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Preface 

Risk is an inherent part of any decision-making process. Risk and uncertainty
are unavoidable in the planning, design, construction, and management of engi-
neering systems. Until recently, a common way to account for risk and uncer-
tainty in engineering design was through a factor of safety. However, this does
not provide any quantitative idea of the risk in a particular situation and most
decision makers these days want to explicitly know the risk involved while
making a decision as well as the risk of operating an existing structure or project
and the consequences of a management action. Answers to these questions
require an understanding of the behavior of inputs to the system under study as
well as the consequences of a management action. Despite the importance and
relevance of the subject, there are very few universities and institutions where
risk and reliability analysis is taught or where it is part of either civil and envi-
ronmental engineering curricula or environmental and watershed sciences cur-
ricula. Commonly, these topics form the subject matter of a course in statistics or
systems analysis. A review of the literature in civil and environmental engineer-
ing shows that there are few books providing a comprehensive discussion of rel-
evant issues related to uncertainty, risk, and reliability. This constituted the
motivation for the proposed book.

The subject matter of the book is divided into four parts. The first part,
termed Preliminaries, contains three chapters. Introducing the basic theme of the
book, Chapter 1 provides a broad overview of the art of decision making under
uncertainty. Chapters 2 and 3 provide a preliminary background of probability
and random variables and moments and expectations of data that are needed to
grasp the topics that follow. 

The second part of the book deals with Probability Distributions and Param-
eter Estimation, which is a bouquet of techniques organized into six chapters.
Discrete and continuous probability distributions form the subject matter of
Chapter 4. The distributions discussed include Bernoulli, binomial, geometric,
and negative binomial distributions. Another set of distributions is used when
interest lies in the number of times a specified event occurs over a certain dura-
tion. Poisson, exponential, and gamma distributions are used in such cases and
these are also described in Chapter 4. Chapter 5 deals with limit distributions
and other continuous distributions. Two frequently used distributions that form
the backbone of statistical analysis—the normal and log-normal distributions—
are discussed. These distributions are based on an important theorem in
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statistical analysis, the central limit theorem, which is discussed next. Distribu-
tions of extremes and other distributions found useful in environmental and
water engineering, such as uniform, triangular, beta, Pareto, logistic, Pearson
type III, and log-Pearson type III distributions, are also presented. Many envi-
ronmental processes can be described by using the concepts of probability and
physical laws. Chapter 6 focuses on impulse response functions as probability
distributions. These distributions have a quasi-physical basis. The concepts dis-
cussed include impulse response of a linear reservoir, cascade of linear reser-
voirs, the Muskingum model, the diffusion model, and the linear channel
downstream model. These concepts are widely used in hydrologic systems anal-
ysis. Many real-world decisions frequently involve more than one variable and
there may not be a one-to-one relationship among them. In such a situation, an
analysis of the joint probabilistic behavior of the variables involved would be
desirable. Chapter 7 presents multivariate distributions, with particular atten-
tion to bivariate distributions. A newly emerging copula methodology is pre-
sented and several bivariate distributions are discussed using this methodology.
The concept of return period is extended to more than one variable.

In statistical analysis, a considerable effort is devoted to deriving parameters
of a distribution, which constitutes the subject matter of Chapter 8. Many tech-
niques are available for this purpose; these include the method of moments, the
method of maximum likelihood, the method of probability weighted moments,
L-moments, and the method of least squares. Discussion of these methods is fol-
lowed by a treatment of the problems of parameter estimation. Besides point
estimates, interval estimation of parameters is carried out to determine the confi-
dence that can be placed in the point estimates and this chapter also includes a
description of interval estimates. The last chapter in the second part, Chapter 9,
deals with entropy. Originating in thermodynamics, the principle of information
theoretic entropy has found applications in many branches of engineering,
including civil and environmental engineering. The fundamental concepts of the
Shannon entropy theory are discussed. The methodology to derive parameters
of normal and gamma distributions by following the Lagrange multiplier
method and the parameter-space expansion method is described. This chapter
also provides a discussion of the fields where the entropy concept has proved to
be useful.

Part 3 of the book, comprising four chapters, deals with Uncertainty Analysis.
Chapter 10 discusses the concepts of error and uncertainty analysis. The focus of
this chapter is on a treatment of the types of uncertainties and analysis of errors.
The Monte Carlo method, a powerful tool to solve a range of problems, is dis-
cussed in Chapter 11. Generation of random numbers comprises an important
part of the Monte Carlo method. Therefore, this chapter provides a discussion of
many techniques that can be used to generate random numbers that follow a
given distribution. Several examples help illustrate the application of Monte
Carlo methods. Because many environmental processes are stochastic and can be
treated as stochastic processes, Chapter 12 gives a preliminary treatment of this
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topic. It includes a discussion of mean, variance, covariance, correlation, station-
arity, correlogram, and spectral density of stochastic processes. The chapter is
concluded with a discussion of time series analysis. Description of many environ-
mental processes requires the use of stochastic differential equations, which are
presented in Chapter 13. Several examples are presented to demonstrate the
application of these equations and the techniques to solve them.

The fourth and last part of the book, encompassing three chapters, focuses on
Risk and Reliability Analysis. The first chapter of this section, Chapter 14,
describes the various reliability measures, such as time to failure and the hazard
function. This is followed by a discussion of two concepts that are widely used in
reliability analysis: margin of safety and factor of safety. The highlight of this
chapter is the discussion on methods of reliability analysis, such as the first-order
approximation, the first-order second moment (FOSM) method, the mean-value
FOSM method, and point estimation methods. A number of real-world examples
are discussed to illustrate the concepts of reliability analysis and estimation.

Chapter 15 is related to risk analysis and management. In this chapter, a
broad view of risk is explained wherein risk is considered as a triplet involving
answering three questions: What can go wrong? What is the probability of
things going wrong? What are the consequences if something goes wrong? Con-
cepts of reliability and failure analysis and event and fault-tree analysis are
explained using suitable examples.

An important area that has drawn much attention and application of the
principles of reliability analysis is the design of water distribution networks
(WDNs). The final chapter of the book, Chapter 16, begins with a basic descrip-
tion of analysis of WDNs, followed by hydraulic reliability analysis of a WDN
for a range of conditions. The entropy method can be useful in hydraulic reliabil-
ity analysis of a WDN and the entropy-based methodology is described in this
chapter. 

The chapters of this book are arranged by keeping in view the requirements
of a typical engineering student, who hopefully has a fundamental knowledge
of mathematics and statistics. This book is intended for senior undergraduate
and beginning graduate students as well as water resources practitioners. Those
who have an adequate background in probability and statistical analysis can
skip the first section of the book and do a quick reading of the first two chapters
of the second section. Numerous examples have been solved step by step and
this should help with understanding of computational procedures. Besides the
book being of value to students, it should also be useful to faculty members and
practitioners working in the fields of civil and environmental engineering,
watershed sciences, and biological and agricultural engineering. Much of the
material has been used for teaching a course on risk and reliability analysis in
civil and environmental engineering. 

—Vijay P. Singh, College Station, Texas
—Sharad K. Jain, Roorkee, India

—Aditya Tyagi, Austin, Texas
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Chapter 1

Rational Decision Making 
Under Uncertainty

The process of decision making can be traced to the beginning of human civiliza-
tion. However, the nature of problems requiring decisions, the type of decisions,
and the decision making tools have undergone dramatic changes over time. Peo-
ple’s intuitive judgment and cognitive ability; the availability of data; access to
computational tools; environmental and ecological considerations; and social,
political, and economic constraints all influence the process of decision making
and the ensuing decisions. Most day-to-day decisions involve a certain amount
of risk, which is factored, either knowingly or unknowingly, into the decision-
making process.

Planning, design, operation, and management of civil and environmental
engineering systems are greatly affected by the vagaries of nature or the uncer-
tainty of natural events. Nature has immense variability, and the information
available to quantify this variability is usually limited. Nevertheless, decisions
have to be made and implemented. Decision theory attempts to provide a system-
atic approach to making rational decisions. Haimes and Stakhiv (1985) have aptly
summarized the overall philosophy of decision making as shown in Fig. 1-1. This
philosophy presents decision making through a triangle whose three vertices are
occupied by benefit–cost theory, decision theory, and sustainability theory. As
shown in the figure, risk and reliability analysis occupies a central place in the
interaction of certainty and uncertainty; efficiency and equity; and single decision
making and collective decision making. The relative importance of the vertices of
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the triangle in the figure changes with social evolution and the development stage
of the society. These days, most societies attach utmost importance to sustainabil-
ity and equity, and decision making therefore is becoming participatory. In line
with the modern-day philosophy and development paradigms, principles of sus-
tainability, equity, and participatory decision making are placed at the apex of the
decision triangle. 

Central to rational decision making and risk assessment is uncertainty. Klir
(1991) and Shackle (1961) have argued that the necessity of decision making
results totally from uncertainty. In other words, if the uncertainty did not exist,
there would be no need for decision making or decision making would be rela-
tively simple and straightforward. One of the main causes of uncertainty in nat-
ural systems is the unpredictability of system behavior. For example, flow in a
river varies in time and experiences highs and lows each year. If one were to con-
sider the lowest flow in each year for a number of years, a series of low flows
would be the result. Prediction of these flows cannot be made with certainty. The
same would apply to the highest yearly flows. Another example is the unpre-
dictability of rainfall or for that matter forecasting of climate. Prediction of earth-
quakes also entails a very high degree of uncertainty, as does prediction of
tornadoes.

A risky decision exposes the decision maker to the possibility of some type
of loss but there are many situations when such a decision has to be made. The

Figure 1-1 The decision triangle for environmental systems 
[adapted from Haimes and Stakhiv, 1985].
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foremost cause involves the vagaries of nature. For example, a decision to build
a project may be risky, because a large flood or hurricane or earthquake might
occur and endanger the structure with resulting loss of life and property. In
addition, a decision may be risky because the natural phenomena are not clearly
understood. Sometimes a risky choice has to be made if the cost of an alternative
that can control the risk is more than the ability or willingness to pay for it. The
ultimate goal is to reduce uncertainty and thereby risk.

1.1 Problems Requiring Decision Making

Most problems in environmental and water resources, as shown in Fig. 1-2, can
be classified in six categories: (1) prediction (i.e., the system output is unknown
but the system geometry and governing equations as well as system input are
known), (2) forecasting (i.e., for a given system input and system geometry, the
system output is forecasted in real time; this is different from prediction, where a
specific time is not of concern), (3) detection (i.e., system output and system
equations are known but system input is unknown; this is also referred to as an
instrumentation problem), (4) identification (i.e., the system input and output
are known but system parameters are unknown; this is an identification prob-
lem), (5) design (i.e., the system input is known and output is either known or
assumed but the system is constructed based on certain hypotheses and then the
desired system output is predicted; if the predicted output is acceptable, the con-
structed system is acceptable; otherwise the system needs to be reconstructed
and the cycle needs to be repeated), and (6) simulation or modeling (i.e., a com-
bination of categories (1) and (4) in which first the system is identified and then
prediction is performed). Illustrative examples of these problems are as follows:
A highway engineer may be assigned the task of designing a highway bridge
(design problem), a water resources manager may be interested in predicting the
peak flow of the Mississippi River at Baton Rouge (prediction problem), a
hydrometeorologist may be asked to forecast rainfall on a particular day next
week (forecasting problem), an environmental engineer may want to analyze the
water quality of the Amite River at Denham Springs or calibrate a water treat-
ment system for performance evaluation (analysis and identification problem), a
groundwater engineer may want to determine parameters of an aquifer using
pumping data (identification problem), a soil physicist may want to calibrate a
neutron probe for measuring soil moisture (detection problem), a geotechnical
engineer may want to simulate the behavior of a pile foundation when a goods
train passes over the bridge (simulation or modeling problem), and a watershed
manager may want to develop a watershed model for simulating the impact of
land use changes on the watershed (modeling or simulation problem). 

An environmental or water resources system can be represented by (1) the
system geometry, (2) the equations governing the system, (3) the sources and
sinks to which the system is subjected, (4) initial and boundary conditions that
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the system must satisfy, and (5) the system output or response. As an example,
consider a watershed with the goal of predicting runoff from the watershed as a
function of time for a given rainfall event. Thus, the watershed is the system
here. Rainfall is the input or source for the watershed. Infiltration and evapora-
tion are the sinks of the watershed. The watershed has a certain topography and
channel network, which, in turn, define the watershed geometry. Hydraulic
equations of flow over land areas and in channels are the equations governing
the flow in the watershed. Runoff is generated based on the initial state of the
watershed (antecedent moisture condition) and the upstream and downstream
boundaries. The governing equations must satisfy these conditions. Solution of
these equations yields runoff as a function of time. This is a typical prediction
problem. 

Environmental and water resources systems are subject to uncertainties that
are due to natural randomness (or caused by the vagaries of nature) as well as
human-induced errors or factors. For example, consider the problem of predict-
ing runoff from a watershed for a given rainfall event. In this problem, there is
uncertainty in the areal mapping of rainfall, because rainfall varies spatially. In
practice, rainfall is measured only at a point and the point measurement is used
to represent rainfall over an area. Because of inherent randomness in the rainfall
field, there are uncertainties in rainfall measurements caused by wind, angle of

Figure 1-2 Conceptual depiction of decision making under uncertainty. 
EMV = effective monetary value, and EUV = effective utility value.
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incidence, raindrop size, and so on. There may also be errors in rainfall measure-
ments resulting from instrumental defects, improper rain gauge location, etc.
Similarly, infiltration and evaporation have uncertainties. The watershed geome-
try also has less than certain elements. The governing equations, expressed as
partial differential equations (PDEs), may themselves be in error. The resistance
parameter, such as Manning’s friction factor, in the momentum equation is spa-
tially variable but only an average value is used. Thus it is also subject to uncer-
tainty. Furthermore, round-off and truncation errors may arise in computations.
These uncertainties in virtually every component of the prediction problem will
introduce uncertainty in the predicted runoff. 

This discussion shows that solutions of the aforementioned types of prob-
lems are subject to uncertainty. This leads to the necessity of making decisions
under uncertainty. To make a decision, the problem is to be solved nevertheless.
In the event of uncertainty, a typical problem-solving approach entails preparing
a model of the system, as shown in Fig. 1-3. The model variables are considered
random and are described by laws of probability or probability distribution
functions. Then, parameters of these distributions need to be estimated. One can
then compute the error and thereby the associated risk and reliability of the
model output or the solution of the problem. 

It may be noted that the uncertainty resulting from natural causes can be
reduced to some extent by collecting more comprehensive data and using
improved models. Even then, it is not possible to remove the uncertainty beyond
a limit, because nature has immense variability and any model used will be a
simplified depiction of reality. Thus, the objective should be to understand the
causes and sources of uncertainty, deal rationally with uncertainty, and integrate
it with decision making. Klemes (1971) appropriately noted: “Nowadays in
hydrology, and the more so in engineering, uncertainty is still regarded as a
regrettable imperfection in the body of knowledge, as it was in the 19th century
physics. As in physics, it also seems that in hydrology and engineering, progress
lies not in trying to remove the uncertainty at any cost but in learning how to
make it one of the legitimate elements of our concepts.” Of course, this was the
view about 30 years ago, but the perceptions about uncertainty have now begun
to change.

Figure 1-3  An approach for decision making under uncertainty.

Models PDEs Parameter 
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1.2 Concept of Rationality

The presence of uncertainty notwithstanding, decisions about environmental
and water engineering systems, such as reservoirs, irrigation systems, water
purification systems, flood control, water diversion, water supply, land reclama-
tion, hydropower generation, drainage, transportation, environmental pollution,
and so on, should be rational. To judge whether a decision is rational or not, the
decision-making process itself needs to be considered along with criteria of
rationality. The basic question is “What is rationality?” In social sciences, Bou-
don (2003) reviews rational choice theory and presents a broader concept of
rationality. He quotes Rescher (1975): “[R]ationality is in its very nature teleolog-
ical and ends-oriented.” He goes on: “Cognitive rationality is concerned with
achieving true beliefs. Evaluative rationality is concerned with making correct
evaluation. Practical rationality is concerned with the effective pursuit of appro-
priate objectives.” Boudon (2003) emphasizes that “teleological” is not synony-
mous with “instrumental” or “consequential.” These forms of rationality are
goal oriented but the nature of the goals can be diverse. From an engineering
standpoint, four criteria seem to emanate from these forms of rationality that
may essentially constitute the concept of rationality: (1) the objective to be
achieved, (2) the identification of alternatives to achieve the objective, (3) the
evaluation of alternatives, and (4) the selection of an alternative using objective
criteria.

First, the decision must be aimed at an objective that is to be achieved when
solving a problem. Consider, for example, that the life of an overhead water tank
is over and it needs to be replaced. The problem is to design a tank. The objective
is to design a tank that meets some projected demands, is economical, is durable,
and has a pleasing appearance. Thus, the objective includes the technical solu-
tion plus some additional aspects. Failure to meet any of these objectives in a
new design may make it unacceptable and the underlying decision will be irra-
tional. Consider another example in which an old bridge over a stream is to be
replaced. The objective is not just to design any bridge but a bridge that will
meet the increased traffic demands, is designed for the heaviest vehicles antici-
pated, is economical and durable, and has a pleasing appearance. Failure to
meet any of these objectives in the new bridge design will make the decision to
build the bridge irrational.

Second, there might be many designs that would, to a greater or lesser
degree, meet the stated objective. This leads to the second criterion of rationality,
which states that the decision maker must identify and study enough alterna-
tives to ensure that the best alternative is among them. This does not imply an
exhaustive search of all possible alternatives, but one must have an open mind
for alternative solutions. For example, the tank designer may be a specialist in
steel construction but that should not prevent the designer from considering the
advantages that reinforced concrete might offer. In the case of a bridge design, it
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is appropriate to consider alternative designs based on steel, concrete, or timber.
Each alternative design has its pros and cons and has a certain amount of risk.

Third, a choice has to be made among alternatives by following an objective
evaluation process. Each alternative has its consequences and associated benefits
and costs. In the tank or bridge design example, some designs have a lower cost,
some have a longer useful life, some require more maintenance and some less,
some look better in appearance than others, some can be built using local labor
and locally available material, some can be built faster than others and with little
interruption in services, and so on. All the consequences must be taken into
account when evaluating and ranking different alternatives. For the evaluation
process to be objective, one must employ objective criteria. For example, one can
express each consequence in terms of a monetary value measured in terms of a
currency, say, the U.S. dollar. A difficulty, however, is encountered with the eval-
uation of those aspects for which there is no market value, for example, service
interruption or aesthetic value or loss of life. The answers in such cases are not
very precise and have an element of subjectivity. Nevertheless, one can make a
guess and obtain some upper and lower limits that will suffice to rank alterna-
tives and find the best alternative among them. One then adds up the value of
each of the consequences and arrives at the relative value of the alternatives. 

Fourth, the relative values of different alternatives are then compared and
ranked. The best alternative is thus selected. However, this selection procedure
should be employed qualitatively and with a sense of judgment. There may be
other considerations that should also be taken into account. For example, the rel-
ative value of one alternative may be lower than that of another alternative but
may still be preferable. The higher-value alternative may cost more than a lower-
value alternative and may therefore not be affordable. 

Another way to select an alternative from a number of alternative decisions
may be to employ two steps. Step one is to do the initial screening of all alterna-
tives and eliminate the inferior alternatives. This will permit only a few worthy
alternatives for further consideration. Step two is to consider all the available
information and choose the alternative that is expected to have the highest value
or the least risk. Indeed this two-step procedure is normally the one employed in
hiring people. Of course, there is no guarantee that this alternative will be the
best; there might be situations wherein the selected alternative will not be up to
the expectation. 

Another consideration in selecting an alternative is the constituency for
which the decision is to be made. For example, a decision about water supply for
agricultural irrigation must take into account farmers’ concerns and attitudes
relative to crops, productivity, soil and water management, environmental qual-
ity, and so on. Another example is making a decision on evacuating people
before the arrival of a likely hurricane. Different people have different attitudes
toward evacuation, tempered by the level of risk and damage. Any evacuation
plan must consider people’s aspirations, attitudes, and concerns. In such cases
people’s participation is of considerable value. 
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In engineering design, especially structural, geotechnical, and hydraulic
design, it is normally argued that the factor of safety adequately accounts for the
adverse impacts of uncertainty (e.g., environmental, engineering, social, or eco-
nomic). However, this factor can, at best, be considered sufficient only with
respect to the longevity of the structure against uncertainty. Engineering design
and operation of projects require an explicit risk analysis and management. This
is particularly important when dealing with low-probability high-consequence
events, such as large floods, dam failure, levee rupture, subsidence, hurricanes,
earthquakes, and large-scale drought. 

In real life, personal considerations play a significant role in choosing an
alternative and these personal considerations vary with the size of the project or
the nature of the problem. Many times people make decisions based on just one
factor. For example, for small projects, such as building a house, personal likes or
dislikes of a particular architectural design may be the determinant factor. In
other words, the scale of a project and personal likes and dislikes must be taken
into consideration. 

1.3 Evaluation of Alternatives

There are many criteria by which alternatives, taking uncertainty into account,
can be evaluated and selected: economic, risk, safety, environmental, and so on.
Here we discuss only a simple economic criterion and defer discussion of other
criteria to Chapter 15. One economic measure in which the uncertainty can be
accounted for is the expected monetary value (EMV) or the expected utility
value (EUV). Consider, for example, alternatives and their consequences or out-
comes. It is assumed that possible outcomes expressed as profit or loss are asso-
ciated with appropriate probability values. For each alternative, its outcomes are
then weighted with the corresponding probability values, and the sum of the
weighted outcomes of each alternative decision is then computed. The weighted
sum determines the EMV of each decision. The decision with the greatest EMV
may be the preferred decision. In this manner, EMV attempts to maximize the
expected benefit or minimize the expected cost.

Let us now consider that a house is to be constructed for specified require-
ments on a purchased parcel of land. Several alternative house designs can be
considered. Let us consider how an alternative house design can be evaluated.
The initial cost of the house, operational (heating, cooling, and so on) costs,
maintenance requirements and costs, and useful life can be expressed in dollars.
Likewise, it is relatively easy to calculate the cost of painting the house, redoing
the patio, or replacing certain components, such as a heater, an air conditioner, a
ventilating system, a fireplace, windows, and doors. However, there are other
considerations that are also important and need to be considered: vulnerability
to unexpected natural events, such as extreme winds, flooding, and fire; the
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possibility for further extension; and safety. It is not easy to express these consid-
erations in economic terms but there are indirect ways to accomplish this. For
example, vulnerability can be expressed in terms of the cost of insurance that
one may purchase. It should, however, be noted that expenditures, such as the
initial cost, are not always immediate but occur at specified intervals. For exam-
ple, the house loan may be for a period of 10 years; the cost of the house will
then be paid during this period. This points to the effective value of money, say,
in terms of dollars (i.e., because of inflation the value of a dollar at a future date
is not the same as it is today). To account for the change in the value of a dollar
with time, the money markets have established interest rates that express this
change in value. Consider, for example, an interest rate of 5% for the next 10
years. If an amount of $100,000 is invested today, then 10 years from now, it will
amount to $100,000(1 + 0.05)10 = $162,889. In other words, $162,889 invested 10
years from now will have the same value as $100,000 has now. There are, how-
ever, consequences for which there is no market value, as, for example, interrup-
tion in residency during major repair work, inconvenience, emotional value, etc.
It is difficult to evaluate such consequences. The question then arises as to the
worth of these nonquantifiable consequences. How much are the people willing
to pay for less interruption, reduced inconvenience, more emotional value, etc.?
It is difficult to get precise numbers for such consequences, for they are subjec-
tive. Nevertheless, one can at least specify some upper and lower limits for the
monetary value that might suffice to rank alternative designs and enable selec-
tion of the best alternative. 

As an example, consider the case of a house design where three alternative
designs are to be evaluated. These alternatives are designated as I, II, and III.
Assume that each design is to be evaluated by considering three aspects: foun-
dation A, material B, and labor C. For design I, IA denotes the foundation for
design I, IB denotes the material needed for design I, and IC denotes the labor
for design I. Each aspect has an effective cost based on probabilistic consider-
ations. For design I, IA has effective cost ECIA, IB has effective cost ECIB, and IC
has effective cost ECIC. In a similar manner, designs II and III are represented.
These designs can be represented as a decision tree, as schematically shown in
Fig. 1-4. Associated with each branch representing a design is a set of conse-
quences, which are entered into the calculation of the relative value of the alter-
native. The relative value is then used for ranking alternative designs.

This exercise essentially comprises a rational planning process consisting of
defining an objective, identifying alternative means of achieving the objective,
and applying a ranking procedure to determine the best alternative. Although it
is conceptually quite simple, in the real world often little planning and little
rationality are employed even for important decisions. A common occurrence is
not to consider alternatives. Quite frequently, the decision is made based on pre-
cedent, tradition, lack of preparation, personal bias, prejudice, or shortsighted-
ness. Many a time, there is a deliberate effort to postpone making decisions,
however consequential they are. The result is that no time is left for anything but



12 Risk and Reliability Analysis

to continue the present practice. Another common error is the presumption in
value judgment. The one making the decision may have his or her own ideas as
to what is important and what is not important and may not bother to support
others in participating in the decision-making process. For rational decision
making, decision makers must transcend their own value judgment and keep
the judgment of the client or the community being served as paramount. Exam-
ples of different types of errors abound and they will be discussed in Chapter 10.
Each error introduces an element of uncertainty. 

Three types of situations can arise in a decision-making process: decision
making under certainty, decision making under uncertainty, and decision mak-
ing under risk. When a decision is to be made under certainty, the input data and
their relations are known. The preference of the decision maker is expressed
through an objective function, which is defined or known in the given circum-
stances. A common objective function is the benefit–cost ratio. The problem is
solved using an optimization technique, such as linear programming, dynamic
programming, or goal programming. Then the best decision is determined based
on the value of the objective function. Additionally, one may employ intuitive
techniques to solve the problem. For example, Taha (2003) describes an analyti-

Figure 1-4 Decision tree. I, II, and III are alternatives; letters A, B, and C associated with 
the alternatives denote the consequences of the respective alternatives in terms of 

foundation, material, and labor; and ECIs, ECIIs and ECIIIs are costs of the consequences.
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cal hierarchical approach for such problems. In this case, decision making is ana-
lytical and relatively simple. 

In the problems related to decision making under uncertainty or risk, the
benefits and costs associated with each decision are commonly expressed using
probability distributions. In the absence of one definite outcome, an expected
value criterion may be adopted for comparing decisions. Based on the optimiza-
tion of the expected profit or expected loss, decisions are then evaluated. When
the number of alternatives is small, decision-tree analysis can be used to find the
best alternative or decision. 

1.4 Dealing with Uncertainty

There are many types of uncertainties, some quantifiable and some not. For
example, some people may have difficulty making up their minds, some people
may have their own personal biases or preferences, there may be delays in the
transmission of pertinent information, there may be mismanagement, and so on.
All these may create considerable uncertainty in decision making and are diffi-
cult to quantify. Our objective here is not to deal with every kind of uncertainty
but only with the kind of uncertainty that can be measured quantitatively, at
least in principle. For example, if a coin is tossed, there is no way to know in
advance whether heads will turn up. But the event that heads will turn up has a
probability of 50% each time the coin is tossed. Similarly, a probability value can
be assigned to the event that the peak flow in the Amite River at Denham
Springs in Louisiana in any given year will exceed 5,000 m3/s.  One can also
determine the probability that the number of rain-free days in the month of
August in Baton Rouge will exceed 25 or that the number of westbound cars that
will cross the toll bridge at the Mississippi River in New Orleans will exceed
10,000 on any given working day. This kind of uncertainty is the uncertainty
associated with the randomness of the event. 

One can go a step further and investigate the uncertainty in the conclusions
about uncertain events. For example, one may calculate the probability p that in
any given year the peak flow in the Amite River exceeds 5,000 m3/s  and con-
clude that p is 2%. But there is an element of uncertainty in the computed value
of p that depends on the amount and quality of the data as well as the method
used for its determination. Thus, the following question arises: What is the prob-
ability that p lies within the given range p – Δp to p + Δp? Statistical procedures
can be employed to analyze random events and make probability assessments.
In this manner, one can deal rationally with uncertainty but cannot eliminate it. 

In principle, it is not too difficult to deal with uncertain events in the deci-
sion-making process. Events that are certain to occur, or conclusions that are cer-
tainly true, must, of course, be fully taken into account. Corresponding to the
probability of 1 assigned to certain events, these certain events are given the
weight of 1. Impossible events, in contrast, are disregarded in decision making
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and given the weight of 0, corresponding to the probability of 0 assigned to all
impossible events. These two types of events define the length of the scale. Any
event in between is given a weight equal to the probability of its occurrence.
Thus, the more likely an event, the more weight it gets and the greater its relative
effect on the outcome or the decision. A simple illustration of this decision policy
is considered in Example 1.1. 

Example 1.1 A farmer in India owns an agricultural farm adjacent to a canal. He
can use the canal water for irrigation, which is very cheap, but the supply is
available with only a 70% reliability. The cost of canal water per year is esti-
mated at 2,000 rupees (Rs). The farmer has an option to install a small well cost-
ing Rs 54,000, which he can use when water from the canal is not available. The
farmer estimates that he will be spending about Rs 13,000 each year to meet the
running expenditure of this well to supply water and the life of this well is about
3 years. Alternately, he may construct a big well to meet his entire farm require-
ment and be free from dependence on the canal water. This big well will cost Rs
195,000 to construct and will last for about 15 years. The well operation will cost
nearly Rs 17,000 per year. If adequate water is available, the value of production
from the farm is Rs 120,000 per year. What should the farmer do? 

Solution Let us consider the three options that the farmer has. Based on these
options he can make a rational decision.

(i) If the farmer is completely dependent on the canal water, the expected
value of production will be 

Rs 120,000 × 0.7 – Rs 2,000 = Rs 82,000 per year

(ii) If the farmer decides to construct a small well, the expenditure toward
the well will be Rs 12,000 + Rs 54,000/3 = Rs 30,000. Thus, his net benefit
will be 

Rs 120,000 – Rs 2,000 – Rs 30,000 = Rs 88,000 per year

(iii) If he constructs a large well, the annual expenditure toward the well will
be Rs 17,000 + Rs 195,000/15 = Rs 30,000. Therefore, his net benefit will be

Rs 120,000 – Rs 30,000 = Rs 90,000 per year

Each option now has a monetary value. Option iii has the largest expected
benefit and option i has the lowest expected benefit. However, the construction
of a large well involves a heavy expenditure in the beginning, whereas a small
well is considerably cheaper to construct. Of course, the small well will require
installation expenditure every three years. Many farmers will have to borrow
money to construct a large well and the interest rate will be an important param-
eter in decision making. Clearly, it is better for the farmer to construct a well.
Whether he goes for a large well or a small well largely depends upon his paying
capacity and the willingness to spend the needed sum of money. If his paying
capacity is limited, the large well may not be a viable option.
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Many farmers in countries with a large population and limited agricultural
land have small holdings. If the value of the farm produce is Rs 80,000 per
annum then one gets a different trade-off. For the first option, his net benefit
will be Rs 80,000 × 0.7 – Rs 2,000 = Rs 54,000 per annum and for the second
option, it will be Rs 80,000 – Rs 2,000 – Rs 30,000 = Rs 48,000 (assuming that the
running expenditure remains the same). For the third option, the net benefit
will be Rs 80,000 – Rs 30,000 = Rs 50,000. Thus, this farmer will be worse off if
he decides to construct a well and opt for the second option. He may elect to
stay with the first option. Even though the third option ranks second in terms of
the net expected benefit it may not be worth considering for a small farmer
because of his limited paying capacity.

Example 1.2 A paper factory is being planned in an area. As paper making
requires a considerable amount of water (about 40 m3 of water is needed per ton
of paper produced), the owner prefers a site near a river. One such site that is also
close to an interstate highway is available but the river runs dry for three months
each year. This problem can be overcome by constructing a small reservoir but
the river water necessarily requires treatment before use. The cost of raw water
will be 50 cents per m3 but the treatment cost and expenditure for the impound-
ment will make the cost nearly 110 cents per m3. The factory owner can also get a
permit to pump water from an aquifer at a depth of 325 m and this water will not
require any treatment but the cost will be about 120 cents per m3 of water. What is
the best course of action to meet the water supply demand of the factory? Discuss
the likely answer qualitatively without doing any calculation.

Solution A first inspection of the data shows that it will be better for the factory
owner to opt for surface water for the plant. However, there might be some other
factors that may influence the owner's final decision. Additional land will be
required for impoundment and treatment facilities. Since the river will be dry
for three months, the size of impoundment should be sufficiently large to meet
the demand during this period. There might be significant losses of water owing
to evaporation and seepage. Another important point is that the groundwater
availability usually has a high reliability, whereas there may be instances when
the river is dry for more than three months. After all, rainfall is highly uncertain
and prolonged droughts are not uncommon as evidenced in recent years.

The quality of paper produced depends upon the quality of water used.
Since the marginal difference in the price of water is only 10 cents per ton of
paper produced, many decision makers may base their decisions on other
factors.

The purpose of this example is to qualitatively illustrate that many real-life
problems do not have a straightforward answer and a number of related factors
require a careful examination before making a decision. Different people have
different risk perceptions. Consequently, the whole process may be quite subjec-
tive, particularly when two or more options are equally attractive.
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Example 1.3 Suppose a contractor in Louisiana has bid for a job of repairing a
highway in the month of June. For doing the repair work, the contractor needs a
certain number of rain-free days. To ensure completion of the work in time, there
is a clause in the contract that the contractor forfeits her payment if the work is
not completed in time. The contractor enters a bid for $5,000,000. What is the rea-
sonable course of action?

Solution There are several alternatives that the contractor initially considers.
After initial screening she eliminates what she considers inferior alternatives
and finally decides on evaluating only three alternatives for completing the
work. The first alternative is based on the calculation that she can complete the
work in 20 days at a cost of $3,000,000 with her own equipment. Analysis of
rainfall data reveals that there is a 30% chance of having fewer than 20 rain-free
days in June. 

The second alternative is that the contractor can buy additional equipment
and can then finish the work in 15 days at a cost of $3,500,000. There is, however,
a 10% probability that there will be fewer than 15 rain-free days in June. 

The third alternative is that the contractor can partner with another contrac-
tor and finish the work in 10 days at a cost of $4,000,000. Analysis of rainfall data
shows that there is virtually no chance of having fewer than 10 rain-free days in
June.

To make a rational decision, one can consider the decision tree with the three
alternatives and their associated consequences or outcomes. Rainfall in the
month of June is a random variable and clearly influences the consequences of
the three alternative courses of action and the resulting outcomes. The possible
outcomes, profit or loss, are associated with appropriate probability values.
These outcomes must be weighted with the corresponding probability values,
and the sum of the weighted outcomes of each decision is then computed. The
weighted sum determines the EMV of each decision. The decision with the
greatest EMV may be the preferred decision but may not necessarily be the best
decision.

Let us now compute the EMV of each alternative decision. In the first alter-
native, the profit will be $2,000,000 with a probability of 0.7 and the loss will be
$3,000,000 with a probability of 0.3. Therefore,

EMV = $2,000,000 × 0.7 – $3,000,000 × 0.3 = $500,000

For the second alternative, the profit will be $1,500,000 with a probability of
0.9 and the loss will be $3,500,000 with a probability of 0.1. Therefore, 

EMV = $1,500,000 × 0.9 – $3,500,000 × 0.1 = $1,000,000

For the third alternative, the profit will be $1,000,000 with a probability of 1
and the loss will be $4,000,000 with a probability of 0. Thus, 

EMV = $1,000,000 × 1 – $4,000,000 × 0 = $1,000,000

These three courses of action are depicted in Fig. 1-5. In terms of the EMVs,
alternatives can be ranked as alternative C, alternative B, and alternative A.
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Clearly, alternative C, involving the help of another contractor, and alternative B
yield higher EMV than does alternative A and one of them should be the pre-
ferred decision.

A few comments are, however, in order. First, EMV is a technical term and
does not consider human aspects in any real situation. Second, the decision lead-
ing to the third alternative may be rational, but that may not be necessarily the
one every contractor would want to adopt. In particular, one might note that
alternatives B and C have the same EMVs. This would be interpreted as rela-
tively small sensitivity of the EMV criterion to the choice between B and C. Yet
many contractors would have a strong preference for either one or the other in a
real situation. This means that the EMV-based decision may not necessarily be
the “best” in every sense of the word. Even though alternative C or B is ranked
higher, it may not always be the best one. It is possible that the two contractors
may not be able to work together. In this case, the element of uncertainty is
higher, because two contractors are involved. In some cases a contractor might
decide to go alone and might prefer alternative B or alternative A and settle for
somewhat less profit. At least in this case the contractor does not have to depend
on somebody else. Depending on the problem at hand, there may be many situa-
tions where the decision maker may not make the decision solely on the basis of
the EMV. Nevertheless, EMV does provide guidance for making a rational deci-
sion. Experience and judgment should also be factored in decision making. The
nature of the problem for which a decision is to be made has a great deal of influ-
ence on the very nature of the decision-making process. 

Figure 1-5 Decision tree showing the value of each alternative.
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1.5 Decision-Making Policy

One criticism of EMV-based decision making is that the calculated EMVs do not
necessarily identify the “best” decision. Let us consider Example 1.3 further.
Alternatives B and C in this example should not necessarily be rated equally
desirable. The question then is which of the two would be preferable and why.
EMV does not adequately integrate the consequences, especially the human
aspects, of each possible outcome, which are different for different people.
Indeed, a 30% risk of losing $3,000,000 may not be unacceptable to the contractor
and she may therefore like to go for an alternative that will be the least risky
from a technical point of view. Even the 10% chance of losing $4,000,000 may
make alternative C more attractive to her than alternative B. What this shows is
that the value of profit is different for different people. Similarly, the value of loss
is also different for different people. The value of profit and the value of loss are
also different for the same amount of money. In other words, the value of money
is different for different people as is true of the incremental value of money. Fur-
thermore, the incremental value depends on the initial monetary state. For
example, a million dollars is a lot of money or has a lot of value for a poor person
but not so much for a billionaire. In other words, the value of money to a person
is influenced by a multitude of factors. The relationship between the real money
and its value is what defines the EUV; this relationship is nonlinear for both
profit and loss and cannot be defined to be the same for all people. It is this non-
linear property of the value of losses that forms the basis for taking out
insurance.

Consider, for example, the case of flood insurance in Louisiana. Flooding is a
common occurrence in many parts of this state. People there buy insurance to
protect their property from flooding. Let us say that a house owner buys insur-
ance for $200,000 against a 100-year flood. The mortgage on the house is for 30
years. There is a 26% probability of being flooded by a 100-year flood in a 30-
year period. On an annual basis, the yearly loss would be $200,000 × 0.26/30 =
$2,176. This is the insurance rate that the owner should be willing to pay yearly.
This can also be considered as the EMV of the yearly loss. This means that the
house owner should not pay more than $2,176 for flood insurance. If the owner
did not buy the insurance and lost the property because of flooding, the loss
might be a crippling one. Therefore, it will not be unacceptable for the house
owner to buy insurance costing even more to protect against such a loss. This
kind of decision is, technically speaking, not irrational.

In a similar vein, the value of gains is not linear either and this value may
vary from person to person as well as from one place to another and from one
time to another. For example, the value of $100,000 is not the same for two per-
sons and is not the same at all times and at all places for the same person. A per-
son would get more satisfaction out of a gain of $200,000 than out of a gain of
$100,000, but the satisfaction, or more precisely, the value of gain to that person
is not necessarily twice as much. This nonlinear relationship of gain and loss to
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real dollars can be expressed EUV or “utility dollar” if dollars are the measure of
monetary value. This value or dollar is different from the real numerical value or
dollar but can be related to real dollars. In the case of gain, the effective value of
the dollar is usually less than the real dollar (i.e., the ratio of utility dollar to real
dollar is less than one). Thus the effective value of $100 is less than this
amount—it may be $90. However, the effective value of the dollar in the case of
loss is greater than the real dollar (i.e., the ratio of the utility dollar to real dollar
is greater than one). This nonlinear relationship between utility dollar and real
dollar is sketched in Fig. 1-6. This relationship has approximately a 45-degree
slope near the origin, indicating that for relatively small gains and losses the util-
ity dollar and the real dollar have the same value. Large gains are discounted
somewhat and large losses are given greater negative utility value because of
their crippling effect. This relationship may, however, be different for different
persons, depending on their particular limitations, as well as for the same per-
son at different times or under different circumstances. By using the utility dol-
lar, the consequences of any outcome can be evaluated by the same linear
operations of weighing and addition as before. Conceptually, Fig. 1-6 is simple
but the determination of the nonlinear relationship is quite difficult, because it
involves value judgments that cannot be quantified and avoided in real life and
in making actual decisions. The relationship between the real dollar and effec-
tive monetary value as well as that between the real dollar and effective utility
value can vary in a multitude of ways, depending upon a particular situation
and a particular individual or organization. Figure 1-6 depicts some of these
cases. Conceptually, EUV looks attractive but it is difficult to quantify, and there-
fore its practical utility is limited or doubtful. 

1.5.1 Calculation of Effective Monetary Value and Effective Utility 
Value

The expected value of a decision is the sum of the weighted values of the possi-
ble outcomes of that decision. In other words, the dollar value of each possible
outcome is multiplied by the probability of the outcome. Then all weighted dol-
lar values are summed up. This procedure is simple when the number of possi-
ble outcomes is finite and a probability value can be determined for each
outcome. However, a difficulty may arise when the number of possible out-
comes is large. Consider an example of determining the EMV of hurricane-
caused flood damage in an area. Each possible flood level above a critical level
corresponds to a certain amount of damage. Theoretically, the number of possi-
ble flood levels is very large and therefore the flood damage can take on a large
number of dollar values. To determine the damage, one can divide the entire
range of possible flood levels into a finite number of intervals, each, say, 0.5 m
higher than the previous one. One can then assign an average flood damage to
each interval. Based on the frequency analysis of flood-level data, one can relate
a probability value to each flood-level interval; likewise one can determine the
probability for each of the finite number of average damages. This permits
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computation of the weighted sum of flood damages or the EMV of flood dam-
ages. The same procedure can be applied when working with utility dollars.

Example 1.4 For flood protection, many measures are employed, depending
upon the situation at hand. Such measures include structural measures, non-
structural measures, and a combination thereof. Structural measures may
include construction of a dam, dykes, levees, a diversion structure, or a drainage
system. Nonstructural measures may include land use management, water har-
vesting, afforestation, and soil conservation. 

There are many areas in the United States that suffer flood damage each year.
Louisiana has more than its share of such places. We all have learned of the dev-
astation in New Orleans and the Gulf Coast area brought about by Katrina and
subsequent levee breaching. In one area located near Amite River, Louisiana, a
major hypothetical flood caused damage of $100 million. The officials of this
area would like to reduce this damage value to a much smaller value. They
would like to evaluate different options for protecting this area. These options
may include (1) construction of a dam, (2) construction of levees, (3) construction
of a drainage system, and (4) development of proper land use. While selecting
the schemes, one can use two methods. The first method ignores frequency anal-
ysis and simply computes benefit–cost ratio. Of course, the EMV of each option
in this case is simply the difference between benefit and cost. Thus, one wants to
select the scheme that is most cost effective (highest benefit–cost ratio). The sec-
ond method employs a statistical method, considering discharge, stage, and
damage as random variables. It then computes the EMV values of different

Figure 1-6 Relationships between effective monetary value and effective utility value.
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options designed to protect the area. Use both methods to select the flood protec-
tion scheme and compare the EMVs. 

Assume the following construction costs: $40 million for a dam, $30 million
for levees, $24 million for a drainage system, and $20 million for land use. Each
scheme will reduce the damage differently and also change the stage–discharge
curve differently. The reduced damage will be $20 million for the dam, $25 mil-
lion for the levees, $36 million for the drainage system, and $40 million for the
land use. 

Table 1-4 contains data on annual peak discharge, stage, and flood damage
for the area under consideration in Louisiana. For the data the relationship
between discharge Q ft3/s (cfs)  and stage H (ft) may be expressed by the follow-
ing equation: 

H = 8.0451 ln Q – 52.619 or 

The relationship between stage and damage D (in millions of dollars) may be
expressed by the following equation conditioning on the stage greater than or
equal to 31 ft: 

H= 1.191 ln D + 19.987 or 

One does not necessarily have to use these relationships. Other suitable rela-
tionships can be derived if so desired. 

Solution The first option for evaluating flood protection schemes is without
considering uncertainty; that is, determine the EMV of each scheme. To that end,
if the dam is constructed it will have a benefit of $80 million. The net benefit will
be $80 million − $40 million = $40 million. This is also the EMV of the flood ben-
efit of the dam scheme. The benefit–cost ratio is 1. For the levees, the damage is
reduced to $25 million. The benefit is $100 million – $25 million = $75 million.
The net benefit is $75 million – $30 million = $45 million. This is also the EMV of
the flood benefit of the levee scheme. This gives a benefit–cost ratio of 1.5. For
the drainage system, the damage is reduced to $36 million, so the benefit is $100
million – $36 million = $64 million. The net benefit is $64 million – $24 million =
$40 million, giving a benefit–cost ratio of 1.67. The EMV of the drainage system
scheme is also $40 million. For the land use option, the benefit is $100 million –
$40 million = $60 million. The net benefit is $60 million – $20 million = $40 mil-
lion, yielding a benefit–cost ratio of 2. The EMV of the land use scheme is $40
million. Based on the benefit–cost ratio, one may want to select the land use
option because it has the highest benefit–cost ratio.

Now the second option is examined. This option considers evaluating the
EMV of flood damage for each flood protection scheme under uncertainty. Note
that flood peak Q is a random variable, and so are floods on the Amite River
occurring each year. Likewise, flood damage is a random variable and its value
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Table E1-4 Discharge, stage, and damage data. 

Discharge (cfs) Stage (ft) Damage ($)

91,282 39.27 1.16 ×107

39,348 32.5 3.94 ×104

44,335 33.46 8.83 ×104

63,340 36.33 9.82 ×105

60,418 35.95 7.14 ×105

50,265 34.47 2.06 ×105

50,768 34.55 2.20 ×105

47,531 34.02 1.41 ×105

55,452 35.26 4.00 ×105

53,755 35.01 3.24 ×105

64,693 36.5 1.13 ×106

114,313 41.08 5.30 ×107

33,394 31.18 1.30 ×104

66,321 36.7 1.34 ×106

60,493 35.96 7.20 ×105

37,861 32.19 3.04 ×104

98,473 39.88 1.93 ×107

43,300 33.27 7.52 ×104

79,419 38.15 4.53 ×106

61,555 36.1 8.10 ×105

60,268 35.93 7.02 ×105

43,679 33.34 7.98 ×104

54,023 35.05 3.35 ×105

44,778 33.54 9.44 ×104

35,184 31.6 1.85 ×104

81,317 38.34 5.31 ×106

48,426 34.17 1.60 ×105
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changes from year to year. The other variable is water level or stage, because
flood damage is related to it rather than to flow. Thus, three random variables
are to be dealt with: the flood peak discharge Q, the corresponding flood stage
H, and the corresponding flood damage D. To compute flood damage, three rela-
tionships are needed: (1) a relationship between peak flow and the correspond-
ing water level (i.e., a rating curve) at the nearby gauge, (2) a relationship
between stage and the corresponding flood damage, and (3) a relationship
between the dollar value and damage. From the data available at the nearby
gauge, the rating curve (the relationship between H and Q) is given as shown in
Fig. 1-7a. The second relationship between the flood stage H and the flood dam-
age D is obtained from the data on actual damage figures and water level obser-
vations and is also given as shown in Fig. 1-7b. Analytical expressions for these
relationships are given. 

In evaluating flood protection schemes under uncertainty, the first step is to
perform a frequency analysis of historical flood peak data (Table 1-4) and construct
a cumulative distribution function (CDF) of Q, F(Q), as shown in Fig. 1-7b. Like-
wise, a CDF of flood damage D, F(D), is constructed as shown in Fig. 1-7d.

Not all flood peaks cause damage; only some do and these usually are in the
upper 20% range (i.e., flood peaks in this range contain all damaging floods).
This part of the CDF is plotted separately as shown in Fig. 1-7c. The second step
is to construct a CDF of annual flood damage as shown in Fig. 1-7d (for flood
discharge values, selected ones are in the upper 20th percentile). Each year the
flood peak remains below 70,000 cfs with a probability of F(Q) = 0.7 or 70%. This
flood discharge corresponds to a stage of 37.1 ft. Correspondingly, there is a 70%
probability that the flood damage D will remain below $4.53 million each year.
In other words, F(D) for D = $4.53 million is equal to 0.70 or 70%. In this way the
function F(D) can be constructed. 

Figure 1-7a Stage (H)-discharge (Q) relation.
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To that end, the CDF of D, F(D), as shown in Fig. 1-7d, is employed for com-
puting the probabilities of flood-damage values. For calculating the EMV of the
annual flood damage, consider an interval between D’ – (½) dD and D’ + (½) dD as
shown in Fig. 1-8. The probability that D lies in this interval is equal to dF(D), the
interval on the F(D) axis that corresponds to the interval dD on the D axis. The
incremental value of EMV of the damage in this interval can be denoted by dEMV
and can be written as the magnitude of the damage times the probability of its
occurrence:

dEMV = D × dF(D)

Figure 1-7b Cumulative frequency distribution of discharge.

Figure 1-7c Frequency distribution of upper 20% damage-causing floods.
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 Therefore, EMV is obtained by integrating

(1.1)

The integral of Eq. 1.1 defines the area between the F(D) axis and the CDF
curve of flood damage in Fig. 1-8. The integration can be performed numerically
by taking probability intervals that are sufficiently small for determining the aver-
age value of the damage in the interval. Multiplying the average damage with the
probability interval and adding the values for all intervals gives the EMV of the
annual flood damage. Since costs of alternatives will be spread over time, the
present worth of the EMVs can then be determined by using a given interest rate.
The final value is the EMV of the flood damage. This can be done for each flood

Figure 1-7d Frequency distribution of damage due to upper 20% floods.

Figure 1-8 Calculation of EMV of the annual flood damage.

dD D ---→

F(D)

↑

dF(D)

D’

EMV=∫ DdF D( )
0

1

EMV=∫ DdF D( )
0

1

EMV=∫ DdF D( )
0

1

EMV=∫ DdF D( )
0

1



26 Risk and Reliability Analysis

protection scheme and then a flood protection scheme can be selected on this
basis. For the flood-damage curve, the EMV is computed as

EMV = (1.34 × 0.30) + (4.53 × 0.70) + (5.31 × 0.75) 
+ (11.6 × 0.95) + (19.3 × 0.99) + (53 × 1.00)

 = $90.8 million

A comment regarding computation of EMV for each option is in order. Each
flood protection scheme affects the EMV of flood damage in its own way. If, for
example, levees are to be used for a flood protection scheme, then levees elimi-
nate the flood damage up to the level where they control the channel flooding
and therefore would change the rating curve at the gauging site. This in turn
would change the damage curve. In a similar manner, each flood protection
scheme would lead to a modified EMV of flood damage. Without a rating curve
and a damage curve for each option, it is not possible to compute EMVs of these
options and make a statement as to which should be the preferred option.

Example 1.5 Tresimeno Lake in central Italy is used for irrigation and recre-
ational purposes. The water level in the lake reservoir needs to be regulated
through control works at the outlet and outlet channel. The channel allows large
discharges to pass without raising the lake levels too high, whereas the control
works, such as a gate, permit holding water back when the water level would be
low. The release of water from the lake for irrigation purposes is also controlled
by the gate. The lake water level is to be regulated to make it attractive for recre-
ation on the one hand and satisfy the irrigation water supply need on the other
hand. There may be a conflict in satisfying these two objectives. The question to
be addressed is how best to regulate the lake water level. Analyze conceptually
the approach for determining the best solution in these circumstances. The lake
level is a random variable and can be denoted as X. The annual benefit to be
derived from recreation and irrigated agriculture is also a random variable and
can be denoted as Y.

Solution There can be several alternative proposals to achieve the twin objec-
tives. One alternative may be to emphasize the recreational benefits only. The
other alternative is to emphasize irrigation benefits only. There may be several
alternatives combining the two objectives in different ways. Regardless of the
strategy to regulate the lake, one can hypothesize that the best solution is the one
for which the net benefits are maximized. The determination of the best solution
then requires, for each proposal, the calculation of the cost and the benefits. Were
there no uncertainties, one can first calculate the benefits as the EMV of the rec-
reation and irrigation benefits under natural conditions. Second, one can calcu-
late the EMV of the recreation benefits with the various proposals for lake
regulation. Then, the difference between the two EMVs can be computed for
each proposal and a decision can be made. However, the lake level is a random
variable and thus calculations of EMVs should be done under uncertainty.

To illustrate the procedure under uncertainty, we consider the average lake
level during the months of June and July as the basic random variable X. There is
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a relationship between lake level and possible benefits, that is, between X and Y.
For example, if the lake level is very high, the available beach area may be
reduced and more water may have to be released than what is needed for irriga-
tion. High lake levels also cause beach erosion and may cause damage to cot-
tages and boats and other tourist facilities, especially when coupled with strong
winds. However, low lake levels expose mudflats and cause difficulties with
boating on the lake, such as shoals and docks that are too high. Desired releases
of water for irrigation may not be permissible. This means that a monetary value
must be assigned to each possible lake level. To that end, a survey can be con-
ducted and on that basis a kind of utility function of the lake levels can be pre-
pared. This function quantitatively expresses the monetary worth of the average
lake level during the months of June and July. Figure 1-9 shows this hypothetical
utility function. It is admitted that this utility function is imprecise, subjective,
and difficult to determine. It involves value judgment and attempts to express
intangibles, such as recreation benefits, in terms of monetary value. To make a
rational decision, the worth of benefits has to be expressed in quantitative terms.
It is assumed that the probability density function (PDF) of X is known or can be
obtained from data, as shown in the bottom of Fig. 1-9. Then the CDF of X is
determined from its PDF. Similarly, the PDF and CDF of Y can be derived from
the knowledge of its relationship with X or independently from data, as shown
in Fig. 1-9. It should be noted that the same value of Y can occur for two different
values of X. If Y is set at a given arbitrary value y1, then it can be stated that Y is
smaller than y1 if and only if either X is smaller than x1 or X is larger than x2.
Thus,

P(Y < y1) = P(X < x1) + P(X > x2) (1.2)

The two probabilities, P(X < x1) and P(X > x2), in Eq. 1.2 can be read from the
CDF of X, as shown by a and b in Fig. 1-9. Also, 

F(y) = P(Y < y) = P(Y < y1) = a + b (1.3)

In this manner, every point of the CDF of Y can be determined, which is the
CDF of the annual benefits. Then EMVs can be computed and in this way differ-
ent options for lake regulation can be evaluated. 

Example 1.6 A chemical plant produces wastewater in a city at a rate of about
2,000 m3/day and a price has to be paid for this pollution. The owner wants to
know whether he should install a pollution abatement device at the plant that
will eliminate pollution or simply pay the penalty each year. Another option
could be that he pays a small amount of penalty and abates pollution to some
extent. However, all this depends on the weather also. In bad weather, the pro-
duction will have to be reduced, which leads to less pollution. It is assumed that
the probability of concentration of the wastewater exceeding the related stan-
dard is 0.8. The owner has the following three options: (1) He can install a pollu-
tion abatement device at the plant, which will eliminate pollution. The cost for
the construction is about $20,000, and the cost for abatement is about $3/m3.
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(2) The owner can just pay the penalty each year. The penalty is about $25/m3.
(3) The owner can pay a small amount of penalty and abate pollution to some
extent. It is assumed that the owner decides to treat about 70% of the wastewater
and pays a penalty for the remaining 30%.

From the perspective of the plant owner, the less the cost is, the better. Other
factors, such as environmental and social consequences, are not as important as
economic ones. Find the least-cost solution. 

Solution The least-cost solution or option can be determined using EMV. To
that end, let us consider each option one by one.

Figure 1-9 A hypothetical utility function for a lake.
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Option A: For this option there are two consequences. First, if the pollutant
concentration is below the discharge standard, the cost is $20,000, which is
the construction cost of the abatement device. If the concentration is above
the discharge standard, the cost will be the cost of construction and treat-
ment = $20,000 + $3 × 2,000 × 0.8 = $24,800. Therefore, the cost of this conse-
quence will be $24,800.
Option B: If the concentration is below the discharge standard, the owner
has to pay nothing with a probability of 1 – 0.8 = 0.2. Thus, the cost of this
consequence is $0. If the concentration is above the discharge standard, the
cost will be the penalty, which is $25 × 2,000 = $50,000, with a probability of
0.8. Thus, the effective cost will be $50,000 × 0.8 = $40,000.
Option C: If the concentration is below the discharge standard, the cost will
be the cost of the abatement device construction, which is $20,000. Thus, the
effective cost of this consequence will be $20,000 + 0.8 × 2,000 × [($3 × 0.7) +
($25 × 0.3)] = $35,360, as the random part is only the level of pollution
exceeding the standard with a probability of 0.8 and 70% of the wastewater
to be treated (at $3/m3) and the penalty is to be paid for the rest (at $25/m3).
All the costs are listed in Table 1-6a.

Now we calculate the EMV of each option as follows:

EMVA = $20,000 + ($3 × 2,000 × 0.8) = $24,800

EMVB = $25 × 2,000 × 0.8 = $40,000

EMVC = $20,000 + 0.8 × 2,000 × [($3 × 0.7) + ($25 × 0.3)] = $35,360

Thus EMVA < EMVC < EMVB.
If we consider the nonlinearity of gains and losses to improve decision mak-

ing and assume that a curve similar to Fig. 1-6 is applicable in this case, we can
construct a table of real and utility dollars (Table 1-6b). 

Then we can calculate the corresponding EUVs:

EUVA = ($30,000 × 0.8) + ($22,000 × 0.2) = $28,400

EUVB = ($66,000 × 0.074) + ($48,000 × 0.926) = $49,332

EUVC = ($48,000 × 0.71) + ($30,000 × 0.29) = $42,780

One can also compute the EUVs directly by converting the total value into
utility dollars. Thus EUVA < EUVC < EUVB.

From the EMVs and EUVs, it is seen that option A costs the least and option
B costs the most. Thus, it is concluded that option A is the best choice for the
plant owner.
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1.6 Sources of Uncertainties 

There are many causes of uncertainty in a system that interacts with nature. The
major cause of uncertainty in the behavior of environment-related systems involve
rapid fluctuations in space and time, which are inherent features of natural pro-
cesses. Meteorological, hydrological, environmental, social, and economic pro-
cesses are highly influenced by random factors whose interaction affects the
performance of a project. Consequently, inputs and outputs of natural and engi-
neering systems, such as a catchment, a river reach, an aquifer, the foundation of a
skyscraper, or a bridge, are highly random. Although this topic will be covered in
greater detail in subsequent chapters, it is worthwhile to provide a synopsis here.

Another major source of uncertainty is data. A detailed risk analysis requires
collection and analysis of huge volumes of quality data for a number of vari-
ables. In most studies, such data are not available because of bad equipment or
human malfeasance, or the quality of data is inadequate owing to measurement
errors, inadequate sampling, or variability and complexity of the underlying
systems. In the absence of the required quality data, simplifying assumptions are
often made and thus uncertainty creeps into the analysis.

Since the systems are highly complex, the models that are used to represent
these systems are not perfect. For example, the response of a catchment is a non-
linear function of many input variables but in a particular study these nonlinear-
ities may be ignored. Such simplifications are typical sources of uncertainty. It is
important to recall that most natural and socio-economic systems have yet to be
fully understood.

It is instructive here to note the following pertinent observations of Cornell
(1972): “It is important in engineering applications that we avoid the tendency to

Table E1-6a Costs associated with different alternatives.

Alternatives Cost of maintaining the desired level of concen-
tration or paying penalty ($)

Fixed cost for 
abatement 
device ($)

Total 
value ($)

C < standard (p = 0.2) C > standard (p = 0.8)

Option A 2,000 × 0.2 × 0 = 0 2,000 × 3 × 0.8 = 4,800 20,000 24,800

Option B 20,000 × 0.2 × 0 = 0 2,000 × 25 × 0.8 = 40,000 0 40,000

Option C 2,000 × 0.2 × 0 = 0 2,000 × (3 × 0.7 + 25 × 
0.3) × 0.8 = 15,360

20,000 35,360

Table E1-6b Real and utility dollars. 

Real dollars 20,000 26,000 39,200 50,000

Utility dollars 22,000 30,000 48,000 66,000
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model only those probabilistic aspects that we think we know how to analyze. It
is far better to have an approximate model of the whole problem than an exact
model of only a portion of it.” 

In an ideal situation, one should derive joint probability distributions for all
the sources of uncertainty that significantly influence the behavior of the system.
This however is not possible, except in simple cases, owing to the involvement
of a large number of variables and their interactions in a nonlinear manner. The
techniques that are most commonly used for uncertainty analysis are Monte
Carlo simulation (MCS), the mean-value first-order second-moment (MFOSM)
method, and the advanced first-order second-moment (AFOSM) method. In
Monte Carlo simulation, long and multiple series of input random variables are
generated according to the distributions that they follow. Next, these are input to
the model of the system and the output is monitored. Statistical analysis of this
output yields measures of its behavior and the probability distribution. 

In the mean-value first-order second-moment method, the Taylor series expan-
sion of the system performance function is truncated after the first terms. The use of
the term “mean-value” signifies that the expansion is about the mean value of the
variable. Further, only the first two moments of the variable are needed. This makes
the method easy to apply and simplifies the calculations. However, if the lineariza-
tion about the central value is not an adequate representation of the true behavior
of the variable, the method will not give acceptable results. Another criticism of this
method arises from the fact that most engineering systems do not fail near the aver-
age of the performance function. Rather, failure occurs at some extreme value. 

In the AFOSM method, the Taylor series expansion of the performance func-
tion is taken at a likely failure point. Thus, the key to a successful application of
AFOSM is the determination of the likely failure point. In AFOSM, the reliability
index is the shortest distance between the mean state of the system and the fail-
ure surface. This index can be found either by applying some nonlinear optimi-
zation procedure or by following an iterative scheme.

While comparing the reliability analysis methods with specific reference to
watershed models, Melching (1995) noted that the AFOSM method displayed
good agreement with MCS and better agreement for the tails of the probability
distributions. Expectedly, he noted that when the nonlinearities were not large,
MFOSM performed as accurately as (and sometimes better than) AFOSM. Note
that the results of MCS for a large number of runs formed the standard against
which the performance of the other method was compared. 

1.7 Rational Decision Making 

Bouchart and Goulter (1998) have reviewed rational decision making in the con-
text of the management of irrigation reservoirs. They examined a number of
models that permit rational decision making under risk. Rational decision
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making under risk or uncertainty involves identifying (1) the actual decisions to
be taken in a particular situation (optimal policy) and (2) the models that are
employed to select the optimal policy. The models they discussed include expec-
tation objective, expectation-variance objective, safety-first rule, utility function,
stochastic dominance, and risk curves. 

The mathematical expectation of the risk curve is the simplest approach to
making a rational decision. This is not suitable for management of irrigation res-
ervoirs, because it is risk neutral. The expectation-variance approach bases pref-
erences on mean and variance of the net returns or the outcome is normally
distributed. These assumptions are quite restrictive. The safety-first rule avoids
risk and is therefore not a valid approach. The utility function measures the util-
ity level of each decision or action. It is quite difficult to quantify the utility level.
Stochastic dominance or stochastic efficiency is an efficiency measure of different
decisions. It lacks the ability to identify a strategy for comparing risk curves. It is
difficult to analytically define risk curves of different decisions. One of the main
problems of these decision models is that they are only capable of partially
accommodating the concerns of the decision maker. For rational decision making
Bouchart and Goulter (1998) proposed a methodology using neural networks. 

1.8 Questions

1.1 An urban area gets flooded and flooding needs to be mitigated. To that
end, one can consider construction of a detention pond and attenuate flood
peaks using the pond. Another option could be upgrading or enhancement
of the existing drainage system, which will suffice to carry greater runoff.
Still another option could be construction of additional drainage channels.
Proper land use management can be another option. There can be other
options also. Since flooding is a random variable, a decision has to be made
under uncertainty. Analyze the urban flooding and discuss conceptually
which way is the most rational way to mitigate flooding.

1.2 Consider the problem of water supply to a city. There can be several
ways by which water can be supplied to the city. Water can be supplied
from a nearby river. Of course, the river flow is subject to uncertainty.
Water can be supplied from groundwater, which is also subject to uncer-
tainty. Water can be supplied using a combination of surface and
groundwater sources. Still another source can be water harvesting. In
any case, a decision has to be made under uncertainty. What is the ratio-
nal decision for supplying water to the city? Discuss it conceptually.

1.3 Consider a problem of solid waste disposal. An alternative is to burn it
in the open or incinerate it mechanically. One can also landfill it. Or one
can use both options. Still another way is to haul it away to another place
or dump it in the nearby sea. There are many options, but each option
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has an element of uncertainty. Discuss conceptually the rational decision
for disposing of the solid waste. 

1.4 A farmer has to make a rational decision about selecting a crop for pro-
duction in a season. There are cash crops and noncash crops. There is,
however, a question of the sensitivity of crops to weather, which is
uncertain. Thus, the risk of having a crop come to fruition varies with the
type of crop. The farmer would like to make a rational decision about
growing crops on his farm. Discuss conceptually what the rational deci-
sion should be. 

1.5 A farmer has a steady water supply from a reservoir. She has to make a
decision about growing those crops that can bring her the most returns.
Each crop has advantages and disadvantages. Crops can be rice, sugarcane,
vegetables, etc. How should she go about deciding which crops to grow?

1.6 A chemical plant in a city produces different types of chemicals. These
chemicals lead to different profit margins, depending on the market
demand. Since the chemicals are produced following different produc-
tion procedures, the level of resulting pollution varies with the type of the
chemical produced. The chemical plant owner would like to minimize
the pollution and of course the owner’s main objective is to make money
or maximize profit. He is considering different options. First, he can pro-
duce only one chemical that leads to the least pollution. Second, he can
install pollution devices and produce a variety of chemicals. Third, he can
produce the chemical that brings him the most money, even if it produces
the most pollution. He can combine some of these options. Qualitatively
analyze the rational decision the plant owner can make.

1.7 Coastal areas often suffer from erosion. Erosion can be controlled by
using a sea wall, by coastal management, or by installing wave breakers.
Each option is subject to uncertainty. The question is one of selecting the
most rational option. Discuss qualitatively the rational decision for con-
trolling coastal erosion.

1.8 A new urban area is to be developed. This area is to be provided with ade-
quate drainage facilities. The developer has to ask whether to provide ade-
quate drainage or to provide a little less than adequate drainage and bear
the cost of flooding of houses if it occurred. Drainage systems can be in
different forms. Each option is subject to uncertainty. Discuss qualitatively
the rational decision that the builder can make. 

1.9 A reservoir is employed for both recreation and water supply. The reser-
voir water level has to be monitored accordingly. The higher reservoir
water level is better for recreation but may cause other problems, such as
beach erosion. When the reservoir water level is low, one has to decide
about irrigation and recreation, which may be in conflict. Each option is
subject to uncertainty. What is the rational decision for operating the res-
ervoir? Discuss it qualitatively.
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1.10 An industrial plant generates considerable waste and the owner wants to
determine the best way to dispose of it. There can be many options. The
plant is located near a river. The plant can dump the waste in the river but
the river water quality has to be maintained. This means that the entire
waste may not be dumped. The owner can construct a storage facility and
treat the waste or use a combination of both. Discuss conceptually the
rational decision that can be made for disposing of the waste. 

1.11 A family is building a new home in the New Orleans area. The base cost of
the home is $100,000, but the family can choose the degree of wind resis-
tance of the structure. For the base price, the house is designed to with-
stand wind gusts of 90 miles per hour (mph). For an additional cost of
$2,000, the house will withstand winds of 100 mph, and for an additional
$4,000 the house can withstand winds of 110 mph. The expected cost of
repairing wind damage is $10,000, and the family hopes to not have to pay
for damage during the first 10 years of living in the house. From the
FEMA Multihazard Loss Estimation Methodology Hurricane Model
HAZUS-MH Technical Manual, the return periods of various wind gusts
can be estimated as shown below.

From these data and the building costs given, one can determine the
expected net benefit for different options. What should be the rational
decision for the family for building its home? 

1.12 Following catastrophic Hurricane Katrina, nearly 1.5 million people had
to be evacuated from the Louisiana–Mississippi Gulf coast. Clean up
operations will take about a year. Assume that 500,000 people will be
forced to live in temporary housing for a year. Supplying adequate
drinking water is an important aspect of maintaining safe housing
development. Relief officials have three options to choose from: (1) ship-
ping bottled water, (2) pumping well water, and (3) on-site chlorination
of surface water. Assume that the cost of bottled water is $1.89 per liter
and the demand can be met with certainty. Per capita consumption can
be assumed to be 2 liters per day. It can be assumed that pumping
groundwater will cost $0.02912 per liter but there is a 75% chance that
the groundwater supply will be exhausted before the end of the year.
The cost of chlorination is $0.035071 per liter and there is a 90% chance
that there will be sufficient surface water and chlorination to meet the
water demand. What is the rational decision that the relief officials
should make for meeting the water demand of the evacuees in tempo-
rary housing? 

Wind gust (mph) Return period (years) Annual probability (per year)

90 15 0.067

100 23 0.043

110 35 0.029
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1.13 A system is to be designed for transporting semirefined uranium ore for
a distance of 100 miles in the Athabasca Basin region of Saskatchewan,
Canada. It is found that a 30-mile distance is over continuous muskeg or
peat bog. Muskeg itself consists of dead plants in various stages of
decomposition. The water level in muskeg is usually at or near the sur-
face. Proposed alternative configurations could be monorail, truck or
train on all-season roads, ropeway, or any other transportation technol-
ogy. What should be the rational decision for designing the transporta-
tion system? Discuss conceptually. 



36

Chapter 2

Elements of Probability

Most natural processes, including environmental, hydrologic, and hydraulic
processes, are not deterministic; that is, they are unpredictable or stochastic. For
example, the next state of the environment is not fully determined by the previ-
ous state of the environment. Uncertainty is introduced into engineering sys-
tems through the variation inherent in nature, lack of understanding of causes
and effects in physical systems, and lack of sufficient data or inaccuracy thereof.
As an example, consider the prediction of the maximum flood in a river in the
next 10 years. One cannot predict the magnitude of this flood with certainty
even with a long record of data. The uncertainty in flood prediction results from
natural variation. Thus, we must consider the “possibility” of occurrence of such
events and determine the likelihood of their occurrence. Information on their
occurrence will form an input while mitigating the ensuing undesirable conse-
quences that might arise from risk and uncertainty.

In engineering design and analysis, many problems involve a study of math-
ematical models of some random phenomena. Dealing with uncertainty of an
engineering random phenomenon has been and always will be a challenge.
Some things can never be predicted with absolute certainty. A random phenom-
enon is defined as a phenomenon that obeys probabilistic, rather than determin-
istic, laws. Statistics plays a major role in engineering by offering probabilistic
concepts to deal with random phenomena. 
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To apply probability theory to an engineering process, we study the
observed data of that process. The collection of all possible observations of a pro-
cess is called a statistical population. The population itself often cannot be totally
observed, because the process is time dependent and infinitely long and thus
cannot be observed in a limited time frame. Generally the number of observa-
tions is limited by the availability of money, time, and/or period of interest
under study. Most often, only a portion of the population is observed, which is
called a sample.

Statistics deals with the computation of statistical characteristics using sam-
pled data, and probability deals with the prediction of chance or likelihood of
occurrence of an event from sampled data. Frequency analysis deals with esti-
mating future probabilities of occurrence of some specific events, such as floods,
droughts, rainfall, water pollution, air quality, sediment load, depletion of ozone
layer, occurrence of earthquakes, and snow avalanches, by analyzing past sam-
pled data or records of interest.

2.1 Random Variables

An observation (e.g., daily rainfall amount or number of cars passing through an
intersection every hour) or the outcome of an experiment (such as analyzing
stream samples for water quality variables, e.g., dissolved oxygen, bio-oxygen
demand, pH, total phosphorus, or total suspended solids) or a mathematical
model of a random phenomenon (e.g., a dissolved oxygen–bio-oxygen demand
model or a rainfall–runoff model) can be characterized by one or more variables
that are, to a certain degree, unpredictable. Yet there is frequently a degree of
consistency in the factors governing the outcome that exhibits a statistical regu-
larity. This statistical regularity is expressed through a probability distribution
defined on the probability space. Such variables are called random variables or sto-
chastic variables.

The term “experiment” is used here in a general sense. An experiment may
be counting the times the water level at a certain river cross section exceeds a
defined threshold, or measuring the discharge at that section. In Fig. 2-1 daily
observed flow of the Hillsborough River downstream of the Tampa Dam is
given, and flow of more than 2,000 cubic feet per second (cfs) is of interest
because of flooding issues. In this case, the measurements of daily discharges
during, say, January 1990 to December 2000 will constitute the experiment’s
sample space. This space consists of a set S containing sample points, each of
which is associated with one and only one distinguishable outcome. An event is
a collection of sample points (for instance, the collection of observed daily dis-
charges in Fig. 2-1) in the sample space of an experiment. 

It is important to precisely specify the conditions under which a variable can
be regarded as random. The qualification “random” implies the absence of
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discernable systematic variations, such as those caused by cycles, trends, or
changes in the factors governing the outcome of an event. The variables, such as
the daily temperature in a greenhouse, outflows from a controlled reservoir,
roughness of a steel pipe, and many others, cannot be considered random. The
systematic variations in these variables would render them incompatible with
the qualification “random.”

Now consider the number of eclipses occurring in a year as a variable.
Astronomers can accurately calculate the number of eclipses in any year. There-
fore this number is not a random variable for them. However, someone not
familiar with the laws governing the occurrence of eclipses could well regard it
as a random variable and use the observations of many years to estimate the
probability associated with the occurrences of eclipses. There may be similar
variables involving cycles and trends that are commonly regarded as random
because not enough is known about them, but they may not be truly random.
Thus, the question whether or not a real-life variable is random must then be
addressed, based on observations and whether the conditions of randomness are
met. Random variables are well-defined objects in a probability space. 

To define a random variable, its probability space must be fully described. A
probability space is composed of the following three elements:

1. A sample space S can be any set and can usually be defined as the set of
the most elementary events that allows us to describe a given process. 

Figure 2-1 Daily discharge of the Hillsborough River downstream of the Tampa Dam.
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2. A set of events E, defined over the sample space S, is a collection of sub-
sets of the sample space S.

3. A measure of probability P is a function that assigns probability to each
member of event set E.

The outcome of an experiment need not be a number. For example, the out-
come of an event can be a “head” or a “tail” when a coin is tossed; “pass” or
“fail” in a classroom test; “spade,” “heart,” “diamond,” or “club” in a game of
cards; or “dry” or “wet” for weather on a day; and so on. However, we often
want to represent outcomes as numbers. A random variable is obtained by
assigning, without prejudice, a numerical value to each outcome of a particular
experiment. Random variables may be positive, negative, or zero. When out-
comes are not already numerical values, then scores or numerical values are
assigned to make them so. The value of a random variable will vary from trial to
trial as the experiment is repeated. For example, one may associate number 1
with pass and number 0 with fail, one may associate the numbers 1 to 4 with the
four suits in a deck of cards, and so on. Such numbers are then, of course, purely
conventional. In customary nomenclature, random variables are usually repre-
sented by uppercase letters, such as X, Y, Z, ..., and their values by lowercase let-
ters, such as x, y, z, .... The notation X(s) = x means that x is the value associated
with the outcome of the random variable X at s. A random variable X may have
values such as x = 1.5, x = 2.7, and x = − 3.9, etc. Frequently, the values of 0 and 1
are assigned to a random variable for representing success or failure of an event.
Any random variable whose possible values are either 0 or 1 is called a Bernoulli
random variable

2.1.1 Types of Random Variables

In the preceding discussion we defined a random variable to be a function from
the sample space to the real numbers. Based on the type and number of values it
takes on, a random variable can thus be assumed to be either a discrete or con-
tinuous random variable. If assigned values for the random variable constitute a
finite set or a countably infinite set, it is called a discrete variable: associated with
discrete random events or outcomes. The roll of dice is one classical example of a
discrete random variable. Other examples of discrete random variables include
the number of rainy days or number of cloudy days in a month, the number of
violations of a water quality standard, and the number of exceedances of a
threshold flow at a given site. Continuous random variables are those associated
with a continuous interval where any event can occur within the interval. For
example, a random variable that can take on any value between 0 and 1 is a con-
tinuous random variable. Other examples of continuous random variables
include river stage or flow, reservoir level, temperature, rainfall amount, and
dissolved oxygen (DO) or bio-oxygen demand (BOD) of river water. Consider,
for example, the data on DO concentration taken six times a day in a month as
presented in Fig. 2-2. In this example, the DO concentration is a continuous
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variable, whereas the number of violations of the DO standard is a discrete vari-
able. A DO violation is said to occur when the observed DO concentration is
found to be less than 4.0 mg/L. 

Figure 2-3 depicts the random variable X, the daily violation of the DO stan-
dard, with a bar chart. Mathematically, a random variable X can be considered
as a real-valued function that maps all elements of the sample space into points
on the real number line (R). In other words, in this example, the random variable
is a numerical characteristic that depends on the daily sample with daily sample
size n = 6. Each of 30 elementary events is represented by a string of the actual
DO concentration.

For discrete random variables the probability is concentrated in single points
of the probability space. The number of possible outcomes with a discrete ran-
dom variable is not necessarily finite. The number of occurrences of a discrete
random variable is called frequency. For example, if, in an experiment, a coin is
tossed repeatedly, one may ask what the probability is that heads will turn up
for the first time on the nth toss. The variable that heads will turn up, X, is then a
discrete random variable that has no upper bound if the number of tosses is infi-
nite. With continuous random variables no single point carries a measurable
probability (i.e., P(X = x) = 0) and, consequently, measurable probability is only
associated with nondegenerate intervals (i.e., a nonzero-width interval). The
number of possible outcomes of a continuous variable is always infinite where
its set of possible values consists of an entire interval in R.

Figure 2-2 Random variable X (number of DO violations) as a function mapping the 
elements of the sample space onto the real line.

Sample Space 
Day Observed DO concentration (mg/L) Violations Day Observed DO concentration (mg/L) Violations

1 4.04 2.74 4.09 3.45 3.62 3.39 4  16 4.03 3.85 3.02 5.50 5.96 3.40 3  
2 2.33 2.05 6.64 6.80 3.07 3.58 4  17 5.00 3.87 5.39 5.50 0.70 3.73 3  
3 1.89 3.52 5.00 6.00 4.30 2.98 3  18 3.04 6.19 5.37 4.07 4.20 4.21 1  
4 3.51 5.88 2.43 5.25 3.31 2.99 4  19 1.68 2.95 4.31 5.22 0.70 3.79 4  
5 2.68 3.49 3.86 4.68 0.36 3.38 5  20 1.95 4.09 3.50 5.27 3.81 3.75 4  
6 2.31 4.48 3.30 5.68 3.35 3.88 4  21 3.76 4.02 2.10 5.55 0.75 3.04 4  
7 2.46 6.06 3.19 3.22 2.70 3.74 5  22 5.32 4.28 4.55 5.84 3.94 3.27 2  
8 1.74 2.75 3.82 4.09 2.00 3.39 5  23 2.61 4.57 3.45 5.64 2.70 3.23 4  
9 3.48 3.72 5.71 4.48 3.38 3.29 4  24 2.97 6.21 2.94 0.79 4.99 2.37 4  
10 3.06 5.43 5.48 7.40 1.36 2.88 3  25 3.80 3.02 3.32 5.67 3.07 2.87 5  
11 4.20 4.01 1.63 2.82 2.27 3.80 4  26 2.95 4.31 4.64 3.31 2.27 3.09 4  
12 2.68 4.74 4.20 2.80 5.62 4.10 2  27 2.31 4.38 4.46 3.77 0.99 3.39 4  
13 2.08 3.63 3.56 3.27 2.91 3.07 6  28 4.45 3.69 6.93 3.70 3.67 3.24 4  
14 3.65 2.28 4.03 3.72 3.76 2.50 5  29 3.47 3.50 6.25 6.28 5.99 3.92 3  
15 2.62 4.00 4.94 4.31 2.72 2.81 3  30 4.41 2.60 4.54 3.80 2.75 3.40 4  

               
               
               

60 1 2 3 4 5 

Number of DO violations that might occur on a given day
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For a discrete variable, there is at most a finite number of possible outcomes in
any finite interval. For example, the number of floods per year at a point on a
river can take on only integer values, which is a discrete event, so it is a discrete
random variable. For a discrete random variable having an infinite number of
possible outcomes, these outcomes must be enumerable. This means that the
outcomes can be arranged in a sequence so that there is a one-to-one correspon-
dence between the elements in the sequence and the positive integer numbers 1,
2, 3, etc. Stated another way, the possible outcomes can be counted even if count-
ing would take an infinitely long time. However, this is evidently not possible
with a continuous variable. For example, considering the discharge of the Amite
River at Denham Springs, we see that any value satisfied by the continuous vari-
ables can occur in R+ (where R+ is a set of positive real numbers). The annual
flood peaks would be infinite in number; even between any two peak discharge
values, there will be an infinite number of flood peaks.

A random variable is continuous if its possible values span an entire interval
in R. A continuous variable takes on values within a continuum of values. The
discharge at a point on a river is a continuous variable. A random variable may
be discrete or continuous, depending on the interval under consideration.
Annual river flows are evidently represented by continuous variables. Tempera-
ture, vapor pressure, relative humidity, etc. are other examples of continuous
variables. However, there may be a measurable probability that the flow in any
particular year is zero. At point zero, the variable is then discrete; everywhere
else it is continuous.

Figure 2-3 Discrete random variable X (number of DO violations).
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Here are some other examples:

1. A coin is tossed 20 times. In this case, the random variable X is the num-
ber of tails that are noted. X can take on only values such as 0, 1, ..., 20, so
X is a discrete random variable. 

2. A light bulb is lit until it burns out. In this example, the random variable
X is its lifetime in hours. X can take on any positive real value, so X is a
continuous random variable. 

2.1.2 Graphical Description of Random Variables

When studying a random variable, the first step is to characterize it by using the
collected observed data. The data screening or exploratory data analysis can be
done by representing the data set using visual techniques, such as bar graphs,
pie graphs, histograms, or other kinds of pictorial portrayals. Graphical descrip-
tors are useful to grasp the data characteristics and for determining the family to
which the random variable under study belongs. For discrete random variables,
it is often possible to determine the appropriate family from a physical descrip-
tion of an engineering system. In a continuous case, it is generally more difficult
to determine the family of a random variable. The graphical description of a ran-
dom variable is very helpful to get an idea of the shape of its probability distri-
bution. There are several graphical methods used to describe the data of a
random variable. Here we will discuss two commonly used graphical descrip-
tors to display a random variable: histograms and stem-and-leaf diagrams.

2.1.2.1 Histogram

Histogramming is a method of discretization (encoding a data set using bins or
classes) wherein a continuous data set is converted into discrete data. A histogram
is constructed by dividing the observed data into bins (or classes) such that for the
first bin, x1 ≤ X < x2, for the second bin, x2 ≤ X < x3, etc. The DO concentration val-
ues presented in Fig. 2-2 are divided into bins and then a plot is made of the num-
ber of observations in each bin versus the value of X as shown in Fig. 2-4. 

The appropriate width of a bin or class interval and the number of total bins
depend on the number of data points, the minimum and maximum values of
data, and the overall behavior of the data. Often, 5 to 15 bins are sufficient for
most practical applications. After categorizing the data into bins or classes, the
number of observations in each bin is determined. As a rule of thumb, the num-
ber of classes is approximately equal to , where n is the number of observa-
tions. The best histogram is obtained by using the Sturges rule: 

(2.1)

where N is the number of classes and n is the total number of observations in the
data set.

n

N n= +1 3 3 10. log



Elements of Probability 43

The purpose of a histogram is to graphically summarize the distribution of
a univariate data set that includes the following information: center (i.e., the
location of gravity) of the data, spread (i.e., the scale) of the data, skewness of
the data, presence of outliers, and presence of multiple modes in the data. These
features provide strong indications of a proper statistical model for the data.
The most common form of the histogram is obtained by splitting the range of
the data into equal-sized bins (called classes). Then for each bin, the number of
points from the data set that fall into each bin is counted. The histogram can be
normalized by plotting the relative frequency of each class versus the value of X
in two ways: 

1. The normalized count (relative frequency) is the count in a class divided
by the total number of observations. In this case the relative counts are
normalized to sum to one (or 100 if a percentage scale is used). This is the
intuitive case where the height of the histogram bar represents the pro-
portion of the data in each class, as given in Fig. 2-5a. 

2. The relative frequency is the count in the class divided by the number of
observations times the class width. For this normalization, the area (or
integral) under the histogram is equal to one. From a probabilistic point
of view, this normalization results in a relative histogram that is most
akin to the probability density function as given in Fig. 2-5b.

The frequency polygon is obtained by joining the midpoint of each class
matching the class frequency. The frequency histogram provides a meaningful
arrangement of observed data and is considered as the foundation of any

Figure 2-4 Absolute frequency histogram.
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statistical analysis. But it must define the number of observations in each bin or
class. In a comparison of two data sets, this will only be useful if they have the
same number of observations. To compare groups of different sizes, the histo-
gram must be modified by plotting the relative frequency of each class versus
the value of X, as given in Fig. 2-5. The relative frequency of a class is deter-
mined by dividing the number of observations in that class by the total number
of observations in the data set. An alternative display is the frequency polygon,
shown for the same data in Fig. 2-5. The frequency polygon is obtained by join-
ing the midpoint of each class matching the class frequency. 

In many applications regulatory requirements are in terms of the number of
exceedances or nonexceedances, as, for example, the number of violations of
the critical dissolved oxygen level in a given reach of stream or the number of
exceedances above a given flow or stage at a given cross section of a river. In
these cases, it is advantageous to make another transformation of class frequen-
cies to obtain a cumulative frequency plot. Cumulative relative frequency is
determined by adding the frequency of each class to the sum of the frequencies
for the lower classes by considering the relative frequency constructed by
approaches (1) and (2). Table 2-1 provides cumulative frequencies for the DO
data presented in Fig. 2-2. Figure 2-6 presents the cumulative frequency plot for
the DO data. Based on this figure, one can make statements related to the
chances of exceedance of a certain DO level, such as chances of exceedance of
3.0 mg/L = 1 − 0.27 = 0.73 (i.e., 73%). 

Example 2.1 Table E2-1a gives the annual peak flow at the USGS 08075000 site
on Brays Bayou River in downtown Houston, Texas. Develop a frequency histo-
gram and a cumulative frequency plot for the peak flow. 

Figure 2-5 Relative frequency histogram and frequency polygon.
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Solution In the data from the table, n = 66. Using the Sturges rule, N = 1 + 3.3
log10(66) = 7. Then the bin width for each class is 4,030.6 cfs. Thus seven bins
were selected and frequencies were determined for each bin. By dividing the fre-
quency of each class by n, the relative frequency was determined and then the
cumulative frequency was evaluated as given in Table E2-1b (where (1) and (2)
denote the two approaches outlined earlier). Figures 2-7 and 2-8 show the rela-
tive frequency and cumulative frequency histograms obtained by both normal-
ization approaches.  

Figure 2-6 Cumulative relative frequency plots for DO concentration. 

Table 2-1 Development of histogram for the data of DO concentration.

Lower Upper Midpoint Frequency Relative frequency Cumulative frequency

(1) (2) (1) (2)

0.36 1.24 0.8 6 0.033 0.038 0.033 0.033

1.24 2.12 1.68 10 0.056 0.063 0.089 0.089

2.12 3.00 2.56 33 0.183 0.208 0.272 0.272

3.00 3.88 3.44 63 0.350 0.398 0.622 0.622

3.88 4.76 4.32 34 0.189 0.215 0.811 0.811

4.76 5.64 5.2 17 0.094 0.107 0.905 0.906

5.64 6.52 6.08 13 0.072 0.082 0.977 0.978

6.52 7.4 6.96 4 0.022 0.025 1.000 1.000
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Table E2-1a

Year 1929 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945

Peak
flow

11100 6600 1270 4530 6800 1340 6460 4590 6280 8120 5590

Year 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956

Peak
flow

3880 4360 1440 2340 5340 786 1850 3580 3680 3300 1180

Year 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967

Peak
flow

4660 5100 7760 12600 6320 7720 8300 4060 3160 9400 4730

Year 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978

Peak
flow

12000 9240 11500 15500 11700 24800 8660 18000 29000 8710 6260

Year 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

Peak
flow

25500 11300 25400 17700 29000 8640 12300 17300 22400 8290 21500

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Peak
flow

10400 19800 23000 16000 16600 27000 17700 23400 25500 16700 7640

Table E2-1b

Lower Upper Mid value Frequency Relative frequency Cumulative frequency

(1) (2) (1) (2)

786 4816.6 2801.3 18 0.27 6.77 × 10–5 0.27 0.27

4816.6 8847.1 6831.9 18 0.27 6.77 × 10–5 0.55 0.55

8847.1 12878 10862 9 0.14 3.38 × 10–5 0.68 0.68

12878 16908 14893 5 0.08 1.88 × 10–5 0.76 0.76

16908 20939 18924 5 0.08 1.88 × 10–5 0.83 0.83

20939 24969 22954 5 0.08 1.88 × 10–5 0.91 0.91

24969 29000 26985 6 0.09 2.26 × 10–5 1 1
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2.1.2.2 Stem-and-Leaf Plot

To get additional information about the distribution of a random variable, the
histogram can be modified into a ratio or interval variable to obtain a stem-
and-leaf plot. The display of this plot provides particulars of the typical or
representative value, the extent of spread about the typical value, the pres-
ence of gaps, the extent of symmetry, and the number and location of peaks.

Figure 2-7 Frequency histogram plot for the Brays Bayou River peak flow data.

Figure 2-8 Cumulative frequency plot for the Brays Bayou River peak flow data.
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The stem-and-leaf plot consists of a series of columns of numbers. Each col-
umn is labeled via a number called its stem, which is generally the first one or
two digits of the numbers in the data set. The other numbers in the columns
are called leaves, which are the last digits of the data. The following steps are
used to construct a stem-and-leaf plot:

Step 1: Partition each data value into two parts.
Step 2: Based on the least and greatest data values, choose some convenient
numbers to serve as stems. Stems may consist of one or more initial digits of
the data values.
Step 3: Reproduce the data set graphically by recording the digits following
the stem as a leaf. A leaf may consist of one or more of the remaining digits
of the data values.

Figure 2-9 depicts a stem-and-leaf plot prepared using the DO data pre-
sented in Fig. 2-2. It is obvious from Fig. 2-9 that a stem-and-leaf plot does
resemble a histogram. The stem values represent the intervals of a histogram
while the leaf values represent the frequency for each interval. An advantage of
the stem-and-leaf plot over the histogram is that the stem-and-leaf plot displays
not only the frequency for each interval, but also displays all of the individual
values within that interval.

2.2 Elements of Probability

People have an intuitive appreciation of the concept of probability, although
they may have difficulty defining it precisely. Some events are known to be
downright impossible, others quite unlikely or improbable, still others likely,
and some almost certain. The occurrence of events may be almost unlikely,
likely, very likely, almost certain, or even certain. Thus, people have an apprecia-
tion of a probability scale, but such an intuitive, nonscientific probability assess-
ment is too vague for rational decision making. 

Classical probability theory has two cornerstones. The first was the equal
likelihood of all possible outcomes in a game of chance. For example, drawing
the ace of hearts from a deck of 52 cards is neither more nor less likely than
drawing any other card. In the toss of a true coin, any particular outcome is not
favored over any other outcome: A head is just as likely an outcome as a tail.

The second cornerstone of classical theory is related to the relative frequency
with which an event tends to occur. In the long run the relative frequency tends
to approach the ratio of the number of successes (s) to the total number of trials
(n), s/n. This is the number adopted to define the probability of an event. Con-
sider, for example, the throw of two dice. If two dice are cast a very large number
of times, the sum of the spots will be larger than 10 in approximately 1/12 of the
total number of throws. (In a throw of two dice, 36 outcomes are possible. Out of
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Figure 2-9 Stem-and-leaf plot of DO concentration data.
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these, three sums are larger than 10. A sum of 11 can be obtained in two ways: 6
on the first die and 5 on the second or vice versa, whereas 12 is possible only
when both dice have 6. Hence, the probability of getting a sum larger than 10 is
3/36 = 1/12.) The approximation tends to get better as the number of throws
increases.

When a coin is tossed, there are two equally likely possible outcomes; that is,
there is mutual symmetry of all possible outcomes. In any toss, therefore, we
have a number (say, n) of cases that are equally likely. Consider, for example, an
event E defined as getting more than 3 heads in a single throw of 5 coins. The
cases that favor the event E or successes (see Fig. 2-10) are (H, H, H, H, H) and (H,
H, H, H, T). Note that the concern here lies only with the total number of heads
or tails in a single throw. The total number of possible outcomes are (H, H, H, H,
H), (T, H, H, H, H), (T, T, H, H, H), (T, T, T, H, H), (T, T, T, T, H), and (T, T, T, T, T).
If the number of cases favorable to the event (or number of successes) is denoted
by s then in this example, s = 2 and n = 6. Similarly, let event E be defined as
throwing more than 10 with two dice in one single throw. The cases that favor
this event or successes are (6, 6), (6, 5), and (5, 6). In this example, s = 3 and
n = 36. 

2.2.1 Definition of Probability

The ratio s/n is a measure of the likelihood that event E will occur. If s/n is zero,
there are no cases favorable to the event or no successes; the event is clearly
impossible. If s/n is one, all possible cases are favorable to the event—the event is
clearly a certain event. In the theory of probability, the ratio s/n has been adopted
as the definition of probability. Thus, the probability of the occurrence of a given
event is equal to the ratio s/n, where s is the number of cases favorable to the
event or successes and n is the total number of possible cases, provided that all n
cases are equally likely and mutually symmetric.

If the number of observations approaches infinity, the frequency ratio would
approach a constant number P in a mathematical sense. If an event occurred s
times in n observations, then P is defined as

(2.2)

The stability of the relative frequency number is an empirical observation.
Observed values must be sufficient to get an acceptable estimate of the probabil-
ity P. Since Eq. 2.2 employs a frequency-type definition of probability, it is
assumed that in a random phenomenon there is an underlying statistical regu-
larity, which demonstrates itself in the long run. Figure 2-11 depicts this trend of
the underlying statistical regularity in a random experiment of tossing a coin. A
bent coin might show a different frequency ratio of “heads” but the ratio would
still converge to an approximately constant number.
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2.2.2 Distinction Between Probability and Frequency

When differentiating between probability and frequency, two schools of thought
are distinguished. The objectivists view probability as something that is the
result of repetitive experiments—it is something external. In contrast, the subjec-
tivists view that probability is an expression of an internal state of the system
and is basically a state of knowledge. Kaplan and Garrick (1981) termed the
former interpretation as “frequency.” Of course, the estimation of probability has
to be objective, because it should not depend upon the person who is determin-
ing it: Two different persons should arrive at the same result given the same
observed data. To elaborate, probability is a numerical measure of a state of
knowledge or a degree of belief whereas frequency refers to the outcome of
some experiment that involves repeated trials. Thus frequency is a hard measur-
able number even though the experiment may not be really performed—it may
be conducted in future or only in “thoughts.” Appropriately, the statistical anal-
ysis of floods is termed as “flood frequency analysis” because observations of
floods can be perceived as repeated experiments and actual observations are
employed in frequency analysis. 

One should note that probability and frequency are closely connected. Fre-
quency is used to calibrate the probability scale and, after the calibration is over,
we use probability to express our state of confidence or knowledge in those
areas where we may not have any information about frequency. Furthermore,
relative frequency is expressed in terms of probability or percent of chance.
Therefore, frequency and probability are often used interchangeably. 

2.2.3 Random Events

The collection of all possible random events that might arise from a random
experiment constitutes a set of elementary events. The sets of combinations of

Figure 2-10 Set of all possible outcomes and subset E.

(H, H, H, H, H) 
(H, H, H, H, T)
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(H, H, H, H, T)
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(H, H, T, T, T) 
(H, T, T, T, T) 
(T, T, T, T, T) 

Event E

Sample space S
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elementary events are called composite events. Together, all elementary and
composite events constitute the sample space. A sample event can also be an
event consisting of a single sample point, and a compound event is made up of
two or more sample points or elementary outcomes of an experiment. The com-
plement Ac of an event A consists of all sample points in the sample space of the
experiment not included in the event A. Therefore, the complement of an event
is also an event. If A is a certain event (i.e., if A is the collection of all sample
points in the sample space S), then its complement Ac will be the null event (i.e.,
it will contain no sample events).

If two events contain no sample points in common, the events are said to be
mutually exclusive or disjointed (see Fig. 2-12). If two events A and B are not
mutually exclusive, the set of points that they have in common is called their
intersection, denoted as AB. Figure 2-13 shows this concept using the Venn dia-
gram. If the intersection of two events A and B is equivalent to one of the events,
say, A, then event A is said to be contained in event B and is written as A ⊂ B. The
union of two events A and B is the event that is the collection of all sample points
that occur at least once in either A or B and is written as A ∪ B.

Another sample space of interest is conditional sample space. For example, a
hydrologist might be interested in floods exceeding a certain threshold event
denoted as A. The set of events exceeding event A can be considered as a new,
reduced sample space. Only the sample events associated with the sample
points in that reduced space, which is conditional on A, are possible outcomes of
the experiment. The reduced sample space is the conditional sample space and
can be represented as {events|events ≥ Α}.

Figure 2-11 Frequency ratio for “heads” in a sequence of coin throws. 
Note the abscissa has logarithmic scale.
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2.2.4 Mathematical Representation of Events

The city of New Orleans in Louisiana is surrounded by lakes on three sides and
the Mississippi River passes through it. Located on the northern side is Lake
Pontchartrain, the largest lake. The city is protected by dykes from likely water
level rise in this lake. Consider a case where the dykes need to be raised along
the lake so that dyke elevations would protect the city with a probability of more
than 99% in any given year. In this case, the interest is really in the maximum
lake water level (H). Other related aspects of interest might be the duration of
the maximum water level, the time intervals between two high-water levels, or
the cause of the water level rise. If the maximum water level rise is considered to
be of main interest in the present case, then it can be used to differentiate among
events. This is accomplished by representing the maximum water level in a one-
dimensional space, the probability space, which is simply a straight line with an
origin, a scale, and a positive direction. Any single lake water level that has
occurred in the past or that may occur in the future can be represented by a sin-
gle point in this probability space. Conversely, any point on the line can be
thought of as representing a lake level, provided, of course, that impossible
events, that is, events with a probability of zero, are included in the description.

Not all events can be represented by single points on the probability scale. In
fact, when water levels that will overtop a dyke are considered, then all water
levels equal to or greater than the particular maximum level that will overtop
the dyke are considered. That event, say, H > 10 m, is represented in the proba-
bility space by an interval, namely, the infinite. Here H is above a certain thresh-
old. One interval in the probability space represents an event.

Figure 2-12 Two mutually exclusive events A and B in sample space S.

Figure 2-13 Venn diagram showing intersection and union of two events.
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It should be emphasized that not every event may be represented in the
probability space by a single interval. Consider, for example, an event that the
maximum lake level is not between 5 and 7 m. It must be then either smaller
than 5 m or greater than 7 m. Any point in the interval to the left of 5 m or to the
right of 7 m satisfies this condition. The event thus specified is represented by
the sum of two intervals, namely the interval from – ∞ to 5 m and the interval
from 7 m to +∞ . The sum of two intervals may be an interval, but it is not neces-
sarily an interval as this example illustrates.

Any event can be represented in the probability space by an interval or by
the sum of a number of intervals. All intervals can be arranged in a sequence so
that there is a one-to-one correspondence between the elements of the sequence
and the set of positive integer numbers 1, 2, 3, etc. Figure 2-14 shows examples
representing flood peak events on a one-dimensional probability scale. Three
kinds of events can be distinguished:

Event A: Peak between 6,000 and 7,000 cubic meters per second (cumecs).
Event B: Peak larger than 10,000 cumecs.
Event C: Peak either between 2,000 and 3,000 cumecs or between 4,000 and
5,000 cumecs.

The boundaries of the intervals need attention. When the flow between 6,000
and 7,000 cumecs specifies event A, the boundaries of 6,000 and 7,000 cumecs
may or may not be included, depending on how the event is defined. In practice
one can never determine whether or not the flow is exactly 7,000 cumecs. When
variables take on only a limited number of specific values, the inclusion of the
boundaries becomes important. Consider, for instance, the throwing of a dice
having six faces wherein only six outcomes, including 1, 2, 3, 4, 5, and 6, are pos-
sible. If an event is defined such that the outcome must be larger than 5 then the
value 5 is specifically excluded. 

In real life there are many cases where more than one aspect of an event is of
interest, as, for example, the annual peak flow and the total annual flow in a
river, pollution concentration and pollutant loading, or the number of air quality
violations and the time interval between violations. If river flows have been
recorded for a number of years, then each year of record gives a recorded event
characterized by a pair of observations: the annual flood peak (say, in cumecs)
and the annual volume of flow (say, in cubic meters). The behavior of the river is
now described by two variables and their representation consequently needs a
two-dimensional probability space. 

Figure 2-14 Representation of events on a one-dimensional probability scale.
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Figure 2-15 shows a two-dimensional probability space in which event A
represents all years in which the annual flow volume is between 60 and 70 mil-
lion m3 while the peak discharge is between 120,000 and 130,000 cumecs. Simi-
larly, the concept of probability space can easily be extended to events
characterized by three or more parameters. In each case any event can be repre-
sented by the sum of an enumerable number of intervals.

2.2.5 Axioms of Probabilities

The preceding discussion shows that an event can be an empty (or null) set, a
subset of a sample space, or the sample space itself. In other words, events are
sets and therefore the usual set operators, including union, intersection, and
complement, are applicable. These operators help define axioms of probability.
To that end, consider two events A and B. If A and B both belong to set S then the
union of A and B, (A + B) = C, will be denoted by A ∪ B = C. Clearly, C is the set
of events that belong to either A or B or both A and B if they are not mutually
exclusive (or disjointed) events. The intersection of A and B is denoted by A ∩ B.
If D is the intersection of A and B, then it is the set of all events that belong to
both A and B (i.e., D = A ∩ B). The notation (A – B) will designate the set of all
events that belong to A and do not belong to B. The notation AC will designate
the complementary event of A, that is, the set of all events that belong to S but do
not belong to A. Thus A ∪ AC = S. If the occurrence of event A depends on the
occurrence of event B, then these events are called conditional events, and they
are denoted as A|B. Figure 2-16 illustrates some of these familiar concepts by
means of a Venn diagram. Each event defined on the probability space must be
assigned a definite probability number.

Before we discuss axioms of probability, it may be instructive to write the four
frequently used rules for set operations, considering three events A, B, and C:

1. Commutative rule: A ∪ B = B ∪ A, A ∩ B = B ∩ A.
2. Associative rule: (A ∪ B) ∪ C = A ∪ (B ∪ C), (A ∩ B) ∩ C = A ∩ (B ∩ C).
3. Distributive rule: A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), A ∪ (B ∩ C)

= (A ∪ B) ∩ (A ∪ C).

4. De Morgan’s rule: (A ∪ B)C = AC ∩ BC, (A ∩ B)C = AC ∪ B C.

The notation P[A] is used to denote the probability of a random event A. For
the complementary event, one can write 

P(A) = 1− P(AC) (2.3)

Axiom 1: The probability of an event A is a number greater than or equal to
zero but less than or equal to unity:

0 ≤ P[A] ≤ 1 (2.4a)

Axiom 2: The probability of an event A, whose occurrence is certain, is unity:

P[A] = 1 (2.4b)
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where A is the event associated with all sample points in the sample
space.

Axiom 3: The probability of an event that is the union of two events is

P[A or B] = P[A ∪ B] = P[A] + P[B]−  P[A ∩ B] (2.5)

where A ∪ B denotes the union of events A and B, which means that
either event A occurs or event B occurs, and A ∩ B denotes the intersec-
tion of event A and event B. Equation 2.5 can be extended to the union of
n events. If A and B are two mutually exclusive (disjointed) events, the
probability of A and B, P[A ∩ B], will be zero and Eq. 2.5 becomes

P[A or B] = P[A] + P[B] (2.6a)

Figure 2-15 Depiction of an event in a two-dimensional probability space.

Figure 2-16 Venn diagram.
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Equation 2.6a can be generalized: If E1, E2, …, En, are n mutually
exclusive events then 

(2.6b)

Axiom 4: The probability of two (statistically) independent events occurring
simultaneously or in succession is the product of individual probabilities:

P[E1 ∩ E2] = P[E1] × P[E2] (2.7a)

Statistical independence implies that the occurrence of E1 has no
influence on the occurrence of event E2. Equation 2.7a can be extended to
n independent events, Ei, i = 1, 2, …, n, as 

(2.7b)

2.2.6 Probabilities of Simple Events

Since a simple event is associated with one or more sample points and simple
events are mutually exclusive by the construction of the sample space, the prob-
ability of any event is the sum of the probabilities assigned to the sample points
with which it is associated. If an event consists of all sample points with nonzero
probabilities, its probability is one and it is certain to occur. If an event is impos-
sible (i.e., it cannot occur), then the probabilities of occurrence of all the sample
points associated with the event are zero.

2.2.7 Conditional Probability 

Many times the occurrence of one event depends on the occurrence of another
event. The conditional probability of an event A, given that event B has
occurred, is denoted by P[A|B]. Knowing that event B has occurred reduces the
sample space for determining P[A] to B. By applying the definition of probabil-
ity, the number of ways in favor of A and B, s = P[A ∩ B], and the total number of
ways B can occur, n = P[B], P[A|B] is defined as (see Fig. 2-17) 

P[A|B] = s/n =P[A ∩ B]/P[B] (2.8a)

or

P[A ∩ B] = P[A|B] × P[B] (2.8b)

In a similar manner, one can also write

P[B|A] = P[A ∩ B]/P[A] or P[A ∩ B] = P[B|A] × P[A] (2.9)
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This leads to

P[A ∩ B] = P[A|B] × P[B] = P[B|A] × P[A] (2.10)

If the two events A and B are statistically independent, then

P[A B] = P[A] (2.11a)

P[B A] = P[B] (2.11b)

P[A ∩ B] = P[A] × P[B] (2.12)

which is the same as Eq. 2.7a.
Taking advantage of Eq. 2.9, one can express the joint occurrence of n depen-

dent events as

(2.13)

Example 2.2 Consider a river passing through an urban area that reaches a flood
stage each summer with a relative frequency of 0.1. Power failures in an indus-
trial complex along the river occur with a probability of 0.2. Experience shows
that when there is a flood, the chances of a power failure are raised to 0.4. Deter-
mine the probability of flooding or power failure.

Solution We are given the following:

P[Flood] = P[F] = 0.1

P[Power failure] = P[PP] = 0.2

P[Power failure | flood occurs] = P[PP|F] = 0.4

Therefore, 

Figure 2-17 Conditional probability.
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If flooding and power failure were independent, the joint probability would be

The probability of a flood or a power failure during summer would be the
sum of these first three joint probabilities:

The events are, however, dependent. When a flood occurs with P[F] = 0.1, a
power failure occurs with probability P[PP|F] = 0.4. Therefore, the true joint
probability is

P[F ∩ PP] = P[F] × P[PP|F]= 0.1 × 0.4 = 0.04 

The union of probabilities is

P[F ∪ PP] = P[F] + P[PP] – P[F ∩ PP] = 0.1 + 0.2 – 0.04 = 0.26

Note the contrast:

P[F ∪ PP] = 0.3 for mutually exclusive events

P[F ∪ PP] = 0.28 for joint but independent events

P[F ∪ PP] = 0.26 otherwise

Example 2.3 Consider the design of an underground utility system for an indus-
trial park containing six similar building sites. The sites have not yet been located
and hence their nature is not yet known. If the power and water are provided in
excess of demand, there will be wastage of client’s capital. However, if the facili-
ties prove inadequate, expensive changes will be required. For simplicity of num-
bers, let us consider a particular site where the electric power required by the
occupant will be either 5 or 10 units while the water capacity demand would be
either 1 or 2 units. It is assumed that the probability of electric power demand
being 5 units and water demand being 1 unit is 0.1, the probability of electric
power demand being 5 units and water demand being 2 units is 0.2, the probabil-
ity of electric power demand being 10 units and water demand being 1 unit is 0.1,
and the probability of electric power demand being 10 units and water demand
being 2 units is 0.6. Calculate the probabilities of water or power demands. 

Solution First, we define four associated events. Let us denote the following:
event W1 = the water demand is 1 unit, W2 = the water demand is 2 units, E5 =
the electricity demand is 5 units, and E10 = the electricity demand is 10 units.
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Note that water and power demands occur simultaneously. In other words, they
both need to be satisfied simultaneously. For example, the water demand of 1
unit can occur either with electric power demand of 5 units or with 10 units.
Then the sample experimental space associated with a single occupant consists
of four points as shown in Table E2-3.

Thus, the probability of event W1 is

P[W1] = P[E5W1] + P[E10W1] = 0.1 + 0.1 = 0.2

Likewise, the probability of event W2 is the sum of the probabilities of the
corresponding mutually exclusive simple events: 

P[W2] = P[E5W2] + P[E10W2] = 0.2 + 0.6 = 0.8

Similarly, the probability of event E5 is

P[E5] = P[E5W1] +P[E5W2] = 0.1 + 0.2 = 0.3

and the probability of electric power demand being 10 units, E10, is

P[E10] = P[E10W1] + P[E10W2] = 0.1 + 0.6 = 0.7

The probability that either the water demand is 2 units or the power demand
is 10 units may be calculated as 

P[W2 ∪ E10] = P[W2] + P[E10] – P[W2 ∩ E10] = 0.8 + 0.7 – 0.6 = 0.9

Alternatively, one can obtain this probability as

P[W2 ∪ E10] = P[E10W2] + P[E5W2] + P[E10W1] = 0.6 + 0.2 + 0.1 = 0.9

The probability that a site with a power demand of E10 will also require a
water demand W2 is

P[W2⏐E10] = P[W2 ∩ E10]/P[E10] = P[E10W2]/P[E10] = 0.6/0.7 = 0.86

Example 2.4 In a survey, a number of firms in similar industrial parks are sam-
pled. It is found that there is no apparent relationship between their electricity
demand and their water demand. A high electricity demand does not always
seem to be correlated with a high water demand. Based on this information,
probabilities are assigned, as listed in Table E2-4a. Find the probabilities for the
joint or simultaneous occurrence of events denoted by water demand and elec-
tricity demand.

Table E2-3

Water 
demand

Electric power demand

E5 = 5 units E10 = 10 units

W1 = 1 unit P[E5W1] = 0.1 P[E10W1] = 0.1

W2 = 2 units P[E5W2] = 0.2 P[E10W2] = 0.6
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Solution Adopting the assumption of independence of events of power and
water demands, one can calculate the probabilities for the joint occurrence or
simple events. The results are listed in Table E2-4b.

Example 2.5 For simplicity, let us calculate the probabilities of water demand
only and investigate the design capacity of a pair of similar sites in the industrial
park. The occupancies of the two sites represent two repeated trials of the previ-
ous experiment. Denote by W1W1 the events that the demand of each firm is one
unit and by W1W2 the event that the demand of the first firm is one unit and that
of the second firm is two units and so on. Find the probabilities for the joint
occurrence of water demands at two sites.

Solution Assuming independence of demands for water from the two sites, one
calculates the values in Table E2-5.

If the demands of all six sites are mutually independent, the probability that
all sites will demand two units of water is

P[W2W2…W2] = P[W2]P[W2]…P[W2] = 0.76 = 0.117 

Table E2-4a

Event Estimate of probability

Electricity demand E5 0.2

E10 0.8

Sum 1.0

Water demand W1 0.3

W2 0.7

Sum 1.0

Table E2-4b

P[E5W1] = P[E5]P[W1] 0.2 × 0.3 0.06

P[E5W2] = P[E5]P[W2] 0.2 × 0.7 0.14

P[E10W1] = P[E10]P[W1] 0.8 × 0.3 0.24

P[E10W2] = P[E10]P[W2] 0.8 × 0.7 0.56

Total 1.00

Table E2-5

P[W1W1] = P[W1]P[W1] 0.3 × 0.3 0.09

P[W1W2] = P[W1]P[W2] 0.3 × 0.7 0.21

P[W2W1] = P[W2]P[W1] 0.7 × 0.3 0.21

P[W2W2] = P[W2]P[W2] 0.7 × 0.7 0.49

Total 1.00
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2.3 Conditional Probability and Independence

Probability values may change when new information is gathered. For example,
consider drawing the ace of hearts in a single draw from a complete deck of 52
playing cards. Clearly the probability of drawing the ace of hearts is 1/52. Now,
suppose that it is somehow known that the card that was drawn is a heart. What is
the probability that it is the ace of hearts? Evidently, the probability would be 1/13. 

The probability, thus revised with the availability of extra information, is
called conditional probability, for it is conditional upon the knowledge that
another event has occurred, for instance that the card drawn was a heart. If the
event of drawing a heart is denoted by H and the event of drawing the ace of
hearts by Ah then the conditional event will be designated by Ah|H and the con-
ditional probability by P(Ah H). In this example, event Ah is no longer one par-
ticular outcome out of 52 equally possible outcomes, since event H has a
probability of 1/4.

Consider another experiment. We again draw a card from a deck of 52 and
we ask the following: What is the probability that it is an ace? The answer is
1/13, because there are four aces in the 52-card deck: P(A) = 4/52. Now if it is
revealed that the card that was drawn is a heart then we ask the following: What
is the probability that the card is an ace? Using the definition of conditional
probability one can write P(A|H) = P(A ∩ H)/P(H). But since P(A ∩ H) = 1/52
and P(H) = 1/4, the answer is still 1/13. In this case, the probability value before
and after the information is the same. In other words, knowing that event H has
occurred does not tell us anything about the probability that event A will occur.
This is logical since the suits have the same configuration. We call such two
events A and H independent. 

To extend the discussion, consider throwing two dice and the probability of
the occurrence of 4 or 5 is to be determined. The domain of an event A, which is
the occurrence of either 4 or 5, can be sketched as shown in Fig. 2-18. 

Example 2.6 Consider a standard deck of playing cards from which we remove
all hearts except the ace. We now have 40 cards left. What is the probability that
a card drawn at random is both a heart and an ace?

Solution The event of drawing both a heart and an ace can be regarded as the
intersection of two events: event A, meaning the card is an ace, and event H,
meaning that the card is a heart. Since there are four aces, the probability of
drawing one out of a deck of 40 cards is 4/40 = 0.10: 

P(A) = 0.10

Since there is only one heart, the probability of drawing it out of a deck of 40
is 1/40 = 0.025:

P(H) = 0.025
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Because events A and H are both independent, the multiplication rule would
lead to 

P(A ∩ H) = P(A) × P(H) = 0.10 × 1/40 = 1/400

This is obviously wrong. 
To do the calculation correctly, we need to use 

P(A ∩ H) = P(A|H) × P(H)

P(A|H) is the conditional probability that the card is an ace if it is known to
be a heart. This event is certain; it has a probability of one. Therefore

P(A ∩ H) = 1× 1/40 = 1/40

Alternatively, we can use

P(A ∩ H) = P(H|A) × P(A)

P(H|A) is the conditional probability that the card is a heart if it is known to
be an ace. This probability is evidently 1/4. Therefore

P(A ∩ H) = (1/4) × 1/10 = 1/40

Example 2.7 A contractor wants to construct a tunnel below the bed of a river in
connection with the development of a transportation project. The period of con-
struction will take two years. The building site must be surrounded by a coffer-
dam to keep the water out against a 10-year flood. What is the probability that
the site will be flooded during construction? The water level in the river is con-
sidered as a random variable. 

Figure 2-18 Domain of event A in throw of two dice.
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Solution The 10-year flood is the flood that has a 10% probability of being
exceeded every year. This means that the contractor accepts a 10% probability that
the site will be flooded in the year the tunnel is constructed. It is assumed that in
each of the two years the probability of flooding remains at 10% and that the
events in the two years are independent. One might be tempted to argue that dou-
bling the time will double the risk, since extending the time will increase the risk
of flooding. This clearly is not the case, since the answer would then be that the
probability of flooding is 20%. By the same reasoning one would conclude that
flooding would occur with absolute certainty if the construction period would be
extended to 10 years. If the period of construction were extended to 12 years, this
reasoning would lead to an answer of 120%. This answer is patently wrong.

To analyze this problem, we need to only consider the maximum water level
during the first year and the maximum water level during the second year,
because our interest is in the question of whether the level is higher or lower
than the critical level that would cause the cofferdam to be overtopped. The
water levels in successive years are assumed to be independent. The probability
of no flooding in the first year is 0.9; likewise, the probability of no flooding in
the second year is also 0.9. The probability that there is no flooding in either year
is equal to the product of the probabilities, 0.9 × 0.9 = 0.81. Similarly, probabili-
ties can be assigned to the other three possible points. In this case, the sum of all
the probabilities adds up to 1.00.

In a similar manner, no flooding in the first year and no flooding in the sec-
ond year is the intersection of two events defined as a single point that will have
a probability of 0.81. Likewise, flooding in the first year and flooding in the sec-
ond year is the intersection of two events, say, event A and event B, and results
in a single point that will have a probability of 0.1 × 0.1 = 0.01. In the probability
space we can arbitrarily give the water levels lower than the critical level the
value 0 and those higher than the critical level the value 1. This gives four
possible points in probability space, as shown in Fig. 2-19, where we now have a
discrete distribution.

Figure 2-19 Probability space of Example 2.7.
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The event of interest is flooding during the construction period. This means
flooding during the first year or flooding during the second year. This event is
the union of the two events A and B:

P(A ∪ B) = P(A) + P(B) – P(A ∩ B)

P(A ∪ B) = 0.10 + 0.10 – (0.10 × 0.10) = 0.19

The probability associated with the event (A ∪ B) is 0.19. It then follows that
the probability is 19% that the site will be flooded during construction. 

Alternatively, it is even simpler to observe that the described event “flooding
during years 1 and 2” has a complementary event: “no flooding during year 1 and
no flooding during year 2.” The latter is the intersection of two independent
events Ac and B c, each having a probability of 0.9 [i.e., P(Ac) = P(Bc) = 1 – 0.1 = 0.9].
The probability of the intersection is P(Ac ∩ Bc) = P(Ac) × P(Bc) = 0.9 × 0.9 = 0.81.
The probability of the complementary event that the site will be flooded at least
once in two years is 1.0 – 0.81 = 0.19. 

Example 2.8 A highway culvert is designed for a 10-year flood. What is the
probability that the design flood will be exceeded in the next 20 years? 

Solution The event “exceedance during the 20 years” is the union of 20 events
that have many points in common, namely, all the possible multiple occurrences
of exceedance during the 20-year period. Applying the addition rule thus
becomes quite awkward. However, the complementary event has a probability
that can be evaluated easily. The complementary event of exceedance at any time
during the period of 20 years is evidently “no exceedance at all.” That means “no
exceedance in the first year,” “no exceedance in the second year,” “no exceedance
in the third year,” and so on. This is the intersection of 20 events, each having a
probability of 0.9. Assuming statistical independence and applying the multipli-
cation rule gives a probability equal to (0.9)20 = 0.12. It then follows that the prob-
ability of exceedance during the 20 year period is 1.0 – 0.12 = 0.88.

2.4 Total Probability and Bayes’s Formula

Sometimes, it is difficult to directly determine the probability of occurrence of an
event. Such an event may occur along with other events, called attribute events.
These events are exclusive and mutually exhaustive. In such cases the sample
space can be divided into a number of mutually exclusive and collectively
exhaustive subsets, S1, S2, …, Sn, each subset corresponding to an attribute event.
For an event A taking place in this sample space as shown in Fig. 2-20, one can
write

A = A ∩ S = A ∩ (S1 ∪ S2 ∪ … Sn) = (A ∩ S1) ∪ (A ∩ S2) ∪…∪ (A ∩ Sn) (2.14)
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By invoking the properties of mutually exclusive events, Eq. 2.14 can be sim-
plified to

P(A) = P(A ∩ S1) + P(A ∩ S2) +… + (A ∩ Sn) (2.15)

Using Eq. 2.9, P(A ∩ B) = P[A|B] ×P[B], allows one to write Eq. 2.15 as

P[A] = P[A|S1] × P[S1] + P[A|S2] × P[S2] + … + P[A|Sn] × P[Sn]

(2.16)

Equation 2.16 is also known as the theorem of total probability. This gives the
probability of event A, regardless of the attributes.

Rewriting Eq. 2.10, one gets

P[A ∩ Si] = P[A| Si] × P[Si] = P[Si|A]P × [A] (2.17)

or

P[Si|A] = P[A| Si] × P[Si]/P[A]

Substituting the value of P[A] from Eq. 2.16, one obtains

(2.18)

Equation 2.18 is known as Bayes’s theorem and follows from the definition
of conditional probability; it is regarded as a fundamental theorem to revise the
probability value through evidence. Bayes’s theorem involves a prior (or a priori)

Figure 2-20 Venn diagram of a set S consisting of subsets and an event A.
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distribution that contains all the relevant information about the variable before
additional data become available. Given the a priori distribution, the posteriori
distribution can be evaluated when a new set of data becomes available. 

Example 2.9 A contractor must complete a highway section in a period of 2
weeks. If it does not rain at all during that time he determines that he has a 90%
chance of completing the work on time. Two rainy days will reduce this probabil-
ity to 70%, three rainy days will reduce this probability to 50%, and four rainy
days will mean only a 10% chance of finishing on time. With more than four rainy
days he cannot make it. From the U.S. National Weather Service he obtains the
following information about the probability of rain during the construction
period: There is a 40% chance of zero days of rain, 30% chance of two days of rain,
20% chance of three days of rain, and 10% chance of four days of rain. The proba-
bility of more than four days of rain is negligible. What is the probability that the
contractor will finish the work on time? This example is based on Booy (1990).

Solution Consider the number of rainy days as a variable and denote it by X.
On the probability space one can now distinguish events A1, A2, A3, A4, and A5
corresponding to 0, 2, 3, 4, and more than 4 rainy days. Also, one can define
event R corresponding to “being on time” and event Q to “not being on time.”
Events A1, A2, A3, A4, and A5 are independent, mutually exclusive, and collec-
tively exhaustive; that is, they have no common points and their union contains
all points on the probability space. Conditional probabilities P(R|A1), P(R|A2),
P(R|A3), P(R|A4), and P(R|A5) are also given. It is then possible to construct a
simple two-dimensional probability space in which the probabilities associated
with events A1, A2, A3, A4, and A5 can be given in the first row and conditional
probabilities P(R |A1), P(R |A2), P(R |A3), P(R |A4), and P(R |A5) in the second row.
These are listed in Table E2-9.

From the total probability theorem, the probability of completing the work
on time can be expressed as

Table E2-9

Probability space X→ Number of days of rain

A1

0

A2

2

A3

3

A4

4

A5

> 4

Chance of rain [P(X=Ai)] 40% 30% 20% 10% 0%

Chance of completing work 
(given) [P(R|X=Ai)]

90% 70% 50% 10% 0%

P R P R A P R A P X Ai
i

i i
i
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= =
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1
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One can now determine the probabilities associated with the intersections of
events A1, A2, A3, A4, and A5 with events R and Q using the multiplication rule:

As an example, let us consider the case A1 = 0. Then,

Thus, 

It is seen that the probability of finishing the work on time, now called the
total probability, is equal to 36% + 21% + 10% + 1% = 68%. One can visualize that
each of the events A1, A2, A3, A4, and A5 carries part of this total probability and a
percentage of each corresponding to the conditional probability is associated
with R and the rest is associated with Q.

Example 2.10 Assume that the engineer who calculated the probabilities shown
in Example 2.9 was away when the work was being done. She did not know any-
thing about the weather at the site but she learned that the contractor was able to
finish in time. Did it rain? And if it did, did it rain for two, three, or four days? So
she decided to calculate the probabilities of rain during zero, two, three, and four
days, knowing that the contractor was able to finish on time. It should be noted
that the engineer did have the information on the chances of rainy days and those
of completing the work on time. This example is based on Booy (1990).

Solution The probabilities to be calculated are the probabilities of rain for a
given number of days given that the work has been completed on time. Thus
these are conditional probabilities. These probabilities are not the probabilities of
number of rainy days, which are already given. Therefore, to distinguish
between the probabilities of number of rainy days, which are given, and the
probabilities to be computed, the latter are denoted as R1, R2, R3, and R4. For
computing the probability that it did not rain given that the work was com-
pleted one can write 

Ri = P(Ai |R) = P(A1 ∩ R)/P(R)

From Example 2.9, P(Ai ∩ R) is known. Therefore, 

R1 = P( A1 |R) = 0.36/0.68 = 0.53

R2 = P( A2 |R) = 0.21/0.68 = 0.31
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R3 = P( A3 |R) = 0.10/0.68 = 0.15 

R4 = P(A4 |R) = 0.01/0.68 = 0.01

It is worth noting that before the engineer knew that the contractor had fin-
ished on time she would have rated the probabilities of no rain, two rainy days,
three rainy days, and four rainy days as 0.40, 0.30, 0.20, and 0.10. 

2.5 Probability Distribution

We have discussed that any event can be specified on the probability space
either as an interval or as the (enumerable) sum of intervals, or the probability of
any event can be determined as part of the total probability of one, which is
located in the intervals that represent the event. How is the probability of one
distributed over the probability space? Once the distribution is known, the prob-
ability that each interval carries can be determined.

The probability distribution function gives a complete characterization of its
random variable. It allows us to determine various moments of the random vari-
able through the theory of statistical expectation, which will be covered in the
next chapter. Further, knowing the probability distributions of two random vari-
ables will allow us to examine whether the two random variables are identical
and if they are not, how they differ from one another.

2.5.1 Probability Mass Function

The probability distribution associated with a discrete random variable may be
defined by means of probability mass function (PMF). It can be a bar graph dis-
playing the distribution or simply a list of probabilities associated with points of
the probability space. It can also be a formula that relates probability to values of
the variable. For example, the probability that X takes on a value x may be speci-
fied by the equation

f(x) = P(X = x) = 0.9 × (0.1)x–1, x = 1, 2, 3, …, ∞ (2.19)

where f(x) is the notation for PMF, which is equal to the probability that the ran-
dom variable X will take on the value x.

The probability mass function of a discrete variable X is shown in Fig. 2-21, in
which the values of the variable are plotted on the X axis and the probability that
the discrete random variable X takes on values x1, x2, …, xn is given on the Y axis.

The PMF function f(x) is not continuous, which means that we may not draw
the function as a curve by joining the spikes in Fig. 2-21. The function is defined
only for specified values of X, and it is not defined if the discrete random vari-
able X cannot take on the value x.
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2.5.1.1 Properties of the Probability Mass Function

The probability mass function has the following two properties:

1. 0 ≤ f(x) ≤ 1 for all x

2.

Example 2.11 A regulatory agency has issued a water use permit to a water sup-
ply utility for a typical year according to the rules in Table 2-11. Develop a prob-
ability mass function to show the availability of surface water in a typical year.

Solution The water supply is arranged in increasing order and Table 2-11 is pre-
pared. Then, the bar chart of f(x) versus X is plotted as given in Fig. 2-22. This
bar chart is the PMF.

Example 2.12 Develop a PMF for the data presented in Table 2-1.

Solution Assume that the sample data are sufficient to characterize the PMF of
the DO violation. In such a case, the relative frequency corresponding to a given
number of DO violations can be regarded as its probability. Therefore, Fig. 2-6
can be assumed to represent the PMF of DO violations.

Example 2.13 A subdivision has a provision for water supply from four water
supply utilities. Based on the past history of these individual utilities, it has been
noted that 95% of the time these utilities are able to meet the demand but,
because of maintenance, drought conditions, or other reasons, 5% of the time
they fail to meet the required demand. Develop a probability mass function to
show the distribution of probability with respect to the number of ways the sub-
division will meet its demand.

Solution Let X be the random variable representing the number of ways the
subdivision will meet its demand. The possible values that X can take on are

Figure 2-21 Diagram showing the probability of obtaining various values of a variable X.

X →

0.4

0.2

0

PMF
f(x) 

f x( ) =∑ 1



Elements of Probability 71

Table E2-11

Month Available surface water, x
(million gallons)

Probability, f(x)

Jan 484 0.120

Feb 277 0.123

Mar 395 0.118

Apr 793 0.100

May 839 0.098

Jun 1,390 0.077

Jul 2,353 0.040

Aug 3,202 0.017

Sep 2,631 0.039

Oct 1,936 0.064

Nov 1,235 0.094

Dec 770 0.110

Figure 2-22 PMF for availability of surface water.
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0, 1, 2, 3, and 4. To determine the probability corresponding to these values,
the following calculation is performed:

The resulting PMF is plotted in Fig. 2-23.

Example 2.14 If two dice are thrown, compute the probability of obtaining dif-
ferent values as the sum of the points on their top faces. 

Solution Each die has six faces and each face has a unique number of dots,
varying from 1 to 6. Hence, if two dice are thrown, the minimum that one can get
is 1 + 1 = 2 and the maximum is 6 + 6 = 12. In all, there are 6 × 6 = 36 possible out-
comes. Some numbers can occur in more than one way. For example, one can
obtain a sum of 6 in five ways: 1 + 5, 2 + 4, 3 + 3, 4 + 2, and 5 + 1. Clearly, the
probability of obtaining a sum of 6 is 5/36 = 0.139. A complete calculation is
shown in Table 2-14.

The data generated for X are summarized in Table 2-14.
Now, the PMF of the random variable X, which is the total number of points

obtained when throwing two ordinary dice, is plotted in Fig. 2-24. It is seen from
the figure that number 7 has the highest probability of occurrence. 

2.5.2 Probability Density Function 

For a continuous random variable, no single point carries a measurable proba-
bility. Therefore, each point is associated with a probability per unit basis on the

f (0) P(X = 0) = 0.05 × 0.05 × 0.05 × 0.05 0.00003

f (1) P(X = 1) = 4 × 0.05 × 0.05 × 0.05 × 0.95 0.0005

f (2) P(X = 2) = 4 × 0.05 × 0.05 × 0.95 × 0.95 0.0090

f (3) P(X = 3) = 4 × 0.05 × 0.95 × 0.95 × 0.95 0.1715

f (4) P(X = 4) = 0.95 × 0.95 × 0.95 × 0.95 0.8145

Total =1.00

Table E2-14a

Die #1
Die #2

1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12
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Figure 2-23 PMF for X.

Table 2-14b Frequency summary and calculation of PMF for X.

X Frequency PMF = f(x)

2 1 0.03

3 2 0.06

4 3 0.08

5 4 0.11

6 5 0.14

7 6 0.17

8 5 0.14

9 4 0.11

10 3 0.08

11 2 0.06

12 1 0.03

Sum = 36 1
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probability space and this ratio is called the probability density. For a single ran-
dom variable X, the probability density is a function of the value of X, x, and this
function is called the probability density function (PDF); for two variables, X
and Y, it is a function of x and y, and so on. The PDF is denoted by the symbol
f(x). Figure 2-25 shows a graph of a typical probability density function. Since a
continuous random variable X is defined on a particular interval, it may take on
any value in that particular interval. For example, if we say that X is defined on
any arbitrary interval between points a and b, then the probability that X lies
within this interval (a, b) is equal to the area of the PDF, f(x), intercepted by X = a
and X = b:

(2.20)

2.5.2.1 Properties of Probability Density Function

To be a probability density function, a function f(x) must satisfy the following
two properties:

1. for all x

2.

Figure 2-24 PMF for the sum of numbers obtained by throwing two dice.
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That means the PDF, f(x), is a non-negative function and the total area under
the PDF is equal to unity.

Example 2.15 Evaluate constant c for the following expression to be considered
as a PDF:

, for 0 ≤ X ≤ 10

Solution Using the first property of the PDF, f(x) ≥ 0 for all x, the range of X that
X can take on is determined. Thus, for f(x) to be a non-negative function, X ≥ 1.
Therefore, the range on which X is defined is for 1 ≤ X ≤ 10. Now, using the sec-
ond property of the PDF,

we obtain

Example 2.16 Plot the PDF of X given in Example 2.15 and determine the fol-
lowing: (a) probability X ≤ 3, (b) probability X ≥ 9, and (c) probability 4 ≤ X ≤ 8.

Solution The function f(x) = 2(x – 1)/81 is evaluated for various values of X
ranging from 1 to 10 and is plotted in Fig. 2-26.

