δ

δΦ̄
⊗ δ

δΦ̄
LΛ[Φ̄] = δ

δΦ̄
⊗ δ

δΦ̄
ΓΛ[Φ̄] − [

GT
0,Λ

]−1
, (7.52)

so that the right-hand side of Eq. (7.51) depends on the second functional derivative
of ΓΛ[Φ̄]. If we express the cutoff dependence of the Gaussian propagator in the
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form G−1
0,Λ = G−1

0 − RΛ (see Eq. (7.5)), then we may set ∂ΛG−1
0,Λ = −∂ΛRΛ in

Eq. (7.51).
For classical field theories containing only bosonic fields, FRG equations equiv-

alent to Eq. (7.51) have first been derived by Wetterich (1993) and slightly later
by Bonini et al. (1993). Morris (1994) re-derived this equation and pointed out
its advantages for vertex expansions. However, exact FRG flow equations for the
irreducible vertices which are essentially equivalent to Eq. (7.51) have already been
written down earlier by Nicoll et al. (1974), Weinberg (1976), and Nicoll and Chang
(1977). The average effective action introduced by Wetterich (1993) corresponds in
our notation to

Γ We
Λ [Φ̄] = LΛ[Φ̄] − 1

2
(Φ̄,RΛΦ̄) − lnZ0,Λ

= ΓΛ[Φ̄] − 1

2

(
Φ̄,G−1

0 Φ̄
) − lnZ0,Λ . (7.53)

The corresponding FRG flow equation can be written as

∂ΛΓ
We
Λ [Φ̄] = 1

2
Tr

[
[∂ΛRΛ]

( δ

δΦ̄
⊗ δ

δΦ̄
Γ We
Λ [Φ̄] + ZRΛ

)−1
]
. (7.54)

This equation is sometimes called the Wetterich equation. To completely conform
with the notation used by Wetterich and coauthors for mixed Bose–Fermi theories
(2004) let us define, consistent with Eq. (6.59) for n = 2,

Γ
We(2)
Λ [Φ̄] = δ

δΦ̄
⊗ δ

δΦ̄
Γ We
Λ [Φ̄]Z = δ

δΦ̄
Γ We
Λ [Φ̄]

←
δ

δΦ̄
, (7.55)

where
←
δ

δΦ̄
is the row vector of right-handed derivatives. Equation (7.54) can then be

written in the compact form

∂ΛΓ
We
Λ [Φ̄] = 1

2
STr

[
[∂ΛRΛ]

(
Γ

We(2)
Λ [Φ̄] + RΛ

)−1
]
. (7.56)

Here, STr[. . .] = Tr[Z . . .] denotes the so-called supertrace (Efetov 1983, 1997).
Note that strictly speaking Γ We

Λ [Φ̄] does not generate all irreducible vertices,
because its second functional derivative is the inverse propagator and not the irre-
ducible self-energy. Our functional ΓΛ[Φ̄] appearing in the exact FRG flow equation
(7.51) (and also the corresponding functional Γ Mo

Λ [Φ̄] introduced by Morris (1994))
generates the irreducible self-energy. The relation between our ΓΛ[Φ̄] and the cor-
responding functional used by Morris is

Γ Mo
Λ [Φ̄] = ΓΛ[Φ̄] − lnZ0,Λ , (7.57)
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so that in the FRG equation for Γ Mo
Λ [Φ̄] the term ∂Λ lnZ0,Λ in Eq. (7.51) should be

omitted. The advantage of our normalization is that our functional ΓΛ[Φ̄] vanishes
identically in the absence of interactions so that the field-independent part ΓΛ[0]
can be identified with the interaction correction to the free energy.

7.3 Exact FRG Equations for the Irreducible Vertices

Mathematically, Eq. (7.51) is a very complicated functional integro-differential
equation which in almost all physically interesting cases cannot be solved exactly.
In order to make progress, we therefore have to rely on approximations. Roughly,
the approximation strategies proposed so far can be divided into two classes. The
first is based on the derivative expansion and generalizations thereof (Berges et al.
2002), which will be reviewed in Chap. 9. An alternative strategy, which has been
advanced by Morris (1994), is to expand both sides of Eq. (7.51) in properly sym-
metrized powers of the fields and compare the coefficients of a given order in the
field expansion. In this way Eq. (7.51) can be reduced to an infinite hierarchy of
coupled integro-differential equations for the irreducible vertices. We shall refer to
this hierarchy as the vertex expansion. To facilitate the derivation of this hierarchy,
let us cast Eq. (7.51) into a more convenient form. As in Eq. (6.77), let us introduce
the field-dependent supermatrix

UΛ[Φ̄] =
(
δ

δΦ̄
⊗ δ

δΦ̄
ΓΛ[Φ̄]

)T

−
(
δ

δΦ̄
⊗ δ

δΦ̄
ΓΛ[Φ̄]

)T
∣∣∣∣∣
Φ̄=0

=
(
δ

δΦ̄
⊗ δ

δΦ̄
ΓΛ[Φ̄]

)T

− ΣΛ , (7.58)

so that the second functional derivative of LΛ[Φ̄] can be written as (see Eq. (6.80)),

δ

δΦ̄
⊗ δ

δΦ̄
LΛ[Φ̄] = UT

Λ[Φ̄] − [
GT
Λ

]−1
, (7.59)

where G−1
Λ = G−1

0,Λ−ΣΛ is the cutoff-dependent exact inverse superfield propagator,
and ΣΛ is the corresponding irreducible self-energy. Moreover, using Eq. (7.31) we
obtain for the last term on the right-hand side of Eq. (7.51),

∂Λ lnZ0,Λ = −1

2
Tr
[
Z∂Λ ln

(−G−1
0,Λ

)] = −1

2
Tr
[[
∂ΛG−1

0,Λ

]
GT

0,Λ

]
. (7.60)

Substituting Eqs. (7.59) and (7.60) into Eq. (7.51), we obtain

∂ΛΓΛ[Φ] = −1

2
Tr

{[
∂ΛG−1

0,Λ

] [(
UT
Λ[Φ̄] − [

GT
Λ

]−1
)−1

+ GT
0,Λ

]}
. (7.61)
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Using the following chain of identities,

(
UT − [GT ]−1

)−1 + GT
0 = −[1 − GT UT ]−1GT + GT

0

= −(
GT + GT UT GT + GT UT GT UT GT + . . .

) + GT
0

= −GT UT
(
1 − GT UT

)−1
GT − GT + GT

0

= −GT UT
(
1 − GT UT

)−1
GT − GT

0 ΣT
(
1 − GT

0 ΣT
)−1

GT
0 , (7.62)

and rearranging terms in the trace using its cyclic invariance, we finally obtain

∂ΛΓΛ[Φ̄] = −1

2
Tr

[
ĠΛUT

Λ[Φ̄]
(

1 − GT
ΛUT

Λ[Φ̄]
)−1

+Ġ0,ΛΣT
Λ

(
1 − GT

0,ΛΣT
Λ

)−1
]
, (7.63)

where we have introduced the so-called single-scale propagator,

ĠΛ = −GΛ

[
∂ΛG−1

0,Λ

]
GΛ = (

1 − G0,ΛΣΛ

)−1
Ġ0,Λ

(
1 − ΣΛG0,Λ

)−1
, (7.64)

and its noninteracting limit

Ġ0,Λ = ∂ΛG0,Λ . (7.65)

From Eq. (7.63) it is obvious that for a free field theory where UΛ[Φ̄] = ΣΛ =
0 the RG flow of our functional ΓΛ[Φ] vanishes. If we are not interested in the
interaction correction to the free energy the field-independent term in the second
line of Eq. (7.63) can be dropped.

In order to reduce the FRG equation (7.63) for the generating functional ΓΛ[Φ̄] to
an equivalent system of coupled integro-differential equations for the corresponding
irreducible vertices Γ (n)

Λ,α1...αn
generated by ΓΛ[Φ̄] (see Eqs. (6.59) and (6.60)), we

now expand both sides of Eq. (7.63) in powers of the fields and compare the coeffi-
cients of (properly symmetrized) powers of the fields on both sides. Expanding the
right-hand side in powers of the functional UΛ[Φ̄] we obtain

∂ΛΓΛ[Φ̄] =
∞∑

n=0

1

n!

∫
α1

. . .

∫
αn

(
∂ΛΓ

(n)
Λ,α1...αn

)
Φ̄α1 . . . Φ̄αn

= −1

2
Tr

[
ĠΛUT

Λ[Φ̄]
∞∑
ν=0

(
GT
ΛUT

Λ[Φ̄]
)ν

+ Ġ0,ΛΣT
Λ

(
1 − GT

0,ΛΣT
Λ

)−1
]
. (7.66)

We now expand also the functional UΛ[Φ̄] in powers of the fields, using the notation
introduced in Eqs. (6.78) and (6.79),
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UΛ[Φ̄] =
∞∑

n=1

1

n!

∫
α1

. . .

∫
αn

Γ
(n+2)
Λ,α1...αn

Φ̄α1 . . . Φ̄αn , (7.67)

where [
Γ

(n+2)
Λ,α1...αn

]
αα′

= Γ
(n+2)
Λ,αα′α1...αn

. (7.68)

Comparing the field-independent parts on both sides of Eq. (7.66), we obtain the
exact flow equation for the vertex Γ (0)

Λ , which with our normalization can be identi-
fied with the interaction correction to the free energy,

∂ΛΓ
(0)
Λ = −1

2
Tr

[
Ġ0,ΛΣT

Λ

(
1 − GT

0,ΛΣT
Λ

)−1
]
. (7.69)

After some rearrangements under the trace this can also be written as

∂ΛΓ
(0)
Λ = −1

2
Tr

[
ZĠ0,ΛΣΛ

(
1 − G0,ΛΣΛ

)−1
]
. (7.70)

The flow equations for the higher-order vertices Γ (n)
Λ,α1...αn

with n ≥ 1 external legs
can be obtained by comparing the coefficients of the monomials Φ̄α1 . . . Φ̄αn on
both sides of Eq. (7.66), taking into account that the vertices should be symmetrized
for bosonic components and antisymmetrized for fermionic components. In fact,
with the help of the notation introduced in Sect. 6.2.2 in the context of deriving an
explicit algebraic formula for the tree expansion (see Eq. (6.90)), the resulting FRG
flow equations for the vertices Γ (n)

Λ,α1...αn
with n ≥ 1 can be written down in closed

form,

∂ΛΓ
(n)
Λ,α1...αn

= −1

2

∞∑
ν=1

∞∑
n1=1

. . .

∞∑
nν=1

δn,n1+...+nν

×Sα1...αn1 ;αn1+1...αn1+n2 ;...;αn−nν+1...αn Tr
[
ZĠΛΓ

(nν+2)
Λ,αn−nν+1...αn

×GΛΓ
(nν−1+2)
Λ,αn−nν−nν−1+1...αn−nν

. . .GΛΓ
(n1+2)
Λ,α1...αn1

]
, (7.71)

where the symmetrization operator Sα1...αn1 ;αn1+1...αn2 ;...;αn−nν+1...αn has already been
introduced in Eq. (6.88) in the context of the tree expansion.6 As explained in
Sect. 6.2.2 (see the text before Eq. (6.88)), we have divided the n labels α1, . . . , αn

6 Using the invariance of the trace under cyclic permutations and the fact that the transposition of
a matrix does not change its trace, we have eliminated all transposition operators in Eqs. (7.70)
and (7.71). Inverting the chain of manipulations leading to Eqs. (7.70) and (7.71), we conclude
that Eqs. (7.61) and (7.63) can be alternatively written by omitting all transposition operators and
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into ν ≥ 1 disjunct subsets si containing ni elements as follows (where i = 1, . . . , ν
labels the subsets and n = ∑ν

i=1 ni ),

α1 . . . αn1︸ ︷︷ ︸
s1

; αn1+1 . . . αn1+n2︸ ︷︷ ︸
s2

; . . . ; αn−nν+1, . . . , αn︸ ︷︷ ︸
sν

. (7.72)

The reason for the appearance of the symmetrization operator is that the right-hand
side of Eq. (7.71) is already symmetric (for bosons) or antisymmetric (for fermions)
with respect to the permutations which do not change the index set si , because all
indices in a given index set si belong to the same symmetrized vertex. The opera-
tor Sα1...αn1 ;αn1+1...αn2 ;...;αn−nν+1...αn symmetrizes the right-hand side of Eq. (7.71) also
with respect to arbitrary permutations which exchange indices belonging to different
index groups.

The general flow equation (7.71) looks quite complicated, so let us explicitly
write down the flow equations for the first few vertices. Note that for fixed n only
a finite number of terms contribute on the right-hand side of Eq. (7.71). Recall that
in the derivation of Eq. (7.71) we have implicitly assumed the absence of vacuum
expectation values of all field components; the vertex Γ (1)

α with a single external leg
therefore vanishes identically.7 Setting n = 2 in Eq. (7.71), we obtain the exact FRG
flow equation for the vertex Γ (2)

Λ,α1α2
= [ΣΛ]α1α2 with two external legs,

∂ΛΓ
(2)
Λ,α1α2

= −1

2
Tr

[
ZĠΛΓ

(4)
Λ,α1α2

+ Sα1;α2

{
ZĠΛΓ

(3)
Λ,α2

GΛΓ
(3)
Λ,α1

}]
. (7.73)

A graphical representation of this equation is shown in Fig. 7.2. For n = 3 the
right-hand side of our general flow equation (7.71) has already four terms, so that
we obtain the following exact FRG flow equations for the irreducible vertex Γ (3)

α1α2α3

with three external legs,

∂ΛΓ
(3)
Λ,α1α2α3

= −1

2
Tr

[
ZĠΛΓ

(5)
Λ,α1α2α3

+ Sα1α2;α3

{
ZĠΛΓ

(4)
Λ,α2α3

GΛΓ
(3)
Λ,α1

}

simultaneously replacing Tr [. . .] → Tr [Z . . .]. For example, Eq. (7.61) can be written as

∂ΛΓΛ[Φ] = −1

2
Tr

{
Z
[
∂ΛG−1

0,Λ

] [(
UΛ[Φ̄] − [GΛ]−1

)−1
+ G0,Λ

]}
.

Note that for fermions some of the elements of UΛ[Φ̄] involve Grassmann fields, so that the
operations of matrix inversion and transposition do in general not commute. Fortunately, in the
manipulations leading from Eq. (7.61) to the equivalent equation given above this subtlety can be
ignored because the matrix UΛ[Φ̄] appears always under the trace.
7 We shall discuss the modification of Eq. (7.71) in the presence of vacuum expectation values in
Sect. 7.4.
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+ Sα1;α2α3

{
ZĠΛΓ

(3)
Λ,α3

GΛΓ
(4)
Λ,α1α2

}
+ Sα1;α2;α3

{
ZĠΛΓ

(3)
Λ,α3

GΛΓ
(3)
Λ,α2

GΛΓ
(3)
Λ,α1

}]
. (7.74)

This equation is shown graphically in Fig. 7.3. Finally, for n = 4 the right-hand side
of our general flow equation (7.71) contains in total 8 terms, involving the vertices
Γ (n) with n = 3, 4, 5, 6. A graphical representation of this rather lengthy expression
is shown in Fig. 7.4. For simplicity, let us here explicitly write down the FRG flow
equation for Γ (4)

Λ only for the special case where all vertices with an odd number
of external legs vanish (e.g., this is the case for theories involving only fermions or
bosons in the absence of external fields and symmetry breaking). Then Eq. (7.71)
with n = 4 reduces to

∂ΛΓ
(4)
Λ,α1α2α3α4

= −1

2
Tr

[
ZĠΛΓ

(6)
Λ,α1α2α3α4

+ Sα1α2;α3α4

{
ZĠΛΓ

(4)
Λ,α3α4

GΛΓ
(4)
Λ,α1α2

}]

= −ζ
2

∫
β1

∫
β2

[ĠΛ]β1β2Γ
(6)
Λ,β2β1α1α2α3α4

− ζ

2

∫
β1

∫
β2

∫
β3

∫
β4

[ĠΛ]β1β2 [GΛ]β3β4

×
[
Γ

(4)
Λ,β2β3α3α4

Γ
(4)
Λ,β4β1α1α2

+ Γ
(4)
Λ,β2β3α1α2

Γ
(4)
Λ,β4β1α3α4

+ζΓ (4)
Λ,β2β3α3α1

Γ
(4)
Λ,β4β1α4α2

+ ζΓ
(4)
Λ,β2β3α4α2

Γ
(4)
Λ,β4β1α3α1

+Γ (4)
Λ,β2β3α3α2

Γ
(4)
Λ,β4β1α4α1

+ Γ
(4)
Λ,β2β3α4α1

Γ
(4)
Λ,β4β1α3α2

]
. (7.75)

This equation is shown graphically in Fig. 7.5.

Fig. 7.2 Graphical representation of the exact FRG flow equation (7.73) for the irreducible vertex
with two external legs (two-point vertex) in the absence of vacuum expectation values. The dot
above the vertex on the left-hand side denotes the derivative with respect to the cutoff Λ. The
single-scale propagator is represented by an oriented circle enclosing the symbol Ġ
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Fig. 7.3 Graphical representation of the exact FRG flow equation (7.74) for the irreducible vertex
with three external legs in the absence of vacuum expectation values
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Fig. 7.4 Graphical representation of the exact FRG flow equation (7.71) for n = 4 in the absence
of vacuum expectation values

7.4 Spontaneous Symmetry Breaking: The Vertex Expansion
with Vacuum Expectation Values

As pointed out in the footnote at the beginning of Sect. 7.2.4, in the derivation of the
general FRG flow equation (7.51) for the one-line irreducible vertices in Sect. 7.3
we have assumed that the expectation values Φ̄α = 〈Φα〉 of all field components
vanish in the absence of external sources J → 0. The hierarchy of FRG flow equa-
tions derived in Sect. 7.3 therefore does not describe the symmetry-broken phase
of a given model system, where at least one field component has a finite vacuum
expectation value in the absence of sources,
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Fig. 7.5 Graphical representation of the exact FRG flow equation (7.75) for the irreducible vertex
with four external legs for the special case where all vertices with an odd number of external legs
vanish

lim
J→0

δGc,Λ[J ]

δ Jα
= lim

J→0
〈Φα〉 ≡ Φ̄0

α �= 0 . (7.76)

The fact that Φ̄0
α is finite does not necessarily mean that some symmetry is sponta-

neously broken; for example, ifΦα represents the collective field which is conjugate
to the bilinear fermion field representing the density of an electron system, then at
any finite density the expectation value Φ̄0

α is finite, but does not imply a sponta-
neously broken symmetry (Schütz and Kopietz 2006). On the other hand, as will
be discussed in more detail in Chaps. 11 and 12, spontaneous symmetry breaking
in Fermi systems can be conveniently described by introducing a suitable collective
bosonic field which acquires a finite vacuum expectation value in the symmetry-
broken phase.

It turns out that the generalization of the hierarchy of FRG flow equations for the
irreducible vertices derived in Sect. 7.3 to include the possibility that one or several
field components have finite vacuum expectation values is not entirely trivial due to
several technical subtleties. Let us now carefully develop this generalization using
the strategy developed by Schütz and Kopietz (2006). We start with the observation
that in the presence of vacuum expectation values the Legendre transform

LΛ[Φ̄] = (JΛ[Φ̄], Φ̄) − Gc,Λ[JΛ[Φ̄]] (7.77)

has now an extremum at Φ̄ = Φ̄0, because according to Eq. (7.76) the limit J → 0
corresponds to Φ̄ → Φ̄0,
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δLΛ[Φ̄]

δΦ̄α

∣∣∣∣
Φ̄=Φ̄0

= ζα JΛ,α[Φ̄0] → 0 . (7.78)

Introducing the deviation of the field expectation value from its vacuum expectation
value for vanishing sources,

δΦ̄ = Φ̄ − Φ̄0 , (7.79)

it is convenient to define the generating functional of the one-line irreducible ver-
tices as follows,

ΓΛ[Φ̄0; δΦ̄] = LΛ[Φ̄0 + δΦ̄] + 1

2

(
δΦ̄,G−1

0,ΛδΦ̄
)

= (JΛ[Φ̄], Φ̄) − Gc,Λ[JΛ[Φ̄]] + 1

2

(
δΦ̄,G−1

0,ΛδΦ̄
)
. (7.80)

Note that on the right-hand side we have subtracted the Gaussian action with the
field deviation δΦ̄, so that for Φ̄0 �= 0 the functional ΓΛ[Φ̄0; δΦ̄] is not exactly
the same as the functional ΓΛ[Φ̄ → Φ̄0 + δΦ̄] defined in Eq. (7.40) with shifted
argument. As before, we define the one-line irreducible vertices Γ (n)

Λ,α1...αn
[Φ̄0] via

the Taylor expansion of the functional (7.80),

ΓΛ[Φ̄0; δΦ̄] =
∞∑

n=0

1

n!

∫
α1

. . .

∫
αn

Γ
(n)
Λ,α1...αn

[Φ̄0]δΦ̄α1 . . . δΦ̄αn . (7.81)

The vertices now depend on the vacuum expectation value Φ̄0 which we assume to
be bosonic such that the Γ (n)

Λ,α1...αn
[Φ̄0] commute with all fields.

In the derivation of the FRG flow equation for the functional ΓΛ[Φ̄0; δΦ̄] defined
in Eq. (7.80), one should take into account that the value of the vacuum expectation
value Φ̄0 depends on the cutoff Λ, so that we now obtain instead of Eqs. (7.49) and
(7.50)

∂ΛΓΛ[Φ̄0; δΦ̄] = ∂ΛLΛ[Φ̄0 + δΦ̄] + 1

2
∂Λ

(
δΦ̄,G−1

0,ΛδΦ̄
)

= −∂ΛGc,Λ[J ]
∣∣∣

J=JΛ[Φ̄]
+ 1

2
(δΦ̄,

[
∂ΛG−1

0,Λ

]
δΦ̄) − (

δΦ̄,G−1
0,Λ∂ΛΦ̄

0
)
. (7.82)

As in Eq. (7.50), we now substitute on the right-hand side of Eq. (7.82) the exact
FRG flow equation (7.34) for Gc,Λ[J ], which is also valid in the presence of vacuum
expectation values. We obtain
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∂ΛΓΛ[Φ̄0; δΦ̄] = −1

2
Tr

[[
∂ΛG−1

0,Λ

] ( δ

δΦ̄
⊗ δ

δΦ̄
LΛ[Φ̄]

)−1]
+ ∂Λ lnZ0,Λ

−1

2

(δGc,Λ

δ J
,
[
∂ΛG−1

0,Λ

] δGc,Λ

δ J

)
+ 1

2
(δΦ̄,

[
∂ΛG−1

0,Λ

]
δΦ̄) − (

δΦ̄,G−1
0,Λ∂ΛΦ̄

0) . (7.83)

Keeping in mind that by construction δGc,Λ

δ J = Φ̄ = Φ̄0 + δΦ̄, we finally obtain

∂ΛΓΛ[Φ̄0; δΦ̄] = −1

2
Tr

[[
∂ΛG−1

0,Λ

] ( δ

δΦ̄
⊗ δ

δΦ̄
LΛ[Φ̄]

)−1]
+ ∂Λ lnZ0,Λ

−(
δΦ̄, ∂Λ

[
G−1

0,ΛΦ̄
0]) − 1

2
(Φ̄0,

[
∂ΛG−1

0,Λ

]
Φ̄0) . (7.84)

The two terms in the second line are not present in the corresponding FRG equa-
tion (7.51) without vacuum expectation values. To derive the vertex expansion with
vacuum expectation values, we proceed as in Sect. 7.3. Similar to Eq. (7.58), we
introduce the supermatrix

UΛ[Φ̄0; δΦ̄] =
(
δ

δΦ̄
⊗ δ

δΦ̄
ΓΛ[Φ̄0; δΦ̄]

)T

− ΣΛ[Φ̄0] , (7.85)

where the superfield self-energy

ΣΛ[Φ̄0] =
(
δ

δΦ̄
⊗ δ

δΦ̄
ΓΛ[Φ̄0; δΦ̄]

)T
∣∣∣∣∣
δΦ̄=0

(7.86)

now depends on the vacuum expectation value Φ̄0. After the same manipulations as
in Sect. 7.3, we can cast Eq. (7.84) into a similar form as Eq. (7.63),

∂ΛΓΛ[Φ̄0; δΦ̄] = −1

2
Tr
[
ĠΛUT

Λ

(
1 − GT

ΛUT
Λ

)−1]
− (
δΦ̄, ∂Λ[G−1

0,ΛΦ̄
0]
)

−1

2
Tr
[
Ġ0,ΛΣT

Λ

(
1 − GT

0,ΛΣT
Λ

)−1]
− 1

2

(
Φ̄0, [∂ΛG−1

0,Λ]Φ̄0
)
.

(7.87)

To derive the hierarchy of FRG flow equations for the irreducible vertices associated
with Eq. (7.87), one should take into account that the vacuum expectation values Φ̄0

depend on the cutoffΛ, so that the differentiation of the functional Taylor expansion
of Γ [Φ̄0; δΦ̄] in Eq. (7.81) generates an additional term arising from the cutoff
dependence of Φ̄0,
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∂ΛΓΛ[Φ̄0; δΦ̄] =
∞∑

n=0

1

n!

∫
α1

. . .

∫
αn

(
∂ΛΓ

(n)
Λ,α1...αn

[Φ̄0]
)
δΦ̄α1 . . . δΦ̄αn

−
∞∑

n=0

1

n!

∫
α

∫
α1

. . .

∫
αn

Γ
(n+1)
Λ,αα1...αn

[Φ̄0]
(
∂ΛΦ̄

0
α

)
δΦ̄α1 . . . δΦ̄αn . (7.88)

We now substitute Eq. (7.88) into the left-hand side of our exact FRG equation
(7.87), expand the right-hand side in powers of the fields δΦ̄, and compare the
coefficients of properly symmetrized monomials, as discussed in Sect. 7.3. For the
vertex without external legs (i.e., the interaction correction to the free energy) we
obtain

∂ΛΓ
(0)
Λ [Φ̄0] = −1

2
Tr

[
ZĠ0,ΛΣΛ

(
1 − G0,ΛΣΛ

)−1
]

+
∫
α

Γ
(1)
Λ,α[Φ̄0]

(
∂ΛΦ̄

0
α

) − 1

2

(
Φ̄0,

[
∂ΛG−1

0,Λ

]
Φ̄0) , (7.89)

while the flow equation of the vertex Γ (1)
Λ,α[Φ̄0] with a single external leg can be

written as

∂ΛΓ
(1)
Λ,α1

[Φ̄0] = −1

2
Tr
[
ZĠΛΓ

(3)
Λ,α1

[Φ̄0]
]

+
∫
α

Γ
(2)
Λ,αα1

[Φ̄0]
(
∂ΛΦ̄

0
α

)
−

∫
α

[
G−1

0,Λ

]
α1α

(
∂ΛΦ̄

0
α

) −
∫
α

[
∂ΛG−1

0,Λ

]
α1α
Φ̄0
α . (7.90)

Using the same notation as in Eq. (7.71), the flow equations for the irreducible
vertices Γ (n)

Λ,α1...αn
[Φ̄0] with n ≥ 2 external legs can be written as

∂ΛΓ
(n)
Λ,α1...αn

[Φ̄0] =
∫
α

Γ
(n+1)
Λ,αα1...αn

[Φ̄0]
(
∂ΛΦ̄

0
α

)

− 1

2

∞∑
ν=1

∞∑
n1=1

. . .

∞∑
nν=1

δn,n1+...+ nν

× Sα1...αn1 ;αn1+1...αn1+ n2 ;...;αn−nν+1...αn Tr
[
ZĠΛΓ

(nν+2)
Λ,αn−nν+1...αn

× GΛΓ
(nν−1+2)
Λ,αn−nν−nν−1+1...αn−nν

. . .GΛΓ
(n1+2)
Λ,α1...αn1

]
. (7.91)

The nested sum on the right-hand side of this expression is precisely the same as in
the corresponding flow equation (7.71) in the absence of vacuum expectation values,
so that graphically the flow equation (7.91) can be represented as shown in Fig. 7.6.

To further simplify Eqs. (7.89) and (7.90), it is convenient to choose the cutoff-
dependent inverse Gaussian propagator G−1

0,Λ such that

G−1
0,ΛΦ̄

0 = 0 ,
[
∂ΛG−1

0,Λ

]
Φ̄0 = 0 . (7.92)
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Fig. 7.6 Graphical representation of the exact FRG flow equation (7.91) for the irreducible vertices
with n ≥ 2 external legs. The diagrams in the curly bracket are the same as in the absence of
vacuum expectation values. The crossed circle with a dot denotes the derivative of the vacuum
expectation value with respect to the flow parameter, ∂ΛΦ̄0

If necessary one should add suitable counterterms to the inverse Gaussian propa-
gator to satisfy these conditions.8 With the conditions (7.92) the last term on the
right-hand side of Eq. (7.89) and the two terms in the second line of Eq. (7.90)
vanish. We now fix the flowing vacuum expectation value Φ̄0

Λ such that the vertex
Γ

(1)
Λ [Φ̄0] with a single external leg vanishes identically,

Γ
(1)
Λ [Φ̄0] = 0 . (7.93)

Physically, this means that for any Λ the first functional derivative of the functional
ΓΛ[Φ̄0; δΦ̄] vanishes, so that we flow along an extremum of the effective poten-
tial.9 Combining Eqs. (7.90) and (7.92) we see that Eq. (7.93) is equivalent with the
following FRG flow equation for the vacuum expectation value,

∫
α

Γ
(2)
Λ,αα1

[Φ̄0]
(
∂ΛΦ̄

0
α

) = 1

2
Tr
[
ZĠΛΓ

(3)
Λ,α1

[Φ̄0]
]
, (7.94)

which is shown graphically in Fig. 7.7. Recall that according to Eq. (6.75) Γ (2)
Λ,α1α2

=
[ΣΛ]α1α2 . If the symmetry is spontaneously broken, then Eq. (7.94) determines the
flowing order parameter as a function of the running cutoff Λ. Note that Eqs. (7.92)
and (7.93) imply that both terms in the second line of our flow equation (7.89) for
Γ

(0)
Λ [Φ̄0] vanish identically, so that the flow equation for the free energy in the pres-

ence of vacuum expectation values has precisely the same form as the corresponding
flow equation (7.70) in the absence of vacuum expectation values.

8 For example, in the ordered phase of classical ϕ4-theory the k = 0 Fourier component of the
field ϕ(k) has a finite expectation value, ϕ̄0(k) = (2π )Dδ(k)ϕ̄0, see Eq. (2.72). With the choice
G−1

0,Λ(k) = Θ−1
Λ (k)c0k2 we satisfy Eq. (7.92). The momentum-independent part −2r0 appearing

in the inverse Gaussian propagator in Eq. (2.78) should then be taken into account via the intial
condition for the two-point vertex Γ (2)

Λ0
(k) = −2r0.

9 The effective potential is defined (up to an additive constant) by dividing the extensive quantity
ΓΛ[Φ̄0; 0] by the volume of the system, see Eq. (9.8) in Sect. 9.1.
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Fig. 7.7 Graphical representation of the exact FRG flow equation (7.94) relating the flow of the
vacuum expectation value to the irreducible vertex with three external legs

Exercises

7.1 FRG Flow Equations for the Zero-Dimensional Field Theory
Defined in Exercise 6.1

This exercise goes back to an idea by Schönhammer (2000) and is also discussed
in unpublished lecture notes by Meden (2003). Let us assume that the “propagator”
G0 = GΛ

0 depends on a parameter Λ, e.g., GΛ
0 = −Λ. Note that in contrast to the

usual convention (where GΛ
0 approaches zero in the limit Λ → ∞), the propagator

GΛ
0 = −Λ vanishes for Λ = 0. We will therefore start our flow at Λ = 0 and stop

it at a finite Λ.

(a) Derive the flow equations

∂Λgc( j) = 1

2
∂Λ

[
G−1

0

] [∂2gc

∂ j2
+

(
∂gc

∂ j

)2
]

− ∂Λ ln Z0 ,

∂Λgac(ϕ̄) = −1

2
∂ΛG0

[
∂2gac

∂ϕ̄2
+

(
∂gac

∂ϕ̄

)2
]
,

∂Λγ = −1

2
ĠU (1 − GU )−1 − 1

2
Ġ0Σ(1 − G0Σ)−1 ,

where Ġ = −G∂Λ
[
G−1

0

]
G, G−1 = G−1

0 −Σ , Σ = γ (2), and U = ∂2γ

∂ϕ2 −Σ .

Hint: It might turn out advantageous to derive the relation egac(ϕ̄) =
e
− 1

2 G0
∂2

∂ϕ̄2 e−s1(ϕ̄) to obtain the flow equation for gac(ϕ̄).
(b) Expand the flow equations for gac(ϕ̄) and γ (ϕ) in powers of the sources to

obtain flow equations for the vertices γ (n) and g(n)
ac . Show for the specific choice

GΛ
0 = −Λ,
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∂Λγ
(0) = 1

2
γ (2)

1+Λγ (2) , ∂Λg(0)
ac = 1

2 g(2)
ac ,

∂Λγ
(2) = 1

2
γ (4)

[1+Λγ (2)]2 , ∂Λg(2)
ac = 1

2 g(4)
ac + [

g(2)
ac

]2
,

∂Λγ
(4) = 1

2
γ (6)

[1+Λγ (2)]2 − 3 Λ[γ (4)]2

[1+Λγ (2)]3 , ∂Λg(4)
ac = 1

2 g(6)
ac + 4g(2)

ac g(4)
ac ,

∂Λγ
(6) = 1

2
γ (8)

[1+Λγ (2)]2 − 15 Λγ (4)γ (6)

[1+Λγ (2)]3 ∂Λg(6)
ac = 1

2 g(8)
ac + 6g(2)

ac g(6)
ac

+45 Λ2[γ (4)]3

[1+Λγ (2)]4 , +10
[
g(4)

ac

]2
.

(c) If you have not already done so, derive the relation

egac(ϕ̄) = e
− 1

2 G0
∂2

∂ϕ̄2 e−s1(ϕ̄) ,

as well as

γ (ϕ) = (ϕ̄(ϕ) − ϕ)2

2G0
− gac(ϕ̄(ϕ)) , where ϕ̄ − ϕ = G0

∂gac

∂ϕ̄
,

and conclude the initial conditions gac(ϕ̄)|Λ=0 = −s1(ϕ̄) and γ (ϕ)|Λ=0 = s1(ϕ),
when G0|Λ=0 = 0. What are the initial conditions for the amputated connected
and one-line irreducible vertices?

(d) Truncate the flow equations derived in b) by setting the vertices γ (m) and g(m)
ac

with m > mc and mc = 2, 4, 6 equal to their initial values. Integrate the remain-
ing set of equations numerically (e.g., using Mathematica) fromΛ = 0 toΛ = 1
and compare the change of the free energy γ (0) = − ln[Z/Z0], the self-energyΣ
and the one-particle irreducible vertex γ (4) at the end of the flow in the different
schemes [ac and irreducible, each with mc = 2, 4, 6] with the perturbative result
of Exercise 6.1 (for G0 = −1) and the exact result obtained by numerically
evaluating the integrals In defined in Exercise 6.1.
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Chapter 8
Vertex Expansion

Our fundamental FRG flow equation (7.51) for the generating functional of the irre-
ducible vertices and the equivalent hierarchy of integro-differential equations dis-
cussed in Sects. 7.3 and 7.4 are very complicated mathematical objects which usu-
ally cannot be solved exactly.1 It is therefore important to develop reliable approxi-
mation strategies for solving these equations. Roughly, two different types of strate-
gies have been developed. The first is based on a suitable truncation of the hierarchy
of integro-differential equations for the vertices. This vertex expansion approach
was pioneered by Morris (1994) and has been extensively used in the condensed
matter community. The second approximation strategy, which has been preferen-
tially used in field theory and statistical mechanics (see for example the review by
Berges et al. (2002)), is based on the expansion of the functional ΓΛ[Φ̄] in powers
of gradients of the field Φ̄. We first discuss in this chapter the vertex expansion, and
then give in Chap. 9 a brief but self-contained introduction to the gradient expansion.

For simplicity, we shall explain these methods using the classical ϕ4-theory with
action SΛ0 [ϕ] defined in Eqs. (2.61) and (2.65) as an example. This is sufficient to
understand the basic ideas underlying these two different approximation strategies.2

Recall that in Sect. 2.2 we have derived the action SΛ0 [ϕ] microscopically from the
Ising model. The FRG flow equations for the classical ϕ4-theory can be obtained
as a special case of the general flow equations derived in Chap. 7: our superfield
Φα has then only a single component ϕ(k), and the superlabel α corresponds to
the wave vector k, or alternatively to points r in D-dimensional space. As dis-
cussed in Sect. 7.4, in the ordered phase it is convenient to consider the momentum-
independent part of the inverse Gaussian propagator as part of the interaction S1[ϕ].
Introducing a cutoff Λ into the Gaussian propagator as discussed in Sect. 7.1, the
action of our model can be written as

S[ϕ] = S0,Λ[ϕ] + S1[ϕ] , (8.1)

1 In Sect. 11.5 we shall give a nontrivial example where the exact hierarchy of FRG flow equations
can be solved exactly using Ward identities.
2 In Chap. 9 we shall also analyze the generalization of our scalar ϕ4-theory to an N -component
field theory.

Kopietz, P. et al.: Vertex Expansion. Lect. Notes Phys. 798, 209–232 (2010)
DOI 10.1007/978-3-642-05094-7 8 c© Springer-Verlag Berlin Heidelberg 2010
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with the cutoff-dependent Gaussian part

S0,Λ[ϕ] = 1

2

∫
k

G−1
0,Λ(k)ϕ(−k)ϕ(k) , (8.2)

and the cutoff-independent interaction,

S1[ϕ] = V f0 + r0

2

∫
k
ϕ(−k)ϕ(k)

+u0

4!

∫
k1

∫
k2

∫
k3

∫
k4

(2π )Dδ(k1 + k2 + k3 + k4)ϕ(k1)ϕ(k2)ϕ(k3)ϕ(k4) . (8.3)

Here, we have used again the notation
∫

k = ∫
d Dk

(2π)D . For simplicity, we set the
external magnetic field in Eq. (2.61) equal to zero. If we use a multiplicative cutoff
with a smoothed step function Θε(|k| −Λ) as shown in Fig. 7.1, then

G0,Λ(k) = Θε(|k| −Λ)

c0k2
. (8.4)

For ε → 0 we obtain a sharp momentum shell cutoff, limε→0Θε(|k|−Λ) = Θ(|k|−
Λ). It turns out that in the symmetry-broken phase the nonanalyticity of the sharp
cutoff can lead to technical complications (Berges et al. 2002, Sinner et al. 2008), so
that in this case it is better to introduce the cutoff function additively in the inverse
propagator as in Eq. (7.5),

G−1
0,Λ(k) = c0k2 + RΛ(k) . (8.5)

As already mentioned in the footnote after Eq. (7.20) in Sect. 7.1, a convenient
choice for the cutoff function RΛ(k) is (Litim 2001)

RΛ(k) = (1 − δk,0)
c0Λ

2

Zl
R(k2/Λ2) , R(x) = (1 − x)Θ(1 − x) , (8.6)

where Zl is the flowing wave function renormalization factor defined in Eqs. (4.57)
and (4.62). The factor 1 − δk,0 in Eq. (8.6) is introduced to satisfy Eq. (7.92) in the
ordered phase where ϕk=0 has a finite expectation value.

8.1 Vertex Expansion for Classical ϕ4-Theory

To derive the vertex expansion for the classical ϕ4-theory given above, it is conve-
nient to work in momentum space. All superfield matrices of Chap. 7 should then
be understood as infinite matrices in the momentum labels. The matrix elements of
the free superfield Green function are given by

[G0,Λ]kk′ = −(2π )Dδ(k + k′)G0,Λ(k) , (8.7)
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where the minus sign on the right-hand side is due to the fact that the sign of the
G−1

0,Λ(k) in the Gaussian action (8.1) is different from the sign convention in the

definition of our general superfield propagator G−1
0,Λ in Eq. (7.23). By translational

invariance, the Green function of the interacting system with running cutoff Λ has
a similar structure,

[GΛ]kk′ = −(2π )Dδ(k + k′)GΛ(k) , (8.8)

and the self-energy matrix is of the form

[ΣΛ]kk′ = (2π )Dδ(k + k′)ΣΛ(k′) , (8.9)

with

G−1
Λ (k) = G−1

0,Λ(k) +ΣΛ(k) . (8.10)

Our exact FRG flow equation (7.87) for the generating functional ΓΛ[ϕ̄0; δϕ̄] of
the irreducible vertices (including the possibility of symmetry breaking) reduces
then to

∂ΛΓΛ[ϕ̄0; δϕ̄] = 1

2

∫
k

[
∂ΛG−1

0,Λ(k)
] [ δ
δϕ̄

⊗ δ

δϕ̄
ΓΛ[ϕ̄0; δϕ̄] − [G0,Λ]−1

]−1

k,−k

+ ∂Λ lnZ0,Λ

= 1

2

∫
k

ĠΛ(k)

[
UΛ[ϕ̄0; δϕ̄]

(
1 − GΛUΛ[ϕ̄0; δϕ̄]

)−1
]

k,−k

+ V

2

∫
k

Ġ0,Λ(k)ΣΛ(k)

1 + G0,Λ(k)ΣΛ(k)
. (8.11)

Here, the factor of volume V in last term arises from the regularized momentum
space δ-function (2π )Dδ(k = 0) → V , the noninteracting single-scale propagator
in momentum space is Ġ0,Λ(k) = ∂ΛG0,Λ(k), and the corresponding interacting
single-scale propagator is given by (see Eq. (7.64)),

ĠΛ(k) = −GΛ(k)
[
∂ΛG−1

0,Λ(k)
]

GΛ(k) = Ġ0,Λ(k)

[1 + G0,Λ(k)ΣΛ(k)]2
. (8.12)

The functional UΛ is defined in general in Eq. (7.85); for our ϕ4-theory the matrix
elements of UΛ[ϕ̄0; δϕ̄] in momentum space are

(
UΛ[ϕ̄0; δϕ̄]

)
kk′ = δ2ΓΛ[ϕ̄0; δϕ̄]

δϕ̄(k)δϕ̄(k′)
− (2π )Dδ(k + k′)ΣΛ(k) . (8.13)
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8.1.1 Exact FRG Flow Equations

Let us now explicitly write down the first few equations of the exact hierarchy of
FRG flow equations for the irreducible vertices. Therefore, we simply specify the
general flow equations derived in Sect. 7.4 to the case of the ϕ4-theory considered
in this chapter. The flow of the interaction correction to the free energy is given by
the field-independent part of Eq. (8.11) (see also Eqs. (7.70) and (7.89)),

∂ΛΓ
(0)
Λ [ϕ̄0] = V

2

∫
k

Ġ0,Λ(k)ΣΛ(k)

1 + G0,Λ(k)ΣΛ(k)
. (8.14)

To write down the FRG flow equations for the higher-order vertices, it is convenient
to explicitly factor out the momentum-conserving δ-function from the irreducible
vertices with n ≥ 2 external legs,

Γ
(n)
Λ,k1...kn

[ϕ̄0] = (2π )Dδ(k1 + . . .+ kn)Γ (n)
Λ (k1, . . . , kn) , (8.15)

where on the right-hand side we suppress the dependence on ϕ̄0. Similarly, we factor
out the δ-function from the vacuum expectation value, defining

ϕ̄0
Λ(k) = (2π )Dδ(k)ϕ̄0

Λ . (8.16)

Our general FRG equation (7.94) for the flowing vacuum expectation value then
reduces to

ΣΛ(0)∂Λϕ̄
0
Λ = −1

2

∫
k

ĠΛ(k)Γ (3)
Λ (k,−k, 0) , (8.17)

and the general flow equation (7.73) for the two-point vertex reduces to the follow-
ing exact FRG equation for the self-energy ΣΛ(k) = Γ

(2)
Λ (k,−k),

∂ΛΣΛ(k) = 1

2

∫
k′

ĠΛ(k′)Γ (4)
Λ (k′,−k′, k,−k) + (∂Λϕ̄

0
Λ)Γ (3)

Λ (k,−k, 0)

−
∫

k′
ĠΛ(k′)GΛ(k′ + k)Γ (3)

Λ (k,−k − k′, k′)Γ (3)
Λ (−k′, k + k′,−k) . (8.18)

A generalization of Eq. (8.18) to the O(N )-symmetric case will be given in Eq. (9.46).
Recall that with our normalization of G0,Λ(k) in Eqs. (8.4) and (8.5), the self-energy
at the initial scale Λ = Λ0 is simply given by the momentum-independent part of
the inverse Gaussian propagator (see Eqs. (2.75) and (2.78)),

ΣΛ0 (k) =
{

r0 for T > Tc

−2r0 for T < Tc
. (8.19)
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Obviously, the flow of the self-energy is driven by the three- and four-legged ver-
tices, which satisfy even more complicated flow equations that can be obtained as
special cases of our general FRG flow equation (7.91). For later reference, let us
here explicitly write down the exact FRG flow equation for the four-legged vertex
Γ

(4)
Λ (k1, k2, k3, k4) in the symmetric phase, where all odd vertices and the vacuum

expectation value ϕ̄0
Λ vanish,

∂ΛΓ
(4)
Λ (k1, k2, k3, k4) = 1

2

∫
k

ĠΛ(k)Γ (6)
Λ (k,−k, k1, k2, k3, k4)

−
∫

k

{
ĠΛ(k)GΛ(−k − k1 − k2)Γ (4)

Λ (k1, k2, k,−k − k1 − k2)

×Γ (4)
Λ (−k − k1 − k2, k, k3, k4) + (k2 ↔ k3) + (k2 ↔ k4)

}
. (8.20)

This equation is a special case of our general superfield FRG flow equation (7.75)
for the effective interaction in the absence of vacuum expectation values shown
graphically in Fig. 7.5.

8.1.2 Rescaled Flow Equations

In order to classify the vertices according to their relevance and to develop approxi-
mation strategies based on relevance, it is useful to properly rescale the above exact
flow equations and rewrite them in dimensionless form. The rescaled form of the
FRG flow equations is also most convenient to discuss fixed points of the RG. Let
us therefore introduce the dimensionless vertices

Γ̃
(n)

l (q1, . . . , qn) = ΛD( n
2 −1)−n

(
Zl

c0

)n/2

Γ
(n)
Λ (Λq1, . . . , Λqn) , (8.21)

which are considered to be functions of the logarithmic flow parameter

l = − ln(Λ/Λ0) , (8.22)

and the dimensionless rescaled momenta

qi = ki

Λ
. (8.23)

The flowing wave function renormalization factor Zl is defined in analogy with
Eq. (4.97) via

Zl = 1

1 + ∂ΣΛ(k)
∂(c0k2)

∣∣∣
k=0

. (8.24)
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Note that the power of Λ on the right-hand side of Eq. (8.21) can be identified
with the canonical dimension of the vertex which follows from simple dimensional
analysis. In particular, the dimensionless two-point vertex is related to the flowing
irreducible self-energy via the relation

Γ̃
(2)

l (q,−q) ≡ Γ̃
(2)

l (q) = Zl

c0Λ2
ΣΛ(Λq) , (8.25)

where we have used the fact that the vertex is multiplied by a momentum conserving
δ-function so that we may set q1 = −q2 = q. Combining Eqs. (8.24) and (8.25),
the flowing wave function renormalization factor can also be written as

Zl = 1 − ∂Γ̃
(2)

l (q)

∂q2

∣∣∣∣∣
q=0

. (8.26)

In the symmetry-broken phase, we should complement Eq. (8.21) by the rescaled
vacuum expectation value Ml , which we define via

ϕ̄0
Λ = Λ

D
2 −1

(
Zl

c0

)1/2

Ml , (8.27)

implying

Λ∂Λϕ̄
0
Λ = Λ

D
2 −1

(
Zl

c0

)1/2 [ D − 2 + ηl

2
− ∂l

]
Ml , (8.28)

where ηl = −∂l ln Zl is the flowing anomalous dimension. Using Eq. (8.24) we can
relate ηl to the FRG flow equation for the self-energy,

ηl = −∂l Zl

Zl
= −ZlΛ lim

k→0

∂[∂ΛΣΛ(k)]

∂(c0k2)
. (8.29)

Introducing the rescaled propagator

G̃l(q) = c0Λ
2

Zl
GΛ(Λq) , (8.30)

and the corresponding single-scale propagator

˙̃Gl(q) = −c0Λ
3

Zl
ĠΛ(Λq) , (8.31)
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the rescaled version of the order-parameter flow equation (8.17) assumes the form

∂l Ml = D − 2 + ηl

2
Ml − 1

2

∫
q

˙̃Gl (q)
Γ̃

(3)
l (q,−q, 0)

Γ̃
(2)

l (0)
. (8.32)

Similarly, we obtain for the rescaled version of the FRG flow equation (8.18) for the
self-energy

∂l Γ̃
(2)

l (q) = (2 − ηl − q∂q )Γ̃ (2)
l (q) + Γ̇

(2)
l (q) , (8.33)

with

Γ̇
(2)

l (q) = − Zl

c0Λ
∂ΛΣΛ(k)

= 1

2

∫
q ′

˙̃Gl (q ′)Γ̃ (4)
l (q ′,−q ′, q,−q) − Γ̃

(3)
l (q,−q, 0)

[
∂l − D − 2 + ηl

2

]
Ml

−
∫

q ′

˙̃Gl(q ′)G̃l(q ′ + q)Γ̃ (3)
Λ (q,−q − q ′, q ′)Γ̃ (3)

Λ (−q ′, q + q ′,−q) . (8.34)

In the second term on the right-hand side of this expression, we may eliminate the
flowing order parameter Ml using Eq. (8.32) and obtain

Γ̇
(2)

l (q) = 1

2

∫
q ′

˙̃Gl(q ′)

⎡
⎢⎣Γ̃ (4)

l (q ′,−q ′, q,−q) −
[
Γ̃

(3)
l (q,−q, 0)

]2

Γ̃
(2)

l (0)

⎤
⎥⎦

−
∫

q ′

˙̃Gl (q ′)G̃l (q ′ + q)Γ̃ (3)
Λ (q,−q − q ′, q ′)Γ̃ (3)

Λ (−q ′, q + q ′,−q) . (8.35)

In the symmetric phase the three-legged vertex vanishes so that only the first term
on the right-hand side of Eq. (8.35) survives. Using the exact relation (8.29), we see
that the coefficient of the quadratic term in the expansion of Γ̇ (2)

l (q) in powers of q
can be identified with the flowing anomalous dimension,

ηl = lim
q→0

∂Γ̇
(2)

l (q)

∂q2
. (8.36)

From Eqs. (8.35) and (8.36) it is obvious that in the symmetric phase the anomalous
dimension is determined by the momentum dependence of the four-point vertex,
while in the symmetry-broken phase one obtains already a finite result for ηl if one
neglects the momentum dependence of the three- and four-point vertices (Berges
et al. 2002, Sinner et al. 2008).

