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Poland

Andrzej Bartoszewicz
Institute of Automatic Control
Technical University of Łódź
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Preface

Information sharing plays a key role in functioning and evolution of modern
societies. The access to appropriate information frequently affects the choices we
make, thus influencing our life both on the professional and private levels. It is
of paramount importance then to provide this access as fast as possible and with
appropriate guarantees.

The backbone of information sharing systems is formed by data transmission
networks. The networks supply the means of communication and give crucial
functionality for successful data exchange. A “successful” data exchange implies
that a suitable service level has been achieved while delivering the data, since only
then a particular application (or service) can be regarded useful for the partners in
communication. In consequence, apart from the mere fact of relaying the data pieces
from one point to another, the network should ensure that they are transmitted in an
appropriate way. The service level, or Quality of Service (QoS), reflects the way
the data is transported through the network. Various applications require different
service level guarantees measured through performance indicators, such as error
rate, throughput, or average delay. Since a data transmission network is inherently a
distributed system, in order to establish good values of the performance indicators,
efficient means of resource sharing and traffic management should be implemented.
Among the traffic regulation mechanisms, congestion control (or data flow control)
plays a key role in ensuring coordinated access to the available resources. In
particular, it is vital for ensuring appropriate, dynamical load adjustment according
to the changing networking conditions.

Despite the considerable research effort lasting for more than three decades
now, efficient data flow regulation remains a challenging issue. This is mainly
attributed to the intrinsic complexity of communication systems and unceasing
need for adding new and more sophisticated services to the existing infrastructure.
Nowadays, the traditional objective of efficient and fair resource usage is augmented
by other QoS requirements that should be considered in the control strategy design,
such as high reliability in banking information delivery, or low delay variation in
video transmission.
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vi Preface

Meeting the QoS requirements poses a serious challenge when the distance
between the communicating partners increases. When the information exchange
takes place on large geographical areas, as is frequently the case in the Internet,
the data needs to pass through multiple nodes and interconnecting links. Therefore,
in addition to higher risk of losses, the long-distance communication imposes
substantial latency caused by the physics of signal propagation and information
processing. The data pieces traveling through the network are subject to propagation
delay along the links, processing latency at the nodes, and queuing delay in the
buffers. Moreover, the overall latency for the data stream may change during the
transmission depending on the buffer state and the path the pieces are directed along.
As a consequence, a good flow control strategy for modern communication networks
should explicitly incorporate suitable mechanisms for handling the effects related
to delay. These mechanisms should provide compensation for delays spanning the
range from several milliseconds (local flows) to even a few seconds (in global
data exchange). They should also ensure robustness to latency variations and other
perturbations affecting the control process.

This work is devoted to the application of control-theoretic methodology to
the communication system modeling and design of congestion control algorithms.
The primary objective of the monograph is twofold. First of all, we show how
various networking phenomena can be represented in a consistent mathematical
framework which is suitable for rigorous formal analysis. We differentiate between
fluid-flow continuous-time traffic models, discrete-time processes with constant
sampling rate, and sampled-data systems with variable discretization period. The
second fundamental objective of this work is to provide appropriate control mech-
anisms which can handle the congestion and guarantee high throughput in various
traffic scenarios (with different networking phenomena considered). We propose
a systematic design approach using sound control-theoretic foundation. Since the
robustness issues are of major concern in providing efficient data flow regulation
in today’s networks, sliding-mode control is selected as the principal technique to
be applied in constructing the control algorithms. The controller derivation is given
extensive analytical treatment and supported with numerous realistic simulations.
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Chapter 1
Introduction

In recent years, we have experienced rapid evolution of networking services. We
can find widespread network traffic related to web browsing, e-mail, electronic
trade and money transfer, telematics (vehicle positioning, crash notification, etc.),
video streaming, remote visualization and steering, Internet telephony, etc. As
a consequence, in addition to the increased intensity, the today networks need
to handle also the diversity of data streams and meet their QoS requirements.
Together with serving the applications demanding fast and reliable information
interchange (e.g., banking transactions), modern data transmission networks are
expected to provide high-throughput, low-jitter, end-to-end connectivity important
for multimedia transmission. The connectivity needs to be available to both local
and long-distance streams without violating fairness constraints. In the following
sections, we will recall the fundamental concepts of organizing data transfer in
communication networks and elaborate on a major obstacle to obtaining appropriate
QoS – the congestion.

1.1 Data Transfer Concepts

The exchange of information in a data transmission network takes place between
two end points. The end point injecting the data into the network is referred
to as the source (or transmitter) and the other end point as the destination (or
receiver). In bidirectional communication, both end points serve the role of source
and destination, depending whether they are transmitting or receiving the data.
Typically, the stream generated by the data source is partitioned into units of
appropriate size – packets. In the network, packets pass through a series of nodes
until they are delivered to their destination. Depending on how a particular stream is
handled by the nodes, basically, we can differentiate between connection-oriented
and connectionless types of networks.

P. Ignaciuk and A. Bartoszewicz, Congestion Control in Data Transmission Networks:
Sliding Mode and Other Designs, Communications and Control Engineering,
DOI 10.1007/978-1-4471-4147-1__1, © Springer-Verlag London 2013
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2 1 Introduction

In connection-oriented networks, a virtual circuit (VC) is created between the
communicating entities before the actual exchange of data commences. Thus,
prior to the transmission of data, the network sets a path through a sequence of
nodes for the entire data stream. Also in the connection setup phase, appropriate
switching rules at the nodes are established to quickly move the incoming packets
between the input and output node interfaces. Afterwards, the stream of packets
follows the fixed path with no need to examine full address data of the ultimate
destination by the nodes from the individual packets. As a result of reducing
the time needed for taking the routing decisions, the transmission efficiency
can be increased. Moreover, transferring the data along the preestablished, fast-
switched path extends the possibilities for loss reduction, more efficient resource
utilization, and QoS enhancements. In particular, it allows for decreasing the
average propagation delay and delay variation, which are critical for multimedia
applications. Some noticeable examples of connection-oriented technologies are, for
instance, Asynchronous Transfer Mode (ATM) [1], Multiprotocol Label Switching
(MPLS) [10], Generalized MPLS (GMPLS) [9], Pseudo Wire Emulation Edge-
to-Edge (PWE3) [2], or UDP-based data transfer (UDT) [3, 4]; see also recent
special issues reporting on the advancements in connection-oriented networks
[5, 6].

In spite of the numerous advantages of connection-oriented technologies, the
majority of data traffic in the today Internet is of connectionless type, regulated
by the family of TCP/IP (Transmission Control Protocol/Internet Protocol) network
protocols. In connectionless networks, the route for the stream of packets generated
by a source is not established a priori. Each packet arriving at a network node is
routed individually. The node reads full address data of the destination point from
the packet header, determines the appropriate output interface from the routing
table, and finally forwards the packet on this interface to the next node on the
path towards the destination. Due to the necessity of extracting full address data
from the header, the switching time – the time of information processing and
directing the packet between the input and output interfaces – grows. However, a
more serious drawback of the connectionless data transfer is the increased risk of
congestion. Note that the lack of connection setup phase implies that the network
has fewer means of regulating which flows should be accepted and which should
be rejected due to insufficient resources. As a rule, a connectionless network
accepts all the incoming traffic. Therefore, in addition to longer delays the packets
experience at the nodes, in connectionless networks, there is a bigger chance of
the traffic intensity growing beyond the available channel capacity which leads to
congestion. Thus, the need for efficient control schemes that will dynamically adapt
the traffic intensity to the changing networking conditions is perhaps more profound
in connectionless networks than in connection-oriented ones. The advantage of
connectionless technologies, in turn, is smaller initial signaling overhead and
increased robustness to errors related to breaking the connection. If in a connection-
oriented network the established connection is cut (for instance, due to a link
failure), the setup phase needs to be repeated. Since in connectionless networks each
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packet is treated individually, the lack of possibility of sending a packet along the
optimal route need not terminate the ongoing transmission. Typically, a link failure
reduces to switching the traffic to an alternative (backup) path.

However, no matter the choice of the transmission technology, either connec-
tionless or connection-oriented, in order to guarantee good network performance,
appropriate means of controlling the access to network resources need to be
provided. In particular, when high service level is required, the available resources
need to be administered in a well-coordinated manner, according to the dynamically
changing networking conditions (varying traffic intensity, number of active connec-
tions, buffer levels, etc.). If the network load increases beyond the channel capacity,
the congestion occurs, leading to packet discards, retransmissions, and throughput
degradation. If, on the other hand, the traffic intensity excessively drops, then only
part of the available bandwidth at the intermediate links is used for the data transfer,
and the revenue of the telecommunication service providers decreases. Therefore, in
order to combat the congestion and at the same time ensure high throughput in the
network, it is not sufficient to merely extend the physical channel capacity, introduce
connections with higher bit rates, or install faster transceivers. A successful
solution to the dynamical resource allocation problem must involve the use of
appropriate flow control mechanisms that will guarantee stable and efficient network
operation.

1.2 Congestion

Let us study the phenomenon of congestion in more depth. We will analyze the
events related to transmission of data in the example network depicted in Fig. 1.1.
The throughput associated with each discussed case is illustrated in Fig. 1.2.

The network shown in Fig. 1.1 consists of six nodes, numbered 1–6, which are
connected by the links of equal capacity. There are two sources of data, S1 and
S2, which send packets to destinations D1 and D2, respectively. If the sources
are allowed to transmit packets at the maximum rate permitted by the capacity
of the links between the nodes N1–N3 and N2–N3 (graph a in Fig. 1.1), then the
incoming rate at node N3 is twice the outflow rate at the output connection N3–N4.
Consequently, not all the packets can be immediately forwarded at link N3–N4, and
the bottleneck is formed. Certain packets need to be stored in the buffer allocated
to that link at node N3, where they wait to be forwarded towards the destination.
However, since any physically realizable buffer can only be of finite capacity, at
some moment in time, the buffer at node N3 will become entirely filled with data.
The incoming packets that meet the buffer fully occupied are discarded, which
leads to the throughput decrease (see Fig. 1.2, curve a). The network state when
packets are discarded due to the insufficient bandwidth at the outgoing link and
buffer overflow is referred to as the congestion. The link where the bottleneck is
formed is termed the bottleneck link. If the situation of the buffer overflow persists,
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Fig. 1.1 Network states: (a) congestion, (b) desired conditions, and (c) system underutilization
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a network breakdown called the congestion collapse may occur. In that case, the
effective throughput tends to zero. To see how it happens, notice that the packets
rejected at node N3 need to be retransmitted by the sources later in time. At some
point, the data transfer will be dominated by the retransmissions of the discarded
packets. In this way, the throughput will approach zero.
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It follows from the preceding example that there are a few conflicting objectives
to be met to obtain satisfactory network performance. One aims to achieve high
bandwidth utilization, since it affects the revenues from using the existing infras-
tructure. On the other hand, keeping the links fully occupied with the transmission
of data at all times may lead to excessive queue growth. As a result, the delay
expands, downgrading the service level. Long queues also enforce the use of larger
buffers and increase the risk of congestion which may cause devastating throughput
decrease. In order to obtain high throughput, low risk of congestion, and small
queues in the dynamically changing environment, one has to introduce appropriate
control mechanisms.

The purpose of this monograph is to elaborate on the methods of efficient data
flow control in communication networks. In the literature, some authors prefer to
restrict the term “congestion control” to the actions related to recovering from the
state of congestion and reserve the notion of “flow control” to a broader spectrum
of mechanisms responsible for maintaining good network performance (including
the congestion recovery). However, in many publications, the terms “congestion
control” and “flow control” are used interchangeably. We adapt this paradigm, and
whenever discuss the congestion control, we refer to all the actions necessary to
achieve smooth flow of data and suitable service level in the network, not just the
procedures for recovering from the ongoing congestion.

First of all, in this work, a mathematical framework is developed to cover a
wide range of networking phenomena, including transfer rate updates at discrete-
time instants, data source nonidealities, delay variations, packet reordering, etc.
A number of flow control strategies are designed following rigorous, control-
theoretic methodology. It is shown that the elaborated strategies ensure stable system
operation in the presence of long, disparate delays in the communication system.
Moreover, it is demonstrated that the risk of congestion can be eliminated solely
with the use of the proposed control algorithms, i.e., without resorting to additional
mechanisms, such as backpressure [8], or sophisticated switch service disciplines,
for example [7]. It is also shown that the loss elimination can be obtained while
the links are kept fully occupied with data transfer, which yields the maximum
throughput in the communication system in each of the considered traffic scenarios.
The maximum throughput is guaranteed even if the feedback information necessary
for rate adjustment is accessible at irregular time instants, and the system parameters
are estimated imprecisely. Furthermore, it is demonstrated that fairness criteria are
satisfied, and the algorithm implemented at a node operates correctly in the presence
of multiple bottlenecks and can inadversely coexist with other schemes active in
the network. It is also discussed how the support for additional QoS enhancements
(e.g., delay jitter reduction) can be introduced without violating the buffer capacity
constraints or downgrading the bandwidth utilization.

The highlighted subjects are presented in subsequent chapters. The basic con-
cepts and modeling framework are introduced in Chaps. 2, 3, 4, and 5, whereas
more advanced topics are covered in Chaps. 6, 7, and 8.

Chapter 2 gives a historical perspective on the evolution of congestion control
techniques. We begin with discussing various performance criteria. Then, the
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early, commonly ad hoc proposals for vendor-specific communication systems
are presented. Afterwards, the ideas behind various algorithms proposed for stan-
dardized connection-oriented and connectionless networks are discussed. The
primary emphasis is given to the formal approaches to establishing an appropriate
congestion control strategy. The benefits of the application of sound control-
theoretic methodology are discussed, and numerous examples of the classical and
innovative techniques are provided. A separate section is devoted to the application
of sliding-mode control to data flow regulation in communication systems, since it
is chosen as the primary technique in the derivation of control schemes elaborated
in this monograph.

In Chap. 3, we introduce the fundamental concepts of variable structure systems
and sliding-mode control (SMC). We begin with the subject of sliding-mode (SM)
controller design in continuous-time domain and discuss the importance of choosing
appropriate sliding plane to achieve adequate system performance. Then, we move
on to the design methods for discrete-time systems.

Chapter 4 covers the issues related to congestion control in systems with
continuous feedback information delivery. The fluid-flow traffic approximation is
used to construct relevant network models. The models explicitly incorporate the
effects related to delay, both in the single and multisource network configuration.
Continuous-time SM controllers are proposed for each of the analyzed cases.
The switching functions are selected to stabilize the closed-loop system in the
presence of nonnegligible input–output delay. The SM controller performance is
compared with the classical control scheme employing the Smith predictor for delay
compensation.

In Chap. 5, we elaborate on the discrete nature of crucial networking events, such
as transmission rate updates by the sources at the instants of feedback information
retrieval from the network. An appropriate network model, which covers the effects
related to finite sampling rate and nonnegligible delay, is created. Using carefully
chosen state space, the controller design is conducted directly in discrete-time
domain. The sliding hyperplane of the fundamental controller is chosen by solving
a dynamical optimization problem with quadratic performance index. The obtained
closed-form solution of the optimization task allows for a detailed analytical
treatment of the controller properties. Next, the issues related to various networking
phenomena are discussed, and appropriate modifications of the fundamental strategy
introduced to achieve good network efficiency are presented. In particular, we show
how to cope with saturating transmitters, delay variations, and packet reordering. In
each case, the conditions for achieving the maximum throughput in the network are
formulated and strictly proved.

In Chap. 6, the basic concepts introduced in Chap. 5 are extended to the
multisource network, in which the connections are characterized by different
delays. The optimization problem of sliding hyperplane selection is again solved
explicitly, which allows for analytical study of the derived controller characteristics.
In addition to reformulating the concepts discussed in Chap. 5 in the context of
multisource traffic scenario, a number of issues specific to multisource networks
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are also addressed. In particular, we elaborate on the fair bandwidth allocation
and the existence of multiple bottlenecks. All the controller properties are proved
analytically and illustrated in extensive numerical examples.

Chapter 7 is devoted to the data flow control in the networks in which the sam-
pling synchronization cannot be maintained. Thus, in that chapter, we discuss the
problems related to variable discretization period. A number of control algorithms
are proposed, and each is given full consideration at the analytical level. In addition,
QoS issues related to serving the multimedia traffic are addressed, and possible
solutions are discussed.

In Chap. 8, we move on to the problem of data flow control restricted to TCP/IP
networks with Active Queue Management (AQM) support. First, the choice of the
modeling framework and various linearization options are discussed. The linearized
model is discretized and represented in the state space, which is selected to explicitly
incorporate the effects of delay. The SM controller design is performed directly in
discrete-time domain, with the sliding hyperplane chosen for a dead-beat scheme.
The proposed controllers are compared with the classical AQM packets marking
schemes.

Chapter 9 contains a brief summary of the applied methods and presented results.
In that final chapter we also give concluding remarks and discuss possible extensions
and future research directions.

In the Appendix, the tools used for validation of the constructed models and
testing the proposed control solutions are discussed. A reference to the web page
with the online material associated with the tests is provided. On the indicated web
page, one can find source files, sample scripts, and graphs illustrating the results of
selected simulations performed in Matlab-Simulink and ns2.
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Chapter 2
Congestion Control in Data Transmission
Networks: Historical Perspective

The congestion occurs when the traffic generated by the network users exceeds the
available bandwidth in the communication system. In such circumstances, not all the
packets sent by the sources can be immediately relayed on the route towards their
destination. Instead, they accumulate in the buffers at the intermediate nodes and
wait for the bandwidth increase. If the incoming rate is not reduced (or stopped)
before the queue of awaiting packets reaches its limit, typically defined by the
amount of the reserved memory at the node, the new data pieces must be discarded.
The lost fragments are retransmitted, which further deepens the congestion at the
bottleneck point. At certain stage, the network becomes clogged with retransmis-
sions and stops providing its services – this state is referred to as a deadlock or
congestion collapse. In fact, the early communication networks frequently suffered
from congestion collapse, until the development of the Jacobson’s scheme [73] for
the Internet flow control.