Figure 2-25 Probability density function.
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(a) Probability X ≤ 3 = P(X ≤ 3) = 

(b) Probability X ≥ 9 = 1 – P(X ≤ 9) = 1 – 

(c) Probability 4 ≤ X ≤ 8 = P(4 ≤ X ≤ 8) = 

2.5.3 Joint Probability Distribution

When we want to express the joint behavior of more than one variable, joint
probability distributions are needed. For example, consider coastal land loss
along the Gulf of Mexico in the United States. The objective is to determine the
relationship between the annual land loss and the severity of hurricane activity
in the Gulf region. Both annual land loss (Y) and hurricane severity (X) are con-
sidered random variables. It is logical to state that there would be a significant
degree of correlation between hurricane severity and annual land loss. A joint
probability distribution would be needed to express the joint behavior of these
variables. This can be expressed in the shape of the contours of the joint PDF, as
shown in Fig. 2-27 for a hypothetical case. This figure shows that large annual
land losses are more likely to occur when hurricane activity is high and low land
losses are more likely when hurricane activity is low.

Figure 2-26 PDF of X.
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2.5.3.1 Joint Probability Density Function 

For two random variables X and Y, the PDF is a surface lying above the probabil-
ity space such that the elevation of the surface at any point indicates the proba-
bility density at that point. The shape of the surface can be constructed by using
contours of equal probability density as shown in Fig. 2-28. The probability asso-
ciated with any interval (a < X < b, c < Y < d) can be expressed as a double
integral:

(2.21)

Just as in the case of a univariate, continuous random variable where the
probability is interpreted as an area, the probabilities in the bivariate case are
represented by volumes under the PDF and the total volume under the PDF is
equal to 1.

If the random variables are discrete, the corresponding bivariate PMF is
given as 

(2.22)

In real life, most engineering problems contain more than one random vari-
able to define the process of an engineering system. For example, the groundwa-
ter level in a phreatic aquifer depends on withdrawal by pumping, rainfall,
evaporation, and inflow or outflow from other surface water bodies. Another
example is one of a reservoir in which the volume of water and reservoir level
depend upon input from its contributing streams, outflow to downstream reach,
water supply withdrawal, losses from evaporation and seepage, etc. Further, if
these random variables are statistically dependent, analysis related to these

Figure 2-27 Joint probability distribution.
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systems becomes mathematically challenging, depending on the mathematical
functions involved in the formulation of a particular problem, because in many
cases it is not possible to analytically integrate the bivariate or multivariate prob-
ability density function. Simplifying assumptions are therefore made to solve a
given problem and the implications of these assumptions are analyzed
numerically.

Example 2.17 The following bivariate probability density function is given:
f(x, y) = ax2y2, 0 ≤ X ≤ 2, 0 ≤ Y ≤ 2. Evaluate constant a so that f(x, y) may be con-
sidered as a bivariate PDF. Determine the probability P(0.5 ≤ X ≤ 1.5, 0 ≤ Y ≤ 1).

Solution Using the property of a bivariate PDF,

we write

Figure 2-28 Contours of equal probability.
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2.5.3.2 Marginal Probability Density Function

The marginal probability density function can be derived from the bivariate
probability density function. This can be illustrated as follows. Consider two
random variables X and Y. To determine the probability associated with X = x,
we consider the interval between x – (1/2)dx and x + (1/2)dx; this interval is
taken to define an event. To determine the probability of this event, the probabil-
ity mass in a strip of thickness dx parallel to the Y axis in the X–Y plane must be
computed; that is, the value of Y that is associated with a particular value of X is
not counted. Mathematically speaking, this process of adding up the probabili-
ties of all events in the strip dx implies integration of f(x, y) over all values of Y.
The probability of the event defined by the interval equals f(x)dx and can be
expressed as

(2.23)

In Eq. 2.23 dx is infinitesimally small but remains invariant with y. Therefore,
dividing by dx gives

(2.24)

Equation 2.24 shows that the marginal distribution of X, f(x), is obtained by
integrating f(x, y) over all possible values of Y. Similarly,

(2.25)

Thus, the marginal distribution of Y, f(y), is obtained by integrating f(x, y)
over all possible values of X. The separate distributions of X and Y are called the
marginal distributions of X and Y and the process of obtaining them is illustrated
in Fig. 2-29. 

Example 2.18 The joint probability distribution of x and y is given as

, –1 ≤ x ≤ 1; –1 ≤ y ≤ 1

= 0 otherwise

Find the marginal probability density function of X.

Solution Applying Eq. 2.24,

,

f x dx dx f x y dy( ) ( , )=
− ∞

+ ∞

∫

f x f x y dy( ) ( , )=
− ∞

+ ∞

∫

f y f x y dx( ) ( , )=
− ∞

+ ∞

∫

f x y
x y

,( ) =
−( )3

8

2

f x f x y dy( ) ( , )=
− ∞

+ ∞

∫
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gives

So the marginal distribution of X is

, –1 ≤ x ≤ 1

= 0, otherwise

In the same way one can determine the marginal distribution of Y:

, –1 ≤ y ≤ 1

= 0, otherwise

Figure 2-29 Joint and marginal distributions.
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2.5.3.3 Conditional Probability Density Functions

Frequently, we are interested in determining the probability distribution of a
random variable given a specific value of another related random variable. For
example, we may want to determine the probability distribution of rainfall
depth for rainfall duration equal to 6 hours, or the probability distribution of
annual river flow for winter snowfall of 100 cm, or the probability distribution of
drought length for annual rainfall equal to 500 mm in a drainage basin, and so
on. Such determinations are made using conditional probability distributions. 

For two random variables X and Y, we denote the PDF of the conditional
probability distribution of Y for a given value of X = x by the symbol f(y x). The
probability that Y is in the interval y – (1/2)dy to y + (1/2)dy for a given value of
X is given by the expression f(y x)dy; this will be true in every case where the
probability distribution is specified by a PDF. This is a conditional probability,
conditional, namely, upon X being in the interval, say, between x* − (1/2)dx and
x* + (1/2)dx.

Recalling the definition of conditional probability,

we thus have

(2.26)

or

(2.27)

and

(2.28)

Note that x* is a constant in Eq. 2.27 and y* is a constant in Eq. 2.28. Since x* is a
constant, the expression f(x*, y) signifies the function of f(x, y) for a constant value
of x. On a two-dimensional probability space, this is the cross section of the plane
X = x* with the probability density surface f(x, y), which is a curve, not a surface.
The curve f(x*, y), shown in Fig. 2-30, measures the way the probability density
changes with Y for a constant X but is not a proper PDF since its area will not be
equal to 1. However, the area can be computed by integrating f(x, y)dy over the
entire range of Y for constant X. This is the same way that the joint probability
density function of X is obtained. This will yield the area under the curve f(x*, y)
as equal to f(x*), as shown in Fig. 2-30. Thus, dividing the function f(x*, y) by f(x*)
would make the area under the curve equal to 1. 

Equations 2.27 and 2.28 show the relationships among conditional, joint, and
marginal distributions, which can be clarified by considering their geometric

P A B
P A B

P B
( | )

( , )
( )

=

f y x dy
f x y dx dy

f x dx
( | )

( , )
( )
*

*
=

f y x
f x y
f x

( | )
( , )
( )

*

*
=

f x y
f x y
f y

( | )
( , )
( )

*

*
=



82 Risk and Reliability Analysis

representations. Figure 2-30 shows the joint distribution and the marginal distri-
bution of X.

Example 2.19 Consider the joint PDF f(x,y) given in Example 2.18. Determine
the conditional distribution of X given Y = y.

Solution Applying Eq. 2.28,

,

we obtain the conditional distribution of X given y:

In the same way one can determine the conditional distribution of Y given x:

, –1 ≤ y ≤ 1

= 0, otherwise

Figure 2-30 Joint and marginal distributions.
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2.5.4 Cumulative Distribution Function

For continuous random variables, probabilities are calculated by integration of
the PDF over certain intervals. To avoid complications with integration, we
introduce the concept of the cumulative distribution function (CDF). The CDF of
a random variable X is denoted by the symbol F(x) and is defined as the proba-
bility that X will be equal to or less than a given value x:

F(x) = P(X ≤ x) (2.29)

F(x) is a function of x. The CDF is calculated by the integral

(2.30)

Once the CDF is determined, the probability associated with any interval can
be determined as 

P(a < X ≤ b) = F(b) − F(a) (2.31)

For a discrete variable, F(x) is calculated by summation of probabilities:

(2.32)

Figure 2-31a and Fig. 2-31b show the probability density functions and
cumulative distribution functions for continuous and discrete variables. The
CDF is a function that starts with zero somewhere on the left-hand side and
increases till it reaches one on the right-hand side. F(x) is the total probability to
the left of x and in point x itself. For a continuous distribution, the inclusion of
point x makes no difference since the probability in each single point is zero.

Example 2.20 Develop a cumulative frequency distribution for Example 2.13. 

Solution Using the PMF data developed in Example 2.14, the CDF values corre-
sponding to each value of X were determined by using Eq. 2.32, as shown in
Table E2-20. The resulting CDF is presented in Fig. 2-32.

Example 2.21 Plot the CDF of X given in Example 2.15 and determine (a) proba-
bility X ≤  3, (b) probability X ≥ 9, and (c) probability 4 ≤ X ≤ 8.

Solution By using the PDF and Eq. 2.30, the CDF values are calculated at sev-
eral values of X. Then these points are joined by a smooth curve. The obtained
curve is the required CDF as shown in Fig. 2-33.

Using the plot in Fig. 2-33 one can read the probability corresponding to
any interval. The answers to the posed questions are (a) probability X ≤ 3 = 0.05,
(b) probability X ≥ 9 = 1 – 0.79 = 0.21, and (c) probability 4 ≤ X ≤ 8 = 0.60 – 0.11 =
0.49.

F x f x dx
x

( ) ( )=
− ∞
∫

F x p x x xi i( ) ( ),= ≤∑ for all 
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2.6 Function of a Random Variable 

There are many cases where we are interested in determining the probability
distribution of a random variable, say, Y, that is a function of another random
variable, say, X. For example, we may be interested in the probability of flood
damage, which may be a function of water level in the river, or in the probability
of traffic interruption on rainy days, which may be expressed as a function of
water depth on the highway, or in the probability of beach erosion during a hur-
ricane, which may be a function of tidal currents, and so on. To express the prob-
ability algebraically, the basic random variable may be X and its probability
distribution may be determined from observations. Our interest is in Y, which is
expressed as a function of X as Y = w(x). If this function is known analytically

Figure 2-31a PDF and CDF of a continuous distribution.

f(x)

x ---→  a      b

PDF

x ---→  a      b
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0.5

0
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F(a) F(b)
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then the probability distribution of Y can be determined. There is a one-to-one
relationship between X and Y.

If there is a functional relationship between X and Y, say, Y = w(X), the PDF
of Y can be determined through the PDF of X, as shown in Fig. 2-34. From this,
one notes that Y lies in the interval between y + (½)dy and y – (½)dy if and only

Figure 2-31b PDF and CDF of a discrete distribution.

Table E2-20

X Frequency PMF = f(x) CDF = F(x)

2 1 0.03 0.03

3 2 0.06 0.08

4 3 0.08 0.17

5 4 0.11 0.28

6 5 0.14 0.42

7 6 0.17 0.58

8 5 0.14 0.72

9 4 0.11 0.83

10 3 0.08 0.92

11 2 0.06 0.97

12 1 0.03 1.00

Sum = 36 1

F(a)

a         x  --→         b

CDF

1.0

0.5

0

a         x  --→         b

P(a<x≤b)

PDF

f(x)

F(b)

F(x)
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Figure 2-32 CDF for the sum of numbers obtained by throwing two dice.

Figure 2-33 CDF of X.
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if x lies in the interval between x + (½)dx and x – (½)dx, such that y = w(x). This
means that the probability that Y lies in the interval between y + (½)dy and y – (½)dy
is equal to the probability that X lies between x + (½)dx and x – (½)dx. In other
words,

f(y)dy = f(x)dx (2.33)

The differential quotients dy/dx and dx/dy can be positive as well as negative
and can be determined by differentiation. The ratio between two positive inter-
vals corresponding to events on the probability space can be obtained as 

(2.34)

If Y is an analytical function of X then one must first determine the inverse
and obtain the ratio by differentiation with respect to Y. Referring to Fig. 2-34,
we can obtain the ratio ⏐ dx/dy⏐by drawing the tangent of the function at any

part icular point and by measuring the line segments cut by the tangent from the
positive axes. This procedure involves (a) the determination of the interval dy
corresponding to dx at any point x and (b) making the areas under the PDFs cor-
responding to the intervals the same. 

Figure 2-34 Schematic for deriving PDF of Y as function of X.
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Example 2.22 Assume X is a continuous variable defined in the interval 0 < X < 2
and characterized by the following PDF:

If y = x3, find the probability 0 < Y< 5. 

Solution Applying Eq. 2.34, f(y) = f(x) dx/dy, and differentiating the relationship
y = x3, dy = 3x2dx, we get dx/dy = 1/3x2 and so

As X is defined from 0 to 2, the range over which Y is defined is 0 to 23 (i.e.,
0 to 8). Thus, Y is characterized by a uniform distribution defined in the interval
0 < y < 8. The probability (0 < Y < 5) = area of the rectangle having length 5 and
height 1/8 = 5 × 1/8 = 5/8. 

Example 2.23 A number of network modeling packages assume that chlorine
decay follows first-order kinetics. The chlorine concentration, C (mg/L), at any
time t, is given by the following equation:

The decay parameter X is characterized by the following PDF:

Determine the PDF of C.

Solution The distribution of C can be obtained by applying Eq. 2.34:
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Now, replacing x in f(x) by

and substituting dx/dc and simplifying the expression gives the distribution of
chlorine residual as

2.7 Questions

2.1 Obtain daily temperature data for the city you live in for a number of
years, say, 30 years or more. Plot the temperature data against time. Is
daily temperature random? Obtain the maximum temperature and the
minimum temperature for the month of August for each year. Plot this
temperature as a function of year. Compute the mean temperature for
August and plot it. Discuss whether the maximum temperature and
minimum temperatures are random variables.

2.2 Obtain rainfall data for a city of your choice for several years, say, 30
years or more. Compute yearly rainfall and the long-term yearly mean.
Plot yearly rainfall as well as the mean. Is yearly rainfall a random vari-
able? Now obtain the rainfall data for the month of August for each year.
Also obtain the long-term mean rainfall for the month of August. Plot
the August rainfall data as a function of year. Also plot the mean. Is rain-
fall for the month of August a random variable? 

2.3 Obtain the yearly maximum wind velocity data for a city of your choice
for a number of years. Plot the wind velocity as a function of time and
discuss whether this velocity is a random variable. Also plot the wind
velocity mean.

2.4 Obtain the instantaneous maximum discharge data for the Amite River
at Darlington, Louisiana. Plot the maximum discharge as a function of
year and show if the discharge can be considered as a random variable.
Also plot the mean discharge. Also compute the time between two con-
secutive maximum discharge values, called the interarrival time. Com-
pute the average value of this time. Can the interarrival time be
considered random?
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2.5 Each year air quality standards established by the EPA are violated for a
certain number of times in Baton Rouge, Louisiana. Obtain the number
of violations occurring in Baton Rouge for several years. Can the number
of violations be considered a random variable? Compute the period of
each violation as well as the time between violations. Can these be con-
sidered random? Compute their mean values.

2.6 The following experiments involve a random variable or nonrandom
variable: 

(a) Roll two fair dice at a time. 
(b) Measure the time between consecutive plane arrivals.
(c) Toss a coin five times. 
(d) Take a penalty shot on goal.
(e) Measure the number of days an air quality standard is violated in a

year.
(f) Roll a die and determine whether it is a 6 or not.
(g) Test a randomly selected circuit to see whether it is defective. 
(h) Determine the number of vehicles on a bridge at a particular period

of time. 
(i) Determine whether there was flooding this year in New Orleans.
(j) Find out the flow rate in a stream.
(k) Determine when a comet appears in the sky.
(l) Request a person's highest educational level.

Indicate which of the variables is random, and if it is, then determine
which type of random variable it is (e.g., discrete, continuous, or
Bernoulli). 

2.7 A concrete culvert is to be designed such that it can carry a predicted
flow. Discharge measurements are irregular, and the engineer assigns
estimates of annual maximum flow rates and their likelihoods of occur-
rences (assuming that a maximum 20 cfs is possible) as follows: event A
= [10 to 17] with P[A] = 0.6; event B = [13 to 20] with P[B] = 0.6, and event
C = [A ∩ B] with P[A] = 0.7.

(a) Construct the sample space. Indicate events A, B, C, A ∩ C, A ∩ B,
and Ac ∩ Bc on the sample space.

(b) Find P[A ∩ B], P[Ac], and P[B ∩ Ac].
(c) Find P[A|B], P[B|A], and P[B|Ac].

2.8 It is assumed that earthquakes and high wind speeds are unrelated. At a
particular location the probability of “high” wind speed occurring
throughout any single minute is 10–6 and the probability of a “moderate”
earthquake during any single minute is 10–9.
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(a) Find the probability of the joint occurrence of the two events during
any minute.

(b) Find the probability of the occurrence of one or the other or both
during any minute.

(c) If the events in succeeding minutes are mutually independent, what
is the probability that there will be no moderate earthquakes in a
year near this location? What is the probability in 5 years?

2.9 Consider the possible failure of a water supply system to meet demand
during any given dry-season day.

(a) Use the total probability (Eq. 2.16) to determinate the probability that
the supply will be insufficient if the probabilities are as listed in
Table Q2-9.

(b) Determine the probability that a demand level of 100,000 gal/day
was the “cause” of the system’s failure to meet demand if an inade-
quate supply was observed. 

2.10 Consider the continuous PDF f(x) = 0.25 for 0 < X < a.

(a) What is a?
(b) What is P [X < a/2]?
(c) What is P [X > a/2 |X > a/4]?
(d) What is P [X > a/2| X < a/4]?

2.11 Assume that in earthquake-resistant design, the following relations take
place: Y = cex, where Y is the ground-motion intensity at the building
site, X is the magnitude of an earthquake, and c is related to the distance
between the site and center of the earthquake. If X is exponentially dis-
tributed f (x) = le-lx with x ≥ 0. Show that the CDF is F(y)= 1 − (y/c)-l with
y ≥ c. Sketch the distribution. 

2.12 Table Q2-12 gives the annual peak flow at the USGS gauge station
05578500 on Salt Creek near Rowell, Illinois. Develop a stem-and-leaf
diagram for the peak flow.

Table Q2-9

Demand level (gal/day) P [level] P [inadequate supply level]

D1 50,000 0.55 0

D2 100,000 0.35 0.1

D3 150,000 0.10 0.5

1.00
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2.13 Develop a frequency histogram and a cumulative frequency plot for the
peak flow of Question 2.12 using different numbers of bins. Evaluate the
impact of the number of bins on both the frequency histogram and
cumulative frequency plots. What frequency bin gives you the most
appropriate results?

2.14 If a highway bridge is constructed on Salt Creek near Rowell (Question
2.12) for a 15-year flood, what is the probability that the design flood will
be exceeded in the next 30 years?

2.15 Assume X is a continuous variable defined in the interval 0 < X < 1 and
characterized by the following PDF:

If y = x3/2, find the probability 0 < Y < 1/2. 

2.16 The joint probability distribution of random variables X and Y is given
as

, –1 ≤ x ≤ 1; –1 ≤ y ≤ 1

= 0 otherwise

Find the marginal probability density function of X.

2.17 If the dynamic head and discharge relationship in a given pipe system is
described by the following relationship:

where h is the dynamic head and q is the flow described by the following
distribution function:

determine the probability distribution function of the dynamic head h.

Table Q2-12

Year 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953

Peak flow 12400 8850 1380 3040 1600 2480 1810 6890 9390 3170 2210

Year 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964

Peak flow 829 1320 10300 7950 5730 7500 2290 10300 4110 6050 10600

Year 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975

Peak flow 1830 1090 1040 24500 1700 5060 1310 2020 7270 8060 3920
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2.18 Based on soil data it was found that the concentration c (μg/L) of tetra-
chloroethylene is described by the following log-normal distribution:

Further experiments were conducted to determine the amount of solute
sorbed onto the soil. The sorption of tetrachloroethylene onto this soil is
described by the Freundlich isotherm given as , where q is
mass of solute sorbed per unit of soil in μg/g. Find the distribution of the
solute sorbed on the soil. Further, determine the following:

(a) probability [q < 0.50 μg/g],
(b) probability [2 < q < 20 μg/g], and
(c) probability [q > 3000 μg/g].

2.19 Consider a random variable X described by a uniform distribution
, a ≤ x ≤ b, a > 0. If X is related to another random variable

Y with the following relationship:

derive a formula for the probability density function of Y.

2.20 Let X be a random variable described as

, , , , , and
.

(a) Let R be a random variable defined by the equation .
Find the distribution function of R.

(b) Let S be a random variable defined by the equation S = X3. Find the
distribution function of S.

(c) Let T be a random variable defined by the equation .
Find the distribution function of T.

2.21 Let X and Y be two random variables described by a joint probability
distribution function given as

, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

(a) If c = 0, determine the value of k so that f(x,y) is a valid bivariate dis-
tribution.

(b) Determine the marginal distributions of X and Y.
(c) Determine the values of k and c for which X and Y are statistically

independent.
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2.22 Let X and Y be two random variables described by their probability den-
sity functions f(x) and f(y) as

(x ≥ 0) and (y ≥ 0)

and define a random variable Z = (X + Y)2.

(a) Determine f(z) at z = 0.
(b) Sketch the probability distribution of Z and find the value of Z corre-

sponding to the maximum of f(z).
(c) Find the probability that Z is greater than 2.0.

2.23 A contaminant is discovered in a sample taken from a stream used as the
main drinking water source by a city. You are told that the test used to
detect the contaminant is extremely reliable. It is 100% sensitive (i.e., it is
always correct if contamination exists). But this test gives false results
about 0.01% of the time. Determine the probability of being contamina-
tion free given a positive test result.

2.24 Consider a bivariate distribution f(x,y) given as 

Determine the following:

(a) probability [X ≤ 2 and Y ≤ 3],
(b) probability [− 1 ≤ X ≤ 3 and 2 ≤ Y ≤ 5], and
(c) probability [X ≥ 4 and Y ≥ 6].

2.25 Consider the bivariate distribution of Question 2.24. Determine the mar-
ginal distributions of X and Y. Use marginal distributions to determine
whether X and Y are independent random variables.

2.26 A preliminary groundwater drilling was conducted with an assumed
prior probability of 0.81. The electrical resistivity method might be used
to locate the drilling locations. This method gives favorable results for
about 78% of applications where water was known to be present and
97% unfavorable results where water was not found. Determine (a) the
probability of finding water given a favorably result and (b) the proba-
bility of finding water given an unfavorable result.
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Chapter 3

Moments and Expectation

As mentioned in Chapter 2, the probabilistic approach plays an important role
and offers meaningful measures for decision making related to planning, design,
analysis, management, and regulatory compliance of engineering projects. Fur-
ther, parameters having significance in the design or analysis are frequently sub-
ject to significant variability and are taken as random variables. Instead of
having precise single values, random variables assume a range of values in
accordance with their probability mass or probability density functions. The
probability distribution of a random variable quantifies the likelihood that its
value lies in any given interval. But the mathematical form of the probability dis-
tribution for the complete characterization of a random variable relevant to a
real-life engineering system is often not known, as most generally only a sample
datum is known. In many cases, descriptive parameters—called moments—are
specified to approximately define the distribution. These parameters are esti-
mated from the available data to extract valuable information about distribu-
tions of relevant random variables. In this chapter, we first introduce the theory
of statistical expectations and moments. Then, we discuss the specific moments
and expectations that are most commonly utilized as descriptive parameters in
most civil engineering-related projects.
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3.1 Expectation

Let X be a random variable characterized with a probability density function
(PDF) or probability mass function (PMF), f(x). Further, let g(x) be another func-
tion of x defining a given system. The expectation of a function g(x), denoted
E[g(x)], is defined as

, if X is a continuous random variable (3.1a)

, if X is a discrete random variable (3.1b)

In other words, the expectation of a function g(x) is a weighted average of its
possible values determined at various X values that it can take. Each g(x) value is
weighted by its corresponding probability.

If g(x) = x, Eq. 3.1 can be rewritten as

, if X is a continuous random variable (3.2a)

, if X is a discrete random variable (3.2b)

3.1.1 Properties of Expectation

From the definition of expectation it is easy to prove the following properties:

1. The expectation of a constant c is the constant itself; that is,

E[X] = c, if X = c

2. The expectation of a product of a constant c and X is equal to the constant
multiplied by the expectation of X; that is,

E[c X] = c E[X]

Further, if we extend this rule to a linear sum of functions and let a,
b, … be constants, then

E[a g1(X) + b g2(X) + …] = a E[g1(X)] + b E[g2(X)] + …

3. The expectation of the sum of n random variables is equal to the sum of
the expectaion of the n individual random variables:

E g x g x f x dx( )⎡⎣ ⎤⎦= ( )
−∞

∞

∫ ( )

E g x g x f x
x

( )⎡⎣ ⎤⎦= ( ) ( )∑
all

E X xf x dx[ ] =
−∞

∞

∫ ( )

E X xf x
x

[ ]= ( )∑
all

E X X X E X E X E Xn n[ ... ] [ ] [ ] ... [ ]1 2 1 2+ + + = + + +
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4. The expectation of the multiplication of n independent random variables
is equal to the product of the expectation of the n individual random
variables: 

5. |E[X]|≤ E[|X|]
6. |E[X]|≤ c if P(|X|≤ c) = 1

The expectation of common random variables can also be calculated by
using Eqs. 3.1 and 3.2.

Example 3.1 Suppose that a discrete random variable X has the following PMF:

Calculate the following:

(i) E[X]
(ii) E[10X]

(iii) E[g(x)], where g(x) = (10X + 2)/3.

Solution

(i) From Eq. 3.2b, we have

E[X] = Σx f(x) = 0(0.05) + 1(0.1) + 2(0.2) + 3(0.3) + 4(0.2) + 5(0.1) + 6(0.05) = 3

(ii) Because of the basic property of expectation, we know that E[cX] = c E[X].
Thus,

E[10X] = 10E[X]

Substituting E[X] = 3 as calculated in (i), we get

E[10X] = 10(3) = 30

(iii) E[g(x)] = E[(10X+2)/3] = E[(10X+2)]/3 = {10 × E[X] + E[2]}/3 = 
{10 × E[X] + 2}/3. Substituting E[X] = 3 as calculated in (i), we get

E[g(x)]= (10 ×3+ 2)/3 =32/3

Example 3.2 Calculate (i) E[X], (ii) E[2X], (iii) E[2X+8], if X is uniformly distrib-
uted over (0, 1).

Solution In this example, we have to determine the mathematical form of the
distribution f(x). Because X is distributed uniformly, f(x) is parallel to the X axis.
Let f(x) = c. Moreover, f(x) is defined only over (0, 1). For f(x) to be a distribution,
its area (a rectangle with base length = 1 and width = c) should be 1. So, 1 × c = 1,

X 0 1 2 3 4 5 6

f(x) 0.05 0.1 0.2 0.3 0.2 0.1 0.05

E X X X X E X E X E E Xn n[ ... ] [ ] [ ] [ ] ... [ ]1 2 3 1 2 3× × × × = × × × ×
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giving c = 1. So, f(x) = 1 is defined over (0, 1). Knowing f(x), one can calculate the
required expectations as given in the following.

(i) Using Eq. 3.2a, we have

(ii) From the basic properties of expectation, we know E[cX] = cE[X], so
E[2X] = 2 E[X] = 2(1/2) = 1

(iii) E[2X + 8] = 2 E[X] + 8 = 2(1/2) + 8 = 9

Example 3.3 Let X be a random variable defined by the following PDF:

for 0 < x ≤ 1

 = 0 elsewhere

Find (a) E[X] and (b) E[3X + 2].

Solution

(a)

(b) E[3X + 2] = 3 E[X] + E[2], using the second property of expectation
= 3 E[X] + 2, using the first property of expectation
= 3 × 4/10 + 2 (substituting the result E[X] = 4/10)
= 16/5

Example 3.4 A water resources engineer is interested in determining the aver-
age annual concentration of total phosphorus (TP) in a stream draining the run-
off of a local watershed into a lake. This lake is used as a water supply and the
state agency is concerned with eutrophication resulting from increased levels of
TP loading. The engineer has collected water quality samples during several
storm events and has found that the TP concentration has the following relation-
ship with stream flow:

TP = 0.40 ln(Q) + 2.07

where TP is in mg/L and Q is in cfs. A USGS site upstream of the lake records
daily flow, and data of last five years are available. The engineer is interested in
using the flow information to determine the average annual TP concentration.
The empirical frequency distribution based on five years of daily flow is tabu-
lated in Table 3-4 and is presented graphically in Fig. 3-1.
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Solution By using the relationship between TP and flow, the midpoints of the
flow classes are converted into the corresponding TP concentrations. Then, the
expected value of the TP concentration can be calculated by applying Eq. 3.1. For
example, for the second class the midpoint is 3 cfs. The corresponding TP con-
centration is 2.51 mg/L. The relative frequency of TP will be equal to the corre-
sponding relative frequency of flow in the same class interval. Thus TP = 2.51
has a relative frequency of 0.04. Therefore, the TP and its relative frequency are
given as follows:

Table E3-4 Observed frequency distribution of flow. 

Lower class 
interval

Upper class 
interval

Midpoint Absolute 
frequency

Relative 
frequency

0 2 1 20 0.011

2 4 3 64 0.035

4 8 6 226 0.124

8 16 12 280 0.153

16 32 24 320 0.175

32 64 48 335 0.183

64 128 96 292 0.160

128 256 192 187 0.102

256 512 384 75 0.041

512 1024 768 18 0.010

1024 2048 1536 9 0.005

Figure 3-1 Observed frequency distribution of flow.
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Applying Eq. 3.1 gives the expected value of the TP concentration:

E[TP] = 2.07×0.01 + 2.51×0.04 + 2.79×0.12 + 3.06×0.15 + 3.34×0.18 + 3.62×0.18 + 
3.9×0.16 + 4.17×0.1 + 4.45×0.04 + 4.73×0.01 + 5×0.0 = 3.43 mg/L

3.2 Moments

The moments of a distribution comprise a special class of expectations that can
be used to compare distributions and derive properties of the distributions. In
many cases, the moments of a distribution are used as a way of summarizing the
important characteristics of a distribution as single numbers, without entailing
too much detail. There are several types of moments in the statistical literature,
but we most commonly deal with two general types of moments: moments
about the origin (or regular moments) and moments about the centroid (or cen-
tral moments).

3.2.1 General Moments or Noncentral Moments

The most commonly used moments are the moments about the origin, called
noncentral moments or general moments. For any random variable X defined by
PDF (or PMF) f(x), and any positive integer k, the expectation E[Xk] is called the
kth noncentral moment of X and is given by

for the continuous case (3.3a)

for the discrete case (3.3b)

It is clear from Eq. 3.3 that the zeroth noncentral moment is the integration of
the PDF or PMF itself, giving . Further, for k = 1 Eq. 3.3 gives the
first noncentral moment, which is equal to the mean of the distribution f(x), that
is, . In general, the first noncentral moment provides a measure of
the central location of a distribution. We will discuss measures of central location
in detail later in this chapter.

TP (mg/L) 2.07 2.51 2.79 3.06 3.34 3.62 3.90 4.17 4.45 4.73 5.00

Relative frequency 0.01 0.04 0.12 0.15 0.18 0.18 0.16 0.10 0.04 0.01 0.00

μk
k kE X x f x dx’ ( )= ⎡⎣ ⎤⎦ =

−∞

∞

∫

μk
k k

x

E X x f x’ = ⎡⎣ ⎤⎦= ( )∑
all

μ0 1 1’ = [ ] =E

μ μ1
’ = [ ] =E X
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3.2.2 Central Moments

The central moments are used to measure various aspects of a distribution with
respect to its mean μ. For any random variable X defined by PDF or PMF f(x)
and any positive integer k, the expectation E[(X−  μ)k] is called the kth central
moment of X and is given by

for the continuous case (3.4a)

for the discrete case (3.4b)

Again for k = 0, . 

For k = 1, ; that is, the first central
moment is always zero. The second central moment obtained by substituting
k = 2 in Eq. 3.4 is E[(X− μ)2], which measures the spread of a distribution
about its mean, also known as the variance of the distribution. After the mean,
the variance is the most important moment of a distribution. Its unit is the
square of the unit of the random variable and hence it is always positive. A
zero variance thus implies a deterministic variable. We will discuss variance
in more detail later in the chapter.

3.2.3 Relationship Between Central and Noncentral Moments

Rewriting Eq. 3.4, we can express the kth central moment of X as 

(3.5)

By substituting k = 1, 2, 3, and 4, the relationship between the first four cen-
tral and noncentral moments are derived as given in the following. For k = 1, the
relationship is

We know that and . Substituting these relations
into the previous expression gives

(3.5a)
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Thus, the first central moment of any random variable is always zero. Now,
for k = 2,

Thus,

(3.5b)

Now, substituting k = 3 in Eq. 3.5, one gets

 = – μ3 + 3 μ3 – 3 μ μ ’
2 + μ ’

3

= μ ’
3  – 3 μ μ ’

2 + 2 μ3 (3.5c)

Similarly, for k = 4 one can show that 

μ4 = μ ’
4  – 4 μ μ ’

3 + 6 μ 2μ ’
2 – 3 μ 4 (3.5d)

Example 3.5 A random variable X is defined by the following PDF:

, 0 ≤ X ≤

(i) Determine the first four moments about the origin, and (ii) use the non-
central moments to determine the central moments.

Solution

(i) Using Eq. 3.3a gives the first moment of X about the origin: 

The second moment of X about the origin is

The third moment of X about the origin is
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The fourth moment of X about the origin is

(ii) Using Eq. 3.5a, one gets μ1 = 0. The second central moment can be calcu-
lated by using Eq. 3.5b:

Using Eq. 3.5c gives the third central moment:

Using Eq. 3.5d gives the fourth central moment:

3.3 Moment-Generating Functions 

A moment-generating function (mgf) is the expectation of a very special func-
tion of X used in many areas of probability and statistics from which all kinds of
moments of a random variable are obtained. An mgf offers shortcuts for finding
the expected value, variance, and higher order moments. Further, an mgf
uniquely identifies its corresponding distribution if the distribution has the mgf. 

Let X be a random variable with PDF f(x). Then the mgf of X is defined as the
expectation of g(X) = etX, where t is any real number:

(3.6)

Using the mgf MX(t), we can define the kth moment about the origin as the
value of the kth derivative with respect to t, evaluated at t = 0:

(3.7)
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The expectation of X is said to exist if the integral or infinite series given in
Eq. 3.6 converges absolutely. Thus, a random variable may not possess a finite
mean, variance, or moment-generating function.

Example 3.6 Determine the moment-generating function for a discrete random
variable X whose PMF is as follows:

Using the mgf determine the first noncentral moment (i.e., the mean of X).

Solution Using Eq. 3.6 gives the mgf as

To determine the first moment of X, we need to first determine the first
derivative of the MX(t) with respect to t. Thus,

Now, the first noncentral moment of X can be determined by evaluating

at t = 0:

Example 3.7 A random variable X is defined by the normal distribution with
parameters mean μ and standard deviation σ with the following PDF:

, –∞ < x < ∞

Determine the mgf.

Solution Using Eq. 3.6 we have
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Letting z =(x – μ)/σ and then rearranging terms gives

3.4 Characteristic Functions

As mentioned earlier, the moment-generating functions do not always exist. The
most commonly used alternative to the mgf is the characteristic function (cf). It
is worth mentioning that a random variable always possesses a characteristic
function. Furthermore, there is a one-to-one correspondence between distribu-
tion functions and characteristic functions. The characteristic function of X is
defined as 

(3.8)

where i is an imaginary number and t is a real number. Using the characteristic
function ϕX(t), we define the kth moment of X about the origin as the value of the
kth derivative with respect to t, evaluated at t = 0 and divided by ik:

(3.9)

Example 3.8 Find the characteristic function for the random variable X defined
in Example 3.2. Using the obtained characteristic function, find the expected
value of X.

Solution The PDF of X is f(x) = 1 for 0 ≤ x ≤ 1, = 0 elsewhere
The characteristic function of X is

So, this uniform distribution can be uniquely represented by the characteris-

tic function . Now the expected value of X is
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Expanding the exponential term up to second order and then taking the limit
at t = 0, one obtains 

Example 3.9 Find the characteristic function of X characterized by the following
PDF:

f(x) = e–x x > 0

= 0 x < 0

Solution The characteristic function of X is

3.5 Characterization of a Single Random 1Variable

Let the random variable be designated as X. It is assumed that the probability
distribution of X is given explicitly in the form of a PMF, a PDF, or a cumulative
distribution function (CDF). Based on this knowledge, the distribution parame-
ters are defined.

3.5.1 Mean 

The most important parameter of a distribution is the mean of a random vari-
able. The mean is defined as the first moment of the probability distribution
about the origin of the probability space and is usually designated by the Greek
letter μ. For a continuous distribution, μ is defined as 

(3.10)

For a discrete distribution, μ is defined as

(3.11)

where x is the value of the random variable X, n is the number of observations, xi
is the ith observation of X, and i = 1, 2, 3, …, n. The concept of mean is explained
in Fig. 3-2a and Fig. 3-2b for continuous and discrete cases. 
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The probability distribution is the distribution of a probability mass of unity
(here one-dimensional) over the probability space. The mean gives the distance
of the center of gravity of the probability mass from the origin and describes the
location of the probability mass on the probability space. Other parameters can
also be used to determine the location. One of them is the mode, which is the
value of X for which f(x) is a maximum. The mode can be obtained by solving

where xmo is the mode of X.
Another important parameter is the median, which is the value of X with a

50% probability of being exceeded and therefore also a 50% probability of not

Figure 3-2a The mean for a continuous case.

Figure 3-2b The mean for a discrete case.
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being exceeded. In other words, the median divides the distribution into two
equal halves and represents the 50th quantile of X:

In engineering, however, the mean is by far the most useful parameter of
location. The expected value, designated by E(x), is also given by the mean. The
expected monetary value (EMV) can also be interpreted in this sense. 

3.5.1.1 Sample Mean 

To understand how the mean μ of a random variable X and the sample mean m
are related, the concept of a sample distribution is introduced. For each observa-
tion of X, the relative frequency can be calculated and plotted. There will proba-
bly be n clearly distinguishable points so that each point gets a relative
frequency of 1/n. If points happen to overlap, k observations might fall on the
same point x. The relative frequency assigned to that point then becomes k/n.
The relative frequency distribution is in all respects identical to the probability
distribution for a discrete random variable. The sum of all relative frequencies is
equal to 1. 

Suppose one wants to determine the mean saturated hydraulic conductivity
of soil of a watershed. Let the saturated hydraulic conductivity be the random
variable X. It is random because of the variability of soil characteristics, such as
texture, particle size distribution, organic matter, land use, and vegetation. Since
the probability distribution of X is not known, one must resort to measuring it
experimentally. It is necessary to take a large number of soil samples and mea-
sure the conductivity for each sample. Let the sample be of size n, and let the sat-
urated hydraulic conductivity value for each sample be xi. The mean or average
saturated hydraulic conductivity is then determined by adding all the test
results and dividing them by n:

(3.12)

Similarly, one may want to determine the mean elevation of the water level
during February in a river at a specified location. For this purpose, measure-
ments of the river water level can be carried out each day and their mean can
then be computed.

But why do we need to take a sample? Taking a sample allows us to estimate
the probability associated with each event in the probability space. Consider an
example of cement strength, where one may wish to estimate the probability
that the strength of a batch of cement to be used in a structure falls below a spec-
ified strength. To compute this probability, a sample of observations of cement
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strength is collected. If, in the sample, say, 10% of the observations of X were
equal to or less than x then it is expected that the probability that X will be equal
to or less than x for the batch of cement to be manufactured will also be 10%. In
other words, F(x) = 10%. Similarly, for computing the probability of discharge
exceeding a certain value we need observations of river flow; for computing the
probability of rainfall amount exceeding a certain value we need observations of
rainfall; for computing the probability of water quality violations we need obser-
vations of water quality constituents. 

One can place reasonable confidence in such probability estimates if the
sample is representative of the expected hydraulic conductivity or of the con-
crete strength. Therefore, special precautions are taken to ensure that the sample
will be free of bias (i.e., one should not choose all “good” or “bad” samples). If
possible, numerous test observations are taken so that exceptionally high or low
values have less influence on the final result. Ideally, one should take samples
such that the entire range of variable X is covered, as shown in Fig. 3-3. The sam-
pling should be such that the distribution of relative frequency over the sample
space is representative of the distribution of probability over probability space.

Since the mean of X lies at the center of gravity of the probability mass, one
may expect the center of gravity of the relative frequency mass to be close to the
mean. The latter is calculated by Eq. 3.3. The sample mean is denoted by m and
is an estimator of the mean of the random variable X, which has been designated
by μ.

It is important to keep the following points in mind: (1) The sample distribu-
tion is always a discrete distribution, even though the random variable may be
continuous. (2) The sample distribution is representative of a set of observations.
(3) The sample distribution tends to vary from sample to sample. (4) The sample
mean m itself is a random variable. It varies from sample to sample and each
additional observation tends to change it. (5) The sample mean is usually
referred to as a statistic rather than a parameter. To distinguish it from the mean
of the random variable, μ, it is designated by the letter m or by x. (6) The larger
the sample, the better the agreement between m and μ.

Figure 3-3 Sample space with n observations.
i 3 3 S l i h b i
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3.5.1.2 Arithmetic Mean

Example 3.10 The number of passengers who arrived at a railway terminal was
counted from Monday to Friday and the following values were obtained, respec-
tively: 10,371, 8,448, 9,165, 8,974, and 10,739. Find the average number of passen-
gers arriving at the railway terminal each day.

Solution The average number of passengers is

m = (10,371 + 8,448 + 9,165 + 8,974 + 10,739)/5 = 9,539.

This gives the arithmetic mean of the variable. Besides arithmetic mean,
there are also other types of means.

3.5.1.3 Geometric Mean

Another type of mean of data is the geometric mean. The geometric mean is
used when the data consist of rates of change or are distributed exponentially.
The geometric mean is determined as

(3.13)

Note that if any one of the observations is zero, the geometric mean will be
zero. Further, if any of the observations is less than zero, the geometric mean
cannot be computed. Logarithms are helpful in computations when more than
three observations are involved. Most often water quality, air pollution, and soil
contaminant data are handled by transforming the raw data by taking loga-
rithms (i.e., these data are log-normally distributed). Further, in real-life prob-
lems, decisions are taken using sample data as the data collection effort is
extremely costly and time consuming. For example, a primary concern in risk-
based corrective action (RBCA) is the decision criterion for evaluating attain-
ment of cleanup objectives. The statistic for comparison with a risk-based
cleanup objective should be accurate and stable. It has been observed that in
such a situation the geometric mean is a more accurate and stable estimator of
the true average concentration and its confidence intervals. 

Example 3.11 Analysis of demographic data for a country showed that its popu-
lation growth rate from 1970 to 1980 was 1.25%; from 1980 to 1990, it was 1.22%,
and from 1990 to 2000; the rate was 1.15%. Find the average growth rate for the
period 1970 to 2000.

Solution The average growth rate can be obtained by taking the geometric
mean of given rates:

average growth rate = (1.25×1.22×1.15)1/3 = 1.206%
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Example 3.12 Consider the case of river pollution. Careful observations showed
that the river’s pollutant concentration near an industrial town increased by 20%
in the year 2002. The next year the pollutant concentration increased by 60%.
Compute the average rate of increase in pollutant concentration.

Solution The average rate of increase in pollutant concentration can be deter-
mined by using the geometric mean. Thus,

The average rate of increase in pollutant concentration is 34.64%. If we use
the arithmetic mean, the average rate will be (20 + 60)/2 = 40. 

3.5.1.4 Harmonic Mean

When variables are expressed as ratios of two quantities (e.g., kilometers per
hour) another type of mean, called the harmonic mean, is useful. The definition
of the harmonic mean is 

(3.14)

Equation 3.14 may yield erratic and misleading results if an observation is
negative or zero and therefore the harmonic mean should be taken only when the
quantities are positive. The kind of bias associated with the harmonic mean is
opposite to that of the arithmetic mean. The use of inverses allows a smaller obser-
vation to get a larger weight and a larger observation to get a smaller weight. This
reduces the value of the average and hence the harmonic average is always
smaller than the arithmetic average. The harmonic mean involves a sort of weight-
ing system different from the arithmetic mean and may be more informative when
weighting is useful. For this reason the harmonic mean has been used as an aggre-
gation tool to aggregate several water quality subindices to give an overall water
quality indicator. This removes one of the subjective aspects of indicator develop-
ment (i.e., assignment of weights to subindices). Further, it has been observed that
the harmonic mean is more sensitive to the subindex with the lowest score.

Example 3.13 Consider a rainfall event with an intensity of 2.5 cm/h that pro-
duced 5 cm of rainfall. Another event had an intensity of 4 cm/h and produced
7 cm. Compute the mean rainfall intensity.

Solution The time for the first event is 5/2.5 = 2 h. The time for the second event
is 7/4 = 1.75 h. Thus, the total time is 2 + 1.75 = 3.75 h. The total rainfall amount
is simply 5 + 7 = 12 cm. Therefore the average (arithmetic) rainfall intensity is
12/3.75 = 3.2 cm/h.
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The harmonic mean of rainfall intensities is

Example 3.14 The discharge along a reach of the Song River was 256 m3/s  on
November 14. Measurements showed that the cross-sectional areas of flow at five
locations were 103, 96, 114, 107, and 91 m2. Find the mean velocity in the reach.

Solution Velocity is the ratio of discharge to cross-sectional area. The harmonic
mean of the flow areas is 

= 2.504 m/s

One can also compute the harmonic mean velocity by obtaining the har-
monic mean area first as

so that the mean velocity is 256 × 101.56 = 2.52 m/s.
In contrast, if the arithmetic mean is employed, then for each cross section,

the average velocity (v) can be computed as v1 = 256/103 = 2.486 m/s, v2 =
256/96 = 2.667 m/s, v3 = 256/114 = 2.245 m/s, v4 = 256/107 = 2.392 m/s, and v5
= 256/91 = 2.813 m/s. The mean velocity is therefore (2.486 + 2.667 + 2.245 +
2.392 + 2.813)/5 = 2.521 m/s. 

Example 3.15 A man makes a round-trip drive to a location 60 km away from
his home. He drives at a speed of 60 km/h while going and at 30 km/h while
returning. Find his average speed for the entire trip.

Solution The average speed computed by the arithmetic mean is (60 + 30)/2 =
45 km/h. But the total journey time is 1 h (while going) + 2 h (while returning) =
3 h. Therefore, he should have covered a distance of 45 × 3 = 135 km, but actually
he did only 120 km. Obviously, there is a discrepancy somewhere. 
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Taking the harmonic mean, one obtains 

 40 km/h

This is the correct answer. It is observed that the involvement of inverses
results in the assignment of weights to data that are inversely proportional to the
magnitudes of the data. In this example, the driver traveled at a speed of
60 km/h for one hour and at 30 km/h for two hours. This leads to the sugges-
tion that if the denominator (hours in this case) varies, compute the harmonic
mean, and if the numerator (kilometers in this case) varies, use the arithmetic
mean. 

3.5.1.5 Comparison of the Three Means

If none of the observations is zero or negative (and of course they are not equal),
then

(3.15)

Referring to Example 3.12, we see that the difference in the numbers was
purposely kept large to illustrate the relative importance of the numbers and
why the behavior given by Eq. 3.15 is noted. The second number (60) is three
times the first and its influence on the arithmetic average is also three times
larger than the former. When the geometric mean is taken, the influence is not
three times larger because the differential in logarithms is not that large. With
the harmonic mean, the relative weights are reversed—the contribution of the
smaller number to the mean is more. In summary, the size matters in the arith-
metic mean, the size of logarithms matters in the geometric mean, and the recip-
rocals determine the relative importance in the harmonic mean. 

3.5.2 The Median and the Mode

Another measure of the central tendency is the median. The median of a distribu-
tion is the value that divides the members of the distribution such that half of
them are larger and half of them are smaller. Thus, the median divides a distribu-
tion into its two halves. Sometimes the median is also called the second quartile.
When observations are tied or have the same value, the median may not exist.
When observations are ungrouped and are arranged in either descending or
ascending order, the median is the middle observation. In the case of an even
number of observations, the median is the average of the two central observations.

The mode is the value of the variable that occurs most often or is the value at
which the frequency is the maximum. For ungrouped data it is the value that
occurs most frequently. Sometimes two or more modes may appear. 
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The relative positions of the arithmetic mean, the median, and the mode
depend on the symmetry of the distribution. If the distribution is symmetric,
these measures of central tendency are equal. If the distribution is asymmetric,
they take different positions. If the distribution is not unimodal, the simple rela-
tionships between them may not be valid.

3.5.3 Variance

Variance measures the variability of a random variable and is the second most
important descriptor of its probability distribution. A small variance of a vari-
able indicates that its values are likely to stay near the mean value whereas a
large variance implies that the values have large dispersion around the mean. If
the stage of a river at a gauging station is independently measured in a quick
succession a number of times in a survey, then there will likely be variability in
the stage measurements. The magnitude of the variability is a measure of the
natural variation and the measurement error. 

Variance, designated by the Greek letter σ2, measures the deviation from the
mean and is universally accepted as given by the second moment of the proba-
bility mass about the mean. Sometimes, the notation VAR(x) or var(x) is also
used. For a continuous variable X variance is expressed as 

(3.16)

and for a discrete variable

(3.17)

In structural engineering, the variance is the moment of inertia of the proba-
bility mass about the center of gravity. Figure 3-4 shows PDFs of three probabil-
ity distributions; the random variables X1 and X2 have the same variance but
different means; variables X2 and X3 have the same mean but different variances. 

The variance has a dimension that is equal to the square of the dimension of
the random variable. If X is in m3/s,  then σ 2 is in (m3/s)2.  This makes it quite
difficult to visualize the degree of variability associated with a given value of the
variance. For this reason, the positive square root of the variance, called the stan-
dard deviation, denoted by σ, is often used. Its mechanical analogy is the radius
of gyration. Figure 3-4 also shows the standard deviation for the three probabil-
ity distributions. 

Variance has four important properties: 

1. The variance of a constant is zero: var[a] = 0, where a = constant. 
2. The variance of X multiplied by a constant a is equal to the variance of X

multiplied by the square of a: var[aX] = a2 × var[X].
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3. The variance of X is the difference between the second moment of X
about the origin and the second moment of X about the centroid:

.

4. The variance of the sum of n independent variables is equal to the sum of
variances of the n individual random variables:

3.5.3.1 Sample Variance

The sample variance is the moment of inertia of the relative frequency mass about
its center of gravity on the sample space. Using Eq. 3.17 for discrete variables and
observing that p(xi) is to be replaced by the relative frequency 1/n, one gets

(3.18)

With the sample mean calculated first, the sample variance can be deter-
mined from Eq. 3.18. The sample variance serves as an estimator of the variance
of the random variable X. The sample variance is also referred to as a statistic,
rather than a parameter. It is itself a random variable that is likely to change
when additional observations are made. To distinguish sample variance from
the variance of the random variable X, it is denoted as s2. When the number of
samples n ≤ 30, an unbiased estimate of variance is obtained by

(3.19)

Figure 3-4 PDFs and standard deviations of three probability distributions.
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The sample variance can also be computed by

(3.20)

It is easier to use Eq. 3.20 because one need not subtract m from all values of
x before squaring. Instead, x2 can be computed at the time when computing the
mean.

3.5.3.2 Coefficient of Variation

A dimensionless measure of dispersion is the coefficient of variation, cv, which is
computed as the ratio of standard deviation and mean:

cv = s/m (3.21)

When the mean of the data is zero, cv is undefined. This coefficient is useful
in comparing different populations or their distributions. For example, if two
samples of aggregates of water quality are analyzed, the one with larger cv will
have more variation. 

If each value of a variable is multiplied by a constant α , the mean, variance,
and standard deviation are obtained by multiplying the original mean, variance,
and standard deviation by α , α 2, and α , respectively; the coefficient of variation
remains unchanged. If a constant α is added to each value of the variable, the
new mean is equal to the old mean + α ; the variance and the standard deviation
remain unchanged; the coefficient of variation changes because the unchanged
standard deviation is divided by the new mean.

3.5.3.3 Standard Error of Estimate

For a statistical parameter, the standard deviation of its sampling distribution is
known as its standard error. The standard error of the mean is and the
standard error of the standard deviation is .

Example 3.16 For a lake, water levels have been observed for 10 years. The max-
imum level (x) for each year is listed in Table E3-16. From these data, estimate
the mean and the standard deviation of the maximum lake levels.

Solution The computations are demonstrated in Table E3-16.
From the table, we have

m = (1/10)Σ xi = (1/10) × 2,180 = 218.0 m

s2 = (1/9)Σ (xi− m)2 = 13.24/9 = 1.47 m2

s = = 1.21 m

s
n

x mi
i

n
2 2 2

1

1= −
=
∑

σ/ n
σ/ 2n

1 47.



Moments and Expectation 117

The standard error of m = 1.21/ = 0.383. The standard error of s =
1.21/  = 0.271.

Example 3.17 The discharge and stage values of the Amite River near Darling-
ton, Louisiana, are given in Table 3-17a. Compute the mean, median, mode,
mean deviation, standard deviation, coefficient of variation, and ratio of stan-
dard deviation to the mean deviation of the discharge and stage values. 

Solution The sum of discharge and stage values is given in the last row of
Table 3-17a. We have 48 sets of data. Thus the mean discharge is 1,376,440/48 =
28,675.83 cfs. The statistical properties of discharge (cusecs) and stage (ft) data
are computed and given in Table 3-21b. 

3.5.3.4 Interpretation of Variance as Expectation

For a continuous distribution, the variance is defined by the integral

(3.22)

Variance can also be written as an expectation:

var(X) = E[X− E(X)]2 (3.23)

Expanding the square on the right side yields

var(X) = E{X2− 2XE(X) + [E(X)]2}
= E(X2)− 2[E(X)]2 + [E(X)]2 = E(X2)− [E(X)]2 (3.24)

Table E3-16

Year x (meters) x – m (x – m)2

1971 217.5 − 0.5 0.25

1972 218.8 0.8 0.64

1973 216.0 − 2.0 4.00

1974 217.8 − 0.2 0.04

1975 220.0 2.0 4.00

1976 218.2 0.2 0.04

1977 217.2 − 0.8 0.64

1978 218.5 0.5 0.25

1979 219.3 1.3 1.69

1980 216.7 − 1.3 1.69

Sum 2,180.0 0.0  13.24
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Table E3-17a

Year Discharge
(cubic ft/sec)

Stage (ft)

1949 20,000 17.79

1950 43,400 20.2

1951 31,600 19.04

1952 3,180 11.22

1953 18,900 17.63

1954 3,280 11.57

1955 55,700 21.17

1956 20,400 17.84

1957 20,200 17.81

1958 6,900 18.05

1959 9,800 14.83

1960 37,900 15.9

1961 15,400 19.69

1962 4,530 17.06

1963 44,500 12.92

1964 44,500 19.4

1965 20,000 19.37

1966 39,300 18.97

1967 8,000 14.13

1968 8,600 13.82

1969 36,300 9.26

1970 10,100 14.44

1971 45,500 19.43

1972 62,100 20.19

1973 22,400 17.13

1974 40,700 18.98

1975 7,660 12.35

1976 76,400 21.76

1977 30,500 18.09

1978 43,400 19.25

1979 47,500 19.59

1980 8,320 12.85

1981 18,100 16.03
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Equation 3.24 is often used to calculate the sample variance. Equations 3.23
and 3.24 can also be employed to calculate the variance of simple functions of X.
For example, the variance of the linear functions of Y = a + bX, where a and b are
constants, can be determined as

1982 63,300 20.29

1983 13,000 14.56

1984 8,970 12.73

1985 17,500 15.92

1986 21,200 16.68

1987 22,000 16.69

1988 16,000 15.66

1989 104,000 22.05

1990 19,500 16.1

1991 26,900 17.46

1992 19,400 16.08

1993 60,800 20.17

1994 23,300 16.95

1995 16,200 15.21

1996 39,300 18.8

Sum 1,376,440 813.11

Table E3-17b

Parameter Discharge Stage 

Mean 28,675.83 cusec 16.94 ft

Standard deviation 21,117.14 cusec 2.937 ft

Median 20,800 cusec 17.295 ft

Mode 20,000 cusec 17.13 ft

Mean deviation (mean of absolute 
deviations from the mean)

16,744.13 cusec 2.366 ft

Coefficient of variation 0.736 0.173

Ratio of standard deviation to mean 
deviation

1.261 1.241

Table E3-17a  (Continued)

Year Discharge
(cubic ft/sec)

Stage (ft)



120 Risk and Reliability Analysis

var(a + bX) = E[(a + bX)2]− [E(a + bX)]2

= E[a2 + 2abX + b2X2] − [a + bE(X)]2

= a2 + 2abE(X) + b2E(X2) − a2 − 2abE(X) − b2[E(X)]2

= b2{E(X2) − [E(X)]2} = b2 var(X) (3.25)

Notice that adding a constant to a variable does not change its variance. The
variance of the variable multiplied by constant amounts to the variance of the
variable multiplied by the constant squared. Evidently, taking the variance is not
a linear operation. 

3.5.4 Skewness 

Probability distributions are not usually symmetrical about their mean. This
property of being asymmetrical is commonly referred to as the skewness of the
distribution. The degree of skewness is measured by the third moment of the
probability mass about the mean. For symmetrical distributions, the third
moment is zero because the contributions of the probabilities on either side of the
mean have opposite signs and cancel each other in the integral. The more asym-
metrical the distribution is, the greater will be the absolute value of the third
moment. The third moment about the mean can be positive or negative, corre-
sponding to a positive or negative skew. Figure 3-5 shows the possible cases.

The third moment about the mean for a continuous distribution can be calcu-
lated as

(3.26)

and the formula for a discrete distribution is

(3.27)

Figure 3-5 Symmetrical and skewed distributions.
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3.5.4.1 Coefficient of Skewness

The third moment has a dimension equal to the dimension of the random vari-
able cubed. This makes it awkward to compare the degrees of skewness of dif-
ferent populations or their distributions. For this reason it is customary to divide
the third moment by the standard deviation cubed. The resulting parameter is
nondimensional and is called the coefficient of skewness: 

(3.28a)

The common notation for the coefficient of skewness is γ or Cs. The sign of
the skewness coefficient can be used to denote the degree of symmetry of the
probability distribution function. If γ is zero, the distribution is symmetric about
its mean. If γ is greater than zero, the distribution is positively skewed or the dis-
tribution has a long tail to the right. If γ is negative then the distribution is nega-
tively skewed or the distribution has a long tail to the left.

Another measure of asymmetry is the Pearson skewness coefficient γ1
expressed as

(3.28b)

Clearly this does not involve computation of moments higher than two and
is thus less susceptible to error. 

3.5.4.2 Sample Skewness

An estimate of the skewness of a random variable is obtained from a sample of
observations. The third moment of the relative frequency is taken about the sam-
ple mean and is divided by the cube of the sample standard deviation. The com-
mon notation for sample skewness coefficient is g or G. An unbiased estimate of
g, for small samples, is obtained by

(3.29)

Example 3.18 Compute the coefficient of skewness of the discharge of the Amite
River, given in Example 3.17. 

Solution For the data (48 values), the mean and standard deviation were com-
puted as 28,675.83 cusec and 2,117.14 cusec, respectively. The summation term in
Eq. 3.29 comes out to be 5.6729 × 1014.

Hence, 

g = 48×5.6729×1014/[47×46×2,117.143] = 1.34
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Example 3.19 At a number of recording stations the annual number of severe
storms was observed during a series of years. There were 360 observations (the
number of stations times the number of years, assuming independence among
observations of different stations). This is equivalent to 360 years of observations
at one recording station. Each observation recorded the annual number of
storms observed, whose number varied from zero to five. The frequencies of the
number of storms from zero to five are listed in Table 3-19. Call the number of
storms per year the random variable X and estimate the mean, the standard
deviation, and the coefficient of the skewness of this random variable.

Solution From the table, the mean is

m = Σ xi f(xi ) = 1.183 storms per year

The standard deviation is

s = [(xi – m)2 f(xi)]
0.5 = = 1.05 storms per year

and the skewness is

g = Σ (xi – m)3 f(xi)/s
3 = 1.1022/1.053 = 0.958

A close examination of these calculations reveals that the coefficient of skew-
ness is quite sensitive to incidental variations in the frequency of relatively rare
events.

3.5.5 Shape Factors

The idea of plotting dimensionless shape factors to compare distributions was
advanced by Nash (1959). A dimensionless moment of order R is defined as the
Rth moment about the center of area divided by the first moment about the ori-
gin raised to the power R:

(3.30)

Table E3-19

Xi Frequency Relative 
frequency

f(xi )

xi f(xi ) (xi – m)2 f(xi) (xi – m)3 f(xi)

0 102 0.283 0.0 0.3963 – 0.4689

1 144 0.400 0.400 0.0134 – 0.0025

2 74 0.206 0.412 0.1374 +0.1122

3 28 0.078 0.234 0.2574 +0.4677

4 10 0.028 0.112 0.2221 +0.6257

5 2 0.005 0.025 0.728 +0.2780

Sum 360 1.000 1.183 1.0994 +1.1022

1 0994.

mR
R

R=
μ

μ( )’
0
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For a distribution, higher order moments can be expressed as a function of
lower order moments. For instance, the coefficient of skewness cs = m3 /m2

1.5

can be expressed as a unique function of the coefficient of variation cv =
m2

0.5/m1’.  Here m1’ is the sample moment about the origin, m2 is the second sam-
ple moment about the mean, and m3 is the third moment about the mean.

3.5.6 Higher Order Moments

The sampling variance of a moment depends on the population. It becomes very
large for higher moments even when the sample size is large. For this reason,
higher order moments have limited applications in practical cases and are not
commonly used in analysis of civil and environmental engineering systems.
Higher order moments are related to the properties of the probability distribu-
tion or mass function. Higher order moments describe more subtle properties,
such as the symmetry of a PDF or whether its mass is centered around the mean
or distributed toward the margins. To derive higher order moments, moment-
generating or characteristic functions can be used.

Kurtosis is an indicator of the degree of peakedness of a probability distribu-
tion function and is related to the fourth-order central moment as

(3.31a)

with K > 0. For the normal distribution the value of K is 3. This value is used as a
reference to indicate the degree of peakedness. The coefficient of excess, Ce, is
then defined as K–3. If the value of K is greater than 3 or Ce > 0, then the distribu-
tion is called leptokutic. If K is less than 3 or Ce < 0, then the distribution is
platykutic. Stuart and Ord (1987) presented an inequality that must be satisfied
by all plausible distributions:

(3.31b)

3.5.7 Moment Ratio Diagrams

The moment ratios can be defined in different ways. Johnson and Kotz (1985)
defined the Rth moment ratio, mR, as

(3.32)

If R = 3 then one gets the coefficient of skewness and if R = 4 then one gets
the coefficient of kurtosis. 
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Now two ratios are defined as

(3.33a)

(3.33b)

The classical form of the moment ratio diagram (MRD) is a graphical plot of
β1 and β2 for a specific distribution or a group of distributions, as shown in
Fig. 3-6, for a number of distributions. Usually, β1 is on the abscissa and β2 is on
the ordinate but with its values increasing downward. Pearson (Johnson and
Kotz 1985) has shown that for all distributions the following must be satisfied:

(3.34)

When these ratios are plotted, one can discern the impossible region on the
graph.

Bobee et al. (1993) have described two kinds of moment ratio diagrams and
their applications in hydrology. Ashkar et al. (1988) have plotted the MRD for a
number of distributions. These can be employed to distinguish families of dis-
tributions, such as the Pearson system of distributions, the Johnson family of
distributions, and so on. They can also be used to classify distributions. They
allow us to distinguish distributions into three categories: those represented by
a point, those represented by a curve, and those represented by a region. For
example, the normal, exponential, and uniform distributions are represented by
a point, because these distributions do not have a shape parameter but have
only a scale or location parameter. The gamma, log-normal, and Student distri-
butions are represented by a curve, because they have one shape parameter. In
contrast, the beta distribution has two shape parameters and therefore is repre-
sented by a region. In this manner, an MRD permits a comparison of distribu-
tions in terms of their flexibility, because the more flexible shape of the
distribution occupies a greater portion of the diagram. An MRD also aids in
selecting a probability distribution to represent a given sample. This is done by
computing the values of β1 and β2 from the sample and then plotting the result-
ing point on the MRD. One then selects the distribution that seems to best
reflect the position of this point on the MRD. It must however be emphasized
that the sampling variance associated with skewness and kurtosis may be large,
especially with small samples, and one may end up selecting a wrong distribu-
tion as a result. 
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3.6 Two Random Variables

The measures of location, dispersion, and asymmetry, namely the mean, vari-
ance or standard deviation, and coefficient of skewness, introduced for a single
variable, can also be defined for the joint distribution of two or more random
variables. Because these descriptive parameters define properties of marginal
distributions, they do not shed any light on the joint behavior of the variables:
the way the outcome of one variable is influenced by the values the other vari-
able may assume. To that end, parameters describing the degree of dependence
that may exist between the random variables are introduced.

3.6.1 Mean and Variance 

Consider two random variables X and Y whose joint PDF and marginal PDFs are
shown in Fig. 3-7. The centroid is defined by two coordinates designated as μx
and μy. Calculation of μx, for example, involves first the determination of the
probability mass in a strip of thickness dx, parallel to the Y axis. This elementary
mass is determined by the integral

(3.35)

Figure 3-6 Cs-Ck moment ratio diagram (GEV: generalized extreme value; GLOG: 
Generalized Logistic) (LOGN: three parameter Lognormal; P-III: Pearson type III)
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The product of the probability and the distance to the Y axis, x, is then inte-
grated over the entire reach of X, resulting in the double integral

(3.36)

Similarly,

(3.37)

Recall that the marginal distributions are defined by the same process of
summing the probability located in small strips parallel to the coordinate axes.
Thus, one can write

(3.38)

It follows that the double integral in Eq. 3.36 can be rewritten as

This is the mean of the random variable X.

Figure 3-7 Joint and marginal distributions of two random variables.
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For discrete distributions, double integrals are replaced by summations and
discrete probabilities replace the term f(x,y)dxdy. The coordinates of the centroid
corresponding to the means of the marginal distributions remain the same.

Example 3.20 From the measured rainfall data in a catchment, information
about rainfall duration, amount, and frequency was derived and is presented in
Table 3-20. Compute the marginal probabilities of rainfall duration and
amounts. Also determine the conditional probability of 15 mm of rainfall if the
storm duration is 3 h.

Solution The marginal probability for various rainfall durations (X) can be
computed by

Thus, for the various values of X, the marginal probabilities are calculated as
follows:

P(X = 1) = 0.188 + 0.109 + 0.086 = 0.382

P(X = 2) = 0.168 + 0.106 + 0.057 = 0.331

P(X = 3) = 0.069 + 0.083 + 0.044 = 0.196

P(X = 4) = 0.052 + 0.027 + 0.011 = 0.090

Table E3-20

Rainfall duration x (h) 
and amount y (mm)

x                    y

Relative frequency

 1                   10 0.188

 1                   15 0.109

 1                   20 0.086

 2                   10 0.168

 2                   15 0.106

 2                   20 0.057

 3                   10 0.069

 3                   15 0.083

 3                   20 0.044

 4                   10 0.052

 4                   15 0.027

 4                   20 0.011

Sum 1.000

f x f x yX X Y i
yi

( ) ( , ),=∑
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Similarly, for rainfall amount Y, the marginal probabilities are

P(Y = 10) = 0.188 + 0.168 + 0.069 + 0.052 = 0.477

P(Y = 15) = 0.109 + 0.106 + 0.083 + 0.027 = 0.325

P(Y = 10) = 0.086 + 0.057 + 0.044 + 0.011 = 0.198

The conditional probability of rainfall duration of 3 h and with an amount of
15 mm can be computed by

3.6.2 Covariance 

The marginal distributions can be readily determined from the joint distribution
of two variables but the converse is not true. The joint distribution also depends
on the degree of dependence and the nature of dependence existing between the
random variables. This dependence is the reason for the study of the joint distri-
bution. The covariance is a second moment about the centroidal axes and is
defined as follows:

(3.39)

or

(3.40)

Figure 3-8 shows the elements of the integration for the continuous case. 
If random variables X and Y are standardized as

then the standardized variables have zero mean and unity variance. It can be
shown that the covariance of standardized X and Y is equal to the correlation
coefficient between nonstandardized X and Y. Standardization of a random vari-
able does not influence its skewness coefficient or kutosis.

The centroidal axes divide the probability space into four quadrants, as
marked by the Roman numerals I to IV in Fig. 3-8. The probability masses in the
first and third quadrants make positive contributions to the value of the covari-
ance, since the product (x – μx)(y – μy) is positive. The probability masses in the
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second and fourth quadrants make negative contributions to the value of the
covariance. Therefore, if values larger than the average value of X are associated
with larger than the average values of Y, and conversely, values smaller than the
average value of X occur simultaneously with values smaller than the average
value of Y, then a relatively large part of the probability mass is located in the
first and third quadrant and the covariance will be positive. However, if values
larger than the average value of Y occur with values smaller than the average
value of X and vice versa, then the covariance will be negative. If X and Y are
unrelated then the positive and negative contributions cancel each other and the
covariance will be zero. 

For independent random variables X and Y,

f(x, y)dxdy = f(x)dx f(y)dy (3.41)

Substitution of Eq. 3.32 in Eq. 3.30 permits writing the double integral as the
product of two integrals. For independent variables, 

since

It follows that both integrals in the product are equal to zero. Thus, the cova-
riance of independent variables is zero.

Figure 3-8 Computation of covariance for a continuous case.
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3.6.3 Correlation Coefficient

The covariance has a dimension equal to the product of the dimensions of the
random variables. For that reason the magnitude of the parameter does not
reveal much about the degree of dependence between the random variables. It
is, therefore, customary to divide the covariance by the product of the standard
deviations of the respective random variables. This results in a dimensionless
parameter, called the correlation coefficient, denoted by ρ:

(3.42a)

For computation, it is convenient to write

(3.42b)

The correlation coefficient lies between –1 and +1. The variables having either of
the two extreme values of the correlation coefficient are said to be highly correlated.
However, a high correlation does not mean that the variables have a cause-and-
effect relationship. A value of zero is obtained when the variables are independent
but uncorrelated variables are not necessarily independent.

3.6.4 Evaluation of Regression Models

When a regression line is fitted to data on X and Y, the regression line always
passes through the point defined by the mean of the x values ( ) and the mean
of the yp values predicted by the regression line ( ). One can relate the disper-
sion of the actual y values about their mean, denoted as SS or nσ 0

2 or nσ y
2 , to the

sum of squares of regression (SSR or nσ r
2  or n ) and the sum of squares of

error (SSE or nσ e
2). These are expressed algebraically as 

(3.43a)

(3.43b)

(3.43c)

SSR is a measure of dispersion of the yp values predicted by the regression
line about the mean of the observed y values. SSE is a measure of dispersion of
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the actual or observed y values about their corresponding yp values predicted by
the regression line. It can be shown that 

(3.43d)

This relationship shows that the dispersion of the observed y values about
their mean is equal to the sum of the dispersion of the predicted y values about
that mean and the dispersion of the actual y values about their corresponding
predicted y values.

 The measure of goodness of regression is the standard error of regression, se,
computed as

(3.44a)

where yi and ypi represent the ith observed and predicted values of y, respec-
tively, Se is the sum of squares of errors, and n is the number of observations. The
standard error of regression, se, quantifies the spread of data around the regres-
sion line of fit and can be referred to as the unexplained sum of squares. Thus it
is the standard deviation of the errors of estimation. It is worth mentioning that
if any of the regression assumptions (independence, zero mean error, or com-
mon variance) concerning the residual error (ei = yi − ypi) are incorrect, then se
may not be a useful estimate of scale or dispersion for the residual errors.
Clearly, a smaller value of se indicates that points lie closer to the regression line.
If all points lie on the regression line then se = 0. For a large sample (i.e., large n)
two-thirds of the errors will be less than se and about one-third of the
errors will exceed it. Thus, by drawing two lines parallel to the regression line
and at a vertical distance equal to se from it, one can draw a region within which
about two-thirds of the sample points will fall. Likewise, one can show that 95%
of the sample points will fall within the region bounded by two lines parallel to
the regression line at a vertical distance of twice se from it. 

3.6.5 Coefficient of Determination

The square of the coefficient of correlation is known as the coefficient of determi-
nation, Cd, and is a measure of the degree to which the variance in the dependent
variable is explained by the linear regression relation between the two variables.
The coefficient of determination can be related to SSE or σ e

2 and SS or σ 2
o as

(3.44b)

where is the variance of the observed data, which is a measure of the vari-
ability associated with the dependent variable before regression. This coefficient
is computed as (1 – Δ), where Δ is the difference of the variance of the observed
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values of the dependent variable and the variance of the values of the dependent
variable that have been computed using the regression relation divided by the
variance of the observed values. Clearly, as Δ becomes smaller, the coefficient of
determination becomes larger or the regression “improves.” Thus, it is a useful
measure of the goodness of fit for evaluating simple regression models.

As an important note about application of Eq. 3.44b, its useful characteristics
are dependent on the partitioning of the variance of the observed data into error
and regression components by using the minimization criteria of ordinary least
square. If either of these criteria is not used, then the interpretations associated
with Eq. 3.44b are no longer valid. 

3.6.6 Evaluation of Nonregression Models

While evaluating the efficacy of nonregression models, such as mechanistic
hydrologic/water quality models, characteristics of the goodness of fit are deter-
mined by analyzing the differences between observed and predicted values.
Although the linear-regression concepts are still useful, much of the interpreta-
tive power is lost because minimization criteria are no longer valid. The most
commonly used error statistic is the root mean square error (RMSE), which may
be an adequate statistic for summarizing the predictive accuracy of models for
the same data set. RMSE describes the magnitude of the direct error and hence is
used in decision making when one needs to know the implication of a model’s
uncertainty. The root mean square error is given as

(3.45)

where n is the number of observations, Oi is the ith observed value, and Pi is the
ith predicted value. RMSE should be as small as possible. Note that the RMSE is
affected by the units used for expressing the parameter of concern; consequently,
it cannot be used to compare a model’s efficacy across parameters having differ-
ent units of measurement. To overcome this shortcoming, normalized error sta-
tistics are used. One of the normalized error statistics is the normalized mean
square error (NMSE), defined as (Gershenfeld and Weigend 1993)

(3.46)

where is the mean of the observed data. NMSE ranges from 0 to +∞ . When
NMSE is zero, the model is perfect. When NMSE is 1, the model is as good as the
observed mean value. When NMSE is greater than 1, the model is poor. 
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The other measure of goodness of fit that has been widely used to evaluate
the performance of hydrologic/water quality models is the coefficient of effi-
ciency developed by Nash and Sutcliffe (1970). Mathematically, the coefficient of
efficiency is defined as

(3.47)

The Nash–Sutcliff coefficient ranges from − ∞ to 1.0. The model performance
is measured as follows:

• If η1 < 0, the model is poor and the observed mean is better than the
model predictions.

• If η1 = 0, the model is as good as the observed mean value.

• If η1 = 1, the model is perfect.

The decision is subjective when η1 ranges between 0 and 1, depending upon
what is considered acceptable. Both NMSE and η1 contain square terms that
make them sensitive to outliers. Willmott et al. (1985) suggested a modified coef-
ficient of efficiency, η 2, also known as the index of agreement. Mathematically,
η2 is defined as

(3.48)

Interpretations similar to those for η1 can be made for η2.

Example 3.21 An engineer developed a mechanistic lake model and used it to
predict the water quality of a lake. The engineer is interested in knowing
whether the developed model is efficient enough to be used for the TMDL (total
maximum daily load) process. The observed and model predicted water quality
parameters are listed in Table 3-21a. TP stands for total phosphorus, TN for total
nitrogen, and (Chl-a) for chlorophyll-a.

Solution By applying Eq. 3.45 to Eq. 3.48, the various error statistics are deter-
mined (see Table 3-21b).

Based on the RMSE given in Table 3-21b, one cannot draw conclusions
about the model’s efficacy with respect to Chl-a, TP, and TN because the RMSE
value is affected by scale. This is why a relative measure is needed to know how
this model predicts various parameters. The relative measures NMSE , η1, and
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Table E3-21a

Date Observed (O) Predicted (P)

Chl-a
(μg/L)

TP (mg/L) TN (mg/L) Chl-a
(μg/L)

TP (mg/L) TN (mg/L)

05/21/97 29.16 0.04 0.38 51.03 0.11 1.15

06/09/97 23.87 0.11 0.61 32.12 0.09 0.78

07/01/97 29.64 0.06 0.48 33.27 0.07 0.62

08/04/97 26.94 0.08 0.51 48.18 0.10 0.88

09/18/97 39.98 0.07 0.49 40.35 0.09 0.84

06/17/98 23.73 0.07 0.31 26.03 0.06 0.51

07/07/98 21.73 0.07 0.30 38.02 0.08 0.68

08/05/98 18.57 0.06 0.44 46.20 0.10 0.87

04/29/99 9.00 0.09 0.22 14.40 0.05 0.47

05/18/99 29.42 0.07 0.24 18.02 0.05 0.50

06/09/99 26.09 0.05 0.21 27.42 0.05 0.49

07/21/99 44.83 0.06 0.24 36.41 0.07 0.64

08/04/99 43.28 0.09 0.54 52.40 0.10 0.86

01/11/01 37.33 0.08 1.29 1.89 0.04 1.00

04/30/01 44.24 0.13 0.75 26.98 0.07 0.82

05/10/01 32.06 0.11 0.48 27.92 0.06 0.76

05/30/01 45.48 0.10 28.50 0.06 0.70

06/12/01 22.97 0.09 0.91 33.46 0.07 0.70

06/26/01 24.14 0.09 1.07 34.84 0.07 0.70

07/09/01 44.90 0.09 0.41 39.51 0.08 0.76

07/23/01 61.73 0.11 1.22 39.91 0.08 0.79

08/06/01 45.44 0.09 1.19 40.32 0.08 0.80

08/20/01 38.51 0.10 1.08 49.66 0.10 0.91

09/05/01 35.36 0.10 1.16 47.78 0.10 0.96

09/18/01 44.50 0.10 0.88 38.72 0.09 0.89

10/03/01 59.54 0.06 1.06 28.38 0.08 0.73

11/07/01 59.90 0.11 1.25 21.30 0.06 0.60
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η2 indicate that the model performs poorly for predicting Chl-a and TP in both
lake segments, indicating that the corresponding observed average levels of
Chl-a and TP are far better than the model predictions. For TN, the model pre-
dictions are improved marginally in segment 1-4, whereas its predictions are
poor in segment 14-15.

3.6.7 Sample Statistics

The parameters of a two-dimensional joint distribution can be estimated from a
sample by considering the relative frequency distribution of the observations on
the sample space. This leads to a discrete distribution of the relative frequencies.
Treating each relative frequency as if it were a probability, one can apply the for-
mulas for the parameters to obtain the corresponding statistics. 

Example 3.22 The precipitation (in millimeters) and runoff (in millimeters) for a
catchment for the month of July are given in Table 3-2. Compute the coefficient
of correlation of the data. 

Solution The various variables required to calculate the coefficient of correlation are
computed in Table 3-22. Here, = 687.05/16 = 42.94 and = 234.04/16 = 14.63.

Now 

sx = (570.056/16)0.5 = 5.97

sy = (363.07 /16)0.5 = 4.76

Hence, 
ρ = 23.09/(5.97×4.76) = 0.81

coefficient of determination (R2) = ρ2 = 0.812 = 0.656.

Table E3-21b

Statistic Segment 1-4 Segment 14-15

Chl-a TP TN Chl-a TP TN

RMSE 16.11 0.03 0.35 19.26 0.05 0.26

NMSE 1.47 1.97 0.89 2.26 1.12 1.05

Nash–Sutcliff coefficient, η1 –0.47 –0.97 0.11 –1.25 –0.12 –0.04

Index of agreement, η2 –0.16 –0.30 0.08 –0.56 0.00 0.03

x y

σxy n
x x y y= − − = =∑1

369 423 16 23 09( )( ) . / .



136 Risk and Reliability Analysis

3.6.8 Interpretation of Covariance as Expectation

For two continuous random variables X and Y, the covariance is defined as

This expression can be written as an expectation:

cov(X,Y) = E{[X – E(X)][Y – E(Y)]} (3.49)

An alternative expression for the covariance can be obtained as

cov(X, Y) = E[XY – Y × E(X) – X × E(Y) + E(X) × E(Y)]

= E(XY) – E(X)E(Y) – E(Y)E(X) + E(X)E(Y)

= E(XY) – E(X)E(Y) (3.50)

Equation 3.51 is used for calculating the sample covariance:

(3.51)

Table E3-22 Calculations for correlation coefficient

SN Year Precipitation   
(x)

Runoff 
(y)

x – x y – y (x – x)
×(y – y)

(x – x)2 (y – y)2

1 1953 42.39 13.26  − 0.55 − 1.37 0.7535 0.3025 1.8769

2 1954 33.48  3.31 − 9.46 − 11.32 107.0872 89.4916 128.1424

3 1955 47.67 15.17  4.73 0.54 2.5542 22.3729 0.2916

4 1956 50.24 15.50  7.3 0.87 6.3510 53.2900 0.7569

5 1957 43.28 14.22  0.34 − 0.41 − 0.1394 0.1156 0.1681

6 1958 52.60 21.20  9.66 6.57 63.4662 93.3156 43.1649

7 1959 31.06 7.70 − 11.88 − 6.93 82.3284 141.1344 48.0249

8 1960 50.02 17.64  7.08 3.01 21.3108 50.1264 9.0601

9 1961 47.08 22.91  4.14 8.28 34.2792 17.1396 68.5584

10 1962 47.08 18.89  4.14 4.26 17.6364 17.1396 18.1476

11 1963 40.89 12.82 − 2.05 − 1.81 3.7105 4.2025 3.2761

12 1964 37.31 11.58  − 5.63 − 3.05 17.1715 31.6969 9.3025

13 1965 37.15 15.17 − 5.79 0.54 − 3.1266 33.5241 0.2916

14 1966 40.38 10.40 − 2.56 − 4.23 10.8288 6.5536 17.8929

15 1967 45.39 18.02  2.45 3.39 8.3055 6.0025 11.4921

16 1968 41.03 16.25 − 1.91 1.62 − 3.0942 3.6481 2.6244

Total 687.05 234.04  0.01 − 0.04 369.4230 570.0559 363.0714

cov( , ) { ( )}{ ( )} ( , )X Y x E X y E Y f x y dx dy= − −
−∞

+∞

−∞

+∞

∫∫

s
n

x y m mx y i i x y
i

n

, = −
=
∑1

1
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Equation 3.51 can be used to derive an important theorem about the variance
of the sum of random variables: 

var(X + Y) = E[(X + Y)]2 – [E(X + Y)]2

= E(X2) + E(Y2) + 2E(XY) – [E(X)]2 – [E(Y)]2 – 2E(X)E(Y)

= E(X2) – [E(X)]2 + E(Y)2 – [E(Y)]2 + 2E(XY) – 2E(X)E(Y)

= var(X) + var(Y) + 2cov(X,Y) (3.52)

The covariance can be written as the product of the standard deviations and
the correlation coefficient. From Eq. 3.42a,

Hence, Eq. 3.53 can be expressed as 

(3.53)

Equations 3.52 and 3.53 are equivalent and show that the variance of the sum
of two random variables is equal to the sum of their variances if the variables are
independent; otherwise one must add twice the covariance. 

3.7 Functions of Random Variables

First, consider a few useful rules that govern the expectation of functions of ran-
dom variables. Let X be a random variable and Y = ϕ (X). It can be shown that
the mean or expectation of Y is

If the distribution of X is continuous and there is a one-to-one relationship
between X and Y then one can write 

f(y)dy = f(x)dx

Thus, one can also write

(3.54)

(3.55)

σ ρσ σx y x y, =

var( )X Y x y x y+ = + +σ σ ρσ σ2 2 2

E Y y f y dy( ) ( )=
−∞

+∞

∫

E Y y f x dx( ) ( )=
−∞

+∞

∫

E x x f x dx{ ( )} ( ) ( )ϕ ϕ=
−∞

+∞

∫
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(3.56)

which immediately gives Eq. 3.54 from the definition of E(Y). 
For two-dimensional cases,

(3.57)

(3.58)

It can be seen from Eq. 3.55 to Eq. 3.58 that calculation of the expectation of
a random variable is a linear operation. This means that the expectation of the
sum of two random variables, or the expectation of the sum of two functions of
random variables, is equal to the sum of the expectations. This follows immedi-
ately from the fact that when ϕ (X) or ϕ (X, Y) can be written as a sum, the inte-
gral can be written as the sum of two separate integrals. For example, 

(3.59)

For two random variables that may or may not be statistically independent,

(3.60)

The expectation of a constant C is, of course, equal to the constant itself:

(3.61)

Appendix 3A

To prove that 

(3A.1)

is an unbiased estimator of

(3A.2)

E x x p x
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we write

Since , we have

Moving s2 to the left-hand side, we get 

Taking the expectation gives

or

which proves the assumption. 

3.8 Questions

3.1 Compute the mean, standard deviation, coefficient of variation, coeffi-
cient of skewness, and coefficient of kurtosis for the temperature, rain-
fall, wind velocity, and discharge data that you have used in the
previous chapter [Questions 2.1 to 2.5]. Also compute shape factors and
moment ratios.

3.2 Using the data from Question 3.1, plot histograms of temperature, rain-
fall, wind velocity, and discharge.

( ) [( ) ( )]
[( ) ( ) ( )( )]

x x X X
x X X x X X

i i

i i

− = − + −
= − + − + − −

∑ ∑
∑

μ μ
μ μ

2 2

2 2 2

( )x Xi − =∑ 0

( ) ( ) ( )
( ) ( )

x x X n X
n s n X

i i− = − + −
= − + −

∑ ∑μ μ
μ

2 2 2

2 21

s
n

x
n

n
Xi

2 2 21
1 1

=
−

− −
−

−∑ ( ) ( )μ μ

E s
n

E x
n

n
E Xi( ) ( ) {( ) }2 2 21

1 1
=

−
− −

−
−∑ μ μ

E s
n

X
n

n
X

n
n

n
n n

n
n n

( ) var( ) var( )2

2
2

2 2

1
1 1

1
1 1

1
1

1

=
−

−
−

=
−

−
−

=
−

−
−

∑

σ
σ

σ σ == σ2



140 Risk and Reliability Analysis

3.3 Represent each histogram by a probability distribution plotted in Ques-
tion 3.2, based on the histogram shape. Do not perform any numerical
fitting. Compute the area under this probability distribution and show
that this is or is not a probability distribution. 

3.4 What would be the consequence of adding a constant to each observa-
tion in Question 3.1 on the mean, standard deviation, coefficient of varia-
tion, and coefficient of skewness?

3.5 What would be the consequence of multiplying each observation in
Question 3.1 by a constant on the mean, standard deviation, coefficient
of variation, and coefficient of skewness?

3.6 Divide the data of Question 3.1 in two groups, one bigger than the other.
How do the grouped data mean and standard deviation compare to the
ungrouped mean and standard deviation? Which estimate would you
prefer? 

3.7 Find the moment-generating function of the Bernoulli distribution with
f(x) = px(1–p)1–x, where x = 0,1.

3.8 Find the moment-generating function of f(x) = xe–x, where x ≥ 0. Hint:
Use the change of variable technique to integrate with respect to w = x(1–
x) instead of x.

3.9 If a random variable X is defined by the normal distribution with param-
eters μ (mean) and σ (variance), then find the distribution of Y = aX + b.
Remember that 

3.10 A discrete random variable X has the following PMF:

Calculate the following: (i) E[X], (ii) E[2X], (iii) E[2X+2], and (iv) E[g(X)],
where g(X) = (X2 – 2X + 4).

3.11 Calculate (i) E[X], (ii) E[2X], (iii) E[2X + 2], and (iv) E[g(X)], where g(X) =
(X2 – 2X + 4) if X is described by (a) a uniform distribution in the range
(0, 10) [i.e., f(X) = 1/10], (b) a triangular distribution given in Fig. Q3-11,
and (c) an exponential distribution defined as f(X) = 0.25 exp(–0.25X).

X 0 1 2 3 4 5 6 7 8 9 10

f(x) 0.00 0.04 0.08 0.12 0.16 0.20 0.16 0.12 0.08 0.04 0.00

M t t tX ( )= +exp[ ( / )].μ σ2 2 2
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3.12 Let X be a random variable defined by the following PDF:

for 0 < x ≤ 1

 = 0 elsewhere

(a) Find the value of c so that f(x) is a valid distribution. (b) Determine
the first four moments of X about the origin. (c) Use the noncentral
moments to determine the first four central moments.

3.13 Find the characteristic function for the random variable X defined in
Example 3.2. Using the characteristic function thus obtained, find the
expected value of X.

3.14 Find the moment-generating function of X characterized by the follow-
ing PDF: 

, where x is a positive integer

Determine the mean and variance of X using this moment-generating
function.

3.15 Let X be defined by the following gamma distribution function:

, x, α > 0

Figure Q3-11

f x c x( ) = −( )1 3

f x
a b

x

x

( ) =
−exp( )

!

f x x e x( )
( )

= − −β

α

α
α β
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1
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Find the moment-generating function of X and determine the mean,
variance, skewness, and kurtosis of X using this function.

3.16 A water resources engineer is interested in determining the average
annual concentration of total nitrogen (TN) in the inflow to a lake. This
lake is used as a water supply and the state agency is concerned with
eutrophication in the lake from increased levels of TN loading. It was
determined that the inflow follows a log-normal distribution given as

, 0 < Q < ∞

The relationship between inflow (Q) and TN is given as

TN = 1.5 ×10–4Q2–1.5 ×10–2Q + 0.15

where TN is in mg/L and Q is in cfs. Determine the distribution of TN
and find its moment-generating function and evaluate the mean, vari-
ance, skewness, and kurtosis of TN.

3.17 Determine the moment-generating function for a discrete random vari-
able X given in Question 3.10. Using this moment-generating function,
determine the first four moments of X about the mean.

3.18 A random variable X is defined by the following PDF:

, –∞ < x < ∞

Determine its moment-generating function and the first three central
and noncentral moments. Determine its characteristic functions. 

3.19 A random variable X is defined by the normal distribution with parame-
ters μ  and σ with the following PDF:

, –∞ < X < ∞

Determine its characteristic function.

3.20 Let R, S, T, U, and V be random variables with the first four noncentral
moments given in Table Q3-20. Using the relationship between central
and noncentral moments, determine the mean, variance, skew, and kur-
tosis of these random variables.
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3.21 Let X be a random variable with CDF defined as 

(a) Determine the PDF f(X).
(b) Compute E(X), E(X2), and E(X3).
(c) Compute the variance, skew, and kurtosis of X.

3.22 The discharge and stage values of Salt Creek at the USGS gauge near
Rowell, Illinois, are given in Table Q3-22. Compute the mean, median,
mode, mean deviation, standard deviation, coefficient of variation, and
ratio of standard deviation to the mean deviation of the discharge and
stage values.

3.23 An engineer developed a mechanistic watershed model and used it to pre-
dict the water quality of a stream. The engineer is interested in knowing
whether the developed model is efficient enough to be used for the total
maximum daily load computation. The observed and model predicted
water quality parameters are listed in Table Q3-23.

3.24 An engineer performed watershed modeling and conducted a statistical
error analysis to determine the model’s efficacy. The various statistics
calculated are shown in Table Q3-24. Comment on the efficacy of this
modeling exercise with respect to both flow and water quality.

Table Q3-20

Moment order, k 1 2 3 4

E[Rk] 2.00E-01 4.04E-02 8.24E-03 1.70E-03

E[Sk] 1.49E-01 5.24E-03 2.13E-04 9.41E-06

E[Tk] 5.00E-02 2.53E-03 1.29E-04 6.63E-06

E[Uk] 2.02E-01 4.15E-02 8.63E-03 1.82E-03

E[Vk] 1.01E-02 1.05E-04 1.11E-06 1.20E-08
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Table Q3-22

Year Stage (ft) Flow (cfs) Year Stage (ft) Flow (cfs)

1968 29.21 24,500 1952 19.29 3,170

1943 24.77 12,400 1946 18.83 3,040

1964 24.71 10,600 1976 19.51 2,910

1956 23.67 10,300 1948 18.7 2,480

1961 23.72 10,300 1960 18.74 2,290

1951 23.23 9,390 1953 18.35 2,210

1944 22.94 8,850 1972 18.67 2,020

1974 22.92 8,060 1965 17.83 1,830

1957 22.45 7,950 1949 17.76 1,810

1959 24.84 7,500 1969 17.59 1,700

1973 22.48 7,270 1947 17.36 1,600

1950 21.77 6,890 1945 16.58 1,380

1963 21.87 6,050 1955 16.75 1,320

1958 21.1 5,730 1971 17.4 1,310

1970 21.1 5,060 1966 16.07 1,090

1962 19.98 4,110 1967 15.85 1,040

1975 20.33 3,920 1954 14.8 829

Table Q3-23

Observed water quality Model-calculated water quality

DOa FCOLIb NO3c NH3d TSSe TEMPf DO FCOLI  NO3 NH3 TSS TEMP

3.0 5. 0.0 0.0 11.0 46.0 6.0 158. 0.1 0.0 6.5 41.7

6.6 50. 0.1 0.0 12.0 48.2 9.2 180. 0.1 0.0 6.7 52.4

6.8 62. 0.1 0.0 13.0 52.7 8.0 124. 0.1 0.0 44.5 50.8

6.8 92. 0.1 0.0 14.0 55.0 7.0 335. 0.1 0.0 23.2 54.0

7.5 100. 0.1 0.0 15.0 56.7 8.3 196. 0.3 0.0 47.7 55.3

7.5 108. 0.1 0.0 15.0 59.2 9.1 170. 0.3 0.1 29.8 53.1

7.7 120. 0.1 0.0 16.0 59.9 7.7 89. 0.3 0.0 32.0 56.5

7.7 122. 0.1 0.0 18.0 59.9 7.7 155. 0.3 0.0 51.1 46.9

7.7 125. 0.1 0.0 19.0 60.6 7.8 124. 0.1 0.0 5.5 55.7

7.8 148. 0.1 0.0 20.0 61.0 7.6 180. 0.1 0.0 25.1 61.4

7.8 160. 0.1 0.0 22.0 61.0 8.1 135. 0.2 0.0 74.5 56.4

7.9 165. 0.1 0.0 23.0 61.9 8.8 40. 0.1 0.0 101.0 59.3

8.0 170. 0.1 0.0 25.0 63.3 7.8 819. 0.3 0.0 114.0 60.3
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8.0 215. 0.1 0.0 25.0 66.2 10.2 150. 0.1 0.0 112.0 60.4

8.1 220. 0.1 0.0 31.0 67.6 8.6 54. 0.1 0.0 15.0 63.6

8.2 225. 0.1 0.0 33.0 69.3 10.1 95. 0.1 0.0 55.8 69.5

8.4 240. 0.1 0.0 44.0 69.6 8.9 208. 0.3 0.0 34.0 69.1

8.5 250. 0.1 0.0 44.0 70.5 9.4 148. 0.3 0.0 53.2 60.7

8.5 280. 0.2 0.0 47.0 72.1 9.6 48. 0.5 0.0 109.0 69.8

8.9 300. 0.2 0.0 48.0 72.9 9.5 77. 0.4 0.0 11.2 71.4

9.1 310. 0.2 0.0 56.0 73.4 8.9 50. 0.3 0.1 29.4 69.6

9.2 340. 0.2 0.0 57.0 74.5 10.6 317. 0.3 0.0 52.9 71.1

9.2 350. 0.2 0.0 59.0 75.0 9.7 40 0.6 0.0 36.8 81.2

9.3 370. 0.2 0.0 64.0 75.7 7.9 124. 0.1 0.0 26.6 74.4

9.4 468. 0.2 0.0 67.0 76.1 9.2 77. 0.2 0.0 1.4 77.8

9.6 980. 0.2 0.0 69.0 77.0 10.9 820. 0.2 0.0 56.6 78.7

9.6 2320. 0.2 0.0 73.0 77.0 9.2 146. 0.1 0.0 67.1 75.2
aDissolved oxygen (mg/L). bNumbers of fecal coliform (#/100 mL). cNitrate (mg/L). dAmmonia

(mg/L). eTotal suspended solids (mg/L). fTemperature (°F). 

Table Q3-24

Data Root mean square 
error (RSME)

Normalized mean 
square error (MSE*)

Coefficient of 
determination (CD) 

Flow assessment

Daily flow (cfs) 47.01 1.06 − 0.06

Monthly flow (cfs) 598.94 1.95 − 0.95

10% Highest flow (cfs) 133.06 1.55 − 0.55

10% Lowest flow (cfs) 3 21.03 − 20.03

Water quality assessment 

TSS (mg/L) 217.43 1.45 − 0.45

TP (mg/L) 0.23 1.66 − 0.66

Zn (mg/L) 56.29 3.6 − 2.6

Table Q3-23  (Continued)

Observed water quality Model-calculated water quality

DOa FCOLIb NO3c NH3d TSSe TEMPf DO FCOLI  NO3 NH3 TSS TEMP
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Chapter 4

Discrete and Continuous 
Probability Distributions

In earlier chapters we studied characterization of random variables through
their probability distributions along with their expectation and moments with-
out referring to a specific distribution. In this chapter we describe several proba-
bility distributions that are commonly used for performing reliability, risk, and
uncertainty analysis of various engineering systems. As mentioned in earlier
chapters, the probability distributions can be classified into discrete and continu-
ous distributions, based on the nature of the random variable of interest. First we
will discuss discrete distributions and some continuous distributions derived
from discrete distributions.

Many engineering problems relate to the number of times a particular event
may be observed in a series of repeated observations in a certain space or in a
certain interval of time. For example, in the quality control of manufactured
products a number of samples may be subjected to testing to determine the
number of times a sample fails to meet a predetermined quality criterion. In the
lining of irrigation canals, interest may be in the number of flaws that may occur
in, say, 1000 m of lining. A dam designer may want to know the number of times
the design flood is likely to be exceeded during the economic life of the dam.
Studies on railway transportation safety may be concerned with the number of
railway accidents that occur annually in a region. A flood management officer
may want to know how many times the water level in a given river would be
higher than the danger level in a given year. In flood protection work, interest
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may lie in knowing the number of levee sections liable to break. In such exam-
ples, an event may be characterized as simply “failure” or “no failure,” “suc-
cess” or “no success,” “win” or “loss,” “flaw” or “no flaw,” “accident” or “no
accident,” and so on. In other words, the specified event may be described by
“occurrence” or “nonoccurrence.” It is further assumed that the probability of
“occurrence” (and of “nonoccurrence”) is the same from trial to trial, or per unit
of space, or per unit of time, as the case may be. Each time a lined canal is ana-
lyzed, the probability of leakage is assumed to be the same. Each time a water
distribution network is analyzed, the probability of failure of pipes is assumed
to be the same. The probability of encountering a flaw is assumed to be the same
for each meter of canal lining. The probability of accident per unit of time in the
case of transportation is assumed to be the same for each unit of time. Further-
more, it is assumed that the occurrence or nonoccurrence of the specified event
is independent of the previous occurrences or nonoccurrences. 

The number denoting the occurrence of the event or the success is regarded
as the random variable, denoted as X, whose probability distribution is of inter-
est. The distribution of X is obviously discrete. Depending on whether the occur-
rences are considered in a fixed number of observations or in a fixed continuum
of space or time, the random variable X will follow a binomial or a Poisson dis-
tribution if three conditions are met: (i) Only two discrete states of the random
variable are possible, (ii) the probability of occurrence is constant for each trial,
and (iii) the occurrence of the specified event is independent of the previous
occurrences. The binomial and the Poisson distributions are the most commonly
used discrete probability distributions. 

4.1 Simple Discrete Random Trials 

The state of many engineering systems can be classified into two exclusive cate-
gories: success or failure, satisfactory functioning or unsatisfactory functioning,
working in compliance with the regulatory standards or violating the regulatory
standards, winning or losing, exceeding or not exceeding standards, etc. Under
such conditions the following distributions arise: the Bernoulli distribution, the
binomial distribution, the geometric distribution, and the negative binomial
distribution.

4.1.1 Bernoulli Distribution: Single Trial 

Let a random variable be denoted by X, which takes on any one of two possible
values: one associated with success and the other with failure. When we con-
sider whether it is a wet or dry day, hot or cold, flooded or not, windy or tran-
quil, day or night, sunny or cloudy, clear or hazy, foggy or not foggy, urbanized
or rural, rich or poor, etc., it is seen that only two mutually exclusive or
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collectively exhaustive events are possible outcomes. Such a variable is defined
as the Bernoulli random variable. Now for the random variable X, we assign a
value of zero for “nonoccurrence” of the specified event and a value of one for
its “occurrence.” Thus, all possible events associated with the experiment can be
defined on the probability space as shown in Fig. 4-1.

Let the probability of “occurrence” be p, and let the probability of “nonoccur-
rence” be q = 1 – p. If a success is observed, x = 1, and if a failure is observed, x = 0.
The PMF of X, denoted as fX(x), is simply

(4.1a)

Alternatively, Eq. 4.1a can be written as

for x = 0, 1 (4.1b)

where p is the probability of success. Evidently, p + q = 1. The mean of the ran-
dom variable X can be determined by taking the first moment about the origin
and is written as 

E(X) = Σx fX(x) = (1) p + (0) (1 – p) = p (4.2)

Similarly, the variance of X can be determined by taking the second moment
about the mean:

(4.3)

For a Bernoulli variable, the probability of occurrence of the event in each trial
is the same from trial to trial and the trials are statistically independent. We use the
notation X ~ Bernoulli (p), which reads as X is characterized by a Bernoulli distri-
bution with parameter p. The Bernoulli distribution is useful for modeling an
experiment or an engineering process that results in exactly one of two mutually
exclusive outcomes. The experiments involving repeated sampling of a Bernoulli
random variable are frequently called Bernoulli trials [e.g., tossing a coin repeat-
edly and observing the outcomes (heads or tails)].

Figure 4-1 Probability space in a Bernoulli trial.
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Several commonly used discrete distributions arise from examining the
results of Bernoulli trials repeated several times. Three basic questions come to
mind when we observe a set of Bernoulli trials: (1) How many successes will be
obtained in a fixed number of trials? (2) How many trials must be performed
until we observe the first success? (3) How many trials must be performed until
we observe the kth success? Answering these three questions motivates the
development of the binomial, geometric, and negative binomial distributions,
respectively.

Example 4.1 If the occurrence of rainfall in Baton Rouge, Louisiana, follows a
Bernoulli distribution with probability of occurrence X on any given day as 0.2,
find the mean of the random variable and its variance.

Solution The mean of X = 0.2. The variance of X = 0.2 × 0.8 = 0.16.

4.1.2 Binomial Distribution: Repeated Trials

A binomial random variable represents the number of successes obtained in a
series of n independent and identical Bernoulli trials, the number of trials is
fixed, and the number of successes varies from experiment to experiment. Con-
sider a sequence of Bernoulli trials, where the outcomes of the experiment are
mutually independent and the probability of success remains unchanged. For
example, for a sequence of n years of flood data, the maximum annual flood
magnitudes are independent and the probability of occurrence, p, of a flood in
any year remains unchanged throughout the period of n years. If the random
variable is whether the flood occurs or not, then the sequence of n outcomes is
Bernoulli trials. Let the random variable be designated by Y and its specific
value by y. We wish to determine the probability of exactly y occurrences (the
number of successes) in n Bernoulli trials. To that end, let the probability of suc-
cess (occurrence of flood) be p. First, consider a simple case of n = 3. If there are
no successes or all trials lead to failure (nonoccurrence of flood), then y = 0. This
event has a probability of 

(1 – p)(1 – p)(1 – p) = (1– p)3

If there is one success (denoted by 1) and two failures (denoted by 0) in each
of the three trials (i.e., y = 1), then the following sequence is possible:

Each sequence is an event with the probability of occurrence as p(1 – p)2.
Therefore, the probability of event y = 1 or f[y = 1] = 3p(1 – p)2, since the

Trial 1 Trial 2 Trial 3

1 0 0

0 1 0

0 0 1
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sequences are mutually exclusive events. Similarly, for the event y = 2, the mutu-
ally exclusive occurring sequences are

Each occurs with probability p2(1 – p), leading to y = 2. Hence,

f[y = 2] = 3p2 (1 – p)

Likewise, for y = 3, P[y = 3] = p3, since only one sequence corresponds to y = 3.
In summary 

fY(0) = (1 – p)3

fY(1) = 3p (1 – p)2

fY(2) = 3p2 (1 – p)

fY(3) = p3

One can write

where the Binomial coefficient, equals 3!/[(y! (3 – y)!)], the number of ways
that exactly y successes can be found in a sequence of three trials. 

To generalize, if there are n Bernoulli trials, the probability mass function of
the total number of successes y is given as 

(4.4)

= B(n, p)

Here n must be an integer and 0 ≤ p ≤ 1. Equation 4.4 defines the binomial dis-
tribution of Y for given values of p and n. The distribution is called binomial
because the coefficients are the well-known binomial coefficients that arise when
the series (a+b)n is expanded using the binomial theorem. The binomial distribu-
tion has two parameters: the number of trials and the probability of occurrence
of the specified event in a single trial. In an abbreviated form, this is referred to
as B(n, p). The shape of B(n, p) depends on parameters n and p. The probability of
each sequence is equal to pyqn–y. With use of Eq. 4.4, the probabilities that Y will

Trial 1 Trial 2 Trial 3
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take on the values of 0, 1, 2, …, n, which exhaust all possibilities, can be calcu-
lated. The binomial coefficients can be calculated or obtained from mathematical
tables when Y and n are large. 

Many everyday situations entail events that have just two possibilities. A
highway bridge may or may not be flooded in the next year, an area may or may
not get flooded this year, it may or may not rain today, it may be windy or may
not be windy next week, it may snow or may not snow next week, it may be
cloudy or sunny tomorrow, a car accident may or may not occur next week, a
column may or may not buckle, an excavator may or may not cease to operate in
the next week, and so on.

The mean of Y can be determined by taking the first moment of Eq. 4.4 about
the origin: 

(4.5)

Let u = y – 1. Then, Eq. 4.5 can be written as 

(4.6)

because the term after the summation will add up to unity. Similarly, the vari-
ance of Y can be obtained as 

To express the variance, E[Y2] needs to be specified. This term can be derived as
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Let u = y – 2 for the first summation and v = y – 1 for the second summation
in this equation. Then one obtains 

Therefore,

(4.7)

It should be noted that the total number of successes in n trials Y can be
interpreted in terms of the success or failure in each Bernoulli trial. Let the ith
trial be denoted by Xi. Then, Xi = 1 if success occurs and Xi = 0 if failure occurs.
Then, Y can be written as the sum 

Y = X1 + X2 + X3 + … + Xn (4.8)

of n independent identically distributed Bernoulli random variables. The mean
and variance of Y can be written as

This also shows that the sum of two binomial random variables, B(n1, p)
and B(n2, p), also has a binomial distribution, B(n1+ n2, p), as long as p remains
constant. As p tends to 0.5 and n tends to a large number, B(n, p) tends to a nor-
mal distribution (see the plots in Example 4.2), which will be discussed in the
next chapter.

Example 4.2 Consider the binomial distribution with parameters n and p. Graph
the binomial distribution for the following parameter sets: (1) n = 5, p = 0.1;
(2) n = 5, p = 0.25; (3) n = 5; p = 0.5; (4) n = 15, p = 0.25; (5) n = 15, p = 0.5; (6) n =30,
p = 0.25, (7) n = 30, p = 0.5; and n = 50, p = 0.5.
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Solution The plots of the binomial distribution for different combinations of
parameters are given in Fig. 4-2. 

Example 4.3 Daily rainfall data for Baton Rouge, Louisiana, is available for the
years 1948 to 1990. Consider the rainfall data for the month of September.
Assuming that the occurrence of rainfall on any day is an independent event,
compute the probability of 2 rainy days, 4 rainy days, and 10 rainy days in Sep-
tember. From the data, the total number of rainy days is 380. 

Solution The total number of days in the month of September from 1948 to 1990
will be 43 × 30 = 1,290. Thus, the probability of rain on any given day in Septem-
ber is 380/1,290 = 0.2978. The probability of the occurrence of a given number of
rainy days in a month follows a binomial distribution. If there are n Bernoulli tri-
als, the probability mass function of the total number of successes y is given by
Eq. 4.4. Here, the number of trials n is the number of days in September (30), and
p is 0.2978. Hence, the probability of 2 successes, y = 2, is

Similarly, for y = 4,

and for y =10,

The probability of a different number of rainy days in September is plotted
in Fig. 4-3.

Example 4.4 Using the data of Example 4.3, find the probability of 2, 3, and 5
consecutive rainy days in the month of September.

Solution Since the probability of rain falling on a day is independent of the rain
on the previous day, the probability of 2 consecutive rainy days in the month of
September is

The probability of 3 consecutive rainy days in the month of September is

The probability of 5 consecutive rain days in the month of September is

P2
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Figure 4-2 Plots of binomial distribution for various combinations of n and p.
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Example 4.5 Consider the annual peak discharge series for the Amite River near
Darlington, Louisiana. Assume that the annual peak values are independent. If
the probability of a given T-year flood is constant from year to year, then the suc-
cessive years represent independent Bernoulli trials. What is the probability that
a 50-year flood will occur at least once during 20 years? Compute the probability
of a 100-year flood occurring at least once in 20 years.

Solution When a return period (T) for an event is given, the probability p is
defined as (the definition of return period is provided later) p = the probability
of occurrence of a T-year flood in any given year = 1/T =1/50 = 0.02. Let x = the
number of occurrences of the 50-year flood. X ~ B(n, p = 0.02). The probability
that the 50-year flood will occur in 20 years will be

The probability that the 100-year flood (p = 0.01) will occur in 20 years will be

Example 4.6 A factory produces plastic pipes and an inspection showed that
10% of the pipes produced are defective. Prepare the PMF of the number of
defective pipes encountered in a sample of 10. Assume that the number of defec-
tive pipes follows a binomial distribution. 

Solution Let X be the number of defective items. Here p = 0.1 and n = 10. A sam-
ple calculation for x = 2 is 

P(x = 2) = (0.1)2(0.9)8 = 45 × 0.0043047 = 0.1937

Figure 4-3 Probability of given number of rainy days in September for Baton Rouge.
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The binomial distribution is X ~ B(10,0.10). The PMF is listed in Table E4-6.
(Note that 0! = 1.)

Example 4.7 Using the data of Example 4.6, compute the probability that in one
particular sample of 10 plastic pipes, one would find three or more defective
pipes.

Solution This probability can be calculated in two ways. First, one can add up
the probabilities of x = 3, x = 4, x = 5, etc. up to x =10 defective pipes. Second, a
more efficient way is to consider the complementary event: less than three defec-
tive pipes. This means adding up

P(x = 0) = 0.3487 + [P(x = 1) = 0.3874] + [P(x = 2) = 0.1937] = 0.9298

The probability of finding more than three defective pipes is, therefore,
1.0 – 0.9298 = 0.0702. 

4.1.3 Geometric Distribution: Repeated Trials

In the preceding cases, we focused on the number of successes occurring in a
fixed number of Bernoulli trials. Here we focus on the question of determining
the number of trials when the first success would occur. For example, how many
days would pass before the next rain if the probability of occurrence of rain on
any day is p? What would be the year when a flood would occur if the probabil-
ity of occurrence of flood in any year is p? When would the next accident occur?
When would the next hurricane strike the Louisiana coast? When would the
next earthquake hit the Los Angeles area? When would the next snowfall occur
in Denver? Thus a geometric random variable represents the number of trials
needed to obtain the first success.

If we assume the independence of trials and a constant value of p, the distri-
bution of N, the number of trials to the first success, can be found as follows. The
first success would occur on the nth trial if and only if (1) the first (n – 1) trials are
failures, which occur with probability (1 – p)n–1, and (2) the nth trial is a success,
which occurs with probability p. That is, 

(4.9)

Table E4-6

X 0 1 2 3 4 5 6 7 8 9 10

1 10 45 120 210 252 210 120 45 10 1

pX(x) 0.3487 0.3874 0.1937 0.0574 0.0112 0.0015 0.0001 0.000 0.0 0.0 0.0
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This is the geometric distribution with parameter p and is denoted as G(p).
The cumulative distribution function is 

(4.10)

Alternatively, we could observe directly that the probability that N ≤ n is the
probability that there is at least one occurrence in n trials, or P (no occurrence in
n trials) = (1 – p)n. Thus, the probability of at least one occurrence is

P (at least one occurrence in n trials) = 1 – (1 – p)n

which is the same as Eq. 4.10.
The mean and variance of N can be expressed as 

(4.11)

(4.12)

Example 4.8 Plot the geometric distribution for various values of p and n, taking
n from 0 to 20, and p from 0 to 1.

Solution The distribution has been plotted in Fig. 4-4.

4.1.3.1 Concept of Return Period

Most often hydrologic events (flood, low flow, drought, etc.) are described in
terms of return period. The return period of a given event under study is defined
as the expected time to obtain the first success (i.e., its first occurrence). Thus, the
return period can be characterized by a geometric distribution. Mathematically,
the return period T can be defined as the first moment about the origin:

Using the algebra of infinite series we get 

Thus,

F n P j p p pN N
j

n
j n

j

n
( ) ( ) ( ) ( )= = − = − −

=

−

=
∑ ∑

1

1

1

1 1 1

E N np p
p

n

n

[ ] ( )= − =−

=

∞

∑ 1
11

1

Var N
p

p
[ ]=

−1
2

T E N np n npq p q qN
n

n

n

= = = = = + +
=

∞
−

=

∞

∑ ∑[ ] ( ) ( )
1

1

1

21 2 3 …

1 2 3 1 1 12 2 2+ + +( ) = −( ) =q q q p...

T
p

p p
= =2

1



Discrete and Continuous Probability Distributions 161

Example 4.9 Using the data in Example 4.3, compute the probability of the first
rainy day in September using the geometric distribution. Also, compute the
probability of the first two consecutive rainy days. 

Solution The probability of the first occurrence of rain in September (first suc-
cess) can be obtained using Eq. 4.9:

P(n = 1) = (1 – p)n–1 p = (1 – 0.2978)1–1 (0.2978) = 0.2978

The probability of the occurrence of the first two consecutive rainy days in
September can be obtained as follows: The probability of two consecutive rainy
days is

P = (0.2978)(0.2978) = 0.089

Figure 4-4 Geometric distribution for different value of p.
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Then, the probability of occurrence of the first two consecutive rainy days in
September can be obtained again by substituting this value in Eq. 4.9:

P = (1 – 0.089)1–1(0.089) = 0.089

Example 4.10 Using the data of Example 4.5, compute the probability that (a) a
50-year flood will occur at least once during 20 years, (b) a 100-year flood will
occur at least once during 20 years, (c) the number of years for the first occur-
rence of the 50-year flood is greater than 10 years, (d) the number of years for the
first occurrence of the 50-year flood is greater than 30 years, (e) the number of
years for the first occurrence of the 100-year flood is greater than 10 years, (f) the
number of years for the first occurrence of the 100-year flood is greater than 20
years, (g) there will be no floods greater than the 50-year flood in 50 years, and
(h) there will be no floods greater than the 100-year flood in 100 years. 

Solution

(a) For a 50-year flood, the probability in any year is p = 1/50 = 0.02. The
probability that a 50-year flood will occur at least once during 20 years is
one minus the probability that it will not occur in 20 years:

(b) The probability of a 100-year flood in any year is p = 1/100 = 0.01. The
probability that a 100-year flood will occur at least once during 20 years is

(c) The probability that the number of years for the first occurrence of the
50-year flood is greater than n years is 

P(N > n) = 1 – [1 – (1 – p)n]

For p = 0.02, n = 10,

P(N > 10) = 1 – [1 – (1 – 0.02)10] = 0.817

(d) For p = 0.02, n = 30,

P(N > 30) = 1 – [1 – (1 – 0.02)30] = 0.545

(e) If this is a 100-year flood, p = 0.01. For p = 0.01, n = 10,

P(N > 10) = 1 – [1 – (1 – 0.01)10] = 0.904

(f) For p = 0.01, n = 20,

P(N > 10) = 1 – [1 – (1 – 0.01)20] = 0.818
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(g) The probability that there will be no floods greater than the 50-year flood
in 50 years is

(h) The probability that there will be no floods greater than the 100-year
flood in 100 years is 

4.1.4 Negative Binomial Distribution

The negative binomial random variable represents the number of trials needed
to obtain exactly k successes. Here the number of successes (k) is fixed and the
number of trials varies from experiment to experiment. For this reason it is
thought of as a reversal of the binomial distribution, because the number of suc-
cesses and number of trials are reversed. Each trial has two possible outcomes—
success or failure—and the probability of success is constant from one trial to
another. As mentioned earlier, in the binomial case the number of trials is fixed
and the number of successes varies. Consider a random variable Wk that is the
sum of random variables N1, N2, …, Nk, where Ni is the number of trials between
(i – 1)th and ith successes. Thus, 

(4.13)

where Ni (i = 1, 2, …, k) are mutually independent random variables, each with a
common geometric distribution with parameter p, the probability of success in a
trial. The distribution of k successes in w trials can be derived as

(4.14)

where Wk is the trial number at which the kth success occurs. Equation 4.14 implies
that k – 1 successes in the preceding w – 1 trials have already occurred. The proba-
bility of k – 1 successes in w – 1 trials is obtained from the binomial distribution.

This is the negative binomial distribution, also called the Pascal distribution,
with parameters k and p, and is denoted as NB(k,p). Note that PWk(w) = 0 for
w < k. Interestingly, the sum of two negative binomial random variables is also a
negative binomial random variable; that is, NB(k1, p) + NB(k2, p) is also
NB(k1 + k2, p). Parameters of the negative binomial distribution are given as
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Example 4.11 Consider the negative binomial distribution with parameters k
and p. Graph the distribution for the following parameter sets, where p is the
number of trials: (1) p = 0.25, k = 2; (2) p = 0.5, k = 2; (3) p = 0.25, k = 3; and
(4) p = 0.5, k = 3. 

Solution The graph in Fig. 4-5 shows the negative binomial distribution for the
desired combination of parameters.

Example 4.12 Using the data of Example 4.3, compute the probability that the
second rainy day will occur on the 10th day of September. Also compute the
probability that the third rainy day will occur on the 15th day of the month using
the negative binomial distribution.

Solution The probability of the kth success occurring at the wth trial can be cal-
culated by the negative binomial distribution. Here, k = 2, w = 10. Hence,

In the second case, k = 3, w = 15. Hence,

Figure 4-5  Negative binomial distribution for different combinations of p and k.
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Example 4.13 Consider a 50-year flood. There is 1 chance in 50 that a flood
greater than the critical value will occur in any particular year. What is the prob-
ability that at least one 50-year flood will occur during the 30-year economic life-
time of a proposed flood-control system? 

Solution Let X equal the number of 50-year floods in 30 years. Then, X is
B(30, 0.02) and

= 0.45

One can also use the binomial theorem and get the same answer:

P[X ≥ 1] = 1 – (0.98)30 = 1 – (1– 0.02)30

 = 0.6 – 0.174 + 0.01624 ≈ 0.45

If this risk is too large, the design capacity is increased such that the magni-
tude of the critical flood would be exceeded with an acceptable probability of,
say, 0.01 in any one year. Then, X is B(30, 0.01), and P(X ≥ 1) = 1 – fX(0) = 0.26. The
risk is lowered, but one must weigh the initial cost of the system versus the
decreased risk of incurring the damage associated with the failure of the system
to contain a large flood. The number of years N to the first occurrence of the crit-
ical flood is a random variable with a geometric distribution, G(0.01), in the lat-
ter case. The probability that it is greater than 10 years is 

P(N > 10) = 1 – FN(10) = 1 – [1 – (1 –p)10] = (1 – p)10 = 0.90

Suppose now the probability that N > 30 is to be computed. This is the prob-
ability that there are no floods in 30 years; that is, X = 0, where X is B(30, 0.01).
Thus,

P(N > 30) = P[X = 0] = 0.74

In a similar manner, one can compute the average return period or the
expected value of N, which simply is 

This is the average number of trials (years) to the first flood of magnitude
greater than the critical flood after its last occurrence. This is referred to as the
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return period or recurrence interval in hydrology. Since X is B(m, 1/m), the prob-
ability that there will be no floods greater than the m-year flood in m years is

(4.15)

For large m,

This states that the probability that one or more m-year events will occur in
m years is approximately 1 – e–1 = 0.632. Thus, a system designed for the “m-year
flood” will be inadequate, because the m-year flood will occur with a probability
of about 2/3 at least once during the period of m years. 

4.2 Models for Random Occurrences

In some cases, the number of trials is infinitely large, for example, events occur-
ring at any instant over an interval of time or at any location along the length of
a line or on the area of a surface that may be large. In such cases, it is difficult to
identify discrete trials at which different events (or successes) might have
occurred. Then the occurrences of events may be more appropriately modeled
by a Poisson process rather than a binomial process. 

4.2.1 Poisson Distribution: Counting Events

The binomial distribution is used when the random variable X is the number of
times a specified event occurs in a fixed number of trials. When our interest is in
the number of times a specified event occurs in a certain length of time, such as a
given monitoring period, or how often the event is observed in a continuum of
space, such as the length of a highway, an area of land, etc., and the number of
trials is not specified, then the binomial distribution cannot be used. In such
cases, it is more appropriate to use the Poisson distribution. Of course, the num-
ber of times a specified event occurs in a given continuum of space or time can
be counted, but it makes little sense to specify the number of times the event did
not occur. To illustrate this point, consider an example of thunder and lightning.
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On a given day, it is easy to count the number of times the thundering and light-
ning occurred, but it makes little sense to state the number of times it did not
occur. Similarly, the number of flaws in a 1000 m of a water supply pipe can be
counted but the number of nonflaws cannot be stated. Thus, instead of defining
the probability of “occurrence” for the specified event in a single trial, as for the
binomial distribution, what is defined here is the probability of occurrence per
unit of time or of space. For example, the probability that lightning in New
Orleans in the month of May will occur may be 0.025 per day. The probability
that a flaw occurs in a water supply pipe may be 0.000045 per meter of pipe
length or the probability of flooding in an urban area may be 0.01 per year. It is
assumed that these probabilities are the same for every day, every meter, or
every year. It is further assumed that the occurrences and the nonoccurrences are
independent along the continuum. The difference between these binomial and
Poisson distributions can be summarized by noting that both the occurrences
and nonoccurrences can be specified for the binomial distribution, whereas they
cannot be for the Poisson distribution.

The binomial and Poisson distributions share some similarities. The proba-
bility distribution of the number of occurrences X in a given continuum of time
or space can be treated as a special case of the binomial distribution under two
conditions: (1) The number of trials becomes infinitely large, and (2) the average
number of occurrences defined by np remains constant. By dividing the contin-
uum into small intervals, the problem can be reduced to one of “occurrence” and
“nonoccurrence” of the specified event in any of these intervals, provided these
intervals are made so small that the probability of getting two or more “occur-
rences” in any interval is negligible. To that end, consider a fixed interval of
time, say, t. Assume that the probability of an event occurring at any instant is p
(and it is assumed here that the probability of two or more events occurring at
any one instant is negligible). Then, the total number of events X in the n = t
(assumed) independent trials is binomial, B(n, p): 

(4.16)

If an individual trial is represented by a smaller and smaller time duration,
the number of trials n increases and the probability of success, p, on any one trial
decreases, but the expected number of events in the total interval must remain
constant at np. Let v = np and let the trial duration tend to zero: 
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Substituting for p = v/n in the PMF of X and rearranging gives

(4.17)

When n becomes very large compared to x, the product in the numerator of
the large fraction approaches nx and the term [1 – (v/n)]x will approach unity.
Thus, as n tends to infinity, 

(4.18)

Thus, from Eq. 4.17, 

(4.19)

This is the Poisson distribution. This distribution has one parameter and is
entirely specified by the average number of occurrences of the specified event
over the interval of time or space in question. It is denoted by X ~ P(ν).

The average of X can be expressed as 

(4.20)

In a similar manner, one obtains the variance of X, var(X) = v.
The sum of two Poisson random variables with parameters ν1 and ν2 must

again be a Poisson random variable with parameters ν = ν1 + ν2. The distribu-
tions with the property that the sum of independent random variables has the
same distribution are said to be regenerative. If p remains the same, then binomial
and negative binomial distributions are also regenerative.

It is worth mentioning here the difference between the binomial and Poisson
processes. The binomial process is concerned with the number of successes and
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failures (two events) in a fixed number of trials, whereas in the Poisson process
only one event (rather than two) is of concern. The Poisson distribution is most
commonly used in waiting time evaluations and reliability analysis (e.g., the
number of arrivals of vehicles at a highway toll booth in a given hour, the num-
ber of times a water or air or noise quality standard is violated at a given site
during a given monitoring period, the number of windy days in a given period,
or the number of snowfalls in a month).

Example 4.14 Consider the Poisson distribution with parameter ν. Graph the
Poisson distribution for ν = 0.5, 1.0, 2.0, 5.0, and 10.0.

Solution The shape of the distribution for a given value of parameter ν is given
in Fig. 4-6. 

Example 4.15 Determine the probability of occurrence of a storm with a return
period of 25 years in 5 years using the Poisson distribution.

Figure 4-6 The Poisson distribution for different values of parameter v.
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Solution The probability of occurrence of a 25-year storm in a year is 1/25 =
0.04. Thus,

ν = 5 × 0.04 = 0.20

P(x) = 0.201 × e–0.2/1! = 0.2 × 0.819 = 0.164

Example 4.16 A left turn lane is to be designed at an intersection to accommo-
date left-turning cars that arrive during 30 seconds when the traffic light does
not permit a left-hand turn. Since an insufficient length of traffic lane would
cause cars to interfere with through traffic, it is decided that the probability of
having too many left-turning cars arrive during the 30 seconds should be kept to
1%. Left-turning cars arrive at an average rate of 6/min. (a). Draw the PMF of
the number of left-turning cars during the 30-second period that the light is red
for them. (b). Determine the number of cars the left turn lane must be designed
for. This example was discussed by Booy (1990). 

Solution Here, the random variable is the number of left-turning cars arriving
in the 30-second period. The average number of such cars is equal to 3. There-
fore, X ~ P(3) and

Successive values of X can be calculated from this formula.
Alternatively, one can use the probabilities listed in Table E4-16. From the

table it may be seen that more than 8 cars arrive in the left turn lane within 30
seconds with a probability of 1% or less ( < 0.4% to be exact). Thus, a capacity to
accommodate 8 cars would be sufficient for the left turn lane, as per the allowed
design exceedance probability of 1%.

Example 4.17 Irrigation canals were lined using two types of lining: concrete and
brick. It was observed after a number of years that 5 out of 70 brick-lined canal
reaches leaked and only 1 out of 50 concrete-lined canal reaches showed cracks
and leakage. Assuming that there should be no difference in the durability of the

Table E4-16

X = 0 1 2 3 4 5 6

P(x) 0.0498 0.1494 0.2240 0.2240 0.1680 0.1008 0.0504

P(X<x) 0.0498 0.1991 0.4232 0.6472 0.8153 0.9161 0.9665

P(X>x) 0.9502 0.8009 0.5768 0.3528 0.1847 0.0839 0.0335

X = 7 8 9 10 11 12 13

P(x) 0.0216 0.0081 0.0027 0.0008 0.0002 0.0001 0.0000

P(X<x) 0.9881 0.9962 0.9989 0.9997 0.9999 1.0000 1.0000

P(X>x) 0.0119 0.0038 0.0011 0.0003 0.0001 0.0000 0.0000
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linings, what is the probability that a difference equal to or greater than the
observed difference in the number of leaks (= 4) would occur? 

Solution On the assumption of no difference in durability, there are 120 lined
canal reaches, including leaking lined canals. The probability of a leak per single
canal can be estimated at 6/120 = 5%. There are then two samples, one of 70 and
one of 50 canal reaches, and the distribution of the number of defects in each can
be determined. Let these numbers be designated as X70 and X50. If they follow a
binomial distribution, then 

X70 ~ B(70, 0.05)

X50 ~ B(50, 0.05)

The variances of the two variables are 70(0.05)(0.95) = 3.33 and 50(0.05)(0.95)
= 2.38, respectively. 

 The Poisson distribution can be expressed with ν = 70 × 0.05 = 3.5 and 50 × 0.05
= 2.5 as X70 ~ P(3.5) and X50 ~ P(2.5).

To determine the probability that D = X70 − X50 is equal to or larger than 4,
the type of distribution of the difference between two Poisson or binominal dis-
tributions is required, which is not known. A simple way out of this difficulty is
as follows. Event D equal to or larger than 4 can result from a rather limited
number of combinations of X70 and X50, namely,

X50 = 0 and X70 equal to or larger than 4

X50 = 1 and X70 equal to or larger than 5

X50 = 2 and X70 equal to or larger than 6

etc. These probabilities can be computed and the total probability can be deter-
mined for the Poisson distributed variables as listed in Table E4-17a.

Similarly, the probabilities computed and the total probability for binomial-
distributed variables are given as listed in Table E4-17b. The calculated values
given in the table indicate that the probability obtained converges to zero
quickly. So it is safe to calculate the probability until X50 = 6, which results in
P(D4) = 0.1492 if it is assumed that the variables are Poisson distributed, and
0.1438 if it is assumed that the variables are binomial distributed. This means
that the evidence of greater durability is by no means conclusive. 

Example 4.18 At a meteorological station, Sombor, in the region of Backa, Yugo-
slavia, during a period of 39 years, the number of years without drought was 4,
the total number of droughts was 70, and the longest drought lasted for 62 days.
The period considered in a year was the growing season, April 1 through Sep-
tember 30, which was 183 days long. Suppose an irrigation project is to be built
to serve agriculture for 50 years and we want to examine the drought situation
during the lifetime of the project. Compute the probability of 1, 2, 3, 4, 5, and 6
droughts occurring in the growing season. 
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Solution For the Poisson distribution, parameter λ is the mean number of
droughts in the growing season: λ = np = 70/39 =1.79. The probability of x (the
number of droughts) will be

Table E4-17a

X50 P(X50) P(X70 ≥ X50 + 4) P(X50)×P(X70 ≥X50 + 4)

0 0.0821 0.4634 0.0380

1 0.2052 0.2746 0.0563

2 0.2565 0.1424 0.0365

3 0.2138 0.0653 0.0140

4 0.1336 0.0267 0.0036

5 0.0668 0.0099 0.0007

6 0.0278 0.0033 0.0001

7 0.0099 0.001 1.01×10–5

8 0.0031 0.0003 8.98×10–7

9 0.0009 0.00008 6.55×10–8

10 0.0002 0.00002 4×10–9

Sum 14.92%

Table E4-17b

X50 P(X50) P(X70 ≥ X50 + 4) P(X50)×P(X70 ≥X50 + 4)

0 0.077 0.47 0.036

1 0.202 0.27 0.055

2 0.261 0.14 0.036

3 0.219 0.06 0.013

4 0.136 0.023 0.0032

5 0.066 0.008 0.00053

6 0.026 0.0025 6.42×10–5

7 0.0086 0.00068 5.88×10–6

8 0.0024 0.00017 4.18×10–7

9 0.00059 3.94×10–5 2.35×10–8

10 0.00013 8.27×10–6 1.07×10–9

Sum 14.38%
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Hence,

In a similar manner, we find p[3] = 0.160, p[4] = 0.071, p[5] = 0.026, and p[6] =
0.0076. These probabilities are plotted in Fig. 4-7.

4.2.2 Exponential Distribution: Time Between Events

The exponential distribution has wide application in engineering evaluations.
The main applications of the exponential distribution include characterization of
the time interval between successive events (e.g., distribution of time between
rainfall events) occurring in a Poisson process, the distribution of interarrival
times of floods, the distribution of interarrival times of droughts, the determina-
tion of time to failure for a certain engineering system, and the length of time
between customers arriving at a shop. Whereas the Poisson distribution pro-
vides the number of events in a fixed span of time, the exponential distribution
treats the span itself as the random variable, thus making it continuous.

Now consider the length of time interval between events at a point. Let us
assume that the events follow a Poisson arrival process. Let the average number
of events per unit time be λ. If the interval is too short, it will cause the events to
merge with the stream of events or to interrupt the stream. For example, if the
time interval between two flood events is very short, the events may merge. Let
the random variable T denote the time to the first arrival. Then, the probability
that T exceeds some time t is equal to the probability that no events occur in
that time interval of length t. The number of events in time interval t is λt. Then
1 – FT(t) is the former probability and PX(0) is the latter probability—the proba-
bility that a Poisson random variable X with parameter λt is zero. Thus, the
CDF of the exponential distribution is the result:

(4.21)

Differentiation of Eq. 4.21 yields the PDF of the exponential distribution:

(4.22)
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which is the exponential distribution, denoted as EX(λ). This distribution
describes the time to the first occurrence of a Poisson event and is a continuous
analog of the geometric distribution.