For later reference, we also give the flow equation for the rescaled four-point
vertex, which is defined by setting n = 4 in Eq. (8.21),
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Γ̃
(4)

l (q1, q2, q3, q4) = ΛD−4

(
Zl

c0

)2

Γ
(4)
Λ (Λq1,Λq2,Λq3,Λq4) . (8.37)

In analogy with the rescaled flow equation (8.33) for the two-point vertex, we write
the corresponding flow equation for the four-point vertex in the form

∂l Γ̃
(4)

l (q1, q2, q3, q4) =
[
4 − D − 2ηl −

4∑
i=1

qi · ∇qi

]
Γ̃

(4)
l (q1, q2, q3, q4)

+ Γ̇
(4)

l (q1, q2, q3, q4) . (8.38)

In the symmetric phase, where all odd vertices and the order parameter vanish, the
inhomogeneity in the second line of Eq. (8.38) is

Γ̇
(4)

l (q1, q2, q3, q4) = −ΛD−4 Z2
l

c2
0

Λ∂ΛΓ
(4)
Λ (k1, k2, k3, k4)

= 1

2

∫
q

˙̃Gl (q)Γ̃ (6)
l (q,−q, q1, q2, q3, q4)

−
∫

q

{
˙̃Gl (q)G̃l(−q − q1 − q2)Γ̃ (4)

l (q1, q2, q,−q − q1 − q2)

×Γ̃ (4)
l (−q − q1 − q2, q, q3, q4) + (q2 ↔ q3) + (q2 ↔ q4)

}
. (8.39)

In general, the exact FRG flow equation for the rescaled n-point vertex Γ̃ (n)
l (q1, . . . ,

qn) defined in Eq. (8.21) is of the form

∂l Γ̃
(n)

l (q1, . . . , qn) =
[
n − D

(n

2
− 1

)
− n

2
ηl −

n∑
i=1

qi · ∇qi

]
Γ̃

(n)
l (q1, . . . , qn)

+ Γ̇
(n)

l (q1, . . . , qn) , (8.40)

where the function Γ̇ (n)
l (q1, . . . , qn) depends on the vertices Γ̃ (m)

l (q1, . . . , qm) with
m ≤ n + 2.

Finally, we note that first-order partial differential equations of the type given in
Eqs. (8.33) and (8.38) can be converted into equivalent integral equations. By direct
differentiation it is easy to see that the FRG flow equation (8.33) for the rescaled
two-point vertex is equivalent to the following integral equation (Busche et al. 2002,
Hasselmann et al. 2004),

Γ̃
(2)

l (q) = e2l−∫ l
0 dτητ Γ̃

(2)
l=0(e−l q) +

∫ l

0
dt e2t−∫ l

l−t dτητ Γ̇
(2)

l−t (e
−t q)

= e2l−∫ l
0 dτητ

[
Γ̃

(2)
l=0(e−l q) +

∫ l

0
dl ′e−2l ′+∫ l′

0 dτητ Γ̇
(2)

l ′ (e−(l−l ′)q)

]
,

(8.41)
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where in the second line we have substituted t = l − l ′. Similarly, the rescaled flow
equation (8.38) for the four-point vertex is equivalent to

Γ̃
(4)

l (q1, q2, q3, q4) = e(4−D)l−2
∫ l

0 dτητ Γ̃
(4)

l=0(e−l q1, e−l q2, e−l q3, e−l q4)

+
∫ l

0
dt e(4−D)t−2

∫ l
l−t dτητ Γ̇

(4)
l−t (e

−t q1, e−t q2, e−t q3, e−t q4) . (8.42)

In general, the partial differential equation (8.40) for the rescaled n-point vertex is
equivalent to the integral equation (Hasselmann et al. 2004)

Γ̃
(n)

l (q1, . . . , qn) = e[n−D( n
2 −1)]l− n

2

∫ l
0 dτητ Γ̃

(n)
l=0(e−l q1, . . . , e−l qn)

+
∫ l

0
dt e[n−D( n

2 −1)]t− n
2

∫ l
l−t dτητ Γ̇

(n)
l−t (e

−t q1, . . . , e−t qn) . (8.43)

8.1.3 FRG Flow Equations for a Sharp Momentum Cutoff

So far we have not specified the cutoff procedure. In order to make contact with the
simple one-loop momentum shell RG discussed in Sect. 4.2, we now choose a sharp
multiplicative momentum shell cutoff, which amounts to setting

G0,Λ(k) = Θ(|k| −Λ)

c0k2
, (8.44)

see Eqs. (7.3) and (7.12). For the corresponding rescaled propagator we obtain from
Eq. (8.30)

G̃0,l(q) = Θ(|q| − 1)

q2
, (8.45)

while the single-scale propagator associated with Eq. (8.44) is according to Eq. (7.64)
given by the formal expression

ĠΛ(k) = ∂ΛG0,Λ(k)

[1 + G0,Λ(k)ΣΛ(k)]2
= −δ(|k| −Λ)

c0k2
[
1 + Θ(|k|−Λ)

c0 k2 ΣΛ(k)
]2 . (8.46)

Obviously, this expression is ambiguous because the Dirac δ-function δ(|k| −Λ) is
multiplied by a factor containing the step function Θ(|k| − Λ). To properly define
Eq. (8.46), we should smooth out the step function Θ(|k| − Λ) → Θε(|k| − Λ)
(as shown in Fig. 7.1), and then take the limit of vanishing step width ε → 0 only
after we have solved the FRG equations for finite ε. It turns out, however, that in
the symmetric phase the cutoff dependence of the self-energy ΣΛ(k) does not con-
tain any additional step function, so that we explicitly know the dependence of the
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right-hand side of Eq. (8.46) on the step function. We can therefore use the Morris–
Lemma (Morris 1994) given in Eq. (7.15) to unambiguously define the single-scale
propagator for a sharp momentum cutoff,

ĠΛ(k) = −δ(|k| −Λ)

c0k2

∫ 1

0
dt

1[
1 + t ΣΛ(k)

c0 k2

]2

= −δ(|k| −Λ)

c0k2

1

1 + ΣΛ(k)
c0 k2

= − δ(|k| −Λ)

c0Λ2 +ΣΛ(k)
. (8.47)

For the corresponding rescaled single-scale propagator we then obtain from the def-
inition (8.31),

˙̃Gl (q) = δ(|q| − 1)

Zl + Γ̃
(2)

l (q)
. (8.48)

Note that the Dirac δ-function restricts the set of wave vectors where ĠΛ(k) is
nonzero to the cutoff scale Λ, which is the reason why ĠΛ(k) deserves to be called
the single-scale propagator.

The flow equation (8.14) for the free energy Γ (0)
Λ [ϕ̄0] involves a combination

of δ- and Θ-functions which is different from the combination appearing in the
single-scale propagator. Using

δ(x)A[1 +Θ(x)A]−1 = δ(x)
∫ 1

0
dt A[1 + t A]−1 = δ(x) ln(1 + A) , (8.49)

we obtain from Eq. (8.14) in the sharp cutoff limit

∂ΛΓ
(0)
Λ [ϕ̄0] = − V

2

∫
k
δ(|k| −Λ)

∫ 1

0
dt
ΣΛ(k)

c0k2

1[
1 + t ΣΛ(k)

c0 k2

]
= − V

2

∫
k
δ(|k| −Λ) ln

[
c0Λ

2 +ΣΛ(k)

c0Λ2

]
. (8.50)

An obvious advantage of working with a sharp momentum cutoff is that the δ-
function can be used to get rid of the integration over the modulus of k. On the other
hand, the nonanalyticity of the sharp cutoff can give rise to unphysical singularities
in the momentum dependence of the vertices. Although in principle one can take
care of these terms by introducing appropriate coupling constants (Hasselmann et al.
2004), it is rather difficult to analyze FRG flow equations in the enlarged coupling
space. Usually it is then better to work with a smooth cutoff, where the vertices are
regular functions of the external momenta (Sinner et al. 2008).
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8.2 Recovering the Momentum Shell Results from the FRG

Let us now show how to recover from the above exact FRG flow equations the
one-loop flow equations (4.71) and (4.72) for the coupling constants r̄l and ūl ,
which we have derived in Chap. 4 within the framework of the simple Wilsonian
momentum shell RG. Therefore, we identify the coupling constants r̄l and ūl defined
in Eq. (4.70) with the following zero-momentum limits of the flowing self-energy
ΣΛ(k) and the flowing effective interaction Γ (4)

Λ (k1, k2, k3, k4),

r̄l = ZlrΛ
c0Λ2

, (8.51)

ūl = K D
Z2

l uΛ
c2

0Λ
4−D

, (8.52)

where Λ = Λ0e−l , and the dimensionful couplings rΛ and uΛ are

rΛ = ΣΛ(k = 0) , (8.53)

uΛ = Γ
(4)
Λ (0, 0, 0, 0) . (8.54)

The exact RG flow equations for rΛ and uΛ are easily obtained from Eqs. (8.18) and
(8.20) by setting all external momenta equal to zero. In the symmetric phase where
all odd vertices vanish these equations reduce to

∂ΛrΛ = 1

2

∫
k

ĠΛ(k)Γ (4)
Λ (k,−k, 0, 0) , (8.55)

∂ΛuΛ = 1

2

∫
k

ĠΛ(k)Γ (6)
Λ (k,−k, 0, 0, 0, 0)

− 3
∫

k
ĠΛ(k)GΛ(−k)Γ (4)

Λ (0, 0, k,−k)Γ (4)
Λ (−k, k, 0, 0) . (8.56)

The right-hand sides of these exact flow equations depend on the momentum-
dependent vertices with four and six external legs. Moreover, the propagator GΛ(k)
and the single-scale propagator ĠΛ(k) depend on the flowing momentum-dependent
self-energy ΣΛ(k), so that further approximations are necessary to obtain from
Eqs. (8.55) and (8.56) a closed set of equations for rΛ and uΛ. To recover the
one-loop momentum shell results derived in Sect. 4.2.1, it is sufficient to completely
neglect the contribution from the six-point vertex Γ (6)

Λ in Eq. (8.56). Moreover, we
may also neglect the momentum dependence of the self-energy and of the four-point
vertices on the right-hand side of Eqs. (8.55) and (8.56), which amounts to approx-
imating

ΣΛ(k) ≈ ΣΛ(0) = rΛ , (8.57)

Γ
(4)
Λ (k,−k, 0, 0) ≈ Γ

(4)
Λ (0, 0, 0, 0) = uΛ . (8.58)
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Using for simplicity a sharp momentum cutoff, we may approximate the single-scale
propagator in Eq. (8.55) by

ĠΛ(k) ≈ −δ(|k| −Λ)

c0k2 + rΛ
. (8.59)

The momentum integration is then trivial and Eq. (8.55) reduces to

∂ΛrΛ = −uΛ
2

∫
d Dk

(2π )D

δ(|k| −Λ)

c0k2 + rΛ
= − K D

2

ΛD−1uΛ
c0Λ2 + rΛ

. (8.60)

To perform the momentum integration in Eq. (8.56) one should keep in mind that
within our approximation the flowing propagator for sharp cutoff is of the form
(see Eq. (8.44))

GΛ(k) = [
G−1

0,Λ(k) +ΣΛ(k)
]−1 ≈ Θ(|k| −Λ)

c0k2 +Θ(|k| −Λ)rΛ
, (8.61)

so that Eq. (8.56) reduces to

∂ΛuΛ = −3u2
Λ

∫
d Dk

(2π )D
ĠΛ(k)

Θ(|k| −Λ)

c0k2 +Θ(|k| −Λ)rΛ
. (8.62)

To properly remove the ambiguities inherent in the product of the δ-function carried
by ĠΛ(k) and the Θ-function-dependent factor, we go back to the representation
(8.46) of the single-scale propagator for a sharp cutoff and use the Morris–Lemma
(7.15),

∂ΛuΛ = 3u2
Λ

∫
d Dk

(2π )D
δ(|k| −Λ)

∫ 1

0
dt t

c0Λ
2

(c0Λ2 + t rΛ)3

= 3K D

2

ΛD−1u2
Λ

(c0Λ2 + rΛ)2
. (8.63)

We now introduce the dimensionless couplings r̄l and ūl defined in Eqs. (8.51) and
(8.52). Keeping in mind that within our approximation Zl = 1 and using the fact
that Λ = Λ0e−l implies Λ∂Λ = −∂l , it is easy to see that Eq. (8.60) reduces to

∂l r̄l = 2r̄l + 1

2

ūl

1 + r̄l
, (8.64)

while Eq. (8.63) becomes

∂l ūl = (4 − D)ūl − 3

2

ū2
l

(1 + r̄l)2
. (8.65)
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These approximate flow equations are identical with the flow equations (4.71) and
(4.72) derived in Sect. 4.2 using the simple Wilsonian momentum shell method.
Note that while we have worked here with the unrescaled flow equations and have
introduced dimensionless rescaled variables only in the end, we could have obtained
the same results directly from the rescaled flow equations given in Sect. 8.1.2. In
fact, we will use the latter strategy in the next section to calculate the momentum
dependence of the self-energy.

8.3 Momentum-Dependent Self-Energy in the Symmetric Phase

8.3.1 Scaling Functions

One advantage of the FRG is that the exact hierarchy of flow equations for the
momentum-dependent vertices can be used to obtain all vertices at finite wave vec-
tors (and for quantum systems also at finite frequencies). For example, at the critical
point the self-energy Σ(k) of ϕ4-theory is expected to scale as Σ(k) ∝ |k|2−η for
|k| → 0, where the exponent η is finite for D < 4. For sufficiently small |k|
the propagator then scales as G(k) ∼ 1/Σ(k) ∝ |k|−2+η, see Eq. (1.14) and the
discussion in Sect. 4.2.3. But how large is the regime in momentum space where
the self-energy scales as |k|2−η? Clearly, there must be a characteristic interaction-
dependent crossover scale kc where the k-dependence of Σ(k) crosses over from
the asymptotic long-wavelength regime to another short-wavelength regime charac-
terized by some different momentum dependence which may not be perturbatively
accessible.3 In fact, if the crossover scale kc is smaller than the microscopic scale
Λ0 ≈ 1/a set by the lattice spacing of the underlying lattice model, then it should
be possible to describe the momentum dependence of the self-energy at the critical
point in terms of a dimensionless universal scaling function σ∗(y),

Σ(k) = c0k2
cσ∗

( |k|
kc

)
, T = Tc . (8.66)

More generally, away from the critical point where the correlation length ξ is finite
Eq. (8.66) should be replaced by a two-parameter scaling function (Hasselmann
et al. 2007, Sinner et al. 2008),

Σ(k) = c0k2
cσ

(
|k|ξ, |k|

kc

)
, (8.67)

where σ∗(y) = σ (∞, y). Obviously, for y 	 1 the critical scaling function
σ∗(y) must be proportional to y2−η. In this asymptotic long-wavelength regime the

3 We shall show shortly that the scale kc can be identified with the Ginzburg scale discussed after
Eq. (4.73) in Sect. 4.2.2.
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momentum dependence of the self-energy is essentially determined by the scaling
properties of the relevant couplings in the vicinity of the critical point. On the other
hand, the behavior of the critical scaling function in the regime y � 1 is not deter-
mined by the scaling in the vicinity of the critical point, so that for a microscopic
calculation of σ∗(y) in this regime one has to take into account couplings which
are irrelevant at the critical point. At the first sight it seems that for |k| � kc one
can obtain Σ(k) by simple perturbation theory. However, for D < 4 perturbation
theory is still infrared divergent in this regime, so that one needs a nonperturbative
approach (such as the FRG) to take into account also the irrelevant couplings which
determine the behavior of the self-energy for |k| � kc.

It is worth pointing out that the problem of calculating the momentum depen-
dence of Σ(k) of momenta outside the asymptotic long-wavelength regime is not
entirely academic: as shown by Baym et al. (1999, 2001), the interaction-induced
shift of the critical temperature of the interacting Bose gas in three dimensions is
essentially determined by the self-energy of the classical O(2)-model (i.e., a clas-
sical ϕ4-theory with a two-component field) for momenta of the order of kc. It is
therefore important to have quantitatively accurate calculations of the self-energy
of the classical O(2)-model in this regime. This problem has first been addressed
within the framework of the FRG in Ledowski et al. (2004) and Hasselmann et al.
(2004) using the truncation of the FRG vertex expansion described below. Later
Blaizot et al. (2006a) proposed a more sophisticated truncation of the FRG flow
equations which is based on the fact that the derivatives of the irreducible n-point
vertices with respect to a uniform external field can be related to the irreducible
vertices with one additional external leg carrying zero momentum. This truncation,
which is sometimes called the BMW approximation, has been shown to give very
accurate results for critical exponents and momentum-dependent correlation func-
tions (Blaizot et al. 2006b,c, Benitez et al. 2009). On the other hand, the numerical
value for the Tc-shift for the weakly interacting Bose gas obtained within the BMW
approximation differs only by a few percent from the value obtained by means of
the simpler truncation described in the following subsection.

8.3.2 Truncation Strategy Based on Relevance

We now develop a simple truncation of the FRG flow equations which yields the
momentum dependence of the self-energy for all values of the external momenta.
We focus in this section on the symmetric phase, where all odd vertices vanish.
The symmetry-broken phase will be discussed in Sect. 8.4. To justify our truncation
procedure, it is convenient to start from the rescaled version of the exact RG flow
equations given in Sect. 8.1.2. Consider the exact RG flow equation for the rescaled
four-point vertex Γ̃ (4)

l (q1, q2, q3, q4) in the paramagnetic phase given in Eqs. (8.38)
and (8.39). The advantage of working with the rescaled flow equations is that we
can directly read off the canonical dimensions of the couplings and thus classify
all couplings according to their relevance with respect to a given fixed point. For
example, from the first term on the right-hand side of Eq. (8.38) it is obvious that
the momentum-independent part of the rescaled four-point vertex,
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Γ̃
(4)

l (0, 0, 0, 0) = Z2
l uΛ

c2
0Λ

4−D
, (8.68)

has canonical dimension 4 − D and is therefore relevant at the Gaussian fixed point
in D < 4. If we expand Γ̃ (4)

l (q1, q2, q3, q4) in powers of the external momenta, then
the operator

∑
i qi · ∇qi in Eq. (8.38) reduces the scaling dimension of couplings

proportional to qn by n, so that the coupling constants multiplying larger powers
of the external momenta in the expansion of the vertices are increasingly irrelevant.
Nevertheless, these irrelevant terms are important to describe the crossover from the
short-wavelength regime |k| � kc to the critical long-wavelength scaling regime
|k| 	 kc. It is therefore important to retain infinite powers of momenta in the
expansion of the vertices in order to correctly describe this crossover.

Our aim is to develop a truncation of the exact FRG flow equations (8.33) and
(8.38) for the two-point vertex and the four-point vertex which gives a numeri-
cally accurate interpolation formula for the self-energy Σ(k) for all k. Consider
first the inhomogeneity Γ̇ (4)

l (q1, q2, q3, q4) in the rescaled flow equation for the
four-point vertex, see Eqs. (8.38) and (8.39). We truncate the exact expression for
Γ̇

(4)
l (q1, q2, q3, q4) given in Eq. (8.39) by replacing the (a priori unknown) func-

tions Γ̃ (2)
l (q), Γ̃ (4)

l (q1, q2, q3, q4) and Γ̃ (6)
l (q1, q2, q3, q4, q5, q6) appearing on the

right-hand side of Eq. (8.39) by their relevant and marginal parts (with respect to
the Gaussian fixed point). We shall refer to this strategy as truncation based on
relevance. In dimensions 3 < D < 4 this amounts to the following approximations
on the right-hand side of Eq. (8.39),

Γ̃
(2)

l (q) ≈ r̄l + (1 − Zl)q2 , (8.69a)

Γ̃
(4)

l (q1, q2, q3, q4) ≈ Γ̃
(4)

l (0, 0, 0, 0) ≡ ũl , (8.69b)

Γ̃
(6)

l (q1, q2, q3, q4, q5, q6) ≈ 0 . (8.69c)

Here the flowing coupling r̄l = Γ̃
(2)

l (0) = ZlΣΛ(0)/(c0Λ
2) has already been intro-

duced in Eq. (8.51), and the rescaled coupling constant ũl is related to the coupling
ūl defined in Eq. (8.52) via

ũl = ūl

K D
= Z2

l uΛ
c2

0Λ
4−D

. (8.70)

In D = 3 the momentum-independent part Γ̃ (6)
l (0, 0, 0, 0, 0, 0) = ṽl of the six-point

vertex has a vanishing canonical dimension and is therefore marginal if we neglect
the anomalous dimension. Moreover, if we work with a sharp momentum cutoff the
expansion of Γ̃ (4)

l (q1, q2, q3, q4) in powers of momenta contains linear terms whose
canonical dimensions also vanish in D = 3. Fortunately, these additional couplings
are marginally irrelevant in the sense that the finite flowing anomalous dimension
forces these coupling to flow to finite limiting values which can be absorbed by
re-defining the numerical values of the relevant couplings. It is therefore reasonable
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to use the truncation (8.69a)–(8.69c) even in three dimensions and neglect the above
mentioned marginally irrelevant couplings.4

If we approximate Zl ≈ 1 and set all external momenta equal to zero we recover
the flow equations (8.64) and (8.65) for the coupling constants r̄l and ūl . In our trun-
cation based on relevance we retain in addition the flowing anomalous dimension
ηl = −∂l ln Zl , so that the flow equation (8.64) for the momentum-independent part
of the rescaled two-point vertex should be replaced by

∂l r̄l = (2 − ηl)r̄l + 1

2

ūl

1 + r̄l
, (8.71)

while the flow equation for the momentum-independent part of the rescaled interac-
tion ūl = K Dũl reads

∂l ūl = (4 − D − 2ηl)ūl − 3

2

ū2
l

(1 + r̄l)2
. (8.72)

To obtain a closed system of flow equations, we need an additional equation for the
flowing anomalous dimension ηl , which in the symmetric phase is determined by the
momentum dependence of the four-point vertex Γ (4)

l (q1, q2, q3, q4), see Eqs. (8.35)
and (8.36). With our truncation (8.69a)–(8.69c) the function Γ̇ (4)

l (q1, q2, q3, q4)
appearing in the rescaled flow equation (8.39) for the four-point vertex is approxi-
mated by5

Γ̇
(4)

l (q1, q2, q3, q4) ≈ −ũ2
l [χ̇l(q1 + q2) + χ̇l(q1 + q3) + χ̇l(q1 + q4)] , (8.73)

4 It turns out that this truncation strategy yields an accurate result for the critical temperature Tc

of the weakly interacting Bose gas in three dimensions (Ledowski et al. 2004). On the other hand,
the momentum-independent part of the six-point vertex ṽl and the linear terms in the expansion
of the four-point vertex contribute substantially to the numerical value of the critical exponent
η (Hasselmann et al. 2004). However, the interaction correction to Tc is mainly dominated by
momenta of the order of the crossover scale kc, so that it depends only weakly on the precise value
of η. This seems to be the reason why the results for Tc based on the truncation (8.69a)–(8.69c) are
numerically accurate in D = 3.
5 In terms of unrescaled couplings the truncation (8.73) amounts to replacing the flow equation
(8.20) for the four-point vertex by

∂ΛΓ
(4)
Λ (k1, k2, k3, k4) = −u2

Λ [IΛ(k1 + k2) + IΛ(k1 + k3) + IΛ(k1 + k4)] ,

with

IΛ(k) =
∫

k′
ĠΛ(k′)GΛ(k′ + k) ,

and

GΛ(k) = ZlΘ(|k| −Λ)

c0k2 + rΛ
, ĠΛ(k) = − Zlδ(|k| −Λ)

c0Λ2 + rΛ
.
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with

χ̇l(q) =
∫

q ′

˙̃Gl (q ′)G̃l (q ′ + q) , (8.74)

and

G̃l(q) = Θ(|q| − 1)

q2 + r̄l
, ˙̃Gl(q) = δ(|q| − 1)

1 + r̄l
. (8.75)

A similar truncation has been used by Busche et al. (2002) to calculate the spectral
function of the Tomonaga–Luttinger model using FRG methods. For D = 3 the
integration in Eq. (8.74) can be carried out analytically (Hasselmann et al. 2004),

χ̇l(q) = K D
Θ(q2 − q1)

4(1 + r̄l)|q| ln

[
1 + r̄l + q2 + 2|q|q2

1 + r̄l + q2 + 2|q|q1

]
, (8.76)

where

q1 =
{−|q|/2 if |q| < 2

−1 if |q| > 2
, (8.77)

q2 =
{

1 if |q| < el − 1
e2l−1
2|q| − |q|

2 if |q| > el − 1
. (8.78)

In particular, for |q| ≤ min{2, el − 1} we have

χ̇l(q) = K D

4(1 + r̄l)|q| ln

[
(1 + |q|)2 + r̄l

1 + r̄l

]
. (8.79)

We may now substitute our approximate Eq. (8.73) into the exact integral equation
(8.42) for the rescaled four-point vertex to obtain an explicit formula relating the
flowing four-point vertex Γ̃ (4)

l (q1, q2, q3, q4) to the three running couplings r̄l, ūl ,
and Zl ,

Γ̃
(4)

l (q1, q2, q3, q4) ≈ e(4−D)l−2
∫ l

0 dτητ ũ0 −
∫ l

0
dt e(4−D)t−2

∫ l
l−t dτητ ũ2

l−t

× [
χ̇l−t (e

−t (q1 + q2)) + χ̇l−t (e
−t (q1 + q3)) + χ̇l−t (e

−t (q1 + q4))
]
. (8.80)

For the calculation of the self-energy it is useful to write Eq. (8.80) in a different
way. Using the fact that by definition Γ̃ (4)

l (0, 0, 0, 0) = ũl , we may explicitly sep-
arate from the right-hand side of Eq. (8.80) the momentum-dependent part of the
effective interaction,

Γ̃
(4)

l (q1, q2, q3, q4) = ũl + γ
(4)
l (q1, q2, q3, q4) , (8.81)
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where the flow of ũl = ūl/K D is determined by Eq. (8.72), and the momentum-
dependent part of the effective interaction is given by

γ
(4)
l (q1, q2, q3, q4) = −

∫ l

0
dt e(4−D)t−2

∫ l
l−t dτητ ũ2

l−t

[
δχ̇l−t (e

−t (q1 + q2))

+δχ̇l−t (e
−t (q1 + q3)) + δχ̇l−t (e

−t (q1 + q4))
]
, (8.82)

with

δχ̇l (q) = χ̇l(q) − χ̇l(0) . (8.83)

To calculate the rescaled two-point vertex, we need the flow function Γ̇ (2)
l (q) defined

in Eq. (8.35). Using the fact that in the symmetric phase all odd vertices vanish and
approximating the flowing effective interaction by Eqs. (8.81) and (8.82), we obtain
from Eq. (8.35) in the symmetric phase

Γ̇
(2)

l (q) = ũl

2

∫
q ′

˙̃Gl(q ′) + 1

2

∫
q ′

˙̃Gl(q ′)γ (4)
l (q ′,−q ′, q,−q)

= ūl

2(1 + r̄l)
−

∫
q ′

δ(|q ′| − 1)

1 + r̄l

∫ l

0
dt e(4−D)t−2

∫ l
l−t dτητ ũ2

l−tδχ̇l−t (e
−t (q ′ + q)) .

(8.84)

Next, we substitute our approximate result (8.84) into the exact relation (8.36)
between the flowing anomalous dimension ηl and the function Γ̇ (2)

l (q) to obtain the
following integral equation for ηl (Ledowski et al. 2004, Hasselmann et al. 2004),

ηl =
∫ l

0
dt K (l, t)ū2

l−t e
−2

∫ l
l−t dτητ , (8.85)

where the kernel K (l, t) is given by

K (l, t) = − 1

2D(1 + r̄l)

[
(D − 1)e−(D−3)t χ̇ ′

l−t (e
−t ) + e−(D−2)t χ̇ ′′

l−t (e
−t )

]
. (8.86)

Here χ̇ ′
l (q) = ∂χ̇l(q)/∂q and χ̇ ′′

l (q) = ∂2χ̇l(q)/∂q2 are the derivatives of the func-
tion χ̇l(q) defined in Eq. (8.74) with respect to q = |q|. Together with Eqs. (8.71)
and (8.72), the integral equation (8.85) forms a closed system of equations for the
three unknown functions ūl , r̄l , and ηl , which can easily be solved numerically.
If the initial value of r̄0 is fine-tuned such that the RG trajectory flows into the
Wilson–Fisher fixed point (for D < 4), then the limits η = liml→∞ ηl and ū∗ =
liml→∞ ūl are finite. In this case, Eq. (8.85) reduces to a self-consistency equation
for the critical exponent η,
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η = ū2
∗

∫ ∞

0
dt K (∞, t)e−2ηt . (8.87)

For small ε = 4 − D this yields the leading order result of the ε-expansion, η ≈ ε2

54
(Zinn-Justin 2002), while a numerical solution in three dimensions gives η ≈ 0.101
(Hasselmann et al. 2007). This is more than twice as large as the established value
η ≈ 0.036 for the three-dimensional Ising universality class (Pelissetto and Vicari
2002), indicating that our truncation is not sufficient to obtain quantitatively accurate
results for the critical exponents.

On the other hand, our truncation yields a reasonable interpolation formula for
the momentum-dependent self-energy Σ(k) for all momenta which are small com-
pared with the ultraviolet cutoff Λ0. Let us therefore go back to the integrated form
(8.41) of the exact FRG flow equation (8.33) for the rescaled two-point vertex
Γ̃

(2)
l (q) = ZlΣΛ(Λq)/(c0Λ

2). Introducing the momentum-dependent part of the
function Γ̇ (2)

l (q) appearing on the right-hand side of Eq. (8.33),

γ̇
(2)
l (q) = Γ̇

(2)
l (q) − Γ̇

(2)
l (0) , (8.88)

and keeping in mind that by definition Γ̃
(2)

l (0) = r̄l , it is easy to show from
Eq. (8.41) that the exact self-energy can be expressed as the following integral over
the entire RG trajectory (Hasselmann et al. 2007),

Σ(k)

Λ2
0

= lim
l→∞

e−2l r̄l

Zl
+

∫ ∞

0
dl e−2l+∫ l

0 dτητ γ̇
(2)
l (el k/Λ0) . (8.89)

Given our approximate result (8.84) for the function Γ̇ (2)(q), we have

γ̇
(2)
l (q) = −

∫ l

0
dt e(4−D)t−2

∫ l
l−t dτητ ũ2

l−t

×
∫

q ′
δ(|q ′| − 1)

[
δχ̇l−t (e

−t (q ′ + q)) − δχ̇l−t (e
−t q ′)

]
. (8.90)

Explicitly, we then obtain from Eq. (8.89),

Σ(k)

Λ2
0

= lim
l→∞

e−2l r̄l

Zl
−

∫ ∞

0
dl

e−2l+∫ l
0 dτητ

1 + r̄l

∫ l

0
dt e(4−D)t−2

∫ l
l−t dτητ ũ2

l−t

×
∫

q ′
δ(|q ′| − 1)

[
δχ̇l−t (e

−t q ′ + el−t k/Λ0)) − δχ̇l−t (e
−t q ′)

]
. (8.91)

The calculation of the momentum-dependent self-energy is now reduced to a three-
dimensional integration (two one-dimensional integrations over the RG flow param-
eters l and t , and one angular integration over the angle between q ′ and the external
wave vector q), which can easily be performed numerically (Ledowski et al. 2004,
Hasselmann et al. 2004, 2007).
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8.3.3 FRG Results for the Self-Energy Scaling Function

In order to extract from Eq. (8.91) the scaling functions σ∗(y) and σ (x, y) defined
in Eqs. (8.66) and (8.67), recall that slightly above the critical temperature the RG
flow as a function of the logarithmic flow parameter l exhibits three characteristic
regimes, as shown in Fig. 4.6 of Chap. 4. In the initial regime 0 < l � lc the
running couplings r̄l and ūl rapidly flow toward the fixed point (r̄∗, ū∗); then there
is an intermediate interval lc � l � l∗ where the RG trajectory remains almost
stationary in the vicinity of the fixed point; finally, for l � l∗ the RG trajectory
rapidly flows away from the fixed point so that the leading l-dependence of r̄l in
this regime is proportional to e2l , as given by the canonical dimension of r̄l . Note
that only in the vicinity of the critical point the asymptotic behavior is δr̄ ∝ el/ν .
Keeping in mind that according to Eq. (4.98) the correlation length ξ of the system
is related to the self-energy for vanishing wave vector via (see also the footnote in
Sect. 3.3.1)

c0

ξ 2
= ZΣ(0) = Z lim

Λ→0
rΛ = c0Λ

2
0 lim

l→∞
e−2l r̄l , (8.92)

we see that by construction the logarithmic scale l∗ is directly related to the correla-
tion length ξ of the system via (Hasselmann et al. 2007, Sinner et al. 2008)

e−2l∗ = lim
l→∞

e−2l r̄l = 1

(Λ0ξ )2
. (8.93)

At the critical point where ξ → ∞ the scale l∗ moves to infinity. On the other hand,
the scale lc, remains finite at the critical point. Recall that lc is defined in terms
of the RG time needed for the initial point in coupling space to reach the vicinity
of the fixed point. As already mentioned in Sect. 4.2.2, the corresponding scale
kc = Λ0e−lc can be identified with the Ginzburg scale, which sets an upper limit to
the regime in momentum space where the self-energy at the critical point exhibits
the asymptotic scaling Σ(k) ∝ |k|2−η. We are now in a position to justify this
identification by an explicit calculation of the momentum-dependent self-energy.
Introducing the dimensionless scaling variables

x = |k|ξ , y = |k|/kc , (8.94)

so that x/y = kcξ = el∗−lc , we may rewrite our formally exact integral represen-
tation (8.89) for the self-energy Σ(k) in the scaling form (8.67), with the scaling
function σ (x, y) explicitly given by

σ (x, y) = y2

Z x2
+

∫ ∞

0
dl e−2l+∫ l

0 dτητ γ̇
(2)
l (el−lc y) , (8.95)
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where we have written γ̇ (2)
l (|q|) = γ̇

(2)
l (q), using the fact that this function actually

depends only on |q|. The exact expression (8.95) is useful to discuss the scaling of
the self-energy at or close to the critical point. For simplicity, let us focus here on
the self-energy at the critical point T = Tc, where x → ∞ and σ (∞, y) ≡ σ∗(y)
can be identified with the critical scaling function defined in Eq. (8.66),

σ∗(y) =
∫ ∞

0
dl e−2l+∫ l

0 dτητ γ̇
(2)
l (el−lc y) . (8.96)

Substituting into this exact expression our approximate result (8.90) for the func-
tion γ̇ (2)

l (|q|) we obtain an explicit expression for the critical scaling function σ∗(y)
which is easily evaluated numerically. The result for D = 3 is shown in Fig. 8.1.
One clearly sees the crossover at y ≈ 1 from the critical y2−η-scaling to another
short-wavelength regime where σ∗(y) ∝ ln y in D = 3. Keeping in mind that
y ≈ 1 corresponds to |k| ≈ kc we have thus proven that the scale kc can indeed
be identified with the Ginzburg scale defining the upper boundary of the critical
regime in momentum space. Recall that in Sect. 4.2.2 we have introduced kc in
terms of the scale lc = ln(Λ0/kc) where the RG flow of the relevant couplings ūl

and r̄l approaches the vicinity of the critical fixed point, as shown in Fig. 4.6. That
the scale kc = Λ0e−lc defined in this way in terms of the RG flow of ūl and r̄l

can also be identified with the upper boundary of the momentum regime where the
self-energy exhibits critical scaling is a nontrivial result of our FRG calculation of
the critical scaling function.

Fig. 8.1 Numerical
evaluation of the critical
scaling function σ∗(y) defined
in Eq. (8.96) in D = 3, using
the approximation (8.90) for
the function γ̇ (2)

l (q)

C -
-C

8.4 Momentum-Dependent Self-Energy
in the Symmetry-Broken Phase

Finally, let us derive a closed system of FRG flow equations for the momentum-
dependent self-energy in the symmetry-broken phase T < Tc. Starting point is
again the system of exact FRG flow equations (8.17), (8.18), and (8.20) given in
Sect. 8.1.1. To motivate our truncation, it is useful to consider first the proper initial
values of the vertices of our theory in the symmetry-broken phase at scale Λ = Λ0.
Recall that for T < Tc we should shift the field according to ϕ(k) = ϕ̄0

Λ(k) + δϕ(k),
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where the average of δϕ(k) vanishes and ϕ̄0
Λ(k) = (2π )Dδ(k)ϕ̄0

Λ, see Eqs. (2.72)
and (8.16). For simplicity we write ϕ̄0

Λ0
= ϕ̄0 anticipating that the initial value of

the flowing order parameter ϕ̄0
Λ can be identified with the mean-field value of the

order parameter which we have already introduced in the Gaussian approximation
in Chapter 2.3, see Eq. (2.74). Substituting the above decomposition of the field into
our bare action S[ϕ] = S0,Λ[ϕ] + S1[ϕ] defined in Eqs. (8.1)–(8.3), we obtain for
the interaction part,

S1[ϕ̄0; δϕ] ≡ S1[ϕ → ϕ̄0 + δϕ]

= V
[

f0 + r0

2
ϕ̄2

0 + u0

4!
ϕ̄4

0

]
+ Γ

(1)
Λ0
δϕ0 + 1

2

∫
k
ΣΛ0 (k)δϕ−kδϕk

+ 1

3!

∫
k1

∫
k2

∫
k3

(2π )Dδ

(
3∑

i=1

ki

)
Γ

(3)
Λ0

(k1, k2, k3)δϕk1δϕk2δϕk3

+ 1

4!

∫
k1

. . .

∫
k4

(2π )Dδ

(
4∑

i=1

ki

)
Γ

(4)
Λ0

(k1, k2, k3, k4)δϕk1δϕk2δϕk3δϕk4 , (8.97)

where the bare vertices now depend on the vacuum expectation value ϕ̄0,

Γ
(1)
Λ0

= r0ϕ̄0 + u0

6
ϕ̄3

0 , (8.98a)

ΣΛ0 (k) = r0 + u0

2
ϕ̄2

0 , (8.98b)

Γ
(3)
Λ0

(k1, k2, k3) = u0ϕ̄0 , (8.98c)

Γ
(4)
Λ0

(k1, k2, k3, k4) = u0 . (8.98d)

We now require that Γ (1)
Λ0

= 0, so that the initial value ϕ̄0 of the order parameter in
our functional RG is the minimum of the effective potential in Landau approxima-
tion given in Eq. (2.74). Note that for r0 < 0 we have ϕ̄2

0 = −6r0/u0, so that

ΣΛ0 (k) = −2r0 = u0

3
ϕ̄2

0 . (8.99)

The interaction part of our initial action can then be written in real space as an
integral of the form

S1[ϕ] =
∫

d Dr UΛ0 (ρ(r)) , (8.100)

where the so-called effective potential UΛ0 (ρ(r)) is the following local function of
the density ρ(r) = ϕ2(r)/2,

UΛ0 (ρ(r)) = f0 − 3

2

r2
0

u0
+ u0

4!

(
ϕ2(r) − ϕ̄2

0

)2 = f0 − 3

2

r2
0

u0
+ u0

6
(ρ− ρ0)2 . (8.101)
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Note that the first two terms on the right-hand side of Eq. (8.101) correspond to
the free energy density in mean-field approximation, see Eq. (2.22). In the local
potential approximation with a truncated quartic potential (which will be discussed
in the following Chap. 9) one would now require that the renormalized effective
potential is again of the form (8.101), but with the bare parameters u0 and ϕ̄0

replaced by flowing couplings uΛ and ϕ̄0
Λ. This approximation amounts to approxi-

mating the flowing vertices by

ΣΛ(k) ≈ uΛ
3

(
ϕ̄0
Λ

)2
, (8.102a)

Γ
(3)
Λ (k1, k2, k3) ≈ uΛϕ̄

0
Λ , (8.102b)

Γ
(4)
Λ (k1, k2, k3, k4) ≈ uΛ . (8.102c)

The crucial observation is now that we may use these relations to obtain a non-
trivial truncation of the exact flow equation (8.18) for the momentum-dependent
self-energy ΣΛ(k): therefore we simply substitute Eqs. (8.102a)–(8.102c) on the
right-hand sides of Eqs. (8.17) and (8.18), thus expressing the unknown vertices
Γ

(3)
Λ (k1, k2, k3) and Γ

(4)
Λ (k1, k2, k3, k4) in terms of known running couplings

(Schütz and Kopietz 2006, Sinner et al. 2008). The order-parameter flow equation
(8.17) then reduces to

∂Λ
(
ϕ̄0
Λ

)2 = −3
∫

k
ĠΛ(k) , (8.103)

while the flow equation (8.18) for the self-energy can be written as

∂ΛΣΛ(k) = uΛ
2

∫
k′

ĠΛ(k′) + uΛ
2
∂Λ

(
ϕ̄0
Λ

)2

−u2
Λ

(
ϕ̄0
Λ

)2
∫

k′
ĠΛ(k′)GΛ(k′ + k)

= −uΛ

∫
k′

ĠΛ(k′) − u2
Λ

(
ϕ̄0
Λ

)2
∫

k′
ĠΛ(k′)GΛ(k′ + k) . (8.104)

By demanding that the flow of ΣΛ(0) is consistent with our truncation (8.102a), we
obtain the flow equation for the effective interaction,

∂ΛuΛ = −3u2
Λ

∫
k

ĠΛ(k)GΛ(k) . (8.105)

The above equations (8.103)–(8.105) form a closed system of coupled integro-
differential equations for the order parameter ϕ̄0

Λ, the effective interaction uΛ,
and the momentum-dependent self-energy ΣΛ(k). Note that the right-hand side of
Eq. (8.104) is momentum-dependent, implying that in the symmetry-broken phase
a simple one-loop calculation already gives a finite estimate for the flowing anoma-
lous dimension. For a detailed analysis of the above flow equations and an explicit
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calculation of the momentum-dependent self-energy in the symmetry broken phase
see (Sinner et al. 2008). A similar truncation strategy has recently been used to
calculate the momentum- and frequency-dependent single-particle spectral function
in the condensed phase of the weakly interacting Bose gas in two dimensions (Sinner
et al. 2009).
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Baym, G., J. P. Blaizot, M. Holzmann, F. Laloë, and D. Vautherin (1999), The transition tempera-
ture of the dilute interacting Bose gas, Phys. Rev. Lett. 83, 1703. 222
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Chapter 9
Derivative Expansion

Apart from the vertex expansion discussed in Chap. 8 the other main strategy to
obtain approximate solutions of the FRG flow equations is the derivative expansion.
This method has been successfully applied to problems in statistical physics and
field theory (see Bagnuls and Bervillier 2001, Berges et al. 2002, and Pawlowski
2007 for comprehensive reviews) where one is usually only interested in long-
wavelength phenomena and an expansion of ΓΛ[Φ̄] in gradients of the fields Φ̄
seems reasonable. Such an expansion is justified by noting that, although the true
generating functional of the irreducible vertices Γ [Φ̄] = ΓΛ=0[Φ̄] can contain non-
analyticities, the flowing ΓΛ[Φ̄] is analytic for any finite value of the cutoff Λ.

To obtain the derivative expansion it is convenient to work with Wetterich’s Le-
gendre effective action Γ We

Λ [Φ̄] defined in Eq. (7.53), whose second derivatives
differ from the second derivatives of our generating functional of irreducible ver-
tices ΓΛ[Φ̄] defined in Eq. (7.40) by the cutoff-independent inverse free propagator
and a field-independent constant. For Λ → 0, the functional Γ We

Λ [Φ̄] is the true
Legendre transform of the generating functional of connected Green functions (this
is the reason why this functional deserves to be called Legendre effective action)
and is therefore convex. As noted by Wetterich (1993), Γ We

Λ [Φ̄] satisfies the initial
condition

lim
Λ→Λ0

Γ We
Λ [Φ̄] = SΛ0 [Φ̄] , (9.1)

and during the flow ofΛ nicely interpolates between the bare action SΛ0 [Φ̄] = S[Φ̄]
and the Legendre effective action,

lim
Λ→0

Γ We
Λ [Φ̄] = Γ We[Φ̄] . (9.2)

This follows directly from the relations established in Sect. 7.2.4.

9.1 Derivative Expansion for the O(N)-Symmetric
Classical ϕ4-Theory

For concreteness, let us study here the O(N )-symmetric classical ϕ4-theory with
bare action

Kopietz, P. et al.: Derivative Expansion. Lect. Notes Phys. 798, 233–247 (2010)
DOI 10.1007/978-3-642-05094-7 9 c© Springer-Verlag Berlin Heidelberg 2010
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SΛ0 [ϕ] =
∫

d Dr
[r0

2
ϕ2(r) + c0

2
(∇ϕ(r))2 + u0

4!

(
ϕ2(r)

)2
]
, (9.3)

where ϕ = (ϕ1, . . . , ϕN ) is an N -component classical field. This model is a straight-
forward generalization of our scalar ϕ4-theory given in Eq. (2.65) to the case of
N real fields; the case N = 2 describes the XY and the case N = 3 describes
the Heisenberg universality class. The generating functional Γ We

Λ [ϕ̄] satisfies the
Wetterich equation (7.56) which for our model can be written as

∂ΛΓ
We
Λ [ϕ̄] = 1

2
Tr

[
∂ΛRΛ

Γ
We (2)
Λ [ϕ̄] + RΛ

]
, (9.4)

where the trace is over momentum space and the flavor space associated with the N
field components. Here, we have introduced the matrix of second-order derivatives,

Γ
We (2)
Λ [ϕ̄] ≡

(
δ

δϕ̄
⊗ δ

δϕ̄

)
Γ We
Λ [ϕ̄] . (9.5)

Expanding the generating functional Γ We
Λ [ϕ̄] in terms of gradients of the field ϕ̄ and

introducing the density

ρ(r) ≡ 1

2
ϕ̄2(r) , (9.6)

we have1

Γ We
Λ [ϕ̄] =

∫
d Dr

[
UΛ(ρ(r)) + c0

2
Z−1
Λ (ρ(r))

N∑
i=1

(∇ϕ̄i (r))2

+ c0

4
YΛ (ρ(r)) (∇ρ(r))2 + . . .

]
. (9.7)

It should be noted that by choosing the same Z -factor for all field components and
by assuming that Z−1

Λ is a function of ρ(r) instead of ϕ̄(r), we have already made
two approximations. The function UΛ(ϕ̄) = UΛ(ρ) in the first term of the above
expansion of the Legendre effective action is known as the effective potential. It
can be obtained from Γ We

Λ [ϕ̄] by choosing a space-independent configuration of the
field ϕ̄, implying

1 In the literature on the derivative expansion the factor Z−1 introduced above is often called just
Z . However, to be consistent with the rest of this book and to have the interpretation of the Z -factor
as the quasiparticle weight in the context of quantum many-body physics we will stick to the above
definition.
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UΛ(ϕ̄) ≡ 1

V
Γ We
Λ [ϕ̄]

∣∣∣∣
ϕ̄(r)=ϕ̄

, (9.8)

where V is the volume of the system. As we have discussed in Chap. 7, in the
limit of vanishing external sources, the vacuum expectation value ϕ̄0 ≡ limJ→0〈ϕ〉
(describing the spontaneous magnetization in applications of ϕ4-theory to magnetic
systems) is determined by

δLΛ[ϕ̄]

δϕ̄
= δΓ We

Λ [ϕ̄]

δϕ̄
+ RΛ(0)ϕ̄ = 0 , (9.9)

which follows from the general relation (7.53) between LΛ and Γ We
Λ . Using the

fact that2 limΛ→0 RΛ(k2) = 0, we see that the vacuum expectation value ϕ̄0 can
be obtained by minimizing limΛ→0 Γ

We
Λ [ϕ̄]. Similarly, within mean-field theory the

vacuum expectation value ϕ̄MF
0 is obtained from the minimum of the classical action

SΛ0 [ϕ̄] = limΛ→Λ0 Γ
We
Λ [ϕ̄]. The crossover of the vacuum expectation value from its

mean-field value ϕ̄MF
0 to the vacuum expectation value ϕ̄0 including all fluctuations

can therefore be described by the location of the running minimum of Γ We
Λ [ϕ̄].3

Assuming a translationally invariant vacuum expectation value ϕ̄0,Λ(r) = ϕ̄0,Λ, we
obtain the flowing vacuum expectation value from the minimum of the effective
potential,

U ′
Λ(ρ) ≡ dUΛ(ρ)

dρ
= 0 . (9.10)

To derive a flow equation for UΛ(ρ), we insert Eq. (9.8) into the exact FRG flow
equation (9.4), resulting in

∂ΛU (ϕ̄) = 1

2

N∑
i=1

∫
k

[
∂ΛRΛ(k2)

]
Gi,Λ(ϕ̄; k) , (9.11)

where we have used again the notation
∫

k = ∫
d Dk

(2π)D , and the inverse of the field-

dependent propagator for a translationally invariant field configuration G−1
i,Λ(ϕ̄; k) is

2 The relation limΛ→0 RΛ(k2) = 0 is not satisfied for the k = 0-component of the sharp cutoff
function given in Eq. (7.12); although with Eq. (7.9) one obtains with a sharp momentum cutoff
limk→0 limΛ→0 RΛ(k2) = 0, the opposite order of limits gives an infinite result.
3 The reader might wonder why we are taking the minimum of Γ We

Λ [ϕ̄] instead of LΛ[ϕ̄]. Formally
both expressions only give rise to the same minimum for Λ → 0. However, as the regulator RΛ
introduces an artificial gap into the low-energy modes for finite Λ, it is important to remove this
gap for the k = 0-mode before discussing symmetry breaking. In other words, to obtain a finite
vacuum expectation value which smoothly interpolates between the mean-field result forΛ → Λ0

and the exact result for Λ → 0 we ignore the fluctuations in the k = 0-mode which are not
integrated out yet. For Λ → Λ0 we thereby recover mean-field theory.
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given by

G−1
i,Λ(ϕ̄; k) = 1

V

δ

δϕ̄i (k)

δ

δϕ̄i (−k)
Γ We
Λ [ϕ̄]

∣∣∣∣
ϕ̄(r)=ϕ̄

+ RΛ(k2) . (9.12)

Using the elementary functional derivatives

δρ(r)

δϕ̄ j (k)
= ϕ̄ j (r)ei k·r ,

δ(∇ϕ̄i (r))

δϕ̄ j (k)
= iδi j kei k·r , (9.13)

we can perform the functional derivatives in Eq. (9.12) and obtain

G−1
i,Λ(ϕ̄; k) = U ′

Λ(ρ) + ϕ2
i U ′′

Λ(ρ) + c0 Z−1
Λ (ρ)k2 + c0

2
YΛ(ρ)k2ϕ2

i + RΛ(k2) . (9.14)

Let us now evaluate the trace over the field components, i.e., perform the sum over
the index i . To do so, it is convenient to choose a coordinate system in which ϕ̄0 is
orientated along one of the eigendirections. Identifying the inverse longitudinal and
transverse propagators,

G−1
",Λ(ρ, k2) = c0

[
Z−1
Λ (ρ) + ρYΛ(ρ)

]
k2 + U ′

Λ(ρ) + 2ρU ′′
Λ(ρ) + RΛ(k2) ,

(9.15a)

G−1
t,Λ(ρ, k2) = c0 Z−1

Λ (ρ)k2 + U ′
Λ(ρ) + RΛ(k2) , (9.15b)

the flow equation for the effective potential can then be written as

∂ΛUΛ(ρ) = 1

2

∫
k

[
∂ΛRΛ(k2)

] [
G",Λ(ρ, k2) + (N − 1)Gt,Λ(ρ, k2)

]
. (9.16)

The angular part of the integration can now be easily carried out, resulting in

∂ΛUΛ(ρ) = K D

2

∫ ∞

0
dk k D−1

[
∂ΛRΛ(k2)

]
× [

G",Λ(ρ, k2) + (N − 1)Gt,Λ(ρ, k2)
]
. (9.17)

It should be noted that while in the symmetry-broken phase the longitudinal mode
is gapped with ρΛ �= 0 for Λ → 0, the N − 1 transverse modes become gapless.
These gapless modes correspond to massless particles which are commonly known
as Goldstone bosons.