It is obvious that appropriate measures should be taken to recover from the
congested state, or even better, to react to deteriorating transfer conditions before
the congestion actually happens. The question arises whether one can solve this
problem by eliminating the resource deficiency, i.e., by extending the node memory,
introducing rapid links and faster processors, or using better signal processing and
switching techniques, such as those envisaged in [50, 151, 154]. Unfortunately, it
has been shown [78] that the application of modern, state-of-the-art technologies
at the physical layer alone does not provide a satisfactory countermeasure to the
congestion problem. In fact, the installation of physical layer enhancements may
even downgrade the system performance at the interface of slow and fast networks
[77]. Therefore, the necessary solution to the congestion problem must involve the
use of efficient dynamical resource allocation algorithms operating at the logical
level [77]. The technological advancements should be regarded as an imminent,
yet long-term evolutionary improvement to the communication process, required
for creation and implementation of new, possibly sophisticated and functionally
challenging networking services, rather than an immediate answer to the congestion
threat.

P. Ignaciuk and A. Bartoszewicz, Congestion Control in Data Transmission Networks:
Sliding Mode and Other Designs, Communications and Control Engineering,
DOI 10.1007/978-1-4471-4147-1__2, © Springer-Verlag London 2013
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In this chapter, a summary of various solutions to the congestion control (or
alternatively flow control) problem in telecommunication networks considered so
far in the literature is presented. The chapter is organized in the following way. First,
in Sect. 2.1, the key comparison criteria of flow control algorithms are discussed.
Next, in Sect. 2.2, preliminary approaches to congestion control are described,
contrasting in particular the rate and credit-based concepts. Section 2.3 gives an
overview of various heuristic rate-based solutions. More recent proposals, involv-
ing popular analytical tools, are discussed in Sect. 2.4. Section 2.5 summarizes
the developments in sliding-mode controller design for traffic regulation in data
transmission networks. Finally, this chapter concludes with the discussion of the
benefits of employing formal methodology in the design of flow controllers in
modern networks.

2.1 Comparison Criteria

The technological diversity of telecommunication systems together with variety of
traffic types and the resultant panoply of data transfer related phenomena greatly
complicate the evaluation of different flow control algorithms. A properly designed
controller for an application requiring small variations of transfer delay (e.g., video
streaming) may not be appropriate for handling a loss-sensitive service (e.g., stock
exchange feeds). On the other hand, the favored loss elimination may downgrade
the network utilization – greedily desired by the telecommunication operators – if
the system is overprovisioned. Therefore, in order to provide a comparison among
various data flow control techniques, numerous aspects need to be considered [44,
79, 109, 127, 157]:

1. Telecommunication system modeling

• The level of details – the practical usefulness of the developed control
scheme depends on how closely the model applied in the design resembles
the behavior of the real object. According to [73], the description of core
communication process, which consists of data emission at the sources,
transmission through the network, and reception at the destination side, to
a large extent can be approximated by means of linear blocks, such as gains,
integrators (which represent the packet accumulation in buffers), and delay
elements (which model the link propagation latency). However, the other
phenomena, such as transmitter saturation, time-varying delay, data segment
granularity, or packet dropout, usually require the use of nonlinear blocks,
which complicates the design and property analysis [124, 153]. A good
compromise applied by many researchers, for example, [21, 46, 70, 148], is
to reduce the number of details for the purpose of the mathematical derivation
and verify the results obtained for the (simplified) nominal model in more
realistic simulation scenarios with nonlinearities and element nonidealities
included.
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• Parametric uncertainty – the exact system modeling does not guarantee
that parameters describing the object, and influencing the operation of the
designed flow control algorithm (e.g., propagation delay or number of connec-
tions), are measured or estimated precisely. Moreover, the feedback informa-
tion – vital for the proper rate adjustment – may be lost or corrupted by errors.
Consequently, the congestion control algorithm should function correctly
despite possible inaccuracy in parameter estimation and the disturbances of
the feedback information delivery [33, 131]. In order to protect the legitimate
sources (those which respond precisely to the controller commands), it should
also offer a possibility for isolating the nonconforming ones (those which
violate the traffic agreement and rate intensity adjustments) [79].

• Continuous- vs. discrete-time modeling – the network variables (e.g., packet
queue length in a link buffer, transmission rate of a source, or link bandwidth)
may be represented as signals either continuous or discrete with respect
to time. The continuous-time representation of data transmission process
(especially fluid-flow approximation) demonstrates enormous potential in
modeling complex network behavior in a manageable way [42, 116, 158].
However, any communication network, in essence, is a discrete event system –
the state of network variables changes in response to certain events, for
example, emission of a packet, control unit reception, and rate adjustment –
and is more accurately described by discrete-time functions. Consequently,
since certain signals may be accessible at the communicating entities at
discrete instants only (e.g., the feedback information passed to the data
sources in control units by the network nodes), it is desirable to consider the
effects of sampling in the flow controller design either explicitly [29, 106,
160] or through discrete-time simulations [42, 46, 127].

2. Implementation issues

• Implementation cost – the developed scheme should respect the existing
hardware limitations and the standardization of the transmission protocols
and equipment. Installation of new hardware and infrastructure rebuilds as
well as complex architectural design and software coding increase production
cost and time to market. Therefore, the designed congestion control strategy
should be easy to understand and straightforward in implementation, possibly
within the existing framework.

• Operational efficiency – expenditures for installation and maintenance of
networking equipment and cabling are economically justified only if the
available resources are governed efficiently, thus ensuring return on the
invested capital [128, 144]. The developed scheme should achieve high level
of bandwidth utilization (ideally, the entire link capacity should be employed
for data transfer) [24], with reasonable processor power and node memory
consumption.

• Administration simplicity – large number of difficult to understand param-
eters and complex performance tuning discourage technical experts from
using a particular protocol in the administrated network. In addition to the
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configuration burden, numerous coefficients and scaling factors tend to reduce
the system robustness to parametric uncertainty and make the algorithm prone
to errors [44]. Consequently, a desirable congestion control solution should
be simple and intuitive in installation and should allow for automation of the
management tasks.

3. Steady-state characteristics and transient response

• Controller dynamics – data transmission networks are dynamical systems and,
as such, require careful investigation of both the steady-state and transient
behaviors. The designed flow control algorithm should promptly react to the
changes of networking conditions and quickly reach steady state, possibly
without oscillations and overshoots [111]. Short settling time and smooth state
transition enhance transmission consistency (vital for multimedia applications
which, in principle, do not tolerate abrupt rate modifications) and improve
memory management policy.

• Signal constraints – any flow control algorithm developed for communication
networks should guarantee that the generated transmission rates are always
nonnegative and upper-bounded, and the queue length is finite both in steady
state and during transient periods.

4. System-related features

• Scalability – the developed congestion control solution should demonstrate
potential for effective operation in the case when the telecommunication
system expands and the number of regulated flows increases, and it should
be applicable to both the local and long-distance traffic.

• Fairness – since a communication network provides the transport services
to multiple users, it requires appropriate mechanisms of resource allocation
among the contending flows. In particular, this concerns the method of
memory and bandwidth distribution, which should be efficient, yet fair.
However, fairness itself is not a precise term and can be interpreted in a
variety of different ways [58, 78, 107]. Intuitively, a fair allocation can be
perceived as the one depending neither on the topological (e.g., the source
relative position in the network or the path established for a data stream)
nor on timing factors (the moment when the transmission commences). In
practical terms, quantitative measures are needed to assess fairness and avoid
flow discrimination (or preferential treatment). For this purpose, appropriate
mathematical criteria are formulated, usually in the form of a utility function,
and the resource allocation vector for competing sources is obtained from an
optimization algorithm [44, 132]. One of the most commonly applied criteria
of fairness in communication networks is the max-min allocation [74], whose
objective is to maximize the overall throughput in a multiuser multi-node
system by satisfying the needs of the least demanding flows and reducing
the load created by the most congesting ones.

• Interoperability – a telecommunication network is a system of interconnected
nodes, which implies that the designed traffic regulation protocol should be



2.2 Early Concepts of Congestion Control 13

prepared to operate in a distributed environment (to be implemented at multi-
ple nodes) [31]. Another complication resulting from the distributed nature of
computer networks, which, in principle, are governed by autonomous organi-
zations and business entities, is the diversity of functioning technologies and
transmission protocols. Consequently, a successful strategy for heterogeneous
multilayer networks should safely coexist with other, possibly different flow
regulation schemes [55].

• Management overhead – telecommunication operators focus on maximizing
the economic gains from their infrastructure and are primarily interested in
using their network to transfer the customers’ data, not the management
information [24, 128]. Consequently, the amount of the exchanged control
information necessary for the flow regulation should be kept at the minimum
in relation to the invoiced traffic.

• QoS support – the worldwide proliferation of applications and network-
ing services, demanding specific treatment of the generated data stream
(interactive telephony, video on demand, remote sensing), stimulates the
search for new and better methods of handling various traffic types in
the traditionally best-effort communication paradigm [15, 32, 39, 53, 57,
170]. Consequently, modern flow control strategy should not only avoid the
transmission bottlenecks and keep the throughput high, but it should also
improve the quality-related requirements of various traffic kinds, such as loss
rate, reliability, average transfer delay, latency variation (jitter), and buffer
queuing time [51].

The complexity of the developed flow control algorithm grows with the number
of problems addressed in the system modeling and design procedures. In addition,
the design objectives do not always coincide with each other (some goals are
typically achieved only at the expense of others), and trade-offs typically need to
be applied in search for an optimal solution, for example, versatility vs. simplicity
or bandwidth utilization vs. fairness. Probably, no single scheme can adequately
answer all the issues [127], yet it should at least satisfy the fundamental requirement
of bounded transmission rates and finite queue length. Researchers argue about the
other features that a successful scheme should provide. Usually, the importance of
efficiency, simplicity, robustness, scalability, fairness, and enhancements for QoS
support is stressed. These measures will constitute the key comparison criteria for
various congestion control mechanisms discussed in the further part of this chapter.

2.2 Early Concepts of Congestion Control

The lack of standardization in the early communication protocol development,
especially in the core part of the existing networks, made the initial flow control
approaches heavily dependent on the actual transmission technology for which
they were designed. The research area was primarily limited to the proprietary
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solutions of various interest groups and companies. Different concepts were applied
to connectionless and connection-oriented networks. Severe inconsistencies could
be observed in the interaction of various layers of the communication process, even
if a protocol was designed and implemented within the single-vendor equipment. A
detailed, comprehensive study of those primary flow control strategies is given in
[58]. The authors of [58] formulate basic evaluation criteria of throughput, delay,
and power and compare the operation of the existing congestion control schemes
and emerging solutions with distinction of the operational range (access, end-to-
end, or hop-by-hop) and switching technique (datagram connectionless vs. VC
based). Numerous predictions about future research, such as the concurrent control
of integrated voice and data services, combined routing and flow management, or
focus on congestion avoidance rather than congestion recovery solutions, proved
extremely accurate and actually dominated scientific investigation in the field of
data traffic regulation for more than a decade [77, 79, 115].

One of the first congestion control schemes for connection-oriented networks
was developed for TYMNET [143], centrally supervised international communi-
cation system, and its improved version TYMNET II [164]. In TYMNET, during
the connection setup, a throughput limit is calculated for each VC (according to
the terminal speed) which is enforced at all the nodes along the established route.
Flow control is obtained by assigning memory quota at each intermediate node and
sending transfer permits based on the quota exhaustion between the neighboring
switches. A transmitter sets a counter equal to the maximum buffer size (quota),
which is decremented with each data piece (character in TYMNET) relayed on
the transmission path. Periodically, each node sends backpressure vector to its
neighbors, containing a binary flag for each VC passing through the node. The flag is
set to zero if the assigned buffer is entirely filled with data (the maximum permitted
allocation is reached). The transmitter stops data transfer when the counter reaches
zero and resumes it once the received backpressure bit for the corresponding VC
is equal to one. Backpressure propagates from node to node back to the source and
finally slows it down or turns off. Although efficient and cost-effective for low-speed
terminals, the backpressure mechanism may introduce unsatisfactorily large delays
when transmitting bigger volumes of data, especially real-time ones [59]. Moreover,
fairness with backpressure flow control is guaranteed only when per-VC queuing is
applied (in common-buffering scheme, sources not using the congested resource
may be blocked due to backpressure cascade effect) [77], which does not scale well
with the increase of the VC number [79].

In TRANSPAC [48], the French public data network, the throughput class
concept of the X.25 internode protocol was employed to control the congestion.
At the connection setup, each VC declares its peak instantaneous rate that is used
by the nodes to estimate the maximum aggregate throughput. By monitoring the
average buffer occupancy and the actual throughput in relation to the declared one,
each node dynamically adjusts a set of thresholds used to limit the load. Depending
on the severity of congestion, the current flows are slowed down (by delaying the
return of acknowledgments at the VC level), new VC requests are rejected, or the
existing ones are terminated. Again, the necessity of per-VC queuing required for
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fair operation of the proposed algorithm raises serious scalability issues for growing
number of connections. Moreover, the efficiency of the analyzed scheme highly
depends on the appropriate choice of thresholds, which may not be a straightforward
task in the distributed environment.

The use of a combined approach of the low-level deadlock avoidance and high-
level flow control was investigated in GMDNET [60, 138], experimental network
created in Darmstadt, Germany. The deadlock avoidance is resolved by creating
a class-differentiated pool of buffers at each node – structured buffer pool (SBP).
The packets arriving at a node are divided into classes according to the number of
hops they have traversed, and stored in the buffers of the corresponding level, or
a level with lower priority. If an incoming packet meets all the buffers available
for its class fully occupied, it is discarded. Consequently, the older packets (for
which the network has invested more resource in delivery) are given preference
over the junior ones. The flow control on each VC is performed with variable size
windows, defined as the number of packets a sender can transmit before the receipt
of an acknowledgement or a permit is received, which are adjusted both locally
(on the hop-by-hop basis) and globally (end-to-end). The drawback of the proposed
scheme lies in the necessity of a balanced, well-tuned cooperation of both SBP and
windowing flow regulation. Either of the mechanisms working alone cannot prevent
throughput degradation, deadlock, and unfairness [58].

Systems Network Architecture (SNA) [2] developed to provide distributed
communication services for IBM systems used a similar hybrid of the hop-by-
hop and end-to-end flow control strategies. The traffic regulation in this type of
networks is exercised individually on each VC through dynamic window resizing
at the end point as well as at the intermediate communicating entities. Besides
subtle differences, for example, the IBM solution enforces the sender to always
ask for permission to transmit another set of packets (sent in the first packet of the
current window), both GMDNET and SNA control mechanisms behave alike and
are subject to analogous limitations.

With the advent of the ATM technology and recommendation of the Consultative
Committee on International Telephony and Telegraphy (CCITT) – an international
organization responsible for telecommunication standards (replaced in 1993 by
International Telecommunication Union (ITU)) – to use it for Broadband Integrated
Services Digital Network (B-ISDN), the research in the field of data flow control
significantly intensified. ATM employs the benefits of packet and circuit switching
to provide high-speed data transfer both locally and on large distances. It was
designed to provide strong support for QoS of class-differentiated traffic, thus
eliminating limitations of the traditional best-effort networks. In order to accomplish
this ambitious goal, ATM was built on the concept of a connection-oriented network
(where the path for a data flow is established prior to the actual data transfer
and usually does not change during the transmission unless a node or link failure
occurs), combined with stream partitioning into short, fixed length cells (53 bytes).
As a result, low-jitter long-haul communication was possible at the rates exceeding
155 Mb/s. For the purpose of QoS provision for different kinds of applications,
several service categories were specified in ATM [18]. Among the proposed
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categories, a particular attention attracts available bit rate (ABR) one, intended for
the ordinary data traffic (file transfer, e-mail delivery, web browsing, etc.), as it is
the only category, which responds to the network feedback. Basically, two feedback
mechanisms are available for this service type. The first uses a bit in the ordinary
data cells, which is set by the nodes in the case of an overload. Once the destination
detects a congestion indication (CI) bit marked in the received cells, it issues a
command to the source to throttle the data emission rate. The command is sent
in a special control unit – a resource management (RM) cell – served with priority
by the nodes. The second mechanism involves periodic generation of RM cells by
the sources, which travel interleaved with data cells to the destinations collecting
the feedback information from the nodes, and are directed by the receivers back
to their origin. The nodes incorporate specific, more accurate information about
the congestion level (such as the current buffer occupancy), which is used by the
transmitters to appropriately modify the cell transfer speed [19].

The standardization of ATM was mainly conducted by ATM Forum – a joint
task force of international companies and institutions. To resolve congestion control
issues, critical for proper network operation, a special traffic management group was
started in 1993. The group elaborated a number of comparison criteria and evaluated
various proposals with respect to scalability, efficiency, fairness, robustness, and
implementation. An excellent survey of the most important results presented at the
group meetings, together with short rationale for their potential success or rejection
was given by Jain in [79]. The main congestion control concepts reported in that
period are briefly discussed below.

Fast Resource Management [36], the scheme proposed by France Telecom,
assumed that each source sends an RM cell requesting the necessary bandwidth
before transmitting any data. If the demand cannot be fulfilled at a certain node along
the data path, the RM cell is dropped. Once the timer (started when the RM cell is
emitted) expires, the request is repeated in another RM cell. In the case of successful
allocation, the RM cell is returned by the destination to the source, which can then
deliver its data. This means that each transmission is preceded by at least one round-
trip time (RTT) idle period. To eliminate this delay, the awaiting burst can be sent
immediately after the RM request cell, at the risk of being discarded together with
the RM cell when the expected resources are not granted. The described proposal
was not accepted by ATM Forum due to significant latency in normal networking
conditions and excessive loss during the congestion.