The Poisson process follows the property of independence and stationarity.
The term e–λt is the probability of no events in any interval of time t, whether or
not it begins at time 0. If we use the arrival time of the nth event as the beginning
of the time interval, the term e–λt is the probability that the time to the (n+1)th
event is greater than t. In short, the interarrival times of a Poisson process are
independent and exponentially distributed.

The mean of the exponential distribution is

(4.23)

where 1/λ denotes the average time between arrivals, and λ is the average num-
ber of events per unit time.

The variance of T is given as

(4.24)

The coefficient of variation of T is 

(4.25)

for any value of parameter λ.

Figure 4-7 The probability of number of droughts.
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Example 4.19 Consider the exponential distribution with parameter λ. Graph
the exponential distribution for the ratio of time t to the mean interarrival time
1/λ (i.e., for λ t).

Solution The exponential distribution for various values of λ is plotted in Fig. 4-8.

Example 4.20 In Example 4.18, the mean and standard deviation of the drought
duration (beyond a threshold value of 15 days) were 8.06 and 8.575 days, respec-
tively. The drought duration was found to follow an exponential distribution.
The maximum observed value of this duration (counted beyond the threshold
value) during the course of 39 years was 47 days. Compute the probability of
drought duration to be less than 5, 10, 15, 20, 25, 30, 35, 40, and 45 days.

Solution The mean of exponential distribution is E[T] = 1/λ = 8.06; thus
λ = 0.124. Therefore,

FT(5) = 1 – e–(0.124)5 = 0.462

FT(10) = 1 – e–(0.124)10 = 0.711

In a similar manner, we obtain FT(15) = 0.844, FT(20) = 0.9167, FT(25) = 0.955,
FT(30) = 0.976, FT(35) = 0.987, FT(40) = 0.993, and FT(45) = 0.996. These probabili-
ties have been plotted in Fig. 4-9.

4.2.3 Gamma Distribution: Time to the kth Event

Consider the distribution of Xk, the time to the kth arrival of a Poisson process.
The times between arrivals, Ti, i = 1, 2, …, k, are independent and have exponen-
tial distributions with common parameter λ. Xk is the sum T1 + T2 +…+ TK. Its
distribution is given by the repeated application of the convolution integral. For
any k = 1, 2, 3, ….

(4.26)

Equation 4.26 is the gamma distribution of Xk or X, denoted as G(k, λ) with k
and λ as parameters. 
Here, X is gamma distributed and is the sum of k independent exponentially dis-
tributed random variables. More generally, k need not be integer valued; then

(4.27)

(4.28)

f x
x e
k

x kXk

k x
( )

( )
( )!

, , , , , ...=
−

≥ > =
− −λ λ

λ
λ1

1
0 0 1 2    

f x
x e

k
x kX

k x
( )

( )
( )

, , ,= ≥ > >
− −λ λ

λ
λ1

0 0 0
Γ

Γ( )k e u du ku k= >− −
∞

∫ 1

0

,  0



176 Risk and Reliability Analysis

is the gamma function. Here, k is a shape parameter and λ is a scale parameter.
The cumulative distribution function can be computed by

(4.29)

This function can be evaluated by using the table of incomplete gamma func-
tions. If k is an integer, the cumulative distribution function can be computed as 

(4.30)

Figure 4-8 Exponential distribution for various values of lambda (λ).

Figure 4-9 Probabilities of drought durations.
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Also, Γ (k+1) = kΓ (k), k > 0; Γ (k) =Γ (k+1)/k, k < 1; and Γ (2) = Γ (1) = 1,
Γ (1/2) = . The incomplete gamma function is defined as

(4.31)

Abramowitz and Stegun (1965) have given the following numerical approxi-
mation to evaluate the gamma function:

Γ (k+1) = 1 + b1y + b2y
2 + b3y

3 + … + b8y
8 + ε(y) (4.32)

where 0 ≤ y ≤ 1. The coefficients are b1 = − 0.577191652, b2 = 0.988205891,
b3 = − 0.897056937, b4 = 0.918206857, b5 = – 0.756704078, b6 = 0.482199394,
b7 = − 0.193527818, and b8 = 0.035868343. The absolute error in the approxi-
mation is |ε(y)| ≤ 3 × 10–7.

It is easy to see that the exponential distribution is a special case of the
gamma distribution where k = 1. In the field of water resources, the gamma dis-
tribution is used to model the instantaneous unit hydrograph and to perform
flood frequency analysis; it is also used in many other problems.

The mean and variance of the variable X can be expressed as

(4.33)

(4.34)

The coefficient of skewness is defined as

(4.35)

Example 4.21 Graph the gamma distribution with parameters k and λ for
λ = 2.2, k = 1, 2, 3, 4, 5, and 10. Take the X axis as λx.

Solution The shape of the gamma distribution for different values of parameter
k is given in Fig. 4-10.

Example 4.22 Markovic (1965) used the gamma distribution to model the maxi-
mum annual river flows in the Weldon River at Mill Grove, Missouri, based on
the data for 1930 to 1960. He found k = 1.727 and λ = 0.00672 (cfs)–1. Determine
the probability that the maximum flow is less than 400 cfs in any year.

Solution The mean is
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with a standard deviation of 

To compute the probability that the maximum flow (x) is less than 400 cfs in
any year (with λ × x = 0.00672 × 400 = 2.69), Eq. 4.29 is used as 

Note that denotes the incomplete gamma function as

Example 4.23 The mean and the standard deviation of the annual peak flow
data for the Amite River near Darlington, Louisiana, are 28,675.833 cfs and
21,117.138 cfs. Assuming that the peak flow data follow a two-parameter gamma
distribution, determine the parameters of the distribution. What is the probabil-
ity that the maximum flow is less than 100,000 cfs, less than 80,000 cfs, and less
than 50,000 cfs in any year? What is the return period of each of these flows?
What is the probability that peak flow will occur in any year between one stan-
dard deviation on either side of the mean, and between two standard deviations
on either side of the mean?

Figure 4-10 Shape of the gamma distribution for various values of parameter k.
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Solution For a two-parameter gamma distribution,

Thus,

The probability that the maximum flow is less than 100,000 cfs in any year is
(with λ × 100,000 = 6.43)

The probability that the maximum flow is less than 80,000 cfs in any year is
(with λ × 80,000 = 5.144)

The probability that the maximum flow is less than 50,000 cfs in any year is
(with λ × 50,000 = 3.215):

The return period can be calculated from

For a maximum flow of 100,000 cfs, the return period is 1/(1 – 0.9907) = 107.78
years, for a maximum flow of 80,000 cfs, the return period is 1/(1 – 0.971) = 34.48
years, and for a maximum flow of 50,000 cfs, the return period is 1/(1 – 0.863) =
7.30 years. 

The probability that peak flow will occur within one standard deviation of
the mean is

Fx(mx – σ < x < mx + σ ) = Fx(mx + σ ) – Fx(mx – σ )

= Fx(49792.97) – Fx(7558.695) = 0.856 – 0.112 = 0.744

The probability that peak flow will occur within two standard deviations of
the mean is

Fx(mx – 2σ < x < mx + 2σ ) = Fx(mx + 2σ ) – Fx(mx – 2σ )

= Fx(70910.11) – Fx(–13558.4) = 0.953 – 0 = 0.953

The distribution is plotted in Fig. 4-11.  
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4.3 Summary of Distributions

The distributions presented in this chapter are summarized in Table 4-1. This
table gives the distribution name, mathematical form, random variable and its
range, parameters, and the applications for which the distribution is used.

4.4 Questions

4.1 Using daily rainfall data for the month of January in Houston, Texas,
compute the probability of 2, 5, and 10 rainy days in January in Houston.
Use the binomial distribution. What will be the probability of having
two consecutive rainy days, three consecutive rainy days, four consecu-
tive rainy days, and five consecutive rainy days? What will be the proba-
bility that a 50-year rainfall (in terms of amount) will occur at least once
in 20 years? A 100-year rainfall in 20 years? 

4.2 Compute the probability of the first occurrence of rain in January in
Houston. Use the geometric distribution. 

4.3 Compute the probability that the third rainy day will occur on the 10th
day or on the 15th day in August in Houston. You can use the negative
binomial distribution.

Figure 4-11 Gamma distribution.



Table 4-1 Summary of probability distributions.

Distribution 
name and symbol

Mathematical form Range of random 
variable

Parameters Applications 

Bernoulli
distribution

X = [0,1]
0 ≤ ρ ≤ 1

E(X) = p To model the behavior of a random variable that can take 
on any one of the two values: success or failure, rain or 
dry, etc.

Binomial
distribution, 
B(n, p)

y = 0, 1, 2, 3, …, n
0 ≤ ρ ≤ 1

E(Y) = np
var[Y] =
np(1− p)

To model events whose outcomes are mutually indepen-
dent and for which the probability of success or failure is 
fixed.

Geometric 
distribution, 
G(p)

n = 1, 2, 3,… E[N] = 1/p Used when the question is to find the number of trials 
before the first success occurs.

Negative bino-
mial distribution, 
NB(k, p)

w = k, k+1 …
k = 1, 2, 3, …

0 ≤ ρ ≤ 1

Used to model the number of trials, w, to obtain k suc-
cesses or k successes in w trials.

Poisson
distribution, 
P(ν)

X = 0, 1, 2, … 
∞

E(X) = ν
var(X) = ν

Used to model the number of times a specified event 
occurs in a fixed span of time; used for waiting time eval-
uation and reliability analysis. 

Exponential
distribution,
EX(λ)

t > 0 To characterize the time interval between successive 
events (e.g., distribution of time between rainfall events) 
occurring in a Poisson process, to determine time to fail-
ure for certain engineering systems and length of time 
between customers arriving at a shop.

Gamma 
distribution, 
G(k, λ)

x ≥ 0, λ > 0
k > 0

Used to model the time to the kth event wherein times 
between arrivals of events are independent and exponen-
tially distributed. It is also used to model the instanta-
neous unit hydrograph. Many distributions from the 
gamma family are employed in flood frequency analysis. 
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4.4 Count the number of wet periods in Houston for the data you have.
Define a wet period by the sum of consecutive months each having rain-
fall equal to or greater than 5 inches. The number of wet periods can be
described by the Poisson distribution. Compute the probability that
Houston will have 2, 4, 5, 6, and 10 wet periods.

4.5 Count the number of dry periods in Houston each year for the data you
have. Define a dry period as the sum of months each having rainfall less
than or equal to 2 inches. The number of dry periods can be described by
the Poisson distribution. Compute the probability that Houston will
have 2, 4, 5, 6, and 10 dry periods in a year.

4.6 Compute the time interval between wet periods as defined in Question
4.4. This should follow an exponential distribution. Compute the probabil-
ity that the time interval would be less than 2, 3, 4, and 5 months. 

4.7 Compute the time interval between dry periods as defined in Question
4.5. This should follow an exponential distribution. Compute the probabil-
ity that the time interval would be less than 2, 3, 4, and 5 months.

4.8 Compute the maximum monthly rainfall for each year. Determine the
probability that the maximum monthly rainfall is less than 10 inches.
You can use the gamma distribution here.

4.9 The daily concentration of a pollutant in a stream follows an exponential
distribution and is independent from day to day. 

(a) If the mean daily concentration of the pollutant is 2 mg/L, estimate
the parameter λ of the exponential distribution given by .

(b) Pollution is a problem if the concentration exceeds 6 mg/L. What is
the probability of a pollution problem on any particular day?

(c) What is the return period in days of the pollution problem?
(d) What is the probability of a pollution problem in at most 1 day in any

3 consecutive days?
(e) If instead of being exponentially distributed the pollution level is

described by a gamma distribution with the same mean and vari-
ance as the exponential distribution, then what is the probability of a
pollution problem on any particular day?

4.10 The time between rainstorms is thought to be exponentially distributed
with a mean of 5 days. What would you expect the distribution of the
time for the occurrence of 10 rainstorms to be? What would you expect
for the values of the parameters of this distribution?

f x e x( ) = −λ λf x e x( ) = −λ λ
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4.11 The probability of flooding in a given low-lying roadway crossing of a
small river in any given year is 0.51. Consider X as a random variable
representing the number of yearly floods at this location in a period of 15
consecutive years.

(a) Determine the first four moments of X.
(b) Determine the mean and variance of X.
(c) Determine the probability that there will be no floods in the 15-year

period.
(d) Determine the probability that there will be exactly 3 floods in the

15-year period.
(e) Determine the probability that there will be at least 2 floods in the 15-

year period.
(f) Determine the probability that there will be at most 7 floods in the

15-year period.
(g) Determine the probability that there will be between 3 and 7 floods

in the 15-year period.

4.12 To monitor the current water quality status in a river basin, automatic
water quality monitoring stations will be installed. In the initial phase, it
has been found that about 85% of all the monitoring sites operate cor-
rectly at a given time after installation. The rest require some adjust-
ments. About 10 monitoring sites are installed in a given month.
Determine the probability that at least 9 of the automatic monitoring
sites operate correctly upon installation. Consider 6 consecutive months
in which 10 monitoring sites are established. What is the probability that
at least 9 monitoring sites operate correctly in each of the 6 months?

4.13 It is possible for a piece of monitoring equipment to not detect a particu-
lar pollutant. This error is called the eclipsing error. Equipment is defec-
tive when it introduces an eclipsing error with probability 0.1. The
equipment is used 20 times during a given week. 

(a) Find the probability that no eclipsing error occurs.
(b) Find the probability that at least one such error occurs.
(c) Would it be unusual for more than five such errors to occur? Explain,

based on the calculation of probability involved.

4.14 Based on water quality monitoring data, it was found that a particular
industry releases a detectable amount of benzene once in a month, on
average, in a river used as a raw water supply for drinking purposes.
Find the probability that there will be at most three such releases during
a month. What is the expected number of releases during a three-month
period? If, in fact, 10 or more releases are detected during a three-month
period, do you think that there is a reason to suspect the reported aver-
age figure of once a month? Explain, on the basis of calculations. 
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4.15 Let X be binomial with n = 25 and p = 0.04. Find P[X = 0, 1, 2, 3, 4, and 5]
using the binomial probability density function and compare your
answer to that obtained using the Poisson approximation to this proba-
bility density function. Comment on the error involved in the approxi-
mation for each value of X. Further, determine the mean and variance of
X using both distributions.

4.16 At a given location extreme temperature has been observed in some Sep-
tember months. On average, there are about 7 years between each of
these warm events. If these warm events were to be randomly distrib-
uted in time, determine the following:

(a) the probability of having no warm September in 10 years
(b) the probability of having 2 events in 10 years
(c) the probability of more than 3 events in 10 years

4.17 During a 4-month hurricane season at a given coastal town, on average
severe hurricane events occur with 1 event/month. Last year, 11 hurri-
canes occurred and the news media blamed the climate change on the
greenhouse effect. From a statistical point of view, how unusual are the
seasons of this or higher severity? Would you agree or disagree with the
news media that this was an exceptionally severe season? Support your
arguments with the calculation of probability value involved.

4.18 A new filtration cartridge is being studied. It is thought that the car-
tridge will treat at least 70,000 gallons of water on 90% of the filtration
units in which it is used. Laboratory trials are conducted to simulate 100
filtration units using this type of cartridge. Assume X is a random vari-
able representing the number of filtration units whose cartridge must be
replaced before treating 70,000 gallons of water.

(a) What is the distribution of X? Determine the expected value of X.
(b) What distribution can be used to approximate probabilities for X?
(c) If out of 100 filtration units 21 or more need replacement, what is the

probability that you will conclude that the 90% figure is correct?

4.19 A survey of 70 systems found about 2,100 pressure-reduction incidents
caused by water main breaks in a one-year period. Water main breaks
not only cause substantial loss of water but also cause pressure reduc-
tions in the water distribution system that enable backflow of contami-
nants into the system. Assume that city Z has very similar characteristics
to those cities included in the survey. City Z wants to allocate some
emergency budget for maintenance of its water distribution system, par-
ticularly pressure-reduction incidents.
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(a) What is the probability that city Z will be having exactly one main
break in a given year?

(b) What is the probability that city Z will be having at least one main
break in a given year?

(c) What is the probability that city Z will be having no breaks in 10 years?
(d) What is the probability that city Z will be having between 3 to 7 main

breaks in 10 years?

4.20 A drinking water company produces 10,000 bottles per day. Each bottle
has a 0.001 chance of being affected by some contaminant. Assume that
the chance of a bottle being affected by contamination is independent of
the daily supply orders. 

(a) What is the most appropriate distribution for the number of bottles
affected by contamination?

(b) If your answer is the Poisson distribution, provide your justification
for selecting the Poisson distribution as an acceptable approximation. 

(c) What is the probability that 21 bottles turn out to be affected by
contamination?

4.21 What design return period should be used to ensure a 90% chance that
the design will not be exceeded in a 50-year period? What design return
period should be used to ensure an 85% chance of no more than 1
exceedance in 25 years?

4.22 Two widely separated watersheds are selected for a study on peak dis-
charges. If the occurrence of flood flows on the two basins can be consid-
ered as independent events, what is the probability of experiencing a
total of ten 25-year events on the two watersheds in a 50-year period?

4.23 A scientist has predicted that during a certain 5-year period a severe
drought will occur in the high plateau of Mexico. She made this predic-
tion based on her observation of sunspot activity. If the probability of a
drought is 0.18 in any year, what is the probability that the scientist’s
prediction will come true if the occurrence of a drought was a strictly
random phenomenon unrelated to sunspot activity?

4.24 On average how many times will a 5-year flood occur in a 50-year
period? What is the probability that exactly this number of 5-year floods
will occur in a 50-year period?

4.25 What is the probability that exactly 4 years will elapse between occur-
rences of a 5-year event?

4.26 A binomial random variable has a mean of 20 and a variance of 16. Find
the values of n and p that characterize the distribution of this random
variable.
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4.27 Assume that California is hit by approximately 500 earthquakes that
are large enough to be felt every year. However, those of destructive
magnitudes occur on average once every year. Find the probability that
California will experience at least two destructive earthquakes during
a 3-year period.

4.28 Assume that the probability of a rainy day is p = 0.25 in a specific water-
shed. What is the probability that the next year would have at least 125
rainy days?

4.29 Suppose that the arrivals of small aircraft at a certain airport follow a
Poisson process, with a rate of 5 per hour (then λ = 5t).

(a) What is the probability that exactly 3 small aircraft arrive during a
1-hour period?

(b) What is the probability that at least 3 small aircraft arrive during a
1-hour period?

(c) If a working day has 12 hours, what is the probability that at least 50
small aircraft arrive during a day? 
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Chapter 5

Limit and Other 
Distributions

In real-life civil and environmental engineering projects, situations arise that
warrant a proper characterization of the sample mean (e.g., several samples are
tested to determine the average concentration of a chemical discharged from a
point source, the average export coefficient for a nutrient from a given land use,
the event mean concentration, the average flow of a stream at a given site, the
average compressive strength of a cement concrete specimen, or the average
shear strength of a soil sample). There are so many procedures, both determinis-
tic and statistical, that are based on the sample mean. In the deterministic area,
engineering design and analysis utilize mean values of the input parameters.
Statistical methods include parameter estimation using the method of moments,
determination of bias, making statistical inferences, and calculation of confi-
dence intervals. Because of economic difficulties, lack of access to the site, lack of
time, or other reasons, it is not always possible to collect enough samples to suf-
ficiently characterize the population frequency distribution. In these situations,
we are not sure about the type of the distribution possessed by the sample mean
and we have many questions in our mind (e.g., Does the sample mean follow
some distribution, such as the uniform, triangular, normal, log-normal, or
gamma?). To help us answer these questions, we first introduce the highly cele-
brated central limit theorem, which is one of the most significant theorems in the
field of probability theory. Then we will discuss the most widely used continu-
ous probability distribution, known as the Gaussian or normal distribution. The
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normal distribution is based on sound theoretical principles, is capable of repre-
senting many population frequency distributions (both PDFs and PMFs), and
helps provide a convenient approximation to reality. Then, we will discuss nor-
mal approximations to several PMFs. In the end we will discuss other commonly
used PDFs along with their applications in the area of civil and environmental
engineering.

5.1 Normal Distribution: Model of Sums

The normal distribution is also known as Gaussian distribution after the famous
German mathematician Karl Gauss who widely used it. It is also called the law
of errors. The name “normal” became popular because it was believed that most
random phenomena could be described by this distribution. When the random
variation in a phenomenon arises from a number of additive variations, then it
can be described by the normal distribution.

For a random variable X, the normal distribution can be expressed as 

(5.1)

where fX(x) is the PDF of X, μX is the mean value of X, and σX is the standard
deviation of X. The normal distribution is denoted as N(μ, σ 2), which means
that X is normally distributed with a mean of μ and a variance of σ 2; these are
also known as scale and shape parameters of this two-parameter continuous dis-
tribution. It can be shown that f(x) is symmetrical about the mean and that it
decreases on either side of the mean without ever reaching zero. The distribution
has a characteristic bell shape. The range of a normally distributed variable is
from − ∞  to + ∞  but most engineering variables vary from 0 to some high pos-
itive value. Strictly speaking, such variables cannot be said to follow a normal
distribution. However, if μX of a random variable is more than 3 times σX, the
probability of the variable acquiring negative values is very small and hence the
normal distribution can be applied without incurring unacceptable error.

The effect of different values of the parameters on the shape of the distribu-
tion is shown in Fig. 5-1. If only μX of a random variable changes but σ X remains
the same, the distribution just gets shifted, but if μ X remains the same and σX
changes, the spread of the distribution changes.

Example 5.1 Consider the normal distribution with parameters μ and σ . Graph
the normal distribution for the following sets of parameters: (1) μ = 0, σ =1;
(2) μ = 1, σ = 1; (3) μ = 1, σ = 0.5; (4) μ = 1, σ = 1.5; and (5) μ = 1 and σ = 2.5.

Solution The shape of the distribution for the desired combinations of parame-
ters can be seen in Fig. 5-2.
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Figure 5-1 Shape of normal distribution for various values of parameters.

Figure 5-2 Shape of normal distribution for various values of parameters.
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The cumulative distribution function (CDF), F(x), can be expressed as

(5.2)

Equation 5.2 cannot be evaluated in closed form and must be evaluated by
expressing it in an infinite series and integrating term by term, or by expressing
it in the standardized form; the values of the cumulative distribution are
obtained from the standard normal distribution tables. 

The standardized variable U = (X − μx)/σ has mean 0 and standard
deviation 1 and is normally distributed, N(0,1). Thus, the PDF of U is 

(5.3a)

(5.3b)

The mean and variance of U can be easily shown to be 

(5.4)

and

(5.5)

Thus, the parameters of U are now fixed and the PDF and CDF are functions
of U only. For X =1, μX =1, and σX = 4/3, 

The cumulative distribution function can be expressed as

(5.6)

F x
x

dx XX
X

x
X

X
( ) exp ( ) ,= −

−⎡

⎣
⎢

⎤

⎦
⎥ − ∞ ≤ ≤ ∞

−∞
∫

1
2

1
2

2

σ π

μ

σ

f u e u uU ( ) / ,= - -• £ £ •1
2

22

p

f x f
x

xX
X

U
X

X
( ) ,=

−⎛
⎝⎜

⎞
⎠⎟

− ∞≤ ≤ ∞1
σ

μ

σ

E U E X
X

X
X

X X[ ] [ ( ) ] [ ]= − = − =1 1
0

σ
μ

σ
μ μ

var[ ] [ ( )]U Var x
X X

X= = =1 1
12 2

2

σ σ
σ

f x f fX
X

U U( )
/

( )
.

.= −⎛
⎝⎜

⎞
⎠⎟

= = ⋅
×

⎛
⎝⎜

⎞
⎠⎟

=1 1 1
4 3

3
4

0
3
4

1
2 3 1415

0 2660
σ

F x P X x P U
x

F
x

F u

X
X

X

U
X

X
U

( )

( )

exp

= £[ ] = £
-È

Î
Í

˘

˚
˙

=
-Ê

ËÁ
ˆ
¯̃

=

= -

m
s

m
s

p
1
2

1
22

2u du u
u

È
ÎÍ

˘
˚̇

- • £ £ •
-•
Ú ,



Limit and Other Distributions 191

The quantity u = (x − μx)/σx can be interpreted as the number of deviations
by which x differs from the mean. The values of are listed in tables in statisti-
cal books for By virtue of symmetry, for can be obtained
directly.

A numerical approximation of f(u) was given by Abramowitz and Stegun
(1965) as

f(u) = (2.5052367 + 1.2831204u2 + 0.2264718u4 + 
0.1306469u6 – 0.0202490u8 + 0.003932u10)–1 (5.7)

The error of this approximation is < 2.3 × 10–4. An approximate formula to
calculate F(u) is 

F(u) = 0.5 + {0.5 + 0.064 × [exp(–0.4 × u2)]}× {1. – exp[–(u2/2)]}0.5 (5.8)

However, an improved approximation for positive values of u can be
obtained by computing t as

t = 1.0/(1.0 + u × 0.2316419) 

and then 

b = 0.3989423 × exp(–u × u/2.0)

Next, compute a variable m as

m = ({(1.330274429 × t – 1.821255978) × t + 1.781477937 
× t – 0.356563782} × t + 0.31938153) × t

Finally, 

F(u) = 1.0 − m×b

Example 5.2 Determine the value of F(u) for u = 2.5 from Eq. 5.6 and Eq. 5.8 and
compare the results with tabulated values.

Solution Using Eq. 5.6, we get F(2.5) = 0.994029 whereas Eq. 5.8 gives F(2.5) =
0.99379. The value obtained from standard tables is also 0.99379. While writing
programs to compute F(u) using either Eq. 5.6 or Eq. 5.8, it is advisable to use dou-
ble precision.

The range of a normally distributed random variable is (–∞ to +∞ ) and
hence many hydrologic variables, such as rainfall, discharge, or storage in a res-
ervoir, cannot be strictly normal. But for the random variable whose mean is
quite high, the probability of acquiring a negative value is negligible and the
normal distribution can still be applied to such variables.

Example 5.3 A random variable X has a mean of 3,000 and a standard deviation
of 400. Compute the probability that this variable will have a value less then
4,000.

fU
u ≥ 0. f uU ( ) u ≤ 0
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Solution We evaluate

Note that .

Example 5.4 Compute the probability that the random variable X in the previ-
ous example will be less than 3,400.

Solution The probability is given by 

5.1.1 Properties of the Normal Distribution

Sometimes, 1 – FU(u) is given in tables for u ≥ 0 and sometimes 1 – 2FU(–u), u ≥ 0
is tabulated. The latter tables are useful when we want to determine the proba-
bility that a normal variate will fall within, say, r standard deviations of its mean:

One can easily compute higher moments of N(μ, σ ). Since N(μ, σ ) is symmet-
ric, this implies that all odd-ordered central moments (and the skewness coeffi-
cient) are zero. The even-ordered moments are functions of the mean and
standard deviations. Thus, one obtains

(5.9a)

Note that

(5.9b)
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Hence, the coefficient of kurtosis is 

(5.10)

If a distribution has γ < 3, it is considered flatter than the standard normal
distribution. Thus, one defines the coefficient of excess as γ – 3. Negative values
of this coefficient imply flatter and positive values more peaked distributions
than normal.

The sum of two independent normal random variables would also be dis-
tributed as normal. Thus, let 

(5.11)

Then,

Z = X + Y (5.12a)

(5.12b)

Thus,

(5.13)

Example 5.5 Assuming that the data of Example 4.18 follow a normal distribu-
tion, compute the probability that the peak flow will be less than 100,000 cfs, less
than 80,000 cfs, and less than 50,000 cfs in any year. What is the return period of
each of these flows? Compare these probabilities and return periods with those
computed in Example 4.18. Which probabilities and return periods are more
realistic? What is the probability that the peak flow will occur in any year
between one standard deviation on either side of the mean and between two
standard deviations on either side of the mean?

Solution If the sample data follow a normal distribution with mean mX and
standard deviation sX, then

where u = (x – mx)/sx = (x – 28,675.833)/21,117.138.
The return period can be calculated according to the following equation:

The results are given in Table E5-5.
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The probability that the peak flow will be between ± 1 and ± 2 standard devi-
ations will be

FX(μ – σ < x <μ + σ ) = FX(–1 < U < 1) = 2×0.3414 = 0.6828

FX(μ – 2σ < x <μ + 2σ ) = FX(–2 < U < 2) = 2×0.4772 = 0.9544

The CDF of the actual data and the normal distribution are plotted in Fig. 5-3.
To compare the distributions, we can define an index C by taking the sum of

squares of the differences between calculated and true values of P and then
dividing by (n – 1) as 

(5.14)

The values for gamma and normal distributions are Cgamma = 0.001369 and
Cnormal = 0.005775. Hence, the estimates of the gamma distribution appear to be
more realistic.

Table E5-5

Peak flow (cfs) u Probability Return period (years)

100,000 3.377 0.9996 2500

80,000 2.43 0.9920 125

50,000 1.009 0.8621 7.25

Figure 5-3 Fitting normal distribution to the data.
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5.1.2 Frequency Factors for the Normal Distribution

Some problems require estimation of that particular value of a random variable
that can occur with a known probability. A random variate X can be expressed
as the sum of its mean value plus the departure of the variate from the mean:

X = mX + ΔX (5.15)

The departure ΔX depends on the statistical characteristics of the distribu-
tion and can be assumed to be some multiple of its standard deviation s and a
factor K:

X = sK (5.16)

Equation 5.16 can now be written as

X/mX = 1 + (s/mX)K (5.17)

or

X/mX = 1 + Cv K (5.18)

Chow (1951) proposed Eq. 5.18 as the general equation for frequency analy-
sis and coined the term frequency factor for K. In addition to the statistical charac-
teristics, the frequency factor also depends upon the recurrence interval. For a
particular distribution, the relationship between K and recurrence interval (T)
can be presented through tables or graphs.

For a normal distribution

K = (X – mX)/ s (5.19)

the exceedance probability can be computed by

(5.20)

and the recurrence interval is

T = 1/P(X ≥ x) (5.21)

5.1.3 Approximation of the Binomial Distribution by the Normal 
Distribution

The binomial distribution has two parameters: n and p. For smaller values of n
and p this distribution is quite asymmetric, as shown in Fig. 5-4. For constant p,
if the sample size n is increased then the distribution becomes progressively
more symmetrical. It can be shown that in the limit as n → ∞  the shape of the
histogram depicting the PMF of X will approach the shape of the PDF of a nor-
mally distributed variable. The rapidity with which the binomial distribution
approaches the normal distribution depends on the magnitude of p; the
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approximation is quicker when p is closer to 0.5. The approximation is satisfac-
tory when the product, np or nq, is larger than 5. This criterion can be employed
to determine the usefulness of the normal distribution as a useful approximation
or when the actual evaluation of the binomial probabilities would entail an
excessive amount of work. 

Example 5.6 Consider a binomial random variable X with n = 20 and p = 0.4.
Evaluate the probability 5<X ≤ 7 using binomial as well as normal approxima-
tion of the binomial distribution. What will be the answer when n = 30?

Solution If X follows a binomial distribution, P(5 < X ≤ 7) can be computed by 

As n becomes large, the standard normal variate is computed as

Figure 5-4 Binomial distribution.
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By approximating with the normal distribution, the requisite probability is 

P(5.5 < X < 7.5) =

When n = 30,

Approximating with the normal distribution, one gets

P(5.5 < X < 7.5) = 

= P(–2.42 < Z < – 1.67) = 0.4922 – 0.4525 = 0.0397

Obviously, the approximation gets better as n increases.

5.1.4 Approximation of the Poisson Distribution by the Normal 
Distribution

The Poisson distribution can also be approximated by the normal distribution if
parameter m (which happens to be not only the mean but also the variance of the
distribution) is equal to or larger than 9. The normal approximation is particu-
larly useful if one considers functions of the random variable. Any linear func-
tion of one or more normally distributed variables is itself normally distributed.
Neither the binomial nor the Poisson distribution shares this general “regenera-
tive property.” For the Poisson distribution, one can state

if X1 ~ P(m1) and X2 ~ P(m2) then (X1+ X2) ~ P(m1+m2)

provided that X1 and X2 are independent. For the binomial distribution one can say

if X1 ~ B(n1, p) and X2 ~ B(n2, p) then (X1+X2) ~ B(n1+ n2, p)

provided that X1 and X2 are independent and that p is the same throughout. If
both variables are distributed as binomial or Poisson, then the difference
between them does not necessarily follow the same distribution. However, in
case of a difference between random variables that follow either a binomial or a
Poisson distribution, a normal approximation is often acceptable even if the
variables themselves deviate quite a bit from normality.
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Example 5.7 Referring to Example 4.18, one sees that the difference D may be
approximately normally distributed even if X70 and X50 are not. Thus, alternative
calculations can be made to do these calculations. 

Solution The means and the variances of X70 and X50 have already been
calculated:

E(X70) = 3.5, E(X50) = 2.5

therefore,

E(D) = 3.5 – 2.5 = 1.00

var(X70) = 3.33, var(X50) = 2.38

so

var(D) = 3.33 + 2.38 = 5.7

It is now assumed that D ~ N(1.0, 2.39). To compute the probability of D ≥ 4,
the correction for continuity that makes D ≥ 4 equivalent to D > 3.5 is noted. The
latter value corresponds to U > 1.05. This probability is 14.69%, quite close to the
accurate value obtained in Example 4.18. 

5.2 Central Limit Theorem 

Let us consider X1, X2,…, Xn to be a sequence of n independent identically dis-
tributed random variables each having mean μ and standard deviation σ . Then
the distribution of the sum, Sn = X1 + X2 + … + Xn, tends to a normal distribution
with mean nμ and standard deviation σ , if n tends to infinity. 

The mean and variance of random variable Sn can be derived as

Thus the standard deviation of Sn is .
Mathematically, the central limit theorem indicates that

(5.22a)
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Further, if there exists a constant A, such that |Xn| ≤ A for all n, then for a < b,

(5.22b)

Similarly, one can obtain that the average tends
toward a normal distribution function with mean μ and standard deviation
σ/ .

The central limit theorem helps approximate the sampling distribution of the
sum by an appropriate normal curve regardless of the form of the parent PDF
from which individual observations were derived. To explain it further, let us
consider measurements of discharge of a river being made at a gauging station.
The technician takes note of the computed discharge after rounding it off to the
nearest integer. These data are subsequently used in hydrologic analysis and
design. For example, monthly flow at the station is obtained by adding daily val-
ues. What is the rounding error in the sum of n measurements? The rounding
error in a single measurement display is a random variable, called X. It is
assumed that this variable is uniformly distributed. Suppose now that n round-
ing errors are summed. The sum is a random variable, denoted as Sn. Quite
likely, the values of X will be clustered around zero since positive and negative
values in the individual measurements tend to cancel each other out to some
extent. Values near the extremes will have a very low probability density
because outcomes near extremes would occur if all or most individual measure-
ments have large rounding errors of the same sign. To demonstrate this trend,
PDFs of S1, S2, S3, and S4 are drawn as shown in Fig. 5-5. It is evident that the
PDF of Sn rapidly approaches a characteristic bell shape.

Figure 5-5 Central limit theorem.
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It can be shown that when the number n becomes large, the PDF of Sn will
approach

(5.23)

where k and c are constants and must be determined for each value of n such
that the area under the curve is equal to one. (The correct mean of zero value is
already ensured by the symmetry of the function about the f(x) axis.)

The observation that the sum of a number of uniformly distributed random
variables approaches the normal distribution is a special case of a more general
law. The sum of triangularly distributed variables would also approach a nor-
mally distributed variable. The general law is called the central limit theorem.
Accordingly, under very general conditions the distribution of the sum of n ran-
dom variables approaches a normal distribution when n is large, regardless of
the shape of the distribution of the contributing variables. The theorem applies
even if the number of variables is only moderately large, as long as they are not
highly dependent and as long as each contribution to the sum is relatively small;
that is, there must not be one or two dominating contributing variables. The
approximation improves with an increasing number of variables and is better
near the center than near the tails of the distribution. If contributing variables
were symmetrical then one needs fewer variables to obtain a good approxima-
tion than if they were asymmetrical. If the random variables already have close
to normal distributions, then the approximation will be very rapid. In a similar
vein, the sum of two or more normally distributed variables is also normally
distributed.

In natural phenomena it is not uncommon to frequently observe near-
normal distributions. This may be partly because variations in observed data can
often be regarded as the sum of variations in additive contributing factors. For
example, the total annual flows of a river result from the runoff caused by many
rainstorms over its drainage basin. One would expect that the annual flow may
be approximately normally distributed. This is indeed the case. Even when there
is little reason to regard the random variables as the sum of many contributing
random variables, the distribution may still be approximately normal. However,
the agreement between the normal distribution and the probabilities encoun-
tered in empirical observations cannot be expected to be perfect but the discrep-
ancies in probability are small.

The central limit theorem holds for most physically meaningful random vari-
ables: (1) independent and identically distributed variables, (2) independent but
not identically distributed variables, and (3) not independent but weakly depen-
dent variables. It is applicable without the knowledge of (1) the marginal distri-
butions of the contributing random variables, (2) their number, or (3) their joint
distribution. Examples 5.6 and 5.7 explain how the central limit theorem works. 

f s k eS
c s
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Example 5.8 Choose n random numbers from a uniform PDF in the interval [0, 1]
and obtain the distribution of the sum Sn. Plot and compare the resulting PDFs.

Solution The PDF of the uniform distribution is 

 for 0 ≤ X ≤ 1

with

Based on the central limit theorem, the sampling distribution of the sum
Sn = X1 + X2 + … + Xn tends to a normal distribution with mean nμ = n/2 and
standard deviation = . Table E5-8 compares the statistics (mean and
standard deviation) of the actual Sn obtained by adding the n uniformly distrib-
uted numbers with the statistics obtained by applying the central limit theorem.
It can be noticed that the statistics of Sn matches very closely.

It is noted from Fig. 5-6a that the probability density function of Sn tends to
have a bell shape but is centered at n/ 2. To compare the shapes of these probabil-
ity density functions for various values of n, we standardize Sn. The standard-
ized parameter is defined as . Figure 5-6b depicts the
distribution of for various values of n.

Example 5.9 Choose n random numbers from an exponential PDF in the inter-
val [0, + ∞ ] with the parameter λ = 1 and obtain the distribution of the sum Sn.
Plot and compare the resulting PDFs. 

Table E5-8 (Top) Statistics of Sn based on the chosen numbers from the uniform 
distribution. (Bottom) Statistics of Snbased on the central limit theorem.

N 2 4 8 16 32

Mean 1.0 2.0 4.0 8.0 16.0

St. dev. 0.41 0.58 0.81 1.16 1.63

CV 0.41 0.29 0.20 0.14 0.10

Min 0.00 0.26 1.14 2.94 10.02

Max 1.98 3.85 6.92 12.66 21.92

Mean = n/2 1 2 4 8 16

St. dev. = 0.41 0.58 0.82 1.15 1.63
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μ = [ ] = =∫E X xf x dxX ( ) /1 2
0

1

σ2 2

0

1

1 12= [ ] = =∫var X x f x dxX ( ) /

σ n n /12

S S n nn n
* ( )= − μ σ
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*

n/12
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Solution The PDF of the exponential distribution is

, λ > 0

The mean of the exponential distribution is μ =1/λ = 1, and the variance is
σ 2 = 1/λ2 = 1. Therefore, the mean and standard deviation of the sum Sn of n ran-
dom numbers from this distribution are n and , respectively. In Table E5-9,
statistics of the actual Sn are compared with the statistics obtained by applying
the central limit theorem. Note that the actual mean and standard deviations
match very closely with the corresponding mean and standard deviation values
obtained by applying the central limit theorem. 

Figure 5-6a Histograms of Sn for various values of n.
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Figure 5-7a compares the histograms of Sn for various values of n. To compare
the shapes of these probablility density functions for various values of n, we stan-
dardize Sn. The standardized parameter is defined as .
Figure 5-7b depicts the distribution of for various values of n.

Figure 5-6b Comparison of probability density functions of Sn
* for various values of n.

Table E5-8

Statistics of Sn based on the chosen numbers from the exponential distribution

n 2 4 8 16 32
Mean 2.02 4.01 8.01 16.02 32.04

St. dev. 1.41 1.99 2.79 4.01 5.65
CV 70.0 49.7 34.9 25.0 17.6
Min 0.0 0.3 1.4 5.5 14.4
Max 10.5 14.1 22.1 33.3 55.4

Statistics of Sn based on the central limit theorem

Mean = n 2 4 8 16 32

St. dev. = 1.41 2.00 2.83 4.00 5.66n

S S n nn n
* ( )= − μ σ

Sn
*
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5.3 Log-Normal Distribution: Product of Variables
Many probability distributions encountered in engineering practice are skewed.
The distribution of annual flood peaks is an example. In his study of flood peaks
Hazen (1914) found that the frequency curves of such peaks generally showed a
marked upward curvature. This corresponds to a positive skewness, as is shown
in the PDF in Fig. 5-8.

Figure 5-7a Probability density function plots of Sn.

Figure 5-7b Comparison of density functions of Sn
*  for various values of n.
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Hazen also found that the frequency curve could be straightened out in most
cases if a logarithmic scale, instead of a linear scale, was used along the horizon-
tal axis. Using a logarithmic scale means, of course, plotting the logarithms of
the data instead of the data themselves. If this results in a straight line on a prob-
ability graph then the logarithms of X are normally distributed. A wide range of
variables, such as daily stream flows, annual flood peaks, earthquake magni-
tudes, particle size in a soil sample, hydraulic conductivity of geologic forma-
tions, and strength of some materials, follow the log-normal distribution.
Another reason for the popularity of this distribution is that it avoids negative
values of variables.

Now consider the distribution of a phenomenon that occurs as a result of a
multiplicative action (mechanism) of a number of factors. An example is the
evaporation of water into the atmosphere. Evaporation depends on temperature,
radiation, relative humidity, wind velocity, sunshine hours, etc. For evaporation,
a product type relationship holds. In such cases, the variable of interest can be
expressed as a product of a large number of variables, each of which, in itself, is
difficult to study and describe. By taking the natural logarithm of the product,
we obtain the sum of logarithms. By the central limit theorem, the sum will be
normally distributed. Another example is the sediment particle size that results
from a number of collisions of particles of many sizes traveling at different
velocities. Each collision reduces the particle size by a random proportion of its
size at the time. Thus, the size of a randomly chosen particle after n collisions,
Xn, is the product of its size prior to the collision, Xn–1, and the random reduction
factor, wi. One can then write 

Figure 5-8 Probability density plot of annual peak flow of a river.
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Similarly, discharge on any day k, Qk, on the recession hydrograph can be
expressed as 

where Ki is the recession factor on the ith day and Q0 is the peak discharge or the
discharge at the beginning of recession. In a similar manner autoregressive
processes used in hydrology can be expressed in product form. A random vari-
able X is said to be log-normally distributed if its logarithm, Y = ln(X), can be
characterized by a normal distribution with parameters μY and σ Y. Thus, by
using Eq. 5.1 the distribution of Y can be written as

(5.24)

where μY = μ ln(y) and σ Y = σ ln(y). Parameters μY and σ Y can be estimated by the
transformed sample data by using a logarithmic transformation such that yi =
ln (xi). The sample mean and standard deviation are used as the estimates of
μY and σ Y. Thus,

and

One can determine the distribution of X by the technique of variable trans-
formation explained in Chapter 2: One takes

Differentiating Y = ln (X) with respect to X, one gets 

Substituting this relationship and Eq. 5.24 into the preceding relation gives
the PDF of X as

(5.25)

Q Q Kk i
i

k
=

=
∏0

1

f y
y

YY
Y

Y

Y
( ) exp ,= −

−⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− ∞ ≤ ≤ ∞1
2

1
2

2

σ π

μ

σ

μY
iy

y

n
≈ = ∑

σY Y
is

y y

n
≈ =

−( )
−

2

1

f x f y
dy
dxX Y( ) ( )=

dY
dX X

= 1

f x
x

x
xX

Y

Y

Y
( ) exp

ln
,= −

−⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≥1
2

1
2

0
2

σ π

μ

σ



Limit and Other Distributions 207

Equation 5.25 represents the log-normal distribution. Note that the range of
Y is –∞  to +∞ whereas that of X is 0 to ∞ .

It is worth mentioning that the mean of X, μX, should not be interpreted as a
50% probable value. Instead the median value is the 50% probable value of a log-
normally distributed variable X on either side of which half of the distribution
lies. Let be the median value and the geometric mean of X. Thus, we can
write . Further, based on the definition of the normal distribu-
tion, this relationship can be rewritten as

Thus, 

Therefore, one can write

(5.26)

Equation 5.25 can be rewritten in terms of the median value of X:

(5.27)

denoted as with as parameters.
One can use normal tables as follows. If U is a standardized N(0,1) variable,

then

In other words,

(5.28a)

where

(5.28b)

Tables of the function fU(u) are widely available in statistical textbooks or in
mathematical handbooks.
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The CDF of X is easily calculated from the tables of the normal distribution:

where Y is N (μY, σ Y
2 ) or N(ln . Hence, 

(5.29)

where u is defined as before.

Example 5.10 Consider the log-normal distribution with parameters mean and
standard deviation of Y. Graph the log-normal distribution for different values
of the parameters. Take the values of standard deviation as 0.1, 0.25, 0.5, 0.75, 1.0,
1.5, 2.5, and 5.0.

Solution The log-normal distribution for two cases is plotted in Fig. 5-9. The
mean and variance of Y can be estimated without transforming the data using
the following relations:

(5.30)

(5.31)

where CVX is the coefficient of variation of X. The mean, variance, and the coeffi-
cient of variation of the log-normal distribution are 

(5.32)

(5.33)

(5.34)

The coefficient of skewness is

(5.35)
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Figure 5-9 Log-normal distribution for various combinations of parameters.
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Example 5.11 Assume that the peak flow data of Example 4.18 follow a two-
parameter log-normal distribution. Compute the parameters of the log-normal
distribution. Compute the probability that the peak flow will be less than
100,000 cfs, less than 80,000 cfs, and less than 50,000 cfs in any year. Compare
these probabilities and return periods with those computed in Example 4.18.
Which probabilities and return periods are more realistic? What is the probabil-
ity that peak flow will occur in any year between one standard deviation on
either side of the mean and between two standard deviations on either side of
the mean?

Solution The mean and standard deviations of the data are 28,675.833 cfs and
21,117.138 cfs, respectively. Hence,

CVx = sx /mx = 21,117.138/28,675.833 = 0.736 

and

sln(x) =

From Eq. 5.32, one obtains

Now,

The return periods are

R(x < 100,000) = 1/(1 – 0.9868) = 75.75 years

R(x < 80,000) = 1/(1 – 0.9706) = 34.01 years

R(x < 50,000) = 1/(1 – 0.879) = 8.26 years

The log-normal distribution is plotted in Fig. 5-10.
The performance index C in Eq. 5.14 was computed for gamma and log-

normal distributions and the values were 0.001369 and 0.003222, respectively.
Hence, the gamma distribution appears to better represent the data.
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5.3.1 Frequency Factor for the Log-Normal Distribution

Here X is normally distributed while Y (= expX) is log-normally distributed.
Chow (1951) presented the frequency factor as

(5.36)

where KX = (X – mX)/sX. For a given value of X, KX and thereby K can be calcu-
lated. The coefficient of variation and the coefficient of skewness are computed as

Cv = [exp(σ x
2 ) –1]0.5 (5.37)

Cs = 3Cv + Cv
3 (5.38)

Using the computed value of Cs and exceedance probability allows K to be
read from tables of frequency factors for the log-normal distribution. 

5.4 Distribution of Extremes

Frequently in the design and management of environmental systems, our con-
cern resides with the largest or the smallest value of a number of random vari-
ables. For example, the largest flood is critical to the design of dams, spillways,
highway bridge openings, drainage systems, and levees; the maximum load is
critical to the safety of a bridge, etc. Sometimes the adequacy of a system is
judged by the smallest features: The capacity of a canal reach depends on the
section with the smallest conveyance, the capacity of a highway depends on the

Figure 5-10 Theoretical log-normal distribution and the curve of example data.

K
s K s

s

x x x

x

=
− −

−

exp( / )

exp( )

2

2

2 1

1



212 Risk and Reliability Analysis

narrowest section, etc. If Y is the maximum of n random variables X1, X2, …, Xn,
then the probability 

FY(y) = P[Y ≤ y] = P[All n random variables Xi ≤ y]

If random variables Xis are independent,

(5.39)

If all the Xis are identically distributed with CDF , then

(5.40)

Assuming Xi to be continuous random variables with PDF fX(x), one obtains

(5.41)

Equations 5.40 and 5.41 can be used to determine the distribution of Y if the
Xis are mutually independent and identically distributed. Three limiting forms
of fY(y) for large values of n are found depending on (1) the interest in the largest
or smallest value and (2) the behavior of the appropriate table of Xi.

5.4.1 Extreme Value Type 1 Distribution: Distribution of the Largest 
Value

In many applications, our interest lies in knowing the limiting distribution of the
largest of n values of Xi as n becomes large. Suppose that all the variables have
the lower positive bound (Xi ≥ 0) and in the upper tail the common CDF is of the
exponential type: 

(5.42)

where g(x) is an increasing function of x. If a linearly increasing function is cho-
sen, g(x) = λx, then

(5.43)

Equation 5.43 represents the negative exponential distribution. The normal
and gamma distributions are also of this type. 

Now consider Y as the largest of the independent random variables whose
upper tail follows a general exponential-type distribution. Then, the distribution
of Y can be derived as follows:

(5.44)
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and

(5.45)

where α and u are parameters. This is the extreme value type I (EVI) distribution,
also known as the Gumbel distribution. It is represented as EVI,L(u,α ). Parameter
u is the mode of the distribution and parameter α is a measure of dispersion.

The moments of the distribution are

(5.46)

(5.47)

(5.48)

(5.49)

In analogy with the standardized variate for the normal distribution, a
reduced variate is defined as

R = α (Y – u) (5.50)

In terms of the reduced variate,

(5.51)

(5.52)

(5.53)

The frequency factor of the EVI distribution is given by

(5.54a)

Referring to Eq. 5.18, when x = mX (the average of x), one sees that K = 0. This
condition from Eq. 5.55 gives T = 2.33 years. This value (2.33 years) is considered
to be the recurrence interval of the mean annual flood. 

Gumbel (1958) showed that asymptotically for large x the following holds: 

(5.54b)

This yields the tail behavior of EVI.
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Example 5.12 Plot the extreme value type I distribution, with parameters u and
α, for both the largest and the smallest values.

Solution The EVI distribution for the largest values: 

When u = 0,

The distribution for various values of α is plotted in Fig. 5-11.
For the smallest values, the EVI distribution is

When u = 0,

The shape is plotted in Fig. 5-12.

Example 5.13 Assume that the peak flow data of Example 4.18 follows a two-
parameter extreme value type I distribution. Compute the parameters of the dis-
tribution and the probability that the peak flow in any year will be less than
100,000 cfs, less than 80,000 cfs, and less than 50,000 cfs. Compare these probabil-
ities and return periods with those computed in Example 4.18. Which probabili-
ties and return periods are more realistic? What is the probability that peak flow
will occur in any year between one standard deviation on either side of the mean
and between two standard deviations on either side of the mean?

Solution For the EVI distribution,

and

Hence, the nonexceedance probabilities are

P(X < x) = exp(–e–α (x–u)) = exp[–e–0.0000607(x – 19171.5)]

The probabilities and return periods are shown in Table E5-13.  
The probability that the peak flow will be within one or within two standard

deviations is

Px(μ – σ < u < μ + σ) = Px(x < 49,792.97) – Px(x < 7,558.695) = 0.853 – 0.132 = 0.721

Px(μ – 2σ < u < μ + 2σ) = Px(x < 70,910.11) – Px(x < –13,558.4) = 0.958 – 0.041 = 0.917
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Figure 5-11 Extreme Value Type I distribution (largest value).

Figure 5-12 Extreme Value Type I distribution (smallest value).

Table E5-13

Peak flow (cfs) Probability Return period (years)

100,000 0.993 142.8

80,000 0.975 40

50,000 0.857 7
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Figure 5-13 shows the distribution. The performance index for EVI turns out
to be 0.0022. Here too, the gamma distribution (Cgamma = 0.001369) appears to
better represent the data.

Example 5.14 For the peak annual flow in a small stream it is found that
mY = 200 m3/s and σY = 100 m3/s. Compute the PDF of the extreme value type I
distribution for the given data.

Solution We first determine parameters and u:

Thus,

One can compute the probability that the peak flow in a particular year will
exceed a given value, say, 400 m3/s as

Tables of FR(r) and fR(r) and R are available. Then, the values of Y and fY(y) are
easily computed. Note that

R = α (Y – u)

Hence,

Figure 5-13 Observed data and exponential distribution.
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5.4.2 Extreme Value Type I: Distribution of the Smallest Value 

Sometimes our interest lies in knowing the distribution of the smallest of many
independent variables with a common unlimited distribution having an expo-
nential-like lower tail. In a manner similar to that for the largest of independent
variables discussed in the preceding section, the distribution of the smallest of
independent variables can be found. To that end, let be the lowest of ran-
dom variables. Then, the asymptotic distribution of Z when n is large is 

(5.55)

(5.56)

where

(5.57)

(5.58)

(5.59)

In view of the asymmetry of the distribution for the largest and the smallest
values, the tables of the EVI distribution for the largest values can also be used
for the smallest values. In terms of the reduced variate R,

(5.60)

(5.61)

Example 5.15 Consider the same mean and variance values as used in Example
5.13. For minimum annual flow in a large stream, EVI might be an appropriate
model.

Solution The mean and the standard deviation are

mz = 200 m3/s

σz = 100 m3/s

The parameters are

Z n

F z e zZ
z u( ) exp ,( )= − −( ) − ∞ ≤ ≤ ∞− −1 α

f z z u eZ
z u( ) exp ( ) ( )= − −⎡⎣ ⎤⎦

− −α α α

m u uZ = − = −γ

α α

0 5772.

σ
π

α αZ = =
6

1 282.

γ1 1 1396= − .

F z P Z z P R z u F z uZ R( ) ( ) ( )= ≤[ ]= ≥ − −[ ]= − − −[ ]α α1

f z f z u zZ R( ) ( ( ) ),= − − − ∞ ≤ ≤ ∞α α

α
σ

= = =
1 282 1 282

100
0 01282

. .
.

Z

u mZ= + = + =0 5772
200

0 5772
0 01282

1245 02
. .

.
.

α
 m /s3



218 Risk and Reliability Analysis

The PDF of Z can be constructed from a table of PDF of R by noting that 

Example 5.16 The distribution of the largest drought in Example 4.18 can be
given by the extreme value type I distribution. Compute the probability of the
largest drought being 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 days. From these
probabilities, compute the return period of 10-, 20-, 30-, 40-, 50-, 60-, 70-, and 80-
day droughts. 

Solution For the EVI distribution,

and

The probabilities of the largest drought being 5, 10, 15, 20, 25, 30, 35, 40, 45,
and 50 days are tabulated as follows and shown in Fig. 5-14:

To compute the return period of droughts, the probability of the largest
drought being 10, 20, 30, 40, 50, 60, 70, and 80 days is to be computed first
according the EVI distribution. The parameters of EVI are

Y 5 10 15 20 25 30 35 40 45 50

Fy(y) 0.411 0.657 0.820 0.911 0.957 0.979 0.990 0.995 0.998 0.999

Figure 5-14 Probabilities of duration of the largest drought.
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and

We first compute 

The average return period is computed by

The results are listed in Table E5-16. The return periods are plotted in Fig. 5-15. 

Table E5-16

y Fy(y) Return period (days)

10 0.657198 2.92

20 0.910589 11.18

30 0.979318 48.35

40 0.995348 214.94

50 0.99896 961.57

60 0.999768 4,307.73

70 0.999948 19,304.16

80 0.999988 86,513.50

Figure 5-15 Return periods of droughts of various durations.
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5.4.3 Extreme Value Type II Distribution

The extreme value type II (EVII) distribution arises as the limiting distribution of
the largest value of many independent, identically distributed random variables.
Each of the variables has a distribution limited on the left at zero but unlimited
to the right in the tail of interest. The tail is such that the CDF of Xi has the form

(5.62)

Let the largest of many Xi be denoted by Y. The asymptotic distribution of Y
is of the form

(5.63)

(5.64)

The distribution is designated as EXII,L(u,k). 
For j ≥ k the moments of order j of Y do not exist; they do for j < k and are

(5.65)

(5.66)

(5.67)

If the coefficient of variation is represented by VY, then

VY
2 = σ Y

2 /mY
2

or

(5.68)

The relation between this distribution and type I is the same as that between
log-normal and normal distributions. If Y has a type II distribution with parame-
ters u and k, then Z = ln Y has the type I distribution with parameters u0 = ln u
and α = k. It follows that

(5.69)

(5.70)
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where Y is EXII,L(u,k) and Z is EXI,L(ln u,k). In terms of tabulated values of the
reduced variable R of EVI, one has

(5.71)

(5.72)

The EVII distribution has also been used to model the annual maximum
wind velocity.

Example 5.17 For the extreme value type II distribution, plot the coefficient of
variation versus k. Graph the distribution for various values of the parameters.

Solution The graph of CV versus k for the extreme value type II distribution,
based on Eq. 5.68, is shown in Fig. 5-16. The shape of the distribution for various
combinations of parameters is given in Fig. 5-17.

Example 5.18 From the measured wind data at an airport location, the mean
and standard deviation of the maximum annual wind velocity were
mY = 60 km/hour and σY = 12.6 km/hour, respectively. Find the wind velocity
that will be exceeded with a probability of 0.05 in any year.

Solution To determine parameters u and k, first calculate

CV = σY / mY = 12.6/60 = 0.21

Figure 5-16 Coefficient of variation versus k for EVII distribution.
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Figure 5-17 Extreme value type II distribution for various values of parameters.
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From the graph of the CV function, for CV = 0.21, k = 6.4. Then 

The velocity y, which will be exceeded with probability 0.05 = 1/20 in any
year, is found as

P[Y ≥ y] = 1 – P[Y ≤ y] = 1 – FY(y)

Solving for y, one gets y = 84.76 km/hour.

Example 5.19 The data for the maximum annual wind velocity in the Baton
Rouge area are given in Table E5-19. Compute the mean and standard deviation
of the maximum annual wind velocity. Assume that the peak wind velocity fol-
lows an extreme value type II distribution. Compute the 20-, 30-, 50-, 80-, and
100-year wind velocity.

Solution Table E5-19 gives the maximum annual wind velocity and direction
from 1980 to 2000. The coefficient of variation is

From the CV function, k = 8.5. Then,
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For a 20-year wind, FY(Yy) = 1 – 0.05 = exp[–(43.74/y)8.5], or y = 62.03 mph.
Similarly, for a 30-year wind, y = 65.96 mph, for a 50-year wind, y = 69.22 mph,
for an 80-year wind, y = 73.19 mph, and for a 100-year wind, y = 75.15 mph.

5.4.4 Extreme Value Type III Distribution

This distribution arises when the underlying distributions are limited in the tail
of interest. For the largest values of interest Xi falls off to some maximum value,
w, such that the CDF holds near w:

(5.73)

Table E5-19

Year Month Day Speed (mph) Wind direction 
(degrees)

1980 7 18 41 30

1981 3 22 29 210

1982 5 22 35 110

1983 1 31 35 270

1984 2 12 44 270

1985 4 5 51 330

1986 8 10 41 180

1987 12 14 48 270

1988 7 4 54 180

1989 5 16 51 220

1990 5 31 48 360

1991 4 25 46 270

1992 8 26 70 130

1993 7 3 60 110

1994 3 27 43 180

1995 12 18 52 300

1996 3 18 49 290

1997 7 10 47 280

1998 2 10 51 170

1999 5 10 52 250

2000 8 30 48 130

Mean 47.38 216.19

Standard deviation 8.83 83.99

F x c w x x w kX
k( ) ( ) , ,= − − ≤ >1 0
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The distribution of Y, the largest of Xi, is 

(5.74)

(5.75)

where u and k are parameters of the distribution, k is the scale parameter and w
is the location parameter, and u is the lower limit of x. When k = 2, this results in
a triangular distribution. Most useful applications of this distribution deal with
the smallest values. Hence, the left-hand tail of the PDF of Xi satisfies X ≥ ε such
that near X = ε, the CDF has the form

where ε is the lower limit of x. For ε = 0, the gamma distribution acquires this
form. For independent and identically distributed Xi, the distribution of Z is

(5.76)

(5.77)

The moments of the distribution are

(5.78)

(5.79)

(5.80)

This distribution gives rise to the Weibull distribution, commonly employed in
studies on reliability of the lifetimes of components, rainfall analysis, and so on.

If ε = 0,

(5.81)
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with

(5.82)

(5.83)

If the coefficient of variation is represented by CVZ, one has

CVZ
2 = σ Z

2 /mZ
2

(5.84)

A logarithmic transformation permits the use of EVI tables. If Z is EVIII dis-
tributed with parameters ε, u, k [denoted as EXIII,s(ε, u, k)], then X = ln(Z − ε) is EVI
distributed with parameters u0 = ln(u − ε) and α = k; that is, x is EXl,s[ln(u − ε), k].
Thus,

(5.85)

where W is the EVI,L(0,1) variable whose values are tabulated. Consequently,

(5.86)

When ε = 0, the extreme value type III distribution is the gamma distribu-
tion. The probability density function of the gamma distribution is 

The standard gamma distribution is

When α = 1, we get the exponential distribution with λ = 1/β. The distribu-
tion is plotted in Fig. 5-18.
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Example 5.20 Assume that the minimum annual low flows follow an extreme
value type III distribution. For the Amite River at Darlington, Louisiana, com-
pute the mean and standard deviation of the low flow data. Also, compute the
distribution parameters. 

Solution From the data of annual minimum low flow one obtains

mean = 106.3235 cfs

standard deviation = 28.03755 cfs

From the CV function or Eq. 5.84, k = 4.278. Now, Eq. 5.82 gives

The distribution of this annual low flow data is plotted in Fig. 5-19.  

Figure 5-18 EV III distribution.
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5.4.5 Generalized Extreme Value Distribution

The generalized extreme value (GEV) distribution was introduced by Jenkinson
(1955, 1969) and recommended by the Natural Environment Research Council
(1975) of Great Britain. The GEV distribution is a three-parameter distribution
and is the most widely used distribution in the United Kingdom for analyzing
frequencies of flood peaks and has also become popular elsewhere. For a ran-
dom variable X, the PDF of the GEV is expressed as 

(5.87)

where a > 0 and c are, respectively, the scale and location parameters, and b is a
shape parameter. The range of X depends on the value of b; it is bounded by
c + (a/b) from above for b > 0 [i.e., –∞ < x < c + (a/b)] and is bounded from below
for b < 0 [i.e., c+(a/b) < x < ∞]. Depending on the value of b, different extreme
value distributions are represented by Eq. 5.87. For example, the GEV distribu-
tion corresponds to the Gumbel distribution (or extreme value type I) for b = 0,
the extreme value type II distribution for b < 0, and the extreme value type III
distribution for b > 0. Equation 5.87 gives rise to a reverse Raleigh distribution
for b = 2 and to a reverse exponential distribution for b = 1. It can also be shown
that the Weibull distribution is a reverse GEV distribution.

The CDF of the GEV distribution can be expressed as

(5.88)

Figure 5-19 Frequency distribution of annual low flow data of Amite River, Darlington.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 20 40 60 80 100 120 140 160 180 200

Annual low flows (cfs)

Pr
ob

ab
ilit

y 
de

ns
ity

f x
a

b
a

x c
b
a

x cX

b
a

b

( ) ( ) exp ( )
/

= − −⎛
⎝⎜

⎞
⎠⎟ − − −⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
1

1 1

1
1

F x
b
a

x cX
b( ) exp ( )= − − −⎛

⎝⎜
⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1

1



Limit and Other Distributions 229

Sometimes Eq. 5.87 is also expressed as

(5.89)

where

(5.90)

(5.91)

The three parameters, a, b, and c, of the GEV distribution can be estimated by
using the method of moments. For b < 0 (extreme value type II distribution) the
first three moments, by using the transformation 

(5.92)

are found to be

(5.93)

(5.94)

(5.95)

where M1
0 , M2, and M3 are, respectively, the first moment about the origin and

the second and third moments about the centroid. The value of b is computed
numerically from the relationship to the coefficient of skewness Cs , defined as

(5.96)

Example 5.21 Assume that annual peak flows follow the GEV distribution for
the Amite River at Darlington, Louisiana. Compute the mean and standard devi-
ation of the peak flow data. Also, compute the distribution parameters. 

Solution For the peak flow data at Darlington, Louisiana, one has mean =
20,371 cfs, standard deviation = 20,643 cfs, Cv = 0.7542, Cs = 1.37.

Thus parameter b can be obtained by solving the following equation (Rao
and Hamed 2000):
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Now we have that

Then from Eq. 5.94 and Eq. 5.95 we have a = 16,462, c = 20,370.
The distribution of this annual peak flow data is plotted in Fig. 5-20.

5.5 Other Distributions

In this section, we discuss some other distributions that are useful in water and
environmental engineering and risk analysis.

5.5.1 Uniform Distribution

If a random variable X is equally likely to assume any value in the interval 0 and
1, its probability density function is constant over the interval:

fX(x) = 1,0 ≤ x ≤ 1 (5.97)

Equation 5.98 defines the uniform distribution, which is also known as the
rectangular distribution. Its cumulative distribution function is triangular in
shape:

(5.98)

The mean and variance of the rectangular distribution are

(5.99)

(5.100)

This rectangular distribution can be generalized to any arbitrary range a to b.
Then, the PDF becomes

(5.101)
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The mean and variance become

(5.102)

(5.103)

The uniform distribution is shown in Fig. 5-21. 

5.5.2 Beta Distribution

For a random variable X, 0 ≤ X ≤ 1, the beta distribution takes the form

(5.104)

where B is the normalizing constant defined as 

(5.105)

if r and t – r are integer valued, or 

, (5.106)

Figure 5-20 The GEV distribution of annual peak flow. 
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if r and t – r can take on noninteger values. The mean and variance of the beta
distribution are

(5.107)

(5.108)

The skewness coefficient γ is

(5.109)

The beta distribution can assume a wide variety of shapes for different val-
ues of its parameters r and t. It reduces to the uniform distribution for r = 1, t = 2
and to the triangular distribution for t = 3, r = 1 or 2. It is symmetrical about
x = 0.5 if r = t/2. It is skewed to the right if r < t/2 and to the left if r > t/2. It is U–
shaped if r < 1 and t ≤ 2r. It is J-shaped if r < 1 and t > r + 1 or if r > 1 and t < r + 1.
It is unimodal and bell shaped (generally skewed) if r > 1 and t > r + 1 with the
mode at x = (r – 1)/(t – 2). The distribution is plotted in Fig. 5-22 for several com-
binations of parameters.

For integer values of t and r, the tables of the binomial distribution can be
used to evaluate fX(x) and FX(x). The binomial distribution for Y as a function of
n and p can be written as 

(5.110)

Recall that the beta distribution is

(5.111)

Figure 5-21 Generalized uniform or rectangular distribution.
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Comparing the two distributions, we get

(5.112)

if PY(y) is evaluated at n = t – 2 and y = r – 1 for various values of p = x.
For a ≤ x ≤ b, the beta distribution can be generalized to

(5.113)

when

(5.114)

(5.115)

There is a simple relation among Y, BT(a, b, r, t), and X, which is a BT(0, 1, r, t)
variable. In particular,

Y = a + (b – a)X (5.116)

Thus,

(5.117)

(5.118)

Figure 5-22 Shape of beta distribution for selected combination of parameters.
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Example 5.22 To investigate dispersion of pollutants, the prevailing wind direc-
tion and the random variations in the direction are critical. The wind direction Y
at a major oil refinery near Baton Rouge, Louisiana, measured from north has
mean and standard deviation of about mY = 200° and σY = 100°, respectively.
Understandably, the range of wind direction is limited between 0° and 360°.
Thus, assuming that a beta distribution is appropriate,

Solution Solving for r and t, one gets

r = 1.22, t = 2.2

Thus, Y is BT(0, 360, 1.25, 2.2), and its PDF is 

where X is a beta-distributed variable, BT(1.22, 2.2)

Example 5.23 The data on wind direction at the Baton Rouge airport measured
in degrees from north are given in Example 5.19. Compute the mean and stan-
dard deviation of the wind direction in degrees. Assume the beta distribution is
appropriate for modeling the wind direction and compute the distribution
parameters. Compute the probability of the wind direction (measured from
north) exceeding 45°, 60°, 90°, 120°, 145°, 180°, 200°, 245°, 290°, 320°, and 345°.
Compute the recurrence intervals of these wind directions.

Solution From the data, and . The direction is limited
between 0° and 360°. Thus, for a beta distribution,

a = 0, b = 360°

Solving for r and t, one gets

r = 2.05, t = 3.41
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To compute the probability of the wind direction exceeding the given
degrees, one calculates

For the probability of exceedance of the given degree,

The results are shown in Table E5-23.

Table E5-23

y (degrees) FY
' (y) Recurrence (years)

45 0.984 1.02

60 0.967 1.03

90 0.918 1.09

120 0.850 1.18

145 0.782 1.28

180 0.669 1.49

200 0.597 1.68

245 0.419 2.39

290 0.233 4.29

320 0.115 8.70

345 0.032 31.25
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5.5.3 Three-Parameter Pearson Distribution

The probability density function of a three-parameter Pearson distribution for
variable X is given by

(5.119)

where α (scale), β (shape), and γ (location) are parameters. Parameter α can be
positive or negative; for negative values of α , the distribution has an upper
bound and thus it is not useful for analysis of maximum extreme events, such as
flood flows. The rth moment of Eq. 5.120 about the point γ can be written as

(5.120)

The parameter of the distribution can be obtained by using the method of
moments as follows:

(5.121)

(5.122)

(5.123)

If log x follows a Pearson type III distribution then x follows a log-Pearson
type 3 distribution whose density function is given by

(5.124)

If γ = 0, the resulting equation represents a two-parameter gamma distribu-
tion. Furthermore, if a new variable Y, defined as

Y = (x – γ)/α

is substituted in Eq. 5.109, a one-parameter gamma distribution is obtained:

(5.125)

(5.126)

This distribution was described in Chapter 4.
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Example 5.24 The data of annual maximum stage and discharge for the Amite
River at Darlington have been given in Example 3.17. For the discharge data, n = 48,
mean mX = 28,676 cusecs, coefficient of variation cv = 0.736, and coefficient of skew-
ness cs = 1.34. For these data, compute the parameters of the gamma distribution.

Solution We first compute β using Eq. 5.121:

β = (2/1.34)2 = 2.228

Now, from Eq. 5.122, we get

Finally, from Eq. 5.123, we have

5.5.4 Log Pearson Type 3 Distribution

If the variable ln X follows a Pearson type 3 distribution then the variable X will
have a log-Pearson type 3 (LP3) distribution. The PDF of LP3 is given by

(5.127)

where α  > 0, β > 0, and 0 < γ < ln X are parameters. The PDF of the LP3 distribu-
tion may be J-shaped, reverse J-shaped, U-shaped, inverted U-shaped, inverted
U with inflexions, bell shaped with an upper bound, bell shaped with a lower
bound, etc. The behavior of this distribution depends upon the skewness coeffi-
cient to a large extent. Let y be defined as y = (ln x – γ)/α . Then, the distribution
function of LP3 is given by

(5.128)

which is the same as Eq. 5.126. 
The LP3 distribution has been extensively investigated after it was recom-

mended by the U.S. Water Resources Council for flood frequency analysis in the
United States. 

5.5.5 Pareto Distribution

A new distribution for flood frequency analysis, namely the Wakeby distribu-
tion was proposed by Houghton (1978). If a random variable X follows the
Wakeby distribution then

x = ε + (α /k)[1 – (1 – F)k] – (γ/δ )[1 – (1 – F)–δ] (5.129)

α = × =( . ) / . .0 736 28676 2 228 14139 652

γ = − × × = −28676 0 736 28676 2 228 2827 152( . ) . .
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where F = F(x) = P(X ≤ x). For this distribution, explicit expressions of the proba-
bility density function or cumulative distribution function are not available. This
distribution is not commonly used because its application requires estimation of
five parameters. 

The Pareto distribution is a special case of the Wakeby distribution. If in
Eq. 5.130, γ = 0, we get

x = ε + (α /k)[1 – (1 – F)k] (5.130)

From Eq. 5.130, explicit expression for F(x) can be written as 

(5.131)

and the probability density function is

(5.132)

The range of X depends upon a. When a ≤ 0, c ≤ X ≤ ∞, and for a > 0, c ≤ X ≤
c + b/a. When a = 0 in Eq. 5.123, this yields the exponential distribution. When
a = 1 in Eq. 5.132, the uniform distribution with the range [c, c + α] is obtained.
Figure 5-23 graphs the PDF for different values of parameter a.

The parameters of the distribution are related to the moments as follows:

(5.133)

(5.134)

(5.135)

Example 5.25 For the Amite River data used in Example 5.24, important param-
eters are n = 48, mean mx = 28,676 cusecs, coefficient of variation cv = 0.736, and
coefficient of skewness cs = 1.34. For these data, find the parameters of the Pareto
distribution.
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Solution From Eq. 5.135, we have

Solving this gives a = 0.205. From Eq. 5.134, we get

Finally, Eq. 5.133 yields 

c = 28,676 – 30,199/1.205 = 3,614.59 

5.5.6 Logistic Distribution

The probability density function of the logistic distribution is given by

(5.136)

The cumulative distribution function is given by

(5.137)

Figure 5-23 Probability density function of the three-parameter generalized Pareto 
distribution for different values of the shape parameter, a.
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By using the method of moments, parameters of the logistic distribution can
be estimated as

(5.138)

and

m = (5.139)

The frequency factor for the distribution is given by

and the T-year return period flood is

xT = m + α log (T – 1)

Example 5.26 For the Amite River data given in Example 5.24, find the parame-
ters of the logistic distribution and a 100-year return period quantile.

Solution The parameters of the distribution are estimated as

m = 28,676

The 100-year flood will be

X100 = 28,676 + 11,636 log (100 – 1) = 51,897 cusec

5.5.7 Triangular Distribution

In many hydrologic and environmental engineering applications, a triangular
distribution is used for the sake of convenience. This distribution is fully defined
by three points: minimum, most likely (mode), and maximum values. The prob-
ability density function fX(x) for a triangular distribution is given by

(5.140)

where a, b, and c are the minimum, maximum, and mode values of X as defined
in Fig. 5-24.
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The cumulative density function FX(x) for this triangular distribution is given by

(5.141)

Equations 5.140 and 5.141 are convenient to use when parameters a, b, and c
for the population of X are known. Generally, it is very unlikely to have the pop-
ulation data of a random variable. We most often only have the sample data and
their characteristics, such as the mean (μx), coefficient of variance (CVx), and
skew (γx). Thus, it is necessary to determine parameters a, b, and c, given the val-
ues of μx, CVx, and γx. The sample characteristics μx, CVx, and γx can be repre-
sented in terms of a, b, and c as 

(5.142)

(5.143)

(5.144)

(5.145)

Figure 5-24 Probability density function for a triangular distribution.
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If the values of μx, CVx, and γx are known then a unique triangle can be delin-
eated by determining its parameters a, b, and c. These parameters can be
obtained by using the following equation (Tyagi, 2000):

(5.146)

where = a vector containing b, a, and c that can be obtained by substituting
n = 0, 1, and 2, respectively, in Eq. 5.137. Equation 5.146 shows that the maxi-
mum value of coefficient of skew for a triangular distribution is . To
determine higher order moments of X defined by a generalized triangular dis-
tribution, first determine the moments about the origin, E[Xr], and then use
the relationship between central and noncentral moments as given in Eq. 3.5
of Chapter 3 to determine the central moments. The rth moment of X about
the origin is given as (Tyagi, 2000)

(5.147)

For a symmetrical triangle, γX = 0 and the parameters a, b, and c can be
obtained corresponding to n = 1, 0, and 2. The obtained c is the μX and the
parameters a and b are the same as those obtained using the method of
moments. The estimates of a and b are given as

(5.148)

(5.149)

Using Eqs. 5.147, 5.148, and 5.149 one can rewrite the expression for E[Xr] as

(5.150)

Example 5.27 Determine the parameter of a random variable X if it is defined by
a triangular distribution with mean, CV, and skew of 10, 0.5, and 0.4, respec-
tively. Sketch the obtained distribution.

Solution Substituting μx = 10, CVx = 0.5, and γx = 0.4 in Eq. 5.147, for various
values of n, gives the following parameters: When n = 0, b = 23.66. When n = 1,
a = 0. When n = 2, c = 6.34, and further using Eq. 5.140 one gets fX(c) = 0.031.
The obtained distribution is depicted in Fig. 5-25.

Example 5.28 For the previous example determine the various noncentral and
central moments.
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Solution Substituting values of a, b, and c in Eq. 5.147 gives the first four
moments about the origin. Then, the relationship between the central and non-
central moments is used to determine the moments about the origin. The
obtained results are as follows: 

5.5.8 Halphen Distributions

Perreault et al. (1999a,b) have provided a comprehensive discussion of the Hal-
phen distribution system, including mathematical and statistical properties,
parameter and quantile estimation, and application to flood data. The discus-
sion here is excerpted from their work. The Halphen system comprises three
distributions: Halphen type A, Halphen type B, and Halphen type IB. The PDF
of the Halphen type A distribution for a random variable X > 0 can be
expressed as 

(5.151)

Figure 5-25 Triangular distribution.
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where m > 0 is a scale parameter, α > 0 and υ are shape parameters, and Ku is the
modified Bessel function of the second kind of order υ. Equation 5.151 contains
three parameters and is a reparameterized form of the generalized inverse Gaus-
sian distribution (Good 1953). Taking υ = 0 specializes Eq. 5.151 into the har-
monic distribution. 

The PDF of the Halphen type B distribution can be expressed as 

(5.152)

where m > 0 is a scale parameter, α and υ > 0 are shape parameters, and efυ(α ) is
the exponential factorial function (a normalizing function). The Halphen type B
distribution is used for modeling smaller values in data sets. 

The PDF of the Halphen inverse B distribution can be written as

(5.153)

where parameters have the same connotation as in the case of the type B distri-
bution. The relation between the type B distribution and type IB distribution is
seen by noting that if X follows a type B distribution then 1/X follows a type IB
distribution.

For the tail behavior of these distributions on the relationship between
return period and quantile, Morlat (1956) and Ouarda et al. (1994) reported the
following:

1. For the Halphen type A, the gamma, and the Gumbel distributions,

.

2. For the Halphen B and normal distributions, .

3. For the Halphen type IB, . This relation depends on parameter υ.

The log-normal distribution has and the inverse gamma has
, in which case the relation depends on parameter λ.
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Table 5-1 Summary of probability distributions. 

Distribution Mathematical form Range of 
random variable

Parameters Applications 

Normal
distribution

–∞ ≤ x ≤ ∞ E(X) = 

= variance 

Used to model phenomena in which 
random variations arise from a num-
ber of additive variations; the most 
widely used distribution.

Log-normal 
distribution

Y = ln (x)
x ≥ 0

Used to model phenomena that 
occur as a result of a multiplicative 
mechanism among many factors 
(e.g., evaporation of water, stream-
flow, particle size, or damage). 

Extreme value 
type I 
distribution: 
largest values

–∞ ≤ y ≤ ∞ Used where interest lies in modeling 
the behavior of the largest values 
(e.g., flood peaks).

Extreme value 
type I 
distribution: 
smallest values

–∞ ≤ z ≤ ∞ Used when interest lies in knowing 
the distribution of the smallest of 
many independent variables with a 
common unlimited distribution 
(e.g., low-flow analysis). 

Generalized
extreme value 
distribution

(u + α/k) < x < ∞ Used for frequency analysis of larg-
est values (e.g., floods). 
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Beta 
distribution

0 ≤ X ≤ 1 Used to model the behavior of a 
variable that is bounded (e.g., stream 
flows, duration of an activity, or 
strength of a metal).

Log-Pearson 
type 3 
distribution

0 < x < ∞ Used to model extreme values of a 
variable (e.g., flood frequency); use 
has grown tremendously after the 
U.S. Water Resources Council rec-
ommended its adoption as the stan-
dard distribution for flood frequency 
analysis.

Pareto 
distribution

x = ε + (α /k)[1 – (1 – F)k]

– (γ/δ)[1 – (1 – F)–δ]

If a ≤ 0, c ≤ X ≤ ∞
If a > 0, c ≤ X ≤ c + 

b/a

Used for frequency analysis of large 
floods.

Logistic
distribution

–∞ < x < ∞ m = Used for flood frequency analysis.

Table 5-1 Summary of probability distributions.  (Continued)

Distribution Mathematical form Range of 
random variable
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5.6 Questions

5.1 Obtain one-day maximum rainfall for each year for Houston, Texas, for a
period of 30 to 50 years. Compute the mean, standard deviation, and
coefficient of variation of the daily maximum values. Fit a suitable distri-
bution. Give the parameter values. Do the same for two-day and three-
day maximum rainfall. 

5.2 Use the maximum yearly discharge values for the Amite River at Dar-
lington for as long a period as you can get. Compute the mean, standard
deviation, and coefficient of variation of the instantaneous maximum
discharge values. Fit a suitable distribution. 

5.3 A random variable X has a mean of 5,000 and a standard deviation of
1,000. Compute the probability that this variable will have a value less
then 7,000. Compute the probability that the random variable X will be
less than 3,000.

5.4 Assuming that the data of Example 4.18 follow a normal distribution,
compute the probability that the peak flow will be less than 50,000 cfs,
less than 30,000 cfs, and less than 20,000 cfs in any year. What is the
return period of each of these flows? What is the probability that the
peak flow will occur in any year between one standard deviation,
between two standard deviations, and between three standard devia-
tions on either side of the mean?

5.5 Consider a binomial random variable X with n = 30 and p = 0.3. Evaluate
the probability 3 < X ≤ 8 using the binomial as well as the normal approxi-
mation of the binomial distribution. What will be the answer when n = 50?

5.6 Assume that the peak flow data of Example 4.18 follow a two-parameter
log-normal distribution. Compute the parameters of the log-normal dis-
tribution. Compute the probability that the peak flow will be less than
150,000 cfs, less than 100,000 cfs, and less than 70,000 cfs in any year.
What is the probability that peak flow will occur in any year between
one standard deviation, between two standard deviations, and between
three standard deviations on either side of the mean?

5.7 Assume that the peak flow data of Example 4.18 follow a two-parameter
extreme value type I distribution. Compute the parameters of the distri-
bution and the probability that the peak flow in any year will be less
than 150,000 cfs, less than 100,000 cfs, and less than 70,000 cfs. What is
the probability that peak flow will occur in any year between one stan-
dard deviation, between two standard deviations, and between three
standard deviations on either side of the mean?
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5.8 For the peak annual flow in a small stream it is found that mY = 500 m3/s
and σY = 200 m3/s. Compute the PDF of the extreme value type I distri-
bution for peak annual flow.

5.9 From the measured data of wind at an airport location, the mean and
standard deviation of the maximum annual wind velocity were mY =
50 km/hour and σY = 15 km/hour, respectively. Find the wind veloc-
ity that will be exceeded with a probability of 0.01 in any year.

5.10 For the data of annual maximum discharge for a river, n = 50, mean mX =
30,000 cusecs, coefficient of variation cv = 0.50, and coefficient of skew-
ness cs = 2.00. For these data, compute the parameters of the gamma
distribution.

5.11 Consider the normal distribution with parameters μ and CV. Graph the
normal distribution for μ = 1, CV = 0.01. Keep the value of μ constant but
increase CV by 25% in each step. Perform this calculation for about 20
steps and plot both the PDF and cumulative PDF. For each step also cal-
culate the P (x < 0) and plot it with respect to CV. What conclusion can
you draw from this plot about the nature of the probability distributions
of hydrologic and water quality variables?

5.12 A random variable X has a mean of 300 and a standard deviation of 100.
Compute the following probabilities:

(a) X will have a value less than 50.
(b) X will have a value more than 550.
(c) X will be between 50 and 550.

5.13 Consider a binomial random variable X with n = 22 and p = 0.7. Evaluate
the probability 4 < X ≤ 8 using the binomial distribution, the Poisson dis-
tribution, and the normal approximation of the binomial distribution.
Repeat the same calculation for n = 30, n = 50, and n = 100. Comment on
your results about the approximation of a binomial distribution by the
Poisson and normal distributions.

5.14 Choose n random numbers u1, u2,…, un from a uniform PDF in the interval
[0, 10] and obtain the distribution of the mean value μn = (u1+ u2+…+ un
/n). Plot and compare the resulting PDFs of μn.

5.15 Choose n random numbers from an exponential PDF in the interval [0,
+∞ ] with the parameter λ = 10 and obtain the distribution of the mean μn.
Plot and compare the resulting PDFs.

5.16 Assume that the peak flow data of Example 3.17 follow a two-parameter
log-normal distribution. Compute the parameters of the log-normal dis-
tribution. Compute the probability that the peak flow will be less than
10,000 cfs, less than 8,000 cfs, and less than 15,000 cfs in any year. What is
the probability that peak flow will occur in any year between one
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standard deviation on either side of the mean and between two standard
deviations on either side of the mean?

5.17 Assume that the peak flow data of Example 3.17 follow a two-parameter
extreme value type I distribution. Compute the parameters of the distri-
bution and the probability that the peak flow in any year will be less
than 10,000 cfs, less than 8,000 cfs, and less than 15,000 cfs. Compare
these probabilities and return periods with those computed in Question
5.16. Which distribution is a better choice to characterize the peak flow?
What is the probability that peak flow will occur in any year between
one standard deviation on either side of the mean and between two stan-
dard deviations on either side of the mean?

5.18 Assume that the peak flow data of Example 3.17 follow a two-parameter
gamma distribution. Compute the parameters of the distribution and the
probability that the peak flow in any year will be less than 10,000 cfs, less
than 8,000 cfs, and less than 15,000 cfs. Compare these probabilities and
return periods with those computed in Question 5.17. Do you think a
gamma distribution is a better choice to characterize the peak flow?
What is the probability that peak flow will occur in any year between
one standard deviation on either side of the mean and between two stan-
dard deviations on either side of the mean?

5.19 Repeat Question 5.18 using the log Pearson type III distribution.

5.20 For the peak annual flow in a stream, the mean and standard deviation of
the peak flow are 2,000 and 1,200 m3/s, respectively. Compute the PDF of
the peak flow distribution under the following assumptions:

(a) Peak flow is described by an extreme value type I distribution.
(b) Peak flow is described by a log-normal distribution.
(c) Peak flow is described by a gamma distribution.
(d) Peak flow is described by log Pearson type III distribution.

5.21 For National Pollutant Discharge Elimination System permits it is com-
mon practice to evaluate the water quality status during low flow condi-
tions. For the Chattahoochee River downstream of the Buford Dam at
Lake Lanier, the 7-day minimum flow is given in Table Q5-21. Using
these data, select the most appropriate distribution from various candi-
date distributions, such as the extreme value type I, log-normal, gamma,
log Pearson type III, etc. Explain, using the fitting characteristics, why
you feel that your selected distribution is the most appropriate choice.
Further, compute the probability of the low flows for the return periods
of 10, 20, 30, 40, 50, 60, 70, and 90 years.

5.22 From the measured data of air temperature at a given location, the mean
and standard deviations of the maximum temperature were 50°F and
15.5°F, respectively. Find the temperature that will be exceeded with prob-
ability of (a) 0.05°F in any year, (b) 5°F in any year, and (c) 0°F in any year.
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5.23 Assume that annual peak flow of Salt Creek at the USGS gauge near
Rowell, Illinois, is described by the GEV distribution as given in Question
3.22. Compute the mean and standard deviation of the peak flow data.
Also, compute the parameter of the distribution parameters. 

5.24 The data of annual maximum stage for Salt Creek near Rowell, Illinois,
has been given in Question 3.22. For the stage data, n = 34, mX = 20.34 ft,
CV = 0.16, and cs = 0.53. For these data, compute the parameters of the
gamma distribution.

5.25 Repeat Question 5.24 using the Pareto distribution.

5.26 Determine the parameter of a random variable X if it is defined by a tri-
angular distribution with mean, CV, and skew of 100, 0.33, and 0.1,
respectively. Sketch both the frequency and cumulative distribution
functions. Further, sketch both the frequency and cumulative distribu-
tion functions by increasing the CV by 10% and varying the skew
between − 0.55 and 0.55. For each case determine the probability of X <
0. What is the maximum skew that a triangular distribution can
describe? 

5.27 Assume that peak discharge Q is exponentially distributed with mean
μQ and variance . What is the probability distribution of stage S?
Suppose stage and discharge are related by Q = aSb.

5.28 A set of data having a mean of 6.5 and a standard deviation of 2.5 is
thought to follow the extreme value type I distribution for minima. What

Table Q5-21

Year 7-day 
min
flow 
(cfs)

Year 7-day 
min
flow 
(cfs)

Year 7-day 
min
flow 
(cfs)

Year 7-day 
min 
flow
(cfs)

1958 12.43 1970 15.29 1982 17.57 1994 31.86

1959 9.43 1971 26.14 1983 14.00 1995 14.00

1960 13.00 1972 14.29 1984 23.29 1996 24.29

1961 16.14 1973 28.00 1985 25.00 1997 12.43

1962 13.86 1974 19.86 1986 12.29 1998 13.86

1963 18.14 1975 41.43 1987 11.00 1999 10.87

1964 25.00 1976 18.71 1988 10.01 2000 7.36

1965 16.71 1977 17.71 1989 21.86 2001 12.57

1966 28.29 1978 9.21 1990 18.86 2002 5.47

1967 26.43 1979 15.86 1991 25.29 2003 24.71

1968 25.43 1980 22.43 1992 20.86 2004 41.14

1969 24.43 1981 6.20 1993 14.29
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proportion of observations from this distribution would exceed 7.0? Plot
the probability density function.

5.29 From a data series of minimum annual discharges on a stream, one
obtained an average of 175 cfs, a standard deviation of 65 cfs, and a coef-
ficient of skew of 1.5. Using both extreme value type I (for) minimum
and type III (for minimum) distributions, evaluate the probability of an
annual minimum flow being less than 125 cfs.

5.30 If flood flows from a large watershed have an average value of 1,500 cms
with a variance of 53,500 (cms)2, what is the probability that a flood will
be equal to or exceed 2,000 cms, if the Gumbel distribution is used?
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Chapter 6

Impulse Response 
Functions as Probability 
Distributions

A multitude of environmental and hydrologic processes embody both the ele-
ments of chance and the descriptive laws of physics. A finer process description
at one scale is lost through the processes of integration in time and space and
through averaging. This justifies simplification in representation of the pro-
cesses. It is hypothesized that if an environmental process is described by a lin-
ear or linearized governing equation, then the solution of this equation for a unit
impulse (or Dirac delta) function can be interpreted as a probability density
function for describing the probabilistic properties of the process. This hypothe-
sis is tantamount to mapping from the unit impulse response (UIR) function,
h(t), to the probability density function (PDF), f(x), where h is the UIR as a func-
tion of time or space variable denoted by t and f is the PDF as a function of the
random variable of the process. For example, the impulse response of a diffusion
equation for pollutant transport described by the space–time variation of con-
centration can be used as a probability distribution for pollutant concentration in
a medium, such as a river, a lake, conduit storm water, soil, or a saturated geo-
logic formation. Likewise, the impulse response of a linearized diffusion model
of channel flow can be interpreted as a probability distribution for frequency
analysis of extreme values (such as floods, droughts, hurricanes, earthquakes,
and so on). Similarly, the impulse response of a linear reservoir can be used as an
exponential probability distribution model. The impulse response of a cascade
of equal linear reservoirs is the gamma distribution, which has a number of
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applications in environmental and water resources data analysis. In this vein, a
number of impulse responses of physically based equations that apply to envi-
ronmental and hydrologic processes and data are discussed and illustrated by
using field or laboratory data.

Environment can be defined as a continuum of three components: air, water,
and land. The processes dealing with these components and their dynamic
interactions constitute environmental processes. Examples of such processes
are solute transport in a river, a lake, storm water, soil, or an aquifer; flood;
drought; rainfall; erosion; sediment transport by storm water or in a river; air
pollution; depletion in the ozone layer; glacial movement and melting; climate
change; occurrence of an epidemic resulting from pollution; seawater rise; and
salt-water intrusion. A quantitative description of these processes involves a
determination of the space, time, or space–time history of flux, concentration,
the peak, the average, or the volume of the process variable. For example, to
describe the transport of a pollutant in a river, the pollutant flux or concentra-
tion as a function of space and time may be selected. One may also select the
pollutant load passing through a given point on the river over a selected period
of time, say, a month or a year. Similarly, to describe the quality of air in an
urban area, one may select the ozone level and determine its variability in time. 

Because environmental processes frequently embody both the elements of
chance and the descriptive laws of physics, environmental variables cannot be
completely described either by deterministic means or by stochastic means
alone. Rather, a better approach has to be a combination of both the stochastic
and the deterministic means. Considerable simplification is usually needed to
view the variables deterministically. This can be justified in light of the observa-
tion that excessive process description at one scale is lost through the operations
of integration in time and averaging. Furthermore, the governing equations
themselves have inherent limitations with regard to accuracy. Even more stark is
the state of data acquisition and processing. 

When the stochastic aspect of the environmental variables is considered, the
element of chance is attributed to a complex mix of factors, such as inherent sto-
chasticity in environmental processes owing to interactions of the environmental
continuum components, human–environment interaction, and our limitations to
observe and quantify spatial and temporal variability of environmental vari-
ables. A stochastic description usually includes analysis of variance, time series
analysis, or frequency analysis. The type of analysis that is needed depends on
the demand of the problem. For example, a frequency analysis is needed for
planning and design. A time series analysis is needed for operation and manage-
ment. A regression analysis is needed for prediction, extrapolation, or interpola-
tion. Analogous to a deterministic description, a stochastic analysis also involves
simplifications that can be justified on the basis of lack of data or lack of ade-
quate knowledge of processes to be modeled as well as of the methodologies for
modeling of nonlinear and non-Gaussian processes, requirement of simplicity,
parsimony of parameters, and so on. 
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An environmental process in nature exhibits itself in many ways and a vari-
able selected to describe some aspect of this process must obey the commands of
the process. The variable has an intrinsic nature and its characterization and
analyses, whether deterministic or stochastic or a combination thereof, is impor-
tant. This means that there must be an inherent connectivity among these analy-
ses. In environmental science and engineering, this connection is frequently
observed. For example, a regression analysis without error analysis in statistics
is no different from curve-fitting techniques in mathematics. Indeed, regression
analysis techniques are often employed to find a best-fit curve for a given set of
data, and the connection between these types of techniques is well known.
Another example is the autoregressive (AR) technique in time series analysis.
When an AR model is applied to, say, daily, monthly, or annual river flow, the
coefficients associated with the autoregressive variables are nothing but the
ordinates of linear kernel of the flow variable. Since the AR technique is linear, it
is equivalent to the impulse response function of a linear flow process. In
hydrology, this is known as the unit hydrograph method. One also finds a con-
nection between the unit hydrograph method and spectral analysis. This means
that certain linear time series analysis techniques are equivalent to linear
response functions of environmental processes. However, the connection
between frequency analysis methods and deterministic methods is not clear yet.
This may be because frequency, by definition, is stochastic in nature and finding
a deterministic equivalent seems somewhat contradictory in terms. However,
our objective here is to find a connection through techniques of analysis, not
through concept. This constitutes the subject matter of this chapter. 

6.1 Hypothesis

It is hypothesized that if an environmental variable is described by a linear or lin-
earized governing equation, then the solution of this equation for a unit impulse
(or Dirac delta) function (UIF) can be interpreted as a PDF for describing the
probabilistic properties of the random variable, say, X. The solution for the UIF
can be characterized as the UIR or h(t). If the UIR is a function of time t, then the
PDF is a mapping from the (h, t) plane to the (f, x) plane, where x is the value (or
quantile) of the random variable X for which h(x, t) is desired, and f is the PDF. 

There are many environmental variables that can be reasonably well
described linearly. If some of the variables cannot be described linearly in the real
domain, then they can be described linearly in the logarithmic domain or in an
appropriate transformed domain. Examples of linear approximation are surface
runoff from rainfall excess, river flow, monthly sediment discharge, and solute
concentration in a tube or soil. Thus, their UIRs can be considered as their PDFs.
It is not surprising that several probability distributions have found their niche in
linear environmental analyses. This hypothesis will be explored in what follows.
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6.2 Impulse Responses of Linear Systems

6.2.1 Linear Reservoir 

The simplest linear system in hydrology is probably a linear reservoir (or storage
element), shown in Fig. 6-1, and is described by the spatially lumped form of the
continuity equation

(6.1)

and a storage–discharge type relation

S = k Q (6.2)

where I(t) is the rate of inflow to the reservoir at time t, Q(t) is the rate of outflow
from the reservoir at time t, S(t) is the storage in the reservoir at time t, and k is
the storage coefficient or average travel (or residence or lag) time. Substitution of
Eq. 6.2 in Eq. 6.1 yields

(6.3)

Solution of Eq. 6.3 gives

Qt = I[1 – exp(–t/k)]  t ≤ D (6.4)
and

Qt = QP exp[–(t–D)/k]  t ≥ D (6.5)

where D is the inflow duration, and QP is the peak of outflow hydrograph given by 

QP = I[1 – exp(–D/k)] (6.6)

Figure 6-1 Depiction of linear reservoir concept: (a) lag time, (b) IUH, and 
(c) hydrograph due to a pulse of D hour duration.
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The linear reservoir has been used for rainfall–runoff modeling either by
itself or as an element of a network model. For instantaneous inflow that fills the
reservoir in time t = 0,

(6.7)

If I(t) is denoted by a unit delta function δ(t), then the UIR of the linear reservoir,
h(t), is

(6.8)

In hydrology, h(t) is known as the instantaneous unit hydrograph (IUH). The
determination of h(t), the impulse response function (or the kernel function or
Green’s function) of a system from input and output data, is known as system
identification. Convolution of the impulse response function with the system
inputs gives the system output. Then, the PDF of a variable described by a linear
reservoir becomes

(6.9)

where x is the quantile of the variable X described by the linear reservoir and k is
a parameter. Thus, it is seen that h(t) is mapped onto f(x). Equation 6.9 is an
exponential density function and is widely used in environmental and water
resources. For example, if an environmental process is described by the Poisson
process then the interarrival times follow an exponential distribution. Interar-
rival times of floods can be modeled by using Eq. 6.9. Rainfall depth, intensity,
and duration have been modeled with Eq. 6.9. It should be noted that k in f(x)
represents the average of X and hence its interpretation from Eq. 6.8 remains
unchanged under mapping of h(t) onto f(x).

Another modification of the linear reservoir involves restating the unit delta
function δ(t) as δ(t – t0), where t0 is the time at which the function occurs. In that
case, h(t) of Eq. 6.8 becomes

(6.10)

Equation 6.10 is the UIR of a lag and route linear reservoir system in which t0
is the amount of lag time before water is released from the reservoir. This is
equivalent to a linear reservoir and a linear channel, connected in series. By
mapping Eq. 6.7 onto the probability plane, the PDF becomes

(6.11)

where x0 is the threshold of X, x ≥ x0. The threshold is the minimum value of X.
This is useful in frequency analysis of environmental data.
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Example 6.1 Consider a linear reservoir with a lag time of 10 hours. This reser-
voir receives a pulse of 10 m3/s for a duration of 5 hours. Determine the peak
outflow and graph the outflow hydrograph. Also graph the outflow hydrograph
when lag time is 5 hours and compare the two hydrographs.

Solution The peak of the hydrograph can be computed from Eq. 6.6:

QP = I[1 – exp(–D/k)] = 10[1 – exp(–5/10] = 3.93 cumec

The hydrograph for both cases is plotted in Fig. 6-2. Notice that the peak is
higher when the lag time is smaller and the recession is slower and lasts longer
when k is larger. Clearly, a larger catchment will have a longer lag time. This
hydrograph can also be considered as a probability density function of peak dis-
charge exceeding a given threshold.

6.2.2 Muskingum Model

The Muskingum model is described by Eq. 6.1 and the Muskingum hypothesis: 

(6.12)

where K is the average reach travel time and α is a parameter or a weighting
coefficient. The unit impulse response of the Muskingum model (see Fig. 6-3), is
given by

(6.13)

It has been shown that modeling flood routing along a short reach of a low-
land river may result in the negative value of α and

(6.14)

Figure 6-2 Outflow hydrograph from the linear reservoir for two values of lag time.
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Denoting and and renaming t as x, one gets a two-parameter

probability distribution function:

f(x) = (1 – β)δ(x) + βγ exp(–γx) (6.15)

The PDF given by Eq. 6.15 is a weighted sum of two functions: a delta func-
tion and an exponential function. It is interesting to note that in this function
parameter β is a weighting factor and parameter K = β/γ becomes the average of
X. Thus, the original expressions of the weighting factor and the average travel
time are modified under mapping, but the conceptual meaning of the modified
expressions remains more or less intact. Equation 6.15 is useful for frequency
analysis of floods with zero values as well as flood damage.

Example 6.2 Let the average travel time of a Muskingum lowland reach, K, be 2
days, and the weighting coefficient parameter be –0.1. Determine the impulse
response function of reach outflow. 

Solution According to Eq. 6.15,

Then

Figure 6-3 Muskingum reach impulse response function.
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6.2.3 Cascade of Linear Reservoirs

If an environmental system is represented by a cascade of n equal linear reser-
voirs, then its UIR becomes

(6.16)

where k is the storage parameter of each reservoir and Γ(n) is the gamma of n.
Since there are n reservoirs, nk represents the total lag time (or the average resi-
dence time) of the system. By mapping onto the probability plane, the PDF
becomes

(6.17)

where k and n are parameters. Equation 6.17 is the gamma probability density
function. The gamma distribution results from the sum of exponentials, where n
is the number of exponentials. In deterministic parlance, each exponential repre-
sents a linear reservoir. Thus, the deterministic interpretation of parameters is
carried over through mapping. The gamma distribution is one of the most com-
monly used probability distributions for environmental frequency analysis.

If an environmental system satisfies the requirement that h(t) > 0 if t ≥ t0 then
the UIR becomes

(6.18)

The interpretation of t0 is that the cascade of equal linear reservoirs retains
water for time t0 before it starts to release it. Mapping onto the probability plane
transforms Eq. 6.18 into

(6.19)

which represents the three-parameter Pearson type III probability density func-
tion. This is equivalent to a cascade of linear reservoirs and channels connected
in series. This is one of the most widely used frequency distributions in hydrol-
ogy and environmental sciences. Note that Eq. 6.17 is a special case of Eq. 6.19.
Here parameter x0 is the lowest value or threshold of the variable X. Although
these parameters, k, n, and x0, can be interpreted by using the deterministic anal-
ogy, their optimal values are better found by curve fitting. This means that under
mapping onto the probability plane, the interpretation of the parameters may be
somewhat transformed. 
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Example 6.3 Take n as 3 and k as 6 hours. Compute the probability density func-
tion of peak discharge. Assume the lowest value or threshold of discharge as 100
cumecs.

Solution Substituting n = 3, k = 6, and x0 = 100 into Eq. 6.19, we have the proba-
bility density function of discharge as

The probability density function is plotted in Fig. 6-4.

6.2.4 Linear Downstream Channel Routing Model

One of the most important problems in one-dimensional flood routing analysis
is the downstream problem (i.e., the prediction of flood characteristics at a
downstream section on the basis of the knowledge of flow characteristics at an
upstream section). By using the linearization of the Saint-Venant equation, the
solution of the upstream boundary problem was derived by Deymie (1939),
Masse (1937), Dooge and Harley (1967), and Dooge et al. (1987a,b), among oth-
ers; a discussion of this problem is presented in Singh (1996a). The solution is a
linear, physically based model with four parameters dependent on the hydraulic
characteristics of the channel reach at the reference level of linearization. How-
ever, the complete linear solution is complex in form and is relatively difficult to
compute (Singh 1996a). Two simpler forms of the linear channel downstream
response are recognized in the hydrologic literature and are designated as the
linear diffusion (LD) analogy model and the linear rapid flow (LRF) model.
These correspond to the limiting flow conditions of the linear channel response,
that is, where the Froude number is equal to zero (Hayami 1951; Dooge 1973)
and where it is equal to one (Strupczewski and Napiorkowski 1980c).

The complete linearized Saint-Venant equation is of hyperbolic type and
may be written as

(6.20)

where Q is the perturbation of flow about an initial condition of steady-state uni-
form flow, y is the distance from the upstream boundary, t is the elapsed time,
and a, b, c, d, and e are parameters as functions of channel and flow characteris-
tics at the reference steady-state condition. A number of models of simplified
forms of the complete Saint-Venant equation have been proposed in the hydro-
logical literature.

If all three second-order terms on the left-hand side of Eq. 6.20 are neglected,
the linear kinematic wave model is obtained. Expressing the second and the
third second-order terms in terms of the first on the basis of the linear kinematic
wave approximation leads to a parabolic equation (Dooge 1973), in contrast with
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the original Eq. 6.20, which is hyperbolic. Its solution for a semi-infinite channel,
known under the name of the linear diffusion analogy (LDA) or the convective–
diffusion solution, has the form

(6.21)

where y is the length of the channel reach, t is the time, u is the convective veloc-
ity, and D is the hydraulic diffusivity. Both u and D are functions of channel and
flow characteristics at the reference steady-state condition. Besides flood rout-
ing, LDA has been applied by Moore and Clarke (1983) and Moore (1984) as a
transfer function of a sediment routing model.

The function given by Eq. 6.21 is rarely quoted in statistical literature. It was
derived by Cox and Miller (1965, p. 221) as the probability density function of
the first passage time T for a Wiener process starting at 0 to reach an absorbing
barrier at a point x, where u is the positive draft and D is the variance of the
Wiener process. Tweedie (1957) termed the density function of Eq. 6.21 as an
inverse Gaussian PDF, Johnston and Kotz (1970) summarized its properties, and
Folks and Chhikara (1978) provided a review of its development. The function in
Eq. 6.21 has been applied by Strupczewski et al. (2001) as a flood frequency
model expressed as

(6.22)

Figure 6-4 Probability density function of cascade of reservoirs in series.
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where > 0, > 0, and . Equation 6.22 can be
extended to a three-parameter PDF by introducing a location parameter or a
lower bound for x as

(6.23)

where ε is the lower bound of x.
If the diffusion term is expressed in terms of two other terms by using the

kinematic wave solution, one gets the rapid flow (RF) equation, which is of
parabolic-like form (Strupczewski and Napiorkowski 1990a). Therefore, it filters
out the downstream boundary condition. It provides the exact solution for a
Froude number equal to one and consequently can be used for large values of
the Froude number. If the alternative approach is taken by expressing all the
second-order terms as cross-derivatives, one gets the equation representing the
diffusion of kinematic waves (Lighthill and Witham 1955; Strupczewski and
Napiorkowski 1989). The kinematic diffusion (KD) model, being of parabolic-
like form, satisfactorily fits the solution of the complete linearized Saint-Venant
equation only for small values of the Froude number and slow rising waves.

Although RF and KD models correspond to quite different flow conditions,
the structure of their impulse response is similar (Strupczewski et al. 1989;
Strupczewski and Napiorkowski 1990c). In both cases, the impulse response is

(6.24)

where 

(6.24a)

is the Poisson distribution,

(6.24b)

is the gamma distribution, and 1(t) is the unit step function. Parameters α , λ,
and Δ are functions of both channel geometry and flow conditions, which are
different for the two models. Furthermore, there is no time lag (Δ) in the impulse
response function of the KD model.

Both models can be considered as hydrodynamic and conceptual. Note that
the solution of both models can be represented in terms of basic conceptual ele-
ments used in hydrology, namely, a cascade of linear reservoirs and a linear
channel in case of the RF model. The upstream boundary condition is delayed
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by a linear channel with time lag Δ divided according to the Poisson distribution
with mean, and then transformed by parallel cascades of equal linear reservoirs
(with time constant α) of varying lengths. Note that λ is the average number of
reservoirs in a cascade. Strupczewski et al. (1989) and Strupczewski and Napi-
orkowski (1989) have derived the distributed Muskingum model from the multi-
ple Muskingum model and have shown its identity to the KD model. Similarly,
the RF model happens to be identical to the distributed delayed Muskingum
model (Strupczewski and Napiorkowski 1990c).

Einstein (1942) introduced the function given by Eq. 6.21 to hydrology as the
mixed deterministic–stochastic model for the transportation of bed load. It has
also been used as the PDF of the total rainfall depth derived from the assump-
tion of a Poisson process for storm arrivals and an exponential distribution for
storm depths (Eagleson 1978). The function in Eq. 6.24 is considered to be a flood
frequency model. An example of such a model is shown in Fig. 6-5.

Figure 6-5 Empirical and two theoretical KD cumulative distribution functions for the 
Big Lost River, Arco, Idaho. MOM and MLM estimated parameters are shown. Solid 

line: MOM estimated CDF, dotted line: MLM estimated CDF.
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The RF model can be employed for modeling samples censored by the value.
If the delay is equated to zero and t is renamed as x then Eq. 6.24 yields a two-
parameter probability distribution of the form

(6.25)

where z is the Poisson-distributed random variable

(6.25a)

and x is the gamma-distributed variable

(6.25b)

I(x) is the unit step function. Equation 6.25 differs from Eq. 6.24 since its second
term cannot be expressed as the product of the probability of nonzero value (i.e.,

) and the conditional PDF (i.e., f1(x, g) with β not included in g, where
and in the KD distribution function). The second term of

the PDF,

(6.26)

can be expressed by the first-order modified Bessel function of the first type,

(6.27)

as

(6.28)

Thus, Eq. 6.25 can be written as

(6.29)

which is the KD–PDF.
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6.2.5 Diffusion Equation 

Many natural processes are diffusive in nature and can, therefore, be modeled
using diffusion-based equations. Examples of such processes are dye transport
in a container of water, contaminant mixing in rivers and estuaries, transport of
sediment in rivers, and migration of microbes. Thus, the probability distribu-
tions based on random diffusion processes may be better suited to represent the
data of diffusion-driven processes. To illustrate this concept, a dye diffusion
equation is considered to describe the concentration distribution produced from
an injection of a mass of dye that is introduced as a plane source located at coor-
dinate x0 at time zero into a liquid-filled, semi-infinite tube of cross section A.
The tube is closed on the left end and extends to the right to infinity. The one-
dimensional diffusion equation for a dye of mass M introduced at time t = 0 into
a liquid-filled tube of cross section A that extends from x = 0 to infinity is

(6.30)

where D is the diffusion coefficient, δ(y – y0) is a Dirac delta function of (y – y0), δ(t)
is a Dirac delta function of t, and y0 is the location where the mass is inserted at
time t = 0. A Dirac delta function has the property that it is equal to zero if the
argument is nonzero; when the argument is zero, the Dirac delta function becomes
infinite. The definition of the Dirac delta requires that the product is
dimensionless. Thus, the units of the Dirac delta are the inverse of those of the
argument x. That is, has units meters–1, and has units sec–1 (Scott 1955). 

The first boundary condition states that there is no diffusion of dye through
the closed left end of the tube at y = 0:

(6.31)

C(y, 0) = 0 (6.32)

The second boundary condition states that the concentration and the concen-
tration flux are zero at infinity. (More generally, all of the terms in the Taylor
series expansion of the concentration are zero at infinity.) The second boundary
condition is stated for the terms of the Taylor series of concentration as

(6.33)

The initial condition states that there is no dye in the tube at time zero.
Using the integral transform method gives the solution of Eq. 6.30 subject to

Eq. 6.31 to Eq. 6.33 (Özisik 1968; Cleary and Adrian 1973): 

(6.34)
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We now reduce the number of terms in Eq. 6.34, normalize the equation so
that it represents a unit mass injected over a unit area, and map onto the proba-
bility plane by introducing a frequency term instead of concentration. These
changes make Eq. 6.34 resemble a probability distribution. The term “4Dt”
appears together in Eq. 6.34. We define a new term

(6.35)

In addition, the mass and cross-sectional area are combined with concentra-
tion, σ is held constant so it is treated as a parameter, and a new term f(x; x0, σ) is
introduced, so that f(x; x0, σ) = AC(x, t)/M, which has units length–1. The result is
the equation

(6.36)

which is now interpreted as a probability distribution that is bounded by x = 0
on the left side and extends to infinity on the right. The term σ represents the
spread of the probability distribution, and x0 usually represents the location of
the peak frequency, although it is possible that if σ is large, the peak frequency
may not be located at x0 but may be located at x = 0. The distribution is called a
two-parameter semi-infinite Fourier distribution as it was developed from the
diffusion (Fourier) equation using semi-infinite Fourier transforms.

Equation 6.36 is limited to application to data that are distributed along the
positive x axis. However, if the restriction on x only being able to represent dis-
tance is relaxed, so that x can represent any dimension that is appropriate for a
frequency distribution, then the number of applications of Eq. 6.36 can increase.
For example, if one is interested in the frequency distribution of a chemical, such
as manganese concentration in a river, then x could have units of milligrams per
liter. The units of σ are the same as the units of x.

6.3 Application

In the frequency analyses of environmental (say, hydrological) data in arid and
semiarid regions, one often encounters data series that contain several zero values
with zero being the lower limit of the variability range. From the viewpoint of
probability theory, the occurrence of zero events can be expressed by placing a
nonzero probability mass on a zero value (i.e., P(X = 0) ≠ 0, where X is the random
variable and P is the probability mass). Therefore, the distribution functions from
which such hydrological series were drawn would be discontinuous with discon-
tinuity at the zero value having a form

(6.37)
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where (1 –β) denotes the probability of the zero event, that is, ,
is the continuous function such that , h is the vector

of parameters, is the Dirac delta function, and 1(x) is a unit step function. 
The estimation procedures for hydrologic samples with zero events have

been a subject of several publications. The theorem of total probability has been
employed (Jennings and Benson 1969, Woo and Wu 1989, Wang and Singh 1995)
to model such series. Then, Eq. 6.37 takes the form

(6.38)

where f1(x; g) is the conditional probability density function (CPDF), that is,
, which is continuous in the range (0, +∞) with a lower

bound of zero value. Wang and Singh (1995) estimated β and the parameters of
the CPDF separately by considering the positive values as a full sample. Having
estimated g and β allows one to transform the conditional distribution to the mar-
ginal distribution [i.e., to f(x)] by Eq. 6.33. Among several PDFs with zero lower
bound recognized in flood frequency analysis (FFA) (e.g., Rao and Hamed 2000),
the gamma distribution given by Eq. 6.17 was chosen by Wang and Singh (1995)
as an example of a CPDF and four estimation methods were applied: the maxi-
mum likelihood method (MLM), the method of moments (MOM), probability
weighted moments (PWM), and the ordinary least-squares method. By using
monthly precipitation and annual low-flow data from China, and annual maxi-
mum peak discharge data from the United States, the suitability of the distribu-
tion and the estimation methods was assessed. The histogram and the estimated
PDF of all three series indicated a reverse J-shape without mode, whereas the
value of the coefficient of variation of f1(x; g) was close to one, pointing out a
good fit of data to the Muskingum-originated PDF given by Eq. 6.10.

Among positively skewed distributions, it is the log-normal (LN) distribu-
tion, which together with the gamma, is most frequently used in environmental
frequency analysis. The LN distribution has been found to describe hydraulic
conductivity in a porous medium (Freeze 1975), annual peak flows, raindrop
sizes in a storm, and other hydrologic variables. Chow (1954) reasoned that this
distribution is applicable to hydrologic variables formed as the product of other
variables since if X = X1 · X2 · … Xn then Y = log X tends to the normal distribu-
tion for large n provided that the Xi are independent and identically distributed. 

Kuczera (1982d) considered six alternative PDFs and found the two-
parameter LN to be most resistant to an incorrect distributional assumption in
at-site analysis and also while combining site and regional flood information.
Strupczewski et al. (2001) fitted seven two-parameter distribution functions—
namely, normal, gamma, Gumbel (extreme value type I), Weibull, log-Gumbel,
and log-logistic—to thirty-nine 70-year long annual peak flow series of Polish
rivers. The criterion of the maximum log-likelihood value was used for the best
model choice. From these competing models, the log-normal was selected in 32
cases out of 39, the gamma in 6 cases, the Gumbel in one case, and the remaining
four were not identified as the best model even in a single case.
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The LDA model shows a similarity to the LN model (Strupczewski et al.
2001). Only for large values of the coefficient of variation do the LDA lines
deviate apparently from straight lines on a log-normal probability plot. A com-
parison of the maximum likelihood (ML) values of both distributions of the
thirty-nine 70-year long annual peak flow series of Polish rivers has shown
that in 27 out of 39 series the LDA model provided a better fit to the data than
did the LN model (Strupczewski et al. 2001). For Polish rivers, the average
value of the ratio of the skewness coefficient (cs) to the coefficient of variation
(cv) equals 2.52. This value is only just closer to the ratio of the LDA model,
where cc/cv = 3, than to that of the LN model, where . Moreover it
is interesting to learn that the LDA model represents flood frequency charac-
teristics quite well when the LDA model is likely to be better than other linear
models (i.e., for lowland rivers; Fig. 6-6).

Comparing the potential for applicability of the two distributions, one should
also take into account real conditions, where the hypothetical PDF differs from the
true one. Applying the ML method, one gets unbiased moment estimates if instead
of the LN model the LD model is used for the LN-distributed data, whereas in the
opposite case the ML estimate of the variance is biased. Therefore, if both models
show an equally good fit to the data it seems reasonable to select the LD model if
the ML method is to be applied. One should also be aware that the LN distribution
is not uniquely determined by its moments (Kendall and Stuart 1969, p. 179).

Figure 6-6 Empirical and two theoretical LD cumulative distribution functions for the 
Warta River, Skwierzyna cross-section data. MOM and MLM estimated parameters are 

shown. Solid line: MOM estimated CDF, dotted line: MLM estimated CDF.
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Application of the function given by Eq. 6.24 to flood data reveals that for
λ < 2, which corresponds to the probability of the zero event being equal to
P0(λ = 2) = exp(–2) = 0.135, the PDF has a reverse J-shape without mode. By
modeling longer time series, it may be reasonable to introduce a third parame-
ter to the model of Eq. 6.22, making the shape of the continuous part of the dis-
tribution independent of the probability of zero event:

(6.39)

where and are defined by Eq. 6.25a and Eq. 6.25b.

6.4 Summary

To summarize, one can conclude the following: 

1. The unit impulse response functions of linear or linearized physically
based models form suitable models for environmental frequency analy-
sis.

2. Many of the unit response functions are found to be the same as those
that have been used in statistics for a long time. 

3. The use of the UIR functions can provide a physical basis to many of the
statistical distributions. 

4. The UIR approach provides a hope for linking deterministic and stochas-
tic frequency models. 

6.5 Questions

6.1 Consider a linear reservoir whose impulse response function can be
defined as

where h(t) is the impulse response at time t and k is a parameter, called
the lag time. Integrate h(t) over time and show that it can be considered
as a probability density function regardless of the value of k. Plot h(t)
(1/hour). In the probability domain, h(t) will assume the role of a proba-
bility density function and t will be the random variable and its value
will be a quantile. 
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6.2 Integration of the impulse response function in Question 6.1, U(t), can be
expressed as

Here U(t) takes on the role of the cumulative distribution function in the
probability domain. Plot U(t) for k =1, 2, 5, 10, and 15 hours and interpret
these plots physically. 

6.3 The impulse response function for an aquifer interacting with a stream
can be expressed as 

where Sc is the storage coefficient and is equal to specific yield for uncon-
fined aquifers, a (1/time) is the subsurface flow constant, and t0 is the
initial time. In the probability domain this can also be considered as a
probability density function with parameters two parameters and a
threshold value of t0. Plot the UIR for different values of Sc: 0.01, 0.05, 0.1,
0.2, 0.3, 0.4, and 0.5. Take the value of a as 1/day, 0.5/day, and 0.2/day. 

6.4 The impulse response of a time-variant linear reservoir can be expressed as 

where k(t) is the time-varying lag time and is the time at which input to
the reservoir is applied. Plot h(t, τ) assuming k(t) =10 + t. Take τ as 0, 1, 2,
3, 4, and 5 hours. Interpret these graphs physically and discuss the kind
of probability density function these graphs look like. 

6.5 Plot the impulse response function using Eq. 6.17 for different values of
n as 1, 2, 3, 4, and 5 and k as 2, 4, 6, 8, and 10 hours. Interpret these plots
physically. Now use the impulse response function as a probability den-
sity function of peak discharge and then compute the probability of dis-
charge equal to or exceeding 1,000 cumecs. 

6.6 Consider the impulse response function of Eq. 6.18. Then compute the
probability of discharge equal to or exceeding 1,000 cumecs if the lowest
value or threshold of discharge is 100 cumecs.

6.7 Consider a linear reservoir with a lag time of 15 hours. This reservoir
receives a pulse of 600 m3/s for a duration of 6 hours. Determine the
peak outflow and graph the outflow hydrograph. Also graph the out-
flow hydrograph for lag times as 10 and 20 hours and compare all three
hydrographs and comment on your results.
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6.8 A reservoir releases a peak flow of 531 m3/s. It was determined that the
lag time for this reservoir was 12 hours. It receives an inflow pulse for a
duration of 6 hours. Determine the magnitude of the inflow pulse. 

6.9 Determine the reservoir storage coefficient K and inflow pulse duration
D using the following data: 

6.10 Let the average travel time of a Muskingum lowland reach K be 5 days,
and let the weighting coefficient parameter be –0.15. Determine the
impulse response function of reach outflow.

6.11 Take n as 5 and k as 9 hours. Compute the probability density function of
peak discharge. Assume the lowest value or threshold of discharge as
300 m3/s.

6.12 Select a watershed in your area that has two USGS gauging stations on a
stream. Use the discharge data at the two stations to determine the
Muskingum method routing coefficients.

6.13 Rework Question 6.12 using a linear reservoir and determine the lag K
and pulse duration D parameters.

6.14 What is a response function? Discuss its applications and advantages.

Inflow
(m3/s)

27 82 109 136 190 218 245 272 299 326 354 381 408 435 463 490 517 544

Peak
outflow 
(m3/s)

14 43 57 71 99 113 128 142 156 170 184 198 213 227 241 255 269 283
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Chapter 7

Multivariate Probability 
Distributions

Although univariate frequency analysis is often employed for hydrologic and
hydraulic design, in reality it might not suffice to meet the design needs and to
calculate the corresponding risk appropriately. More than one hydrologic and
hydraulic variable may be needed. For example, for designing a drainage sys-
tem, design peak discharge of a given return period is commonly used in prac-
tice, but the total volume and duration of the peak discharge event are also
needed. Similarly, for design of a detention reservoir not only is the flood peak
discharge needed but also the total volume and duration of the flood. 

Similar to hydrologic and hydraulic design, univariate analysis may not
always be appropriate in other fields. For example, the transportation engineer
designing a highway requires knowledge of peak traffic time as well as peak
traffic duration. In environmental engineering, multivariate analysis is needed
for water quality analysis. For example, when studying sediment and pollutant
loading, frequency analysis of discharge or velocity may also be needed. There-
fore this chapter discusses multivariate distributions based on the conventional
approach as well as the copula method. 
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7.1 Existing Multivariate Distributions

7.1.1 Multivariate Normal Distribution

Let random variables X1, X2,…, Xn each be normally distributed. Before present-
ing the multivariate normal distribution, the bivariate normal distribution is
given first. 

7.1.1.1 Bivariate Normal Distribution 

For the bivariate normal distribution, let X1 and X2 be two normally distributed
variables as X1~N(μ1, σ 1) and X1~N(μ2, σ 2), then the joint PDF of X1 and X2 is
expressed as

(7.1a)

where

(7.1b)

where μ1, μ2, σ 1, and σ 2 are the means and standard deviations of variables X1
and X2, respectively, and ρ is the coefficient of correlation between variables X1
and X2. Symbol X1~N(μ1, σ 1) means that X1 is normally distributed with mean
μ1 and variance σ 1 and the same applies to other variables.

Example 7.1 Let the bivariate variables listed in Table E7-1 be normally distrib-
uted after the Box–Cox transformation. What is the joint probability density
function of these two variables?  

Solution The values of the random variable X1 representing peak discharge
(in cfs) and X2 representing the corresponding flow volume (in cfs·day), after
the Box–Cox transformation, are given as follows:

1. To calculate the first two moments of variables X1 and X2, one evaluates 
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Thus, X1 ~ N(39.36, 6.882) and X2 ~ N(1581.2, 577.82) as shown in Fig. 7-1. 
2. To calculate the correlation coefficient r, one evaluates 

where cov (x1, x2) is the covariance of two variables.
3. Then the joint probability density function, plotted in Fig. 7-2, is

7.1.1.2 Multivariate Normal Distribution

The bivariate normal distribution can be extended to the multivariate normal
distribution (dimension N ≥ 3), which can be expressed as

(7.2)

Table E7-1

No. X1 X2 No. X1 X2 No. X1 X2 No. X1 X2

1 31.583 733.08 17 33.17 1465.8 33 54.272 2513.8 49 44.654 1698

2 33.882 1698.3 18 35.414 1631.1 34 40.018 1442.3 50 46.771 1858.4

3 36.174 1902.4 19 35.275 1095.5 35 48.448 2304.2 51 44.917 2192.9

4 31.649 863.53 20 44.676 1568.3 36 47.678 2773.2 52 42.209 1514.2

5 42.55 2098.4 21 44.808 1548.4 37 31.042 674.27 53 28.181 316.14

6 30.831 1506.1 22 25.374 533.26 38 37.442 1267.6 54 47.874 1860

7 31.248 1111.2 23 42.627 1648.5 39 54.506 2848.8 55 33.935 1096.8

8 33.614 1156.9 24 44.852 1822.4 40 37.325 998 56 31.714 764.94

9 38.867 1828.8 25 42.42 2345.7 41 38.374 1427.4 57 48.086 1915.1

10 43.761 2142.9 26 44.385 2013.3 42 43.474 1855.2 58 39.57 1361.1

11 39.207 2164.7 27 26.725 582.37 43 40.018 1830.3 59 37.246 1452.1

12 42.704 1634.3 28 37.088 1215.3 44 42.831 2064.8 60 45.782 1969.6

13 41.668 1581.5 29 36.556 840.95 45 39.406 1429 61 36.388 1193

14 28.637 596.3 30 31.908 902.43 46 52.622 2565.5 62 50.563 2106.4

15 48.173 2267.2 31 45.261 1984.6 47 41.887 1806.2

16 33.449 843.3 32 46.942 1971.8 48 44.565 1635.7
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where denotes the determinant of the covariance matrix of the random vari-
able vector , with positive definite, and denotes the mean vector of the
random variable vector . Consider the case of N = 2. Then the covariance
matrix Σ is expressed as

Figure 7-1 Probability density functions of transformed random variable X1 and X2.

Figure 7-2 Joint normal probability density function of transformed 
random variables X1 and X2.
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Similarly, for N = 3, the covariance matrix is expressed as

Example 7.2 Similar to Example 7.1, let the trivariate variables—peak discharge
(in cfs), volume (in cfs·day), and duration (in days)—be normally distributed
after the Box–Cox transformation (see Table E7-2). What is the joint probability
density function? 

Table E7-2

No. X1 X2 X3 No. X1 X2 X3 No. X1 X2 X3

1 31.58 733.1 4.696 22 35.28 1096 3.887 43 31.04 674.27 4.696

2 33.88 1698 7.229 23 44.68 1568 3.887 44 37.44 1267.6 5.379

3 36.17 1902 7.341 24 44.81 1548 5.217 45 54.51 2848.8 5.379

4 31.65 863.5 4.105 25 25.37 533.3 5.379 46 37.33 998 4.311

5 42.55 2098 7.45 26 42.63 1649 5.379 47 38.37 1427.4 6.251

6 30.83 1506 7.229 27 44.85 1822 5.217 48 43.47 1855.2 5.379

7 31.25 1111 6.115 28 42.42 2346 4.696 49 40.02 1830.3 5.535

8 33.61 1157 6.115 29 44.39 2013 5.379 50 42.83 2064.8 6.251

9 38.87 1829 6.251 30 26.73 582.4 4.696 51 39.41 1429 5.379

10 43.76 2143 5.05 31 37.09 1215 5.379 52 52.62 2565.5 5.217

11 39.21 2165 7.341 32 36.56 841 3.15 53 41.89 1806.2 3.887

12 42.7 1634 5.686 33 31.91 902.4 4.105 54 44.57 1635.7 4.508

13 41.67 1582 6.251 34 45.26 1985 5.05 55 50.56 2106.4 5.976

14 28.64 596.3 4.105 35 46.94 1972 4.696 56 48.09 1915.1 3.887

15 48.17 2267 5.833 36 36.39 1193 4.876 57 47.87 1860 4.105

16 33.45 843.3 4.105 37 39.57 1361 5.379 58 44.65 1698 4.876

17 45.78 1970 5.686 38 33.94 1097 5.686 59 46.77 1858.4 6.638

18 37.25 1452 5.686 39 54.27 2514 5.686 60 44.92 2192.9 5.217

19 31.71 764.9 4.105 40 40.02 1442 4.876 61 42.21 1514.2 5.833

20 33.17 1466 6.115 41 48.45 2304 4.508 62 28.18 316.14 2.555

21 35.41 1631 6.383 42 47.68 2773 6.512     
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σ ρ σ σ ρ σ σ
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Solution The first two moments of variables X1 and X2 are calculated from
Example 7.1 as

The first two moments of X3 are calculated as

Thus, X1 ~ N(39.36, 6.882), X2 ~ N(1,581.2, 577.82), and X3 ~ N(5.29, 1.042) as
shown in Fig. 7-3.

The covariance matrix of random variables X1, X2, X3 is determined from

, μ = [39.36 1,581.2 5.29], |S|=2.17×106

Then the joint probability density function is expressed as 

7.1.2 Bivariate Exponential Distribution

To apply the bivariate exponential distribution, each marginal needs to be expo-
nentially distributed. It is possible that the bivariate random variables may be
either positively or negatively distributed. Then there are two types of bivariate
exponential distributions. 

Type 1 model: The bivariate exponential distribution, proposed by Marshall
and Ingram (1967), Singh and Singh (1991), and Bacchi et al. (1994), is
expressed as

(7.3)

where variable X1 is exponentially distributed with parameter α as

variable X2 is also exponentially distributed with parameter β as
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and δ represents the correlation between the two variables, which is in the
range of [0, 1]. This parameter δ is defined through the correlation ρ of two
variables as

(7.3a)

Note that this bivariate exponential distribution is only valid when
ρ∈[–0.404, 0]; the relationship of ρ and δ plotted in Fig. 7-4.

Figure 7-3 Probability density functions of transformed random variables X1, X2, and X3.

Figure 7-4 Relationship between correlation coefficient and parameter of bivariate 
exponential distribution (Model I).
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Type 2 model: The Nagao–Kadoya (NK) model is another bivariate expo-
nential distribution. The NK model relaxes the restriction of the type 1
bivariate exponential distribution, which may be applied to both negatively
and positively correlated bivariate random variables. The NK model is
expressed as

(7.4)

where α denotes the parameter of variable X1, which is exponentially dis-
tributed, β denotes the parameter of variable X2, which is also exponentially
distributed, ρ denotes the correlation coefficient of variables X1 and X2, and
I0 denotes the modified first-kind Bessel function of zero order expressed as

(7.4a)

Example 7.3 Suppose two low-flow random variables X1 (duration in days)
and X2 (discharge in cfs) are exponentially distributed, with values as given in
Table E7-3. What is the joint bivariate exponential distribution? 

Solution A calculation of the correlation coefficient gives ρ = –0.28. Thus both
bivariate exponential distributions may be applied. Parameters of the marginal
exponential distributions are estimated for two random variables as 

The marginal probability density functions are given in Fig. 7-5. 

• Type 1 model: The parameter δ is determined by solving

= –0.28,

Table E7-3

No. X1 X2 No. X1 X2 No. X1 X2 No. X1 X2

1 50 2011 6 39 5166 11 65 2360 16 50 1866

2 40 5199 7 39 1421 12 53 797 17 52 5280

3 49 4930 8 60 1303 13 29 4813 18 40 2455

4 38 2547 9 64 1266 14 36 469 19 51 3041

5 47 1526 10 50 1839 15 48 2312 20 45 698
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which yields δ = 0.508. Then the joint probability density function, plot-
ted in Fig. 7-6(a), is 

• Type 2 model: For parameters α,β,ρ determined earlier, the bivariate dis-
tribution by the NK model, plotted in Fig. 7-6(b), is expressed as

Notice that, for the modified Bessel function, the variable can be complex.

7.1.3 Bivariate Gumbel Mixed Distribution

Gumbel (1960) proposed the Gumbel mixed distribution with standard Gumbel
marginal probability distributions. The general formulation of the Gumbel
mixed distribution (cumulative density function) is expressed as

(7.5)

Figure 7-5 Exponential probability density functions of random variable X1 and X2.
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where and are the Gumbel marginal distributions of random

variables X1 and X2, denotes the joint distribution of two random
variables X1 and X2, and θ denotes the correlation between the two random vari-
ables, which can be estimated as

(7.5a)

where ρ is the correlation coefficient of the two random variables.