Although the above flow equation for the effective potential is exact and implies
an exact proof for the existence of Goldstone bosons in the O(N )-model (with N ≥
2), the functions Z−1

Λ (ρ) and YΛ(ρ) cannot be derived from the effective potential
alone and some approximations are needed to close the hierarchy of flow equations.
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9.2 Local Potential Approximation

A very convenient approximation which closes the hierarchy of flow equations for
the effective potential is commonly known as the local potential approximation
(LPA). Within this approximation, one simply sets Z−1

Λ (ρ) and YΛ(ρ) equal to their
initial values Z−1

Λ0
(ρ) = 1 and YΛ0 (ρ) = 0 and neglects the flow of these couplings.

The LPA amounts to setting the anomalous dimension η equal to zero and can only
be expected to give accurate results as long as this is a good approximation.

9.2.1 RG Equation for the Effective Potential

To calculate the effective potential U (ρ) = limΛ→0 UΛ(ρ) for the O(N )-symmetric
field theory considered here we have to solve the partial differential equation
(9.17) for UΛ(ρ) as a function of Λ and ρ, starting from the initial condition (see
Eqs. (2.67) and (8.101))

UΛ0 (ρ) = f0 + r0

2
ϕ̄2 + u0

4!

(
ϕ̄2

)2
. (9.18)

It is convenient to choose the zero of energy such that f0 = u0ρ
2
0/6 = 3

2r2
0/u0 where

ρ0 ≡ −3r0/u0. The initial condition of the effective potential can then be written as

UΛ0 (ρ) = u0

6
(ρ − ρ0)2 . (9.19)

An especially convenient cutoff function which works fine within the LPA is the
Litim cutoff (Litim 2001) given in Eq. (7.21),

RΛ(k2) = c0(Λ2 − k2)Θ(Λ2 − k2) , (9.20)

which for k ≤ Λ implies the k-independent inverse propagators,

G−1
",Λ(ρ, k2) = c0Λ

2 + U ′
Λ(ρ) + 2ρU ′′

Λ(ρ) , (9.21a)

G−1
t,Λ(ρ, k2) = c0Λ

2 + U ′
Λ(ρ) . (9.21b)

Using

∂ΛRΛ(k2) = 2c0ΛΘ(Λ2 − k2) , (9.22)

the integral over k in Eq. (9.17) reduces to
∫ Λ

0 dk k D−1 = ΛD/D, such that within
the LPA and with the Litim cutoff the flow of the effective potential is determined by
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∂ΛUΛ(ρ) = c0 K DΛ
D+1

D

[
1

c0Λ2 + U ′
Λ(ρ) + 2ρU ′′

Λ(ρ)
+ N − 1

c0Λ2 + U ′
Λ(ρ)

]
.

(9.23)

This is a simple partial differential equation which can easily be solved numerically,
using for instance Mathematica or standard numerical routines. For simplicity, let
us study once again the case N = 1 in D = 3, describing the Ising universality class
in three dimensions. Choosing ρ0 = 0.07Λ0/c0 and u0 = 0.01 c2

0Λ0 one obtains
the flow of the effective potential UΛ(ρ) shown in Fig. 9.1 for representative values
of Λ. For clarity we have shifted each curve by the running minimum of UΛ(ρ). As
expected, fluctuations reduce the vacuum expectation value ϕ̄0 = limΛ→0

√
2ρ0(Λ)

from its mean-field value ϕ̄MF
0 . The fact that we do not get a truly flat plateau

for ϕ̄ between ± limΛ→0 ϕ̄0(Λ) turning the effective potential convex is due to the
approximations involved in the LPA. Of course, having a finite vacuum expectation
value indicates that the parameters chosen correspond to the low-temperature broken
symmetry phase. Changing the parameter ρ0, we can now tune our system across
the expected phase transition. In Fig. 9.2 we show the effective potential UΛ(ρ)
for ρ0 = 0.03Λ0/c0 and u0 = 0.01 c2

0Λ0. Clearly, the location of the running
minimum of UΛ(ρ) becomes equal to zero for a finite value of Λ, leading to a
vanishing vacuum expectation value and the restoration of the spontaneously broken
O(N )-symmetry. It is reasonable to expect that the value Λ∗ where this happens is
of the order of the inverse correlation length ξ−1: as long asΛ � ξ−1 fluctuations on

Fig. 9.1 Shifted effective potential ΔUΛ(ρ) ≡ UΛ(ρ) − UΛ(ρ0(Λ)) in units of f0 = u0ρ
2
0/6 =

3
2 r2

0/u0 for a one-component ϕ4-theory in D = 3 with Λ ranging from its initial value Λ0 (red
line) to Λ = 0 (blue line) in steps of 0.2Λ0. In terms of Λ0, the coupling constants are given
by u0 = 0.01 c2

0Λ0 and ρ0 = 0.07Λ0/c0. Decreasing Λ, the effective potential becomes almost
convex, but has a minimum at limΛ→0 ϕ̄0(Λ) ≈ 0.56, indicating that fluctuations have reduced the
vacuum expectation value (spontaneous magnetization) ϕ̄0(Λ) to almost half the mean-field value
ϕ̄MF

0



9.2 Local Potential Approximation 239

Fig. 9.2 Shifted effective
potential ΔUΛ(ρ) ≡
UΛ(ρ) − UΛ(ρ0(Λ)) for the
one-component ϕ4-theory in
D = 3 as in Fig. 9.1 but with
ρ0 = 0.03Λ0/c0.
Fluctuations now drive the
vacuum expectation value
ϕ̄0(Λ) to zero at a finite value
of Λ, restoring the
spontaneously broken
symmetry

length scales larger than the correlation length have not been included yet, leaving
all fields in a coarse-grained patch correlated and thereby leading to a finite mag-
netization (which in applications of ϕ4-theory to magnetic systems is the physical
meaning of the vacuum expectation value ϕ̄0). However, as the length scale Λ−1

∗ of
the coarse-grained patch is increased beyond ξ , fluctuations succeed in destroying
the spontaneous magnetization, pushing ϕ̄0(Λ) to zero for Λ < Λ∗.

9.2.2 Fixed Points and Critical Exponents

To discuss the properties of the RG fixed point associated with the critical point lying
between the high and low temperature phases, it is advantageous to introduce again
dimensionless rescaled variables. As before, we express energies and inverse length
scales in terms of the running cutoff Λ = Λ0e−l . Introducing the dimensionless
variables and functions

q = k/Λ , (9.24a)

x = Λr , (9.24b)

ϕ̃(x) = √
c0Λ

(2−D)/2ϕ̄(r) , (9.24c)

ρ̃(x) = c0Λ
2−Dρ(r) , (9.24d)

Ũl(ϕ̃) = f̃0 + r̃l

2
ϕ̃2 + ũl

4!
(ϕ̃2)2 + · · · = UΛ(ϕ̄)/ΛD , (9.24e)

the FRG flow equation (9.23) for the effective potential turns into the scale-invariant
form

∂lŨl (ρ̃) = DŨl(ρ̃) − (D − 2)ρ̃Ũ ′
l (ρ̃)

− K D

D

[
1

1 + Ũ ′
l (ρ̃) + 2ρ̃Ũ ′′

l (ρ̃)
+ N − 1

1 + Ũ ′
l (ρ̃)

]
. (9.25)
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While the first two terms on the right-hand side are due to the rescaling of UΛ and
ρ, the term in the second line is the nontrivial interaction contribution. In contrast to
Eq. (9.23), this rescaled flow equation allows for a fixed point Ũ ∗(ρ̃) which satisfies
∂l Ũl(ρ̃) = 0. To obtain this fixed point, it is convenient to introduce

W̃l(ρ̃) = Ũ ′
l (ρ̃) , (9.26)

which obeys

∂l W̃l (ρ̃) = 2W̃l (ρ̃) − (D − 2)ρ̃W̃ ′
l (ρ̃)

+ K D

D

[
3W̃ ′

l (ρ̃) + 2ρ̃W̃ ′′
l (ρ̃)

[1 + W̃l(ρ̃) + 2ρ̃W̃ ′
l (ρ̃)]2

+ (N − 1)W̃ ′
l (ρ̃)

[1 + W̃l(ρ̃)]2

]
.

(9.27)

The location of the running minimum ρ̃l of ŨΛ(ρ̃) is simply given by

Wl(ρ̃) = 0 . (9.28)

Before we actually solve the above flow equation for Wl(ρ̃), let us briefly summarize
what we should expect. As we have discussed in Sect. 3.3.3, in the zero-field Ising
model, or – more generally – in the O(N )-symmetric ϕ4-theory considered here,
apart from the Gaussian fixed point Ũl(ρ̃) = const implying W̃l(ρ̃) = 0, we can
distinguish three fixed points of the RG flow (see Delamotte (2007) for a similar
discussion):

(a) Ferromagnetic (low temperature) fixed point F: In this case the O(N )-symmetry
is spontaneously broken and we have a finite vacuum expectation value ϕ̄0
(which in a magnetic system represents the spontaneous magnetization). In
terms of dimensionless variables we therefore expect the rescaled field ϕ̃0(l)
to diverge within the LPA as

ϕ̃0(l) = √
c0ϕ̄0e(D−2)l/2 ∝ e(D−2)l/2 . (9.29)

(b) Paramagnetic (high temperature) fixed point P: In the paramagnetic phase the
O(N )-symmetry is not broken and both the unrescaled and the rescaled vacuum
expectation value are equal to zero. For ρMF

0 > 0 this is in contrast to mean-
field theory which predicts a symmetry-broken phase. As discussed above, the
vanishing of the order parameter is fluctuation-driven and occurs at a cutoff
scale Λ∗ which is expected to be of the order of the inverse correlation length
ξ−1.

(c) Critical fixed point C: Finally, at criticality ξ → ∞ and the system becomes
self-similar such that ∂l W̃l (ρ̃) = 0. This is the Wilson–Fisher fixed point. As Λ
is sent to zero, ϕ̃0 approaches a finite value, implying that ϕ̄0(Λ) vanishes as

ϕ̄0(Λ) = (c0)−1/2ϕ̃0Λ
(D−2)/2 ∝ Λ(D−2)/2 . (9.30)
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Fig. 9.3 Flow of ρ̃l as a function of l for ũ0 = 0.01 and ρ̃0 = ρ̃∗
0 = 0.050459 . . . (red line) as

well as ρ̃0 = ρ̃∗
0 ± 10−4, ρ̃∗

0 ± 10−8, ρ̃∗
0 ± 10−12. For ρ̃0 very close to ρ̃∗

0 the flow of ρ̃l is almost
critical and, as we have seen in Chap. 4, stays close to the critical value ρ̃∗ �= ρ̃∗

0 for some RG time
before being attracted by either the high-temperature (paramagnetic, P) fixed point for ρ̃0 < ρ̃∗

0 ,
or low-temperature (ferromagnetic, F) fixed point for ρ̃0 > ρ̃∗

0

Let us now explicitly solve the partial differential equation (9.27). Fine-tuning
the initial value for ρ̃0 with ũ0 fixed, our FRG analysis does indeed give rise to
flows which are attracted by one of the three fixed points discussed above. This is
shown in Fig. 9.3, where we have plotted ρ̃l as a function of l for ũ0 = 0.01 and
different values of ρ̃0. The flow is close to criticality for ρ̃0 ≈ ρ̃∗

0 = 0.050459 . . . .
While for ρ̃0 < ρ̃∗

0 the flow reaches the paramagnetic fixed point P , for ρ̃0 > ρ̃∗
0 it

is attracted by the ferromagnetic fixed point F .
Within the LPA, the anomalous dimension η is set equal to zero such that by com-

puting one additional scaling exponent all other scaling exponents can be obtained
by using the scaling relations discussed in Sect. 1.3. As in our analysis of the
Wilson–Fisher fixed point in Sect. 4.2.2, it seems to be most convenient to calculate
ν. Having η = 0 and an estimate for ν, the thermodynamic exponents α, β, γ , and δ
can then be obtained from the scaling relations (1.33a), (1.33b), (1.33c), and (1.33d).
To actually calculate ν it is possible to proceed as in Sect. 4.2.2 and calculate ν as the
inverse of the eigenvalue yt of the relevant scaling variable tl defined in Eq. (4.87).
As tl is a linear combination of δr̃l and δũl , we can write the flow of the effective
potential in the vicinity of the critical point as

Ũl (ρ̃) = Ũ ∗(ρ̃) + el/νδŨ (ρ̃) , (9.31)

where δŨ (ρ̃) is a quadratic function in ρ̃. Working with W̃l , we can write this as

W̃l(ρ̃) = W̃ ∗(ρ̃) + el/νδW̃ (ρ̃) , (9.32)

where δW̃ (ρ̃) is a linear function in ρ̃.
Alternatively, one can calculate the correlation length ξ for different initial values

of ρ̃0 and extract ν by using the scaling relation

ξ ∝ |r̃0 − r̃∗
0 |−ν , (9.33)
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where r̃∗
0 is the fine-tuned value of r̃0 (with ũ0 fixed) flowing into the critical point

with r̃ = r̃∗. In fact, using this approach we can even get the nonuniversal prefactor.
To obtain ξ , we note that in an expansion of the effective potential Ũl(ρ̃) the coef-
ficient of the term linear in ρ̃ equals the square of the inverse rescaled correlation
length,

W̃l(0) = r̃l = r̄l = 1

(Λlξ )2
. (9.34)

Eq. (9.34) directly follows from Eq. (8.92) and implies

ξ−2 = Λ2
0 lim

l→∞
e−2l W̃l(0) . (9.35)

Since close to the critical point we expect ξ to obey Eq. (9.33), we can obtain the
critical exponent ν by plotting ln

[
(Λ0ξ )−1

]
as a function of ln

∣∣r̃0 − r̃∗
0

∣∣. For small
r̃0 − r̃∗

0 , we expect

ln
[
(Λ0ξ )−1

] = ν ln
∣∣r̃0 − r̃∗

0

∣∣ + const , (9.36)

so that ν can be obtained from the slope of the expected straight line, while the
constant contains information about the nonuniversal prefactor. Finally, by noticing
over which region the linearity holds we obtain information about the range of the
scaling regime. The approach outlined above has been used by Berges et al. (2002)
to calculate the critical exponent ν. Within the LPA and with the Litim regulator
implemented as above, one finds for the critical exponent ν of the three-dimensional
Ising universality class the value ν ≈ 0.65, which should be compared with the best
numerical result, ν ≈ 0.63, as compiled in Table 1.1 in Sect. 1.2.

9.3 Beyond the Local Potential Approximation

To go beyond the simple LPA we need to include additional flow equations for
Z−1
Λ (ρ) and YΛ(ρ). In the simplest extension to the LPA, called the LPA′, one

includes a field-independent wave function renormalization factor. Setting Z−1
Λ (ρ) =

Z−1
Λ and also YΛ(ρ) = 0 the effective action reads

Γ LPA′
Λ [ϕ̄] = 1

2

∫
k

Z−1
Λ c0k2

∑
i

ϕ̄i (−k)ϕ̄i (k) +
∫

d Dr UΛ (ρ(r)) . (9.37)

Since in comparison with the LPA there is now an additional factor of Z−1
Λ in front

of the term proportional to c0k2, it is advantageous to include this prefactor in the
definition of the cutoff function as well. Let us therefore replace the regulator (9.20)
by

RΛ(k2) = c0 Z−1
Λ (Λ2 − k2)Θ(Λ2 − k2) . (9.38)
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Anticipating that the flowing anomalous dimension will be given by (see also
Eq. (8.29)),

ηΛ = Λ
∂ΛZΛ

ZΛ
= −Λ∂ΛZ−1

Λ

Z−1
Λ

, (9.39)

we can write the derivative of RΛ(k2) with respect to Λ as

∂ΛRΛ(k2) = c0 Z−1
Λ 2Λ

(
1 − ηΛ

Λ2 − k2

2Λ2

)
Θ(Λ2 − k2) . (9.40)

Evaluating the general flow equation (9.17) for the effective potential with the mod-
ified Litim regulator, we obtain

∂ΛUΛ(ρ) = c0 Z−1
Λ K DΛ

D+1

D

(
1 − ηΛ

D + 2

)

×
[

1

c0 Z−1
Λ Λ

2 + U ′
Λ(ρ) + 2ρU ′′

Λ(ρ)
+ N − 1

c0 Z−1
Λ Λ

2 + U ′
Λ(ρ)

]
. (9.41)

To close our set of flow equations we need an additional flow equation for Z−1
Λ . This

can be obtained by noting that Z−1
Λ is the coefficient in front of the term proportional

to c0k2 in our truncated effective action (9.37). Let us define the irreducible two-
point vertex

Γ
(2)

i,Λ(ϕ̄; k) = 1

V

δ

δϕi (−k)

δ

δϕi (k)
Γ LPA′
Λ [ϕ̄(r)]

∣∣∣∣
ϕ̄(r)=ϕ̄

(9.42)

for a homogeneous field configuration ϕ̄(r) = ϕ̄. Within the LPA′, Eq. (9.42) is then
given by

Γ
(2)

i,Λ(ϕ̄; k) = Z−1
Λ c0k2 + U ′

Λ(ρ) + ϕ2
i U ′′

Λ(ρ) . (9.43)

Z−1
Λ can now be defined by

Z−1
Λ = ∂Γ

(2)
t,Λ(ϕ̄0; k)

∂(c0k2)

∣∣∣∣∣
k=0

, (9.44)

so that the flow of Z−1
Λ is determined by the flow of Γ (2)

i,Λ(ϕ̄; k), which is usually
evaluated for a transverse mode (e.g., i = 2) at the minimum of the potential. Alter-
native definitions of Z−1

Λ which involve finite values of k are discussed in Berges
et al. (2002). Comparing Eqs. (9.43) and (9.44) with Eq. (8.24) we see that our
factor ZΛ defined above is indeed the wave function renormalization factor, which
in quantum many-body systems would correspond to the quasiparticle weight in the
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single-particle Green function. This confirms our definition of the flowing anoma-
lous dimension ηΛ in Eq. (9.39).

To derive a flow equation for Γ (2)
t,Λ(ϕ̄; k) let us use here an alternative method to

the ones used before which is particularly suitable for the calculation of the field-
dependent vertices occurring within the derivative expansion. Following (Berges
et al. 2002) we differentiate the exact FRG flow equation with respect to ϕ̄i (−k)
and ϕ̄i (k) and subsequently set the field configuration ϕ̄(r) equal to ϕ̄. Using the
fact that the derivative of the inverse of a matrix A(x) is given by

d

dx
A−1(x) = −A−1(x)

dA(x)

dx
A−1(x) , (9.45)

we find

∂ΛΓ
(2)

i,Λ(ϕ̄; k) = −1

2

∫
k′

N∑
j=1

[
∂ΛRΛ(k ′2)

]
G2

j,Λ(ϕ; k′)Γ (4)
j j i i,Λ(ϕ̄; k′,−k′, k,−k)

+
∫

k′

N∑
i1,i2=1

[
∂ΛRΛ(k ′2)

] [
Gi1,Λ(ϕ̄; k′)

]2
Gi2,Λ(ϕ̄; k′ + k)

× Γ
(3)

i i2i1,Λ
(ϕ̄; k,−k − k′, k′)Γ (3)

i1i2i,Λ(ϕ̄; −k′, k + k′,−k) , (9.46)

which generalizes Eq. (8.18) to the O(N )-symmetric case. Within the LPA′ the ver-
tices Γ (3)

i1i2i3,Λ
(ϕ̄; k1, k2, k3) and Γ (4)

iijj ,Λ(ϕ̄; k,−k, k′,−k′) do not have any momen-
tum dependence and are given by

Γ
(3)

i1i2i3,Λ
(ϕ̄) = U ′′

Λ(ρ)
[
δi1,i2 ϕ̄i3 + δi2,i3 ϕ̄i1 + δi3,i1 ϕ̄i2

] + U ′′′
Λ (ρ)ϕ̄i1 ϕ̄i2 ϕ̄i3 , (9.47)

Γ
(4)
iijj ,Λ(ϕ̄) = [

1 + 2δi, j
] [

U ′′
Λ(ρ) + U ′′′

Λ (ρ)(ϕ2
i + ϕ2

j )
] + U ′′′′

Λ (ρ)ϕ̄2
i ϕ̄

2
j . (9.48)

First of all let us note that since we are only interested in the k-dependence of
Γ

(2)
t,Λ(ϕ̄; k) and since the four-point vertex Γ (4)

iijj ,Λ(ϕ̄) is entirely k-independent we
can safely drop the first term on the right-hand side of Eq. (9.46). To isolate the
k-dependent part of Γ (2)

t,Λ(ϕ̄; k), it is convenient to introduce

δΓ
(2)

t,Λ(ϕ̄; k) ≡ Γ
(2)

t,Λ(ϕ̄; k) − Γ
(2)

t,Λ(ϕ̄; 0) . (9.49)

Now, since by definition ϕ̄i = 0 for i > 1, the only nonvanishing Γ (3)-vertex apart
from Γ

(3)
""",Λ is

Γ
(3)

t t",Λ(ρ) =
√

2ρU ′′
Λ(ρ) . (9.50)

Our flow equation (9.46) can therefore be rewritten as
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∂ΛδΓ
(2)

t,Λ(ρ; k) = 2ρ
[
U ′′
Λ(ρ)

]2
∫

k′
∂ΛRΛ(k ′2)[G2

t,Λ(ρ; k′)G",Λ(ρ; k′ + k)

+ G2
",Λ(ρ; k′)Gt,Λ(ρ; k′ + k)] − {k → 0}

= −2ρ
[
U ′′
Λ(ρ)

]2
∂̃Λ

∫
k′

G",Λ(ρ; k′)
[
Gt,Λ(ρ; k′ + k) − Gt,Λ(ρ; k′)

]
, (9.51)

where the partial derivative ∂̃Λ acts only on RΛ(k2) and derivatives thereof. To obtain
the anomalous dimension, we need to expand the last term in Eq. (9.51) up to order
k2. To this end, let us write

Gt,Λ(ρ; k′ + k) − Gt,Λ(ρ; k′)

= −G2
t,Λ(ρ; k′)δG−1

t,Λ(ρ; k′, k) + G3
t,Λ(ρ; k′)δG−2

t,Λ(ρ; k′, k) − . . . , (9.52)

where

δG−1
t,Λ(ρ; k′, k) ≡ G−1

t,Λ(ρ; k′ + k) − G−1
t,Λ(ρ; k′)

= [
c0 Z−1

Λ + R′
Λ(k ′2)

]
(k2 + 2k · k′) + 1

2
R′′
Λ(k ′2)(2k · k′)2 + O(k3) . (9.53)

Inserting this into Eq. (9.51) and using

G3
t,Λ(ρ; k′)

[
c0 Z−1

Λ + R′
Λ(k ′2)

] = −1

2

∂

∂k ′2 G2
t,Λ(ρ; k′) , (9.54)

where the derivative with respect to k ′2 can also be replaced by the derivative with
respect to k ′2

i (with the coordinate system chosen such that k = kei ), we obtain after
integrating by parts and finally replacing (k · k′)2 by k2k ′2/D,

∂ΛδΓ
(2)

t,Λ(ρ; k) = c0k2 4ρ
[
U ′′
Λ(ρ)

]2

D
∂̃Λ

∫
k′

c0k ′2G2
",Λ(ρ; k′)G2

t,Λ(ρ; k′)

× [
Z−1
Λ + c−1

0 R′
Λ(k ′2)

]2 + O(k4) . (9.55)

Taking the derivative with respect to c0k2 and setting ρ = ρ0, we finally obtain the
flow of Z−1

Λ . For the Litim regulator (9.38), we have

R′
Λ(k2) = d RΛ(k2)

d(k2)
= −c0 Z−1

Λ Θ(Λ2 − k2) , (9.56)

such that

Z−1
Λ + c−1

0 R′
Λ(k ′2) = Z−1

Λ − Z−1
Λ Θ(Λ2 − k ′2) = Z−1

Λ Θ(k ′2 −Λ2) . (9.57)
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Combining the two terms Z−1
Λ and Z−1

Λ Θ(Λ2−k2) in the last step of Eq. (9.57) is not
as innocuous as it looks because when taking the derivative ∂̃Λ with respect toΛ this
derivative should only act on the regulator or its derivatives, i.e., Z−1

Λ Θ(Λ2 − k ′2).
We therefore have

∂̃Λ
[
Z−1
Λ + c−1

0 R′
Λ(k ′2)

]2 = −2Z−1
Λ Θ(k ′2 −Λ2)∂Λ

[
Z−1
Λ Θ(Λ2 − k ′2)

]
= −2Z−1

Λ Θ(k ′2 −Λ2)
[
∂ΛZ−1

Λ Θ(Λ2 − k ′2) + Z−1
Λ δ(k

′ −Λ)
]

= − (
Z−1
Λ

)2
δ(k ′ −Λ) . (9.58)

It should be noted that ignoring derivatives of Z−1
Λ on the right-hand side of this

flow equation and using
[
Z−1
Λ + c−1

0 R′
Λ(k ′2)

]2 = (
Z−1
Λ

)2
Θ(k ′ − Λ) would have

given us exactly the same result. The k′-integral in Eq. (9.55) is now easily done
analytically. First of all, as we have seen before, the angular integration gives us
a factor K D defined in Eq. (2.86). Next we note that since the Θ-function in the
numerator of Eq. (9.57) restricts the integral in Eq. (9.55) to values k ′ ≥ Λ and
since RΛ(k ′2) vanishes for k ′ ≥ Λ, the only contribution to the k ′-integral comes
from the δ-function in Eq. (9.58). Recalling that U ′

Λ(ρ0) = 0, we obtain for the
flowing anomalous dimension,

ηΛ = −Λ∂ΛZ−1
Λ

Z−1
Λ

= 4K DΛ
D−2ρ0

[
U ′′
Λ(ρ0)

]2

Dc0 Z−1
Λ

[
c0 Z−1

Λ Λ
2 + 2ρ0U ′′

Λ(ρ0)
]2 . (9.59)

In combination with the flow equation (9.41) for the effective potential UΛ(ρ), we
now have a complete set of flow equations.

To discuss fixed-point properties and to calculate the critical exponents it is
again advantageous to introduce dimensionless variables and W̃l = Ũ ′

l . This can
be accomplished as in the discussion of the LPA in the previous section with the
only difference being that in Eqs. (9.24a), (9.24b), (9.24c), (9.24d), and (9.24e) we
should now replace c0 by c0 Z−1

Λ . In rescaled form our complete set of flow equations
reads (see also (Blaizot et al. 2006a)) as follows,

∂l W̃l (ρ̃) = (2 − ηl)W̃l(ρ̃) − (D + ηl − 2)ρ̃W̃ ′
l (ρ̃)

+ K D

D

(
1 − ηl

D + 2

)[
3W̃ ′

l (ρ̃) + 2ρ̃W̃ ′′
l (ρ̃)[

1 + W̃l(ρ̃) + 2ρ̃W̃ ′
l (ρ̃)

]2 + (N − 1)W̃ ′
l (ρ̃)

[1 + W̃l (ρ̃)]2

]
,

(9.60)

where

ηl = K D

D

4ρ̃0
[
W̃ ′

l (ρ̃0)
]2

[
1 + 2ρ̃0W̃ ′

l (ρ̃0)
]2 . (9.61)
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Since the anomalous dimension can be simply expressed analytically, these LPA′

flow equations are almost as easy to solve as the corresponding LPA equations.
While the flow of the effective potential and the flow of ρ̃l look qualitatively similar
to the flow within the LPA, the flowing anomalous dimension now picks up a finite
value and stays finite if we fine-tune our system towards criticality. For more details
we refer the reader to Berges et al. (2002) or Blaizot et al. (2006a) who find an
anomalous dimension η = 0.044 for N = 2 and D = 3 which should be compared
with the more accurate value η = 0.038 compiled in Table 1.1 in Sect. 1.2.
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Part III
Functional Renormalization Group

Approach to Fermions

Lattice models for strongly correlated electrons in solids are of central interest in
condensed matter physics, because it is believed that the physical mechanism under-
lying collective phenomena such as superconductivity or magnetism can be qualita-
tively understood using simplified fermionic lattice models such as the
Hubbard model. In the condensed matter community, the renormalization group has
therefore been used extensively to analyze the low-energy phase diagram of inter-
acting many-electron systems, especially in reduced spatial dimensionality where
correlation effects play an important role. A perturbative treatment of these systems
can lead to infrared divergencies due to low-energy excitations such as particle–hole
excitations or various types of collective modes. Often these divergencies signal a
tendency toward the onset of long-range order. In cases where these instabilities of
the normal state are dominated by scattering processes in a single channel, the phys-
ical properties of the system can be obtained within simple mean-field theory or the
Gaussian approximation, which in this context is called random phase approxima-
tion or ladder approximation, as will be discussed in Sect. 10.3. However, in one and
two spatial dimensions, different instabilities often compete and need to be treated
on equal footing. The renormalization group then provides an unbiased means
of resumming the perturbation theory. The leading order renormalization group
equations for one-dimensional electrons have been written down a long time ago
(Sólyom 1979). After the discovery of the cuprate high-temperature superconduc-
tors, the RG approach to interacting fermions has been extended to higher dimen-
sions using the modern language of functional integration over anticommuting fields
(see, e.g., Shankar 1994). In this context, different approximation schemes have
been developed and applied to various versions of the Hubbard model during the
last decade.1 Because the single-particle propagator of normal fermions is singular
on the entire Fermi surface which forms a continuum in D > 1, the low-energy

1 It should be mentioned that a few years before Shankar’s didactic review made the formulation of
the Wilsonian RG via fermionic functional integrals popular in the condensed matter community,
most of the ideas and techniques described in Shankar (1994) had already been published in the
mathematical physics literature (Benfatto and Gallavotti 1990a,b, Feldman and Trubowitz 1990,
1991, Feldman et al. 1992, 1993a,b). We shall not discuss these works further in this book and
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classification of couplings according to relevance (to be discussed in Sect. 10.4)
leads to infinitely many marginal couplings associated with all possible two-body
scattering processes where the momenta of all particles lie on the Fermi surface.
To formulate a consistent RG theory for interacting fermions, one should therefore
keep track of entire coupling functions, which is most conveniently done using the
functional renormalization group (FRG) methods developed in this book.

Early FRG studies of the Hubbard model with a pure nearest-neighbor hopping
were based on a fermionic version of the Polchinski equation (Zanchi and Schulz
1998, 2000, Zanchi 2001). These authors found a dominating antiferromagnetic
instability in the vicinity of half filling that is replaced by d-wave superconductivity
at sufficient hole doping. Halboth and Metzner (2000a,b) implemented an analogous
scheme using an expansion in normal-ordered monomials (which defines so-called
Wick-ordered vertex functions) for a model including also next-nearest-neighbor
hopping. Apart from d-wave superconductivity and commensurate antiferromag-
netism, they also found regions with incommensurate spin-density waves. Most
authors now use the one-particle irreducible version of the fermionic FRG (Kopietz
and Busche 2001, Salmhofer and Honerkamp 2001, Honerkamp and Salmhofer
2001b, Honerkamp 2003, Honerkamp and Salmhofer 2005, Honerkamp 2001, Hon-
erkamp et al. 2004, Kampf and Katanin 2003, Katanin and Kampf 2003, 2004,
Katanin 2004, 2009, Ossadnik et al. 2008). Honerkamp et al. (2001) first applied
this one-particle irreducible scheme to the two-dimensional Hubbard model and also
discussed the possibility of a spin-liquid phase stabilized by Umklapp scattering.

At low energies and independent of the type of vertices used, the one-loop FRG
flow exhibits a divergence of some particular coupling constants at a finite value
of the infrared cutoff Λ. The type and symmetry of the couplings which diverge
first then yield useful information about the dominating instability of the Fermi
liquid. Yet, with the strong increase of the coupling constants, the justification of
the one-loop truncation breaks down. For the case of only one dominating insta-
bility, the flow to strong coupling is then interpreted as an indication of a broken
symmetry. Yet, especially for parameter regions with several divergent couplings
of similar strength, states without long-range order are also conceivable. Strictly
speaking, a continuous symmetry in two dimensions can only be broken in the
ground state due to the Mermin–Wagner theorem. At finite temperatures a quasi
long-range order with algebraic decay of correlation functions can occur. Further-
more, a weak coupling in the third spatial direction can suffice to stabilize long-
range three-dimensional order in the channel of the dominating two-dimensional
instability.

To be able to continue the FRG flow down to Λ → 0, some workers currently
explore possibilities to incorporate symmetry breaking into the formalism. In the
purely fermionic language, this can be achieved by introducing a small symmetry-
breaking initial source field. During the flow, this generates anomalous, gap-creating

refer the reader to the book by Salmhofer (1999) for a more mathematical introduction to the
fermionic functional renormalization group.



Part III Functional Renormalization Group Approach to Fermions 251

self-energy terms and also regularizes the flow of the two-particle vertex (Salmhofer
et al. 2004, Gersch et al. 2005, 2006, 2008). In an alternative approach which will
be discussed in Chaps. 11 and 12, one directly introduces bosonic order-parameter
fields via a Hubbard–Stratonovich transformation and derives FRG flow equations
for the coupled field theory (Baier et al. 2004, 2005, Schütz et al. 2005, Schütz
2005). Symmetry breaking then becomes manifest in finite vacuum expectation val-
ues of some bosonic field components (Schütz and Kopietz 2006). This partially
bosonized FRG flow has the advantage that a bosonic four-point vertex is still
tractable (Baier et al. 2004, 2005) and phenomena that are controlled by a non-
Gaussian fixed point in the bosonic sector are accessible. In the purely fermionic
language, the corresponding eight-point vertex is extremely difficult to treat. A two-
stage approach is also possible which first uses an FRG calculation in the fermionic
language and analyzes the resulting low-energy action with the help of bosonic tech-
niques. A mean-field analysis has recently been carried out for regions with equally
strong superconducting as well as antiferromagnetic instabilities (Reiss et al. 2007).

Further interesting developments in the fermionic FRG include the possibility of
alternative flow parameters, such as the strength of the interaction (Honerkamp et al.
2004), a cutoff in the momentum transfer of the interaction (Schütz et al. 2005),
or the temperature. The latter approach allows for the treatment of ferromagnetic
instabilities (Honerkamp and Salmhofer 2001a,b, Honerkamp 2001, Katanin and
Kampf 2003). Furthermore, an explicit calculation of the self-energy is of great
interest. Zanchi first calculated the quasiparticle residue (Zanchi 2001) and found a
strong suppression in the vicinity of the Van Hove points. Recently, a calculation of
the frequency dependence of the spectral function has been achieved (Katanin and
Kampf 2004, Rohe and Metzner 2005) leading to results that suggest a pseudo-gap
behavior at certain points on the Fermi surface. Using the field-theoretical renor-
malization group in a two-loop truncation, Ferraz and coworkers found a spin liquid
with vanishing quasiparticle weight for a Fermi surface with parallel sections (Fer-
raz 2003, Freire et al. 2005) and later on also for the two-dimensional Hubbard
model (Freire et al. 2008). In connection with self-energy effects, one should also
mention the problem of self-consistently determining the interacting Fermi surface
(Ledowski and Kopietz 2003, Ledowski et al. 2005, Ledowski and Kopietz 2007). It
is an open question to what extend a change of the form of the Fermi surface has an
influence on the interplay of different instabilities. Up to now all calculations in two
dimensions have neglected the renormalization of the dispersion, which is consistent
with the one-loop truncation. The one-loop patching approximation has also been
used to study phase diagrams of two-dimensional models with more complicated
geometries such as triangular lattices (Tsai and Marston 2001, Honerkamp and
Salmhofer 2003, Mathey et al. 2006) as well as the Honeycomb lattice (Raghu et al.
2008). The existence of more exotic phases, for example, staggered flux phases, has
been addressed for the extended Hubbard model on the square lattice (Kampf and
Katanin 2003). Finally, let us mention here very recent applications of the FRG to
the study of the pairing symmetry and the pairing mechanism of the iron arsenide-
based superconductors (Wang et al. 2009, Platt et al. 2009, Zhai et al. 2009).
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The third part of this book is divided into three chapters. We begin in Chap. 10
with a detailed discussion of the fermionic FRG. After a careful derivation of the
exact FRG flow equations for the irreducible vertices, we discuss various trunca-
tions of the fermionic vertex expansion. We also present a detailed discussion of
the rescaling problem in the presence of a Fermi surface, and show how standard
single-channel approximations such as the random phase approximation and the
ladder approximation can be recovered within the FRG. Moreover, in Sect. 10.5 we
give a self-contained introduction to the one-loop patching approximation where all
scattering channels are treated on equal footing.

In the last two chapters, Chaps. 11 and 12, we then introduce the reader to the
subtleties of partially bosonized FRG flows for interacting fermions. The basic idea
is to represent certain types of interaction processes as the exchange of suitable
bosonic fields, which are formally introduced via Hubbard–Stratonovich transfor-
mations. Unfortunately, this can be done in many ways, so that in practice one needs
some a priori knowledge about the dominant scattering processes. In Chap. 11 we
shall discuss normal fermions with dominant forward scattering, where it is natural
to decouple the interaction in the zero-sound channel describing particle–hole scat-
tering with small momentum transfers. Finally, in Chap. 12 we shall discuss super-
fluid fermions with an attractive short-range interaction—in this case it is natural to
use a Hubbard–Stratonovich decoupling in the particle–particle channel. We present
a new truncation strategy of the exact hierarchy of FRG flow equations using skele-
ton equations and Ward identities (Bartosch et al. 2009).
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Schütz, F. (2005), Aspects of Strong Correlations in Low Dimensions, Doktorarbeit, Goethe Uni-

versität Frankfurt. 251
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Schütz, F., L. Bartosch, and P. Kopietz (2005), Collective fields in the functional renormalization

group for fermions, Ward identities, and the exact solution of the Tomonaga-Luttinger model,
Phys. Rev. B 72, 035107. 251

Shankar, R. (1994), Renormalization group approach to interacting fermions, Rev. Mod. Phys. 66,
129. 249

Sólyom, J. (1979), The Fermi gas model of one-dimensional conductors, Adv. Phys. 28, 201. 249
Tsai, S.-W. and J. B. Marston (2001), κ–(BEDT–TTF)2X organic crystals: Superconducting versus

anti-ferromagnetic instabilities in the Hubbard model on an anisotropic triangular lattice, Can.
J. Phys. 79, 1463. 251

Wang, F., H. Zhai, Y. Ran, A. Vishwanath, and D.-H. Lee (2009), Functional renormalization
group study of the pairing mechanism of the FeAs-based high-temperature superconductors,
Phys. Rev. Lett. 102, 047005. 251

Zanchi, D. (2001), Angle-resolved loss of Landau quasiparticles in 2D Hubbard model, Europhys.
Lett. 55, 376. 250, 251

Zanchi, D. and H. J. Schulz (1998), Weakly correlated electrons on a square lattice: A renormal-
ization group theory, Europhys. Lett. 44, 235. 250

Zanchi, D. and H. J. Schulz (2000), Weakly correlated electrons on a square lattice: Renormaliza-
tion group theory, Phys. Rev. B 61, 13609. 250

Zhai, H., F. Wang, and D.-H. Lee (2009), Antiferromagnetically driven electronic correlation in
iron pnictides and cuprates, Phys. Rev. B 80, 064519. 251



Chapter 10
Fermionic Functional Renormalization Group

In this chapter we shall derive the fundamental FRG flow equations for one-band
models of nonrelativistic fermions. Although these flow equations follow as a spe-
cial case of the general flow equations derived in Chap. 7, it is still useful to write
down these equations explicitly in order to identify the various terms in the vertex
expansion with familiar types of scattering processes (Kopietz and Busche 2001,
Salmhofer and Honerkamp 2001). Moreover, for fermions with SU (2) spin rota-
tional symmetry it is useful to take the constraints imposed by this symmetry via
a proper parameterization of the vertices into account. We shall derive the cor-
responding exact FRG flow equations in Sect. 10.2. We then show in Sect. 10.3
how to recover standard single-channel approximations such as the random phase
approximation or the ladder approximation from our FRG equations. We proceed
in Sect. 10.4 with a discussion of the rescaling problem for normal fermions, which
leads to a nonperturbative definition of the Fermi surface. Finally, we discuss in
Sect. 10.5 the one-loop patching approximation and present numerical results for
the square-lattice Hubbard model.

10.1 Symmetries of the Two-Fermion Interaction

The correlation functions of interacting fermions can be represented as functional
integrals over pairs of anticommuting Grassmann fields ψ and ψ̄ (see, e.g., Negele
and Orland 1988). In terms of these fields, we can write the Euclidean action of an
interacting many-fermion system with general two-body interaction in the form

S[ψ̄, ψ] = S0[ψ̄, ψ] + S1[ψ̄, ψ] , (10.1)

with the Gaussian part

S0[ψ̄, ψ] = −
∑
σ

∫
K

G−1
0 (Kσ )ψ̄KσψKσ = −

∑
σ

∫
K

(iω− ξkσ )ψ̄KσψKσ . (10.2)

Kopietz, P. et al.: Fermionic Functional Renormalization Group. Lect. Notes Phys. 798, 255–303
(2010)
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Here, ξkσ = εkσ − μ, where μ is the chemical potential and εkσ is some energy
dispersion which may also depend on the spin projection σ . The collective label
K = (iω, k) consists of fermionic Matsubara frequencies iω and momenta k, and
the symbol

∫
K denotes the corresponding integrations or summations. This notation

has already been introduced in the introductory paragraph of Chap. 6, see Eqs. (6.6)–
(6.8). Although in this chapter we are mainly interested in Fermi systems where
ζ = −1, we shall retain the statistics factor ζ so that by setting ζ = +1 we obtain
the corresponding FRG flow equations for interacting bosons.

For fermions with spin, the interaction part of the bare action will mostly be
assumed to possess an SU (2) spin rotational symmetry, or at least to be invariant
under spin rotations around the quantization axis. Thus, according to Eq. (6.119) the
two-body interaction must be of the form

S1[ψ̄, ψ] = 1

2

∑
σ1σ2

∫
K ′

1

∫
K ′

2

∫
K2

∫
K1

δK ′
1+K ′

2,K2+K1

×U (4)
σ1σ2

(
K ′

1, K ′
2; K2, K1

)
ψ̄K ′

1σ1ψ̄K ′
2σ2ψK2σ2ψK1σ1 . (10.3)

The vertex U (4)
σ1σ2

(
K ′

1, K ′
2; K2, K1

)
is symmetric under a simultaneous permutation

of its ingoing and outgoing labels,

U (4)
σ1σ2

(
K ′

1, K ′
2; K2, K1

) = U (4)
σ2σ1

(
K ′

2, K ′
1; K1, K2

)
, (10.4)

which is a special case of the general relation (6.120). Diagrammatically, we repre-
sent the vertex U (4)

σ1σ2
by an elongated rectangle, signaling that the spin is conserved

along continuous particle lines at each end,

U (4)
σ1σ2

(
K ′

1, K ′
2; K2, K1

) = . (10.5)

The permutation symmetry in Eq. (10.4) then corresponds to flipping the diagram
such that the upper and lower ends are exchanged. If furthermore the interaction
depends only on the momentum transfer q = k′

1−k1, i.e., U (4)
σ1σ2

(
K ′

1, K ′
2; K2, K1

) =
Uσ1σ2

(
k′

1 − k1
)

(such as the bare Coulomb interaction), it is conveniently repre-
sented as follows:

Uσ1σ2 (q) = . (10.6)

The wavy line can be thought of as an effective particle mediating the interaction;
we shall come back to this interpretation in Chap. 11.

In order to derive exact FRG flow equations for the irreducible vertices, we will
also need properly antisymmetrized vertices. Therefore, we write Eq. (10.3) in the
form
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S1[ψ̄, ψ] = 1

(2!)2

∫
K ′

1σ
′
1

∫
K ′

2σ
′
2

∫
K2σ2

∫
K1σ1

δK ′
1+K ′

2,K2+K1

×Γ (4)
0

(
K ′

1σ
′
1, K ′

2σ
′
2; K2σ2, K1σ1

)
ψ̄K ′

1σ
′
1
ψ̄K ′

2σ
′
2
ψK2σ2ψK1σ1 , (10.7)

where
∫

Kσ ≡ ∫
K

∑
σ and the vertex Γ (4)

0

(
K ′

1σ
′
1, K ′

2σ
′
2; K2σ2, K1σ1

)
is antisymmet-

ric with respect to the exchange of its first two and its second two labels. Diagram-
matically, we represent Γ (4) by a square,

Γ
(4)

0

(
K ′

1σ
′
1, K ′

2σ
′
2; K2σ2, K1σ1

) = . (10.8)

The relation between this antisymmetrized vertex and the symmetric vertex
U (2)
σ1σ2

(
K ′

1, K ′
2; K2, K1

)
in Eq. (10.3) follows as a special case of the general expres-

sion (6.121),

Γ
(4)

0

(
K ′

1σ
′
1, K ′

2σ
′
2; K2σ2, K1σ1

) = δσ ′
1σ1δσ ′

2σ2U
(4)
σ1σ2

(
K ′

1, K ′
2; K2, K1

)
+ζ δσ ′

1σ2δσ ′
2σ1U

(4)
σ2σ1

(
K ′

1, K ′
2; K1, K2

)
. (10.9)

Note that for bosons (ζ = 1) this vertex is symmetric under the exchange of the first
two or the second two labels. Sometimes it is useful to decompose the interaction
into a spin-singlet part and a spin-triplet part,

Γ
(4)

0

(
K ′

1σ
′
1, K ′

2σ
′
2; K2σ2, K1σ1

) =[
δσ ′

1σ1δσ ′
2σ2 − δσ ′

1σ2δσ ′
2σ1

]
U⊥
σ1σ2

(
K ′

1, K ′
2; K2, K1

)
+ [
δσ ′

1σ1δσ ′
2σ2 + δσ ′

1σ2δσ ′
2σ1

]
U ‖
σ1σ2

(
K ′

1, K ′
2; K2, K1

)
, (10.10)

where

U⊥
σ1σ2

(
K ′

1, K ′
2; K2, K1

) =
1

2

[
U (4)
σ1σ2

(
K ′

1, K ′
2; K2, K1

) − ζU (4)
σ2σ1

(
K ′

1, K ′
2; K1, K2

)]
, (10.11a)

and

U ‖
σ1σ2

(
K ′

1, K ′
2; K2, K1

) =
1

2

[
U (4)
σ1σ2

(
K ′

1, K ′
2; K2, K1

) + ζU (4)
σ2σ1

(
K ′

1, K ′
2; K1, K2

)]
. (10.11b)

If the system exhibits full SU (2) spin rotation invariance, the function U (4)
σ1σ2

is
independent of the spin labels, see Eq. (6.124). Consequently, the spin-singlet and
spin-triplet functions U⊥ and U ‖ are also independent of the spin labels. Note that
for fermions (bosons) the functions U⊥ and U ‖ are then symmetric (antisymmetric)
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and antisymmetric (symmetric) under independent exchange of the ingoing or out-
going labels, respectively. In contrast, U (4) is only symmetric under simultaneous
permutation of both incoming and outgoing momentum labels. The pair (U⊥,U ‖)
thus contains the same information as the single function U (4). In the following, we
will mostly work directly with U (4), but Eqs. (10.11a) and (10.11b) can always be
used to obtain the corresponding singlet and triplet components of the interaction.

As an example, consider the Hubbard model with general spin-dependent hop-
ping ti j,σ connecting lattice sites r i and r j . The Euclidean action in imaginary time
is then given by

S[ψ̄, ψ] =
∫ β

0
dτ

[∑
i jσ

ψ̄iσ (τ )[δi j (∂τ − μ) + ti j,σ ]ψ jσ (τ )

+U
∑

i

ni↑(τ )ni↓(τ )

]
, (10.12)

where niσ (τ ) = ψ̄iσ (τ )ψiσ (τ ). The on-site interaction U is only effective if two
electrons with opposite spin occupy the same lattice site. For an infinite lattice or
for periodic boundary conditions, the system is invariant under discrete lattice trans-
lations. The hoppings ti j,σ can then only depend on the distance δ = r j −r i between
the two lattice sites. For a single-band model, we can thus write ti j,σ = tσ (r j − r i )
and the energy dispersion in Eq. (10.2) is

εkσ =
∑

δ

e−i k·δtσ (δ) , (10.13)

where the sum is over all translational vectors of the Bravais lattice. For short-range
hoppings, only a small number of these terms contributes. Note that if the unit
cell contains more than one site, multiple bands occur and a band index has to be
included in addition to the spin index. We will not consider the multiband situation
further here. For the Hubbard model on a D-dimensional hypercubic lattice with
lattice spacing a, the interaction U (4)

σ1σ2
in Eq. (10.3) is given by1

U (4)
σ1σ2

(
K ′

1, K ′
2; K2, K1

) ≡ U (4) (K ′
1, K ′

2; K2, K1
) = aDU , (10.14)

which is a special case of Eq. (6.124). Recall that for lattice models momentum is
only conserved up to vectors of the reciprocal lattice, as discussed in Sect. 6.3. All
momentum summations are thus over the first Brillouin zone and δK ,K ′ = δ

(G)
K ,K ′ is

the periodic delta-function as defined in Eq. (6.115). The momentum conservation
modulo a vector of the reciprocal lattice in the presence of discrete translational
invariance has been formally derived in Sect. 6.3.2 (see Eq. (6.112)).