Another proposal, Backward Explicit Congestion Notification (BECN) [119–
121], was based on the buffer occupancy monitoring by the network switches. Once
the queue length in the switch buffer exceeds a threshold, RM cells are sent to all
the sources contributing to the queue buildup. Upon the receipt of a BECN cell, the
transmitter reduces its rate by half. If no BECN cells arrive at the source within a
recovery period, the rate is doubled once every period until the peak value is reached.
In order to achieve fairness among multiple virtual connections, the recovery period
was made proportional to the current rate so that the smaller the rate, the shorter
the period and faster recovery towards optimal transfer conditions. To cope with the
system inertia resulting from the delay in the feedback loop, a filtering function was
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introduced into BECN mechanism at the nodes which prevents excessive BECN
cell generation. The BECN proposal was considered unfair, as the sources receiving
overload notification were not always the ones causing the congestion [133], and
was rejected by ATM Forum. However, the idea of network nodes sending the
explicit information about deteriorating traffic conditions to transmitters, based on
buffer occupancy monitoring, proved applicable for other networks [4]. In particular,
AQM combined with Explicit Congestion Notification (ECN) form a valuable
supplement to the fundamental open-loop control provided within TCP end point
specification (see Sect. 2.4 and Chap. 8).

Early Packet Discard [149], the solution presented by Sun Microsystems,
exploited the fact that all the fragments of a data segment partitioned into cells
must be received correctly at the destination to reconstruct the message. Therefore,
it is convenient to drop the entire segment at a node, instead of selective, random
discard of cells belonging to (in general) different segments. A big advantage of this
approach is the short time to market, as it requires neither the standardization of
the source-switch nor interswitch communication. It can also be implemented as a
supplement to other control schemes and operate in the case of severe congestion
when cells need to be dropped due to the buffer overflow. It was revealed, however,
that Early Packet Discard could not guarantee fairness since the cells arriving at the
fully occupied buffer were discarded even though they belonged to the VCs that had
not contributed to the switch congestion [135].

Another approach not requiring internode standardization, delay-based rate
control [94], was put forward by Fujitsu. It involves periodic generation of RM cells
by the sources. The RM cells are sent back by destinations towards origin, and the
congestion state estimation is performed via latency measurements. Each emitted
RM cell contains a timestamp, which is used to calculate the RTT propagation delay
upon the reception of the returning RM cell. Since no feedback from the network is
required, the proposed algorithm can operate in heterogeneous networks (consisting
of various technologies), similarly as another delay-based scheme developed by Jain
[76]. Unfortunately, no precise details concerning the usage of latency estimation
to react to changing networking conditions were specified following the concept
presentation, and the proposal was abandoned [79].

Fair queuing with rate and buffer feedback [110] employed RM cells generated
periodically by the sources to collect the feedback information from the network
nodes on the data route of their VCs. Each node maintains a separate queue for
each VC and schedules cell transmission in the order of the increasing service time.
Two values are recorded in RM cells: the queue length and fair share of the available
bandwidth. The queue length is updated by a node only if it exceeds the value written
by other nodes on the forward data path. Bandwidth share in an RM cell, in turn, is
modified only if it is smaller than that already allocated by the nodes on the forward
path. Consequently, in the returning RM cell, the maximum queue length and the
minimum bandwidth for a VC is recorded. The biggest disadvantage of this control
strategy stems from the complexity in implementing per-VC queuing.

One of the most popular solutions to the congestion control problem in the ATM
networks was called credit-based approach. The algorithm, elaborated by Kung
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and Chapman [103, 104], was based on the idea of hop-by-hop window control
[58], where the nodes maintain a separate queue for each VC. A sender (source
or switch), communicating over a link with the receiver (switch or destination),
transmits only as many data cells as permitted by the recipient. The number of
currently allowed cells – a credit – is determined by the receiver on the basis of
the queue lengths of each of the active VCs. The credit is chosen large enough to
obtain full bandwidth usage of the link at all times. This initial scheme, flow control
virtual circuit (FCVC), had two important drawbacks: first, it did not provide any
protection against losing credits; second, it required excessive buffer reservation
for the controlled VCs. The first problem was solved by incorporating a credit
resynchronization algorithm. It assumed periodic exchange of sent and received
cell counts between a transmitter and its recipient and augmenting the credit by
the number of lost cells. The second issue was solved by changing buffer allocation
procedure. In the modified version of the control scheme, adaptive FCVC [102],
the assigned buffer capacity was related to the number of VCs and their activity
in using the credit. Highly active connections were granted a larger credit, and
those less demanding were given a reduced fraction of the available resources.
Although adaptive FCVC improved the buffer capacity management, the level of
bandwidth utilization deteriorated due to the additional delay in allocating the entire
capacity.

The second most favored solution, ultimately recommended for the ATM
standardization, rate-based approach, was proposed in 1994 by Hluchyj [62]. Unlike
credit-based approach, it assumed that a flow control mechanism should concentrate
on regulating the transmission rate of the sources rather than directly imposing limits
on the number of cells transferred across the links. Since rate-based approach allows
the controllers to influence not only the amount of data injected into the network
but also the way the data is emitted, it brings the potential of alleviating the traffic
burstiness (which is typically obtained with traffic shapers, such as the leaky bucket
algorithm [161]).

Among the initial concepts of flow control in ATM networks, these two
approaches – credit- and rate-based – gained the most popularity and actually
divided the research community of the involved scientists and telecommunication
engineers into two opposing camps. Either faction supported only one of the
schemes and was unwilling to seek compromises to the extent which precluded
adaptation of integrated solutions (attempting to combine the benefits of both the
credit- and rate-based control, e.g., [134, 165]). This led to the intensive debate in
the traffic management group, which lasted for over a year and finally resulted in
choosing the rate-based proposal as an official ATM Forum recommendation. In
the course of multiple workshops, presentations, and discussions, numerous aspects
were considered [63, 64, 77, 134]. The recognized distinguishing feature of the
credit-based solution is the requirement of implementing per-VC queuing (to avoid
deadlocks and unfairness) and making the buffer reservations even for inactive
connections. This leads to excessive complexity of switches and was considered
not scalable for larger number of flows. The rate-based solution, on the other
hand, can be realized with common buffering, thus eliminating scalability concern.
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However, the simplicity of switches usually implies relegating complexity to the
end points, which in the credit-based approach could be significantly reduced (e.g.,
network interfaces may always send at the peak rate without cell scheduling and
speed adjustments). Additionally, per-VC queuing creates possibility of isolation of
misbehaving users, especially in the static credit-based scheme, which is difficult to
obtain with the common-buffering solution. Credit-based approach can guarantee
loss elimination irrespective of the number of connections, traffic patterns, buffer
sizes, node number, link bandwidths, or propagation and queuing delays, as the
queue lengths can never increase beyond the granted permits. This generally cannot
be achieved with the rate-based schemes since in the case of serious overload and
long feedback propagation latency, the queues can exceed the buffer limitations
resulting in cell loss. The argument in defense of the rate-based control was the
inherent necessity of dealing with error-originated losses. Consequently, as a certain
number of cells will have to be retransmitted even though no congestion has been
experienced in the network, a small degree of overload-originated cell discards
can be tolerated. The rate-based concept allows for more flexibility in switches
in deciding how to allocate resources. Communicating nodes can use different
mechanisms yet interoperating in the same heterogeneous network. In contrast,
the credit-based scheme required all the switches to use per-VC queuing with
round-robin service. The benefit of credit-based approach, in turn, was the ability
of rapid, usually immediate capture of the available bandwidth, thus eliminating
the ramp-up time (the time necessary to adjust the transfer rate to the currently
optimal operating point). This was particularly true for the static version of the
credit-based algorithm. The initial rate-based schemes and the adaptive credit-based
solution usually required several RTT delays to converge to the modified networking
conditions.

The presented summary gives an overview of the most important issues raised
during the debate. According to Jain [79], the single biggest objection to credit-
based approach was the necessity of applying per-VC queuing, which was regarded
intricate for switch implementation and not scalable for networks supporting large
number of high-speed connections. Rate-based approach, in turn, seemed to offer
more design flexibility and better evolutionary prospects and ultimately won the
competition. It was included in the official ATM specification as a standard of
feedback information interchange and a basis for future development of flow control
techniques [17]. In the next section, we will concentrate on various solutions to the
congestion control problem built on the rate-based concept.

2.3 Initial Rate-Based Proposals

The first algorithms in connection-oriented networks, which can be classified as
rate-based ones, were in fact appropriately modified binary feedback schemes
previously designed for connectionless networks, for instance, DECbit algorithm
[85]. The binary feedback assumes that a single bit is sufficient to adjust the flow
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rate and to control the congestion. Network nodes monitor the queue lengths and
set explicit forward congestion indication (EFCI) bit in the traveling cells when
the congestion is detected. Destination periodically checks for the presence of the
EFCI bit in the received cells and sends an RM cell to the source, which uses an
additive increase multiplicative decrease algorithm to adapt its rate. However, if
severe congestion is experienced on the backward path, RM cells are lost and source
keeps increasing its rate, actually aggravating the network overload. The problem
was solved by applying a positive feedback approach. In the improved version,
called proportional rate control algorithm (PRCA), sources mark EFCI bit in every
cell except the nth one. If a destination receives a cell without EFCI bit set, it sends
an RM cell to the source requesting the rate increase. The introduced amendment
did not help with another important issue with PRCA, which is the possibility of
unfair treatment of long-distance flows. In PRCA, the cells traversing more switches
exhibit higher probability of having EFCI bit set than those belonging to local
connections. Possible solution to this problem involves selective feedback [136],
which assumes that the congestion indication should be sent only to the sources
consuming more resources than the calculated max-min fair share, or intelligent
marking [25], where the current flow rate of a particular VC and its influence on the
congestion is used to decide about setting the EFCI bit.

The binary feedback schemes did not allow for exploiting the full potential
of connection-oriented networks. They were considered too slow for high-speed
traffic (requiring multiple cycles to reach optimal operating conditions) [41] and did
not offer enough flexibility for the algorithm designers [79]. Faster convergence,
simplified policing, and improved robustness could be achieved with explicit rate
indication. This argument led to the development of Massachusetts Institute of
Technology (MIT) scheme [40]. In the MIT algorithm, each source sends an RM
cell every N data cells containing its current and desired rates. The nodes monitor all
the flows and compute fair share of the rate in an iterative procedure. If the expected
rate is bigger than the calculated one, it is replaced by the computed share, and a
reduced bit is set in the control cell. The destination returns the received RM cell to
the source, which adjusts its rate to the value assigned by the nodes. If the reduced
bit is present, the source sets the desired rate equal to the current transmission
speed. Otherwise, it is allowed to request a higher rate. It was demonstrated that
the proposed solution conforms to the max-min fairness criteria [40].

The drawback of the MIT scheme was computationally intensive fair share
calculation. A simplified procedure was proposed in enhanced PRCA (EPRCA)
[145, 146], an improved version of PRCA combining the features of binary and
explicit rate control mechanisms. The sources send RM cells every N data cells
with their current and expected rates indicated. The nodes compute fair share as a
fraction of exponential weighted average of mean allowed cell rate and appropriately
adjust the explicit rate (ER) field in RM cells. Additionally, destinations set the
congestion indication bit in RM cells if EFCI bit is set in the previously received
data cell. The sources reduce their rate after every cell transmitted and increase the
transfer speed (if allowed) upon the reception of an RM cell, taking into account the
assigned rate, congestion indication bit, and increase factor. In the initial proposal,
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the queue length threshold was used as the congestion indicator. This was shown to
be unfair as the sources joining the active pool at a later stage used to get smaller
throughput than those starting earlier. The problem was alleviated by changing the
congestion indicator from the queue length threshold to the queue growth rate [155].
The obvious advantage of EPRCA was its backward compatibility with PRCA,
which allowed for efficient coexistence of older switches and smooth software and
hardware upgrade to modern versions [122, 146].

The fairness issues with EPRCA stimulated further search for improvements of
rate-based controllers for connection-oriented networks. The scheme proposed in
[45], dynamic max rate control algorithm (DMRCA), employs a function of both
the queue length in the node and the maximum rate of all connections to signal the
congestion. The use of the maximum rate of all the active connections instead of
the mean rate applied by EPRCA eliminates fairness shortcomings occurring when
the mean is significantly different from the fair share. Such approach allows for
rapid rate increase, which temporarily remains above the fair level and converges to
the fair share in steady state. The problem with using the maximum rate, however,
is large oscillations in transient period, which may render the system unstable.
Therefore, a practical implementation of DMRCA requires rate smoothing typically
realized by filtering out the short-term variations. Additionally, to solve the fairness
issues arising due to excessive rate increase beyond the fair allocation and slow
convergence to steady state, a reduction factor can be applied, which is a function of
the degree of congestion of the switch measured with queue thresholds. However,
to ensure a proper operation of the thresholding procedure, several parameters need
to be set, which were shown to be sensitive to RTT and feedback delay [90].

The researchers from Ohio State University (OSU) elaborated a series of
congestion avoidance algorithms to address the problem of fair yet efficient flow
control for the ATM networks [80, 81]. In the original OSU strategy [80], the
rate allocation was based on the load measurement performed by the network
nodes. Each node calculates the incoming rate (averaged over a certain interval)
and compares it with a target value, which is typically set as 85–95% of the
link bandwidth. The resulting fraction (the input rate divided by the target one)
constitutes a quantitative measure of congestion and is used for rate adjustment.
In the case of severe congestion, or small bandwidth utilization, each source is
requested to divide its rate by the load factor. In turn, when the load factor is close to
one, the principle of selective feedback is applied. The node computes the fair share
(the target rate divided by the number of active VCs) and allocates different rate
values for overloading and underloading flows. This solution was demonstrated to
be fair [80]. The mechanism used by the OSU strategy, being a congestion avoidance
scheme (the target rate kept close to but below the capacity), allowed for high
throughput and low queuing delay in the system. Additionally, as compared with
EPRCA, it achieved faster convergence to steady state and was easier to tune having
fewer parameters.

The problem of the first OSU strategy was large control overhead related to the
periodic RM cell generation at fixed intervals by all the sources. To address this
scalability issue, the method of feedback information distribution was adapted from
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EPRCA. In the improved algorithm, each transmitter sends an RM cell every N data
cells and not every T seconds, thus making the overhead independent of the number
of served connections. In order to maintain the advantages of the original strategy,
the rate allocation procedure of this new, count-based scheme [81] was modified to
promote faster convergence to the fair share. Nevertheless, in certain configurations,
fast convergence could not be guaranteed, especially if large errors appeared in the
traffic measurements (e.g., in estimating the number of active VCs) [82].

Further improvements to the OSU scheme resulted in the development of conges-
tion avoidance using proportional control (CAPC) algorithm [26] and its enhanced
version CAPC2 [27]. This approach, proposed by A. Barnhart, supplements the
OSU load factor measurements and congestion avoidance (keeping the utilization
target slightly below the capacity) with queue threshold monitoring. Whenever
the queue length exceeds the threshold, the CI bit is set in RM cells, which
prevents the sources from increasing their transmission speed. As a result, the queue
dynamics improves and the buffers can be depleted more rapidly. However, the truly
distinguishing and highly desired feature of CAPC was its oscillation-free steady-
state performance.

Interesting approach to congestion avoidance with rate-based flow control,
sharing some similarity with CAPC, was proposed by Afek et al. [1]. The key idea
of their scheme, called phantom, is to bind the rate of sessions that share a link by
the amount of unused bandwidth as though there would be an additional imaginary
session – a phantom – on that link. The bandwidth is fairly distributed among all the
sessions, including the phantom, and the residual unused capacity can be used to
accommodate new connections without the queue buildup. The disadvantage of this
scheme lies in the unused bandwidth measurement, which is difficult and prone to
errors. Moreover, in order to eliminate misestimation due to instantaneous residual
capacity variations, filtering needs to be applied. This, however, introduces extra
parameters and requires additional tuning.

The authors of the OSU scheme, encouraged by the success of their initial
proposal, developed a newer and more efficient version of the congestion control
algorithm called explicit rate indication for congestion avoidance (ERICA) [83],
further enhanced to ERICAC [84]. It has become the subject of substantial research
and numerous publications [1, 90, 99, 111, 163] and was incorporated into the ATM
traffic management official standard [18]. Its refined and consolidated description
together with performance analysis is given in [91].

ERICA is based on the load and capacity measurements performed in con-
secutive equal-sized time slots called “switch averaging intervals.” During each
averaging interval, the network node estimates the available capacity (which varies
according to the intensity of high-priority traffic) and total input rate. These
quantities are used to determine the load factor calculated as the total input rate
divided by a fraction of the available capacity (further referred to as the target
capacity). The fraction depends on the implementation and is usually set as 0.9
or 0.95. Its purpose is to keep the resource utilization close to one while preventing
excessive queue length growth and resulting delay increase. The algorithm computes
two values of transmission rate to be assigned to the sources. The first one
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– load-based – is determined by dividing the current rate (read from the arriving
RM cell or estimated through measurements) by the load factor. Consequently, the
rate is increased if the load factor is bigger than one and throttled down otherwise.
The second value is the maximum of the first rate and a fair share, computed as the
target capacity (fraction of the available capacity) divided by the number of active
connections. Assigning the maximum of the fair and load-based rate values favors
high link utilization over fairness and allows an unconstrained source to proceed
towards its max-min rate. This step is one of the key innovations of the ERICA
scheme because it improves fairness even under overload conditions. Finally, the
determined rate is recorded in the ER field of the management cell, if it is smaller
than the value assigned by other nodes on the forward path (obviously, the rate of
already bottlenecked connection should not be increased).

The ERICA algorithm operates efficiently and is straightforward in imple-
mentation. It quickly adapts to the changing networking conditions and usually
achieves fair resource allocation (although in certain circumstances, it may fail to
guarantee the max-min criteria [90]). One of the biggest problems with ERICA
is its dependency on the measurement of metrics, in particular the estimation
of the overload factor, available capacity, and number of active sources. If the
measurement is significantly distorted by errors and the target utilization is set to
very high values, ERICA may diverge, i.e., the queues may become unbounded and
the capacity allocated to drain the queues may be insufficient. The solution under
such cases is to set the target utilization to a smaller value allowing more bandwidth
to empty the queues. However then, the steady-state utilization downgrades since
it heavily relies on the target utilization parameter. To address this issue, an
enhancement was introduced in ERICAC, which replaces the fixed utilization
parameter (fraction of the available capacity) with a function of the queue length
and delay. Allowing the target capacity to vary according to the queue length and
latency fluctuations gives ERICAC flexibility needed to obtain high throughput and
limited delay.