Example 7.4 Suppose two low-flow random variables X1 (discharge in cfs) and
X2 (volume in cfs·day) follow the Gumbel distribution, with the data given in
Table E7-4. What is the joint cumulative probability distribution? 

Figure 7-6 Joint exponential probability density function for random variables X1 and 
X2. (a: Type I model; b: Type II model).

Table E7-4

No. X1 X2 No. X1 X2 No. X1 X2 No. X1 X2

1 610 35600 6 1100 37213 11 1360 48790 16 1470 38634

2 934 39744 7 1130 49226 12 1370 38682 17 1490 57769

3 949 33010 8 1170 42497 13 1380 45263 18 1490 55766

4 968 58538 9 1210 74840 14 1420 60824 19 1500 41943

5 993 36882 10 1330 47627 15 1460 50895 20 1530 60767

f(
x 1

,x
2)

a

x2 x1

f(
x 1

,x
2)

x2 x1

b

F xx1 1( ) F xx2 2( )

F x xX X1 2 1 2, ( , )

[ ] 3/20for,)6/cos(12 ≤≤−= ρρπθθ π ρ ρ= −⎡⎣ ⎤⎦ ≤ ≤2 1 6 0 2 3cos( / ) , /for



282 Risk and Reliability Analysis

Solution First one determines the parameters of the Gumbel marginal distribu-
tions. The probability distribution function of the Gumbel variable is

(7.5b)

Using the method of moments, one obtains

and (7.5c)

where M and S are the sample mean and sample standard deviation, respec-
tively, given by 

Then, the distribution parameters are 

; , 

The Gumbel marginal distributions are plotted in Fig. 7-7. 

Figure 7-7 Gumbel probability density functions of random variables X1 and X2.
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Now one must determine the parameter θ. The value of ρ = 0.407 is in the
range [0, 2/3]. Thus the Gumbel mixed distribution is valid and we have

Then the bivariate Gumbel mixed distribution for the two variables, plotted
in Fig. 7-8, is

with

and

7.1.4 Bivariate Gumbel Logistic Distribution

Similar to the bivariate Gumbel mixed distribution, the Gumbel logistic distribu-
tion is also considered as the bivariate extreme value distribution with Gumbel
marginals and may be applied for the representation of joint distribution of
extreme hydrologic events.   

Figure 7-8 Bivariate Gumbel mixed joint probability distribution function of random 
variables X1 and X2.
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The bivariate Gumbel logistic distribution is expressed as

(7.6)

where m is the parameter and Eq. 7.5b gives the marginal distribution represen-
tation of variables X1 and X2. It will be seen later that Eq. 7.6 has the same form
as the Gumbel–Hougaard copula formula.

Example 7.5 Using data in Example 7.4, if the Gumbel logistic distribution is
applied for the bivariate frequency analysis of two variables X1 and X2, deter-
mine its joint distribution.

Solution The Gumbel marginal distributions of two variables were already
obtained through Example 7.4. Now one must determine parameter m in the
bivariate Gumbel logistic model. This parameter can be estimated through the
correlation coefficient of two variables as

(7.6a)

The restriction of Eq. 7.6a is that correlated variables need to be positively
correlated.

The correlation coefficient ρ = 0.41; then from Eq. 7.6a one gets m = 1.3. To
this end, the bivariate Gumbel logistic distribution, plotted in Fig. 7-9, is
expressed as

with the marginal distribution of and given in Example 7.4. 

Figure 7-9 Bivariate Gumbel logistic distribution of random variables X1 and X2.
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7.1.5 Bivariate Gamma Distribution

Yue et al. (2001) discussed that the bivariate gamma distribution with the
gamma marginals might be useful for bivariate hydrologic frequency analysis. 

7.1.5.1 Izawa Model

This bivariate gamma model, developed by Izawa (1953), has the following form: 

(7.7)

 (0 ≤ ρ ≤ 1, 0 ≤ η ≤ 1) (7.7a)

(7.7b)

where In–1(.) is the modified Bessel function of the first kind, η is the association
parameter between random variables X1 and X2, and ρ is Pearson’s correlation
coefficient. 

7.1.5.2 Smith–Adelfang–Tubbs (SAT) Model

This bivariate gamma model with gamma marginals was developed by Smith et
al. (1982). The joint probability density function has the following form: 

(7.8)

where ,
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and

(7.8d)
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Example 7.6 Suppose the correlated rainfall variables intensity and depth have
the gamma marginals with the data given in Table E7-6. Determine the joint
probability distribution of rainfall intensity and depth.

Solution

1. First one needs to determine the marginal distribution of rainfall inten-
sity X1 and depth X2. Consider the gamma probability density function is
expressed as

Following the maximum likelihood method, one can obtain the
parameters of rainfall intensity X1 and depth X2:

X1 ~ Γ(1.5, 3.81) and X2 ~ Γ(0.85, 5.09)

with a correlation coefficient equal to 0.28. The probability density func-
tions are plotted and shown in Fig. 7-10.

2. Using the Izawa bigamma model for determination of parameters, one
obtains

By substituting these parameters into Eq. 7.7, the joint probability
density function of the Izawa bigamma model is thus obtained. The
results are plotted in Fig. 7-11.

3. Using the SAT model, one obtains K2 = 0.98 by Eq. 7.8b and η is obtained
from the previous model. Substituting the parameters and Eqs. 7.8a to
7.8d into Eq. 7.8 gives the joint probability density function of the SAT
model (see Fig. 7-12).

Table E7-6

No. X1 X2 No. X1 X2 No. X1 X2 No. X1 X2 No. X1 X2 No. X1 X2 No. X1 X2

1 2.65 7.95 9 1.09 2.17 17 2.47 7.42 25 3.2 6.5 33 1.2 6.2 41 1.3 6.5 49 3.04 6.08

2 1.8 3.59 10 1.12 4.49 18 2.25 4.5 26 3.5 6.9 34 1.9 3.8 42 4.5 4.5 50 1.09 5.43

3 3.03 9.1 11 3.03 3.03 19 2.78 5.55 27 4.2 8.4 35 1.6 8.2 43 2.1 4.2 51 2.65 10.6

4 1.26 2.51 12 3.25 3.25 20 2.24 2.24 28 5.3 5.3 36 3.1 12 44 1.1 5.5 52 1.89 3.77

5 2.91 2.91 13 1.6 3.19 21 0.72 2.87 29 1.3 4 37 1 7.2 45 3.2 9.7 53 1.21 4.84

6 2.65 5.3 14 2.54 5.08 22 3.26 6.52 30 2.7 11 38 1.3 6.4 46 3.2 9.5 54 2.2 15.4

7 4.41 4.41 15 8.05 8.05 23 2.43 4.85 31 1.7 5.2 39 1 3.8 47 1.7 5.2 55 2.74 5.48

8 3.69 7.38 16 2.24 2.24 24 1.11 4.43 32 3.2 13 40 1.3 6.5 48 7.3 7.3

f x x x( , , )
( )

exp( )α β
β

α αβ β= −−1 1

Γ

n mX X X X X= = = − = − = = =β β β η β β
1 2 1 1 2

3 81 5 09 3 81 1 28 0 28 0 32. ; . . . ; . .
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Figure 7-10 Gamma probability density functions of random variables X1 and X2.

Figure 7-11 Bivariate gamma distribution (Izawa model) of random variables X1 and X2.
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7.1.6 Bivariate Log-Normal Distribution

Yue (2000) discussed the application of the bivariate log-normal distribution in
hydrological frequency analysis. Consider the univariate log-normal distribu-
tion expressed as

(7.9)

where Y = lnX and μY and s Y are the mean and the standard deviation, respec-
tively, of Y.

The bivariate log-normal density function with log-normal marginals is
expressed as

(7.10)

Figure 7-12 Bivariate gamma distribution (SAT model) of random variables X1 and X2.
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(7.10a)

Example 7.7 Suppose the correlated rainfall variables X1 ~ rainfall intensity (in
inches/day) and X2 ~ depth (in inches) follow the log-normal distribution, with
the data given in Table E7-7. Determine the joint distribution of rainfall intensity
and depth.

Solution

1. To determine the parameters of the log-normal (LN2) marginal distribu-
tion of rainfall intensity X1 and depth X2, one takes the logarithm of vari-
ables X1 and X2. For rainfall intensity, one gets

So, X1 ~ LN2(0.74, 0.542). Similarly, parameters for rainfall depth are

. Thus, X2 ~ LN2(1.82, 0.382). The log-normal mar-
ginals are shown in Fig. 7-13. 

2. To determine the parameters needed for the bivariate log-normal distribu-
tion, one first calculates the correlation coefficient of the log transformed

Table E7-7

No. X1 X2 No. X1 X2 No. X1 X2

1 4.3 4.30 11 1.5 7.72 21 2.03 6.10

2 4.95 4.95 12 2.2 11.17 22 7.15 7.15

3 1.24 3.73 13 1.3 5.21 23 2.24 6.72

4 2.5 7.51 14 3.1 3.13 24 2.25 4.50

5 1.7 5.11 15 0.9 5.31 25 1.5 6.00

6 3.04 9.11 16 2.2 8.68 26 2.3 6.91

7 6.11 6.11 17 2.2 4.42 27 1.08 4.31

8 0.74 2.96 18 0.9 5.37 28 2.06 14.40

9 1.67 8.36 19 1.9 5.54 29 1.92 7.67

10 2.95 11.79 20 2.8 8.52
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rainfall variables: ρ = 0.25. The corresponding bivariate log-normal distri-
bution is then obtained as

These results are plotted in Fig. 7-14. 

7.1.7 Box–Cox Transformation

The Box–Cox transformation is used to transform the non-normal-distributed
random variables to normally (N) distributed random variables using the fol-
lowing equation:

(7.11)

Example 7.8 Consider the rainfall intensity variable in Example 7.7. Determine
parameter λ for the Box–Cox transformation.

Solution The rainfall intensity variable is expressed as random variable X1.
Parameter λ for the Box–Cox transformation is determined through the

Figure 7-13 Log-normal probability density functions of random variables X1 and X2.
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maximum likelihood method as λ = –0.07. The first four moments of the trans-
formed variable are

Thus, it is safe to say that the transformed variable by the Box–Cox transfor-
mation follows the normal distribution ~ N(0.76, 0.495).

7.1.8 Conditional Distributions

7.1.8.1 Conditional Bivariate Distributions

Let be the joint PDF of random variables X1 and X2, and let

and  be the marginal PDFs of X1 and X2, respectively. 

1. The conditional PDF of X1 given X2 = x2, , can be written as 

(7.12)

and the conditional cumulative distribution function (CCDF) of X1 given
X2 = x2 can be expressed as

(7.12a)

Figure 7-14 Bivariate log-normal density function of random variables X1 and X2.

f(x
1,x

2)

x1 x2

m S= =0 76 0 495. ; . ; skewness=0.005; kurtosis=2.56

f x xX X1 2 1 2, ( , )

)( 11
xf X )( 22

xf X

f x xX X x1 2 2 1 2| ( | )=

f
f x x

f X xX X x
X X

X
1 2 2

1 2

2

1 2

2 2
|

, ( , )

( )= =
=

F X x X x f u x du

f u x

X X x X X x

x X X

1 2 2 1 2 2

1 1 2

1 1 2 2 2

1 2

| |

,

( | ) ( | )

( ,

= =
−∞

≤ = = =∫
))

( )

du

f x

x

X

−∞
∫
1

2 2



292 Risk and Reliability Analysis

2. The conditional cumulative distribution function of X1 ≤ x1 given X2 ≤
x2, , is given as

(7.12b)

3. Special case: If random variables X1 and X2 are independent, then the
conditional bivariate distribution based on X2 = x2 and X2 ≤ x2 is the
same and is

(7.12c)

7.1.8.2 Conditional Trivariate Distributions

The conditional trivariate distribution can be derived in a manner similar to that
used for the conditional bivariate distribution. Let be the
joint PDF of random variables X1, X2, and X3, and let , , and

be the marginal PDFs of X1, X2, and X3, respectively. 

1. The conditional PDF of X1 and X2, given X3 = x3, is expressed as

(7.12d)

2. The conditional PDF of X1, given X2 = x2 and X3 = x3, is expressed as

(7.12e)

3. The conditional probability distribution of X1 and X2, given X3 ≤ x3, is
expressed as

(7.12f)

4. The conditional probability distribution of X1, given X2 ≤ x2 and X3 ≤ x3,
is expressed as

(7.12g)

5. Special case: Let X1, X2, and X3 be independent variables. Then the condi-
tional distributions of X1 and X2, given X3 = x3, and of X1 and X2, given
X3 ≤ x3, are the same and are expressed as 
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(7.12h)

The conditional distributions of X1, given X2 = x2 and X3 = x3, and of
X1, given X2 ≤ x2 and X3 ≤ x3, are the same and are expressed as

(7.12i)

In Example 7.9, only bivariate conditional distributions are consid-
ered. Trivariate conditional distribution can be obtained in a similar
manner.

Example 7.9 Consider Example 7.1. What is the probability density function of

and ?

Solution can be solved by using Eq. 7.12. The joint distri-
bution and each marginal have already been calculated in Example 7.1. Then

The conditional probability density functions are plotted in Fig. 7-15.

Figure 7-15 Conditional probability density functions.
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7.2 Return Period

7.2.1 Bivariate Return Period

Let random variables X1 and X2 have the bivariate distribution .
Then the joint return period can be expressed as

(7.13)

The conditional bivariate return period of X1 ≥ x1, given X2 = x2, is expressed as

(7.13a)

The conditional bivariate return period of X1 ≥ x1, given X2 ≤ x2, is expressed as

(7.13b)

7.2.2 Trivariate Return Period

1. Let random variables X1 X2, and X3 have the trivariate distribution

. Then the joint return period can be expressed as

(7.13c)

2. The conditional trivariate return period of X1 ≥ x2, or X2 ≥ x2, given
X3 = x3, is expressed as

(7.13d)

3. The conditional trivariate return period of X1 ≥ x2, or X2 ≥ x2, given
X3 ≤ x3, is expressed as

(7.13e)

4. The conditional trivariate return period of X1 ≥ x1, given X2 = x2 and
X3 = x3, is expressed as
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(7.13f)

5. The conditional trivariate return period of X1 ≥ x1, given X2 ≤ x2 and
X3 ≤ x3, is expressed as

(7.13g)

In Example 7.10, only bivariate conditional return periods are considered. The
trivariate conditional return period can be obtained in a similar manner.

Example 7.10 Consider Example 7.4. Determine the conditional return period
given X2 ≤ 50,000, 60,000, and 90,000 cfs·day.

Solution In Example 7.4, marginal distributions and joint distribution were cal-
culated. Thus the conditional return period can be estimated by using Eq. 7.12 as

and the corresponding conditional return period is directly expressed from
Eq. 7.13b. Substituting the results in Example 7.4 into these equations one can
obtain the conditional return period as plotted in Fig. 7-16.

7.3 Derivation of Multivariate Distributions

The problem with the conventional approach to deriving multivariate probabil-
ity distributions is that the marginal distributions need to be of the same type
and if the marginal distributions are of the same type, then the Box–Cox trans-
formation is needed to apply the multivariate normal distribution. This problem
can be circumvented by applying the copula method.

7.3.1 Copula Method

7.3.1.1 Definition of Copula

Consider multivariate random variables X1, X2, …, XN with marginal distribu-
tion functions as , where N is the number of random vari-
ables and xi is the value of random variable Xi (X1, …, XN). The joint distribution
of multivariate random variables X1, X2, …, XN is then expressed as 

(7.14)
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Copulas are functions that connect multivariate probability distributions to
their one-dimensional marginal probability distributions. Thus, the multivariate
probability distribution F is expressed in terms of its marginals and the associ-
ated dependence function C as

where the copula C is a mapping uniquely determined on the unit square whenever
, i = 1, 2, …, N, are continuous. A copula captures the essential features of the

dependence between the random variables and is essentially a function that connects
the multivariate probability distribution to its marginals. Thus the problem of
determining H reduces to determining C. There are a variety of copulas that can
be employed for deriving multivariate distributions. De Michele and Salvadori
(2003) applied the copula method for rainfall analysis. Favre et al. (2004)
applied elliptical and Archimedean copulas and copulas with quadratic section
for frequency analysis of flood peaks as well as that of peak flows and volumes.
Salvadori and De Michele (2004) employed copulas for bivariate frequency
analysis of hydrological events. De Michele et al. (2005) used a two-dimensional
copula to derive a bivariate probability distribution for evaluating the ade-
quacy of dam spillways. Zhang and Singh (2006) used Archimedean copulas for
flood frequency analysis. The Archimedean copula family is perhaps the most
popular and commonly used family in hydrology and environmental
engineering.

Figure 7-16 Conditional probability distribution of discharge (a) and conditional return 
period (b) given different flood volumes (cfs·day).

a b

C F x F x F x F x x xX X X N X X X NN N1 2 1 21 2 1 2( ), ( ), ..., ( ) ( , , ...,, ,...⎡⎣ ⎤⎦ = ))

F xX ii
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7.3.1.2 Archimedean Copula 

The Archimedean copulas are found to be perhaps the most important copulas
for hydrologic analysis for the following reasons: 

1. They can be easily constructed.
2. A large variety of copula families belong to this class (see Nelson 1999).
3. The Archimedean copulas have desirable mathematical properties, such

as convexity of generating function, convexity of level curves, continuity,
and generation of copula by nonparametric methods.

7.3.1.3 Two-Dimensional Archimedean Copula

Let be a continuous, strictly decreasing function from I to [0, ] such that
, defined as

(7.15)

Let be the pseudo-inverse of . Then, C is the function from I2 to I,
where and is given as

(7.16)

where is the generating function of the Archimedean copula, θ is the cop-
ula parameter, which is hidden in the generating function, and Cθ denotes the
representation of the copula. Thus, the Archimedean copula is determined from
Eq. 7.15. Furthermore, the N-dimensional Archimedean copulas can be defined
as described in the following section.

7.3.1.4 N-Dimensional Archimedean Copula

Following the two-dimensional Archimedean copula, one can express the N-
dimensional copula as

(7.17)

Following Nelson (1999), one has that the functions CN in Eq. 7.17 are the
serial iterates of the two-dimensional Archimedean copulas generated by .
Then for N ≥ 3,

(7.18)

7.3.1.5 Archimedean Copula Families

There exists a large variety of Archimedean copula families that are used for
constructing copulas to represent multivariate distributions. Here the most
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widely used one-parameter Archimedean copulas are introduced. The two-
dimensional widely used Archimedean copulas are given first. 

Gumbel–Hougaard Archimedean Copula

The Gumbel–Hougaard Archimedean copula was first introduced by Gumbel
(1960). Nelson (1999) discussed that the Gumbel–Hougaard copula can be con-
sidered as the representation of the bivariate extreme value distribution. By vir-
tue of this characteristic, the Gumbel–Hougaard Archimedean copula might be a
suitable candidate for multivariate hydrologic frequency analysis of extreme
hydrological events (i.e., peak discharge and the corresponding volume and
duration). This copula can be expressed as

(7.19)

where θ is a parameter of the generating function , with t = u1 or u2
as a uniformly distributed random variable varying from 0 to 1, and ,
which is Kendall’s coefficient of correlation between random variables X1 and
X2. Note that and  in this equation. Parameters
θ and τ will have the same connotation in the following three copulas.

Example 7.11 Determine the joint distribution of random variables X1 and X2
using the Gumbel–Hougaard copula, where the marginal distributions of X1 and
X2 are given as X1 ~ exp(λ), and X2 ~ N(μ, σ 2). 

Solution The marginal distributions of two random variables X1 and X2 are

Substituting the marginal distribution obtained into Eq. 7.17, one can express
the joint distribution through the Gumbel–Hougaard copula as 

where  is the cumulative probability of X2.

Ali–Mikhail–Haq Archimedean Copula

The Ali–Mikhail–Haq Archimedean copula was developed by Ali et al. (1978).
This Archimedean copula family was developed based on the concept of the
univariate logistic distribution, which may be specified by considering a suitable
form for the odds in favor of a failure against survival. The parameter of this
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copula is a measure of departure from independence or measure of the associa-
tion between two variables. This copula can be expressed as

(7.20)

with

(7.20a)

Example 7.12 Determine the joint distribution of random variables X1 and X2
using the Ali–Mikhail–Haq copula, where the marginal distributions of X1 and
X2 are given as X1 ~ exp(λ), and X2 ~ Gumbel(α , β). The marginal distribution of
X1 and X2 is given as

Substituting u1 and u2 into Eq. 7.20, one can obtain the joint distribution
through the Ali–Mikhail–Haq copula as 

Frank Archimedean Copula

The Frank Archimedean copula was developed by Frank (1979). The Frank cop-
ula satisfies all the conditions for the construction of bivariate distributions with
fixed marginals. It is absolutely continuous and has full support on the unit
square. This copula can be expressed as

(7.21)

with

(7.21a)
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where D1 is the first-order Debye function Dk, which is defined as

(7.21b)

The Debye function Dk with negative argument can be expressed as

(7.21c)

Example 7.13 Determine the joint distribution of random variables X1 and X2 by
the Frank copula, where the marginal distributions of X1 and X2 are given as
X1 ~ exp(λ), and X2 ~ Gumbel(α , β). 

Solution Again for two random variables X1 and X2, we have

Substituting u1 and u2 into Eq. 7.21, one can obtain the joint distribution
through the Frank copula as

Cook–Johnson (Clayton) Archimedean Copula

This copula can be used for modeling nonelliptically symmetric (non-normal)
multivariate data (Nelson 1999). When , this copula represents the bivariate
logistic distribution. The formulation of this copula is expressed as follows: 

(7.22)

with

(7.22a)

Example 7.14 Determine the joint distribution of random variables X1 and X2 by
the Cook–Johnson Archimedean copula, where the marginal distributions of X1
and X2 are given as X1 ~ exp(λ) and X2 ~ Gumbel(α , β).

Solution The marginal distributions of random variables X1 and X2 are given in
Example 7.13. With this in hand and substituting the marginal distributions into
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Eq. 7.22, one can obtain the joint distribution through the Cook–Johnson (Clay-
ton) copula as

Joe Archimedean Copula

The Joe Archimedean copula was first introduced by Joe (1993). When θ = 1, this
copula represents the bivariate distribution of two independent variables. Again
this copula is applicable to extreme value analysis and is independent of
univariate marginals. This copula can be expressed as

(7.23)

with

(7.23a)

Example 7.15 Determine the joint distribution of random variables X1 and X2 by
the Joe Archimedean copula, where the marginal distributions of X1 and X2 are
given as X1 ~ exp(λ), and X2 ~ Gumbel(α , β).

Solution The marginal distribution of exponential- and Gumbel-distributed
random variables are given in the previous examples, and thus by substituting
these marginal distributions into Eq. 7.23, one can obtain the joint distribution
using the Joe copula as

Survival Copulas Associated with Gumbel’s Bivariate Exponential 
Distribution

As its name implies, this family is the survival copula, which is actually the sur-
vival probability distribution of the Gumbel bivariate exponential distribution.
It can be expressed as

(7.24)
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with

(7.24a)

Example 7.16 Determine the joint distribution of random variables X1 and X2 by
the survival copula, where the marginal distributions of X1 and X2 are given as
X1 ~ exp(λ) and X2 ~ Gumbel(α , β).

Solution The marginal distributions of exponential- and Gumbel-distributed
random variables are given in the previous examples, and thus by substituting
these marginal distributions into Eq. 7.24, one can obtain the joint distribution
using survival copulas associated with Gumbel’s bivariate exponential distribu-
tion as

There are still other Archimedean copulas (e.g., the copula proposed by Gen-
est and Ghoudi (1994)) in the Archimedean copula family. By using the same
procedure as for the generation of two-dimensional Archimedean copulas, N-
dimensional Archimedean copulas can be generated and expressed as

where superscript N denotes the dimension of the copula and u denotes the
variable vector. 

Following Nelson (1999), we obtain the copula function , the serial iter-
ate of the Archimedean two-dimensional Archimedean copula generated by j,
which can be expressed as 

but this procedure may not always succeed. Thus only the Gumbel–Hougaard,
Frank, Cook–Johnson (Clayton), and Ali–Mikhail–Haq multivariate copulas are
considered here. These N-dimensional Archimedean copulas can be represented
as follows: 

• Gumbel–Hougaard multivariate Archimedean copula: 

(7.25)

with generating function . 
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• Frank multivariate Archimedean copula: 

(7.26)

with .

• Cook–Johnson (Clayton) multivariate Archimedean copula:

(7.27)

with generating function . 

• Ali–Mikhail–Haq multivariate Archimedean copula:

(7.28)

7.3.1.6 Estimation of Copula Parameter

The copula parameter may be estimated either semiparametrically by the maxi-
mum likelihood method for both two-dimensional or N-dimensional Archimedean
copulas or by the nonparametric method through Kendall’s τ (tau) for two-dimen-
sional copulas. 

Semiparametric Method

To estimate the copula parameter θ, two conditions may be considered. First, if
appropriate marginals are already available, then one simply expresses the like-
lihood function for the copula. The resulting estimate of θ would then be mar-
ginal dependent; the same maximum likelihood methodology, which is usually
applied for estimation of parameters of univariate probability distributions, is
indirectly effected for the copula method. This is a semiparametric method. Sec-
ond, if nonparametric estimates are contemplated for the marginals, the estima-
tion of the copula parameter θ will be marginal free. 

The semiparametric estimation can be expressed step by step as follows:

1. Let a random sample be given from the

distribution

(7.29)
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2. Write the log-likelihood function for the copula in Eq. 7.29 as

(7.30)

where Fin denotes n/(n + 1) times the marginal empirical distribution func-
tion of the ith variable (Genest and Rivest 1993). This rescaling avoids the
difficulty of the potential unboundedness of , since
some of the uis tend to 1. The term denotes the probability density
function of the copula, which has the same meaning as the probability
density function of a univariate random variable. 

3. According to the property of the semiparametric estimator, θ is consis-
tent and asymptotically normal under the same conditions as the maxi-
mum likelihood estimation (Genest, et al. 1995), which is an asymptotic
property. To maximize the preceding log-likelihood function the follow-
ing step is needed:

(7.31)

where L denotes the log-likelihood function and denotes the deriva-
tive of L with respect to parameter θ.

Nonparametric Method

Genest and Rivest (1993) described a procedure to identify a copula func-
tion based on a nonparametric estimation for bivariate Archimedean copu-
las. It is assumed that a random sample of bivariate observations

is available and that its underlying distribu-
tion function has an associated Archimedean copula , which
also can be regarded as an alternative expression of F. Then the following
steps are followed to identify the appropriate copula:

• Determine Kendall’s τ (the dependence structure of the bivariate random
variables) from observations as 

(7.32)

where n is the number of observations; sign = 1 if x1i ≤ x1j and x2i ≤ x2j
and, otherwise, sign = –1; i, j = 1, 2, …., n; and τn is the estimate of τ from
the observations. 

• Determine the copula parameter θ from this value of τ according to
the relationship between Kendall’s τ and copula parameter θ (i.e., for the
Gumbel–Hougaard copula, the relationship between Kendall’s τ and the
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copula parameter θ is given by Eq. 7.19 and is similar for other
Archimedean copula families). 

• Obtain the generating function of each copula, ϕ, by inserting the param-
eter θ obtained.

• Obtain the copula from its generating function ϕ.

Example 7.17 Consider the bivariate flow variables X1 (volume in cfs·day) and
X2 (duration in days) with the sample data for each random variable given in
Table E7-17. Suppose that the Gumbel–Hougaard copula family can be applied
to this bivariate data set. Determine the parameter by the semiparametric
method for this bivariate case and the parameter by the nonparametric method
for correlated variables X1 and X2.

Solution

1. Estimation by the semiparametric method for the bivariate variables:

(a) Determine the marginal probabilities: For simplicity, empirical prob-
abilities are obtained from the Gringorten plotting-position formula
as Pi = (I – 0.44)/(n + 0.12) in which n is the sample size and i is the
rank. To avoid the possibility of some of the uis tending to 1, we
need to take n/(n + 1) times the marginal probability denoted as Pic
[i.e., Pic = nPi/(n + 1)].

Table E7-17

No. X1 X2 No. X1 X2 No. X1 X2 No. X1 X2

1 16664 12 16 21173 12 31 42881 17 46 85723 17

2 36987 19 17 37707 11 32 23467 15 47 38543 18

3 42365 14 18 41328 15 33 58831 14 48 44991 14

4 54302 21 19 8259 15 34 36481 16 49 71320 15

5 58371 22 20 40544 14 35 68179 14 50 46025 12

6 34125 20 21 52301 13 36 78119 16 51 67491 26

7 38884 18 22 79864 15 37 13775 12 52 38752 12

8 19104 32 23 53831 12 38 23484 16 53 52107 19

9 64769 18 24 5263 15 39 95828 10 54 65776 18

10 18644 12 25 28363 18 40 16513 11 55 26842 17

11 23249 22 26 17538 8 41 33681 9

12 31075 17 27 18926 11 42 46742 22

13 13246 12 28 49351 15 43 22192 11

14 12854 8 29 44354 12 44 48304 15

15 29882 13 30 41115 15 45 63794 18
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(b) Obtain the probability density function of the Gumbel–Hougaard
copula: Similar to the conventional approach for the derivation of a
joint probability density function from its probability distribution
functions, the density function represented by the copula is

(7.33)

in which u1 and u2 denote the marginal probabilities for random vari-
able X1 and X2, respectively. 

(c) Obtain the log-likelihood function as in Eq. 7.31.
(d) Take the derivative with respect to parameter θ of the log-likelihood

function obtained in step (c) and set the equation equal to 0.
(e) Then, parameter θ is calculated numerically. 
(f) Following the preceding steps, we obtain θ = 1.32.

2. Estimation by nonparametric estimation of variables X1 and X2:

(a) Calculate Kendall’s τ from the data set by Eq. 7.32: τn = 0.21.

(b) Obtain the copula parameter θ from the relationship between Ken-
dall’s τ and the copula parameter. For the Gumbel–Hougaard copula

( ), we have θ =1.25. 

7.3.1.7 Identification of the Copula by the Nonparametric Approach

The nonparametric approach employs the Q–Q plot, which can be applied for
the identification of an appropriate copula. This involves the following steps:

1. Define an intermediate random variable that has a distri-
bution function . 

2. Construct a nonparametric estimate of K(z) as follows:

(a) Obtain zi = {number of (x1j, x2j) such that x1j < x1i and x2j < x2i}/(n – 1)
for i = 1, …, n.

(b) Construct an estimate of K(z) as = the proportion of zis ≤ z.

3. Construct a parametric estimate of K(z) using

(7.34)

4. Construct a plot of nonparametrically estimated Kn(z) versus parametri-
cally estimated K(z) by using Eq. 7.31. This plot is referred to as the Q–Q
plot. If the plot is in agreement with a straight line passing through the
origin at a 45° angle then the generating function is satisfactory. The 45°
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line indicates that the quantiles are equal. Otherwise, the copula  function
needs to be reidentified. 

Example 7.18 Consider the same data as in Example 7.17. Obtain the Q–Q plot
for the identification of the Gumbel–Hougaard copula.

Solution

(a) Construct an intermediate variable Z by Eq. 6.35. 

(b) Obtain Kn(Z) as = the proportion of zis ≤ z. These two steps sim-
ply sort the data. 

(c) Obtain the parametric estimation of K(z). For the Gumbel–Hougard cop-
ula, the generating function is

Then, taking the derivative of the generating function with respect to
t we have

Thus 

(d) The Q–Q plot of Kn (z) and Kc is given in Fig. 7-17.

Figure 7-17 Comparison of parametrically and nonparametrically estimated values of K.
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7.3.2 Generic Bivariate Probability Distribution

Herr and Krzysztofowicz (2005) derived a generic bivariate model for analyz-
ing and forecasting rainfall in space. The bivariate distribution function

of random variables X and Y (both greater than or
equal to 0) is defined as

(7.35)

where 

(7.36a)

(7.36b)

(7.36c)

(7.36d)

(7.37a)

(7.37b)

(7.38)

Equations 7.37a, 7.37b, and 7.38 denote continuous distributions. Equations
7.36a–d define four joint probabilities. Thus, the bivariate model entails three
probabilities and two univariate distributions and one bivariate distribution. It
leads to the following marginal distributions of X and Y:

(7.39a)

(7.39b)

where 

(7.39c)

(7.39d)

Likewise one can derive the conditional distributions. The conditional distri-
bution function of X, given Y = y for y ≥ 0, has two parts:

(7.40a)
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(7.40b)

The conditional distribution function of Y, given X = x for x ≥ 0, also has two
parts:

(7.41a)

(7.41b)

Here lowercase letters imply density functions. The conditional distribution
functions of X, given Y = y, X > 0, Y > 0, and of Y, given X = x, X > 0, Y > 0, can
be written as

(7.41c)

(7.41d)

The marginal conditional distribution functions of X, given X > 0, and of Y,
given Y > 0, are expressed as

(7.42a)

(7.42b)

The marginal probabilities of occurrence (for precipitation) can be written as

(7.43a)

(7.43b)

(7.43c)

Construction of the bivariate model defined by Eq. 7.35 requires determina-
tion of six elements: p10, p01, p11, HX, HY, and H. First, the bivariate conditional
distribution H needs to be constructed. This can be accomplished from condi-
tional marginal distributions F and G and a dependence parameter γ in several
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different ways. Kelly and Krzysztofowicz (1997) applied the meta-Gaussian
model to determine H. This led them to construct Φ from four constants and
four univariate functions:

(7.44)

Krzysztofowicz (1999) described two methods for determining probability π
from πX and πY. Once these are obtained, p10 , p01, and p11 can be obtained by
using Eqs. 7.43a–c. 

For constructing the bivariate meta-Gaussian distribution, first two marginal
conditional distributions F and G need to be determined. To that end, let Q rep-
resent the standard normal distribution function and q the corresponding stan-
dard normal density function. The normal quantile transform of each
conditional variate, (X|X > 0, Y > 0) and (Y|X > 0, Y > 0), can be expressed as 

(7.45a)

(7.45b)

where Q–1 is the inverse of Q and Z and W are standard normal. The bivariate
conditional distribution of (X,Y|X > 0, Y > 0) is meta-Gaussian (Kelly and
Krzysztofowicz 1997) if the distribution function is expressed as

(7.46a)

with the corresponding density function expressed as 

(7.46b)

and with B the bivariate normal distribution function such that 

(7.46c)

where γ = cor(Z, W) is Pearson’s product moment correlation coefficient
between Z and W. Parameter γ is uniquely related to Spearman’s rank correla-
tion coefficient ρ between Z and W as

(7.47)

Now the conditional distribution function , defined by Eq. 7.41d, can be
expressed as
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(7.48)

The corresponding density function can be obtained by using Eq. 7.41b and 

(7.49)

Likewise, the conditional distributions and  can be
derived.

The bivariate distribution Φ, the marginal distributions Φ X and ΦY, and the
conditional distributions ΦX|γ and Φγ|X can be determined from the eight ele-
ments in Eq. 7.44. The advantages of the meta-Gaussian distribution are (1) F and
G can be of any form; (2) H and h can be expressed analytically; (3) it is easy to
determine Q and Q–1; and it is easy to estimate γ.

7.4 Questions

7.1 Get instantaneous yearly peak discharge and associated volume data for
a period of at least 30 years for a gauging station near your town. Check
whether the frequency distributions of peak discharge and volume are
normal. If not, then use the Box–Cox transformation to transform them
to normal. Then sketch the joint probability density function of these two
variables. 

7.2 Obtain the duration data for the flood events in Question 7.1. If the flood
duration is not normally distributed, then use the Box–Cox transforma-
tion to transform it to normal. Then sketch the trivariate probability den-
sity function. 

7.3 Obtain data for two low-flow duration and discharge data for a gauging
station near your town. Assume that they are exponentially distributed.
Then sketch their joint distribution. 

7.4 Suppose the low-flow variables in Question 7.3 follow the Gumbel dis-
tribution. Sketch the joint Gumbel distribution.

7.5 Suppose the low-flow variables in Question 7.3 follow the Gumbel logis-
tic distribution. Then sketch the bivariate distribution. 

7.6 Obtain data on rainfall intensity and depth for a rain gauge station
nearby. Assume that intensity and depth have gamma distributions.
Sketch the joint probability distribution of rainfall intensity and depth.

7.7 Suppose rainfall intensity and X2 follow a log-normal distribution.
Sketch the joint distribution of rainfall intensity and depth.
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7.8 Consider rainfall intensity in Question 7.7. Determine parameter λ for
the Box–Cox transformation.

7.9 Consider Question 7.1 and take a value of the conditioning variable as,
say, 5,000. Then determine the probability density function if the condi-
tioning variable (X2) takes on a value equal to the given value and also
when it is less than or equal to the given value.

7.10 Consider Question 7.4. Determine the conditional return period given
X2 ≤ 5,000, 10,000, and 500,000 cfs·day.

7.11 Determine the joint distribution of random variables X1 and X2 using the
Gumbel–Hougaard copula, where the marginal distribution of X1 is
given by a gamma distribution and the marginal distribution of X2 is
given by a normal distribution. 

7.12 Determine the joint distribution of random variables X1 and X2 using the
Ali–Mikhail–Haq copula, where the marginal distribution of X1 is
gamma and the marginal distribution of X2 is normal. 

7.13 Determine the joint distribution of random variables X1 and X2 by the
Frank copula, where the marginal distribution of X1 is gamma and the
marginal distribution of X2 is Gumbel. 

7.14 Determine the joint distribution of random variables X1 and X2 by the
Cook–Johnson Archimedean copula, where the marginal distribution of
X1 is gamma and the marginal distribution of X2 is Gumbel. 

7.15 Determine the joint distribution of random variables X1 and X2 by the
Joe Archimedean copula, where the marginal distribution of X1 is
gamma and the marginal distribution of X2 is Gumbel. 

7.16 Determine the joint distribution of random variables X1 and X2 by the
survival copula, where the marginal distribution of X1 is gamma and the
marginal distribution of X2 is Gumbel. 

7.17 Obtain data for flow variables X1 (volume in cfs·day) and X2 (duration in
days) from a nearby gauging station. Suppose that the Gumbel–
Hougaard copula family would be applied to this bivariate data set.
Determine the parameter by the semiparametric method for this bivari-
ate case and the parameter by the nonparametric method for correlated
variables X1 and X2.

7.18 Considering Question 7.17, obtain the Q–Q plot for the identification of
the Gumbel–Hougaard copula.
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Chapter 8

Parameter Estimation

To conduct a probabilistic analysis (e.g., deriving probabilistic information and
performing relevant statistical inferences) for a given real-world engineering
project or system, most often probability density functions (as described in
Chapters 4 and 5) are used. After selecting a suitable probability model (PDF in
continuous and PMF in discrete cases) for the random variable of interest, the
parameters (i.e., the variables that govern the characteristics of the PDF or PMF)
need to be determined. The most common procedure for determining parame-
ters of a PDF or PMF is performed by fitting the known mathematical function
to the observed data. Once the parameters of the fitted distribution are deter-
mined, this can serve as a reasonable model for the phenomenon under consid-
eration. Fitting a mathematical model to match the experimental data falls in the
domain of parameter estimation. In other words, the problem of parameter esti-
mation can be stated as the problem of determining the probability density func-
tion for the random variable X given a set of observations of X. It is of particular
practical importance, because most parameters cannot be measured directly.

When discussing various methods of parameter estimation, it is worth dis-
cussing the accuracy of estimated parameters. An estimator â of a known or
unknown quantity a is a function of the observed random sample x1,..., xn from
the population X that is available to estimate the value of a. It is necessary to
emphasize that the estimator â is itself a random variable since its value depends
on the sample values of the random variable that are observed.
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This chapter presents an overview of various methods for parameter estima-
tion and the most commonly used techniques for accuracy assessment of esti-
mated parameters. 

8.1 Methods of Parameter Estimation 

A number of methods are available for estimating parameters of probability distri-
butions. Some of the popular methods used in hydrology include (1) the method
of moments, (2) the method of probability-weighted moments, (3) the method of
mixed moments, (4) L-moments, (5) maximum likelihood estimation, and (6) the
least-squares method. A brief review of these methods is given here.

8.1.1 Method of Moments 

This method was developed by Karl Pearson in 1902 based on the premise that,
when the parameters of a probability distribution are estimated correctly, the
moments of the probability density function are equal to the corresponding
moments of the sample data. The method of moments is frequently utilized to
estimate parameters of linear hydrologic models (Nash 1959, Dooge 1973, Singh
1988). Nash (1959) developed the theorem of moments relating the moments of
input, output, and impulse response functions of linear hydrologic models.
Moments of functions are amenable to the use of standard methods of trans-
form, such as the Laplace and Fourier transforms. The method of moments has
been used to estimate parameters of frequency distributions. Wang and Adams
(1984) reported on parameter estimation in flood frequency analysis. Ashkar et
al. (1988) developed a generalized method of moments and applied it to the gen-
eralized gamma distribution. Kroll and Stedinger (1996) estimated moments of a
log-normal distribution using censored data. 

In the method of moments, distribution moments are equated to the sample
moments to estimate distribution parameters. The advantage of the method of
moments is that moments are simple to understand and interpret, and they are
easy to calculate. But the disadvantage is that they are often not available for all
the probability distribution functions and they do not have the desirable opti-
mality properties of other methods, such as the maximum likelihood and least-
squares estimators. Another important application of the method of moments is
to provide starting values for the more precise estimates. The main steps for
parameter estimation for a distribution having k parameters using the method of
moments are as follows:

1. Compute the algebraic expressions for the first k moments from the
assumed distribution.

2. Compute the numerical values for the first k sample moments from the
sample data.
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3. Equate each algebraic expression of the assumed distribution moment to
the corresponding numerical value of the sample moment. This will
form k algebraic equations.

4. Solve these equations to determine the k unknown parameters.

8.1.1.1 Computation of Algebraic Expressions for Moments

We have discussed central moments (moments about the mean) and moments
about the origin in Chapter 3. Here we will further generalize the concept of statis-
tical moments about any generic point. Let X be a continuous variable (which may
or may not be a random variable) and f(x) be its function satisfying some necessary
conditions. The rth moment of f(x) about an arbitrary point is denoted as (f).
Here μ denotes the moment, the subscript (r ≥ 0) denotes the order of the moment,
the superscript denotes the point about which the moment is taken, and the quan-
tity within the parentheses denotes the function, in normalized form, whose
moment is to be taken. Then, the rth moment of a function f(x) can be defined as

(8.1)

This is the definition normally used for functions representing PDFs. If the
area enclosed by the function f(x) does not add to unity (i.e., f(x) is not a PDF),
then the definition of Eq. 8.1 is modified as

(8.2)

As the denominator in Eq. 8.2 defines the area under the curve, which is usu-
ally unity or made to unity by normalization, the two definitions are numeri-
cally the same. In this text the definition of Eq. 8.1 is used with f(x) normalized
beforehand. It is assumed here that the integral in Eq. 8.1 converges. There are
some functions that possess moments of lower order; some do not possess any
moment except of zero order. However, if a moment of higher order exists, then
moments of all lower orders must exist. Figure 8-1 shows the concept of moment
of a function about an arbitrary point located at a distance a from the origin.

Moments are statistical descriptors of a distribution and reflect on its quanti-
tative properties. For example, if r = 0 then Eq. 8.1 yields

(8.3)
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Thus, the zero-order moment is the area under the curve defined by f(x) sub-
ject to −∞ < x < ∞ .

If r = 1, then Eq. 8.1 yields

(8.4)

where μ is the centroid of the area or mean. Thus, the first moment is the
weighted mean about the point a. If a = 0, it is called the first moment about the
origin. It gives the mean and is represented by

(8.5a)

When a = μ , the rth moment about the mean is represented by and is
called central moment:

(8.5b)

The descriptive properties of the moments with respect to a specific function
can be summarized as follows:

μ0 = area
μ'1 = μ = mean
μ2 = variance, a measure of dispersion of the function about the mean
μ3 = measurement of skewness of the function
μ4 = kurtosis, a measure of the peakedness of the function

Figure 8-1 Concept of moment of a function f(x) about an arbitrary point.
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The second moment about the mean is known as variance and is a measure
of how the data are scattered about the mean value. The third moment is a mea-
sure of symmetry; it indicates whether the data are evenly distributed about the
mean or the mode is to the left or right of the mean. If the mode is to the left of
the mean, the data are said to have positive skew and if it is to the right, the data
are said to have negative skew. The coefficient of skewness is a quantitative mea-
sure of the skewness in the data. The fourth moment is a measure of peakedness,
which is explained through kurtosis. Kurtosis is the peakedness or flatness of
data with respect to the normal distribution.

8.1.1.2 Determination of Sample Moments

Let the sample data be represented by a discrete function fj, j = –∞ , …, –1, 0, 1, …, ∞ .
The rth moment about any arbitrary point can be defined in a manner analogous to
that for continuous functions. When the arbitrary point is the origin, the rth moment
is defined as

(8.6)

when fx is normalized:

(8.7)

Otherwise,

(8.8)

It is thus seen that Eq. 8.6 and Eq. 8.8 are analogous to Eq. 8.1 and Eq. 8.2.
Figure 8-2 explains the concept of moment of a discrete function.

Sample moments are often biased owing to the small size of the sample.
Commonly, the first four moments are used in parameter estimation. Selected
central moments or moments about sample mean (x) are
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The ratios of moments summarize useful information about a probability
distribution. The commonly used ratios are identified by their popular names:

coefficient of variation = cv = 

coefficient of skewness = cs = 

coefficient of kurtosis = ck = 

Example 8.1 The histogram of annual flows of the Sabarmati River in India is
given in Table 8-1. Find the mean and variance of the sample data and suggest
the candidate distribution(s) using the method of moments.

Solution Summing the frequencies gives

6 + 11 + 9 + 19 + … + 2 + 0 + 0 = 98

The first moment of the data is

 [(150 × 6) + (250 × 9) + (350 × 11) + …+ (1,750 × 1)]/98 = 664.29 cumecs

This is the mean of the data.
The second moment about the mean gives the variance:

second moment = [(150 – 664)2 × 6 + (250 – 664)2 × 9 + … + (1,750 – 664)2

× 1]/98 = 120,000 cumecs2

Figure 8-2 Concept of moment of a discrete function about an arbitrary point.
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Hence, the standard deviation is (120,000)0.5 = 346.41 cumecs. One then
obtains the following results:

coefficient of variation = 346.41/664.29 = 0.52

third moment about the mean = [(150 – 664)3 × 6 + (250 – 664)3 × 9 + … +
(1,750 – 664)3 × 1] × 98/(97 × 96) = 31,148,196

coefficient of skewness = 31,148,196/(120,000)1.5 = 0.75

fourth moment about the mean = [(150 – 664)4 × 6 + (250 – 664)4 × 9 +… +
(1750 – 664)4 × 1] × 98 × 98/(97 × 96 × 95) = 50,810,846,446

coefficient of kurtosis = 50,810,846,446/(120,000)2 = 3.53

Note that the normal distribution has zero skewness and its kurtosis is 3.
Based on sample moments, one can select several candidate distributions for

determining their parameters. As an example, we selected the normal, the log-
normal, and the gamma distributions as candidate distributions. Now, we will
use the method of moments to determine their parameters.

As described in Chapter 5, the normal distribution is given as 

It has two parameters, μX and σX. By definition these are the first and second

moments of the normal distribution, that is, and .

Table 8-1 Data description of annual flows of the Sabarmati River in India

Discharge 
range (m3/s)

Average 
(m3/s)

Frequency Discharge 
range (m3/s)

Average 
(m3/s)

Frequency

100–200 150 6 200–300 250 9

300–400 350 11 400–500 450 9

500–600 550 9 600–700 650 9

700–800 750 19 800–900 850 6

900–1,000 950 6 1,000–1,100 1,050 1

1,100–1,200 1,150 5 1,200–1,300 1,250 2

1,300–1,400 1,350 3 1,400–1,500 1,450 0

1,500–1,600 1,550 2 1,600–1,700 1,650 0

1,700–1,800 1,750 1
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Thus, by using the method of moments the parameter estimates for and

are given as

= the first sample moment = 664.29

= the second sample moment = 346.412

The log-normal distribution (see Chapter 5) is given as

The log-normal distribution can be treated in exactly the same way as the nor-
mal distribution by transforming the random variable X into another random vari-
able Y using the transformation Y = ln(X). As described in Chapter 5, the estimates
of the mean and variance of Y can be estimated using the following relations:

= 6.5

= 0.492

The estimate for the coefficient of skew is

= 1.71

The PDF of the gamma distribution with k and λ as parameters has been
described in Chapter 4 as

The algebraic expressions for the mean and variance of X are expressed as

and

Equating the distribution moments of X with its sample moments, one gets
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and

On solving these two equations, one gets and . The fitted
gamma distribution has a coefficient of skewness of 1.04.

The plot in Fig. 8-3 compares the PDFs of various fitted distributions with
the observed data relative frequency distributions. It appears that out of these
three candidate distributions, the gamma distribution is a better choice.

Example 8.2 If one wants to fit an exponential distribution to the data given in
Example 8.1, what will be its parameter based on the method of moments?

Solution As given in Chapter 4, the PDF of an exponential distribution is

fx(x) = λe–λx, x ≥ 0

It has only one parameter, λ. The first distribution moment of X is 

Based on the method of moments, the first distribution moment of X = the
first sample moment of X, that is, or . 

Figure 8-3 Comparison of fitted distributions.
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8.1.2 Method of Maximum Likelihood 

The maximum likelihood estimation (MLE) method is widely accepted as one of
the most powerful parameter estimation methods. Asymptotically, the maxi-
mum likelihood (ML) parameter estimates are unbiased, have minimum vari-
ance, and are normally distributed, whereas in some cases these properties hold
for small samples. The MLE method has been extensively used for estimating
parameters of frequency distributions as well as fitting conceptual models. 

Let f(x; a1, a2,…, am) be a PDF of the random variable X with parameters
ai, i = 1, 2, …, m, to be estimated. For a random sample of data x1, x2, …, xn,
drawn from this probability density function, the joint PDF is defined as

(8.12)

Interpreted conceptually, the probability of obtaining a given value of X,
say x1, is proportional to f(x1; a1, a2, …, am). Likewise, the probability of obtain-
ing the random sample x1, x2, …, xn from the population of X is proportional to
the product of the individual probability densities or the joint PDF, owing to
the independence among x1, x2, …, xn. This joint PDF is called the likelihood
function, denoted

(8.13)

where parameters ai, i = 1, 2, …, m, are unknown.
By maximizing the likelihood that the sample under consideration is the one that

would be obtained if n random observations were selected from f(x; a1, a2, …, am), the
unknown parameters are determined, hence giving rise to the name of the method.
The values of parameters so obtained are known as ML estimators. Since the loga-
rithm of L attains its maximum for the same values of ai, i = 1, 2, … , m, as does L, the
MLE function can also be expressed as

(8.14)

Frequently ln[L] is maximized, for it is much easier to find the maximum of
the logarithm of the maximum likelihood function than that of L itself.

The procedure for estimating parameters or determining the point where the
MLE function achieves its maximum involves differentiating L or lnL partially
with respect to each parameter and equating each differential to zero. This results
in as many equations as the number of unknown parameters. For m unknown
parameters, we get

(8.15)
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These m equations in m unknowns are then solved for the m unknown
parameters. The parameters determined using the method of maximum likeli-
hood are efficient; that is, in a large sample, they attain minimum variance and
are asymptotically unbiased. A drawback of this method is that it requires that
the underlying distribution be known. Many times, this distribution is not
known. Furthermore, there may not be an analytical solution of the ML equa-
tions to estimate the parameters in terms of sample statistics. Consequently, one
may have to resort to a numerical solution.

Example 8.3 Using the maximum likelihood estimation procedure, find the
parameter α of the exponential distribution for the data of the Sabarmati River in
India given in Example 8.1.

Solution The probability density function of the one-parameter exponential dis-
tribution is given by

fX(x) = α exp(–α x) (8.16)

The likelihood function is given by

(8.17)

This can be used to form the log-likelihood function: 

(8.18)

where n is the sample size. Differentiating Eq. 8.18 with respect to α  gives

This yields

(8.19)

In Example 8.1, the mean of the data was found to be 664.9 cumecs. This will
give the estimate of α as

α = 1/664.29 = 1.51 × 10-3 cumec–1

In Fig. 8-4, the likelihood function for a typical case is plotted. The maximum
likelihood estimation tries to find that value of parameter that gives the maxi-
mum value of the likelihood function (or its logarithm). Thus, in the present
case, a value of α that is equal to the reciprocal of the mean (1/x or 1/mx) is most
likely to be the true value of the parameter.
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Example 8.4 The probability density function of a two-parameter exponential
distribution is given by

(8.20)

Estimate the parameters of this distribution using the data of the Amite
River at Darlington, Louisiana (Example 3.6), using the method of maximum
likelihood estimation.

Solution The likelihood function is formed as 

(8.21)

The log-likelihood function becomes

(8.22)

Differentiating this function with respect to α and equating the derivative to
zero, one obtains

As x is bounded as ε < x < ∞ , parameter ε cannot be greater than xmin. How-
ever, equating ε with xmin gives a biased estimator of ε. Rao and Hamed (2000)
proposed the following equations to compute the unbiased and minimum vari-
ance estimates of parameters α and ε.

(8.23)

(8.24)

where x1 is a minimum value.
For the Amite River data given in Example 3.6, n = 48, mean = 28,676, and

x1 = 3,180. Therefore,

α = 48(28,676 – 3,180)/(48 – 1) = 26,038.0

ε = [(48 × 3,180) – 28,676)]/(48 – 1) = 2,637.5
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8.1.3 Method of Probability-Weighted Moments

Greenwood et al. (1979) introduced the method of probability-weighted
moments (PWM) and showed its usefulness in deriving explicit expressions for
parameters of distributions whose inverse forms X = X(F) can be explicitly
defined. They derived relations between parameters and PWM for generalized
lambda, Wakeby, Weibull, Gumbel, logistic, and kappa distributions. Hosking
(1986) developed the theory of probability-weighted moments and applied it to
estimate parameters of several distributions. For flood frequency analysis, Hak-
tanir (1996) modified the conventional method of probability-weighted
moments for estimation of parameters of any distribution without the need to
use a plotting position formula. Wang (1997) defined partial PWM and derived
them for extreme value type I and III distributions. He applied these moments to
lower bound censored samples. Singh (1998) employed PWM to estimate
parameters of a number of distributions used in hydrology.

Let a probability distribution function be denoted as F = F(X) = P[X ≤ x]. The
PWM of this function can be defined as

(8.25)

where Mi,j,k is the probability-weighted moment of order (i, j, k), E is the expecta-
tion operator, and i, j, and k are real numbers. If j = k = 0 and i is a non-negative
integer then Mi,0,0 represents the conventional moment of order i about the
origin. If Mi,0,0 exists and X is a continuous function of F, then Mi,j,k exists for all
non-negative real numbers j and k.

Figure 8-4 A typical likelihood function.
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For non-negative integers j and k, we can express

(8.26)

(8.27)

If Mi,0,k exists and X is a continuous function of F then Mi,j,0 exists. When the
inverse X = X(F) of the distribution F = F(X) cannot be analytically defined, it
may, in general, be difficult to derive Mi,j,k analytically. We normally work with
the moments Mi,j,k into which x enters linearly. In particular, if we consider an
ordered sample in which x1 ≤ x2 ≤ … ≤ xn, the PWM for hydrologic applications
are defined as

(8.28)

(8.29)

where n > r and n > s.
In general, as and br are functions of each other as

(8.30)

(8.31)

Therefore,

a0 = b0, b0 = a0

a1 = b0 – b1, b1 = a0 – a1 (8.32)

a2 = b0 – 2b1 + b2, b2 = a0 – 2a1 + a2

a3 = b0 – 3b1 + 3b2 – b3, b3 = a0 – 3a1 + 3a2 – a3

A complete set of these a or b probability-weighted moments characterizes a
distribution. The theory of PWM parallels the theory of conventional moments.
The main advantage of PWM over conventional moments is that, because PWM
are linear functions of the data, they suffer less from the effects of sampling
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variability: PWM are more robust than conventional moments to outliers in the
data, enable more secure inferences to be made from small samples about an
underlying probability distribution, and they frequently yield more efficient
parameter estimates than the conventional moment estimates.

Example 8.5 Using the data of Example 8.4, find the parameters of a two-
parameter exponential distribution using the PWM method.

Solution For the given data, the first PWM are determined as

a0 = 28,675.8

a1 = 8,724.1

The inverse form of a two-parameter exponential distribution as given by
Eq. 8.20 is written as

x = ε – α ln(1 – F)

By using Eq. 8.25, expressions for the first two PWM are written as

 Solving these integrals one gets

,

Substituting the sample estimates of the PWM, a0 and a1 in the preceding
equations, one gets

,

Now solving for and one gets and .

8.1.4 Method of L-Moments

The probability-weighted moments characterize a distribution but are not mean-
ingful by themselves. L-moments were developed by Hosking (1986) as functions
of PWM that provide a descriptive summary of the location, scale, and shape of
the probability distribution. These moments are analogous to ordinary moments
and are expressed as linear combinations of order statistics, hence giving rise to
their name. They can also be expressed by linear combinations of probability-
weighted moments. Thus, the ordinary moments, the probability-weighted
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moments, and L-moments are related to each other. L-moments are known to
have several important advantages over ordinary moments. L-moments have less
bias than ordinary moments because they are linear combinations of ranked
observations. As an example, the variance (second moment) and skewness (third
moment) involve squaring and cubing of observations, respectively, which com-
pel them to give greater weight to the observations far from the mean. As a result,
they result in substantial bias and variance.

If X is a real-value ordered random variate of a sample of size n, such that
x1:n ≤ x2:n ≤ ….≤ xn:n with the cumulative distribution F(x) and quantile function
x(F), then the rth L-moment of X (Hosking 1990) can be defined as a linear func-
tion of the expected order statistics as

(8.33)

where E{•} is the expectation of an order statistic and is equal to

(8.34)

As noted by Hosking (1990), the natural estimator of Lr, based on an
observed sample of data, is a linear combination of the ordered data values (i.e.,
an L-statistic). Substituting Eq. 8.34 in Eq. 8.33, expanding the binomials of F(x),
and summing the coefficients of each power of F(x), one can write 

(8.35)

where is the rth shifted Legendre polynomial expressed as

(8.36)

Equation 8.36 can simply be written as

(8.37)

and

(8.38)

The shifted Legendre polynomials are related to the ordinary Legendre poly-
nomials Pr(u) as P*r(u) = Pr(2u – 1) and are orthogonal on the interval (0,1) with a
constant weight function.
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The first four L-moments are

(8.39)

(8.40)

(8.41)

(8.42)

The L-moments can be defined in terms of PWM α and β as 

(8.43)

These can be written as

LP,1 = a0= b0

LP,2 = a0 – 2a1 = 2b1 – b0 (8.44)

LP,3 = a0 – 6a1 + 6a2 = 6b2 – 6b1 + b0

LP,4 = a0 – 12a1 + 30a2 – 20a3 = 20b3 – 30b2 + 12b1 – b0

Parallel to conventional moment ratios, L-moment ratios are defined by

T1 = LP,2/LP,1 (8.45)

Tk = LP,k/LP,2, k ≥ 3 (8.46)

Example 8.6 Using the data of Example 8.4, find the parameters of exponential
distribution using the L-moments.

Solution The parameter estimation using L-moments is very similar to the
method of moments. As described earlier, in the method of moments we equate
the first k conventional moments of the distribution to the first k conventional
sample moments, whereas in the L-moment method, the first k L-moments of the
distribution are equated to the first k L-moments of the sample data. 

We determined the first two PWM in Example 8.5 as a0 = 28,675.8 and
a1 = 8,724.1. Using Eq. 8.4 we obtain the first two L-moments based on the sam-
ple data:

sample LP,1 = a0 = 28,675.8

sample LP,2 = a0 – 2a1 = 28,675.8 – (2 × 8,724.1) = 11,227.6
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Now we will determine the algebraic expression for the first two L-moments
of the exponential distribution for which the parameters are to be determined.

The inverse form of exponential distribution given by Eq. 8.20 is written as

x = ε – α ln(1 – F) (8.47)

Using Eq. 8.25, we can write expressions for PWM as

Solving this yields

a0 = ε + α (8.48)

 = ε/2 + α/4 (8.49)

Hence, the first two L-moments of the distribution are

distribution LP,1 = a0 = ε + α

distribution LP,2 = a0 – 2a1 = (ε + α) – 2(ε/2 + α/4) = α/2

Now equating the distribution moments with the sample moments, one can
find the estimators of ε and α. Thus,

distribution LP,1 = sample LP,1: ε + α = 28,675.8 

distribution LP,2 = sample LP,2 : /2 = 11,227.6 

yielding

α = 2 × 11,227.6 = 22,445.2

ε = 28,675.8 – 22,445.2 = 6,230.6

8.1.5 Method of Ordinary Least Squares

The ordinary least-squares parameter-estimation method (MOLS) is a variation
of the probability plotting methodology in which one mathematically fits the
best straight line or curve to a set of data points in an attempt to estimate the
parameters. The method of least squares requires that a straight line be fitted to a
set of data points such that the sum of the squares of the deviations from the
observed data points to the assumed line is minimized.

MOLS is one of the most frequently used parameter-estimation methods in
hydrology. Natale and Todini (1974) presented a constrained MOLS for linear
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models in hydrology. Williams and Yeh (1983) described MOLS and its variants
for use in rainfall–runoff models. Jones (1971) linearized weight factors for least
squares (LS) fitting. Shrader et al. (1981) developed a mixed-mode version of
MOLS and applied it to estimate parameters of the log-normal distribution. Sny-
der (1972) reported on fitting of distribution functions by nonlinear least
squares. Stedinger and Tasker (1985) performed regional hydrologic analysis
using ordinary, weighted, and generalized least squares.

MOLS is quite good for mathematical functions that can be linearized. Most
of the distributions used in engineering analysis can be linearized rather easily.
For these distributions, the calculations are relatively easy and straightforward.
Further, this technique provides a good measure of the goodness of fit of the
chosen distribution in the form of R-square value (coefficient of determination).
MOLS is generally best used with complete data sets containing no censored or
interval data. 

Let Y = f(X; a1, a2,…, am) be a linearized form of a distribution function, where
ai, i = 1,2,…. , m, are parameters to be estimated. The method of least squares
involves estimating parameters by minimizing the sum of squares of all devia-
tions between observed and computed values of Y. Mathematically, this sum S
can be expressed as 

(8.50)

where y0(i) is the ith observed value of Y, yc(i) is the ith computed value of Y, and
n > m is the number of observations. The minimum of S in Eq. 8.50 can be
obtained by differentiating S partially with respect to each parameter and equat-
ing each differential to zero:

(8.51)

This leads to m equations, usually called the normal equations, which are
then solved to estimate the m parameters. This method is used to estimate
parameters of a linear regression model. For instance, suppose a linear equation
of the type 

yi = a + bxi (8.52)

is to be fitted. The regression coefficients (a and b) are estimated by minimizing
the sum of squares of deviations of yi from the regression line. For a point xi, the
corresponding computed by the regression equation will be

(8.53)
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The residual error at this point is ei = yi – , which is a measure of how well
the least-squares line conforms to the raw data. If the line passes through each
sample point, the error ei would be zero. The sum of the square of the errors is

(8.54)

Minimizing Sse leads to the following values of parameters:

b = Sxy/Sxx , (8.55)

where

(8.56)

Example 8.7 The precipitation and runoff for a catchment for the month of July
are given in Table E8-7. The relationship between rainfall and runoff follows a
linear relation of the form y = a + bx, where y represents runoff and x precipita-
tion. Estimate parameters a and b using MOLS.

Table E8-7 Precipitation runoff data and calculations

SN Year Precipitation
(x)

Runoff
(y)

x – x y – y (x – x) × (y – y) (x – x)2 (y – y)2

1 1953 42.39 13.26  –0.55 –1.37 0.75 0.3025 1.8769

2 1954 33.48  3.31  –9.46 –11.32 107.08 89.49 128.14

3 1955 47.67 15.17  4.73 0.54 2.55 22.37 0.29

4 1956 50.24 15.50  7.3 0.87 6.35 53.29 0.76

5 1957 43.28 14.22  0.34 –0.41 –0.14 0.1156 0.1681

6 1958 52.60 21.20  9.66 6.57 63.47 93.32 43.16

7 1959 31.06 7.70 –11.88 –6.93 82.33 141.13 48.02

8 1960 50.02 17.64  7.08 3.01 21.31 50.13 9.06

9 1961 47.08 22.91  4.14 8.28 34.28 17.14 68.56

10 1962 47.08 18.89  4.14 4.26 17.64 17.14 18.15

11 1963 40.89 12.82  –2.05 –1.81 3.71 4.20 3.28

12 1964 37.31 11.58  –5.63 –3.05 17.17 31.69 9.30

13 1965 37.15 15.17 –5.79 0.54 –3.13 33.52 0.29

14 1966 40.38 10.40 –2.56 –4.23 10.83 6.55 17.89

15 1967 45.39 18.02  2.45 3.39 8.31 6.00 11.49

16 1968 41.03 16.25 –1.91 1.62 –3.09 3.65 2.62

Total 687.05 234.04  0.01 –0.04 369.42 570.06 363.07
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Solution Parameters a and b are computed using Eq. 8.55. To that end,
x = 687.05/16 = 42.94, y = 234.04/16 = 14.63. The various other quantities, such
as Sxy and Sxx, required to calculate a and b are computed in Table E8-7. Thus, 

b = Sxy/Sxx =369.423/570.0559 = 0.648

a = y – bx = 14.63 – (0.648 × 42.94) = –13.195

 Hence, the relationship between runoff and rainfall is y = –13.195 + 0.648x.

Example 8.8 Solve Example 8.4 using the method of ordinary least squares.

Solution The probability density function of a two-parameter exponential dis-
tribution is given by

The cumulative distribution function for this two-parameter exponential dis-
tribution is given by

On further simplification, one can write

Taking logarithm of both sides gives

This equation is the linearized form of the two-parameter exponential dis-
tribution as it matches with Eq. 8.52 in which y = ln[1 – FX(x)], a = ε/α , and
b = –1/α . Now, we can use MOLS as described earlier. It is easier to perform
the calculations of the required quantities in a tabular form as given in
Table E8-8.

Now using Eq. 8.55, one has 
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Table E8-8 Calculations of the required quantiles for Example 8.8 

Rank i X Plotting position 
FX(x) = i/(N+1)

yi = ln[1–FX(x)] (xi–Mx)
2 (xi–Mx) (yi–My)

1 3180 0.02 –0.02 6.50 × 108 –23978.69

2 3280 0.04 –0.04 6.45 × 108 –23349.97

3 4530 0.06 –0.06 5.83 × 108 –21681.38

4 6900 0.08 –0.09 4.74 × 108 –19074.67

5 7660 0.10 –0.11 4.42 × 108 –17936.65

6 8000 0.12 –0.13 4.27 × 108 –17171.14

7 8320 0.14 –0.15 4.14 × 108 –16426.40

8 8600 0.16 –0.18 4.03 × 108 –15716.67

9 8970 0.18 –0.20 3.88 × 108 –14940.43

10 9800 0.20 –0.23 3.56 × 108 –13833.25

11 10100 0.22 –0.25 3.45 × 108 –13130.87

12 13000 0.24 –0.28 2.46 × 108 –10662.88

13 15400 0.27 –0.31 1.76 × 108 –8666.63

14 16000 0.29 –0.34 1.61 × 108 –7917.85

15 16200 0.31 –0.37 1.56 × 108 –7431.28

16 17500 0.33 –0.40 1.25 × 108 –6323.30

17 18100 0.35 –0.43 1.12 × 108 –5658.38

18 18900 0.37 –0.46 9.56 × 107 –4919.99

19 19400 0.39 –0.49 8.60 × 107 –4364.19

20 19500 0.41 –0.52 8.42 × 107 –4006.07

21 20000 0.43 –0.56 7.53 × 107 –3483.33

22 20000 0.45 –0.60 7.53 × 107 –3167.81

23 20200 0.47 –0.63 7.18 × 107 –2774.90

24 20400 0.49 –0.67 6.85 × 107 –2384.84

25 21200 0.51 –0.71 5.59 × 107 –1849.13
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26 22000 0.53 –0.76 4.46 × 107 –1367.13

27 22400 0.55 –0.80 3.94 × 107 –1006.24

28 23300 0.57 –0.85 2.89 × 107 –611.85

29 26900 0.59 –0.90 3.15 × 106 –115.47

30 30500 0.61 –0.95 3.33 × 106 25.05

31 31600 0.63 –1.00 8.55 × 106 –117.95

32 36300 0.65 –1.06 5.81 × 107 –743.31

33 37900 0.67 –1.12 8.51 × 107 –1458.51

34 39300 0.69 –1.18 1.13 × 108 –2365.54

35 39300 0.71 –1.25 1.13 × 108 –3098.53

36 40700 0.73 –1.33 1.45 × 108 –4397.93

37 43400 0.76 –1.41 2.17 × 108 –6564.03

38 43400 0.78 –1.49 2.17 × 108 –7845.20

39 44500 0.80 –1.59 2.50 × 108 –9939.50

40 44500 0.82 –1.69 2.50 × 108 –11606.74

41 45500 0.84 –1.81 2.83 × 108 –14321.83

42 47500 0.86 –1.95 3.54 × 108 –18537.98

43 55700 0.88 –2.10 7.30 × 108 –30779.10

44 60800 0.90 –2.28 1.03 × 109 –42444.66

45 62100 0.92 –2.51 1.12 × 109 –51620.70

46 63300 0.94 –2.79 1.20 × 109 –63434.74

47 76400 0.96 –3.20 2.28 × 109 –106785.67

48 104000 0.98 –3.89 5.67 × 109 –220753.04

N=48 MX=28675.83 My = –0.96 SXX =2.10 × 1010 SXY=–870741.27

Table E8-8 Calculations of the required quantiles for Example 8.8  (Continued)

Rank i X Plotting position 
FX(x) = i/(N+1)

yi = ln[1–FX(x)] (xi–Mx)
2 (xi–Mx) (yi–My)
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It is known that a = ε/α and b = –1/α. The estimates of α and ε are given as

Figure 8-5 compares observed and fitted distributions using MOLS.

8.2 Assessment of Parameter Accuracy 

The parameters of probability distribution functions can be estimated by various
methods. The choice of the method to be used depends on the statistic to be esti-
mated. It is desired that the method provides an unbiased estimate of the statis-
tic under consideration with as small a variance as possible. However, it is not
always possible to obtain an estimator that is both unbiased and efficient (with
minimum variance). Because estimators can be derived in a variety of ways,
their error characteristics must always be analyzed and compared. In practice,
many problems and the estimators derived for them are sufficiently complicated
to render analytic studies of the errors difficult, if not impossible. Instead,
numerical simulation and comparison with lower bounds on the estimation
error are frequently used to assess the estimator performance.

Figure 8-5 Observed and fitted distribution using MOLS.

ˆ
ˆ .

.α = − = −
−

=1 1
0 0004

24070 15
b

ˆ ˆ ˆ . .ε α= = × =a 0 23 24070 15 5541.68

y = -0.00004x + 0.2302
R2 = 0.98

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0 20000 40000 60000 80000 100000 120000

Flow, x

y 
= 

ln
[1

-P
X(

x)
]



Parameter Estimation 337

As previously mentioned, the parameters obtained by maximizing the likeli-
hood function are estimators of the true value. It is clear that the sample size
determines the accuracy of an estimator. If the sample size equals the whole
population, then the estimator is the true value. Estimators have properties, such
as unbiasedness, sufficiency, consistency, and efficiency. Standard statistical
books deal with these properties and this coverage lies beyond the scope of this
reference. However, we would like to briefly address unbiasedness and consis-
tency here. The parameters of a distribution function are estimated from sample
values and these can, of course, be obtained in myriad ways. The sample data
may contain errors, the hypotheses underlying the method of parameter estima-
tion may not yield accurate estimates, and there may be truncation and round-
off errors. These sources of errors may result in errors in parameter estimates.
Each estimate of a parameter is a function of sample values that are observations
of a random variable. Thus, the parameter estimate itself is a random variable
having its own sampling distribution. An estimate obtained from a given set of
values can be regarded as an observed value of the random variable. Thus, the
goodness of an estimate can be judged from its distribution.

Some important questions arise here. How should we best use the data to
form estimates? What do we mean by the best estimates? Are these estimates
unique? How do we select the best parameter estimator if there is one? A num-
ber of statistical properties are available by which one can address these ques-
tions about the appropriateness of a parameter estimation method. These are
briefly discussed next.

8.2.1 Bias

Bias measures how close an estimator is on average to the true parameter value.
Let the parameter be a and its estimate â. The estimate â is called an unbiased esti-
mate of a if the expected value of the estimate equals the true value of the parame-
ter (i.e., E[â] = a). Otherwise, the estimate is said to be biased (i.e., E[ac] ≠ a). Since
the parameters and estimators were known, their bias can be calculated by

(8.57)

where j =1,..., m are the numbers of samples, â∈{â1,â2,â3,…}, and a∈{a1, a2, a3,…}.
An unbiased estimate has a probability distribution where the mean equals the
actual value of the parameter. For the sake of convenience, we will write
bias(â|a) as bias(â). Obviously, bias(â) = 0 for an unbiased estimate. It should,
however, be noted that an individual â may not be equal to or even close to a
even if bias(a) = 0. It simply implies that the average of many independent esti-
mates of parameter a will be equal to its true value. The bias(â) is usually consid-
ered to be additive, so that bias(â) = E[â] − a. When we have a biased estimate,
the bias usually depends on the number of observations, n. An estimate is said to

Bias a a
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be asymptotically unbiased if the bias tends to zero for large n; that is
. An estimate’s variance equals the mean-squared estimation

error only if the estimate is unbiased.
The bias in a given quantity is usually measured in dimensionless terms and

is often referred to as standardized bias. It is particularly important when bias is
compared with respect to several parameters. Thus, the dimensionless measure
of bias is defined as

(8.58)

where SD(â) is the standard deviation of â. The following are the properties of
unbiased estimators:

1. They are not unique. For example, let x1, x2,... , xn constitute a random
sample from a uniform distribution with the range defined by param-
eters a1 and a2. Then, [(n+1)/n]yn is an unbiased estimator of a2, where
yn = max(x1, x2,... , xn) is the largest sample value. Further, 2x is also an
unbiased estimator of a2. This shows that unbiased estimates are not
unique.

2. If ã is an unbiased estimator of a, it does not necessarily follow that f(ã) is
an unbiased estimator of f(a), where f(.) is any mathematical function
operating on parameter a. For example, the square root of the sample
variance is not an unbiased estimator of the standard deviation.

Should the lack of bias be considered a desirable property? If many unbiased
estimates are computed from statistically independent sets of observations hav-
ing the same parameter value, the average of these estimates will be close to the
true parameter value. This property does not mean that the estimate has less
error than a biased one; there exist biased estimates whose mean-squared errors
are smaller than unbiased ones. In such cases, the biased estimate is usually
asymptotically unbiased. Lack of bias is good, but that is just one aspect of how
we evaluate estimators. 

8.2.2 Efficiency

Efficiency refers to the variance of an estimator. An efficient estimate â of a has to
satisfy two conditions: (1) It must be unbiased, and (2) its variance must be at least
as small as that of any other unbiased estimate of a. If there are two estimates of a,
say, a1 and a2, then the relative efficiency of a2 with respect to a1 is defined as the
ratio of their variances (i.e., var(â1)/var(â2)). Mathematically, it is given as 

(8.59)
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If e < 1, then â1 is more efficient than â2. Only an efficient estimate has e = 1. If
an efficient estimate exists, it may be approximately obtained by the use of MLE
or the entropy method. 

An efficient estimate has a mean-squared error that equals a particular lower
bound known as the Cramer–Rao bound. If an efficient estimate exists (the
Cramer–Rao bound being the greatest lower bound), it is optimum in the mean-
squared sense, meaning that no other estimate has a smaller mean-squared error.
If is an unbiased estimator ã of parameter a exists, then under some very general
conditions var(ã) is given by the Cramer–Rao inequality as 

(8.60)

where f(X) is the probability density function of random variable X. If var(ã) is
equal to the right-hand side of the inequality in Eq. 8.60, then ã is a minimum
variance unbiased estimator (MVUE) of parameter a.

Example 8.9 Consider a normally distributed random variable X with mean μ
and standard deviation σ . A sample of size (2n + 1) is selected randomly from
its population and the sample mean and median are estimated. What is the effi-
ciency of the median relative to the mean? Further, determine which parameter
is more efficient when sample size is large.

Solution We know E[X] = μ and var[X] = σ2. Let the mean and median be
denoted by and , respectively

Thus, and the sample median are the
unbiased estimates of variance of and . The efficiency of median relative to
mean is var( )/var( ). Thus, by using Eq. 8.60 the efficiency of the median
with respect to the mean is , which is a function of the sample
size as shown in Fig. 8-6. 

For large samples, the asymptotic efficiency is calculated as

Thus, the mean is more efficient than the median for all sample sizes for a
normal population. For large samples, the mean requires only about 64% as
many observations as the median to estimate μ with the same reliability. Using
the Cramer–Rao inequality given by Eq. 8.60, one can confirm that  is an
MVUE of the mean μ of a normal distribution.
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8.2.3 Mean Square Error

The bias measures the difference between the average value of an estimator
and the quantity to be estimated. Unbiasedness may be a desirable property of
an estimator, but there can be more than one unbiased estimator and some-
times a biased estimator may actually be superior. Another way to assess an
estimator is to determine the estimator variance. The variance measures the
spread or width of the estimator’s distribution. Both the values of bias and
variance contribute to the amount by which an estimator deviates from the
quantity to be estimated. These two errors are often combined into the mean
square error (MSE). Understanding that parameter a is fixed, and its estimator
â is a random variable, the MSE is the expected value of the squared distance
(error) between the two:

(8.61)

On simplifying, the third term cancels out and the remaining expression is

(8.62)

Figure 8-6 Efficiency of median relative to mean.
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Equation 8.62 shows that the MSE of parameter a is equal to the expected
average squared deviation of the estimator from the true value. It can be com-
puted as the bias squared plus the variance of the estimator. The MSE combines
both bias and variance in a logical way and is therefore a convenient measure of
how closely â approximates a.

Example 8.10 Let a1 and a2 be independent and identically distributed exponen-
tial random variables. Further, assume that a1, a2, and b × (a1 + a2) are all unbi-
ased estimators of μ. Assume b to be constant such that b = 0.5. Determine which
estimator will be the best estimator of μ.

Solution From Eq. 8.62, it is known that 

Because all estimators are unbiased, bias(a1) = bias(a2) = bias[0.5 × (a1 + a2)] = 0.
Therefore, MSE will be governed by the variance only and will be minimum for
the variable having the smallest variance. Using the properties of the exponential
distribution, one can write

var (a1) = var (a2) = μ2

var[b × (a1 + a2)] = b2[ var (a1) + var (a2) ] = 2b2μ2

So,

var[b × (a1 + a2)]b=0.5 = μ2/2

indicating that b × (a1 + a2) will be the best estimator of μ.

Example 8.11 Consider the previous example and determine what value of con-
stant b minimizes the MSE of b × (a1 + a2).

Solution Let us represent the estimator b × (a1 + a2) by â, so that

,

As shown earlier var[b × (a1 + a2)] = 2b2μ2. So, 

Now differentiating MSE with respect to b and equating it to zero, one deter-
mines the minimum of the MSE function:

b = 1/3
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8.2.4 Consistency

As already explained, the bias refers to the mean value of the estimator and the
efficiency refers to the variance of the estimator. Now, we will discuss another
property that refers to both the bias and the variance of the estimator. As shown
in Eq. 8.62, MSE is a combination of bias and variance of an estimator. We term
an estimate consistent if the MSE tends to be zero as the number of observations
becomes large (i.e., ). Thus, a consistent estimate must be at
least asymptotically unbiased. In other words, error in the estimator continu-
ously decreases as the sample size increases. 

Unbiased estimates whose errors never diminish as more data are collected
do exist. Their variances remain nonzero no matter how much data are available.
Inconsistent estimates may provide reasonable estimates when the amount of
data is limited, but they have the counterintuitive property that the quality of
the estimate does not improve as the number of observations increases.
Although smaller MSE than a consistent estimate over a pertinent range of val-
ues of n may be appropriate in certain circumstances, consistent estimates are
usually favored in practice. 

8.2.5 Sufficiency

An estimate of a parameter a is termed sufficient if it uses all of the information that
is contained in the sample and pertinent to the parameter estimation. More pre-
cisely, let a1 and a2 be two independent estimates of a. Estimate a1 is considered a
sufficient estimate if the joint probability distribution of a1 and a2 has the property

f(a1,a2) = f (a1)f(a2|a1) = f(a1)K(x1, x2,… , xn) (8.63)

in which f(a1) is the distribution of a1, f(a2|a1) is the conditional distribution of a2
given a1, and K(x1, x2,… , xn) is a function of xis but not of a. If Eq. 8.63 holds, then
a2 does not produce any new information about a that is not already contained in
a1. In this case, a1 is a sufficient estimate.

8.2.6 Standard Error

Another dimensionless performance measure used in hydrology is the normal-
ized standard error (NSE), defined as

(8.64)

where σ (.) denotes the standard deviation of a and is computed as

(8.65)

where the summations are over n estimates â of a. This measure is similar to the
coefficient of variation.
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8.2.7 Relative Mean Error

Another measure of error in assessing the goodness of fit of hydrologic models is
the relative mean error (RME), defined as

(8.66)

in which n is the sample size, Q0 is the observed quantity of a given probability,
and Qc is the computed quantity of the same probability. Also used sometimes is
the relative absolute error (RAE), defined as

(8.67)

8.2.8 Root Mean Square Error

The root mean square error (RMSE) is one of the most frequently employed per-
formance measures and is defined as

(8.68)

Sometimes a normalized mean square error is used. Normalization is per-
formed in two ways: (1) with respect to the mean of the true parameter a and
(2) with respect to the standard deviation of parameter a. The corresponding
expressions are given as

(8.69a)

(8.69b)

In parameter estimation and model calibration, the smallest value of RMSE
is preferred.

8.2.9 Robustness

Kuczera (1982a,b,c) defined a robust estimator as the one that is resistant and
efficient over a wide range of fluctuations of population. Two criteria for resis-
tant estimators are mini-max and minimum average RMSE. According to the
mini-max criteria, the maximum RMSE for all population cases should be mini-
mum. Thus, for a resistant estimator the average RMSE as well as the maximum
RMSE should be minimum.
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8.3 Interval Estimation of Parameters

For obtaining estimates of distribution parameters, such as the mean, the vari-
ance, the coefficient of skew, the covariance, and the correlation coefficient, the
corresponding sample statistics are calculated from samples of observations and
such estimates are called point estimates. The single point value obtained from
the sample is peculiar to that particular sample used and another sample may
yield a different point estimate. Sometimes even the addition of a single observa-
tion might measurably change the point estimate. Therefore, it is important to
know the range of values for a sample statistic, which itself is random, as well as
its probability distribution. For a given sample, one can determine with a speci-
fied probability of, say, 80%, 90%, or 95% the limits within which the distribution
of parameters can be expected to lie. These limits are called confidence limits and
the interval of uncertainty is called the confidence interval. Interval estimation
does not increase the accuracy of estimation but allows for the quantification of
uncertainty. An appreciation of this uncertainty is needed to avoid making
unwarranted assertions.

8.3.1 Probability Distribution of the Sample Mean

The random variable X has a mean of μ and a variance of σ2. Suppose that we
have n independent observations of X. No assumption is made regarding the
type of the distribution. The sample mean can now be written as

(8.70)

The sample mean mx is considered a random variable, for X1 , X2 ,… , Xn are
random variables. This can be seen by observing that any repetition of the n
observations will result in different values for X1, X2, X3,… , Xn. Therefore, X1,
X2, X3,… , Xn are regarded as n random variables. For each sample these vari-
ables will take on values in accord with their probability distributions. This
means that mx is the sum of n random variables Xi, each to be divided by n.

From the central limit theorem, one can first conclude that mx is approxi-
mately normally distributed. As described in Chapter 5, the approximation is
better when n is large. If X itself is already normally distributed, then the sample
mean is normally distributed even if n is only 2. Second, taking the expectation
of mx in Eq. 8.70 one obtains

(8.71)

The mean value of all the variables Xi is evidently μx. It follows that 

E(mx) = μx (8.72)
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One can determine the variance of mx. The terms in Eq. 8.70 are independent
and for independent variables it is known that the variance of a sum is equal to
the sum of the variances. Therefore, 

(8.73)

In summary, variable mx ~ N(μ, ); mx is normally distributed with a
mean equal to the mean of the variable and a standard deviation equal to the
standard deviation of the variable divided by the square root of n. Equation 8.73
shows that the mean of a set of observations becomes less variable as the number
of observations increases. Otherwise, mx can be expected to approximately follow
a normal distribution. In the limit the variance approaches zero and the sample
mean approaches the mean of the distribution, μ. However, should X be normally
distributed, then mx is normally distributed, regardless of the sample size.

Example 8.12 At a building site, 45 samples of soil were taken and their analysis
showed that the mean compressive strength was 35,000 kPa with a standard
deviation of 600 kPa. Find the standard deviation of the mean. How many sam-
ples will be required to reduce this standard deviation by half?

Solution The standard deviation of the mean is

SDmean = = 600/  = 89.44 kPa

Clearly, if this value is to be halved, the number of required samples will
have to be increased four times to 45 × 4 = 180. This might be quite an expensive
proposition indeed.

To extend the discussion, one can also state that the variable [(μ – m)/( )]
is N(0,1). Invoking the properties of the normal distribution, one can state that, if a
large number of samples are taken, about 95% of the time the value of the variable
should lie within ± 1.96 standard deviation, or

or

Using the given data one has

or

P[34,825 ≤ m ≤  35,175] = 0.95
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It is acknowledged here that the true mean is not known but the probability
that the true mean lies in the range 34,825 to 35,175 is known to be 0.95. This
leads to the interpretation of mean as a random variable instead of a fixed value.
In other words, here we go from a point estimate of a parameter to an interval
estimate. The width of the interval depends on three factors. 

1. The width of the interval increases with increasing standard deviation of
the data and vice versa, if all other things remain the same. 

2. The width also depends on the probability, which was 0.95 in this example. 
3. As this probability increases, the interval becomes wider, and vice versa.

Commonly used values of this probability are 0.99, 0.95, and 0.90. As seen in
this example, reducing the width of the interval requires a larger number of
samples.

Example 8.13 Consider measurement of river stage in a flood event. Assume
that the fluctuations of water levels over a short span of time follow a normal
distribution. Ten measurements of stage were taken and the mean stage was
295.384 m with a standard deviation of 0.15 m. Find the 95% confidence interval
for the stage measurements.

Solution A 95% confidence interval implies a significance level = 0.05. The
upper confidence limit is . From the tables of the standard
normal distribution, zα/2 = z0.025 = 1.96. Hence, 

u = 295.384 + 1.96 × 0.15/(10)0.5

= 295.384 + 0.093 = 295.477 m

and the lower limit is

l = 295.384 – 1.96 × 0.15/(10)0.5

= 295.384 – 0.093 = 295.291 m

8.3.2 Probability Distribution of Sample Variance

Consider a normally distributed random variable X that has a mean of μ and a
standard deviation of σ. The distribution of sample variance s2 can be considered
as follows. First, calculate the sample variance, assuming that parameter μ is
known, as 

(8.74)
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If μ is not known then one can calculate the sample variance from the devia-
tions from the sample mean mx. Dividing each term inside the summation sign
in Eq. 8.72 by σ2, and bringing this factor outside the summation, one gets

(8.75)

Each term in brackets within the summation sign in Eq. 8.75, Zi, is a normally
distributed random variable with a mean of zero and a standard deviation of
one. The sum of squares of n such variables follows a distribution, known as the
chi-square distribution with parameter n, denoted as χ 2(n):

(8.76)

The chi-square distribution is a special case of the gamma distribution. (Recall
that the gamma distribution arises from the sum of exponentially distributed
variables.) PDF and CDF tables of the chi-square distribution are widely avail-
able. Parameter n in Eq. 8.76 is called the degrees of freedom. Since the probabil-
ity of distribution of c2(n) is known, the probability distribution of s2 is 

(8.77)

It can be shown that the mean of the chi-square distribution is equal to the
degrees of freedom:

 var (Z) = E(Z2) – [E(Z)]2

 1 = E(Z2) – 0

E(Z2) = 1

or
E(χ 2) = ν

and

 var(χ 2) = 2ν
The chi-square distribution is additive. If p = q + r, then

χ 2 (p) = χ 2 (q) + χ 2 (r) (8.78)

Now consider the distribution of s2 when this sample statistic is calculated
from the sample as

(8.79)
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Since mx is, in general, not the same as μ, division by σ2 does not result in a
standardized variable. One can write the departures as

Because for each sample the sum of the departures from the sample mean mx
is equal to zero, one obtains

(8.80)

Dividing both sides of Eq. 8.74 by σ2, one gets

(8.81)

The term on the left side in Eq. 8.81 is the chi-square variable with n degrees
of freedom. The second term on the right side is the chi-square variable with one
degree of freedom, since the sample mean mx is normally distributed with a
mean of μ and a standard deviation of . Noting that the chi-square distri-
bution is additive, one can conclude that the first term on the right side is the
chi-square variable with n – 1 degrees of freedom.

Returning to Eq. 8.79 for calculating the sample variance and dividing each
term in the summation sign by σ2, one obtains

(8.82)

When s2 is calculated from the sample mean, the effect is one of reducing the
number of degrees of freedom of the chi-square variable by one. Figure 8-7 plots
the chi-square distribution for selected degrees of freedom. 
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To determine the mean of the sample variance, take the expectation of
Eq. 8.82 as

(8.83)

It is known that the mean of the chi-square variable is equal to the number of
degrees of freedom. Therefore, 

(8.84)

Equation 8.82 shows that on average the variance of a sample from a distri-
bution with a variance of σ2 tends to be smaller than σ2. This is commonly
expressed by saying that Eq. 8.79 produces a biased estimate of the variance of
σ2. One can remove the bias in Eq. 8.79 by dividing by (n – 1) instead of n. Thus,
an unbiased estimator of σ2 is obtained as 

(8.85)

The correction is also called small-sample correction. If Eq. 8.83 is used to
calculate the sample variance then for the confidence limits one should use

(8.86)

Figure 8-7 Chi-square distribution for selected values of degrees of freedom. 
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The estimates of the 100(1 – α)% confidence interval for the variance can be
constructed by

where and are the critical values of the chi-square distribution
using (n – 1) degree of freedom.

Example 8.14 To evaluate the variability of the compressive strength of concrete
before use at a construction site, 25 test cylinders were prepared under “normal”
control conditions. For each cylinder the compressive strength was measured.
Thus 25 values of the compressive strength of the concrete were obtained. Then,
the mean and standard deviation of the compressive strength were computed.
These were, respectively, 34,000 kPa and 3,600 kPa2. To check whether these 25
data points followed a normal distribution, they were plotted on a normal prob-
ability graph paper. It turned out that they reasonably represented a straight
line. What are the 90% confidence limits of σ?

Solution To obtain 90% confidence limits, one must determine an upper
limit and a lower limit such that there is a 5% probability that σ is larger than
the upper limit and that there is a 5% probability that σ  is smaller than the
lower limit. Figure 8-7 shows the chi-square distribution for 24 degrees of
freedom. It is now regarded that the unknown variance σ 2 is a random vari-
able and the observed sample variance s2 is fixed at (3.6 × 103)2 kPa2. Here
100(1 – α)% = 90%; thus α = 0.1 and α/2 = 0.05. So we need to determine the

and values corresponding to 24 degrees of freedom. From the χ 2

tables, one can read that the 95% and 5% confidence limits for χ 2(24) are
13.848 and 36.415, respectively. Corresponding to these, values of σ 2 are

Alternatively, the confidence bounds on the standard deviation are

Hence, the limits of the standard deviation are 2,922.59 kPa2 and 4,739.30 kPa2.
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8.3.3 Confidence Limits for the Mean

The sample mean is normally distributed if the variable is normally distributed
or if the sample is large:

mx ~ N (μ, ) (8.87)

Equation 8.87 can be used to obtain confidence limits for μ provided that σ is
known. One can write

, where Z ~ N(0,1) (8.88)

Equation 8.88 shows that if the confidence limits of Z are known then those of
μ can be calculated. The confidence limits for Z can be obtained from the table of
the normal distribution. Then, substituting these in Eq. 8.88, one obtains the confi-
dence limits for μ. In this calculation σ  is not known and is replaced by the sample
standard deviation s. Therefore, one defines a new variable T such that 

(8.89)

which is analogous to Eq. 8.88, with the relationship between T and Z as

T =  (8.90)

It is known that 

Therefore, 

(8.91)

The variable T follows Student’s symmetrical t distribution with a zero
mean, which resembles the standardized normal distribution. When parameter
n, the number of degrees of freedom, becomes large, the T distribution
approaches the normal distribution. Figure 8-8 shows the T distribution for
selected values of degrees of freedom.

Example 8.15 Calculate the 90% confidence limits for the mean μ in Example 8.6
of the 25 test cylinders for which mx = 34,000 kPa and s = 3,600 kPa. 
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Solution The relevant equation is 

= 34,000 + (3,600/5)t24

= 34,000 + 720t24

The 90% confidence limits for the t distribution with 24 degrees of freedom
are ±1.711. Substitution in the preceding equation gives confidence limits as
32,768 kPa and 35,232 kPa.

Example 8.16 For the Sabarmati River data (Example 8.1), the mean and stan-
dard deviation were estimated as 664.29 m3/s and 346.91 (m3/s)2 using 98 sam-
ples. Determine 95% confidence limits for the mean.

Solution  As before, we write

or
μ = 664.29 + 346.91/(98)0.5 × t97

For 98 degrees of freedom, the 95% confidence limits for the t distribution are
±1.96. Hence, μ = 664.29 ± 346.91/(98)0.5 × 1.96 = 733.61 and 594.9 m3/s.

Figure 8-8 The T distribution for selected values of degrees of freedom.
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8.4 Questions

8.1 Peak annual flow data of Buckhorn Creek observed at USGS station
#02102192 near Cornith, North Carolina, are listed in Table Q8-1. Find
the annual peak flow characteristics of the sample data and determine
the candidate distribution(s) using the method of moments. 

8.2 If one decides to fit an exponential distribution to the data given in
Question 8.1, what will be its parameter based on the method of
moments?

8.3 Using the maximum likelihood estimation procedure, find parameter α
of the exponential distribution for the peak flow data of Buckhorn Creek
given in Question 8.1.

8.4 The probability density function of a two-parameter exponential distri-
bution is given as

Estimate the parameters of this distribution using the data of Question 8.1
and the method of maximum likelihood estimation.

8.5 Using the data of Question 8.1, find the parameters of a two-parameter
exponential distribution using the PWM method.

8.6 Using the data of Question 8.1, find the parameters of the exponential
distribution using the L-moment method.

8.7 Consider the data of Table Q8-7, in which x is the observed temperature
value and y is the model simulated temperature value for a stream. The
relationship between observed and model simulated temperatures can

Table Q8-1

Year 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

Flow
(cfs)

1530 3130 890 2150 891 1680 2820 1740 951 58 129 470

Year 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994

Flow
(cfs)

470 781 319 766 889 114 562 328 216 390 770 453

Year 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005  2006

Flow
(cfs)

401 1940 480 1190 913 314 828 347 982 200 284  750

f x
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be represented by a linear relation of the form y = a + bx. Estimate param-
eters a and b using MOLS.

8.8 Solve Question 8.4 using the ordinary least-squares method.

8.9 Consider a model yt = b1+ b2xt + et, where b1 and b2 are coefficients, xt is
an independent variable, and yt is a dependent variable. Assuming that
the model satisfies the classical assumptions, prove that the variance of
the ordinary least-squares estimator declines to zero as the sample size
increases.

8.10 A sample of 50 measurements of river stage were taken during vari-
ous flood events. The actual mean flood level is unknown but the stan-
dard deviation can be assumed to be 3 ft. The computed value of the
sample flood stage is 17.25 ft. Construct confidence interval estimates
for the actual mean flood level for each of the following confidence
levels: (a) 90%, (b) 95%, (c) 99%, and (d) 99.8%.

8.11 Solve Question 8.10 assuming the flood stage to be log-normally
distributed.

8.12 For Buckhorn Creek (Question 8.1), the mean and standard deviation
were estimated as 880 cfs and 757 cfs, respectively, from 34 samples.
Determine the 95% confidence limits for the mean.

8.13 Table Q8-13 lists the daily dissolved oxygen (DO) concentration in a
stream at a given station. Fit a most appropriate distribution for the daily
DO concentration using a suitable method.

8.14 Using the daily DO concentration data of Question 8.13 construct confi-
dence interval estimates for the mean daily DO concentration for each of
the following confidence levels: (a) 90%, (b) 95%, (c) 99%, and (d) 99.8%.

Table Q8-7

x y x y x y x y

46.00 41.7 61 56.4 73.4 69.6 78.3 79.2

48.20 52.4 61.9 59.3 74.5 71.1 78.6 78.1

52.70 50.8 63.3 60.3 75 81.2 79 82.4

55.00 54 66.2 60.4 75.7 74.4 79.2 80.5

56.70 55.3 67.6 63.6 76.1 77.8 79.5 82.4

59.20 53.1 69.3 69.5 77 78.7 80.4 82

59.90 56.5 69.6 69.1 77 75.2 80.4 76

59.90 46.9 70.5 60.7 77 75.6 81.9 78.5

60.6 55.7 72.1 69.8 77.5 81.4 82 80.9

61 61.4 72.9 71.4 77.9 77.4 85.3 83.3
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8.15 For the daily DO concentration data of Question 8.13 determine the 95%
confidence interval for the variance of the daily DO concentration.

8.16 For the peak annual flow of Buckhorn Creek given in Question 8.1 esti-
mate parameters of the two-parameter gamma distribution function
using the method of moments and maximum likelihood method and
compare the two sets of parameter estimates.

Table Q8-13

Day Observed 
DO

(mg/L)

Day Observed 
DO

(mg/L)

Day Observed 
DO

(mg/L)

Day Observed 
DO

(mg/L)

1 3.3 9 7.7 17 8.4 25 9.4

2 6.6 10 7.8 18 8.5 26 9.6

3 6.8 11 7.8 19 8.5 27 9.6

4 6.8 12 7.9 20 8.9 28 10.2

5 7.5 13 8.1 21 9.1 29 10.2

6 7.5 14 8.2 22 9.2 30 10.4

7 7.7 15 8.1 23 9.2 31 10.5

8 7.7 16 8.2 24 9.3 32 8.2
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Chapter 9

Entropy Theory and Its 
Applications in Risk 
Analysis

Environmental and water resource systems are inherently spatial and complex,
and our understanding of these systems is less than complete. Many of the sys-
tems are either fully stochastic or part stochastic and part deterministic. Their
stochastic nature can be attributed to randomness in one or more of the follow-
ing components that constitute them: (1) system structure (geometry), (2) system
dynamics, (3) forcing functions (sources and sinks), and (4) initial and boundary
conditions. As a result, a stochastic description of these systems is needed, and
entropy theory enables development of such a description.

Engineering decisions concerning environmental and water resource sys-
tems are frequently made with less than adequate information. Such decisions
may often be based on experience, professional judgment, rules of thumb, crude
analyses, safety factors, or probabilistic methods. Usually, decision making
under uncertainty tends to be relatively conservative. Quite often, sufficient data
are not available to describe the random behavior of such systems. Although
probabilistic methods allow for a more explicit and quantitative accounting of
uncertainty, their major difficulty occurs because of the lack of sufficient or com-
plete data. Small sample sizes and limited information render estimation of
probability distributions of system variables with conventional methods diffi-
cult. This problem can be alleviated by use of entropy theory, which enables
determination of the least-biased probability distributions with limited
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knowledge and data. Where the shortage of data is widely rampant, as is nor-
mally the case in developing countries, entropy theory is particularly appealing. 

Since the development of entropy theory by Shannon in the late 1940s and of
the principle of maximum entropy by Jaynes in the late 1950s, there has been a
proliferation in application of entropy. The real impetus to entropy-based mod-
eling in environmental and water resources was however provided in the early
1970s, and a great variety of entropy-based applications have since been
reported and new applications continue to unfold. The objective of this chapter
is to briefly discuss entropy theory and demonstrate its usefulness for modeling
and risk analysis in water resources and environmental systems.

9.1 History and Meaning of Entropy 

Rudolph Clausius invented the term “entropy” in 1865 from the Greek meaning
“transformation.” He had noticed that a certain ratio was constant in reversible,
or ideal, heat cycles. The ratio was heat exchanged to absolute temperature.
Clausius decided that the conserved ratio must correspond to a real, physical
quantity, and he named it entropy. For a closed system, entropy is the quantita-
tive measure of the amount of thermal energy not available to do work. So it is a
negative kind of quantity, the opposite of available energy. Obviously, in a closed
system, entropy can never decrease. In a closed system, the available energy can
never increase and its opposite, entropy (defined as unavailable energy), can
never decrease. Further brooding reveals that there is nothing mysterious about
this law. It is similar to saying that things never organize themselves.

Entropy can be considered as a measure of the degree of uncertainty or dis-
order, randomness, or lack of information about the microscopic configuration
of particles of which a system is composed. A perfectly ordered system with a
total number of quantum states equal to unity will have zero entropy, meaning a
complete knowledge of the microscopic state of the system. Indirectly it also
reflects the information content of space–time measurements. It has therefore
been used as a measure of system diversity, system complexity, and system flex-
ibility. Entropy is viewed in three different but related contexts and is hence typ-
ified by three forms: thermodynamical entropy, statistical entropy, and
information-theoretical entropy. In environmental and water resources, the most
frequently used form is the information-theoretical entropy. Before proceeding
further, it will be instructive to briefly discuss the meaning of entropy.

Entropy originated in physics. It is an extensive property like mass, energy,
volume, momentum, charge, or number of atoms of chemical species, but unlike
these quantities, it does not obey a conservation law. Since entropy of a system is
an extensive property, the total entropy of the system equals the sum of entro-
pies of individual parts. The most probable distribution of energy in a system is
the one that corresponds to the maximum entropy of the system. This occurs
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under the condition of dynamic equilibrium. During evolution toward an equi-
librium or stationary state, the rate of entropy production per unit mass should
be minimum, compatible with external constraints. This is the Prigogin princi-
ple. In thermodynamics, entropy is decomposed into two parts: (a) entropy
exchanged between the system and its surroundings and (b) entropy produced
in the system. According to the second law of thermodynamics, the entropy of a
closed and isolated system always tends to increase. In hydraulics, entropy is a
measure of the amount of irrecoverable flow energy expended by the hydraulic
system to overcome friction. The system converts a portion of its mechanical
energy to heat energy, which then is dissipated to the external environment.
Thus, the process equation in hydraulics expressing energy (or head) loss origi-
nates indeed in the entropy concept. This conversion of energy is irreversible.
Thus, this increase in entropy in a hydraulic system usually occurs as a result of
this irreversible conversion of flow energy (mechanical) into heat through fric-
tion. This conversion represents the loss of energy and is nonrecoverable. The
heat energy is conducted through the fluid and its bounding walls, if any; is lost
to the atmosphere; and is eventually dissipated through space. The amount of
energy so deployed is a function of the system geometry and the types of forces
or energy affecting the system. Note that entropy is directly related to the total
number of states available to the system. A perfectly ordered system with a total
number of quantum states equal to unity corresponds to zero entropy and
implies a complete knowledge of the microscopic state of the system. 

Entropy has been employed in thermodynamics as a measure of the degree
of ignorance about the true state of a system. For example, in a volume of gas,
the greatest degree of order of the particles results when these particles are
placed in a small space and are traveling with the same velocity. The thermody-
namic entropy of such a system will be zero. However, as the particles begin to
spread out in space and acquire different velocities, the disorder and thereby
entropy increases. The thermodynamic entropy can be expressed as

(9.1a)

where H is the entropy of the system, pi is the fraction of particles in energy state
i, N is the total number of particles in the system, Ni is the number of particles in
energy state i, and k* is Boltzmann’s constant. 

If there were no energy loss, a hydraulic system would be orderly and orga-
nized. It is the energy loss and its causes that make the system disorderly and
chaotic. Thus, entropy can be interpreted as a measure of the amount of chaos
within a system. Algebraically, it is proportional to the logarithm of the probabil-
ity of the state the system is in. The constant of proportionality is the Boltzmann
constant and this defines the Boltzmann entropy or statistical entropy.

Shannon (1948) developed entropy theory for expression of information or
uncertainty in communication. He expressed the average information conveyed

H kN
N
N

N
N

k p pi i
i i

ii

= − = − ∑∑ ln ln*
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per symbol j when the probability of the occurrence of symbol j in a message
was pj. Thus,

(9.1b)

where N is the total number of symbols in the message.
To further understand the informational aspect of entropy, we perform an

experiment on a random variable X. There may be n possible outcomes x1, x2,… , xn,
with probabilities p1, p2,… , pn; P(X = x1) = p1, P(X = x2 ) = p2 ,… , P(X = xn ) = pn.
These outcomes can be described by 

(9.1c)

If this experiment is repeated, the same outcome is not likely, implying that
there is uncertainty as to the outcome of the experiment. Based on one’s knowl-
edge about the outcomes, the uncertainty can be more or less. For example, the
total number of outcomes is a piece of information and the number of those out-
comes with nonzero probability is another piece of information. The probability
distribution of the outcomes, if known, provides a certain amount of informa-
tion. Shannon (1948) defined a quantitative measure of uncertainty associated
with a probability distribution or the information content of the distribution in
terms of entropy, H(P) or H(X), called Shannon entropy or informational entropy
(with k* taken as unity) as

(9.2)

If the random variable X is continuous then the Shannon entropy is
expressed as

(9.3)

where f(x) is the probability density function of X, F(x) is the cumulative proba-
bility distribution function of X, and E [.] is the expectation of [.]. 

Thus, entropy is a measure of the amount of uncertainty represented by the
probability distribution and is a measure of the amount of chaos or of the lack of
information about a system. If complete information is available, entropy = 0.
Otherwise, it is greater than zero. The uncertainty can be quantified using
entropy by taking into account all different kinds of available information. The
Shannon entropy is the weighted Boltzmann entropy.
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In frequency analysis, often the distribution function f(x) is not known
although some of its properties, such as lower and upper bounds, moments, etc.,
may be known. But these data are insufficient to define f(x) uniquely and may
delineate a set of feasible distributions. Each of these distributions contains a cer-
tain amount of uncertainty that can be expressed by employing the concept of
entropy. 

As an example, consider that weather at a given place on a given day has
two possible outcomes: no rain R0 with probability p0 and rain R1 with probabil-
ity p1. Based on an experiment, the following data are obtained:

The entropy of the first scheme (by using Eq. 9.2) is

H(P) = – 0.5 ln(0.5) – 0.5 ln(0.5) = 0.693

The entropy of the second scheme is

H(P) = – 0.9 ln(0.9) – 0.1 ln(0.1) = 0.135

Clearly, the first scheme is about five-fold as uncertain as the second.

9.2 Principle of Maximum Entropy

To obtain an appropriate probability distribution for a given random variable,
entropy should be maximized. By its nature, the entropy formula has its maxi-
mum value when all probabilities are equal. But this result seems reasonable
only when we have no information. In practice, however, it is common that
some information is available on the random variable. The chosen probability
distribution should then be consistent with the given information. There can be
more than one distribution consistent with the given information. From all such
distributions, we should choose the distribution that has the highest entropy or
uncertainty. To that end, Jaynes (1957) formulated the principle of maximum
entropy (POME), a full account of which is presented in a treatise by Levine and
Tribus (1979). According to POME, the minimally prejudiced assignment of
probabilities is that which maximizes entropy subject to the given information;
that is, POME takes into account all of the given information and at the same
time avoids consideration of any information that is not given. The maximum-
entropy distribution is maximally noncommittal with regard to missing infor-
mation. It also has the property that no possibility is ignored; a positive weight is
assigned to every situation that is not absolutely excluded by the given
information. 

Scheme 1 Scheme 2

R0 R1 R0 R1

Probability 0.5 0.5 0.9  0.1
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The maximum entropy in the presence of some information will be less than
the maximum entropy in the absence of that information. The difference
between these two maximum entropies may be regarded as a measure of the
bias resulting from the given information. Maximizing entropy amounts to min-
imizing this bias. For this reason, POME is said to give the minimally biased
assignment of probabilities and POME may be called the principle of minimum
bias or minimum prejudice.

If no information is available on the random variable, then all possible out-
comes are equally likely, that is, pi = 1/n, i = 1, 2, 3,… , n. It can be shown that the
Shannon entropy is maximum in this case and may indeed serve as an upper
bound of entropy for all cases involving some information. In a more general
case, let the information available about P or X be

(9.4)

and

(9.5)

where m is the number of constraints, m + 1 ≤ n, and gr is the rth constraint.
Equations 9.4 and 9.5 are not sufficient to determine P uniquely. Therefore, there
can be many distributions that will satisfy Eq. 9.4 and Eq. 9.5. According to
POME, there will be only one distribution that will correspond to the maximum
value of entropy and this distribution can be determined using the method of
Lagrange multipliers, which will have the following form:

(9.6)

where λi, i = 0, 1, 2,… , m, are Lagrange multipliers, which are determined by
using the information specified by Eq. 9.4 and Eq. 9.5.

According to the Shannon theory, entropy is an information measure;
entropy defines a kind of measure on the space of probability distributions.
Hence, the POME-based distribution is favored over those with less entropy
among those that satisfy the given constraints. Intuitively, distributions of higher
entropy represent more disorder, are smoother, are more probable, are less pre-
dictable, or assume less. The POME-based distribution is maximally noncom-
mittal with regard to missing information and does not require invocation of
ergodic hypotheses.

The concept of entropy provides a quantitative measure of uncertainty. To
that end, consider a PDF f(x) associated with a dimensionless random variable
X. The dimensionless random variable may be constructed by dividing the
observed quantities by its mean value (e.g., annual flood maxima divided by the
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mean annual flood). As usual, f(x) is a possible function for every x in some
interval (a, b) and is normalized to unity such that

(9.7)

The most popular measure of entropy was first mathematically given by
Shannon (1948) and has since been called the Shannon entropy functional (SEF),
denoted as I[f] or I[x]. It is a numerical measure of uncertainty associated with
f(x) in describing the random variable X and is defined as 

(9.8)

where k > 0 is an arbitrary constant or scale factor depending on the choice of
measurement units, and m(x) is an invariant measure function guaranteeing the
invariance of I[f] under any allowable change of variable and provides an origin
of measurements of I[f]. Scale factor k can be absorbed into the base of the loga-
rithm and m(x) may be taken as unity so that Eq. 9.8 is often written as 

(9.9)

We may think of I[f] as the mean value of –ln[f(x)]. Actually, –I measures the
strength and +I measures the weakness. SEF allows us to choose the f(x) that
minimizes the uncertainty. Note that f(x) is conditioned on the constraints used
for its derivation. Singh (1988, 1998a, 1998b) has described the theory of entropy
and has given expressions of SEF for a number of probability distributions.

Shannon (1948) showed that I is a unique function and the only one that sat-
isfies the following properties: 

1. It is a function of the probabilities f1, f2,… , fn, where n is the number of
data points. 

2. It follows an additive law, that is, I[xy] = I[x] + I[y].
3. It monotonically increases with the number of outcomes when fi are all

equal. 
4. It is consistent and continuous.

According to POME, “the minimally prejudiced assignment of probabilities is
that which maximizes entropy subject to the given information.” Mathematically,
it can be stated as follows: Given m linearly independent constraints C in the form

(9.10)
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where yi(x) are some functions whose averages over f(x) are specified, the maxi-
mum of I, subject to the conditions in Eq. 9.10, is given by the distribution

(9.11)

where λi, i = 0, 1,…, m, are Lagrange multipliers and can be determined from
Eq. 9.10 and Eq. 9.11 along with the normalization condition in Eq. 9.9. An
increase in the number of constraints leads to less uncertainty about the infor-
mation concerning the system.

9.2.1 Entropy-based Parameter Estimation

The general procedure for deriving an entropy-based parameter estimation for a
frequency distribution involves the following steps: (1) Define the given infor-
mation in terms of constraints. (2) Maximize the entropy subject to the given
information. (3) Relate the parameters to the given information. More specifi-
cally, let the available information be given by Eq. 9.10. Since POME specifies f(x)
by Eq. 9.11, inserting Eq. 9.11 in Eq. 9.9 yields

or

(9.12)

In addition, the potential function or the zeroth Lagrange multiplier λ0 is
obtained by inserting Eq. 9.11 in Eq. 9.12 as

(9.13)

resulting in

(9.14)

The Lagrange multipliers are related to the given information (or con-
straints) by

(9.15)
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It can also be shown that

(9.16)

With the Lagrange multipliers estimated from Eq. 9.15 and Eq. 9.16, the fre-
quency distribution given by Eq. 9.11 is uniquely defined. It is implied that the
distribution parameters are uniquely related to the Lagrange multipliers.
Clearly, this procedure states that a frequency distribution is uniquely defined
by specification of constraints and application of POME.

9.2.2 Parameter-Space Expansion Method

The parameter-space expansion method was developed by Singh and Rajagopal
(1986). It employs an enlarged parameter space and maximizes entropy subject
to both the parameters and the Lagrange multipliers. An important implication
of this enlarged parameter space is that the method is applicable to virtually any
distribution, expressed in direct form, having any number of parameters. For a
continuous random variable X having a probability density function f(x,θ) with
parameters θ, the SEF can be expressed as

(9.17)

Parameters of this distribution, θ, can be estimated by maximizing I(f). To
apply the method, the constraints are first defined. Next, the POME formulation
of the distribution is obtained in terms of the parameters by using the method of
Lagrange multipliers. This formulation is used to define the SEF whose maxi-
mum is sought. If the probability distribution has n parameters, θi, i = 1, 2, …, n,
and the (n −  1) Lagrange multipliers are λi, i = 1, 2, …, (n −  1), then the point
where I[f] is a maximum is a solution of (2n −  1) equations:

(9.18)

and

(9.19)

Solution of Eq. 9.18 and Eq. 9.19 yields estimates of parameters of the
distribution.
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9.2.3 Principle of Minimum Cross Entropy 

According to Laplace’s principle of insufficient reason, all outcomes of an exper-
iment should be considered equally likely unless there is information to the con-
trary. On the basis of intuition, experience, or theory, a random variable may
have an a priori probability distribution. Then, the Shannon entropy is at a max-
imum when the probability distribution of the random variable is that one
which is as close to the a priori distribution as possible. This is referred to as the
principle of minimum cross entropy (POMCE), and under this principle the
Bayesian entropy is minimized (Kullback and Leibler 1951). This is equivalent to
maximizing the Shannon entropy.

To explain POMCE, let us suppose we guess a probability distribution for a
random variable x as Q = {q1, q2, ..., qn} based on intuition, experience, or theory.
This constitutes the prior information in the form of a prior distribution. To ver-
ify our guess we take some observations X = (x1, x2, ..., xn) and compute some
moments of the distribution. To derive the distribution P = {p1, p2, ..., pn} of X we
take all the given information and make the distribution as near to our intuition
and experience as possible. Thus, POMCE is expressed as

(9.20)

where the cross entropy D is minimized. If no a priori distribution is available
and if according to Laplace's principle of insufficient reason Q is chosen to be a
uniform distribution U, then Eq. 9.17 takes the form

(9.21)

Hence, minimizing D(P,U) is equivalent to maximizing the Shannon entropy.
Because D is a convex function, its local minimum is its global minimum. Thus, a
posterior distribution P is obtained by combining a prior Q with the specified
constraints. The distribution P minimizes the cross (or relative) entropy with
respect to Q, defined by Eq. 9.20, where the entropy of Q is defined as Eq. 9.2.
Cross-entropy minimization results asymptotically from Bayes's theorem.

9.2.4 Joint Entropy, Conditional Entropy, and Transinformation

If there are two random variables X and Y with probability distributions
P(x) = {p1, p2, …., pn} and Q(y) = {q1, q2, …, qn}, which are independent, then the
Shannon entropy of the joint distribution of X and Y is the sum of the entropies
of the marginal distributions expressed as

(9.22)
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If the two random variables are dependent then the Shannon entropy of the
joint distribution is the sum of the marginal entropy of one variable and the con-
ditional entropy of the other variable conditioned on the realization of the first.
Expressed algebraically, this is

(9.23)

where H(Y|X) is the conditional entropy of Y conditioned on X. The conditional
entropy can be defined as 

(9.24)

It is seen that if X and Y are independent then Eq. 9.23 reduces to Eq. 9.22.
Furthermore, the joint entropy of dependent X and Y will be less than or equal to
the joint entropy of independent X and Y, that is, H(X, Y) ≤  H(X) + H(Y). The dif-
ference between these two entropies defines transinformation T(X, Y) or T(P, Q)
expressed as

(9.25)

Transinformation represents the amount of information common to both X
and Y. If X and Y are independent, then T(X, Y) = 0. Substitution of Eq. 9.23 in
Eq. 9.25 yields

(9.26)

Equation 9.26 states that stochastic dependence reduces the entropy of Y.

9.3 Derivation of Parameters of the Normal 
Distribution Using Entropy 

Frequency distributions that satisfy the given information are often needed.
Entropy theory is ideally suited to that end. Indeed POME has been employed to
derive a variety of distributions, some of which have found wide applications in
environmental and water resources. Singh and Fiorentino (1992) and Singh
(1998a) summarize many of these distributions. Let p(x) be the probability distri-
bution of X that is to be determined. The information on X is available in terms
of constraints given by Eq. 9.2. Then, the entropy-based distribution is given by
Eq. 9.6. Substitution of Eq. 9.5 in Eq. 9.4 yields

(9.27)
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where Z is called the partition function and λ0 is the zeroth Lagrange multiplier.
The Lagrange parameters are obtained by differentiating Eq. 9.27 with respect to
Lagrange multipliers: 

(9.28)

where E[.] is the expectation, var[.] is the variance, cov[.] is the covariance, and
μ3 is the third moment about the centroid, all for gj.

When there are no constraints, then POME yields a uniform distribution. As
more constraints are introduced, the distribution becomes more peaked and pos-
sibly skewed. In this way, the entropy reduces from a maximum for the uniform
distribution to zero when the system is fully deterministic. 

The derivation of the normal distribution by the entropy method is
described in the following.

9.3.1 Specification of Constraints

The probability density function of the normal distribution is

(9.29)

Taking the logarithm to the base e, one gets 

(9.30)

Multiplying Eq. 9.30 by [− f(x)] and integrating between − ∞ to ∞ , one gets

(9.31)
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From Eq. 9.31, the constraints appropriate for Eq. 9.29 can be written as 

(9.32)

where is the mean and is the variance of x.

9.3.2 Construction of the Zeroth Lagrange Multiplier

The least-biased probability density function f(x) consistent with Eq. 9.32 and
based on POME takes the form

f(x) = exp(− λ0 − λ1 x − λ2 x2) (9.33)

where λ0, λ1, and λ2 are Lagrange multipliers. Substitution of Eq. 9.33 in the nor-
mality condition in the first of Eq. 9.32 gives

(9.34)

Equation 9.34 can be simplified as

(9.35)

Equation 9.35 defines the partition function. Making the argument of the
exponential as a square in Eq. 9.35, one gets

(9.36)
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Then

(9.38)

Making use of Eqs. 9.37 and 9.38 in Eq. 9.36, we get

(9.39)

Consider the expression

Let k = t2. Then [dk/dt] = 2t and t = k0.5. Hence, this expression can be simpli-
fied by making substitution for t to yield

(9.40)

Substituting Eq. 9.40 in Eq. 9.39, one gets

(9.41)

Equation 9.41 is another definition of the partition function. The zeroth
Lagrange multiplier λ0 is given by Eq. 9.41 as

(9.42)

One also obtains the zeroth Lagrange multiplier from Eq. 9.35 as

(9.43)

dt
dx

= λ2

exp( )

exp

exp( )

exp

λ

λ
λ

λ

λ
λ

λ
0

1
2

2

2

2

1
2

2

2

4
2

4
=

⎛

⎝⎜
⎞

⎠⎟
− =

⎛

⎝⎜
⎞

⎠⎟

−∞

∞

∫ t dt eexp( )−
∞

∫ t dt2

0

exp( )−
∞

∫ t dt2

0

exp( ) exp( ) exp( ).
. [ .− = − = − =

∞ ∞
−

∞

∫ ∫ ∫t dt k
dk

k
k k dk k2

0
0 5

0

0 5

0

0

2
1
2

1
2

55 1

0
2

−
∞

− =∫ ] exp( )k dk
π

exp( )

exp

expλ

λ
λ

λ

π λ

λ

π

λ0

1
2

2

2

1
2

2 2

2
4

2 4
=

⎛

⎝⎜
⎞

⎠⎟
=

⎛

⎝⎜
⎞

⎠⎟

λ π λ
λ

λ0 2
1
2

2

1
2

1
2 4

= − +ln ln

λ λ λ0 1 2
2= − −

−∞

∞

∫ln exp( )x x dx



370 Risk and Reliability Analysis

9.3.3 Relation Between Lagrange Multipliers and Constraints

Differentiating Eq. 9.43 with respect to λ1 and λ2, respectively, one obtains

(9.44)

(9.45)

Differentiating Eq. 9.42 with respect to λ1 and λ2, respectively, one obtains

(9.46)

(9.47)

Equating Eq. 9.44 to Eq. 9.46 and Eq. 9.45 to Eq. 9.47, one gets

(9.48)

(9.49)

From Eq. 9.48, one gets

(9.50)
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Substituting Eq. 9.50 in Eq. 9.49, one obtains

(9.51)

Eliminating λ2 in Eq. 9.48 then yields

(9.52)

9.3.4 Relation Between Lagrange Multipliers and Parameters

Substitution of Eq. 9.42 in Eq. 9.33 yields

(9.53)

A comparison of Eq. 9.53 with Eq. 9.29 shows that

λ1 = − a/b2 (9.54)

λ2 = 1/(2b2) (9.55)

9.3.5 Relation Between Parameters and Constraints

The normal distribution has two parameters, a and b, which are related to the
Lagrange multipliers by Eq. 9.54 and Eq. 9.55, which themselves are related to
the constraints through Eq. 9.51 and Eq. 9.52 and in turn through the last two of
Eq. 9.32. Eliminating the Lagrange multipliers between these two sets of equa-
tions, we obtain

(9.56)

b = sx (9.57)
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9.3.6 Distribution Entropy 

Substitution of Eq. 9.56 and 9.57 in Eq. 9.31 yields

(9.58)

9.3.7 Parameter-Space Expansion Method

The constraints for the parameter-space expansion method, following Singh and
Rajagopal (1986), are given by the first of Eq. 9.32 and 

(9.59)

(9.60)

The PDF corresponding to POME and consistent with Eqs. 9.32, 9.59, and
9.60 takes the form

(9.61)

where λ0, λ1, and λ2 are Lagrange multipliers. Insertion of Eq. 9.61 into Eq. 9.32
yields

(9.62)

Equation 9.62 is the partition function. Taking the logarithm of Eq. 9.62 leads
to the zeroth Lagrange multiplier, which can be expressed as

(9.63)
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The zeroth Lagrange multiplier is also obtained from Eq. 9.62 as

(9.64)

Introduction of Eq. 9.63 in Eq. 9.61 gives

(9.65)

A comparison of Eq. 9.65 with Eq. 9.29 shows that λ2 = 1 and λ1 = –1.
Taking the logarithm of Eq. 9.65 and multiplying by [− 1], one gets

(9.66)

Multiplying Eq. 9.66 by f(x) and integrating from minus infinity to positive
infinity, we get the entropy function of the form

(9.67)

9.3.8 Relation Between Distribution Parameters and Constraints

Taking partial derivatives of Eq. 9.67 with respect to λ1, λ2, a, and b individually,
and then equating each derivative to zero, one obtains

(9.68)
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(9.70)

(9.71)
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Simplification of Eq. 9.68 through Eq. 9.71 results in

E[x] = a (9.72)

E[x2] = a2 + b2 (9.73)

E[x] = a (9.74)

E[x2] = b2 + a2 (9.75)

Equations 9.72 and 9.74 are the same, and so are Eqs. 9.73 and 9.75. Thus
the parameter estimation equations are Eqs. 9.72 and 9.73.

9.4 Determination of Parameters of the Gamma 
Distribution

The two-parameter gamma distribution is commonly employed for synthesis of
instantaneous or finite-period unit hydrographs (Dooge 1973) and also for flood
frequency analysis (Haan 1977, Phien and Jivajirajah 1984, Yevjevich and Obsey-
sekera 1984). By making two hydrologic postulates, Edson (1951) was perhaps
the first to derive it for describing a unit hydrograph (UH). Using the theory of
linear systems, Nash (1957, 1959, 1960) showed that the mathematical equation
of the instantaneous unit hydrograph (IUH) of a basin represented by a cascade
of equal linear reservoirs would be a gamma distribution. This also resulted as a
special case of the general unit hydrograph theory developed by Dooge (1959).
Using statistical and mathematical reasoning, Lienhard and associates (Lienhard
1964, Lienhard and Davis 1971, Lienhard and Meyer 1967) derived this distribu-
tion as a basis for describing the IUH. Thus, these investigators laid the founda-
tion of a hydrophysical basis underlying the use of this distribution in
synthesizing direct runoff. There has since been a plethora of studies employing
this distribution in surface water hydrology (Gray 1961; Wu 1963; DeCoursey
1966; Dooge 1973; Gupta and Moin 1974; Gupta et al. 1974; Croley 1980; Aron
and White 1982; Singh 1982a,b, 1988; Collins 1983).

If X has a gamma distribution then its PDF is given by

(9.76)

where a > 0 and b > 0 are parameters. The gamma distribution is a two-
parameter distribution. Its CDF can be expressed as

(9.77)
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If y = x/a then Eq. 9.77 can be written as

(9.78)

Abramowitz and Stegun (1965) express F(y) as 

(9.79)

where is the chi-square distribution with degrees of freedom as ν = 2b
and χ 2 = 2y. According to Kendall and Stuart (1965), for ν > 30, the following vari-
able follows a normal distribution with zero mean and variance equal to one:

(9.80)

This helps us to compute F(x) for a given x by first computing y = x/a and
χ 2 = 2y and then inserting these values into Eq. 9.80 to obtain u. Given a value
of u, F(x) can be obtained from the normal distribution tables.

9.4.1 Ordinary Entropy Method

9.4.1.1 Specification of Constraints

Taking the logarithm of Eq. 9.76 to the base e, one gets 

(9.81)

Multiplying Eq. 9.81 by [− f(x)] and integrating between 0 and ∞ , one
obtains the function

(9.82)

From Eq. 9.82 the constraints appropriate for Eq. 9.76 can be written (Singh
et al. 1985, 1986) as 

(9.83)
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(9.84)

(9.85)

9.4.1.2 Construction of the Zeroth Lagrange Multiplier

The least-biased PDF based on POME and consistent with Eq. 9.83 to Eq. 9.85
takes the form

(9.86)

where λ0, λ1, and λ2 are Lagrange multipliers. Substitution of Eq. 9.86 in Eq. 9.83
yields

(9.87)

This leads to the partition function as

(9.88)

Let λ1x = y. Then dx = dy/λ1. Therefore, Eq. 9.88 becomes

(9.89)

Thus, the zeroth Lagrange multipliers λ0 is given by Eq. 9.89 as

(9.90)

The zeroth Lagrange multiplier is also obtained from Eq. 9.88 as 

(9.91)
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9.4.1.3 Relation Between Lagrange Multipliers and Constraints

Differentiating Eq. 9.91 with respect to λ1 and λ2, respectively, produces

(9.92)

(9.93)

Also, differentiating Eq. 9.90 with respect to λ1 and λ2 gives

(9.94)

(9.95)

Let 1 − λ2 = k. Then

(9.96)

(9.97)

From Eq. 9.92 and Eq. 9.94 as well as Eqs. 9.93 and 9.96 and 9.97, one gets
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From Eq. 9.98, , and substituting λ1 in Eq. 9.99, one gets

(9.100)

We can find the value of k (= 1 − λ2) from Eq. 9.100 and substitute it in Eq. 9.98
to get λ1.

9.4.1.4 Relation Between Lagrange Multipliers and Parameters

Substituting Eq. 9.89 in Eq. 9.86 gives the entropy-based PDF as

(9.101)

If λ2 = 1 − k then

(9.102)

A comparison of Eq. 9.102 with Eq. 9.76 produces

λ1 = 1/a (9.103)

and

λ2 = 1 − b (9.104)

9.4.1.5 Relation Between Parameters and Constraints

The gamma distribution has two parameters, a and b, which are related to the
Lagrange multipliers by Eq. 9.103 and Eq. 9.104, which themselves are related to
the known constraints by Eq. 9.98 and Eq. 9.100. Eliminating the Lagrange multi-
pliers between these two sets of equations, we get parameters directly in terms
of the constraints as

(9.105)

(9.106)
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9.4.1.6 Distribution Entropy 

Equation 9.82 gives the distribution entropy. Rewriting it, one gets

(9.107)

9.4.2 Parameter-Space Expansion Method

9.4.2.1 Specification of Constraints

For this method, following Singh and Rajagopal (1986), one finds that the con-
straints are Eq. 9.83 and 

(9.108)

(9.109)

9.4.2.2 Derivation of Entropy Function

The least-biased PDF corresponding to POME and consistent with Eqs. 9.83,
9.108, and 9.109 takes the form

(9.110)

where λ0, λ1, and λ2 are Lagrange multipliers. Insertion of Eq. 9.110 into Eq. 9.83
yields the partition function

(9.111)
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The zeroth Lagrange multiplier is given by Eq. 9.111 as

(9.112)

Also, from Eq. 9.112 one gets the zeroth Lagrange multiplier

(9.113)

Introduction of Eq. 9.112 in Eq. 9.110 produces

(9.114)

Comparison of Eq. 9.114 with Eq. 9.76 shows that λ1 = 1 and λ2 = − 1. Taking
the logarithm of Eq. 9.114 yields

(9.115)

Multiplying Eq. 9.115 by [− f(x)] and integrating from 0 to ∞ yields the
entropy function of the gamma distribution. This can be written as

(9.116)

9.4.3 Relation Between Parameters and Constraints

Taking partial derivatives of Eq. 9.116 with respect to λ1, λ2, a, and b separately
and equating each derivative to zero, respectively, yields
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Simplification of Eq. 9.117 to Eq. 9.120, respectively, gives

(9.121)

(9.122)

(9.123)

Equation 9.121 is the same as Eq. 9.123. Therefore, Eq. 9.121 and Eq. 9.122 are
the parameter estimation equations.

9.5 Application of Entropy Theory in Environmental 
and Water Resources

A historical perspective on entropy applications in environmental and water
resources is given in Singh and Fiorentino (1992) and Singh (1998). Harmancio-
glu and Singh (1998) discussed the use of entropy in water resources. Although
entropy theory has been applied in recent years to a variety of problems in
hydrology, its potential as a decision-making tool has not been fully exploited.
What follows is a brief discussion highlighting this potential. 

9.5.1 Information Content of Data

One frequently encounters a situation in which one wishes to exercise freedom of
choice, evaluate uncertainty, or measure information gain or loss. The freedom of
choice, uncertainty, disorder, information content, or information gain or loss has
been variously measured by relative entropy, redundancy, and conditional and
joint entropies by employing conditional and joint probabilities. As an example,
in the analysis of empirical data, the variance has often been interpreted as a mea-
sure of uncertainty and as revealing gain or loss of information. However,
entropy is another measure of dispersion and is an alternative to variance. This
suggests that it is possible to determine the variance whenever it is possible to
determine the entropy measure, but the reverse is not necessarily true. However,
variance is not the appropriate measure if the sample size is small. 

Since entropy is a measure of uncertainty or chaos, and variance is a measure
of variability, the connection between them is of interest. In general, an explicit
relation between entropy and variance does not exist. If two distributions have
common variance, an entropy-based measure of affinity or closeness between
the distributions can be defined (Mukherjee and Ratnaparkhi 1986). The affinity
between two distributions is defined by the absolute difference between
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entropies of the two distributions, which can be shown to be the expectation of
the likelihood ratio. This measure differs from Kullback’s minimum distance
information criterion. Likewise, a similarity function is defined as one minus the
quotient of the affinity between any two distributions and the maximum value
of affinity between the distributions. Thus, affinity (distance) is a monotonically
decreasing function of similarity. The similarity factor can be used to cluster or
group models. 

To measure correlation or dependence between any two variables, an informa-
tional coefficient of correlation r0 is defined as a function of transinformation T0 as

(9.124)

Transinformation given by Eq. 9.124 expresses the upper limit of common
information between two variables and represents the level of dependence (or
association) between the variables. It represents the upper limit of transferable
information between the variables, and its measure is given by r0. The ordinary
correlation coefficient r measures the amount of information transferred
between variables under specified assumptions, such as linearity and normality.
An inference similar to that of the ordinary correlation coefficient r can be drawn
by defining the amount (in percent) of transferred information by the ratio T/T0,
where T can be computed in terms of ordinary r.