1 The factor of aD in Eq. (10.14) is due to the fact that in Eq. (10.3) we use the continuum nor-
malization of the Fourier-transformed fields ψKσ , which is related to the lattice fields appearing in
Eq. (10.12) via ψiσ (τ ) = aD/2

βV

∑
K ei(k·r i −ωτ )ψKσ .
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10.2 Exact FRG Flow Equations for the Irreducible Vertices

10.2.1 From Superfield to Partially Symmetrized Notation

Nonrelativistic Fermi or Bose systems with Euclidean action S[ψ̄, ψ] given by
Eqs. (10.1)–(10.3) belong to the class of models introduced in Chap. 6, so that
the exact FRG flow equations for these systems can be obtained as a special case
of the general flow equations derived in Chap. 7. The superfield Φα has in this
case two field components ψ and ψ̄ , whose configuration is specified by the labels
(Kσ ) = (iω, k, σ ). Our superfield label α is therefore of the form α = (i, K , σ ),
where the field-type label i assumes the values i = ψ, ψ̄ . For fixed values of K and
σ , we have therefore a two-component superfield,

ΦKσ ≡
(
ΦψKσ

Φψ̄Kσ

)
=

(
ψKσ

ψ̄Kσ

)
. (10.15)

The symbol
∫
α

introduced in Eq. (6.3) should then be understood as

∫
α

f (Φα) =
∑

i=ψ,ψ̄

∫
Kσ

f (Φi Kσ ) , (10.16)

where f (Φα) is any function of the field component Φα . The Gaussian part (10.2)
of our bare action can then be written as

S0[Φ] = −1

2

∫
Kσ
ΦT

Kσ

(
0 ζG−1

0 (Kσ )
G−1

0 (Kσ ) 0

)
ΦKσ , (10.17)

which for fermions (ζ = −1) reduces to Eq. (6.6).
To relate the two-body interaction to the completely symmetrized interaction

vertices introduced in superfield notation, we note that according to Eq. (6.60) the
interaction in superfield notation should be written as

S1[Φ] = 1

4!

∫
α1

. . .

∫
α4

Γ (4)
α1α2α3α4

Φα1Φα2Φα3Φα4 . (10.18)

Comparing this expression with Eq. (10.7), we conclude that

Γ
(4)
α1=(ψ̄,K ′

1,σ
′
1),α2=(ψ̄,K ′

2,σ
′
2),α3=(ψ,K2,σ2),α4=(ψ,K1,σ1)

= δK ′
1+K ′

2,K2+K1Γ
(4)

0

(
K ′

1σ
′
1, K ′

2σ
′
2; K2σ2, K1σ1

)
. (10.19)

which is a special case of the general relation (6.114).
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For simplicity, we shall assume in this chapter that our system is not superfluid.
The only nonvanishing elements of the flowing two-point vertex Γ (2)

Λ,α1α2
are then2

Γ
(2)
Λ,α1=(ψ̄K1σ1),α2=(ψK2σ2) = ζΓ

(2)
Λ,α1=(ψK1σ1),α2=(ψ̄K2σ2)

= δK1 K2δσ1σ2ΣΛ(K1σ1) , (10.20)

where ΣΛ(Kσ ) is the flowing irreducible self-energy. Note that here and in the fol-
lowing subsection we assume conservation of the spin projection onto the quantiza-
tion axis. The flowing inverse matrix Green function G−1

Λ and the self-energy matrix
ΣΛ have the same block structure as the inverse free propagator in Eq. (10.17),

G−1
Λ =

(
0

(
G−1
Λ

)
ψψ̄(

G−1
Λ

)
ψ̄ψ

0

)
=

(
0 ζ Ĝ−1

Λ

Ĝ−1
Λ 0

)
= G−1

0 − ΣΛ , (10.21)

ΣΛ =
(

0 (ΣΛ)ψψ̄
(ΣΛ)ψ̄ψ 0

)
=

(
0 ζ Σ̂Λ

Σ̂Λ 0

)
, (10.22)

where Ĝ−1
Λ and Σ̂Λ are infinite diagonal matrices in momentum-frequency and spin

space, with matrix elements given by

[
Ĝ−1
Λ

]
Kσ,K ′σ ′ = δK K ′δσσ ′ G−1

Λ (Kσ ) , (10.23)

[Σ̂Λ]Kσ,K ′σ ′ = δK K ′δσσ ′ΣΛ(Kσ ) . (10.24)

Here, the flowing single-particle Green function G−1
Λ (Kσ ) is related to the flowing

self-energy via

G−1
Λ (Kσ ) = G−1

0 (Kσ ) −ΣΛ(Kσ ) . (10.25)

The matrix Green function GΛ and the corresponding single-scale propagator ĠΛ

which appear in the exact FRG flow equations have then the block structure

GΛ =
(

0 (GΛ)ψψ̄
(GΛ)ψ̄ψ 0

)
=

(
0 ĜΛ

ζ ĜΛ 0

)
, (10.26a)

ĠΛ =
(

0 (ĠΛ)ψψ̄
(ĠΛ)ψ̄ψ 0

)
=

(
0 ˙̂GΛ

ζ ˙̂GΛ 0

)
, (10.26b)

where ˙̂GΛ is again a diagonal matrix whose matrix elements are given by the single-
scale propagator in momentum–frequency space,

[ ˙̂GΛ]Kσ,K ′σ ′ = δK K ′δσσ ′ ĠΛ(Kσ ) . (10.27)

2 In Chap. 12 we shall generalize the FRG approach to the superfluid state of neutral fermions. In
this case the matrix elements Γ (2)

ψψ and Γ (2)
ψ̄ψ̄

are also nonzero.
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Note that according to Eqs. (6.12), (6.22c), and (6.31) the cutoff-dependent propa-
gator can be represented as the following functional average,

GΛ(Kσ ) = −(βV )−1〈ψKσ ψ̄Kσ 〉 = −ζ (βV )−1〈ψ̄KσψKσ 〉 , (10.28)

where the factor of (βV )−1 is due to the fact that for K = K ′ the Kronecker delta-
symbol δK ,K ′ should be understood as βV , (see Eq. (6.11)).

In the normal state all vertices Γ (n)
α1...αn

where the number of external legs corre-
sponding to ψ̄ is not equal to the number of legs corresponding to ψ vanish, so that
our theory has only even vertices with an equal number of ψ̄- and ψ-legs. Similar
to Eq. (10.19), it is useful to factor out the overall energy–momentum conserving
δ-function and define the flowing, partially symmetrized3 vertices

Γ
(2n)
Λ,(ψ̄,K ′

1,σ
′
1)...(ψ̄,K ′

n ,σ
′
n)(ψ,Kn ,σn )...(ψ,K1,σ1)

= δK ′
1+···+K ′

n ,Kn+···+K1Γ
(2n)
Λ

(
K ′

1σ
′
1, . . . , K ′

nσ
′
n; Knσn, . . . , K1σ1

)
. (10.29)

The corresponding functional Taylor expansion of the generating functional
ΓΛ[ψ̄, ψ] is given in Eq. (6.113). To visualize the various terms in the flow equa-
tions, it is then useful to switch from the graphical representation of the completely
symmetrized vertices used in Chaps. 6 and 7 to a new graphical notation where
the two different field types of our theory are represented by incoming or outgo-
ing arrows, which enter or leave vertices which are now represented by squares,
as shown in Fig. 10.1. A leg associated with a ψ̄ field is represented by an arrow
pointing outward, while a leg associated with ψ is represented by an arrow pointing
inward. Note that on each side of the square only fields of the same type are attached.
As usual, we represent the flowing propagator GΛ(Kσ ) = −(βV )−1〈ψKσ ψ̄Kσ 〉 by
a thick arrow pointing from ψ̄ to ψ , as shown on the right-hand side of Fig. 10.1.
The corresponding single-scale propagators are marked by an additional slash in
front of the arrow. Because according to Eq. (10.29) the totally symmetric superfield
vertices Γ (2n)

α1,...,αn
agree, up to the energy and momentum conserving δ-function, with

the partially symmetrized vertices Γ (2n)
Λ

(
K ′

1σ
′
1, . . . , K ′

nσ
′
n; Knσn, . . . , K1σ1

)
if we

choose the same ordering of the indices, we can obtain the flow equations for the
partially symmetrized vertices by choosing a definite realization of the external legs
and by carrying out the intermediate sums over the different field species in our gen-
eral FRG flow equations for the totally symmetrized vertices derived in Sect. 7.2.
Graphically, we simply draw lines with all possible orientations of arrows in the
intermediate loop and keep only those diagrams that due to particle conservation

3 For simplicity we call vertices for both bosons and fermions symmetrized if they have
the proper permutation symmetry of the labels. For fermions the partially symmetrized ver-
tices Γ (2n)

Λ

(
K ′

1σ
′
1, . . . , K ′

nσ
′
n ; Knσn, . . . , K1σ1

)
are therefore antisymmetric with respect to the

exchange of any pair of labels within the first n and the last n group of indices.
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Fig. 10.1 Graphical elements of the diagrams representing the FRG flow equations for a theory
containing only Fermi or Bose fields. A square-shaded box with 2n external legs represents the
flowing irreducible vertex Γ (2n)

Λ

(
K ′

1σ
′
1, . . . , K ′

nσ
′
n ; Knσn, . . . , K1σ1

)
which is related to the fully

symmetrized vertex by Eq. (10.29). Arrows pointing into the vertex represent ψ , while arrows
pointing out of the vertex represent ψ̄ . The exact propagator is represented by an arrow pointing
from the point associated with ψ̄ to the point associated with ψ , while the single-scale propagator
is marked by an additional slash

have an equal number of incoming and outgoing arrows at each vertex and propa-
gator. On the right-hand side one then has to appropriately order all legs attached
to a given vertex, keeping in mind that an exchange of neighboring legs leads to a
statistical factor ζ . Having done so, we can use the pictorial dictionary in Fig. 10.1
to replace the fully symmetrized vertices and propagators by their partially sym-
metrized energy–momentum conserving counterparts. The resulting diagrams can
then be labeled with momentum and frequency indices just as ordinary Feynman
diagrams.

10.2.2 Exact FRG Flow Equations

Let us now explicitly write down the exact FRG flow equations for the first
three vertices: the interaction correction to the grand canonical potential Γ (0)

Λ , the
irreducible self-energy Γ (2)

Λ (Kσ, Kσ ) ≡ ΣΛ(Kσ ), and the effective interaction
Γ

(4)
Λ

(
K ′

1σ
′
1, K ′

2σ
′
2; K2σ2, K1σ1

)
. In Sect. 10.2.3 we shall further specify our gen-

eral FRG flow equations for SU (2)-symmetric models. The general flow equations
considered here are directly applicable to spinless fermions if all spin indices and
spin summations are simply dropped.

For our field theory containing only nonrelativistic fermions or bosons, the FRG
flow equation (7.70) for the interaction correction to the grand canonical potential
reduces to

∂ΛΓ
(0)
Λ = −ζβV

∫
Kσ

Ġ0,Λ(Kσ )ΣΛ(Kσ )

1 − G0,Λ(Kσ )ΣΛ(Kσ )
. (10.30)

For bosons (ζ = 1) in the classical limit, corresponding to high temperatures where
it is allowed to retain only the zeroth Matsubara frequency in the sum βV

∫
Kσ =∑

kωσ , this expression reduces to the classical result (8.14) (up to a factor of 2,
because here we consider now a two-component theory). Note, however the different
convention for the sign of the Green function for classical systems, i.e., we should
replace G → −G in Eq. (10.30) to recover Eq. (8.14).
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Next, consider the exact FRG flow equation for the two-point vertex
Γ

(2)
Λ (Kσ, Kσ ) ≡ ΣΛ(Kσ ). Keeping in mind that in our case the vertices with three

external legs vanish, the general FRG flow equation (7.73) reduces to

∂ΛΓ
(2)
Λ,α1α2

= −1

2

∫
α

∫
α′

(ZĠΛ)αα′Γ
(4)
Λ,α′αα1α2

. (10.31)

Setting the external labels in this expression equal to α1 = (ψ̄K1σ1) and α2 =
(ψK2σ2) and using Eq. (10.20), this reduces in superfield notation to

δK1 K2δσ1σ2∂ΛΣΛ(K1σ1)

= −ζ
2

∫
Kσ

∫
K ′σ ′

[
(ĠΛ)ψKσ,ψ̄K ′σ ′Γ

(4)
Λ,ψ̄K ′σ ′,ψKσ,ψ̄K1σ1,ψK2σ2

+(ĠΛ)ψ̄Kσ,ψK ′σ ′Γ
(4)
Λ,ψK ′σ ′,ψ̄Kσ,ψ̄K1σ1,ψK2σ2

]
. (10.32)

Substituting for the matrix elements of the single-scale propagator the expressions
in Eqs. (10.26b) and (10.27), and using the relation (10.29) with n = 2 to express
the totally symmetrized four-point vertex in terms of the partially symmetrized
energy–momentum conserving four-point vertex, we finally obtain the exact FRG
flow equation for the irreducible self-energy,

∂ΛΣΛ(Kσ ) = −ζ
∫

K ′σ ′
ĠΛ(K ′σ ′)Γ (4)

Λ (Kσ, K ′σ ′; K ′σ ′, Kσ ) . (10.33)

A diagrammatic representation of Eq. (10.33) and its derivation using the graphical
elements defined in Fig. 10.1 is shown in Fig. 10.2.

Fig. 10.2 Upper panel: Diagrammatic derivation of the flow equation for the self-energy. The first
and last diagrams in the rectangular brackets vanish, as they do not conserve particle number.
Note that the diagrams in Fig. 7.2 containing vertices with three external legs have been dropped
directly, because in a theory with only particle fields three-legged vertices cannot conserve particle
number. Lower panel: Resulting graphical representation of the exact flow equation (10.33). The
dot over the vertex on the left-hand side denotes the derivative with respect to the cutoff Λ. The
other symbols are defined in Fig. 10.1
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Finally, consider the exact FRG flow equation for the effective interaction
Γ

(4)
Λ

(
K ′

1σ
′
1, K ′

2σ
′
2; K2σ2, K1σ1

)
which appears on the right-hand side of the FRG

flow equation (10.33) for the self-energy. The general flow equation for the effec-
tive interaction in superfield notation is given in Eq. (7.75) and shown graphically
in Fig. 7.5. To obtain the flow equation for the corresponding partially symmetrized
vertex Γ (4)

Λ

(
K ′

1σ
′
1, K ′

2σ
′
2; K2σ2, K1σ1

)
, let us explicitly write down all terms which

are generated by the symmetrization operator Sα1α2;α3α4 on the right-hand side of
Eq. (7.75). From the general definition of the operator S given in Eq. (6.88), it is
easy to see that the application of Sα1α2;α3α4 to any function f (α1, α2;α3, α4) which
is already (anti)-symmetric with respect to the first and second pair of labels gener-
ates the following 6 = 4!

(2!)2 terms,

S1 2;3 4

[
f (1, 2; 3, 4)

]
= f (1, 2; 3, 4) + f (3, 4; 1, 2) + ζ f (1, 3; 2, 4)

+ ζ f (2, 4; 1, 3) + f (1, 4; 2, 3) + f (2, 3; 1, 4) , (10.34)

where for simplicity we have written 1 for α1 and similarly for the other labels.
Fixing the external labels in Eq. (7.75) to α1 = (

ψ̄K ′
1σ

′
1

)
, α2 = (

ψ̄K ′
2σ

′
2

)
,

α3 = (ψK2σ2), and α4 = (ψK1σ1), and using the relation (10.29) between totally
symmetrized and partially symmetrized vertices, our general FRG flow equation
(7.75) for the four-point vertex reduces to

δK ′
1+K ′

2,K2+K1∂ΛΓ
(4)
Λ

(
K ′

1σ
′
1, K ′

2σ
′
2; K2σ2, K1σ1

)
= −1

2

∫
Kσ

∫
K ′σ ′

[
(ZĠΛ)ψKσ,ψ̄K ′σ ′Γ

(6)
Λ,ψ̄K ′σ ′,ψKσ,ψ̄1′ ψ̄2′ψ2ψ1

+(ZĠΛ)ψ̄Kσ,ψK ′σ ′Γ
(6)
Λ,ψK ′σ ′,ψ̄Kσ,ψ̄1′ ψ̄2′ψ2ψ1

]
−ζ

2
Tr
{

ĠΛΓ
(4)
Λ,ψ̄1′ ,ψ̄2′ GΛΓ

(4)
Λ,ψ2ψ1

+ ĠΛΓ
(4)
Λ,ψ2ψ1

GΛΓ
(4)
Λ,ψ̄1′ ψ̄2′

+ζ ĠΛΓ
(4)
Λ,ψ̄1′ψ2

GΛΓ
(4)
Λ,ψ̄2′ψ1

+ ζ ĠΛΓ
(4)
Λ,ψ̄2′ψ1

GΛΓ
(4)
Λ,ψ̄1′ψ2

+ĠΛΓ
(4)
Λ,ψ̄1′ ,ψ1

GΛΓ
(4)
Λ,ψ̄2′ψ2

+ ĠΛΓ
(4)
Λ,ψ̄2′ψ2

GΛΓ
(4)
Λ,ψ̄1′ψ1

}
, (10.35)

where we have used the notation ψ1 ≡ (ψK1σ1) and analogously for ψ2, ψ̄1′ , and
ψ̄2′ . Recall that according to Eq. (7.68) quantities like Γ

(4)
Λ,ψ̄1′ ,ψ̄2′ should be under-

stood as matrices in the superlabels, with matrix elements given by

[
Γ

(4)
Λ,ψ̄1′ ψ̄2′

]
αα′ = Γ

(4)
Λ,αα′ψ̄1′ ψ̄2′ , (10.36)

and analogously for the other matrices in Eq. (10.35). Keeping in mind that in the
normal state two of the external legs of the effective interaction Γ (4)

Λ,α1α2α3α4
must cor-

respond to ψ̄-fields while the other two legs must correspond toψ-fields, it is easy to
see that each of the terms in the last three lines of Eq. (10.35) is nonzero only for one
or two choices of the internal fields. For example, the vertex in Eq. (10.36) is only
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nonzero if the internal labels α and α′ are both ψ-fields. The sum over the internal
field configurations in Eq. (10.35) is therefore easily carried out. Using the explicit
form of the matrix elements of ĠΛ and GΛ given in Eqs. (10.26a) and (10.26b), we
finally obtain the flow equation for the effective interaction in the following explicit
form,

∂ΛΓ
(4)
Λ

(
K ′

1σ
′
1, K ′

2σ
′
2; K2σ2, K1σ1

)
= −ζ

∫
K

∑
σ

ĠΛ(Kσ )Γ (6)
Λ

(
K ′

1σ
′
1, K ′

2σ
′
2, Kσ ; Kσ, K2σ2, K1σ1

)
−

∫
K

∑
σσ ′

ĠΛ(Kσ )GΛ(K1 + K2 − Kσ ′)

×Γ (4)
Λ

(
K ′

1σ
′
1, K ′

2σ
′
2; K1 + K2 − Kσ ′, Kσ

)
×Γ (4)

Λ (Kσ, K1 + K2 − Kσ ′; K2σ2, K1σ1)

− ζ

∫
K

∑
σσ ′

[
ĠΛ(Kσ )GΛ

(
K + K1 − K ′

1σ
′) + GΛ(Kσ )ĠΛ

(
K + K1 − K ′

1σ
′)]

×Γ (4)
Λ

(
K ′

1σ
′
1, K + K1 − K ′

1σ
′; Kσ, K1σ1

)
×Γ (4)

Λ

(
K ′

2σ
′
2, Kσ ; K + K1 − K ′

1σ
′, K2σ2

)
−

∫
K

∑
σσ ′

[
ĠΛ(Kσ )GΛ

(
K + K2 − K ′

1σ
′) + GΛ(Kσ )ĠΛ

(
K + K2 − K ′

1σ
′)]

×Γ (4)
Λ

(
K ′

1σ
′
1, K + K2 − K ′

1σ
′; Kσ, K2σ2

)
×Γ (4)

Λ

(
K ′

2σ
′
2, Kσ, K + K2 − K ′

1σ
′, K1σ1

)
.

(10.37)

This equation was derived independently by Kopietz and Busche (2001) and by
Salmhofer and Honerkamp (2001) (for fermions where ζ = −1); see also the
appendix of Honerkamp et al. (2001). Note that the last term on the right-hand
side of Eq. (10.37) can be obtained from the term above it by exchanging the labels
K1σ1 ↔ K2σ2 of the two incoming fields. To exhibit the structure of the various
terms appearing on the right-hand side of Eq. (10.37), the diagrammatic repre-
sentation in Fig. 10.3 is very useful. Note that the right-hand side of Eq. (10.37)
depends on the flowing irreducible six-point vertex Γ (6)

Λ , so that we need an addi-
tional flow equation for Γ (6)

Λ to determine the effective interaction Γ (4)
Λ . The exact

FRG flow equation for the six-point vertex can be explicitly found in the appendix of
Kopietz and Busche (2001) and involves the irreducible eight-point vertex Γ (8)

Λ . In
general, the exact FRG flow equation for Γ (2n)

Λ depends on all vertices up to Γ (2n+2)
Λ .

Salmhofer and Honerkamp (2001) have given a detailed mathematical analysis of
the effect of Γ (6)

Λ on the FRG flow of Γ (4)
Λ . Using rigorous bounds for overlapping

fermion loops (Feldman et al. 1996, Salmhofer 1998) they showed that if the bare
interaction Γ (4)

Λ0
is sufficiently small then the contributions from Γ

(6)
Λ can indeed
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Fig. 10.3 Graphical representation of the exact FRG flow equation (10.37) for the effective interac-
tion of nonrelativistic fermions or bosons. The symbols are defined in Fig. 10.1; see also Fig. 10.2.
The diagram labeled PP involving parallel arrows in the intermediate loop describes particle–
particle scattering. The diagrams in the second line have antiparallel arrows in the intermediate
loop and are therefore called particle–hole diagrams. There are two distinct particle–hole scatter-
ing channels: the diagram labeled FS (forward scattering channel) involves particle–hole scattering
with small momentum transfers, while the diagram labeled EX (exchange scattering) differs from
FS by the exchange of the labels of the two incoming particles

be neglected in Eq. (10.37) as long as the running cutoff Λ remains larger than a
certain scale Λ6. On the other hand, for Λ � Λ6 the six-point vertex can become
large so that its effect on the FRG flow of Γ (4)

Λ can be important. Yet, even if we
restrict ourselves to the regime Λ > Λ6 and drop the contribution from Γ

(6)
Λ on the

right-hand side of Eq. (10.37), we still have to deal with a complicated nonlinear
integro-differential equation for Γ (4)

Λ which cannot be solved exactly.
Each of the three terms on the right-hand side of Eq. (10.37) involving two pow-

ers of the flowing four-point vertex has a distinct physical meaning, as indicated by
our labeling of the corresponding diagrams in Fig. 10.3. In the first term labeled PP
(particle–particle scattering), the arrows in the intermediate loop point in the same
direction, corresponding to the simultaneous excitation of two virtual particles (or
two holes). If we truncate Eq. (10.37) by retaining only this term, the solution of
our FRG flow equation amounts to approximating the effective interaction by the
infinite series of particle–particle ladder diagrams, as will be shown in Sect. 10.3.1.
In diagrammatic perturbation theory, these diagrams are usually summed by solving
the corresponding Bethe–Salpeter equation (Fetter and Walecka 1971). For attrac-
tive interactions between fermions, the divergence of the series of particle–particle
ladder diagrams indicates the BCS (Bardeen-Cooper-Schrieffer) instability.

The arrows attached to the intermediate loops in the other two contributions
labeled FS (forward scattering) and EX (exchange scattering) in Fig. 10.3 point
in opposite directions, corresponding to the simultaneous excitation of a virtual par-
ticle and a virtual hole. These processes are therefore called particle–hole scattering
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processes. The term labeled FS corresponds to the so-called forward scattering
process, which describes the renormalization of the effective interaction by particle–
hole scattering involving small momentum transfers k′

1 − k1. For fermions this
scattering channel is also called zero-sound or Landau channel (Shankar 1994),
because this component of the interaction determines the spectrum of the collective
zero-sound mode in neutral Fermi liquids, describing collective long-wavelength
density fluctuations consisting of an infinite coherent superposition of particle–hole
excitations (Pines and Nozières 1966, Lifshitz and Pitaevskii 1980).

In the other particle–hole channel labeled EX in Fig. 10.3, the external labels
K1 and K2 of the two incoming arrows are exchanged relative to the FS channel.
Note that for fermions the contribution of the exchange channel to the flow of the
effective interaction has the opposite sign as the contribution from the FS channel,
so that both FS and EX channels are needed to preserve the antisymmetry of the
effective interaction (Dupuis and Chitov 1996, Chitov and Sénéchal 1998).

In many-body theory one often argues that for the physical phenomenon of inter-
est only the interaction in one particular channel is important, so that it is sufficient
to solve the corresponding Bethe–Salpeter equation in this channel to obtain a rea-
sonable estimate for the effective interaction. Such a procedure requires some a
priori knowledge about the physical behavior of the system and is therefore biased.
On the other hand, in the exact FRG equation (10.37) for the effective interaction all
scattering channels appear on equal footing, so that this equation can be used as an
unbiased starting point to investigate the physical behavior of a system with a given
bare interaction. Of course, as will be explained in more detail in Sect. 10.5, the
analysis of the FRG equation (10.37) including all channels can only be performed
numerically and with some drastic approximations.

– –

– – – –

– –

–

–––

Fig. 10.4 Graphical representation of the flow equation for the self-energy and the four-point
vertex for a system with SU (2) spin rotational symmetry. The flow of the self-energy contains
the usual Hartree and Fock contributions. In the flow equation of the four-point vertex, we have
dropped the contribution from the six-point vertex, consistent with the truncations discussed in the
rest of this chapter
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10.2.3 SU(2)-Invariant Flow Equations

For a system with spin rotational symmetry, we now rewrite the flow equations
in terms of the spin-conserving vertices defined in Eq. (6.119), using the rela-
tion (6.121). The explicit version of this relation for the four-point vertex given
in Eq. (10.9) can be represented diagrammatically as

,

where the spin is now conserved along continuous particle lines. Using this replace-
ment in Figs. 10.2 and 10.3, and then equating contributions on both sides that
have continuous spin-conserving lines between the same external legs, we obtain
the flow equations depicted in Fig. 10.4. For the flow of the self-energy, we obtain
from Eq. (10.33),

∂ΛΣΛ(Kσ ) = −ζ
∫

K ′

∑
σ ′

ĠΛ(K ′σ ′)U (4)
Λ,σσ ′(K , K ′; K ′, K )

−
∫

K ′
ĠΛ(K ′σ )U (4)

Λ,σσ (K , K ′; K , K ′) . (10.38)

If we approximate the flowing interaction in this expression by the bare interaction
and drop the self-energy in the propagators, the first term on the right-hand side can
be identified with the Hartree correction to the self-energy, while the second term is
the Fock (or exchange) correction to the self-energy. Note that for the bare Hubbard
interaction (10.14) only the Hartree term (with σ ′ = −σ ) contributes.

In the presence of full SU (2) spin rotational invariance, all vertices in Eq. (10.38)
are independent of spin indices (see Eq. (6.124)), so that we obtain

∂ΛΣΛ(K ) = −ζ
∫

K ′
ĠΛ(K ′)

[
2U (4)

Λ (K , K ′; K ′, K ) + ζ U (4)
Λ (K , K ′; K , K ′)

]
.

(10.39)

Neglecting in the exact FRG flow equation (10.37) for the effective interaction the
contribution from the six-point vertex (as this will not contribute to the truncation
discussed below), the flow of the four-point spin-conserving vertex for full SU (2)-
invariance is given by
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∂ΛU (4)
(
K ′

1, K ′
2; K2, K1

) =
−

∫
K

[Ġ(K )G(−K + Qpp) + G(K )Ġ(−K + Qpp)]

× U (4)
(
K ′

1, K ′
2; −K + Qpp, K

)
U (4)(K ,−K + Qpp; K2, K1)

−ζ
∫

K
[Ġ(K )G(K − Qfs) + G(K )Ġ(K − Qfs)]

× [2U (4)
(
K ′

1, K − Qfs; K , K1
)

U (4)
(
K ′

2, K ; K − Qfs, K2
)

+ ζ U (4)
(
K ′

1, K − Qfs; K1, K
)

U (4)
(
K ′

2, K ; K − Qfs, K2
)

+ ζ U (4)
(
K ′

1, K − Qfs; K , K1
)

U (4)
(
K ′

2, K ; K2, K − Qfs
)
]

−
∫

K
[Ġ(K )G(K − Qex) + G(K )Ġ(K − Qex)]

× U (4)
(
K ′

1, K − Qex; K2, K
)

U (4)
(
K , K ′

2; K − Qex, K1
)
, (10.40)

where we have omitted for simplicity the cutoff labels Λ and have defined the char-
acteristic energy–momentum combinations associated with the three channels PP,
FS, and EX,

Qpp = K1 + K2 = K ′
1 + K ′

2 , (10.41a)

Qfs = K ′
1 − K1 = K2 − K ′

2 , (10.41b)

Qex = K ′
1 − K2 = K1 − K ′

2 . (10.41c)

We have used energy–momentum conservation to write these expressions in two
different ways.

10.3 Single-Channel Truncations

We now show how the usual particle–particle ladder approximation and the so-
called random phase approximation can be recovered from Eq. (10.40) if one
retains only one particular interaction channel and neglects self-energy corrections
to single-particle Green functions on the right-hand side.

10.3.1 Ladder Approximation in the Particle–Particle Channel

It is well known (Lifshitz and Pitaevskii 1980) that the effective interaction between
two particles in vacuum is given by the infinite series of particle–particle ladder
diagrams shown in Fig. 10.5. For two particles this series represents the Lippmann–
Schwinger equation for the T -matrix of elementary scattering theory (Sakurai
1994). Assuming that the zero-density limit is continuously connected to the low-
density regime, we expect that the same series of ladder diagrams is also a good
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Fig. 10.5 Graphical representation of the effective interaction in the particle–particle ladder
approximation. The empty bars represent the bare interaction U0(Q′, Q; P) in Eq. (10.43)

approximation for the effective interaction at finite but sufficiently low densities.
Carrying out the infinite ladder summation amounts mathematically to solving
a linear integral equation, the so-called Bethe–Salpeter equation in the particle–
particle channel (Galitskii 1958, Fetter and Walecka 1971). Therefore it is con-
venient to introduce relative and total energy momenta as independent variables,
Q = (K1 − K2)/2, Q′ = (

K ′
1 − K ′

2

)
/2 and P ≡ Qpp = K1 + K2 = K ′

1 + K ′
2.

The labels of the outgoing fields are then K ′
1 = P

2 + Q′, K ′
2 = P

2 − Q′, while
the incoming fields are labeled by K1 = P

2 + Q, K2 = P
2 − Q. In terms of these

variables the effective interaction can be written as

T (Q′, Q; P) = U (4)

(
P

2
+ Q′,

P

2
− Q′;

P

2
− Q,

P

2
+ Q

)
. (10.42)

Denoting the bare interaction by U0(Q′, Q; P) and the noninteracting Green func-
tion by G0(K ), the Bethe–Salpeter equation in the particle–particle channel shown
diagrammatically in Fig. 10.5 can be written as

T (Q′, Q; P) = U0(Q′, Q; P)

−
∫

K
U0(Q′, K ; P)G0

(
P

2
− K

)
G0

(
P

2
+ K

)
T (K , Q; P) . (10.43)

The notation indicates that in this approximation the effective interaction is some-
times called the many-body T -matrix. In the special case where the bare interaction
U0(P) depends only on the total energy momentum P = (iω̄, p) this linear integral
equation reduces to an algebraic one,

T (P) = U0(P) − U0(P)Πpp
0 (P)T (P) , (10.44)

which is easily solved for the effective interaction,

T (P) = U0(P)

1 +Π
pp
0 (P)U0(P)

. (10.45)

Here, the particle–particle susceptibility Πpp
0 (P) can be written as
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Π
pp
0 (P) =

∫
K

G0

(
P

2
+ K

)
G0

(
P

2
− K

)

=
∫

k

∫
dω

2π

1[
i
(
ω̄
2 + ω

) − ξ p
2 +k

][
i
(
ω̄
2 − ω

) − ξ p
2 −k

]

= −
∫

k

1 − f
(
ξ p

2 +k

)
− f

(
ξ p

2 −k

)
iω̄ − ξ p

2 +k − ξ p
2 −k

, (10.46)

where f (ξ ) = Θ(−ξ ) is the Fermi function at zero temperature and we use again
the notation

∫
k = ∫

d Dk
(2π)D .

We now show how to recover the above results from our FRG flow equation
(10.40). Therefore we simply retain only the first term involving the particle–particle
channel on the right-hand side of Eq. (10.40). Using the same variables as in
Eq. (10.42), we obtain the truncated FRG flow equation

∂ΛTΛ(Q′, Q; P) = −
∫

K

[
ĠΛ(

P

2
+ K )GΛ(

P

2
− K ) + GΛ(

P

2
+ K )ĠΛ(

P

2
− K )

]
×TΛ(Q′, K ; P)TΛ(K , Q; P) . (10.47)

Note that this integro-differential equation is nonlinear, whereas the Bethe–Salpeter
equation (10.43) is a linear integral equation for the effective interaction. The fact
that the summation of diagrams described by linear Bethe–Salpeter equations can
alternatively be described by quadratic differential equations has first been noticed
by Sudakov (1956). To exhibit the precise connection between Eqs. (10.43) and
(10.47), we replace the flowing Green functions in Eq. (10.47) by noninteracting
ones. Using a multiplicative sharp momentum–space cutoff ΘΛ(k) = Θ(|k| − Λ),
we have

GΛ(K ) ≈ ΘΛ(k)

iω − ξk
, ĠΛ(K ) ≈ ∂ΛΘΛ(k)

iω − ξk
. (10.48)

Assuming that the initial interaction TΛ0 (Q′, Q; P) = U0(q ′, q; P) is independent
of the frequency part of Q and Q′, the flowing TΛ(Q′, Q; P) has also this prop-
erty so that we may write TΛ(Q′, Q; P) = TΛ(q ′, q; P). The frequency sum in
Eq. (10.47) is then easily carried out,

∂ΛTΛ(q ′, q; P) =
∫

k
∂Λ

[
ΘΛ

( p
2

+ k
)
ΘΛ

( p
2

− k
)]

×
1 − f

(
ξ p

2 +k

)
− f

(
ξ p

2 −k

)
iω̄ − ξ p

2 +k − ξ p
2 −k

TΛ(q ′, k; P)TΛ(k, q; P) . (10.49)

For simplicity, let us further assume that TΛ(q ′, q; P) = TΛ(P) is independent of q
and q ′, in which case Eq. (10.49) reduces to a simple first-order differential equation,



272 10 Fermionic Functional Renormalization Group

∂ΛTΛ(P) = −Π̇pp
Λ (P)T 2

Λ(P) , (10.50)

where

Π̇
pp
Λ (P) =

∫
K

[
ĠΛ

(
P

2
+ K

)
GΛ

(
P

2
− K

)
+ GΛ

(
P

2
+ K

)
ĠΛ

(
P

2
− K

)]

= −
∫

k
∂Λ

[
ΘΛ

( p
2

+ k
)
ΘΛ

( p
2

− k
)] 1 − f

(
ξ p

2 +k

)
− f

(
ξ p

2 −k

)
iω̄ − ξ p

2 +k − ξ p
2 −k

.

(10.51)

Writing Eq. (10.50) as

∂ΛT −1
Λ (P) = Π̇

pp
Λ (P) , (10.52)

and integrating both sides of this equation over the flow parameterΛ with boundary
condition TΛ=Λ0 (P) = U0(P), we obtain for the effective interaction

T (P) ≡ lim
Λ→0

TΛ(P) = U0(P)

1 +Π
pp
0,Λ0

(P)U0(P)
, (10.53)

where

Π
pp
0,Λ0

(P) = −
∫ Λ0

0
dΛΠ̇pp

Λ (P)

= −
∫

k

[
1 −ΘΛ0

( p
2

+ k
)
ΘΛ0

( p
2

− k
)] 1 − f

(
ξ p

2 +k

)
− f

(
ξ p

2 −k

)
iω̄ − ξ p

2 +k − ξ p
2 −k

. (10.54)

For Λ0 → ∞ the Θ-functions in the second line vanish, so that Π pp
0,Λ0

(P) reduces
in this limit to the noninteracting particle–particle pair susceptibility given in
Eq. (10.46). We conclude that with the approximation (10.48) the solution (10.53)
of our FRG flow equation (10.47) agrees precisely with the solution (10.45) of the
Bethe–Salpeter equation (10.43).

In the limit of vanishing density, the Bethe–Salpeter equation (10.43) reduces to
the Lippmann–Schwinger equation for the T -matrix in vacuum; the corresponding
FRG flow equation (10.47) for vanishing total momentum p = 0 assumes this limit
in the form

∂ΛTΛ(q ′, q, iω̄) = −
∫

k

δ(|k| −Λ)

iω̄ −Λ2/m
TΛ(q ′, k, iω̄)TΛ(k, q, iω̄) , (10.55)

which is the RG version of the off-shell Lippmann–Schwinger equation of elemen-
tary scattering theory (Sauli and Kopietz 2006).
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Fig. 10.6 Graphical representation of the effective interaction in random phase approximation

10.3.2 Random Phase Approximation in the Forward Scattering
Channel

At high densities and for interactions whose Fourier transform has a strong maxi-
mum for small momentum transfers q = k′

1 − k1 (giving rise to enhanced forward
scattering), the effective interaction is strongly screened at long distances. A simple
diagrammatic method to take the physics of screening into account is to sum the
infinite series of bubble diagrams shown in Fig. 10.6. This approximation is usually
called the random phase approximation, which is abbreviated by RPA (Fetter and
Walecka 1971, Negele and Orland 1988). To derive the RPA from our FRG flow
equation (10.40), let us try an ansatz where the flowing interaction depends only on
the energy–momentum transfer Qfs = K ′

1 − K1,

U (4)
Λ (K ′

1, K ′
2; K2, K1) = fΛ(K ′

1 − K1) = fΛ(Qfs) . (10.56)

Substituting this into Eq. (10.40) and neglecting the contribution from the particle–
particle channel, we obtain

∂Λ fΛ(Qfs) ≈ −ζ
∫

K
[ĠΛ(K )GΛ(K − Qfs) + GΛ(K )ĠΛ(K − Qfs)]

×[
2 fΛ(Qfs) fΛ(−Qfs)

+ζ fΛ
(
K ′

1 − K
)

fΛ(−Qfs) + ζ fΛ(Qfs) fΛ(K2 − K )
]

−
∫

K
[ĠΛ(K )GΛ(K − Qex) + GΛ(K )ĠΛ(K − Qex)]

× fΛ
(
K ′

1 − K
)

fΛ(K − K1) . (10.57)

Note that the external labels on the right-hand side of this expression appear not
only in the assumed combination Qfs = K ′

1 − K1, so that our ansatz (10.56) seems
to be inconsistent. However, for fermions the typical loop momentum k contribut-
ing to the K -integral is of the order of the Fermi momentum kF . If the range of
the interaction in momentum space is small compared with kF and its strength is
strongly enhanced for small energy–momentum transfers Qfs = K ′

1 − K1, then the
term in the second line of Eq. (10.57) involving the combination fΛ(Qfs) fΛ(−Qfs)
dominates the integral, so that we may neglect the other terms. In this approximation
Eq. (10.57) simplifies to
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∂Λ fΛ(Q) = −Π̇ph
Λ (Q) f 2

Λ(Q) , (10.58)

where we have set Q = Qfs = K ′
1 − K1 and assumed that fΛ(−Q) = fΛ(Q). The

function Π̇ph
Λ (Q) is given by the derivative of the particle–hole bubble with respect

to the RG cutoff,

Π̇
ph
Λ (Q) = 2ζ

∫
K

[
ĠΛ(K )GΛ(K − Q) + GΛ(K )ĠΛ(K − Q)

]
, (10.59)

where the factor of 2 is due to two spin species. Equation (10.58) has the same form
as the corresponding flow equation (10.50) for the T -matrix, so that the solution is
similar to Eq. (10.53),

f (Q) ≡ lim
Λ→0

fΛ(Q) = fΛ0 (Q)

1 +Π
ph
0,Λ0

(Q) fΛ0 (Q)
, (10.60)

where

Π
ph
0,Λ0

(Q) = −
∫ Λ0

0
dΛΠ̇ph

Λ (Q) . (10.61)

If we replace again the flowing Green functions in Eq. (10.59) by the noninteracting
ones and take the limit Λ0 → ∞, Eq. (10.61) reduces to the bare particle–hole
susceptibility (or polarization), which for fermions (ζ = −1) can be written as

Π
ph
0 (Q) = −2

∫
k

∫
dω

2π

1

[iω − ξk][i(ω − ω̄) − ξk−q]

= 2
∫

k

f (ξk) − f (ξk−q)

iω̄ − ξk + ξk−q
. (10.62)

The interaction (10.60) then reduces to the RPA for the effective interaction (Fetter
and Walecka 1971, Negele and Orland 1988).

10.4 Rescaled Flow Equations and Definition
of the Fermi Surface

In the FRG flow equations given so far in this chapter, the rescaling step, which
according to the general discussion in Chap. 3 is an essential part of the Wilsonian
RG procedure, is still missing. Recall that in general a rescaling of the fields and
the coupling constants is necessary to obtain critical fixed points of the RG. Of
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course, the proper rescaling depends on the nature of the fixed point under consid-
eration. We now assume that our system remains in the normal state at zero temper-
ature and has a sharp Fermi surface. In this case the exact propagator G(iω, k) =
[iω−εk +μ−Σ(iω, k)]−1 exhibits singularities for ω = 0 and for all wave vectors
kF satisfying

εkF +Σ(i0, kF ) = μ . (10.63)

For a D-dimensional system this equation defines a (D − 1)-dimensional manifold
in momentum space, which is called the Fermi surface. Note that the definition
(10.63) involves the exact self-energyΣ(i0, kF ) of the many-body system, which is
a priori unknown. Equation (10.63) should therefore be considered as a complicated
self-consistency equation for the true Fermi surface of the many-body system. If the
self-energy is calculated perturbatively to some finite order in the interaction, one
has to be careful to include the corrections to the noninteracting Fermi surface from
the beginning in the propagators in order to avoid unphysical divergencies (Luttinger
1960, Nozières 1964). In this section we shall derive a rescaled version of the exact
FRG flow equations given in Sect. 10.2, which allows us to give a nonperturbative
definition of the Fermi surface as a fixed point of the RG (Kopietz and Busche 2001,
Ledowski and Kopietz 2003).

10.4.1 Scaling Toward the Fermi Surface

The Wilsonian RG is based on the iterative elimination of the high-energy degrees
of freedom, resulting in an effective action for the low-energy degrees of freedom.
Keeping in mind that the zero-frequency propagator G(i0, k) of normal fermions is
singular on the entire Fermi surface, in fermionic many-body systems the normal
state has a continuum of low-energy degrees of freedom described by fermion fields
with momenta in a thin shell around the Fermi surface. To carry out the Wilsonian
RG procedure for normal fermions,4 one should therefore successively integrate
over Fermi fields with momenta outside an increasingly thin shell around the Fermi
surface. After the mode elimination, one should then rescale the distances δk‖ of the
momenta from the Fermi surface (see Fig. 10.7) in order to bring the thickness of
the momentum shell back to the value before mode elimination (Shankar 1994).

Since only the true Fermi surface of an interacting Fermi system has a physical
meaning, it is useful to formulate the FRG in such a way that all momenta are
measured relative to the interacting Fermi surface. To implement this technically, we
add the following interaction-dependent quadratic counterterm to the noninteracting
part S0[ψ̄, ψ] of the bare action (10.2),

4 Actually, there exist also classical systems whose fluctuation spectrum has a minimum on a
higher-dimensional manifold (Brazovskii universality class), for example, cholesteric liquid crys-
tals (Brazovskii 1975, Hohenberg and Swift 1995). It is therefore not surprising that the rescaled
version of the FRG equations for interacting fermions discussed in this section (Kopietz and Busche
2001) has also been used to study the Brazovskii universality class (Shiwa 2006).
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Fig. 10.7 Decomposition of a momentum k = n̂kF (n̂)+δk‖v̂F into a component kF = n̂kF (n̂) on
the Fermi surface and a component δk‖v̂F in the direction v̂F of the local Fermi velocity vF . The
thick solid line is a sector of the Fermi surface. This construction defines kF and n̂ as a function of
k. Here, vF = ∇kεk|k=kF is defined in terms of the gradient of the free dispersion at the true Fermi
surface, so that vF is not necessarily perpendicular to the Fermi surface

Sc[ψ̄, ψ] =
∑
σ

∫
K
Σ(i0, kF )ψ̄KσψKσ , (10.64)

where kF is a vector on the true Fermi surface which is defined as a function of
k via the geometric construction shown in Fig. 10.7. We then write the fermionic
action (10.1) as S[ψ̄, ψ] = S̃0[ψ̄, ψ] + S̃1[ψ̄, ψ], where S̃0 = S0 + Sc and the
counterterm is again subtracted from the two-body part, S̃1 = S1 − Sc. Explicitly,
the new Gaussian part of the action can be written as

S̃0[ψ̄, ψ] = −
∑
σ

∫
K

[iω − εk + μ−Σ(i0, kF )]ψ̄KσψKσ

= −
∑
σ

∫
K

[iω − εk + εkF ]ψ̄KσψKσ , (10.65)

where in the last line we have used the definition (10.63) of the interacting Fermi
surface. Suppose now that we have eliminated all fields with momenta outside a thin
shell of thickness Λ0 around the Fermi surface, so that the momentum integration
in Eq. (10.65) is restricted to the regime

|εk − εkF |
|vF | < Λ0 , (10.66)

as shown in Fig. 10.7. Here, vF = ∇kεk|kF is the Fermi velocity of the nonin-
teracting system at the true kF . Assuming now that Λ0 is sufficiently small, we
may expand the energy dispersion εk to linear order around the reference points kF
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on the Fermi surface. Therefore we perform in Eq. (10.65) a nonlinear coordinate
transformation in momentum space by setting5

k = kF + δk = n̂kF (n̂) + δk‖v̂F (n̂) , (10.67)

where kF (n̂) is the length of kF parameterized by a unit vector n̂, and δk‖ =
v̂F · (k − kF ) is the component of k − kF parallel to the direction v̂F (n̂) = vF/|vF |
of the local Fermi velocity vF , as shown in Fig. 10.7. We now eliminate k in favor
of the component δk‖ and the angular variables specifying the vector n̂ as new inte-
gration variables. This nonlinear coordinate transformation of the D-dimensional
momentum integration gives rise to a nontrivial Jacobian, which is conveniently
written down using D-dimensional spherical coordinates,

∫
d Dk

(2π )D
= K D

∫
dΩn̂

ΩD

∫
dδk‖

∣∣n̂kF (n̂) + δk‖v̂F (n̂)
∣∣D−1

= 2πν0v0

∫
dΩn̂

ΩD

∫
dδk‖
2π

JD(n̂, δk‖) , (10.68)

where dΩn̂ is the surface element andΩD = (2π )D K D is the surface area of the D-
dimensional unit sphere (see also Eq. (2.86)). To write the Jacobian in dimensionless
form, we have pulled out in the last line of Eq. (10.68) a factor of 2πν0v0, where

ν0 = K D
k D−1

0

v0
(10.69)

is the density of states of free electrons with Fermi momentum k0 and Fermi velocity
v0. Note that in one dimension ν0 = 1/(πv0) so that 2πν0v0 = 2. The dimensionless
Jacobian is

JD(n̂, δk‖) =
∣∣∣∣ n̂kF (n̂) + δk‖v̂F (n̂)

k0

∣∣∣∣
D−1

. (10.70)

For a spherical Fermi surface, where n̂ = v̂F and kF (n̂) is independent of the direc-
tion n̂, the Jacobian JD(δk‖) = |1 + δk‖/k0|D−1 depends only on δk‖.

To derive the proper scaling of momenta, frequencies, and fields, we assume that
the cutoff Λ0 defining the width of the momentum shell in Eq. (10.66) is small
compared with the minimal value of kF (n̂). Then we may approximate

εk ≈ εkF + vF · (k − kF ) = εkF + vF (n̂)δk‖ , (10.71)

5 If we neglect interaction corrections to the direction v̂F of the local Fermi velocity, then δk‖ mea-
sures the distance of a given momentum k from the true Fermi surface. Note that for a nonspherical
Fermi surface v̂F (n̂) is in general different from the direction n̂ = kF/|kF |.
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so that Eq. (10.66) reduces to the condition |δk‖| < Λ0. Moreover, for small δk‖ we
may approximate

JD(n̂, δk‖) ≈ JD(n̂, 0) =
(

kF (n̂)

k0

)D−1

. (10.72)

Relabeling the fermion fields,

ψn̂σ (iω, δk‖) ≡ ψσ (iω, k → n̂kF (n̂) + δk‖v̂F (n̂)) , (10.73)

the low-energy version of the subtracted Gaussian action (10.65) becomes

S̃0[ψ̄, ψ] = −2πν0v0

∑
σ

∫
n̂

∫
dωdδk‖
(2π )2

Θ(Λ0 − |δk‖|)[iω − vF (n̂)δk‖]

×ψ̄n̂σ (iω, δk‖)ψn̂σ (iω, δk‖) , (10.74)

where ∫
n̂

=
∫

dΩn̂

ΩD
JD(n̂, 0) (10.75)

denotes weighted angular averaging. Let us now rewrite the Gaussian action (10.74)
in terms of dimensionless rescaled integration variables and rescaled fields which
have the proper scaling dimensions. Therefore we introduce a momentum scale
Λ < Λ0 and define, for a given direction n̂, the dimensionless variables

q‖ = δk‖
Λ

, ε = ω

v0Λ
, (10.76)

and the dimensionless fields

ψ ′
n̂σ (iε, q‖) =

√
2πν0(v0Λ)3 ψn̂σ (iω, δk‖) . (10.77)

Then Eq. (10.74) can be written as

S̃0[ψ̄ ′, ψ ′] = −
∑
σ

∫
n̂

∫
dεdq‖
(2π )2

Θ

(
Λ0

Λ
− |q‖|

)
[iε − c0(n̂)q‖]

×ψ̄ ′
n̂σ (iε, q‖)ψ ′

n̂σ (iε, q‖) , (10.78)

with

c0(n̂) = vF (n̂)/v0 . (10.79)

Note that the unit vector n̂ plays the role of a continuous flavor index which labels
the different fields. Obviously, for Λ/Λ0 → 0 the action (10.78) is independent
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of the scale factor Λ and becomes scale invariant. The associated RG fixed point
describes the normal metallic state and is called the Fermi liquid fixed point in
dimensions D > 1.