The control schemes discussed so far employ mainly computer-algorithmic
solutions and empirical observations to achieve the desired level of operational
efficiency of the controlled network. Such approach, although successful in a
majority of typical situations, poses severe difficulties in conducting formal analysis
and assessing the full potential and limitations of the developed algorithms. Further
in this chapter, we will focus on various proposals addressing the problem of
congestion in data transmission networks from a theoretic, analytical perspective.

2.4 Evolution of Congestion Control Techniques

Earlier control schemes favored heuristic, ad hoc solutions. Noticeably, such intu-
itive design with the algorithm parameters tuned through simulation or experimental
analysis have demonstrated astonishing performance in a variety of real-case scenar-
ios. However, the empirical, ad hoc approach usually leads to severe nonlinearities
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and makes the systematic analysis of the proposed solutions cumbersome, if not
impossible. This, in turn, causes difficulties in identifying elements truly responsible
for their good performance and, more importantly, obfuscates the investigation of
improper or erratic behavior in the case of failure [127]. The lack of systematic
design methodology (e.g., involving control engineering tools) slows down the
research on new algorithms and obstructs or even inhibits the evolution of the
existing ones. Consequently, many researchers began seeking the answer to the
congestion control problem in communication networks in structured modeling and
application of various mechanisms that were proved effective in other fields, such
as control engineering, stochastic analysis, game theory, or neural networks.

From the point of view of data traffic regulation and resource management, a
data transmission network can be perceived as a feedback system. Therefore, it
seems to be a natural choice to apply the concepts of control theory to the design
of congestion controllers for network traffic control. One of the first successful
and highly influential approaches to flow regulation using the ideas from classical
control theory was proposed in 1993 by Benmohamed and Meerkov [30]. They
provided a detailed mathematical description of the model of a packet-switched
network, in which the sources respond to the feedback from the nodes. In the
model, the feedback information was considered to be delivered with priority over
the users’ data and with constant delay. In the initial scheme [30], it was assumed
that a single link constitutes the bottleneck for the set of controlled connections.
In the fundamental derivation, the paths established for the data transfer remained
unchanged during the transmission (although a comment about adaptability to
routing modifications was included), and stochastic random input traffic can be
approximated with the deterministic fluid flow (validity of this simplification was
discussed). The obtained control law was based on the idea of standard proportional-
derivative (PD) control with higher-order derivative terms incorporated to account
for the propagation delay. Parameters of the proposed controller were chosen on the
basis of the closed-loop pole placement so that the local stability of the nominal
model could be achieved. However, due to the nonlinearities of the complete
network model, the authors failed to solve the global stability problem. To address
the issue of changing networking conditions (caused by time-varying input traffic),
two approaches were presented: the static (also referred to as the robust) and
the adaptive one. In the static scheme, the controller parameters are established
prior to transmission considering the worst-case uncertainty scenario, while in the
adaptive one, parameters are adjusted dynamically according to the varying traffic
intensity and number of connections. Both solutions were evaluated analytically and
compared in simulations using the queue length overshoot, degree of oscillations,
and settling time as metrics. In majority of circumstances, the adaptive scheme
outperforms the static one despite increased computational complexity. However,
neither strategy can avoid oscillations and overshoots, which hinders efficient buffer
allocation policy. The presented idea of using PD control to combat the congestion
in a network with a single congested node was later generalized by the same authors
to the case of multiple bottlenecks [31]. Still though, the biggest drawback of the
proposed strategy remains in its substantial intricacy of rate calculations.
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In order to mitigate the complexity of calculations in the PD scheme [30], which
mainly originates from determining the controller gains each time the number of
VCs changes, Kolarov and Ramamurthy [100] proposed to use a dual controller
consisting of two simpler PD regulators (whose parameters are computed off-line)
instead of a single complicated one. The first is a low-gain PD controller (LGC)
which is designed for the case when the number of bottlenecked sources at an output
port is very large and is used under steady-state traffic conditions (it stabilizes the
system for small deviations from the equilibrium point). Since the slow rise time
of LGC may result in poor utilization of the output port during transient periods,
a second controller, called high gain PD controller (HGC), is applied. HGC brings
the operating point quickly to equilibrium, where the control action is taken over
by LGC. As HGC is designed for a smaller number of bottlenecked VCs (with
fewer number of filter taps), it does not ensure stability of the closed-loop system.
However, it is used only for a short period of time before switching to LGC. The
decision to switch between HGC and LGC is taken by a filter, which compares
the link utilization with a preset threshold. Finally, to handle the problem of queue
buildup (and cell losses) when a large overload occurs, the third mechanism is used,
called Initial Recovery Rate Selector (IRRS), which quickly brings the rate to the
normal operating condition. The IRRS action is triggered if the queue length exceeds
a predefined threshold or if it grows at an excessive rate. Although providing good
steady-state and transient properties with low computational overhead, the use of
the dual PD scheme requires careful tuning of numerous parameters, in particular
the filter coefficients and thresholds, for proper switching between LGC, HGC, and
IRRS controllers. The parameter adjustment can be time-consuming and prone to
errors.

In literature, we can find other examples of applying the concept of PD control
to regulate the flow of data in communication networks [108, 148] as well as
proportional (P) [46, 147], integral (I) [21], proportional-integral (PI) [61, 89],
classical proportional-integral-derivative (PID) [33], or fuzzy PID [159]. Apart from
oscillations and overshoots, the characteristic limitation of the majority of those
schemes when applied to feedback systems with delay, as discussed in [114, 147],
is the necessity of throttling the controller dynamics (mainly reducing the closed-
loop gain) to maintain stability.

As it has already been discussed, the need for reducing the computational over-
head resulting from hardware limitations in the early protocol development (scarce
processing power and slow memory) turned the attention of some researchers
towards the binary feedback control schemes. However, those schemes, although
simple in implementation, proved inefficient in the network resource management
(they used to excite oscillations in the traffic intensity and required large buffers
to accommodate the resulting burstiness of packet arrival). A number of research
efforts were undertaken which tried to explain the specific behavior of binary
feedback algorithms using systematic analytical methods.

Kawahara et al. [95] considered a two-stage queuing network where the cells
from multiple sources (the first queuing stage) appear with delay at a node consti-
tuting the second queuing stage. The burstiness of cell arrival at the sources was
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modeled as a stochastic process (two-state Markov-modulated Bernoulli process).
The sources simply stop/start transmission according to the CI bit in the control unit
received from the node or additionally monitor the local queue length and push out
backlogged cell from the full buffer when a new cell arrives within a time slot. The
latter mechanism allows for cell loss reduction at the expense of increased waiting
time at the node. The analysis of system properties was limited to the steady-state
case only due to significant computational complexity of the dynamical case.

Bonomi et al. [35] faced a similar problem of excessive derivation complexity
in the analytical design of binary feedback controllers. To address this issue, they
proposed a simplified fluid approximation of the network model (composed of a
set of first-order delay-differential equations) as the basis for the mathematical
calculations and provided extensive simulations for a more realistic scenario. The
authors discussed various design trade-offs and showed how an appropriate use of
rate damping can improve stability and fairness without significant downgrade in
responsiveness during the transient phase.

The biggest disadvantage, obstructing the systematic analysis of flow control
schemes employing binary feedback, is the existence of significant nonlinearities
within their operating regions. These algorithms tend to demonstrate serious prob-
lems of stability, exhibit oscillatory dynamics, and require large amount of buffer in
order to avoid cell loss. Rohrs et al. [148] proposed to modify the interpretation of
the CI bits and in this way linearize the system so that the standard techniques of
linear control theory could be applied to binary feedback framework. The controller
proposed in [148] estimates the level of congestion with parameter p, determined
using the node buffer occupancy. The CI bit in RM cells is marked with probability p
and left unset with probability 1 – p. The source deduces the value of the p parameter
by calculating the fraction of RM cells with the CI bit marked to the total number
of RM cells received in certain time interval. Once the parameter is estimated, the
source can smoothly adjust its transfer rate. The proposed method of the CI bit
interpretation creates the effect of multivalued feedback and allows for significant
reduction of the degree of oscillations. Moreover, it let the authors employ the
standard frequency domain techniques (Bode plot analysis) to tune the algorithm
performance and satisfy various design requirements. A similar analysis by means
of the classical linear control tools was later conducted for the network supporting
explicit rate multivalued feedback [147].

The exposed problems of binary control, supported by strict analytical argumen-
tation, ultimately directed the effort of research community towards the domain of
multibit feedback schemes. Consequently, in the remainder of this section, we will
concentrate on explicit rate solutions that employ multivalued feedback information
to control the flow of data in communication networks. We will briefly return
to binary and implicit feedback systems in the final paragraph of this section
while discussing the congestion control concepts in TCP/IP-based and general-type
networks.

Izmailov [71] considered a single connection serviced with constant capacity
by a distant network node. The transmission rate of the connection is controlled
by a linear access regulator whose output signal is generated according to the
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several states of the node buffer measured at different time instants. The asymptotic
stability, nonoscillatory system behavior, and locally optimal rate of convergence
were proved. However, the transient properties and responsiveness to the chang-
ing networking conditions were left unexplored, which limits the assessment of
applicability of the proposed scheme in real, highly dynamical telecommunication
networks. In his next paper [72], Izmailov extended the analytical investigation of
the designed control algorithm to the case of multiple connections.

To cope with difficulties of the analysis of multisource traffic scenario, Zhao
et al. [179] proposed to decouple different control loops and in this way reduce the
controller design to a set of single-input single-output systems. The design task
was formulated as a standard disturbance rejection problem where the available
bandwidth acts as an external perturbation in the system. The source rate is adapted
to low-frequency variation of the available bandwidth and H2 optimal control is
applied to design a controller that minimizes the difference between the source
input rate and the available bandwidth. The principal disadvantage of the developed
scheme is that the design procedure and the controller performance depend on the
characteristics of the interacting high-priority traffic and on the measurements of the
available bandwidth, which is cumbersome to be obtained in practice (as discussed
for instance in [111]). Moreover, the decoupling of mutli-input single-output system
based on the assumption of uniform disturbance and capacity distribution, and
the subsequent optimization performed for each flow separately, may result in
an oversimplistic design for a multisource network serving flows with different
propagation delays [68]. Direct generalization of the result obtained for a single flow
to the system with multiple connections characterized by disparate feedback delays
may lead to undesirable oscillations in traffic intensity, which adversely affect the
system dynamical properties.

Chong et al. [46, 47] proposed and thoroughly studied the performance of a
simple queue length-based flow control algorithm with a dynamic queue threshold
adjustment. The authors demonstrated that with properly chosen gains, the system is
asymptotically stable, even for the case of multiple VCs with long and diverse prop-
agation delays, and in steady state, the max-min fairness is achieved. Nevertheless,
the transient analysis was performed for a homogeneous network (equal delays), and
global stability was investigated via simulations only. The dynamic queue threshold
adjustment in the case of time-varying available bandwidth and changes in the
number of connections was shown to effectively prevent the closed-loop system
from going to undesirable equilibrium point. In addition, the authors demonstrate
that the adaptive queue thresholding allows for decreasing the sensitivity of the
queue length to the bandwidth and VC number fluctuations.

The frequent variations of networking conditions in communication systems
suggest the use of adaptive techniques for data flow regulation [3, 10, 34, 98]. One
of the first algorithms employing the concepts of adaptive control was proposed
by Keshav [98] in 1990. He assumed that a node (server) distributes available
bandwidth equally among the set of active connections passing through one of
the output ports. A source deduces its current service rate by sending two back-
to-back connected packets and taking the inverse of the time spacing of the received
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acknowledgments. The noisy estimate of the current rate and the trace of the queue
length are used to predict the future service rate (modeled as a random walk with
the step being random variable). Using these values, the proposed control law drives
the state (queue length) to a predefined set point. Following the discussion of the
limitations of the traditional Kalman filter solution, a novel state estimation scheme
based on fuzzy logic was developed. Another adaptive algorithm for congestion con-
trol in communication networks, employing a self-tuning regulator, was presented
by Bolot [34] in 1992. He described the queue dynamics of a single bottleneck
node with auto-regressive moving average with exogenous input (ARMAX) model
and applied a predictive controller with least-squares model parameter estimator to
regulate the source input rate. As investigated by simulations, the obtained self-
tuning regulator provides high throughput and low loss probability over a wide
range of delays and overload conditions. In the next paper [10], written jointly
with Altman and Baccelli, a stochastic discrete-time approach to the design of flow
controllers in data transmission networks was presented. The proposed regulator
calculates transmission rates taking exponentially averaged estimate of the available
bandwidth and queue size. The time-varying bandwidth is modeled as a truncated
auto-regressive moving average (ARMA) process, in which the truncation ensures
that the bandwidth cannot exceed certain bounds, thus eliminating the drawback of
the random-walk model applied by Keshav [98]. The authors demonstrate that a pure
rate-matching algorithm may lead to unacceptably long queues. Therefore, in order
to guarantee stability, the combined approach of the bandwidth and queue length
estimations should be applied. Although, as discussed in [3], the stability of the pure
rate-matching scheme can also be satisfied if only a fraction of the available service
rate is used as the utilization target. In consequence, excessive data accumulation in
the buffers can be prevented.

In the further research, Altman et al. [7] and Pan et al. [123] exploited the ARMA
model introduced in [10] to design several H1-norm-based controllers for a single
connection bottlenecked at a network node. The work of Altman, Basar, and Srikant
[8, 9, 11, 12] on multisource networks, in turn, led to the application of elements of
game theory to the congestion control problem. In that approach, the flow control
process can be perceived as a game, where the sources sharing a common bottleneck
are the competing players. In the noncooperative game, the players try to achieve
the best possible result (e.g., to capture the available bandwidth), which influences
the performance of other players and creates conflicts. The objective of the control
algorithm is to drive the system to a state, the users have no incentive to deviate
from (they gain nothing by changing their strategy according to some performance
measure). Such state is referred to as the Nash equilibrium [117]. In the cooperative
game approach [9, 11, 12], on the other hand, the users sharing the bottleneck link
form a team, which attempts to optimize some common objective (expressed with
appropriate cost functional) instead of aggressively competing with each other. The
popularity gained by the concept of game theory applied to congestion control,
and performance optimization of distributed systems has led in recent years to an
intensive research and a number of valuable publications, mainly in the field of
traffic regulation in Internet-style networks [6, 14, 65, 150], and optimization of
distributed computing systems [92].
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Seeking the optimal solution to the congestion control problem is obstructed
by the presence of action delay, which is the time from the moment the control
information is sent to the source, until the action is taken by it and until subsequently
that action affects the state of the node that issued the command. In order to avoid
extensive numerical computations necessary to solve high-dimensional discrete-
time algebraic Riccati equation in time-delayed stochastic systems, several authors
[13, 70] proposed the use of certainty-equivalence principle. This principle adopted
for communication networks allows for separation of the controller design into
two stages. In the first stage, the exact optimal solution is obtained for a system
with no delay. Afterwards, the delays are incorporated into controller through
estimators predicting the future values of the queue length and bandwidth. The
resultant suboptimal controller achieves similar performance as the exact, optimal
one (determined numerically). However, both the optimal and suboptimal solutions
presented in [13, 70] are derived under the assumption of perfectly known and
static propagation delays. If the latency varies with time, an adaptive controller can
be applied. However, the one proposed in [70], although demonstrates robustness
to delay fluctuations, is developed for an idealized case of constant available
bandwidth. The derivation of optimal solution in the system with delay can
also be simplified with the use of instantaneous cost index [38]. The method
advocated in [38], while avoiding the complex forecast problems (which require
a priori knowledge of appropriate models of the future system state) encountered
in [13, 70], allows for minimization of the amount of discarded data under the
constraints imposed by the QoS contract of high-priority traffic. We show later
in this monograph (Sects. 5.1.2 and 6.1.2) how the optimal control problem with
quadratic performance index can be solved analytically with explicit consideration
of the effects related to delay. A closed-form solution is obtained without recurring
to certainty-equivalence principle.

The majority of systematic control solutions discussed so far assume that
feedback delay is constant. Obviously, this assumption facilitates formal analysis
but is seldom well justified from the perspective of the actual application in data
transmission networks. The important problem of latency variation in a delayed
feedback system has been addressed in a number of papers [33, 101, 124, 131,
153]. The authors of [101] modeled the delay fluctuations as well as the source
activity periods and instances of rate calculation and feedback information delivery
with random variables. They studied the influence of the described variations
on the system performance with parsimonious (binary) and multivalued feedback
mechanisms and formulated a number of observations, some being counterintuitive,
on the relative importance of the investigated factors. First, it was shown that
the time scales (the source activity period in relation to the propagation delay
and frequency of bandwidth changes) dominate both the steady-state and transient
performance of the system. According to the authors of [101], the longer the scale
(smaller frequency of fluctuations) of a particular network variable, the bigger
is its influence on the system performance. Secondly, it was demonstrated that
a two-level controlled feedback system (with two queue thresholds), due to the
extension of the overload and underload periods, is inferior to a single set-point
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solution in terms of the obtained throughput. In the presence of underlying high-
priority traffic, performance comparison of the system using binary feedback with
queue thresholding vs. the system using explicit rate notification shows that better
throughput can be achieved in the latter one. This is especially true when the
underlying traffic has slowly varying time scales. The most important observation
is that asynchronism in the feedback information delivery (arising due to delay
variations or generation of feedback carriers at irregular time instants, e.g., once
every N data packets) actually results in better system performance and helps
achieve stability, although may potentially lead to some unfairness. While the
equivalent deterministic system may never converge (or converge very slowly to
the desired equilibrium), the stochastic system surprisingly converges at a faster
rate. However, it should be stressed that this counterintuitive remark about variable
feedback delays improving stability of the oscillating system is formulated based
on stochastic analysis of the plant and control signals. Consequently, the results of
evaluation of any designed feedback scheme depend on the selected framework –
deterministic or stochastic – and may be contradictory to each other.