9.5.2 Criteria for Model Selection 

Usually there are more models than one needs and a choice has to be made as to
which model to choose. Akaike (1973) formulated a criterion, called the Akaike
information criterion (AIC), for selecting the best model from among several
models as 

(9.125)

where k is the number of model parameters.
AIC provides a method of model identification and can be expressed as

minus twice the logarithm of the maximum likelihood plus twice the number of
parameters used to find the best model. The maximum likelihood and entropy
are uniquely related. When there are several models, the model giving the mini-
mum value of AIC should be selected. When the maximum likelihood is identi-
cal for two models, the model with the smaller number of parameters should be
selected, for that will lead to smaller AIC and comply with the principle of
parsimony. 

9.5.3 Hypothesis Testing

Another important application of entropy theory is in testing of hypotheses (Tri-
bus 1969). With use of Bayes’s theorem in logarithmic form, an evidence

r T0 0
0 51 2= − −[ exp( )] .

AIC maximized likelihood =     k− +2 2log ( )
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function is defined for comparing two hypotheses. The evidence in favor of one
hypothesis over its competitor is the difference between the respective entropies
of the competition and the hypothesis under test. Defining surprisal as the nega-
tive of the logarithm of the probability, one can express the mean surprisal for a
set of observations. Therefore, the evidence function for two hypotheses is
obtained as the difference between the two values of the mean surprisal multi-
plied by the number of observations. 

9.5.4 Risk Assessment 

In common language, risk is the possibility of loss or injury and the degree of
probability of such loss. Rational decision making requires a clear and quantita-
tive way of expressing risk. In general, risk cannot be avoided and a choice has
to be made among risks. There are different types of risk, such as business risk,
social risk, economic risk, safety risk, investment risk, and occupational risk. To
put risk in proper perspective, it is useful to clarify the distinction among risk,
uncertainty, and hazard. 

The notion of risk involves both uncertainty and some kind of loss or dam-
age. Uncertainty reflects the variability of our state of knowledge or state of con-
fidence in a prior evaluation. Thus, risk is the sum of uncertainty plus damage.
Hazard is commonly defined as a source of danger and involves a scenario iden-
tification (e.g., failure of a dam) and a measure of the consequence of that sce-
nario or a measure of the ensuing damage. Risk encompasses the likelihood of
conversion of that source of danger into the actual delivery of loss, injury, or
some form of damage. Thus, risk is the ratio of hazard to safeguards. By increas-
ing safeguards, risk can be reduced but it can never be zero. Since awareness of
risk reduces risk, awareness makes up part of the safeguards. Qualitatively, risk
is subjective and is relative to the observer. Risk involves the probability of a sce-
nario and the consequence resulting from the scenario happening. Thus, one can
say that risk is probability and consequence. Kaplan and Garrick (1981) have
analyzed risk by using entropy.

9.5.5 Safety Evaluation

Safety has two components: reliability and probabilistic risk assessment (PRA).
In reliability, a safety margin or probability of failure is defined when maximum
external loads are specified (i.e., design loads, such as design discharge). There
can be three domains of safety: 

1. Safe domain (no failure)
2. Potentially unsafe domain (failure is possible)
3. Unsafe (failure) domain (a failure is certain)

The safe and unsafe domains are separated by a limit state surface. A system
will fail if the failure indicator reaches the limit state surface. If we consider a
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probability density function of failure at a value of the failure indicator then the
cumulative probability of the failure indicator defines fragility.

In PRA, one considers the probability of failure from loads exceeding design
loads. Through introduction of a hazard function, the probability density func-
tion of external loads is specified. Consider a hydraulic system with a set of ran-
dom parameters. The system can fail in many ways and every failure mode can
be described with a corresponding failure indicator involving a number of dif-
ferent failure modes, which is a function of the hazard parameters and the ran-
dom parameters. For example, in case of an earth dam, depending on the failure
mode, a failure indicator could be erosion at the bottom, reservoir water level,
water leakage, displacement, etc. Hazard parameters could be extreme rainfall,
reservoir level, peak discharge, depth of water at the dam top, etc. Structural
random parameters could be strengths of materials, degree of riprap, degree of
packing, internal friction, etc.

9.5.6 Reliability Analysis

Reliability of a system can be defined as the probability that the system will per-
form its intended function for at least a specified period of time under specified
environmental conditions. Different measures of reliability are applied to differ-
ent systems, depending on their objective. Indeed, the use of a particular system
determines the kind of reliability measure that is most meaningful and most use-
ful. As an example, the reliability measure of a dam is the probability of its sur-
vival during its expected life span. In contrast, the reliability measure associated
with hydroelectric power plant components is the failure rate, since failure of a
plant is of primary concern. Furthermore, at different times during its operating
life a system may be required to have a different probability of successfully per-
forming its required function under specified conditions. The term “failure”
means that the system is not capable of performing its required function. We
only consider the case where the system is either capable of performing its func-
tions or not and exclude the case involving varying degrees of capability.

If the reliability is defined as the probability of success, that is, the system
will perform its intended function for at least a defined period of time, then the
reliability function can be computed directly from the knowledge of the failure
time distribution. If the system is resurrected through repair and maintenance
then the mean failure time is known as the mean (operating) time between fail-
ures. The mean time to failure is the expected time during which the system will
perform successfully, also expressed as the expected life.

The rate at which failures occur in a time interval is the failure rate and is
defined by the probability that a failure per unit time occurs in the interval, pro-
vided that a failure has not occurred prior to the beginning of the interval. The
hazard rate (or hazard function) is defined by the limit of failure as the length of
the time interval approaches zero. This implies the instantaneous failure rate.
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9.5.7 Entropy Spectral Analysis for Flow Forecasting 

Maximum entropy spectral analysis (MESA) was introduced by Burg (1975) and
has several advantages over conventional spectral analysis methods. It has short
and smooth spectra with high-degree resolutions (Fougere et al. 1976). The sta-
tistical characteristics used in stochastic model identification can also be esti-
mated using MESA, thus permitting integration of spectral analysis and
computations related to stochastic model development. Ulrych and Clayton
(1976) reviewed principles of MESA and the closely related problem of autore-
gressive time series modeling. Shore (1979) presented a comprehensive discus-
sion of minimum cross-entropy spectral analysis.

The relationship between spectrum W(f) with frequency f of a stationary pro-
cess x(t) and entropy H(f) can be expressed as

(9.126)

where w is the frequency band. Equation 9.126 is maximized subject to the con-
straint equations given as autocorrelations until log m:

(9.127)

where t is the sampling time interval and i = (− 1)1/2. Maximization of Eq. 9.127
is equivalent to maximizing

(9.128)

which is known as the Burg entropy. The spectrum W(f) can be expressed in
terms of the Fourier series as

(9.129)

Substitution of Eq. 9.129 in Eq. 9.128 and maximization lead to MESA. 
Jaynes (1982) has shown that MESA and other methods of spectral analysis

such as Schuster, Blackman–Tukey, maximum likelihood, Bayesian, and autore-
gressive (AR, ARMA, or ARIMA) models are not in conflict, and that AR models
are a special case of MESA. Krstanovic and Singh (1991a,b) employed MESA for
long-term streamflow forecasting. Krstanovic and Singh (1993a,b) extended the
MESA method to develop a real-time flood forecasting model. Padmanabhan
and Rao (1986, 1988) applied MESA to analyze rainfall and river flow time
series. Rao et al. (1984) compared a number of spectral analysis methods with
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MESA and found MESA to be superior. Eilbert and Christensen (1983) analyzed
annual hydrological forecasts for central California and found that dry years
might be more predictable than wet years. Dalezios and Tyraskis (1989)
employed MESA to analyze multiple precipitation time series.

9.5.8 Regional Precipitation Analysis and Forecasting

The Burg algorithm or MESA can be applied to identify and interpret multista-
tion precipitation data sets and to explore spectral features that lead to a better
understanding of rainfall structure in space and time (Dalezios and Tyraskis
1989). Then, multistation rainfall time series can be extrapolated to develop
regional forecasting capabilities.

9.5.9 Grouping of River Flow Regimes

An objective grouping of flow regimes into regime types can be employed as a
diagnostic tool for interpreting the results of climate models and flow sensitivity
analyses. By minimizing an entropy-based objective function (such as minimum
cross entropy) a hierarchical aggregation of monthly flow series into flow regime
types can, therefore, be effectively performed, which will satisfy chosen discrim-
inating criteria. Such an approach was developed by Krasovskaia (1997), who
applied it to a regional river flow sample for Scandinavia for two different for-
mulations of discriminating criteria.

9.5.10 Basin geomorphology 

Entropy plays a fundamental role in characterization of landscape. Using the
entropy theory for morphological analysis of river basin networks, Fiorentino et
al. (1993) found the connection between entropy and the mean basin elevation to
be linearly related to the basin entropy. Similarly, the relation between the fall in
elevation from the source to the outlet of the main channel and the entropy of its
drainage basin was found to be linear and so also was the case between the ele-
vation of a node and the logarithm of its distance from the source. When a basin
was ordered following the Horton–Strahler ordering scheme, a linear relation
was found between the drainage basin entropy and the basin order. This relation
can be characterized as a measure of the basin network complexity. The basin
entropy was also found to be linearly related to the logarithm of the magnitude
of the basin network. This relation led to a nonlinear relation between the net-
work diameter and magnitude, where the exponent was found to be related to
the fractal dimension of the drainage network.

9.5.11 Design of Hydrologic Networks 

The purpose of measurement networks is to gather information in terms of data.
Fundamental to evaluation of these networks is the ability to determine whether
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the networks are gathering the needed information optimally. Entropy theory is a
natural tool to make that determination. Krstanovic and Singh (1992a,b)
employed the theory for space and time evaluation of rainfall networks in Louisi-
ana. The decision whether to keep or to eliminate a rain gauge was based entirely
on reduction or gain of information at that gauge. Yang and Burn (1994)
employed a measure of information flow, called directional information transfer
index (DIT), between gauging stations in the network. The value of DIT varies
from zero, where no information is transmitted and the stations are independent,
to one, where no information is lost and the stations are fully dependent. Between
two stations of one pair, the station with higher DIT value should be retained
because of its greater capability of inferring information at the other side.

9.5.12 Reliability of Water Distribution Systems

Entropy-based measures have been developed for evaluation of reliability and
redundancy of water distribution networks. These measures accurately reflect
changes in network reliability. However, the redundancy of a network also
depends on the ability of the network to respond to failure of one of its links.
Awumah et al. (1990) applied them to evaluate reliability and redundancy of a
range of network layouts and showed that the entropy-based redundancy mea-
sure was a good indicator of the relative performance implications of different
levels of redundancy.

9.5.13 Subsurface Hydrology 

In groundwater engineering, it is often true that limited measurements of aquifer
and flow parameters, such as hydraulic conductivity, are available, and a large
degree of uncertainty exists in the measured values of fundamental flow parame-
ters. Woodbury and Ulrych (1993) used the principle of minimum relative entropy
(POMRE) to determine these parameters. Barbe et al. (1994) applied POME to
derive a probability distribution for piezometric head in one-dimensional steady
groundwater flow in confined and unconfined aquifers, subject to the total proba-
bility law and conservation of mass. From a few measurements of transmissivity
based on pumping tests and of piezometric head, Bos (1990) employed POME and
Bayes’s theorem to derive the probability distribution of transmissivity.

9.5.14 Hydraulics 

Yang (1994) showed that the fundamental theories in hydrodynamics and
hydraulics can be derived from variational approaches based on maximization
of entropy, minimization of energy, or minimization of energy dissipation rate.
Barbe et al. (1991) and Chiu and Murray (1992) applied POME to determine the
probability distribution of velocity in nonuniform open-channel flow. The
entropy-based velocity distribution fits experimental data very well and is of
great practical value in hydraulic modeling. 
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9.5.15 Sediment Concentration and Discharge

Entropy theory has been successfully applied to derive velocity distributions in
channels and rivers. The entropy-based velocity distribution can be employed to
derive distribution of sediment concentration and computation of suspended
sediment discharge. This approach has been followed by Chiu et al. (2000) and
Choo (2000). Indeed, following this approach, one can also develop an efficient
method of sediment discharge measurement.

9.5.16 Rating Curve

Moramarco and Singh (2001) employed the entropy theory to develop a method
for reconstructing the discharge hydrograph at a river section where only water
level is monitored and discharge is recorded at another upstream section. The
method, which is based on the assumption that lateral inflows are negligible, has
two parameters linked to remotely observed discharge and permits, without
using a flood routing procedure and without the need of a rating curve at a local
site, relating the local river stage with the hydraulic condition at a remote
upstream section.

9.5.17 Water Quality Assessment

Environmental pollution can be perceived as a result of discharge of material
and heat into the environment (water, air, and/or soil) through human activity
of production and consumption. When a compound is added to pure water, the
compound will dissolve and diffuse throughout water. The dissolution and dif-
fusion imply an increase in the entropy of the solution (by virtue of its definition
and the second law of thermodynamics) and an increase in the degree of pollu-
tion. This suggests that an increase in entropy implies water pollution. Water is
extensively used in cooling, washing, disposal of waste material, and dissipation
of waste heat. Water pollution can then be viewed as water initially containing a
low value of entropy being eventually discharged with high value of entropy,
which, in turn, increases the entropy of the environment. Thus, entropy can
serve as a comprehensive index for assessment and control of pollution. To
extend the argument further, the diversity of species of organisms in water or
the diversity index (DI) is related to the degree of pollution. In general, the num-
ber of species decreases as the degree of pollution increases. The DI value can be
calculated using entropy theory.

9.5.18 Design of Water Quality Networks 

Entropy theory, when applied to water quality monitoring network design,
yields promising results, especially in the selection of technical design features,
such as monitoring sites, time frequencies, variables to be sampled, and sam-
pling duration (Ozkul et al. 2000). Furthermore, it permits a quantitative assess-
ment of efficiency and benefit/cost parameters (Harmancioglu et al. 1999).
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Harmancioglu and Singh (1998) reviewed the advantages as well as the limita-
tions of the entropy method as applied to the design of water quality monitoring
networks. Given an observed change in water quality levels at a downstream
location, the entropy-based formulation predicts the probabilities of each possi-
ble water quality level at each of the upstream stations. 

9.5.19 Inadequate Data Situations

One of the main problems plaguing environmental and water resources devel-
opment is the lack of data. Frequently, either the data are missing or are incom-
plete, or they are not of good quality, or the record is not of sufficient length. As
a result, more often than not, the data themselves dictate the type of model to be
used and not the availability of modeling technology. Many conventional mod-
els are not applicable when their data needs are not met. Furthermore, subjective
information, such as professional experience, judgment, and practical or empiri-
cal rules, has played a significant role in hydrologic practice in many developing
countries. Conventional models do not have the capability to accommodate such
subjective information, although such information may be of good quality or
high value. The potential for application of entropy theory is enormous in devel-
oping countries, for it maximizes the use of information contained in data, how-
ever little it may be, and it permits use of subjective information. Thus, in the
face of limited data entropy theory results in a reliable solution of the problem at
hand. Furthermore, it offers an objective avenue for drawing inferences as to the
model results. In addition, entropy-based modeling is efficient, requiring rela-
tively little computational effort, and is versatile in its applicability across many
disciplines.

9.6 Closure

Entropy theory permits determination of the least-biased probability distribu-
tion of a random variable, subject to the available information. It suggests
whether the available information is adequate and, if not, then additional infor-
mation should be sought. In this way it brings the model, the modeler, and the
decision maker closer together. As an objective measure of information or uncer-
tainty, entropy theory allows us to communicate with nature, as illustrated by its
application to the design of data acquisition systems, the design of environmen-
tal and hydrologic networks, and the assessment of reliability of these systems
or networks. In a similar vein, it helps us to better understand physics or science
of natural systems, such as landscape evolution, geomorphology, and hydrody-
namics. A wide variety of seemingly disparate or dissimilar problems can be
meaningfully solved with the use of entropy.
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9.7 Questions

9.1 Take sample data of annual peak discharge from a gauging station on a
river near your town. Fit the gamma distribution to the discharge data.
Then using this distribution, determine the effect of sample size on the
value of the Shannon entropy.

9.2 Use the same gamma distribution as in Question 9.1. Changing the
parameter values determine the Shannon entropy and discuss the effect
of parameter variation. 

9.3 Determine the effect of discretization on the Shannon entropy.

9.4 Determine the constraints for the gamma distribution needed for estima-
tion of its parameters using entropy. Then determine its parameters in
terms of the constraints.

9.5 Determine the constraints for the Pearson type III distribution needed
for estimation of its parameters using entropy. Then determine its
parameters in terms of the constraints.

9.6 Determine the constraints for the Weibull distribution needed for esti-
mation of its parameters using entropy. Then determine its parameters
in terms of the constraints.

9.7 Determine the constraints for the Gumbel distribution needed for esti-
mation of its parameters using entropy. Then determine its parameters
in terms of the constraints.

9.8 Determine the constraints for the three-parameter log-normal distribution
needed for estimation of its parameters using entropy. Then determine its
parameters in terms of the constraints.

9.9 Determine the constraints for the logistic distribution needed for estima-
tion of its parameters using entropy. Then determine its parameters in
terms of the constraints.

9.10 Determine the constraints for the Pareto distribution needed for estima-
tion of its parameters using entropy. Then determine its parameters in
terms of the constraints.

9.11 Determine the constraints for the log-Pearson type III distribution
needed for estimation of its parameters using entropy. Then determine
its parameters in terms of the constraints.

9.12 Take monthly discharge data for several gauging stations along a river.
Compute the marginal entropy of monthly discharge at each gauging
station and plot it as a function of distance between gauging stations.
What do conclude from this plot? Discuss it. 
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9.13 For the discharge data in Question 9.12, compute transinformation of
monthly discharge. Are all gauging stations needed? What is the redun-
dant information? What can be said about increasing or decreasing the
number of gauging stations?

9.14 Consider a drainage basin that has a number of rainfall measuring sta-
tions. Obtain annual rainfall values for each gauging station. Using
annual rainfall values, determine marginal entropy at each station and
also compute transinformation among stations. Comment on the ade-
quacy of the rain gauge network.

9.15 Consider the same basin and the rain gauge network as in Question 9.14.
Now obtain monthly rainfall values and compute marginal entropy as
well as transinformation. Comment on the adequacy of the rain gauge
network. How does the adequacy change with reduced time interval?
Which stations are necessary and which are not?

9.16 Can entropy be employed for designing a monitoring network? If yes,
then how? Can entropy be employed for evaluating the adequacy of an
existing network? If yes, how? 



393

Part III

Uncertainty Analysis
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Chapter 10

Error and Uncertainty 
Analysis

Uncertainty is defined as a measure of imperfect knowledge or probable error
that can occur during the data collection process, modeling and analysis of engi-
neering systems, and prediction of a random process. Engineering systems, such
as wastewater treatment plants, soil remediation systems, water purification
systems, flood control systems, and so on, are subject to uncertainty but deci-
sions on their planning, design, operation, and management are often made
without accounting for it. According to Chow (1979), uncertainty can be defined
in simple language as the occurrence of events that are beyond human control.
In water resources projects, there can be natural, model, parameter, data, compu-
tational, and operational uncertainties. Natural uncertainties, such as climatic,
seismic, hydrologic, geologic, and structural, are associated with the intrinsic
variability of the system. This implies that the performance indicators of the sys-
tem will vary for different sets of equally likely input sequences. In this case, the
system performance must be treated as a random variable. Model uncertainties
arise when the model is unable to closely represent the true behavior of the sys-
tem, because of inadequacy of model assumptions and hypotheses, less than
accurate model parameters, and computational errors. The uncertainties that are
associated with construction, maintenance, and management of the system are
of operational type. The uncertainties in data arise from measurement errors,
inadequate sampling, improper handling and retrieval, as well as unsatisfactory
archiving and storage.
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Uncertainty and risk are pervasive features and go hand in hand in many
engineering systems. How to handle the risks often associated with uncertainty
comprises one of the most difficult aspects of analysis, planning, and manage-
ment of many civil engineering systems. Uncertainty is central to decision mak-
ing and risk assessment problems. Questions of safety or reliability in
environmental and water resources engineering arise principally because of the
presence of uncertainty. However much one may like, uncertainties cannot be
completely eliminated. At best, one can reduce them by better equipment, stan-
dard data-collection procedures, dense monitoring networks, and better models
and maintenance. Uncertainty analysis is performed to determine the statistical
properties of output as a function of statistical input parameters. This helps
determine the contribution of each input parameter to the overall uncertainty of
the model output and can be used to reduce the output uncertainty.

In most civil engineering–related projects, uncertainty analysis is the study of
model output uncertainty as a function of a careful inventory of the different sources
of uncertainty present in the model input parameters. Generally, the most frequent
questions addressed by uncertainty analysis are the following: What is the predic-
tion uncertainty resulting from all of the uncertainties in model inputs? How do
uncertain inputs contribute to model prediction uncertainty? What input parame-
ters need more data-collection effort? The objective of this chapter is to describe
these issues, detailing different types, sources, and measures of uncertainty.

10.1 Types of Uncertainty

There are six sources of uncertainty in evaluating the reliability of environmental
and water resources systems or in designing the systems based on reliability:

1. Natural uncertainties are associated with random temporal and spatial
fluctuations inherent in natural processes (e.g., climatic variability, occur-
rence of hydrologic extremes, spatial variability of hydraulic conductiv-
ity of geologic formations, and occurrence of rainfall).

2. Model structure uncertainty reflects the inability of the simulation model
or design technique to represent precisely the system’s true behavior or
process (e.g., use of Manning’s formula for describing open-channel flow
and use of a simple probability model to describe a random hydrologic
process). This inability is caused by wrong assumptions employed for
constructing the model. 

3. Model parameter uncertainties reflect the variability in determining the
parameters to be used in a model or design. For example, there can be
uncertainty in Manning’s roughness factor n in Manning’s formula 
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or uncertainties in estimation of mean μ and standard deviation σ in the
normal distribution 

, –∞ < x < ∞

Model parameter uncertainty occurs because an inadequate parame-
ter estimation technique is used, inaccurate data are used for parameter
estimation, or both.

4. Data uncertainties arise from (i) measurement inaccuracy and errors,
(ii) inadequacy of the data gauging network, and (iii) data handling
and transcription errors.

5. Computational uncertainties arise from truncation and rounding off
errors in doing calculations.

6. Operational uncertainties are associated with construction, manufactur-
ing, deterioration, maintenance, and other human factors that are not
accounted for in the modeling or design procedure.

Uncertainty may also be classified into two categories: 

1. Inherent or intrinsic—caused by randomness in nature.
2. Epistemic—caused by the lack of knowledge of the system or paucity of

data.

10.1.1 Intrinsic Uncertainty

Environmental and water resources phenomena exhibit random variability and
this variability is reflected when observations are made and samples are ana-
lyzed. For example, there is inherent randomness in the climatic system and it is
impossible to precisely predict what the maximum rainfall would be in a given
city in a given year, even if there is a long history of data. Similarly, there is no
way to precisely predict the amount of sediment load that a given river will
carry during a given week at a given location. Likewise, the maximum discharge
of a river for a given year cannot be predicted in advance. Because randomness
is an inherent part of nature, it is not possible to reduce the inherent uncertainty.
There are local meteorological events, such as frost, hail, and gale (usually dis-
cussed by people with respect to possible climate change), that are difficult to
predict. Following Pate-Cornell (1996), the intrinsic uncertainty can be divided
into inherent uncertainty in time and inherent uncertainty in space. 

10.1.1.1 Inherent Uncertainty in Time

A stochastic process expressed as a time series of a random variable exhibits
uncertainty in time. For example, the time series of annual rainfall at a given
station, the time series of the annual instantaneous maximum discharge of a
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river at a given station, the time series of annual 24-hour maximum rainfall at a
gauging station, annual sediment yield of a watershed at its outlet, the time
series of the annual 7-day minimum ozone level in a given city, the time series of
annual 7-day low streamflow, and so on are examples of the inherent
uncertainty in time.

10.1.1.2 Inherent Uncertainty in Space 

Environmental and water resources systems exhibit uncertainty in space. For
example, hydraulic conductivity in an aquifer varies from point to point in loca-
tion as well as well in direction. Therefore, a space series of the hydraulic con-
ductivity can be expressed along a given transect. This also applies to the
hydraulic conductivity of soils. Likewise, the roughness of a river bed varies
along the bed and can be expressed in space along the longitudinal direction.
The river bed level varies longitudinally as well as transversely. Another exam-
ple is atmospheric pollution in a large urban area, which varies at different
points and in different directions and can be expressed as a function of space.
Examples of this kind exhibiting spatial variability abound in environmental
and hydraulic analyses.

10.1.2 Epistemic Uncertainty

Epistemic uncertainty is extrinsic and knowledge related. The knowledge relates
to environmental and water resources engineering systems and their operation
as well as to the collected data. Thus, this type of uncertainty is caused by a lack
of understanding of the causes and effects occurring in a system. If a system is
fully known, epistemic uncertainty may be caused by a lack of sufficient data.
For example, using laboratory experimentation or computer simulation, it may
be possible to construct a precise mathematical model for an environmental sys-
tem but it will be impossible to determine the parameters for the vast range of
conditions encountered in nature. Consider the case of flow in a channel. The
flow dynamics is reasonably known but it is not possible to estimate the shear
stress for the range of flow and morphologic conditions found in practice. Simi-
larly, depth–duration–frequency curves can be constructed for a given area but
these curves do not represent the true probabilistic nature of rainfall. Epistemic
uncertainty changes with knowledge and can be reduced with increasing knowl-
edge and a longer history of quality data. The knowledge can, in general, be
increased by gathering data, research, experience, and expert advice. Following
Pate-Cornell (1996), the epistemic uncertainty can be divided into statistical
uncertainty and model uncertainty. 

10.1.2.1 Statistical Uncertainty

Statistical uncertainty combines parameter uncertainty and distributional uncer-
tainty (Vrijling and van Gelder 2000). These two types of uncertainties are not
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always independent and distinguishable. For example, the identification of a cor-
rect distribution model depends very much on the accuracy with which its
parameters can be estimated. Consider the case of flood frequency analysis. There
can be more than one frequency distribution that can fit instantaneous flood dis-
charge data. The distribution that will better fit the data significantly depends on
the accuracy with which the distribution parameters can be estimated. Vrijling
and van Gelder (2000) proposed dividing the statistical uncertainty into statistical
uncertainty in time and statistical uncertainty in space.

Parameter Uncertainty

Parameter uncertainty is caused by a lack of data, poor-quality data, or an inade-
quate method of parameter estimation. This type of uncertainty is widely preva-
lent in environmental and water resources analysis. Usually, the variance of
parameter estimation is proportional to 1/N, where N is the data length and the
precision is proportional to 1/N0.5 (Burges and Lettenmaier 1982). This means
that, to improve the precision of parameters by a factor of 2, the required data
length will have to be four times as long. But the data themselves may have
associated uncertainties; these could arise from measurement errors, inconsis-
tency, errors during data recording, and inadequate representation of the
variable owing to limited samples in spatial and temporal domains.

Distribution Uncertainty

It is not always clear which type of a probability distribution a particular environ-
mental random variable follows. For example, the annual maximum instanta-
neous discharge of a river can be described by the log-Pearson type 3
distribution, the three-parameter log-normal distribution, the Pearson type 3 dis-
tribution, or the generalized extreme value distribution. In many cases it is diffi-
cult to discern the exact type of the distribution the annual instantaneous
maximum discharge follows. Similar cases abound with a number of other
environmental variables.

Statistical Uncertainty in Time

Consider, for example, the time series of the annual maximum instantaneous dis-
charge of a river. In most cases the time series is short for determining the dis-
charge of a long recurrence interval, say, 500 years. In this case then there is a
scarcity of information. The same applies to droughts, minimum flows, and a host
of other environmental variables. Although an estimate of a 500-year flood can be
made using any of the available standard frequency analysis techniques, this esti-
mate is subject to uncertainty and this is an example of the statistical uncertainty
in time or statistical uncertainty of variations in time. This uncertainty can be
reduced by lengthening the database.
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Statistical Uncertainty in Space

Consider, for example, the spatial mapping of erosion in a large basin. There is
very little information available to map spatial variability of erosion. Similarly,
spatial mapping of hydraulic conductivity of an aquifer can be very difficult if
there are not enough data available. Such examples abound in environmental
analysis. Thus, the spatial mapping of an environmental variable is subject to
uncertainty and this is an example of statistical uncertainty in space or statistical
uncertainty of variations in space.

10.1.2.2 Model Uncertainty

Environmental and water resources models are imperfect because of uncertain-
ties. Consider, for example, an air pollution model that describes the pollutant
concentration in space and time in the atmosphere. The model is imperfect
because there are many gaps in our knowledge about pollutant dispersion in the
atmosphere or the model is simplified for practical reasons. In any case, the
model is subject to uncertainty resulting from the way the model has been
constructed. 

10.2 Sources of Uncertainty: Types of Errors 

Uncertainties in environmental analysis arise from (1) randomness of physical
phenomena or (2) errors in data and modeling. The modeling and data errors are
of two types: (1) systematic and (2) random. There is another source of error,
called illegitimate error, that results from outright blunders and mistakes.
Computational errors are of this type, but these can be avoided. 

A random or stochastic phenomenon is characterized by the property that its
repeated occurrences do not produce the same outcome. For example, when the
same rainfall occurs at different times over a watershed, it produces different
hydrographs. This means that the watershed response is a stochastic variable. In
a laboratory experiment, when a measurement is repeatedly made, the measured
values do not identically match; the deviations between the values are called ran-
dom fluctuations. Essentially, these are random errors, which are also called sta-
tistical errors in common parlance. Roughly, random errors tend to be higher and
lower than the true value about an equal number of times. Furthermore, estima-
tors subject to only random errors tend to be consistent. Thus, random errors
tend to exhibit a statistical regularity, not a deterministic one. Examples of such
errors are numerous.

Systematic errors are characterized by their deterministic nature and are fre-
quently constant. For example, a rain gauge located near a building tends to pro-
duce biased rainfall measurements. A gauge operator tends to operate the gauge
in a biased manner. The efficiency of observation is often a source of systematic
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error. Changes in experimental conditions tend to produce systematic errors. For
example, if the location of a rain gauge is changed, it will produce biased
measurements. 

10.3 Analysis of Errors

Errors are analyzed using a logical procedure, whether experimental or theoreti-
cal. In general, errors have definite limits. Random errors can be determined
using statistical tools. Systematic errors can be evaluated experimentally, statisti-
cally, or by other means. Sometimes, some errors can be removed by using cor-
rection factors. For example, the U.S. National Weather Service pan is used to
determine potential evaporation in an area by applying a correction factor to the
pan evaporation measurement. There are many examples of this kind in envi-
ronmental and water resources analyses. 

There is another important but difficult aspect of data errors, relating to mis-
takes in the data and rejection of data. When data of natural phenomena are col-
lected, anomalies are seemingly found. These anomalies and their causes should
be carefully analyzed. The causes of these anomalies may be random or system-
atic. Under no circumstances should they be discarded, unless there is a very
strong compelling reason to do so. For example, in frequency analysis of the
annual instantaneous maximum discharge of a river, so-called outliers or inliers
are usually encountered. They must be dealt with, not discarded. Most often,
these anomalies are expected. If the normal probability law (or chi-square crite-
rion) indicates that these anomalous values are expected, they must be retained.
Consider another case. If the deviation of an anomalous value is too large and
has a small chance of occurring, the Chauvenet criterion may be used as a guide
for accepting or rejecting the value or more appropriately flagging the suspi-
cious situation. According to this criterion, if the probability of the value deviat-
ing from the mean by the observed amount is 1/2N or less, where N = number
of observations, then there is reason for suspicion or rejection. 

Uncertainty reflects the degree of error in a measurement or result of a
model application. When the collected experimental data or model outputs are
subject to small errors, two terms—accuracy and precision—are often employed
to characterize the uncertainty. The word accuracy is generally used to indicate
the closeness of the agreement between an experimentally determined value of a
quantity and its true value. An accurate result closely agrees with the actual
value for that quantity. In other words, accuracy tells us how close a measure-
ment is to an accepted standard. Precision describes how well repeated
measurements agree with each other. In other words, precision tells us how close
two or more measurements agree. It is worth mentioning here that precision
does not necessarily indicate anything about the accuracy of the measurements.
An experiment is considered good when it is both precise and accurate.
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Let us consider an experiment. It is said to have high precision if it has small
random error. It is said to have high accuracy if it has small systematic error.
There are four possibilities for characterizing the obtained experimental data, as
shown in Fig. 10-1: 

(i) precise and accurate, 
(ii) precise and inaccurate, 

(iii) imprecise and accurate, and 
(iv) imprecise and inaccurate. 

Our objective is to reduce both systematic and random errors as much as possi-
ble. However, for economy of effort, one must try to strike a balance between
these two sources of error, giving greater weight to the larger of the two.

Example 10.1 A watershed has a network of rain gauges for measurement of
rainfall. It is ascertained that if a rain gauge measures rainfall within 2% to 5% of
the true value, then the rain gauge is said to be accurate and precise. Based on an
analysis of the rainfall observations, it has been determined that one of the rain
gauges, called A, always measures rainfall about 10% to 15% away from the true
value. There is another rain gauge, called B, which is found to measure rainfall
within 2% of the true value. Another rain gauge, called C, is found to measure
rainfall somewhat unpredictably, that is, sometimes 15% away from the true
value, sometimes 20% away from the true value, and sometimes very close to the
true value. Another rain gauge, called D, measures rainfall sometimes 5% higher,
sometimes 5% lower, sometimes 2% higher, and sometimes 2% lower, but always
within 5% of the true value. What can be said about the measurements of these
rain gauges?

Solution The measurements of rain gauge A are precise but inaccurate,
because rain gauge A has the repeatability quality. Rain gauge B is accurate and
precise because it has the repeatability quality and its observations are close to
the true values. Rain gauge C is inaccurate and imprecise because its measure-
ments are neither repetitive nor accurate. Rain gauge D is imprecise but accu-
rate because its observations are close to the true values but its characteristic is
not repeatable. These characteristics are shown in Fig. 10-2.

10.3.1 Measures of Errors

The experimental data errors can be investigated using the criterion of repeat-
ability of measurements. In observing natural phenomena, however, there is no
way to repeat the measurement. In laboratory experimentation, if a measure-
ment is repeated, say N times, and the measured values do not exactly match the
“true” value, the differences can be analyzed. It should, however, be noted that
the true value is never known and only an estimator can be obtained. If N
becomes large, the arithmetic average of the measured values approaches a con-
stant value and, if this is the case, the estimator approaches a constant value and
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Figure 10-1 Characterization of errors—accuracy and precision.

Figure 10-2 Measurement of rainfall by four raingages. Gage A is precise, inaccurate; 
gage B is precise, accurate; gage C is imprecise, inaccurate; gage D is imprecise, accurate. 
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is qualified as a “consistent” estimator. Thus, consistency is one measure of
experimental data error and is tied to the sample size. Ideally, the estimator
should be consistent and without bias. However, the estimator, although consis-
tent, may be biased if N is too small (i.e., the estimator may be either too large or
too small). Thus, bias is another measure of experimental error that is tied to the
sample size. 

Not all statistics are unbiased estimators. Some are consistent estimators
because they converge to the parent population as sample size increases but for a
finite sample size they need correction to become an unbiased best estimate. For
example, for N identical independent measurements, only the sample mean and
sample variance are consistent statistics but only the sample mean is an unbiased
estimator. To obtain an unbiased estimate of the variance, the sample variance is
multiplied by the factor N/(N – 1) if the sample size is small.

10.3.2 Extraction of Information

Data are the source of information. They constitute the only medium of communi-
cation with nature. The purpose of data analysis is, therefore, to extract the maxi-
mum information. Statistical concepts used to analyze data are threefold:

1. Aggregate characteristics
2. Variation of individual values from aggregate properties
3. Frequency distribution of individual values

In the first case are mean (arithmetic, median, mode, harmonic, and geomet-
ric), deviation (mean and standard), variance, coefficient of variation, and higher
order (such as skewness, kurtosis, etc.) or other types of moments (such as proba-
bility weighted, linear, and geometric). The moments and frequency distributions
are interconnected. While computing these statistics, issues relating to rounding
off and truncation errors have to be dealt with.

10.3.3 Analysis of Uncertainty

When analyzing uncertainty, it is assumed that the uncertainty can be measured
quantitatively, at least in principle. For example, if an unbiased coin is tossed it is
not known in advance whether the head or tail will turn up. But it is known that
the event “head will turn up” has a probability of 1/2 or 50% each time the coin
is tossed. Similarly, it is possible to assign a probability to the event that the peak
flow in the Narmada River in any given year will exceed 3,000 m3/s. One can
also determine the probability that the compressive strength of concrete, manu-
factured in accordance with given specifications, will exceed 25,000 kN/m2 or
that the maximum number of trucks that have to wait at a toll station will exceed
50 on any given working day. The kind of uncertainty involved here is the
uncertainty associated with the randomness of the event.

Investigating the uncertainty in the conclusions reached about uncertain
events goes beyond the scope here. For example, one may calculate that the
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probability p of the peak flow in the Narmada River exceeding 3,000 m3/s in any
given year is 2.5%. But there is an element of uncertainty in estimation of p,
which depends on the length and quality of data. This raises the following ques-
tion: What is the probability that p lies within a given range p ± Δp? In each case,
events can be analyzed such that reasonable people, using reasonable proce-
dures, come up with reasonably close probability assessments. Here the
objective is to rationally deal with uncertainty, not completely eliminate it.

To deal with uncertain events in the decision-making process, events that are
certain to occur, or conclusions that are certainly true, must be fully taken into
account. These can be given a weight of 1 (certain events). Impossible events, in
contrast, are disregarded in decisions and these are given the weight of 0. Any
in-between event is given a weight equal to the probability of its occurrence.
Thus, the more likely an event is, the more weight it gets and the greater is its
relative effect on the outcome or the decision. It is in this manner that the effec-
tive monetary value of the consequences of a decision was evaluated in
Chapter 1. 

Evaluation of safety and reliability requires information on uncertainty,
which may be determined by the standard deviation or coefficient of variation.
Questions of safety or reliability arise principally from the presence of uncer-
tainty. Thus, an evaluation of the uncertainty is an essential part of the evalua-
tion of engineering reliability. The uncertainty resulting from random variability
in physical phenomena is described by a probability distribution function. For
practical purposes, its description may be limited to (a) a central tendency and
(b) its dispersion (e.g., standard deviation) or coefficient of variation.

To deal with uncertainty arising from prediction error (estimation error or
statistical sampling error and imperfection of the prediction model), one nor-
mally employs the coefficient of variation or the standard deviation, which rep-
resents a measure of the random error. In effect, the random error is involved
whenever there is a range of possible error. One source of random error is sam-
pling error, which is a function of the sample size. The random sampling error
can be expressed in terms of the coefficient of variation (CV) as Δ1 = CV / ,
where N = sample size.

Consider, for example, the mean annual rainfall for Baton Rouge to be 60.00
inches. Conceivably, this estimate of the true mean value would contain error. If
the rainfall measurement experiment is repeated and other sets of data are
obtained, the sample mean estimated from the other sets of data would most
likely be different. The collection of all the sample means will also have a mean
value, which may well be different from the individual sample mean values, and
a corresponding standard deviation. Conceptually, the mean value of the collec-
tion of sample means may be assumed to be close to the true mean value (assum-
ing that the estimator is unbiased). Then, the difference (or ratio) of the estimated
sample mean (i.e., mean value of 60 inches) to the true mean is the systematic
error, whereas the coefficient of variation or standard deviation of the collection
of sample means represents a measure of the random error. In effect, random

N



406 Risk and Reliability Analysis

error is involved whenever there is a range of possible error. One source of ran-
dom error is the error from sampling, which is a function of the sample size. 

The systematic error is a bias in the prediction or estimation and can be cor-
rected through a constant bias factor. The random error, called the standard
error, requires statistical treatment. It represents the degree of dispersiveness of
the range of possible errors. It may be represented by the standard deviation or
coefficient of variation of the estimated mean value. An objective determination
of the bias as well as the random error will require repeated data on the sample
mean (or medians), which are hard to come by.

For a random phenomenon, prediction or estimation is usually confined to
the determination of a central value (e.g., mean or median) and its associated
standard deviation or coefficient of variation. The uncertainty associated with
the error in the estimation of the degree of dispersion is of secondary impor-
tance, whereas the uncertainty resulting from error in the prediction of the cen-
tral value is of first-order importance. To summarize, through methods of
prediction one obtains

x = estimate of mean value

σx = estimate of the standard deviation

For a set of observations, the mean value is 

(10.1)

and the variance is 

(10.2)

An assessment of the accuracy or inaccuracy of the prediction for the mean
value is made to obtain e = bias correction for the error in the predicted mean
value x and Δ = measure of the random error in x. For quantification of uncertainty
measures, we confine ourselves to the error of prediction or the error in the estima-
tion of the respective mean values; that is, the systematic and random errors will
refer to the bias and standard error, respectively, in the estimated mean value of a
variable (or function of variables). It should be emphasized that the uncertainty
measures are credible, for the validity of a calculated probability depends on cred-
ible assessments of the individual uncertain measures. Methods for evaluating
uncertainty measures depend on the form of the available data and information.

The uncertainty associated with the inherent randomness is given by

(10.3)

The mean value estimate may not be totally accurate relative to the true
mean (especially for a small sample size n). The estimated mean value given
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here is unbiased as far as sampling is concerned; however, the random error of x
is the standard error of x, which is

(10.4)

The uncertainty associated with random sampling error is

(10.5)

This random error in x is limited to the sampling error only. There may, how-
ever, be other biases and random errors in x, such as the effects of factors not
included in the observational program.

Often, the information is expressed in terms of the lower and upper limits of
a variable. Given the range of possible values of a random variable, the mean
value of the variable and the underlying uncertainty may be evaluated by pre-
scribing a suitable distribution within the range. For example, if a random vari-
able X is assumed to be characterized by a uniform distribution with the lower
and upper limits of xl and xu, respectively, then using Eq. 5.93 and Eq. 5.94 gives
the mean, standard deviation, and CV of X as

, (10.6)

(10.7)

where the PDF of the variable is uniform between xl and xu, as shown in Fig. 10-3.
Alternatively, let the PDF be given by a symmetric triangular distribution

with limits xl and xu, as shown in Fig. 10-4. By substituting a = xl, b = xu, and
c = (xu + xb)/2 in Eq. 5.133 and Eq. 5.134, the corresponding CV would be

(10.8)

With either the uniform or the symmetric triangular distribution, it is implic-
itly assumed that there is no bias within the prescribed range of values for X.
However, if there is bias, a skewed distribution may be more appropriate. If the
bias is judged to be toward the higher values within the specified range, then the
upper triangular distribution as shown in Fig. 10-5 would be appropriate. In
such a case, by substituting a = xl and b = c = xu in Eq. 5.133 and Eq. 5.134, the
mean and CV of X can be determined as  

(10.9)
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σ σx x n= /

Δx x x= σ

x x xl u= +( )1
2

σx u lx x= −( )1
2 3

CV
x x
x x

u l

u l
=

−
+

⎛
⎝⎜

⎞
⎠⎟

1
3

CV
x x
x x

u l

u l
=

−
+

⎛
⎝⎜

⎞
⎠⎟

1
6

x x xl u= +( )1
3

2

CV
x x
x x
u l

u l
=

−
+

⎛
⎝⎜

⎞
⎠⎟

1
2 2



408 Risk and Reliability Analysis

Conversely, if the bias is toward the lower range of values, the appropriate
distribution may be a lower triangular distribution as shown in Fig. 10-6. Substi-
tuting a = c = xl and b = xu in Eq. 5.133 and Eq. 5.134 gives the corresponding
mean and CV as  

(10.11)

Figure 10-3 Uniform probability density function between xl and xu.

Figure 10-4 Symmetric triangular probability density function between xl and xu.

Figure 10-5 Upper triangular probability density function between xl and xu.
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(10.12)

Another distribution may be a normal distribution, as shown in Fig. 10-7,
where the given limits may be assumed to cover from the mean value. In
such cases, the mean value is 

(10.13)

and the coefficient of variation is

(10.14)

The seemingly different types and sources of uncertainty can also be ana-
lyzed as follows. Let the true value of the variable be x and its prediction be given
as . Let there be a correction factor λ to account for error in . Therefore, the
true value x may be expressed as

(10.15)

For random variable value X, the model should be a random variable.
The estimated mean value and variance (e.g., from a set of observations)
are those of . Then, represents the inherent variability. The neces-
sary correction λ may also be considered a random variable, whose mean value
“e” represents the mean correction for systematic error in the predicted mean
value , whereas the CV of λ, , represents the random error in the predicted
mean value . If one assumes λ and to be statistically independent, the mean
value of X is

(10.16)

Figure 10-6 Lower triangular probability density function between xl and xu.
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The total uncertainty in the prediction of x then becomes

(10.17)

The preceding analysis pertains to a single variable. 
If Y is a function of several random variables that is, 

(10.18)

the mean value and associated uncertainty of Y are of concern. A model (or func-
tion) and a correction λg may be used, so 

(10.19)

Thus, λg has a mean value of eg and a CV of Δg. Using the first-order approxi-
mation gives the mean value of Y:

(10.20)

where eg is the bias in and . Also, the total CV of Y is

(10.21)

in which evaluated at and ρij = correlation coeffi-

cient between xi and xj.

Figure 10-7 Normal probability density function between xl and xu.
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Example 10.2 Consider the mean annual rainfall for Baton Rouge, which is
given as 60 inches based on a sample of data. The mean rainfall estimated by the
arithmetic mean method is about 5% to 10% higher than the true mean. Taking
the sample standard deviation of 15 inches and the number of observations in
the sample as 25, compute the total random error in the estimated mean value.

Solution The corresponding CV is 15/60 = 0.25. Assume the random sampling
error (expressed in terms of CV) would be

Δ1 = 0.25/(25)0.5 = 0.05 

The systematic error or bias may arise from factors not accounted for in the
prediction model that tends to consistently bias the estimate in one direction or
the other. For example, the mean rainfall estimated by the arithmetic mean
method may be about, say, 5% to 10% higher than the true mean, say, yielded by
the isohyetal method. With this information, a realistic prediction of the mean
rainfall requires a correction from 90% to 95% of the corresponding mean (arith-
metic) rainfall. If a uniform PDF between this range of correction factors is
assumed, then the systematic error in the estimated arithmetic mean rainfall of
60 inches will need to be corrected by a mean bias factor of 

whereas the corresponding random error in the estimated mean value,
expressed in terms of CV (see Eq. 10.7), is 

The total random error in the estimated mean value is, therefore, 

Example 10.3 Consider a linear reservoir expressed as S = KQ, where S = storage
(in m3), K = reservoir constant (the average travel or retention time), and
Q = discharge (in m3/s). Assume K and Q are independent and their errors are
independent and uncorrelated. Determine the CV of S.

Solution Since K and Q are independent and their errors are independent and
uncorrelated, one can write

(10.22)
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where

,

Equation 10.22 can be expressed as

Dividing both sides by one gets

=

Thus,

(10.23)

Example 10.4 The storage in a reservoir at the end of month t+1, St+1, can be
computed using the continuity equation

St+1 = St + It – Rt – Et (10.24)

where It is inflow during month t, Rt is release during month t, and Et is evapora-
tion of water during month t. Of the variables on the right-hand side of Eq. 10.24,
St is known at the beginning and the release to be made during the month (Rt) is
assumed known. Variables It and Et are assumed to be uncertain random vari-
ables, with mean values of 21.3 and 2.4 million m3, respectively, and standard
deviations of 4.5 and 0.6 million m3, respectively. If the initial storage in the res-
ervoir is 28.0 million m3 and the target release is 16.7 million m3, find the
expected storage at the end of the month and its standard deviation.

Solution The expected value of the end-of-month storage (denoted by E(St+1)) is 

E(St+1) = St + E(It) – Rt – E(Et) = 28.0 + 21.3 – 16.7 – 2.4 = 30.2 million m3 (10.25)

The variance of the end-of-month storage is

var(St+1) = var(It) + var(Et) = 4.52 + 0.62 = 20.61(million m3)2 (10.26)

Hence,
SD(St+1) = 20.610.5 = 4.54 million m3

Example 10.5 In the previous example, both reservoir inflow and evaporation
depend upon the climate and hence may be correlated. From the analysis of
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historical data, this was found to be indeed the case and the correlation was –0.25.
Determine the standard deviation of the expected storage at the end of the
month.

Solution The variance of St+1 can now be calculated as 

var(St+1) = var(It) + var(Et) – 2 × ρ × SD(It) × SD(Et) (10.27)

 = 4.52 + 0.62 – 2×(–0.25) × 4.5 × 0.6 = 20.61 + 1.35 = 21.96

Hence, 

SD(St+1) = 21.960.5 = 4.67 million m3

The standard deviation is now increased. Note that the standard deviation
depends upon the magnitude and sign of the correlation. In this example, if the
correlation were positive, the standard deviation would have been less. 

Example 10.6 Consider the rational method for computing peak discharge,
Q = CIA, where Q = peak discharge in m3/s, C = rational runoff coefficient
(dimensionless), I = rainfall intensity in mm/hour, and A = drainage area in km2.
Assume that the variables C, I, and A are independent and that the errors in
them are independent and uncorrelated. Express the relative error (standard
deviation divided by mean) in the peak discharge as a function of errors in C, I,
and A.

Solution Since C, I, and A are independent and their errors are independent and
uncorrelated 

(10.28)
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Thus,

=

(10.29)

Example 10.7 The pollutant concentration C can be expressed as C = QS/Q,
where Q is water discharge and QS is pollutant discharge. Express the error in C
as a function of errors in QS and Q. Assume that QS and Q are independent and
that the errors in them are independent and uncorrelated.

Solution Since QS and Q are independent and their errors are independent and
uncorrelated

(10.30)

where

 and 

Equation 10.30 can be expressed as

(10.31)

But

Thus,

=  and (10.32)

Example 10.8 The cross-sectional area of a channel at a given location is mea-
sured by summing the cross-sectional areas of different segments. Assume the
channel to be of trapezoidal form, which can be broken down into rectangular
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and triangular portions. Let the total area (A) be expressed as A = x + y, where x
is the cross-sectional area of the rectangular part and y is the cross-sectional area
of the two triangular parts. Express the error in A as a function of errors in x and
y. Then, consider the following data: x (m2) = 100 ± 1.5 and y (m2) = 75 ± 0.5.
Compute the error in the area.

Solution Since x and y are independent and their errors are independent and
uncorrelated

(10.33)

where

,

Equation 10.33 can be expressed as

But

Thus,

and

Given x = 100 ± 1.5 and y = 75 ± 0.5, therefore,

Example 10.9 Daily lake evaporation is frequently estimated by measuring the
lake levels at the beginning and at the end of the day (24 hours later). Consider
that the lake level at the beginning of the day is 1,000 ± 10 cm and at the end of
the day it is 998 ± 10 cm. Independently, the lake level is found to be measured
with an accuracy of 1.0%. Compute the lake evaporation and determine its
accuracy. Compare the accuracy of lake evaporation with the accuracy of the
independent lake measurements.
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Solution The depth of daily lake evaporation can be expressed as z = x – y,
where x indicates the lake level at the beginning of the day (x = 1,000 ± 10) and y
indicates the lake level at the end of the day (y = 998 ± 10). It is assumed that x
and y are independent and their errors are independent and uncorrelated, so

(10.34)

where

and

Equation 10.34 can be expressed as

Thus,

and

Since

we have and . Given x = 1,000 and y = 998, we have 

= 7.06 

z = 2 ± (2 × 7.06) = 2 ± 14.12

Obviously, Ez is much larger than Ex or Ey.

Example 10.10 According to the Muskingum method for flow routing,
S* = aI + (1 – a)Q, where S* = storage rate (storage/average time of travel),
I = inflow rate, Q = outflow rate, and a = weighting factor. Assume the variables
I and Q are independent. Using the least-square error criterion, determine the
weighting factor in terms of the errors in I and Q. Derive the error in storage rate
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as a function of the errors in I and Q. Then express the storage rate in terms of
the derived expression for a.

Solution Starting with the Muskingum equation S* = aI + (1– a)Q, one can write

(10.35)

where

and 

Substituting these values in Eq. 10.35 gives

The least-square error criterion, 

then gives 

so

=

and

10.3.4 Propagation of Errors

In most civil engineering projects we either use a mathematical model as an aid
to analyze a given system or conduct experiments. In both cases we come across
a variety of quantities, each with their own errors. Because of the uncertain
nature of these quantities, these can be better represented by random variables.
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Further, the system output or the overall result of an experiment is also uncer-
tain and hence can be represented by a random variable as well. When input
random variables of a given system, such as a model or an experiment associ-
ated with errors, are used in the calculation of overall system response, these
errors propagate from input to output. Quite often we are interested in knowing
how errors in mathematical models or instruments propagate throughout a
given system so that we can estimate the magnitude of the error associated in
the overall system response. Error propagation gives a valid estimate of the error
involved in the mathematical result.

Let us consider a univariate relationship Y = f(X) between a dependent variable
Y and an input variable X. Further, let us consider that σx is the uncertainty (error)
in x. How will the uncertainty associated with x be reflected in the uncertainty of y,
denoted as σy? Figure 10-8 explains the various terms and their physical meanings
in a graphical format. The functional relationship f(x) can be written as 

(10.36)

Expanding f(x) using Taylor’s theorem gives

(10.37)

Figure 10-8 Propagation of error.
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Now, truncating the series at the linear terms and solving for σy, we obtain

(10.38)

Using the formula and Eq. 10.38, one can write 

or (10.39)

In other words, uncertainty of the dependent variable Y can be determined
by multiplying the uncertainty associated with the independent variable X (= σx)
with the sensitivity of Y with respect to X at the operating point P (= ).

Equation 10.39 helps us understand how errors in mathematical models
propagate throughout a given system. The error involved in the model output or
in the overall result of the experiment is a function of (1) the error involved in the
input random variable associated with a given system and (2) the functional form
of a system. It is worth mentioning here that the estimate of system uncertainty
obtained by Eq. 10.39 is not always accurate. The accuracy of Eq. 10.39 depends
upon how accurate the approximate functional form (Eq. 10.38) is compared to
the actual functional form (i.e., Eq. 10.37), which is directly related to the degree
of nonlinearity in the functional form. If the functional form is linear, then the
output uncertainty will only be governed by the uncertainty of the input variable.

 If the dependent variable Y depends upon several input variables X1, X2, …,
Xn, we can write the truncated form of the Taylor series expansion up to the lin-
ear terms as

(10.40)

where P =  is a vector representing the expansion point. Thus,
the variance of Y is

(10.41a)

Alternatively, Eq. 10.41a can be written as 
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(10.41b)

For multivariate propagation of errors, two cases can be distinguished: 

1. Input variables x1, x2, ..., xn are independent of each other
(i.e., cov(xi, xj) = 0).

2. Input variables x1, x2, ..., xn are correlated to each other
(i.e., cov(xi, xj) ≠ 0).

We will discuss these two cases in what follows.

Case 1

If the basic variables are statistically independent, the expression for var(Y)
becomes

(10.42)

If we want to estimate the relative uncertainty associated with operating
point P, we normalize this equation with respect to as

(10.43)

If we define the relative uncertainty associated with each independent
variable xi as

(10.44)

we can write the total relative uncertainty ey as

(10.45)

Thus when input variables are uncorrelated, the total relative error is the
square root of the sum of squares of all individual relative errors.

Case 2

When input variables are correlated, one has to use Eq. 10.41. For the sake of
simplicity, let us consider only two input variables. Rewriting Eq. 10.41 for the
relationship y = f(x1, x2) in which x1 and x2 are correlated gives
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(10.46)

Further, we know that

(10.47)

Now, using Eq. 10.46 and Eq. 10.47 one can conclude that when cov(x1, x2) is
negative, var(y) is smaller than in the uncorrelated case, whereas, when cov(x1, x2)
is positive, var(y) is larger than in the uncorrelated case. 

Example 10.11 Consider the case of two independent variables x and y, with
z = f(x, y). Assume that the errors are independent. 

Solution Using Eq. 10.42 gives the standard deviation of z as

(10.48)

If z = xy, then 

(10.49)

Equation 10.49 is expressed more meaningfully in terms of the coefficient of
variation (standard deviation divided by the mean) as

(10.50)

If z = x/y, then Eq. 10.50 also holds. If z = x + y or z = x – y, then

(10.51)

Equation 10.51 shows why the methods of computation that are based only
on the water balance equation are not preferred in environmental analysis. An
example is the significant error obtained when evaporation from a lake or a
watershed is computed based on water balance alone. The errors in the estima-
tion of individual components will be accumulated in the estimate of
evaporation, making it highly unreliable. 

Another case is z = xm yr. In this case,

(10.52)
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Equation 10.52 shows that the error multiplies in a nonlinear case. If z = xm,
then . If z = cx, where c is constant, then . 

It is now possible to determine the best value of a quantity x from two or
more independent measurements whose errors may be different. Intuitively, the
measurement with less error should carry more weight. However, how exactly
the weighting should be done is not quite clear. To that end, the principle of
least-square error may be invoked. Consider two independent measurements of
X as x1 and x2, with their respective (plus or minus) errors as σ 1 and σ 2. It may
be reasonable to assume an estimate of X as

(10.53)

Equation 10.53 is similar to the Muskingum hypothesis used in flow routing.
Then it can be shown that 

(10.54)
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Equations 10.54 and 10.55 can be generalized as

(10.56)
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(10.57)

Now consider the case when errors are correlated. Let E = A/(A + B), where A
and B are independent measurements, with their means and variances,
respectively, denoted as and . It can be shown that 
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(10.58)

Equation 10.58 can also be derived by expressing E = A/U, where U = A + B,
and then applying the Taylor series. 

If z = x + y or z = x – y, then it can be shown that 

(10.59)

Similarly, if z = xy, then

(10.60)

If z = x/y, then

(10.61)

Equations 10.60 and 10.61 are similar, except for the sign of the covariance
term.

If , then it can be shown that

(10.62)

Equations 10.61 and 10.62 contain covariance terms and should be
calculated. 

Example 10.12 Consider the case of independent and uncorrelated errors. The
hydraulic radius R for a rectangular channel can be expressed as R = bh/[b + 2h],
where b = width and h = flow depth. Variables b and h can be considered inde-
pendent. Derive the error in R as a function of errors in b and h. Assume that the
means and standard deviations of b and h are known. 

Solution Given that R = bh/[b + 2h] and b and h are independent, we have

∂R/∂ b = h/(b + 2h) – bh/(b + 2h)2 = 2h2/(b + 2h)2

If the expression is evaluated at a point p(b, h), then
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Similarly,
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Hence, 

(∂R/∂h)|p =b2/(b + 2h)2

Thus,

or

Example 10.13 Consider the case described in Example 10.12. Let R = A/B,
where A = bh and B = b + 2h. Clearly, A and B are no longer independent. Derive
the error in R as a function of errors in A and B. Compare this error in R with that
derived in the previous example. 

Solution Given that R = A/B = bh/(b + 2h) and A and B are dependent, we have

∂R/∂A = 1/B, (∂R/∂A)|p = 1/B = 1/(b + 2h)

∂R/∂B = –A/ B2 (∂R/∂B)|p = –A/B2 =–bh/(b + 2h)2
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Hence,

Note that the expression for σ R is the same for both cases. One reason is that,
although A and B are considered dependent on each other, linear operations are
involved in the computation of σ R.

Example 10.14 Consider Manning’s equation

where n = Manning’s roughness factor, R = hydraulic radius, and S = slope.
Express the error in V as a function of error in R, n, and S.

Solution Given Manning’s equation, we have

 and

where p = (n, R, S).
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and so

Example 10.15 Suppose the bottom width (x) and sides (y) of a rectangular
channel have been measured independently. The measurements may be in error
by ± 0.5 m. Thus, the bottom measurement is x = (10 ± 0.5) m and the side mea-
surement is y = (6 ± 0.5) m. Find the best values of the area A and wetted perim-
eter P of the rectangular section and their standard deviations. Also, find the
covariance if their correlation is 0.3.

Solution For a rectangular channel, we have

A = xy

P = x +2y

Hence, the best values of these are

A = 10 × 6 = 60 m2

P = 10 + (2 × 6) = 22 m

Now
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,
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Hence, σA = 5.83 m2.
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Similarly,

,

,

Hence, σ P = 1.128 m and the covariance is 

σAP = ρσA × σ P = 0.3 × 5.83 × 1.128 = 1.955 m3

Example 10.16 The Universal Soil Loss Equation (USLE) is used to predict soil
erosion. The USLE is given as A = RKLSCP, where A is the soil loss and R, K, L, S,
C, and P are input parameters. Assuming all the input variables are independent,
estimate the uncertainty associated with the prediction of soil loss by erosion.
Table E10-16a gives the mean and standard deviation of various parameters of
the USLE.

Solution Using Eq. 10.50, one can write

The calculation is performed in Table E10-16b.

Table E10-16a Mean and standard deviation of various parameters of the USLE.

Variable Factor name Mean value Standard deviation

R Rainfall Intensity 290 cm 72

K Soil Erodibility 0.12 0.05

L Slope Length Factor 1.15 0.05

S Slope Gradient Factor 1.17 0.12

C Cropping Practices 0.65 0.15

P Erosion Control Practices 0.45 0.11
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Example 10.17 By combining the rational method and Itensity-Duration-
Frequency (IDF) curve for Kansas City, Missouri, the peak runoff Q is given as

in which K = 1.74, x = 0.20, b = 0.20, n = 0.77, and F = 5 are the fixed parameters,
whereas the other parameters are uncertain with the characteristics given in
Table E10-17.

Solution By substituting all the parameters that are constant, the peak runoff is
given as

Further, let us denote

Table E10-16b Calculation table for Example 10.16.

Variable Factor name Mean value Standard deviation CV2

R Rainfall Intensity 290 72 0.06

K Soil Erodibility 0.12 0.05 0.17

L Slope Length Factor 1.15 0.05 0.00

S Slope Gradient Factor 1.17 0.12 0.01

C Cropping Practices 0.65 0.15 0.05

P Erosion Control Practices 0.45 0.11 0.06

;

Table E10-17  Mean and coefficient of variation of parameters needed.

Parameter Mean CV

C 0.45 0.33

Tc 0.37 0.62

A 12.00 0.10

CV CV CV CV CV CV CVA R K L S C P= + + + + + =2 2 2 2 2 2 0 6.
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where . Then

mean[β] = mean[Tc + 0.2] = mean[Tc] + 0.2 = 0.37 + 0.2 = 0.57

SD[β] = SD[Tc] = 0.37 × 0.62 = 0.23 
So,

CVβ = 0.23/0.57 = 0.41.

Further, from Eq. 9.52 we know that if z = βm, then . Thus, 

CVz = (–0.77) × 0.41 = –0.31

so that the peak runoff Q is given as

This indicates that the peak runoff contains a significant amount of uncertainty.
Substituting mean values of all parameters gives a mean peak runoff of 22.20 cfs.

10.4 Questions

10.1 Based on a sample of 20 years of data, the mean and standard deviation
of the annual rainfall for Saint Tammany Parish, Louisiana, is 62.5 inches
and 8.14 inches, respectively. The mean rainfall estimated by the arith-
metic mean method is about 6.5% to 12.5% higher than the true mean.
Estimate the overall random error in the estimated mean value.

10.2 Consider a linear reservoir expressed as S = KQ, where S = storage (in
m3), K = reservoir constant (in hours), and Q = discharge (in cfs). Further,
the mean of K and Q are 20 hours and 50 cfs, respectively. Assume the
coefficients of variation of K and Q to be 0.30 and 0.52, respectively.

(a) Determine the mean storage and the uncertainty in the estimation of
S assuming K and Q to be independent.

(b) Determine the mean storage and the uncertainty in the estimation of S
assuming K and Q to be correlated with a correlation coefficient of 0.52.

(c) What is the magnitude of error involved if an engineer made an
analysis by assuming K and Q as independent whereas the data
show that both of these parameters were dependent?

10.3 The storage St+1 in a reservoir at the end of month t + 1 is given as

St+1 = St + It +Rt – Ot – Et – Lt

β = +Tc 0 2.

CV mCVz = β

Q CAZ= 2 41.

CV CV CV CVQ C A Z= + + = + + − =2 2 2 2 2 20 33 0 10 0 31 0 46. . ( . ) .
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where It is inflow, Ot is release, Et is evaporation, Rt is rainfall, and Lt is
seepage loss during month t. In this expression, St is known at the begin-
ning and release Ot is to be made during the month t; thus neither St or
Ot has any uncertainty. Variables It, Et , Rt, and Lt are assumed to be
uncertain random variables, with mean values of 21.3, 2.4, 3.2, and 1.2
million m3, respectively, and standard deviations of 4.5, 0.6, 0.75, and
0.45 million m3, respectively. If the initial storage in the reservoir is 30.0
million m3 and the target release is 18 million m3, find the expected stor-
age at the end of the month and the amount of uncertainty associated
with the storage.

10.4 In the previous example, both reservoir inflow and evaporation depend
upon the climate and hence may be correlated. Assuming correlation
coefficients of 0.10, 0.20, 0.30, 0.50, 0.60, and 0.80, determine the standard
deviation of the expected storage at the end of the month.

10.5 Consider the rational method for computing peak discharge, Q = CIA,
where Q = peak discharge in cfs, C = rational runoff coefficient (dimen-
sionless), I = rainfall intensity in inches/hour, and A = drainage area in
acres. The mean values of C, I, and A are 0.56, 1.25 inches/hour, and 92
acres, respectively. Assume the variables C, I, and A are independent and
their CVs are 0.42, 0.28, and 0.07, respectively. Determine the mean and
standard deviation of the peak discharge.

10.6 The outflow phosphorus load LO from a lake is predicted from the
following equation:

where LI = inflow phosphorus load (mg/m2), CI = inflow phosphorus con-
centration (mg/m3), K = second-order phosphorus removal rate
(1/day/mg/m3), and T = hydraulic residence time (days). For a lake, the
mean values of LI, K, CI, and T are 1,200 mg/m2 year, 0.0003 day–1/mg/m3,
4,500 mg/m3, and 365 days and their coefficients of variation are 0.32,
0.23, 0.56, and 0.18, respectively. Determine the mean value of the outflow
phosphorus load from the lake and its associated uncertainty.

10.7 The total maximum daily load (TMDL) represents the long-term average
load consistent with a compliance rate of 50% and confidence level of
50%. To meet a specified lake target at the specified compliance rate (β)
with a confidence level (α), the allocated long-term load (LA) to a point
source that discharges to a lake is determined as

where Q = long-term average lake outflow (m3/year), K = second-order
phosphorus removal rate (1/day/mg/m3), C = lake phosphorus
concentration (mg/m3), zα and zβ = standard normal variate with upper
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probabilities α and β, SU = model error CV for predicted lake phospho-
rus concentration, and SV = year-to-year coefficient of variation of lake
phosphorus concentration. Determine the expression of CV for the allo-
cated long-term load LA.

10.8 Mitchell (1948) suggested various equations for watershed lag time
based on watershed characteristics such as drainage area (A), length (L),
mean length (Lca), and slope (S) for developing synthetic hydrographs in
Illinois. These are as follows:

Use the following data and determine the relationship that gives the
lowest error in the lag time.

10.9 For a given river reach, the Muskingum method for flow routing is rep-
resented as S = K[0.25I + 0.75O], where S = storage rate, I = inflow rate,
O = outflow rate, and K = storage constant. Assume the variables I and
Q are independent. If mean values of K, I, and O are 22 hours, 80 cfs,
and 65 cfs, respectively, with CV values of 0.30, 0.45, and 0.38, respec-
tively, determine the CV and standard deviation of S.

10.10 Consider the case of independent and uncorrelated errors. The hydraulic
radius R for a trapezoidal channel section is expressed as

Parameter A (square miles) L (miles) Lca (miles) S

Mean 296 25 13 2.0 × 10–3

CV 0.17 0.12 0.12 0.32

t A L L Sca= −3 85 0 35 0 43 0 04 0 29. . . . .

t A L Lca= −0 849 0 53 0 26 0 1. . . .

t A L Lca= 1 01 0 43 0 12 0 20. . . .

t A= 1 05 0 6. .

t A= 1 17 0 59. .

t A= 0 537 0 70. .

t L Sca= −6 64 1 09 0 32. . .

t A S= −4 64 0 58 0 25. . .

R
y b my
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where b = width, y = flow depth, and m is the side slope. Variables b, y,
and m can be considered independent. Derive the error in R as a function
of the errors in b, y, and m. Assume that the means and standard
deviations of b, y, and m are known. 

10.11 Consider Question 10.10 with the following data: 

Determine the error in R if (a) all parameters are independent, (b) b and y
are positively correlated with a correlation coefficient of 0.60, and (c) b
and y are negatively correlated with a correlation coefficient –0.60.

10.12 Consider Manning’s equation, 

where n = Manning’s roughness factor, A = cross-sectional area,
P = perimeter, and S = slope. Express the error in Q as a function of error
in A, P, n, and S.

10.13 Based on the Soil Conservation Service method, the basin lag time is
given as

where L = length along stream to basin divide in miles, CN = curve num-
ber, and S = % watershed slope. Assume for a given watershed that
L = 25 miles, CN = 75, and S = 0.2%. Determine the CV of watershed lag
time.

10.14 Based on the Modified Rational Method (ISWM Design Manual for
Development/Redevelopment 2004), the critical duration of the design
storm is given as

where Td = critical storm duration (minutes), Q0 = allowable release rate,
C = developed condition Rational Method runoff coefficient, A = area
(acres), and a and b are intensity-duration-frequency factors depending

Parameter b (ft) y (ft) m

Mean 50 10 2.5

CV 0.15 0.20 0.11
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on the location and return period. The required storage volume for a
detention basin is given as

where P180 = 3-hour (180-minute) storm depth, Tc = time of
concentration, and PTd = storm depth for the critical period.

Assuming that all parameters are independent, derive expressions for
the coefficient of variation for Td and V. Further, consider urban develop-
ment near you and assume appropriate values for a small watershed and
determine the mean and standard deviation of the required storage
volume for the detention pond.

10.15 Based on Darcy’s law, the flow rate through an aquifer is given as
, where K = hydraulic conductivity (m/day), I = hydraulic gra-

dient, and A = cross-sectional area (m2). Assume mean values of the var-
ious parameters as I = 0.004, K = 50 m/day, and A = 1.0 m. Further,
assume CV values for I, K, and A of 0.11, 0.33, and 0.01, respectively.
Determine the CV of Q.

10.16 Assuming complete and instantaneous mixing, the BOD L0 of the mix-
ture of streamwater and wastewater at the point of discharge is given as

where Qw = wastewater flow, Qr = streamwater flow rate, Lw = ultimate
BOD of wastewater, and Lr = ultimate BOD of streamwater. The
following data about the river and wastewater are available: 

Determine the mean and standard deviation of the flow and BOD at the
point of discharge.

10.17 The BOD remaining at a point downstream of the point of discharge is
given as L(x) = L0 exp(–kx/v), where k = deoxygenation rate and
v = stream velocity. Consider the data of Question 10.16 along with the
mean values of k and v as 0.2 per day and 0.30 m/s, respectively, and
their respective CV values of 0.15 and 0.30. Determine the mean and CV
at a point 30,000 m downstream from the discharge.

Parameter Qw (m3/s) Qr (m
3/s) Lw (mg/L) Lr (mg/L)

Mean 1.1 8.7 50 6.0

CV 0.20 0.42 0.12 0.34

V CAa CabAQ
Q b T P

P
C

Td

= − ( ) +
−( )⎡

⎣
⎢

⎤

⎦
⎥60 2

20

1
2

0 180

Q KIA=

L
Q L Q L

Q Q
w w r r

w r
0 =

+
+



434 Risk and Reliability Analysis

10.18 A watershed has a network of snow-measuring devices for measure-
ment of evaporation. It is ascertained that if a snow-measuring device
measures within 5% to 10% of the true value, then it is said to be accurate
and precise. Based on an analysis of the snow observations, it has been
determined that one of the measuring devices, called A, always mea-
sures snowfall about 10% to 25% away from the true value. There is
another measuring device, called B, that is found to measure snowfall
within 5% away from the true value. Another measuring device, called
C, is found to measure snowfall somewhat unpredictably (i.e., some-
times 10% away from the true value, sometimes 30% away from the true
value, and sometimes very close to the true value). Another measuring
device, called D, measures snowfall sometimes 5% higher, sometimes 5%
lower, sometimes 2% higher, and sometimes 2% lower, but always
within 5% away from the true value. What can be said about the
measurements of these snow-measuring devices?

10.19 Consider the mean annual rainfall for Bowling Green, Kentucky, which
is given as 50 inches based on a sample of data. The mean rainfall esti-
mated by the arithmetic mean method is about 105% to 20% higher than
the true mean. Taking the sample standard deviation of 10 inches and
the number of observations in the sample as 30, compute the total
random error in the estimated mean value.

10.20 Consider the relation for open channels as Q = AV, where A = cross-
sectional area, V = cross-sectional average velocity, and Q = discharge
(volume/time). Assume A and V are independent and their errors are
independent and uncorrelated. Determine the CV of Q.

10.21 The Blaney–Criddle method for computing monthly evapotranspiration
(ET) is ET = KF, where K is an empirically derived seasonal consumptive
coefficient applicable to a particular crop and F is the sum of monthly
consumptive use factors. Assuming that K and F are independent and
uncorrelated, derive the CV of ET.

10.22 The energy balance for purposes of computing evaporation can be
expressed as

where R is the net radiation, E is evaporation, G is sensible heat flux from
the bottom, and H is the sensible heat flux from air. Derive the relative
error (standard deviation divided by the mean) of E.

10.23 Consider Darcy’s equation for computing groundwater discharge:
Q = –KIA, where Q = discharge in m3/s, K = hydraulic conductivity in
m/s, I = hydraulic gradient (dimensionless), and A = cross-sectional
area of the aquifer in m2. Assume that the variables K, I, and A are inde-
pendent and that the errors in them are independent and uncorrelated.

R E G Hn + + + = 0
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Express the relative error (standard deviation divided by mean) in the
discharge as a function of errors in K, I, and A.

10.24 The cross-sectional area of a channel at a given location is measured by
summing the cross-sectional areas of different segments. Assume the
channel is of compound form, which can be broken down into three rect-
angular portions. Let the total area (A) be expressed as A = x + y, where x
is the cross-sectional area of the deeper rectangular part and y is the cross-
sectional area of the two shallower rectangular parts, one on each side of
the deeper part. Express the error in A as a function of errors in x and y.
Then, consider the following data: x (m2) = 200 ± 5 and y (m2) = 50 ± 1.5.
Compute the error in the area.

10.25 From the Thorthwaite method, monthly evapotranspiration (ET) can be
computed as 

where T is the mean monthly temperature, c is a coefficient, and a is an
exponent. Derive the error in ET as function of the error in T.

10.26 Consider the case of a rectangular channel whose wetted perimeter can
be WP = b + 2h, where b = width and h = flow depth. Variables b and h
can be considered independent. Derive the error in WP as a function of
the errors in b and h. Assume that the means and standard deviations of
b and h are known.

10.27 Consider Chezy’s equation, , where C = Chezy’s rough-
ness factor, R = hydraulic radius, and S = slope. Express the error in V as
a function of the errors in R, C, and S.

10.28 The rating curve for a river is usually defined as , where Q is dis-
charge (m3/s), A is cross-sectional area (m2), and a and b are constants.
Derive the error in Q as a function of the error in A.

10.29 The base flow from a basin at any time t can be expressed as

where Qt is the base flow at time t, Q0 is the initial flow, and K is the
recession constant (between 0 and 1, usually 0.85 to 0.99). Derive the
error in Qt as a function of the errors in Q0 and K.

10.30 The time of concentration for a small watershed can be expressed as 

where C is a coefficient, Lp is a length measure, and Sp is a slope measure.
Compute the error as a function of the errors in Lp and Sp.
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10.31 For a convex method of flow routing in a river, the outflow at the end of
time interval t + 1, Qt+1, can be computed using the continuity equation

Qt+1 = aQt + bIt

where It is inflow at the beginning of the time interval t, Qt is the outflow
from the channel at the beginning of the time interval t, and a and b are
constants. Variables It and Qt are assumed to be uncertain random vari-
ables. Compute the error in Qt+1 as a function of the errors in It and Qt.
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Chapter 11

Monte Carlo Simulation

Simulation is the process of duplicating the behavior of an existing or proposed
system. It consists of designing a model of the system and conducting experi-
ments with this model either for better understanding of the functioning of the
system or for evaluating various strategies for its management. The essence of
simulation is to reproduce the behavior of the system in every important aspect
to learn how the system will respond to conditions that may be imposed on it or
that may occur in the future. Note that the model has to correctly reproduce
those aspects of the system’s response that are of interest. Also, the model
should produce correct results for correct reasons. 

Many problems require determination of the properties of the output of a
system given the input and transfer function. When this transfer function is sim-
ple, the properties of the output can be obtained analytically. But when the trans-
fer function is complex, the derivation of the properties of output may be
difficult. For such systems, a possible way out is to prepare a model of the sys-
tem, repeatedly subject it to input, observe the output, and analyze the output to
infer its properties. 

The main advantage of simulation models lies in their ability to closely
describe reality. If a simulation model can be developed and is shown to repre-
sent the prototype system realistically, it can provide insight about how the real
system might perform over time under varying conditions. Thus, proposed con-
figurations of projects can be evaluated to judge whether their performance
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would be adequate or not before investments are made. In a similar manner,
operating policies can be tested before they are implemented in actual control
situations. Simulation is widely believed to be the most powerful tool to study
complex systems. 

These days most simulation experiments are conducted numerically using a
computer. A mathematical model of the system is prepared and repeated runs of
this model are taken. The results are available in the form of tables, graphs, or
performance indices; these are analyzed to draw inferences about the adequacy
of the model.

11.1 Basics of Monte Carlo Simulation

Design of real-world systems is generally based on observed historical data. For
example, the observed streamflow data are used in sizing a reservoir, historical
traffic data are used in design of highways, observed data are used in design of
customer services, etc. However, it is frequently found that the historical records
are not long enough and the observed pattern of data is not likely to repeat
exactly. Besides, the performance of a system critically depends on the extreme
values of input variables and the historical data may not contain the entire range
of input variables. An important implication of nonavailability of data of ade-
quate length is that one may not get a complete picture of the system perfor-
mance and risks involved when historical data are used in analysis. Thus, for
instance, the planner cannot determine the risks of a water supply system failing
to meet the demand during its economic life because this requires a very large
sample of data, which are not commonly available.

For many systems, some or all inputs are random, system parameters are
random, initial conditions may be random, and boundary condition(s) may also
be random in nature. The probabilistic properties of these are known. For analy-
sis of such systems, simulation experiments may be conducted with a set of
inputs that are synthetically (artificially) generated. The inputs are generated so
as to preserve the statistical properties of the random variables. Each simulation
experiment with a particular set of inputs gives an answer. When many such
experiments are conducted with different sets of inputs, a set of answers is
obtained. These answers are statistically analyzed to understand or predict the
behavior of the system. This approach is known as Monte Carlo simulation
(MCS). Thus, it is a technique to obtain statistical properties of the output of a
system given the properties of inputs and the system. By using it, planners get
better insight into the working of the system and can determine the risk of fail-
ure (e.g., chances of a reservoir running dry, pollution in a river basin exceeding
the prescribed limits, or a customer service center failing to provide services
within the promised time). Sometimes, MCS is defined as any simulation that
involves the use of random numbers.



Monte Carlo Simulation 439

In Monte Carlo simulation, the inputs to the system are transformed into
outputs by means of a mathematical model of the system. This model is devel-
oped such that the important features of the system are represented in sufficient
detail. The main steps in Monte Carlo simulation are assembling inputs, prepar-
ing a model of the system, conducting experiments using the inputs and the
model, and analyzing the output. Sometimes, a parameter of the system is sys-
tematically changed and the output is monitored in the changed circumstances
to determine how sensitive it is to the changes in the properties of the system. 

The main advantages of Monte Carlo simulation are that it permits detailed
description of the system, its inputs, outputs, and parameters. All the critical
parameters of the system can be included in its description. The other advan-
tages include savings in time and expenses. It is important to remember that the
synthetically generated data are no substitute for the observed data but this is a
useful pragmatic tool that allows the analyst to extract detailed information
from the available data. However, when using Monte Carlo simulation in practi-
cal risk and reliability analyses, a large amount of computation may be needed
for generating random variables and these variables may be correlated. Because,
these days, computing power is usually not a limitation, this consideration is not
a serious limitation.

The generation of random numbers forms an important part of Monte Carlo
simulation. In the early days, roulette wheels similar to those in use at Monte
Carlo were used to generate random numbers, giving rise to the name of the
technique. During the initial days of mathematical simulation, mechanical
means were employed to generate random numbers. The techniques that were
used to generate random numbers were drawing cards from a pack, drawing
numbered balls from a vessel, reading numbers from a telephone directory, etc.
Printed tables of random numbers were also in use for quite some time. The cur-
rent approach is to use a computer-based routine to generate random numbers.
This approach is discussed next.

11.2 Generation of Random Numbers

A number of arithmetic techniques are available for generating random numbers
(e.g., the midsquare method, the congruence method, and composite generators).
To illustrate the midsquare method, a four-digit integer (say 9603) is squared to
obtain an integer of eight digits (in this case, 92217609). If necessary, zeros are
appended to the left to make an eight-digit number. The middle four digits are
picked as the next four-digit number and the random number is obtained by put-
ting a decimal before these digits. Thus the first random number is 0.2176. Now,
the number 2176 is squared to continue the process. The numbers are sequential
because each new number is a function of its predecessor(s). Different procedures
use different types of recursive equations to generate numbers.
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Nearly all modern compilers have built-in routines to generate uniformly
distributed random numbers between 0 and 1. The most popular random num-
ber generation method is the congruence method. To start the process, a number
known as the “seed” is input to the equation, which gives a random number.
This number is again input to the equation to generate another number and so
on. When this process is repeated n times, n random numbers are obtained. The
recursive equation commonly used to generate random numbers in the linear
congruential generator (LCG) is

Ri = (aRi-1 + b) (modulo d) (11.1)

where Ri are integer variables and a, b, and d are positive integer constants that
depend upon the properties of the computer. The word “modulo” denotes that
the variable to the left of this word is divided by the variable to the right (in this
case d) and the remainder is assigned the value Ri. The desired uniformly dis-
tributed random number is obtained as Ri/d. The initial value of the variable (R0)
in Eq. 11.1 is called the seed. The properties of the generated numbers depend on
the values of constants a, b, and d, their relationships, and the computer used.
The value of constant a needs to be sufficiently high; low values may not yield
good results. Constants b and d should not have any common factors. The posi-
tive integers R0, a, b, and d are chosen such that d > 0, a < d, and b < d.

In computer generation, the sequence of random numbers is repeated after a
certain lag and it is desired that the length of this cycle should be as long as pos-
sible. This lag increases as d increases and therefore a large value of d should be
chosen. Normally, d is set equal to the word length (the number of bits retained
as a unit) of the computer; a typical value is 231 − 1. It is important to ensure that
the length of the cycle is more than the numbers that are needed for the study. 

Example 11.1 Generate 10 uniformly distributed random numbers using Eq. 11.1
with a = 5, b = 3, and d = 7. The seed R0 can be assigned a value of 2.

Solution Equation 11.1 is rewritten as

Ri = (5 × Ri-1 + 3) (modulo 7)

The results are given in Table E11-1.
It may be noted here that the numbers repeat after a cycle of 7. The length of

this cycle is termed as the period of the generator, which is d here. 
A drawback of using Eq. 11.1 is that it involves division, which requires

more computer time than addition or subtraction. This can be avoided by mak-
ing use of integer overflow. Integer overflow takes place when an attempt is made
to store an integer that is larger than its word size. If the number of bits in a word
of the computer is b then the largest integer that it can store is 2b – 1 (one bit is for
sign). If a larger integer having y digits is given, only b digits are stored and the
leftmost y – b digits are lost. But how the integer overflow is implemented on a
computer depends on its architecture and software. Improved versions of LCGs,
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known as prime modulus multiplicative LCGs, are widely used these days to
generate random numbers.

Since these algorithms of random number generation are deterministic, the
generated numbers can be duplicated again. Therefore, these numbers are not
random in a strict sense and are called pseudo random numbers. A good random
number generator should produce uniformly distributed numbers that do not
have any correlation with each other, should be fast, should not require a large
memory, and should be able to exactly reproduce a given stream of random
numbers. It is also required that the algorithm be capable of generating several
separate streams of random numbers.

After generation, the random numbers should be tested to ensure that they
possess the desired statistical properties (i.e., the numbers are not serially corre-
lated). The chi-square test is one such test that can be used to confirm that the
numbers are uniformly distributed. Law and Kelton (1991) have discussed
random number generation and tests in greater detail.

11.2.1 Transformation of Random Numbers

In the previous section, we have discussed a method to generate uniformly dis-
tributed random numbers. The input to the prototype system will have certain
statistical properties and a certain probability distribution. This distribution for
each input variable can be obtained from the analysis of historical data and the
underlying physical process. The input random variables in Monte Carlo simu-
lation should exhibit the same statistical properties and follow the same proba-
bility distribution. Therefore, the uniformly distributed random numbers must
be converted to follow the desired probability distribution. The variables
involved may either be continuous or discrete random variables. 

Table E11-1 Generation of uniformly distributed random numbers.

i Ri-1 (5 × Ri–1 + 3) (modulo 7) Ui

1 2 (5 × 2 + 3) mod 7 = 13 mod 7 0.857

2 6 (5 × 6 + 3) mod 7 = 33 mod 7 0.714

3 5 (5 × 5 + 3) mod 7 = 28 mod 7 0.000

4 0 (5 × 0 + 3) mod 7 =  3 mod 7 0.429

5 3 (5 × 3 + 3) mod 7 = 18 mod 7 0.571

6 4 (5 × 4 + 3) mod 7 = 23 mod 7 0.286

7 2 (5 × 2 + 3) mod 7 = 13 mod 7 0.857

8 6 (5 × 6 + 3) mod 7 = 33 mod 7 0.714

9 5 (5 × 5 + 3) mod 7 = 28 mod 7 0.000

10 0 (5 × 0 + 3) mod 7 =  3 mod 7 0.429
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11.3 Continuous Random Variates

Methods to generate random variates that follow a given distribution are
described next. If the inverse form of a distribution can be easily expressed analyt-
ically, the inverse transformation is the simplest method. If an analytical expres-
sion for the inverse of the concerned distribution is not known, special algorithms
are employed to efficiently generate numbers with such a distribution.

11.3.1 Inverse Transformation Method

In the inverse transformation method, first a uniformly distributed random
number ri in the range [0, 1] is generated. Now, let FQ(q) be the desired cumula-
tive distribution function (CDF) of random variable Q, . Therefore

can be defined for any value of r between 0 and 1. Note that is the
smallest q satisfying . Then Q can be generated as 

Q = FQ
–1 [r] (11.2)

where FQ
–1 is the inverse of the cumulative distribution function of random vari-

able Q. This method is known as the inverse transformation or inverse CDF
method. The method is graphically illustrated in Fig. 11-1. It is useful when the
inverse of the CDF of the random variable can be expressed analytically. This is a
simple and computationally efficient method. However, it can be used for only
those distributions whose inverse form can be easily expressed.

Figure 11-1 Determination of random number x with desired distribution from 
uniformly distributed random number r.
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The inverse transformation method carries an intuitive appeal. In Fig. 11-2,
the probability distribution function of X, F(x), is plotted. The probability density
function is nothing but the slope of this distribution curve. When the variates are
generated, there should be relatively more variates in the zone where the peak of
the density function lies or where the slope of the distribution function is more.
The uniformly distributed random variables will be evenly spaced on the y axis
(i.e., an interval ΔF(x) will have about the same number of variables irrespective
of its location). Consequently, the corresponding intervals on the x axis, Δx1 and
Δx2, will also have about the same number of variables. But Δx1 is smaller than
Δx2. Therefore, the density of variates in Δx1 will be higher than that in Δx2. The
following example demonstrates the use of this method to generate
exponentially distributed random numbers.

Example 11.2 Generate random variates that follow an exponential distribution
with parameter λ = 2.3.

Solution The cumulative distribution function of an exponential distribution is

FX(x) = 1 – e–λx

Its inverse can be written as

x = FX
–1 [r] = –ln(1 – r)/λ (11.3)

Since (1 – r) is uniformly distributed, this can be replaced by r, which is also
uniformly distributed. Hence, exponentially distributed random variates with
the desired property can be generated by

x = –ln(r)/2.3

If the first uniformly distributed random number r1 = 0.89, the correspond-
ing variate x1 will be 

x1 = –ln (0.89)/2.3 = 0.05067

11.3.2 Composition Method

If a random variable has a composite probability distribution function, this
property can be used to generate random variates by following the composition
method. Let the probability of the variable FX(x) be

(11.4)

where wi are the weights and FX
i (x) are the cumulative distribution functions.

The weights should sum to unity. The requisite random number is generated in
two stages. First, two uniformly distributed random numbers (u1 and u2) in the
range [0, 1] are generated. The first number u1 is used to select the appropriate
CDF Fx

i(x) for generation of the random number. The second number u2 is used
to determine the random variate according to the selected distribution. 

F x w F xX i
i

m

X
i( ) ( )=

=
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Example 11.3 Generate random variates that follow the following probability
density function:

fX(x) = 3/5 + x3, 0 ≤ x ≤ 1 (11.5)

Solution The given density function can be decomposed as

fX(x) = 3/5 f1(x) + 2/5 f2(x)

where

f1(x) = 1 and F1(x) = x, 0 ≤ x ≤ 1

f2(x) = (5/2)x3 and F2(x) = (5/8)x4, 0 ≤ x ≤ 1

For the first function, F1(x) = x = u2 or variate x = F1
–1 (u2) = u2. For the second

function, F2(x) = (5/8)x4 = u2 or variate x = F2
–1 (u2) = (8u2/5)0.25.

Note that here weights are 3/5 and 2/5 and they sum to unity. Now two uni-
formly distributed numbers are generated. Let these numbers be 0.538 and 0.181.
Since u1 = 0.538 is less than 3/5, u2 is used to generate the variate by following
F1(x). Hence,

random variate x1 = F1
–1 (u2) = 0.181

In the second attempt, let the uniformly distributed numbers be 0.722 and
0.361. Since u1 is greater than 3/5, u2 is used to generate the variate by following
F2(x). Hence, 

random variate x2 = F2
–1 (u2) = (8 × 0.361/5)0.25 = 0.87

Figure 11-2 Shape of the probability distribution function and density of generated variates.

 0 Δx1 Δx2                   X

FX(x) 

ΔF(x) 



Monte Carlo Simulation 445

11.3.3 Function-Based Method

For some distributions, random variables can be expressed as functions of other
random variables that can be easily generated. This property can be exploited
for generation of random variables. For instance, the gamma distribution is
nothing but the sum of exponential distributions. Thus, if a variable Z follows a
gamma distribution with parameters (k, λ), then one can write

Zi = X1i + X2i + X3i + …+ Xki (11.6)

where X1i, X2i, … + Xki are k independent exponentially distributed random vari-
ables with parameter λ. The procedure to generate a gamma-distributed random
variate by following this method consists of generating random variates that fol-
low exponential distributions having parameter λ. Now, k such variates are
added to obtain one gamma-distributed variate.

Example 11.4 Generate gamma-distributed random variates with parameters
(4, 0.8) using the function-based method.

Solution The inverse transform method can be used to generate exponentially
distributed random variates. We first generate a uniformly distributed random
number u in the range [0, 1]. Using it, a random variate that follows the
exponential distribution with parameter λ can be obtained by

x = –ln(u)/λ (11.7)

Let the first four uniformly distributed random numbers u1,…, u4 be 0.5371,
0.1814, 0.6193, and 0.1319. The corresponding exponentially distributed random
variates with parameter 0.8 (see Example 11.2) will be 0.777, 2.134, 0.599, and
2.532. Therefore, the gamma-distributed variate with parameter (4, 0.8) will be

(11.8)

Recall that the sum of two independent gamma-distributed variates with
parameters (λ, k1) and (λ, k2) is a gamma-distributed variate with parameters
(λ, k1+k2).

Example 11.5 Generate normally distributed random numbers with parameters
(3.9, 1.6) using the function-based method.

Solution If u1 and u2 are two independent uniformly distributed random num-
bers in the range [0, 1] then a pair of independent normally distributed random
variates (mx, σx

2 )  can be obtained by

x1 = mx + σx × cos(2πu2) (11.9)

x2 = mx + σx × sin(2πu2) (11.10)

This method was developed by Box and Muller (1958).
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Let two uniformly distributed random numbers be 0.3465 and 0.8552. Hence,

x1 = 3.9 +1.6 × cos 2π × 0.8552 = 5.325

x2 = 3.9 +1.6 × sin 2π × 0.8552 = 2.057

Further, one can also generate log-normally distributed random variates by
the transformation 

x1 = e5.325 = 205.4084

x2 = e2.057 = 7.822

The mean of these log-normally distributed variates will be mx(ln) = exp(mx+σ x
2 /2)

and the variance will be σ 2
x(ln) = exp(2mx + σ 2

x )[exp(σ 2
x ) – 1]. If the aim is to generate

log-normally distributed random variates with mean mx(ln) and variance σ2
x(ln) then

these can be obtained as follows. First, generate normally distributed random vari-
ates with mean and variance as

(11.11)

(11.12)

and then transform them to the log-normal domain.
A common method for generating normally distributed random variates

based on the central limit theorem is to use 

where u is a uniformly distributed random variable in [0,1]; commonly n = 12 is
adopted. Of course, the method gives approximate numbers and hence its use is
discouraged. Another simple method to generate normally distributed random
variates with mean zero and standard deviation unity makes use of the
approximation of the lambda distribution:

x = 4.91[u0.14 – (1 – u)0.14] (11.13)

The accuracy of this approximation is 0.0032 for |x| < 2 and 0.0038 for
2 < |x| < 3, and the probability of x being outside |x| > 4.91 is less than 10–6

(Salas 1993).
Another approximation (Salas 1993) for the normal distribution based on

polynomial equations is

(11.14)

x(u) = –x(1 – u),  0 < u < 0.5
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where t = [–2 ln (1 – u)]0.5, and the coefficients are p0 = –0.322232431088, p1 = –1,
p2 = –0.342242088547, p3 = –0.0204231210245, p4 = –0.0000453642210148,
q0 = 0.099348462606, q1 = 0.588581570495, q2 = 0.531103462366, q3 = 0.103537752285,
and q4 = 0.0038560700634. Equation 11.14 can also be used to generate normally
distributed numbers from the us.

11.4 Discrete Random Variates

The problem of generating discrete random variates is to transform a uniformly
distributed random number to the desired discrete mass function. If u is the uni-
formly distributed random number then one way to obtain the corresponding
random variate xj that follows the desired CDF is

FX(xj–1) < u ≤ FX (xj) (11.15)

It can be seen that this process is basically an inverse transformation method
but it additionally requires a numerical search to arrive at the desired variate.
However, this method may not be the most efficient approach to generate a
discrete random variate.

Example 11.6 Generate random variates that follow a binomial distribution
with parameters (5.0, 0.4). 

Solution The CDF of the binomial distribution is given by

(11.16)

The CDF is tabulated as follows.

Now a uniformly distributed random number is generated. Let it be u = 0.5.
Since FX(1) < u ≤ FX(2), the requisite variate x = 2. Under certain circumstances,
the binomial distribution can be approximated by the normal distribution and
this property can be used in data generation (see Chapter 5).

Example 11.7 Generate random variates that follow a Poisson distribution with
parameter λ = 4. 

i 0 1 2 3 4 5

FX(i) 0.0778 0.337 0.6826 0.913 0.9898 1.000
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Solution The CDF of the Poisson distribution is given by

(11.17)

For i = 0,
FX(x) = 40 × 2.71828-4/0! = 1 × 0.0183/1 = 0.0183

The CDF is tabulated as follows:

Now a uniformly distributed random number is generated. Let it be u = 0.6.
Since FX(3) < u ≤ FX(4), the requisite number x = 3. For the Poisson distribution,
when parameter λ is large (λ > 10), the distribution can be approximated by the
normal distribution, N(λ – 0.5, ) (Rubinstein 1981). This property can be
utilized to generate Poisson-distributed random numbers when λ is large.

A general method that can be used to generate any discrete random variate
having a finite range of values is the alias method. Although somewhat com-
plex, this is a general and efficient method. The method has been described by
Kronmal and Peterson (1979).

11.5 Jointly Distributed Random Variates

Consider a set of n random variables X1, X2, …, Xn. These variables may be inde-
pendent or dependent. If the random variables are independent, the joint proba-
bility distribution can be obtained by multiplying their marginal probability
distribution functions:

(11.18)

Here is the marginal probability distribution function of Xi.
If the random variables are dependent, then their joint probability

distribution function becomes

(11.19)

where is the conditional PDF of Xi, given X1 = x1, X2 = x2, …,
Xi–1 = xi–1. The joint cumulative distribution is

(11.20)
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Equation 11.20 provides a basis to generate jointly distributed random vari-
ables. Assume that uniformly distributed random numbers have been gener-
ated. Now, a value of variable X1 may be generated by the inverse
transformation using Eq. 11.2. With this value of X1 and the inverse form of the
conditional cumulative distribution function FX2(x2|x1), the value of random
variable X2 can be obtained from

(11.21)

Proceeding in this way, one can obtain the values of Xn as

(11.22)

Example 11.8 Generate numbers that follow a bivariate normal distribution
with parameters (3.9, 1.6) and (4.5, 2.2). The coefficient of correlation (ρ) between
the numbers is 0.65.

Solution Let the means of the two distributions be given by mx and my and stan-
dard deviations by σx and σy. Their joint probability density function can be
written as

fX,Y(x,y) = fY|X(y|x) fX(x) (11.23)

We first generate a normally distributed number x. For this purpose, a uni-
formly distributed number u is generated. Let this be 0.791. Treating this as the
probability, we can read the corresponding value of the standard normal variate
(z) from the table of normal distribution and it turns out to be 0.81. Hence, the
corresponding normally distributed number is

x = mx + z × σx = 3.9 + 0.81 × 1.6 = 5.196

Knowing x, we can compute the conditional mean of the second number Y by

E(Y|x) = mY + ρ × (σY/σX) × (x – mx) (11.24)

= 4.5 + 0.65 × (2.2/1.6) × (5.196 – 3.9) = 5.6583

The conditional standard deviation is given by

(11.25)

We generate another uniformly distributed number, which turns out to be
0.43. Treating this as probability gives the value of z as – 0.18. Hence, the value of
Y will be

y = 5.6583 – 0.18 × 1.672 = 4.3573

Thus, the first pair of generated numbers is (5.196, 4.3573).
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Abramowitz and Stegun (1965) have given an approximate formula to calcu-
late standard normal variates given the probability of exceedance without use of
a table, with an error of approximation less than 4.5 × 10–4. Let P represent the
nonexceedance probability and Q the probability of exceedance: Q = 1 – P.
Compute W by

(11.26)

The corresponding standard normal variate z is

(11.27)

For example, if P = 0.791, Q = 1 – 0.791 = 0.209 and W = 1.7694 from Eq. 11.26.
From Eq. 11.27, z = 0.8097. If P is 0.43, Q = 0.57 and W = 1.0603 from Eq. 11.26.
From Eq. 11.27, z = –0.176. 

11.6 Simulation of Systems with Random Inputs

During the past few decades, Monte Carlo techniques have been applied to a
wide range of problems in water resources, such as estimation of mean areal pre-
cipitation (Shih and Hamrick 1975), surface water hydrology (e.g., Labadie et al.
1987), and groundwater problems (e.g., Jones 1990). In this section, several real-
life examples are presented to illustrate the Monte Carlo simulation technique
and its strengths.

11.6.1 Monte Carlo Simulation of Reservoir Design

Monte Carlo simulation enables the analyst to study and quantify the influence
of variability in system input and demands. The influence of input variability in
system design is demonstrated through the following example. 

Example 11.9 The purpose of this example is to illustrate the strength of Monte
Carlo simulation for sizing of a storage reservoir. Assume that, at the site of
interest, the statistical characteristics of annual streamflows, which are log-
normally distributed, are known. The inflows have mean = 660 × 106 m3, stan-
dard deviation = 175 × 106 m3, lag–1 autocorrelation coefficient ρ = 0.2, and
skewness γ = 0.99. The generated inflows, quite naturally, should preserve these
statistical properties. Here, we adopt a three-parameter log-normal distribution
to model the flows x.

Let a be the lower bound of the flows. Accordingly, (x – a) will be log-
normally distributed, or y = ln (x – a) will be normally distributed. For the

W Q= − ×2 ln

z W
W

W
= − + +

+ +
2 515517 0 802853 0 010328

1 1 432788 0 189269
. . .
. .

  W
  W

2

22 30 001308+
+

.
( )

 W
ε Q



Monte Carlo Simulation 451

random variate x, the mean μx, standard deviation σx, lag–1 correlation coefficient
ρx, and skewness γx are related to statistical properties of y (Matalas 1967) by

(11.28)

(11.29)

(11.30)

(11.31)

Knowing the values of μx, σx, ρx, and γx for the historic data, we can find the
values of a, μ y, σy, and ρy for y. First, using Eq. 11.30 we have

the solution of which is 
σ y

2 = 0.096659 or σy = 0.3109

Now, from Eq. 11.29, we get

The solution of this equation gives μy = 6.26. Next, we have from Eq. 11.31

This gives ρx = 0.2079. Finally, from Eq. 11.28 we obtain

a + exp(0.096659/2 + 6.26) = 660

which yields a = 111 ×106 m3.
Now by using these properties, flows in the log domain are generated by 

(yi+1 – μy) = ρy (yi − μy) + σy ti (1− ρy
2)0.5 (11.32)

where ti are normally distributed random variates with mean zero and standard
deviation of unity. The synthetic flows in real domain are obtained by the
transformation

xi = exp(yi) + a (11.33)
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This procedure was used to generate 500 traces of inflows, each 100 years
long, which is the useful life of a typical storage reservoir.

A simple procedure to determine the required storage capacity is the sequent
peak algorithm (see Jain and Singh 2003). In the present case, the storage capac-
ity was obtained for a draft equal to 0.7 times the average inflows. These esti-
mates are shown in Fig. 11-3. The mean storage was 125 × 106 m3, and the
standard deviation of storage values was 46 × 106 m3. It is interesting to note that
the maximum and minimum values of storage were 363 × 106 and 13 × 106 m3.
Clearly, deciding on the size of the reservoir after such an analysis will be a
much better decision than just using the available (and usually small sample)
data.

11.6.2 Monte Carlo Simulation of Reservoir Operation

The operation policies for a reservoir are commonly developed by using either
optimization techniques or simulation. Sometimes a combination of these two
techniques is also used. An important question that these techniques cannot
answer is the influence of the variability of inflows and demands on the plan-
ning, design, and performance of the system. It has been pointed out that the
deterministic models are optimistic because they overestimate benefits and
underestimate costs (Loucks et al. 1981). Monte Carlo simulation enables the
analyst to study and quantify the influence of variabilities in system input and
demands. 

Example 11.10 Consider a multipurpose reservoir that is being planned to serve
irrigation and municipal water supply demands. The demands for these pur-
poses are known. The reservoir is operated by following the linear operation
policy shown in Fig. 11-4. According to this policy, if, in a particular period, the
amount of water available in storage is less than the target demand, all the avail-
able water is released. If the available water is more than the target demand but
less than the target demand plus the available storage capacity, a release equal to
the target demand is made and the excess water is stored in the reservoir. If,
even after making releases equal to the target demands, there is no space to store
the excess water, all the water in excess of the maximum storage capacity is
released. 

Let Aw represent the available water and T the target demand. Mathemati-
cally, the policy can be expressed as

if Aw ≤ T, release = Aw

if T < Aw ≤ Smax + T, release = T (11.34)

if Aw > Smax + T, release = Aw – Smax

The reservoir will be empty in the first case and full in the third.
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In this example, the influence of variability in inflow will be studied. As in
most planning studies, annual data will be used. The inflows to the reservoir
under examination are normally distributed with mean = 660 × 106 m3 and stan-
dard deviation = 350 × 106 m3. The annual inflows have a small positive
autocorrelation ρ = 0.3.

The maximum possible storage capacity of the reservoir at the site of interest
is 750 × 106 m3. The depth of water evaporated from the reservoir every year
depends on the climate and the amount of water available in storage. Here, for

Figure 11-3 Variation of storage values for the various simulation runs.

Figure 11-4 Operation policy for the reservoir in Example 11.10.
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simplicity, it is assumed that 4% of the available water is lost from evaporation.
The annual water demand from the reservoir is 700 × 106 m3.

Solution Inflows to the reservoir are needed to simulate its operation. In Monte
Carlo simulation, synthetically generated inflows are used. A number of tech-
niques for generation of inflow data are available. In the present case, the follow-
ing model (ASCE 1996) was used to generate annual flows whose statistical
properties are the same as those of the observed flows:

(11.35)

where xj is the flow for year j, x is the mean of the inflows, r is the correlation
coefficient, and s is the standard deviation. Further, the Njs are standard normal
deviates that can be generated by using techniques explained previously.
Equation 11.35 can be employed to generate an annual streamflow sequence. 

One drawback of the model for inflow generation used here is that it ignores
skewness of inflows. To preserve the skewness of the historic data, the numbers
Nj in Eq. 11.35 should be transformed as follows (ASCE 1996):

(11.36)

where g represents the coefficient of skewness of historical data. Naturally, the
generated inflows will be different if the transformation given by Eq. 11.36 is
followed.

By using this model, the inflow data for 1,000 years were generated. The
operation was simulated for 1,000 years by following the standard linear
operating policy given by Eq. 11.34 and assuming an initial reservoir content
of 500 × 106 m3. As a result, the reservoir releases and end-of-year storage for
these 1,000 years are produced. From this information, the probability of dif-
ferent ranges of release can be computed, as shown in Table E11-10a.

Let the annual benefits from the release in different ranges (bi) be as given in
the second row of this table. Hence, the expected annual benefit (B) from the
reservoir can be computed as 

Table E11-10a  Probability of different release ranges and associated benefits.

Release range (106 m3) < 400 400–600 600–800 800–1,000 >1,000

Benefits 2.0 6.0 10.0 7.0 5.0

Frequency 0 40 899 46 15

Probability 0 0.040 0.899 0.046 0.015

x x r x x s r Nj j j+ = + − + −1
21( ) ( )

W
g

gN g
g

j= + −
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where Ri is the probability of release in range i. Therefore,

B = 2.0 × 0.0 + 6.0 × 0.040 + 10.0 × 0.899 + 7.0 × 0.046 + 5.0 × 0.015 = 9.627

Once a model for data generation and system operation has been formu-
lated, its power can be exploited to evaluate the sensitivity of various parame-
ters of the system, such as the inflow properties or the level of demands. One can
take repeated runs of the system to analyze how the expected benefits will
change if the correlation of inflows were different or if the magnitude of target
demands changed (assuming that the benefit for different flows remains con-
stant, although this can also be studied if enough data were available). 

Table E11-10b gives the results of some sensitivity runs. In this table, the
term base run refers to the run with the given system parameters. In the sensitiv-
ity runs, one parameter is changed at a time and the release probability and
expected benefits are computed.

Several inferences can be derived from Table E11-10b by comparing the
results of base run with other runs. Thus, one sees that, as the correlation of
inflows increases, the benefits from the operation increase (the correlation for
the base run being 0.3). Moreover, when the skewness of historical flows is pre-
served, the benefits are less. Table E11-10b also shows that, as the target
demand is increased, the benefits decrease because the reservoir can no longer
supply enough water owing to limited storage and inflows. Note that the mean
of the inflows is 660 × 106 m3, whereas the volume of demands was increased
from 700 × 106 to 900 × 106 m3. When the target demand was 700 × 106 m3, the
probability of release being in the range 600–800 was 0.899 but when the
demand was raised to 900 × 106 m3, the probability of release being in the range
800–1000 was only 0.827, indicating that the frequency of failures had increased.
Notice also that when the reservoir storage capacity was reduced from 750 × 106

to 600 × 106 m3, the benefits were reduced from 9.627 to 9.302 units. In this case
also, the probability of release being in the range 600–800 decreased from 0.899
to 0.808, indicating a larger number of failures.

Table E11-10b Results of sensitivity runs: reservoir operation example.

Release range (106 m3) <400 400–600 600–800 800–1,000 >1,000 Expected
benefits

Benefits 2.0 6.0 10.0 7.0 5.0

Base run 0 0.040 0.899 0.046 0.015 9.627

Inflow correlation = 0.5 0 0.020 0.949 0.028 0.003 9.821

Inflow correlation = 0.1 0 0.054 0.866 0.058 0.022 9.5

Skewness considered 
using Eq. 11.30

0 0.015 0.841 0.091 0.053 9.402

Target demand = 900 0 0.040 0.118 0.827 0.015 7.284

Reservoir capacity = 600 0 0.040 0.808 0.111 0.041 9.302
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Performing a sensitivity analysis is one way to use the power of Monte Carlo
simulation. After the model has been developed, it is easy to change the key
parameters and study the impact of the change. However, to make full use of
this power, it is essential that the runs be carefully planned and that physical
realism not be lost.

11.6.3 Estimation of Parameters of a Probability Distribution

As an example, consider the generalized Pareto (GP) distribution, which has
been applied to a number of areas, encompassing socioeconomic processes,
physical and biological phenomena, reliability analysis, and analyses of environ-
mental extremes. This distribution has been discussed in Chapter 5; Singh
(1998b) provides a detailed description of this distribution. The three-parameter
generalized Pareto distribution (GPD3) is a flexible distribution and is, therefore,
better suited to model those environmental and hydrologic processes that have
heavy-tailed distributions.

The GPD3 distribution has the CDF

(11.37)

and the PDF

(11.38)

The range of x is c ≤ x ≤ ∞ for a ≤ 0 and c ≤ x ≤ b/a + c for a ≥ 0.
In environmental and water resources engineering, the most commonly used

methods of parameter estimation are the methods of moments, maximum likeli-
hood, and probability-weighted moments. These have been discussed in
Chapter 8. These methods and their variants were considered in this example.

Specifically, four methods of parameter estimation were compared for the
GPD3 distribution: two methods of moments, probability-weighted moments,
and maximum likelihood estimation. The parameter estimators resulting from
these methods are briefly outlined.

The regular moment estimators of the GPD3 distribution were derived by
Hosking and Wallis (1987). It is important to note that E[1− a(x− c)/b]r = 1/(1 + ar)
if [1 + ra] > 0. Thus, the rth moment of X exists only if a ≥ [1/r]. Provided that these
moments exist, the moment estimators are

F x
a

x c
b
x c

b

a

( )
,

exp ,

=
− − −⎛

⎝⎜
⎞
⎠⎟

− − −⎛
⎝⎜

⎞
⎠⎟

⎧

⎨
⎪⎪

⎩
⎪
⎪

1 1

1

1

a

a

≠

=

0

0

f x b
a

x c
b

b
x c

b

a

( )
,

exp ,

=
− −⎛

⎝⎜
⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟

⎧

⎨
⎪⎪

⎩
⎪
⎪

−1
1

1

1
1

a

a

≠

=

0

0



Monte Carlo Simulation 457

(11.39)

(11.40)

(11.41)

where x, s2, and G are, respectively, the mean, the variance, and the skewness
coefficient. Equations 11.39 to 11.41 constitute a system of equations that are
solved for obtaining parameters a, b, and c, given the value of x, s2, and G.

11.6.3.1 Modified Moment Estimators

The regular method of moments is valid only when a > − 1/3, which limits its
practical application. Second, its estimation of shape parameter (a) depends on the
sample skewness alone, which in reality could be grossly different from the popu-
lation skewness. Following Quandt (1966), a modified version of this method
(MM1) involves restructuring Eq. 11.41 in terms of some known property of the
data. In this modification, Eq. 11.37 is replaced by E[F(x1)] = F(x1), which yields 

(11.42)

Eliminating b and c by substitution of Eq. 11.40 and Eq. 11.41 into Eq. 11.42,
one gets an expression for the estimation of a:

(11.43)

With the value of a obtained from the solution of Eq. 11.43, estimates of b and
c are obtained from the solution of Eq. 11.40 and Eq. 11.41.

11.6.3.2 Probability-Weighted Moment Estimators

The probability-weighted moments (PWM) estimators for GPD3 are given
(Hosking and Wallis 1987) as

(11.44)

(11.45)
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(11.46)

where the rth probability-weighted moment, Wr, is given by 

(11.47)

Thus, Eq. 11.44 to Eq. 11.46 yield parameter estimates in terms of PWM. For a
finite sample size, consistent moment estimates ( ) can be computed as

(11.48)

where is the ordered sample and Fi:n=(i – 0.35)/n (Landwehr
et al. 1979b).  

11.6.3.3 Maximum Likelihood Estimators

The maximum likelihood (ML) equations of Eq. 11.38 are given (Moharram et al.
1993) as

(11.49)

(11.50)

A maximum likelihood estimator cannot be obtained for c, since the maxi-
mum likelihood function (L) is unbounded with respect to c. However, since c is
the lower bound of the random variable X, one may maximize L subject to the
constraint c ≤ x1, the lowest sample value. Clearly, L is maximum with respect to c
when c = x1. Thus, the regular maximum likelihood estimators (RMLE) are given
as c = x1 and the values of a and b are given by Eq. 11.49 and Eq. 11.50. This causes
a large-scale failure of the algorithm, particularly for sample sizes < 20. By ignor-
ing the smallest observation x1, however, the pseudo-MLE (PMLE) can be
obtained as follows: First assume an initial value of (c < x1). Then estimate a and b.
Thereafter, re-estimate c, and then repeat this procedure until the parameters no
longer change.

Example 11.11 Compare the various parameter estimation methods for the
three-parameter generalized Pareto distribution.
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Solution To compare the various methods of parameter estimation, error-free
data were generated by Monte Carlo simulations using an experimental design
commonly employed in environmental and water resources engineering.

The inverse of Eq. 11.37 is

(11.51)

(11.52)

where X(P) denotes the quantile of the cumulative probability P or nonexceed-
ance probability 1− P. To assess the performance of the parameter estimation
methods outlined here, Monte Carlo sampling experiments were conducted
using Eq. 11.51 and Eq. 11.52. 

In engineering practice, observed samples may be frequently available, for
which the first three moments (mean, variance, and skewness) are computed.
Thus, parameter estimates and quantiles for the commonly encountered peak
characteristics data are frequently characterized by using the coefficients of vari-
ation and skewness. Because this information is readily derivable from a given
data set, a potential candidate for estimating the parameters and quantiles of
GPD3 will be the one that performs the best in the expected observed ranges of
the coefficient of variation and skewness. Thus, the selection of the population
parameter ranges is very important for any simulation study. To that end, the
following considerations were made:

1. For a given set of data, the distribution parameters are not known in
advance; usually known quantities are the sample coefficients of varia-
tion and skewness, if they exist. Therefore, if one were somehow able to
classify the best estimators with reference to these readily knowable data
characteristics, that would be preferable from a practical standpoint as
compared to classifying the best estimators in terms of an a priori
unknown parameter.

2. Not all the estimators perform well in all population ranges, so a range
where all the estimators can be applied has to be selected. Fortunately, in
real life most commonly encountered data lie within the range
considered in this study.

3. Because the sample skewness in GPD may correspond to more than one
variance, parameter estimation based on skewness alone is misleading. To
avoid this folly, evaluation of the estimators is based on the parameters.

Keeping the above considerations in mind, we investigated parameters using
a factorial experiment within a space spanned by {ai, bj, ck}, where {ai = – 0.1, – 0.05,
0.0, 0.05, 0.1}, {bj = 0.25, 0.50}, and {ci = 0.5, 1.0}. Twenty GPD3 population cases,
listed in Table E11-11, were considered. The ranges of data characteristics were
also computed so that the results of this study could be related to the commonly
used data statistics. For each population case, 20,000 samples of size 10, 20, 50, 100,
200, and 500 were generated, and then parameters and quantiles were estimated.

x F c
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11.6.3.4 Performance Indices

Although standardized forms of bias, standard error, and root mean square error
are commonly used in engineering practice (Kuczera 1982a,b), the performance
of parameter estimators was evaluated by using their well-defined statistics.
These performance indices were defined, respectively, as 

(11.53)

(11.54)

(11.55)

Table E11-11 GPD3 population cases considered in the sampling experiment.

Population parameters Population statistics

a b c Mean Coefficient of 
variation

Skewness

–0.10 0.25 0.5 0.78 0.40 2.81

1.0 1.28 0.24

0.50 0.5 1.06 0.59

1.0 1.56 0.40

–0.05 0.25 0.5 0.76 0.36 2.34

1.0 1.26 0.22

0.50 0.5 1.03 0.54

1.0 1.53 0.36

0.00 0.25 0.5 0.75 0.33 2.00

1.0 1.25 0.20

0.50 0.5 1.00 0.50

1.0 1.50 0.33

0.05 0.25 0.5 0.74 0.31 1.73

1.0 1.24 0.18

0.50 0.5 0.98 0.47

1.0 1.48 0.31

0.10 0.25 0.5 0.73 0.29 1.52

1.0 1.23 0.17

0.50 0.5 0.95 0.43

1.0 1.45 0.29

BIAS = −E( )θ θ

SE = S( )θ

RMSE = −⎡⎣ ⎤⎦E ( )
.

θ θ 2 0 5
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where is an estimate of (parameter or quantile), E[·] denotes the statistical
expectation, and S[·] denotes the standard deviation of the respective random
variable. If n is the total number of random samples then the mean and stan-
dard deviation were calculated as

(11.56)

(11.57)

The root mean square error can also be expressed as

(11.58)

These indices were used to measure the variability of parameter and quan-
tile estimates for each simulation. Although they were used to determine the
overall “best“ parameter estimation method, our interest lies in the bias and
variability of estimates of quantiles in the extreme tails of the distribution (non-
exceedance probability P = 0.9, 0.99, 0.999) when the estimates are based on
small samples (n ≤ 50). Owing to the limited number of random number of
samples (20,000 here) used, the results are not expected to reproduce the true
values of BIAS, SE, RMSE, and E[ ]. Nevertheless, they provide a means to
compare the performance of estimation methods used. The computed values of
BIAS and RMSE in quantiles are tabulated as ratios rather than for
the estimator itself. 

11.6.3.5 Robustness

Kuczera (1982a,b) defined a robust estimator as the one that is resistant and
efficient over a wide range of population fluctuations. If an estimator performs
steadily without undue deterioration in RMSE and bias, then it can be
expected to perform better than other competing estimators under population
conditions different from those on which conclusions were based. Two criteria
to identify a resistant estimator are mini-max and minimum average RMSE
(Kuczera 1982b). Based on this mini-max criterion, the preferred estimator is
the one whose maximum RMSE for all population cases is minimum. The min-
imum average  criterion is to select the estimator whose RMSE average over
the test cases is minimum.
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11.6.3.6 Results and Discussion

The performance of a parameter estimator depends on the following:

1. Sample size n
2. Population parameters
3. The distribution parameter
4. The probability of exceedence or quantile

The results for the five cases are summarized in Tables 11-1 through 11-4.

11.6.3.7 Bias in Parameter Estimates

Table 11-1 displays the results of bias in parameters. For shape parameter (a), for
small sample sizes (n ≤ 50), RME and MM1 exhibited less bias, particularly for
increasing population values of a, for smaller sample sizes (n ≤ 20). The
moment-based methods tended to estimate a without responding to changes in b
and c. MLE did not do well for small sample sizes but improved consistently
whereas its bias increased with increasing population values of a. PWM exhib-
ited less bias for a > 0. From the bias results of all 20 populations, we concluded
that for increasing sample sizes (n ≥ 50) PWM and MLE would be acceptable.

For scale parameter (b), RME and MM1 responded linearly to the change in
population values of b. MM1 performed better for all sample sizes and popula-
tion cases. For larger sample sizes (n ≥ 100), all the estimators, except RME,
which had a higher bias for a < 0, showed comparable absolute bias. For the loca-
tion parameter (c), all the methods, except MLE, showed a negative bias. The
reason for the positive bias of MLE is rooted in the solution procedure adopted
for MLE. Another important finding in this regard is that the bias in c was dic-
tated only by the population values of a and b.

11.6.3.8 RMSE in Parameter Estimates

Table 11-2 summarizes the root mean square error in the results of parameter
estimates. MM1 performed well only for c, but for other parameters it showed a
pattern similar to that of RME. PWM demonstrated a consistent improvement
for all population cases as sample size increased. MLE did not do well when
n ≤ 20; however, as the sample size increased, it outperformed other methods.
With increasing population a, MLE exhibited a consistent improvement in RMSE
for both a and b. RME and MM1 did not respond to changes in populations c and
b while estimating parameter a, as was indicated by the bias results earlier. 

11.6.3.9 Bias in Quantile Estimates

The bias results of quantile estimation by GPD3 are summarized in Table 11-3. In
general, for all nonexceedance probabilities, among the three moment-based
methods RME performed better for lower values of P in terms of bias in quantile



Table 11-1 Bias in the parameters of GDP3 for spaces spanned by a = (–0.1, –0.05, 0.0, 0.05, 0.1), b = 0.50, c = 1.0.

Size Method Bias(a) Bias(b) Bias(c)

(b = 0.50 c = 0.50) (b = 0.50 c = 0.50) (b = 0.50 c = 0.50)

a –0.100 –0.050 0.000 0.050 0.100 –0.100 –0.050 0.000 0.050 0.100 –0.100 –0.050 0.000 0.050 0.100

10 RME 0.324 0.296 0.263 0.232 0.199 0.276 0.236 0.201 0.170 0.141 – 0.085 –0.070 –0.055 –0.046 –0.037
MM1 0.266 0.252 0.237 0.220 0.209 0.161 0.148 0.141 0.132 0.124 –0.012 – 0.010 –0.009 –0.009 –0.009
PWM 0.188 0.175 0.159 0.140 0.125 0.140 0.131 0.124 0.114 0.106 –0.041 –0.040 – 0.037 –0.036 –0.036
MLE 0.259 0.267 0.275 0.275 0.289 0.168 0.180 0.194 0.189 0.204 0.051 0.050 0.051 0.050 0.049

20 RME 0.230 0.206 0.181 0.158 0.140 0.199 0.167 0.142 0.115 0.097 –0.069 –0.054 –0.043 –0.032 –0.024
MM1 0.139 0.127 0.113 0.102 0.097 0.076 0.067 0.062 0.054 0.051 – 0.003 – 0.003 – 0.002 –0.002 –0.002
PWM 0.091 0.083 0.071 0.062 0.054 0.065 0.060 0.057 0.051 0.046 – 0.018 – 0.018 –0.017 –0.016 – 0.015
MLE 0.134 0.138 0.142 0.142 0.150 0.090 0.097 0.105 0.102 0.110 0.025 0.025 0.025 0.025 0.025

50 RME 0.136 0.112 0.094 0.077 0.064 0.124 0.096 0.077 0.059 0.046 –0.050 – 0.036 – 0.026 –0.018 –0.013
MM1 0.065 0.052 0.046 0.040 0.036 0.034 0.026 0.025 0.021 0.018 –0.001 0.000 0.000 0.000 0.000
PWM 0.038 0.030 0.027 0.022 0.018 0.026 0.021 0.022 0.019 0.016 –0.007 – 0.007 –0.006 –0.006 –0.005
MLE 0.056 0.058 0.059 0.059 0.062 0.031 0.033 0.036 0.035 0.037 0.010 0.010 0.010 0.010 0.010

100 RME 0.090 0.070 0.056 0.043 0.035 0.086 0.063 0.046 0.034 0.026 –0.038 –0.025 –0.017 –0.011 –0.007
MM1 0.035 0.028 0.023 0.020 0.018 0.018 0.014 0.012 0.010 0.009 0.000 0.000 0.000 0.000 0.000
PWM 0.018 0.015 0.013 0.010 0.009 0.012 0.011 0.010 0.009 0.008 –0.003 –0.003 –0.003 –0.003 –0.003
MLE 0.027 0.027 0.028 0.028 0.030 0.013 0.013 0.014 0.014 0.015 0.005 0.005 0.005 0.005 0.005

200 RME 0.057 0.044 0.032 0.025 0.017 0.057 0.040 0.027 0.020 0.013 – 0.026 –0.016 –0.010 –0.006 –0.004
MM1 0.019 0.015 0.012 0.010 0.008 0.010 0.008 0.006 0.005 0.004 0.000 0.000 0.000 0.000 0.000
PWM 0.009 0.008 0.007 0.006 0.003 0.006 0.006 0.005 0.005 0.004 – 0.002 –0.002 –0.001 –0.001 –0.001
MLE 0.012 0.012 0.013 0.013 0.013 0.007 0.007 0.008 0.007 0.008 0.002 0.002 0.002 0.002 0.002

500 RME 0.032 0.023 0.015 0.010 0.008 0.033 0.021 0.014 0.008 0.006 –0.016 –0.009 –0.005 –0.003 –0.002
MM1 0.008 0.007 0.004 0.004 0.004 0.004 0.004 0.002 0.002 0.002 0.000 0.000 0.000 0.000 0.000
PWM 0.003 0.004 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.002 – 0.001 –0.001 –0.001 –0.001 0.000
MLE 0.004 0.004 0.004 0.004 0.005 0.002 0.002 0.003 0.003 0.003 0.001 0.001 0.001 0.001 0.001



Table 11-2 RMSE in the parameters of GPD3 for space spanned by a = ( 0.1, 0.05, 0.0, 0.05, 0.1), b = 0.50, c = 1.0.

Size Method  RMSE(a) RMSE(b) RMSE(c)

 (b = 0.50 c = 0.50)  (b = 0.50 c = 0.50)  (b = 0.50 c = 0.50)

a –0.100 –0.050 0.000 0.050 0.100 –0.100 –0.050 0.000 0.050 0.100 –0.100 –0.050 0.000 0.050 0.100

10 RME 0.408 0.389 0.364 0.344 0.324 0.435 0.393 0.353 0.323 0.297 0.151 0.128 0.112 0.099 0.100
MM1 0.489 0.495 0.496 0.502 0.513 0.391 0.388 0.385 0.388 0.388 0.061 0.059 0.061 0.060 0.059
PWM 0.386 0.381 0.372 0.361 0.359 0.322 0.312 0.303 0.291 0.284 0.078 0.075 0.074 0.071 0.070
MLE 0.456 0.410 0.390 0.398 0.386 0.379 0.322 0.306 0.313 0.303 0.072 0.071 0.072 0.070 0.069

20 RME 0.300 0.285 0.269 0.257 0.249 0.298 0.265 0.244 0.222 0.208 0.113 0.093 0.079 0.068 0.062
MM1 0.270 0.271 0.271 0.269 0.279 0.204 0.198 0.197 0.194 0.198 0.027 0.027 0.026 0.026 0.027
PWM 0.263 0.258 0.252 0.246 0.243 0.208 0.199 0.196 0.188 0.185 0.049 0.047 0.046 0.045 0.044
MLE 0.305 0.274 0.261 0.266 0.258 0.247 0.210 0.200 0.204 0.198 0.036 0.035 0.035 0.035 0.035

50 RME 0.187 0.172 0.162 0.153 0.149 0.182 0.158 0.143 0.131 0.123 0.075 0.060 0.050 0.044 0.040
MM1 0.154 0.150 0.148 0.147 0.150 0.112 0.109 0.107 0.105 0.106 0.010 0.010 0.010 0.010 0.010
PWM 0.164 0.160 0.156 0.153 0.152 0.123 0.119 0.116 0.113 0.112 0.029 0.027 0.027 0.026 0.026
MLE 0.182 0.164 0.156 0.159 0.154 0.139 0.118 0.113 0.115 0.111 0.014 0.014 0.014 0.014 0.014

100 RME 0.133 0.122 0.114 0.108 0.103 0.127 0.112 0.099 0.091 0.086 0.056 0.044 0.036 0.032 0.029
MM1 0.106 0.103 0.101 0.100 0.101 0.075 0.074 0.072 0.072 0.072 0.005 0.005 0.005 0.005 0.005
PWM 0.115 0.112 0.110 0.108 0.107 0.083 0.083 0.081 0.079 0.078 0.020 0.019 0.019 0.018 0.018
MLE 0.113 0.102 0.097 0.099 0.096 0.083 0.071 0.067 0.069 0.067 0.007 0.007 0.007 0.007 0.007

200 RME 0.099 0.091 0.083 0.077 0.072 0.092 0.081 0.071 0.065 0.061 0.040 0.032 0.027 0.024 0.021
MM1 0.078 0.074 0.071 0.069 0.070 0.054 0.052 0.051 0.050 0.050 0.050 0.002 0.002 0.002 0.002
PWM 0.083 0.080 0.078 0.076 0.076 0.060 0.058 0.056 0.056 0.055 0.014 0.013 0.013 0.013 0.012
MLE 0.079 0.071 0.067 0.069 0.067 0.058 0.046 0.046 0.047 0.046 0.004 0.004 0.004 0.004 0.004

500 RME 0.068 0.062 0.055 0.050 0.047 0.063 0.055 0.047 0.043 0.039 0.028 0.022 0.018 0.016 0.014
MM1 0.050 0.047 0.044 0.043 0.043 0.034 0.033 0.032 0.031 0.031 0.001 0.001 0.001 0.001 0.001
PWM 0.052 0.050 0.049 0.048 0.048 0.037 0.036 0.036 0.035 0.035 0.009 0.008 0.008 0.008 0.008
MLE 0.047 0.042 0.040 0.041 0.040 0.034 0.029 0.027 0.028 0.027 0.001 0.001 0.001 0.001 0.001



Table 11-3 Bias in the quantiles of GPD3 for space spanned by a = (–0.1, –0.05, 0.0, 0.05, 0.1), b = 0.50, c = 1.0.

Size Method  F(x)   0.900 0.950 0.999
(b = 0.50 c = 0.50)  (b = 0.50 c = 0.50)  (b = 0.50 c = 0.50)

X(F) 1.795 1.720 1.651 1.587 1.528 2.246 2.116 1.998 1.891 1.794 5.476 4.625  3.953 3.421 2.994
a –0.100 –0.050 0.000 0.050 0.100 –0.100 –0.050 0.000 0.050 0.100 –0.100 –0.050 0.000 0.050 0.100

10 RME –0.018 –0.034 –0.045 –0.053 –0.071 –0.073 –0.081 –0.084 –0.086 –0.097 –0.342 –0.302 –0.260 –0.219 –0.189
MM1 –0.035 –0.038 –0.036 –0.037 –0.039 –0.077 –0.075 –0.067 –0.063 –0.061 –0.201 –0.161 –0.124 –0.086 –0.058
PWM –0.007 –0.008 –0.003 –0.001 0.000 –0.029 –0.026 –0.018 –0.011 –0.007 0.027 0.041 0.058 0.077 0.090
MLE –0.004 –0.006 –0.002 –0.001 0.000 0.045 0.026 –0.024 0.023 0.016 0.055 0.081 0.094 0.156 0.196

20 RME 0.017 0.007 0.003 –0.005 –0.011 –0.025 –0.029 –0.027 –0.030 –0.032 –0.250 –0.210 –0.167 –0.135 –0.109
MM1 –0.020 –0.020 –0.016 –0.018 –0.018 –0.047 –0.043 –0.035 –0.033 –0.031 –0.128 –0.097 –0.063 –0.046 –0.032
PWM –0.009 –0.007 –0.002 –0.003 –0.002 –0.020 –0.016 –0.008 –0.007 –0.005 0.053 0.057 0.069 0.066 0.066
MLE –0.008 –0.007 –0.003 –0.004 –0.003 0.006 –0.020 –0.015 0.013 0.010 0.057 0.068 0.034 –0.008 –0.044

50 RME 0.020 0.012 0.007 0.002 –0.002 –0.006 –0.008 –0.009 –0.011 –0.012 –0.163 –0.123 –0.093 –0.069 –0.052
MM1 –0.010 –0.009 –0.007 –0.007 –0.008 –0.024 –0.020 –0.015 –0.014 –0.014 –0.069 –0.041 –0.027 –0.017 –0.011
PWM –0.005 –0.004 –0.001 –0.001 –0.002 –0.010 –0.007 –0.003 –0.002 –0.002 0.030 0.039 0.037 0.037 0.035
MLE –0.005 –0.005 –0.001 –0.002 –0.003 –0.005 –0.008 –0.005 –0.004 0.004 0.043 0.031 0.019 –0.030 –0.042

100 RME 0.017 0.010 0.005 0.001 0.000 0.001 –0.003 –0.005 –0.006 –0.006 –0.111 –0.080 –0.058 –0.039 –0.028
MM1 –0.005 –0.005 –0.004 –0.004 –0.004 –0.013 –0.010 –0.009 –0.007 –0.007 –0.037 –0.022 –0.014 –0.008 –0.005
PWM –0.003 –0.002 –0.001 –0.001 –0.001 –0.005 –0.003 –0.002 –0.001 –0.001 0.021 0.022 0.020 0.020 0.019
MLE –0.003 –0.002 –0.002 –0.001 –0.001 –0.005 –0.006 –0.005 –0.003 –0.002 0.028 0.007 –0.013 –0.024 –0.034

200 RME 0.013 0.007 0.002 0.001 0.000 0.003 –0.001 –0.004 –0.003 –0.003 –0.071 –0.050 –0.035 –0.023 –0.012
MM1 –0.003 –0.002 –0.003 –0.002 –0.002 –0.007 –0.005 –0.005 –0.004 –0.003 –0.018 –0.012 –0.008 –0.005 –0.001
PWM –0.001 –0.001 –0.001 0.000 0.000 –0.002 –0.001 –0.002 –0.001 0.000 0.012 0.010 0.009 0.010 0.012
MLE –0.001 –0.001 –0.002 0.000 0.000 –0.002 –0.003 –0.004 –0.001 0.000 0.012 0.004 –0.005 –0.012 –0.016

500 RME 0.009 0.004 0.002 0.000 0.000 0.003 0.000 –0.001 –0.002 –0.001 –0.041 –0.026 –0.016 –0.010 –0.006
MM1 –0.001 –0.001 –0.001 –0.001 –0.001 –0.003 –0.002 –0.002 –0.002 –0.001 –0.008 –0.005 –0.002 –0.002 –0.001
PWM 0.000 0.000 0.000 –0.001 0.000 –0.001 0.000 0.000 –0.001 0.000 0.005 0.004 0.006 0.004 0.004
MLE 0.000 0.000 0.000 –0.001 0.000 –0.001 0.000 0.000 –0.001 0.000 0.005 0.003 –0.003 –0.001 –0.004



Table 11-4 RMSE in the parameters of GPD3 for space spanned by a = (–0.1,–0.05, 0.0, 0.05, 0.1), b = 0.50, c = 1.0.