To implement the above scaling within the framework of the FRG, let us now
introduce properly rescaled vertices and write down the corresponding exact FRG
flow equations (Kopietz and Busche 2001). Given the flowing self-energy ΣΛ(Kσ )
which satisfies the exact FRG flow equation (10.33), we introduce its rescaled
and subtracted counterpart as a function of the logarithmic flow parameter l =
ln(Λ0/Λ),

Γ̃
(2)

l (iε, q‖, n̂, σ ) = Zl(n̂, σ )

v0Λ
[ΣΛ(iω, k, σ ) −Σ(i0, kF , σ )] , (10.80)

where on the right-hand side it is understood that we should express ω = vF (n̂)Λε
and k = kF (n̂) + v̂F (n̂)Λq‖ in terms of the dimensionless scaling variables iε and
q‖, and the subtraction Σ(i0, kF , σ ) is the (a priori unknown) exact self-energy
at the true Fermi surface kF . The flowing wave function renormalization factor is
defined by

Zl(n̂, σ ) = 1

1 − ∂ΣΛ(iω,kF ,σ )
∂(iω)

∣∣∣
ω=0

= 1 + ∂Γ̃
(2)

l (iε, 0, n̂, σ )

∂(iε)

∣∣∣∣∣
ε=0

, (10.81)

where the second identity follows from the definition (10.80). We also introduce the
rescaled propagator,

G̃l(iε, q‖, n̂, σ ) = v0Λ

Zl(n̂, σ )
GΛ(iω, k, σ ) , (10.82)

and the corresponding rescaled single-scale propagator,

˙̃Gl (iε, q‖, n̂, σ ) = − v0Λ
2

Zl (n̂, σ )
ĠΛ(iω, k, σ ) . (10.83)

If we work with a multiplicative cutoff ΘΛ(K ) as in Eq. (7.10), then the flowing
propagator can be written as

GΛ(Kσ ) = ΘΛ(K )

iω − εk + μ−ΣΛ(Kσ )

= ΘΛ(K )

iω − εk + εkF − [ΣΛ(Kσ ) −Σ(i0, kF , σ )]
, (10.84)

and the corresponding rescaled propagator (10.82) is

G̃l(iε, q‖, n̂, σ ) = ΘΛ(K )

Zl(n̂, σ )[iε − ξn̂(q‖)] − Γ̃
(2)

l (iε, q‖, n̂, σ )
, (10.85)
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where

ξn̂(q‖) = εkF +k − εkF

v0Λ
≈ c0(n̂)q‖ + O

(
q2

‖
)

(10.86)

and c0(n̂) = vF (n̂)/v0 (see Eq. (10.79)). The function ΘΛ(K ) in Eq. (10.85) should
be expressed in terms of rescaled variables; for example, for sharp momentum shell
cutoff we have

ΘΛ(K ) = Θ

(
Λ− |εk − εkF |

|vF |
)

≈ Θ(1 − |q‖|) . (10.87)

With these definitions the rescaled version of the exact FRG flow equation (10.33)
for the self-energy assumes the form

∂l Γ̃
(2)

l (iε, q‖, n̂, σ ) = [1 − ηl(n̂, σ ) − q‖∂q‖ − ε∂ε]Γ̃
(2)

l (iε, q‖, n̂, σ )
+ Γ̇

(2)
l (iε, q‖, n̂, σ ) ,

(10.88)

where the flowing anomalous dimension is defined by

ηl(n̂, σ ) = −∂l ln Zl (n̂, σ ) = −∂l Zl(n̂, σ )

Zl(n̂, σ )
, (10.89)

and the inhomogeneity Γ̇ (2)
l (ε, q‖, n̂, σ ) is determined by the right-hand side of the

unrescaled FRG flow equation (10.33),

Γ̇
(2)

l (iε, q‖, n̂, σ ) = Zl(n̂, σ )

v0Λ
[−Λ∂ΛΣΛ(Kσ )]

=
∑
σ ′

∫
n̂′

∫ dε′dq ′
‖

(2π )2
˙̃Gl

(
iε′, q ′

‖, n̂′, σ ′) Γ̃ (4)
l (Qσ, Q′σ ′; Q′σ ′, Qσ ) . (10.90)

We have now set ζ = −1 in Eq. (10.33) (because the above rescaling makes only
sense for fermions) and have introduced the collective labels

Q = (iε, q‖, n̂) . (10.91)

The rescaled effective interaction is defined in terms of the dimensionful effective
interaction Γ (4)

Λ appearing in Eq. (10.37) as

Γ̃
(4)

l

(
Q′

1σ
′
1, Q′

2σ
′
2; Q2σ2, Q1σ1

) = [
Zl

(
n̂′

1, σ
′
1

)
Zl

(
n̂′

2, σ
′
2

)
Zl(n̂2, σ2)Zl(n̂1, σ1)

]1/2

× 2πν0Γ
(4)
Λ

(
K ′

1σ
′
1, K ′

2σ
′
2; K2σ2, K1σ1

)
. (10.92)

Substituting Eqs. (10.81) and (10.88) into the definition (10.89), we see that the
flowing anomalous dimension is directly related to the frequency dependence of the
rescaled flowing effective interaction (Busche et al. 2002, Ledowski and Kopietz
2007),
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ηl(n̂, σ ) = − Γ̇
(2)

l (iε, 0, n̂, σ )

∂(iε)

∣∣∣∣∣
ε=0

= −
∑
σ ′

∫
n̂′

∫ dε′dq ′
‖

(2π )2
˙̃Gl(Q′σ ′)

∂Γ̃
(4)

l (iε, 0, n̂, σ, Q′σ ′; Q′σ ′, iε, 0, n̂, σ )

∂(iε)

∣∣∣∣∣
ε=0

.

(10.93)

The FRG flow equation for the rescaled effective interaction Γ̃ (4)
l is given by the

rescaled version of the exact flow equation (10.37), which depends on the flowing
irreducible six-point vertex Γ (6)

Λ . For general n, we define rescaled dimensionless
irreducible vertices with 2n external legs via

Γ̃
(2n)

l

(
Q′

1σ
′
1, . . . , Q′

nσ
′
n; Qnσn, . . . , Q1σ1

) =[
Zl

(
n̂′

1σ
′
1

) · · · Zl
(
n̂′

nσ
′
n

)
Zl (n̂nσn) · · · Zl(n̂1σ1)

]1/2

×(2πν0)n−1(v0Λ)n−2Γ
(2n)
Λ

(
K ′

1σ
′
1, . . . , K ′

nσ
′
n; Knσn, . . . , K1σ1

)
. (10.94)

The rescaled version of Eq. (10.37) can then be written as (Kopietz and Busche
2001)

∂l Γ̃
(4)

l

(
Q′

1σ
′
1, Q′

2σ
′
2; Q2σ2, Q1σ1

) = −
2∑

i=1

[ηl
(
n̂′

iσ
′
i

) + ηl(n̂iσi )

2

+q ′
i‖∂q ′

i‖ + ε′
i∂ε′

i
+ qi‖∂qi‖ + εi∂εi

]
Γ̃

(4)
l

(
Q′

1σ
′
1, Q′

2σ
′
2; Q2σ2, Q1σ1

)
+

∑
σ

∫
Q

˙̃Gl (Qσ )Γ̃ (6)
l

(
Q′

1σ
′
1, Q′

2σ
′
2, Qσ ; Qσ, Q2σ2, Q1σ1

)

−
∑
σσ ′

∫
Q

[
˙̃Gl (Qσ )G̃l(Q′σ ′) + G̃l(Qσ ) ˙̃Gl(Q′σ ′)

]

×
{

1

2

[
Γ̃

(4)
l

(
Q′

1σ
′
1, Q′

2σ
′
2; Q′σ ′, Qσ

)
Γ̃

(4)
l (Qσ, Q′σ ′; Q2σ2, Q1σ1)

]
K ′=K1+K2−K

−
[
Γ̃

(4)
l

(
Q′

1σ
′
1, Q′σ ′; Qσ, Q1σ1

)
Γ̃

(4)
l

(
Q′

2σ
′
2, Qσ ; Q′σ ′, Q2σ2

)]
K ′=K+K1−K ′

1

+
[
Γ̃

(4)
l

(
Q′

1σ
′
1, Q′σ ′; Qσ, Q2σ2

)
Γ̃

(4)
l

(
Q′

2σ
′
2, Qσ ; Q′σ ′, Q1σ1

)]
K ′=K+K2−K ′

1

}
,

(10.95)

where
∫

Q = ∫
n̂

∫ dεdq‖
(2π)2 , and K = (iω, k), K ′, Ki , and K ′

i should be considered as
functions of the dimensionless variables Q = (iε, q‖, n̂), Q′, Qi , and Q′

i defined via
Eqs. (10.67) and (10.76). Due to the highly nonlinear character of the transformation
(10.67) from absolute momenta k to the local variables (q‖, n̂), the momentum con-
servation enforced by identities like K ′ = K1 + K2 − K implies a very complicated
functional dependence of q ′

‖ and n̂′ on q1‖, q2‖, q‖ as well as on the three directions
n̂1, n̂2, and n̂. In order to detect the leading instabilities of normal Fermi systems in
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dimensions D > 1, the rescaled flow equation (10.95) is therefore not very useful
and it is better to analyze directly its unrescaled counterpart (10.37). On the other
hand, rescaling is essential to obtain fixed points of the RG and to classify the cou-
plings according to their relevance at a given fixed point, which we shall do in the
following section. The rescaled version of the FRG flow equation for the irreducible
six-point vertex can be found in the appendix of Kopietz and Busche (2001).

10.4.2 Classification of Couplings

From the rescaled FRG flow equations (10.88) and (10.95), we can now read off
the scaling dimensions of all coupling constants. Consider first the flow equation
(10.88) for the rescaled two-point vertex Γ̃ (2)

l (iε, q‖, n̂, σ ). For ε = q‖ = 0 this
equation reduces to

∂lrl(n̂, σ ) = [1 − ηl(n̂, σ )]rl(n̂, σ ) + Γ̇
(2)

l (n̂, σ ) , (10.96)

where we have defined

rl(n̂, σ ) = Γ̃
(2)

l (0, 0, n̂, σ ) , (10.97a)

Γ̇
(2)

l (n̂, σ ) = Γ̇
(2)

l (0, 0, n̂, σ ) . (10.97b)

Obviously, for a normal Fermi system with finite quasiparticle residue where
liml→∞ ηl(n̂, σ ) = 0, the dimensionless couplings rl (n̂, σ ) are all relevant with scal-
ing dimension +1. In dimensions D > 1, the Fermi surface is a D − 1-dimensional
continuum whose points are labeled by the unit vectors n̂. In D > 1, a normal Fermi
system is therefore characterized by infinitely many relevant couplings rl(n̂, σ ). We
shall show below that the true Fermi surface of the interacting system can be defined
self-consistently by demanding that all relevant couplings rl(n̂, σ ) flow into a fixed
point (Kopietz and Busche 2001, Ledowski and Kopietz 2003, Ledowski et al. 2005,
Ledowski and Kopietz 2007). As already discussed in Sect. 3.3.3, the Fermi surface
can thus be viewed as a multicritical RG fixed point of infinite order, which is char-
acterized by the fixed-point values of infinitely many relevant couplings.

The first derivatives of the rescaled two-point vertex Γ̃
(2)

l (iε, q‖, n̂, σ ) with
respect to ε and q‖ define two marginal couplings whose scaling dimension van-
ishes. To define these couplings, we write the expansion of Γ̃ (2)

l (iε, q‖, n̂, σ ) in
powers of ε and q‖ as

Γ̃
(2)

l (iε, q‖, n̂, σ ) = rl(n̂, σ ) + [Zl(n̂, σ ) − 1]iε + [Yl(n̂, σ ) − Zl(n̂, σ )]q‖
+O

(
ε2, q2

‖ , εq‖
)
. (10.98)

Note that to this order in the expansion the rescaled propagator (10.85) can be writ-
ten as

G̃l(iε, q‖, n̂, σ ) ≈ ΘΛ(K )

iε − cl (n̂, σ )q‖ − rl(n̂, σ )
, (10.99)
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with

cl (n̂, σ ) = Zl(n̂, σ )[c0(n̂) − 1] + Yl (n̂, σ ) . (10.100)

By definition, Zl (n̂, σ ) is the flowing wave function renormalization factor, which
satisfies the flow equation

∂l Zl (n̂, σ ) = −ηl(n̂, σ )Zl(n̂, σ ) , (10.101)

see Eqs. (10.81) and (10.89). From the exact FRG flow equation (10.88) it is easy to
show that the other marginal coupling related to the first derivatives of the two-point
vertex,

Yl (n̂, σ ) = Zl (n̂, σ ) + ∂Γ̃
(2)

l (0, q‖, n̂, σ )

∂q‖

∣∣∣∣∣
q‖=0

, (10.102)

satisfies the flow equation (Busche et al. 2002, Ledowski and Kopietz 2007)

∂lYl (n̂, σ ) = −ηl (n̂, σ )Yl (n̂, σ ) + ∂Γ̇
(2)

l (0, q‖, n̂, σ )

∂q‖

∣∣∣∣∣
q‖=0

. (10.103)

Next, let us classify the couplings associated with the rescaled four-point vertex
Γ̃

(4)
l

(
Q′

1σ
′
1, Q′

2σ
′
2; Q2σ2, Q1σ1

)
. From our rescaled FRG flow equation (10.95), we

see that the dependence of the four-point vertex on the frequencies and projected
momenta parallel to the local Fermi velocity gives rise to negative scaling dimen-
sions, so that the marginal part of Γ̃ (4)

l

(
Q′

1σ
′
1, Q′

2σ
′
2; Q2σ2, Q1σ1

)
is obtained by

setting ε′
1 = ε′

2 = ε2 = ε1 = 0 and q ′
1‖ = q ′

2‖ = q2‖ = q1‖ = 0. Obviously, there are
infinitely many marginal couplings, labeled by the unit vectors n̂′

1, n̂′
2, n̂2, n̂1. But

if both incoming and outgoing momenta lie on the Fermi surface, then momentum
conservation imposes the constraint

k′
F1 + k′

F2 = kF2 + kF1 . (10.104)

In terms of the unit vectors pointing in the directions of the Fermi momenta,
Eq. (10.104) reads as

kF
(
n̂′

1

)
n̂′

1 + kF
(
n̂′

2

)
n̂′

2 = kF (n̂2)n̂2 + kF (n̂1)n̂1 . (10.105)

The crucial point is now that in dimensions D > 1 the geometric constraint imposed
by these relations allows only to choose freely two of the Fermi momenta (or
directions), say kF1 and kF2 (or n̂1 and n̂2). If we arbitrarily fix three momenta
on the Fermi surface, for example, kF1, kF2, and k′

F1, then in general the differ-
ence kF2 + kF1 − k′

F1 does not lie on the Fermi surface so that we cannot satisfy
Eq. (10.104). The set of allowed marginal couplings related to the four-point vertex
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can therefore be classified in terms of two independent unit vectors. For a more
detailed discussion of the classification of the various scattering processes, we refer
the reader to the reviews by Shankar (1994) and by Metzner et al. (1998).

Finally, the rescaled vertices Γ̃ (2n)
l defined in Eq. (10.94) with six and more exter-

nal legs (n ≥ 3) have all negative scaling dimensions and are therefore irrelevant.
For example, according to Eq. (10.94) the most important part of Γ̃ (6)

l

(
Q′

1σ
′
1, Q′

2σ
′
2 ,

Q′
3σ

′
3; Q3σ3, Q2σ2, Q1σ1

)
, which is obtained by setting all external frequencies and

distances from the Fermi surface equal to zero, is proportional toΛ, so that this con-
tribution has scaling dimension −1. It is therefore reasonable to neglect this vertex
in the FRG flow equation (10.95) if one is only interested in the infrared behavior
of the system at the Fermi liquid fixed point.

10.4.3 Exact Integral Equation for the Fermi Surface

In order to calculate the true Fermi surface of an interacting Fermi system, we need
to know the exact self-energy Σ(0, k) at vanishing frequency as a function of k
and look for solutions of the defining equation (10.63). The rescaled version of
the exact FRG flow equations discussed above allows us to define the Fermi surface
nonperturbatively in terms of a fixed point condition for the relevant part rl(n̂) of the
rescaled two-point vertex Γ̃ (2)

l (Q) defined in Eq. (10.97a) (Ledowski and Kopietz
2003). To derive this equation, let us transform the differential RG equation (10.96)
into an equivalent integral equation similar to Eq. (8.41),

rl(n̂) = el−∫ l
0 dτητ (n̂)

[
r0(n̂) +

∫ l

0
dl ′e−l ′+∫ l′

0 dτητ (n̂)Γ̇
(2)

l ′ (n̂)

]
. (10.106)

For simplicity, we omit in this section the spin labels. Suppose now that we have
adjusted the initial couplings such that for l → ∞ the flowing couplings rl(n̂)
indeed approach finite fixed point values. Assuming that the associated anoma-
lous dimensions η∞(n̂) are smaller than unity, Eq. (10.106) implies that the limit
r∞(n̂) = liml→∞ rl(n̂) can only be finite if the initial values r0(n̂) are chosen such
that

r0(n̂) = −
∫ ∞

0
dle−l+∫ l

0 dτητ (n̂)Γ̇
(2)

l (n̂)

=
∫ ∞

0
dle−l+∫ l

0 dτητ (n̂)
∫

Q′

˙̃Gl (Q′)Γ̃ (4)
l (0, 0, n̂, Q′; Q′, 0, 0, n̂) , (10.107)

where in the second line we have substituted Eq. (10.90). This is an implicit condi-
tion for r0(n̂), relating it to the flowing two-point vertex and the four-point vertex on
the entire RG trajectory. Keeping in mind that the right-hand side of Eq. (10.107)
implicitly depends on rl(n̂) and that according to Eq. (10.80)
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Σ(0, kF ) −ΣΛ0 (0, kF ) = v0Λ0

Z0(n̂)
r0(n̂) , (10.108)

we see that Eq. (10.107) can be regarded as an integral equation for the counterterm
Σ(0, kF ), which is needed in order to calculate the true shape of the Fermi surface.

Finally, let us transform Eq. (10.107) back to unrescaled variables, choosing for
simplicity the initial conditions ΣΛ0 (0, kF ) = 0 and Z0(n̂) = 1. Using a sharp
momentum shell cutoff of the form (7.12) it is easy to show that Eq. (10.107) is
equivalent with

Σ(0, kF ) =
∫

d Dk ′

(2π )D

dω′

2π

Θ(Λ0 −Λk′)

iω′ − εk′ + μ−ΣΛk′ (K ′)

×Γ (4)
Λk′ (0, kF , iω′, k′; iω′, k′, 0, kF ) , (10.109)

whereΛk′ = |εk′ − εk′
F
|/|v′

F |. Note that the right-hand side of Eq. (10.109) involves
the flowing self-energy and four-point vertex at the scales Λ = Λk′ which depend
on the distance from the true Fermi surface. The exact integral equation (10.109)
and the equivalent rescaled equation (10.107) determine the counterterm Σ(0, kF )
by the requirement that in the limit l → ∞ all rescaled couplings approach finite
fixed point values. For an explicit calculation of the Fermi surface of quasi one-
dimensional metals using this nonperturbative method (see Ledowski et al. 2005,
Ledowski and Kopietz 2007).

10.5 One-Loop Patching Approximations

During the last decade, many workers have applied renormalization group methods
to contribute to an understanding of the electronic phase diagram of layered mate-
rials such as the cuprate high-temperature superconductors. The Fermi surface of
these two-dimensional systems is a continuous line. Thus functional aspects of the
RG are important, since in this case the marginal couplings depend on a continuous
position on the Fermi surface, as discussed in Sect. 10.4.2. For practical calcula-
tions, the continuous dependence is discretized, and the marginal couplings related
to the effective interaction now depend only on discrete patch labels. A numerical
integration of the flow equations for the resulting finite number of couplings is then
performed. Typically, one finds divergencies at a finite energy scale. Although this
approach thus formally breaks down at this scale, the divergencies can be taken as
an indication for either a broken symmetry or at least dominating correlations in a
particular interaction channel. An analysis of the nature and the symmetry of the
diverging coupling provides a numerical tool to investigate the phase diagram of
two-dimensional models. A short review of this one-loop patching approximation is
given in Metzner (2005).

As a minimal model for the copper-oxide planes of the cuprate high-temperature
superconductors, Hubbard models on a square lattice (see Eq. (10.90)) and possible
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extensions have been intensively studied. Depending on the strength of microscopic
parameters such as hopping amplitudes, Hubbard interactions, and the filling of
the band, one finds regions in the phase diagram with spin- or charge-density
waves, d-wave superconductivity, ferromagnetism, or even exotic phases, such as
staggered-flux phases, for example. Starting from the limit of a vanishing interac-
tion strength, the occurrence of these phases can be understood as instabilities of
the Fermi liquid. In this context, the geometry of the Fermi surface is essential for
determining the nature of the dominant instability. Of special interest are regions in
parameter space which are close to a half-filled band in a model with pure nearest-
neighbor hopping, having a square Fermi surface. In this case, the parallel sections
of the Fermi surface lead to nesting, and the points

(
0,±π

a

)
,
(±π

a , 0
)

(where a is
the lattice spacing) on the boundary of the Brillouin zone have a vanishing Fermi
velocity resulting in Van Hove singularities in the density of states. Also, Umklapp
scattering processes are important at half filling. For the strictly half-filled case, it is
well known that an insulating antiferromagnetic phase emerges. Yet, slightly away
from half filling, or in the presence of next-nearest-neighbor hopping, the nesting
instability can be suppressed and other ordering tendencies dominate. This interplay
of different instabilities is often discussed in the context of an experimentally found
non-Fermi-liquid behavior of the normal phase of the high-temperature supercon-
ductors below optimal doping.

Some aspects of the physics in these two-dimensional models can be captured
by simple toy models for which analytical treatments of the renormalization group
equations are still possible. The importance of Van Hove singularities can be ana-
lyzed using a model dispersion that includes only momenta close to the two sad-
dle points at

(
0, πa

)
and

(
π
a , 0

)
(Lederer et al. 1987, Furukawa et al. 1998). The

renormalization group flow is particularly strong in this case as the perturbation
expansion exhibits a log2-divergence due to the Van Hove singularity in the den-
sity of states leading to an enhancement of d-wave pairing tendencies. The role of
nesting and Umklapp scattering can be investigated with a model containing only
patches on the Fermi surface along or close to the diagonals of the Brillouin zone
(Houghton and Marston 1993, Tam et al. 2006). However, for a treatment of the
interplay between these two tendencies, the number of patches on the Fermi surface
has to be increased and a numerical solution of the FRG flow equations is necessary.

The FRG flow equations derived so far are part of an infinite hierarchy which for
practical calculations has to be truncated. For weak interactions a systematic trunca-
tion is possible: If the bare interaction contains only a four-point vertex proportional
to a small coupling constant U , the perturbative corrections for the irreducible vertex
Γ (2n) contains only terms that are at least of order U n . Hence, to analyze the leading
renormalization of the four-point vertex, we have to keep terms up to order U 2.
We will thus neglect the contribution of the six-point vertex and all higher ver-
tices to the RG flow. Equations (10.39) and (10.40) then constitute a closed set of
integro-differential equations. However, as the effective interaction U (4) depends on
three independent momentum and frequency variables, these equations are still too
complicated to be amenable to a numerical solution. Rescaling arguments can then
be used to identify the important contributions at low energies.
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In this section we shall derive explicit flow equations for the marginal couplings
in the one-loop patching approximation and apply them to the simplest case of a
single one-dimensional chain as well as to the two-dimensional square lattice Hub-
bard model with nearest-neighbor hopping close to half filling.

10.5.1 Flow of Marginal Couplings

In Sect. 10.4.2, we have used rescaling arguments to show that the frequency depen-
dencies of the four-point vertex as well as its momentum dependencies perpen-
dicular to the Fermi surface have negative scaling dimensions at the Fermi-liquid
fixed point and are thus irrelevant at low energies. To obtain the leading insta-
bilities around the Fermi-liquid fixed point, it is thus sufficient to keep track of
couplings with the momenta of all four legs on the Fermi surface.6 Throughout
Sect. 10.4 the position of the momenta on the Fermi surface has been parameterized
by a unit vector n̂; the dependence of the vertex functions on these unit vectors
is expected to be sufficiently smooth such that for a numerical treatment it can be
discretized. In the arguments of the four-point vertex, we thus effectively replace
the energy–momentum indices K by integer patch indices n. Momentum space is
divided exhaustively into these nonoverlapping patches, usually by subdividing the
Fermi surface into discrete regions and defining an appropriate procedure to project
an arbitrary momentum onto the Fermi surface. Each patch has a central momentum
kn on the Fermi surface. We only treat systems with full spin rotational symmetry
in this section. We thus replace the interaction function in the relevant FRG flow
equation (10.40) by7

U (4)(K1, K2; K3, K4) −→ u(n1, n2; n3) , (10.110)

where the discrete couplings u(n1, n2; n3) depend only on three integer patch indices
n1, n2, and n3, while the fourth momentum

k4 = kn1 + kn2 − kn3 (10.111)

is determined by momentum conservation. The integer n4 is then the index of the
patch that contains k4. Note that for many of these couplings, the fourth momentum

6 For a one-dimensional extended Hubbard model Tam et al. (2006) have proposed a truncation of
the FRG flow equations which include scattering processes involving momenta far away from the
Fermi points.
7 Note that in the context of the discrete couplings, we simply enumerate momenta using inte-
gers n1, n2, n3 instead of marking them as incoming and outgoing by using primed variable.
Thus compared to the notation for continuous momenta, we replace U (4)(K ′

1, K ′
2; K2, K1) →

U (4)(K1, K2; K3; K4) → u(n1, n2; n3), where the new K1 and K2 denote the two outgoing energy-
momenta. Hence, u(n1, n2; n3) becomes a tensor of rank 3 which has some advantages for the
following numerical calculations.
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does not actually lie on the Fermi surface as in general only two momenta can be
chosen freely on a surface in order to satisfy momentum conservation. However, in
the general formulation of the flow equations we shall keep these terms; the reason
is that couplings where the fourth leg is in some sense close to the Fermi surface
can still dominate the flow at intermediate energy scales and these couplings are
thus important to describe the crossover from the bare microscopic model to the
very low energy regime.

In this section, we shall work with unrescaled vertex functions, as is usually
done in the literature in this context; within the one-loop approximation, rescaled
and unrescaled flow equations are equivalent because anomalous dimensions only
appear at two-loop order. The feedback of the flow of the self-energy and thus the
shape of the interacting Fermi surface on the flow of the couplings u(n1, n2; n3) is
neglected. This is inconsistent from a pure scaling point of view as discussed in
Sect. 10.4. For a full two-dimensional problem the inclusion of self-energy effects
is a very complicated numerical problem that has not been fully addressed yet,
although an attempt in this direction has recently been made by Katanin (2009).
The propagators in Eq. (10.40) are thus taken as cutoff-dependent bare propagators
without self-energy corrections. After the replacement (10.110), the momentum and
frequency integration in Eq. (10.40) can be carried out. We define the derivatives
of the particle–particle and particle–hole bubble integrals8 with respect to Λ for a
particular patch centered at kn ,

Π̇±(n, q) = ±Λ
∫

K∈Kn

Ġ(K )G(±(K − Q0)) , (10.112)

where K ∈ Kn means that the momentum part of the integration is over the area
of the patch with the index n, and Q0 = (i0, q). As usual, the logarithmic RG flow
parameter l (which we shall also call RG time) is related to the cutoff Λ = Λ0e−l

and thus ∂l = −Λ∂Λ. The integro-differential equation (10.40) then reduces to the
following system of coupled ordinary differential equations,

∂lu(n1, n2; n3) = −
∑

n

{
Π̇−(n, qpp)

[
u(n2, n1; n)u(n3, n4; n)

+u(n1, n2; n)u(n4, n3; n)
]

+Π̇+(n, qfs)
[
2u(n, n4; n1)u(n, n2; n3)

− u(n4, n; n1)u(n, n2; n3) − u(n, n4; n1)u(n2, n; n3)
]

8 Up to a different normalization, the function Π̇−(n, q) is a simplified version of the single-scale
particle–particle bubble Π̇pp(P) defined in Eq. (10.51), while the function Π̇+(n, q) corresponds
to the single-scale particle–hole bubble Π̇ph(Q) given in Eq. (10.59).
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+Π̇+(n,−qfs)
[
2u(n, n1; n4)u(n, n3; n2)

− u(n1, n; n4)u(n, n3; n2) − u(n, n1; n4)u(n3, n; n2)
]

−Π̇+(n, qex)u(n3, n; n1)u(n2, n; n4)

−Π̇+(n,−qex)u(n1, n; n3)u(n4, n; n2)

}
. (10.113)

Here, the fourth index n4 is determined by (approximate) momentum conservation
as described below Eq. (10.111). The momentum combinations appearing in the
bubble integrals are

qpp = kn1 + kn2 , qfs = kn3 − kn2 , qex = kn1 − kn3 . (10.114)

This notation is equivalent to the notation in Eqs. (10.41a)–(10.41c) if one takes
momentum conservation and the different labeling of the momenta in this section
into account. In the derivation of Eq. (10.113), we have made use of the following
symmetries of the coupling function (see Eqs. (6.120) and (6.128)),

U (4)
(
K ′

1, K ′
2; K2, K1

) = U (4)
(
K ′

2, K ′
1; K1, K2

)
= U (4)

(
K1, K2; K ′

1, K ′
2

)
, (10.115)

which allows us to order the indices such that the shifted integration momentum
k − q never appears as an index in the coupling functions. These symmetries follow
from Eqs. (6.120) and (6.128). Note that for discrete couplings u(n1, n2; n3) that
conserve momentum only approximately (so that kn1 +kn2 −kn3 −kn4 �= 0), the sym-
metries (10.115) are in general not fulfilled as for example u(n1, n2; n3) describes
a slightly different scattering process than u(n2, n1; n4). However, the pure initial
Hubbard interaction u(n1, n2; n3) = U trivially fulfills the symmetries (10.115) for
all combinations of patch indices. For strictly momentum–conserving couplings,
e.g., for particle–particle processes on the Fermi surface, the symmetries hold and
are conserved exactly by the flow equations (10.113).

Let us now explicitly evaluate the bubble integrals Π̇± using a momentum cutoff.
The propagators in Eq. (10.112) are then given by Eq. (10.48), which we write as

G(K ) = ΘΛ(k)

iω − ξk
, Ġ(K ) = − δΛ(k)

iω − ξk
, (10.116)

where ΘΛ(k) is a function that suppresses modes in a shell of width Λ around
the Fermi surface, and we have defined δΛ(k) = −∂ΛΘ(k). The frequency sum in
Eq. (10.112) can be carried out via contour integration leading to
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1

β

∑
ω

[
1

iω − ξk

] [
1

±iω − ξk′

]
= ± f (ξk) − f (±ξk′)

ξk ∓ ξk′
= ∓Θ(∓ξkξk′)

|ξk| + |ξk′ | .
(10.117)

Here, f (x) = 1/[eβx + 1] is the Fermi function and the last equality is valid for
T = 0. We thus have

Π̇±(n, q) = −Λ
∫

k∈Kn

f (ξk) − f (±ξk−q)

ξk − ξk−q
δΛ(k)ΘΛ(k − q)

= Λ

∫
k∈Kn

Θ(∓ξkξk−q)

|ξk| + |ξk−q |δΛ(k)ΘΛ(k − q) , (10.118)

where the last line is again valid for T = 0. For the rest of this chapter, we will work
with a sharp energy cutoff, i.e., we set

ΘΛ(k) = Θ(Λ < |ξk| < Λ0) , (10.119)

where Θ(X ) = 1 if the logical expression X is true and Θ(X ) = 0 if X is wrong.
The derivative of this cutoff is δΛ(k) = δ(|ξk| − Λ). For T = 0, Eq. (10.118) can
then be simplified further leading to

Π̇ s(n, q) =
∑
s ′=±

∫
k∈Kn

δ(ξk − s ′Λ)Θ(−ss ′ξk−q −Λ)

1 − ss ′ξk−q/Λ
, (10.120)

where s = ± labels the two types of bubbles (s = − for particle–particle and s = +
for particle–hole).

10.5.2 Spinless Fermions

To obtain FRG flow equations for spinless fermions, we may simply drop the spin
indices in our general FRG flow equation (10.37) for the effective interaction. For a
numerical treatment, this equation can be discretized as in the previous section. We
thus replace9

Γ (4)(K1, K2; K3, K4) −→ γ (n1, n2; n3) , (10.121)

and obtain from Eq. (10.37) the following system of coupled ordinary differential
equations,

9 Note that for spinless fermions the discretized interactions γ (n1, n2; n3) have different sym-
metries than the corresponding interactions u(n1, n2; n3) introduced in Eq. (10.110) for spinful
fermions with SU (2)-invariance.
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∂lγ (n1, n2; n3) = −Λ∂Λγ (n1, n2; n3)

= −
∑

n

{
Π̇−(n, qpp)γ (n1, n2; n)γ (n4, n3; n)

+Π̇+(n, qfs)γ (n, n4; n1)γ (n, n2; n3)

+Π̇+(n,−qfs)γ (n, n1; n4)γ (n, n3; n2)

−Π̇+(n, qex)γ (n, n3; n1)γ (n, n2; n4)

−Π̇+(n,−qex)γ (n, n1; n3)γ (n, n4; n2)
}
. (10.122)

Here, the definitions of the bubble integrals and the associated momenta q are iden-
tical to the spinful case in the previous section. To derive Eq. (10.122), we have
again used the symmetries in Eq. (10.115) which also hold for Γ (4). Additionally,
Γ (4) is also antisymmetric with respect to an exchange of the ingoing or outgoing
momenta,

Γ (4)
(
K ′

1, K ′
2; K2, K1

) = −Γ (4)
(
K ′

2, K ′
1; K2, K1

) = −Γ (4)
(
K ′

1, K ′
2; K1, K2

)
.

(10.123)
Note that the antisymmetry with respect to an exchange of the first two indices
also holds for all discrete couplings γ (n1, n2; n3) and is preserved during the flow,
whereas the relation γ (n1, n2; n3) = −γ (n1, n2; n4) is only valid for couplings that
strictly conserve momentum.

The simplest application of Eq. (10.122) is to a one-dimensional chain of spinless
fermions. In this case, the patch index n can take the two values n = R = +
and n = L = − for patches around the right and left Fermi points. Due to the
antisymmetry, only a single nonvanishing coupling g needs to be considered,

πvF g = γ (R, L; L) = γ (L , R; R) = −γ (L , R; L) = −γ (R, L; R) . (10.124)

Carrying out the summation over the intermediate patch index n explicitly,
Eq. (10.122) then reduces to

πvF ġ = −Λ∂Λγ (R, L; L)

= −Π̇−(R, 0)γ (R, L; R)γ (R, L; R) − Π̇−(L , 0)γ (R, L; L)γ (R, L; L)

+Π̇+(R, 2kF )γ (R, L; R)γ (R, L; R) + Π̇+(L ,−2kF )γ (L , R; L)γ (L , R; L)

= [Π̇+(R, 2kF ) + Π̇+(R,−2kF ) − Π̇+(R, 0) − Π̇+(R, 0)](πvF g)2

= 0 , (10.125)

where we have dropped terms containing the vanishing couplings γ (R, R; R),
γ (L , L; L), γ (R, R; L), or γ (L , L; R). For the last equality in Eq. (10.125), we
have used the result

Π̇+(R, 2kF ) = Π̇+(L ,−2kF ) = Π̇+(R, 0) = Π̇+(L , 0) = 1

4πvF
, (10.126)
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Fig. 10.8 (a) Linearization of the energy dispersion of a one-dimensional chain around the two
Fermi points. The parabola represents the full energy dispersion while the red lines represents its
linear approximation. The thick horizontal line is the Fermi energy. (b) Classification of (lattice)
momentum-conserving two-particle interaction processes in g-ology notation. The arrows denote
the transfered momentum of the two particles

which is valid for a linearized dispersion relation around the Fermi points as will
be shown in detail in the next section. In one spatial dimension, the coupling g
thus remains marginal in the one-loop approximation and we obtain a line of fixed
points for arbitrary small g. Hence, the system remains a conductor, a so-called
Luttinger liquid, at small finite interaction strength. Note that this behavior is due
to cancellations of particle–particle and particle–hole contributions in Eq. (10.125)
which, taken individually, would lead to a runaway flow to strong coupling corre-
sponding to a charge-density-wave or pairing instability. In higher dimensions, this
cancellation does not occur any longer, and charge-density waves or paired states
can form at an arbitrary small interaction strength (Shankar 1994).

10.5.3 One-Dimensional g-ology for SU(2)-Invariant Models

An example of a system of interacting spinful fermions with a nontrivial RG flow
that can be solved analytically is a single one-dimensional chain. The patch index n
can again take the two values n = R = + and n = L = − for patches around the
right and left Fermi points, respectively, as shown in Fig. 10.8a. The 23 = 8 cou-
plings u(n1, n2; n3) are related in pairs by the symmetries in Eq. (10.115). Following
the standard notation in the literature (Sólyom 1979), we thus define the couplings
g1, g2, g3, and g4 as follows,

πvF g1 = u(L , R; L) = u(R, L; R) , (10.127a)

πvF g2 = u(L , R; R) = u(R, L; L) , (10.127b)

πvF g3 = u(L , L; R) = u(R, R; L) , (10.127c)

πvF g4 = u(L , L; L) = u(R, R; R) . (10.127d)

Note, that the coupling g3 represents Umklapp scattering, which does not conserve
momentum in a strict sense, but can conserve lattice momentum for a lattice model
at a commensurate band filling with 2kF equal to a vector of the reciprocal lattice.
Here, we will only consider the asymptotic low energy regime, where we may drop
the coupling g3 altogether if the filling of the lattice is incommensurate with the
reciprocal lattice.
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For sufficiently weak initial interactions, the couplings are only weakly renor-
malized during the initial stages of the flow and we can analyze the asymptotic
behavior by starting with a small ultraviolet cutoffΛ0 	 εF . We may then linearize
the dispersion relation around the Fermi points,

ξk ≈ nvF (k − nkF ) , (10.128)

where vF is the Fermi velocity and we have assumed that k is in the vicinity of the
Fermi point nkF . Recall that in one dimension the patch index assumes only the two
values n = ± which label the left and right Fermi points. The momentum s(k − q)
on the second leg of the particle–particle (s = −) or particle–hole (s = +) bubble
also has to be close to a Fermi point which we will denote by n′kF . The momentum
q is then given by q = (n − sn′)kF and we may also linearize ξk−q ,

ξ(k−q) = ξs(k−q) ≈ sn′vF (k − nkF ) . (10.129)

With these preparations, the integrations in Eq. (10.120) can be carried out analyti-
cally,

Π̇ s(n, (n − sn′)kF ) ≈
∑
s ′=±

∫ Λ0

−Λ0

dε

2πvF

δ(nε − s ′Λ)Θ(−s ′n′ε −Λ)

1 − s ′n′ε/Λ
= δn′,−n

4πvF
,

(10.130)

where we have used the Morris–Lemma Eq. (7.15) in the last equality, since the
occurring product of the δ- and Θ-function is only defined via the limit from a
smooth to a progressively sharper cutoff. For the momentum combination occurring
in Eq. (10.113), we thus have,

Π̇−(n, qpp) = Π̇−(n, (n1 + n2)kF ) = δn2,−n1

4πvF
, (10.131a)

Π̇+(n, qfs) = Π̇+(n, (n3 − n2)kF ) = δn2,−n3δn,n3

4πvF
, (10.131b)

Π̇+(n,−qfs) = Π̇+(n, (n2 − n3)kF ) = δn2,−n3δn,−n3

4πvF
, (10.131c)

Π̇+(n, qex) = Π̇+(n, (n1 − n3)kF ) = δn3,−n1δn,n1

4πvF
, (10.131d)

Π̇+(n,−qex) = Π̇+(n, (n3 − n1)kF ) = δn3,−n1δn,−n1

4πvF
. (10.131e)
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For the particular choice n1 = R, n2 = L , n3 = R, we thus obtain the flow equation

4πvF∂lu(R, L; R) =
−
[
u(L , R; R)u(R, L; R) + u(R, L; R)u(L , R; R)

+ u(L , R; L)u(R, L; L) + u(R, L; L)u(L , R; L)
]

−
[
2u(R, L; R)u(R, L; R) − u(L , R; R)u(R, L; R) − u(R, L; R)u(L , R; R)

]
−
[
2u(L , R; L)u(L , R; L) − u(R, L; L)u(L , R; L) − u(L , R; L)u(R, L; L)

]
= −4[u(R, L; R)]2 . (10.132)

Here, each term in square brackets corresponds to one of the channels in Eq. (10.113);
note that the exchange terms in the last two sums in Eq. (10.113) do not con-
tribute to the flow of this coupling. Note also the large amount of cancellations
between the particle–particle and particle–hole terms. Proceeding in a similar way
for all other combinations of external labels ni and using the shorthand notations in
Eqs. (10.127a)–(10.127d), we obtain the well-known flow equations (Sólyom 1979)

∂l g1 = −g2
1 ,

∂l g2 = −(g2
1 − g2

3)/2 ,

∂l g3 = −g3(g1 − 2g2) ,

∂l g4 = 0 .

(10.133)

To discuss these equations, let us first consider a continuum model or a lattice model
with a band that is not exactly half filled. In the low energy and asymptotically small
coupling regime, the coupling g3 should be dropped from Eq. (10.133) altogether.
Defining the spin coupling gs = g1 and the charge coupling gc = g1 − 2g2, the flow
equations (10.133) reduce to

∂l gs = −g2
s , ∂l gc = ∂l g4 = 0 . (10.134)

Here, the decoupling of the equations for spin- and charge-couplings is a manifes-
tation of spin-charge separation of interacting electrons in one spatial dimension.
However, the consequences for correlation functions can be better understood using
complementary bosonization techniques (see, e.g., Sachdev 1999, Schönhammer
2003). The solution of Eq. (10.134) is given by

gc(l) = gc(0) , g4(l) = g4(0) , gs(l) = 1

l + [gs(0)]−1
. (10.135)

For a repulsive initial spin interaction gs(0) > 0, the spin coupling gs vanishes for
l → ∞ and the continuum of fixed points with gs = 0 parameterized by gc and g4 is
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approached. The absence of any divergence signals that no ordering occurs and the
resulting state is the one-dimensional analogon of a Fermi liquid, i.e., a Luttinger
liquid (Haldane 1981). In terms of the original couplings, the model at the fixed
point only contains the forward scattering terms g2 and g4, as the back scattering g1

flows to zero. As a consequence, the asymptotic model can be solved exactly using
bosonization techniques. Chap. 11 describes how the results from bosonization can
also be obtained within the FRG framework.

On the contrary, for an attractive spin interaction gs(0) < 0, the spin-coupling
gs(l) diverges at a finite energy scale l → lc = −[gs(0)]−1; the weak-coupling RG
approach breaks down well before this energy scale is reached. It turns out that for
a particular coupling strength the model can be solved by refermionization (Luther
and Emery 1974). The resulting state is a Luther–Emery liquid with a gap to spin
excitations (Sólyom 1979). It has strong pairing and spin correlations although no
true long range order can occur in one spatial dimension.

At half filling where the Umklapp coupling g3 is finite, it is still useful to rewrite
the flow equations in terms of spin and charge couplings,

∂l gs = −g2
s , ∂l gc = −g2

3 , ∂l g3 = −g3gc . (10.136)

Note that the flow of gs is still decoupled from the other couplings. For the flow of
gc and g3, one finds the following conservation rule

∂l
(
g2

3 − g2
c

) = 0 . (10.137)

Thus, the flow is along the hyperbolas defined by

g2
3 − g2

c = const , (10.138)

as sketched in the flow diagram in Fig. 10.9. The line g3 = 0 is a line of fixed
points which for gc > 0 is stable against small perturbations g3 �= 0, whereas for
gc < 0 the fixed line is unstable and the flow diverges at a finite scale lc along the
diagonal rays with gc = ±g3 < 0. For very small initial interaction strengths, the
asymptotic diagonal rays are approached right before the weak coupling approach
breaks down, suggesting a universal behavior of the system in the same basin of
attraction. Thus, the asymptotics of the one-loop RG flow equations provide a clas-
sification of the occurring states or phases of the system, even though the approach
itself breaks down when a runaway flow to strong coupling occurs. A description
of the nature of the phases, for example, their gaps and correlation functions, is not
directly accessible within the present approach.

For a one-dimensional Hubbard chain with one electron per site and with only an
on-site repulsion U , the initial couplings are identical, i.e., g1 = g2 = g3 = g4 ∝ U .
The RG flow is thus toward g1(l) → 0 and along the ray g3(l) ∼ −gc(l) → ∞
shown as a red line in Fig. 10.9. The divergence of the charge coupling and the
vanishing spin coupling signals a gap in the charge sector and no gap in the spin
sector. In the strong coupling limit, the half-filled Hubbard model can be mapped
onto an antiferromagnetic Heisenberg spin-chain; the exact solution of this model
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Fig. 10.9 Schematic RG flow of the charge coupling gc and the Umklapp coupling g3 for a one-
dimensional chain with a half-filled single band. The flow of the spin coupling gs is independent
of the flow shown here. Note that the flow is formally identical with the RG flow of the two-
dimensional classical XY-model shown in Fig. 3.9 if we replace gc → x = πβ J − 2 and g3 →
y = 2πe−βEc

via the Bethe Ansatz shows that there is indeed no gap to spin excitations. For
other choices of microscopic couplings, the flow starts at a different position in
the flow diagram in Fig. 10.9. As an example, consider a one-dimensional Hubbard
chain with on-site as well as nearest neighbor repulsion. At half filling, the g-ology
couplings are then given by

g1 = u − v , g2 = u + v , g3 = u − v , g4 = u + v , (10.139)

and thus

gs = g1 = u − v , gc = g1 − 2g2 = −u − 3v . (10.140)

Here, u and v denote the strength of the on-site and nearest-neighbor repulsion in
appropriate units, respectively. When only a repulsive nearest-neighbor coupling is
present, i.e., u = 0 and v > 0, the asymptotic flow is then toward g1(l) → −∞
and g3(l) ∼ gc(l) → −∞, which is marked by a green line in Fig. 10.9. From a
microscopic perspective and in the strong coupling limit, it is straightforward to see
that the coupling v leads to the formation of a commensurate charge density wave
with every other lattice site doubly occupied and gapped spin or charge excitations.
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10.5.4 Many-Patch RG for the Square-Lattice Hubbard Model

Let us now apply the one-loop patching approximation to the two-dimensional Hub-
bard model with nearest-neighbor hopping t and next-nearest-neighbor hopping t ′.
The single-particle dispersion relation is given by

εk = −2t[cos(kx a) + cos(kya)] − 4t ′ cos(kx a) cos(kya) , (10.141)

and is shown graphically in Figs. 10.10a and 10.10b. At t ′ = 0 and μ = 0, the
Fermi surface is a perfect square touching the boundary of the first Brillouin zone at
the points ka = (±π, 0) and ka = (0,±π ) which are saddle points of εk and lead
to logarithmic Van Hove singularities in the density of states. The perfect square is
also called the Umklapp surface, since the parallel sides of the square are shifted by
a vector Q with Qa = (π, π ). As Q is just half of a reciprocal lattice vector, this
geometry allows for Umklapp scatterings with all four legs on the Fermi surface.
An example of such a coupling is shown graphically in Fig. 10.10d. Apart from this
Umklapp property, the square Fermi surface is also perfectly nested, since a transla-
tion by the vector Q maps the Fermi surface onto itself (up to shifts by a reciprocal
lattice vector). The band filling n can be read off graphically as the ratio of the sur-
face area enclosed by the Fermi surface to the area of the complete Brillouin zone.
Thus the square Fermi surface for μ = 0 corresponds to a half-filled band. Away
from half filling or for t ′ �= 0, the nesting is only approximate and Umklapp pro-
cesses exactly on the Fermi surface occur only for isolated points at the intersection
of the Fermi surface with the Umklapp surface as shown in Fig. 10.10b. However,
for Fermi surface geometries slightly away from the perfect square, Umklapp and
nesting processes are expected to still be important at higher energy scales.

Some aspects of this two-dimensional dispersion relation can be addressed by
applying the RG to simplified toy models with only a very limited number of
patches. A two-patch model containing the regions around the saddle points has
been used by several authors (Lederer et al. 1987, Furukawa et al. 1998). Due to
the Van Hove singularities in the density of states, the bare susceptibilities contain
log2-singularities and, consequently, the bubble integrals Π̇± have a contribution
proportional to the RG time l. The relative importance of nesting depends on the
strength of the nearest-neighbor hopping t ′, since only for t ′ = 0 the Fermi sur-
face is perfectly nested. A solution of the RG equations shows strong tendencies to
pairing with a d-wave symmetry. However, due to nesting a gap can also appear in
the charge sector, leading not to a superconducting state, but rather to a spin-liquid
phase, similar to the d-Mott phase for the half-filled two-leg ladder (Balents and
Fisher 1996). The role of nesting and Umklapp scatterings for regions away from
the saddle points has been analyzed by placing patches around the diagonals of the
Brillouin zone, i.e., near the points ka = (±π,±π ) (Houghton and Marston 1993,
Furukawa and Rice 1998). It has been found that Umklapp scattering can lead to
the opening of a charge gap which, however, does not necessarily lead to long-range
magnetic ordering, but can also imply a spin-liquid behavior.
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These toy models contribute important insights to a qualitative understanding of
the low-energy behavior of two-dimensional fermionic lattice models. However, to
properly analyze the interplay of the different instabilities, the continuous nature
of the Fermi surface needs to be captured. This can be achieved by successively
increasing the number of patches in a numerical treatment of Eq. (10.113). The
spirit of such an approach is very similar to the one-dimensional model discussed
in Sect. 10.5.3, yet details of the approximation scheme differ as discussed in the
following. The focus is not so much on asymptotic low-energy scales and vanishing
coupling strength, but rather on crossover phenomena at a finite coupling strength
starting from the full bandwidth of a given lattice model.