Sichitiu et al. [153] developed a model for a rate-based congestion control
system, considering rapidly changing buffer levels, which accounts for both the
time-varying delays between the congested node and the data sources and the
mismatch between the time-varying RM cell arrival period and the fixed controller
cycle time. The modeling also includes the effects of buffer and rate saturation
without the simplifying assumption of linearization around the equilibrium point.
The resulting time-varying linear feedback system (nonlinearities are modeled
through time-varying sector gains) is analyzed with regard to its stability using the
theory for uncertain time-varying systems. It is shown that no stable equilibrium
point exists if the delays in the forward path vary with time. Intuitively, even if
the available bandwidth is constant, changes in the delay cause fluctuations in the
output rate, which feed the queue integrator disturbing any previously established
equilibrium level. Consequently, the authors of [153] claim that, under the time-
varying delay conditions on the forward path, set-point control of the congested
buffer cannot provide the desired queue length. Despite careful and detailed
description of a multitude of networking phenomena, no formal controller design
was performed, and the presented model should be regarded as a framework for
future algorithm development. The discussed properties of time-varying feedback
system are illustrated with an example of a simple proportional controller. A later
work of Sichitiu and Bauer [152] on the stability of time-varying plants led to a
proof of an important feature of congestion control systems with linear controllers,
namely, the stability of such systems with a single source is equivalent to the
one with multiple transmitters. Consequently, if the stability can be shown for a
system with one source, the stability of the system with multiple sources follows
automatically, which may simplify complex analysis in the multisource networks.

The work on effective control methods for feedback systems with time-varying
delays was continued by Quet et al. [131], Blanchini et al. [33], Ünal et al. [168], and
Pietrabissa et al. [124]. Quet et al. [131] elaborated a stable controller regulating the
traffic in multiple connections with uncertain time-varying propagation delays and
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time-varying node service rate. The controller, obtained through the minimization
of appropriate H1 norm, satisfies a weighted fairness condition and guarantees
asymptotic stability of the queue length at the bottleneck node. However, the time-
varying forward delay induces steady-state oscillations, which cannot be avoided
unless some information about the forward delay uncertainty is available to the
controller. Moreover, the controller performance deteriorates as the real delay
diminishes (in relation to the uncertainty bound), which is a feature that may inflict
undesirable consequences on the control process and transmission consistency, as
commented in [33]. An improved version of the H1-norm-based controller has
been later reported in [168]. Blanchini et al. [33], on the other hand, proposed
a classical control design based on PID controller to provide a stable solution
to the network traffic regulation problem in the presence of time-varying delays.
As pointed out by the authors, the more sophisticated controllers proposed earlier
in literature, in particular the optimal ones, achieve better performance as long
as the delays can be determined accurately and remain constant. The fragility of
the optimal controllers manifests itself even in the simplest case of a single link,
where any variation of the latency from the nominal one may render the closed-
loop system unstable. The PID controller proposed in [33] remains stable even
though the delays are determined imprecisely, vary with time, and the sources do
not always follow the feedback signal. The stability analysis for a single connection
was proved analytically using the Nyquist criterion and extended to multisource
case through the equivalence property, which states that the mutlisource scenario
in the proposed framework can be reduced to the single-source one, in which
the maximum admissible delay is equal to that of the source at the maximum
distance. The theoretical investigation was supplemented with simulation examples,
comparing the elaborated PID solution with ERICAC algorithm. The results show
that the theoretically derived controller can achieve, in some respect, superior
performance to that of the performance-oriented heuristic algorithms.

In paper [124], an adaptive controller effectively combining the benefits of
control theoretic and fuzzy-logic approach was also proposed to address the issue
of uncertain and time-varying delays and source saturation limits. The basic
controller developed in [124] drives the queue length to a reference value, while
the fuzzy element adjusts the adaptive multiplicative gain to compensate for the
transmitter saturation. The designed regulator was compared with the H1 scheme
[131] and, according to the presented simulation results, demonstrates improved
performance. It exhibits smaller degree of overshoots and oscillations and thanks
to the incorporated fuzzy logic correctly reacts to the problem of nonpersistent
data sources (even in the situation when all the sources are saturated and send the
data at a rate lower than the assigned one). Fuzzy logic has also been exploited
by Ren et al. [139] for the flow regulation problem in an ATM/ABR network with
multiple uncertain time delays. In addition to good dynamical properties, the fuzzy
immune-PID controller presented in [139] can handle a number of inopportune
networking phenomena, for example, saturation nonlinearities. An extended version
of the results reported in [139] has been recently published in [141], where the
sufficient condition for the closed-loop system stability was presented and weighted
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fairness issues were discussed in detail. For a similar network model, the authors of
[139], together with X. Zheng, proposed a controller based on integral sliding mode
(ISM) [167]. This ISM controller [140], while maintaining the weighted fairness,
demonstrates better dynamical performance and improved stability than the one
described in [139].

In fact, the concept of applying fuzzy logic to traffic management, as well
as other methods of artificial intelligence, such as neural networks or genetic
algorithms, is not a new one (an excellent review of the initial as well as more
advanced proposals is given in [49] and [125]). The lack of appropriate models in
the early congestion control protocol development, on one hand simple enough to
be analytically tractable, on the other hand retaining enough complexity to afford
attractive performance properties, incited the search for alternative design paths.
The systems based on fuzzy logic make decisions and perform calculations on
imprecise quantities and, hence, are particularly useful in the situations in which
the exact mathematical models are impractical or unavailable. In a sense, the fuzzy-
logic-based systems emulate the decisions taken by an expert human operator.
The schemes based on neural networks (NN), on the other hand, exploit the NN
ability of capturing complex nonlinear relationships and predicting future system
behavior from the acquired patterns [49]. Keshav [98] used fuzzy variables to
construct a state estimator, which gracefully responds to changes in system behavior.
Cheng and Chang [43] designed a traffic controller based on fuzzy rules, which
simultaneously performs congestion control and connection admission functions,
yielding improved performance over the traditional double-threshold queue length
control. The optimal parameters of the membership functions and the control rules
were determined from a genetic algorithm search. Pitsillides et al. [126] defined a
set of linguistic rules for fuzzy ABR congestion control using the queue length and
the queue length changes. The proposed scheme was compared with EPRCA and
concluded to be superior in both maximizing the network utilization and achieving
faster transient response. Tarraf et al. [162] discussed the application of NNs to
solve a number of traffic management-related issues in ATM networks. According
to the authors of [162], the learning capabilities of NNs can be effectively employed
for predicting the forthcoming traffic intensity, connection admission control, flow
policing, and congestion control. Jagannathan and Talluri [75] modeled the buffer
dynamics at a network node as an unknown nonlinear discrete-time system and used
NN-based controller with adjustable weights to predict the explicit values of the
source transmission rates and to prevent the node overload. The proposed method
of weights tuning guarantees stability of the closed-loop system and the desired
QoS in the presence of unpredictable and statistically fluctuating network traffic
with bounded uncertainty. Broad prospects of application of artificial intelligence
elements in controlling complex telecommunication systems come at a price.
Probably, the biggest drawback of those schemes as related to highly dynamical
networks is the time lag of the learning process, which can be unacceptably long if
good estimation accuracy of the model and its inferred behavior is to be obtained.
Another disadvantage of artificial intelligence methods is the difficulty to execute
sound stability and performance analysis using formal techniques.
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Since the feedback information used for rate adjustment is typically available
at discrete-time instants only, it seems reasonable to partition the time scale of
the flow control process into discrete intervals reflecting the spacing between
subsequent feedback information carrier arrivals and rate updates. The discrete
nature of delayed feedback distribution, in turn, promotes the use of popular discrete
control tools, such as digital filters, in system modeling and controller design.
Laberteaux et al. [106] modeled the communication network as a finite impulse
response (FIR) filter with unknown coefficients and proposed an adaptive control
scheme based on the inverse FIR filter to efficiently regulate the data traffic. Several
enhancements to the principal strategy allow for reducing the convergence time
and improving the queue length management as compared with other schemes
previously described in the literature. Tan et al. [160] designed a class of controllers
based on recursive digital filter, whose parameters are selected so that fairness
and the desired dynamical properties can be obtained. The closed-loop stability
of the controlled system was analyzed using Schur-Cohn criterion and strictly
proved. Aweya et al. [21] discussed in a tutorial fashion the analogy between the
feedback control problem in communication networks and the classical discrete-
time regulator problem employing digital filters. They proposed an integral control
law, which allocates the current transmission speed for multiple sources using
the comparison between the target and measured link utilization. The feedback
delay was identified as a major cause of potential system instability and, hence,
should be explicitly considered in the controller parameter selection. The authors
of [21] propose a method of stability analysis using Routh-Hurwitz criterion.
First, they determine the characteristic polynomial of the discrete-time closed-
loop transfer function. Afterwards, they perform bilinear transformation and apply
Routh-Hurwitz test on the coefficients of the modified polynomial. The resultant
approximate relation between the controller parameters and the network latency
allows for estimating the biggest admissible gain for a stable system. As discussed
and verified through extensive simulations [21, 22], the proposed conservative
approximation guarantees stability without excessive degradation of the transient
properties. Moreover, as pointed out by the authors, in real systems, usually
more restrictive constraints are applied than those obtained from the theoretical
derivations (in practical implementation, it is not advisable to set the gain so that
the system operates at the margin of stability, e.g., due to unmodeled uncertainties
affecting the control process). In a later publication [20], Aweya et al. calculate exact
stability limit for the developed control scheme, which occurs to be nearly the same
as the approximate one (the error does not exceed 6% and decreases for longer
delays). Although the comparison with a number of similar control algorithms
[23], such as EPRCA, CAPC2, or ERICA, demonstrates superiority of the integral
controller, its dynamics are rigorously bounded by the gain inversely proportional
to the longest propagation delay, which is a serious limitation in WAN (wide area
network) environment.

One of the most promising approaches to congestion control in connection-
oriented networks, eliminating the problem of poor dynamics dictated by the
stability requirements in long-haul transmission (which was a serious limitation of
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PID schemes), employed the Smith principle [156]. The basic idea of the Smith
principle is to create a projection of the model of the controlled system inside
the controller and use it to establish appropriate command signals. As applied to
communication networks [28, 29, 61, 66, 111–114, 129], the Smith predictor (SP)
internally compensates for the feedback delay in the (outer) control loop. Once
the problem of long feedback latency is eliminated, the system stability can be
ensured without throttling the dynamics and degradation of the desired fast transient
response.

In paper [111], Mascolo considered a single connection congestion control
problem in a general packet-switching network. He used the deterministic fluid
model approximation of packet flow and exploited transfer functions to describe
the network dynamics. The designed continuous-time controller was applied to
the ABR traffic control in ATM network and compared with the ERICA standard.
The same author extended the idea of the SP to control the network supporting
multiple data flows with different propagation delays in [112] and introduced feed-
forward compensation of the available bandwidth in [113]. The proposed control
algorithm guarantees no cell loss, full and equal network utilization, and ensures
exponential convergence of the queue levels to stationary values without oscillations
or overshoots. Gómez-Stern et al. [61] further studied the flow control using the
Smith principle. They proposed a continuous-time PI controller, which helps reduce
the average queue level and its sensitivity to the available bandwidth. On the other
hand, the application of the Smith principle for satellite networks was considered
in [129]. In that work, similarly as in [61], the saturation issues in the system
with proportional continuous-time controller were handled using anti-wind up
techniques. In a more recent paper [114], Mascolo demonstrated that also the TCP
flow control mechanism implements the Smith predictor to handle the congestion.
The result presented in [114] was supplemented with the analysis of the performance
of the SP-based solutions as compared with the traditional PID controllers. It was
shown that in the time-delay systems, the stability requirements significantly limit
the dynamics of the PID-based schemes, and the Smith principle provides faster
reaction to the varying networking conditions.

Although the SP-based controllers demonstrate outstanding performance both in
steady state and during transient periods, they bear a serious flaw. The operation of
those schemes largely depends on the accuracy of the system representation in the
internal loop. In other words, the SP works correctly as long as the model of the
regulated plant precisely coincides with the one used by the controller. Otherwise,
for example, when the plant parameters are estimated with errors or are subject
to severe uncertainties, the effectiveness of the Smith principle rapidly drops. To
address this problem, a nonlinear algorithm exploiting the idea of the SP for the flow
regulation in time-delay systems was proposed in [28]. The described continuous-
time control mechanism guarantees congestion alleviating features and full resource
usage even though the propagation delays (which constitute the principal model
parameter) in a multisource network can be determined only with a limited degree
of accuracy. The on-off controller [28] retains the propitious features of the earlier
SP-based schemes with smaller buffer capacity requirements and simpler signaling
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(it can be realized as a binary feedback algorithm). A possible limitation of this
scheme, as revealed in [67], is the required fast switching of the source rate, which
can downgrade the transmission consistency. A discrete-time version of the SP-
based nonlinear controllers, addressing the robustness issues related to parameter
uncertainty in addition to the variations of the number of active connections, was
presented in [29]. On the other hand, the SP-based control in the networks with
finite, nonuniform sampling was addressed in [66].

The majority of the results discussed so far are intended for the networks with
explicit, multibit feedback provision. There is also a great body of literature devoted
to the network modeling and control related to the general-type networks and
networks with implicit feedback. By no means, the review which follows should
be treated as exhaustive. We will limit the discussion to highlighting the popular
ideas and main research trends. For a more detailed treatment of the subject, the
interested reader can refer, for example, to [5, 96, 109, 118, 157].

Among the systematic approaches to efficient network modeling and design of
traffic regulation algorithms in general-type networks, one should certainly consider
the utility-based optimization framework [97], further elaborated on in [96, 109,
157], and the control of heterogeneous networks, for example, [118]. In this class
of problems, one may also find solutions of the combined control of elastic and
inelastic traffic given within the DiffServ framework, for example, presented in
[127]. However, still, the prevailing control mechanism deployed in the Internet is
the TCP congestion control with the source transmission rate regulated according
to the Jacobson’s algorithm (and a number of its enhancements [157]), which
essentially constitutes an implicit feedback system. Apart from the changes of
this fundamental mechanism, such as delay-based TCP Vegas [37], various authors
proposed the use of network-assisted control leading to an explicit feedback system
within the TCP/IP framework. The key regulatory mechanisms in the network-
assisted control for the TCP/IP networks are ECN and AQM. ECN [54, 137] is based
on the idea of signaling the information about the network state to the sources by
the network nodes in the form of marking additional bit(s) in the TCP header. AQM
schemes, in turn, generate the explicit feedback information for regulating the inflow
of data by observing the state of the node. Among the marking schemes, one can
point out random early detection (RED) [56], random exponential marking (REM)
[16], Blue [52], adaptive virtual queue (AVQ) [105], and many others (see [5]).
Typically, an AQM scheme applies the signaling properties provided by ECN bits.
Although the single packet marking provides satisfactory performance in many
traffic scenarios, further improvements are sought in using two-bit [172] or multibit
fields [93, 171] to inform the sources in a more exact way about the rate updates. In
certain works, one may also observe a tendency of adapting the results developed
for the traditional communication systems (such as the solution to the ATM/ABR
flow regulation problem) to marking schemes present in the TCP/IP networks. Good
examples of such approach in the network evolution are the works of Quet et al.
[130] and Xia et al. [172], which can be perceived as TCP adaptations of the ideas
presented in [131] and [91], respectively.
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2.5 Sliding-Mode Congestion Control

In modern telecommunication networks, high throughput and robustness are of
primary concern for handling the diversity of services and meeting the traffic
demand of the users. The critical issue for achieving this desirable property remains
in the use of efficient congestion control (or flow control) algorithms. On the other
hand, numerous publications discussed in this review demonstrate the benefits of
applying systematic theoretical approach in the design of such algorithms. Among
the available techniques, one with particularly appealing robustness properties and
efficiency in stabilizing complex nonlinear systems is sliding-mode control (SMC)
[166]. However, so far, very few approaches have appeared in the literature regard-
ing the application of SMC to regulate data traffic in communication networks.
Several examples are discussed below.

The majority of SMC applications for data flow control reported so far in the liter-
ature are intended for the networks with implicit feedback. We can point out several
successful design examples for AQM flow control in continuous-time domain, for
example, [142, 173], yet those results are obtained without explicit consideration of
the delay in the feedback and data paths. Also, a fuzzy SM controller [88] combining
the benefits of linear and terminal SMC for improving the error convergence has
been proposed for a simplified delay-free network model. Interesting combination
of fuzzy and integral SMC has been reported for DiffServ networks [177], where
the premium traffic is regulated by a fuzzy SMC algorithm and the ordinary service
by an ISM controller. Also, in the DiffServ framework, an adaptive SM controller
has been designed (using the backstepping procedure) for a model which neglects
the feedback latency [180]. On the other hand, to regulate the flow of data in a
DiffServ network with delay, the second-order SM technique was applied by Zhang
et al. [178]. The three second-order SM controllers proposed in [178] outperform
the standard one in chattering reduction both in the control of ordinary and premium
traffic. As a result, more feasible controller command is obtained.

The work on flow control schemes for TCP/IP networks using the principles
of SMC continues in [87, 169, 174, 176, 181], which give explicit consideration
to the issues of nonnegligible latency except for [174]. In [176], the time delay
of input signal is taken into account in the design of an AQM control algorithm,
but stability is considered only with regard to matched uncertainties. For a similar
model with input delay accounted for, the effects of mismatched uncertainties
have been analyzed in [169]. On the other hand, both the input and state delay
have been taken into consideration in [87], and the maximum allowable value of
delay necessary for the system stability has been established. A discrete-time SMC
approach to AQM controller design has been presented in [174], but the result is
derived without explicit consideration of input or state delay. In that work, the
sliding surface is selected to obtain robust asymptotic stability in the presence of
parameter uncertainties by the linear matrix inequality (LMI) method. The LMI
method has also been employed in the design of the observer-based AQM controller
for a system with uncertainties, input delay, and saturated input [181]. The observer



References 37

is used to estimate the average transmission window at the controlled source and
drive the queue length to the target value. The authors show that the observer-based
controller [181] achieves faster response and less oscillatory transient behavior in
comparison with the algorithm described in [176].