Size Method F(x) 0.900 0.950 0.999

(b = 0.50 c = 0.50) (b = 0.50 c = 0.50) (b = 0.50 c = 0.50)

 X(F) 1.795 1.720 1.651 1.587 1.528 2.246 2.116 1.998 1.891 1.794 5.476 4.625 3.953 3.421 2.994

a –0.100 –0.050 0.000 0.050 0.100 –0.100 –0.050 0.000 0.050 0.100 –0.100 –0.050 0.000 0.050 0.100

10 RME 0.289 0.262 0.236 0.217 0.204 0.316 0.287 0.258 0.236 0.219 0.394 0.383 0.366 0.350 0.333
MM1 0.254 0.239 0.220 0.204 0.190 0.287 0.269 0.247 0.228 0.212 0.549 0.532 0.508 0.484 0.459
PWM 0.252 0.237 0.219 0.204 0.190 0.296 0.277 0.254 0.234 0.216 0.963 0.878 0.796 0.715 0.650
MLE 0.267 0.249 0.228 0.208 0.190 0.405 0.360 0.325 0.312 0.262 1.338 1.186 1.043 0.901 0.780

20 RME 0.210 0.186 0.169 0.151 0.138 0.237 0.210 0.189 0.169 0.153 0.361 0.343 0.322 0.298 0.275
MM1 0.182 0.168 0.157 0.145 0.135 0.210 0.194 0.180 0.164 0.152 0.465 0.444 0.415 0.380 0.348
PWM 0.181 0.168 0.159 0.145 0.135 0.216 0.199 0.186 0.169 0.155 0.738 0.664 0.586 0.513 0.449
MLE 0.188 0.17 0.159 0.145 0.135 0.270 0.247 0.212 0.177 0.150 0.959 0.844 0.733 0.605 0.503

50 RME 0.132 0.118 0.105 0.096 0.089 0.153 0.137 0.121 0.108 0.098 0.292 0.275 0.252 0.227 0.204
MM1 0.115 0.108 0.099 0.092 0.086 0.136 0.126 0.115 0.106 0.098 0.347 0.325 0.294 0.264 0.238
PWM 0.115 0.109 0.100 0.093 0.087 0.140 0.130 0.118 0.109 0.100 0.462 0.416 0.363 0.318 0.280
MLE 0.115 0.109 0.100 0.093 0.087 0.155 0.137 0.116 0.098 0.080 0.522 0.453 0.382 0.322 0.263

100 RME 0.093 0.083 0.075 0.068 0.063 0.110 0.097 0.086 0.076 0.069 0.245 0.223 0.200 0.177 0.155
MM1 0.081 0.076 0.070 0.065 0.060 0.098 0.091 0.083 0.075 0.069 0.275 0.248 0.220 0.193 0.172
PWM 0.082 0.077 0.071 0.066 0.062 0.101 0.093 0.085 0.077 0.071 0.328 0.290 0.253 0.221 0.195
MLE 0.082 0.077 0.071 0.065 0.060 0.103 0.092 0.080 0.068 0.056 0.345 0.290 0.238 0.195 0.162

200 RME 0.066 0.058 0.053 0.048 0.044 0.078 0.068 0.060 0.054 0.049 0.201 0.179 0.156 0.134 0.115
MM1 0.058 0.054 0.050 0.046 0.043 0.072 0.065 0.059 0.054 0.048 0.213 0.185 0.160 0.139 0.123
PWM 0.059 0.055 0.051 0.047 0.043 0.072 0.066 0.060 0.055 0.050 0.230 0.202 0.177 0.155 0.136
MLE 0.058 0.054 0.049 0.045 0.041 0.072 0.064 0.055 0.047 0.038 0.226 0.196 0.163 0.127 0.098

500 RME 0.041 0.037 0.034 0.030 0.028 0.048 0.043 0.038 0.034 0.031 0.144 0.127 0.106 0.090 0.075
MM1 0.037 0.034 0.032 0.029 0.027 0.045 0.041 0.037 0.034 0.031 0.140 0.120 0.102 0.088 0.078
PWM 0.037 0.034 0.032 0.030 0.027 0.046 0.042 0.038 0.034 0.031 0.143 0.126 0.111 0.097 0.085
MLE 0.036 0.033 0.030 0.027 0.023 0.044 0.040 0.035 0.029 0.023 0.139 0.121 0.098 0.075 0.058
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when a > 0 and sample size n ≤ 20. As sample size increased (n ≥ 50), MM1 per-
formed comparatively better than did RME in all ranges. RME and MM1 tended
to further underestimate the quantiles with increasing population c for a given
value of b for P ≤ 0.995. However, for P = 0.999 the trend was reversed. On the
whole, with increasing b the absolute bias of these methods increased for sample
sizes n ≥ 10. PWM and MLE outperformed the other methods in terms of the
absolute value of the bias for all sample sizes and quantile ranges. PWM and
MLE responded positively in terms of bias to both b and c when one was varied
keeping the other constant.

11.6.3.10 RMSE in Quantile Estimates

Table 11-4 gives RMSE in quantile estimates for P = 0.9, 0.95, and 0.999 for
selected five population cases. For probability of nonexceedance P ≤ 0.90, PWM
exhibited the least RMSE for small samples (n > 20) when a ≤ 0 for b = 0.25 and
c = 0.50. As populations b and c increased, MM1 showed better results in terms
of RMSE for all quantiles and sample ranges. The RME performance was better
for small sample sizes when P ≥ 0.90. For small sample sizes, MLE did poorly
but as the sample size increased, both PWM and MLE exhibited a consistent
improvement. MLE did perform best only when n ≥ 50 with a > 0. RMSE of the
quantiles responded positively to the increase in population b, whereas the
opposite was seen for the case of a population c increase. 

11.6.3.11 Robustness Evaluation

The relative robustness of different methods of parameter and quantile estima-
tion can be judged from Table 11-1 and 11-2. In terms of parameter bias, PWM
performed in a superior manner for most of the data ranges, whereas MLE per-
formed better for large sample sizes. In terms of parameter RMSE, RME did well
with small sample sizes. For the bias in quantiles, PWM and MLE performed
better. For RMSE in the quantiles, MM1 did better in most cases. On the whole,
PWM showed the most consistent behavior. Thus, PWM would be the preferred
method.

11.6.3.12 Summary

An evaluation of the relative performance of four methods for estimating
parameters and quantiles of the three-parameter GPD was performed by using
Monte Carlo simulation. The generation of a large number of sample data and
their analysis enabled a comparison of the various methods of parameter esti-
mation. No single method was found to be preferable to another for all popula-
tion cases considered. On the whole, the PWM method was found to perform in
a consistent fashion. When a clear choice of a particular method is in doubt,
PWM can be the most reliable and should be the preferred method.
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11.6.4 Robustness of a Frequency Distribution

This example demonstrates the application of Monte Carlo technique to examine
the robustness of a frequency distribution and to determine whether the esti-
mates are biased.

Example 11.12 Annual maximum flow data for a river in South America for 10
years are arranged in descending order in Table E11-12a. The results of a
detailed study showed that the GEV-PWM distribution fits the data for the
region. The following regional formula was developed for the region:

(11.59)

where A is the catchment area (in km2) and 

(11.60)

The regional parameters of the GEV distribution were computed using the
PWM estimation method. These are K = – 0.247, u = 0.448, α = 0.493, a = 20.91,
and b = 0.46. Estimate the bias in the regional formulas using Monte Carlo
simulations.

Solution The CDF of the GEV distribution is

Table E11-12a Annual maximum flow data.

Rank Q (m3/s)

1 5,111.1

2 4,352.0

3 4,089.0

4 3,228.3

5 3,014.0

6 2,999.6

7 2,927.8

8 2,489.4

9 2,424.3

10 2,339.4
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and the PWM estimators are related to data statistics by the following relations:

K = 7.859 C +2.9554 C2

C = 2/(T3 + 3) – ln(2)/ln(3)

T3 = L3/L1

where L1, L2, and L3 are the L-moments.
From the data, the mean of annual floods is 

xm = 3,297 cumec

We generate a random number as given in the second column of Table E11-12b.
If xT is the flood for T-year return period, we compute xT/xm by

The values of xT/xm are stored in the third column and the corresponding val-
ues xT are stored in the fourth column with xm = 3,297 cumec. In the fifth column,
the values of the fourth columns are arranged in descending order. The values of
B1, B2, and B3 are listed in the next three columns.

Table E11-12b

F xT/xm xT xT

in descending order
B1 B2 B3

1 0.440575 0.54848 1808.338 8437.501 843.75 843.75 843.75

2 0.101219 0.078529 258.9088 4413.256 392.29 343.25 294.22

3 0.28496 0.338954 1117.531 3671.264 285.54 214.16 152.97

4 0.798873 1.338567 4413.256 2515.626 167.71 104.82 59.90

5 0.947568 2.559145 8437.501 1808.338 100.46 50.23 21.53

6 0.280841 0.333588 1099.839 1404.637 62.43 23.41 6.69

7 0.351404 0.426035 1404.637 1388.346 46.28 11.57 1.65

8 0.347675 0.421094 1388.346 1117.531 24.83 3.10 0.00

9 0.73204 1.113516 3671.264 1099.839 12.22 0.00 0.00

10 0.575503 0.763005 2515.626 258.9088 0.00 0.00 0.00

Average 2611.525 1935.51 1594.29 1380.70

α = ×
+ × − −

L K

K K
2

1 1 2Γ( ) ( )

u L
K

k= + + −[ ]1 1 1
α Γ( )

x x u F KT m
K/ ln /= + − − ( )[ ]{ }α 1
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Now, the L-moments are computed by

λ1 = B0= 2,611.525

λ2 = 2B1 – B0= 2 × 1,935.51 – 2,611.525 = 1,259.505

λ3 = 6B2 – 6B1 + B0= 6 × 1,594.29 – 6 × 1,935.51 + 2,611.525 = 564.2006

λ4 = 20B3 – 30B2 + 12B1 – B0 = 399.8626

Next, we determine the L-moment ratios:

L-CV = λ2/λ1 = 0.48229

L-SK = λ3/λ2 = 0.44795

L-KR = λ4/λ3 = 0.70872

The GEV parameters using these L-moments can be computed as follows:

c = 2/(L-SK + 3) = –0.050876

k = 7.859c + 2.985c2 = –0.3922182

= 0.411066

= 0.504225

Using these computed parameters, we compute floods for various return
periods as shown in Table E11-12c.

In a similar manner, two more replications of the procedure were made. The
results for the second replication are shown in Table E11-12d.

Now, the L-moments are 

λ1 = 2,816.911, λ2 = 1,178.135, λ3 = 180.8436, λ4 = 198.4997

and the L-moment ratios are
L-CV = 0.41824 

L-SK = 0.15350 

L-KR = 1.09763 

The GEV parameters using these L-moments can be computed as follows:

c = 0.003286, k = – 0.0258, α = 0.588463, u = 0.635062

The floods for various return periods for this replication are shown in
Table E11-12e.  

 For the third replication the data are listed in Table E11-12f.

α
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k
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Table E11-12c

T F (lnF)k u + α /k[1 – (lnF)k] X(T)

50 0.98 4.619749 4.297679 11221.24

100 0.99 6.074979 5.822743 15203.18

200 0.995 7.980631 7.819844 20417.61

500 0.998 11.43841 11.44355 29879.12

1000 0.999 15.01464 15.1914 39664.74

10000 0.9999 37.05028 38.28449 99960.81

Table E11-12d

F xT/xm xT xT

in descending order
B1 B2 B3

1 0.637087 0.882038 2908.079 6870.646 687.06 687.06 687.06

2 0.680785 0.979472 3229.32 4507.997 400.71 350.62 300.53

3 0.199327 0.225736 744.2525 4267.184 331.89 248.92 177.80

4 0.805957 1.367303 4507.997 3229.32 215.29 134.56 76.89

5 0.512151 0.656233 2163.601 2908.079 161.56 80.78 34.62

6 0.047668 0.03175 104.681 2163.601 96.16 36.06 10.30

7 0.356743 0.43313 1428.029 1945.318 64.84 16.21 2.32

8 0.787364 1.294263 4267.184 1428.029 31.73 3.97 0.00

9 0.915208 2.083908 6870.646 744.2525 8.27 0.00 0.00

10 0.469038 0.590027 1945.318 104.681 0.00 0.00 0.00

Sum 2611.525 1997.52 1558.18 1289.52

Table E11-12e

T F (lnF)k u + α /k[1 – (lnF)k] X(T)

50 0.98 1.105912 3.043800 8571.342

100 0.99 1.126014 3.501944 9861.475

200 0.995 1.146406 3.966698 11170.22

500 0.998 1.173876 4.592755 12933.2

1000 0.999 1.195073 5.075847 14293.59

10000 0.9999 1.268234 6.743243 18988.97
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Now, the L-moments are 

λ1 = 2,154.873, λ2 = 884.4992, λ3 = 127.2336, λ4 = 166.6144

and the L-moment ratios are
L-CV = 0.41046 

L-SK = 0.14385 

L-KR = 1.30952 

The GEV parameters using these L-moments can be computed as follows:

c = 0.005233, k = –0.041, α = 0.569528, u = 0.652727

The floods for various return periods for this replication are shown in
Table E11-12g.

Now we analyze the observed data (Table E11-12h).
Here we get

xm = 3,297.49

with L-moments

λ1 = 3,297.49, λ2 = 526.1456, λ3 = 152.575, λ4 = 57.02214

and L-moment ratios
L-CV = 0.15956 

L-SK = 0.28999 

L-KR = 0.37373  

Table E11-12f

F xT/xm xT xT

in descending order
B1 B2 B2

1 0.551562 0.721099 2377.464 5496.240 549.62 549.62 549.62

2 0.096165 0.069667 229.6935 2981.103 264.99 231.86 198.74

3 0.647532 0.904186 2981.103 2956.833 229.98 172.48 123.20

4 0.620144 0.847434 2793.988 2793.988 186.27 116.42 66.52

5 0.644095 0.896825 2956.833 2377.464 132.08 66.04 28.30

6 0.864891 1.667043 5496.24 1890.559 84.02 31.51 9.00

7 0.30977 0.371299 1224.171 1249.217 41.64 10.41 1.49

8 0.457785 0.573418 1890.559 1224.171 27.20 3.40 0.00

9 0.117616 0.105994 349.4614 349.4614 3.88 0.00 0.00

10 0.315583 0.378895 1249.217 229.6935 0.00 0.00 0.00

Sum 2154.873 1519.69 1181.75 976.88
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The GEV parameters using these L-moments can be computed as follows:

c = – 0.023024, k = –0.179, α = 0.189, u = 0.8501

The floods for various return periods for this replication are shown in
Table E11-12i.

The floods for the various return periods computed using the observed and
generated data are summarized in Table E11-12j.

From this table, one can conclude the following: 

1. Bias increases with return period of the flood. 
2. All estimates using the generated data are overestimated. 

Table E11-12g

T F (lnF)k u + α /k[1 – (lnF)k] X(T)

50 0.98 1.173487 3.059658 6590.504

100 0.99 1.207565 3.532600 7609.221

200 0.995 1.242504 4.017475 8653.642

500 0.998 1.290149 4.678705 10077.93

1000 0.999 1.327367 5.195218 11190.5

10000 0.9999 1.458811 7.019405 15119.8

Table E11-12h

SN X B1 B2 B3

1 5111.1 511.11 511.11 511.11

2 4352 386.84 338.49 290.13

3 4089 318.03 238.53 170.38

4 3228.3 215.22 134.51 76.86

5 3014 167.44 83.72 35.88

6 2999.6 133.32 49.99 14.28

7 2927.8 97.59 24.40 3.49

8 2489.4 55.32 6.92 0.00

9 2424.3 26.94 0.00 0.00

10 2339.4 0.00 0.00 0.00

Sum 32974.9 1911.82 1387.67 1102.13
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Here, results from only a few replications have been shown. When 10,000
replications were made, the bias for T = 1,000 years was nearly 11%. So the GEV
distribution can be considered to be a robust model for the region.

11.7 Monte Carlo Integration

When integration involves problems in one or two dimensions and the inte-
grands are well behaved (say, there is no discontinuity), conventional numerical
integration methods, such as the trapezoidal rule or Simpson’s rule, are com-
monly employed. But the accuracy of conventional numerical integration deteri-
orates rapidly as the dimension of integration increases. For integrations
involving multiple dimensions, the Monte Carlo method is a suitable numerical
integration technique. Let the integration problem be

(11.61)

Table E11-12i

T F (lnF)k u + α /k[1 – (lnF)k] X(T)

50 0.98 2.010628 1.914808 6313.123

100 0.99 2.278294 2.196797 7242.84

200 0.995 2.580415 2.515086 8292.239

500 0.998 3.04115 3.000475 9892.567

1000 0.999 3.443191 3.42403 11289.03

10000 0.9999 5.199913 5.274758 17390.88

Table E11-12j

X(T) from replication number X(T) from 
obs. data

Bias

T 1 2 3 Mean

50 11221.24 8571.342 6590.504 8794.362 6313.123 39.30288

100 15203.18 9861.475 7609.221 10891.29 7242.84 50.37322

200 20417.61 11170.22 8653.642 13413.83 8292.239 61.76362

500 29879.12 12933.2 10077.93 17630.08 9892.567 78.21543

1000 39664.74 14293.59 11190.5 21716.28 11289.03 92.36621

10000 99960.81 18988.97 15119.8 44689.86 17390.88 156.973

F f x dx
a

b

= ∫ ( )
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where a ≤ x ≤ b. Monte Carlo integration using the sample-mean method is based
on the premise that the integral Eq. 11.61 can be expressed as

(11.62)

where the PDF, hx(x) ≥ 0, is defined over the interval a ≤ x ≤ b. The transformed
integral given by Eq. 11.62 is equivalent to the computation of expectation of the
term inside the square brackets; that is,

(11.63)

where X is a random variable whose PDF hX(x) is defined over a ≤ x ≤ b. Now F
can be computed by the Monte Carlo method as

(11.64)

Here, xi is the ith random variate generated according to fx(x) and N is the
number of random variates generated. Computations using the sample-mean
Monte Carlo integration method are carried out in the following steps:

1. Select hX(x) defined over the region of the integral from which N random
variables are generated.

2. Compute f(xi)/hX(xi) for i = 1, 2, …, N.

3. Calculate the sample average based on Eq. 11.64 as the estimate of F.

11.8 Variance Reduction Techniques

Monte Carlo simulation involves sampling and therefore the results obtained
will entail sampling errors. These errors decrease with increasing sampling size,
but increasing sample size to achieve higher precision generally means an
increase in computer time to generate random numbers and for data processing.
Several variance reduction techniques have been developed to obtain high preci-
sion in the Monte Carlo simulation results without having to substantially
increase the required sample size. Some of these techniques are:

1. Antithetic variates (Hammersley and Morton 1956)
2. Correlated sampling (Rubinstein 1981)
3. Latin hypercube sampling (Pebesma and Heuvelink 1999)
4. Importance sampling
5. Stratified sampling (Cochran 1972)
6. Control variates

These are described in what follows.
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11.8.1 Antithetic Variates Technique

Assume that two unbiased estimators α1 and α2 of a parameter α  have been com-
puted. The two estimators can be averaged to obtain another estimator of α  as

(11.65)

The new estimator is also unbiased and its variance is

(11.66)

In Monte Carlo simulation, estimators α1 and α 2 depend on random vari-
ates that are generated. Of course, these variates are related to the standard uni-
form random variates used to generate random variates. Thus, α1 and α 2 are
functions of the two standard uniform random variables U1 and U2. It is clear
from Eq. 11.66 that the variance of αavg can be reduced if one can generate ran-
dom variates that yield strongly negative correlations between α1 and α2.

A negative value of cov[α1 (U1), α2(U2)] can be obtained by generating U1
and U2, which are negatively correlated. A simple approach that produces nega-
tively correlated uniform random variates and demands minimal computation
is to set U1 = 1 – U2.

11.8.2 Correlated Sampling Technique 

Many times the basic objective of Monte Carlo simulation is to evaluate the sen-
sitivity of system performance or to determine the difference in the performance
of the system under several configurations and designs. Correlated sampling
techniques are especially effective in such situations. Let a design involve a vec-
tor of N random variables X = (X1, X2, …, XN). These variables could be corre-
lated, having a joint PDF fX(x); these could also be independent, each having a
PDF fi(xi), i = 1, 2, …, N.

As an example, consider two designs A and B of a system; the performance
of the system is denoted by Z. Hence the performance of the system under
design A will be 

ZA = g (A, X) (11.67)

where A = (a1, a2, …, am) is a set of parameters for design A. Similarly, the perfor-
mance of another design B will be

ZB = g (B, X) (11.68)

where B = (b1, b2, …, bm) is a set of parameters for design B. Now, the difference
in performances for the two designs is

Z = ZA – ZB (11.69)

α α αavg = +1
2 1 2( )

var( ) var( ) var( ) cov( , )α α α α αavg = + +⎡⎣ ⎤⎦
1
4

21 2 1 2
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Since both ZA and ZB involve the same random numbers, these may be
highly correlated. Hence, the method of correlated sampling may be used effec-
tively to estimate statistical properties of Z. Let the mean value of these be Z. The
variance of Z is given by

(11.70)

If ZA and ZB are positively correlated, and the variance of Z
in Eq. 11.70 will be less than the sum of their individual variances: 

(11.71)

Higher reduction in the variance of Z can be achieved by increasing correla-
tion between the random numbers. The random numbers zAj and zBj will be
positively correlated if they are generated as follows (Ang and Tang 1984):

(11.72)

(11.73)

where (u1, u2,… , un) is an independent set of uniformly distributed random
numbers. 

11.8.3 Latin Hypercube Simulation

Latin hypercube simulation (LHS) is a stratified sampling approach that allows
efficient estimation of the statistics of output. In LHS the probability distribution
of each basic variable is subdivided into N ranges, each with a probability of
occurrence equal to 1/N. Random values of the basic variable are simulated such
that each range is sampled only once. The order of the selection of the ranges is
randomized and the model is executed N times with the random combination of
basic variables from each range for each basic variable. The output statistics, dis-
tributions, and correlations may then be approximated from the sample of N
output values. The stratified sampling procedure of LHS converges more
quickly than other stratified sampling procedures. As with Monte Carlo simula-
tion, accuracy is a function of the number of samples. If N equals twice the num-
ber of suspected important parameters, it might provide a good balance of
accuracy and economy for models with a large number of parameters.

For correlated basic variables, there are several procedures to generate a
stratified sample. One of the popular methods is the exact sampling method. For
the case of two dependent basic variables, the marginal distribution of one of the
basic variables can be stratified and sampled as in LHS, and the paired value of
the codependent basic variable can be randomly sampled from the conditional
distribution using the value of the first basic variable. These pairs remain
together in the random assignment to model runs. For N-dependent basic

var( ) var( ) var( ) cov( , )Z Z Z Z ZA B A B= + − 2

cov( , )Z ZA B > 0

var( ) var( ) var( )Z Z ZA B< +

z g A F u F u F uAj X X Xn n= ⎡⎣ ⎤⎦
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1 2
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variables, the conditional sampling can be extended, or the joint distribution can
be sampled randomly in a stratified manner. The N-tuples remain together in the
random assignment to model runs.

Several computer packages containing routines for Monte Carlo and LHS
methods are reported in the literature. The U.S. Environmental Protection
Agency has approved some computer packages for LHS and these are available
through EPA's Exposure Models Library. Monte Carlo and LHS have been
applied to model groundwater contamination and reliability assessment of civil
engineering structures. 

11.8.4 Importance Sampling Technique 

Rather than spreading the sampling points uniformly, the importance sampling tech-
nique picks up more sampling points in that part of the domain that is most impor-
tant for the study. Rubinstein (1981) has demonstrated that the errors associated with
the sample mean method (see Section 11.7) can be considerably reduced if hX(x) is
chosen such that it has a shape similar to that of f(x). However, there may be prob-
lems in drawing samples from hX(x), especially when |f(x)| is not well behaved.
Thus, while implementing this technique, there is a trade-off between the desired
error reduction and the difficulties of sampling from a specific zone of the domain.

11.8.5 Stratified Sampling Technique

Stratified sampling is a well-established area in statistical sampling (Cochran
1972). In many ways, it is similar to importance sampling. The basic difference
between the two techniques is that the stratified sampling technique takes more
observations at regions that are more “important,” whereas importance sampling
chooses an optimal PDF. Variance reduction by the stratified sampling technique
is achieved by taking more samples at important subregions. In this approach, the
population consisting of N samples is subdivided in M units of on-overlapping
zones, which are called strata (see Fig. 11-5). Samples are drawn from each
stratum, the drawing of samples being independent in different strata. 

There are many advantages of dividing the population area into strata:

1. Data with desired precision can be drawn from a specific stratum. 
2. Stratification may be desirable from administrative or logistic considerations. 
3. Different sampling approaches may be necessary for different strata. For

instance, if an Environmental Impact Assessment (EIA) survey is to be
carried for industries in an area, the aspects that are important in metal
industries and in textile industries will be different. 

4. Stratification helps divide a heterogeneous population into groups of
more homogenous population. The advantage of a homogenous popula-
tion is that, even with a small sample, reasonably reliable estimates of
parameters can be obtained. 



Monte Carlo Simulation 479

The theory of stratified sampling examines the issues of how to divide the
population into strata, how many strata should there be, and how the domains
of the strata should be determined. Cochran (1972) has described the technique
in greater detail.

11.8.6 Control Variates

Sometimes, accuracy of estimation can be improved by the use of an indirect
estimator. Let Z be a direct estimator and Y an indirect estimator. Let 

(11.74)

where X is a random variable with known mean μX and α is a coefficient; X is
correlated with Z. Variate X is called a controlled variate for Z. X may represent
the performance function of a very simple model of the prototype that allows an
analytical determination of μX. We have

(11.75)

Clearly, if (Z) is an unbiased estimator then (Y) is also an unbiased estimator.
The variance of (Z) can be obtained by 

(11.76)

Therefore, the variance of Y will be less than the variance of Z if

(11.77)

In that case, the indirect estimator Y is more accurate than the direct estima-
tor Z. The value of α can be selected to obtain the maximum reduction in
variance.

Figure 11-5 Stratified sampling: population space of N samples divided into 7 strata.

N1           N2 N3 N4

   N5 N6 N7

Y Z X X= − −α μ( )

E Y E Z E X E ZX( ) ( ) [ ( ) ] ( )= − − =α μ

var( ) var( ) var( ) cov( , )Y Z X Z X= − −α α2 2
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11.9 Reducing Parameter Uncertainty 

Parameters of mathematical hydrologic models are estimated by using the avail-
able data of the real system. Many times, there may be large uncertainties in
parameter values if enough data are not available. Two nonparametric statistical
methods—namely the jackknife and bootstrap methods, which make no
assumption about normality—are especially useful in such cases. Although
these methods require large computations, the calculations are tractable. These
methods are discussed next. 

11.9.1 Jackknife Method

The jackknife, introduced in the late 1950s, is an attempt to answer an important
statistical question: Having computed an estimate of some quantity of interest,
what accuracy can be attached to the estimate? Standard deviation is a com-
monly used expression for the “accuracy” of an estimate. The jackknife method
can be employed to compute the standard deviation of parameter estimates as
follows:

1. Determine the parameter of interest, α s, from the data of N samples. 

2. For each observation i = 1, …, N, compute using the data of (N – 1)

observations; the ith observation is ignored while computing . As a

result of this step, N values of αs are obtained.

3. The accuracy of α s can be determined by

(11.78)

where is the jackknife standard deviation of the estimate α s.

Example 11.13 Twenty students were asked to measure the water level of Nar-
mada River at a gauging site. The measured values (in meters) are 290.940,
290.870, 291.010, 290.950, 291.070, 291.110, 291.090, 290.640, 290.680, 290.750,
290.890, 290.580, 290.750, 291.120, 290.630, 290.890, 290.610, 290.870, 291.060, and
291.070. Determine the accuracy of the mean of these measurements using the
jackknife method.

Solution There are 20 different values of the water stage of Narmada River. The
mean μ of these 20 measurements of river stage is 290.879 m. Following step 2 of
the jackknife method, 20 values of mean river stage were computed by ignoring
one observation at a time. These mean values μi (in meters) are 290.928, 290.985,
291.030, 291.086, 291.132, 291.183, 291.236, 291.313, 291.363, 291.412, 291.457,
291.526, 291.570, 291.603, 291.682, 291.721, 291.788, 291.827, 291.869, and 291.922.
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Applying Eq. 11.78 with N = 20, we obtain

11.9.2 Bootstrap Method

The bootstrap method was developed by Efron (1977). It can be used to deter-
mine the accuracy of any estimate determined from sample data. The
computational steps of this method are as follows: 

1. Let there be N data items xi, i = 1, …, N, and let G be their empirical dis-
tribution. The probability of occurrence of each datum is 1/N.

2. Generate N new random data items , i = 1, …, N. Each new data item

is a replacement for one of the N original numbers. This new set of items
is called the bootstrap sample. 

3. Estimate the value of the desired parameter α for the bootstrap sample
, i = 1, …, N.

4. Repeat steps 2 and 3 a large number of times (say, M). Each time a new
bootstrap sample is used and parameter α is estimated. Finally, we will

have M independent sets of bootstrap statistics . 

5. The variance of α s can be calculated as 

(11.79)

where is the mean of .
The jackknife and bootstrap methods can be used to compute the variance of any
statistic (e.g., mean, standard deviation, and skewness) that are determined from
the sample data. 

11.10 Uncertainty and Sensitivity Analysis Using 
Monte Carlo Simulation 

The discussion on model uncertainty in the preceding chapters shows that by
sensitivity analysis the relative importance of model parameters (and variables)
can be assessed by perturbing one parameter (or variable) at a time about a
selected value in parameter space and determining the sensitivity of model out-
put to such a perturbation in the form of a sensitivity coefficient. This type of sen-
sitivity analysis is designated as local sensitivity analysis (LSA). The sensitivity

μJ = − × =20 1
20

7 97 2 7516. .

xi
∗

xi
∗

αs
∗

var( )* *( ) *α α αs s
m

s
m

M

M
= −( )

=
∑1 2

1

αs
∗

αs
∗



482 Risk and Reliability Analysis

coefficient can be expressed in several ways. One way to express it is as follows.
Denoting the model output by Y and the jth parameter by xj, we can express the
sensitivity coefficient sj for the jth parameter as

(11.80)

The sensitivity coefficient can also be expressed in dimensionless form as

(11.81)

Local sensitivity analysis may be able to decipher sources that significantly
contribute to model uncertainty. For example, a high sensitivity parameter may
have less influence on the model uncertainty than a parameter that is much less
sensitive but is more uncertain. Melching (2001) has reasoned that to evaluate
the contribution of each model parameter and input variable to the overall
uncertainty of model output, uncertainty analysis must integrate the effects of
sensitivity as well as uncertainty.

In many practical cases, model sensitivity varies from one region of param-
eter space to another. In such cases, LSA yields limited information and there-
fore global sensitivity analysis (GSA) should be employed. GSA permits
evaluation of the model response over the parameter space (i.e., the pattern of
change in model output to changes in parameters over the entire range). To per-
form GSA using MCS-based schemes, one generates sets (say, I) of model
parameters (say J), I > J, following their statistical characteristics in a defined
parameter range. Then, each generated parameter set is used in the model to
produce output. Thus one would obtain I sets of model outputs, that is, 

where xj,i is the jth parameter generated in the ith parameter set, and yi is the
corresponding ith model output. Now one can use regression and correlation
analysis for I outputs and I sets of J parameters to determine the relative impor-
tance of each of the J parameters and then define sensitivity and uncertainty
indicators. 

The accuracy of MCS-based GSA depends on the sample size I for the num-
ber of parameters J. Using the LHS scheme, McKay (1988) suggested I to be
greater than or equal to twice J, whereas Iman and Helton (1985) as well as
Manache (2001) found that I = 4J/3 would be adequate. The importance of each
model parameter can be determined by using the coefficient of correlation (or
the Pearson product moment correlation coefficient) indicating the strength of
the linear relationship between model output and parameters. It is possible that
there is a monotonic nonlinear relationship between model output and parame-
ters. Then Spearman’s rank correlation coefficient can be computed. To that
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end, the data generated for each parameter and model output are ranked in
either ascending order or descending order and then the rank correlation coeffi-
cient is computed as

(11.82)

where j =1, 2, …, J, r is the rank correlation coefficient, R(yi) is the rank of the i-
generated model output value of y, and R(xi,j) is the ith generated value of
parameter xj. If the rank correlation coefficient is higher than the Pearson prod-
uct correlation coefficient then a nonlinear relationship exists between model
output and parameter values. In this case the sensitivity coefficient changes with
parameter values. 

In practice a second-order regression equation suffices to relate the model
output to model parameters:

(11.83)

where a, b, c, and d are regression coefficients; ε is the error term denoting the
deviation between model response and regression relation-produced output.
For purposes of discussion of GSA, only the linear term of Eq. 11.83 is retained:

(11.84)

Equation 11.84 shows that the global sensitivity coefficient associated with
model parameters bj is the same as the regression coefficient ,
reflecting the average sensitivity of the model response to a unit change in the
model parameter. 

For comparing model sensitivity to parameters having different units, it is
better to standardize model parameters and model output as

Equation 11.84 can now be expressed as 

(11.85)

r

R x
I

R y
M

I IR y R x

j i i
i

I

j( ), ( )

,[ ( ) ][ ( ) ]

( )/

[

=

−
+

−
+

−
= −=

∑ 1
2

1
2

1 12
1

6
1

2

RR x R y

M M

j i i
i

I

( ) ( )]

( )/

, −

−
=

∑ 2

1
2 1 12

y a b x c x d x xj j j j
j

J

j

J

jm j m
m j

J

j

J

= + + + +
== = +=

−

∑∑ ∑∑0
2

11 11

1

ε

y a b xj j
j

J

= + +
=
∑0

1

ε

dy dx bj j/ =

x
x x

s
y

y y
sx y

* *
( )

,
( )

= − =
−

y b xj j
j

J

* * *=
=
∑

1



484 Risk and Reliability Analysis

where b* is the standardized regression coefficient and is related to the regression
coefficient bj as

(11.86)

Now the contribution of each model parameter to the total model output
variability can be expressed as 

(11.87)

Here is the correlation coefficient between model parameter xj and xm,
and is the mean square error. If model parameters are independent, each term
in the summation  represents the regression sum of squares, indicating the
contribution of parameter xj to the overall model uncertainty. If model parame-
ters are not independent, then correlation among parameters might increase or
decrease the total model output variability; this, of course, depends on the alge-
braic sign of the sensitivity coefficient and of the correlation coefficient. In such
cases partial correlation coefficients can be employed to incorporate the influ-
ence of other correlated parameters. 

11.11 Questions

11.1 Generate 20 uniformly distributed random numbers using Eq. 11.1 with
a = 4, b = 2, and d = 5. Take an appropriate value of seed R0.

11.2 Generate values of a random variable that follows an exponential distri-
bution with parameter λ = 5.0.

11.3 Generate values of a random variable that follows a symmetric triangu-
lar distribution.

11.4 Generate values of a random variable that follows an asymmetric (to the
left) triangular distribution.

11.5 Generate values of a random variable that follows an asymmetric (to the
right) triangular distribution.

11.6 Generate a random variable that follows the probability density function

fX(x) = 3/4 + x3, 0 ≤ x ≤ 1 

11.7 Generate gamma-distributed random variates with parameters (5, 0.5)
using the function-based method.
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11.8 Generate normally distributed random numbers with parameters (5, 2.0)
using the function-based method.

11.9 Generate values of a random variate that follows a binomial distribution
with parameters (10.0, 0.5). 

11.10 Generate values of a random variate that follows a Poisson distribution
with parameter λ = 8. 

11.11 Generate numbers that follow a bivariate normal distribution with
parameters (4, 1.5) and (6.0, 2.5). The coefficient of correlation (ρ)
between the numbers is 0.5.

11.12 Twenty values of the water level of Narmada River were measured at a
gauging site. The measured values (in meters) are 291.20, 291.50, 291.50,
290.05, 292.01, 291.20, 291.10, 290.58, 290.78, 290.85, 290.90, 290.35,
290.65, 291.08, 290.43, 290.78, 290.82, 290.95, 291.35, and 291.29. Deter-
mine the accuracy of the mean of these measurements using the jack-
knife method.



486

Chapter 12

Stochastic Processes

A stochastic (or random) process represents a family of functions. Consider, for
example, a time series of river discharge at a gauging station, as shown in
Fig. 12-1. It is observed that discharge X varies in an erratic manner, such that it
is hard to represent it algebraically. Successive observations of daily discharge,
however, exhibit a strong dependence or memory in time. The dependence is
measured by serial correlation and suggests that a family of random variables
may describe the discharge time series, one for every day. The probability den-
sity function of each random variable may or may not be the same for each day
and its parameters may be correlated with those at other days. Thus, X(t) is a
stochastic process. For a specific day, X(t = t1) is a random variable at time t = t1.
Of course, a stochastic process can also be represented as X(t, λ), where λ repre-
sents possible outcomes. For a specific outcome λ = λ1, X(t, λ1) is a simple time
function. For a specific time t1, X(t1, λ) is a random variable whose outcomes are
the intersection of X(t, λ) and the time t = t1. For simplicity, we represent a sto-
chastic process by X(t). Thus a stochastic process is a random variable for any
given value of time t and can be considered as the collection of all possible
records of variation of the observed quantity (e.g., discharge) in time. The col-
lection is called the ensemble. In most practical applications, there is only one
observation of the time variation of the phenomenon under consideration, and
this particular record is called a realization of the stochastic process, as shown in
Fig. 12-1. 
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Since X(t) is a random variable at each time, X(t) will have a probability den-
sity function (PDF), denoted as fX(x, t), and a cumulative distribution function
(CDF) defined as . Note that both PDF and CDF are func-
tions of time and related as usual: 

The function fX(x, t) is also called the first-order density of X(t).
For two assigned times t1, t2, X(t1) and X(t2) are random variables. Their joint

distribution depends on the values of t1 and t2 and can be written as

(12.1)
and

(12.2)

Here FX(x1, x2; t1, t2) is also called the second-order distribution of X(t), and
fX(x1, x2; t1, t2) is called the second-order probability density function of X(t).

12.1 Mean and Variance

The mean of a stochastic process X (t) is defined as

(12.3)

Figure 12-1 A single realization of a stochastic process.
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where is the time-dependent mean of the process X(t). The variance of the
process is expressed as 

(12.4)

12.2 Covariance and Correlation

A complete probabilistic description of a stochastic process entails consideration
of the interrelationship among random variables resulting from the stochastic
process at different times. This can be expressed by using the covariance
between X(t1) = X1 and X(t2) = X2:

(12.5)

If t1 = t2, Eq. 12.5 yields the variance as a function of time. cov [X (t1), X (t2)] is the
autocovariance of the random process X(t) at times t1 and t2. Equation 12.5 can be
expressed as

(12.6)

where RX(t1 , t2) is the autocorrelation of X(t) at t1 and t2 and is indeed the joint
moment of random variables X(t1) and X(t2):

(12.7)

For t1 = t2 = t, Eq. 12.6 can be written as:

 The covariance is an even function of time lag τ = t1 – t2, that is, 

(12.8)

For t1 = t2 = t, Eq. 12.6 yields 

(12.9)

which is the variance of X as a function of t.
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The autocorrelation coefficient ρ of two random variables is defined as the
ratio of the covariance to the product of their standard deviations. Hence ρX(t1 , t2)
is written as 

(12.10)

 For t1 = t2 = t, ρX(t , t) = 1. The covariance reduces to the variance: 

Example 12.1 Consider a stochastic process expressed as X(t) = at, where a is a
random variable and t is time. Determine the mean, autocovariance function,
autocorrelation function, variance, and autocorrelation coefficient.

Solution Applying Eq. 12.3 for the mean gives

where is the mean of a. Applying Eq. 12.7 for the autocorrelation function
gives

The autocovariance function is found by applying Eq. 12.6:

where is the variance of a. Applying Eq. 12.9 gives the variance:

Finally, applying Eq. 12.10 yields the correlation coefficient: 

Example 12.2 Consider a stochastic process expressed as ,
in which and K are independent random variables and k is a specific value of
K. Let K ~ N( ) and . Determine the mean, variance,
autocorrelation function, covariance function, and correlation coefficient of Q(t).
This equation is used to describe a streamflow recession process.
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Solution Applying Eq. 12.3 for the mean gives

Here can be evaluated by noting that K is a normally distributed
random variable. Therefore,

where is the PDF of K. The term within the integral sign can be evaluated
as follows: First, consider

Therefore, the integral term becomes

Hence, 

This yields the mean of Q as
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From Eq. 12.7 for the autocorrelation function, one gets

Equation 12.6 gives the autocovariance function: 

Referring to Eq. 12.9 for the variance (t1 = t2 = t), one obtains

where is the variance of Q0.
Application of Eq. 12.10 yields the correlation coefficient:

Example 12.3 Let the head in an aquifer be described by

where is the head at x = 0,  is the head at x = L (the length of the aquifer),
and x is the distance coordinate. This is the solution of the one-dimensional
Laplace equation for a homogenous isotropic confined aquifer. This equation
can be represented as , where and H0 is a sto-
chastic process in x (space), with H0 and B independent random variables. Deter-
mine the mean, variance, autocorrelation function, autocovariance function, and
autocorrelation coefficient. 

R t t E Q e Q e E Q E e

E Q

kt kt kt kt( , ) ( )( )1 2 0 0 0
2

0
2

1 2 1 2= ⎡⎣ ⎤⎦= ( ) ( )

= ( )

− − − −

eexp
( )

( )
σ

μk
K

t t
t t

2
1
2

2
2

1 22
+

− +
⎡

⎣
⎢

⎤

⎦
⎥

cov( , ) exp
( )

( )

[ ( )

t t E Q
t t

t t

E Q

k
K1 2 0

2
2

1
2

2
2

1 2

0

2
= ⎡⎣ ⎤⎦

+
− +

⎡

⎣
⎢

⎤

⎦
⎥

−

σ
μ

]] exp
( )

( )

[ ( )] exp

2
2

1
2

2
2

1 2

0
2

0
2

2
σ

μ

σ

K
K

k

t t
t t

E Q E Q

+
− +

⎡

⎣
⎢

⎤

⎦
⎥

= ( )−{ }
22

1
2

2
2

1 22
( )

( )
t t

t tK
+

− +
⎡

⎣
⎢

⎤

⎦
⎥μ

σ σ μ σ μQ K K K KE Q t t E Q t t2
0
2 2 2

0
2 2 22 2= ⎡⎣ ⎤⎦ −⎡⎣ ⎤⎦− −⎡⎣ ⎤⎦

=

exp [ ( )] exp

expp { ( ) [ ( )] }

exp

σ μ

σ σ μ σ

K K

Q K K

t t E Q E Q

t t

2 2
0

2
0

2

2 2 2

2

2
0

−⎡⎣ ⎤⎦− −

= −⎡⎣ ⎤⎦= QQ
E Q
E Q0

2

0

( )
( )

σQo

2

ρ

σ
μ

σ

Q

K
K

t t
E Q

t t
t t E Q

( , )
[ ]exp[

( )
( )] [ ( )] exp[

1 2

0
2

2
1
2

2
2

1 2 0
2

2=

+ − + − KK
K

Q K K K

t t
t t

t t t

2
1
2

2
2

1 2

2
1
2 2

1 2
2 2

2

2 2 2
0

( )
( )]

exp exp

+ − +

−⎡⎣ ⎤⎦

μ

σ σ μ σ −−⎡⎣ ⎤⎦2 2μKt

H H
H H

L xL= −
−

0
0( )

H0 HL

H H Bx= +0 B H H LL= − −( )/0



492 Risk and Reliability Analysis

Solution Applying Eq. 12.3 for the mean gives

where and are the mean of and the mean of B, respectively.
Using Eq. 12.7 for the autocorrelation function yields

The autocovariance function is given by Eq. 12.6 as

where  is the variance of Ho.
Applying Eq. 12.9 gives the variance of H:

where is the variance of B.
The autocorrelation coefficient is given as

Example 12.4 Let the potential rate of infiltration be described by the Horton
model: , where is the initial infiltration rate, is
the final (or steady) infiltration rate, and K is a parameter. The Horton model can
be simply written as , where . Let be a
stochastic process with , B, and K as independent random variables. K is
normally distributed. Determine the mean, variance, autocorrelation function,
covariance function, and autocorrelation coefficient.
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Solution Applying Eq. 12.3 for the mean gives

where is the mean of , is the mean of B, is the mean of K, and
is the variance of K. Applying Eq. 12.7 yields the autocorrelation function:

Using Eq. 12.6 for the autocovariance function, one obtains
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From Eq. 12.9, the variance of f(t) is

From Eq. 12.10 the correlation function is obtained as

12.3 Stationarity

A stochastic process is considered stationary if its probabilistic descriptions (e.g.,
statistics) are independent of a shift in time. This means that joint distributions
would be invariant with a shift of the time origin. Two processes X(t) and X(t + τ)
have the same statistics for any τ, that is, fX(x,t) = fX(x) is independent of t;
μX(t) = μX is constant; fX(x1, x2; t1, t2) = fX(x1, x2; τ), τ = t1 – t2, depends on the
time difference τ; RX(t1, t2) = R(τ) depends on the time difference;
cov[x(t1), x(t2)] = cov(x; τ) depends on the time difference; and ρX(t1, t2) = ρX(τ)
also depends on the time difference. If t1= t2, τ = 0, then R(t, t) gives the variance
of the process.

The stationarity property may also be extended to n-dimensional vectors.
For example, when the joint distribution of n-dimensional random vectors

and have the same statis-
tical characteristics (e.g., mean, variance, etc.) for all τ, the stochastic process X(t)
is stationary. If a stochastic process does not satisfy this condition, the process is
called an evolutionary stochastic or nonstationary process.

The concept of stationarity alludes to a similar structure of variability at dif-
ferent times (i.e., some kind of repetition is implied in the process). This is an
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important property in that statistical interpretations can be based on the analysis
of a single realization. If the joint distribution is invariant, irrespective of time,
the stochastic process is strictly stationary. When the mean of X(t) and X(t + τ)
converge to the population mean, the process is said to be stationary in the mean
or first-order stationary. A weakly stationary stochastic process is defined with
use of the autocovariance function:

cov[X(t), X(t + τ)] = R(τ) (12.11)

which depends only on the time difference τ. Such a process is a weakly station-
ary stochastic process. Its mean value function E[X(t)] is constant, independent
of t, and its autocovariance function depends only on τ for all t (i.e., second-
order stationary). Many times “stationary” implies second-order stationary. The
condition of a constant mean can be relaxed in many environmental processes.
Thus, with known mean, the second-order stationarity condition can be applied
to the resulting zero-mean process. 

If further higher-order (third, fourth,…) moments of the series are indepen-
dent of time but depend on τ and converge to the higher-order population
moments as a large number of samples are drawn, the series is said to be higher
order or strictly stationary. Usually a hydrologic series is tested only up to
second-order stationarity properties.

Consider an example of a single realization of a stationary process as shown
in Fig. 12-1. The covariance function can be determined by taking the average of
the lagged product of the departure of X from its constant mean, and repeating
the process for all lags τ. For a simple realization, the covariance is determined
by the time average of the lagged product; this is done for all possible lags. Phys-
ically, the covariance function exhibits the degree of correlation between the pro-
cesses at adjacent points in time. For a continuous process, one can expect a high
correlation at points close to each other (e.g., daily streamflow), but the correla-
tion decreases as the lag between points increases (e.g., monthly streamflow).

A common covariance function has a negative exponential form:

, (12.12a)

where λ is a parameter, called integral scale, and can be expressed as

, (12.12b)

This covariance function is plotted in Fig. 12-2.

cov( ) exp[ | |/ ]t s t l= −2 τ ≥ 0

λ ρ τ τ=
∞

∫
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σ
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12.4 Correlogram

The autocorrelation coefficient (Eq. 12.10) can be expressed in terms of τ, the lag
or separation time, as

(12.13)

If τ = 0, ρX(t, t) = ρX(t = 0) = 1. As τ increases, ρX(τ) decreases and vice versa.
Hence ρX is a measure of linear dependence. A decline in its value with increas-
ing τ suggests a decrease in the memory of the process. A graph of ρX with τ is
referred to as the correlogram. The pace at which ρX(τ) decreases as τ increases is
a measure of serial dependence of the stochastic process. When a correlogram
exhibits a periodic increase and decrease with lag, this indicates that a determin-
istic component, such as seasonal variability, is present in the process. Fig. 12-3
shows a correlogram of a stochastic process where the autocorrelation function
smoothly decreases with increasing τ ; and Fig. 12-4 shows a correlogram of a sto-
chastic process having periodicity. 

In environmental and water resources, observations are often made at time
intervals such as, say, 12 hours, 24 hours, 1 week, 1 month, or 1 year. In such
cases, a sample autocorrelation coefficient is estimated. This measures the linear
statistical dependence of consecutive observations. For such observations, τ can
be represented as τ = kΔt, k = 0, 1, 2,…. For a fixed time interval t = 1 Eq. 12.3 can
be estimated as 

Figure 12-2 Negative exponential covariance function. 
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, k = 0, 1 , 2, … (12.14)

where is the lag k autocorrelation coefficient, is the sample variance of
X, and cov(k) is the lag k autocovariance expressed as 

(12.15)

Figure 12-3 Correlagram showing a smooth decline with increasing τ.

Figure 12-4 Correlagram exhibiting fluctuations.
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where N is the number of observations in the series. For k = 0, ρX(0) = 1. For non-
zero k, there are N – k pairs of data in the summation term in Eq. 12.15. For exam-
ple, for k = 1, there are N – 1 pairs of data points, each separated by k = 1 unit of
time. For k = 2, there are N – 2 pairs of data, each separated by k = 2 units of time.

Equations 12.14 and 12.15 indicate that the second-order statistics of a pro-
cess may be obtained from a sample curve (i.e., time-averaged statistics), in place
of an ensemble of many samples (i.e., ensemble statistics). If the time-average
statistics of a process are the same as the ensemble statistics, the process is called
ergodic. In real life, only a single realization of the stochastic process is available.
Therefore, ergodicity or stationarity is assumed after simplification. Under this
assumption, time-average mean, time-average variance, time-average correla-
tion coefficient, etc. are obtained from a single realization of the stochastic pro-
cess. Although these statistics differ from their ensemble values, this assumption
is necessary for practical expediency. Statistical tests, such as the χ2 test, are used
to check stationarity and ergodicity of a series.

12.5 Spectral Density

As discussed earlier, the correlogram may experience periodic fluctuations and
may not monotonically decrease as a function of lag, thus indicating a presence
of a deterministic component in the stochastic process. From a Fourier or har-
monic analysis, it is known that any periodic function can be represented by the
sum of a series of sine terms and/or cosine terms of increasing frequencies. This
suggests that hidden periods of oscillations in samples of stochastic processes
can be identified by Fourier or harmonic analysis. In environmental and water
resources, many processes, such as rainfall, streamflow, and drought, have
inherent periodicity. Fourier analysis of drought may reveal a significant period
of 10 years in certain parts of northern India. This means that, on average, a cycle
of drought occurs every 10 years. Extending the argument further, we see that a
sample may exhibit oscillations of all possible frequencies, and identifying these
frequencies helps understand periodic patterns of the stochastic process.

If a stochastic process X(t) is stationary, the process can be represented by
Fourier series. The spectral representation of a zero-mean stationary X(t) is

(12.16)

where ω is the angular frequency, , and Z is a stochastic process
satisfying 

, (12.17)

where Z* is the conjugate of Z. Since exp(iω t) is complex, Z must be complex
valued. Equation 12.16 is a Fourier–Stieltjes integral. 

X t e dZi t( )=
−∞

∞

∫ ω ω( )

i = −1

E dZ[ ( )]ω = 0 E dZ dZ[ ( ) ( )]ω ω1 2 0∗ =
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 The first part in Eq. 12.17 yields that X will have zero mean, and the second
part shows that increments of Z at two different frequencies are uncorrelated
(i.e., the Z process will have orthogonal increments). If ω 1 = ω 2 = ω , then

(12.18)

where (ω ) is the integrated spectrum, and S(ω ) is the spectral density function
or simply the spectrum.

 If Eq. 12.16 is viewed as a Fourier transform then dZ can be considered as
the random amplitude. Equation 12.18 shows that the spectrum is proportional
to the square of the random amplitude per frequency increment. This means that
the spectrum must be non-negative at all frequencies.

 For a stationary stochastic process, the covariance function can be expressed
as the inverse of the Fourier transform of the spectrum:

(12.19a)

or

(12.19b)

Likewise, the spectral density is the Fourier transform of the autocovariance
function:

(12.20a)

or

(12.20b)

The spectrum is an even function: . 
If the process is not zero mean, then

(12.21)

and

(12.22)
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If the process is covariance stationary, one may normalize the spectral den-
sity function by dividing it by the variance . This means that the covariance
function can be replaced in Eq. 12.22 by the autocorrelation coefficient:

(12.23)

where is the normalized spectral density function. Likewise, Eq. 12.21 can
be recast as

S (12.24)

Equation 12.24 indicates that area under the normalized spectral density
function is unity since ρ(0) = cos(0) = 1.

If τ = 0, cov(0) = σ2 = variance, then Eq. 12.19 reduces to 

(12.25)

Interpreted physically, the spectrum represents a distribution of variance
over frequency. When divided by the variance, the spectrum is analogous to a
probability density function. This explains the designation of spectral density
function. When divided by the variance, the integrated spectrum is analogous to
the cumulative probability distribution function. The spectral density function
helps determine the frequencies that dominate the variance. A graph of the spec-
tral density function shows predominant frequencies relative to less dominant
frequencies. Thus, the spectral density is a function of frequency in cycles per
unit of time, frequency in radians per unit of time, or period in units of time.
These three quantities are related as

(12.26)

where T is period in units of time and f is frequency in cycles per unit of time.
Therefore,

(12.27)

Equations 12.19 to 12.25 can also be expressed in terms of f.

Example 12.5 Consider the exponential covariance function given by Eq. 12.11.
Express the relation between the covariance and spectrum.
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Solution Substituting Eq. 12.11 in Eq. 12.20 gives

=  = (12.28)

Equation 12.28 is graphed in Fig. 12-5 with σ = 3 and λ = 1 as an example,
which shows the maximum spectral amplitude at zero frequency. The zero inter-
cept for the spectrum is proportional to the integral scale.

In civil engineering most of the observations are taken at discrete time inter-
vals, not continuously. Quite often, these observations are taken at a constant
time interval t. Then the oscillation with the highest frequency is defined as

(12.29)

where is the maximum frequency, also called the Nyquist frequency.
 For a sample of observations the spectral density function can be computed

from the sample autocorrelation coefficient and integration of Eq. 12.20:

(12.30)

Figure 12-5 Spectral density function corresponding to the negative exponential 
covariance function. 
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where M is the maximum lag, which should be a small portion of N data points,
for example, M ≤ 0.25N. Equation 12.30 should be used for frequencies:

(12.31)

Now consider two zero-mean random processes X(t) and Y(t). The covari-
ance function of X and Y can be expressed as 

(12.32)

In terms of the cross–spectral density function , one has

(12.33)

or

(12.34)

The cross-covariance and cross–spectral density yield information on how
two processes X and Y are related in time. The function SXY is complex because
RXY is neither an even nor an odd function. The cross-correlation function satis-
fies the following relation:

(12.35)

Here RXY is real because X and Y are real. Thus, the real and imaginary parts
of SXY are 

(12.36)

where CXY is the cospectrum, a measure of in-phase covariance; QXY is the quad-
spectrum, a measure of out-of-phase covariance; and θXY is the phase spectrum
expressed as 

(12.37)

The cospectrum is expressed as

(12.38)

and the quadspectrum as

(12.39)
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12.6 Stochastic Processes

Many environmental and water resources processes, such as rainfall, discharge in
a river, reservoir water level, and pollutant concentration in a river, are stochastic
processes. Time series analysis techniques are frequently used to study these pro-
cesses. For a stochastic process represented as X(t), t∈Τ, if T is an infinite
sequence, then the process becomes X(m), X(m− 1), …., or X(m – 1), X(m), …, or
X(0), X(1), … and is a discrete-parameter process. Any process whose parameter
set is finite or enumerable is called a discrete-parameter process. However, if T is
an interval, then the process is a continuous-parameter family and is called a con-
tinuous-parameter process. A process with a nonenumerable set is a continuous
process. Note that x(t) in practice is the observation of X at time t, and T is the
time range involved.

12.6.1 Counting Process

In environmental and water resources, the frequency of occurrence of random
events and the time interval between successive events are of considerable inter-
est. Consider a time interval t = 0 to t in which the total number of occurrences of
an event is represented by N(t). Then N(t) is called a counting process of the
series of events, as shown in Fig. 12-6. This process is an integer-valued
continuous-time stochastic process. 

The time interval between successive occurrences of events T1 = t1, T2 = t2 – t1,
etc. is defined as the interarrival time. If the interarrival times are independent,
identically distributed random variables with distribution F, then the process is
called a renewal process (or renewal counting process). Specifically, if the inter-
arrival times follow an exponential distribution, the stochastic process is called a
Poisson process.

Figure 12-6 A counting process.

t1   t2     t3       t4                    Time 

N(t)
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12.6.2 Poisson Process

A counting process is a Poisson process with mean rate (or intensity) υ if N(t) has
stationary independent increment, N(0) = 0, and the number in any interval of
length [N(t + τ) – N(t)], is Poisson distributed with mean υτ. The Poisson incre-
ment process is covariance stationary.

Example 12.6 Consider Examples 4.18 and 4.19. Suppose that the occurrences of
drought events may be considered as a Poisson process with rate υ = 1.79, and
the interarrival time has the exponential distribution with parameter λ = 0.124.
Then, find P(N(s) = 5). (Hint: N(s) = 5 means by time s, a total of five droughts
have occurred but the sixth has not, which can be seen from Fig. 12-7.)

Solution To solve this problem, we need to know that N(s) = 5 if T4 ≤ s ≤ T5.
Then, let T4 = t and T5 > s. We have the time interval t6 = T5 – T4 = T5 – t4 > s – t,
which is independent of T4 according to the properties of the Poisson process.
With this information in hand, we can solve this problem as

(12.40)

Consider T4 is the summation of independent interarrival times (i.e., Ts = t1 +
t2 + t3 + t4 + t5 with t1 = T1; t2 = T2 – T1; etc.). Since each interarrival time has an
exponential distribution, the summation of these interarrival times has a gamma
distribution (i.e., Ts ~ gamma(5, 0.124)). Thus, Eq. 12.40 can be expressed as

12.6.3 Bernoulli Process

A counting process X, that is, X = {x1, x2, …, xn}, is called a Bernoulli process if
the xis are independent identically distributed Bernoulli trials. In other words,
each trial can only have one of two outcomes: success (1) or failure (0); rain (1) or
dry (0); hot (1) or cold (0), etc., and with P(xi = 1) = p.

Figure 12-7 Schematic of Poisson process
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Example 12.7 Consider rainy (1) or dry (2) weather conditions in any given day
in summer. Suppose the probability of a rainy day is 0.2. Determine the probabil-
ity of 4 rainy days occurring in 20 days. 

Solution In this problem, the weather condition denoted as X has only two pos-
sible outcomes: rain (1) or no rain (0). Also suppose that in a given day whether
it rains or not does not depend on any previous weather condition. Thus the
weather condition X can be considered as a Bernoulli process. Then each xi is
Bernoulli distributed with parameter P = 0.3. 

The probability of 4 rainy days occurring in 20 days can be computed as fol-
lows: This can be expressed as the probability of 4 successes (rainy days) in a
total of 20 trials (days). If we treat weather conditions (X) as independent identi-
cally distributed Bernoulli trials, then the probability of 4 rainy days in a total of
20 days is binomial distributed as B(20, 0.3), so

12.6.4 Gaussian Process

A stochastic process X(t) is said to be a normal or Gaussian process if the ran-
dom variable X(t) for any given time t is normally distributed with covariance
function CX(t1, t2). The assumption of the process being ergodic is implied here.
A stochastic process {X(t), t∈T} is called Gaussian if the joint distribution of
every finite set of the Xis is Gaussian, which is represented as

(12.41)

where

Example 12.8 Suppose the sequence X = {x1, x2, …, xn} with each ,

and let x1, …, xn be independent. Prove that Z = X1 + X2 +…+ Xn is also a Gaussian
process.

Solution The moment-generating function of the normal distribution is
expressed as
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Then

Thus Z is also a Gaussian process. 

12.6.5 Markov Process 

A Markov process is a process satisfying the following condition: For any integer
n ≥ 1, if t1 < …< tn are parameter values, the conditional probabilities relative
to are the same as those relative to in the sense that, for each λ,

(12.42)

Thus the probability of transition from at tn–1 to at tn can be
expressed only in terms of the state at tn–1 and information about previous states
is not needed. The conditional probabilities are also termed as transition proba-
bilities. The set of these probabilities are expressed through a transition matrix. 

Example 12.9 Consider the weather type in Baton Rouge in summer. Let the
probability(rain) = 0.2 and probability(no rain) = 0.8. Then if we know today is a
rainy day, is tomorrow a dry day, given only today’s weather type? Is this pro-
cess a stochastic process? If it is not, can it be made a Markov process?

It is clear that it is not guaranteed that tomorrow’s weather type only
depends on today’s weather type; the Markov property does not hold in this case,
so it is not a Markov process. But one can find a way to make this non-Markov
process a Markov process. If we have the weather type information of yesterday,
then the combination of weather type of yesterday and today can be considered
as a state. The probability of tomorrow being a rain day is given in Table E12-9.

Table E12-9 Weather type structure.

Yesterday Today Probability of rain day tomorrow

Rain Rain 0.6

Dry Rain 0.5

Rain Dry 0.3

Dry Dry 0.2
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Solution
Thus the state can be defined as 

1: (R, R), 2: (D, R), 3: (R, D), 4: (D, D)

Now it is Markov process with the transition matrix T given as

12.6.6 Wiener–Levy Process

The Weiner–Levy process is a stochastic process and is known as the Brownian
motion process. It describes the random movement of an extremely small parti-
cle immersed in a liquid or a gas. It satisfies the following conditions: (1) Xt has
stationary-independent increments and Xt ~ N(0, σ 2t), which shows that the
variance of the Wiener–Levy process increases linearly with time t. (2) E[xt] = 0
for all time, and Xt(0) = 0 with probability 1. (3) Every independent increment is
normally distributed (i.e., say, s < t, Xt – Xs ~ N[0, σ 2(t− s)] in which σ  is con-
stant.

Example 12.10 Let Xt be a Weiner–Levy process. What is the joint probability
density function of (Xs, Xt) where s < t.

Solution Since Xt is a Weiner–Levy process, then Xt ~ N(0, σ 2t), and Xs ~ N(0, σ2s).
From probability theory, we have 

Considering property (3) of the Wiener–Levy process, we have that 

which can be proved as follows: 

T =

0 6 0 0 4 0
0 5 0 0 5 0
0 0 3 0 0 7
0 0 2 0 0 8

. .

. .
. .
. .

f x y f x f y xX X X X Xs t s t s( , ) |( , ) ( ) ( | )=

X X N x t st s| ~ , ( )σ2 −⎡⎣ ⎤⎦

F y P X y X x

P X X y x X x

P X X y x

X X x t s

t s s

t s

t s| ( ) |

|

(

= = ≤ =[ ]
= − ≤ − =[ ]
= − ≤ −[ ] thee increment is independent of the former state X

y x

t

s )

=
−

−
Φ

σ ss
⎛
⎝⎜

⎞
⎠⎟

(property 3)



508 Risk and Reliability Analysis

Thus 

12.6.7 Shot-Noise Process

A stochastic process is a shot-noise process if it is defined by a sequence of
impulses applied to a system at random time τk. It can be expressed in the form

(12.43)

where is the response of a system at time t resulting from impulse Ak at
time τk, Ak is a set of independent identically distributed random variables, and
N(t) is a counting process with interarrival time τk, often taken as a Poisson process. 

12.7 Time Series Analysis

In time series analysis, ergodicity is invoked and time-average statistics are
therefore assumed to represent ensemble values. When trend and periodic com-
pounds have been removed from the time series, the ergodicity assumption is
nearly valid.

12.7.1 Trend

12.7.1.1 Concept of Time Trend

When a time series is plotted, the series values may, on average, increase or
decrease. This increasing or decreasing tendency defines a trend. The trend may
be the result of low-frequency oscillation, depending on the time scale of obser-
vation. If the time scale of observation is large, trends may be identified as
seasonal or periodic components.

Consider a stochastic process

X(t) = Y(t) + Z(t) (12.44)

where Y(t) is the deterministic trend and Z(t) is the random component. The
deterministic trend can be observed from the solution of the governing deter-
ministic differential equation of the system. The deterministic trend normally
accounts for the largest portion of the total magnitude of a stochastic process.
This is a result of inherent determinism in the process.
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The component Z(t) accounts for the randomness inherent in the process,
errors in the model hypothesis and its parameter estimation, and errors in the
data. Thus, Z(t) is modeled statistically. The magnitude of its variance is a
measure of its relative importance to X(t). The larger the value of , the
more important the uncertainty in X(t). If Y(t) is determined and represented by
a function, say a polynomial, then the fitted values are subtracted from X(t), and
then the random component Z(t) is analyzed by using the serial correlogram for
identification and removal of periodic components, if any.

12.7.1.2 Time Trend Removal

The deterministic trend Y(t) can be removed from the observed time series. The
widely used technique is to fit a low-order polynomial to the data using the least
square method discussed in Chapter 8. Now, considering this special problem,
we let the deterministic trend Y(t) be represented by a Kth-order polynomial
(K ≤ 3; Bendat and Piersol 1980) as

(12.45)

and then the least square fit is represented as

(12.46)

Taking the partial derivative of A with respect to aj and setting it equal to
zero yields 

(12.47)

in Eqs. 12.44 to 12.46, n is sample size, t is the sampling interval, aj is regression
coefficient. 

To this end, the deterministic component, also called the trend component
Y(t), can be determined and removed from the time series. 

Example 12.11 Consider the monthly discharge in July from the Colorado River
near the Grand Canyon, Arizona. Determine the deterministic component (time
trend) Y(t) and random component Z(t) of the data.

Solution The monthly discharge data at the Colorado River near the Grand
Canyon, Arizona, are given in Table E12-11.

Let K = 1. Then, for this problem, Eq. 12.45 to Eq. 12.47 can be written as
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, where t = 1 and i = 1,…, 82 (12.48)

(12.49)

(12.50)

Table E12-11  Monthly discharge data in July at the Colorado River near the Grand 
Canyon.

Year Discharge 
(cfs)

Year Discharge 
(cfs)

Year Discharge 
(cfs)

Year Discharge 
(cfs)

1923 37840 1945 28160 1967 11270 1989 13580

1924 17060 1946 12760 1968 14060 1990 12970

1925 24190 1947 31750 1969 16160 1991 15150

1926 23230 1948 16410 1970 13250 1992 14290

1927 41100 1949 34600 1971 15170 1993 14520

1928 25260 1950 22790 1972 14170 1994 13880

1929 34410 1951 22720 1973 10910 1995 18310

1930 18790 1952 25860 1974 20080 1996 16480

1931 8195 1953 15939 1975 20260 1997 22020

1932 33610 1954 10860 1976 13120 1998 20640

1933 19200 1955 10050 1977 14440 1999 18660

1934 2380 1956 9722 1978 11340 2000 8703

1935 24620 1957 65590 1979 13950 2001 13460

1936 17000 1958 11110 1980 25400 2002 15079

1937 22230 1959 12939 1981 13700 2003 15240

1938 28520 1960 11030 1982 13430 2004 15409

1939 7611 1961 6780 1983 55550

1940 7040 1962 29620 1984 35400

1941 28510 1963 1755 1985 28290

1942 21870 1964 1368 1986 21470

1943 23730 1965 11780 1987 18380

1944 30150 1966 11350 1988 11890
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From Eq. 12.50 one can obtain

From this analysis, we see that there is a decreasing trend existing in the dis-
charge time series considered. Figure 12-8a shows the discharge time series and
the corresponding time trend Y(t). Figure 12-8b shows the discharge time series
after the time trend removal. 

12.7.2 Periodicity

Cyclic, periodic, or seasonal fluctuations in time series are other deterministic
components. These components are detected by periodic oscillations in the cor-
relogram or by frequencies of oscillations in the spectral density function. A time
series containing a trend and a periodic component can be represented as

X(t) = V(t) + W(t) + Z(t) (12.51)

where W(t) is the periodic component. Periodicity is usually modeled using har-
monic functions. The fitted periodic values are then subtracted from X(t) and the
random component Z(t) is analyzed further using correlogram and statistical
techniques.

 Note that in Eqs. 12.44 and 12.48 deterministic components Y(t) and W(t) are
added to Z(t) or X(t) is partitioned into Y(t), W(t), and Z(t). This linear addition
or subtraction will not be valid if the differential equation for the periodic com-
ponent or the trend is nonlinear or their coefficients are random.  

12.7.3 Random Component

If trends and periodicity have been properly analyzed and detected and sub-
tracted from X(t), the random component Z(t) should be a zero-mean process. The
next step in the analysis of Z(t) is to determine the correlogram and the spectral
density function. This is needed to reveal hidden periodic components, dominant
frequencies, and most importantly serial dependence in time. If the correlogram
shows that the series is uncorrelated for lags greater than 1, then a white-noise
process can be employed to represent Z(t). If the correlogram is an exponentially
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decaying curve or the spectral density shows a smooth combination of several fre-
quencies, then a colored-noise process may be employed to represent Z(t). If the
autocorrelation function shows serial dependence up to a certain lag, then an
autoregressive process may be a suitable representation of Z(t).

Figure 12-8a Discharge time series and the corresponding time trend.

Figure 12-8b Discharge time series after time trend removal.
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12.8 Questions

12.1 The potential rate of infiltration, f(t) at time t, in a soil is described by the
Kostiakov equation as 

where a is a parameter. Assuming a as a random variable, determine the
mean, autocovariance function, autocorrelation function, variance, and
autocorrelation coefficient of f.

12.2 For a linear watershed, the discharge Q(t) at time t during depletion can
be described as 

where Q0 is the discharge at the start of depletion and K is the depletion
constant. Assuming K as a random variable, determine the mean, auto-
covariance function, autocorrelation function, variance, and autocorrela-
tion coefficient of Q. [Hint: Take logarithmic transformation of the
equation and then do the derivation for logarithmic quantities.] 

12.3 If kinematic wave theory is used for modeling overland flow on a plain
then the depth hydrograph during the rising limb is described as 

where q is rainfall intensity and t is time. Assuming q as a random vari-
able, determine the mean, autocovariance function, autocorrelation func-
tion, variance, and autocorrelation coefficient of h.

12.4 If kinematic wave theory is used for modeling overland flow on a plain
then the discharge hydrograph during the equilibrium state is described as 

where q is rainfall intensity and x is distance. Assuming q as a random
variable, determine the mean, autocovariance function, autocorrelation
function, variance, and autocorrelation coefficient of Q.

12.5 Consider a stochastic process expressed as 

where fc and s are independent normally distributed random variables
and t is time. This is Philip’s equation for describing the potential rate of
infiltration in soil. Determine the mean, variance, autocorrelation func-
tion, covariance function, and correlation coefficient of f(t).

f t at( ) .= −0 5

Q t Q Kt( ) = 0

h t qt( ) =

Q t qx( ) =

f t f stc( ) .= + −0 5
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12.6 For ice and snow melt conditions the base-flow recession at time t can be
adequately represented as

where Q(t) is discharge at time t, a and b are parameters, and n is an
exponent. Assuming a and b as random variables, determine the mean,
variance, autocorrelation function, covariance function, and correlation
coefficient of Q(t).

12.7 Consider rainy (1) or dry (2) weather conditions on any given day in
summer. Suppose the probability of a rainy day is 0.1. Determine the
probability of 5 rainy days occurring in 15 days. Now suppose the prob-
ability of a rainy day is 0.3; determine the probability of 5 rainy days
occurring in 15 days. 

12.8 In the Muskingum method of flow routing in a river reach, the storage
S(t) in the reach at any time t can be expressed as 

where a and b are constant parameters, I(t) is inflow to the reach at time t,
and Q is outflow from the reach at time t. Assume that I and Q are nor-
mally distributed. Show whether S is normally distributed or not. 

12.9 Assume that in summer in New Orleans the probability(rain) on any day
is 0.15 and probability(no rain) = 0.85. If it rains today, will it rain or be
dry tomorrow, given only today’s weather type? What type of a stochas-
tic process is this? 

12.10 Consider monthly discharge for January from the Amite River near Den-
ham Springs, Louisiana. Determine the deterministic component (time
trend) Y(t) and random component Z(t) of the discharge data.

Q t at bn( ) = +−

S t aI t bQ t( ) ( ) ( )= +
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Chapter 13

Stochastic Differential 
Equations

In civil and environmental engineering, the vast majority of problems until
recently were formulated as deterministic problems, with the assumption that
system parameters or variables were known. This was particularly the case in
structural engineering, geotechnical engineering, and engineering mechanics.
The deterministic formulations are simple to solve and require less data. In recent
years there has been a growing realization that, for a variety of reasons, these
deterministic representations may be inadequate. For instance, if some character-
istic of a system does not remain constant and keeps changing, it may have to be
treated as a random variable. The boundary conditions of a system may be sub-
ject to random fluctuations. It is also possible that the only information on some
parameters of the system available resides in terms of their statistical properties.
In addition, measurement errors in system variables are common because of
either limitations of measurement techniques or simplifying assumptions. Fur-
thermore, variables may have large spatial and temporal variability, whereas the
measurements are made at discrete points, far from each other. It is possible that
the combined effect of all these factors on the system behavior is not significant,
in which case the system may be treated as deterministic and its behavior may be
described deterministically without significant errors. If, however, the impact of
the random fluctuations is large, it may be necessary to represent the behavior of
the system using a stochastic differential equation (SDE). These equations
abound in engineering and scientific applications. This chapter provides a brief
discussion of such equations and their application.
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13.1 Ordinary Differential Equations 

Differential equations result from the application of physical, chemical, biologi-
cal, and other governing laws to a system. The fundamental laws commonly
used to describe environmental and water resources systems are the laws of con-
servation of mass, momentum, and energy and laws of thermodynamics. When
these laws are applied to a system or process undergoing changes in temporal
and spatial domains, one obtains equations that contain derivations. An equa-
tion that involves derivatives is known as a differential equation (DE) (e.g., dy/dx
= ax + b, where x and y are variables and a and b are parameters). 

A DE has some independent variable(s) and some dependent variable(s).
The independent variables are usually space–time coordinates. The system
being described by the DE may be subject to an input forcing function. The coef-
ficients of the DE may be constants or functions of independent and/or depen-
dent variables. The coefficients of the DE represent some physical quantities
related to the system and these can be constants, some function of dependent
variables, and/or some function of independent variables. 

An equation that contains total derivatives with respect to one variable is
called an ordinary differential equation (ODE); when partial derivatives with
respect to more than one independent variable are involved, one gets partial dif-
ferential equations (PDEs). The differential equations (both ODE and PDE) are
dealt with in detail in many standard mathematical texts, such as Ayres (1952).

If a DE describes a system in a physical region, such as flow in a channel, the
solution may require the value of the system variables at the boundary of the
physical region and the problem is known as a boundary value problem. The equa-
tions that involve the element of time may require knowledge of initial condi-
tions or the value of system variables at time t = 0. Such problems are known as
initial value problems.

A differential equation may be solved analytically; that is, it may be possible
to obtain a relation describing a dependent variable as a function of an indepen-
dent variable. Note that, in many cases, an analytical solution may be quite diffi-
cult to obtain and, in some cases, it may not exist at all. Another way of solving a
differential equation is numerically, by discretizing the various differential terms
in the space–time domains. The solution describes the dependent variable as a
function of the independent variable and no derivatives are involved. Upon sub-
stitution, the solution should satisfy the DE. Various software packages are
widely available these days to numerically solve a DE. There are myriad
numerical techniques available to solve differential equations.
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13.2 Partial Differential Equations

Partial differential equations are equations that contain an unknown function of
two or more variables and its partial derivatives with respect to these variables.
These equations must involve at least two independent variables. If x and y are
the independent variables and z is a dependent variable then

(13.1)

is a PDE. The order of a PDE is the order of the highest derivative. Thus Eq. 13.1
involves partial differentials of first order and hence it will be classified as a PDE
of order one. Similarly, the equation

(13.2)

is a PDE of second order. A PDE can be a linear or a nonlinear equation. The
equation

(13.3)

is a linear equation, since the coefficients of the derivatives do not depend on the
dependent variable. If the coefficients associated with the derivatives of the
dependent variable are functions of the dependent variable, it is a nonlinear
PDE. For example,

(13.4)

and

(13.5)

are examples of nonlinear PDEs.

13.3 Stochastic Differential Equations

There are many types of SDEs. For example, an SDE may be an ODE or a PDE, or
it may be linear or nonlinear. For purposes of understanding it is a good idea to
classify SDEs. 
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An SDE whose left-hand side is linear in both dependent and independent
variables is known as a linear equation of first order. For example, 

(13.6)

is a linear equation of first order, where y is a stochastic dependent variable, Q is
a forcing function, P is a sink function, and x is an independent variable. Func-
tions P and Q may be stochastic. Another example of a linear equation is

(13.7)

In contrast, the equation

(13.8)

is not a linear equation.
A given system may receive input at time t = 0 that is not deterministic. In

ordinary differential equations, the initial condition(s) may be random variables.
In a partial differential equation, it may be specified as a random process.
Depending upon the properties of the system, the uncertain input may be fur-
ther propagated or it may be dissipated. Given sufficient data, the problem is to
find the probability distribution of the system output. However, at times,
enough information may not be available to determine the complete distribution
and one may have to be content with only the first few moments of it. In all of
these situations SDEs arise. Depending on the way randomness is considered,
stochastic differential equations can also be classified as (i) differential equations
with random initial conditions, (ii) differential equations with random forcing
functions, (iii) differential equations with random boundary conditions, (iv) dif-
ferential equations with random coefficients, (v) differential equations with ran-
dom geometrical domains, and (vi) differential equations that combine two or
more of these conditions. A solution of an SDE is a stochastic process that satis-
fies it. Because the dependent variable is stochastic, the concepts of mean square
continuity, stochastic differentiation, and stochastic integration are invoked.
These concepts define the continuity, differentiation, and integration of a
stochastic process.

13.4 Fundamental Concepts in Solving SDEs

Since the solution of an SDE is in terms of stochastic variable(s), the concepts
such as continuity, differentiation, and integration are modified and defined to
take stochasticity into account. These concepts are introduced in what follows.
The concept of mean square continuity is useful in the study of stochastic

dy
dx

yP Q+ =

dy
dx

xy x+ = 5

dy
dx

xy x+ =2 5
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processes. A process X(t) is said to be continuous in mean square sense if it satis-
fies the condition

E[X(t + τ) – X(t)]2 → 0 as τ → 0 (13.9)

where τ > 0 is the time lag or delay. Expanding Eq. 13.9, one obtains

E[X(t + τ) – X(t)]2=E[X(t + τ)2 – E[X(t+τ)X(t)] – E[X(t)X(t+τ)] + E[X(t)2] (13.10)

The right-hand side of this equation approaches zero as τ → 0. Clearly, the
process is continuous if E[X(t1)X(t2)] is continuous along the time axis. This
implies that

E[X(t + τ)] → E[X(t)] as τ → 0 (13.11)

A related concept in differentiation is of mean square derivative of a stochas-
tic process. A process has mean square derivative at t if the following limit is
satisfied in the mean square sense:

(13.12)

13.4.1 Stochastic Differentiation

The mean square derivative is useful because its properties can be represented
in terms of the second-order properties of the stochastic process, that is, the
covariance function. A stationary stochastic process is differentiable in
the mean square sense if its autocorrelation function is differentiable up
to the second order. The derivative of the expected value of is equal to the
expected value of the derivative of . This property can be generalized to
an nth derivative if it exists. If is nonstationary then it is differentiable in
the mean square if the second-order partial derivative of its autocorrelation
function with respect to t1 and t2 [i.e., ], exists at

. Similarly, a stochastic process X(t) is nth-order differentiable if
 exists at t1 = t2.

13.4.2 Stochastic Integration

A mean-square integral of a stochastic process involves the limit of the sum in
the mean square sense. Thus, a stochastic process is integrable if

(13.13)

exists. Similar to stochastic differentiation, is integrable over the interval (a, b)
if the double integral of the autocorrelation function is bounded:

(13.14)
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The condition for the existence of a mean-square derivative can also be con-
sidered from the spectral representation, which is an integral in the mean square
sense. The derivative of can be expressed as

(13.15)

Here is considered to be a zero-mean stochastic process, ω represents
angular frequency, and dZW(ω) represents the Fourier amplitude of the stochas-
tic process. If the derivative is stationary, then 

(13.16)

The spectrum of the derivative can then be expressed as

(13.17)

The covariance function of the derivative W can be expressed as

(13.18a)

(13.18b)

For , the variance of the derivative follows:

(13.19)

Since

the covariance functions of X and W are related as

(13.20)

by Eq. 13.18. However, Eq. 13.17 shows a simple algebraic relation between their
spectra:
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Thus, for X to be stationary, its variance must be finite:

(13.22)

Using Eq. 13.13, one can write

(13.23)

The order of integration and expectation is interchangeable. To illustrate it,
consider a process as

(13.24)

Then

(13.25)

The property can be extended to obtain the correlation function as follows:

(13.26)

In a similar manner, the autocovariance of a stochastic integral can be deter-
mined. Thus, 

(13.27)

If is inserted in Eq. 13.27, the result is the variance of the stochastic
integral: 

(13.28)
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(13.29)

Now, let us look at some examples. The first example treats outflow as a
random function.

Example 13.1 The water level in a lake in India during the summer months of
no rainfall is governed by the following differential equation:

where Q is discharge from the lake through an outlet and K is a parameter. The
water level in the lake is expressed as

where is a deterministic function of time and is a random process with
and with the autocorrelation function represented as

, where a is the correlation time parameter
and is the coefficient of variation of K. Determine the mean, the autocor-
relation function, and the covariance function of discharge.

Solution The differential equation is expressed as

Taking the expectation gives 

Assuming the stochastic process mean-square continuity, we can extend
Eq. 13.11 and Eq. 13.12 to the derivative of the stochastic process as
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We then have

Thus, we get 

The autocorrelation function of discharge can be expressed as

The variance is obtained by inserting , which yields

The case of random initial condition is exemplified next. 

Example 13.2 A linear differential equation

,

is frequently used for stream base-flow recession. Here S is the storage in a water-
shed at time t, Q is discharge, and K is the residence time. The initial condition is
the following: At t = 0, Q(0) = Q0. It is assumed that Q0 is a random variable with
mean and variance . Determine the solution of the differential equation
and the mean μ and the variance, covariance, and autocorrelation function of dis-
charge Q.
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Solution The differential equation can be recast as

Its solution is 

Here is a random variable. Therefore Q(t) is a stochastic process compris-
ing a family of exponential recessions with random initial value .

The mean of Q(t) is

The autocorrelation function of Q(t) is obtained as 

The covariance function of Q(t) is given as

The variance of Q(t) is obtained by setting , which gives

The correlation coefficient of Q(t) is

Taking K as 24 hours, mean as 10 m3/s2, and variance as 68 m3/s2, we
can plot E[Q(t)] and the variance, covariance, and autocorrelation function of
Q(t). The results are presented in Fig. 13-1.

Now consider the case where the input is random.

Example 13.3 A surface runoff hydrograph from an area represented by a linear
reservoir can be described mathematically as
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where P(t) is rainfall intensity, Q is unit surface runoff hydrograph, A is a reser-
voir coefficient, and t is time. It is assumed that A is a random variable
uniformly distributed as

with = lower limit of A and = upper limit, and that P(t) is a stochastic
process expressed as . Determine the mean, variance, covari-
ance, autocorrelation function, and the coefficient of correlation of Q. This prob-
lem is discussed by Lin and Wang (1996).

Solution The solution of the differential equation is 

The stochastic process Q(t) now has an explicit solution. Its mean is expressed as

Figure 13-1 The expectation, variance, covariance and autocorrelation functions of Q(t).
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Letting t′ = t1 + t2, we get

The covariance is obtained as 

The variance is obtained by setting t1 = t2 as

The correlation of Q is
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Taking the lower and upper limits of A as 0.10 and 0.5 hour –1, respectively,
we can plot the mean, variance, covariance function, and autocorrelation
function of Q(t). The results are given in .com.

The next two examples deal with the cases where a parameter in the IUH is a
random variable.

Example 13.4 A watershed is represented by a cascade of n equal reservoirs,
each with reservoir coefficient k considered as a random variable. This represen-
tation is referred to as the Nash cascade and is popularly used for modeling
surface runoff. The IUH of this cascade is

Because k is a random variable, is the stochastic IUH of the n-reservoir
cascade. Determine the mean, variance, and the first three moments of (or
IUH). Assume that k has a normal distribution with mean and variance .
This watershed problem was discussed by Lin and Wang (1996). Take the mean
of k as 2.14, as 0.25, and n = 3. Plot the computed functions of .

Solution The mth moment of can be expressed as

Figure 13-2 The expectation, variance, covariance and autocorrelation functions of Q(t).
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Here 

Then

For m = 1,

where is the nth moment of the normally distributed random variable
whose mean is ( ) and variance is (i.e., N( )). The first
three moments of this variable are

, n = 1

, n = 2

, n = 3

The variance of can be obtained as 

where denotes the moments of order 2n of the random variable ~
. The moments and are

, n = 1

, n = 2

, n = 3

The computed mean and standard deviation of function hn(t) are given in
Fig. 13-3.
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Example 13.5 In Example 13.4, k was assumed normally distributed. Now,
assume that k is gamma distributed:

Determine the mean and variance of the IUH in Example 13.4. Plot the func-
tion and the mean and standard deviations of function hn(t).

Solution Following the procedure used in Example 13.4, we find the mean of
from

where is the nth moment of the random variable distributed as
and can be expressed as

The variance of is

Figure 13-3 Mean and standard deviation of function hn(t).
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where is the moment of order 2n of the gamma-distributed random
variable :

Taking α = 0.25, λ = 2.1, and n = 3, we can plot the mean and standard devia-
tion of the IUH (see Fig. 13-4). It is worth noting that not all gamma-distributed
random coefficients can be studied by this method, because the variance calcu-
lated in this manner might be smaller than zero; thus only a narrow range of
parameters α and λ may be applicable. 

The next two examples deal with reservoirs. Example 13.6 focuses on a cas-
cade of linear reservoirs with a random parameter. Example 13.7 relates to the
topic of a lumped linear reservoir. 

Example 13.6 In Example 13.4, the Nash cascade of equal linear reservoirs, each
with parameter k, can be recast as

, I = 1, 2,…, n

where n is the number of reservoirs,  is the outflow
from the ith reservoir, and t is time. If the cascade is subject to a unit impulse of
input upstream (i.e., at the first reservoir), then the cascade response from this
input will be the IUH, denoted as . Assuming n as 2 and k to be repre-
sented as , where k = mean value of k and = zero-mean Gaussian
random variable, determine the mean and variance of the IUH and plot these
functions. This situation was addressed by Sarino and Serrano (1990). Take k =10
hours and =5 hours. Plot the functions of the IUH. 

Figure 13-4 Mean and standard deviation of function hn(t).
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Solution Consider the IUH (or outflow) of the first reservoir expressed as

Replacing k by , one obtains

or

or

,

To determine the IUH, consider the right side as . Therefore, 

The unit impulse response of this equation is , if is represented by
a unit impulse or delta function. Therefore, the IUH of the first reservoir is
obtained by convoluting the IUH with as

Its solution is

Note that h1 whose selection is sought appears on the right side as well.
Sarino and Serrano (1990) approximated h1 on the right side as a series:

Thus, h1(t) can be written as
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Now we solve the second term on the right side term by term. The first term
is taken as the previous term, which then is obtained from h1(t):

The second term now becomes

Now the third term becomes

and the fourth term becomes

Summing h*1, , , and , we obtain the IUH of the first reservoir:

Now we consider the outflow from the second reservoir, which will be the
IUH of the two reservoirs in series. The input to the second reservoir is the out-
flow from the first reservoir, which is given by h1(t) as already calculated. Fol-
lowing the previous procedure and avoiding algebraic details, we find h2(t) to be

The mean of h2(t) is derived as
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Terms within integrals are moments of first, second, and third orders of
about the origin. The first-order moment is zero. Neglecting the third-order

moments, one obtains

Similarly, the variance of the IUH is obtained as

Avoiding algebraic details, one gets 

The mean and covariance function are plotted in Fig. 13-5.

Example 13.7 Consider a phreatic aquifer, as shown in Fig. 13-6, represented by
a lumped parameter linear reservoir as

with its water balance given as

Figure 13-5 Mean and covariance function of h2(t).
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where q is the outflow per unit area, s is the average storage coefficient or specific
yield, R is the recharge rate, h is the average thickness of the saturated zone, H is
the elevation of water level in an adjacent water body, a is an outflow constant,
and t is time. Treating s and a as constant, and H, h, and R as stationary zero-mean
random processes, determine the spectral solution of the equation. This example
is discussed by Gelhar (1974). Take a = 0.25 and s = 0.2, and plot the ratios

.

Solution Using the stochastic Fourier–Stieltjes integral, we can express the
random functions as

where , , and are, respectively, the Fourier amplitudes of h, H, and
R; and ∞ is the angular frequency. The Fourier amplitudes satisfy the usual
properties as discussed in the preceding chapter. Substituting these into the
differential equation yields

Figure 13-6 Phreatic aquifer with linear reservoirs.
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Recall that, for a random process with independent increments, one gets 

,

where is the complex conjugate of , and is the spectral density
function of X. In this specific problem, X is taken as X = h, H, or R. This leads to
the Fourier transform relation between the autocovariance and spectral
density function of X:

where τ is the lag between X(t) and X(t + τ).
Inserting in the spectral density function expression, one obtains

where is the cross-spectrum, which is related to the cross-correlation
function as
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The real part is the cospectrum and the imaginary part is
the quadspectrum. The cross-correlation function is expressed as

Therefore, . Hence,

This shows how the spectral density functions of recharge R and input H,
along with their cospectrum, determine the spectral density function of h.

When τ = 0, the mean square fluctuation is

where is as already specified.
Likewise, the input–output cross-spectra can be obtained as follows:

One can draw inferences in the response of the linear reservoir using these
spectra. For example, if H = 0, then

The term is the square of the modulus of the frequency
response. Here . These are also referred to as transfer func-
tions, for they provide amplitude attenuation between input and output func-
tion in the frequency domain. That is, high-frequency variations in recharge R
will be attenuated in the output h.

If H is constant, then the spectral representation of the linear reservoir is

The ratio Shh(ω)/SRR(ω) is plotted in Fig. 13-7. 
The next example considers the case where the input is random.
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Example 13.8 Consider a drainage system as shown in Fig. 13-8, where the drain
spacing is 2L and the maximum water table height above the drain is M(t). One-
dimensional flow to parallel drains can be described by the Dupuit
approximation as

where the variables are defined in the preceding example. This drainage problem
has been discussed by Duffy et al. (1984). The Darcy equation can be written as

where q is the aquifer outflow per unit area. Determine the spectral solution of
h(t). It is assumed that h(t) and R(t) are stochastic processes. 

Solution To reduce these processes to zero-mean processes, let

, , 

Substituting into the differential equation gives

where the bar denotes the mean value. This yields

Figure 13-7 Plot of spectral ratio of Shh(ω)/SRR(ω).
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This equation has two parts: a mean part and a fluctuating part. The mean
part is

, , ; , 

which has the solution

This describes the steady-state water table distribution between drains.
 The stochastic partial differential equation becomes 

, , , , 

In terms of the Fourier amplitudes, this equation reduces to

, ; , 

Using the properties of the Fourier amplitudes gives the spectral solution: 

Figure 13-8 Description of drainage system.
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where 

= recharge spectrum, and = water table spectrum. The asterisk
means the complex conjugate.

Perturbation can also be applied to the Darcy equation for drain-flow spec-
tral response. Applying the Stieltjes integral to Darcy’s equation, one has

Following the same procedure, one obtains

where 

Using L = 200 m, T = 200 m2/day, s = 0.25, R = 25 cm, and h0 = 20 m, we plot
the spectral ratios in Fig. 13-9.

Example 13.9 Consider an unconfined aquifer extending infinitely in the horizon-
tal plane. The aquifer receives recharge R from rainfall over a circular area with
radius a as shown in Fig. 13-10. The recharge relation is expressed simply as 

where α is the rainfall recharge coefficient, R is the amount of groundwater
recharge, and P is the amount of rainfall. The governing equation in radial coordi-
nates for groundwater flow is obtained from the Dupuit–Forchheimer theory as

,

,

where C is the storage coefficient, T is the transmissivity, H1 and H2 are the hydraulic
heads at locations 1 and 2, R is the groundwater recharge, r is the radial distance from
the center of recharge, and t is time. The initial and boundary conditions are
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,

, = constant head

Figure 13-9 Plot of spectral ratio of s2ω2Shh(ω)/SRR(ω)

Figure 13-10 Unconfined aquifer, with H as hydraulic head.
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Assuming recharge as a stationary random process, determine the spectral
density functions of recharge and the water table or hydraulic head.

Solution To derive the spectral density functions, let the hydraulic head and
recharge be represented as the sum of mean and perturbation: 

,

where H is the mean of H, h is the perturbation of H around its mean, R is the
mean of R, and q is the perturbation of R around its mean. The perturbations are
such that E[h] = 0 and E[q] = 0. Both h and q are therefore zero-mean stationary
stochastic processes. Inserting these representations in the governing equation,
one obtains

Removing the average terms and neglecting the products of perturbation
quantities, one gets

,

,

In a similar manner, the initial and boundary conditions reduce to

, , 

,

For spectral representation of h and q, one can write the Fourier–Stieltjes
integrals as
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q(t) = 

where ∞ represents the angular frequency, is the Fourier amplitude corre-
sponding to h, and is the Fourier amplitude corresponding to q. Both satisfy
the following properties:

, , 

, , 

where is the complex conjugate of , is the complex conjugate of ,
is the spectral density function of h, and is the spectral density

function of q.
 Introducing the Fourier–Stieltjes integrals into the governing equations and

boundary conditions gives

which becomes

Similarly, the second equation is simplified as
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,

These two equations can now be solved. Let

Inserting this in the first equation, one obtains

The solution of this equation (Carslaw and Jaeger 1959) is

where is the first-kind modified Bessel function of zeroth order and K0 is the
second-kind modified Bessel function of zeroth order. Then,

Likewise, the solution of the second equation is

where 

where and are the first-kind modified Bessel functions of zeroth and first
order, respectively, and K0 and K1 are the second-kind modified Bessel functions
of zeroth and first orders, respectively.
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The spectral density functions now follow:

,

,

where is the spectral density function of , is the spectral density func-
tion of , and is the spectral density function of q.

The spectral relation between rainfall and recharge is

Using this relation, one can derive the spectral relation between rainfall and
hydraulic head:

,

,

Plots of and as functions of ∞ (in cycles/minute) are given
in Fig. 13-11 for the case where a = 50 m, K = 0.004 m/minute, C = 0.0015, aqui-
fer thickness = 150 m, and α = 0.5. Figure 13-11(a) shows for r = 1, 20,
and 50 m and Fig. 13-11(b) shows for r = 50, 100, and 150 m.

Example 13.10 Consider one-dimensional flow in a phreatic aquifer described as

, , , as

where h is the hydraulic head (or piezometric height), t is time, x is the space
coordinate, and

in which k is the hydraulic conductivity, m is porosity, and H is the aquifer thick-
ness. The IUH or impulse response function (IRF) for for the partial
differential equation is given as (Venetis 1970; Singh 1989):
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Determine the autocovariance function of h assuming it to be a zero-mean random
process. Also assume the input to be independent and its covariance defined
by the Dirac delta function  as .

Solution Recall that 

where u(x, t) is the IUH and h(0, t) is the input at x = 0. The IUH is due to
.

The autocovariance function of h(x, t), Ch(τ), is expressed as

The correlation function of h(x, t) is defined as 

Figure 13-11 Spectral response of Sp/Sh1. (a: r a; b: r a).
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Integration of ρh over τ > 0 yields the time scale T, which measures the persis-
tence or memory of the water table or hydraulic head. Substituting the IUH into
the expression for , one gets

For τ = 0, is 

The correlation function can be described as

Its integration yields the correlation time:

Take x = 1,000 m, m = 0.35, H = 50 m, and k = 5 × 10-4 m/s. The correlation
function of h is plotted in Fig. 13-12. 

Figure 13-12 Correlation function of h.
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Example 13.11 A linearized form of the Saint-Venant equation when applied to
flow in a river can be expressed, after neglecting inertia terms, as

where is the mean river flow, q is the fluctuation of the flow, is the mean
flow depth, is the mean cross-sectional area, C is Chezy’s roughness coeffi-
cient, x is the distance along the channel, and t is time. The IUH of this equation
is (Dooge 1973; Singh 1989):

For many river reaches the IUH can be expressed as a gamma function:

where n is the number of subreaches arranged in series to represent the reach, k
is the travel time of each subreach, and is the IUH. Determine the
covariance function of flow and its time scale.

Solution In the equation

we expand the term using the binomial series. This yields

For τ = 0,

The correlation function, thus, becomes
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Integration over τ > 0 leads to the time scale of the flow process:

The instantaneous hydrographs are plotted in Fig. 13-13 for a river reach of
length = 20 km; Q = 500 m3/s; n = 2, 3, 4, and 5; and k = 0.2, 0.3, and 0.5 for time
in days. 

Example 13.12 Consider flood routing in a channel reach using the Muskingum
method, expressed as

where V is the storage in the channel at time t, I is rate of flow to the channel, Q
is the outflow from the channel, x is a weighting factor, and K is the average
travel time of the reach or average residence time. 

Combining the two equations, one gets

Assuming I and Q as zero-mean random processes, and treating x and K as
constants, determine the spectral solution of Q as well as V.

Figure 13-13 Instantaneous hydrograph with different n and k.
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Solution By using the Fourier–Stieltjes integral, the Muskingum differential
equation can be written as

Then we have

This yields

or

This shows the spectral density function of outflow from the channel reach
as a function of the spectral density function of inflow to the reach. Usually
x < 0.5; therefore, high-frequency variations in the inflow hydrograph will be
attenuated in the outflow. 

For the Muskingum storage–discharge relation, one obtains

where is the inflow–outflow spectrum or cross-spectrum of I and Q. This
expresses the spectral density function of storage in the channel in terms of the
spectral density function of inflow and the cross-spectrum of I and Q. One can
draw inferences on the Muskingum hypothesis. For example, the contribution to
the spectrum of storage is the highest by the channel outflow, the second highest
by the combined inflow and outflow, and the lowest by the channel inflow. A
plot of for K = 24 hours and x = 0.10, 0.25, 0.4 is given in Fig. 13-14.

Example 13.13 Lake or reservoir remediation requires an evaluation of the resi-
dence time. The residence time provides an estimate of the time required to
clean the reservoir, the time for which aquatic organisms will be exposed to con-
taminants, the effects of incidental releases of pollutants on ecosystems, the time
to simulate and control lake water quality, and so on. A simple differential equa-
tion governing the time variation of chemical concentration C(t) in a reservoir is
expressed as 
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where q is the discharge leaving the reservoir, V is the volume of the reservoir, C0
is the initial concentration, and t is time. Assuming that q is a stochastic process,
determine the expected value of C and the residence time. Compare the resi-
dence time derived with the residence time assuming q to be a constant or a
mean value. For simplicity, assume C to be the excess concentration above the
background level. This problem is discussed by Maran (2002).

Solution When q is constant, the solution of the differential equation is 

where k = q/V is the rate constant for advection. 
When q is considered as a stochastic process, the residence time Tr is then

defined as 

Thus Tr is the residence time from advection. In addition, Tr is a stochastic
process and so is k. Since q is not constant in time, the concentration usually does
not exhibit a simple exponential decay. If q(t) were known explicitly then the dif-
ferential equation could be solved explicitly and Tr can be derived. However, q(t)
is not known. Therefore, the equation for time variation of C is

Figure 13-14 Spectral response of SQQ/SII.
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where k(t) is a random function. Assume k(t) to be stationary. That is, its
expected value and all successive moments are independent of time:

where , , , and are, respectively, the mean, variance, autocorrelation func-
tion, and PDF of k; E is expectation; and , , , and are, respectively, the
mean, variance, autocorrelation function, and the PDF of q.

Treating C0 as a constant, we now determine the expectation of C(t) from the
statistical characterization of q using the given differential equation. A general
solution is not tractable so an approximate solution is derived. To that end, a dis-
charge autocorrelation time is defined. This defines the time lag such that
the autocorrelation is zero or negligible for . Two cases can be considered:
(1) is small and (2) is large. The first case is considered here. 

The random function k(t) can be expressed as a sum of two components:

where is a dimensionless random function having zero mean and unit vari-
ance and autocorrelation equal to or . Here signifies the magnitude of
the fluctuations. The differential equation can now be written as

To solve this equation, we consider a change of variable:

The differential equation in y(t) becomes
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The expected value of y(t) can be determined by using the cumulant expan-
sion presented by Kubo (1962). For any random variable X, cumulants are
defined as

where is the nth term in the cumulant expansion of . The double
angle ( ) notation implies cumulant. Cumulants and moments are related
(Singh 1988). For the first four cumulants, 

 Note that, for a random variable with zero mean, the first three cumulants
are equal to the first three moments. Furthermore if one of the
random variables, , is independent of the others. For example,

vanishes if .
Making use of the cumulant relations, one can express the expected value of

y(t) as 

The nth term in the summations yields a contribution of order ,
where is an expansion parameter. To get an idea of the approximation, the
zero-order approximation is 1, the first-order term is 0 because the expected
value of k1 vanishes, and the second-order term is of the order .
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 Using the second-order approximation only, one obtains

where . This is the solution of the following differential equation:

or

This solution presents the variability of the average concentration, provided
. If , and the decay rate of the average concentration

is decreased by a quantity proportional to the variance of fluctuations and to
their autocorrelation time. This differential equation is valid when domi-
nates or when even if is not smaller than one.

Neglecting terms of higher order than , we can write

Its solution is

The effect of discharge fluctuation is one of normalization of the mean dis-
charge with an additional term proportional to the variance and the autocorrela-
tion time of the discharge series. In this case, the effective rate constant of
advection is given as , which is reduced by the amount .

 Now the residence time is computed. For the autocorrelation time of the dis-
charge time series being much smaller than the residence time in the zero-order
approximation, the residence time is obtained as

where is the residence time obtained from the mean discharge (zero-order
approximation, equal to ), and terms of second or higher order in

have been neglected. One can write
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This specifies the increase in the residence time owing to discharge fluctuations.
 Now the case of large autocorrelation time is considered. In this case k is a

random variable, not a random function. For initial concentration C0 and rate
constant k, let the solution of the concentration equation be denoted as

.Then the PDF of the concentration at time t, , can be computed from
the PDF of k, , as

where is the Dirac delta function. The probability that the concentration at
time t is between C and C + dC is equal to . Using the solution of C,
one obtains

Using the change of variable gives

Now the expected value of concentration is

and with change of variable from C to q, one obtains 

which is the Laplace transform of the discharge PDF.
Similarly, the variance of C(t) is 

The asymptotic behavior of the mean concentration, that is, as (t small com-
pared with ), can be obtained by expanding the exponential to the first order:

which is the same as the asymptotic behavior of the deterministic equation.

T T

T E q V
r r

r

q ac
( ) ( )

( ) [ ]

1 0

0

2
−

=
σ τ

f t k( , ) pC
pK

P C t C f t k p k dkC k( , ) ( , ) ( )= −⎡⎣ ⎤⎦
∞

∫δ
0

δ
p C t dCC ( , )

p C k V p kV C C e dkC q
kt( , ) ( ) ( )= − −

∞

∫ δ 0
0

s C kt= −0 exp( )

p C t
V
t

p
V
t

C
s

C s
ds
s

V
Ct

p
V
t

C
CC q q( , ) ( ln ) ( ) ( ln )= − =

∞

∫ 0

0

0δ

μC Ct E C t Cp C t dC( ) [ ( )] ( , )= =
∞

∫
0

μC
qt V

qt C e p q dq( ) ( )/= −
∞

∫0
0

σ μ μ μC C C Ct t t2 22 0( ) ( ) ( ) ( )= − [ ]
t → 0

Tr
( )0

μC
q

r

t
C

qt
V

p q dq
t

T

( )
( ) ( ) ( )

0
0

0

1 1= − = −
∞

∫



Stochastic Differential Equations 555

 However, if , only a small region near the origin is significant. Therefore,
can be expanded around zero as

This shows that the expected value of concentration decreases with a power
of 1/t.

The residence time in this case can be computed as

The probability that the residence time is between T and T + dT can be
obtained from the discharge PDF as

Using this expression one can calculate the mean of T, as Tr above.
Similarly, the variance of T is

,

Example 13.14 Consider a lake with a residence time based on the mean dis-
charge as 50 hours. Assume the lake outflow is characterized by a log-normal
probability distribution with a coefficient of variation of 0.5 and a long autocorre-
lation time. The initial concentration is C0 = 1.5 mg/L. Compute the PDFs of the
residence time and concentration and the expected value of the residence time.

Solution The PDF of k ( = q/V) is

Parameters and are related to CV and by

,

where is the geometric mean of k, which is the geometric mean dis-
charge divided by volume. The plot of is shown in Fig. 13-15.
The PDF of the residence time is computed by using the relation between
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geometric mean of T equals the ratio of the reservoir volume and the geometric
mean of discharge. The PDF of T is shown in Fig. 13-16.

The expected value of residence time is computed as 

hours

The geometric mean of T is

hours

Now the PDF of concentration can be written as

where .
Figure 13-17 plots the PDFs of C at various times. The expected value of C is

plotted in Fig. 13-18. 

Figure 13-15 Probability density function of k.
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Figure 13-16 Probability density function of residence time (T).

Figure 13-17 Probability density functions for concentration at various times.
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13.5 Questions

13.1 A linear differential equation

,

is frequently used for stream base-flow recession. Here S is the storage in
a watershed at time t, Q is discharge, and K is the residence time. The ini-
tial condition is the following: At t = 0, . It is assumed that K is
a random variable with mean and variance . Determine the solu-
tion of the differential equation and the mean μ and the variance, covari-
ance, autocorrelation function of discharge Q.

13.2 Consider the differential equation in Question 13.1. Assume that both K
and Q0 are normally distributed random variables. Determine the solu-
tion of the differential equation and the mean μ and the variance, covari-
ance, autocorrelation function of discharge Q.

13.3 The surface runoff hydrograph from an area represented by a linear reservoir
can be described mathematically as

,

Figure 13-18 The expected value of concentration versus time.
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where P(t) is rainfall intensity, Q is unit surface runoff hydrograph, K is a res-
ervoir coefficient, and t is time. It is assumed that P is a uniformly distributed
random variable. Determine the mean, variance, covariance, autocorrelation
function, and the coefficient of correlation of Q.

13.4 A watershed is represented by a cascade of n equal reservoirs each with
reservoir coefficient k considered as a random variable. This representa-
tion is referred to as the Nash cascade and is popularly used for model-
ing surface runoff. The IUH of this cascade is

where is the stochastic instantaneous unit hydrograph of the n-reservoir
cascade and k is an exponentially distributed random variable. Deter-
mine the mean, the variance, and the first three moments of (or IUH). 

13.5 For the IUH in Question 13.4, if k is assumed to have a uniform distribu-
tion then determine the mean and variance of the IUH. 

13.6 Consider the Muskingum method of flow routing in a river reach. The
governing equation can be expressed as

where I is inflow to the reach, Q is the outflow from the reach, x is a
weighting factor, and K is the storage delay time. Considering x and K as
constant and I as a stationary zero-mean random process, determine the
spectral solution of the equation. 

13.7 The rate of infiltration, f(t), at time t in a soil column can be described by
(1) the continuity equation

where S(t) is potential water storage space available in the soil column at
time t and fs is the seepage rate, assumed to be constant, and (2) a rela-
tion between S(t) and f(t). One such simple relation is 

where a is a parameter and S0 is the initial value of S. Assuming a to be a
normally distributed random variable, derive the spectral solution of the
equation. Assume that S and f are stochastic processes.
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13.8 For the situation in Question 13.7, make the additional assumption that fs
is also a random variable. Derive the spectral solution of the infiltration
equation.

13.9 Solve Question 13.7 if a is uniformally distributed.
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Risk and Reliability 
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Chapter 14

Reliability Analysis and 
Estimation

Engineering projects are always subject to a possibility of failure in achieving
their intended objectives. Failure of a system can be defined as an event in which
the system fails to function with respect to its desired objectives. There are two
types of failure in engineering projects: (1) performance failure and (2) structural
failure. Performance failure is said to take place when the system is unable to
perform as per the expectation and hence undesirable consequences occur,
although the structure of the system has not been altered. For example, flood
control structures may not be able to protect an area from extreme floods, water
supply systems may not deliver enough water, a canal may not convey enough
water for irrigation of agricultural crops, or storm sewer systems may fail to con-
vey excessive urban runoff. Structural failure involves damage or change of the
structure as the result of the system load exceeding the system capacity (resis-
tance) and hence hindering the ability of the structure to serve its intended
objectives. Examples include the washout of a dam because of overtopping, the
breach of a levee because of erosion, buckling of a beam, breaking of a bridge, or
failure of a pump. There are various definitions of risk for different purposes,
including the probability of failure, the reciprocal of the expected length of time
before failure, the expected cost of failure, and the actual cost of failure.
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Reliability, the complement of risk, is defined as the probability of nonfailure.
Two types of application of reliability analysis to engineering problems are:

1. Evaluation or review of the reliability or safety of an existing or
predetermined system

2. Design of a new system on a reliability basis

Evaluating reliability is one of the most important problems in a multitude of
civil engineering projects, particularly those having catastrophic consequences in
the event of structural failure, such as failure of a dam. Reliability engineering
means considering tolerances in design parameters, uncertainties in environ-
ment, uncertainties in application (e.g., usage scenarios), and variations in manu-
facturing. 

The design and analysis of any civil engineering project are subjected to
uncertainty because of inherent uncertainty in natural systems; a lack of under-
standing of the causes and effects as well as interactions in various physical,
chemical, and biological processes occurring in natural systems; and insufficient
data. As a result of these uncertainties, the performance of a project is uncertain.
A reliable assessment of the performance of any water resources project requires
an assessment of the validity of predicted loads (such as discharges and pollut-
ant loads) and capacities (e.g., ability to perform under a given load without any
harm). Typically, the loads are assessed by using models having a number of
parameters that can be determined with varying degrees of certainty. These
parameters are best represented as random variables. Consequently, the model
response, being a function of random variables, is best represented as a random
variable. For reliable design and analysis of a project, it becomes necessary to
address the uncertain nature of model outputs. Reliability, risk, and uncertainty
analyses are therefore becoming increasingly important in modeling and design-
ing water resources infrastructure and decision support systems. In some cases,
performing an uncertainty analysis is mandatory, particularly when critical deci-
sions involve potentially high levels of risk. Quantification of the underlying
reliability is central to each of these systems.

14.1 Approaches to Reliability Evaluation

There are two approaches considered for safety evaluation of engineering sys-
tems. In the traditional approach one uses conservative assumptions in the
underlying process by defining a worst-case scenario, whereas the probabilistic
approach involves a probabilistic assessment of the performance of the underly-
ing system in all possible conditions. Before discussing these approaches any
further we need to define the terms most frequently used in the literature on reli-
ability analysis in civil engineering. These terms include resistance, strength,
capacity, load, input, and demand. 
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14.1.1 Traditional Approach

Traditionally, evaluations of safety and adequacy of engineering systems were
expressed in terms of safety margins and safety factors to compensate for uncer-
tainties in loading and material properties and inaccuracies in geometry and
theory. In this approach point design evaluations are performed by assuming
precise and fixed values of design parameters in a specific environment, and
then the steady-state and/or transient performance of that design is predicted.
The use of precisely defined single values in analysis—known as the determinis-
tic approach or point design evaluation—represents not what an engineer needs
to accomplish, but rather what is convenient to numerically solve, assuming
inputs that are known precisely. Specifically, point design evaluation is merely a
subprocess of what an engineer must do to produce a useful and efficient design.
Sizing, selecting, and locating components and coping with uncertainties and
variations comprise the real tasks. Point design simulations by themselves can-
not produce effective designs; they can only verify deterministic instances of
them. The safety factor in this approach accounts for the condition of the future,
the engineer's judgment, and the degree of conservatism incorporated into the
parameter values.

In the traditional approach of safety analysis, the worst-case scenarios are
considered to determine the load and capacity of a system and tolerances
stacked up in terms of safety factors and margins, as shown in Fig. 14-1. In most
cases, such safety margins and factors are seldom based on any mathematical
rigor or true knowledge of the underlying risk and results in an overdesign. This
leads to designs that are heavier and costlier than they need to be, and in some
cases such designs do not even result in greater safety or reliability.

As an example of the traditional approach, let us consider the total maxi-
mum daily load (TMDL) process. TMDL is a written plan established through
analysis to ensure that a water body will attain and maintain water quality stan-
dards including consideration of existing pollutant loads and reasonably fore-
seeable increases in pollutant loads. The TMDL process is an essential element of
the water quality–based approach to watershed management. A water body’s
allowable pollutant load contains waste load allocations for point sources, load
allocations for nonpoint sources, a margin of safety sufficient to account for
uncertainty and lack of knowledge, and an allowance for future growth. The
allowable pollutant load must ensure that the water body will attain and main-
tain water quality standards regardless of seasonal variations or design flow
conditions and in consideration of reasonably foreseeable increases in pollutant
loads. We can illustrate this by showing how the allowable pollutant load is the
total of these components: 

TMDL = WLA + LA + MOS (14.1)

where TMDL = allowable pollutant load governed by the assimilative pollutant
capacity of a water body, WLA = waste load allocation for point sources,
LA = load allocation for nonpoint sources, and MOS = margin of safety, which is
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established by leaving a portion of the assimilative capacity unallocated or by
use of conservative analytical assumptions to account for the uncertainties in
establishing the TMDL (e.g., derivation of numerical targets, modeling assump-
tions, or effectiveness of proposed management actions, etc.). Rewriting Eq. 14.1,
we can express the margin of safety as

MOS = TMDL – (WLA + LA) (14.2a)

and the corresponding factor of safety (FOS) or safety factor can be expressed as

FOS = capacity/total load (14.2b)

In Eq. 14.2a, (WLA + LA) is the total pollutant load (L).

Example 14.1 For a given watershed the point-source load WLA is 65 lb/day
and the non-point-source load is 1,258 lb/day. The TMDL capacity at the outlet
of this watershed is determined to be 1,678 lb/day. Determine the margin of
safety and factor of safety. 

Solution By using Eqs. 14.2a and 14.2b the margin of safety is calculated as

MOS = capacity – load =1,678 – (65 +1,258) = 355 lb/day

The factor of safety is given as

FOS = capacity/total load = 1,678/(65 +1,258) = 1.27

As an alternative to stacking up worst-case margins and uncertainties, the
engineer could combine these factors statistically to yield information about the
degree of confidence (“reliability”) in a particular point design. In other words,
the engineer could generate not just a single performance predictions but also a
distribution of performance predictions with associated probabilities of occur-
rence, as discussed in the following section.

Figure 14-1 Traditional approach of safety analysis considered in engineering system.
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14.1.2 Probabilistic Approach

The probabilistic design approach is a logical extension of the traditional safety
method. Probabilistic calculation techniques are more laborious and complicated
than deterministic ones, but they correspond better with the aim of producing
sophisticated designs and yield insight into actual risks. The “safety coefficient”
used in deterministic practice actually says little about safety and nothing about
reliability. The same value of safety factor may mean something completely dif-
ferent, depending on the mechanism. 

In a probabilistic approach both the system capacity and loading can take on
a wide range of values by explicitly incorporating uncertainty in system param-
eters. The parameter uncertainty can be quantified through statistical analysis
(as described in Chapters 3 and 4) of existing data or judgmentally assigned.
Even if judgmentally assigned, the probabilistic results will be more meaningful
than a deterministic analysis because the engineer provides a measure of the
uncertainty of his or her judgment in each parameter. This can be interpreted
that the load and the capacity have fixed but unknown values. A sufficiently low
probability of failure is obtained if the safety margin is at least not negative for a
physically possible but unlikely combination of the capacity and the load. By
using this approach, the probability that a design will achieve its required per-
formance (i.e., the reliability) can be calculated, providing an assessment of risk
or confidence in the design and quantifying the amount of overdesign or under-
design. A robust design means factoring reliability into the development of the
design itself: designing for a target reliability and thereby avoiding either costly
overdesign or dangerous underdesign in the first place. Such an approach elimi-
nates a deterministic stackup of tolerances, worst-case scenarios, safety factors,
and margins that have been the traditional approaches for treating uncertainties.
In other words, in the probabilistic reliability analysis, an engineer could gener-
ate not just single performance predictions but also a distribution of perfor-
mance predictions with associated probabilities of occurrence, as shown
graphically in Fig. 14-2.

Probabilistic reliability analysis is a technique for identifying, characterizing,
quantifying, and evaluating the probability of a pre-identified hazard. It is
widely used by private and government agencies to support regulatory and
resource allocation decisions. In most hydrologic, hydraulic, and environmental
engineering projects, empirically developed or theoretically derived mathemati-
cal models are used to evaluate a system’s performance. These models involve
several uncertain parameters that are difficult to accurately quantify. An accu-
rate reliability assessment of such models would help the designer build more
reliable systems and aid the operator in making better maintenance and schedul-
ing decisions.

The reliability of a system can be most realistically measured in terms of
probability. The failure of a system can be considered as an event in which the
demand, or loading L, on the system exceeds the capacity, or resistance R, of the
system so that the system fails to perform satisfactorily for its intended use. The
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objective of reliability analysis is to ensure that the probability of the event
(C < L) throughout the specified useful life is acceptably small. The risk Pf,
defined as the probability of failure, can be expressed as (Ang and Tang 1984,
Yen et al. 1986)

(14.3)

where P denotes the probability function. Equation 14.3 can be rewritten in
terms of the performance function Z as

(14.4)

where Z is defined alternatively as

(14.5)

(14.6)

(14.7)

The reliability ℜ of the system can be written as 

(14.8)

Figure 14-2 Probabilistic approach of safety analysis of engineering systems.
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In general, from Eq. 14.3 risk can be expressed as 

(14.9)

where fC,L (c,l) is the joint probability density function of C and L; d and l are the
lower and upper bounds of C; and a and b are the lower and upper bounds of L,
respectively. The capacity C and load L are random variables that, in general, are
the resultant of many uncertain variables of the system under consideration,
such as weather parameters; location of the water table; temperature; flow quan-
tities, such as runoff, peak discharge, and volume; contaminant concentration in
soil, water, and air; minimum dissolved oxygen in a stream; material characteris-
tics; and process-specific variables of an engineering system under consider-
ation, to name only a few. Therefore, a generic performance function Z can be
written as

(14.10)

The corresponding reliability ℜ of the system can be written as 

(14.11)

14.1.3 Traditional Versus Probabilistic Approaches

In many civil engineering systems, component dimensions, environmental fac-
tors, material properties, and external loads are design variables. These variables
may be characterized with statistical modes. The deterministic approach seeks
out and defines a worst case or an extreme value to meet in the design. The prob-
abilistic approach utilizes the statistical characterization and attempts to provide
a desired reliability in the design. The deterministic approach introduces conser-
vatism by specifying a factor of safety to cover unknowns. The probabilistic
approach depends on the statistical characterization of a variable to determine
its magnitude and probability. The amount of data (how well the variable is
defined) influences its extreme values. Application of a factor of safety to cover
unknowns has a history of success. The danger in this approach is that the factor
of safety may be too large, or in some cases too small. Because it has worked in
the past is no guarantee that it will suffice in the future. The whole approach of
worst-case extremes can lead to compounding and inefficiency. To select a factor
of safety solely on the basis of “it worked in the past” should be examined.

14.1.4 Reliability Measures

The reliability index β is a measure of the reliability of an engineering system that
reflects both the mechanics of the problem and the uncertainty in the input
variables. This index was developed in structural engineering to provide a
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measure of comparative reliability without having to calculate an exact value of
the probability of failure. The reliability index is defined in terms of the expected
value and standard deviation of the performance function, and it permits com-
parison of reliability among different structures or modes of performance with-
out having to calculate absolute probability values. Figure 14-3 depicts a
graphical interpretation of the reliability index. The calculation of the reliability
index requires two pieces of information:

1. The performance function Z = 0 must be defined and its expected value
μ(Z) and standard deviation σ (Z) must be evaluated.

If Z is defined by Eq. 14.5 (Z = C – L), the boundary separating safe
(Z > 0) and unsafe regions (Z < 0) is called the limit state (Z = 0). Defini-
tions of these regions are presented in Fig. 14-3.

2. The assumption that the distribution of Z is normally distributed holds
good.

Based on these requirements, the probability of failure Pf is given as

(14.12)

As shown in Fig. 14-3, the probability of failure is the area of the PDF of Z
below 0. Thus, by substituting Z = 0 in Eq. 14.12 and writing μ (Z)/σ (Z) = β,
Eq. 14.12 becomes

(14.13)

Figure 14-3 Interpretation of reliability index.
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The reliability index is a number given by the number of standard deviations
of the performance functions by which the expected condition exceeds the limit
state. In other words, the reliability index is a ratio of the expected value and
standard deviation of Z. The reliability index is also seen to be the reciprocal of
the coefficient of variation of Z [i.e., ].

Further, using Eq. 14.13, we can define the reliability index as

(14.14)

in which Φ–1(Pf) is the inverse of the standard normal probability distribution
function. Typical values of β  lie between 1 and 4, corresponding to probabilities
of failure ranging from on the order of 15% to 0.003%, as shown in Table 14-1.
The relationship between β and Pf is unique. In particular, the probability of fail-
ure decreases with increasing values of β. The choice between using β or Pf as a
measure of design risk is a matter of convenience.

The reliability index concept has gained considerable popularity. However,
reliability index values are not absolute measures of probability. The assessment
of reliability of engineering systems is made entirely by comparing the calcu-
lated reliability index with that found to be adequate on the basis of previous
experience with the engineering systems under consideration. Engineering sys-
tems and performance modes with higher indices are considered more reliable
than those with lower indices. 

Although the probability of failure appears to be more physically meaningful,
it can be cumbersome to use when the value becomes very small, and it carries
the negative connotation of failure. The reliability index is a more convenient
number to report, although it must be appreciated that a change in β cannot be
readily correlated to a change in Pf because their relationship is highly nonlinear.
However, it is useful to note that the probability of failure is approximately
divided by half when β increases by 0.2 for β values lying between 2.8 and 3.6, as
shown in Table 14-1.

To further clarify the concept of limit state, the graphical schematic in Fig. 14-4
depicts the limit state function in the L and C coordinate system. 

Further, defining reduced variables as

and (14.15)

and substituting values of L and C in Eq. 14.5 gives the performance function in
the limit state as 

Z = C – L = 0, i.e., (14.16)

Now, plotting the performance function (Eq. 14.16) in the reduced coordinate
system in Fig. 14-5, we see that the straight line generated by this expression is dis-
played at a distance equal to the reliability index β from the origin. The shortest
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Figure 14-4 Limit state function.

Table 14-1 Relationship between reliability index (β ) and probability of failure (Pf).

Reliability index β 1 1.2 1.4 1.6

Probability of failure
Pf = Φ(–β )

0.159 0.115 0.0808 0.0548

Reliability index β 1.8 2 2.2 2.4

Probability of failure
Pf = Φ(–β )

0.0359 0.0228 0.0139 8.20 × 10–3

Reliability index β 2.6 2.8 3 3.2

Probability of failure
Pf = Φ(–β )

4.66 × 10–3 2.56 × 10–3 1.35 × 10–3 6.87 × 10–4

Reliability index β 3.4 3.6 3.8 4

Probability of failure
Pf = Φ(–β )

3.37 × 10–4 1.59 × 10–4 7.23 × 10–5 3.16 × 10–5
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distance of this line from the origin is equal to the length of the perpendicular
drawn from the origin, which is given as

(14.17)

If the C and L are log-normally distributed, then the performance function
Z = ln(C) – ln(L). The mean of the performance function is 

μZ = μln(C)–μln(L) (14.18)

and the variance is

(14.19)

For statistically independent C and L,

(14.20)

Using the relations

Figure 14-5 Limit state function in reduced coordinate system.
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and

for the log-normal distribution gives the reliability index β = μlnM/σlnM as

(14.21)

Example 14.2 It is well known that the TMDL process is inherently uncertain
and a deterministic approach to determining the factor of safety and margin of
safety may not be justified. Assume that the magnitudes of uncertainty (repre-
sented by the coefficient of variation, CV) associated with TMDL, WLA, and LA
are 0.26, 0.18, and 0.33, respectively. Using the values of Example 14.1 as the
mean values for point and non-point-source loads and the TMDL capacity,
determine the reliability index and the corresponding probability of failure.
Assume TMDL, WLA, and LA are independent and normally distributed.

Solution Equation 14.2a and Eq. 14.2b define the performance function as the
conventional MOS:

Z = TMDL – (WLA + LA)

The mean of Z is calculated as

μZ = μTMDL – (μWLA + μLA) = 1,678 – (65 +1,258) = 355 lb/day

We know that σ = μ × CV and

σ 2
z  = σ 2

TMDL  + (σ 2
WLA  + σ 2

LA )

= (1,678 × 0.26)2 + (65 × 0.18)2 + (1,258 × 0.33)2

= 362,818.35

Thus, the standard deviation of Z is 

σz = 602.34

So the reliability index is then

β = μZ /σz = 355/602 = 0.59

and the probability of failure becomes

Pf = 1 – Φ (β)= 0.28
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Alternatively, one can also use Eq. 14.17 directly as

Therefore, there is a 28% chance that the TMDL will be violated. 
Examples 14.1 and 14.2 give us some idea about the difference between

deterministic and probabilistic approaches.

Example 14.3 In a multipurpose storage reservoir, storage is allocated for vari-
ous purposes. The average volume of space for flood control is about
10 million m3 with a standard deviation of 1.5 million m3. Analysis of historical
data shows that the mean of the volume of the largest flood in a given year is
7.5 million m3 with a standard deviation of 2.4 million m3. Find the probability
of not being able to contain the largest flood.

Solution Assume that the load and resistance are normally distributed. Then
using Eq. 14.13 gives the failure probability as

Thus, there is a 19% risk that the available storage will be inadequate to con-
tain the incoming flood.

Example 14.4 Using the data of Example 14.3, compute the risk of not being able
to contain the flood if the load and resistance follow the log-normal distribution.

Solution We first calculate the coefficient of variation for load and resistance:

CVL = 2.4/7.5 = 0.32

CVR = 1.5/10 = 0.15

Using Eq. 14.21 gives the probability of failure or risk as

= 1 – Φ (0.325/0.367) = 1 – Φ (0.886) ≈ 0.19
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It may be noted from the results that the difference in the failure probability
is negligible when the variables are assumed to follow the log-normal distribu-
tion rather than the normal distribution. 

Example 14.5 A company has been granted a license to discharge waste into a
stream. Under the licensing arrangement, the company must comply with cer-
tain conditions, one of which concerns the concentration of pollutant in the
stream at a monitoring point 100 meters downstream from the outfall. Specifi-
cally, there should be a chance of less than 1% of the pollutant concentration
exceeding 10 mg/L during any one month. The stream has been monitored
daily, since the company began operations, and the data suggest that the
monthly maximum concentration is approximately normally distributed, with a
mean of 6.3 mg/L and a standard deviation of 2.1 mg/L. Does it appear that the
company is complying with the condition of its license?

Solution Let C represent the maximum monthly concentration of the concerned
pollutant. We are given μC = 6.3 mg/L and σC = 2.1 mg/L. Then use the follow-
ing steps:

Step 1: Define the performance function as Z = 10 – C.
Step 2: Determine the mean and standard deviation of Z.
The mean value of Z can be determined by taking expectation of Z,
E[Z] = μZ = 10 – E[C] = 10 – 6.3 = 3.7, and the variance of Z will remain the
same as that of C. Thus, σZ = 2.1 mg/L. 
Step 3: Now, the reliability index is

The probability of failure or violating the maximum pollutant concentration
is given as 

Thus, it appears that the company is not complying with its license conditions.

14.2 Reliability Analysis Methods

Ideally, a probability distribution function should be obtained to do a complete
assessment of reliability analysis of a given system. As shown in Eq. 14.11, this
requires determination of the joint probability distribution function for all the
significant sources of uncertainty affecting the output of the system under con-
sideration. However, the determination of probability distributions for the basic
variables can be quite difficult and involves several assumptions. Further, the
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multivariate combination and integration of the input variable distributions is a
daunting task. In real-life problems, the aggregation of uncertainties in the basic
variables of a model into measures of overall system reliability are done in an
approximate manner. Several methods that have been used in water resources
and environmental engineering have been discussed. 

14.2.1 Direct Integration 

The direct integration method is based on the direct integration of the joint prob-
ability density function of the basic random variables involved in design. For
direct integration, Eq. 14.11 and Eq. 14.9 are integrated over the probability den-
sity function of the random variables. Equation 14.11 can be simplified for some
specified cases, because in practical engineering problems it is difficult to esti-
mate the joint probability distribution function of the performance function. Fur-
ther, one can employ standard integration methods, such as analytical
integration and advanced numerical integration methods. 

Example 14.6 The drinking water demand of a city follows a normal distribu-
tion with a mean of 700 m3 per day and a standard deviation of 125 m3. (a) If the
water distribution network can provide a constant rate of supply of 900 m3 per
day, determine the risk of failure on a typical day. (b) What is the risk if the stan-
dard error of the estimated water distribution network capacity is 100 m3?

Solution

(a) Here demand follows a normal distribution. The risk is the probability of
load exceeding 900. This case is depicted graphically in Fig. 14-6. Mathe-
matically, it can be written as 

where Pr( ) stands for probability.

Using the standard normal variate for evaluating the integral gives

Thus, there is a 5.47% chance that the demand on a day will exceed
the capacity of the system.
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(b) At this stage, the capacity is also a normally distributed variable with a
mean of 900 and standard deviation of 100: 

Note that here D and C are considered as independent of each other.
However, in real life there are situations when a significant correlation
exists between D and C. Figure 14-7 depicts this case. In this case, the risk
of failure is computed by using Eq. 14.9 as 

 = 0.1001

Hence, the risk of failure is about 10% when the capacity is assumed
to follow a normal distribution. This is about twice the value obtained
when the capacity was assumed to be constant. 

The integral here can also be numerically integrated to determine
risk. To that end, it is convenient to write it in the following form:

A small discretization of the dummy variable is necessary to obtain
correct results. The limits of integration are decided based on experience;
a value of (mean ± 6 times the standard deviation) would be adequate in
most cases. 

If D and C are correlated, their joint distribution needs to be found to
evaluate the integral. If both these variables follow a normal distribution,
the joint probability distribution is given by

Figure 14-6 Demand and capacity of a city water distribution network.
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where ρ is the correlation between C and D. This equation can be
obtained numerically to obtain the value of f(c, d) if the mean, standard
deviation, and correlation coefficient are known. 