To subdivide the Brillouin zone into the patches used in Eq. (10.113), one usually
first defines the projection of an arbitary point k in the Brillouin zone onto the Fermi
surface. This can be done by simply determining the intersection of the radial section
between the origin and k itself with the Fermi surface (Tsai and Marston 2001). A
little more elaborate projection that also respects the particle–hole symmetry for
t ′ = 0 and μ = 0 uses a line composed of two straight sections, from the ori-
gin to the Umklapp surface and from there to the nearest corner of the Brillouin
zone (Zanchi and Schulz 2000, Honerkamp and Salmhofer 2001). Here, we use a
more general scheme and project along a line following the path of steepest descent
(ascent) whose tangent points in the direction of the gradient of the dispersion
(Halboth and Metzner 2000). An example of such a projection is shown in
Fig. 10.10c. The original point k now belongs to the patch whose central point is
closest to the projection of k according to an appropriate measure. Here, we simply
place the central points at a constant angular distance on the Fermi surface and use
the Euclidean distance between the projection and the central point as a measure. In

b)a) d)
c)

Fig. 10.10 Fermi surface and patching scheme for the square-lattice Hubbard model. (a) Disper-
sion relation for t ′ = 0. The red square is the Fermi surface at μ = 0 (also called Umklapp
surface); the blue lines are lines of constant energy; moving outward the energy is increasing in
steps of 0.5t . (b) Same as (a) for t ′ = −0.1t . The red line is for Van Hove filling μ = 4t ′.
(c) Subdivision of the Brillouin zone into 16 patches for t ′ = −0.1t and μ = 4t ′. The central
points of the patches marked by small circles are placed at regular angular intervals, an arbitrary
point is projected onto the Fermi surface along the direction of the gradient of the dispersion and
belongs to the patch whose central point is closest to the projection. (d) Graphical representation
of the Umklapp coupling u(n1 = 0, n2 = 1; n3 = 10) with all four legs on the Fermi surface
so that n4 = 11. Legs for outgoing particles are marked by solid lines and incoming particles by
dashed lines. The color coding marks pairs of incoming and outgoing legs which belong together:
(n2, n3) = green, (n1, n4) = red
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Fig. 10.10c we show 16 patches for t ′ = −0.1t at Van Hove filling. To determine
the shape of the patches, we have divided the Brillouin zone into a triangular mesh.
The center of each triangle is then projected onto the Fermi surface to determine to
which patch it belongs to. The union of all such triangles leading to the same central
point kn then forms the patch n. The outer boundaries of these regions shown in
Fig. 10.10c are a little raggedy due to the finite size of the underlying triangles. The
flow equations (10.113) are then solved numerically with a standard Runge–Kutta
algorithm with adaptive step size control (Press et al. 2007). At each step, the inte-
grals Π̇±(n, q) in Eq. (10.118) for particle–hole and particle–particle bubbles have
to be determined numerically. We use a sharp energy cutoff

ΘΛ(k) = Θ(|ξk| −Λ) , (10.142)

leading to δΛ(k) = δ(|ξk| − Λ). This δ-function effectively reduces our expres-
sion (10.118) for the single-scale bubbles Π̇± to integrals along lines of constant
energy ±Λ in momentum space. We evaluate these numerically with an algorithm
designed for contour plotting (Bourke 1987) using the triangular mesh mentioned
above. Tabulating the energies at the corners of the triangles once at the begin-
ning, we can easily determine the triangles with edges that intersect the lines at the
energies ±Λ. Line searches along these edges then yield the points at the given
energy. The line of constant energy is then replaced by straight lines inside the
triangles. For the Hubbard model, the initial condition for the couplings is given
by u(n1, n2; n3) = U for all combinations of ni . The integration is started at the full
band with, i.e. Λ = B = 8t for t ′ = 0. All following results are for U = t , i.e.,
U/B = 1/8.

Results of the numerical integration for the perfectly nested Fermi surface are
shown in Fig. 10.11. At a finite renormalization group time lc corresponding to
a cutoff scale Λc, one encounters a runaway flow where some of the couplings
diverge. As the truncation of the hierarchy of RG equations is based on a weak

n1

n 2

n1 n1 n1

Fig. 10.11 Renormalization group flow for the exactly half-filled Hubbard model on a square
lattice with nearest-neighbor hopping t and on-site repulsion U with U/t = 1. The coupling
strength u(n1, n2; n3) for fixed n3 = 0 is color coded as a function of n1 and n2. Blue denotes
positive couplings; red would denotes negative couplings, but does not occur here. From left to
right the renormalization group time is given by l = 0.00, 2.42, 5.28, 5.33. Results are shown for
a Brillouin zone divided into 32 patches
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n 2

n1 n1 n1 n1

Fig. 10.12 Same as Fig. 10.11 slightly away from half filling for μ/t = −0.03. From left to right,
the RG time is given by l = 0.00, 4.90, 9.56, 11.86

coupling expansion, the approach breaks down as the couplings become large and
the integration needs to be stopped. However, the nature of the diverging couplings
can hint at the dominant correlations and the symmetry of the order parameter. Fol-
lowing Honerkamp et al. (2001), in Fig. 10.11 the relative strength of the couplings
u(n1, n2; n3) is color coded as a function of n1 and n2 with n3 fixed at n3 = 0. As
the flow progresses and we approach the critical cutoff scale, a cross-like pattern
emerges in Fig. 10.11. The dominant couplings that form this cross are scatterings
of the Umklapp and nesting type. It is well known that at half filling and strong
coupling, the Hubbard model can be mapped onto the spin- 1

2 Heisenberg model
with nearest-neighbor antiferromagnetic exchange interaction J ≈ 4t2/U . On a
square lattice the latter model has an ordered Néel ground state which suggests that
the flow to strong coupling of the Umklapp and nesting interactions should be taken
as an indication for such an ordered state.

In Fig. 10.12 the flow of the couplings is shown for a band that is slightly less than
half filled (t ′ = 0). Initially, a cross-like pattern emerges again which is, however,
superseded by a diagonal pattern consisting of pairing interactions with kn2 = −kn1

at later stages in the flow. Note that the pairing interactions occur with different
signs. Moving along the diagonal pattern in Fig. 10.12 the sign changes four times
as kn1 crosses the diagonals of the Brillouin zone. This suggests an ordered ground
state of the BCS type with a d-wave symmetry and nodes in the order parame-
ter along the diagonals of the Brillouin zone (dx2−y2 symmetry). Thus a repulsive
microscopic interaction can lead to strong pairing correlations or even an ordered
state with d-wave symmetry. This is reminiscent of the Luttinger–Kohn mechanism
that leads to pairing in higher angular momentum channels via feedback from higher
energy scales. However, for the Hubbard model near half filling the RG flow is
particularly strong due to Van Hove points, so that nesting and Umklapp scatterings
lead to much higher critical energy scales.

In Fig. 10.13, we show the qualitative evolution of the strong coupling pattern as
a function of the band filling. The flow is stopped at a critical scale Λc = Λ0e−lc ,
which we define by the condition that the largest flowing coupling reaches 160t , i.e.,
twenty times the total band width of 8t . One observes a crossover between a regime
at and very close to half filling (where Umklapp and nesting interactions diverge) to
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n 2
n 2

n1

n1 n1 n1 n1

n1 n1 n1

Fig. 10.13 Pattern of coupling strength color-coded as in Figs. 10.11 and 10.12 at the
RG scale when the maximum occurring magnitude of the coupling strength reaches 160t .
Results are shown for 16 patches and from upper left to lower right are for −μ/t =
0.0, 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035

a regime with dominant pairing interactions. In the crossover regime, both types of
couplings remain strong.

In Fig. 10.14, we show the dependence of the critical scale Λc on the chemical
potential. The critical scale Λc is often interpreted as a critical temperature. With
this in mind, Fig. 10.14 shows some qualitative similarities with the phase diagrams
of high-Tc cuprate materials. At half filling there is antiferromagnetic order with an
s-wave gap at the Fermi surface signaling an insulating state. Upon doping away
from half filling by introducing holes into the system, the critical scale is reduced

Λ
c

Fig. 10.14 Critical scale Λc as a function of the chemical potential for a Hubbard model on the
square lattice with the parameters t ′ = 0 and U/t = 1. Numerically, the critical scale is determined
as Λc = Λ0e−lc , where lc is the renormalization group time at which the maximum magnitude of
any of the couplings u(n1, n2; n3) reaches 160t
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and a d-wave paired state emerges. With further doping the critical scale eventually
drops to zero. It is also tempting to associate the crossover regime with the mys-
terious pseudogap phase, although no real physical picture for this regime emerges
from the RG analysis. Note that besides the global scale the width of the crossover
in Fig. 10.14 also depends on the coupling strength U and vanishes for U → 0.
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Chapter 11
Normal Fermions: Partial Bosonization
in the Forward Scattering Channel

The advantage of the one-loop patching approximation discussed in Sect. 10.5 is
that this approach is completely unbiased, because it retains on equal footing the RG
flow of all marginal couplings related to the four-point vertex. An obvious disadvan-
tage of the one-loop patching approximation is the fact that it breaks down when at
least one of the marginal couplings becomes large, which usually happens when the
RG cutoffΛ reaches a finite scaleΛc. For the two-dimensional Hubbard model with
nearest-neighbor hopping we have explicitly calculated the scaleΛc in Sect. 10.5.4,
see Fig. 10.14. Although it seems reasonable to assume that the coupling which
diverges at the smallest RG scale indicates the dominant instability of the system,
there is no proof that this is always the case. It would certainly be more convincing to
detect the instabilities within a method which does not break down as soon as the RG
flow leaves the weak coupling regime. Note also that wave function renormalization
effects which are neglected within the one-loop patching approximation usually
slow down the growth of the coupling constants and in certain cases completely
remove the strong-coupling instabilities predicted by the one-loop patching approx-
imation (Ferraz 2003, Freire et al. 2005, 2008). Unfortunately, within the framework
of the purely fermionic FRG it is rather difficult to systematically include two-loop
corrections responsible for the wave function renormalization into the analysis of
the FRG flow equations (Katanin 2009).

In this chapter we shall describe an alternative FRG approach to interacting
fermions which is based on the introduction of collective bosonic fluctuations via
suitable Hubbard–Stratonovich transformations. Keeping in mind that the low-lying
excitations of interacting fermions consist not only of fermionic quasiparticles but
also of bosonic collective excitations (Pines and Nozières 1966), it is natural to intro-
duce bosonic fields representing the relevant collective fluctuations into the FRG
equations for interacting fermions. Of course, as will be discussed in more detail in
Sect. 12.6, a given fermionic interaction can be decoupled in infinitely many ways
by means of Hubbard–Stratonovich transformations (Hamann 1969, Wang et al.
1969, Castellani and Di Castro 1979, Schulz 1990, Macêdo and Coutinho-Filho
1991, Dupuis 2002, 2005, Borejsza and Dupuis 2003, Bartosch et al. 2009a), so that
the choice of a particular Hubbard–Stratonovich decoupling implies an assumption
about the nature of the dominant collective fluctuations in the system. The partially

Kopietz, P. et al.: Normal Fermions: Partial Bosonization in the Forward Scattering
Channel. Lect. Notes Phys. 798, 305–326 (2010)
DOI 10.1007/978-3-642-05094-7 11 c© Springer-Verlag Berlin Heidelberg 2010
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bosonized FRG for fermions introduced in this chapter is therefore not as unbiased
as the purely fermionic FRG discussed in Sect. 10.5. On the other hand, for special
types of interactions a certain scattering channel might be singled out already in
the bare action, suggesting a Hubbard–Stratonovich decoupling of the two-body
interaction in this channel. A simple truncation in the bosonic sector of the partially
bosonized theory corresponds then to an infinite resummation of the interaction
in fermionic language, so that in this way the strong coupling regime is accessi-
ble. Another advantage of the partially bosonized FRG is that this method is very
convenient to describe the symmetry-broken phase, because the order parameter
can usually be constructed in terms of the expectation value of a suitably defined
Hubbard–Stratonovich field, as will be discussed in Chap. 12.

The exact hierarchy of FRG flow equations for the one-line irreducible vertices
of general Bose-Fermi theories has first been derived by Schütz et al. (2005) and
can be obtained as a special case of the general FRG flow equations given in
Chap. 7. A related approach using partially bosonized effective actions for inter-
acting fermions has been developed by Correia et al. (2002), who applied a gra-
dient expansion to a functional version of the Callan-Symanzik equation, and by
Wetterich (2007), who truncated the exact FRG flow equation for the generating
functional of the irreducible vertices using the derivative expansion. For recent
applications of this method see (Baier et al. 2004, 2005, Ledowski and Kopietz
2007, Strack et al. 2008, Floerchinger et al. 2008, Jakubczyk et al. 2008, Bartosch
et al. 2009a,b).

We consider in this chapter a system of fermions which interact via long-range
density–density forces. The Euclidean action of our model is of the form (10.1),
with the Gaussian action S0[ψ̄, ψ] given in Eq. (10.2) and the interaction is now

S1[ψ̄, ψ] = 1

2

∑
σσ ′

∫
K̄

f σσ
′

k̄ ρ̄K̄σ ρK̄σ ′ , (11.1)

where the composite field ρK̄σ represents the Fourier components of the density,

ρK̄σ =
∫

K
ψ̄KσψK+K̄ ,σ . (11.2)

Note that the ρK̄σ have the symmetry ρ̄K̄σ = ρ−K̄σ . The discrete flavor index σ is
formally written as a spin projection, but includes all other flavor labels. Throughout
this chapter, labels with a bar such as K̄ = (iω̄, k̄) refer to bosonic frequencies and
momenta, while labels without a bar refer to fermionic ones. We assume that the
momentum-dependent interaction parameters f σσ

′
k̄

are dominated by small momen-

tum transfers k̄ (forward scattering), so that f σσ
′

k̄
is negligibly small as soon as

|k̄| exceeds a certain characteristic scale qc 	 kF . In real space the corresponding
density–density interaction is then long range with characteristic length scale q−1

c .
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11.1 Hubbard–Stratonovich Transformation in the Forward
Scattering Channel

For bare interactions whose Fourier transform is strongly enhanced for small momen-
tum transfers, the effective interaction is strongly renormalized by particle-hole
forward scattering processes. It is then natural to decouple the density–density
interaction by means of a real Hubbard–Stratonovich field ϕK̄σ which couples to
the Fourier components ρK̄σ of the density. As already discussed in Sect. 2.2.1,
Hubbard–Stratonovich transformations are based on the formula (2.25) for mul-
tidimensional Gaussian integrals and its complex analogue. Setting s = −i y in
Eq. (2.25), we have

(
N∏

i=1

∫ ∞

−∞

dxi√
2π

)
e− 1

2 xT Ax−i yT x = [det A]−1/2e− 1
2 yT A−1 y . (11.3)

Let us also give the complex version of this identity,

(
N∏

i=1

∫ ∞

−∞

dRezi dImzi

π

)
e−z†Az−i a† z−i z†b = [det A]−1e−a†A−1 b , (11.4)

where z, a and b are complex N -component vectors. We now read the identity (11.4)
from right to left to decouple the density–density interaction (11.1) in terms of a real
Hubbard–Stratonovich field ϕσ , whose Fourier components satisfy ϕ−K̄σ = ϕ∗̄

Kσ
.

To avoid double counting of the components with labels K̄ and −K̄ , we write the
interaction (11.1) in terms of just one of them denoted by K̄ > 0 and treat the K̄ = 0
term separately,

S1[ψ̄, ψ] =
∑
σσ ′

∫
K̄>0

f σσ
′

k̄ ρ̄K̄σ ρK̄σ ′ + 1

2βV

∑
σσ ′

f σσ
′

0 ρ̄0σ ρ0σ ′ . (11.5)

The first term can now be decoupled using Eq. (11.4) once for every K̄ , while
for the second term we use the real Gaussian integral (11.3). The result of both
contributions can be recombined to write the interaction in the form (Kopietz 1997,
Schütz 2005)

e−S1[ψ̄,ψ] = e− 1
2

∑
σσ ′

∫
K̄ f σσ

′
k̄

ρ̄K̄σ ρK̄σ ′ =
∫
D[ϕ]e−S0[ϕ]−S1[ψ̄,ψ,ϕ]∫

D[ϕ]e−S0[ϕ]
, (11.6)

where the free bosonic part is given by

S0[ϕ] = 1

2

∑
σσ ′

∫
K̄

[
f −1
k̄

]σσ ′

ϕ∗̄
Kσ ϕK̄σ ′ , (11.7)
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and the coupling between Fermi and Bose fields is

S1[ψ̄, ψ, ϕ] = i
∑
σ

∫
K̄
ρ̄K̄σ ϕK̄σ = i

∑
σ

∫
K

∫
K̄
ψ̄K+K̄ ,σψKσ ϕK̄σ . (11.8)

The integration measure in Eq. (11.6) is

D[ϕ] =
∏
σ

⎡
⎣dϕ0σ√

2π

∏
K̄>0

dReϕK̄σ dImϕK̄σ

π

⎤
⎦ . (11.9)

In field theory language, the real field ϕ represents the bosonic particle whose
exchange mediates the interaction between the fermions.

Next, we rewrite the above Bose–Fermi theory in the superfield notation intro-
duced in Chap. 6. For the ratio of the partition functions with and without interaction
we write

Z
Z0

=
∫
D[ψ̄, ψ]e−S0[ψ̄,ψ]−S1[ψ̄,ψ]∫

D[ψ̄, ψ]e−S0[ψ̄,ψ]

=
∫
D[ψ̄, ψ, ϕ]e−S0[ψ̄,ψ]−S0[ϕ]−S1[ψ̄,ψ,ϕ]∫

D[ψ̄, ψ, ϕ]e−S0[ψ̄,ψ]−S0[ϕ]
≡

∫
D[Φ]e−S[Φ]∫
D[Φ]e−S0[Φ]

, (11.10)

where Φ = [ψσ , ψ̄σ , ϕσ ] is a three-component superfield with one bosonic and two
fermionic components,1 and the superfield action is

S[Φ] = S0[Φ] + S1[Φ] = S0[ψ̄, ψ] + S0[ϕ] + S1[ψ̄, ψ, ϕ] . (11.11)

As in Eq. (6.3), we write the quadratic part S0[Φ] of our action in the symmetric
form

S0[Φ] = S0[ψ̄, ψ] + S0[ϕ] = −1

2

(
Φ, [G0]−1Φ

)

= −1

2

∫
α

∫
α′
Φα [G0]−1

αα′ Φα′ , (11.12)

where G0 is now a matrix in frequency, momentum, spin, and field-type indices,
and α is a “superfield label” for all of these indices, as explained after Eq. (6.3) in
Chap. 6. For our theory, the matrix G−1

0 has the block structure

1 It is understood that each component of Φ = [ψσ , ψ̄σ , ϕσ ] consists of several flavors labeled
by σ .
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G−1
0 =

⎛
⎝ 0 ζ [Ĝ−1

0 ]T 0
Ĝ−1

0 0 0
0 0 −F̂−1

0

⎞
⎠ , (11.13)

where ζ = −1 and Ĝ0 and F̂0 are infinite matrices in frequency, momentum, and
spin space, with matrix elements

[Ĝ0]Kσ,K ′σ ′ = δK ,K ′δσσ ′ G0,σ (K ) , (11.14a)

[F̂0]K̄σ,K̄ ′σ ′ = δK̄+K̄ ′,0 F0,σσ ′(K̄ ) , (11.14b)

where

G0,σ (K ) = [iω − ξkσ ]−1 , (11.15a)

F0,σσ ′(K̄ ) = f σσ
′

k̄ . (11.15b)

Note that the bare interaction plays the role of a free bosonic Green function. The
inverse of the matrix in Eq. (11.13) is the free superfield propagator,

G0 =
⎛
⎝ 0 Ĝ0 0
ζ ĜT

0 0 0
0 0 −F̂0

⎞
⎠ , (11.16)

which satisfies GT
0 = ZG0 = G0Z, in agreement with Eq. (6.4). The superfield

self-energy Σ is related to the exact superfield propagator G via the Dyson equa-
tion (6.34) and contains the fermionic irreducible self-energy Σσ (K ) and the one-
interaction-line irreducible polarization Πσ (K̄ ) in the following blocks,

Σ =
⎛
⎝ 0 ζ [Σ̂]T 0
Σ̂ 0 0
0 0 Π̂

⎞
⎠ , (11.17)

where

[Σ̂]Kσ,K ′σ ′ = δK ,K ′δσσ ′Σσ (K ′) , (11.18a)

[Π̂]K̄σ,K̄ ′σ ′ = δK̄+K̄ ′,0δσσ ′ Πσ (K̄ ′) . (11.18b)

These matrices are flavor-diagonal because the bare coupling S1[ψ̄, ψ, ϕ] between
Fermi and Bose fields in Eq. (11.8) is diagonal in the flavor index σ . The exact

superfield Green function G = [
G−1

0 − Σ
]−1

has then the same block structure as
the free propagator (11.16),

G =
⎛
⎝ 0 Ĝ 0
ζ ĜT 0 0

0 0 −F̂

⎞
⎠ , (11.19)
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where the blocks contain the exact single-particle Green function Gσ (K ) =
[G−1

0,σ (K ) −Σσ (K )]−1 and the effective (screened) interaction Fσσ ′(K̄ ),

[Ĝ]Kσ,K ′σ ′ = [
Ĝ−1

0 − Σ̂
]−1

Kσ,K ′σ ′ = δK ,K ′δσσ ′ Gσ (K ) , (11.20a)

[F̂]K̄σ,K̄ ′σ ′ = [
F̂−1

0 + Π̂
]−1

K̄σ,K̄ ′σ ′ = δK̄+K̄ ′,0 Fσσ ′(K̄ ) . (11.20b)

11.2 Exact FRG Flow Equations

To derive exact FRG flow equations for the vertices of our mixed Bose–Fermi theory
given above, we introduce a cutoff Λ into the Gaussian propagator, G0 → G0,Λ, as
discussed in Sect. 7.1. Since our theory contains both bosonic and fermionic fields,
we have the freedom of introducing the cutoff into both bosonic and fermionic
sectors, or only into one of them. In the latter case the structure of the FRG flow
equations simplifies due to the absence of single-scale propagators associated with
the field without cutoff, but we should impose a nontrivial initial condition on the
FRG flow (Schütz and Kopietz 2006). In practice, it can be advantageous to intro-
duce a cutoff only in the bosonic sector of the theory (Schütz et al. 2005, Ledowski
and Kopietz 2007, Bartosch et al. 2009a,b). Since in the model considered here
the bosonic field ϕ mediates the interaction between the fermions, the reduction
of a momentum cutoff in the corresponding bosonic propagator amounts to the
elimination of scattering processes involving large energy–momentum transfers. We
therefore refer to this cutoff procedure as the momentum transfer cutoff scheme.

To begin with, let us first write down the exact FRG flow equations for a gen-
eral cutoff procedure and subsequently discuss the simplifications in the momentum
transfer cutoff scheme. The action given in Eqs. (11.8), (11.11), and (11.12) is a
special case of the general class of actions considered in Chap. 7, so that the FRG
flow equations of our model can be obtained from the flow equations derived there.
For simplicity, we ignore the renormalization of the vacuum expectation value2 of
the bosonic field ϕ, so that we may use the FRG flow equations without vacuum
expectation values given in Sect. 7.3. To classify the various diagrams, it is useful
to switch from the general notation used in Chap. 7 to a more explicit notation
which exhibits the different field types. We define the partially symmetrized flowing
irreducible vertices Γ (2n,m)

Λ with 2n external fermion legs and m external boson legs
by writing the functional Taylor expansion of the generating functional Γ [ψ̄, ψ, ϕ]
of the irreducible vertices of our cutoff-dependent theory in the form

2 The vacuum expectation value of our Hubbard–Stratonovich field ϕ is related to the Hartree
correction to the fermionic self-energy, which can be eliminated by a shift of the chemical potential.
Alternatively, we may assume that f σσ

′
k̄=0

= 0, implying that also the vacuum expectation value
〈ϕK=0〉 vanishes.
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Γ [ψ̄, ψ, ϕ] =
∞∑

n,m=0

1

(n!)2m!

∫
K ′

1σ
′
1

. . .

∫
K ′

nσ
′
n

∫
K1σ1

. . .

∫
Knσn

∫
K̄1σ̄1

. . .

∫
K̄m σ̄m

×δK ′
1+...+K ′

n ,K1+...+Kn+K̄1+...+K̄m

×Γ (2n,m)
Λ

(
K ′

1σ
′
1, . . . , K ′

nσ
′
n; Knσn, . . . , K1σ1; K̄1σ̄1, . . . , K̄m σ̄m

)
×ψ̄K ′

1σ
′
1
· . . . · ψ̄K ′

nσ
′
n
ψKnσn · . . . · ψK1σ1ϕK̄1σ̄1

· . . . · ϕK̄m σ̄m
.

(11.21)

Because our theory is characterized by three types of fields, we represent the vertices
Γ

(2n,m)
Λ graphically by triangles whose sides are associated with the different field

types, as shown in Fig. 11.1. Note that in Eq. (11.21) we have factored out the
momentum and frequency conserving δ-functions in the definition of the vertices
Γ

(2n,m)
Λ . Apart from this, the totally symmetric vertices defined by the expansion

(6.60) coincide with the corresponding partially symmetrized momentum conserv-
ing ones in Eq. (11.21) for the same order of the indices, see Eq. (10.29). As a
consequence, we can obtain the flow equations for the vertices Γ (2n,m)

Λ by choos-
ing in the corresponding flow equations for the completely symmetrized vertices
derived in Sect. 7.3 a definite realization of the external legs and by carrying out the
intermediate sums over the different field species, i.e., by drawing all possible lines
in the intermediate loop (two possible orientations of solid lines or one wiggly line).
On the right-hand side one then has to appropriately order all the legs on the vertices
keeping track of signs for the interchange of two neighboring fermion legs. Having
done so, we can use the pictorial dictionary in Fig. 11.1 to obtain diagrams involving
the partially symmetrized vertices Γ (2n,m) appearing in Eq. (11.21). In this way, we
obtain from the diagram representing the FRG flow of the completely symmetric
two-point vertex shown in Fig. 7.2 the corresponding diagrams for the fermionic
self-energy in Fig. 11.2 as well as for the irreducible polarization shown in Fig. 11.3.

Fig. 11.1 Graphical notation for the partially symmetrized vertices Γ (2n,m)
Λ with 2n fermion legs

and m boson legs defined via Eq. (11.21). We also show the corresponding vertex in the superfield
notation used in Chaps. 6 and 7. The diagrams on the right-hand sides of the last two lines represent
the exact propagators G, Ġ, F and Ḟ respectively. The wavy line is associated with the bosonic
field ϕ, while for fermions we use the same symbols as in Fig. 10.1. Recall that our Bose field is
real because it couples to the density, so that it should be represented graphically by an undirected
line
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Fig. 11.2 Flow of the irreducible fermionic self-energy. The diagrams are obtained from the
superfield diagrams shown in Fig. 7.2 by specifying the external legs to be one outgoing and one
incoming fermion leg

Fig. 11.3 Flow of the irreducible polarization, obtained from the superfield diagrams in Fig. 7.2
by setting both external legs equal to boson legs. Note that each closed fermion loop gives rise to
an additional factor of ζ = −1

Moreover, if we specify the external legs in the diagram for the totally symmetrized
three-legged vertex shown in Fig. 7.3 to be two fermion legs and one boson leg, we
obtain the diagram representing the FRG flow equation for the three-legged vertex
shown in Fig. 11.4. Obviously all diagrams shown in Figs. 11.2, 11.3, and 11.4 can
be subdivided into two classes: those involving fermionic single-scale propagators
(where the slash appears on internal fermion lines), and those with bosonic single-
scale propagators (where the slash appears on internal boson lines).

Let us now adopt the momentum transfer cutoff scheme, where only the bosonic
propagator is regularized via a momentum transfer cutoff. Then all diagrams in
Figs. 11.2, 11.3, and 11.4 involving slashed fermion lines should be simply omitted.
Explicitly, the exact FRG flow equations for the fermionic self-energy Σσ (K ) and
the irreducible polarization Πσ (K̄ ) are then
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Fig. 11.4 Flow of the three-legged vertex with two fermion legs and one boson leg, obtained as a
special case of the diagram in Fig. 7.3

∂ΛΣσ (K ) = 1

2

∫
K̄

Ḟσσ (K̄ )Γ (2,2)(Kσ ; Kσ ; K̄σ,−K̄σ )

+
∫

K̄
Ḟσσ (K̄ )Gσ (K + K̄ )Γ (2,1)(K + K̄σ ; Kσ ; K̄σ )

×Γ (2,1)(Kσ ; K + K̄σ ; −K̄σ ) , (11.22)

∂ΛΠσ (K̄ ) = 1

2

∫
K̄ ′

Ḟσσ (K̄ ′)Γ (0,4)(K̄ ′σ,−K̄ ′σ, K̄σ,−K̄σ )

−
∫

K̄ ′
Ḟσσ (K̄ ′)Fσσ (K̄ + K̄ ′)Γ (0,3)(−K̄σ, K̄ + K̄ ′σ,−K̄ ′σ )

×Γ (0,3)(K̄ ′σ,−K̄ − K̄ ′σ, K̄σ ) . (11.23)

The simpler structure of the FRG flow equations in the momentum transfer cutoff
scheme comes at the price of a nontrivial initial condition: at the initial scale Λ =
Λ0 all interaction lines are effectively turned off while fermion propagator lines
are fully functional. In addition to the bare three-legged interaction vertex, the only
one-line irreducible diagrams that can be drawn under these conditions are closed
loops of fermionic propagators. These loops have to be symmetrized with respect
to the exchange of external bosonic legs as shown in Fig. 11.5. The initial condition
for the purely bosonic vertices is therefore given by the symmetrized fermion loops,

Γ
(0,m)
Λ0

(K̄1σ, . . . , K̄mσ ) = im

m

∑
P

∫
K

G0,σ (K )G0,σ (K + K̄ P(1))

. . .G0,σ (K + K̄ P(1) + . . .+ K̄ P(m−1)) . (11.24)
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Fig. 11.5 Initial condition for the pure boson vertices in the momentum transfer cutoff scheme.
The sum is taken over the m! permutations of the labels of the external legs

A more formal derivation of the initial conditions in the momentum transfer cutoff
scheme can be found in Schütz and Kopietz (2006). For fermions in D dimensions
with a quadratic dispersion the fermion loops of the type (11.24) with m > (D + 1)
can be reduced to the more elementary loop with D + 1 external legs (Neumayr and
Metzner 1998, 1999, Kopper and Magnen 2001, Pirooznia et al. 2008). In particular,
for D = 1 the loops with n > 2 external legs can be expressed in terms of the two-
loop, i.e., the noninteracting polarization. Explicit expressions for the symmetrized
loops with three and four external legs for one-dimensional fermions with quadratic
dispersion can be found in Pirooznia et al. (2008).

In order to assign scaling dimensions to the vertices which can be used to classify
the vertices according to their relevance in the RG sense, we have to define how we
rescale momenta, frequencies and fields under the RG transformation. Such a rescal-
ing is not unique and depends on the nature of the fixed point under consideration.
As discussed in Sect. 10.4 (see Eqs. (10.67), (10.76), and Fig. 10.7), in the presence
of a sharp Fermi surface the fermionic momenta should be rescaled such that only
the projection δk‖ = v̂F · (k − kF ) is modified by the rescaling. But the component
δk‖ is defined with respect to a given point kF on the Fermi surface, so that a global
rescaling of all fermionic momenta in the vicinity of the Fermi surface leads to rather
complicated geometric constructions, as discussed in Sect. 10.4.2. The rescaling
problem simplifies for forward scattering problems where the maximal momentum
transfer qc is small compared with kF , so that one can subdivide the Fermi surface
into patches whose size is still larger than qc but small compared with the typical
kF . Then the patches effectively decouple and it is sufficient to consider only a fixed
reference point kF on the Fermi surface (Schütz et al. 2005).

While the rescaling of purely bosonic vertices follows from straightforward
power counting, the proper rescaling of mixed boson–fermion vertices in theories
where the fermionic and bosonic sectors are characterized by different dynamic
exponents is determined by the field with the largest dynamic exponent, as dis-
cussed by Schütz et al. (2005). See also the recent work by Yamamoto and Si (2009)
for a detailed analysis of the rescaling problem in mixed Bose–Fermi theories. In
this chapter we shall work with unrescaled FRG flow equations and thus avoid
possible subtleties associated with the rescaling procedure in mixed Bose–Fermi
theories.
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11.3 Dyson–Schwinger and Skeleton Equations

As discussed in Sect. 6.3.3, the invariance of the functional integral under infinitesi-
mal shifts of the integration variables implies the so-called Dyson–Schwinger equa-
tions (also called skeleton equations), which are relations between vertex functions
of different order. These relations are valid for any value of the running cutoffΛ and
can be used to truncate the hierarchy of flow equations (Bartosch et al. 2009a,b). For
the general class of theories considered in Chaps. 6 and 7 the functional version of
the Dyson–Schwinger equation is given in Eq. (6.132). For our coupled Fermi–Bose
system with Euclidean action S[ψ̄, ψ, ϕ] given by Eqs. (11.8), (11.11), and (11.12)
involving three types of fields Eq. (6.132) is actually equivalent with the following
three equations (Schütz et al. 2005),

(
J−K̄σ −

∑
σ ′

[ f −1
k̄

]σ
′σ δ

δ JK̄σ ′

)
G − iζ

∫
K

δ2G
δ jK+K̄σ δj̄Kσ

= 0 , (11.25a)

(
ζ j̄Kσ + [iω − ξkσ ]

δ

δ jKσ

)
G − i

∫
K̄

δ2G
δ jK+K̄σ δ J−K̄σ

= 0 , (11.25b)

(
jKσ + [iω − ξkσ ]

δ

δj̄Kσ

)
G − i

∫
K̄

δ2G
δj̄K−K̄σ δ J−K̄σ

= 0 . (11.25c)

Here, the sources are defined by writing

(J, Φ) = (j̄ , ψ) + (ψ̄, j) + (J ∗, ϕ) =
∑
σ

∫
K
j̄KσψKσ +

∑
σ

∫
K
ψ̄Kσ jKσ +

∑
σ

∫
K̄

J ∗̄
Kσ ϕK̄σ , (11.26)

which amounts to identifying the components of the supersource Jα by (Jα) =
(j̄ , ζ j, J ∗). Expressing these equations in terms of the generating functionals
Gc[j̄ , j, J ] of the connected Green functions and the corresponding generating func-
tional Γ [ψ̄, ψ, ϕ] of the irreducible vertices defined in Eqs. (6.19) and (6.61), we
can alternatively write the Dyson–Schwinger equations in the following form,

δΓ

δϕK̄σ
− i

∫
K

[
ψ̄K+K̄ ,σψKσ + δ2Gc

δj̄Kσ δ jK+K̄ ,σ

]
= 0 , (11.27a)

δΓ

δψKσ
− i

∫
K̄

[
ζ ψ̄K+K̄ ,σ ϕK̄σ + δ2Gc

δ jK+K̄ ,σ δ J−K̄σ

]
= 0 , (11.27b)

δΓ

δψ̄Kσ
− i

∫
K̄

[
ψK−K̄ ,σ ϕK̄σ + δ2Gc

δj̄K−K̄ ,σ δ J−K̄σ

]
= 0 . (11.27c)

The second functional derivatives of Gc can be expressed in terms of the irre-
ducible vertices using the tree expansion (6.82). Taking derivatives of Eqs. (11.27a),
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(11.27b), and (11.27c) with respect to the fields and then setting the fields equal
to zero, we obtain skeleton equations of the irreducible vertices of the underly-
ing fermion model which are different from the skeleton equations obtained in the
purely fermionic parametrization in Sect. 6.3.3. Let us begin by deriving a skeleton
equation relating the irreducible self-energy to the three-legged boson-fermion ver-
tex. To this end we simply differentiate Eq. (11.27c) with respect to ψK ′σ . Using the
fact that by definition

δ2Γ

δψK ′σ δψ̄Kσ

∣∣∣∣
fields=0

= δK ,K ′Σσ (K ) , (11.28)

we obtain

δK ,K ′Σσ (K ) = i
∫

K̄

δ3Gc

δψK ′σ δj̄K−K̄ ,σ δ J−K̄σ

∣∣∣∣
fields=0

. (11.29)

On the other hand, from the ν = 1 term in the expansion (6.82) it is easy to show
that

δ3Gc

δψK ′σ δj̄K−K̄ ,σ δ J−K̄σ

∣∣∣∣
fields=0

= δK ,K ′ Fσσ (K̄ )Gσ (K + K̄ )Γ (2,1)(K + K̄σ ; Kσ ; K̄σ ) , (11.30)

so that we finally obtain the skeleton equation

Σσ (K ) = i
∫

K̄
Fσσ (K̄ )Gσ (K + K̄ )Γ (2,1)(K + K̄σ ; Kσ ; K̄σ ) , (11.31)

which is shown graphically in Fig. 11.6(a). Recall that in Sect. 6.3.3 we have derived
an alternative skeleton equation for the irreducible self-energy involving the irre-
ducible vertex with four fermionic external legs, see Eq. (6.139) and Fig. 6.7.

Similarly, we obtain the skeleton equation of the irreducible polarization by
differentiating Eq. (11.27a) with respect to ϕ−K̄σ ,

Πσ (K̄ ) = i
∫

K

δ3Gc

δϕ−K̄σ δj̄K ,σ δ jK+K̄σ

∣∣∣∣
fields=0

= −iζ
∫

K
Gσ (K )Gσ (K + K̄ )Γ(2,1)(K + K̄σ ; Kσ ; K̄σ ) , (11.32)

which is shown diagrammatically in Fig. 11.6(b). Finally, applying the operator
δ2

δψ̄K+K̄σ δψKσ
to Eq. (11.27a) and subsequently setting the fields equal to zero we

obtain the skeleton equation for the three-legged vertex shown in Fig. 11.6 (c),
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Fig. 11.6 Skeleton diagrams for (a) the one-particle irreducible fermionic self-energy; (b) the
one-interaction-line irreducible polarization; and (c) the three-legged vertex with two fermion legs
and one boson leg. The small black circle denotes the bare three-legged vertex. Thin lines denote
external legs. The other graphical elements are the same as in Fig. 11.1

Γ(2,1)(K + K̄σ ; Kσ ; K̄σ ) = i

−iζ
∫

K ′
Gσ (K ′)Gσ (K ′ + K̄ )Γ(4,0)(K + K̄σ, K ′σ ; K ′ + K̄σ, Kσ ) . (11.33)

Skeleton equations for higher-order vertices can be obtained analogously from the
appropriate functional derivatives of Eqs. (11.27a), (11.27b), and (11.27c). We
emphasise that the above skeleton equations are valid for any value of the running
cutoff Λ, so that they can be used to close the hierarchy of FRG flow equations for
theories involving both bosonic and fermionic fields (Bartosch et al. 2009a,b).

11.4 Ward Identities

Ward identities are relations between vertex functions of different order which fol-
low from the symmetries of a given model. For normal Fermi systems with density-
density interactions involving only small momentum transfers |q| 	 kF the number
of fermions with momenta in a given patch on the Fermi surface is approximately
conserved. More precisely, the patch must be sufficiently small so that the variation
of the corresponding Fermi velocity vF within this patch can be neglected. Then we
may associate with this patch an emergent U (1)-symmetry (Haldane 1992, 1994)
corresponding to the conservation of the number of fermions with momenta in this
patch. In one dimension, where the Fermi surface consists only of two points, the
Ward identities associated with this U (1) ×U (1)-symmetry have been employed by
Dzyaloshinskii and Larkin (1974) to calculate the Green function of the Tomonaga-
Luttinger model exactly. A generalization of this approach to higher dimensions has



318 11 Normal Fermions

been developed in Castellani et al. (1994) and Metzner et al. (1998). The enhanced
symmetry of interacting Fermi systems with dominant forward scattering also forms
the basis of the method of higher-dimensional bosonization (Haldane 1992, 1994,
Houghton and Marston 1993, Houghton et al. 1994, 2000, Castro-Neto and Fradkin
1995, Kopietz et al. 1995, Kopietz and Schönhammer 1996, Kopietz 1997, Bartosch
and Kopietz 1999).

The advantage of our FRG approach with momentum transfer cutoff is that it
does not violate the Ward identities associated with the emergent U (1)-symmetries.
Let us now derive these Ward identities within the framework of our functional inte-
gral approach. Consider the generating functional G[j̄ , j, J ] of the Green function
of our mixed Bose–Fermi theory, which according to Eqs. (6.13) and (11.10) can be
written as

G[j̄ , j, J ] = 1

Z

∫
D[ψ̄, ψ, ϕ]e−S[ψ̄,ψ,ϕ]+(j̄ ,ψ)+(ψ̄, j)+(J ∗,ϕ) , (11.34)

where the action S[ψ̄, ψ, ϕ] ≡ S[Φ] is defined in Eqs. (11.8), (11.11), and (11.12).
If we rewrite the parts of the action involving the fermionic fields ψ̄ and ψ in real
space and imaginary time, we have

S[ψ̄, ψ, ϕ] = S0[ψ̄, ψ] + S0[ϕ] + S1[ψ̄, ψ, ϕ] , (11.35)

where the bosonic part S0[ϕ] of the Gaussian action is given in Eq. (11.7), and

S0[ψ̄, ψ] =
∑
σ

∫
X
ψ̄σ (X )∂τψσ (X )

+
∑
σ

∫
dτ

∫
d Dr

∫
d Dr ′ ψ̄σ (τ, r)ξσ (r − r ′)ψσ (τ, r ′) ,(11.36)

S1[ψ̄, ψ, ϕ] = i
∑
σ

∫
X
ψ̄σ (X )ψσ (X )ϕσ (X ) . (11.37)

Here, X = (τ, r),
∫

X = ∫
dτ

∫
d Dr , and the Fourier transform of the dispersion is

defined by

ξσ (r) =
∫

d Dk

(2π )D
ei k·rξkσ . (11.38)

Suppose now we perform a local gauge transformation on the fermion fields, defin-
ing new fields ψ ′ and ψ̄ ′ via

ψσ (X ) = eiασ (X )ψ ′
σ (X ) , ψ̄σ (X ) = e−iασ (X )ψ̄ ′

σ (X ) , (11.39)

where ασ (X ) is an arbitrary real function. It is easy to show that, to linear order in
ασ (X ), our action S[ψ̄, ψ, ϕ] transforms as follows,
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S[e−iαψ̄ ′, eiαψ ′, ϕ] = S[ψ̄ ′, ψ ′, ϕ] + i
∑
σ

∫
X
ψ̄ ′
σ (X )[∂τασ (X )]ψ ′

σ (X )

− i
∑
σ

∫
dτ

∫
d Dr

∫
d Dr ′ ψ̄ ′

σ (τ, r)[ασ (τ, r) − ασ (τ, r ′)]ξσ (r − r ′)ψ ′
σ (τ, r ′) .

(11.40)

Using this relation, we see that the invariance of the generating functional (11.34)
with respect to the change of integration variables defined by Eq. (11.39) implies,
to linear order in ασ (X ),

∫
D[ψ̄, ψ, ϕ]e−S[ψ̄,ψ,ϕ]+(j̄ ,ψ)+(ψ̄, j)+(J ∗,ϕ)

{
−

∑
σ

∫
X
ψ̄σ (X )[∂τασ (X )]ψσ (X )

+
∑
σ

∫
dτ

∫
d Dr

∫
d Dr ′ ψ̄σ (τ, r)[ασ (τ, r) − ασ (τ, r ′)]ξσ (r − r ′)ψσ (τ, r ′)

+ (j̄ , αψ) − (ψ̄α, j)

}
= 0 . (11.41)

Taking a functional derivative of this equation with respect to ασ (X ) we obtain in
Fourier space

∫
K

{[
iω̄ − ξk+k̄,σ + ξkσ

] δ2G
δj̄Kσ δ jK+K̄σ

+ j̄K+K̄σ
δG
δj̄Kσ

− jKσ
δG

δ jK+K̄σ

}
= 0.

(11.42)
Introducing the generating functional Gc of the connected Green functions as in
Eq. (6.19), and expressing the last two terms in Eq. (11.42) in terms of the generating
functional Γ [ψ̄, ψ, ϕ] of the irreducible vertices as defined in Eq. (6.61), we obtain

∫
K

{[
iω̄ − ξk+k̄,σ + ξkσ

] δ2Gc

δj̄Kσ δ jK+K̄σ

+ψKσ
δΓ

δψK+K̄σ
− ψ̄K+K̄σ

δΓ

δψ̄Kσ

}
= 0 . (11.43)

Alternatively, using the Dyson–Schwinger equation (11.27a), we may rewrite
this as

iω̄

[
δΓ

δϕK̄σ
− i

∫
K
ψ̄K+K̄σψKσ

]
− i

∫
K

(ξk+k̄,σ − ξkσ )
δ2Gc

δj̄Kσ δ jK+K̄σ

+ i
∫

K

[
ψKσ

δΓ

δψK+K̄σ
− ψ̄K+K̄σ

δΓ

δψ̄Kσ

]
= 0 .

(11.44)
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From the functional Ward identities (11.43) and (11.44) we may derive Ward identi-
ties for the vertices by taking functional derivatives. For example, taking the deriva-
tive δ

δϕ−K̄σ
of Eq. (11.44) we obtain

iω̄Πσ (K̄ ) −Π c
σ (K̄ ) = 0 , (11.45)

where the irreducible polarization Πσ (K̄ ) has the skeleton expansion (11.32), and
we have defined

Π c
σ (K̄ ) = −iζ

∫
K

(ξk+k̄,σ − ξkσ )Gσ (K )Gσ (K + K̄ )

×Γ (2,1)(K + K̄σ ; Kσ ; K̄σ ) . (11.46)

Equation (11.45) is a relation between response functions, which follows more
directly from the equation of continuity.

If we are interested in vertices involving at least one fermionic momentum
our functional Ward identities (11.43) and (11.44) can be further simplified if we
assume that the momentum transfered by the interaction is small. Then all fermionic
momenta lie close to a given point kFσ on the Fermi surface so that we may replace
under the integral sign in Eqs. (11.43) and (11.44),

ξk+k̄,σ − ξkσ → vFσ · k̄ . (11.47)

This approximation amounts to the linearization of the energy dispersion relative
to the point kFσ on the Fermi surface. Using again the Dyson–Schwinger equation
(11.27a), our master Ward identity (11.44) reduces to

(iω̄ − vFσ · k̄)

[
δΓ

δϕK̄σ
− i

∫
K
ψ̄K+K̄σψKσ

]

+ i
∫

K

[
ψKσ

δΓ

δψK+K̄σ
− ψ̄K+K̄σ

δΓ

δψ̄Kσ

]
= 0 . (11.48)

Differentiating this simplified functional Ward identity with respect to the fields
using the relation (11.28) as well as

δ3Γ

δϕK̄σ δψKσ δψ̄K+K̄σ

∣∣∣∣
fields=0

= Γ (2,1)(K + K̄σ ; Kσ ; K̄σ ) , (11.49)

δ4Γ

δϕK̄1σ δϕK̄2σ δψKσ δψ̄K+K̄1+K̄2σ

∣∣∣∣
fields=0

= Γ (2,2)(K + K̄1 + K̄2σ ; Kσ ; K̄1σ, K̄2σ ) , (11.50)
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and so on, we obtain the following Ward identities for the irreducible vertices,

G(K + K̄ )Γ (2,1)(K + K̄ ; K ; K̄ )G(K ) = −i

iω̄ − vFσ · k̄

[
G(K + K̄ ) − G(K )

]
,

(11.51)

Γ (2,2)
(

K + K̄1 + K̄2; K ; K̄1, K̄2

)
= −i

iω̄1 − vFσ · k̄1

[
Γ (2,1)

(
K + K̄1 + K̄2; K + K̄1; K̄2

)

−Γ (2,1)
(

K + K̄2; K ; K̄2

)]

= −i

iω̄2 − vFσ · k̄2

[
Γ (2,1)

(
K + K̄1 + K̄2; K + K̄2; K̄1

)

−Γ (2,1)
(

K + K̄1; K ; K̄1

)]
, (11.52)

and for a general number m ≥ 2 of external bosonic legs,

Γ (2,m)
(

K ′; K ; K̄1, . . . , K̄m

)
= −i

iω̄l − vFσ · k̄l

[
Γ (2,m−1)

(
K ′; K + K̄l ; K̄1, . . . , K̄l−1, K̄l+1, . . . , K̄m

)

−Γ (2,m−1)
(

K ′ − K̄l ; K ; K̄1, . . . , K̄l−1, K̄l+1, . . . , K̄m

)]
, (11.53)

where 1 ≤ l ≤ m. In one dimension, the Ward identity (11.51) has been used by
Dzyaloshinskii and Larkin (1974) to close the skeleton equation for the self-energy
and thus obtain the exact Green function of the Tomonaga-Luttinger model. This
strategy can also be generalized to higher dimensions if the interaction is dominated
by small momentum transfers (Castellani et al. 1994, Metzner et al. 1998). Note
that the Ward identities (11.51), (11.52), and (11.53) are all based on the simplified
functional Ward identity (11.48) which relies on the linearization (11.47) of the
fermionic energy dispersion. If this approximation is not made, we should start from
the more general functional Ward identity (11.43) or (11.44). Then the Ward iden-
tities (11.51), (11.52), and (11.53) for the vertices acquire correction terms which
have been studied in a mathematically rigorous way by Benfatto and Mastropietro
(2005).
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11.5 Exact Solution of the FRG Flow Equations for Fermions
with Linear Dispersion via Ward Identities

In the momentum transfer cutoff scheme, the Ward identities (11.51) and (11.52)
derived for models with linear energy dispersion are valid for any value of the
running cutoff Λ. Substituting these identities into the exact FRG flow equation
(11.22) for the self-energyΣσ (K ) in the momentum transfer cutoff scheme, we may
eliminate the flowing vertices Γ (2,2) and Γ (2,1) on the right-hand side of Eq. (11.22)
in favor ofΣσ (K ) and thus obtain the following closed integro-differential equation
for the flowing self-energy (Schütz et al. 2005),

∂ΛΣσ (K ) = G−2
σ (K )

∫
K̄

Ḟσσ (K̄ )

(iω̄ − vFσ · k̄)2

[
Gσ (K ) − Gσ (K + K̄ )

]
. (11.54)

Here, the index σ labels not only the different spin species, but also the different
patches of the sectorized Fermi surface (Kopietz 1997). For example, for the spinless
case in D = 1, σ = ±kF . Using the fact that in the momentum transfer cutoff
scheme G2∂ΛΣ = ∂ΛG we can alternatively write Eq. (11.54) as a linear integro-
differential equation for the fermionic Green function,

∂ΛGσ (K ) =
∫

K̄

Ḟσσ (K̄ )

(iω̄ − vFσ · k̄)2

[
Gσ (K ) − Gσ (K + K̄ )

]
. (11.55)

If we had simply set the vertex Γ (2,2) equal to zero in Eq (11.22) and had then
closed this equation by means of the Ward identity (11.51), we would have obtained
a nonlinear equation. Thus, the linearity of Eq. (11.55) is the result of a cancellation
of nonlinear terms arising from both Ward identities (11.51) and (11.52). Because
the second term on the right hand side of Eq. (11.55) is a convolution, we can easily
solve this equation by means of a Fourier transformation to imaginary time and real
space. Defining

Gσ (X ) =
∫

K
ei(k·r−ωτ )Gσ (K ) , (11.56)

HΛ,σ (X ) =
∫

K̄
ei(k̄·r−ω̄τ ) Ḟσσ (K̄ )

(iω̄ − vFσ · k̄)2
, (11.57)

the flow equation (11.55) is transformed to

[
∂Λ + HΛσ (X ) − HΛσ (0)

]
Gσ (X ) = 0 . (11.58)

This implies the conservation law

∂Λ

[
exp

{∫ Λ

0
dΛ′ [HΛ′σ (X ) − HΛ′σ (0)]

}
Gσ (X )

]
= 0 . (11.59)
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Integrating from Λ = 0 to Λ = Λ0, we obtain

Gσ (X ) = G0,σ (X ) exp [Qσ (X )] , (11.60)

with

Qσ (X ) = Sσ (0) − Sσ (X ) , (11.61)

and

Sσ (X ) = −
∫ Λ0

0
dΛ′ HΛ′,σ (X )

=
∫

K̄

Θ(Λ0 − |k̄|)Fσσ (K̄ )

(iω̄ − vFσ · k̄)2
cos(k̄ · r − ω̄τ ) , (11.62)

where we have used the invariance of the effective interaction Fσσ (K̄ ) under
K̄ → −K̄ .