Recently, a few publications appeared in the field of SMC and utility-
optimization network traffic regulation. A discrete-time SM algorithm for adapting
the source transfer rate in the utility max-min flow control framework was proposed
in [86]. The dynamics of the source transmission rate in this algorithm is governed
by the comparison of the source utility function and the value generated from the
binary feedback information obtained from the network. The authors show that the
utility max-min fairness and asymptotic stability are achieved in the considered
framework. However, the entire analysis is performed for a delay-free system. A
potentially impactful result in the context of general topology networks with delay
and utility-based optimization has been reported in [175]. In a discrete-time setting,
the authors show that any max-min fair system with a stable symmetric Jacobian
remains asymptotically stable under arbitrary directional delays. This means that if
a congestion control algorithm is designed so that the networking system has stable
symmetric Jacobian, the stability of a delayed linear system may be examined based
on the coefficient matrices of the corresponding undelayed system.

Clearly, the application of SMC in the problems of data flow control in
communication networks received some attention in recent years. However, the
important issues related to nonnegligible delay in systems with finite sampling rate
[67–69] remain to much extent unexplored. In this work, we intend to fill some of
the gaps in the systematic application of SMC to the traffic regulation problem in
data transmission networks. The effects of delay are given thorough consideration,
both in the analytical and numerical studies.
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Chapter 3
Fundamentals of Sliding-Mode
Controller Design

The main purpose of control engineering is to steer the regulated plant in such a way
that it operates in a required manner. The desirable performance of the plant should
be obtained despite the unpredictable influence of the environment on all parts of
the control system, including the plant itself, and no matter if the system designer
knows precisely all the parameters of the plant. Even though parameters may change
with time, load, and external circumstances, still, the system should preserve its
nominal properties and ensure the required behavior of the plant. In other words, the
principal objective of control engineering is to design control (or regulation) systems
which are robust with respect to external disturbances and modeling uncertainty.
This objective may be very well achieved using the sliding-mode technique [6, 11,
16, 18, 26, 28, 31, 43, 45, 55, 62, 66, 78, 79, 81, 85, 87], which is extensively
used throughout this monograph. To be more precise, in the monograph, we focus
our attention on the application of discrete sliding-mode control principles to the
congestion elimination in data transmission networks. However, in order to make
the text self-contained, we begin this chapter with presenting the main notions
and concepts used in the field of variable structure systems and sliding-mode
control.

In this chapter, we present basic concepts and definitions which will be used
further in the book. First, we introduce the concept of variable structure system
(VSS), and then we present the notions of sliding mode and sliding-mode control
which are crucial for the issues presented in the main part of this book, i.e., in
Chaps. 4, 5, and 6. We also present the basic properties of variable structure systems
with sliding modes which make these systems a feasible option for many control
applications, especially those which require good robustness with respect to model
uncertainty and external disturbances. Next, the problem of chattering is exposed,
and the fundamental techniques used to avoid (or at least reduce) this undesirable
phenomenon are reviewed. The last section of this chapter introduces the concept
of (quasi)sliding modes in discrete-time domain. In that section, the fundamental
differences between continuous- and discrete-time SMC are discussed, and basic
methods of controller design in discrete-time domain are presented.

P. Ignaciuk and A. Bartoszewicz, Congestion Control in Data Transmission Networks:
Sliding Mode and Other Designs, Communications and Control Engineering,
DOI 10.1007/978-1-4471-4147-1__3, © Springer-Verlag London 2013
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3.1 Variable Structure Systems

In recent years, much of the research in the area of control theory focused on
the design of discontinuous feedback which switches the structure of the system
according to the evolution of its state vector. This control idea may be illustrated by
the following example.

Let us consider the second-order system

Px1 D x2;

Px2 D x2 C ui ; i D 1; 2; (3.1)

where x1(t) and x2(t) denote the system state variables (t is the time), with the
following two feedback control laws:

u1 D f1 .x1; x2/ D �x2 � x1; (3.2)

u2 D f2 .x1; x2/ D �x2 � 4x1: (3.3)

Performance of system (3.1) controlled according to (3.2) is shown in Fig. 3.1,
and Fig. 3.2 presents the behavior of the same system with feedback control (3.3).
It can be clearly seen from those two figures that each of the feedback control laws
(3.2) and (3.3) ensures the system stability only in the sense of Lyapunov.

However, if the following switching strategy is applied:

i D
�

1; for min fx1; x2g < 0;

2; for min fx1; x2g � 0;
(3.4)

then the system becomes asymptotically stable. This is illustrated in Fig. 3.3.
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Moreover, it is worth pointing out that system (3.1) with the same feedback
control laws may exhibit completely different behavior (and even become unstable).
For example, if the switching strategy (3.4) is modified as

i D
�

1; for min fx1; x2g � 0;

2; for min fx1; x2g < 0;
(3.5)

then the system output increases to infinity. The system dynamic behavior, in this
situation, is illustrated in Fig. 3.4.
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This example presents the concept of variable structure control (VSC) and
stresses that the system dynamics in VSC is determined not only by the applied
feedback controllers but also, to a large extent, by the adopted switching strategy.

VSC is inherently a nonlinear technique, and as such, it offers a variety of
advantages which cannot be achieved using conventional linear controllers. Our next
example shows one of those favorable features – namely, it demonstrates that VSC
may enable finite time error convergence. In this example, again we consider system
(3.1); however, now we apply the following controller:

u D �x2 � asgn .x1/ � bsgn .x2/ ; (3.6)

where a > b > 0. Closer analysis of the behavior of system (3.1) with control law
(3.6) demonstrates that, in this example, the system error converges to zero in finite
time which can be expressed as

T D a

b

p
2x10

�
1p

a � b
C 1p

a C b

�
; (3.7)

where x10 and x20 D 0 represent the initial conditions of system (3.1). Even though
the error converges to zero in finite time, the number of oscillations in the system
tends to infinity, with the period of oscillations decreasing to 0. This is illustrated in
Figs. 3.5 and 3.6. In the simulation example presented in the figures, the following
parameters are used: a D 7, b D 3, x10 D 20, and x20 D 0. Consequently, the system
error is nullified at the time instant tn D 12.045 and remains equal to zero for any
time greater than tn. Clearly, these favorable properties are achieved using finite
control signal. This controller, due to the way the phase trajectory – shown in
Fig. 3.5 – is drawn, is usually called “twisting controller.” It also serves as a good,
simple example of the second-order SM controllers.
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3.2 Sliding-Mode Control

The two examples presented up to now demonstrate the principal properties of
VSC systems. However, the main advantage of the systems is obtained when the
controlled plant exhibits the sliding motion [24, 35, 71, 77, 84]. The idea of
SMC is to employ different feedback controllers acting on the opposite sides of
a predetermined surface in the system state space. Each of those controllers pushes
the system representative point towards the surface, so that this point approaches
the surface, and once it hits the surface for the first time, it stays on it ever after.
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The resulting motion of the system is restricted to the surface, which graphically
can be interpreted as “sliding” of the system representative point along the surface.
This idea is illustrated by the following example.

Let us consider another second-order plant

Px1 D x2;

Px2 D b cos .mx1/ C u; jbj < 1; (3.8)

where b and m are possibly unknown constants. We select the following line in the
state space:

s D x2 C cx1 D 0; (3.9)

where c is a constant, and apply the controller

u D �cx2 � sgn.s/: (3.10)

In this equation sgn(�) function represents the sign of its argument, i.e.,
sgn(s < 0) D �1 and sgn(s > 0) D C1. With this controller, the system representative
point moves towards line (3.9) always when it does not belong to the line. Then,
once it hits the line, the controller switches the plant input (in the ideal case) with
infinite frequency. Therefore, line (3.9) is called the switching line. Furthermore,
since after reaching the line, the system representative point slides along it, then the
line is also called the sliding line. This example is illustrated in Fig. 3.7.

The system parameters used in the presented simulation are c D 0.5, b D 0.75,
and m D 10, and the simulation is performed for the following initial conditions:
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x10 D 5 and x20 D 1. Notice that when the plant remains in the sliding mode,
its dynamics is completely determined by the switching line (or in general the
switching hypersurface) parameters. This implies that neither model uncertainty
nor matched external disturbance affects the plant dynamics [25] which is a highly
desirable system property. This property can also be justified geometrically, if one
notices that in our example the slope of line (3.9) fully governs the plant motion
in the sliding mode. Therefore, in SMC systems, we usually make the distinction
between two phases: the first one, called the reaching phase, lasts until the controlled
plant representative point hits the switching surface and the second one, the sliding
phase, begins when the representative point reaches the surface. In the latter phase,
the plant insensitivity to a class of modeling inaccuracies and external disturbances
is ensured. Let us stress that the system robustness with respect to unmodeled
dynamics, parameter uncertainty, and external disturbances is guaranteed only in
the sliding mode. Therefore, shortening or (if possible) even complete elimination
of the reaching phase is an important and timely research subject [15]. Thus, in the
next section, we briefly present some recent results concerning this issue.

Another immediate consequence of the fact that in the sliding mode, the system
representative point is restricted to the switching hypersurface (which is a subset
of the state space) is reduction of the system order. If the system of the order n
has m-independent inputs, then the sliding mode takes place on the intersection
of m hypersurfaces and the reduced order of the system is equal to the difference
n � m. To be more precise, in multi-input systems, the sliding mode may take place
either independently on each switching hypersurface or only on the intersection
of the surfaces. In the first case, the system representative point approaches each
surface at any time instant, and once it hits any of the surfaces, it stays on this
surface ever after. This scenario is shown in Fig. 3.8. In the latter case, however,
the system representative point does not necessarily approach each of the surfaces,
but it always moves towards their intersection. In this case, which is illustrated in
Fig. 3.9, the system representative point may hit a surface and move away from it
(might possibly cross a switching surface), but once it reaches the intersection of all
the surfaces, then the representative point never leaves it.

As it has already been mentioned, the switching surface completely determines
the plant dynamics in the sliding mode. Therefore, selecting this surface [4, 15, 32,
36–39, 42] is one of the two major tasks in the process of SMC system design. In
order to stress this issue, let us point out that the same controller which has been
considered in the last example may result in a very different system performance, if
the sliding line slope c is selected in another way. This can be easily noticed if one
takes into account any negative c. Then, controller (3.10) still ensures stability of
the sliding motion on line (3.9), i.e., the system representative point still converges
to the line; however, the system is unstable since both state variables x1 and x2 tend
to (either plus or minus) infinity while the system representative point slides away
from the origin of the phase plane along line (3.9).

The other major task in the SMC system design is the selection of an appropriate
control law. This can be achieved either by assuming a certain kind of control law
(usually motivated by some previous engineering experience) and proving that this
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Fig. 3.9 Sliding motion on the intersection of the switching surfaces

control satisfies one of the so-called reaching conditions or by applying the reaching
law approach. The reaching conditions [26] ensure stability of the sliding motion,
and therefore, they are naturally derived using Lyapunov stability theory. On the
other hand, if the reaching law approach is adopted for the purpose of an SM
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controller construction [35], then a totally different design philosophy is employed.
In this case, the desired evolution of the switching variable s(�) is specified first,
and then a control law ensuring that s(�) changes according to the specification is
determined.

3.3 Chattering

SM controllers guarantee system insensitivity with respect to matched disturbance
and model uncertainty and cause reduction of the plant order. Moreover, they are
computationally efficient and may be applied to a wide range of various, possibly
nonlinear and time-varying plants. However, often, they also exhibit a serious
drawback which essentially hinders their practical applications. This drawback –
high-frequency oscillations which inevitably appear in any real system whose input
is supposed to switch infinitely fast – is usually called chattering. If system (3.8)
exhibits any, even arbitrarily small, delay in the input channel, then control strategy
(3.10) will cause oscillations whose frequency and amplitude depend on the delay.
With the decreasing of the delay time, the frequency rises and the amplitude gets
smaller. This is a highly undesirable phenomenon, because it causes serious wear
and tear on the actuator components and may excite unmodeled high-frequency
modes in the system. Therefore, a few methods to eliminate chattering have been
proposed. The most popular of them uses function

sat.s/ D

8̂
<
:̂

�1; for s < ��;
1
�
s; for jsj � �;

1; for s > �;

(3.11)

(where � is a positive, usually small constant) instead of sgn(s) in the definition
of the discontinuous control term. Function sat(s) is illustrated in Fig. 3.10. With
this modification, the term becomes continuous and the switching variable does
not converge to zero but to the closed interval [��, �]. Consequently, the system

−1

1

0

sat(s)

r

−r

Fig. 3.10 Function sat(s)
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representative point after the reaching phase termination belongs to a layer around
the switching hyperplane, and therefore, this strategy is called boundary layer
controller [71].

Other approaches to the chattering elimination include:

• Introduction of other nonlinear approximations of the discontinuous control term,
for example, the so-called fractional approximation defined as

approx.s/ D s

� C jsj (3.12)

[1, 19, 74, 86].
• Replacing the boundary layer with a sliding sector [67, 83].
• Using dynamic SM controllers [5, 52, 61, 64, 68–70, 75, 88].
• Using fuzzy SM controllers [22, 56, 57].
• Using second- or higher-order SM controllers [7–9, 50, 51].

The phenomenon of chattering has been extensively analyzed in many papers
using describing function method and various stability criteria [14, 23, 65].

3.4 Sliding Modes in Discrete-Time Systems

Early research in the field of SMC [29, 77] focused on continuous-time systems,
which can change the plant input at any instant of time t. However, nowadays, with
the increasing use of digital equipment in various feedback regulation problems,
controllers are usually built as microprocessor systems and their output signal
cannot change at any time, but only at the predetermined, discrete instants of time
t D kT, where k is a natural number and T denotes the sampling (or discretization)
period. Therefore, digitally implemented SMC systems often exhibit essentially
different properties from the same systems realized using only analogue devices.
Those digitally implemented systems are usually called discrete-time sliding-mode
control (DSMC) systems, and they no longer ensure complete insensitivity of the
controlled plant with reference to external disturbances and model uncertainty.
However, they still offer some degree of robustness measured in a strictly defined
sense, most often measured in terms of the switching variable magnitude.

There are two major approaches to the DSMC system design. One of them refers
to the notion of the sliding hypersurface (or typically hyperplane), and the other one
uses the concept of the sliding sector. The first approach is a natural generalization
of the standard idea of continuous-time SMC with conventional sliding hyperplanes
and has been developed gradually by many authors [10, 13, 44, 47, 53, 54, 63, 72,
73, 80]. In general, the idea comprises of selecting an appropriate sliding hyperplane
s(kT) D 0 and choosing such a control law u(kT) which ensures that (in the absence
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of disturbances and model uncertainty) the system representative point arrives at the
hyperplane at the next instant of time, i.e., that s[(k C 1)T)] D 0. We will illustrate
this idea with the following, very standard example. Let us consider a single-input,
linear discrete-time system

x Œ.k C 1/ T � D Ax .kT / C bu .kT / ; (3.13)

where x is the state vector, A is an n � n state matrix, and b is an n � 1 input vector.
Then we choose the following sliding hyperplane

s .kT / D cTx .kT / D 0 (3.14)

in the n-dimensional state space <n, and in order to obtain s[(k C 1)T)] D 0, we
select

u .kT / D ��cTb
��1

cTAx .kT / : (3.15)

Clearly, vector c has to be chosen in such a way that cTb ¤ 0. Substituting
equations (3.13) and (3.15) into (3.14), one can easily notice that this controller
actually brings the system representative point on plane (3.14) at the time in-
stant (k C 1)T. Thus, the ideal sliding motion without chattering takes place in
the system. Moreover, when control strategy (3.15) is applied, then the closed-
loop system state matrix has the following form Acl D [In � b(cTb)�1cT]A, where
In D diagf1, 1, : : : , 1g is an n by n identity matrix. This shows that the system
dynamic performance may be tuned as desired, and various design objectives
might be achieved. Those may include but are not limited to finite time error
convergence (time optimal performance) [17], obtained when the closed-loop
system characteristic polynomial has the form

det .z In � Acl/ D znI (3.16)

linear-quadratic (LQ) optimal [36, 37, 42]; integral absolute error (IAE) optimal;
integral time multiplied by the absolute error (ITAE) optimal performance; etc.

However, as opposed to the continuous SMC systems, the DSMC considered in
this section ensures that the switching variable is equal to zero only at the sampling
instants, while at any time t which is not an integer multiple of the discretization
period the switching variable may attain certain values different from zero. In other
words, intersampling behavior of this variable is not determined. Furthermore, if
system (3.13) is subject to external disturbance d(kT), i.e., it is described as

x Œ.k C 1/ T � D Ax .kT / C bu .kT / C d .kT / ; (3.17)

where the absolute value of the ith component di(kT) of vector d(kT) is always
upper-bounded by a known, nonnegative value dimax (jdij � dimax), then the system
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representative point no longer stays on plane (3.14) even at the discrete sampling
instants but remains in a vicinity of the plane

j s Œ.k C 1/ T � j �
nX

iD1

j ci j di max (3.18)

instead. In other words, the system representative point remains in a band around the
sliding hyperplane in the state space, and therefore, this type of motion is sometimes
called a quasi-sliding mode or a nonideal sliding motion [12, 32]. Clearly, the
thinner the band (smaller the width of the band), the better system robustness with
respect to the considered disturbance is achieved [76].

Let us also point out that the discussion which has been presented in this section
clearly shows that the notions of SMC and variable structure systems are not
equivalent. In many classical papers, examples of continuous-time variable structure
systems without sliding mode are presented [26, 77], and this example gives an idea
of an SMC system which actually is not a variable structure system.

Another way of looking at this issue has been proposed in paper [32] where the
discontinuous term was incorporated in the control law resulting in a zigzag motion
around the sliding hyperplane. This zigzag motion is in some way similar to the
chattering phenomenon which occurs in continuous-time SMC systems. However,
the main difference between the continuous SMC and the DSMC proposed in
[32] and further discussed in [13] is the frequency of oscillations which occur in
the system. In the continuous-time SMC, the frequency tends to infinity, while in
DSMC, the frequency is finite and it depends on the sampling period.

The other approach to the DSMC system design – originally proposed by Furuta
in paper [30] – exploits the notion of the sliding sector [20, 58, 59]. The sector
(cone-like region in the state space) is selected in such a way that if the system
representative point belongs to it, then the point always approaches the state space
origin.