Example 14.7 Let the statistical parameters of water demand and capacity of the
supply system be the same as in Example 14.6 and assume these are correlated
with ρ = 0.2. Assuming their joint distribution to be normal, determine the prob-
ability P(C ≤ 900, D ≥ 900). Also determine this probability if ρ = 0.5.

Solution To obtain correct results by numerical integration, it is necessary to use
a small increment for the variables. In the present case, a value of 1.0 may be
adopted for both the variables. The results yield

P(C ≤  900, D ≥ 900, ρ = 0.2) = 0.0186

P(C ≤  900, D ≥ 900, ρ = 0.5) = 0.0069

14.2.2 First-Order Approximation Method

The first-order approximation (FOA) method can be used to estimate the
amount of uncertainty, or scatter, of a dependent variable owing to uncertainty
about the independent variables included in a functional relationship. Benjamin
and Cornell (1970) have described the FOA technique in detail. 

To present the general methodology, consider an output random variable Y,
which is a function of n random variables. Mathematically, Y can be expressed as

(14.22)

Figure 14-7 Demand and capacity of example water distribution network.
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where = (X1, X 2, ..., Xn), a vector containing n random variables. In FOA, a Tay-
lor series expansion of the model output is truncated after the first-order term:

(14.23)

where = (X1e, X2e, ..., Xne), a vector representing the expansion points. In FOA
applications to water resources and environmental engineering, the expansion
point is commonly the mean value of the basic variables. Thus, the expected
value and variance of Y are 

(14.24)

(14.25)

where σ Y is the standard deviation of Y and is a vector of
mean values of the input basic variables. If the basic variables are statistically
independent, the expression for var(Y) becomes

(14.26)

To avoid the inconvenience of differentiating the performance function, it is
possible to derive simplified expressions for some commonly used functional
forms, such as multiplicative forms, additive forms, and their combined forms. 

A multiplicative-type model is frequently encountered in hydrologic studies
(e.g., daily streamflow; peak runoff; annual floods; annual, monthly, and daily
rainfall; soil loss; and sediment transport). In hydraulics many equations are of
multiplicative type. Examples are flow over control structures, such as weirs,
spillways, overfalls, and sluices; channel control equations, such as Manning’s
equation; and pipe flow resistance equations such as Hazen–Williams and
Darcy–Weisbach equations. In environmental engineering, many of the equa-
tions for predicting water quality and pollution used in risk assessment are of
multiplicative type. In the multiplicative form the output random variable Y is
expressed as the multiplication of n power functions:

(14.27)

where C0 and ri are constants and the Xis are independent stochastic input ran-
dom variables. For the multiplicative form of Eq. 14.27, the approximate mean of
the model output, , can be written as

(14.28)
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where μXi = mean of Xi. By using Eq. 14.26, the approximate variance of the mul-
tiplicative can be approximated as

(14.29)

where ri is the exponent of ith power function and

= coefficient of variation of Xi

The approximate coefficient of variation of Y, , can be evaluated as

(14.30)

The additive form is obtained when two or more power functions are added.
This form is often encountered in reliability analysis of engineering systems. The
general additive form is written as

(14.31)

The mean of Y is then estimated as

(14.32)

Similarly, the variance of the additive model can be approximated by

(14.33)

So can be evaluated by
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ĈVY

ĈV
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The other functional form is a combination of multiplicative and additive
forms. This form is obtained when two or more multiplicative forms having
common power function(s) are added. The general form can be represented as

(14.35)

For evaluating the mean and variance of combined forms, such as Eq. 14.35,
the mean and variance of the additive part must be determined first by using
Eq. 14.32 and Eq. 14.33. Next, Eqs. 14.28, 14.29, and 14.30 are used to determine
the mean, variance, and CV of Y by treating the combined form as a multiplica-
tive form and assuming the additive part as a multiplicative component with
known mean and variance.

Then the mean and variance of the performance function Z are determined. To
estimate the reliability of the system, ℜ, typically one assumes that Z is normally
distributed. Taking PZ(z) to be a normal distribution with its parameters E[Z] and
σZ determined by FOA, one can determine the risk and reliability of a given sys-
tem using the concept of reliability index β as discussed in the preceding section. 

The great advantage of FOA is its simplicity: It requires knowledge of only the
first two statistical moments of the basic variables and simple sensitivity calcula-
tions about selected central values. FOA is an approximate method that may suf-
fice for many applications, but the method does have several theoretical and
conceptual shortcomings. The main weakness of the FOA method is that it is
assumed that a single linearization of the system performance function at the cen-
tral values of the basic variables is representative of the statistical properties of sys-
tem performance over the complete range of basic input variables. The accuracy of
the estimates is influenced in part by the degree of nonlinearity in the functional
relationship and the importance of higher-order terms, which are truncated in the
Taylor series expansion. In applying FOA in reliability analyses, it is generally
assumed that the performance function is normally distributed, which is seldom
true. Therefore, any attempt to characterize the tails of the actual distribution
based on an assumption of normality is likely to result in an inexact answer.

Example 14.8 Solve Example 14.2 using FOA by defining the performance func-
tion in two ways: (1) as the conventional MOS and (2) as the FOS.

Solution

Case 1: The solution for the conventional MOS method is given in Example 14.2.

Case 2: The conventional factor of safety is defined as FOS = capacity/load;
thus the performance function is
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Using Eq. 14.24 gives the mean of the performance function as

Using Eq. 14.26 gives the variance of the performance function: 

So,
σZ = 0.517

The reliability index is

β = 0.27/0.517 = 0.52

and the probability of failure is

Pf = 1 – Φ(0.52)= 0.30

that is, 30%.
The values of reliability index and failure probability obtained in case 1

and case 2 show that risk estimates are different for the two mechanically
equivalent formulations of the performance function. This indicates that the
probability of failure or the reliability of a system depends upon the type of
formulation of the objective function. This is a serious problem and is gener-
ally known as the lack of invariance.

Example 14.9 In a stream the concentration C of a pollutant is generally given in
the form of a power function as C = aQb, where Q is the streamflow and a and b
are some constants. Let us consider the following performance function: 

Z = Cmax – aQb

where Cmax is the maximum allowable pollutant concentration. If Cmax = 10 mg/L,
a = 2.10 × 10–8, b = 3, μQ = 800 cfs, and CVQ = 0.33, determine the probability of vio-
lating the allowable stream standard.

Solution Substituting values of a, b, and Cmax we can write the performance
function as

Z = Cmax – C =10 – (2.10 × 10–8 )Q3
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First, let us calculate the mean and standard deviation of C using FOA.
Using Eq. 14.24 gives the mean of C:

μ C = (2.10 × 10–8) × (800)3 = 10.75

Using Eq. 14.26 gives the standard deviation of C:

σC = (2.10 × 10–8) × (3) × (800)3–1 × (0.33 × 800) = 10.64

Now,

E[Z]= E[Cmax] – E[C] = 10 – 10.75= –0.75

Further, var(Z) = var(C) because var(Cmax) = 0; thus

σ Z = 10.64

Therefore, the reliability index is

β = μZ/σZ = –0.75/10.64 = –0.071

The probability of failure is then

Pf = 1–Φ(–0.071)= 0.53

that is, 53%.

Example 14.10 In drinking water distribution systems, maintaining a chlorine
residual provides protection against contamination from leaks, regrowth of
microbial contamination, cross connections, and other breakdowns. Most net-
work modeling packages assume that chlorine decay follows first-order kinetics.
The chlorine concentration C (mg/L) at time t is given by the following equation:

where C0 is the initial chlorine concentration (mg/L) and k is the overall decay
constant (L/hour). Assuming mean and coefficient of variation of k to be
0.14 L/hour and 0.33, respectively, determine the reliability that a location hav-
ing a travel time of 20 hours will be having at least 0.2 mg/L of residual chlorine.
Assume C0 = 4 mg/L.

Solution The water is safe when the concentration of free residual chlorine is
greater than or equal to 0.2 mg/L. The performance function Z can be defined as

with

σ k = 0.14 × 0.33 = 0.046

C C kt= −( )0 exp

Z C C C e Ckt= − = −−
min min0

μ μ
Z

tC e Ck= − = × − × − =−
0 4 0 14 20 0 2 0 04min exp( . ) . .
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and

Thus,

σZ = 0.225

Therefore, the reliability index is

β = μZ/σZ = 0.04/0.225 = 0.19

and the probability of failure is

Pf = 1 – Φ(0.19)= 0.42

that is, 42%. Therefore the reliability is only 58%.

Example 14.11 Alluvial streambeds downstream of an outlet facility may be
seriously scoured under jet action. The degree of scour depends on the charac-
teristics of the jet leaving the outlet facility, the depth of tailwater, and properties
of the bed material, which are uncertain in nature. Using the following relation-
ship for the terminal scour depth, find the reliability of the outlet structure
against the scouring induced by vertical jets downstream of the outlet facility: 

Assume that the foundation depth df = 12 m. The other parameters are given
in Table E14-11. The situation is depicted in Fig. 14-8. 

Solution The objective function is defined as

Table E14-11 Scour parameters.

Parameter Mean CV PDF

b (m) 0.30 0.01 Log-normal

u (m/s) 7.0 0.20 Symmetrical triangular

Dg (m) 0.005 0.05 Uniform

y (m) 4.0 0.20 Symmetrical triangular

Wf  (m/s) 0.30 0.20 Symmetrical triangular

λ (m) 1.0 0.19 Normal
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where df is foundation depth and ds is the scouring depth. The dam is safe when
the depth of scour is less than the foundation depth. By using Eq. 14.28, the mean
of ds is determined to be 3.46. Thus, μZ = 12 – 3.46 = 8.54. Now, using Eq. 14.30, we
can determine the coefficient of variation of ds as 

Thus,

σds = 3.46 × 0.49 = 1.7

Now

var(Z) = var(df) + var(ds)

but var(df) = 0, so we have

var(Z) = var(ds)

and thus

σZ = 1.7

So, the reliability index is

β = μZ/σZ = 8.54/1.7 = 5.03

and the probability of failure is

Pf = 1 – Φ(5.03) = 2.48 × 10–7

Figure 14-8 Definition sketch for scouring parameters.
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14.2.3 Corrected FOA Method 

In this section, the properties of statistical expectation of a random variable are
used to derive moments of various model forms. When Y is defined by a multi-
plicative form such as Eq. 15.27 with strictly independent input parameters, Xis,
the mean of Y, μY, can be written as

(14.36)

where E[ ] is an expectation operator and is the mean of the ith power function, 

(14.37)

The coefficient of variation of Y, CVY , can be written as

(14.38)

The variance of Y, , can be written as

(14.39)

Equation 14.38 shows that the output uncertainty of a multiplicative model
is governed by the most uncertain component function. 

Using the additive form (Eq. 14.31) gives the mean of Z:

(14.40)

Similarly, the variance of Y, , can be written as

(14.41)

Equation 14.41 shows that the magnitude of Ci is as important as uncertainty
in the component function .

For evaluating the mean and variance of combined forms of Z, such as Eq. 14.35,
the mean and variance of the additive part must be determined first. Then ,

, and are determined by treating the combined form as a multiplicative
form and considering the additive part as a multiplicative component with
known mean and variance.

Knowledge of the relative error corresponding to FOA estimates (  and )
can be used to correct them to obtain their exact values. Consider a power function 

(14.42)
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where c and r are constants. The FOA estimate for the mean is 

(14.43)

The FOA estimate for the variance of Y, , is 

. (14.44)

These estimates for and contain errors. The exact value of any
moment can be computed as

(14.45)

where is the relative error in a moment estimated using FOA. Analytical
relationships for in FOA estimates for means and variances of component
functions were developed (Tyagi 2000) for generic power and exponential func-
tions for five common distributions. These analytical expressions can be used as a
guide for judging the suitability of FOA by determining the relative errors in the
most sensitive parameters. Further, when the relative error is more than the
acceptable error, these analytical relationships enable one to correct the FOA esti-
mates for means and variances of model components to their true values. Using
these corrected values of means and variances of model components, one can
determine the exact values of mean and variance of an overall model output.
Table 14-2 and Table 14-3 present the developed expressions for and

for a generic power function . The correction factors for the nor-
mal distribution have been presented graphically in Fig. 14-9 and Fig. 14-10. 

In Table 14-2 and Table 14-3, to avoid the singularity at r = –1, r should be taken
as –0.9999, and to avoid the singularity at r = –2, r should be taken as –1.9999. 

Similarly, Table 14-4 and Table 14-5 present the developed expressions for
and for a generic exponential function .    

Example 14.12 Solve Example 14.8 using the corrected FOA method. 

Solution

Case 1: As the performance function Z = TMDL – (WLA + LA) is linear, there
is no error involved in the FOA application. So, both the reliability index β and
probability of failure will remain the same as calculated in Example 14.8. 
Case 2: In this case the performance function is nonlinear:

where TL = WLA + LA. First, the mean and variance of TL are determined:

E[TL] = E[WLA] + E[LA] = 65 + 1258 = 1323
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Table 14-2 Generalized relative error in the FOA predicted mean of a power function

Distribution Relative error in FOA predicted mean, 

Uniform

Symmetrical
triangular

Normal

Gamma

Exponential

Figure 14-9 Relative error in FOA predicted mean for CVx ranging from 0.01 to 0.33, 
where X is normally distributed.
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Table 14-3 Generalized relative error in the FOA predicted variance of a power function.

Distribution Relative error in FOA predicted variance, 

Uniform

Symmetrical
triangular

Normal

Gamma

Exponential

Figure 14-10 Relative error in FOA predicted variance for CVx ranging from 0.01 to 
0.33, where X is normally distributed.
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var[TL] = var[WLA] + var[LA] = (65 × 0.18)2 + (1258 × 0.33)2 = 415.302

Now the corrected FOA is used to correct both the FOA estimated mean
and the variance of TL–1. From Figs. 14-9 and 14-10, the corrections in the
FOA mean and variance are determined corresponding to CV = 0.31 and
exponent r = –1. The correction factors are 0.25 and 0.96, respectively. So the
correct mean and variance of the power function TL–1 are 1.01 × 10–3 and
1.41 × 10–6, respectively.

After determining the corrected mean and variance of the individual
power function, Eq. 14.37 and Eq. 14.38 are used to determine the mean and
variance of the performance function Z. So,

μZ = 1.69 – 1.0 = 0.69

σZ = 2.1

Assuming Z to be normally distributed gives the reliability index:

β = 0.69/2.1 = 0.33

The probability of failure is

Pf = 1 – Φ(0.33) = 0.37

that is, 37%.
It is worth mentioning that the distribution of Z may not be a normal dis-

tribution [as evidenced by a very high CV (=1/0.33 = 3) value] and hence the

Table 14-4 Generalized relative error in FOA predicted mean of an exponential function.

Distribution Relative error in FOA predicted variance, 
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Pf estimate may contain error; the correct Pf should have been 28%. The cor-
rected FOA method is particularly useful when only mean and variance of a
model output is needed (e.g., in uncertainty analysis). It is advised that one
should determine higher moments and find a suitable distribution for Z.
Using this distribution along with its parameters one can calculate the cor-
rect value of Pf. This will be further discussed in another approach, called the
generic expectation function approach.

Example 14.13 Solve Example 14.9 using the corrected FOA method assuming
Q is characterized by (1) a normal distribution, (2) a log-normal distribution, and
(3) a gamma distribution.

Solution Substituting values of a, b, and Cmax one can write the performance
function as

Z = Cmax – C = 8 – (2.10 × 10–8)Q3

First, let us calculate the mean and standard deviation of C using the cor-
rected FOA method for the simple power function Q3. The calculation is pre-
sented in the tabular form in Table E14-13. Since the table only considers the
power function Q3, the mean of the power function C = b × Q3 is determined as

E[C ] = 2.10 × 10–8 × E[Q3]

Table 14-5 Generalized relative error in FOA predicted variance of an exponential 
function.

Distribution Relative error in FOA predicted variance, 
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The CV will remain unaffected by the constant b so var(C) will be the same as
calculated in column 11. This information can be used to calculate the mean and
standard deviation of the performance function for three cases.

1. For the normal distribution,

E[Z]= E[Cmax] – E[C]

= 10 – 2.10 × 10–8 × 6.79 × 108 = 10 – 14.26 = – 4.26

Now var(Z) = var(C) since var(Cmax) = 0. Thus

σZ = σC = 0.90 × 14.26 =12.84

Therefore, the reliability index is
β = μZ/σZ = – 4.26/12.84 = –0.33

and the probability of failure is
Pf = 1 – Φ (–0.33)= 0.63

that is, 63%.
2. For the case where Q has a log-normal distribution,

E[Z] = 10 – 2.10 × 10–8 × 6.98 × 108 = 10 – 14.66 = – 4.66

Table E14-13 Calculations by FOA method.

Distribution Mean CV SD FOA
mean

Relative error 
in FOA mean

1 2 3 4 5 6

Log-normal 800 0.33 264 5.12×108 0.267

Gamma 800 0.33 264 5.12×108 0.259

Normal 800 0.33 264 5.12×108 0.246

Distribution Corrected 
mean

FOA
variance

Relative error 
in FOA 
variance

Corrected 
variance

Corrected  
CV

1 7 8 9 10 11

Log-normal 6.98×108 2.57×1017 0.657 7.48×1017 1.24

Gamma 6.91×108 2.57×1017 0.544 5.63×1017 1.09

Normal 6.79×108 2.57×1017 0.313 3.74×1017 0.90

Notes: Columns 1 to 4 contain input information. Columns 5 and 8 contain the mean and variance
of  the power function Q3 using the FOA method. Column 6 contains the calculated relative error
in the FOA mean of the power function using the graphical and tabulated formulas. Column 7 con-
tains the corrected mean of the power function by applying the correction on the FOA-based mean
value using Eq. 14.42. Columns 9 and 10 contain the relative error in FOA variance and corrected
variance, respectively. Column 11 contains the corrected CV of the power function
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and var(Z) = var(C) since var(Cmax) = 0. Thus

σZ = σC = 1.24 × 14.66 = 18.17

Therefore, the reliability index is

β = μZ/σZ = – 4.66/18.17 = –0.257

and the probability of failure is

Pf = 1 – Φ (– 0.257)= 0.60

that is, 60%.
3. For the case where Q has a gamma distribution,

E[Z] = 10 – 2.10 × 10–8 × 6.91 × 108 = 10 – 14.51 = –4.51

and var(Z) = var(C) since var(Cmax) = 0. Thus

σZ = σC = 1.09 × 14.51 = 15.81

Therefore, the reliability index is

β = μZ/σZ = – 4.51/15.81 = – 0.29

and the probability of failure is

Pf = 1 – Φ (–0.29)= 0.61

that is, 61%.
This example shows that the failure probability or the reliability of a

system is sensitive to the nature of the distribution of its parameters. Fur-
ther, all these estimates are quite different from the failure probability
determined in Example 14.9 using the FOA method.

Example 14.14 Solve Example 14.10 using the corrected FOA method assuming
k is characterized by (1) normal and (2) gamma distributions.The water is safe
when the concentration of free residual chlorine is greater than or equal to 0.2
mg/L. The performance function Z can be defined as

First, we determine correct mean and variance of the function C = C0 exp(–kt),
where k is characterized by μk = 0.14 and σk = 0.046. The calculations are per-
formed and the results are presented in Table E14-14a.

Example 14.15 Now knowing the mean and variance of C, one can determine
the mean and variance of the performance function Z = C – Cmin using the theory
of statistical expectation. These calculations are shown in Table E14-14b.  

Example 14.15 Solve Example 14.11 using the corrected FOA method.

Z C C C e Ckt= − = −−
min min0
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Solution The objective function is defined as  where df (=12 m) is the
foundation depth and ds is the scouring depth defined as

First, we determine the correct mean and variance of ds without considering
the constant C = 110. Calculations are performed in Table E14-15.

Now using Eq. 14.39 we have

Table E14-14a Calculations using corrected FOA method.

Characteristics of 
parameter k

Characteristics of the function C = C0 exp(–kt)

Distribution Mean
μk

CVk SD
σk

FOA
Mean

Relative
error in 

FOA
mean*

Correct
mean

FOA 
variance

Relative
error in 

variance*

Correct 
variance

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Gamma 0.14 0.33 0.046 0.06 0.30 0.098 0.051 0.38 0.04

Normal 0.14 0.33 0.046 0.06 0.3475 0.091 0.051 0.73 0.01

*Entries in columns (6) and (9) are calculated by using formulas presented in Tables 14-3 and 14-4.

Table E14-14b Calculations of performance function Z.

Z FOA                           Corrected FOA

K = Gamma(0.14, 0.0462) k = Normal(0.14, 0.0462)

Mean 0.043 0.15 0.17

Variance 0.051 0.08 0.19

SD 0.22 0.29 0.43

CV 5.20 1.94 2.51

b 0.19 0.52 0.40

Failure probability 0.42 0.30 0.34

Notes: E[Z] = E[C – Cmin] = μk − Cmin; var(Z) = var(C); reliability index β = μZ/σZ; the probability of
failure Pf = 1 – Φ(β ).
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The coefficient of variation of ds can be determined using Eq. 14.41 as

Thus the standard deviation of ds is

Now, one can determine the mean and standard deviation of Z:

E[Z] = E[df – ds] = 12 – E[ds]

= 12 – 4.01 = 7.99

Because var(Z) = var(ds),

σ Z = = 2.27

Table E14-15 Calculation process using corrected FOA method.

Function Exponent Distribution Mean CV SD

b0.862 0.862 Normal 0.3 0.01 0.003

u0.891 0.891 Symmetrical 
triangular

7 0.20 1.40

Dg1.128 1.128 Uniform 0.005 0.05 0.0003

y–0.431 –0.431 Symmetrical 
triangular

4 0.20 0.80

Wf
–2.01 –2.01 Symmetrical 

triangular
0.3 0.20 0.06

l 1 Normal 1 0.19 0.19

FOA mean Rel. errror Corr. mean FOA var. Rel. error Corr. var CV2

0.35 0.00 0.35 0.0051 7.50 × 10–5 0.0051 7.43 × 10–5

5.66 0.00 5.65 1.02 0.00 1.02 0.03

0.0025 0.0002 0.0025 2.05×10–8 –0.0002 2.05×10–8 0.0032

0.55 0.01 0.56 0.00 0.14 2.62×10–3 0.01

11.246 0.13 12.874 20.44 0.44 36.57 0.22
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The reliability index is

β = μZ/σZ = 7.99/2.27 = 3.52

and the probability of failure is

Pf = 1 – Φ (3.52) = 2.17 × 10–4

14.2.4 Response Surface Method

The response surface (RS) method is very similar to the FOA method. Whereas
the FOA method deals directly with the performance function, the RS method
involves approximating the original, complicated system performance function
with a simpler, more computationally tractable system model. This approxima-
tion typically takes the form of a first- or second-order polynomial: 

(14.46)

where is the approximate function representing the original function
. Determination of the constants is accomplished through a linear regres-

sion about some nominal value, typically the mean. Given the new performance
function, the analysis proceeds in exactly the same manner as the FOA method.
This method has not been used much in the area of water resources and environ-
mental engineering.

14.2.5 Monte Carlo Simulation

In Monte Carlo simulation (MCS), probability distributions are assumed for the
uncertain input variables for the system being studied. Random values of each
of the uncertain variables are generated according to their respective probability
distributions and the model describing the system is executed. By repeating the
random generation of variable values and model execution steps many times,
statistics and an empirical probability distribution of the model output can be
determined. The accuracy of the statistics and probability distribution obtained
from MCS is a function of the number of simulations performed and the ade-
quacy of the assumed parameter distributions. The MCS method has been
described in detail in Chapter 11.

 Monte Carlo simulation is an art; it requires judgment on the part of the
modeler to create theoretical input sample distributions that are representative
of the populations and to estimate the number of trials needed to generate the
input and output density functions. There is no strictly defined answer to either
of these questions.

A key problem in applying the MCS method is estimating the necessary
sample size. One empirical test to determine the adequacy of the sample size
consists of iterating the sample program with increasingly greater sample sizes
and estimating the convergence rate of the sample mean value toward the
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population mean. The error in the estimation of the population mean is inversely
proportional to the square root of the number of trials. To improve the estimate
by a factor of 2, the sample size must increase by a factor of 4. If the sample size
is n, the standard deviation of the mean is times the standard deviation of
the population. This indicates that the sample size must be large. As the sample
size increases, the precision of the empirical percentile estimates of a model out-
put improves. However, the rate of convergence to the true distribution
decreases as the size of the sample increases.

The requirement of generating very large samples poses a serious problem.
The MCS method often entails sample sizes that are in the range of 5,000 to
20,000 members. Generally, the number of required samples increases with the
variances and the coefficient of skewness of the input distributions.

Another simulation technique similar to MCS is Latin hypercube sampling
(LHS) in which a stratified sampling approach is used. In LHS the probability
distribution of each basic variable is subdivided into nonoverlapping intervals
(say, m) each with equal probability (1/m). Random values of the basic variables
are simulated such that each range is sampled only once. The order of the selec-
tion of the ranges is randomized and the model is executed m times with the ran-
dom combination of basic variables from each range for each basic variable. The
output statistics and distributions may then be approximated from the sample of
m output values. It has been shown that the stratified sampling procedure of
LHS converges more quickly than an equidistribution sampling employed in
MCS. Except for reducing the computation effort to some extent, LHS has the
same problems that are associated with MCS.

14.2.6 Second-Order Approximation Method

In the second-order approximation (SOA) method, a Taylor series expansion of a
model is truncated after the second-order term. Consider a model represented
by Eq. 14.22. The second-order Taylor series expansion of Y is given as

(14.47)

In SOA, the expansion point is commonly the mean value of the basic vari-
ables. By considering all input variables to be statistically independent and tak-
ing the expectation of Eq. 14.47, the expected value Y is given as

(14.48)
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The variance of Y is given as

(14.49)

The SOA method has been used only for evaluating the mean of the model
output. It has not been used much for variance evaluation because of the
involvement of complicated calculations in approximating the model output
variance. 

14.2.7 First-Order Reliability Method 

The first-order reliability method (FORM) is characterized by an iterative linear
approximation to the performance function. Fundamentally, this method can be
considered as an extension to the FOA method and is also known as the
advanced first-order approximation (AFOA) method, which was developed to
address some of the technical difficulties of FOA. One of the major problems
with the FOA technique was the lack of invariance of the solution relative to the
formulation of the performance function. Simple algebraic changes in the prob-
lem formulation can lead to significant changes in assessing the propagation of
uncertainty. Hasofer and Lind (1974) presented a methodology that specifically
addressed this issue by requiring expansion about a unique point in the feasible
solution space. It should be mentioned that Fruedenthal (1956) also proposed a
method suggesting similar restrictions on the expansion point. 

Hasofer and Lind (1974) proposed taking the Taylor series expansion at a
likely point on the failure surface of the performance function. Rackwitz (1976)
implemented the ideas of Hasofer and Lind. The failure surface is defined by the
equation Z = 0. The perpendicular drawn on the failure surface from the origin
cuts the failure surface at a point called the failure point. The distance of the fail-
ure point from the origin is a measure of reliability. The expected value and vari-
ance of Z can be obtained by first solving Z = 0 to find the failure point and
then expanding Z about using a Taylor series expansion as 

(14.50)

(14.51)
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where σZ is the standard deviation of Z. For the case of statistically independent
basic variables, var(Z) is rewritten as

(14.52)

As described earlier, knowing the reliability index β [ ], one
can determine the probability of failure Pf and reliability ℜ. For models having a
linear failure surface and all the basic variables normally distributed, the esti-
mates of Pf and ℜ are exact.

For most modeling problems, it is very unlikely that all basic input variables
will be normally distributed. Rackwitz (1976) proposed a transformation tech-
nique in which the values of the CDF and PDF of the non-normal distributions
are the same as those of the equivalent normal distributions at the failure point

, also known as the most probable point (MPP; see Fig. 14-5). Consider an
input random variable Xi for which the PDF and CDF are given as and

, respectively. Equating the cumulative probabilities at the failure point
we have

(14.53)

where and are the mean value and standard deviation of the equivalent

normal distribution for Xi; is the original CDF of Xi; and Φ(.) is the CDF

of the standard normal distribution. Using Eq. 14.53, one can write the mean of
the equivalent normal distribution as

(14.54)

Now equating the corresponding PDF ordinates at gives

(14.55)

where φ(.) is the PDF of the standard normal distribution. Combining Eq. 14.54
and Eq. 14.55, one obtains the standard deviation of the equivalent normal dis-
tribution as

(14.56)
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The key to FORM is the determination of the failure point for the Taylor
series expansion. Shinozuka (1983) has shown that for FORM the reliability
index β is the shortest distance in the standardized space between the system
mean state and the failure surface. Thus, if the failure point is determined cor-
rectly, it represents the most likely combination of input variable values that pro-
duce the critical target level. Ang and Tang (1984) and Haldar and Mahadevan
(2000) present detailed mathematical treatment and interpretation of FORM. The
Hasofer and Lind approach can be summarized as follows:

1. Formulate the performance function or the limit state in terms of the
original design space, that is, X = {X1, X2, X3, …,Xn} [the X space as
shown in Fig. 14-11(a)].

2. Define the independent and standardized normal vector U = {U1, U2, U3,
…,Un} by transforming the input variables into an equivalent normal
distribution.

3. Transform the performance function into the standard normal space [the
U space as shown in Fig. 14-11(b)].

4. Search for the minimum β .
5. Determine the probability of failure or reliability of the system corre-

sponding to the obtained reliability index β.

Figure 14-11 illustrates the concept of reliability index and MPP search for a
two-variable case in the standard normal space. After completing steps 1 and 2, one
focuses on the transformed performance function curve [i.e., G(U1, U2) = 0]. Next,
among the various possible β values, the minimum β is sought. The corresponding
point is called the MPP. The process of determining the minimum β value can be
mathematically expressed as follows:

minimize 

subjected to (14.57)

Figure 14-11 Transformation of input variables, nonlinear limit state function, MPP, 
and reliability index in FORM.

β = +U U1
2

2
2

G U U1 2 0,( ) =

X 2
g(X 1 ,X 2 ,…,X n) = 0

(a) X - Space

U 1

U 2
G(U1, U 2,…,U n) = 0

(b) U - Space

MPP

Tangent at MPP

β
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For a more general system consisting of n input variables, Eq. 14.57 can be
written as

minimize 

subjected to (14.58)

Therefore, the difficulty then lies in determining the minimum distance for a
general nonlinear function. This is essentially a nonlinear, constrained optimiza-
tion problem. Thus, determination of β requires application of a constrained
nonlinear optimization, such as the generalized reduced-gradient algorithm
used by Cheng (1982), the Lagrange multiplier approach used by Shinozuka
(1983), or the iterative optimization method suggested by Rackwitz (1976). 

14.2.7.1 Rackwitz’s Numerical Algorithm

As mentioned earlier, Rackwitz's approach deals with the variables in the
reduced space (i.e., the U space as shown in Fig. 14-11). Further, it requires par-
tial derivatives of the performance function with respect to each of the reduced
random variables followed by extensive iterative calculations until convergence
is reached. 

Consider a general function Z = g(X1, X2,…,Xn). A typical stepwise approach
suggested by Rackwitz for determining the reliability index can be given as
follows:

Step 1. Formulate the limit state in terms of uncorrelated and independent
normally distributed standardized random variables. If we assume Xi to be a
normally distributed random variable, the standardized random variable Ui
can be written as .
Step 2. Assume an initial value for each input random variable. Let us repre-
sent these values as s in the X space and in the reduced U space. Typ-
ically, the value for the first iteration is taken as the mean of the variables.
Step3. Evaluate the partial derivatives

 at the assumed points in step 2.
Step 4. Determine the direction cosines as

(14.59)
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Step 5. Formulate each reduced variable in terms of the reliability index as
or in the X space as .

Step 6. Substitute values of Ui or Xi in the limit state function g(Ui) = 0 or
g(Xi) = 0 and solve for β.
Step 7. Using the result from step 6 as a new starting point repeat steps 2
through 6 until the starting point in step 2 and resulting solution in step 6
converge to the same solution.

14.2.7.2 Lagrange Multiplier Method

Using the Lagrange multiplier method, the objective function and the constraint
can be combined into a single function L. Since minimizing β also means mini-
mizing β2, Eq. 14.58 can be written as

minimize (14.60)

The function L is called the Lagrangean function and the parameter λ the
Lagrange multiplier. Taking the partial derivatives of L with respect to Xi and λ
and equating to zero one gets the following equations:

(14.61)

(14.62)

Solving Eq. 14.61 and Eq. 14.62, one gets the coordinates of the MPP and can
evaluate the reliability index as

Example 14.16 Solve case 2 of Example 14.8 using the Rackwitz and Lagrange
multiplier methods.

Solution The performance function is given as 
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Rackwitz’s Method

Step 1: In this example all the variables are assumed to be independent and
normally distributed. The first step is to transform the random variables into
the reduced space as

;

and

where the mean and standard deviations are given in Table E14-16a.
The first iteration proceeds as follows: 

Step 2: Assume initial values for each input random variable,
; that is, , , and . 

Step 3: Evaluate the partial derivatives: 

For the assumed MPP, the values of the partial derivatives are

Table E14-16a

Variable Standard deviation Mean

TMDL 436 1678

WLA 12 65

LA 415 1258
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Step 4. Determine the direction cosines as

Step 5. Formulate each reduced variable in terms of the reliability index as
or in X space as . Thus the coordinates of the fail-

ure point are

or

or

or

Step 6. Substitute values of Ui or Xi in the limit state function g(Ui) = 0 or
G(Xi) = 0 and solve for β:

and so

Thus the revised failure point is

This completes the first iteration.
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Step 7. Using the result from step 6 as a new starting point steps 2 to 6 are
repeated until the starting points in step 2 and resulting solution in step 6 con-
verge to the same solution. The new iterations are presented in Table E14-16b.
Note that the solution converges in the fourth iteration. Another point to be
noted in this example is that the reliability index β remains the same in all iter-
ations, which is not a necessity. 

Lagrange Multiplier Method

The Lagrangean function for this problem is 

(14.63)

in which X1, X2, and X3 are TMDL, WLA, and LA and are the mean and stan-
dard deviation of the respective Xi. Taking the partial derivatives of L and set-
ting them equal to zero, one obtains the following four nonlinear equations:

(14.64)

(14.65)

Table E14-16b

Iteration Variable, Xi Assumed
failure
point

Standard
deviation

Xi

Mean Xi
∂g/∂Ui α1 New Xi

2nd

TMDL 1513.98 436 1678 0.289 0.724 1491.91

WLA 65.15 12 65 –0.008 0.019 65.13

LA 1446.35 415 1258 –0.275 0.69 1426.77

β = 0.589

3rd

TMDL 1491.91 436 1678 0.292 0.724 1491.76

WLA 65.13 12 65 –0.008 0.019 65.13

LA 1426.77 415 1258 –0.278 0.689 1426.63

β = 0.589

4th

TMDL 1491.76 436 1678 0.292 0.724 1491.76

WLA 65.13 12 65 –0.008 0.019 65.13

LA 1426.63 415 1258 –0.278 0.689 1426.63

β = 0.589, Pf = 1 − Φ (0.59) = 0.28
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(14.66)

(14.67)

Defining the problem in tabular form in an Excel spreadsheet and invok-
ing Excel’s optimization module SOLVER by equating Eq. 14.64 to zero,
changing Xi, and setting Eqs. 14.65, 14.66, and 14.67 equal to zero, we obtain
the solution shown in Table E14-16c.

14.2.7.3 Ellipsoid Approach

Low (1996) and Low and Tang (1997) proposed the ellipsoid approach for calcu-
lating the reliability index in which an ellipsoid just touches the limit state sur-
face in the original space of the variables. In matrix notation one can express the
formulation of the reliability index given by Hasofer and Lind (1974) in matrix
form (Ditlevsen 1981, Veneziano 1974) as 

(14.68)

where represents the vector of the random variables, are the corresponding
mean values, is the covariance matrix, F is the failure region, and T indicates the

Table E14-16c

Item TMDL WLA LA λ

Mean 1678 65 1258

CV 0.26 0.18 0.33

Standard deviation 436 12 415

Assumed solution, Xi 1491.76 65.13 1426.63 2.92

0.1822 0.0001 0.1650

Equation 14.64 14.65 14.66 14.67

Partial derivative 0.00 0.00 0.00 0.00
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Pf = 0.278
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transpose of a matrix. Substituting β = 1 in Eq. 14.68, we obtain the following
ellipse:

(14.69)

To explain the ellipsoid approach, let us consider a simple system

containing only two random variables X1 and X2. For this case Eq. 14.69 reduces to

(14.70)

Simplifying Eq. 14.70, one obtains

(14.71)

Equation 14.71 is the 1σ dispersion ellipse plotted for various values of ρ assum-
ing μ1 = μ2 = 9, σ1 = 3, and σ1 = 2. Figure 14-11 also shows the critical ellipse for
ρ = 0.7, which just touches the limit state line .
The critical ellipse is the 1σ dispersion ellipse corresponding to ρ = 0.7 expanded by
β times so that it becomes tangent to the limit state line. 

Low (1996) has explained the meaning of the reliability index as follows.
Suppose the 1σ  scatter ellipse gradually expands without changing its original
aspect ratio. The equation of the ellipse at any time is then obtained by substitut-
ing kσ1 for σ1 and kσ2 for σ2 in Eq. 14.71. The resulting equation is 

(14.72)

When the expanding ellipse just touches the failure surface (or limit state
surface), the value of k is the reliability index β, as shown in Fig. 14-12. The corre-
sponding point of contact on the failure surface is the MPP having the coordi-
nate vector . Therefore, the reliability index

(14.73)
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The search for the most critical point (X1*, X2*) on the failure surface and
subsequent evaluation of β index using Eq. 14.73 can be formulated into an opti-
mization problem as follows (Low 1996):

minimize (14.74a)

subject to Z(X1, X2) = 0 (14.74b)

where Z(X1, X2) = 0 is the equation describing the limit state function. A similar
method can be used for systems involving more than two random variables, in
which case the ellipses will become ellipsoids or hyper-ellipsoids.

Example 14.17 Solve Example 14.16 using the ellipsoid approach. 

Solution Because the variables are uncorrelated, the problem of determining
the reliability index, Eq. 14.74, can be written as

minimize subject to Z(X1, X2, X3) = 0

Figure 14-12 1–σ dispersion ellipses for various values of ρ and the critical ellipse for =0.7.
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The input variables to the problem are shown in Table E14-17. Invoking the
optimization module SOLVER in Excel by setting β = minimum, changing
assumed Xi values, and subjecting the problem to the constraint Z = 0, one can
perform the calculations listed in Table E14-17.

Example 14.18 A culvert has been designed for a carrying capacity of 30 cfs.
Based on the rational formula, the 5-year flow at the culvert is given as Q = 2.41
× C × A × (Tc + 0.2)–0.77. The data are shown in Table E14-18a. Determine the
probability of failure of the culvert using FORM assuming all the variables are
independent and normally distributed. 

Solution The objective function becomes

Z = 30 – Q = 30 – 2.41 × C × A × (Tc + 0.2)–0.77

Because the variables are uncorrelated, by using the ellipsoid method the
problem for determining the reliability index, Eq. 14.74, can be written as

minimize 

subject to Z(X1, X2, X3) = 0, where X1 = A, X2 = C, and X3 = Tc.
Defining the problem as shown in Table E14-18b and invoking SOLVER in

Excel by setting β = minimum, changing assumed Xi values, and subjecting them
to the constraint Z = 0, one can perform the calculations listed in Table E14-18b.  

Table E14-17

Item TMDL WLA LA

Mean 1678 65 1258

CV 0.26 0.18 0.33

Standard deviation 436.28 11.7 415.14

Assumed solution, Xi 1491.76 65.13 1426.63

0.18 0.001 0.16

Nonlinear optimization

min = 0.59, after minimization

subjected to Z = 0

Pf = 1 – normal(0.59) = 0.28
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Example 14.19 Solve Example 14.18 using FORM if C and Tc are correlated with
ρ(C, Tc) = 0.75.

Solution This problem can be solved by formulating the problem in the matrix
notation:

subjected to Z = 0
To explain how this calculation is performed, let us assume a starting point

A = 10, C = 1, and Tc = 0.5. The corresponding matrix can be written as

Table E14-18a

Function Mean SD

A 12.00 1.20

C 0.45 0.15

Tc 0.37 0.23

Table E14-18b

Item C A TC

Mean 0.45 12.00 0.37

CV 0.33 0.10 0.62

Standard deviation 0.15 1.20 0.23

Assumed solution, Xi 0.52 12.19 0.21

0.21 0.02 0.46

Nonlinear optimization

min = 0.83, after minimization

 subjected to Z = 0

Pf = 1 − Φ (0.83) = 0.20

U X
i i i i
2 2
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Thus the T matrix becomes

The covariance matrix Co can be written as

and its inverse is

Now, is determined as

and is determined by matrix multiplication. This value comes
out to be 27.62. At this point the objective function Z = –1.72. So this point is not
located on the limit state surface. Now this process of matrix manipulation is
performed with the constraint Z = 0 using SOLVER. The mean, standard devia-
tion (SD), and covariance matrix are entered as given in Table E14-19. Then some
X values are assumed as the starting point. The matrices (X – μ), (X – μ)T, and Co

are determined using Excel spreadsheet formulas in terms of cells. Then formu-
las for matrix multiplication Co(X – μ) and (X – μ)T Co(X – μ) are fed into the pro-

gram. The reliability index is defined as . Now, SOLVER is
invoked to minimize β by changing X values subject to Z = 0. Table E14-19
shows the solution obtained, which gives β = 1.47. Using this value, one gets a
probability of failure of 0.07 or 7%.

Example 14.20 Solve Example 14.19 using FORM if C, Tc , and A are character-
ized by log-normal, gamma, and triangular distributions, respectively. Assume
ρ = 0.75 between C and Tc.

Solution This problem is the same as given in Example 14.19, except for the type
of distributions used to characterize C, Tc, and A. The FORM approach for deter-
mining the reliability index given by Hasofer and Lind assumes that all the ran-
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dom variables are normally distributed. Therefore, all the non-normal variables
need to be transformed into their equivalent normal variables. This can be accom-
plished by using Eq. 14.54 and Eq. 14.56. As evident from these equations, the
parameters of the equivalent normal distribution, and , are functions of
the assumed failure point ; these are used in calculations to get a better esti-
mate of the failure point; the transformation process is performed in each itera-
tion step of optimization. Once the parameters of equivalent normal distributions
for all the variables in each iteration are determined, the problem becomes the
same as given in Example 14.19. A stepwise solution is given as follows:

Step 1: Assume a starting value for ; generally mean values are taken as
the starting point (see Table E14-20a).

Step 2: Determine parameters of all the non-normal distributions. For a sym-
metric triangular distribution the parameters are

Par. 1

Par. 2

Table E14-19

Variable
Xi

Xi

value
Mean
Xi(μ)

SD
Xi(σ )

Covariance matrix, C

A 12.46 12.00 1.20 1.44 0 0

C 0.42 0.45 0.15 0 0.02 0.03

Tc 0.12 0.37 0.23 0 0.03 0.05

(X–μ)T Inverse of covariance matrix, C–1 (X − μ)

0.46 –0.03 –0.25 0.69 0.00 0.00 0.46

0.00 103.65 −50.79 −0.03

C–1(X–μ) 0.00 –50.79 44.24 −0.25

0.32

9.37 (X – μ)TC–1 (X – μ) b Pf Performance 
function, Z

−9.34 2.16 1.47 0.07 −8.15×10–8

Table E14-20a

Variable Assumed x value, 

A 11.43

C 0.45

Tc 0.37

μX
N

i
σX

N
i

Xi
*

xi
*

xi
*

â CVX X= −( )μ 1 6

b̂ CVX X= +( )μ 1 6
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For the log-normal distribution, the parameters are

Par. 1

Par. 2

For the gamma distribution, the parameters are

Par. 1

Par. 2

The values of estimated parameters using these equations are given in
columns 5 and 6 of Table E14-20b.

Step 3: Determine the values of the cumulative distribution function

[ ] and the probability density function [ ] at the assumed

point (columns 7 and 8 of Table E14-20b).

Step 4: Using the calculated values of the cumulative distribution function

[ ] and the probability density function [ ] at the assumed

point , determine , in other words, the normal standard

variate (Z value), corresponding to the cumulative probability 

(column 9). Now using this Z value, one can easily determine the density of

the standard normal distribution (column 10). 

Step 5: Determine the standard deviation of the equivalent normal distribu-
tion using Eq. 14.53 as

Now using the values of standard deviation and ,

determine values of by using the following relationship (Eq. 14.51):

 (column 11 in Table E14-20b).

Step 6: After transforming the non-normal distributions, perform an optimi-
zation by using the values of mean and standard deviation of equivalent
normal distributions. Values of and are calculated in the Excel
spreadsheet using a dynamic link between the value of and the optimiza-
tion given in Table E14-20c so that as the value of changes, the values of
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Table E14-20b

Variable
(1)

Distribution
(2)

Mean
(3)

CV
(4)

Par. 1
(5)

Par. 2
(6)

A Triangular 11.43 0.1 8.63 14.23

C Log-normal 0.45 0.33 –0.85 0.32

Tc Gamma 0.37 0.61 2.65 0.14

(7) (8) (9) (10) (11) (12)

0.48 0.35 –0.04 0.4 11.43 1.13

0.42 1.21 –0.21 0.39 0.47 0.32

0.03 0.94 –1.9 0.07 0.2 0.07

Table E14-20c

Variable
Xi

Xi

valuea
Meanb SDc Covariance matrix, C

A 11.430 11.431 1.20 1.44 0 0

C 0.450 0.398 0.322 0 0.02 0.03

Tc 0.370 0.323 0.230 0 0.03 0.05

(X−μ)T Inverse of covariance matrix, C–1 (X − μ)

–0.001 0.052 0.047 0.69 0.00 0.00 –0.001

0.00 103.65 –50.79 0.052

C–1(X−μ) 0.00 –50.79 44.24 0.047

0.00

2.95 (X – μ)TC–1 (X – μ) b Pf Performance 
function, Z

–0.53 0.13 0.36 0.36 10.89

a. As assumed in step 1.
b. From column 11.
c. From column 12.
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and are automatically updated and used in the optimization. The
optimization table is the same as used in Example 14.19.

FORM is quite accurate because it is able to overcome model nonlinear-
ity problems, and no additional assumption about the distribution type of
the performance function is required. It is still an approximation method
because the performance function is approximated by a linear function at the
design point, and accuracy problems may arise when the performance func-
tion is strongly nonlinear (Cawlfield and Wu 1993, Zhao and Ono 1999).
Another disadvantage of FORM is that determination of the linearization
point is generally not easy, depending upon the nature and complexity of the
system for which the reliability, risk, or uncertainty analysis is being studied
(Melching and Anmangandla 1992). Further, the magnitude of acceptable
convergence may affect the accuracy of the reliability estimates. In some
cases, the magnitude of the convergence error may not be reduced after a
certain level.

14.2.8 Second-Order Reliability Method

The second-order reliability method (SORM) has been used extensively in struc-
tural reliability analyses. It has been established as an attempt to improve the
accuracy of FORM. SORM involves approximating the limit state surface func-
tion at the design point by a second-order surface, and the failure probability is
given as the probability content outside the second-order surface. Several
researchers compared the reliability estimates of various engineering systems
based on FORM and SORM and reported that their results were in good
agreement when the limit state surface at the design point in the standard normal
space is nearly flat. However, when the limit state function contains highly non-
linear terms, or when the input random variables have an accentuated non-nor-
mal character, SORM tends to produce more accurate results than does FORM.
But computational requirements of SORM are much higher than those of FORM.
For all practical purposes the FORM-based reliability estimates are considered
sufficient. For further details of SORM, see Haldar and Mahadevan (2000). 

14.2.9 Generic Expectation Function Method 

It is clear from the preceding discussion that reliability and risk analysis of a given
system requires knowledge of the distribution of its performance function. In
practice, this distribution cannot be determined exactly because of insufficient
data and/or mathematical complexity involved in the distribution derivation pro-
cess. In many cases, the true form of the performance function or output distribu-
tion is not required. A very good estimate of system reliability can be obtained if
moments of the model output are known correctly. As far as the distribution of the
model output is concerned, several forms of distributions can be assumed. Knowl-
edge of the higher order moments of a model output helps in identifying the can-
didate distributions for the model output and provides more flexibility to include

μX
N

i
σX

N
i
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those distribution forms that require higher order moments. Let us consider an
exponential function 

(14.75)

where b and c are constants. The generic expectation function is defined as the
rth moment of Y about the origin ( ). Mathematically, it is defined as 

(14.76)

where E[ ] is an expectation operator and  is the probability density func-
tion of X. The rth central moment of Y, μr, can be obtained by using the following
equation:

(14.77)

where is the mean of Y, which can be evaluated from Eq. 14.76 by substitut-
ing r = 1 as 

(14.78)

In most situations, distributional properties of a random variable are charac-
terized in terms of the mean, variance, coefficient of skewness, and coefficient of
kurtosis. The variance of Y, , is defined as the second moment about the
mean. Substituting r = 2 in Eq. 14.77 gives

(14.79)

where μ2 is the second moment of Y about the mean. The coefficient of skewness
of Y, γY, is defined as 

(14.80)

where μ3 is the third moment of Y about the mean, which can be obtained by
substituting r = 3 in Eq. 14.77 as

(14.81)

The kurtosis of Y, κY, is defined as 

(14.82)
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where μ4 is the fourth moment of Y about the mean, which can be obtained by
substituting r = 4 in Eq. 14.77 as

(14.83)

Substituting expressions for probability density functions of X, fX(x), in Eq. 14.76
allows the corresponding generic expectation functions to be determined by

(14.84)

where fX(x) = probability density function of X. Substituting the function

and the density function fX(x) and solving the integral for a generic
value of k leads to the generic expectation function for a given function with
given distributional characteristics of its random input variable. The derived

expressions for based on the uniform, triangular, normal, gamma, and
exponential distributions are listed in Table 14-6. Generic expectation functions
for some commonly used probability density functions are presented in
Table 14-7 (Tyagi 2000).   

Example 14.21 Solve Example 14.10 for the time of travel t = 1 to 24 hours using
the generic function method. Also calculate the mean and variance using the
FOA method and their errors using the corrected FOA method. Assume k is
characterized by a gamma distribution with the mean and coefficient of varia-
tion of 0.14 L/hour and 0.33, respectively. 

Solution First, statistical characteristics of C at times t ranging from 1 to 24
hours are computed using the FOA and the generic expectation methods. Errors
in the FOA estimates have also been calculated using the corrected FOA method.
One can calculate any order of higher moment using the generic expectation
method. In this example however only four moments are calculated. The higher
order moments can help in identification of the distribution either by matching
the moments or by a more formal treatment such as using the principle of maxi-
mum entropy as discussed in Chapter 9. 

It can be noticed from tabulated calculation that there is a substantial
amount of error in the FOA estimates of means and variances of residual chlo-
rine concentration in the water distribution system. The FOA underestimates the
mean throughout the 24 hours, whereas it overestimates the variance during the
first 10 hours and underestimates afterward. By using the generic expectation
function method, first-, second-, third-, and fourth-order moments of C about
the origin are estimated as listed in columns 7, 8, 9, and 10 of Table 14-8 . Using
these moments, central moments and statistical distributional characteristics of
C such as mean, variance, coefficient of variation, skewness, and kurtosis are cal-
culated as listed in columns 11, 12, 13, 14, and 15, respectively.

μ μ μ μ4
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14.2.10 Point Estimation Methods

Many times the PDF of a random variable is not available. Therefore the uncer-
tainty of the variable is expressed in terms of its statistical moments. To that end,
point estimation methods are frequently employed. These methods are computa-
tionally straightforward and can be employed for determining statistical
moments of any order of a function involving several variables correlated or
uncorrelated. A short discussion of these methods is given here. The point esti-
mation (PE) method was originally proposed by Rosenblueth (1975) to deal with
symmetric, correlated, stochastic input parameters. The method was later
extended to the case involving asymmetric random variables (Rosenblueth 1981).

Table 14-6 Generic expectation functions for some commonly used probability density 
functions.

Name Generic expectation function, 
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Point estimate methods are procedures where probability distributions for con-
tinuous random variables are modeled by discrete “equivalent” distributions
having two or more values. The elements of these discrete distributions (or point
estimates) have specific values with defined probabilities such that the first three
moments of the discrete distribution match those of the continuous random vari-
able. With only a few values over which to integrate, the moments of the perfor-
mance function are easily obtained. First we summarize the PE method
developed by Rosenblueth (1981), which is applicable to both symmetric and
nonsymmetric and to correlated and uncorrelated random input variables.

14.2.10.1 Rosenblueth Method

Consider a variable y as a function of variables Xi, i= 1, 2, 3, …, n; Y = f(X1, X2, X3,
…, Xn). The Rosenblueth method bases the probability distribution of y on the
first three moments of independent variables Xi, i= 1, 2, 3, …, n. The probability
distribution of each independent variable is approximated by concentrating the
entire probability mass at two points, Xj- and Xj+, each having a specific weight,
P- and P+, on the distribution. Let us consider a continuous random variable Xi
with its mean, standard deviation, and skew represented by μ (Xi), σ (Xi), and
γ (Xi), respectively, as shown in Fig. 14-13. The random variable Xi is represented

Table 14-7 Generic expectation functions for some commonly used probability density 
functions.

Name Generic expectation function, 
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Symmetrical
triangular

Unsymmetrical 
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Table 14-8 Results by using generic expectation function method.

t
(hours)

Mean and variance 
of C using FOA

Error in FOA 
mean and 
variance

using cor-
rected FOA

First four moments of C using 
the generic expectation method

Statistical characteristics of C using the first four moments 
about the origin

FOA
mean

FOA
var

FOA
CV

Error
mean

Error
var

1 2 3 4 Mean Var CV Skew Kurtosis

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)
1 3.48 0.03 0.05 0.00 –0.03 3.48 12.14 42.44 148.65 3.48 0.03 0.05 –0.51 3.31
2 3.02 0.08 0.09 0.00 –0.05 3.04 9.29 28.65 88.98 3.04 0.07 0.09 –0.37 3.06
3 2.63 0.13 0.14 0.01 –0.06 2.65 7.16 19.65 54.73 2.65 0.12 0.13 –0.24 2.89
4 2.28 0.18 0.18 0.02 –0.07 2.32 5.56 13.68 34.49 2.32 0.17 0.18 –0.12 2.78
5 1.99 0.21 0.23 0.03 –0.07 2.04 4.35 9.66 22.23 2.04 0.20 0.22 0.00 2.73
6 1.73 0.23 0.28 0.04 –0.07 1.79 3.42 6.90 14.61 1.79 0.21 0.26 0.12 2.72
7 1.50 0.24 0.32 0.05 –0.06 1.58 2.71 4.99 9.78 1.58 0.22 0.30 0.23 2.76
8 1.31 0.23 0.37 0.06 –0.04 1.39 2.16 3.65 6.66 1.39 0.22 0.34 0.34 2.84
9 1.13 0.22 0.42 0.08 –0.02 1.23 1.73 2.70 4.61 1.23 0.22 0.38 0.45 2.95

10 0.99 0.21 0.46 0.09 0.00 1.09 1.39 2.01 3.23 1.09 0.21 0.42 0.56 3.10
11 0.86 0.19 0.51 0.11 0.03 0.96 1.12 1.52 2.30 0.96 0.20 0.46 0.66 3.28
12 0.75 0.17 0.55 0.13 0.06 0.86 0.91 1.15 1.65 0.86 0.18 0.50 0.77 3.49
13 0.65 0.15 0.60 0.15 0.10 0.76 0.75 0.88 1.20 0.76 0.17 0.54 0.87 3.74
14 0.56 0.13 0.65 0.17 0.13 0.68 0.61 0.68 0.88 0.68 0.15 0.58 0.98 4.03
15 0.49 0.12 0.69 0.19 0.17 0.60 0.50 0.53 0.66 0.60 0.14 0.62 1.08 4.35
16 0.43 0.10 0.74 0.21 0.21 0.54 0.42 0.41 0.49 0.54 0.13 0.66 1.19 4.71
17 0.37 0.08 0.79 0.23 0.25 0.48 0.35 0.33 0.37 0.48 0.11 0.70 1.29 5.11
18 0.32 0.07 0.83 0.25 0.30 0.43 0.29 0.26 0.28 0.43 0.10 0.74 1.40 5.55
19 0.28 0.06 0.88 0.28 0.34 0.39 0.24 0.21 0.22 0.39 0.09 0.78 1.51 6.03
20 0.24 0.05 0.92 0.30 0.38 0.35 0.20 0.16 0.17 0.35 0.08 0.82 1.62 6.57
21 0.21 0.04 0.97 0.32 0.42 0.31 0.17 0.13 0.13 0.31 0.07 0.86 1.73 7.15
22 0.18 0.03 1.02 0.35 0.46 0.28 0.14 0.11 0.10 0.28 0.06 0.91 1.85 7.79
23 0.16 0.03 1.06 0.37 0.50 0.25 0.12 0.09 0.08 0.25 0.06 0.95 1.97 8.49
24 0.14 0.02 1.11 0.39 0.54 0.23 0.10 0.07 0.06 0.23 0.05 0.99 2.09 9.24
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by two point estimates, Xi- and Xi+, with probability concentrations Pi- and Pi+,
respectively. Because the two point estimates and their probability concentra-
tions form an equivalent probability distribution for the random variable, the
two P values must sum to unity. The two point estimates and probability con-
centrations are chosen to match three moments of the random variable. These
two probability masses (Pi- and Pi+) are located x’i- and x’i+ standard deviations
above and below the mean:

(14.85)

(14.86)

(14.87)

(14.88)

These equations result in 2N point locations for N random variables. For an
input variable that is symmetric about the mean the two probability masses are
located one standard deviation above and below the mean. The probability
masses for each of the two points are calculated as

Figure 14-13 Point estimate method.

Random Variable X i

p X
i( x

i)

Pi- Pi+

Xi+Xi-

X X x Xi i i i+ += ( ) + ( )μ σ’

X X x Xi i i i− −= ( ) + ( )μ σ’

x
X X

i

i i
+

= + + ⎛
⎝⎜

⎞
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’ ( ) ( )γ γ

2
1

2

2

x x Xi i i− += − ( )’ γ
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(14.89)

(14.90)

Now, once the two probability masses and their locations for each random
variable are determined, there will be 2N points on the performance function at
which the values of the performance function need to be determined. For exam-
ple, for a bivariate performance function Y(X1, X2), four point evaluations need
to be done as follows:

(14.91)

Now corresponding to each value of the performance functions, its probabil-
ity mass represented by f(δ1, δ2, ….,δn) , in which δ1 is a sign indicator that can only
be + or –, will be calculated using the following relationship: 

(14.92)

where aij is defined as 

(14.93)

After evaluating all the point locations of the performance function and their
corresponding probability masses, one can approximate the rth moment of the
performance function about the origin as

(14.94)

From this information, the mean and the variance of the performance func-
tion are determined as

(14.95)

(14.96)
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Now, one can determine the reliability index and the corresponding reliabil-
ity and probability of failure.

As is seen, this method requires 2N model evaluations to estimate a single statis-
tical moment of the model output. For a complex model with a large number of
parameters, Rosenblueth’s PE method is computationally intensive and may some-
times be impractical. Further, a reliability analysis requires knowledge of higher-
order moments to approximate the distribution of the output random variable.
This makes the method even more computationally extensive. Thus, although
Rosenblueth’s method is quite efficient for problems with a small number of uncer-
tain basic variables, its computational requirements are similar to those of MCS for
a model having a large number of parameters. For example, a model having
between 10 and 15 parameters will require 1,024 to 32,768 model evaluations. 

Harr (1989) modified Rosenblueth’s method to reduce its computational
requirements from 2N to 2N for an N input parameter model by using the first
two moments of the random variables. This method does not provide the flexibil-
ity to incorporate known higher-order moments of input random variables.
Chang et al. (1995) showed that the estimated uncertainty feature of model out-
put could be inaccurate if the skewness of a random variable is not accounted for.

Example 14.22 Solve Example 14.13 using the PE method.

Solution The performance function is given as Y = Cmax – C = 8 – (2.10 × 10–8)Q3.
In case 1, Q is normally distributed and thus the skew is zero. In case 2, Q is
defined by the gamma distribution giving a skew of 2CV, and when Q is defined
by the log-normal distribution the skew is 3CV + CV3.

The calculations are summarized in Table E14-22.

Example 14.23 Consider the following performance function:

Assume that the means of X1 and X2 are 9 and 20 and that their standard
deviations are 3 and 2, respectively. Determine the reliability index and failure
probability using the PE method for the following cases:

(a) Both X1 and X2 are independent and normally distributed.

(b) Both X1 and X2 are dependent and normally distributed with covariance
of 4.2.

(c) X1 is characterized by a gamma distribution and X2 is log-normally dis-
tributed with covariance of 4.2. 

Solution

(a) See Table 14-23a.
(b) See Table 14.23b.
(c) See Table 14.23c.

Y X X X= − − +( )2 1
2

10 04 1 41 25 5. . .
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Table E14-22

Item and formula Case 1 Case 2 Case 3
X = normal X = gamma X = log-normal

Known information
800 800 800

CV(Q) 0.33 0.33 0.33

264 264 264

0 0.66 1.03

Calculated PE method parameters 
1 1.4 1.7

1 0.8 0.7

1064 1178.5 1261.6

536 595.8 609.3

0.50 0.35 0.29

0.50 0.65 0.71

Determination of moments of objective function and reliability index
–15.30 –24.37 –32.17

6.77 5.56 5.25

–4.26 –4.93 –5.69

139.87 228.19 322.02

121.68 203.89 289.65

11.03 14.28 17.02

–0.39 –0.35 –0.33

0.65 0.64 0.63
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x
Q Q
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2
1
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x x Q− += − ( )’ ’ γ

Q Q x Q+ += ( ) + ( )μ σ’
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’ ’
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+= − ×10 2 1 10 8 3.
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−= − ×10 2 1 10 8 3.

E Y P Y P Yi i[ ] = ++ + − −

E Y P Y P Yi i
2 2 2⎡⎣ ⎤⎦ = ++ −+ −

var Y E Y E Y[ ] = ⎡⎣ ⎤⎦ − [ ]{ }2 2

σ Y( )

β μ σ= ( ) ( )Y Y

Pf = − ( )1 Φ β



Item X1 = normal X2 = normal Item Value

9.00 20.00 cov(X1,X2) 0

CV(Xi) 0.33 0.10 0.00

3.00 2.00 0.00

0.00 0.00 0.25

1.00 1.00 0.25

1.00 1.00 0.25

12.00 22.00 0.25

6.00 18.00 7.66

0.50 0.50 –0.48

0.50 0.50 3.66

3.52

3.59

21.17

8.28

2.87

1.24

0.11
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Table E14-23b

Item X1 = normal X2 = normal Item Value

9.00 20.00 cov(X1,X2) 4.2

CV(Xi) 0.33 0.10 0.70

3.00 2.00 0.18

0.00 0.00 0.43

1.00 1.00 0.43

1.00 1.00 0.08

12.00 22.00 0.08

6.00 18.00 7.66

0.50 0.50 –0.48

0.50 0.50 3.66

3.52

3.59

26.97

14.08
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Table E14-23c

Item X1 = 
gamma

X2 = 
log-

normal

Item Value

9.00 20.00 cov(X1,X2) 4.2

CV(Xi) 0.33 0.10 0.70

3.00 2.00 0.18

0.67 0.30 0.32

1.39 1.16 0.55

0.72 0.86 0.02

13.16 22.32 0.11

6.84 18.28 8.4

0.34 0.43 0.55

0.66 0.57 4.4
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Example 14.24 Consider a system performance function with the
statistical characteristics listed in Table E14-24a. If the correlation coefficients are
ρ12 = 0.4, ρ23 = 0, and ρ31 = 0.5, estimate the reliability of the system. 

Solution This system contains three parameters so one has to conduct 23 model
evaluations to estimate statistical moments of the performance function. 

Step 1: Determine point estimates for each input variable as two probability
masses and their location (see Table E14-24b). 

Step 2: Evaluate the performance function for all possible combinations, as
shown in Table E14-24c.

Step 3: Now the probability mass corresponding to these points are calcu-
lated as

where a12 = 0.04, a23 = 0, and a13 = 0.06.

Step 4: The moments of the performance function are calculated as shown in
Table E14-24d. 

By using the moments about the origin, the central moments are calcu-
lated as shown in Table E14-24e. Thus the reliability of the system is

R = 1 – Pf = 0.999

that is, 99.9%.     

 = 0.199

 = 0.041

 = 0.208

 = 0.002

 = 0.021

 = 0.074

 = 0.229

 = 0.226

Table E14-24a

Variable Mean value Coefficient of variation Skew coefficient

X1 40 0.125 0.20

X2 50 0.05 0.70

X3 1000 0.20 –0.66

Y X X X= −1 2 3

P P P P a a a+++ + + += + + +1 2 3 12 23 13

P P P P a a a++− + + −= + − −1 2 3 12 23 13

P P P P a a a+−+ + − += − − +1 2 3 12 23 13

P P P P a a a+−− + − −= − + −1 2 3 12 23 13

P P P P a a a−++ − + += − + −1 2 3 12 23 13

P P P P a a a−+− − + += − + −1 2 3 12 23 13

P P P P a a a−−+ − − += + − −1 2 3 12 23 13

P P P P a a a−−− − − −= + + +1 2 3 12 23 13
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14.2.10.2 Harr’s Method

In Harr’s method (Harr 1989) one assumes that the entire probability mass dis-
tribution of an independent variable xi is distributed between two points, xi- and
xi+. The mth moment of the probability distribution of Y is calculated as

(14.97)

Table E14-24b

Item X1 X2 X3

μ (Xi) 40 50 1000

CV(Xi) 0.125 0.05 0.20

σ(Xi) 5 2.5 200

γ (Xi) 0.2 0.7 –0.66

1.10 1.41 0.72

xi– = x'i– – γ (Xi) 0.90 0.71 1.38

xi+ = μ(Xi) + x'i+σ(Xi) 45.52 53.52 1200.00

xi– = μ(Xi) – x'i–σ(Xi) 35.48 48.23 800.00

0.45 0.33 0.66

Pi– = 1 – Pi+ 0.55 0.67 0.34

Table E14-24c

Item Y = f(x1, x2, x3)

Y+++ 1236.66

Y++– 1636.66

Y+–+ 995.50

Y+–– 1395.50

Y–++ 698.76

Y–+– 1098.76

Y – –+ 510.83

Y – – – 910.83
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where yi is the mean of yi+ and yi-; yi =(yi+ + yi-)/2= [f(xi+) +f(xi-)]/2; and λi are
the eigenvalues obtained as the correlation matrix ρ of variables decomposed
using the orthogonal transformation method into an eigenvector matrix
(w1, w2, w3,…, wn), W, its transpose WT, and a diagonal matrix containing the
eigenvalues :

(14.98)

Table E14-24d

Performance function Probability
YijkPijk Y2

ijkPijkPoint notation Value Notation Value

Y+++ 1236.66 P+++ 0.199 246.5 304848.1

Y++– 1636.66 P++– 0.041 66.5 108773.4

Y+–+ 995.50 P+–+ 0.208 206.9 205956.1

Y+– – 1395.50 P+–– 0.002 3.5 4838.6

Y–++ 698.76 P–++ 0.021 14.4 10029.9

Y–+– 1098.76 P–+– 0.074 81.7 89750.4

Y– –+ 510.83 P––+ 0.229 117.0 59754.7

Y– – – 910.83 P––– 0.226 205.7 187390.9

Sum 1.00 942.07 971341.97

Table E14-24e

Item Value

942.07

971341.97

83841.09

289.55

3.25

5.70 × 10–4

E Y P Y P Y P Y P Y P Y P Y[ ] = + + + + ++++ +++ ++- ++- +-+ +-+ +-- +-- -++ -++ -+- -+-

++ +--+ --+ --- ---P Y P Y

E Y P Y P Y P Y P Y P Y2 2 2 2 2 2ÈÎ ˘̊ = + + + + +
+++ +++ ++- ++- +-+ +-+ +-- +-- -++ -++

PP Y

P Y P Y

-+- -+-

--+ --+ --- ---
+ +

2

2 2

var Y E Y E Y[ ] = ⎡⎣ ⎤⎦ − [ ]{ }2 2

σ Y( )

β μ σ= ( ) ( )Y Y

Pf = − ( )1 Φ β

Δ
λ λ λ1 2, , ,… n

ρ λ= W WT
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where superscript T denotes the transpose of the matrix. The uncorrelated stan-
dardized coordinates of the vectors of the n random variables x+ and x– are gen-
erated as 

 and (14.99)

where μ is the vector of the expected values of the random vari-
ables,  is the diagonal matrix of the variance of the random vari-
ables, and wi is the eigenvector associated with the eigenvalue λi.

Chang et al. (1995) modified Harr's method by evaluating y as

(14.100)

in which yi is calculated as before.
The weighting factor for each independent variable xi is considered for the

modified uncorrelated standardized coordinates in the eigenspace as

and (14.101)

where is the eigenvector matrix, is the diagonal matrix of the eigenvalues,
and is a unit vector with ith element equal to 1 and 0 everywhere else.

The Harr method is computationally more efficient than the Rosenblueth
method because it reduces the computational runs from 2N to 2N and uses only
the first and second moments of each stochastic variable. 

14.2.10.3 Li’s Method

In Li's method (Li 1992) one assumes that the entire probability mass of a ran-
dom variable is concentrated at three points, xi– , x+, and μ, having, respectively,
the probability values of p–, p+, and p0. The probability distribution of y is
obtained from the first four moments of independent variables. The mth
moment of the probability distribution of y is calculated as

(14.102)

where η  is the sum of all the η i, η i is the sum of all η ij with respect to i, and

. Note that . The points xi-, xi+, and μ are computed as 
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where k is the coefficient of kurtosis. The weight of each point is given as

(14.103)

This method is efficient and accurate. Thus the reliability of the system is
R = 1 − Pf = 0.999 (i.e., 99.9%).

14.2.10.4 Modified Rosenblueth’s Method

Tsai and Franceschini (2003) modified the Rosenblueth method for cases involv-
ing more than three stochastic variables. The mth moment of the probability dis-
tribution of y is calculated as

(14.104)

This modification preserves the capabilities of the original Rosenblueth
method and is an improvement at the same time.

The discrepancy between observed and computed y can be expressed as

(14.105)

 Thus the reliability of the system is R = 1 − Pf = 0.999 (i.e., 99.9%).

14.2.10.5 Characteristics of Point Estimation Methods

The various point estimation methods can be compared based on the moments
to be used, intensity of computation, and the capability to deal with variables.
These are summarized in Table 14-9.
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14.2.11 Transform Methods

Tung (1990) used the Mellin transform to calculate higher-order moments of a
model output. Application of the Mellin transform, however, is cumbersome, and
it cannot be universally applied. As pointed out by Tung, the Mellin transform
may not be analytic under certain combinations of distribution and functional
forms. In particular, problems may arise when a functional relationship consists
of input variable(s) with negative exponent(s). When component functions of a
given model have forms other than power functions, it cannot be applied. Fur-
ther, no formulation was suggested to obtain the moments of a model output
having nonstandard normally distributed input variable(s).

14.3 Reliability Analysis of Dynamic Systems

So far we have discussed various methods dealing with estimation of static sys-
tems (i.e., case in which reliability of a system is time independent). But reliability
is not always independent of time; rather it is highly time dependent and hence
time (e.g., the length or amount of use) can be used as a surrogate to determine
the reliability of a system. For example, reliability of many civil engineering sys-
tems, such as a city’s water distribution system, sanitary sewer system, or com-
bined sewer system, reduces with time owing to wear and tear and other reasons.

14.3.1 Time to Failure

The time to failure is used as an indicator of reliability of a system or its compo-
nents in early studies. In this concept, reliability is defined as the probability that
a system would perform adequately for at least a specified period of time and

Table 14-9

Characteristics Rosenblueth’s 
method

Harr’s 
method

Modified
Harr’s 

method

Li’s 
method

Modified
Rosenblueth’s 

method

Moments needed 3 2 2 4 3

Intensity of 
computation

2N 2N 2N (N2+3N+2)/2 (N2+3N+2)/2

Capability to 
consider correlated 
variables

yes yes yes yes yes

Capability to 
consider 
asymmetric
variables

yes yes yes yes yes
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under specified operating conditions. Failure designates the inability of a system
to perform its intended function. Of course, all systems fail eventually. (As a
sage once said: Time is a great teacher, but it kills all its pupils.) However, from
an engineering viewpoint, it is the survival time before failure that determines
whether the system was successful or not. Thus, the performance period can be
designated as the time to failure. The performance period t is a random variable
that has a probability density function f(t) and a cumulative distribution func-
tion F(t). Therefore, the reliability function R(t) can be defined as 

(14.106)

The expected (or mean) time to failure (MTTF) of a system, or its expected
life, is the expected value of time during which the system will be reliable (or
operate successfully), that is, 

(14.107)

This is the expected life, which can also be computed as

(14.108)

Equation 14.108 can be derived as follows. Differentiating Eq. 14.107 with
respect to time, one obtains

(14.109)

Substituting Eq. 14.109 into Eq. 14.107, we have

(14.110)

Integrating by parts gives

(14.111)

Since all systems must fail eventually, R(t) approaches zero faster than t
approaches infinity. Hence, 

which is the same as Eq. 14.108.
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The variance of the time to failure (or life), , can be computed as 

(14.112)

The variance of the time to failure can also be expressed as 

(14.113)

This can be shown as follows. Substituting Eq. 14.109 into Eq. 14.112, we
have

(14.114)

(14.115)

Integrating by parts gives

which is the same as Eq. 14.113.
In general,

(14.116)

Example 14.25 A pump that is used to withdraw groundwater in an agricultural
area is found to fail about twice per year. Assuming that the mean time to failure
follows an exponential distribution, find the reliability of the pump for a period
of 200 days and the mean time to failure.

Solution Since the pump fails about two times per year, for an exponential dis-
tribution parameter λ is the rate of failure per day:

λ = 2/365 = 0.0055 per day
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From Eq. 14.94, the reliability of the pump R(t) is 

Also,

14.3.2 Hazard Function

Another aspect of reliability is the assessment of failure time. In general, the fail-
ure rate of a system can be time variant as the system ages. Given that a system
has survived up to a time t1, the probability that it will fail in the next time inter-
val Δt is the conditional probability:

(14.117)

Dividing both sides by Δt and taking the limiting case as Δt →  0, we obtain

(14.118)

which defines the hazard function h(t). Thus, the hazard function is seen to be
the rate of change of the conditional probability of failure, given that the system
has survived to time t. Conceptually, the hazard function is the failure rate: If h(t)
increases in time, the rate of failure increases.

Integrating both sides of Eq. 14.118 and assuming that the system is perfect
initially, R(0) = 1, we obtain

(14.119)

and directly from Eq. 14.118,

(14.120)

To obtain Eq. 14.119, Eq. 14.120 is written as 

(14.121)
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Therefore,

On integration we get

which is the same as Eq. 14.119.

14.3.3 Bathtub Distribution for Hazard Function

All products, systems, assemblies, components, and parts exhibit different fail-
ure rates over their service lives. Although the shape of the curve varies, most
exhibit a low failure rate during most of their useful lives and higher failure
rates at the beginning and end of their useful lives. For many systems, the haz-
ard function can be modeled as a bathtub distribution, as shown in Fig. 14-14. In
this distribution three regions can be identified: 

1. Warranty failure
2. Chance failure
3. Aging failure

The first region represents the break-in or debugging period and is com-
monly covered by the manufacturer’s warranty (for example, in commercial
products such as a pump, TV, car, etc.). In this initial period of operation, there is
a high failure rate (or hazard); these failures can be due to such factors as manu-
facturing errors, imperfections, nonadherence to standards, poor quality control,
and human factors. In this region, both the hazard function and the failure rate
decrease with time. Strict quality control and inspection during construction and
manufacture can reduce the high initial failure rate.

The second region represents the period during which the hazard function
represents the likelihood of failure during the service life of the system. This
period represents the occurrence of chance or random failures. During this
period, the rate of failure is small and fairly constant. The third period represents
the region in which the hazard level begins to increase again as the result of
aging. This is the time when the economic life of the system or component comes
to an end and a decision needs to be made concerning replacement, life exten-
sion, or repair.
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It is desirable to select a probability distribution for the hazard function on
the basis of shape characteristics that appear to model the expected perfor-
mance. For the second region or the middle portion of Fig. 14-14, the failure rate
is fairly constant,

h(t) = λ = constant (14.122)

Substituting into Eq. 14.120, we get

(14.123)

which is the exponential probability distribution. The reliability function is 

(14.124)

The mean time to failure is 

MTTF (14.125)

which is the expected value of the exponential distribution and the reciprocal of
the hazard rate. The implication is that the greater the hazard or failure rate, the
shorter will be the expected time to failure.

Example 14.26 A survey of highway pavement in a part of Louisiana identified
20 sections with fairly similar constituent thicknesses, properties, and traffic
loadings. Indications were that expensive rehabilitation was required, on

Figure 14-14 Bathtub distribution for hazard function.
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average, 10 years after the sections were constructed and accepted. What is the
reliability of the 20 sections, as a whole and 10 years and 20 years after accep-
tance?

Solution If expensive rehabilitation denotes failure, MTTF = 10 years, and the
failure rate λ is 0.10 years. Therefore, 

R (after 10 years) 

R (after 20 years) 

14.3.4 Reliable Life

Another measure of reliability is the reliable life, tR. This corresponds to the time
required for the reliability to decrease to a specified level. For a constant failure
rate, h(t) = λ, we can write from Eq. 14.124

or (14.126)

For a constant failure rate of 0.10 per year (λ = 0.10), the reliable life for a reli-
ability of 10% is 

tR=10% = –10 × ln(0.10) = 23 years

To determine the time until only one of the 20 pavements in the previous
example is reliable, R = 1/20 = 0.05, we calculate 

tR = 5% = –10 × ln(0.05) = 30 years

The expected time for half of the pavements to show massive distress in this
example, R = 0.5, would be

tR = 50% = –10 × ln(0.50) = 7 years

Now recall the Poisson distribution:

(14.127)

where λ = mean occurrence rate, x = random variable, and t = time interval. The
Poisson distribution models the probability of occurrence of events during a
time interval t, where the mean occurrence rate is λ. Then μ = λt.

Suppose that the probability of occurrence of a storm with a rainfall amount
that is capable of causing severe damage to a system follows a Poisson distribu-
tion. Here λ is the rate at which the killer storm is expected to occur. Within the
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context of reliability theory, the reliability is measured relative to the time for the
first occurrence of the catastrophic storm; that is, the reliability is the probability
of no failures, and hence no occurrence of storms, until t:

R(t) = P(no devastating storms occur until time t)

For x = 0, Eq. 14.127 yields

R(t) = e–λt (14.128)

Thus, the mean occurrence rate λ is also the MTTF for this case. 
Given a failure mechanism (or occurrence of rare events) that follows a Pois-

son distribution, the time between failures will follow an exponential distribu-
tion and the reliability of the system at any time will be given by R = exp(–λt).

Example 14.27 Suppose that records over a 100-year period show that there
were six major storms that caused severe damage to a structure. (a) What is the
estimated reliability of such a structure at the same location 10 years after it was
rebuilt if the construction was completed 3 years after the devastating storm?
(b) How many years after construction does the probability of failure reach 0.90?

Solution

(a) MTTF = 6/100 = 0.06. The reliability of the system at a time t = 10 + 3 = 13
years after the storm is to be determined. Hence, 

R(t) = e–λt = e–0.06(13) = 0.46 = 46% 

(b) For P(f) = 0.90, R = 10% = 0.1. Hence,

years

Therefore, 38 – 3 = 35 years after the construction, the probability of
failure will be 0.90 owing to a devastating storm with a mean rate of
occurrence of 0.06 per year.

14.3.5 Initial Failure State

The initial failure state, the breaking-in period, is of considerable interest for
manufactured products where many objects are produced, and inspection must,
of necessity, be perfect for an individual item. Civil engineering systems are gen-
erally custom built, with considerable individual quality inspection and control.
These systems are much less sensitive to damage to individual components.
Additionally, the time frame of construction until final payment and acceptance
of a civil system mitigates the likelihood of (total) initial failures. In these
systems, the wearing-out phase is of considerable concern. The cost of mainte-
nance and/or reconstruction of civil engineering systems can be excessive in

t RR = − = −⎛
⎝⎜

⎞
⎠⎟ =1 100

6
0 10 38

λ
ln ln( . )
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both time and money. Consequently, the time interval for this phase is relatively
large as compared with that for items produced in other fields.

Consider a linearly increasing hazard function h(t) = kt, where time starts
after the constant hazard phase. From Eq. 14.117, for h(t) = kt, we have

(14.129)

The reliability function R(t) from Eq. 14.119 is

(14.130)

Equation 14.129 is the Rayleigh distribution function. The MTTF, from
Eq. 14.107, is 

MTTF = (14.131)

Dwight (1934) found that

MTTF = (14.132)

The MTTF for the linearly increasing hazard function is found to be proportional
to the reciprocal of the hazard slope. The hazard function is shown in Fig. 14-15. 

Figure 14-15 The hazard function.
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Example 14.28 Suppose that a system is only 75% reliable (or adequate) one
year after it has begun to wear out. Assuming the failure rate to increase linearly
with time, estimate the reliability of the system for the next 2 years.

Solution Equation 14.130 can be graphed as shown in Fig. 14-16. For t = 1 and
R = 75%, from Fig. 14-16, k = 0.58. 

The time required to reach other estimates of reliability are then easily
scaled. In a sense the remaining reliability can be thought of as the percent worth
of the system. For example, from Fig. 14-16, after 3 years of deterioration with-
out maintenance, one can estimate that the system would be worth approxi-
mately 8% of its value after the initiation of the wearing-out mode of distress. 

14.4 Reliability Analysis of a Multicomponent System 

The reliability of a multicomponent system depends on the reliability of its com-
ponents. For reliability analysis, statistical distributions are fitted to data of
failures. In this analysis, selection of an appropriate probability distribution is
crucial. 

Figure 14-16 The reliability function.
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14.4.1 Events and Fault-Tree Analysis 

All failures begin with an adverse initiating event, which usually is the failure of
a component of the system. This event may or may not trigger other events and
may initiate a sequence of adverse events with progressively more damaging
repercussions. Many such initial events are ignored because their influence
appears to be limited or “local.” But the final outcome depends upon how wide-
spread is the influence of this initial event, the health of the related components,
and their loads. Numerous examples can be recalled from everyday life where a
catastrophe resulted because of the failure to notice an initial event, failure to
visualize the consequences, or failure to initiate ameliorative action in time. A
reliability analysis attempts to identify all these scenarios, determine the chances
of their occurrence, and ascertain how these influence the safety of the system.

An event tree for a given frequency specifies a range of possible outcomes, so
that the event frequency of a particular outcome is given by the product of the ini-
tial frequency with all the probabilities at each of the intervening steps. Such a
chain is referred to as an accident sequence. It shows how a failure may propagate
through a complex system. Figure 14-17 shows a simple event-tree diagram for fail-
ure of an earthen dam. Since this tree has been drawn for illustrative purposes only,
each event is shown to result in two follow-up events. But this is not a limitation of
the method and a particular event may result in more than two events. Further, the
event tree for a real-life case will usually be quite larger than that shown here.
Another important aspect of this tree is that when computing the probability of
occurrence of a branch, the events are assumed to be independent. In Fig. 14-17, the
consequences are expressed in qualitative terms; these may also be expressed in
monetary terms, in terms of area influence, in terms of generation of energy, etc.    

Figure 14-17 Event tree for failure of an earthen dam.
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After the event tree is prepared, follow-up steps are necessary to attend to
the branch that has high associated risk. The risk can be minimized by replacing
the component that is perceived to initiate, contribute, or quicken failure. 

A fault tree gives a reverse representation of the process, working back
from a particular event (known as the top event) through all the chains of
events that are precursors of the top event. There can be more than one top
event. But for a top event to take place, some other events, known as lower-
level events, must take place. At the bottom are the events known as basic
events; these cannot be decomposed further and the failure probabilities for
these events need to be known. The key components of a fault tree are thus
event specifications and logic gates (with jargon heavily borrowed from the
electronics and communication field). A fault tree for failure of an earthen dam
is shown in Fig. 14-18. At the first level, the major causes of failure of such a
dam are identified and the next level lists the various causes that may result in
overtopping of the dam.

The main outcome of fault-tree analysis is the probability of occurrence of
the top event. This probability is stated in terms of OR (union) or AND (intersec-
tion) of the basic events. Knowing the probability of the basic events, one can
compute the probability of the top event. This works well for small fault trees,
but for large problems the computations become complex. An efficient method,
known as the cut set approach, is employed to increase efficiency. A cut set is a
set of basic events whose joint occurrence causes the top event to take place. A
minimal cut set of the system comprises the set of components that, when they
fail, cause failure of the system. If any component of this system works, the
remaining components in this set will collectively no longer cause the failure of
the system. Thus, in a cut set, the nonoccurrence of any basic event will lead to
the nonoccurrence of the top event. A complex system, such as a large water dis-
tribution network, can be subdivided into a number of cut sets working in paral-
lel and any one of these can result in the occurrence of the top event. Thus, the
system is a union (joined by an OR switch) of the cut sets.

Clearly, the application of these techniques requires an extensive database on
the occurrence of events and failures. Such databases obviate the necessity of
assuming some value based on subjective judgment. Although many databases
exist, one has to be cautious in pooling data from different sources since the pur-
pose, categorization, etc. are not likely to be the same across the databases.

Example 14.29 A water distribution system is shown in Fig. 14-19. The failure
probabilities of various pipes are as follows: Pipe 1 (P1) = 0.004, Pipe 2 (P2) =
0.003, Pipe 3 (P3) = 0.002, and Pipe 4 (P4) = 0.005. Draw the fault-tree diagram for
the system and determine the failure probability of no supply from source to
outlet.   
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Solution The fault-tree diagram of the system is drawn in Fig. 14-20 using AND
and OR gates. The probability of no supply from source to outlet is

Pno supply = P[ failure of Pipe 1 AND failure of Pipe 2] 

OR [failure of Pipe 3 AND failure of Pipe 4]

= [P1 ∩ P2 ] ∪ [P3 ∩ P4]

= (P1 × P2) + (P3 × P4) – (P1 × P2) × (P3 × P4)

= (0.004 × 0.003) + (0.002 × 0.005) – (0.004 × 0.003) × (0.002 × 0.005)

= 12 × 10-6 + 10 × 10-6 – 12 × 10-6 × 10-6

≈ 22 × 10–6

Evidently, this is a very low probability, partly because of redundancy in the
network.

Figure 14-18 Fault-tree for failure of earthen dam (adapted from Yen et al. [1986]).

Figure 14-19 Example water distribution network.
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14.5 Reliability Programming

An optimization problem in which some or all of the data are random is termed
a stochastic programming problem. For such a program, we need to define the
concepts of feasible and optimal solutions that will account for the random
nature of the problem. There are various approaches to solve reliability pro-
gramming problems. Here, the discussion focuses on the chance constrained
programming method. In this method, the concept of decision rule is important.

A decision rule is a function that maps a random variable into a decision.
There are two types of decision rules to determine the optimal values of the deci-
sion variables Xj. In a nonzero-order decision rule, the values of the decision
variables are based upon values of random variables that are observed during
the time horizon; the values of the decision variables for stage t are specified as
explicit functions of the outcomes of the random variables for the stages j = 1, …,
t – 1. In other words, we wait for the values of the random elements to become
known before determining Xj. In a special subclass of the general nonzero-order
rules, the so-called zero-order decision rules, the values of all decision variables
are determined before the actual values of the random elements become known.
Of course, one must decide in advance how the knowledge of the sample values
of the random elements will be used. For example, consider regulation of spill-
way gates of a reservoir to control flooding in downstream areas. If this regula-
tion is decided after the actual value of random inflows to the reservoir are

Figure 14-20 Fault-tree diagram of water distribution system of Fig. 14-19.
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observed, this will be termed as a nonzero-order rule. If the spillway gate open-
ing is given by g = f(x) and f() is determined a priori, this will be termed as a zero-
order rule.

Thus, the main difference between the two types of rules is that, according to
the nonzero-order decision rule, the exact value of a decision variable with
respect to stage t can only be computed after the outcomes of all random vari-
ables concerning the preceding t – 1 stages have been observed whereas, accord-
ing to the zero-order rule, the value of the decision variable is exactly known at
the beginning of stage t.

With respect to the random nature of the variables, when the unknown val-
ues of the decision variables are assumed to be deterministic, the decision rule is
called a nonrandomized decision rule. Since the random variations in the
parameters of a problem induce random variations in the optimal values of deci-
sion variables Xj, we can have a chance mechanism to determine the optimal val-
ues of Xj. The rules governing such a mechanism are called randomized decision
rules. In these rules, Xj are treated as random variables and consequently we
have to find their probability distributions. In the example just cited, the reser-
voir inflows are treated as random variables whose probability distribution
must be determined to develop and implement the decision rule.

Reliability constraints are frequently imposed on the system under consider-
ation so as to ensure a certain level of reliability regarding its performance.

14.5.1 Chance Constraints

In many real-life problems, some of the inputs that influence the decision vari-
ables may be random. Therefore, the constraints defining the limits of associated
variables should also specify the percentage of time that these limits can be
exceeded, if any. Chance-constrained models typically have the constraints that
limit the permissible range of decision variables. Constraints that explicitly do
this are termed chance constraints. 

A chance constraint to ensure that some variable is not greater than the
value of a random variable X at least some fraction α of the time can be written as

prob{  ≤ X} ≥ α or prob{  ≥ X} ≤  (1 – α) (14.133)

where prob denotes probability. Similarly, if some variable x is to be no less than
the value of a random variable X at least some fraction α of the time, the relevant
chance constraint becomes 

prob{x ≥ X} ≥ α or prob{x ≤ X} ≤  (1 – α) (14.134)

The constraint given by Eq. 14.133 can be satisfied if we can ensure that the
variable is less than or equal to that value x(α) of the random variable X that is
exceeded a fraction α of the time:

(14.135)

x̂

x̂ x̂

x̂

ˆ ( )x x≤ α
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Similarly, to ensure that Eq. 14.134 is satisfied, it is sufficient to ensure that
the variable x is greater than or equal to that particular value x(1–α) of the random
variable X that is exceeded a fraction (1 − α) of the time:

(14.136)

Here α and (1 – α) denote the probabilities of exceedance. Figure 14-21 illus-
trates the interpretation of x(α) and x(1–α). Basically, Eq. 14.135 and Eq. 14.136 are
the deterministic equivalents of chance constraints defined by Eq. 14.133 and
Eq. 14.134. We are able to define these deterministic equivalents because the
probability distribution of random variable X is assumed to be known, and hence
the particular values x(α) and x(1–α) of that random variable can be computed. 

Figure 14-21 Probability distribution of random variable X. The probability of 
exceedence of x(α) is α.
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14.5.2 Reservoir Design Using Chance-Constrained Optimization

Let us illustrate the application of chance-constrained optimization to real-life
cases with the help of an example of a reservoir. The future inflows into a reser-
voir are not deterministic in nature; rather these are stochastic. Hence the inflow
to a reservoir in a particular period of time can be predicted only with some
probability. Chance-constrained models for reservoir management problems
have two sets of constraints. One set limits the permissible range of reservoir
storage volumes, and the other set limits the permissible range of reservoir
releases. These constraints defining the limits of storage volumes and releases
should also specify the probability with which these limits can be exceeded. 

Consider a reservoir that is to be built and operated for the purpose of
(a) supplying water for irrigation, domestic, and industrial needs, and
hydropower generation; (b) flood control; and (c) recreation. It is desired that
the reservoir be as small as possible, thus reducing the cost of dam construction,
while meeting the stated objectives.

In reservoir design and operation problems, for each period t in a year, the
inflows It, the initial storage volumes St, and the releases Rt are random.
Observed historical records can be analyzed to estimate the probability distribu-
tion of inflows, but the probability distributions of random variables St and Rt
depend on the operating policy. Since the optimal operating policy is unknown,
the distributions of initial storage volumes St and the releases Rt are unknown.
Thus it is not possible to derive deterministic equivalents similar to Eq. 14.135
and Eq. 14.136 of chance constraints limiting the range of storage volumes or
releases unless the unknown distributions of St and Rt are functions of the known
distributions of inflow It. One way to overcome this problem in a linear program-
ming (LP) application is through the use of what is known as a linear decision
rule (LDR). Basically, LDRs define St and Rt in terms of It. The linear decision rule
for reservoir design and management was proposed by ReVelle et al. (1969). 

The LDR permits the use of an LP algorithm for solving reservoir manage-
ment problems. Mathematically, it is indeed an advantage since it considerably
reduces the number of possible operating policies that need to be examined.
Consider the following LDR, which defines the initial reservoir storage volume
in period t + 1:

St+1= λt It + bt ∀ t (14.137)

Here, λt is a known coefficient (0 ≤ λt ≤  1) and bt is an unknown, unrestricted,
deterministic variable defined for each within-year period t (Loucks and Dorf-
man 1975). This is termed as the LDR parameter for the tth month of the year
and is to be determined. Another form of LDR, which expresses release in terms
of storage, is

Rt = St – bt (14.138)
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Assume that, over many years, the initial storage volumes St, in each within-
year period t, were to be within certain lower and upper limits at least
some fraction αt of the time:

prob{ ≤ St} ≥ αt ∀ t (14.139)

prob{ ≥  St} ≥ αt ∀ t (14.140)

Similarly, let the reservoir releases Rt be within the range to at least
some fraction βt of the time:

 prob{ ≤  Rt} ≥ βt ∀t (14.141)

prob{ ≥ Rt} ≥ βt ∀t (14.142)

Because the probability distributions of all St and Rt are unknown, they must
be replaced by a function of random variables whose distributions are known
before deterministic equivalents can be defined.

Substituting Eqs. 14.138 into 14.139 and 14.140 permits the definition of deter-
ministic equivalents, since the distributions of the random inflow variables It are
known. Similarly, deterministic equivalents of Eq. 14.141 and Eq. 14.142 can also
be defined by using the continuity equation:

Rt = St + It – St+1 , t = 1, 2, ..., T; T + 1 =1 (14.143)

and the linear decision rule given by Eq. 14.137 or Eq. 14.138. It is then possible
to determine the optimal values of the decision variables.

In a reservoir design problem, the objective function is to minimize the
capacity of the reservoir (C). It can be expressed mathematically as

minimize C (14.144)

The objective function is subject to a number of constraints as discussed next.

Freeboard Constraint

To provide flood control, the storage St+1 at the end of period t should be such
that the freeboard volume C – St+1 is at least vt with reliability (say) 90%. Here, vt
is the flood storage capacity required at the end of the tth month of the year.
Mathematically, the constraint can be written in deterministic form as

C – St+1 ≥ vt (14.145)

The reservoir mass balance equation using an explicit statement of chance
constraints is

St+1 = St + It
0.90 – Rt (14.146)

ŝt st

ŝt

st

r̂t rt

r̂t

rt
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where It
0.90 is the flow for month t that is available 90% of the time (see x(α) in

Fig. 14-21). Putting Eq. 14.138 in Eq. 14.146, we have

St+1 = St + It
0.90 – St + bt = It

0.90 + bt (14.147)

Putting Eq. 14.147 in Eq. 14.145, we have 

C – bt – It
0.90 ≥ vt (14.148)

or

C – bt ≥ vt + It
0.90, t = 1, 2, 3, …, n (14.149)

Since It
0.90 is exceeded, on average, 10% of the time, this constraint should

hold 90% of the time. If monthly data are being used, the value of n will be 12.

Minimum Storage Requirement Constraint 

The minimum storage in the reservoir, St+1, at the end of period t should be at
least Smin with (say) 90% reliability. Here 90% reliability can be achieved by con-
sidering inflow that is available 90% of the time or not available only 10% of the
time, It

0.10. Mathematically, the constraint can be written in deterministic form as

St ≥ Smin (14.150)

We express the minimum storage to be maintained as a fraction am of the res-
ervoir capacity. Putting Eq. 14.147 in Eq. 14.150, we have

bt + It
0.10 ≥ amC (14.151)

or

amC – bt ≤ It
0.10, t = 1, 2, 3, …, n (14.152)

Minimum Water Supply Requirement Constraint

The release at any time (Rt) should exceed the minimum committed release
value (qt) with a 90% reliability. Here 90% reliability can be achieved by consid-
ering inflow It

0.10. Mathematically, the constraint can be written in deterministic
form as

Rt ≥ qt (14.153)

Equation 14.157 implies that

St = bt–1 + It–1
0.10 (14.154)

Putting Eq. 14.157 and Eq. 14.154 in Eq. 14.146, we have

Rt = bt–1 – bt + It–1
0.10 (14.155)
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Putting Eq. 14.155 in Eq. 14.153, we have the explicit statement of chance
constraints:

bt–1 – bt ≥  qt – It–1
0.10, t = 1, 2, …, 12 (14.156)

Maximum Release Constraint

The release at any time (Rt) should not exceed the maximum permissible release
ft from the consideration of channel capacity, etc., with a 90% reliability. Here
90% reliability can be achieved by considering inflow that is exceeded only 10%
of the time or It

0.90. Mathematically, the constraint can be written in deterministic
form as

Rt ≤ ft (14.157)

Putting Eq. 14.155 in Eq. 14.157, we have the chance constraints:

bt–1 – bt ≤  ft – It–1
0.90, t = 2, 3, …, 12 (14.158)

This completes the formulation. In the problem, all variables are measured in
volume units.

Example 14.30 The chance-constrained optimization approach is used to deter-
mine the minimum size of the Gohira reservoir in the Brahmani Basin, India,
while meeting the aforementioned constraints. For the Gohira reservoir, 90% as
well as 10% dependable monthly inflows have been calculated from the observed
data using the flow duration curve and are given in Table E14-30. The minimum
storage capacity is assumed to be 30% of the total capacity and the initial storage
capacity is assumed to be 50% of the total capacity. The minimum freeboard
requirement vt has been assumed to be 1.00 million cubic meter (MCM). The min-
imum required release for various months is also given in Table E14-30. The max-
imum release has been stipulated at 60.00 MCM for all months.

Solution The objective function will be same as Eq. 14.134:

minimize C

Flood control requirement or freeboard constraint: The constraint from Eq. 14.135 is

C – bt ≥ vt + It
0.90

For the month of January

C – b1 ≥ 1.00 + 0.78 or C – b1 ≥ 1.78

Similarly,

C – b2 ≥ 1.49, C – b3 ≥ 1.37, C – b4 ≥ 1.58, C – b5 ≥ 1.80

C – b6 ≥ 36.19, C – b7 ≥ 80.27, C – b8 ≥ 74.00, C – b9 ≥ 46.38

C – b10 ≥ 3.54, C – b11 ≥ 1.47, C – b12 ≥ 1.07 
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Minimum storage requirement constraint: The constraint from Eq. 14.152 is

amC – bt ≤  It
0.10

For the month of January

0.3C – b1 ≤  0.02

Similarly,

0.3C – b2 ≤  0.01, 0.3C – b3 ≤  0.007, 0.3C – b4 ≤  0.005

0.3C – b5 ≤  0.02, 0.3C – b6 ≤  1.32, 0.3C – b7 ≤  25.31

0.3C – b8 ≤  13.84, 0.3C – b9 ≤  1.98, 0.3C – b10 ≤  0.28

0.3C – b11 ≤ 0.07, 0.3C – b12 ≤ 0.03

Minimum water supply requirement constraint: The constraint from Eq. 14.146 is
bt–1 – bt ≥ qt – It–1

0.10

For the month of February

b1 – b2 ≥  3.8 – 0.02 = 3.78 or –b2 + b1 ≥  3.78

Similarly,

–b3 + b2 ≥  2.72, –b4 + b3 ≥  3.703, –b5 + b4 ≥ 0.765

–b6 + b5 ≥  0.75, –b7 + b6 ≥  –0.55, –b8 + b7 ≥  –24.54

Table E14-30 Inflows to the Gohira reservoir at different availabilities and the 
minimum required release in million cubic meters (MCM).

Month Flow available 90% of the 
time in period t (It

0.90)
Flow available 10% of the 

time in period t (It
0.10)

Minimum required 
release

Jan 0.78 0.02 4.71

Feb 0.49 0.01 3.80

Mar 0.37 0.007 2.73

Apr 0.58 0.005 3.71

May 0.80 0.02 0.77

June 35.19 1.32 0.77

July 79.27 25.31 0.77

Aug 73.00 13.84 0.77

Sept 45.38 1.98 0.77

Oct 2.54 0.28 11.07

Nov 0.47 0.07 8.20

Dec 0.07 0.03 4.74
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–b9 + b8 ≥  –13.07, –b10 + b9 ≥ 9.09, –b11 + b10 ≥  7.92

–b12 + b11 ≥  4.67, –b1 + b12 ≥ 4.68

For the initial month

0.5C – b1 ≥ 4.71

Maximum release requirement constraint: The constraint from Eq. 14.158 is

 bt–1 – bt ≤  ft – It–1
0.90

For the month of February

–b2 + b1 ≤  60 – 0.78 = 59.22 or –b2 + b1 ≤  59.22

Similarly,

–b3 +b2 ≤ 59.51, –b4 +b3 ≤  59.63, –b5 +b4 ≤ 59.42

–b6 +b5 ≤ 59.20, –b7 +b6 ≤ 24.81, –b8 +b7 ≤ –19.27

–b9 +b8 ≤ –13.00, –b10 +b9 ≤ 14.62, –b11 +b10 ≤  57.46

–b12 +b11 ≤ 59.53, –b1 +b12 ≤ 59.93

For the initial month

0.5C – b1 ≤ 60.0

With this, the problem formulation is complete. Any LP package can be used
to solve the problem and get the optimum reservoir size. For this problem, the
minimum capacity of the Gohira reservoir turns out to be 140.34 MCM. Solution
to the problem also gives the values of the LDR parameter b for 12 months. For
January, February,…, December, this parameter is 53.05, 49.27, 46.55, 42.85, 42.08,
41.33, 41.88, 66.34, 79.41, 70.32, 62.10, and 57.3.

14.5.3 Types of Reliability Constraints

Systematically and meaningfully analyzing reliability-constrained water resources
problems often requires relating reliability levels to benefits and costs. This
enables the decision maker to anticipate the “price” (in terms of reduced benefits
or increased costs) associated with maintaining different reliability levels. 

Note that failure is defined as an event when the system cannot meet the tar-
get. We consider a system that has a life of N years. Broadly, five variants of reli-
ability constraints are employed. These constraints can be stated as follows:

1. The total number of failures during the entire life of the system should
not exceed L, L ≥ 0.

2. The total number of failures during any M consecutive periods should
not exceed m, M ≥ m ≥ 0.
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3. The probability of failure in any given period should not exceed α,
0 ≥ α ≥ 1.

4. The expected value of the total number of failures during the entire life
of the system should not exceed β.

5. The probability of observing one or more failures during the entire life of
the system should not exceed γ, 0 ≤ γ ≤  1.

Let us refer these reliability constraints as C1, C2,…, C5, respectively. Among
these, C1 is most frequently employed. During the life of the system, only one
realization of the random inputs will be observed. Hence, in statistical terms, the
system control process consists of a single realization of a sequential stochastic
process. Under this condition, the central limit theorem and the law of large num-
bers should be used with caution when interpreting statements such as “expected
value of the total number of failures over the life of the system under the optimal
strategy is 9.5” or the “probability of experiencing at least one failure during the
life of the system under the optimal strategy is 0.05.” Further, although the life of
the system consists of N stages, and the annual random inflows are stochastically
independent and identically distributed, the N stages are not stochastically inde-
pendent as far as benefits and reliability are concerned.

While considering potential reliability constraints, one should remember
that the random process under consideration will be observed only once and
there should be an explicit control on the system failure for any possible realiza-
tion of the random inputs. Also, the reliability constraints should be employed
in such a manner that they result in the type of control and the level of reliability
that is desired by the decision maker.

It is obvious that C1 and C2 are useful in controlling the system failure in
each realization of the random process. Further, constraint C2 also controls the
system failure in subperiods of the entire life of the system. Constraint C3 exerts
indirect control on the probability of failure during the whole life of the system
by controlling failures in individual periods. Implementation of C4 should be
attempted with caution. For example, the optimal strategies associated with C4
are not concerned with system failure in a given realization of the process. Simi-
larly, under C5 the optimal strategies have a tendency to behave conservatively
until the first failure occurs; thereafter, they ignore the reliability constraint.

The reliability constraints, such as C4 and C5, may be valid in the context of
many processes where the basic process is repeated under statistically similar
conditions. This happens in many quality control and sampling processes where
the same process gets repeated many times and the decision maker is not inter-
ested in the individual processes but rather with the “average” process. For
example, these constraints can be useful if J >>1 identical systems are to be oper-
ated and the decision maker is interested in the overall performance of the entire
system (of K subsystems) and not in any particular one. This situation is not fre-
quently seen in real-world environmental system management problems.
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Finally, before choosing the specific reliability constraint to be imposed on
the system, consideration should be given to the structure of the optimal strate-
gies resulting from the imposition of constraints and the fact that the stochastic
process under consideration is to be observed only once. Certain reliability con-
straints may provide false reliability in terms of both the type of control and the
level of reliability they provide. 

14.6 Reliability-Based Design

Civil engineering structures are designed for control of environmental variables
as well as to manage their use. For example, a dam may be constructed to control
the flow of a river, a retaining wall controls the soil behind it, a water distribution
network provides water to a municipal area, a canal system supplies water to
agricultural crops in a command area, and so on. The objective of design of an
engineering structure is to bear the load placed on it in such a manner that the
probability of failure lies within acceptable limits. This requires suitably adjusting
the values of either load or resistance. In other words, to avoid failure, loads and
resistance are not equated—the structure is made a little stronger than necessary.
Three approaches are normally followed for this purpose, involving:

1. Safety factors
2. Load amplification factors and resistance reduction factors
3. Design factors

It is important to note that although the strength or resistance of the various
construction materials or of the elements of a system is known, the actual values
used in design are suitably adjusted to take care of deficiencies that are likely to
arise during construction or fabrication.

The conventional methods of design in civil and environmental engineering
begin with estimation of load for a structure. An embankment may be designed
for a computed flood height in a river, a spillway of a dam may be designed for
the design flood, a high-rise building may be designed for the design wind load,
and so on. Usually, the load computed using the principles of engineering are
average values. Typically, the load may be an average extreme load. The load is
increased by a factor of safety (>1) to take care of the events that are unknown, or
cannot be determined in the absence of requisite data. Another reason for
increasing the load is that the construction and manufacture of components may
not always meet the prevalent norms and standards and there may be some defi-
ciencies in them as a result. The resulting increased load is known as design
load. The structure is then designed so that it is able to withstand the design
load. If the average load is and the average resistance is , then the design
has to satisfy the safety condition , where fl is the factor of safety for

l r
f l r fl r≤
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load and fr is the factor of safety for resistance. For example, if fl is 1.4 and fr is
1.3, then the combined safety factor becomes 1.82. 

Most of the structures designed by such a strategy work well and are not
likely to fail. But it is well known that no structure or design is 100% safe and
there is always some probability, however small, of failure. The conventional
design does not provide any assessment of failure probability and may, at times,
result in an oversafe design. Although the fundamental justification for the use
of safety factors is to take care of the uncertainties and unknowns in load estima-
tion and design, these factors are usually chosen based on experience or some
standard guidelines rather than a detailed statistical analysis of measured data.
Instances wherein the same value might be followed throughout a country are
not uncommon to find.

A reliability-based design is a procedure in which the design of a structure is
carried out with explicit control of the probability of performance and structural
failure. A key feature of this approach is the recognition that no design can be
absolutely safe. Moreover, the concepts of reliability-based design can also be
used to assess failure probabilities from causes such as aging, changed system
environment, changes in input properties (e.g., rainfall or inflows), and changes
in demands (e.g., new cropping pattern or expansion of a city). The main advan-
tages of reliability-based design are that it (a) recognizes that natural variables
(e.g., rainfall, floods, and winds) are essentially stochastic, (b) uses information
on the probabilistic properties of these inputs in design, (c) applies the statistical
estimates of distributional properties of loads and capacity rather than the arbi-
trarily chosen factors of safety, and (d) provides an assessment of risk and reli-
ability of the design.

Besides design, the reliability-based approaches have also found wide appli-
cations in planning. Based on the data used in design, the three levels of design
can be classified as follows: 

• Level III

(a) Uses joint probability distributions of load and resistance.
(b) Explicitly computes failure probability.

• Level II

(a) Based on failure probability.
(b) Treats load and resistance as random variables.
(c) Uses mean and variance of loads and resistance.

• Level I

(a) Conventional approach.
(b) Based on deterministic concepts and single values of load and resis-

tance (capacity).
(c) Assumes failure occurs if load exceeds resistance.
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The failure probability changes with time as the result of aging and changes
in system load as well as inputs.

 Despite extensive literature on risk and reliability analysis, there appears to
be a considerable gap between theory and practice of design in civil and envi-
ronmental engineering. The main reasons for this gap are as follows:

• Standard and widely accepted criteria to quantify risk and reliability are
not available.

• Robust methodologies that can be readily used by practicing engineers
to include reliability measures in design and management of prototype
systems are not commonly available.

• Adequate data about the variables involved in analysis are available only
in limited cases.

• Budgetary support may not be available to carry out such an analysis.
• A general apathy toward reliability-based concepts hinders their

application.
In a majority of instances, the severity of consequences determines the selec-

tion of design events. Logic, however, would require that the values of design
variables be decided based on the expected value of damages for the events with
given probability of occurrence, the sensitivity of damages to the magnitude and
occurrence probability, and incremental cost of the engineering device or struc-
ture with respect to the magnitude of design variables. In general, the cost of the
structure increases as higher reliability is sought and the relationship between
cost and reliability is usually highly nonlinear. 

The losses from the failure of a system, either structural or in terms of perfor-
mance, are expressed in monetary terms for use in planning and management
decisions. But this requires that the losses are first assessed in physical terms and
for that a list of harmful consequences of failure must be prepared. This list will
include the losses that arise because the structure is no longer able to serve its
intended function and the unwanted consequences just because the structure is
no longer present. For example, the failure of a flood embankment may lead to
inundation of downstream areas; damage to property, crops, and industries; and
loss of life. Failure of a water distribution system means that the population and
industries in the area being served will have to search for an alternative source
of water until the supply is restored. If a hydropower dam fails when the reser-
voir is full, not only is a source of electricity lost, but all the consequences of an
embankment failure are felt, possibly at a more severe level. In an industrial
area, damage is assessed based on the cost of repairs, damage to the raw mate-
rial and final product, and the loss of production.

However, it is difficult to assign a monetary value to damages. In agriculture
areas, the monetary value of crop damage depends upon the area of inundation,
type of crops grown and their growth stage, and the duration and depth of inun-
dation. Assigning a value to human life is quite difficult and is even controversial,
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and many times loss of human life is reported separately. The damage in an indus-
trial area is assessed based on the cost of repairs and loss in production.

Example 14.31 Design a levee for a stream. The annual peak flow QL for this
stream is characterized by the Gumbel distribution with mean and coefficient of
variation of 500 cfs and 0.393, respectively. The cross section of the stream can be
assumed as given in Fig. 14-22. The stream capacity QC can be calculated using
Manning’s equation as

The geometrical and hydraulic characteristics are given in Table E14-31a. 

Figure 14-22 Geometry of the considered stream.

Table E14-31a

Parameter C N (main 
channel)

N (left over 
bank)

N (right over 
bank)

Slope

Mean 1 0.08 0.11 0.08 9.873 × 10–5

CV 0.15 0.15 0.15 0.15 0.25

Distribution Normal Normal Normal Normal Normal

Q
n

AR SC = 1 49 2 3 1 2.

nb = 0.11 

         nc = 
0.08

100 ft 

1:12

1:3
 1:3 

1:12

Flood Stage 10.0 m

nb = 0.11 
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Solution The limit state function (or the performance function) can be defined as

where Y = AR2/3 is called the section factor. Yc and Yb represent section factors
for the main channel and over bank sections, respectively. The values of Yc and
Yb are considered constant for a given trial flood stage. Assuming the variables
are uncorrelated, we can write the problem of determining the reliability in
terms of the ellipsoid method as

minimize 

subject to 

We see that most parameters are normally distributed, except QL, which is
defined by the Gumbel distribution. Therefore, it is necessary to determine the
characteristics of the equivalent normal distribution at various points on the
limit state function. Based on the Gumbel distribution the probability of x being
exceeded is expressed as

where

and

Using these parameters of the Gumbel distribution, we can calculate the
parameters of the equivalent normal distribution at a given point x* (say
x* = 599.27 cfs) as seen in Table E14-31b

Once these parameters are calculated, the problem of determining the reli-
ability index can be formulated as shown in Table E14-31b.

In this formulation, a dynamic link is made to determine the parameters of the
equivalent normal distribution for all the trials in the nonlinear optimization pro-
cess. Now invoking SOLVER in Excel by setting β = minimum while using
assumed Xi values and subjecting them to the constraint Z = 0, one can easily per-
form the calculation for the reliability index. The calculations presented in
Table 14-31b correspond to a stage of 7.94 ft. Similar calculations can be performed
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for other assumed flood stages. Table E14-31c  presents the flood stage and proba-
bility of levee failure and levee reliability. 

Now, a designer can choose an appropriate levee height corresponding to a
desired reliability. As the levee height is increased the cost of the project will
increase, so in many situations a tradeoff in cost and reliability must be
considered.

Table E14-31b

Item C nC nb S QL

Mean 1 0.08 0.11 9.873 × 10–5 1033.437

CV 0.15 0.15 0.15 0.25

SD 0.15 0.012 0.0165 2.469 × 10–5 657.468

Assumed solution, 
Xi

0.98 0.08 0.11 9.58 × 10–5 599.27

0.02 0.02 0.00 0.01 0.44

β 0.704

Pf 0.24059

Performance 
function, Z

0.000

Table E14-31c

Flood stage Failure probability,  Pf Reliability, R

7.94 0.241 0.759

8.72 0.105 0.895

9.62 0.022 0.978

10.22 0.008 0.992

10.74 0.003 0.997

11.23 0.002 0.998

12 0.001 0.999

15 0.000 1.000

U X
i i i i
2 2
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Example 14.32 Size a storm sewer with a 90% reliability using the following
information: The storm sewer peak runoff QL is given as . The
capacity QC of the sewer is given as

The definition and statistical characteristics of uncertain variables are given
in Table E14-32a.

Solution Combining the storm sewer peak runoff and the sewer capacity
expressions, we can define the performance function Z as

In this example, FORM is applied with Rackwitz’s numerical algorithm as
discussed earlier. In this method all the input variables should be normally
distributed. But we see that most parameters are defined by the triangular distri-
bution and one parameter is defined by the gamma distribution. Thus, it is nec-
essary to determine the equivalent normal distribution in each iteration of a
refined point on the limit state function Z = 0. Table E14-32b presents the equiva-
lent normal distribution’s mean and standard deviations. 

Using steps 1 to 7 of Rackwitz’s iterative algorithm, we repeat the iterative
process until the old X values and new X values match exactly. When this point
is reached the solution cannot be improved any further. This point is called the
convergence point. In each iteration, the old Xi values are replaced by the new X
values and parameters corresponding to their equivalent normal distributions
are determined using Table E14-32b. Table E14-32c and Table E14-32d present
the solution point obtained for d = 3.0 ft.

Table E14-32a

Parameter Distribution Mean Coefficient of 
variation

λm Triangular 1.100 0.089

D (ft) Triangular 7.000 0.041

S0 (ft/ft) Triangular 0.005 0.250

λL Triangular 1.000 0.123

C Triangular 0.825 0.200

I (inches/hour) Triangular 4.000 0.300

A (acres) Triangular 25.000 0.041

n Gamma 0.015 0.300

Q CIAL L= λ

Q
n

d SC m= 0 463 8 3
0
1 2.

λ

Z Q Q n d S CIAC L m L= − = −−0 463 1 8 3
0
1 2. λ λ
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With the above process, the probability of failure is determined for different
assumed sewer diameters. Table E14-32e presents the probability of failure Pf and
reliability R = 1– Pf corresponding to various sewer sizes. One can plot these
numbers, which can be used to interpolate the Pf and R values corresponding to
any other desired size. Figure 14-23 presents a plot between sewer diameter
versus probability of failure/reliability. It is clear from Fig. 14-23 and Table 14-32e
that the sewer diameter should be 6 ft for 90% reliability.

14.7 Questions

14.1 For a given watershed the point-source load, WLA, is 50 lb/day and the
non-point-source load is 1,000 lb/day. The TMDL [= WLA + LA + MOS]
capacity at the outlet of this watershed is determined to be 1,500 lb/day.
Determine the margin of safety and factor of safety. 

14.2 Assume that the magnitude of uncertainty (represented by the coeffi-
cient of variation, CV) associated with TMDL, WLA, and LA are 0.25,
0.20, and 0.35, respectively. Using the values for point- and non-point-
source loads and the TMDL capacity in Question 14.1 as mean values,
determine the reliability index and the corresponding probability of
failure. Assume that TMDL, WLA, and LA are independent and nor-
mally distributed.

Figure 14-23 Sewer diameter versus probability of failure/reliability.
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Table E14-32b Equivalent normal distributions for non-normal distributions.

Triangular distributions

 System
parameter

(1)

Given information Parameters of
triangular distribution

Cumulative probability 
pdf values at assumed 

point x*

Values from Eqs. 
14.50 to 14.53

Parameters of 
equivalent normal

distribution

Mean X
(2)

CV X
(3)

a
(4)

b
(5)

P(x*)
(6)

p(x*)
(7)

Φ–1 [P(x*)]
(8)

φ{Φ–1 [P(x*)]}
(9)

SD
(10)

Mean
(11)

λM 1.100 0.089 0.860 1.340 0.500 4.166 0.000 0.399 0.096 1.100

D 3.000 0.041 2.699 3.301 0.500 3.319 0.000 0.399 0.120 3.000

S0 0.005 0.250 0.002 0.008 0.500 326.599 0.000 0.399 0.001 0.005

λL 1.000 0.123 0.699 1.301 0.500 3.319 0.000 0.399 0.120 1.000

C 0.825 0.200 0.421 1.229 0.500 2.474 0.000 0.399 0.161 0.825

I 4.000 0.300 1.061 6.939 0.500 0.340 0.000 0.399 1.173 4.000

A 25.000 0.041 22.502 27.498 0.500 0.400 0.000 0.399 0.997 25.000

Gamma Distribution

Mean x CV x a B P(x*) p(x*) Φ–1 [P(x*)] φ{Φ–1 [P(x*)]} SD Mean

N 0.015 0.300 11.111 0.001 0.540 87.992 1.00E-01 0.397 0.005 0.015
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Table E14-32c Solution using Rackwitz’s iterative method (by setting up the algorithm 
at old Xi = Mean X and d = 3.0 ft).

Parameter Old 
Xi

Mean
from 

col. (11)

SD
from 
col. 
(10)

dg/dx a
Eq. 14.56

New
Xi

λM 1.100 1.100 0.096 3.913 0.113 1.111 Performance 
function, 
Z = –1.995

D 3.000 3.000 0.120 4.802 0.138 3.017

S0 0.005 0.005 0.001 5.490 0.158 0.005

N 0.015 0.015 0.005 –13.517 –0.389 0.013 Reliability index, 
β = 0λL 1.000 1.000 0.120 –9.916 –0.286 0.965

C 0.825 0.825 0.161 –16.124 –0.464 0.749

I 4.000 4.000 1.173 –24.186 –0.697 3.173 Probability of 
failure,
Pf  = 0.5

A 25.000 25.000 0.997 –3.289 –0.095 24.904

Table E14-32d Solution using Rackwitz’s iterative method (obtained for d = 3.0 ft).

Variable Old Xi Mean 
of Xi

SD of 
Xi

∂g/∂x αi New Xi

λM 1.114 1.100 0.101 5.218 0.145 1.114 Performance 
function,
Z = 5.09 × 10–5d 3.023 2.999 0.128 6.506 0.180 3.023

S0 0.005 0.005 0.001 7.167 0.199 0.005

n 0.012 0.014 0.004 –18.476 –0.512 0.012 Reliability index, 
β = 1.012λL 0.973 1.001 0.129 –7.641 –0.212 0.973

C 0.760 0.828 0.179 –13.575 –0.376 0.760

I 3.129 4.030 1.321 –24.350 –0.674 3.129 Probability of failure,
Pf = 0.844A 24.933 25.001 1.022 –2.365 –0.065 24.933

Table E14-32e Reliability for various sewer sizes. 

d Pf R

3 0.844 0.156

4.5 0.570 0.430

5 0.360 0.640

6 0.097 0.903

7 0.000 1.000



Reliability Analysis and Estimation 667

14.3 The average volume of space for flood control in a multipurpose storage
reservoir is about 15 million m3 with a standard deviation of 2.0 million m3.
The mean volume of the largest flood in a given year is 9 million m3 with a
standard deviation of 3.0 million m3. Determine the probability that the res-
ervoir would not be able to contain the largest flood.

14.4 Considering the data of Question 14.3, determine the risk that the reser-
voir would not be able to contain the flood if the flood and the capacity
followed the gamma distribution.

14.5 The monthly maximum concentration in a stream is observed to be
approximately normally distributed, with a mean of 10.00 mg/L and a
standard deviation of 3.0 mg/L. For waste discharge, there is a require-
ment that the pollutant concentration, 200 m downstream from the out-
fall, exceeding 10 mg/L during any one month should have less than 1%
chance. Is the requirement being satisfied?

14.6 The water supply to a town is 1,000 m3 per day. The demand for water in
the town follows a normal distribution with a mean of 900 m3 per day
and a standard deviation of 250 m3. Determine the risk that the water
demand would not be met on a typical day. Determine the risk if the
water supply had a standard deviation of 200 m3.

14.7 Assume that the water supply and demand in Question 14.6 are corre-
lated with ρ = 0.2 and their joint probability distribution is normal.
Determine the probability P(C ≤  800, D ≥ 1000). Also determine this
probability if ρ = 0.5.

14.8 Solve Question 14.2 using FOA by defining the performance function as
in the conventional MOS and FOS.

14.9 Let the concentration C of a pollutant in a stream be given as C = aQb,
where Q is the streamflow and a and b are some constants. Consider
the performance function as Z = Cmax – aQb, with Cmax (the maximum
allowable pollutant concentration) = 15 mg/L, a = 2.10 × 10–8, and b = 3.
The flow discharge has a mean value of 1,000 cfs and a coefficient of
variation of 0.35. Determine the probability that the allowable stream
standard would be violated.

14.10 Let the chlorine concentration C (mg/L) at time t in a drinking water dis-
tribution system be given as , where C0 = the initial chlo-
rine concentration (mg/L) = 4 mg/L and k = the overall decay constant
(L/hour) with a mean value of 0.20 L/hour and coefficient of variation
of 0.30. Determine the reliability that a location having a travel time of 20
hours would have at least 0.50 mg/L of residual chlorine. 

C C kt= −( )0 exp
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14.11 Let the terminal scour depth downstream of an outlet facility be
given as

whose parameters are given in Table 14-11. Determine the reliability of the
outlet structure against the scouring induced by vertical jets downstream
of the outlet facility, if the foundation depth is df = 8, 10, 12, and 15 m. 

14.12 Solve Question 14.8 using the corrected FOA method. 

14.13 Solve Question 14.9 using the corrected FOA method assuming Q is
characterized by (1) a normal distribution, (2) a log-normal distribution,
and (3) a gamma distribution. 

14.14 Solve Question 14.10 using the corrected FOA method assuming k is
characterized by (1) normal and (2) gamma distributions. 

14.15 Solve Question 14.11 using the corrected FOA method.

14.16 Solve Question 14.11 using the ellipsoid approach. 

14.17 A culvert has been designed for a carrying capacity of 50 cfs. Based on
the rational formula the 5-year flow at that point is given as Q = 2.41 × C
× A × (Tc + 0.2)–0.77. Assuming all variables are independent and nor-
mally distributed, determine the probability of failure of the culvert
using FORM and the data from Table Q14-17.

14.18 Solve Question 14.17 using FORM if C and Tc are correlated with
r(C, Tc) = 0.50.

14.19 Solve Question 14.18 using FORM if C and Tc and A are characterized by
log-normal, gamma, and triangular distributions, respectively. Assume
ρ = 0.50 between C and Tc.

14.20 Solve Question 14.10 for the time of travel t = 1 to 24 hours using the
generic function method. Also calculate the mean and variance using the
FOA method and their errors using the corrected FOA method. Assume
k is characterized by a gamma distribution with a mean of 0.20 L/hour
and a coefficient of variation of 0.33. 

14.21 Solve Question 14.17 using the PE method.

Table Q14-17

Function Mean SD

A 15.00 1.25

C 0.50 0.20

Tc 0.40 0.25

d
b u Dg

y W
s

f
= λ

110 0 862 0 891 1 128

0 431 2 01

. . .

. .
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Chapter 15

Risk Analysis and 
Management

Risk is an inherent part of life and engineering decisions. The word “risk” seems
to have been derived from Spanish or Portuguese. Originally, it referred to sail-
ing into uncharted waters and it had therefore an orientation in space. Another
illustration of spatial orientation would be individuals or governments or banks
lending money for projects. With progression of time, its connotation assumed a
time dimension. For example, in water resources and environmental engineer-
ing risk may entail calculation of the probable adverse consequences of environ-
mental and water resources projects to be built for people in the project area.
Normally, one would want to minimize the risk of undesirable consequences or
outcomes of a decision. In most cases it is not possible to completely eliminate
risk; however, one can mitigate it. Before initiating a discussion on risk, the fre-
quently used terms are defined first.

15.1 Basic Definitions

15.1.1 Risk 

Risks are possibilities that human activities or natural events lead to conse-
quences that affect what humans value. The definition of risk varies with the
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purpose—it also changes with discipline. In general terms, risk can be defined as
the potential loss resulting from the convolution of hazard and vulnerability.
Mathematically, risk may be expressed as the probability of surpassing a deter-
mined level of economic, social, or environmental consequence at a certain site
and during a certain period of time. Convolution is a mathematical term that
refers to concomitance and mutual conditioning of hazard and vulnerability. In
other words, a system cannot experience a risk if it is not exposed to a hazard
and is vulnerable. Hazard and vulnerability are mutually conditioning situa-
tions and neither can exist on its own. Altering one or two of the components of
risk alters the overall system risk as well. However, in many cases it is not possi-
ble to modify hazard to reduce risk; one has to reduce the vulnerability of the
system as a measure of prevention or mitigation, a process also known as risk
reduction. 

Most commonly, in civil engineering risk has been defined as the probability
of a system failure, the reciprocal of the expected length of time before a system
failure takes place, or some measure of the cost of failure. The Royal Society
(1983) defined risk as the probability that a particular adverse event (an event
whose occurrence produces harm, such as a 100-year flood, a category-5 hurri-
cane, a 50-ft storm surge, or a 300-mile/hour tornado) occurs during a stated
period of time. Thus, the concept of risk combines a probabilistic measure of the
occurrence of the adverse event with a measure of the consequences of the
occurrence of that event. The occurrence may include the amount or intensity,
starting time, or duration. 

An important point to note is that risk is not viewed in a positive sense. Con-
sider, for example, that a person receives information that he is likely to receive
an award of either 1 million dollars or 10 million dollars. Although the person is
not certain as to the amount he will receive, it is safe to say that he will not be
under risk.

Risk involves uncertainty as well as loss or damage. For example, the risk of
flooding involves the probability of occurrence of the flood as well as the dam-
age that might result from the flood event. Therefore, 

Risk = Hazard uncertainty + Consequence owing to the system’s 
vulnerability to hazard (damage or loss) (15.1)

Sometimes risk is defined as the probability times consequences. A draw-
back of this definition is that it equates risk of a high-probability, low-damage
event with that of a low-probability, high-damage event. Clearly, in real life these
two events may not amount to the same risk. 

The converse of loss is benefit, which is defined in terms of gain or improve-
ment for a human being, a society, a nation, the human population, or the planet.
Expected benefit includes an estimate of the probability of achieving the gain.
Gain and loss are often measured in economic terms but in real life they can also
be in nontangible terms. 
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Example 15.1 Most people are always interested in weather. What is the risk
from the coldest weather on record next winter in Baton Rouge, Louisiana? 

Solution Weather plays an important role in our daily lives. We want to know
whether the coming winter in Baton Rouge will be the coldest on record and its
consequences if it is. Thus, risk (assuming cold weather is harmful) in this case is
the probability of occurrence of the coldest winter next year in Baton Rouge and
the ensuing consequences in terms of crop damage, bursting of pipes, traffic
accidents, higher heating bills, and so on.

15.1.2 Conditionality of Risk

All risks are conditional and the conditions are often implied by the context and
are not explicitly stated. For example, the risk of death from a flood is relatively
small in the United States, but its value will significantly differ from one place to
the other and from one country to the other, depending on the climate, flood
protection schemes, warning issued, communication, rescue operations, peo-
ple’s perception, etc. In contrast, the risk of death from a flood of the same mag-
nitude can be relatively large in, say, Bangladesh. The tsunami of December 26,
2004, caused an unimaginable loss of human life in Asian countries. If the same
tsunami were to occur in the United States, it is almost certain that the loss of
human life would be little because of advanced warning systems, better infra-
structure, and the receptivity of Americans to warning. In light of what hap-
pened in Louisiana in general and New Orleans in particular when Hurricane
Katrina hit, the level of preparedness in the United States has come under
question.

15.1.3 Hazard 

Hazard is a situation or occurrence of an event that could, in particular circum-
stances, lead to harm. Hazard can be considered as a latent danger or an external
risk factor of an exposed system. This can be mathematically expressed as the
probability of occurrence of an event of certain intensity at a specific site and
during a determined period of exposure. Thus, hazard is a source of risk and risk
includes the chances of conversion of that source into actual loss. For example, it
is not advisable to drive when road conditions are icy and not favorable for driv-
ing. It is not advisable to go to a beach when there is a warning of tsunami. It is
hazardous to cross a river under spate by swimming, because the chances of
drowning are relatively significant even for an expert swimmer. But if the swim-
mer attempts to cross the river by a motorboat, equipped with a powerful
engine, rugged body, and life jackets, etc., the risk of drowning is considerably
smaller. Thus safeguards help reduce risk. Mathematically, one can write
(Kaplan and Garrick 1981)

Risk = Hazard/Safeguards (15.2)
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Equation 15.2 uses division rather than subtraction. As safeguards tend to
zero, even a small hazard can lead to a high value of risk; as safeguards increase,
the risk becomes smaller. In day-to-day life this equation is seen to work. For
example, implementation of strict traffic rules in many countries has reduced the
risk of accidents to a small number, whereas in some countries road traffic is
considered as highly risky. After the tragic experience of Hurricane Katrina in
2005 in New Orleans and along the Mississippi Gulf Coast, people in western
Louisiana and Texas heeded the warnings about Hurricane Rita and the result
was relatively little loss of human life. 

Harm is defined as the loss to a human life (or human population) or plant
life and animals as a consequence of damage, where damage is the inherent
quality of loss suffered by an entity (physical or biological or social). Identifica-
tion of hazard comprises an important part of risk assessment. The techniques of
hazard identification include safety audit, hazard survey, hazard indices, and
hazard and operability studies. Many countries have standardized and docu-
mented procedures of hazard identification.

Detriment is a numerical measure of the expected harm or loss associated
with an adverse event. It is generally the integrated product of risk and harm
and is often expressed in terms of costs measured by a monetary currency (say,
dollars), or loss in expected years of life, or loss of productivity. A determination
of detriment is often needed for cost–benefit or risk–benefit analysis. It is a
numerical way of comparing different events associated with the same hazard or
the combined effects of events from different hazards.

Example 15.2 Consider a detention pond for local flood control in an urban
area. What could the risk be from this detention structure?

Solution The detention dam may be overtopped and breached. As a result, the
dam breach may cause harm to people in the urban area. The risk would be the
probability of specified damage or harm in a given period.

For water control structures, hazard from failure depends on the size of the
structure. Therefore, decisions about the recommended design load (or design
flood) are based upon the size of the structure and its hazard potential. The rec-
ommendations of the U.S. Army Corps of Engineers regarding selection of spill-
way design flood for a dam are given in Table 15-1. A typical classification of
reservoirs according to size and the hydraulic head is given in Table 15-2. The
hazard potential classification of reservoirs is given in Table 15-3.

15.1.4 Disaster

The term disaster has the connotation of an event capable of inflicting damage or
causing danger to human and/or animal life and/or property. A disaster can be
anthropogenic or natural. Hurricanes, typhoons, cyclones, earthquakes, tsuna-
mis, lightning, and land subsidence are examples of natural disasters. Anthropo-
genic disasters include dam breaching, levee failure, chemical spills, nuclear
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explosions, bomb blasts, bridge collapses, train accidents, and so on. Disasters
have occurred from time immemorial and will continue to occur. We cannot
eliminate disasters but we can mitigate their impact. 

15.1.5 Characterization of Risk and Concept of Risk Triplet 

Characterization of risk helps establish its specific context. To characterize risk,
two basic elements are necessary: 

1. Probability of occurrence of a hazard
2. Extent of damage, which is governed by the vulnerability of a given sys-

tem to exposed hazard. 