Another important consequence of the linearized energy dispersion considered
here is the vanishing of all symmetrized closed fermion loops given in Eq. (11.24)
with more than two external legs.3 As a consequence, all interaction corrections
to the irreducible polarization cancel, so that the bosonic self-energy defined in
Eq. (11.18b) is simply given by the noninteracting polarization for a fixed flavor
index σ ,

Πσ (K̄ ) = Π0,σ (K̄ ) ≡ ζ

∫
K

G0,σ (K )G0,σ (K + K̄ ) . (11.63)

The exact effective interaction Fσσ ′(K̄ ) defined in Eq. (11.20b), which can be iden-
tified with the propagator of our Hubbard–Stratonovich field ϕ, is then simply given
by the random phase approximation. This is most transparent in the functional inte-
gral approach to higher-dimensional bosonization developed in (Kopietz et al. 1995,
Kopietz and Schönhammer 1996, Kopietz 1997), where one finds that for a linear
dispersion the effective action of the Hubbard-Stratonovich field ϕ is Gaussian. For
example, if the bare interaction f σσ

′
k̄

= f k̄ is independent of the flavor labels σ and
σ ′, this is also true for the effective interaction Fσσ (K̄ ) = F(K̄ ) in Eq. (11.62),
which is then explicitly given by

F(K̄ ) = f k̄

1 + f k̄
∑

σ Π0,σ (K̄ )
. (11.64)

3 This so-called closed loop theorem or loop cancellation theorem has been discussed by Bohr
(1981) in the context of the one-dimensional Tomonaga–Luttinger model, and has later been gen-
eralized for higher-dimensional fermions with dominant forward scattering (Kopietz et al. 1995,
Kopietz 1997, Metzner et al. 1998)
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The solution in Eqs. (11.60), (11.61), and (11.62) is well known from the functional
integral approach to bosonization (Fogedby 1976, Lee and Chen 1988, Kopietz
et al. 1995, Kopietz and Schönhammer 1996, Kopietz 1997) where Qσ (X ) arises
as a Debye-Waller factor from Gaussian averaging over the distribution of the
Hubbard–Stratonovich field. In one dimension, Eqs. (11.60), (11.61), and (11.62)
can be shown to be equivalent to the exact solution for the Green function of the
Tomonaga–Luttinger model obtained via conventional bosonization (Kopietz 1997).
Once the exact single-particle Green function is known, we may substitute the result
back into the Ward identities (11.51) and (11.53) and iteratively calculate the ver-
tices Γ (2,m) with two fermion legs and an arbitrary number m of boson legs. In
principle, this method can also be applied to vertices with more than two fermion
legs. For example, the right-hand sides of the FRG flow equation for Γ (4,m) contain
only vertices with no more than four fermion legs. Ward identities for these vertices
obtained from our simplified functional Ward identity (11.48) would again yield a
solution of this complete hierarchy, once the vertices Γ (2,m) are known. This pro-
cedure can be iterated to obtain vertices with an arbitrary number of external legs
using at each step the complete flow of vertices with two fewer fermion legs than
obtained in the previous step. We can thus obtain all correlation functions of our
model within the framework of the FRG.
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Chapter 12
Superfluid Fermions: Partial Bosonization
in the Particle–Particle Channel

While the decoupling of the fermionic two-body interaction in the forward scatter-
ing channel described in Chap. 11 is natural if the interaction involves only small
momentum transfers, such a procedure is not appropriate for other types of inter-
actions. For example, the superconducting instability of a normal metal is triggered
by particle–particle scattering processes with vanishing total momentum, so that
in this case a Hubbard–Stratonovich decoupling in the particle–particle channel is
more natural. Of course, if the resulting mixed Bose–Fermi theory could be solved
exactly, then the choice of the Hubbard–Stratonovich field should not matter. How-
ever, in practice one has to rely on approximations, so that it is important to intro-
duce the physically relevant collective degrees of freedom from the beginning by
means of a proper choice of the Hubbard–Stratonovich field. In fact, it is a priori not
clear whether the physical properties of a given system can be simply described
by means of a decoupling involving only a single Hubbard–Stratonovich field
(Bartosch et al. 2009a). We shall further comment on multicomponent Hubbard–
Stratonovich transformations in Sect. 12.6.

In this chapter, we shall focus on the superfluid state of a Fermi gas with a
short-range attractive two-body interaction. As first pointed out by Eagles (1969),
the superfluid state of such a system exhibits an interesting crossover as a function
of the dimensionless parameter 1/(kF as), where as is the s-wave scattering length
in vacuum:1 while for 1/(kF as) 	 −1, where the scattering length is small and
negative, the paired state consists of weakly bound spatially extended Cooper pairs
(BCS limit), in the opposite limit 1/(kF as) � 1 the superfluid state can be viewed
as a Bose–Einstein condensate of tightly bound fermions (BEC limit). The qualita-
tive features of the BCS–BEC crossover are correctly described by the mean-field
approximation (Eagles 1969). However, in the vicinity of the unitary point, where
as = ∞ and hence 1/(kF as) = 0, quantitatively accurate calculations are difficult
because there is no small parameter to justify approximations. Due to experimen-
tal progress in the field of ultra-cold atoms (Bartenstein et al. 2004, Bourdel et al.
2004, Kinast et al. 2005, Bloch et al. 2008) it is now possible to directly examine

1 The relation between the s-wave scattering length as and the bare interaction of our model is
given in Eqs. (12.22), (12.25), and (12.27) below.
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the unitary point experimentally, so that it is important to have reliable quantita-
tive results in the entire range of the BCS–BEC crossover. Many authors studied
this crossover using either the T-matrix approximation to improve on the mean-
field approximation (Leggett 1980, Nozières and Schmitt-Rink 1985, Drechsler and
Zwerger 1992, Randeria 1995, Engelbrecht et al. 1997) or other field theoretical
many-body techniques (Nishida and Son 2006, 2007, Veillette et al. 2007, Nikolić
and Sachdev 2007, Haussmann et al. 2007, Diener et al. 2008). The problem has
also been investigated using FRG methods, using either the derivative expansion
(Birse et al. 2005, Krippa et al. 2005, Krippa 2007, 2009, Diehl et al. 2007a,b,
2009, Floerchinger et al. 2008) or truncated vertex expansions (Strack et al. 2008,
Bartosch et al. 2009b).

The FRG approach described in Sect. 12.5 of this chapter is based on the trunca-
tion of the vertex expansion developed by Bartosch et al. (2009b), which combines
skeleton equations and a Ward identity to close the infinite hierarchy of FRG flow
equations; furthermore, we impose a cutoff only in the propagator of the bosonic
Hubbard–Stratonovich field. This total momentum cutoff scheme is in a sense the
particle–particle version of the momentum transfer cutoff scheme introduced in
Sect. 11.2. The advantage of this scheme is that the usual BCS results (which are
nonperturbative in the coupling constant) define the initial conditions for the RG
flow, whereas in alternative FRG schemes using a cutoff in the fermionic sector
(Salmhofer et al. 2004, Strack et al. 2008) one has to integrate the RG flow in order
to recover the BCS results. We shall further comment on the advantages of the total
momentum cutoff scheme in Sect. 12.5.

12.1 Hubbard–Stratonovich Transformation
in the Particle–Particle Channel

Having discussed the particle-hole forward scattering channel in Chap. 11, we con-
sider in this section a two-body interaction which singles out the particle–particle
channel. Our model is defined in terms of the following fermionic action,

S[ψ̄, ψ] = −
∑
σ

∫
K

(iω − ξkσ )ψ̄KσψKσ −
∫

P
g pb̄P bP , (12.1)

where we allow at this point for spin-dependent energy dispersions ξkσ =
εkσ − μσ and chemical potentials μσ , and the composite fermionic fields bP and
b̄P are defined by

bP =
∫

K
ψ−K+ P

2 ↓ψK+ P
2 ↑ =

∫
K
ψ−K↓ψK+P↑ , (12.2a)

b̄P =
∫

K
ψ̄K+ P

2 ↑ψ̄−K+ P
2 ↓ =

∫
K
ψ̄K+P↑ψ̄−K↓ . (12.2b)
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Here, K = (iω, k) is again a collective label consisting of the fermionic Matsubara
frequency iω and the momentum k associated with a fermion, while P = (iω̄, p)
denotes the bosonic Matsubara frequency iω̄ and the total momentum p of a fermion
pair. The p-integration in Eq. (12.1) contains an implicit ultraviolet cutoffΛ0, which
is the maximally allowed total momentum of two particles in a scattering process.
For an attractive interaction to be considered here the coupling g p is positive.

We now decouple the interaction in the spin-singlet particle–particle channel by
means of a complex bosonic Hubbard–Stratonovich field χP depending on the total
energy–momentum P of a fermion pair with opposite spin. The ratio of the partition
functions with and without interactions can then be written as

Z
Z0

=
∫
D[ψ̄, ψ, χ̄, χ ]e−S0[ψ̄,ψ]−S0[χ̄ ,χ]−S1[ψ̄,ψ,χ̄,χ]∫

D[ψ̄, ψ, χ̄, χ ]e−S0[ψ̄,ψ]−S0[χ̄ ,χ]
, (12.3)

where the Gaussian part of our bare action consists of a fermionic and a bosonic
part,

S0[ψ̄, ψ, χ̄, χ ] = S0[ψ̄, ψ] + S0[χ̄ , χ ] , (12.4)

with

S0[ψ̄, ψ] = −
∑
σ

∫
K

(iω − ξkσ )ψ̄KσψKσ , (12.5)

S0[χ̄ , χ ] =
∫

P
g−1

p χ̄PχP . (12.6)

The boson–fermion interaction can be written as

S1[ψ̄, ψ, χ̄, χ ] =
∫

P
[b̄PχP + bP χ̄P ]

=
∫

P

∫
K

[ψ̄K+P↑ψ̄−K↓χP + ψ−K↓ψK+P↑χ̄P ] . (12.7)

It should be noted that, in contrast to the corresponding Bose–Fermi coupling (11.8)
describing a repulsive interaction in the forward scattering channel, there is no factor
of i in the Bose–Fermi coupling (12.7), because here our interaction is attractive.
Defining a two-component Fermi field

ψK =
(
ψK↑
ψ̄−K↓

)
, (12.8)

the fermionic part of the action in the numerator of Eq. (12.3) can be written as
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S0[ψ̄, ψ] + S1[ψ̄, ψ, χ̄, χ ] = −
∫

K

∫
K ′
ψ

†
K [Ĝ−1]K K ′ψK ′ ,

(12.9)

where Ĝ−1 is a matrix in spin, momentum, and frequency space, with matrix ele-
ments

[Ĝ−1]K K ′ =
(
δK ,K ′ (iω − ξk↑) −χK−K ′

−χ̄K ′−K δK ,K ′ (iω + ξ−k↓)

)
. (12.10)

Before attacking this mixed Bose–Fermi field theory in Sect. 12.5 by means of the
FRG machinery, it is instructive to examine our model first using simple mean-field
theory and the Gaussian approximation, as discussed in Chap. 2.

12.2 Mean-field Approximation and BCS–BEC Crossover

The mean-field approximation amounts to performing the integration over the col-
lective field χ in Eq. (12.3) in saddle point approximation. Therefore we simply
replace the χ -integration by the value of the integrand at a single point, which is
obtained by replacing

χP → δP,0Δ0 . (12.11)

The real parameter Δ0 is fixed by minimizing the free energy. The inverse Green
function matrix in Eq. (12.10) is then approximated by

Ĝ−1 ≈ [Ĝ−1
1 ]K K ′ = δK ,K ′

(
iω − ξk↑ −Δ0

−Δ0 iω + ξ−k↓

)
. (12.12)

Assuming from now on that ξkσ = ξk = εk − μ is independent of the spin projec-
tion σ , Eq. (12.3) reduces in this approximation to

Z
Z0

≈ Z1

Z0
= e−β(Ω1−Ω0) , (12.13)

where the change of the grand canonical potential due to interactions is

Ω1 −Ω0 = −2T
∑

k

ln

[
cosh(βEk/2)

cosh(βξk/2)

]
+ V

Δ2
0

g0
. (12.14)

Here, the dispersion of the fermionic quasiparticles is

Ek =
√
ξ 2

k +Δ2
0 , (12.15)
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and

Ω0 = −2T
∑

k

ln
[
1 + e−βξk

]
(12.16)

is the grand canonical potential in the absence of interactions. The mean-field
approximation to the grand canonical potential can be written as

Ω1 = −
∑

k

(Ek − ξk) − 2T
∑

k

ln
[
1 + e−βEk

] + V
Δ2

0

g0
. (12.17)

Minimizing this with respect to Δ0 yields the usual BCS gap equation

1

g0
= 1

V

∑
k

1 − 2 f (Ek)

2Ek
= 1

V

∑
k

tanh(βEk/2)

2Ek
, (12.18)

where

f (Ek) = 1

eβEk + 1
(12.19)

is the Fermi function. If we work at constant density ρ = N/V , then the chemi-
cal potential should be expressed in terms of ρ using the thermodynamic relation
N = −∂Ω/∂μ. Within the mean-field approximation this yields

ρ = 1

V

∑
k

[
1 − ξk

Ek
tanh(βEk/2)

]
. (12.20)

The thermodynamics should then be derived from the free energy F = Ω + μN ,
which reduces to the ground state energy in the zero temperature limit. In mean-field
approximation we obtain from Eq. (12.17) for T = 0,

F ≈ Ω1 + μN = −
∑

k

[
Ek − ξk − μ

(
1 − ξk

Ek

)]
+ V

Δ2
0

g0

=
∑

k

εk

[
1 − ξk

Ek

]
− V

Δ2
0

g0
. (12.21)

Without ultraviolet cutoff the gap equation (12.18) is ultraviolet divergent in dimen-
sions D ≥ 2. To regularize this divergence, we eliminate the bare interaction g0 in
favor of the two-body T -matrix at zero energy and vanishing total momentum in
vacuum (corresponding to μ = 0). The T -matrix g is related to the bare interaction
g0 via
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1

g0
= 1

g
+ 1

V

∑
k

1

2εk
. (12.22)

Using this relation to eliminate the bare interaction g0 from the gap equation (12.18),
we obtain the regularized gap equation

1

g
= 1

V

∑
k

[
tanh(βEk/2)

2Ek
− 1

2εk

]
. (12.23)

The subtraction regularizes the ultraviolet divergence in dimensions 2 < D < 4.
In D = 3 the two-body T -matrix is related to the s-wave scattering length as via
g = −4πas/m. Note that for D > 2 we may define the s-wave scattering length via
(see e.g., Sauli and Kopietz 2006)

g = −γD sign(as) |as |D−2/m , (12.24)

where γD is a numerical constant of the order of unity (γ3 = 4π ). For given val-
ues of the interaction g and the density ρ, Eqs. (12.20) and (12.23) determine the
chemical potential μ and the gapΔ0. For a numerical evaluation of these equations,
it is convenient to express them in terms of dimensionless parameters. We therefore
define the relevant dimensionless interaction

g̃ = ν0g , (12.25)

where ν0 = ν(εF ) is the density of states (per spin projection) of the noninteracting
system at the Fermi energy εF . Neglecting lattice effects, the energy dispersion is
εk = k2/(2m) and εF = k2

F/(2m) = m
2 v

2
F . In D dimensions the energy-dependent

density of states is

ν(ε) = 1

V

∑
k

δ(ε − εk) = K Dmk D−2
F (ε/εF )

D−2
2 , V → ∞ , (12.26)

where the numerical constant K D is given in Eq. (2.86). Our dimensionless coupling
(12.25) can then be written as

g̃ = −γ̃D sign(as) |kF as |D−2 , (12.27)

where γ̃D = K DγD . In D = 3 this reduces to g̃ = −2kF as/π .
For simplicity, we focus on the zero-temperature limit from now on. Introducing

the dimensionless parameters

μ̃ = μ

εF
, Δ̃ = Δ0

εF
, (12.28)
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the regularized gap equation (12.23) can be written as

1

g̃
= 1

2

∫ ∞

0
dx x

D−2
2

[
1√

(x − μ̃)2 + Δ̃2
− 1

x

]
, (12.29)

while the particle number equation (12.20) reduces to the following relation between
μ̃ and Δ̃,

1 = D

4

∫ ∞

0
dx x

D−2
2

[
1 − x − μ̃√

(x − μ̃)2 + Δ̃2

]
, (12.30)

where we have used the fact that kF is related to the density via ρ = 2K D
D k D

F . Intro-
ducing the ground state energy per particle in units of the Fermi energy,

ε̃ ≡ ε

εF
= lim

T →0

F

NεF
, (12.31)

we obtain from Eq. (12.21) for N ≡ ρV → ∞ with the help of the BCS gap
equation (12.18)

ε̃ = D

4

∫ ∞

0
dx x

D
2

[
1 − x − μ̃√

(x − μ̃)2 + Δ̃2
− Δ̃2

2x
√

(x − μ̃)2 + Δ̃2

]
. (12.32)

The term in the square braces vanishes as x−3 for large x , so that the integral is
ultraviolet convergent for D < 4. For a given value of g̃, Eqs. (12.29) and (12.30)
impose two conditions which can be used to determine the two unknowns Δ̃ and
μ̃. It is easy to solve these equations numerically.2 In Figs. 12.1 and 12.2 we show
numerical results for the dimensionless mean-field gap Δ̃ = Δ0/εF and chemical
potential μ̃ = μ/εF in units of εF . As first discussed by Eagles (1969), in three
dimensions the above mean-field equations give a qualitatively correct description
of the crossover from a weakly coupled BCS superconductor with small negative
scattering length to a Bose–Einstein condensate of tightly bound fermion pairs, char-
acterized by a small positive scattering length. Of particular interest is the unitary
point, where the scattering length diverges and hence g̃−1 = 0. The mean-field
results are in this case

μ̃ = 0.5906 , Δ̃ = 0.6864 , ε̃ = 0.3543 (mean field). (12.33)

2 As pointed out by Marini et al. (1998), for D = 3 it is possible to express the integrals in
Eqs. (12.29) and (12.30) in terms of complete elliptic integrals of the first and second kind, K (κ)
and E(κ) (Abramowitz and Stegun 1965). This is also possible for the integrals appearing in the
expression (12.32) for the ground state energy, which simplifies the numerical calculations.
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Fig. 12.1 Mean-field result for the dimensionless gap Δ̃ = Δ0/εF in three dimensions as a func-
tion of 1/(kF as ) = −2/(π g̃). The dashed lines represent the asymptotic behavior in the BCS limit,
ln Δ̃ ∼ π/(2kF as ) + ln(8/e2), and in the BEC limit Δ̃ ∼ (3π3/64)1/2 1/(kF as )1/2

Fig. 12.2 Mean-field result for μ̃ = μ/εF in three dimensions as a function of 1/(kF as ).
The dashed lines are the asymptotic behavior in the BCS limit μ̃ ∼ 1 − (16/e4)[5/2 −
π/(2kF as )]eπ/(kF as ), and in the BEC limit μ̃ ∼ −1/(kF as )2

Experimentally, for ε̃ = ε/εF values in the range between 0.19 and 0.31 have
been reported (Bartenstein et al. 2004, Bourdel et al. 2004, Kinast et al. 2005). The
mean-field results (12.33) can also be compared with quantum Monte Carlo simu-
lations (Carlson et al. 2003, Chang et al. 2004, Astrakharchik et al. 2004, Carlson
and Reddy 2005), which give at the unitary point

Δ̃ = 0.50 ± 0.03 , ε̃ = 0.25 ± 0.01 (Monte Carlo). (12.34)

From the universality of the free energy density at the unitary point it is easy to
show (see e.g., Veillette et al. 2007) that the chemical potential is related to the
ground state energy per particle via

μ = 5

3
ε . (12.35)

This relation is of course also satisfied by the mean-field results (12.33), but it is
an exact relation at the unitary point in three dimensions. The Monte Carlo results
(12.34) imply μ̃ = 5

3 ε̃ = 0.42. Both the mean-field results for the gap and the
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mean-field energy per particle are significantly larger than the corresponding Monte
Carlo results. It is therefore important to investigate fluctuation corrections to the
mean-field approximation.

12.3 Gaussian Fluctuations

Corrections to the mean-field results (12.33) at the unitary point due to Gaussian
fluctuations of the order-parameter field have been calculated by Veillette et al.
(2007) and by Diener et al. (2008), but the results obtained by these two groups
do not completely agree. Fluctuation corrections to the mean-field approximation
have also been calculated by means of other many-body techniques (Nikolić and
Sachdev 2007, Haussmann et al. 2007). To set the stage for the FRG calculation in
Sect. 12.5, let us focus in this section on the calculation of the corrections to the
mean-field results due to Gaussian fluctuations of our Hubbard–Stratonovich field.

12.3.1 Gaussian Effective Action

Integrating in Eq. (12.3) over the Fermi fields we obtain the formally exact expres-
sion

Z
Z0

= e−β(Ω1−Ω0)

∫
D[δχ̄, δχ ]e−Seff[δχ̄,δχ]∫
D[χ̄ , χ ]e−S0[χ̄ ,χ]

, (12.36)

where in the numerator we have shifted the fields according to χP = δP,0Δ0 + δχP ,
and the effective action for the bosonic fluctuations is

Seff[δχ̄, δχ ] = S0[Δ0 + δχ̄,Δ0 + δχ ] − βV g−1
0 Δ2

0 − Tr ln[1 − Ĝ1V̂ ]

=
∫

P
g−1

p δχ̄PδχP + g−1
0 Δ0(δχ0 + δχ̄0) +

∞∑
n=1

Tr[Ĝ1V̂ ]n

n
. (12.37)

Here, Ĝ1 is the mean-field fermionic Green function defined in Eq. (12.12), and the
matrix V̂ is given by

[V̂ ]K K ′ =
(

0 δχK−K ′

δχ̄K ′−K 0

)
. (12.38)

Within the Gaussian approximation, we expand Seff[δχ̄, δχ ] to second order in the
fluctuations,

Seff[δχ̄, δχ ] ≈
∫

P
g−1

p δχ̄PδχP + 1

2
Tr[Ĝ1V̂ ]2

+g−1
0 Δ0(δχ0 + δχ̄0) + Tr[Ĝ1V̂ ] . (12.39)
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To evaluate the traces, it is convenient to use the spectral representation of the
mean-field Green function Ĝ1, which amounts to writing the inverse of the matrix
in Eq. (12.12) in the form

[Ĝ1]K K ′ = −δK ,K ′
1

ω2 + E2
k

(
iω + ξk Δ0

Δ0 iω − ξk

)

= δK ,K ′

(
B0(K ) A0(K )
A0(K ) −B0(−K )

)
= δK ,K ′

∑
σ=±

wkσwT
kσ

iω − σ Ek
, (12.40)

where

A0(K ) = − Δ0

ω2 + E2
k

= ukvk

[
1

iω − Ek
− 1

iω + Ek

]
, (12.41)

B0(K ) = − iω + ξk

ω2 + E2
k

= u2
k

iω − Ek
+ v2

k

iω + Ek
, (12.42)

and the components of the normalized eigenvectors wkσ are the usual Bogoliubov
coefficients uk and vk, i.e.,

wk+ =
(

uk

vk

)
, wk− =

(−vk

uk

)
, (12.43)

with

u2
k = 1

2

(
1 + ξk

Ek

)
, v2

k = 1

2

(
1 − ξk

Ek

)
. (12.44)

Note that by construction wT
kσwkσ ′ = δσσ ′ , which for σ = σ ′ reduces to u2

k+v2
k = 1.

Moreover,

u2
k − v2

k = ξk

Ek
, ukvk = Δ0

2Ek
. (12.45)

For the first-order term in Eq. (12.39) we obtain

Tr[Ĝ1V̂ ] =
∫

K

∑
σ

wT
kσ

(
0 δχ0

δχ̄0 0

)
wkσ

iω − σ Ek

= −(δχ0 + δχ̄0)
Δ0

V

∑
k

1 − 2 f (Ek)

2Ek
. (12.46)

Using the BCS self-consistency condition (12.18), we see that this term cancels the
other linear term g−1

0 Δ0(δχ0 + δχ̄0) on the right-hand side of Eq. (12.39), so that
in Gaussian approximation only the first line of the effective action in Eq. (12.39)
survives.
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An explicit expression for the second-order term Tr[Ĝ1V̂ ]2 in terms of the com-
plex fields δχ and δχ̄ has recently been derived by Veillette et al. (2007). For our
purpose, it is more convenient to parameterize the Gaussian fluctuations in terms
of two real fields ϕ" and ϕl , corresponding to the real and imaginary part of the
complex field δχ (Engelbrecht et al. 1997). In frequency–momentum space, we set3

δχP = 1√
2

[ϕP" + iϕPt ] , (12.47a)

δχ̄P = 1√
2

[ϕ−P" − iϕ−Pt ] = 1√
2

[
ϕ∗

P" − iϕ∗
Pt

]
. (12.47b)

The field ϕ" describes longitudinal fluctuations of the superfluid order parameter;
the corresponding collective mode can be viewed as the condensed matter ana-
logue of the Higgs boson in particle physics (Littlewood and Varma 1982, Varma
2002, Barankov and Levitov 2007, Barankov 2008). On the other hand, the field ϕt

describes transverse fluctuations associated with the phase dynamics of the super-
fluid order parameter; the corresponding collective mode is the gapless Goldstone
boson associated with the spontaneous breaking of the U (1)-phase symmetry in a
superfluid. This mode is usually called the Bogoliubov–Anderson mode (Bogoli-
ubov 1958, Anderson 1958, Schrieffer 1964). Expressing the Gaussian effective
action (12.39) in terms of the fields ϕ" and ϕt , we obtain

Seff[ϕ", ϕt ] = 1

2

∫
P

g−1
p (ϕ−P"ϕP" + ϕ−PtϕPt ) + 1

2
Tr[Ĝ1V̂ ]2

= 1

2

∫
P

{[
g−1

p +Π""
0 (P)

]
ϕ−P"ϕP" + [

g−1
p +Π t t

0 (P)
]
ϕ−PtϕPt

+Π"t
0 (P)ϕ−P"ϕPt +Π t"

0 (P)ϕ−PtϕP"]
}
, (12.48)

where the polarization functions are given by

Π""
0 (P) = −1

2

∫
K

[B0(K )B0(−K + P) − A0(K )A0(K + P) + (P → −P)]

= 1

V

∑
k

{
(ukvk+ p + vkuk+ p)2 Ek − Ek+ p

(Ek − Ek+ p)2 + ω̄2

[
f (Ek) − f (Ek+ p)

]

− (ukuk+ p − vkvk+ p)2 Ek + Ek+ p

(Ek + Ek+ p)2 + ω̄2

[
1 − f (Ek) − f (Ek+ p)

]}
,

(12.49a)

3 The fields ϕ"(τ, r) and ϕt (τ, r) are real functions of space and imaginary time. In momentum–
frequency space this implies ϕ∗

P" = ϕ−P" and ϕ∗
Pt = ϕ−Pt .
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Π t t
0 (P) = −1

2

∫
K

[B0(K )B0(−K + P) + A0(K )A0(K + P) + (P → −P)]

= 1

V

∑
k

{
(ukvk+ p − vkuk+ p)2 Ek − Ek+ p

(Ek − Ek+ p)2 + ω̄2

[
f (Ek) − f (Ek+ p)

]

− (ukuk+ p + vkvk+ p)2 Ek + Ek+ p

(Ek + Ek+ p)2 + ω̄2

[
1 − f (Ek) − f (Ek+ p)

]}
,

(12.49b)

Π"t
0 (P) = −Π t"

0 (P)

= − i

2

∫
K

[B0(K )B0(−K + P) − A0(K )A0(K + P) − (P → −P)]

= − ω̄
V

∑
k

{(
u2

kv
2
k+ p − v2

ku2
k+ p

) f (Ek) − f (Ek+ p)

(Ek − Ek+ p)2 + ω̄2

− (
u2

ku2
k+ p − v2

kv
2
k+ p

) 1 − f (Ek) − f (Ek+ p)

(Ek + Ek+ p)2 + ω̄2

}
. (12.49c)

Substituting the Gaussian effective action (12.48) into Eq. (12.36) and performing
the Gaussian integrations, we obtain for the grand canonical potential in Gaussian
approximationΩ ≈ Ω1+Ω2, whereΩ1 is the mean-field result given in Eq. (12.17),
and the correction due to Gaussian fluctuations is4

Ω2 = V

2

∫
P

ln
{[

1 + g pΠ
""
0 (P)

] [
1 + g pΠ

t t
0 (P)

] + g2
p

[
Π"t

0 (P)
]2
}
. (12.50)

For an evaluation of Ω2 and the resulting corrections to the thermodynamics at the
unitary point, see (Veillette et al. 2007, Diener et al. 2008). Let us here only quote
the more recent results by Diener et al. (2008), who found

Δ̃ = 0.47 , ε̃ = 0.24 (Gaussian fluctuations). (12.51)

The corresponding value of the chemical potential in units of εF is according to
Eq. (12.35) given by μ̃ = 5

3 ε̃ = 0.40. Comparing these numbers with the mean-

4 Using the coupling constant integration trick (see e.g., Schwiete and Efetov 2006), the Gaus-
sian correction (12.50) to the grand canonical potential can be expressed in terms of correlation
functions Π""

λg(P) and Π t t
λg(P) obtained by substituting g p → λg p in Eqs. (12.59a), and (12.59b),

Ω2 = V

2

∫
P

∫ 1

0
dλ

d

dλ
ln
{[

1 + λg pΠ
""
0 (P)

] [
1 + λg pΠ

t t
0 (P)

] + λ2g2
p

[
Π"t

0 (P)
]2
}

= V

2

∫ 1

0

dλ

λ

∫
P

[
Π""
λg(P) +Π t t

λg(P)
]
.
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field results (12.33) and the Monte Carlo results (12.34) we conclude that Gaussian
fluctuations account for most of the difference between the exact ground state energy
and the mean-field energy.

12.3.2 Bosonic Propagators and Order-Parameter Correlations

To derive the correlation functions of the bosonic Hubbard–Stratonovich fields
in Gaussian approximation, let us write our Gaussian effective action defined in
Eq. (12.48) in matrix form,

Seff[ϕ", ϕt ] = 1

2

∫
P

∫
P ′

(ϕP", ϕPt )[F̂−1]P P ′

(
ϕP ′"
ϕP ′t

)
, (12.52)

where F̂−1 (which is matrix in the energy–momentum and field-type labels) consists
of two contributions,

F̂−1 = F̂−1
0 + Π̂0 , (12.53)

with the first term given by the inverse bare interaction,

[
F̂−1

0

]
P P ′ = δP,−P ′

(
g−1

p′ 0
0 g−1

p′

)
, (12.54)

while the second term is the polarization matrix,

[Π̂0]P P ′ = δP,−P ′

(
Π""

0 (P ′) Π"t
0 (P ′)

Π t"
0 (P ′) Π t t

0 (P ′)

)
. (12.55)

The Gaussian propagator of our Hubbard–Stratonovich fields is thus

[F̂]P P ′ =
( 〈ϕP"ϕP ′"〉 〈ϕP"ϕP ′t 〉

〈ϕPtϕP ′"〉 〈ϕPtϕP ′t 〉
)

= δP,−P ′

(
F""

P F"t
P

Ft"
P Ftt

P

)

= δP,−P ′
g p

N (P)

(
1 + g pΠ

t t
0 (P) −g pΠ

"t
0 (P)

−g pΠ
t"
0 (P) 1 + g pΠ

""
0 (P)

)
, (12.56)

where

N (P) = [
1 + g pΠ

""
0 (P)

]
[1 + g pΠ

t t
0 (P)] + g2

p[Π"t
0 (P)]2 , (12.57)

and we have used Π"t
0 (P) = −Π t"

0 (P). Keeping in mind that our Hubbard–
Stratonovich fields ϕ" and ϕt are conjugate to the order parameter, the corresponding
correlation functions in Eq. (12.56) should not be confused with the correlation
functions of the superfluid order parameter (Kopietz 1997, De Palo et al. 1999). The
latter can easily be obtained from the matrix
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Π̂ = [
Π̂−1

0 + F̂0
]−1 = Π̂0

[
1 + F̂0Π̂0

]−1
. (12.58)

Explicitly, we obtain for the order-parameter correlation functions in Gaussian
approximation

[Π̂]""P P ′ = δP,−P ′
Π""

0 (P)
[
1 + g pΠ

t t
0 (P)

] + g p
[
Π"t

0 (P)
]2

N (P)
, (12.59a)

[Π̂ ]t t
P P ′ = δP,−P ′

Π t t
0 (P)

[
1 + g pΠ

""
0 (P)

] + g p
[
Π"t

0 (P)
]2

N (P)
, (12.59b)

[Π̂ ]"tP P ′ = [Π̂]t"
P ′ P = δP,−P ′

Π"t
0 (P)

N (P)
, (12.59c)

which is equivalent to the ladder approximation in the particle–particle channel.
For small momenta and frequencies, the bosonic correlation functions exhibit a

pole with linear dispersion on the real frequency axis, which can be identified with
the Goldstone boson associated with the broken U (1)-symmetry in the superfluid
state, the Bogoliubov–Anderson (BA) mode (Bogoliubov 1958, Anderson 1958,
Schrieffer 1964). To derive the dispersion of the BA mode, we expand the polariza-
tion functions in powers of momenta and frequencies. For our purpose it is sufficient
to approximate

Π""
0 ( p, iω̄) ≈ Π""

0 (0, i0) = −ν0 I0 + ν0 I1 , (12.60a)

Π t t
0 ( p, iω̄) ≈ −ν0 I0 + ν0

(2Δ0)2

[
I1ω̄

2 + I3(vF p)2
]
, (12.60b)

Π"t
0 ( p, iω̄) ≈ Π"t

0 (0, iω̄) ≈ ν0

2Δ0
I2ω̄ . (12.60c)

The dimensionless coefficients In are at zero temperature given by

I0 = 1

ν0V

∑
k

1

2Ek
= 1

ν0g0
, (12.61a)

I1 = 1

ν0V

∑
k

Δ2
0

2E3
k

, (12.61b)

I2 = 1

ν0V

∑
k

Δ0ξk

2E3
k

, (12.61c)

I3 = 1

ν0V

∑
k

Δ2
0

2E3
k

[
εk

DεF

(
2 − 3ξ 2

k

E2
k

)
+ ξk

2εF

]
= 1

D
, (12.61d)

where in the second equality of Eq. (12.61a) we have used the mean-field gap
equation (12.18) at zero temperature to express the momentum sum in terms of
the bare coupling g0. The identity I3 = 1/D follows for V → ∞ with the help of
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the relation (12.30) between μ̃ and Δ̃ after an integration by parts.5 Note that for
D ≥ 2 the integral I0 defined in Eq. (12.61a) is ultraviolet divergent. However, all
physical quantities involve the combinations g−1

0 +Π""
0 (P) or g−1

0 +Π t t
0 (P), so that

the ultraviolet divergence can be absorbed into the bare coupling g0. Therefore we
introduce the corresponding renormalized coupling g as in Eq. (12.22) and write

g−1
0 −Π t t

0 (0, i0) = g−1
0 − ν0 I0 = g−1 − ν0 Ĩ0 , (12.62)

where the integral Ĩ0 is now ultraviolet convergent,

Ĩ0 = 1

ν0V

∑
k

[
1

2Ek
− 1

2εk

]
. (12.63)

From Eqs. (12.60b) and (12.61a) we conclude that

g−1
0 +Π t t

0 (0, i0) = 0 , (12.64)

which guarantees that the BA mode is gapless. Substituting the expansions (12.60a),
12.60b), and (12.60c) into Eq. (12.56) we obtain the leading long-wavelength and
low-frequency behavior of the bosonic propagators in Gaussian approximation,

F""
P ≈ DZ2

c

ν0

ω̄2 + Z1c2 p2

ω̄2 + c2 p2
, (12.65a)

Ftt
P ≈ DZ2

c

ν0

(2Δ0)2

ω̄2 + c2 p2
, (12.65b)

F"t
P ≈ − Z2

ν0

2Δ0ω̄

ω̄2 + c2 p2
. (12.65c)

Here, the dimensionless renormalization factors Zc, Z1, and Z2 are given by

Z2
c = c2

v2
F

= I1 I3

I 2
1 + I 2

2

, Z1 = I 2
1 + I 2

2

I 2
1

, Z2 = I2

I 2
1 + I 2

2

. (12.66)

After analytic continuation to real frequencies (iω̄ → ω̄ + i0) the propagators
(12.65a), and (12.65b) exhibit poles at ω̄ = ±c| p| corresponding to the gapless
BA mode, which is the Goldstone boson associated with the broken U (1)-symmetry
in the superfluid state. Note that the poles in the transverse propagator Ftt

P have the
largest residue, so that at long wavelength it is justified to retain only the contribution
from transverse correlations. Using the definitions (12.61a), (12.61b), (12.61c), and
(12.61d) as well as the mean-field gap equation (12.18), we can write the Gaussian

5 In fact, the integrals I1, I2, as well as Ĩ0 defined in Eq. (12.63) can be calculated analytically
for all physically relevant dimensions D = 1, 2, 3; for D = 3 and D = 1 these integrals can be
expressed in terms of complete elliptic integrals.
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approximation for the velocity of the BA mode at zero temperature in the following
simple form,

c

vF
= Zc = 1√

D

√√√√√ μ̃− D−2
2g̃ Δ̃

2

1 +
(

D−2
2g̃

)2
Δ̃2

, (12.67)

which is valid in dimensions 2 < D < 4. Recall that μ̃ = μ/εF , Δ̃ = Δ0/εF ,
and g̃ = ν0g, see Eqs. (12.25), and (12.28). Note that at the unitary point where
g̃−1 = 0 the relation (12.67) reduces to Zc = √

μ̃/D, which gives Zc = 0.4437 in
three dimensions.

Finally, let us point out that the feedback of the Gaussian fluctuations onto the
properties of the fermionic quasiparticles has not received much attention in the
literature. It turns out that in dimensions D ≤ 3 Gaussian fluctuations have a rather
drastic effect on the fermionic single-particle excitations: the coupling of the gapless
BA mode to the fermionic single-particle excitations leads to the breakdown of the
quasiparticle picture for real frequencies ω close to the gap energy (Lerch et al.
2008).

12.4 Dyson–Schwinger Equations and Ward Identities

Before using the FRG to go beyond the Gaussian approximation, it is useful to
derive exact relations between vertex functions of our mixed Bose–Fermi theory
using the same functional methods as in Chaps. 11.3 and 11.4, where we have
derived skeleton equations and Ward identities for the forward scattering model
with interaction given in Eq. (11.1). Here, we derive the analogous relations for our
attractive Fermi gas model defined in Eq. (12.1). In Sect. 12.5 we shall then use
these relations to close the FRG flow in the bosonic sector.

12.4.1 Dyson–Schwinger and Skeleton Equations

The invariance of the functional integral under infinitesimal shifts in the integration
variables implies functional relations between vertex functions of different order
which have been derived in general form in Sect. 6.3.3, see Eq. (6.132). Let us now
write down these equations for the special case of our mixed Bose–Fermi theory
with Euclidean action

S[ψ̄, ψ, χ̄, χ ] = S0[ψ̄, ψ] + S0[χ̄ , χ ] + S1[ψ̄, ψ, χ̄, χ ] , (12.68)

where the fermionic and bosonic Gaussian parts S0[ψ̄, ψ] and S0[χ̄ , χ ] are given in
Eqs. (12.5) and (12.6), while the interaction S1[ψ̄, ψ, χ̄, χ ] is defined in Eq. (12.7).
The generating functional of the Green functions now depends on four Grassmann



12.4 Dyson–Schwinger Equations and Ward Identities 343

sources j̄σ , jσ as well as on two complex bosonic sources J̄ , J ,

G[j̄ , j, J̄ , J ] = 1

Z

∫
D[ψ̄, ψ, χ̄, χ ]e−S[ψ̄,ψ,χ̄,χ]+(j̄ ,ψ)+(ψ̄, j)+( J̄ ,χ)+(χ̄ ,J ) . (12.69)

For our Bose–Fermi theory involving four different types of fields, we can write
down four different Dyson–Schwinger equations, which can be obtained from our
general Dyson–Schwinger equation (6.132) by specifying the label α to refer to
ψ̄, ψ, χ̄ , or χ . With the action given in Eq. (12.68) we obtain the Dyson–Schwinger
equations

(
J̄P − g−1

p
δ

δ JP

)
G −

∫
K

δ2G
δ jK+P↑δ j−K↓

= 0 , (12.70a)

(
JP − g−1

p
δ

δ J̄P

)
G −

∫
K

δ2G
δj̄−K↓δj̄K+P↑

= 0 , (12.70b)

(
ζ j̄Kσ + [iω − ξkσ ]

δ

δ jKσ

)
G − ζσ

∫
P

δ2G
δj̄P−K ,−σ δ JP

= 0 , (12.70c)

(
jKσ + [iω − ξkσ ]

δ

δj̄Kσ

)
G − ζσ

∫
P

δ2G
δ jP−K ,−σ δ J̄P

= 0 , (12.70d)

where ζ↑ = ζ and ζ↓ = 1. The analogous relations for the forward scattering model
discussed in Chap. 11 are given in Eqs. (11.25a), (11.25b), and (11.25c). As in
Sect. 11.3, we may alternatively express Eqs. (12.70a), (12.70b), and (12.70c) in
terms of the generating functional Gc[j̄ , j, J̄ , J ] of the connected Green functions
and the corresponding generating functional Γ [ψ̄, ψ, χ̄, χ ] of the irreducible ver-
tices,

δΓ

δχP
=

∫
K

[
ψ̄K+P↑ψ̄−K↓ + δ2Gc

δ jK+P↑δ j−K↓

]
, (12.71a)

δΓ

δχ̄P
=

∫
K

[
ψ−K↓ψK+P↑ + δ2Gc

δj̄−K↓δj̄K+P↑

]
, (12.71b)

δΓ

δψKσ
= ζσ

∫
K

[
ψP−K ,−σ χ̄P + δ2Gc

δj̄P−K ,−σ δ JP

]
, (12.71c)

δΓ

δψ̄Kσ
= ζσ

∫
K

[
ζ ψ̄P−K ,−σχP + δ2Gc

δjP−K ,−σ δ J̄P

]
. (12.71d)

The above relations may now be used to derive exact relations between corre-
lation functions and vertex functions of different order. For example, if we set the
sources equal to zero in Eq. (12.70b) and keep in mind that in the superfluid phase

δG
δ J̄P

∣∣∣∣
J=0

= 〈χP〉J=0 = δP,0〈χ〉 , (12.72)
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we obtain the following exact generalized gap equation relating the order parameter
〈χ〉 and the anomalous component A(K ) of the exact fermionic propagator,

〈χ〉 = −g0

∫
K

A(K ) . (12.73)

Note that at the mean-field level we approximate 〈χ〉 ≈ Δ0 and replace A(K ) by
A0(K ) given in Eq. (12.41); then Eq. (12.73) reduces to the mean-field gap equation
(12.18).

Equation (12.73) establishes a relation between the expectation value of our
bosonic Hubbard–Stratonovich field and a purely fermionic correlation function.
Similar relations can also be derived for bosonic correlation functions involving two
and more powers of the fields χ and χ̄ . For example, taking the functional derivative
of Eq. (12.71a) with respect to χ̄P ′ and then setting all fields equal to zero we obtain,

δP,P ′Πχ̄χ (P) = δ2Γ

δχ̄P ′δχP

∣∣∣∣
fields=0

=
∫

K

δ3Gc

δχ̄P ′δ jK+P↑δ j−K↓

∣∣∣∣
fields=0

. (12.74)

Similar to Eq. (11.30), the functional derivative on the right-hand side is determined
by the ν = 1 term in the tree expansion (6.82) of the second derivative of Gc in
powers of irreducible vertices,

δ3Gc

δχ̄P ′δ jK+P↑δ j−K↓

∣∣∣∣
fields=0

= − δ3Gc

δ j−K↓δ jK+P↑δχ̄P ′

∣∣∣∣
fields=0

= −δP,P ′ B(−K )B(K + P)Γ ψ↓ψ↑χ̄ (−K , K + P; P) , (12.75)

where B(K ) is the normal component of the exact fermionic propagator, and
Γ ψ↓ψ↑χ̄ (−K , K +P; P) is the irreducible vertex with one bosonic and two fermionic
legs of the type indicated by the superscripts. Substituting Eq. (12.75) into Eq. (12.74)
and renaming K → −K we obtain the skeleton equation

Πχ̄χ (P) = −
∫

K
B(K )B(−K + P)Γ ψ↓ψ↑χ̄ (K ,−K + P; P) . (12.76)

By taking the functional derivative of the Dyson–Schwinger equation (12.71b)
with respect to χP ′ we obtain an equation similar to Eq. (12.76) with the vertex
Γ ψ↓ψ↑χ̄ (K , P − K ; P) replaced by Γ ψ̄↑ψ̄↓χ (P − K , K ; P). Skeleton equations for
the anomalous bosonic correlation functions Πχχ (P) and Πχ̄χ̄ (P) can be derived
analogously. Graphical representations of these relations are shown in Fig. 12.3.
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Fig. 12.3 Diagrammatic representation of the skeleton equations for the irreducible bosonic polar-
izations: (a) Πχ̄χ (P), (b) Πχχ (P), (c) Πχ̄χ (P). Here, incoming dashed arrows represent external
legs associated with the Hubbard–Stratonovich field χ , while outgoing arrows represent its com-
plex conjugate χ̄

12.4.2 Ward Identities

Using the same method as in Sect. 11.4 it is straightforward to derive Ward iden-
tities associated with the U(1)-symmetry of the action S[ψ̄, ψ, χ̄, χ ] defined in
Eqs. (12.5), (12.6), (12.7), and (12.68). Therefore we introduce new fermionic fields,

ψσ (X ) = eiασ (X )ψ ′
σ (X ) , ψ̄σ (X ) = e−iασ (X )ψ̄ ′

σ (X ) , (12.77)

and new bosonic fields,

χ (X ) = eiα↑(X )+iα↓(X )χ ′(X ) , χ̄ (X ) = e−iα↑(X )−iα↓(X )χ̄ ′(X ) , (12.78)

with an arbitrary real function ασ (X ). Note that these transformations leave the
interaction S1[ψ̄, ψ, χ̄, χ ] in Eq. (12.7) invariant. Using the invariance of the inte-
gration measure D[ψ̄, ψ, χ̄, χ ] in the functional integral representation (12.69) of
the generating functional G[j̄ , j, J̄ , J ] of the Green functions, we obtain after a
simple calculation analogous to Sect. 11.4,

∫
K

{[−G−1
0 (K ) + G−1

0 (K + K̄ )
] δ2G
δj̄Kσ δ jK+K̄σ

+j̄K+K̄σ
δG
δj̄Kσ

− jKσ
δG

δ jK+K̄σ

}

+
∫

P

{[
g−1

p − g−1
p+k̄

] δ2G
δ J̄Pδ JP+K̄

+ J̄P+K̄
δG
δ J̄P

− JP
δG

δ JP+K̄σ

}
= 0 . (12.79)
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Finally, we express G in Eq. (12.79) in terms of the generating functional
Gc[j̄ , j, J̄ , J ] of the connected Green functions and the corresponding generating
functional Γ [ψ̄, ψ, χ̄, χ ] of the irreducible vertices and obtain

∫
K

{[−G−1
0 (K ) + G−1

0 (K + K̄ )
] δ2Gc

δj̄Kσ δ jK+K̄σ

+ ψKσ
δΓ

δψK+K̄σ
− ψ̄K+K̄σ

δΓ

δψ̄Kσ

}

+
∫

P

{[
g−1

p − g−1
p+k̄

] δ2Gc

δ J̄Pδ JP+K̄
+ χP

δΓ

δχP+K̄
− χ̄P+K̄

δΓ

δχ̄P

}
= 0 .

(12.80)

From this functional Ward identity we may again obtain Ward identities relating irre-
ducible vertices with different numbers of external legs by expanding the generating
functionals Γ and Gc in powers of the fields and then comparing the coefficients of
properly symmetrized monomials in the fields. Of particular interest is the Ward
identity relating the anomalous self-energy Δ(K ) to the three-legged vertices with
two fermionic and one bosonic external leg. To derive this, let us set K̄ = 0 in
Eq. (12.80), so that the terms involving the second derivatives of Gc drop out,

∫
K

{
ψKσ

δΓ

δψKσ
− ψ̄Kσ

δΓ

δψ̄Kσ

}
= −

∫
P

{
χP

δΓ

δχP
− χ̄P

δΓ

δχ̄P

}
. (12.81)

Comparing the terms involving the combinations ψ̄K↑ψ̄−K↓ or ψ−K↓ψK↑ on both
sides of Eq. (12.81) and keeping in mind that in the superfluid phase the bosonic
field has a finite vacuum expectation value, χP = δP,0〈χ〉 + δχP , we find the exact
Ward identities

〈χ〉Γ ψ̄↑ψ̄↓χ (K ,−K ; 0) = Δ(K ) , (12.82a)

〈χ̄〉Γ ψ↓ψ↑χ̄ (K ,−K ; 0) = Δ̄(−K ) . (12.82b)

In the following section we shall use these identities to close the hierarchy of FRG
flow equations for our mixed Bose–Fermi theory.