Early DSMC schemes, discussed up to now, usually require full state vector (all
state variables) to be available for measurement. However, this is rarely the case in
practical implementations where some state variables may not be easily accessible
and others may even have no physical meaning at all. Therefore, several researchers
proposed output feedback [21, 26, 27, 33, 34, 48, 49, 60] and observer-based
SM controllers [29, 34, 46, 82]. Probably the most significant and well-worked-
out approach to the output feedback DSMC, known as multirate output feedback
DSMC, has been proposed in [3, 40–42]. In this very attractive approach, the
available output is sampled (measured) at a faster rate than the input signal rate
which enables to obtain implicitly the unmeasurable state variables. We believe
that currently the design of advanced sliding surfaces for discrete-time sliding-mode
controllers might be identified as another important theoretical research topic in the
field. These surfaces include linear hyperplanes optimal in the sense of quadratic
performance index [36, 37, 42] and appropriately selected nonlinear hypersurfaces
[2, 4].
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In this section, we presented a concise introduction to the sliding-mode control of
continuous- and discrete-time systems. We did not attempt to make our presentation
particularly in-depth, exhaustive, or complete, but we tried to give a brief back-
ground for the issues presented further in this monograph. Indeed, in this section,
we explained some basic notions which we will use in Chaps. 4, 5, and 6 for the
design of the sliding-mode congestion controllers for data transmission networks.
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Chapter 4
Flow Control in Continuous-Time Systems

In this chapter, we introduce the fundamental concepts behind the fluid-flow
modeling of data traffic in communication networks. We emphasize the effects
caused by action delay, which is the time that elapses from the moment the
control information (or the controller command) is sent by a network node, the
information reaches the data source it is destined for, appropriate action is taken
by the source, and until subsequently that action affects the state of the node that
issued the command. Indeed, as recognized in many significant papers, for example
[3, 6, 7, 10, 14, 17, 22, 26], the existence of action delay constitutes the main
obstacle in providing efficient control in data transmission networks, and it should
be explicitly considered in the controller design and system analysis. Since we
intend to make use of the benefits of SMC, which is well known to be robust and
efficient regulation technique successfully applied in many engineering areas (see,
e.g., recent special issues [4, 15, 25]), it is of paramount importance to account for
the adverse effects of delay. This is due to the fact that delay reduces the system
robustness – typically, mismatched perturbations are introduced and the invariance
property [9] no longer holds – which threatens stability of the sliding motion. In the
design procedures presented in this chapter, we overcome the delay problem by an
appropriate selection of the switching function which incorporates a state predictor.
In this way, the delay in the feedback loop no longer poses a stability threat, and the
system dynamics can be tuned for the maximum responsiveness to the changes of
networking conditions reflected in the fluctuations of the available bandwidth.

For the purpose of presentation, we adopt the approach frequently encountered
in the literature on congestion control, and treat the case of a single flow (e.g.,
[1, 11, 17]), and multiple connections controlled by a network node (e.g., [2, 12, 18])
separately. We believe that such approach facilitates understanding of the system
modeling and provides a good starting point for the exposition of sophisticated
design procedures at a later stage. From the methodological point of view, it helps
to get familiarized with the fundamental concepts of design first and then proceed to
more elaborate schemes without being confused by the potential intricacies arising
in more complex topologies.

P. Ignaciuk and A. Bartoszewicz, Congestion Control in Data Transmission Networks:
Sliding Mode and Other Designs, Communications and Control Engineering,
DOI 10.1007/978-1-4471-4147-1__4, © Springer-Verlag London 2013
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4.1 Flow Control in a Single Virtual Circuit

We begin the analysis of the networking phenomena accompanying the data transfer
in communication systems by considering a single flow in a connection-oriented
network. In this type of networks, data transmission is preceded by the connection
setup phase, during which a VC between the source and its destination is created,
and appropriate switching rules in the nodes along the data transmission path are
established. Afterwards, the data source sends packets at the rate determined by the
controller placed at a network node. Typically, the packets pass through a series
of nodes operating in the store-and-forward mode without the traffic prioritization
along the established data route to be finally delivered to the destination. It means
that when a data packet is received at the node input link, it is directed to the buffer
of the appropriate output interface, where it waits in the First-In-First-Out (FIFO)
queue to be relayed to the next node on the established path or to be sent to the
destination (if the considered node is the last one on the transfer route). However,
somewhere on the transmission path, a node is encountered, whose output link
cannot handle the incoming flow. Consequently, congestion occurs, and packets
accumulate in the buffer allocated for that link. For the purpose of exposition of
the fundamental flow control aspects, we assume in this chapter that the source is
persistent, i.e., it has always enough data to transmit at the maximum rate allowed
by the network. Thus, the congestion control problem can be solved only through
appropriate input rate adjustment. The source transmission rate adjustments are
performed exactly according to the command from the controller operating at the
bottleneck node. This assumption will be relaxed in a latter part of this work – in
Chaps. 6 and 7 – when the issues related to nonideal data sources and various rate
constraints are addressed.

4.1.1 Network Model

The schematic diagram of the connection is presented in Fig. 4.1. The source
sends packets into the network at a rate determined by the controller placed at the
bottleneck node. The rate assigned by the controller is represented by function u(t),
where t is a continuous variable denoting time. After forward propagation delay
TF packets reach the bottleneck node and are served according to the bandwidth
availability at the output link. The remaining data accumulates in the buffer allocated
for the output (bottleneck) link. The packet queue length in the buffer, which at time
t will be denoted as y(t), and its demand value yD are used to calculate the current
amount of data to be sent by the source. The information about the new rate is
available at the source with backward propagation delay TB after being generated
by the bottleneck node. We assume that the feedback information is delivered with
priority over the user’s data on the preestablished path (it is not subject to the
queuing delay at the nodes), which implies that the delay in the feedback loop
RTT D TF C TB remains constant for the duration of the connection. Moreover, RTT

http://dx.doi.org/10.1007/978-1-4471-4147-1_6
http://dx.doi.org/10.1007/978-1-4471-4147-1_7
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Fig. 4.2 Available and utilized bandwidth at the bottleneck link

value does not depend on the location of the bottleneck node on the data path. The
quantities TF and TB may differ, but their sum constituting RTT remains unchanged.

The rate of packet outflow from the bottleneck link buffer depends on the
bandwidth actually available at the link. The bandwidth is modeled as an a priori
unknown, bounded function of time d(t), such that

0 � d.t/ � dmax: (4.1)

This is motivated by the fact that the controlled traffic is served within the link
capacity which is left unused by the high-priority flows, such as video-on-demand or
VoIP streams – see Fig. 4.2. Since the intensity of high-priority traffic may vary with
time in a way unpredictable to the control process, so does the available bandwidth
d(�) which can be treated as an external disturbance in the system. Inequalities
(4.1) constitute the only constraint imposed on the available bandwidth, which
means that any nonnegative, bounded function d(t) is allowed. In particular, this
general definition accounts for all the stochastic distributions typically analyzed in
the considered problem.

If there are packets ready for transmission in the buffer, then the bandwidth
actually consumed by the source h(t) (the stream of packets actually leaving the
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node) will be equal to the available bandwidth. Otherwise, the output link is
underutilized and the exploited bandwidth matches the data arrival rate at the node.
Thus, we may write

0 � h.t/ � d.t/ � dmax: (4.2)

The relation between the available and utilized bandwidth is illustrated in
Fig. 4.2.

The rate of change of the queue length at any instant of time depends on the data
arrival speed and on consumed bandwidth h(�); thus,

Py.t/ D u .t � RTT/ � h.t/: (4.3)

We assume that before setting up the connection, the bottleneck link buffer is
empty, i.e., y(t < 0) D 0. Therefore, taking into account the zero initial conditions,
for any t � 0, the length of the queue at the node may be expressed as

y.t/ D
tZ

0

u .� � RTT/d� �
tZ

0

h .�/d�: (4.4)

Equation (4.4) is applicable to the system in which the buffer at the bottleneck
node used to store the intermediate packets is never overflowed and the incoming
packets need not be dropped, i.e., Eq. (4.4) holds under the so-called infinite-buffer
assumption. We will show in the next section that with an appropriately chosen
control law, the queue length does not increase beyond a precisely determined finite
value, which means that relation (4.4) actually holds during the whole transmission
process. Note that the benefit of loss-free transmission is attractive not only from
the point of view of the network users or telecommunication service providers. It is
also desirable from the perspective of control system designers. Obviously, if one
can guarantee that the plant remains in the linear region of operation for the whole
range of disturbance d(�) defined in (4.1), then the linear design methods can be
employed to maximize the efficiency of the fundamental control action. As a result,
the analysis of the entire system dynamics can be simplified, and global stability
conditions can be provided.

Assuming that the controller determines the initial rate at the time instant t D 0,
the first packets arrive at the node at t D RTT and y(t � RTT) D 0. Consequently, we
may rewrite (4.4) as

y.t/ D
t�RTTZ

0

u .�/d� �
tZ

0

h .�/d�: (4.5)

We will use this identity for the property analysis of the considered communica-
tion system, regulated by SM control algorithm formulated in the next section.
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4.1.2 Sliding-Mode Flow Controller

The design of SM controllers is usually conducted in two phases. First, a switching
function �(t), which determines the overall system dynamical properties, is selected.
In the second step, in turn, a control law (typically a nonlinear one) is chosen to
bring the system representative point onto the surface �(t) D 0 and maintain the
point in the vicinity of this surface afterwards despite the presence of parametric
uncertainties and external disturbances. As the properties of the closed-loop system
depend to a large extent on the appropriate choice of the switching function, careful
attention should be given when deciding about its form at the very beginning
of the design procedure. Taking into account the fact that the major obstacle in
providing efficient control for the class of systems considered in this work is the
delay in the feedback loop (dead time – DT), the selection of switching function
should explicitly account for the effects produced by nonnegligible latency. In
order to compensate DT in the analyzed communication system, we propose to
use a switching function employing a state predictor. We define the following
function �(t),

�.t/ D yD � y.t/ �
tZ

t�RTT

u .�/d�; (4.6)

and the SM control law for the considered network in the following form:

u.t/ D 1

2
umax C 1

2
umax sgn �.t/; (4.7)

where umax is a positive constant greater than dmax. The sgn(x) function in (4.7) takes
two values �1 and 1 depending on the value of argument x, i.e.,

sgn.x/ D
� �1; if x � 0;

1; if x > 0:
(4.8)

Therefore, the controller switches between the maximum and the minimum rate
according to the value of �(t), generating the following command:

u.t/ D
�

umax; if yD � y.t/ � R t

t�RTT u .�/ d� > 0;

0; if yD � y.t/ � R t

t�RTT u .�/ d� � 0:
(4.9)

The proposed control strategy may also be interpreted as a combination of a dead-
time compensator (DTC) with a nonlinear on-off controller. In the next section,
important properties of the proposed control strategy will be defined and strictly
proved.
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4.1.3 Properties of the Proposed Controller

From the point of view of maximizing the network efficiency, it is convenient
to apply such control algorithms which, on the one hand, will reduce (ideally
eliminate) data losses and, on the other hand, will make use of as much of
the available bandwidth as possible. In the following two theorems, we specify
precise conditions that allow us to provide the maximum throughput in the network
governed by the proposed control strategy.

Theorem 4.1. If the proposed strategy is applied in the considered data trans-
mission network, then the queue length in the bottleneck link buffer is always
upper-bounded, i.e.,

8
t�0

y.t/ � yD: (4.10)

Proof. As it has already been mentioned, for any time smaller than or equal to RTT,
the queue length y(t) D 0. Therefore, in order to prove the theorem, it is necessary
to show that y(�) will not exceed its demand value yD at any time t greater than RTT.

Let

'.t/ D y.t/ C
tZ

t�RTT

u .�/ d�: (4.11)

This function represents the sum of three quantities:

1. The amount of data currently waiting in the bottleneck node queue y(t).
2. The amount of “in-flight” data, i.e., the data which has already been sent by the

source but has not yet arrived at the bottleneck node.
3. The amount of data which will be delivered by the source because the controller

has already sent out an appropriate command signal to the source.

The integral
R t

t�RTT u .�/ d� in (4.11) represents the cumulative amount of data
specified in points 2 and 3. On the basis of (4.5), we may express ®(t) as

'.t/ D
t�RTTZ

0

u .�/ d� �
tZ

0

h .�/ d� C
tZ

t�RTT

u .�/ d� D
tZ

0

u .�/ d� �
tZ

0

h .�/ d�:

(4.12)

Taking into account relation (4.2), it can be easily concluded that this function
increases only if u(t) D umax. Together with (4.9), this implies that

8
t�0

'.t/ � yD: (4.13)
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Since u(t) is always nonnegative, one concludes that

y.t/ D '.t/ �
tZ

t�RTT

u.t/d� � '.t/ � yD: (4.14)

This conclusion ends the proof. ut
Another desirable property of a correctly designed data flow control system is

full link utilization. Notice that this condition is satisfied if the queue length is
greater than zero, since then h(t) D d(t). The next theorem shows how the buffer
capacity should be chosen in order to ensure a strictly positive queue length and,
as a consequence, full bottleneck link bandwidth utilization for all t greater than
some t0.

Theorem 4.2. If the bottleneck link buffer capacity is greater than or equal to the
demand value of the queue length yD, and the following inequality holds:

yD > umaxRTT; (4.15)

then for any t > RTT, the queue length is greater than zero.

Proof. At the initial time t D 0 function '(t), defined by (4.11), is equal to zero.
Then (since by definition umax is greater than dmax) function '(�) increases until its
value becomes yD. At the time instant t D RTT, either '(RTT) D yD or '(RTT) is
smaller than yD and increasing. In the first case, '(t) D yD for any time t � RTT.
Thus, taking into account (4.11) and (4.15), one can directly conclude that for any
t � RTT,

y.t/ D '.t/ �
tZ

t�RTT

u .�/ d� � yD � umaxRTT > 0: (4.16)

On the other hand, the latter case implies that for any time t � RTT, the flow
rate u(t) D umax. Consequently, the number of packets accumulated in the network 	

(i.e., those packets that have already been sent and those that are still required to be
sent by the source because an appropriate control signal has already been generated)
at the time instant t D RTT can be expressed as

	 .RTT/ D umaxRTT (4.17)

and

' .RTT/ D 	 .RTT/ C y .RTT/ D umaxRTT C y .RTT/ � umaxRTT: (4.18)



68 4 Flow Control in Continuous-Time Systems

As it has already been mentioned, in this case, '(t) is increasing at t D RTT and
nondecreasing for any t > RTT. Consequently, for any time t greater than RTT, '(t)
is strictly greater than umaxRTT. Consequently, it follows from (4.11) that for any
t > RTT,

y.t/ D '.t/ �
tZ

t�RTT

u .�/ d� � '.t/ � umaxRTT > 0: (4.19)

Finally, taking into account inequalities (4.16) and (4.19), one concludes that for
any time t greater than RTT, the queue length is strictly positive. This ends the proof
of the theorem. ut

Theorem 4.2 shows that using the strategy proposed in this study, one can always
ensure full link utilization provided that the bottleneck node buffer capacity is
greater than umaxRTT. In fact, this property can be achieved if the buffer capacity
satisfies a weaker condition, i.e., if

yD > dmaxRTT: (4.20)

However, in this case, the queue length is not guaranteed to be strictly positive
for any time t greater than RTT but only after the elapse of some longer time
since setting up the connection. Notice also that the buffer space which needs
to be provided to ensure maximum throughput is specified following the worst-
case uncertainty analysis. However, since the value given in (4.15) scales linearly
with the maximum rate (and the available bandwidth), in the situation when the
mean available bandwidth differs significantly from the maximum one, it may be
convenient to substitute umax in (4.15) with some positive dL < dmax. In such a
case, maximum throughput is no longer ensured, yet the average queue length will
be reduced. In consequence, smaller buffer size will suffice to provide loss-free,
efficient data transfer.

4.1.4 Simulation Results

We verify the properties of the described control strategy in a series of simulation
tests for the connection with RTT D 100 ms. The maximum bandwidth dmax D 1,000
packets/s and the maximum source sending rate umax D 1,100 packets/s D 1.1dmax.
In the tests, while assessing throughput, we take into account the actual packet losses
due to buffer overflow and the “virtual” losses from missed transfer opportunities
occurring when part of the available bandwidth is left unused due to an empty buffer.
Hence, the maximum throughput can be achieved only when no packet needs to be
discarded due to buffer overflow, and there is always sufficient number of packets
in the buffer to keep the outgoing link fully occupied with data transfer.
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Test 1. In the first simulation scenario, we test the controller response to the most
adverse networking conditions, i.e., sudden bandwidth changes of large amplitude.
The bandwidth pattern used in the test is shown in Fig. 4.3.

In order to avoid buffer overflow and to ensure full bottleneck link utilization,
the demand value of the queue length must be greater than yD min D 110 packets.
Therefore, yD D 115 packets was selected. The queue length in the buffer of the
bottleneck link is presented in Fig. 4.4. It can be seen from that figure (curve a) that
the demand value of the queue length is never overrun and that the queue length y(t)
is strictly positive for any time greater than 100 ms. These two properties imply no
buffer overflow and full bottleneck link utilization. Furthermore, it is worth pointing
out that for a similar (but linear) scheme in the existing literature [17] using the
SP, the smallest demand queue length that ensures full bandwidth utilization and
no packet loss is always greater than the same value yD min D 110 packets for the
strategy proposed in this work. Setting yD D 125 > 120 packets as dictated in [17]
(with the gain constant adjusted to 50 s�1), we obtain curve b in Fig. 4.4. It is
clear from the graph that our strategy provides faster transient performance and
consequently requires smaller bottleneck buffer capacity than the linear strategy.
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The transmission rate of the source is illustrated in Fig. 4.5. Comparing the
designed controller (4.7) with the linear scheme, we can notice that our strategy
requires frequent switching of the control signal, which may be difficult to realize
by certain transmitters. Therefore, our SM controller, which provides faster conver-
gence of the queue length to steady-state values and requires smaller buffer space to
eliminate losses and achieve 100% of bandwidth utilization, is primarily intended
for the networks in which the buffer capacity limitations are of major concern and
fast transmitters are available.