Table 15-1 Recommendations regarding selection of design flood.

Hazard Size Design flood

Low Small 50 to 100 years

Intermediate 100 years to 0.5 PMF

Large 0.5 PMF to PMF

Significant Small 100 years to 0.5 PMF

Intermediate 0.5 PMF to PMF

Large PMF

Large Small 0.5 PMF to PMF

Intermediate PMF

Large PMF

Note: PMF = probable maximum flood.

Table 15-2 Size classification of reservoirs.

Type of Dam Storage capacity
(million m3)

Hydraulic head 
(m)

Inflow design flood

Small 0.5–10 7.5–12 100 year

Intermediate 10–60 12–30 SPF

Large > 60 > 30 PMF

Note: SPF = standard project flood.

Table 15-3 Hazard potential classification of reservoirs.

Category Loss of life Economic loss

Low None expected Minimal

Significant Few Appreciable 

High More than a few Excessive 
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Risk assessment evaluates and integrates these two components. To repre-
sent risk, the concept of triplet definition is widely applied. This can be parame-
terized by asking three questions:

1. What is the harmful event occurring or what can go wrong during a
given event?

2. What is the probability of the event occurring?
3. What are the consequences if the event occurred?

These three questions are answered by preparing a list of scenarios in which
the answers to the questions are arranged as a triplet (Kaplan and Garrick 1981):

R = [si, pi, xi ], i = 1, 2, …, N (15.3)

where si is the scenario or hazardous event identification, pi is the probability of
that event or scenario, xi is a measure of loss and represents the consequences of
that event or scenario, and R is the risk. The scenario list can be conveniently
arranged in the form of a table. Such a table of scenarios for the failure of a dam
is shown in Table 15-4. In risk analysis, we try to determine how the events will
turn out in the future if certain actions are initiated (or not initiated).

If this table contains all the possible scenarios, it is the estimation of risk. Of
course, the list of scenarios in a real-life case can be quite lengthy. Kaplan and
Garrick (1981) suggest that a category “others,” encompassing all the scenarios
that have not been thought of, may be added to the list for the sake of comple-
tion. Of course, the problem of assigning a probability to this category remains
to be tackled. Logically, the probability for the event in this category will be very

Table 15-4 Scenarios (illustrative list) for dam failure.

Scenario or event Probability Consequences

Structural failure

Dam overtopping 0.001 Failure of main dam

Piping 0.002 Excessive erosion

Failure of spillway 0.0004 May lead to failure of main dam

Sloughing on dam slopes 0.0009 Localized damage to dam body

Earthquake of magnitude > 8 
on Richter scale occurs

0.0001 Extensive damage to the dam and the 
appurtenant works

Performance failure

Flood bigger than design 
flood enters reservoir

0.0002 Large flows cause damage in down-
stream areas

Water inflows are very small 0.0001 Reservoir cannot meet the intended 
objectives

Power plant turbine fails 0.00015 Less electricity is generated

Others 0.00003 Unknown 
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small because the event has not happened; otherwise it would have been
included in the list.

The triplet-based definition of risk and previous discussion suggest that haz-
ard can be defined as a subset of risk—a set of doublets:

H = [si, xi], i = 1, 2, …, N (15.4)

If the consequences are arranged in order of increasing severity of damage

x1 ≤ x2 ≤  … ≤ xN

then the second column of Table 15-2 can be accumulated and a smooth curve
between x and p can be plotted, as shown in Fig. 15-1. Such curves are termed
risk curves. 

15.2 Risk and Its Classification

Risk can be classified into three categories: 

1. Risks for which statistics of identified casualties are available
2. Risks for which there may be some evidence, but where the connection

between suspected cause and damage cannot be established
3. Estimates of probabilities of events that have not yet occurred. 

Additionally, there are risks that are unforeseen.
All systems have a probability of failure no matter how small it is and the

complete avoidance of all risk of calamitous failure is not possible. The objective
is to reduce the probability to an acceptable level of individual and societal risk.
An engineering approach to quantify risk begins with a physical appreciation of
possible failure mechanisms or modes and their analysis. This entails quantifica-
tion of the reliability of the components and examination of the systematic fail-
ure to establish the overall vulnerability of the complete system, based on
experience, and verified by analysis, testing, and inspection. 

An examination of past events helps with an understanding of failure modes.
Consider, for example, the case of river levees for flood control. In light of the
potential for major consequences involved in project failures, it is not advisable to
wait for disasters to occur such that a body of case histories can be built to form a
basis for policy decision making. Therefore, an anticipatory approach based on
judgment and experience is required, and such an approach can be developed
using risk estimation through methods based on a systematic decomposition of a
complex system into its component subsystems and the use of predictive tech-
niques and modeling. Thereafter failure mechanisms can be analyzed and risk
estimated by pooling together models of individual subsystems. This method
requires a wide range of data on past failures and knowledge about the various
processes that could occur. The results of such a method are subject to substantial
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uncertainties owing to inadequacies in the data and insufficient accuracy of scien-
tific knowledge. 

There are other more traditional methods in widespread use that are essen-
tially deterministic in nature. A deterministic method can be illustrated by the
employment of a factor of safety, which can be defined as the ratio of design
strength to design stress. A multitude of factors affect both design demand and
design capacity. In practice, therefore, there will be a distribution of demand and
capacity, both having mean values with a spread about those means. If the mean
demand is smaller than the mean capacity, then it can be shown that failure will
occur where the upper end of the demand distribution encounters the lower end
of the capacity distribution. This leads to definitions of safety factors and safety
margins in probabilistic terms.

Although a deterministic approach incorporates the concept of the variabil-
ity of demand and capacity, it implies that there is a level of probability of failure
that is acceptable for design purposes, and that level can be quantified. In con-
trast, the probabilistic approach includes the low-probability events in the over-
all assessment. By necessity, sufficient data must be available.

In terms of decision making, the deterministic approach incorporates
implicit value judgments as to an acceptable standard of practice and is derived
from an extension of past practice and experience, which may be inadequate to
deal with rapidly changing technology. In contrast, the probabilistic approach
describes hazard in terms of risk of failure and its associated consequences.
Thus, it enables making an acceptable decision based on a design process and
making needed judgments.

The risk of failure and its consequences are significantly influenced by man-
agement. Effective management and auditing of safety involves many of the

Figure 15-1 Smooth risk curves.
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principles of total quality management (TQM). These ensure the maintenance of
safe practices laid down in the safety guidelines. Management of safety also
involves the training of staff to observe, record, and report; not to panic; to sys-
tematically react to the onset of a potential disaster; and to organize evacuation
and rescue procedures in the event of a disaster. The absence or lack of adequate
management and auditing of safety may exacerbate a major disaster. This is more
or less what happened when Hurricane Katrina hit New Orleans, Louisiana. 

15.2.1 Aspects of Risk

Risk has two aspects—negative and positive—and they emanate from the early
beginnings of modern industrial society. Traditional cultures did not have a con-
cept of risk because they did not need one. The concept of risk is widely used in a
society that is future oriented, which sees the future to be managed. In earlier
times or even today in many countries, the ideas of fate, faith, luck, destiny, the
will of God, etc. are prevalent. We now tend to substitute risk in their place.
Acceptance of risk may also be viewed as a condition of excitement, thrill, and
adventure. For example, some people get pleasure from the risks of rock climb-
ing, mountain hiking, gambling, skiing, surfing, canoeing, driving fast, balloon-
ing, the plunge of a fairground rollercoaster, etc. One can argue then that a
positive embrace of risk is the very source of energy that creates wealth in a mod-
ern society. This perhaps is the basis of the common phrase “No risk, no gain.” 

Risk serves as a dynamic force that compels a society to carve its future
rather than to leave it to religion, faith, luck, destiny, God, tradition, or vagaries
of nature. For example, a modern capitalistic society carves its future using risk
and this is reflected through the calculation of expected profit and loss or
expected monetary value in future. We wish to minimize a multitude of risks,
such as those related to human health, environmental pollution, disease epi-
demic, drug addiction, social violence, wildfires, and flooding. This indeed is the
basis of insurance policies. Insurance is the baseline against which people are
prepared to take risks. It is the basis of security where fate is replaced by an
active engagement with the future. Insurance is only conceivable where there is
belief in a humanly engineered future. Although insurance provides security, it
may be actually parasitic upon risk and people’s attitudes toward it. Indeed, risk
is traded off in exchange for payment. The trading and offloading of risk is actu-
ally the backbone of a capitalist economy. Thus, the idea of risk is involved in
modernity. Risk is supposed to be a way of regulating the future, or normalizing
it and bringing it under control. Our efforts to control the future tend to compel
us to look for different ways of relating to uncertainty.

15.2.2 Types of Risk

The notion of risk is inseparable from the concepts of probability and uncertainty.
Risk is not the same as hazard or danger. It relates to hazards that are assessed in
terms of future possibilities. Two types of risks can be distinguished: external risk
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and manufactured risk. External risk is the risk that stems from outside, from the
fixities of tradition or nature. Manufactured risk is the risk that is created by our
actions and can occur in a situation that we have very little experience of con-
fronting. For example, environmental risks of global warming or climate change
are manufactured risks, influenced by intensifying globalization. This is the risk
created by the very impact of our developing knowledge upon the world. Flood-
ing risk from land use change, such as urbanization, can be categorized as a man-
ufactured risk.

From the earliest days of human civilization up to the threshold of modern
times, risks were primarily due to external sources (natural): floods, famines,
plagues, earthquakes, tsunamis, etc. Recently, the focus has shifted from what
nature does to us to what we have done to nature. This marks the transition from
the predominance of external risk to that of manufactured risk. Much of what
used to be natural is not completely natural any more. Therefore, natural phe-
nomena, such as floods, droughts, diseases, extreme weather, and land subsid-
ence, are not entirely natural; rather, they are being influenced by human
activities, as suggested by their unusual features.

As a manufactured risk expands, there is a new riskiness to risk. The very
idea of risk is tied to the possibility of calculation. However, in many cases we
simply do not know what the level of risk is and we could not know for sure
until it is too late. In these circumstances, there are two extremes to characteriz-
ing risk. On the one hand, if the risk is real, there must be an explicit statement to
that effect and the risk must be emphasized even at the cost of scaremongering.
On the other hand, if the risk turns out to be minimal, there will indeed be accu-
sations of scaremongering. Furthermore, if the risk is not emphasized and it
turns out to be significant, there will then be accusations of cover-up. This is
illustrated in Fig. 15-2. 

Figure 15-2 Characterization of risk.
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                        Not emphasized => Cover-up
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In many cases of manufactured risk, it is difficult to say when there is scare-
mongering and when there is not. In the hurricane season of 2004, it was
assessed that the New Orleans area might get hit by a hurricane named Ivan.
Therefore, local and state governments decided to evacuate people before the
arrival of Ivan. There was massive migration of people from New Orleans to
areas 100 or more kilometers away. Roads were jammed and people took hours
to travel even short distances. Fortunately, it turned out that Hurricane Ivan
spared New Orleans, but it did hit parts of Florida and Alabama. A couple of
days after people had returned to New Orleans, they started complaining about
the false warning and unnecessary evacuation. This was a typical case of decid-
ing between two options: (1) evacuating and following a safer route or (2) taking
a chance and not evacuating. 

As science and technology become more and more integral parts of our life,
there must be a more engaged relationship between science and technology and
people. Scientific findings can no longer be accepted on their face value, espe-
cially in situations of manufactured risk, if only because scientific findings are
sometimes conflicting. Thus, one way to cope with the rise of manufactured risk
is to employ the precautionary principle. It presupposes action about issues even
though there is insufficient scientific evidence about them. Sometimes this princi-
ple is not helpful in coping with risk and responsibility. Sometimes we need to be
bold rather than cautious in supporting innovation or other forms of change.

Risk involves a number of unknowns, and we need to reduce these unknowns
or manage them. This leads to the concept of risk management: the balance of risk
and danger. Merely taking a negative attitude toward risk is not scientific nor
healthy. Risk needs to be managed: Active risk-taking is a core element of a
dynamic economy and innovative society.

15.2.3 Acceptable Risk

One of the dilemmas in risk assessment is defining “acceptable risk.” The accept-
ability depends on the context in which to assess risk and the availability of
financial resources. Furthermore, it also depends on whether one is taking an
individual view or a much broader view. However, it may be added here that
the notion of an acceptable probability is highly subjective and it is difficult to
arrive at a rational number by using some objective criteria. Consider a design
that can give protection against an event x up to a certain magnitude xd. The
design is acceptable if the exceedance probability, Prob(x ≥ xd) = 1 – Prob(xd), is
smaller than the acceptable value PAcc (Plate 2002). The acceptable value of risk
for a person reflects his or her preference; Vrijling et al. (1995) suggested that it
can be written as

(15.5)P i

ij
Acc

year
=
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where βi can range from 0.01 for a high risk for an action that gives no benefit to
the person to 10 for a risky activity that brings high satisfaction to the person;
and νij is the vulnerability of an individual to an event xi. For a nation, the
acceptable probability, according to Vrijling et al. (1995), becomes

for n ≥ 10 casualties (15.6)

A problem with the idea of acceptable risk is that acceptability or otherwise of
a risk can only be expressed along with the associated costs and benefits. Given
an option, one may not be willing to accept any risk at all. At a given time, a risk
may be taken only if some benefits are associated with it and these cannot be
obtained in another way unless a higher risk is taken. Logically, a decision maker
will choose the optimum mixture of risk, cost, and benefit and might be willing to
take a higher risk only if it is associated with either less cost or more benefit.

The second point to highlight here is the implicit assumption that risks are
linearly comparable, but this is not true. For instance, one cannot say in Fig. 15-1
whether risk is higher in case of the curve A or curve B. A way out is to some-
how reduce the risk curves to single numbers by defining a utility function,
which depends on x, and then integrate to determine the expected utility.

15.3 Risk Criteria

Natural hazards, such as hurricanes, floods, droughts, earthquakes, tornadoes,
winds, snow avalanches, traffic accidents, tsunamis, lightning, and others, have
always been a source of concern to planners, designers, operators, and managers
of engineering systems. Because of their destructive nature, they are assigned a
major role in design considerations. There are many phenomena for which it is
difficult to assess the degree of risk. By increasing the factor of safety, one can
reduce the risk but there is a natural reluctance to pay for the often exorbitant
cost that is associated with the safety factor. Even with an increase in safety,
there will always be some risk because it is not possible to build a system that is
so strong that it can withstand all conceivable disasters. Thus, in reality risk can-
not be eliminated entirely, but it can be reduced to an acceptable level.

A risk criterion is a qualitative and quantitative assessment of the acceptable
standard of risk with which to compare the assessed risk. A risk criterion is
employed to balance the risk of loss against the cost of increase in safety. There
are several risk criteria that are employed in engineering. Some of the simple cri-
teria include (Borgman 1963)

1. Return period
2. Encounter probability
3. Distribution of waiting time

P
n
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4. Distribution of total damage
5. Probability of zero damage
6. Mean total damage

The choice of the most appropriate criterion is a matter of engineering judg-
ment. These criteria emphasize different risk aspects and can be derived from
mathematical risk models.

15.3.1 Dimensionality of Risk

Risk cannot be perceived simply as a one-dimensional objective concept, such as
the product of the probabilities and consequences of any event. Risk perception
is inherently multidimensional and personalistic, with a particular risk or haz-
ard meaning different things to different people and different things in different
contexts. Given the conditional nature of all risks, assessments of risks are
derived from social and institutional assumptions and processes; that is, risk is
socially constructed.

15.3.2 Risk Quantification

Statistical estimation of a risk may involve developing probabilities of future
events, based on a statistical analysis of past historical events. It also involves the
appraisal of the significance of a given quantitative (or, when acceptable, quali-
tative) measure of risk.

15.4 Risk Assessment and Management 

Risk assessment is a systematic, analytical method used to determine the proba-
bility of adverse effects, whereas risk management is a systematic process of mak-
ing decisions to accept a known or assumed risk and/or the implementation of
actions to reduce the harmful consequences or probability of occurrence. Risk
management is also concerned with the mitigation of those risks derived from
unavoidable hazards through the optimum specification of warning and safety
devices and risk control procedures, such as contingency plans and emergency
actions. Hazard identification, risk analysis, risk criteria, and risk acceptability
generally define risk management. Although risk evaluation and management is
largely a technical exercise, economic and social aspects (often remaining in the
background) are always important and influence the selection of critical parame-
ters. Assessment and management do overlap but are separate tasks. There is
need to bring together natural science expertise and knowledge about human
behavior and the operation of human institutions.
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The steps of risk management are depicted in Fig. 15-3. These days, most
large organizations integrate risk management in overall decision making. There
is considerable diversity of opinion as to the identification, measurement, and
regulation of risk. Risk management may entail 

1. The degree of anticipation to be adopted
2. The extent of blame (orientation) in management systems
3. The contribution of quantitative assessment techniques
4. The feasibility of institutional design
5. The cost of risk reduction
6. The desirable level of participation
7. The regulatory budget

15.4.1 Hazard Identification and Management 

Environmental management and civil engineering systems are always subject to
hazards that may arise in the form of natural inputs; the possibility of sabotage is
also increasing with time. A reservoir may be subject to a big flood and a sky-
scraper may be hit by a tornado. The cause of hazard may be an event that takes
place suddenly and is difficult to predict in advance, such as an earthquake or a
tornado. The hazard-producing event (e.g., a flood) may take some time to
develop and can be forecasted so that a timely management action can be initi-
ated. Events such as droughts (also termed a “creeping disaster”) take a long
time to develop but even then their occurrence cannot be avoided and the only
possible way to tackle them is preparedness. 

Hazard identification is the first step in risk estimation and involves the
human element—cultural, social, organizational, group, and individual—which
is frequently a contributing cause of disasters. It depends on knowledge, experi-
ence, forecasting, engineering judgment, and imagination. The key is to include
all hazards, however unlikely these may be.

Figure 15-3 Steps in risk management.
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Hazard identification and reliability and failure analysis encompass a com-
pilation of possible failures, each with a set of parameters for consequence mod-
eling. Hazard management depends on the types of hazards to be managed:

1. Natural hazards (emanating from the physical environment)
2. Technological hazards (from human-created technology)
3. Social hazards (from within human society)

Note that hazard identification does not quantify risk. Quantification of risk is
carried out by reliability and failure analysis followed by consequence modeling.

The events that produce hazards are characterized by their magnitude and
an event is termed as hazardous when the magnitude crosses over a threat-
producing threshold. This concept can be appreciated by noting that a perennial
river always carries some flow but a flood is said to occur when the flow crosses
over the channel section to inflict damage to the adjoining areas. In statistical
analysis, the term return period is frequently used to denote the magnitude of an
extreme event. As an example, flood frequency analysis based on the log-
Pearson type 3 distribution was performed by using 51 years of streamflow data
(1949–2000) from U.S.G.S. Station #08053000 on the Elm Fork Trinity River near
Lewisville, Texas, to estimate flood magnitudes for various return periods as
presented in Table 15-5.

Hazard maps are prepared to convey the susceptibility of an area or place.
For example, earthquake zone maps indicate the chances of occurrence of earth-
quakes of various intensities. Likewise, flood-plain zoning maps indicate the
area adjoining a river that is likely to be submerged by floods of various return
periods. Thus three-dimensional maps with video animation for easy interpreta-
tion can be prepared to indicate likely submergence areas. The Federal Emer-
gency Management Agency (FEMA) publishes flood hazard information for
various counties subjected to flooding. As an example, a Flood Insurance Rate
Map, presented in Fig. 15-4, helps identify areas subjected to flooding in St. Clair
County, Illinois.

15.4.1.1 Environmental Hazard

An environmental hazard is an event, or continuing process, that, if realized, will
lead to circumstances having the potential to degrade, directly or indirectly, the

Table 15-5 Estimated streamflow during flood.

Return period,
T (years)

Exceedance probability,
1/T

Flood magnitude, 
Q (cfs)

50 0.02 154,254

100 0.01 204,693

200 0.005 265,672

500 0.002 382,028
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quality of the environment in the short or longer term. Risks affecting the envi-
ronment should not be confused with risks caused by environmental effects,
either natural or anthropogenic.

15.4.2 Expression of Risk 

There are considerable difficulties in determining and quantifying the public
and political understanding of risk, and especially in defining an acceptable
social risk. One of the most widely used expressions is individual risk, which
may be in terms of mortality rate or harm caused to an individual. Another mea-
sure may be to relate the detriment to any one of a variety of measures of activity
rather than to a simple unit of time. Loss-of-life expectancy is another expression
of risk. Frequency against consequence, a graph of frequency of events versus
the consequence, can be used to estimate risk.

Figure 15-4 FEMA Flood Insurance Rate Map (FIRM) for St. Clair County, Illinois.
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15.4.2.1 Individual Risk

Individual risk is the frequency at which an individual may be expected to sustain
a given level of harm from the realization of a specified hazard.

15.4.2.2 Societal Risk

Societal risk is the relation between frequency of occurrence and the number of
people in a given society suffering from a specified level of harm from the
realization of a specified hazard. Public attitudes favoring less risk are compatible
with the desire to develop better technology and greater regulation of technology.

15.4.2.3 Economic Risk

Economic risk is related to financial losses that represent the commercial conse-
quences of a hazard. The financial loss associated with a product or system from
potential hazards may be caused by loss of production or damage or be the result
of other financial consequences. Risk to human safety can also have economic
consequences. The loss can be either partial or total, and it can be temporary or
permanent. The loss can be financial or related to safety. Costs can include those
associated with capital, operations, maintenance, and/or life cycles.

15.4.2.4 Environmental Risk

Environmental risk is a measure of potential threats to the environment; it com-
bines the probability that events will cause or lead to degradation of the environ-
ment and severity of that degradation. A common application of risk assessment
methods is to evaluate human health and ecological impacts of chemical releases
into the environment. Information gathered from environmental data collection,
monitoring, or modeling is incorporated into models of human and ecosystem
exposure, and conclusions on the likelihood of adverse effects are determined.
As such, risk assessment can be an important tool for making decisions with
environmental consequences. Almost always, when the results from environ-
mental risk assessment are used, they are incorporated into the decision-making
process along with economic, societal, technological, and political consequences
of a proposed action. The two most widely used examples of environmental risk
assessment are (1) human health risk assessment, to examine the effects of an
agent on humans, and (2) ecological risk assessment, to examine the effects of an
agent on ecosystems.

15.4.2.5 Human Health Risk Assessment

Human health risk assessment has received increased attention because of the
recognition of both the potential threat to human health from hazardous sub-
stances and the potential for releases into the environment. Recognizing the
extent of the hazardous waste problem and the role of risk assessment, the U.S.
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Environmental Protection Agency has developed assessment procedures that are
used for a variety of purposes. Risk assessment is used for designating sub-
stances as hazardous and establishing minimum quantities for reporting releases
when they would present substantial danger. In addition, risk assessment is used
to evaluate the relative dangers of various sites to establish priorities for response
actions and for developing, evaluating, and selecting appropriate response
actions at the contaminated site. For example, risk assessment is used to evaluate
threats to public health posed by a Superfund site.

The risk assessment is carried out in four steps (USEPA 1989). The first step
is hazard identification, in which chemicals of concern are selected based on
their toxicity, mobility, spatial distribution, and concentration. In the second
step, exposure assessment, all possible exposure pathways (e.g., inhalation,
ingestion, and dermal) are identified. In the third step, intake doses of the pre-
identified contaminants absorbed through the various exposure routes are esti-
mated. The final step is risk characterization, in which the magnitude of risk is
calculated. Quantitative uncertainty analysis is necessary when screening level
calculations indicate a potential problem, remediation may result in high costs,
or it is necessary to establish the relative importance of contaminants and expo-
sure pathways.

After the exposure point concentrations of specific chemicals through rele-
vant pathways are estimated, it is necessary to estimate the amount of a sub-
stance taken by a person. For calculating the chronic daily intake, the generic
equation for intake dose is given as

(15.7)

where CDI is the chronic daily intake (mg/kg/day), C is the chemical concentra-
tion, contacted over the exposure period (mg/L), CR is the contact rate, the
amount of contaminated medium contacted per unit time (L/day), EF is the expo-
sure frequency (day/year), ED is the exposure duration (years), BW is the body
weight, and AT is the averaging time.

The risk from a carcinogenic chemical is calculated as 

Risk = CDI × SF (15.8)

where CDI is the chronic daily intake and SF is the carcinogen slope factor.
The risk from a noncarcinogenic chemical is calculated as 

HI = CDI/RfD (15.9)

where HI is the hazard index, CDI is the chronic daily intake, and RfD is the ref-
erence dose.

Example 15.3 To demonstrate application of this method of human health risk
quantification, let us consider risk assessment associated with the ingestion of
contaminated soils. Ingestion of soils contaminated by high-molecular-weight

CDI
C CR EF ED

BW AT
=

× × ×

×
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contaminants, such as polychlorinated biphenyl (PCB), is a potential source of
human exposure to toxicants. The following equation (USEPA 1990) is used to
estimate the probability of excess lifetime cancer Rc from the ingestion of con-
taminated soil:

(15.10)

where CS is the chemical concentration in the soil (mg/kg), CF is a conversion
factor (10–6 kg/mg), IR is the ingestion rate (mg soil/day), FI is the fraction
ingested from contaminated sources (nondimensional), EF is the exposure fre-
quency (days/year), ED is the exposure duration (years), BW is the body weight
(kg), AT is the averaging time (period over which exposure is averaged in days),
and SF is the slope factor or cancer potency factor ((kg-day)/mg).

Solution Using the FOA method described in Chapter 14, we find that the mean
of a function is

(15.11)

Applying Eq. 15.10 in the context of Eq. 15.7 allows us to determine the
expected value of the excess lifetime cancer Rc as

It has been customary to represent the environmental risk in terms of its
expected value. Let us assume that there is another pathway (e.g., through
groundwater or inhalation) of being exposed to the contaminant. Now, one has
to determine the human health risk through this pathway too and compare it
with the other to set the priorities of mitigation. But there is a shortcoming in
the approach that allows one to distinguish between two pathways on the basis
of their expected values of risk. If the expected values of both the risks are
equal, one cannot decide which pathway is riskier as there is a state of ambigu-
ity. Similar situations may arise when risks at multiple sites are compared to
identify the site having the highest risk. For this reason, it is necessary to deter-
mine the uncertainty involved in calculating the values of risks. As a device for
assessing the quality of risk, one can use the coefficient of variation, which is
given as (Eq. 10.50, Chapter 10)

(15.12)

Using Eq. 15.12 and the CV values of various parameters given in Table E15-3
gives the coefficient of variation of excess lifetime cancer Rc from the ingestion of
contaminated soil as 2.57. Because CVy >> 1, there is considerable uncertainty in
the Rc value and thus its use as a representative risk is not justified.

R
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15.4.2.6 Ecological Risk Assessment 

Ecological risk is defined as the conditional probability or likelihood of an adverse
ecological event occurring, along with an evaluation of its consequences. An
adverse ecological event might include local species extinction, population
change, change in community structure, change in growth and reproduction,
individual loss, ecosystem stability, and physiological processes such as photo-
synthesis, energy flow, and nutrient cycling. An ecological risk assessment is a
qualitative or quantitative appraisal of the actual or potential impacts of stressors
(i.e., contaminants) on plants and animals at a site, other than humans and
domesticated species. It determines whether living organisms and/or their envi-
ronment have been adversely affected, or may be affected in the future owing to
existing conditions. It uses information from scientific studies, surveys, and site
characteristics to estimate ecological risk. Ecological risk exists when a stressor
(contaminant) is in contact with any part of the ecosystem long enough and at a
level that is able to cause an adverse effect. Unlike human health risk assess-
ments, ecological risk assessments usually address risk at the population, com-
munity, or ecosystem level. An ecological stressor is something (e.g., a chemical
compound) that has the potential to cause an adverse effect. 

15.4.3 Assessment of Risk

After the hazard-producing events have been identified and their data have been
collected, an assessment of risk can be made. In many cases, unwanted situations
arise if a variable exceeds or is below a critical value. Flood is a typical example of
the former and drought of the latter. But there may be instances when the critical
value itself is not a constant. For example, consider estimating the probability of
exceedance of a critical level of pollution in a river. Besides the rate of entry of pol-
lutants, the water quality also depends upon discharge and the self-purifying
capacity of the river. A data bank on the occurrence of events and failures is
needed for estimation of engineering risk and many such data banks are available.

Table E15-3 Statistical data for Example 15.3.

Parameter Symbol Parameter values

Mean CV

Contaminant concentration (mg/kg) CS 155 0.39

Ingestion rate (mg/day) IR 100 1.26

Fraction ingested FI 0.909 0.03

Exposure frequency (days/year) EF 17.4 1.0

Exposure duration (years) ED 13.0 1.0

Body weight (kg) BW 15.6 0.23

Averaging time (years) AT 70.0 0.19

Slope factor (kg-day/mg) SF 2.25 1.66
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Example 15.4 The town of Risky is located on the banks of Floody River. The
river flow follows an extreme value type I distribution with a mean of 256.8 m3/s
and a standard deviation of 78.2 m3/s. The rating curve of Floody River at a
gauging site near Risky is given by

Q = 97.03 × (h – 214.5)0.64 (15.13)

The Noah Shipping Company wants to construct an office on a plot of land
near the river at an elevation of 223.0 m. Find the risk of flooding at this plot every
year. What will be the risk if the ground elevation is raised 0.75 m by filling? 

Solution We first need to calculate the parameters of the EVI distribution as
described in Chapter 5. Here mQ = 256.8 m3/s and σQ = 78.2 m3/s. Therefore,

From the rating curve expressed by Eq. 15.13, the flow at stage 223 m will be
381.7 m3/s. Hence the probability that the flow in a given year will exceed a
value q= 381.7 m3/s will be

P [ Q ≥ q] = 1 – FQ(q) = 1 – exp – exp[ –0.0164(q – 221.605)]}

The probability that this flow q is exceeded is

P [ Q ≥ 381.7] = 1 – exp{–exp[ –0.0164(381.7 – 221.605)]}

= 0.0695

Thus there is about 7% risk that the Noah Shipping Company office will be
under water in a given year. If this risk is perceived to be high and yet the com-
pany wants to build office at this very site, it can consider raising the plinth level
by soil filling. If soil is filled so that the ground elevation is raised by 0.75 m, the
new elevation will be 223.75 m. The corresponding discharge (calculated by
assuming that the same rating curve remains valid) is 403 m3/s and for this dis-
charge, the risk of flooding is about 5% each year. Clearly, the risk of flooding
has been reduced by about 2% by raising the plinth level by 0.75 m. 

The methodology illustrated in this example is employed to construct flood-
plain zoning maps. If a hazard-producing event leads to failure of a structure or
its component, risk assessment includes the consequences of this failure also.

A criticism of risk assessment is that any numerical estimation may be
highly uncertain because of its dependence on future human actions and devel-
opments in the area. For example, consider a flood control dam that is con-
structed in an area subject to frequent flooding. As a result of protection
provided by the dam, the area may witness rapid growth in industrial and con-
struction activities. If the dam fails 20 years after construction, the damage might
be much more than what would have occurred if the dam had not been con-
structed in the first place. 
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15.4.4 Risk Mitigation

Risk mitigation is the action phase of risk management wherein the best strategy
for risk mitigation is decided. The occurrence of hazards generated by human
actions can be largely controlled through robust rules and enforcement but the
same is not true for natural hazards. The latter have to be understood and dealt
with so that their undesired consequences are minimized. For example, one can-
not stop the occurrence of hurricanes. All that can be done is to set up a system
for their forecasting and take steps to minimize the damage to life and property.
For risk mitigation to be effective, it must be part of an overall decision-making
process and the procedures should be reviewed and modified on a routine basis
in light of new information.

15.4.5 Safety and Safety Management

Safety is a measure of the freedom from unacceptable risks of personal harm. The
objective of applying organizational and management principles is to achieve
optimum safety with high confidence. This encompasses planning, organizing,
controlling, coordinating all contributory development, and operational activities.

15.4.6 Communication of Risk 

To distribute timely warnings during an emergency, to change beliefs and
behavior, or to avoid unintended consequences constitutes communication of
risk. Such communication provides information about the existence and nature
of a threat and the seriousness of risk and details the steps that can be taken to
mitigate its effects. Successful communication requires desire and interest by
both the giver and receiver of information. Generally, if the action required to
mitigate risk is likely to cost money or change habits, people are likely to reject
new information, rationalize why it is not applicable to them, find fault with the
information or its source, or otherwise create a way to avoid dealing with risk
(HEC 1990). People, in general, have erroneous notions about risk. For example,
the common thinking is that after a large flood has occurred, the probability of
another similar flood is very small. In reality, however, such probability has not
at all diminished. Common ways of communicating risk are through mass
media, public meetings, and written material.

15.4.7 Institutional Design 

For public management of risk, there are three territorial levels: supranational,
national, and subnational. Each is subject to a complex set of underlying rules.
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15.5 Risk Modeling 

Fundamental to risk modeling is the assessment of uncertainties. These cover a
broad range of types. Some are quantifiable, whereas others are not.

15.5.1 Statistical Independence–Based Risk Model

Consider a hazard time series where at each integer value of time, say, 1, 2, 3, …,
along the time axis t, hazard events occur. The hazard time series may be wave
heights, flood discharges, temperatures, and so on. Each hazard event has an
intensity, denoted by X, which measures the degree of danger the event
unleashes. It is assumed that X is a random variable with the distribution func-
tion F(x) defined as the probability that X will be less than or equal to x (a spe-
cific value of X) for one of the selected future events. In mathematical notation,
F(x) = P(X ≤ x), where P(.) denotes the probability that the event within paren-
thesis will not occur. It is assumed that the intensities of hazard events are statis-
tically independent and have the same distribution F(x). For statistical
independence, the time scale for measuring X may be in years. If the flow dis-
charge of a river at a given gauging station, for example, represents the time
series, then X may represent the instantaneous maximum annual flood dis-
charge. At the end of the first year (t = 1), the intensity of the hazard event would
be the maximum discharge for that year. Similarly, if the time series is repre-
sented by the wave height at a particular location, then the largest wave height
during a year would be one value of X for that year. 

15.5.2 Return Period and Waiting Time

In hydraulic design, the return period concept is commonly used, because of its
apparent simplicity. However, it is prone to misinterpretation and misuse. The
return period T(x) is defined as

(15.14)

where T(x) represents the average time between hazard events having intensi-
ties equal to or exceeding x. It does not mean that the event will certainly take
place. The events occurring in the time interval n – 1 < t ≤ n are plotted at t = n,
not at their actual time of occurrence in the interval. T(x) will be slightly greater
than the real average time between the events with intensities x. The magnitude
of the difference will depend on the time scale used. For example, the return
period for the time measured in years will be different from the return period
measured in decades.

Consider a random variable W(x) that denotes the time interval between two
successive exceedances of x. Then, W(x) can be referred to as the waiting time. If
an exceedance of x has just occurred, one can compute the probability that the
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next exceedance will occur n time units away. Because of the assumption of
statistical independence, what occurs during one time unit has no effect on the
probabilities of future occurrences. This means that the same result would be
obtained if any integer on the time axis was selected as the initial point, irrespec-
tive of whether an exceedance has just previously occurred. If W = n, this means
that there must have been n – 1 hazard events without an exceedance of x (prob-
ability of each = q) followed by an exceedance (probability = p). Here p = 1– F(x)
and q = F(x) =1 – p. Thus, 

P(N = n) = qn-1 p= [F(x)]n-1 [1 – F(x)], n =1, 2, …

= qn-1 (1 – q) = qn-1 – qn (15.15)

The expected or theoretical average of n can be expressed as

T = 1 P(N = 1) + 2 P(N = 2) + 3 P(N = 3) + … (15.16)

or

T = (15.17)

= [1 + 2q + 3q2 + 4q3 + … ] – q – 2q2 – 3q3 – …

(15.18)

This equation can also be derived by noting that 

(15.19)

The quantity T, as used in the hydrologic literature, is the average return
period. Thus, we state that, on average, a flood above a level x will occur once
every T years. It should be noted that the distribution function of N is a geomet-
ric progression: 

(15.20)

Since , Eq. 15.20 can be expressed in terms of the return period as

(15.21)
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Next, our interest is in computing var [N]. By definition, we have

var [N] = E [N]2 – [E (N)]2 , 0 < p < 1 (15.22)

Now, 

 = [1 + 22q + 32q2 + 42q3 + … ] – q – 22q2 – 32q3 – … 

Hence, 

(15.23)

Example 15.5 Given that q = 0.9 and 0.99, find the variance of the return period.

Solution When q = 0.9, p = 1 – 0.9 = 0.1. Hence, T = 10 and 

In the second case, if q = 0.99, then p = 0.01 and T = 100, and so 

These examples show that E[N] is not a good measure. Therefore, it is better
to calculate the probability of no exceedance within a given period, say, n; that is,
we want 

(15.24)

This yields 

(15.25)
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This equation has three variables: α, n, and x. Recall that 

(15.26)

(15.27)

or P (at least one exceedance within a large return period) = 1– 0.368 = 0.632.

Example 15.6 Let the return period of a flood be T = 10 years. Find the probabil-
ity of at least one exceedance within the return period.

Solution Given T = 10, then α = (1 – 0.1)10 = 0.910 = 0.356. Therefore, for T = 10,
P(A) = 1 – 0.356 = 0.644.

15.5.3 Relation to Risk 

Let p be the probability that a value of the random variable X will be equal to or
greater than x. Here q = 1 − p or p = 1 – q. The probability that x will occur in the
next year by definition is . The probability that x will not occur in the next
year is

The probability that x will be equaled or exceeded in any n successive years
is given by 

The probability that x will occur for the first time in n years is

The probability that x will occur at least once in the next n years is the sum of
the probabilities of its occurrence in the first, second, … to nth years and is
therefore
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Thus, the probability that the event will occur only once is

The probability R is called risk. This can also be obtained directly from the
probability of nonexceedance in n years as

(15.28)

This equation can be used to calculate the probability that x will occur within
its return period:

(15.29)

For large T, as already shown,

This indicates that the probability that x will occur within its return period is
about 64%. Thus a dam designed to withstand a flood with a 25-year return
period has a 64% chance that this design flood will be exceeded before the end of
the first 25-year period.

For design purposes it might be desirable to specify some probability that
the undesirable event would occur within the design period and calculate the
required return period. If R is the risk that the event will occur within the design
period then 

Thus, one can compute the values of the design return period T correspond-
ing to a number of values of the risk R and the design period n.

The probability R is also called the encounter probability. Suppose a dam is
built for a postulated life of L time units (say, years). The probability that an
event with intensity x will occur during the life of the dam is the encounter
probability, E(x), and is a measure of risk. The probability of no exceedance dur-
ing L time units is [F(x)]L. Hence, the probability of one or more exceedances is 

E = 1 – [F(x)]L (15.30)

The relationship between E and T is given by 

(15.31)
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Equations 15.30 and 15.31 have the same appearance because there are one
or more exceedances of x in time L if N ≤ L. Hence, E = P(N ≤ L). Table 15-7
shows values of the encounter probability for various values of the estimated life
L and return periods T. Table 15-6 shows the return periods for various values of
the encounter probability and estimated life. A comparison of the waiting time
and the encounter probability brings out several interesting properties. For
example, a dam with a 50-year life has a better than even chance of encountering
50-year floods during its life. Indeed the probability is 0.636. Thus, depending on
the amount of risk one is willing to take, a much higher return period flood will
have to be used for a 50-year dam. As an example, for a 10% risk, a 475-year
flood will have to be used.

Table 15-6 Return periods T1 for estimated life L and encounter probability
E1 [= 1 – (1 – 1/T)L].

L
E1

0.02 0.05 0.10 0.15 0.20 0.30 0.40 0.50 0.70

1 50 20 10 7 5 3 3 2 1

2 99 39 19 13 9 6 4 3 2

3 149 59 29 19 14 9 6 5 3

4 198 78 38 25 18 12 8 6 4

5 248 98 48 31 23 15 10 8 5

6 297 117 57 37 27 17 12 9 6

7 347 137 67 44 32 20 14 11 6

8 396 156 76 50 36 23 16 12 7

9 446 176 86 56 41 26 18 13 8

10 495 195 95 62 45 29 20 15 9

12 594 234 114 74 54 34 24 18 10

14 693 273 133 87 63 40 28 21 12

16 792 312 152 99 72 45 32 24 14

18 892 351 171 111 81 51 36 26 15

20 990 390 190 124 90 57 40 29 17

25 1238 488 238 154 113 71 49 37 21

30 1485 585 285 185 135 85 59 44 25

35 1733 683 333 216 157 99 69 51 30

40 1981 780 380 247 180 113 79 58 34

45 2228 878 428 277 202 127 89 65 38

50 2475 975 475 308 225 141 98 73 42
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Example 15.7 Suppose a dam is designed with a projected life of 25 years. The
designer wants to take only a 10% chance that the dam will be overtopped
within this period. What return period flood should be used?

Solution Given n = 25, R = 10%, one gets T = 238 years. This is the return period
of the flood one should use in design. A useful approximation for the previous
expression for R is

This is a good approximation if n ≥ 10 and R ≤ 0.5.
To give an idea of the magnitude of the error involved, consider the prob-

lem of estimating the probability of occurrence of some value of the annual
maximum flood. For the samples of sizes likely to be used in environmental
and water resources engineering, the 95% confidence interval for an estimated
probability is surprisingly large. For a value with an observed return period of
10 years (i.e., probability 0.10 from a sample of 30), one can state, with 95% con-
fidence, that the true probability lies between 0.02 and 0.27, corresponding to
return periods of 50 and 3.7 years, respectively. In this case, the results are not
very meaningful.

15.6 Decision Making Under Uncertainty 

As discussed in Chapter 1, it is not possible to deal with every kind of uncer-
tainty. Only the kind of uncertainty that can be measured quantitatively, at least
in principle, can be considered. To account for uncertainty in decision making,
ideally one must consider the most general type of decision situation in which
all available options have been identified, all differences in possible conse-
quences have been determined and quantified, and all probabilities have been
assigned to all possible outcomes of each decision. In the real world, however,
one will have to make do with a less complete specification of the decision situa-
tion. Let us consider the following two examples.

1. An inspector must monitor the quality control of a production process.
She knows from experience that, under properly controlled conditions,
the probability of a defect is p percent per item. The inspector cannot
check all items that are produced, so she takes samples at regular inter-
vals, checks them, and takes action if a sample appears to be significantly
inferior to what she expects. The inspector knows that a substandard
sample may simply be due to chance; it may also be due to a breakdown
in quality control. What is the proper decision when faced with a particu-
lar substandard sample?

T n
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Table 15-7 Encounter probabilities E1 [= 1 – (1 – 1/T)L] for estimated life L and return period T1.

L
T1

5 10 15 20 25 30 40 50 60 80 100 120 160 200 250 300 400 500

1 0.200 0.100 0.067 0.050 0.040 0.033 0.025 0.020 0.017 0.012 0.010 0.008 0.006 0.005 0.004 0.003 0.002 0.002

2 0.360 0.190 0.129 0.098 0.078 0.066 0.049 0.040 0.033 0.025 0.020 0.017 0.012 0.010 0.008 0.007 0.005 0.004

3 0.488 0.271 0.187 0.143 0.115 0.097 0.073 0.059 0.049 0.037 0.030 0.025 0.019 0.015 0.012 0.010 0.007 0.006

4 0.590 0.344 0.241 0.185 0.151 0.127 0.096 0.078 0.065 0.049 0.039 0.033 0.025 0.020 0.016 0.013 0.010 0.008

5 0.672 0.410 0.292 0.226 0.185 0.156 0.119 0.096 0.081 0.061 0.049 0.041 0.031 0.025 0.020 0.017 0.012 0.010

6 0.738 0.469 0.339 0.265 0.217 0.184 0.141 0.114 0.096 0.073 0.059 0.049 0.037 0.030 0.024 0.020 0.015 0.012

7 0.790 0.522 0.383 0.302 0.249 0.211 0.162 0.132 0.111 0.084 0.068 0.057 0.043 0.034 0.028 0.023 0.017 0.014

8 0.832 0.570 0.424 0.337 0.279 0.238 0.183 0.149 0.126 0.096 0.077 0.065 0.049 0.039 0.032 0.026 0.020 0.016

9 0.866 0.613 0.463 0.370 0.307 0.263 0.204 0.166 0.140 0.107 0.086 0.073 0.055 0.044 0.035 0.033 0.025 0.020

10 0.893 0.651 0.498 0.401 0.335 0.288 0.224 0.183 0.155 0.118 0.096 0.080 0.061 0.049 0.039 0.032 0.025 0.020

12 0.931 0.718 0.563 0.460 0.387 0.334 0.262 0.215 0.183 0.140 0.114 0.096 0.072 0.058 0.047 0.039 0.030 0.024

14 0.956 0.771 0.619 0.512 0.435 0.378 0.298 0.246 0.210 0.161 0.131 0.111 0.084 0.068 0.055 0.046 0.034 0.028

16 0.972 0.815 0.668 0.560 0.480 0.419 0.333 0.276 0.236 0.182 0.149 0.125 0.095 0.077 0.062 0.052 0.039 0.032

18 0.982 0.850 0.711 0.603 0.520 0.457 0.366 0.305 0.261 0.203 0.165 0.140 0.107 0.086 0.070 0.058 0.044 0.035

20 0.988 0.878 0.748 0.642 0.558 0.492 0.397 0.332 0.285 0.222 0.182 0.154 0.118 0.095 0.077 0.065 0.049 0.039

25 0.996 0.928 0.822 0.723 0.640 0.572 0.469 0.397 0.343 0.270 0.222 0.189 0.145 0.118 0.095 0.080 0.061 0.049

30 0.999 0.958 0.874 0.785 0.706 0.638 0.532 0.455 0.396 0.314 0.260 0.222 0.171 0.140 0.113 0.095 0.072 0.058

35 0.999+ 0.976 0.911 0.834 0.760 0.695 0.588 0.507 0.445 0.356 0.297 0.254 0.197 0.161 0.013 0.110 0.084 0.068

40 0.999+ 0.985 0.937 0.871 0.805 0.742 0.637 0.554 0.489 0.395 0.331 0.284 0.222 0.182 0.148 0.125 0.095 0.077

45 0.999+ 0.991 0.955 0.901 0.841 0.782 0.680 0.597 0.531 0.432 0.364 0.314 0.246 0.202 0.165 0.140 0.107 0.086

50 0.999+ 0.955 0.968 0.923 0.870 0.816 0.718 0.636 0.568 0.467 0.395 0.342 0.269 0.222 0.182 0.154 0.118 0.095
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2. A new concrete-casting procedure is being tested in a factory. When com-
pared with the present procedure, it appears to result in fewer defective
casts. But in a limited number of comparisons, the difference may be due
to chance. Should management be advised to change to the new procedure
considering that the results are, to a degree, uncertain and the cost of the
changeover considerable?

These two decision situations and many others like them have in common that
there are only two options. The inspector might take an action, or she might
decide not to take any action. A changeover in the concrete-casting procedure may
or may not be initiated. In each case, there are two possible but unknown “states of
nature.” A breakdown in control has or has not occurred; the new procedure is or
is not better. Assumptions regarding the state of nature are commonly called
hypotheses. One can call the hypothesis of no breakdown and no improvement as
hypothesis I, or the null hypothesis. The alternative is called the alternative
hypothesis or hypothesis II. The decisions corresponding to these hypotheses are
also indicated by I or II. Either decision may be right or wrong with greater or
smaller probability and both desirable and undesirable consequences can be asso-
ciated with the outcomes “right” or “wrong.” One can therefore construct a deci-
sion tree for this kind of a decision situation, as shown in Fig. 15-5.

The problem with this kind of a decision tree is that usually only the proba-
bilities of p/I and q/I can readily be determined, since they are conditional upon
a known situation: normal quality control conditions or proven performance of
the current concrete-casting technique. But what is the probability of events
when a new factor, such as breakdown in control or a brand new concrete cast-
ing procedure, enters in the picture? It is sometimes possible to tighten up the
alternative hypothesis so that the conditional probabilities p/II and q/II can be
estimated. Often, however, this cannot be done reliably. Then, one cannot deter-
mine the effective monetary value (EMV) or effective utility value (EUV) and
neither can one determine the decision rule that optimizes EMV or EUV. An
added problem is often the difficulty in quantifying the consequences in these
decision problems..

In situations like this, one must accept or reject hypothesis I on the basis of
probabilities p/I and q/I only. For example, the inspector does not wish to raise a
fuss about quality control unless she is fairly certain that something is wrong.
She may therefore decide against action (decision I) unless the probability of
being right (p/I) is high, say, about 90%. This means that she will be wrong not
more than 10% of the times she decides to act (on average). Similarly, one would
not wish to embark on a costly changeover process in a factory unless the proba-
bility of being wrong was quite small. That probability might be set at 1% or less.

Although there is a degree of arbitrariness in the probability one accepts of
wrongly acting on the null hypothesis, or wrongly taking decision I, such a proba-
bility limit is, of course, not set without taking the consequences into consideration.
If they are not quantified, the decision rule becomes judgmental. In the statistical
literature the error of wrongly rejecting the null hypothesis is usually called a type I



700 Risk and Reliability Analysis

error. Its probability is usually designated by symbol α. A type II error occurs when
the null hypothesis is wrongly accepted. Its probability is usually designated by the
symbol β. In the decision tree of Fig. 15-5, q/I = α and q/II = β. We now illustrate
these decision problems with a number of examples.

Example 15.8 A steel manufacturing plant produces steel reinforcing bars in
accordance with given specifications. An inspector, charged with monitoring the
quality control, is informed that under normal operating conditions the tensile
strength of a given type of bar is normally distributed with a mean of 275 MPa
and a standard deviation of 20 MPa. The inspector is to test bars at regular inter-
vals and report a possible breakdown in quality control if a test bar shows a ten-
sile strength of less than 250 MPa. What is the probability of a false alarm? 

Solution The null hypothesis is that there is no breakdown in quality control and
that therefore the tensile strength X is assumed to be normally distributed with a
mean of 275 MPa and a standard deviation of 20 MPa. The probability that X will
be smaller than 250 MPa is equal to the probability that z will be smaller than –1.25
(i.e., z = (250 – 275)/20 = –1.25), which is 0.1057 (i.e., Prob(z ≤ –1.25) = φ –1(–1.25) =
0.1057). The probability of a type I error is, therefore, 10.57%. Figure 15-6 shows
the PDF of X on the assumption of hypothesis I. This PDF is a conditional distribu-
tion. The so-called acceptance region and the critical region for decision I have
been indicated as well as the probability of committing a type I error.

It should be noted that there appeared to be no concern about abnormally high
tensile strength values in the problem just described and that led to a so-called
one-sided test. One could argue, however, that high tensile strength values are
often associated with a lack of ductility and are undesirable in reinforcing steel for
that reason. This might lead to the requirement that a report is to be made when
the test strength falls outside the interval between 250 and 300 MPa. Then one has
a two-sided test and the probability of a type I error would rise to 21.14%.

Furthermore, the problem as formulated here does not permit any conclu-
sion about the probability of committing a type II error, namely, falsely

Figure 15-5 Decision tree.
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concluding that there has been no breakdown in quality control. Even if it were
assumed that X remained normally distributed, one could assign neither a mean
nor a standard deviation to the distribution without additional information. 

Let us now assume that the inspector is asked not simply to report but to
take immediate action if the probability was less than 10% that a too high or too
low test value was due to chance only. The inspector must now define the accep-
tance region for the null hypothesis of no breakdown in quality control. This
requires the definition of two limits, x1 and x2, such that there is a 5% probability
that X is smaller than x1 and a 5% probability that X is larger than x2. This deci-
sion rule is frequently expressed in terms of confidence or significance. It is said
that there is a 90% confidence that decision I is correct. Alternatively, one can say
that hypothesis I is rejected (if indeed it is) at the 10% significance level. The
determination of the acceptance region is elementary. The limiting values of Z
for the 90% confidence interval are ±1.645. The corresponding values for X are
242.1 and 307.9 MPa. Figure 15-7 shows the PDF and the acceptance region.

Obviously, without additional information very little can be said about the
probability of a type II error. However, knowledge of the production process and
the effect of factors that may get out of control may provide the inspector with
some clues. It may well be, for example, that whatever goes wrong is not likely to
change the type of distribution and that the change can be expected to manifest
itself in the mean of the tensile strength rather than in the standard deviation. The
null hypothesis X ~ N(275, 20) may then have to be compared with the alternative
hypothesis X ~ N(μ, 20), where μ ≠ 275.

The probability that X lies between the two limits x1 and x2, which define the
acceptance region, is the probability of the type II error if μ ≠ 275. This probability
β can readily be calculated if μ is given. Since it is not, all one can do is express β
as a function of μ. This function, known as the operating characteristic curve, is shown in
Fig. 15-8a. The maximum value of β is evidently 0.95 for a value of μ equal to 275 MPa.

Figure 15-6 Probability density function of X on the assumption of hypothesis I.
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The operating characteristic curve (Fig. 15-8a,b) shows that for larger devia-
tions from the normal μ of 275 MPa, the probability of a type II error becomes
progressively smaller. It remains substantial, however, even for very significant
deviations from the normal value. This, of course, is because a single test (N = 1)
is not a good indicator of the possibility of a breakdown in quality control. 

One can reduce the probability of the type II error by narrowing the acceptance
region. But that would be at the expense of increasing the type I error. The only way
to obtain better control over the production process—that is, to reduce the type II
error without increasing the type I error—is by increasing the number of samples,
N. Let us assume that the inspector takes N = 25 samples from each shift and deter-
mines the mean tensile strength. In the null hypothesis, the sample mean is nor-
mally distributed with a mean of 275 MPa and a standard deviation of

MPa. The acceptance region for the sample mean is now 275 ± 1.645(4)
= 275 ± 6.58 MPa. The 90% confidence limits for μ are again twice as far from the
mean as the limits of the acceptance region, which means 275 ± 13.16 MPa, as
shown in Fig. 15-9.    

To see a clearer picture of how the number of samples reduces the type II
error without increasing the level of type I error, operating characteristic curves
were plotted for both N = 1 and N = 25 in Fig. 15-10. One sees that, for a
deviation of 20 MPa in the mean value, there is negligible type II error when 25
samples are examined, but this error may be as high as 82% when only one sam-
ple is examined in the quality control process. 

Figure 15-7 Probability density function of X and the acceptance region.
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Example 15.9 A firm uses a wastewater treatment procedure, referred to as
method A. In the past, this method has resulted in 37 days out of 228 days when
the outfall quality exceeded the prescribed limits. The firm is informed of an
alternative method, Method B. Method B is in use at another place, which has
produced 28 days of exceeding waste limits out of 337 days. Method B looks
superior, but before considering a changeover, the firm wants to be certain that
the difference is not due to chance. How should the firm assess the situation?

Figure 15-8a Operating characteristics curve.

Figure 15-8b Operating characteristics curve, B as a function of mean.
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Solution The firm argues that there is bound to be a difference in the proportion
of water quality violations even if the two methods are equivalent. This leads us
to adopt as null hypothesis the assumption that the two methods do not differ in
their probabilities of producing violations of waste norms. This hypothesis
should not be rejected unless the probability of a type I error is less than, say, 5%.

First, the random variable for which the acceptance region and the critical
regions are to be defined is to be identified. One can begin by defining as X228 the
number of defectives in a sample of 228, and as X337 the number of defectives in

Figure 15-9 Probability density function and the acceptance region.

Figure 15-10 Effect of sample size on reducing the type II error
without increasing the type I error.
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a sample of 337. One is interested, however, in the difference between X337 and
X228, which is denoted by Y. Can we determine the probability distribution of Y,
assuming the null hypothesis to be true? 

If the null hypothesis were true, then one can pool the two samples and state
that one had 65 days of exceeding waste limits out of 565 days. The probability
of violation per single sample is then p = 65/565 = 0.115. Now, X337 and X228 fol-
low binomial distributions as

X337 ~ B(337, 0.115)

X228 ~ B(228, 0.115)

For X337, the variance is

npq = 337 × (0.115) × (0.885) = 34.30

For X228, the variance is

npq = 228 × (0.115) × (0.885) = 23.20

In both cases, the value of npq is well over 9; hence the approximation is jus-
tified. One can write

X`337 ~ N(337 × 0.115, ) = N(38.76, 5.86)

X`227 ~ N(228 × 0.115, ) = N(26.22, 4.82)

One can now determine the distribution of Y` = X`337 – X`228. The mean of Y`
is equal to the difference between the means in the X` distributions. Because the
two samples are independent, the variance of Y` is equal to the sum of the vari-
ances of the X` distributions. Therefore, 

Y` ~ N[12.54, (34.30 + 23.20)1/2]

~ N(12.54,7.58)

The acceptance region is bounded by the Y` value corresponding to Z = –1.645
or Y` = 0.07. Actually, Y was observed to be 28 – 37 = –9. It follows that Y lies
well within the critical region, and the null hypothesis should be rejected, as
shown in Fig. 15-11. The Z value corresponding to the observed value of Y is
equal to (–9 – 12.54)/7.58 = –2.84. The probability of getting a deviation this large
or larger is only 0.23%. The null hypothesis would therefore have to be rejected at
the 1% level. 

It is not always possible to use the normal approximation. Consider the fol-
lowing example.

Example 15.10 Experience shows that, under the prevalent conditions of con-
trol, a production process will show 5% defective items. An inspector is told that
he must take action if the probability of a breakdown in control exceeds 95%.
Periodically, he takes a sample of 50 items. What minimum number of defectives
in this sample should he regard as reason for action?

34 3.

23 2.
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Solution The random variable for which the acceptance region must be deter-
mined is evidently the number of defective items in a sample of 50. Calling this
variable X, one can write

X~ B(50, 0.05)

if the null hypothesis “no breakdown in control” holds. The variance is now npq =
50(0.05)(0.95) = 2.375, which is substantially smaller than 9. The normal distribu-
tion is, therefore, not an acceptable approximation. In such cases, the Poisson dis-
tribution often makes a good approximation. A rule in this regard is that the
Poisson distribution is acceptable if n ≥ 20 and p ≤ 0.05. This is the case here. The
Poisson distribution has one parameter, the average number of defectives in a
sample of 50, which is 2.5:

X`~ P(2.5)

The value of X` that has a 5% probability of being exceeded can be found in
standard tables. The critical number is 6, as shown in Fig. 15-12.

Example 15.11 An experiment is carried out to determine the effect of the load-
ing rate on the measured compressive strength of concrete test cylinders. To this
end, 54 test cylinders were loaded to failure at a slow speed and 36 were tested
at a fast speed. The results of both tests were found to be normally distributed.
The first run gave a mean strength of 28 MPa and the second gave a mean
strength of 30.5 MPa. The standard deviation was not significantly different for
the two runs and was taken to be 4.0 MPa. Is the difference significant at the 95%
confidence level?

Solution For the null hypothesis, one can assume that there is no difference in
the strength measurement. The random variable for which the acceptance region
must be determined is the difference in the average strength D for samples of
size 54 (m54) and 36 (m36):

D = m36 – m54

Figure 15-11 Acceptance and critical regions.
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Since m54 and m36 are both normally distributed, the difference is also nor-
mally distributed. On the basis of the null hypothesis, there is no difference in
the means of m54 and m36, and their variances are, respectively, 16/54 and 16/36.
One can therefore write

D ~ N[0,( + )0.5]

or
D ~ N(0,0.86)

To determine the acceptance region, consider that there is little reason to
expect the faster test to result in lower strength values. The experiment therefore
is regarded as a one-sided test. The acceptance region is then determined by
Z < 1.645 or D < 1.41. It has been observed that D = 2.5; this point lies in the
critical region and the null hypothesis must therefore be rejected. The difference
in measured strength is significant.

Notice that in this example the two samples were assumed to be indepen-
dent; otherwise one could not add the variances to obtain the variance of the dif-
ference. This condition is not always met in practice. 

Suppose one would not wish to set up a special testing program for the
determination of the effect of the loading rate. Instead, one could, whenever a
cylinder had to be tested, produce two cylinders from the same batch. One
would be tested at the standard slow rate, but the other at the fast rate. The sam-
ples would then be paired. One would expect a correlation between sample
items since the effect of different aggregate, different water/cement ratio, differ-
ent cement content, etc. would be reflected in each of the pairs in the same way.
The variance of the difference is then reduced by twice the covariance:

var(X – Y) = var(X) + var(Y) – cov(X,Y) (15.32)

Figure 15-12 Poisson distribution function and the critical region.
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The correct procedure in this case is to determine the differences between the
paired items first. Let this difference be denoted by

Y = X1 – X2

One then has n values of Y and can determine the mean my, which can be
assumed to be normally distributed. Assume that n is large so that the variances
of Y can be determined reliably from the sample. On the basis of the null hypoth-
esis, there is no difference in the real mean strength, so μy is zero. The standard
deviation of my will be sy/n0.5. One can then determine the acceptance region of
my and see if the observed value of my falls within it.

15.6.1 t Test and F Test

Another complication arises if the true variance is not known but must be esti-
mated from a relatively small sample. It is known that under such circum-
stances, the mean of a sample of n follows a t distribution with N – 1 degrees of
freedom. If N is larger than 30, this need not be a problem, since the t distribu-
tion for large samples is practically identical with the normal distribution. But if
the samples are smaller, then a slightly different procedure must be followed.

Example 15.12 A builder wants to determine whether two kinds of cement,
cement A and cement B, produce different tensile strengths in mortar. The
builder manufactures six mortar briquettes with each cement and determines
the tensile strength for each briquette. The results are as follows: 

cement A: 4,600, 4,710, 4,820, 4,670, 4,760, 4,478 MPa
cement B: 4,400, 4,450, 4,700, 4,400, 4,170, 4,100 MPa

Is there a significant difference in the tensile strengths at the 95% confi-
dence level?

Solution Routine calculations show the following data for the sample statistics:

ma = 4673 MPasa = 121 MPa

mb = 4370 MPasb = 214 MPa

The problem is, in principle, quite similar to the one discussed earlier. One
must judge whether the observed difference in sample means ma and mb is sig-
nificant. The first difference, however, is that in the previous problem the stan-
dard deviation was given. Here, one has to determine the standard deviation
from the samples, and the two observed standard deviations are disconcertingly
different. The first step, therefore, should be to determine whether it is reason-
able to assume that the two cements do lead to the same standard deviation and
that the observed difference is due only to chance. One might anticipate the
results and assume that both sa and sb come from the same distribution and their
difference is due to chance.
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This does not solve the problem of what to take for the standard deviation. The
proper procedure is to calculate the pooled variance of the two samples by adding
the sums of the squares of the deviations from the sample means and dividing that
sum by the total number of degrees of freedom, (N1 – 1) + (N2 – 1). Since sa and sb have
already been calculated, one can simply multiply each by N – 1, adding the results
and dividing by (N1 – 1) + (N2 – 1). In this particular case, where the sample sizes are
equal, the procedure is the same as taking the average of the variances. The result is
that the pooled variance is 30,313 and the pooled standard deviation is 174 MPa.

The second difference from the previous problem is that the sample sizes are
small and the standard deviation is determined from the samples. The variance of
the mean in a sample of 6 is calculated from sm

2= 30,313/6 = 5,052, and the vari-
ance of the difference between the two means of samples of 6 is equal to twice this
number or 10,104. This makes the standard deviation of the difference equal to
100.52 MPa. But this is a sample standard deviation, not a true standard deviation.
Under these circumstances, one must use the t distribution instead of the normal
distribution. In this case the t distribution has 10 degrees of freedom (N1 + N2 – 2):

D = 0 + 100.52 T10

At the 95% confidence level, the acceptance region for the t distribution with
10 degrees of freedom is ±2.228. This gives an acceptance region for D between
+214 and –224 MPa. The observed difference was 4,673 – 4,370 = 303 MPa. This is
well outside the acceptance region, so the null hypothesis of “no difference”
must be rejected.

One can now consider here only the relatively simple problem of judging the
null hypothesis that the variances from two samples are chance observations of
the same random variable and that the difference is therefore not significant. It
has been seen that the sample variance is a random variable, the distribution of
which is related to the distribution:

(15.33)

Suppose now that one has two samples for which the sample variances have
been calculated. One wants to test the null hypothesis that the sample variances
are estimates of the same parameter σ 2. One then defines a variable F, which is
the ratio of the two sample variances:

(15.34)

Substitution of Eq. 15.28 into this equation results in

(15.35)
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where N and m are sample sizes. The terms (N – 1) and (m – 1) are the degrees of
freedom in Eq. 15.35.

The F distribution is a well-known distribution for which tabulated values
are readily available. Tables giving values of the cumulative distribution for a
range of degrees of freedom and several levels of significance are widely avail-
able. It should be noted that to calculate F, one must put the largest variance in
the numerator and the smallest in the denominator. This is because the F test has
been set up as a one-sided test in which the alternative to the null hypothesis is
the alternative hypothesis that s1 is larger than s2.

One can demonstrate the use of the F test by examining and in the pre-
vious example where these variances had been obtained from two samples of 6
items. There

= 14,626 and = 46,000

Then one can calculate F to be 46,000/14,626 = 3.15.
For 5 degrees of freedom in the numerator and the denominator, one obtains

the following critical values for F:

for α = 10%, Fcrit = 3.45

for α = 5%, Fcrit = 5.05

for α = 1%, Fcrit = 10.97

It can be seen that the null hypothesis cannot be ruled out even at the 90%
confidence level. Note that the result obtained here is largely negative. The small
samples make it impossible to rule out the null hypothesis that the variances are
obtained from the same random variable. That does not mean, however, that the
results should inspire confidence in the correctness of the null hypothesis.

15.7 Questions

15.1 There is always a great deal of interest in weather. What is the risk from
the coldest weather on record occurring next winter in Houston, Texas? 

15.2 Consider a small dam pond for local flood control in an urban area.
What could the risk be from the failure of this detention structure?

15.3 What is the health risk from air pollution? 

15.4 Consider instantaneous peak discharge data for a number of years for a
river near the town in which you live. Assume that the peak discharge
data follow a two-parameter log-normal distribution. The rating curve at
the nearest gauging site is also known. A private company wants to con-
struct a chemical plant near the river. Compute the risk that the plant

sa
2 sb

2

sa
2 sb

2
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will not be flooded by a 100-year flood. Also, what will be the reduction
in flooding risk if the plant were elevated one meter above the ground?

15.5 Find the variance of the return period for different values of nonexceed-
ance probabilities.

15.6 What is the probability that a 500-year flood will occur at least once in
100 years?

15.7 Suppose a dam is designed with a projected life of 100 years. The
designer wants to take only a 5% chance that the dam will be overtopped
within this period. What return period flood should be used?

15.8 A chemical plant has installed a pollution abatement device, referred to as
Method A. This method has resulted in 40 days out of 300 days when the
poor air quality exceeded the prescribed limits. For fear of avoiding penal-
ties, the plant operator considers an alternative method, Method B, which
has produced 30 days of exceeding waste limits out of 300 days when
used at another place. Method B looks superior, but before considering a
changeover, the plant operator wants to be certain that the difference is not
due to chance. How should the plant operator assess the situation?

15.9 At a cement manufacturing plant, the quality of cement is to be inspected.
It is found that 5% of the cement bags do not meet the prescribed quality
standard. The production process must be amended if the probability of
defective cement bags exceeds 5%. For cement testing, a sample of 30
bags is used. What minimum number of bags in this sample should be
regarded as reason for action? For simplicity, the normal approximation
can be employed here.
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Chapter 16

Reliability Analysis of 
Water Distribution 
Networks

A water distribution network (WDN) is designed and constructed to supply
water to the user in accordance with the demand (or load) at sufficient pressure.
Knossos, near Heraklion, the modern capital city of Crete, was a large and devel-
oped city of Europe during the Neolithic Age (ca. 5700–2800 B.C.). Its inhabit-
ants, numbering tens of thousands, were supplied water through an elaborate
network of tubular conduits (Mays 2000). These days, a WDN is considered to
be a key infrastructure requirement of a modern city and a measure of the stan-
dard of living of the society. 

The users of a municipal water supply system are spread all over the city
area, which may be of the order of tens of square kilometers. Thus, water
demand has a spatial distribution. The demand of water also changes with sea-
son, day of the week, and time of day. As a city expands, water demand
increases. Occasionally, there may be high demand of water to meet unusual
events, such as fires, organization of special events, etc. To meet the needs of the
users, water is pumped from a source, such as a river, a reservoir, a lake, or an
aquifer. Depending upon the quality of water received, treatment is provided to
the raw water. Treated water may be stored in huge tanks before it is supplied to
the users. Tanks are necessary so that the pumps can operate at their peak effi-
ciency. Demand is variable: The WDN must be able to provide water with
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enough pressure, to provide water when a pump or treatment plant is nonoper-
ational, to meet a sudden large demand, and to suppress hydraulic transients. 

In a large WDN, pumping stations, treatment plants, and overhead storage
tanks are located at many places. These are connected to the demand centers and
among themselves through a network of (underground) pipes of various diame-
ters and materials. The pipes join together at nodes. Valves are installed in the
network at various places to control the flow of water and its pressure. Major
components of a WDN are pumps, storage tanks, pipes, and valves. Typically, a
pump gets water from a source. At times, a pipe may break, a pump may stop
working, a valve may leak, or a treatment plant may have to be shut down for
repair and maintenance.

A reliable WDN meets the demand placed upon it without undue failures. In
a WDN, failure is said to take place when either the pressure or flow or both
drop below a specified value at one or more nodes. Thus, the reliability of a net-
work is the probability that it can satisfactorily meet the demand. A WDN has
two types of reliabilities: mechanical and hydraulic. Mechanical reliability refers
to the satisfactory operation of various components, such as, pumps, pipes, and
valves in the network. Hydraulic reliability measures the performance of a
WDN in meeting its demands in terms of the quantity of water at desired pres-
sure and at required time. Since water is essential for life, WDNs are designed
for high reliability, among other things by providing loops and valves to control
flow. This chapter focuses on the hydraulic reliability of a WDN.

16.1 Relevant Principles of Hydraulics

Before the concept of reliability of WDNs can be addressed, it is pertinent to dis-
cuss relevant basic principles of flow in closed conduits. The texts by Jeppson
(1977) and Mays (2000) provide a detailed treatment of WDNs, their compo-
nents, and their design. For the purpose of mathematical analysis, users of water
are grouped together to form nodes of the network and these nodes are con-
nected by pipes, which are represented as links. Here, we consider only the main
pipes; the smaller pipes that connect consumers with the network are ignored.

The first principle in dealing with pipe flows is the continuity of matter.
According to the principle of continuity for an incompressible fluid, the sum of
volumes of water entering a junction (ΣVin) equals the flow leaving the junction
(ΣVout) over a given time, that is, 

ΣVin = ΣVout (16.1)

Further, according to the principle of conservation of energy, the total energy
of flow at two cross sections will be the same if there is no energy loss. The total
energy in terms of the head of water is expressed by the Bernoulli equation. For
flow between two cross sections 1 and 2, we have
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(16.2)

where z1 is the elevation head, p1 is the pressure head, γ is the unit weight of
water, v1 is the velocity of flow; subscript 1 denotes that the variables refer to
cross section 1; and hL1–2 denotes head loss between cross sections 1 and 2. The
terms in Eq. 16.2 are explained in Fig. 16-1. The hydraulic grade line (HGL) is a
line that is p/γ above the center line of the pipe. If a piezometer is attached to the
pipe, water will rise up to the HGL. The energy grade line (EGL) is v2/2g above
the HGL.

The loss of energy in a pipe network takes place because of the roughness of
pipes, turbulence, and viscous stress. Some energy is also lost in contractions,
expansions, bends, joints, and valves. This loss is termed as minor loss. Gener-
ally, the minor head loss is proportional to v2/2g.

Example 16.1 The discharge passing through a horizontal pipe of diameter =
60mm is 0.005 m3/s. The pressures at the upstream and downstream sections
are 15 and 11 kPa, respectively. What is the head loss in the pipe?

Solution Since the diameter of the pipe is constant, v2/2g will be the same at
both ends. Because the pipe is horizontal, the head loss will be 

Example 16.2 For the pipe of Example 16.1, let the elevation of the upstream end
be 2 m higher than that of the downstream end. Further, at the downstream end,
the pipe diameter is 50 mm (whereas it is 60 mm at the upstream end). Find the
head loss between the two sections.

Solution The velocity of flow at section 1 will be

v1 = Q/A1 = 0.005/[π(60 × 10-3/2)2] = 1.77 m/s

At section 2,

v2 = Q/A2 = 0.005/[π(50 × 10-3/2)2] = 2.55 m/s

Energy Eq. 16.2 gives
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16.1.1 Pipe Flow Equations

In a WDN, the velocity of flow in pipes is usually computed by using the
Hazen–Williams equation

v = 0.849 C R0.63 Sf
0.54 (16.3)

where v is the flow velocity (in meters per second), R is the hydraulic radius (in
meters), Sf is the friction slope (in meters per meter), and C is the Hazen–
Williams roughness coefficient, which depends upon the pipe properties. The
hydraulic radius is the ratio of cross-sectional area and wetted perimeter. For a
circular pipe, R = A/P = πr2/2πr = r/2, where r is the radius of the pipe.

For a smooth plastic pipe, a typical value of the coefficient C may be about
150 (metric units). The head loss from friction (in meters) per 1,000 m pipe length
can be computed by

(16.4)

where D is the diameter of the pipe (in meters) and K is the pipe coefficient. 
Another commonly used equation for head loss in pipes is the Darcy–

Weisbach equation

(16.5)

where L is pipe length (in meters) and f is the Darcy–Weisbach friction factor,
which depends, among other things, on the relative roughness of the pipe and

Figure 16-1 Energy terms for pipe flow.
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the Reynolds number (Re). The Reynolds number is the ratio of inertial forces to
viscous forces (vD/ν, where ν is the kinematic viscosity). For laminar flow (Re <
2,100), 

f = 64/Re (16.6)

For turbulent flow (Re > 2000), the roughness is obtained from the Karman
and Prandtl equations: 

smooth pipe:  (16.7)

rough pipe:  (16.8)

Knowing the relative roughness and the Reynolds number, one can read the
friction factor for a pipe from the Moody diagram. The relative roughness equals
ks/D. Here, ks is the equivalent sand roughness, which is the resistance character-
istics produced by a pipe of the same diameter, internally coated with sand par-
ticles having diameter ks. From a computational viewpoint, it is convenient to
use the equation proposed by Swamee and Jain (1976) to compute f:

(16.9)

For flow in open channels, the velocity can be computed using Manning’s
equation

(16.10)

where S0 is the slope of the channel bed and nm is a coefficient, known as Man-
ning’s roughness coefficient, whose values depend upon the properties of the
channel cross section; higher values represent a “rough” cross section. Barnes
(1962) has tabulated values of n for natural channels. For a concrete channel, a
typical value of n may be 0.013, and n for a straight earthen section may be
0.02. For a steel pipe, flowing partially full, n is about 0.012; it is 0.014 for a
cast-iron pipe. 

Another popular equation to compute the velocity in a channel is Chezy’s
equation

v = C (RS0)0.5 (16.11)

where C is the Chezy’s resistance coefficient. It is related with Manning’s nm by

(16.12)
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Example 16.3 A 500-m-long pipe with a diameter of 0.5 m carries water at a
velocity of 4 m/s. Determine the head loss in the pipe if the relative roughness is
ks = 0.0005 m. Assume the kinematic viscosity is ν = 1.0 × 10–6 m2/s.

Solution The Reynolds number is

Re = 4 × 0.5/(1.0 × 10-6) = 2 × 106

and the relative roughness is 0.0005/0.5 = 0.001. The value of f can be obtained
from the Moody diagram or from Eq. 16.7 or Eq. 16.9. Equation 16.7 gives

and from Eq. 16.9, one obtains

Now, the head loss can be computed by using Eq. 16.4:

hL = 0.0198 × 500 × 42/(0.5 × 2 × 9.81) = 16.14 m

16.1.2 Pipe Networks

In a WDN, pipes may be connected in series, in parallel, or in branches. For the
purpose of solution, the subnetworks are represented by an equivalent pipe. A
network and a pipe are equivalent when both carry the same discharge for the
same head loss. When n pipes are joined in a series (see Fig. 16-2), the total head
loss of the equivalent pipe (hLe) with the pipe coefficient (Ke) is the sum of head
losses (hL) of individual pipes with pipe coefficient K:

(16.13)

and

(16.14)

When pipes are connected in parallel as shown in Fig. 16-3, the head loss in
each pipe between the junctions will be the same. Thus

hL1 = hL2 = hL3 = …

Q = Q1 + Q2 (16.15)
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Substituting the value of Q from Eq. 16.4 or Eq. 16.5, one obtains

(16.16)

or

(16.17)

When the Hazen–Williams equation is used, n will be 1.85; it will be 2 when
the Darcy–Weisbach equation is used.

Often, the division of flows in parallel pipes is also required. To that end,
we have

hL1 = hL2

so

or

(16.18)

Figure 16-2 A network of pipes in series.

Figure 16-3 A network of pipes in parallel.

hL2

Q

hL1

hL3

hL1= hL2

Q = Q1 + Q2

Q1

Q2

h
K

h
K

h
K

L

e

n
L

n
L

n⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

1

1

1

2

1/ / /

1 1 1
1

1

1

2

1

K K Ke

n n n⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

/ / /

f
L
D

v
g

f
L
D

v
g1

1

1

1
2

2
2

2

2
2

2 2
=

v
v

f
f

L
L

D
D

1

2

2

1

2

1

2

1
=

⎛

⎝⎜
⎞

⎠⎟



Reliability Analysis of Water Distribution Networks 719

Example 16.4 Two tanks are connected through two pipes as shown in Fig. 16-4.
The flow of water from the upper tank to the lower one is at 0.04 m3/s and the
Darcy–Weisbach friction factor is 0.03. Find the elevation of water in the lower
tank if the elevation of water in the upper tank is 100 m.

Solution The water velocities in the pipes are

v1 = Q/A1 = 0.04/[3.14×0.102] = 1.274 m/s

v2 = Q/A2 = 0.04/[3.14×0.152] = 0.566 m/s

The energy equation can be written as 

Example 16.5 Two tanks are connected through pipes as shown in Fig. 16-5. The
length of each pipe is 100 m. The diameter of pipes 1 and 2 is 40 cm and that of
pipe 3 is 30 cm. The elevation of water in the first tank is 100 m and it is 90 m in
the second tank. If the Darcy–Weisbach friction factor is 0.02 for all the pipes,
find the velocity of water in the pipes and the discharge through pipe 1.

Solution Since pipe 2 and pipe 3 are in parallel connection, the head loss in
them will be equal. Therefore, from the Darcy–Weisbach equation, one has

or

which upon simplifying gives
v2 = 1.155v3

The discharge through pipe 1 will be the same as the sum of discharges
through pipes 2 and 3. Hence,

A1v1 = A2v2 +A3v3

so
3.14 × (402/4)v1 = 3.14 × (402/4)v2 + 3.14 × (302/4)v3

1,600v1 = 1,600 × v2 + 900 × v3

= 1,600 × (1.155) × v3 + 900 × v3

which gives
v1 = 1.7175v3

z z h hL L2 1 2 2
2

100 0 03
400
0 20

1 274
2 9 81

0 03
600
0 30

0 566
= − −

= −
×

−.
.

.
.

.
.

. 22

2 9 81
94 06

×
=

.
. m

f
L
D

v
g

f
L
D

v
g

3

3

3
2

2

2

2
2

2 2
=

f
v

f
v100

0 3 2 9 81
100
0 4 2 9 81

3
2

2
2

. . . .×
=

×



720 Risk and Reliability Analysis

The total head loss through the system is 10 m. This permits us to write 

Substituting the value of v1 and solving yields v3 = 3.027 m/s. Hence,

v1 = 5.199 m/s
and

Q1 = 3.14 × (0.402/4) × 5.199 = 0.653 m3/s

16.2 Analysis of a WDN

A typical WDN consists of pipes connected in series, in parallel, and in branches.
In addition, there are valves, meters, etc. that result in head loss. To simplify the
analysis, the constituents are conceptually combined together to form equivalent
pipe. The movement of water through a WDN with a known demand must sat-
isfy the laws of conservation of mass and energy. Two approaches are commonly
used for steady-state analysis of a WDN. The equations that express the conser-
vation of energy in terms of head are known as loop equations. In another type
of formulation, the mass balance is expressed in terms of head at the junction
nodes and the resulting equations are known as node equations. These two for-
mulations are discussed in what follows.

Figure 16-4 Two tanks connected by pipes in series.

Figure 16-5 Two tanks connected by pipes in parallel.
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16.2.1 Loop Formulation

A pipe network consists of a number of pipes joining together. The end points of
the pipes are junction nodes or fixed head nodes. Primary loops in a network
include all closed pipe circuits within the network. The number of pipes (P), the
number of junction nodes (j), the number of primary loops (n), and the number
of fixed head nodes (f) are related by

P = j + n + f – 1 (16.19)

The mass balance (Eq. 16.1) for each junction node can be written as 

ΣQin, j – ΣQout,j = Qe,j (16.20)

where Qe,j is the external inflow and demand at node j. The energy conservation
equation for each primary loop can be written as 

ΣhL = ΣEp (16.21)

where hL is the energy loss in each pipe and Ep is the energy imparted to the flow
by the pumps. If no energy is imparted, the right-hand side will be zero.

16.2.2 Hardy–Cross Method

This method developed by Cross (1936) is the oldest systematic method and is
frequently used to solve WDN hydraulic design problems. The computation of
the loop method begins with a set of assumed flow rates that satisfy the continu-
ity equation. Application of head-loss equations gives nonzero residual head
and the discharge corrections are found using the Hardy–Cross formula. 

In the Hazen–Williams, Manning, or Darcy–Weisbach methods, the head loss
h (in meters) in a pipe carrying discharge at Q (m3/s) is given by (see Eq. 16.4)

h = k Qn (16.22)

where k is a constant and n is an exponent. If the Hazen–Williams equation is
used, n = 1.85.

In the absence of the knowledge of discharge Q flowing through a pipe, let
the assumed discharge be Q1. We can write

Q = Q1 + Δ (16.23)

where Δ is the error in the assumed discharge. Substituting Q in Eq. 16.22 yields

kQn = k(Q1 + Δ)n = k[Q1
n  +  n Q1

n-1 Δ + …]

If Δ is small compared to Q, the higher order terms can be neglected and this
yields

kQn = k[Q1
n  +  n Q1

n-1 Δ ] (16.24)
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For a pipe loop, the sum of head losses for all pipes must be zero. This yields

ΣkQn = 0

or

Σk[Q1
n + n Q1

n-1 Δ] = 0

and so

(16.25)

Note that the term in the numerator has a sign whereas, in the denominator,
the absolute value of the terms is taken. Eq. 16.25 is used in the Hardy–Cross
method to get the value of correction that is applied to the assumed flow
through a pipe to obtain a better value. The steps of the Hardy–Cross method
are as follows:

1. Assume a distribution of flow in the network that should satisfy the con-
tinuity equation. Ensure that, at a junction, the sum of flows entering
must be equal to the sum of flows leaving.

2. Determine the head loss in each pipe. By convention, clockwise flows are
given a positive sign and counterclockwise flows are given a negative sign.

3. Compute head loss for each loop.
4. Determine correction term using Eq. 16.25. If the largest of the correc-

tions is smaller than a predetermined limit, stop. Otherwise, compute
corrected flows and go to step 2.

The computations of this method can be easily programmed on a computer.

Example 16.6 A simple WDN is shown in Fig. 16-6. The network consists of two
loops. The diameters and lengths of the various pipes are shown in the diagram.
Water enters the network at node A and the direction of flows through the vari-
ous pipes is shown with the help of arrows. The demands at various nodes are
shown in the diagram. Assume the roughness coefficient is C = 100 for all pipes.
Compute the flow in each pipe by the Hardy–Cross method. 

Solution To begin calculations, assume a flow in each pipe such that the
demands are met and mass balance is maintained. Now compute the head loss
for each pipe. The computations are carried out iteratively. As an example, the
head loss hL for pipe AB is computed by the use of Eq. 16.4 with the Hazen–
Williams roughness coefficient C =100: 
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The solution is given in Table E16-6a.
Therefore, the correction to the flows for the top loop is 0.0485 m3/s and for

the bottom loop, it is –0.0298 m3/s. For pipe BE, which is common to both loops,
the net correction will be 0.0485 – 0.0298 = 0.0187 m3/s. With the corrected flows,
we proceed to the second iteration (Table E16-6b).

At this stage, the largest of the corrections is quite small and the discharges
obtained after this correction can be considered to be close to the true values.
Generally, the convergence is rapid in the Hardy–Cross method even if the ini-
tial guess is not good.

16.2.3 Node Formulation: Nonlinear

In this formulation, the analysis is carried out in terms of the unknown total
head (H) at each junction node. By using the continuity equation, the discharge
in a pipe that connects nodes i and j can be written as

Qij = [(hi – hj)/Kij]
1/1.85 (16.26)

where hi and hj are the heads at nodes i and j, respectively, and Kij is the pipe
coefficient for the connecting pipe. The main advantage of the node formulation
is that it has fewer equations, but the equations are nonlinear, which means they
are difficult to solve by hand. Figure 16-7 shows a node that receives flow from
node i and two pipes carrying water to nodes i + 1 and i + 2. Also, the discharge
Qout leaves the network at this node. 

Figure 16-6 WDN of Example 16.6.

  0.22 m3/s F                   0.45m                           A   1.5 m3/s
                                              1000 m 

               0.4 m                                                           0.55 m 
            1000 m                                                           1250 m 

      0.25 m3/s E                   0.4 m                          B    0.3 m3/s
                   1000 m 

               0.4 m                                                           0.4 m
            1200 m                                                           1200 m  

  0.5 m3/s D                   0.35 m   C
                                                900 m                      0.23 m3/s
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Table E16-6a First iteration.

Pipe Q (m3/s) Diameter (m) Length (m) hL (m) hL/Q [m/(m3/s)]

Top loop ABEF

AB 0.9 0.55 1250 40.4233 44.9147

BE 0.2 0.4 1000 9.4230 47.1151

FE –0.38 0.4 1000 –30.8947 81.3019

AF –0.6 0.45 1000 –40.5491 67.5819

Sum –21.5976 240.9136

Correction Δ1 = –(–21.5976)/(1.85 × 240.9136) = 0.0485

Bottom loop BCDE

BC 0.43 0.4 1200 40.7640 101.9100

CD 0.17 0.35 1000 13.3590 78.5825

DE –0.33 0.4 1200 –28.5573 86.5371

EB –0.2 0.4 900 –8.4807 42.4036

Sum 17.0850 309.4332

Correction Δ2 = –(–17.085)/(1.85 × 309.4332) = 0.0298

Table E16-6b Second iteration.

Pipe Q (m3/s) Diameter (m) Length (m) hL (m) hL/Q [m/(m3/s)]

Top loop ABEF

AB 0.9485 0.55 1250 44.5453 46.9639

BE 0.2187 0.4 1000 11.1174 50.8342

FE –0.3315 0.4 1000 –23.9982 72.3928

AF –0.5515 0.45 1000 –34.6945 62.9094

Sum –3.0300 233.1003

Correction Δ1 = –(–3.03)/(1.85 × 233.1003) = 0.007

Bottom loop BCDE

BC 0.3702 0.4 1200 35.3243 95.4194

CD 0.1402 0.35 1000 9.3525 66.7083

DE –0.3598 0.4 1200 –33.5103 93.1360

EB –0.2187 0.4 900 –10.0057 45.7508

Sum 1.1607 301.0145

Correction Δ2 = –(–1.1607)/(1.85 × 301.0145) = –0.0021
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The mass balance equation for node j can be written (with flow toward a
node as positive) as

Qi,j – Qj,i+1 – Qj,i+2 – Qout = 0 (16.27)
or

(16.28)

Equation 16.28 can be written for each node. Thus, there will be a system of
nonlinear equations with the same number of equations as the number of
unknowns. These are then solved to obtain the unknown heads and thereby the
flows in the pipes.

16.2.4 Node Formulation: Linear

This method is quite similar to the loop formulation of the Hardy–Cross method,
but it has many advantages over the other traditionally used methods. Let Qi be
the discharge in pipe i. Rewriting the Hazen–Williams equation, we have

hL = K Q1.85 (16.29)

If a link begins at node a and ends at node b, we have 

hb – ha = K Q1.85 (16.30)

and hb > ha. Equation 16.30 can be linearized using the Taylor series expansion as 

hb – ha = K Qi
1.85 + 1.85 K Qio

0.85 q (16.31)

where Qio is the estimated discharge in pipe i and q is the correction term. We write

Qi = Qio + q (16.32)

where Qi is the updated discharge in pipe i.

Figure 16-7 A WDN node with three pipe connections and an outflow.
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Substituting for q from Eq. 16.32 and simplifying, one gets

Qi = 0.46 Qio + 0.54 [hb – ha ]/(K Qio
0.85) (16.33)

There will be n such equations for n nodes. Note that the equations are linear
because the unknown head appears with a power of unity. This set of equations
can be solved to get the unknowns in an iterative manner. The Hardy–Cross
node method begins with a set of estimated heads. These form inputs for com-
puting flows at the nodes and the residual discharge rates are determined by
using the continuity equation. The heads are iteratively adjusted to get the solu-
tion. Many software packages are available to analyze a WDN. WADISCO
(Water Distribution Simulation and Optimization) by Walski et al. (1990) is one
such package. The software KYPIPE was developed by Wood (1980) and Ross-
man (2000) has described the software EPANET. The software FlowMaster
(Meadows and Walski 1998) can be used for hydraulic analysis and design of
pipes, ditches, and open channels.

Example 16.7 Consider the WDN shown in Fig. 16-8. The network has 30 nodes
and 42 pipe links. The network receives water supply at node 1 whereas the other
nodes are either demand nodes or connecting nodes. The demand nodes are
shown as solid black dots and the connecting nodes are shown by double circles.
Table 16-1 shows the demand (m3) at various nodes along with node elevation.
Pipe details, such as diameter (mm) and length (m), are given in Table 16-2. The
Hazen–Williams coefficient (HWC) is 100 (metric units) for each pipe. Find the
flow and head loss in each pipe. This example is excerpted from Kumar (1999).

Solution The WDN is hydraulically analyzed by assuming that all nodes are
perfectly functional. The pressure at various nodes (in meters and tons per
square meter, TPSM), and the energy grade line (in meters) are shown in
Table E16-7a. The discharge in cubic meters per day (cmd), velocity, and head
loss in different pipes are given in Table E16-7b. 

16.3 Reliability of a WDN

The reliability of a WDN can be defined as “the ability of the WDN to meet the
demands that are placed on it where such demands are specified in terms of
(1) the flows to be supplied (total volume and flow rate); and (2) the range of
pressure at which those flows must be provided” (Goulter 1995). Thus, the reli-
ability is the ability of the system to provide adequate service with acceptable
interruptions in spite of abnormal conditions. 

Reliability analysis of WDNs is receiving much attention these days for
many reasons. Many existing WDNs were designed and constructed several
decades ago. Some of these are unable to meet current demands, which have
increased considerably over the intervening time. Further, because of aging, the
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capacity of components is declining and many of them are failing. Since water is
a basic necessity, WDNs are required to have high reliability. Among other
things, this requires that a certain amount of redundancy should be introduced
into the network. A redundant network has an adequate residual capacity and
alternate flow paths to provide uninterrupted water supply.

In the study of the reliability of a WDN, two categories are identified:
mechanical reliability and hydraulic reliability. Mechanical reliability is con-
cerned with the failure of the network components, such as pumps and pipes. It
mainly depends on the design and manufacture of the components, age, and
environment. Hydraulic reliability of a WDN refers to its ability to provide suffi-
cient water to meet the demand at a required pressure. The hydraulic failure of a
network could arise either from mechanical failure or when the demand out-
strips its ability to supply the requisite quantity of water. 

Figure 16-8 WDN network of Example 16.7.
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Table E16-7a Pipe network analysis (node data and analysis) for Example 16.7.

Node Elevation (m) Discharge 
(cmd)

Energy grade 
line (m)

Pressure
head (m)

Pressure
(TPSM)

1 65.0 –19700.0 100.0 35.0 35.0 (supply)

2 60.0 700.0 95.3 35.3 35.3

3 60.0 700.0 87.4 27.4 27.4

4 60.0 700.0 99.2 39.2 39.2

5 60.0 1000.0 95.8 35.8 35.8

6 60.0 1000.0 94.9 34.9 34.9

7 60.0 95.5 35.5 35.5

8 60.0 900.0 98.2 38.2 38.2

9 60.0 500.0 94.4 34.4 34.4

10 60.0 1000.0 83.7 23.7 23.7

11 60.0 1200.0 83.0 23.0 23.0

12 60.0 1000.0 86.0 26.0 26.0

13 60.0 92.9 32.9 32.9

14 60.0 76.3 16.3 16.3

15 60.0 1200.0 88.1 28.1 28.1

16 60.0 600.0 90.1 30.1 30.1

17 60.0 800.0 75.3 15.3 15.3

18 58.0 1000.0 72.7 14.7 14.7

19 56.0 500.0 72.0 16.0 16.0

20 57.0 700.0 73.9 16.9 16.9

21 57.0 500.0 70.4 13.4 13.4

22 55.0 70.8 15.8 15.8

23 56.0 1200.0 73.1 17.1 17.1

24 54.0 1000.0 70.1 16.1 16.1

25 53.0 1000.0 65.3 12.3 12.3

26 54.0 800.0 74.9 20.9 20.9

27 53.0 500.0 75.5 22.5 22.5

28 54.0 600.0 79.2 25.2 25.2

29 57.0 86.1 29.1 29.1

30 57.0 600.0 82.8 25.8 25.8
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Table E16-7b Pipe network analysis (pipe data and analysis) for Example 16.7.

Pipe Node Diameter 
(mm)

Length 
(m)

Flow 
(cmd)

Velocity 
(m/s)

Head loss 
(m)From To

1 1 2 300.0 600.0 7018. 7 1.15 4.72
2 1 6 200.0 500.0 2791.3 1.03 5.14
3 1 7 150.0 900.0 887.6 0.58 4.50
4 1 4 300.0 400.0 3390.4 0.56 0.82
5 1 5 300.0 800.0 5611.9 0.92 4.16
6 2 3 250.0 500.0 6318.7 1.49 7.86
7 6 3 150.0 800.0 1242.2 0.81 7.45
8 8 7 200.0 600.0 1790.4 0.66 2.71
9 4 8 250.0 300.0 2690.4 0.63 0.97

10 7 13 250.0 800.0 2678.0 0.63 2.57
11 5 9 300.0 400.0 4611.9 0.76 1.45
12 9 13 300.0 500.0 4111.9 0.67 1.46
13 3 10 250.0 600.0 3836.2 0.90 3.75
14 3 11 200.0 500.0 2573.9 0.95 4.42
15 3 12 150.0 1000.0 450.9 0.30 1.43
16 6 12 100.0 600.0 549.1 0.81 8.87
17 13 15 150.0 900.0 926.1 0.61 4.86
18 13 16 200.0 600.0 1831.4 0.67 2.82
19 13 29 250.0 1000.0 4032.5 0.95 6.85
20 10 14 200.0 700.0 2836.2 1.04 7.40
21 11 14 150.0 600.0 1373.9 0.90 6.73
22 16 15 100.0 500.0 273.9 0.40 2.04
23 16 29 150.0 700.0 957.5 0.63 4.02
24 14 17 300.0 700.0 2678.9 0.44 0.92
25 14 20 200.0 700.0 1531.1 0.56 2.36
26 17 18 200.0 800.0 1519.4 0.56 2.66
27 17 19 100.0 500.0 359.5 0.53 3.37
28 18 19 100.0 600.0 140.5 0.21 0.71
29 20 22 150.0 700.0 831.1 0.54 3.10
30 18 21 100.0 300.0 378.9 0.56 2.23
31 22 21 100.0 400.0 121.1 0.18 0.36
32 23 22 100.0 800.0 224.0 0.33 2.25
33 22 25 100.0 600.0 425.6 0.63 5.54
34 22 24 150.0 400.0 508.4 0.33 0.71
35 27 23 150.0 1000.0 598.5 0.39 2.41
36 28 23 150.0 1400.0 825.5 0.54 6.11
37 26 24 100.0 400.0 491.6 0.72 4.82
38 26 25 100.0 600.0 574.4 0.85 9.64
39 30 26 150.0 400.0 1866.0 1.22 7.91
40 29 30 200.0 400.0 2466.0 0.91 3.27
41 28 27 150.0 500.0 1098.5 0.72 3.71
42 29 28 150.0 200.0 2524.0 1.65 6.92
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16.3.1 Stochastic Hydraulic Reliability Analysis of a WDN

In the examples presented in the previous sections, it was assumed that the sup-
ply always equals or exceeds demand and that these two are deterministic.
However, in many networks this assumption many not hold. Frequently, supply
is less than demand because the demand either was underestimated at the time
of planning or has overgrown beyond expectation while the network remains
the same. Note that, beyond a certain limit, increasing supply does not help
much. Because the sizes of pipes remain the same, forcing higher flows results in
higher head losses. The result is insufficient pressure at the demand nodes and
there may be insufficient or no flow at some of the nodes. 

The procedure to compute reliability when supply and demand are random
variables was explained in Chapter 14. When supply is S and demand is D, the
reliability (Rs) can be computed by the probability (Pr) that S – D exceeds zero:

(16.34)

where Pr() stands for probability, and fS(S) and fD(D) are the probability density
functions of supply and demand, respectively. Equation 16.34 is difficult to solve
since the joint probability density function of supply and demand is difficult to
derive. If supply and demand follow normal distribution, the reliability (Rs) can
be computed as

(16.35)

where φ represents the cumulative density function of a standard normally dis-
tributed variable, N(0,1), μ and σ  stand for mean and standard deviation, respec-
tively, and subscripts S and D represent supply and demand, respectively.

Equation 16.35 gives the probability that the supply is greater than the
demand. However, even when supply exceeds demand, it is possible that
demand is not satisfied at some of the demand nodes because pressure is less
than the required service head. This will reduce the nodal reliability and conse-
quently the system reliability. To compute the system reliability, demand is
bifurcated into two parts: D < D0 and D > D0, where Do is the capacity of the sys-
tem. This implies that nodal pressures at all the demand nodes will be greater
than the service head when D = Do. Thus, the expression for Rs becomes

Rs = Pr [(S – D) > 0, D < D0] × Rh1 + Pr [(S – D) > 0, D > D0] × Rha (16.36)

where D0 is the demand truncation level or design capacity of the system, Rh1 is
the network hydraulic reliability when D < D0 (which equals one as the network
is designed for D0), Rha is the network hydraulic reliability when D > D0, and all
the pipes in the network are operational.
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Since the demand is less than the capacity of the system and all the pipelines
are working, computations for the first component of Eq. 16.36 can be carried
out analytically as discharge and pressure criteria will be satisfied at any node of
the system. However, when the demand is greater than the network capacity,
some of the nodes may not receive water with sufficient pressure head. To com-
pute the second component of Eq. 16.36, demand above D0 is divided into m dis-
crete demand intervals and we get

(16.37)

where the number of discrete intervals (m) depends upon the accuracy of the
results desired. For simplicity, each demand interval is assumed to be repre-
sented by the average demand of that interval. For example, demand Dk, which
is the average of Di-1 and Di, represents the kth demand interval as far as the
hydraulic reliability is concerned. A hydraulic simulation of WDN having n
demand nodes is carried out for this Dk and the corresponding pressure heads at
all the demand nodes are computed. The water supplied to the jth node will
depend on the head attainable at that node. For each node, two head limits must
be given: a minimum head, Hmin, and a service head, Hs.

For system performance to be termed satisfactory, all the imposed demands
for each node should be met with heads above the service limit (Hs). If the avail-
able head (H) at a node is below Hs but above Hmin, the system cannot supply the
full demand. It can meet the reduced supply at that node. However, no supply is
possible if the pressure head at the node is below Hmin. Many relationships are
available to estimate this reduced supply.

The reduced supply can be computed using the following equation: 

(16.38)

The rationale for Eq. 16.33 is that, according to hydraulic laws for pipe flow,
flow in a pipe is proportional to the square root of the pressure head.

After computing the flow at various demand nodes, one can estimate the
node hydraulic reliability (Rj), which is defined as the ratio of the discharge sup-
plied to the required discharge at that node. In general, for m different demands
with different probabilities of occurrence, the hydraulic reliability for node j can
be computed as

(16.39)
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The network hydraulic reliability for the ith demand interval can be com-
puted by taking the arithmetic mean or the weighted average of the nodal
hydraulic reliability. If the arithmetic mean is taken, one gets

(16.40)

where n is the number of demand nodes in the network.

Example 16.8 A WDN is shown in Fig. 16-9. The hydraulic equivalence of this
WDN is shown in Fig. 16-10. The water demand for this network is 13,500 cubic
meters per day (cmd). The HWC for all the pipes is 100. The pressure head at the
supply node is 35 m. The service head (Hs) required to satisfy the full demand at a
demand node is 16 m. No flow is possible if the residual pressure at a given
demand node is less than 12 m, which is the minimum required head (Hmin). If
the pressure at a demand node is between 12 and 16 m, the demand will be satis-
fied only partially. The capacity of the network is 12,000 cmd. Therefore, all the
demand nodes will receive water at a pressure of more than 16 m when the net-
work demand is less than or equal to 12,000 cmd. Based upon the past data and
the local climatic conditions, the following statistical data are available: 

mean of supply series (μs) = 17,000 cmd, standard deviation (σ s) = 2,000 cmd

mean of demand series (μD) = 15,000 cmd, standard deviation (σD) = 3,000 cmd

Figure 16-9 Example water distribution network.
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Find the hydraulic reliability of this network when it is fully operational.
Also, compute the hydraulic reliability when, owing to aging of the network, the
HWC for all the pipes changes to 90 (metric units). This example is excerpted
from Kansal (1996).

Solution To compute the static system reliability using Eq. 16.35, first the proba-
bility RS of supply being greater than the demand is computed as

From the tables of the normal distribution, Rs = 0.7105. This will be the sys-
tem reliability if there are no capacity constraints. The WDN is presented in
Fig. 16-10 in terms of node and links.

Considering the demand data to follow a normal distribution, one can find
the probabilities of various demand levels using the normal distribution tables.
For example, in the present illustrative example, the probabilities of demands
less than 12,000 cmd, between 12,000 and 15,000, between 15,000 and 18,000, and
between 18,000 and 21,000 cmd are computed as follows:

Pr{D < 12,000} = 0.1587

Pr{12,000 < D < 15,000} = 0.3413

Figure 16-10 Line diagram of the water distribution network of Fig. 16-9.
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Pr{15,000 < D < 18,000} = 0.3413

Pr{18,000 < D < 21,000} = 0.1359

Pr{D > 21,000} = 0.0228

Further, the probability of (S – D) > 0 is 0.7105. If supply and demand are inde-
pendent and normally distributed, then the joint probabilities can be found as

Pr{(S – D) > 0; D < 12,000} = 0.1587 × 0.7105 = 0.1128

Pr{(S – D) > 0; 12,000 < D < 15,000} = 0.2425

Pr{(S – D) > 0; 15,000 < D < 18,000} = 0.2425

Pr{(S – D) > 0; 18,000 < D < 21,000} = 0.0966

Pr{(S – D) > 0; D > 21,000} = 0.0161

The next step is the hydraulic analysis of the network to estimate pressures
and flows in various pipelines for various demand intervals. The program WAD-
ISO developed by Walski et al. (1990) was used for the purpose. It was assumed
that a particular demand interval can be represented by its average demand.
Thus, the demand intervals of 12,000–15,000, 15,000–18,000, and 18,000–21,000 are
represented by the demands of 13,500, 16,500 and 19,500, respectively.

The results of hydraulic analysis for demand levels of 12,000, 13,500, 16,500,
and 19,500 cmd are given in Table E16-8. As can be seen from Table E16-8, when
the demand is 12,000 cmd, all the demand nodes will receive water more than
the service head (16 m). However, when the demand is more than 12,000 cmd,
some of the nodes have pressure heads below the minimum desired service
head. As a result, some of the demand nodes may receive water in full, some
may receive water at a reduced rate, and some may not receive any water. For
example, when the demand of the network is 16,500 cmd, the demand node 5
will receive water at 13.2 m. This node will receive water in partial-flow mode
and will get (from Eq. 16.33) 669 cmd against the requirement of 1,222 cmd. Sim-
ilarly, node number 6 will receive water at a pressure of 7.8 m. Since this is below
the minimum required head, no water will be withdrawn from this node.

The residual pressure heads at various nodes for different sets of demands can
be utilized to compute the network hydraulic reliability using Eq. 16.40. After
computing the Rha values for all the demand intervals, the system reliability can be
computed by using Eq. 16.36. Note that the probability of (S – D) > 0 and D >
21,000 cmd is very small (0.0161) and the corresponding hydraulic reliability will
also be very small. Therefore, the hydraulic reliability computations for D > 21,000
cmd have been neglected. This gives the system hydraulic reliability 

Rs = (0.1128 × 1.0) + (0.2425 × 0.9946) + (0.2425 × 0.6604) + (0.0966 × 0.4235) = 0.5550
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If the value of the HWC changes (owing to aging of pipeline, etc.), the values
of the residual pressures at various demand nodes will also change. The reliabil-
ity can be computed by following the procedure just given. For the case when
the HWC is 90 (metric units) for all the pipes, higher head loss at various
demand nodes will reduce the system hydraulic reliability to 0.4716.

16.3.2 Reliability Analysis of a WDN with Unsatisfied Demands

In the previous section, hydraulic reliability was computed based on the node
head analysis (NHA) of the WDN. In NHA, it is presumed that the demand of a
node is always satisfied; that is, for node j, the available flow qj

avl is always equal
to the required demand qj

req and the corresponding available nodal head is
obtained. However, because the supply and demand at any node are related
through Eq. 16.37, it is likely that outflow from some of the demand nodes may
not be equal to the desired one. For instance, in the previous example, when the
network demand is 16,500 cmd, demand at node 5 can be partially met and no
demand can be met at node 6 (see Table E16-8). This deficiency in pressure and
flow will change the flow conditions in the WDN, which, in turn, necessitates
changes in the flow analysis. In Example 16.2, the hydraulic reliability was com-
puted without modifying the flow conditions in the network owing to partial- or
no-flow conditions at some of the demand nodes. However, it is mandatory to
satisfy Eq. 16.37 at each and every demand node along with the usual flow anal-
ysis. In this study, a procedure for such modifications has been suggested. The
steps of the modified methodology are as follows:

1. Carry out the NHA for a given set of demands.
2. Check the residual pressure of all the demand nodes. If all the nodes

have residual pressures above the service head, the solution obtained is
final. Otherwise, go to step 3.

3. For a deficient residual pressure node, modify the demand satisfied at
that node by using Eq. 16.37.

4. Repeat the NHA to compute the new values of the residual pressures at
various nodes.

5. Compute the demands satisfied by the new set of residual pressures at
various nodes.

6. Compare the computed demand satisfied at the various demand nodes
with that of the previously computed demand. If both the demands at all
the demand nodes are the same, then the results obtained are final. Oth-
erwise, repeat steps 4 to 6 until the two values are the same.

Example 16.9 Compute the hydraulic reliability of the WDN of Fig. 16-10 when
the network demand is 16,500 cmd. This example is excerpted from Kansal (1996).

Solution In Table E16-8, some of the nodes are in partial-flow mode and some
are in no-flow mode. For example, nodes 5, 9, 13, and 16 are in partial-flow mode
and nodes 6, 10, 14, and 17 are in no-flow mode. Using Eq. 16.37, one can



Table E16-8 Pressure and flow data at various nodes for the WDN shown in Fig. 16-10 by node head analysis.

Node Elevation 
(m)

Output
(cmd)

Pressure
head
(m)

Output 
(cmd)

Pressure
head
(m)

Output
(cmd)

Pressure
head 
(m)

Output
(cmd)

Pressure
head
(m)

Rj

(Eq. 16.27)

1 180.0 –12000 35.0 –13500 35.0 –16500 35.0 –19500 35.0 —

2 178.0 533 31.6 600 30.3 733 27.3 867 23.7 1.0

3 179.0 889 28.4 1000 26.5 1222 22.3 1444 17.3 1.0

4 180.0 800 25.6 900 23.4 1100 18.1 1300 12.0b 0.8414

5 181.0 889 22.5 1000 19.6 1222 13.2a 1444 5.6a

a. Only partial flow can take place at these nodes.

0.6870

6 183.0 800 18.6 900 15.3a 1100 7.8b

b. No flow can take place at these nodes; flow shown in italics is not the actual flow.

1300 –1.0a 0.4688

7 182.0 711 26.4 800 24.9 978 21.2 1156 16.9 1.0

8 181.0 711 25.5 800 23.5 978 18.7 1156 13.2a 0.9158

9 180.0 889 23.1 1000 20.2 1222 13.5a 1444 5.7b 0.7091

10 182.0 889 19.4 1000 16.0 1222 8.4b 1444 –0.5b 0.5000

11 181.0 533 29.7 600 28.6 733 26.2 867 23.3 1.0

12 181.0 711 25.8 800 23.7 978 19.1 1156 13.7a 0.9300

13 183.0 889 20.9 1000 18.3 1222 12.1a 1444 4.8b 0.5540

14 181.0 711 20.0 800 16.6 978 8.7b 1156 –0.4b 0.5000

15 179.0 711 28.4 800 26.6 978 22.3 1156 17.4 1.0

16 180.0 533 24.1 600 21.4 733 15.3a 867 8.1b 0.8100

17 181.0 800 20.6 900 17.4 1100 9.9b 1300 1.2b 0.5000

Network hydraulic 
reliability (Rha)

1.0 0.9946 0.6604 0.4235



Table E16-9 Modified pressure and flow data at various nodes for the WDN shown in Fig. 16-10.

Node Elevation 
(m)

Output
(cmd)

Pressure
head
(m)

Output 
(cmd)

Pressure
head
(m)

Output 
(cmd)

Pressure 
head
(m)

Output
(cmd)

Pressure
head 
(m)

Rj

(Eq. 16.7)

1 180.0 –12,000 35.0 –13450 35.0 –15200 35.0 –16383 35.0 —

2 178.0 533 31.6 600 30.3 733 28.7 867 27.4 1.0

3 179.0 889 28.4 1,000 26.6 1222 24.3 1444 22.7 1.0

4 180.0 800 25.6 900 23.5 1100 20.9 1300 19.1 1.0

5 181.0 889 22.5 1,000 19.8 1222 17.0 1364 15.5a 0.9686

6 183.0 800 18.6 850 15.6a

a. Only partial flow is possible; figures in italics are the actual flows possible.

658 13.4a 457 12.5a 0.7325

7 182.0 711 26.4 800 24.9 978 22.9 1156 21.3 1.0

8 181.0 711 25.5 800 23.6 978 21.0 1156 19.2 1.0

9 180.0 889 23.1 1,000 20.3 1222 17.2 1338 15.5a 0.9686

10 182.0 889 19.4 1,000 16.2 850 14.0a 686 13.0a 0.8094

11 181.0 533 29.7 600 28.6 733 27.2 867 26.3 1.0

12 181.0 711 25.8 800 23.8 978 21.2 1156 19.6 1.0

13 183.0 889 20.9 1,000 18.3 1120 15.3a 990 14.0a 0.9062

14 181.0 711 20.0 800 16.7 765 14.4a 710 13.5a 0.8477

15 179.0 711 28.4 800 26.6 978 24.3 1156 22.9 1.0

16 180.0 533 24.1 600 21.5 733 18.6 866 17.1 1.0

17 181.0 800 20.6 900 17.5 730 14.8a 870 13.8a 0.8768

Rha 1.0 0.9965 0.9274 0.8542

Rv 1.0 0.9963 0.9212 0.8402
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compute the flows at nodes 5, 9, 13, and 16 as 669, 748, 193, and 666 cmd, respec-
tively. The flows at nodes 6, 10, 14, and 17 will be zero if the computed heads are
stationary. In the next iteration, these new computed flows are considered; this
will change the heads at these nodes, causing the possibility of increased flow at
the pressure-deficient nodes. The procedure is repeated until the computed val-
ues of flow at all the demand nodes are the same in two consecutive iterations.
The results have been tabulated in Table E16-9.

From Table E16-9, observe that of the network demand of 16,500 cmd, only
15,200 cmd can be met. Also, the demand nodes 6, 10, 14, and 17, which were in
no-flow condition, will actually have flows of 658, 850, 765, and 930 cmd, respec-
tively. The nodes 5, 9, 13, and 16, which were in partial-flow mode with flows of
669, 748, 193, and 666 cmd, will actually have flows of 1,222, 1,222, 1,120, and 930
cmd. Thus, nodes 5 and 9 will have full flow, whereas nodes 13 and 16 will still
be under partial flow. Similarly, for a network demand of 13,500 and 19,500 cmd,
the possible flows are 13,450 and 16,383 cmd, respectively. The actual nodal
flows are shown in Table E16-9. Note that the nodal demands shown in
Table E16-9 satisfy Eq. 16.37 at all the demand nodes.

Comparison of the last column of Table E16-9 with that of Table E16-8 shows
that the nodal reliability has changed considerably. 

Similarly, the network hydraulic reliability (Rha) computed from Eq. 16.39 for
most of the demand patterns has also gone up. Using the Rha values with the
modified outflows at various demand nodes (see Table 16-9), we can compute
the system reliability from Eq. 16.35 as

Rs = (0.1128 × 1.0) + (0.2425 × 0.9965) + (0.2425 × 0.9274) + (0.0966 × 0.8542) = 0.6619

Thus, the hydraulic reliability after accounting for the actual flows is 0.6619
as compared to 0.555 from NHA. Of course, this value is less than the static
hydraulic reliability of the system (0.7105), which was computed without the
residual head criterion.

The nodal reliabilities can be plotted to get a reliability surface. Graphical
representation of the results helps to visualize them and to identify the areas of
low reliability. In turn, this helps in the operation and maintenance of a WDN.

16.3.3 Hydraulic Reliability Analysis Considering Correlation 
Between Demand and Supply

The hydraulic reliability analysis described in Section 16.3.1 did not consider the
correlation between supply and demand. However, many times supply and
demand have some correlation. To some extent, both of these depend upon vari-
ations in weather and other factors. Hence, it may be better to consider that sup-
ply and demand are correlated variables. The demand is likely to be inversely
related with supply. If ρ is the correlation coefficient between supply and
demand, Eq. 16.35 for the system reliability is modified to yield
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(16.41)

where φ represents the cumulative density function of a standard normally dis-
tributed variable, N(0,1), μ and σ stand for mean and standard deviation, sub-
scripts S and D represent supply and demand, and ρ is the correlation coefficient
between the variables. The correlation coefficient between the surplus (S – D)
series and demand series can be computed by

(16.42)

If we denote the surplus series by X and the demand series by Y, the bivari-
ate probability estimation based on the normal distribution can be computed as

(16.43)

The value of Pr(X≤  h, Y≤  k, ρ1) can be expressed using the T function (Kumar
1980) as

(16.44)

where

(16.45)

(16.46)

In Eq. 16.44, the upper choice is made if h × k > 0 and if h × k = 0 but h + k ≥ 0;
the lower choice is made otherwise.

The T function is defined (Owen 1962) as 

(16.47)

The values of the T function were tabulated by Owen (1962) for 0 ≤ a ≤  1 and
∞. To obtain the values for 1 < a < ∞ , the following formula may be used:

T(h, a) = 0.5P(h) + 0.5P(ah) – P(h)P(ah) – T(ah, 1/a) (16.48)
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To obtain the values for negative a and/or h, the formula is

T(h, –a) = –T(h, a) and T(–h, a) = T(h, a)

Thus, Pr(X ≤  h, Y ≤ k, ρ1) can be computed using T functions. Further, for any
two normally distributed random variables that fall in any region bounded by a
polygon, the bivariate normal distribution can be computed using the T func-
tion. This gives

Pr(X ≤  h, Y ≤  k, ρ1) = Pr(h, k, ρ) – Pr(h, b, ρ) – Pr(a, k, ρ) + Pr(a, b, k) (16.49)

Thus,

Pr[(S – D) > 0; D0 < D ≤ D1; ρ1] = Pr(D ≤  D1) – Pr (D ≤ D0) – Pr[(S – D) ≤ 0, D < D1; ρ1]
+ Pr[(S – D) ≤ 0; D ≤ D0; ρ1] (16.50)

This is shown in Fig. 16-11.
Although the demand series D, in reality, is really a continuous function, to

simplify the analysis it is discretized into m discrete demand intervals. The joint
probability expression now can be expressed as

(16.51)

where D0 is the design capacity of the WDN.

Example 16.10 For illustrating the methodology, consider again the WDN of
Example 16.8, shown in Fig. 16-10. The hydraulic equivalent of this WDN was
shown in Fig. 16-6. The network is then analyzed for pressures and flows in var-
ious pipelines for given demand intervals. This example has been excerpted
from Kumar (1999).

Figure 16-11 Graphical representation of Eq. 16.50.
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Solution In the WDN of Example 16.8 with 17 nodes connected by 21 pipes, the
head available in the reservoir is 30 m. The service head for all the demand
nodes is 16 m and the minimum head for all the demand nodes is 12 m. The
node will receive reduced supply if the pressure of water lies between 12 and
16 m and there will be no supply if the pressure goes below 12 m. In the present
illustrative example, the following data have been used:

supply series: mean (μS) = 17,000 cmd

standard deviation (σS) = 2,000 cmd

demand series: mean (μD) = 15,000 cmd

standard deviation (σS) = 3,000 cmd

The coefficient of correlation between the supply and demand series (ρ) = –0.4.
The coefficient of correlation ρ1 between the (S – D) series and the D series can

be computed by using Eq. 16.30. For the given data, it turns out to be –0.9.
For computation of the system reliability as shown in Eq. 16.24, first the

value of joint probabilities for various intervals of demand subject to the condi-
tion that supply is more than the demand are computed. These values have been
computed using the T functions and are reported as follows:

Pr{(S – D) > 0; D < 12,000} = 0.158

Pr{(S – D) > 0; 12,000 < D < 15,000} = 0.325

Pr{(S – D) > 0; 15,000 < D < 18,000} = 0.192

Pr{(S – D) > 0; D > 21,000} ≈ 0.00

The computations for the second demand interval (12,000 < D < 15,000) are
as follows: Using Eq. 16.50 one can express the probability Pr{(S – D) > 0; 12,000
< D < 15,000} as

Pr{(S – D) > 0; 12,000 < D < 15,000} = 

Pr (D ≤ 15,000) – Pr(D ≤  12,000) –Pr{(S – D) ≤ 0, 

D < 15,000; –0.9} + Pr{(S – D) ≤ 0; D ≤ 12,000; –0.9} 

Pr{D ≤  15,000} = β(∞ ,0) = Pr (∞)/2 + Pr (0)/2 – T(∞ ,1.06) – T(0,∞) – 0 

= 0.5 + 0.25 – 0.0 – 0.25 = 0.5

Similarly,

Pr{D ≤ 12,000} = 0.1587

Pr{(S – D) ≤ 0; D < 15,000; –0.9} = 0.01126

Pr{(S – D) ≤  0; D < 12,000; –0.9) = 0.000562
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Substituting these values in Eq. 16.39 gives

Pr{(S – D) > 0; 12,000 < D < 15,000} = 0.331

Similarly, for other intervals, joint probabilities can be evaluated.
As shown in Table E16-10, when the demand is less than 12,000 cmd, all the

demand nodes receive water at more than the service head (16 m). However, when
the demand is more than 12,000 cmd, some demand nodes may receive water in
full, some may be in the reduced mode, and some may even not receive water at all,
depending upon the availability of the pressure head. The results of pressures at
various nodes for different sets of demand can then be utilized to compute the net-
work hydraulic reliability from Eq. 16.29, as shown in the last row of Table E16-10.
After computing Rh, one can compute the system reliability as

RS = (0.158 × 1.0) + (0.331 × 0.9976) + (0.192 × 0.6362) + (0.002 × 0.439) = 0.611

If one does not consider the capacity constraint, the value of the system reli-
ability (RS), which is represented by Pr{(S – D) > 0}, would have been 0.683.

16.3.4 Reliability Analysis of a WDN Considering Pipeline Failures

The delivery of water in adequate quantity at the desired pressure to all the
demand nodes is the primary goal of any WDN. As a system ages, its ability to
transport water diminishes while the demand placed upon it typically increases.
Thus, the rehabilitation, replacement, and/or expansion of an existing system to
adequately meet the demand of flow at proper pressure head has always been of
considerable interest to water utility engineers (Kim and Mays 1994). In the previ-
ous section, the hydraulic reliability of a WDN was estimated when the network
was fully operational. However, this is not a realistic assumption: In real-life situ-
ations, a WDN is subject to pipeline failures. The computations of hydraulic reli-
ability in such situations becomes much more difficult because it is very difficult
to estimate the time and location of pipeline failure. Second, more than one pipe-
line may fail simultaneously and the number of such possible failure combina-
tions may be very large even for a moderately sized WDN. The hydraulic
simulation of all such failure events is complex. Thus, it has always been desired
to suggest techniques that involve less computational effort and are robust and
easy to comprehend (even at the cost of exactness) for computing the hydraulic
reliability of a WDN when some of its pipelines are nonoperational.

The reliability that water will be available at various demand nodes of a distri-
bution system may be expressed in terms of several measures. An earlier measure
bases the reliability only on the connectivity of the demand point with the source
of water. This measure is not representative of real systems since the adequacy of
water supply requires not only connection to a source but also that a specified
amount of flow must be delivered. To address this deficiency, a capacity-weighted
reliability index was suggested by Wagner et al. (1988) and Quimpo et al. (1993).
Two capacity-weighted measures are possible. In the reliability computation, a



Table E16-10 Hydraulic reliability analysis of WDN.

Node Elevation 
(m)

Output
(cmd)

Head
(m)

Output
(cmd)

Head (m) Output 
(cmd)

Head 
(m)

Output
(cmd)

Head 
(m)

1 185 –12000 30.0 –13500 30.0 –16500 30.0 –19500 30.0

2 179 720 30.5 810 29.1 990 26.0 1170 22.4

3 179 800 28.2 900 26.3 1100 21.9 1300 16.8

4 180 720 26.3 810 24.2 990 19.3 1170 13.6

5 181 960 22.7 1080 19.9 1320 13.6 1560 6.2

6 183 720 18.9 810 15.7 990 8.3 1170 –0.3

7 182 640 26.5 720 24.9 880 21.2 1040 16.9

8 181 640 25.7 720 23.7 880 19.0 1040 13.6

9 180 960 23.2 1080 20.3 1320 13.7 1560 5.9

10 182 960 19.4 1080 16.1 1320 8.5 1560 –0.4

11 181 480 29.8 540 28.8 660 26.4 780 23.7

12 181 640 26.0 720 24.0 880 19.5 1040 14.3

13 183 960 20.9 1080 18.2 1320 12.0 1560 4.8

14 178 800 23.0 900 19.5 1100 11.7 1300 2.5

15 179 640 28.6 720 26.8 880 22.7 1040 17.8

16 180 640 24.0 720 21.4 880 15.2 1040 8.1

17 181 720 20.8 810 17.6 990 10.2 1170 1.5

Rh 1.00 0.998 0.636 0.439
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strict capacity measure excludes those paths that do not meet the desired demand
fully. A more realistic measure is one that also takes into account the partial satis-
faction of demand into consideration because two partially satisfying paths may
combine to satisfy the required demand at a particular node. Another important
dimension of the problem is that the intermediate nodes in any particular path
may draw water and hence restrict the capacity of the path for the desired demand
node.

16.4 Reliability Analysis of a WDN Using the Entropy 
Concept

Entropy theory, described in Chapter 9, can be employed for reliability analysis
of a WDN. Recall that the redundancy is introduced in a WDN to increase its
reliability. If there is only one path between source and sink in a network, it is
perfectly ordered and therefore the entropy of this system will be zero. Redun-
dancy at a node of a WDN can be considered as a measure of the disorder. One
way to add redundancy to a WDN is by making looped networks rather than
branched networks. In a redundant system, there will be many paths from a
demand center to the source and the system will have nonzero entropy. As the
redundancy increases, the uncertainty in the flow distribution in the system will
increase and so will entropy. Hence, maximization of entropy is equivalent to
maximization of redundancy.

In a water distribution network, redundancy is introduced so that demand
points have alternative supply paths. This helps in delivery of water to demand cen-
ters even if a particular link becomes nonoperational. Redundancy is defined in
terms of flow rather than any other variable, such as pressure, since flow is the most
important variable of interest. Redundancy of a network is a measure of how well
the network performs in terms of the total flow in the network when a link fails. 

Redundancy of a WDN depends on its shape and is closely related to its reli-
ability; a redundant network is more reliable. The redundancy of the entire net-
work as a whole depends upon the redundancies of the individual nodes of the
network. Note that summation of the redundancies of the individual nodes to
get the redundancy of the whole network is not correct because redundancy is a
measure of how well the network performs as a whole in moving the total flow
when an individual link fails. The relative importance of a link to the local flow
is not important; rather, the relative importance of a link to the total flow in the
network should be used to assess the overall network performance.

Let Sj be the redundancy of the node j. To use the entropy concept, the defini-
tion of redundancy should have the following features:

1. Sj at node j should be a function of X1j, X2j, …, Xn(j) j , where Xij is the frac-
tion of flow into node j derived from node i, and
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where n(j) is the number of links incident on node j.
2. Sj should be zero if only one link is incident on node j or n(j) = 1.

3. For a given value of n(j), the redundancy should have a maximum value
when all Xj are equal.

4. The maximum value of Sj at a node should monotonically increase with n(j).

Let the flow at node j be denoted by Qj. If there are N nodes in the network,
the total flow in the network Q0 will be

(16.52)

Note that Q0, which is the sum of flows in all links, is greater than the total
demand. The redundancy for node j can be written in the same form as that for
Shannon’s entropy (see Chapter 9):

(16.53)

where qij is the flow in the link from node i to node j, Qj is the total flow into node
j, and, in this equation, redundancy is measured by the extent to which the node
receives water when a link that is incident to it fails. The redundancy Sj of a node
will be a maximum when all qij/Qj terms are equal (i.e., all links incident on the
node carry the same flow). Awumah et al. (1991) argued that the relative impor-
tance of a link to the total flow is important in assessing the overall network per-
formance and hence qij/Qj in Eq. 16.53 should be replaced by qij/Q0. With this
replacement, Eq. 16.53 can be written as

or

(16.54)

The sum of redundancies at all nodes will give the entropic measure of the
network redundancy:

(16.55)

X
Q

Q
Q qij

ij

j
j ij

i

n j

= =
=
∑,
( )

and
1

Q Qj
j

N

0
1

=
=
∑

S
q

Q

q

Qj
ij

j

ij

ji

n j

= −
=
∑ ln
( )

1

S
q

Q

Q

Q

q

Q

Q

Q

Q

Q

q

Q

q

Qj
ij

j

j ij

j

j

i

n j
j ij

j

ij

ji

n j

= − = − +
= =
∑

0 01 0 1

ln ln
( ) ( )

∑∑ ∑
=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

q

Q

Q

Q
ij

j

j

i

n j

ln
( )

01

S
Q

Q
S

Q

Q

Q

Qj
j

j
j j= −

0 0 0
ln

S SN j
j

N
= ( )

=
∑

1



746 Risk and Reliability Analysis

Substituting in Eq. 16.55 from Eq. 16.54 gives the entropic measure of net-
work redundancy as

(16.56)

The first term on the right-hand side of this equation is the weighted sum of
entropy at different nodes. The second term reflects the redundancy among
nodes where uniformity among the nodes in terms of flow distribution (unifor-
mity of Qj/Q0 value) indicates that the network has a better capacity to success-
fully overcome failure of any single link. Awumah et al. (1990) showed that
maximization of the function given by Eq. 16.56 is equivalent to maximizing the
ability of the network to supply water to each node. This is the same as maximiz-
ing the network redundancy. 

A measure of network performance that reflects how well the network is
able to supply flow under a range of failure conditions is the percentage of the
total demand supplied at adequate pressure (PSPF). This parameter shows the
performance of the network as a whole and therefore reflects the network-wide
redundancy (Awumah et al. 1991).

The entropy approach can also be used to minimize the cost of the network
in a formulation that includes, in addition to the hydraulic constraints, a set of
constraints to ensure the minimum level of redundancy in the network. Con-
straining entropy of the network at each node individually has been suggested.
This approach ensures that the network does not have a few unreliable nodes
while maintaining good overall redundancy. The decision variables of this prob-
lem are the flows. The resulting problem is a nonlinear optimization problem
since the entropy function is nonlinear.

Example 16.11 Figure 16-12 shows a WDN. The node numbers are shown in
bold and the flows in the links (m3/hour) are also shown. Compute the entropy
of the WDN

Solution For the entire network, flow Q0 obtained by summing the individual
flows is 8,704 units. The entropy has been computed as shown in Table E16-11.
For example, at node 1, the total flow is 840 + 760 = 1,600 units. The last two col-
umns give the first and the second terms of Eq. 16.56. Hence, SN = 2.9807. 
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Figure 16-12 WDN of Example 16.11.

Table E16-11 Computation of entropy for the WDN of Example 16.11.

Node Link 1 Link 2 Link 3 Node Qj Sj Qj × Sj/Q0 Entropy

1 840 760 0 1600 0.691897 0.127245 0.4385

2 840 530 210 1580 0.970512 0.176254 0.4859

3 530 380 910 0.6795 0.071074 0.3071

4 760 610 1371 0.68723 0.108298 0.3994

5 210 60 270 0.529706 0.016439 0.1242

6 380 280 660 0.681624 0.051709 0.2473

7 611 200 210 1022 0.952482 0.111889 0.3633

8 60 200 60 320 0.921493 0.033894 0.1553

9 280 80 360 0.529706 0.021919 0.1537

10 211 110 321 0.642797 0.023717 0.1454

11 60 110 20 190 0.917402 0.020035 0.1035

12 80 20 100 0.500402 0.005752 0.0571

Sum 8704 0.768226 2.9807

3             530  2      840 1   Source 

   380                               210                               760 

 6                                   5                                    4 

  280                                60                                  610 

                                      8 200                 7 
   9

  80                                  60                                  210 

12               20 11             110 10
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16.5 Questions

16.1 The discharge passing through a horizontal pipe of diameter 80 mm is
0.01 m3/s. The pressures at the upstream and downstream sections are
20 and 15 kPa, respectively. What is the head loss in the pipe?

16.2 For the pipe of Question 16.1, let the elevation of the upstream end be
1.5 m higher than that of the downstream end. Further, at the down-
stream end, the pipe diameter is 70 mm (whereas it is 80 mm at the
upstream end). Find the head loss between the two sections.

16.3 A 1000-m-long pipe with a diameter of 0.5 m carries water at a velocity
of 3 m/s. Determine the head loss in the pipe if the relative roughness is
ks = 0.0001 m. Assume the kinematic viscosity ν = 1.0 × 10–6 m2/s.

16.4 Tanks 1 and 2 are 1,000 meters apart and are connected through two
pipes. The first pipe connected to pipe 1 is 600 m long and has a diame-
ter of 300 mm. This is then connected to another pipe of 400-m length
and a diameter of 200 mm, which is then connected to tank 2. The flow of
water from the upper tank to the lower one is at 0.05m3/s and the
Darcy–Weisbach friction factor is 0.025. Find the elevation of water in the
lower tank if the elevation of water in the upper tank is 80 m.

16.5 A pipe of 0.15 m diameter is connected to a pipe of 0.20 m diameter. If the
average velocity in the first pipe is 10 m/s, what is the average velocity in
the second pipe? Also determine the discharge through the second pipe.

16.6 Four pipes of different diameters join at a junction as shown in the
Fig. 16-13. The diameters of the pipes and the discharge passing through
them are also shown in the figure. Find the value of Q4 and the average
velocity of flow in each pipe.

Figure 16-13

Q 2 = 0.035 m3/s

                             20 cm   
Q1 = 0.022 m3/s

             12.5 cm                 15 cm            Q 3 = 0.025 m3/s

                          22.5 cm  

Q 4
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16.7 A 450-m-long cast-iron pipe of 15 cm diameter is to carry a flow of water
(v= 1.131 × 106 m2/s) with Q = 0.03 m3/s. Determine the friction factor of
the pipe and head loss in the pipe.

16.8 A 15-cm PVC pipe transfers water between two reservoirs. The eleva-
tions of the water surfaces in the reservoirs differ by 50 m and the length
of the pipe is 2,000 m. Find the flow rate through the pipe. 

16.9 A 50-m-long cast-iron pipe of 30 cm diameter is connected with a 25-cm-
diameter 75-m-long pipe in series. The discharge through the pipes is
0.2 m3/s. Find the length of a 40-cm pipe that is equivalent to this
system.

16.10 In Example 16.5, assume the diameter of pipe 1 to be 35 cm and the
length of each pipe to be 90 m. Find the velocity of water in the pipes and
discharge through pipe 2.

16.11 In Example 16.6, assume the roughness of all four pipes in the upper
loop to be 125. Compute the flow in each pipe by the Hardy–Cross
method. Compare the results with those obtained in Example 16.6 and
explain the difference in flow in the various pipes.
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