12.5 FRG Approach with Total Momentum Cutoff

In this section we shall use our general superfield FRG formalism developed in
Chap. 7 to calculate fluctuation corrections beyond the Gaussian approximation for
the attractive Fermi gas model defined in Eq. (12.1). We thereby also show how the
vertex expansion with partial bosonization works in practice when the bosonic field
has a finite vacuum expectation value.
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12.5.1 Superfield Notation

To begin with, we rewrite the Hubbard–Stratonovich transformed action of our
model given in Eqs. (12.4), (12.5), (12.6), and (12.7) in superfield notation. As in
Sect. 12.3, we parametrize the complex Hubbard–Stratonovich field χ in terms of
its real and imaginary parts describing longitudinal and transverse fluctuations,6

χP = 1√
2

[χP" + iχPt ] , χ̄P = 1√
2

[χ−P" − iχ−Pt ] . (12.83)

Comparing Eq. (12.83) with the corresponding mean-field expression (12.11), it
is clear that within mean-field theory the vacuum expectation value 〈χ〉 of our
Hubbard–Stratonovich field can be identified with the mean-field gap Δ0 appear-
ing in the fermionic quasiparticle dispersion. However, such an identification is not
valid when fluctuation corrections to the mean-field approximation for the fermionic
Green functions are taken into account. Our mixed Bose–Fermi theory involves a
six-component superfield

Φ =

⎛
⎜⎜⎜⎜⎜⎜⎝

ψ↑
ψ↓
ψ̄↑
ψ̄↓
χ"
χt

⎞
⎟⎟⎟⎟⎟⎟⎠
, (12.84)

where the field component χ" has a finite expectation value. The ratio of the partition
functions with and without interactions can then be written as

Z
Z0

=
∫
D[ψ̄, ψ, χ", χt ]e−S0[ψ̄,ψ]−S0[χ",χt ]−S1[ψ̄,ψ,χ",χt ]∫

D[ψ̄, ψ, χ", χt ]e−S0[ψ̄,ψ]−S0[χ",χt ]
, (12.85)

where the fermionic part S0[ψ̄, ψ] of the Gaussian action is given by Eq. (12.5), the
bosonic Gaussian part is

S0[χ", χt ] = 1

2

∫
P

g−1
p

[
χ−P"χP" + χ−PtχPt

]
, (12.86)

and for the interaction we obtain from Eq. (12.7)

6 We assume that the expectation value of our field χ is real, so that 〈χ〉 = 〈χ"〉/
√

2 and 〈χt 〉 = 0.
The fields ϕ" and ϕt defined in Eqs. (12.47a) and (12.47b) are then given by ϕ" = δχ" = χ" −〈χ"〉
and ϕt = δχt = χt .
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S1[ψ̄, ψ, χ", χt ] = 1√
2

∫
K

∫
P

{
[ψ̄K+P↑ψ̄−K↓ + ψ−K↓ψK−P↑]χP"

+i[ψ̄K+P↑ψ̄−K↓ − ψ−K↓ψK−P↑]χPt

}
. (12.87)

The Bose–Fermi theory defined above is a special case of the general class of the-
ories discussed in Chaps. 6 and 7, so that the exact FRG flow equations for the
order parameter and the irreducible vertices can be obtained as a special case of
the general flow equations derived in Sect. 7.4. To do this, it is again necessary
to rewrite our action in symmetrized superfield notation, taking into account that
in the presence of symmetry breaking it is advantageous to define the bare matrix
propagator G0 such that it satisfies Eq. (7.92). We therefore subtract the p = 0
component of the condensed field χ" from the Gaussian action, so that the Gaus-
sian part of our superfield action involves only fields with vanishing expectation
values,

S0[Φ] = S0[ψ̄, ψ] + S0[χ", χt ] − χ2
0"

2βV g0

= S0[ψ̄, ψ] + 1

2

∫
P

g−1
p

[
(1 − δP,0

βV
)ϕ−P"ϕP" + ϕ−PtϕPt

]

= −1

2
(δΦ, [G−1

0 ]δΦ) , (12.88)

where δΦ = Φ−〈Φ〉 and we have set again ϕ" = δχ" = χ" −〈χ"〉 and ϕt = δχt =
χt (see Eqs. (12.47a), and (12.47b)). Here, G−1

0 is a 6 × 6 matrix in field-type space
of the same form as Eq. (11.13), but with the bosonic block now given by

[F̂−1
0 ]P σ̄ ,P ′σ̄ ′ = δP,−P ′δσ̄ ,σ̄ ′

(
gσ̄

′
P ′

)−1
, (12.89)

where σ̄ = ", t labels the two independent real components of our bosonic field,
and longitudinal and transverse parts of the bare interaction are

g"P = [1 − (βV )−1δP,0]g p , gt
P = g p . (12.90)

The subtraction in Eqs. (12.88), and (12.90) guarantees that the conditions (7.92)
are satisfied. The subtracted term is added again to the interaction in Eq. (12.87),
so that after proper anti-symmetrization of the three-legged boson–fermion vertices
with respect to the interchange of the fermionic labels the total interaction part of
our superfield action can be written as
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S1[Φ] = χ2
0"

2βV g0
+ 〈χ〉

∫
K

[ψ̄K↑ψ̄−K↓ + ψ−K↓ψK↑]

+ 1

2!

∫
K1σ1

∫
K2σ2

∫
P σ̄
δK1+K2,PΓ

ψ̄σ1 ψ̄σ2ϕσ̄

0 (K1, K2; P)ψ̄K1σ1ψ̄K2σ2ϕP σ̄

+ 1

2!

∫
K1σ1

∫
K2σ2

∫
P σ̄
δK1+K2+P,0Γ

ψσ1ψσ2ϕσ̄

0 (K1, K2; P)ψK1σ1ψK2σ2ϕP σ̄ ,

(12.91)

where we have introduced the notation

〈χ〉 = 1

βV
〈χP=0〉 = 1

βV

〈χP=0,"〉√
2

. (12.92)

The bare three-legged vertices are

Γ
ψ̄σ1 ψ̄σ2ϕ"

0 (K1, K2; P) = −Γ ψσ1ψσ2ϕ"

0 (K1, K2; P) = εσ1σ2√
2
, (12.93a)

Γ
ψ̄σ1 ψ̄σ2ϕt

0 (K1, K2; P) = Γ
ψσ1ψσ2ϕt

0 (K1, K2; P) = i
εσ1σ2√

2
, (12.93b)

where

εσ1σ2 = δσ1↑δσ2↓ − δσ1↓δσ2↑ (12.94)

is the antisymmetric ε-tensor. A graphical representation of the four nonzero bare
vertices given in Eqs. (12.93a), and (12.93b) is shown in Fig. 12.4.

Fig. 12.4 Bare three-legged boson–fermion vertices given in Eqs. (12.93a), and (12.93b). Outgo-
ing arrows represent ψ̄ , incoming arrows represent ψ , dashed lines represent the longitudinal part
ϕ" of the order-parameter field, while wavy lines represent its transverse part ϕt
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Let us examine the structure of the exact matrix Green function of the interacting
system, which is related to the bare Green function via the Dyson equation (6.34),
G−1 = G−1

0 − Σ, where the superfield self-energy Σ has the block-structure

Σ =
⎛
⎝ Δ̂† −Σ̂ 0
Σ̂ Δ̂ 0
0 0 Π̂

⎞
⎠ . (12.95)

The fermionic blocks in Eq. (12.95) can be parametrized in terms of two functions
Σ(K ) and Δ(K ) as follows,

[Σ̂]Kσ,K ′σ ′ = δK ,K ′δσσ ′Σ(K ′) , (12.96a)

[Δ̂]Kσ,K ′σ ′ = δK ,−K ′εσσ ′Δ(σ ′K ′) . (12.96b)

The bosonic block Π̂ contains the exact irreducible polarization functionsΠσ̄σ̄ ′
(P ′)

associated with the collective bosonic fields,

[Π̂]P σ̄ ,P ′σ̄ ′ = δP,−P ′ Πσ̄σ̄ ′
(P ′) . (12.97)

To lowest order in perturbation theory these functions are approximated by the
noninteracting polarizations Π""

0 (P), Π t t
0 (P), and Π"t

0 (P) given in Eqs. (12.49a),
(12.49b), and (12.49c). The exact inverse matrix propagator G−1 has therefore the
block structure

G−1 = G−1
0 − Σ =

⎛
⎝−Δ̂† −Ĝ−1 0

Ĝ−1 −Δ̂ 0
0 0 −F̂−1

⎞
⎠ , (12.98)

where
Ĝ−1 = Ĝ−1

0 − Σ̂ , (12.99a)

F̂−1 = F̂−1
0 + Π̂ . (12.99b)

The matrix elements of the diagonal matrix Ĝ−1 are explicitly given by

[Ĝ−1]Kσ,K ′σ ′ = δK ,K ′δσσ ′ G−1(K ) = δK ,K ′δσσ ′[G−1
0 (K ) −Σ(K )] . (12.100)

The inverse of the infinite matrix in Eq. (12.98) is

G =
⎛
⎝ −Δ̂D̂−1 Ĝ−1

− D̂−1 0
−Ĝ−1

− D̂−1 −Δ̂† D̂−1 0
0 0 −F̂

⎞
⎠ , (12.101)

where the time-reversed block Ĝ−1
− is obtained from Ĝ−1 by replacing K → −K ,

[Ĝ−1
− ]Kσ,K ′σ ′ = δK ,K ′δσσ ′ G−1(−K ) , (12.102)
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and the diagonal matrix D̂ is defined by

[D̂]Kσ,K ′σ ′ = δK ,K ′δσσ ′ D(K ) , (12.103)

with

D(K ) = G−1(K )G−1(−K ) + |Δ(K )|2 . (12.104)

Spin-rotational invariance implies that the off-diagonal blocks in Eq. (12.101)
involving the combination Ĝ−1

− D̂−1 must be proportional to the unit matrix, imply-
ing D(K ) = D(−K ) and hence |Δ(K )| = |Δ(−K )|. Our superfield Green function
(12.101) can therefore be written as

G =
⎛
⎝ Â B̂ 0

−B̂ Â† 0
0 0 −F̂

⎞
⎠ , (12.105)

with the anomalous and normal blocks

[ Â]Kσ,K ′σ ′ = δK ,−K ′εσσ ′ A(σK ) , (12.106a)

[B̂]Kσ,K ′σ ′ = δK ,K ′δσσ ′ B(K ) , (12.106b)

where

A(K ) = −Δ(K )

D(K )
, B(K ) = G−1(−K )

D(K )
. (12.107)

Within the Hartree–Fock approximation we set in the fermionic sector Δ(K ) ≈ Δ0

and Σ(K ) ≈ 0, so that G−1(K ) ≈ G−1
0 (K ) = iω − ξk and D(K ) ≈ ω2 + E2

k.
Moreover, in Gaussian approximation the bosonic self-energies Πσ̄σ̄ ′

(P) are given
by the bare polarization functions Πσ̄σ̄ ′

0 (P) defined in Eqs. (12.49a), (12.49b), and
(12.49c). In this approximation the inverse propagator (12.98) is given by

G−1
1 =

⎛
⎝−Δ̂†

0 −Ĝ−1
0 0

Ĝ−1
0 −Δ̂0 0
0 0 −[F̂−1

0 + Π̂0]

⎞
⎠ . (12.108)

12.5.2 Truncation of the Vertex Expansion

Let us now derive exact FRG flow equations for the one-line irreducible vertices of
our mixed Bose–Fermi theory. Therefore we modify the free superfield propagator
G0 by introducing an infrared cutoffΛwhich suppresses the low-energy fluctuations
such that for Λ → 0 we recover our original model. All correlation functions and
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self-energies are thenΛ-dependent. Our aim is to derive an approximate closed sys-
tem of FRG flow equations for the two fermionic components ΣΛ(K ) and ΔΛ(K )
of the self-energy and for the vacuum expectation value 〈χ〉Λ of the order-parameter
field. The exact flow equations for these quantities follow as a special case of the
general hierarchy of functional RG flow equations given in Sect. 7.4, which explic-
itly include the possibility that one or more components of the superfield Φ have a
finite expectation value. A short summary of the results presented in this section can
be found in Bartosch et al. (2009b).

We shall use here a cutoff procedure where only the bosonic sector of our the-
ory is regularized via a cutoff Λ which suppresses bosonic fluctuations with total
momentum | p| < Λ. This total momentum cutoff scheme is in a sense the particle–
particle analogue of the momentum transfer cutoff scheme introduced in Chap. 11.
For simplicity we use a sharp total momentum cutoff and modify the bare interac-
tions as

gσ̄P → Θ(Λ < | p| < Λ0)gσ̄P . (12.109)

where Θ(X ) = 1 if the logical expression X is true and Θ(X ) = 0 if X is wrong.
With this cutoff procedure the single-scale superfield propagator Ġ defined in gen-
eral in Eq. (7.64) is of the form

Ġ = −
⎛
⎝ 0 0 0

0 0 0

0 0 ˙̂F

⎞
⎠ , (12.110)

with

[ ˙̂F]P σ̄ ,P ′σ̄ ′ = −δ(Λ− | p|)[F̂]P σ̄ ,P ′σ̄ ′ = δP,−P ′ Ḟ σ̄ σ̄ ′
P , (12.111)

and

Ḟ σ̄ σ̄ ′
P = −δ(Λ− | p|)F σ̄ σ̄ ′

P , (12.112)

where it is understood that in the bosonic propagator F σ̄ σ̄ ′
P on the right-hand side of

Eq. (12.112) we should replace the Θ-function by unity.
Consider now the exact FRG flow equation (7.94) for the order parameter, which

for general Bose–Fermi theories is shown graphically in Fig. 7.7. Keeping in mind
that according to Eq. (6.75) we may identify Γ (2)

α1α2
with the self-energy [Σ]α1α2 ,

Eq. (7.94) can be written as

∫
β1

[Σ]α1β1∂ΛΦ̄
0
β1

= 1

2

∫
β1

∫
β2

[Ġ]β1β2Γ
(3)
β1β2α1

. (12.113)

This equation relates the RG flow of the vacuum expectation value Φ̄0
α = 〈Φα〉

of the superfield in the absence of sources to the irreducible self-energy Σ and
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the irreducible vertices Γ (3) with three external legs. To keep track of the various
processes, it is at this point useful to introduce a more explicit graphical notation
adopted to our specific model where the various types of fields are represented by
different graphical symbols, as defined in Fig. 12.5. With this notation the exact flow
equation (12.113) for the vacuum expectation value 〈χP=0,"〉/(βV ) ≡ √

2〈χ〉 in the
total momentum cutoff scheme can be written as

[
g−1

0 +Π""(0)
]√

2∂Λ〈χ〉 = −1

2

∫
P

[
Γ """(P,−P, 0)Ḟ""(P)

+ Γ "t t (P,−P, 0)Ḟ tt (P) + 2Γ ""t (P,−P, 0)Ḟ"t (P)
]
, (12.114)

where Γ """, Γ ""t , and Γ "t t are the irreducible vertices with three bosonic external
legs of the type indicated by the superscripts. A graphical representation of the exact
FRG flow equation (12.114) is shown in Fig. 12.6. The exact FRG flow equations
for the vertices Γ """, Γ ""t , and Γ "t t can in turn be obtained as a special case of the
general FRG flow equation (7.74), which is shown graphically in Fig. 7.3. However,
instead of explicitly considering these rather complicated flow equations, we will
use the skeleton equation (12.73) and the Ward identities (12.82a) and (12.82b) to

Fig. 12.5 Dictionary for the fermionic and bosonic propagators and vertices. The single-scale
propagators are represented by similar symbols with slashed lines. See also Fig. 11.1 for a similar
dictionary
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Fig. 12.6 Exact FRG flow equation (12.114) for the order parameter using physical vertices and
propagators, as defined in Fig. 12.5. This is a decompressed version of the general order-parameter
flow equation shown in Fig. 7.7 in the total momentum cutoff scheme

relate the order parameter 〈χ〉 to the anomalous fermionic propagator A(K ) and
other quantities which are more easily accessible, as will be explained below.

Next, consider the RG flow of the irreducible two-point vertices. For n = 2 our
exact FRG flow equation (7.91) for the irreducible n-point vertices in the presence
of fields with vacuum expectation values reduces to

∂Λ[Σ]α1α2 =
∫
β1

(∂ΛΦ̄
0
β1

)Γ (3)
β1α1α2

− 1

2
Tr

[
ZĠΓ (4)

α1α2

] + Tr
[
ZĠΓ (3)

α1
GΓ (3)

α2

]
=

∫
β1

(∂ΛΦ̄
0
β1

)Γ (3)
β1α1α2

− 1

2

∫
β1

∫
β2

[Ġ]β1β2Γ
(4)
β1β2α1α2

+
∫
β1

∫
β2

∫
β3

∫
β4

[Ġ]β1β4Γ
(3)
β1β2α1

[G]β2β3Γ
(3)
β3β4α2

. (12.115)

If we specify the external labels α1 and α2 to refer to fermion fields, we obtain the
exact FRG flow equations for the normal and anomalous fermionic self-energies
Σ(K ) andΔ(K ), while for bosonic external labels Eq. (12.115) gives the FRG flow
of the irreducible bosonic polarizations Π""(P), Π t t (P), and Π"t (P). Let us now
truncate the exact FRG flow equation (12.115) by neglecting the bosonic energy–
momentum in the vertices with one bosonic and two fermionic legs. In the complex
χ -χ̄-basis this amounts to the approximation

Γ ψ̄↑ψ̄↓χ (K , P − K ; P) ≈ Γ ψ̄↑ψ̄↓χ (K ,−K ; 0) = γ (K ) , (12.116a)

Γ ψ↓ψ↑χ̄ (K , P − K ; P) ≈ Γ ψ↓ψ↑χ̄ (K ,−K ; 0) = γ̄ (−K ) , (12.116b)

where the flowing vertex function γ (K ) is normalized such that it reduces to unity
in the noninteracting limit. In the real basis spanned by the longitudinal (ϕ") and
transverse (ϕt ) components of the field one should take the different normaliza-
tion of the vertices given in Eqs. (12.93a) and (12.93b) into account. As a further
approximation, we shall neglect all other vertices with four and more external legs.
These higher-order vertices vanish at the initial scale and we assume that their
effect remains small throughout the entire RG flow. Specifying the external legs
in Eq. (12.115) to be fermionic, and using the total momentum cutoff scheme in the
bosonic sector, we then obtain the following two approximate FRG flow equations
for the anomalous and normal self-energy,
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∂ΛΔ(K ) = γ (K )∂Λ〈χ〉 + 1

2
γ 2(K )

∫
P

[
Ḟ""

P − Ḟ tt
P

]
A(P − K ) , (12.117)

∂ΛΣ(K ) = −1

2
γ 2(K )

∫
P

[
Ḟ""

P + Ḟ tt
P − 2i Ḟ"t

P

]
B(P − K ) . (12.118)

Graphical representations of these equations are shown in Fig. 12.7.
Obviously, we also need an equation for the vertex γ (K ); instead of writing

down a FRG flow equation for this vertex, we use the Ward identity (12.82a), which
implies in combination with Eq. (12.116a) that our flowing vertex function γ (K )
can be expressed in terms of the flowing anomalous self-energy and the flowing
order parameter as follows,

Δ(K ) = γ (K )〈χ〉 . (12.119)

Substituting this Ward identity into our flow equation (12.117) for the anomalous
self-energy, the latter transmutes into the following flow equation for the vertex
function γ (K ),

∂Λ ln γ (K ) = γ 2(K )

2Δ(K )

∫
P

[
Ḟ""

P − Ḟ tt
P

]
A(P − K ) . (12.120)

Note that ∂Λγ (K ) is proportional to γ 3(K ); a similar term is also contained in the
general FRG flow equation (7.74) for vertices with three external legs. For simplic-
ity, we shall from now on neglect the momentum dependence of the vertex function,
approximating γ (K ) ≈ γ (0) ≡ γΛ.

To obtain a closed system of flow equations, we also need the FRG flow of the
irreducible bosonic polarizationsΠ""(P),Π t t (P), andΠ"t (P). In our total momen-
tum cutoff scheme where only the bosonic components of the single-scale propa-
gator are nonzero, the FRG flow of these functions is driven by the purely bosonic

Fig. 12.7 Truncated FRG flow equation for the fermionic self-energies in the total momentum
cutoff scheme, where only the bosonic propagators are regularized via a cutoff. The upper dia-
gram represents the flow equation (12.117) for the anomalous self-energy Δ(K ), while the lower
diagram represents the flow equation (12.118) for the normal self-energy Σ(K )
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vertices with three and four external legs appearing on the right-hand side of the
flow equation (12.115). However, the skeleton equations discussed in Sect. 12.4
provide an alternative way of closing the hierarchy of FRG flow equations with-
out explicitly considering the flow of bosonic vertices with more than two external
legs: The key observation is that the purely bosonic correlation functions Πχ̄χ (P),
Πχχ (P), and Πχ̄χ̄ (P) of our mixed Bose–Fermi theory can be expressed in terms
of the three-legged vertices with one bosonic and two fermionic legs and purely
fermionic propagators. The skeleton equations for the irreducible bosonic polariza-
tions Π""(P), Π t t (P) and Π"t (P) can be obtained via a simple change of basis
from the skeleton equations for the polarizations Πχ̄χ (P), Πχχ (P), and Πχ̄χ̄ (P)
discussed in Sect. 12.4.1, see Fig. 12.3. It should be noted that the skeleton equations
are valid for any given value of the cutoff parameter Λ. Replacing the three-legged
vertices with two fermionic legs and one bosonic leg by γΛ times their initial values
given in Eqs. (12.93a) and (12.93b) we obtain the approximate skeleton equations
for the irreducible bosonic polarization functions,

Π""(P) = −γΛ
2

∫
K

[
B(K )B(−K + P) − A(K )A(K + P) + (P → −P)

]
,

(12.121a)

Π t t (P) = −γΛ
2

∫
K

[
B(K )B(−K + P) + A(K )A(K + P) + (P → −P)

]
,

(12.121b)

Π"t (P) = − iγΛ
2

∫
K

[
B(K )B(−K + P) − A(K )A(K + P) − (P → −P)

]
.

(12.121c)

These expressions resemble the corresponding noninteracting polarizations in
Eqs. (12.49a), (12.49b), and (12.49c), with the important difference that the
fermionic propagators on the right-hand sides are now renormalized by fermionic
self-energy corrections, as determined by the FRG flow equations (12.117) and
(12.118). In addition, one of the bare three-legged vertices with two fermionic legs
and one bosonic leg is multiplied by the vertex renormalization factor γΛ, whose
frequency and momentum dependence we ignore.

Finally, let us also write down the exact FRG flow equation for the grand canon-
ical potential ΩΛ, which follows from our general flow equation (7.70) for the irre-
ducible vertex Γ (0)

Λ without external legs. Keeping in mind that in our cutoff scheme
only the bosonic block of Ġ0,Λ is nonzero, and carefully taking the sharp cutoff limit
of Eq. (7.70) using the relation (8.49), we obtain for the flow of the grand canonical
potential

∂ΛΩΛ = − V

2

∫
P
δ(| p| −Λ) ln

{
[1 + g0Π

""(P)][1 + g0Π
t t (P)] + g2

0[Π"t (P)]2
}
,

(12.122)

which should be compared with the corresponding correction Ω2 in Gaussian
approximation given in Eq. (12.50). The formally exact flow equation (12.122)
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should be integrated with the initial condition ΩΛ0 = Ω1, where Ω1 is the mean-
field result for the grand canonical potential given in Eq. (12.17).

Keeping in mind that our flow equation (12.117) for the anomalous self-energy
Δ(K ) has turned into a flow equation for the vertex function γ (K ), we still need
one additional condition to close the system of flow equations (12.118), (12.119),
(12.120), (12.121a), (12.121b), and (12.121c). Fortunately, this can be achieved in a
very simple and physically transparent way without explicitly considering the FRG
flow of the bosonic three-legged vertices (Bartosch et al. 2009b). The crucial obser-
vation is that in the superfluid state the bosonic propagators must exhibit a pole on
the real frequency axis associated with the gapless Bogoliubov–Anderson mode.
From the requirement that our approximation (12.121a), (12.121b), and (12.121c)
for the bosonic self-energies is consistent with the existence of a gapless BA mode
we obtain an additional constraint which uniquely fixes the flowing order parameter
〈χ〉. The anomalous self-energy Δ(K ) can then be obtained from the Ward identity
(12.119). To derive the corresponding FRG flow equation for 〈χ〉, we note that,
for a given value of the cutoff Λ, the propagator of the bosonic fields is of the
form (12.56) but with the noninteracting polarizationsΠ""

0 (P),Π t t
0 (P), andΠ"t

0 (P)
replaced by the flowing irreducible polarizations Π""(P), Π t t (P), and Π"t (P),
which in our truncation are given by Eqs. (12.121a), (12.121b), and (12.121c). The
existence of the gapless BA mode is therefore guaranteed if

g−1
0 +Π t t (0, i0) = 0 . (12.123)

Obviously, this condition is satisfied at the initial RG scale Λ = Λ0, where the
irreducible transverse polarization Π t t

Λ0
(0, i0) = Π t t

0 (0, i0) is given by the non-
interacting one and Eq. (12.123) reduces to Eq. (12.64). In order to guarantee that
Eq. (12.123) is valid for arbitrary Λ, we impose the condition

∂Λ
[
g−1

0 +Π t t (0, i0)
] = 0 . (12.124)

With Π t t (0, i0) given by the skeleton equation (12.121b), the condition (12.124)
implies a functional relation between ∂ΛΔ(K ) and ∂ΛΣ(K ). By demanding that
this functional relation is consistent with our flow equations for the fermionic
self-energies, we obtain the desired flow equation of the order parameter 〈χ〉.
Eqs. (12.118), (12.119), (12.120), (12.121a), (12.121b), (12.121c), and (12.124)
form a closed system of flow equations for the fermionic self-energies Δ(K ) and
Σ(K ), which implicitly takes the effect of the bosonic three-legged vertices in the
exact order-parameter flow equation (12.114) into account.

12.5.3 Truncation with Momentum-Independent Self-Energies

We now further simplify our system of flow equations by neglecting the momen-
tum dependence of the fermionic self-energies and by keeping only the leading
frequency dependence of the normal self-energy,
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Δ(K ) ≈ Δ(0) ≡ ΔΛ , (12.125)

Σ(K ) ≈ Σ(0) + ∂Σ(iω)

∂(iω)

∣∣∣∣
ω=0

iω ≡ ΣΛ −
(

1

ZΛ
− 1

)
iω , (12.126)

where

ZΛ = 1

1 − ∂Σ(iω)
∂(iω)

∣∣∣
ω=0

(12.127)

is the flowing wave function renormalization factor. The fermionic Green functions
resemble then the mean-field Green functions given in Eqs. (12.41) and (12.42), and
it is useful to define

A(K ) = ZΛ Ã(K ) , B(K ) = ZΛ B̃(K ) , (12.128)

with

Ã(K ) = − Δ̃Λ

ω2 + Ẽ2
kΛ

, B̃(K ) = − iω + ξ̃kΛ

ω2 + Ẽ2
kΛ

. (12.129)

The renormalized anomalous self-energy Δ̃Λ and the energy dispersions ẼkΛ and
ξ̃kΛ appearing here are given by

ẼkΛ =
√
ξ̃ 2

kΛ + Δ̃2
Λ , (12.130a)

ξ̃kΛ = ε̃kΛ − μ̃Λ , (12.130b)

ε̃kΛ = ZΛεk , (12.130c)

Δ̃Λ = ZΛΔΛ , (12.130d)

μ̃Λ = ZΛ(μ−ΣΛ) . (12.130e)

The frequency integrations in Eqs. (12.121a), (12.121b), and (12.121c) can now be
done analytically. Defining the dimensionless polarizations Π̃ σ̄ σ̄ ′

(P) via

Πσ̄σ̄ ′
(P) = Z2

ΛγΛν0Π̃
σ̄ σ̄ ′

(P) , (12.131)

we can obtain the dimensionless functions Π̃ σ̄ σ̄ ′
(P) from Eqs. (12.49a), (12.49b),

and (12.49c) via the substitution Ek → ẼkΛ, ξk → ξ̃kΛ, Δ → Δ̃Λ, and an overall
division by ν0. Imposing the gaplessness of the BA mode, Eq. (12.123) implies at
T = 0 the constraint

1

g0
= Z2

ΛγΛ
1

V

∑
k

1

2ẼkΛ
. (12.132)
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The divergencies appearing on both sides of this equation can again be cured by
eliminating the bare interaction g0 in favor of the two-body T -matrix g,

1

g0
= 1

g
+ Z2

ΛγΛ
1

V

∑
k

1

2ε̃kΛ
. (12.133)

This leads to the regularized gap equation

1

Z2
ΛγΛg

= 1

V

∑
k

[
1

2ẼkΛ
− 1

2ε̃kΛ

]
. (12.134)

It is satisfying to see that exactly the same equation follows directly from the skele-
ton equation (12.73) without explicitly imposing the gaplessness of the BA mode.
The gapless BA mode is therefore a natural consequence of our truncation scheme.

At this point, it is useful to summarize again our system of FRG flow equations
derived so far for a sharp total momentum cutoff. The rescaled shifted chemical
potential μ̃Λ defined in Eq. (12.130e) and the vertex renormalization factor γΛ
satisfy

Λ∂Λμ̃Λ = ηΛμ̃Λ − γΛ

(
Λ

kFΛ0

)D

εFΛ0

∫
dω̄

2π

[
F̃""

P + F̃ tt
P − 2i F̃"t

P

]
B̃(P) ,

(12.135)

Λ∂Λ ln γΛ = − γΛ

Δ̃Λ

(
Λ

kFΛ0

)D

εFΛ0

∫
dω̄

2π

[
F̃""

P − F̃ tt
P

]
Ã(P) . (12.136)

Here, the values of the Fermi energy εFΛ0 and the Fermi momentum kFΛ0 are deter-
mined by the noninteracting system at the beginning of the RG flow. The flowing
wave function renormalization factor satisfies

Λ∂ΛZΛ = ηΛZΛ , (12.137)

with the flowing anomalous dimension

ηΛ = γΛ

(
Λ

kFΛ0

)D

εFΛ0

∫
dω̄

2π

[
F̃""

P + F̃ tt
P −2i F̃"t

P

] Ẽ2
Λ − ω̄2 + 2iω̄ξ̃Λ

(ω̄2 + Ẽ2
Λ)2

, (12.138)

where ẼΛ and ξ̃Λ are obtained from Ẽ pΛ and ξ̃ pΛ by setting | p| = Λ. The rescaled
gap parameter Δ̃Λ is determined by the generalized gap equation

1

g̃Λ
= 1

ν0V

∑
k

[
1

2ẼkΛ
− 1

2ε̃kΛ

]
, (12.139)



360 12 Superfluid Fermions

where the dimensionless renormalized coupling g̃Λ is defined by

g̃Λ = Z2
ΛγΛν0g . (12.140)

From the solution of the above system of equations we obtain the flowing order
parameter using the Ward identity

〈χ〉 = Δ̃Λ

ZΛγΛ
. (12.141)

Finally, the rescaled bosonic propagators are given by

(
F̃""

P F̃"t
P

F̃ t"
P F̃ tt

P

)
= 1

Ñ (P)

(
g̃−1
Λ + Π̃ t t

Λ,r (P) −Π̃"t
Λ (P)

−Π̃ t"
Λ (P) g−1

Λ + Π̃""
Λ,r (P)

)
, (12.142)

where

Ñ (P) = [
g̃−1
Λ + Π̃""

Λ,r (P)
] [

g̃−1
Λ + Π̃ t t

Λ,r (P)
] + [

Π̃"t
Λ (P)

]2
, (12.143)

and the regularized dimensionless diagonal polarizations are defined by

Π̃ σ̄ σ̄
Λ,r (P) = Π̃ σ̄ σ̄

Λ (P) + 1

ν0V

∑
k

1

2ε̃kΛ
. (12.144)

Note that by adding and subtracting the divergent quantity 1
ν0V

∑
k

1
2ε̃kΛ

we have
removed the divergencies from the inverse interaction and the polarizations. Due
to the sharp momentum cutoff and the rotational symmetry we can carry out all
momentum integrations analytically such that the collective label P reduces to
P = (iω̄,Λ). By construction, in the total momentum cutoff scheme the initial
values of the order parameter and the fermionic self-energies are given by the
mean-field values discussed in Sect. 12.2, ΔΛ0 = 〈χ〉Λ0 = Δ0 = 0.6864 εF and
ΣΛ0 = 0. To compare the flowing order parameter and self-energies with the mean-
field results, it is important to keep in mind that within the FRG one works at fixed
chemical potential μ. As a consequence, the density of fermions and hence the
Fermi energy εFΛ of a noninteracting system which has exactly the same density
as the interacting system are functions of the flow parameter Λ. We should there-
fore use the thermodynamic relation between the density and the chemical potential
to eliminate the chemical potential in favor of the density which is a function of
Λ. Within our approximations the renormalized particle number corresponding to
Eq. (12.20) at T = 0 can either be obtained from the grand canonical potential
ΩΛ using the thermodynamic relation N = −∂Ω/∂μ, or from the normal part
of the single particle Green function. Using the latter approach we obtain as an
approximate result for the flowing renormalized particle number density,

ρΛ = ZΛ
V

∑
k

[
1 − ξ̃kΛ

ẼkΛ

]
. (12.145)
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Typical RG flows at the unitary point (1/(kF as) = 0) in three dimensions are
shown in Fig. 12.8 for the vertex renormalization factor γΛ and the quasiparticle
residue ZΛ. Moreover, in Fig. 12.9 we show the flow of the single-particle gap Δ̃Λ,
the order parameter χΛ = 〈χ〉, and the chemical potential in units of the Fermi
energy εFΛ of a noninteracting system, which has exactly the same density as our
interacting system,

εFΛ = k2
FΛ

2m
= εFΛ0

(
ρΛ

ρΛ0

)2/D

. (12.146)

Note that while mean-field theory does not distinguish between Δ̃Λ and 〈χ〉, con-
ceptually the renormalized single-particle gap and the order parameter are different
quantities, so that it is not surprising that our FRG calculation shows that these

Fig. 12.8 Numerical solution of the FRG flow equations (12.135–12.144) at the unitary point
1/(kF as ) = 0 in three dimensions. The graph shows the flowing wave function renormalization
factor ZΛ and the flowing vertex renormalization factor γΛ associated with the vertex with one
boson and two fermion legs

Fig. 12.9 Graph of the flowing single particle gap Δ̃Λ, the flowing order parameter χΛ, and the
chemical potential μ at the unitary point 1/(kF as ) = 0 in three dimensions divided by the flowing
Fermi energy εFΛ of a noninteracting system, which has exactly the same density as our interacting
system
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quantities are renormalized differently. For a more detailed analysis of Eqs. (12.135–
12.144) we refer the reader to Bartosch et al. (2009b). Here, we only quote the
renormalized parameters at the unitary point in units of the physical Fermi energy
εF = limΛ→0 εFΛ,

μ/εF = 0.32 , Δ̃/εF = 0.61 , 〈χ〉/εF = 0.59 (FRG) . (12.147)

Comparing these FRG results with the mean-field results (12.33) and the recent
Monte Carlo results (12.34) by Carlson and Reddy (2005), we conclude that the
fluctuation corrections included in the FRG lead to a significant improvement,
although our FRG calculation does not produce numerically reliable values for μ
and Δ̃. However, in view of the approximations inherent in our truncation (which
is based on a low-energy expansion of the vertex functions and completely neglects
particle-hole fluctuations), our FRG calculation yields satisfactory numerical val-
ues. Note that the main purpose of this chapter was not to produce numerically
accurate results at the unitary point, but to show how the partially bosonized FRG
in the symmetry-broken phase works in practice. Curiously, our result μ/εF = 0.32
agrees precisely with the experimentally determined value given by Bartenstein
et al. (2004). Moreover, the results of the Gaussian approximation given by Diener
et al. (2008) are amazingly close to the most recent Monte Carlo results Carlson and
Reddy (2005). In view of the errors inherent in the experiments as well as in the
Gaussian approximation, this agreement might be accidental.

12.6 Outlook

We hope that we have convinced the reader that the FRG is a powerful new for-
mulation of the Wilsonian RG which provides a unified and aesthetically appealing
framework of formulating Wilsonian RG transformations for any problem which
can be formulated in terms of functional integrals. Our goal in this book was to
introduce readers with no previous contact with the RG to the main ideas of the
FRG and to show in detail how the FRG works in practice. The three parts of this
book reflect the three basic steps which are necessary to achieve this goal: one first
has to learn the main ideas of the renormalization group from Part I, then one has to
learn the FRG from Part II, and finally one should see how this method can be used
to solve problems and eventually calculate numbers which can be compared with
experiments. In Part III we have focussed on fermionic many-body systems, but it
should now be obvious that FRG methods are also useful to study interacting bosons.
In fact, several authors have used FRG methods to study interacting Bose gases in
various dimensions (Dupuis and Sengupta 2007, Wetterich 2008, Floerchinger and
Wetterich 2008, 2009a,b, Sinner et al. 2009, Dupuis 2009a,b, Eichler 2009, Eichler
et al. 2009). Due to limitations in space and time, we do not discuss these interesting
applications of the FRG in this book and refer the interested reader to the literature
cited above. Our main message to the reader is that the FRG formalism as described
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in this book is a very powerful tool which can be used to tackle a great variety of
research problems of current interest.

To conclude this book, let us mention three promising recent developments in
the theory of the FRG, which in our opinion will probably lead to further interesting
new results in the future:

(a) Partial bosonization in several competing channels:
In Chaps. 11 and 12 we have shown that in some cases it can be useful to
decouple the interaction between fermions with the help of a suitable bosonic
Hubbard–Stratonovich (HS) field and consider the FRG flow equations of the
resulting coupled Bose–Fermi theory. For the simplified models considered in
Chaps. 11 and 12 the proper choice of the HS decoupling was obvious from the
special form of the interaction. However, HS decouplings can be introduced in
many different ways and in more realistic models it is a priori not clear which
HS decoupling is most appropriate. This ambiguity has been discussed for
many decades in the literature (Hamann 1969, Wang et al. 1969, Castellani and
Di Castro 1979, Schulz 1990, Macêdo and Coutinho-Filho 1991, Dupuis 2002,
Borejsza and Dupuis 2003, Dupuis 2005, Bartosch et al. 2009a). In exceptional
cases the resulting mixed Bose–Fermi theory can be solved exactly, such as the
forward-scattering model discussed in Chap. 11. However, in general one has to
rely on rather simple approximations to solve the coupled Bose–Fermi theory,
so that the proper choice of the HS decoupling is crucial. In fact, in some cases
it might be advantageous to decouple the interaction in terms of two or more
HS fields to take into account the existence of competing instabilities (Bar-
tosch et al. 2009a). In this context it should also be mentioned that recently
Husemann and Salmhofer (2009a,b) have proposed a new decomposition of
the fermionic two-body interaction of the Hubbard model, which amounts to
a decoupling of the flowing effective interaction in terms of three different HS
fields associated with different scattering channels. They have shown that this
decomposition reduces the ambiguities inherent in the introduction of boson
fields, although it does not completely eliminate all ambiguities. We believe
that this and similar techniques based on multicomponent HS transformations
are promising developments whose potential has not yet been fully explored.

(b) Scale-dependent Hubbard–Stratonovich transformations:
In general, HS transformations can be used to eliminate two-body interactions
(which are represented by quartic interaction terms in the original fermion
fields) in favor of cubic boson–fermion couplings involving one boson and two
fermion fields. In this way direct two-body interactions between the original
fermion fields are completely eliminated in the bare action. However, terms
involving four fermion fields are again generated as the RG is iterated. These
terms contain also scattering processes in channels which are different from
the channel which has been singled out by the HS field. Although the effect of
these terms can indeed be negligible if the physics is dominated by the scat-
tering channel singled out by the HS field, in problems with several competing
channels or in situations where the dominant channel is a priori not known it
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may be important to take these terms into account. An elegant way to achieve
this within the framework of the FRG is based on scale-dependent HS trans-
formations (Gies and Wetterich 2002, Jaeckel and Wetterich 2003, Gies 2006).
The idea is to choose the HS field as a scale-dependent nonlinear functional
of certain fields of the system. This functional is chosen such that the direct
two-body interactions are eliminated at any RG scale. This technique has been
successfully used to study certain aspects of quantum chromo-dynamics (Gies
and Wetterich 2004, Braun 2009) and has also been used to study ultracold
atomic gases (see e.g. Floerchinger et al. 2008). It seems to us that this is
a promising technique which should be further developed and applied to the
models describing strongly correlated electrons in condensed matter.

(c) Nonequilibrium FRG:
While enormous research efforts have been devoted to the understanding of
quantum mechanical many-body systems in equilibrium, the behavior of these
systems under nonequilibrium conditions has received much less attention. Of
course, the nonequilibrium problem is more difficult, but the physics of many-
body systems far from equilibrium is expected to be very rich. We believe
that the FRG approach is a promising tool to study nonperturbative aspects
of many-body systems under nonequilibrium conditions. For example, some
classes of nonequilibrium problems can be mapped onto classical field theories,
which can then be studied nonperturbatively using the FRG (Canet et al. 2004,
2005), revealing new nonequilibrium fixed points. But also in quantum field
theories stationary nonequilibrium states can be characterized by nonthermal
fixed points (Berges and Hoffmeister 2009).

For interacting bosons or fermions, the basic FRG equations for the irre-
ducible vertices under nonequilibrium conditions can be easily written down:
starting point is the functional integral formulation of the Keldysh formalism
(see e.g., Kamenev 2004), where the number of field components has to be
doubled in order to take into account that out of equilibrium the forward and the
backward propagation in time are independent. All nonequilibrium correlation
functions can be expressed in terms of functional averages of a suitably defined
effective action. One then modifies the theory by introducing a suitable cutoff
either in time (Gasenzer and Pawlowski 2008, Schoeller 2009, Schoeller and
Reininghaus 2009) or in the frequency domain (Gezzi et al. 2007, Jakobs et al.
2007). The problem is then formally identical to the corresponding functional
integral formulation of the equilibrium problem, so that the resulting flow equa-
tions are formally identical to the flow equations derived in Chap. 7. Note
that the FRG flow equations in Chap. 7 have been derived for field theories
involving arbitrary multicomponent fields, so that all flow equations of Chap. 7
are also valid for the nonequilibrium Keldysh action for bosons, fermions, or
mixtures thereof; the superfield label α simply has to be enlarged by another
index which keeps track of the Keldysh componets of the fields. The difficult
and largely unexplored problem is now to find sensible truncations of the for-
mally exact hierarchy of FRG flow equations, which do not violate essential
properties such as the causality conditions (Kamenev 2004). We believe that
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in the near future the nonequilibrium quantum many-body problem will attract
more and more attention, and that the FRG will be a competitive alternative to
other nonperturbative tools, such as the method of continuous unitary transfor-
mations (Kehrein 2005, 2006) or the time-dependent density matrix renormal-
ization group (Schollwöck 2005, Manmana et al. 2007, 2009).
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super-field notation, 259
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classification for fermions, 282
energy-momentum conserving, 261
FRG flow equations, 194, 212
graphical notation, 261
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rescaled for fermions, 281

Irrelevant coupling, 76
dangerously, 80, 86
effect on RG flow, 79

Ising model, 23
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one-dimensional, 19, 61
partition function, 24
square lattice, 74
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J
Jacobian of spherical coordinates, 277

K
Keldysh formalism, 364
Kronecker delta-symbol, 149

regularization, 261

L
Ladder approximation, 249, 269

graphical representation, 270
particle-particle channel, 340

Landau function, 24, 25, 27, 39
free Bose gas, 51
mean-field approximation, 38

Left-eigenvectors, 75
Legendre

effective action, 142, 233
transformation, 160

Limit cycles, 77
Linked cluster theorem, 96, 152
Lippmann-Schwinger equation, 272
Liquid-gas transition, 7
Litim cutoff, 186, 210, 237
Local potential approximation, 237
Logarithmic corrections, 119
Longitudinal fluctuations, 337
Lower critical dimension, 86
Luther-Emery liquid, 295
Luttinger liquid, 116, 295

M
Magnetization, 6, 19, 24, 33
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mean-field approximation, 26
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Mean-field
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theory, 24

Mean-field approximation
BCS-BEC crossover, 330
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Landau function, 25
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Ising chain, 85
two-dimensional Ising model, 85

Minimal subtraction, 134
Mode elimination, 54, 141

momentum shell RG, 102
Momentum subtraction, 134
Momentum transfer cutoff scheme, 310, 312,

322
Morris-Lemma, 185, 218, 220, 293
Mott-Hubbard transition, 16

N
Numerical

renormalization group, 60
solution of FRG flow equations, 285, 299

O
One-loop approximation, 60, 104
Order parameter, 6

FRG flow equation, 352
superfluid, 337

P
Partial bosonization, 251
Particle number conservation, 171
Particle–particle ladder, 266
Partition function, 5, 37, 53

functional integral representation, 147
interaction correction, 95
Ising model, 24, 61
RG flow for Ising chain, 65

Patching approximation, 285
divergence, 305
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Perturbation theory
diagrammatic, 91
Rayleigh-Schrödinger, 116
renormalization factors, 130
renormalized, 133

Phase transition
classification, 5, 6
liquid-gas, 7
paramagnet-ferromagnet, 6, 16
quantum, 16

Phi4-theory, 37, 210
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Polarization function, 274, 337
Polchinski equation, 190, 250
Propagator, 100

Gaussian, 148, 339, 341
graphical notation, 151, 154
rescaled, 214, 279
single-scale, 195, 279
super-field, 154

Pseudogap phase, 302

Q
Quantum

critical point, 16
critical region, 17
electrodynamics, 129
Hall effect, 16
phase transition, 16

Quasiparticle residue, 116

R
Random phase approximation, 39, 249, 273,

323
graphical representation, 273

Reciprocal lattice, 172
Regularization

BCS gap equation, 332
delta-function, 45
dimensional, 125, 128
lattice, 125
momentum cutoff, 125

Regulator, 182
Relevant coupling, 76, 241
Renormalizability, 1, 60, 123, 130–131
Renormalization

perturbative, 128
scheme, 134

Renormalization group
basic idea, 54
beta function, 71
decimation step, 54

density matrix, 61
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field-theoretical, 122
functional, 60
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momentum space, 59
numerical, 60
real space, 61
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transformation, 58, 183

Renormalized
coupling, 128, 138
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density, 360
Lagrangian, 128
Lagrangian for QED, 130
perturbation theory, 130
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Rescaling, 56, 72

Fermi fields, 278
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momenta and frequencies for fermions, 278
momenta close to Fermi surface, 314
momentum shell RG, 107
of variables, 239

RG flow
cyclic, 85
exotic, 85
global properties, 81
Ising model in 3D, 83
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one-dimensional electrons, 296
order parameter, 241
square lattice Ising model, 74
XY-model in 2D, 84
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graph for ϕ4-theory, 111
infinitesimal, 69, 108
Ising chain, 64, 67
linearized, 112
scalar ϕ4-theory, 109

Runaway flow, 299

S
Saddle point approximation, 39, 330
Scale invariance, 279
Scaling

correlation function, 14
dimension, 115, 282, 314
free energy, 12, 80
function, 12, 221
law, 115
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relations, 13, 30
six-point vertex, 284
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Scaling hypothesis, 12
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free energy, 12
justification, 75, 77
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exchange, 267
forward, 267
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Scattering length, 327, 332
Screened interaction, 310
Self-energy, 73, 100, 115

FRG flow ϕ4-theory, 212
Hartree-Fock, 268
interacting fermions, 260
irreducible, 101
normalizations, 115
rescaled FRG flow equation, 215
super-field, 154, 162, 203, 260
ϕ4-theory, 124
symmetry-broken phase, 229
ϕ4-theory, 221

Semigroup, 58, 76
Single-scale propagator, 195, 218

fermions, 279
rescaled, 214
sharp cutoff, 217
ϕ4-theory, 211

Sink, 83
Six-point vertex, 265
Skeleton equation, 176, 315, 342, 356

graphical representation, 345
polarization, 316, 344
self-energy, 316
superfluid order parameter, 344
vertex, 316

Source-trick, 155, 187
Specific heat

Gaussian correction, 42
logarithmic corrections, 120
mean-field approximation, 29

Spin-charge separation, 294
Spin-liquid, 297
Spinless fermions, 290
Spontaneous symmetry breaking, 200
Statistics

factor, 256
matrix, 148

Super-field
action, 308
chain rule, 161
formalism, 147
free propagator, 309
Green function, 148, 154, 351
interaction, 259
label, 148, 259, 308
notation, 347
self-energy, 154, 162, 203, 350
source, 315
trace, 187

Superfluid order parameter, 337
Surface area of unit sphere, 42, 277
Susceptibility

particle–particle, 270
particle-hole, 274

Symmetrization operator, 165, 264
Symmetry, 167

broken phase, 229
effective interaction, 289
emergent U (1), 317
generating functionals, 170
generators, 170
group, 169
rotation and spatial inversion, 176
space and time inversion, 175
spin rotation, 173, 256, 268
transformation, 169
translation, 172
U (1)-gauge transformation, 171
U (1) in superfluid, 337

T
T-matrix, 331

approximation, 270
regularization, 359

Total momentum cutoff scheme, 328, 352
Toy model, 178

FRG flow, 206
patching approximation, 286

Transfer matrix, 19, 62, 85
Transverse fluctuations, 337
Tree expansion, 159, 162–163, 166

connected four-point function, 167
connected three-point function, 166

Tricritical fixed point, 82
Triple point, 84
Truncation

based on relevance, 223
BMW, 222
single-channel, 269
using skeleton equations, 356
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using Ward identities, 355
vertex expansion, 351

U
Ultraviolet cutoff, 37, 38, 42, 123
Umklapp

scattering, 292
surface, 297–298

Unitary point, 327, 334
Universality class, 11, 81

Brazovskii, 82, 275
Heisenberg, 234
Ising, 110
XY, 11, 84, 234

Upper critical dimension, 15, 39, 43, 87

V
Vacuum diagrams, 96

cancellation, 100
Vacuum expectation value, 200, 230

FRG flow, 212, 235
Van der Waals gas, 20
Van Hove singularities, 286, 297
Vertex expansion, 142, 194, 196, 209

with vacuum expectation values, 200, 204,
351

Vertices
dictionary, 262, 311, 353
one-line irreducible, 159

partially symmetrized, 261, 310
symmetrization, 165
totally symmetrized, 261

W
Ward identities, 317, 345, 355

functional, 319, 346
order parameter, 360
vertices for linear dispersion, 320

Wave function renormalization, 57, 113, 115,
242, 283

derivative expansion, 234, 243
flowing, 358
one-loop approximation, 109
perturbation theory, 117
relation to self-energy, 214, 279

Wegner-Houghton equation, 60, 141
Wetterich equation, 142, 193, 234
Wick ordering, 190, 250
Wick theorem, 93
Wilson-Fisher fixed point, 108, 110, 119
Wilsonian RG procedure, 54

X
XY-model, 84

Z
Zero sound, 267
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