The evolution of the sliding variable is shown in Fig. 4.6, curve a. We can
see from the plot that the sliding surface �(t) D 0 is attained in finite time, and
subsequently, the system dynamics is confined to that plane even though the
matching conditions are not satisfied for the external disturbance d(�). The stability
of the sliding motion is achieved due to the special choice of the switching function
employing the delay compensating term

R t

t�RTT u .�/ d� . To better illustrate the
importance of this term, we run the simulation for controller (4.7) with a different
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switching function with the integral removed from Eq. (4.6), i.e., �(t) D yD � y(t).
The plot of �(�) is given in Fig. 4.6, curve b, the established control signal is
illustrated in Fig. 4.7, and the resulting output variable in Fig. 4.8.

It is evident from Fig. 4.6, curve b, that the sliding motion cannot be ensured
in the presence of the external disturbance when the delay compensating term is
removed from the switching function. However, it comes from the analysis of the
plots in Figs. 4.7 and 4.8 that the closed-loop system stability in the Lyapunov
sense is maintained. This is attributed to the nonlinearity incorporated in controller
(4.7), which limits the generated transmission rate to the two-value set f0, umaxg.
The queue length evolution depicted in Fig. 4.8 shows that when the effects of
delay are neglected in the design of the switching function, the buffer capacity
requirements grow extensively. In order to eliminate packet losses, the buffer size
should be enlarged from yD to 2yD, which obviously decreases the efficiency of
memory allocation policy at the network node.

Test 2. In the second simulation scenario, we test the controller performance in the
communication system with highly variable stochastic bandwidth. The bandwidth



72 4 Flow Control in Continuous-Time Systems

0
0

400

800

1200

0.5 1.0 1.5

Time t [s]
d(

t)
 [p

ac
ke

ts
/s

]
2.0 2.5 3.0

Fig. 4.9 Available
bandwidth – normal
distribution Dnorm (500, 300)

0
0

2400

4800

7200

0.5 1.0 1.5
Time t [s]

u(
t)

 [p
ac

ke
ts

/s
]

2.0 2.5 3.0

1500

1000

500

0

Full value range Magnified view
u(

t)
 [p

ac
ke

ts
/s

]

0 0.5 1.0 1.5
Time t [s]

2.0 2.5 3.0

a) SM nonlinear controller

b) linear controller

a) SM nonlinear controller

b) linear controller

Fig. 4.10 Transmission rate: a nonlinear controller (4.7) (yD D 57 packets) and b linear controller
[17] (gain D 50 s�1, yD D 62 packets)

pattern evolving according to the normal distribution Dnorm(
, ı) with mean
d
 D 500 packets/s and standard deviation dı D 300 packets/s used in the test is
illustrated in Fig. 4.9.

Since the mean available bandwidth significantly differs from the maximum
value, instead of dmax, we use dL D 500 packets/s in the formula for the de-
mand queue length (4.15) and set yD as 57 > 55 packets. For fair comparison,
we also appropriately reduce the demand queue length for strategy [17] setting
yD D 62 packets > dL(RTT C gain�1) D 500�(0.1C 1/50) D 60 packets. The trans-
mission rate is presented in Fig. 4.10 and the queue length at the bottleneck node in
Fig. 4.11. It follows from the graphs that while both strategies guarantee loss-free
transmission (buffer space is not exceeded), the nonlinear controller exhibits faster
response and imposes smaller memory requirements than the linear scheme. Again,
the benefits of smaller buffer space are achieved provided that a fast transmitter is
available at the source – the one able to follow the high-frequency switching of the
control signal.
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Fig. 4.11 Packet queue length: nonlinear controller (4.7) (yD D 57 packets) and linear controller
[17] (gain D 50 s�1, yD D 62 packets)

0
0

400

600

1200

0.5 1.0 1.5
Time t [s]

SM nonlinear controller

lo
st

 d
(t

) 
[p

ac
ke

ts
/s

]

2.0 2.5 3.0 0
0

400

600

1200

0.5 1.0 1.5
Time t [s]

Linear controller

lo
st

 d
(t

) 
[p

ac
ke

ts
/s

]

2.0 2.5 3.0

Fig. 4.12 Missed opportunities for transferring data

Although it is no longer guaranteed to keep the link bandwidth fully utilized
(the bandwidth utilization decreases to 98% in the case of nonlinear controller (4.7)
and 94% in the case of linear one [17]), we obtain 50% buffer capacity savings.
The missed opportunities for transferring the data due to empty buffer are shown in
Fig. 4.12.

The switching variable is depicted in Fig. 4.13. The surface �(t) D 0 is attained
in finite time, and afterwards the system remains in sliding motion.

4.2 Flow Control in a Multisource Network

In this section, we extend the SMC design from the single flow case discussed
in Sect. 4.1 to the network supporting multiple connections passing through the
bottleneck link. First, we describe the multisource network model. Then, we define
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a new switching function which takes into account multiple flows characterized by
different delays and apply the already defined nonlinear control law. Next, similarly
as in the case of the single connection, the control law properties are stated as two
theorems and are proved analytically. The properties are illustrated in a simulation
scenario given in the last part of this section.

4.2.1 Network Model

We analyze the situation of multiple flows passing through the bottleneck link of a
network node. In the general case, m virtual connections will pass through that link,
each originating at a different source. The decision whether a new flow is accepted
by the network is made by the admission control procedure in the connection setup
phase. Consequently, the node can keep track of the number of connections served
by the output link. It is assumed here that only a single node is the bottleneck
for the considered set of VCs – a detailed discussion on the algorithm extensions
to multibottleneck topologies will be covered in the further part of this work – in
Chaps. 6 and 7.

For connection p (p D 1, 2, : : : , m), we can state

RTTp D T
p

F C T
p

B ; (4.21)

where T
p

F is the forward delay (the delay on the route from source p to the bottleneck
node) and T

p
B is the backward delay (the delay on the route from the bottleneck node

to the destination and back to source p). The VCs are numbered in such a way that

RTT1 � RTT2 � ::: � RTTm�1 � RTTm: (4.22)

http://dx.doi.org/10.1007/978-1-4471-4147-1_6
http://dx.doi.org/10.1007/978-1-4471-4147-1_7
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Further in the text, the overall transmission rate generated by the controller at
time instant t is denoted by u(t) and the individual source rate by up(t). We assume
in this section that the total rate u(t) generated by the controller implemented
at the node is equally distributed between all the sources contributing to the
bottleneck queue. Other allocation strategies which can be realized within the
chosen framework, for example, max-min [13] or proportionally [16] fair, will be
discussed in Chap. 6. When equal rate partitioning is applied, the rate of source p

up.t/ D 1

m
u
�
t � T

p
B

�
: (4.23)

It is assumed that the controller does not assign a positive transmission rate for t < 0,
i.e., u(t < 0) D 0.

The queue length dynamics depends on the arrival rate of packets from all the
sources and on the utilized bandwidth h(�) that is subject to constraint (4.2). The
queue length dynamics can be expressed by the following equation:

Py.t/ D
mX

pD1

up

�
t � T

p
F

� � h.t/: (4.24)

Consequently, y(t) may be calculated as

y.t/ D
mX

pD1

tZ
0

up

�
� � T

p
F

�
d� �

tZ
0

h .�/ d�: (4.25)

Similarly as in the previous section, it is assumed that initially the buffer is empty,
i.e., y(0) D 0. Taking into account (4.23), we may rewrite the formula that expresses
the queue length at time instant t as

y.t/ D
mX

pD1

tZ
0

1

m
u
�
� � RTTp

�
d� �

tZ
0

h .�/ d�; (4.26)

which after considering the initial condition u(t < 0) D 0 reduces to

y.t/ D
mX

pD1

t�RTTpZ
�RTTp

1

m
u .�/ d� �

tZ
0

h .�/ d� D
mX

pD1

t�RTTpZ
0

1

m
u .�/ d� �

tZ
0

h .�/ d� :

(4.27)

The schematic diagram of the considered network is shown in Fig. 4.14.

http://dx.doi.org/10.1007/978-1-4471-4147-1_6
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4.2.2 Sliding-Mode Flow Controller

In order to account for the effects of multiple flows feeding the packet queue, we
need to redefine the switching variable �(t) proposed in Sect. 4.1. The new function
takes the following form:

�.t/ D yD � y.t/ �
mX

pD1

1

m

tZ
t�RTTp

u .�/d�: (4.28)

The control law for the multisource network is the same as in the single-source
scenario, i.e.,

u.t/ D 1

2
umax C 1

2
umax sgn �.t/I

however, now, the rate calculation is based on �(t) defined by (4.28). The controller
switches between the maximum and the minimum rate according to the value of
�(t) generating the command:

u.t/ D

8̂
ˆ̂<
ˆ̂̂:

umax; if yD � y.t/ �
mP

pD1

1

m

tR
t�RTTp

u .�/d� > 0;

0; if yD � y.t/ �
mP

pD1

1

m

tR
t�RTTp

u .�/d� � 0:

(4.29)

In the next section, important properties of the proposed control strategy related
to handling the flow of data will be defined and strictly proved.
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4.2.3 Properties of the Proposed Controller

The properties of the proposed control strategy are stated in two theorems. The
first proposition shows that the queue length in the bottleneck link buffer never
exceeds the demand value no matter the bandwidth variations. This means that if
the buffer capacity is selected at least equal to yD, then packet losses are eliminated.
The second theorem specifies how to select yD to meet the condition y(t) > 0, which
ensures that all of the available bandwidth is used for data transfer.

Theorem 4.3. If strategy (4.29) is applied to control the flow of data in the
considered network, then the queue length in the bottleneck link buffer is always
upper-bounded by its demand value yD.

Proof. It follows from the specified initial conditions that for any time instant
smaller than or equal to RTT1, the queue length equals zero. Hence, it is sufficient to
show that the queue length will not exceed its demand value yD at any time t greater
than RTT1.

We define an auxiliary function

'.t/ D y.t/ C
mX

pD1

1

m

tZ
t�RTTp

u .�/ d� ; (4.30)

which represents the sum of packets currently waiting in the bottleneck buffer and
the number of in-flight ones. On the basis of (4.27), we may express '(t) as

'.t/ D
mX

pD1

1

m

t�RTTpZ
0

u .�/ d� �
tZ

0

h .�/ d� C
mX

pD1

1

m

tZ
t�RTTp

u .�/d�

D
mX

pD1

1

m

tZ
0

u .�/ d� �
tZ

0

h .�/ d� D
tZ

0

u .�/d� �
tZ

0

h .�/d�: (4.31)

It follows from (4.2) that this function increases only if u(t) D umax. Together with
(4.29), this implies that 8t � 0, '(t) � yD. Since u(t) is nonnegative, we conclude that

y.t/ D '.t/ �
mX

pD1

1

m

tZ
t�RTTp

u .�/ d� � '.t/ � yD: (4.32)

This ends the proof. ut
The next theorem specifies how the demand queue length should be selected

so that all of the available bandwidth at the node output interface is used for data
transfer.
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Theorem 4.4. If the bottleneck link buffer capacity is greater than or equal to the
demand value of the queue length yD, and the following inequality holds:

yD > umax

0
@ 1

m

mX
pD1

RTTp

1
A; (4.33)

then for any t > RTTm, the queue length is strictly greater than zero.

Proof. At the initial time t D 0 function '(�), defined by (4.30), is equal to zero.
Then, since umax > dmax, '(�) increases until its value becomes yD. At the time instant
t D RTTm, either '(RTTm) D yD or '(RTTm) is smaller than yD and increasing. In
the first case, '(t) D yD for any time t � RTTm. Thus, taking into account (4.30) and
(4.33), we directly conclude that for any t � RTTm,

y.t/ D '.t/ �
mX

pD1

1

m

tZ
t�RTTp

u.t/d� � yD � umax

0
@ 1

m

mX
pD1

RTTp

1
A > 0: (4.34)

The latter case implies that for any time t � RTTm, the flow rate u(t) D umax.
Consequently, the number of packets accumulated in the network 	 (i.e., those
packets that have already been sent and those that will be sent by the sources due to
the already issued command) at the time instant t D RTTm can be expressed as

	 .RTTm/ D
�

1

m
.RTTm � RTTm�1/ C 2

m
.RTTm�1 � RTTm�2/

C � � � C m � 1

m
.RTT2�RTT1/ C RTT1

�
umax D

0
@ 1

m

mX
pD1

RTTp

1
A umax

(4.35)

and

' .RTTm/ D	 .RTTm/ C y .RTTm/

Dumax

m

mX
pD1

RTTp C y .RTTm/ � umax

m

mX
pD1

RTTp: (4.36)

In this case, '(t) is increasing at t D RTTm and nondecreasing for any t > RTTm.
Consequently, for any time t greater than RTTm, '(t) is strictly greater than
umax

Pm
pD1 RTTp =m . Then, it follows from (4.30) that for any t > RTTm,

y.t/ D '.t/ �
nX

pD1

1

m

tZ
t�RTTp

u .�/ d� � '.t/ � umax

m

mX
pD1

RTTp > 0: (4.37)
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Finally, using inequalities (4.34) and (4.37), we may conclude that for any time t
greater than RTTm, the queue length is strictly positive. This ends the proof. ut

Theorem 4.4 shows that strategy (4.29) ensures full link utilization in the
network supporting multiple flows provided that the buffer capacity at the bottleneck
node is greater than umax

Pm
pD1 RTTp =m . Similarly as in the case of the single

connection, this property can be achieved if the buffer capacity satisfies a weaker
condition, i.e.,

yD > dmax

0
@ 1

m

mX
pD1

RTTp

1
A: (4.38)

However, in such a case, a longer time than RTTm must elapse since setting up
the connection before the full bandwidth utilization takes place. Moreover, since
the value given in (4.33) scales linearly with the maximum rate, in the situation
when the mean available bandwidth differs much from the maximum one, it may be
advisable to replace umax by a smaller value dL < dmax. In such a case, the maximum
throughput cannot be guaranteed for arbitrary bounded bandwidth, but the average
queue length will be reduced. As a result, the memory allocation policy will be more
efficient.

In the next section, we study the properties of control law (4.29) in a series of
simulation tests.

4.2.4 Simulation Results

In order to verify the performance of control strategy (4.29), we consider the
model of a wide area network consisting of four VCs (m D 4) passing through
the bottleneck node. The connections are characterized by the delays equal to 30,
70, 80, and 120 ms. The maximum available bandwidth dmax is set as 10,000
packets/s, and the upper bound of the overall source rate umax is adjusted to
11,000 packets/s D 1.1dmax. We test the controller performance in response to two
different bandwidth patterns. In Test 1, we focus on studying the response to abrupt
changes in the networking conditions, whereas in the second scenario, we verify the
controller operation in the presence of a stochastic bandwidth pattern.

Test 1. The function representing the available bandwidth used in Test 1 is depicted
in Fig. 4.15. According to Theorem 4.4, the queue length will be greater than
zero, thus ensuring full bandwidth usage, if the demand value of the queue length
yD > 750 packets. In this simulation, yD D 760 packets is assumed, which according
to Theorem 4.3 represents also the buffer capacity necessary to ensure no data loss.

The queue length y(�) resulting from the application of the control scheme
described by relation (4.29) is shown in Fig. 4.16, curve a. It can be seen from
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Fig. 4.16 Packet queue
length: a SM on-off controller
(4.29) (yD D 760 packets) and
b linear controller [18]
(gain D 50 s�1, yD D 960
packets)

the figure that the queue length does not exceed the value of 760 packets and never
drops to zero. These two properties imply no buffer overflow and full utilization of
the bottleneck link bandwidth.

For the purpose of comparison, we repeat the test for a similar (but linear)
controller based on the SP reported in [18]. We set the gain for controller [18] equal

to 50 s�1 and yD bigger than dmax

	Pm
pD1 RTTp =m C gain�1



D 10,000�(0.075C

0.02) D 950 as 960 packets. The queue length y(�) resulting from the application
of the linear controller is presented in Fig. 4.17, curve b. It is clear from the
plots in Fig. 4.16 that the SM strategy performs better in terms of the queue
length management, as it results in faster convergence to steady-state values and
smaller buffer space. However, this is achieved at the expense of higher degree
of oscillations of the control signal which are related to switching around the
sliding plane. The overall transfer speed generated by the controller is illustrated
in Fig. 4.17 and the switching variable in Fig. 4.18, curve a. We can see from the
graph in Fig. 4.18 that in the case of multiple connections characterized by different
delays, similarly as in the single flow scenario analyzed in Sect. 4.1, the switching
surface �(t) D 0 is attained in finite time and afterwards the system representative
point does not leave the plane.
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The delay compensating term
Pm

pD1

R t

t�RTTp
u .�/ d� in the structure of the

switching function has a decisive impact on the existence of the sliding motion. It is
evident from the plot in Fig. 4.18, curve b, depicting the evolution of �(t) D yD � y(t)
that sliding motion cannot be guaranteed without appropriate handling of the
delay effects. However, even though the sliding phase is not reached when the
compensator is removed from (4.28), Figs. 4.19 and 4.20 illustrating the control
signal and the output variable indicate that Lyapunov stability is maintained.
Nevertheless, in order to eliminate packet losses, strategy (4.29) with the plane
�(t) D yD � y(t) D 0 requires nearly doubled buffer capacity as compared to the
case when �(t) given by (4.28) is applied. The increased buffer requirements are
illustrated in Fig. 4.20.

Test 2. In the second simulation scenario, we verify the controller performance
in the presence of highly variable stochastic bandwidth following the normal
distribution with mean d
 D 5,000 packets/s and standard deviation dı D 3,000
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packets/s. The function d(�) used in the test is illustrated in Fig. 4.21. The mean
bandwidth is much lower than the maximum value; therefore, we use dL D 5,000
packets/s to calculate the demand queue length instead of umax in (4.33) and set
yD as 380 > 375 packets. We also appropriately reduce the demand queue length
for strategy [18] setting yD D 480 > 475 packets. The transmission rate is presented
in Fig. 4.22 and the packet queue length in Fig. 4.23. It follows from the queue
length evolution that both strategies guarantee that the assigned buffer space is not
exceeded and packet losses are avoided. The nonlinear controller exhibits faster
response and has smaller memory requirements than the linear scheme, which is
obtained at the expense of the control signal subject to high-frequency switching.

Since the demand queue length was selected smaller than indicated by Theorem
4.4, the maximum throughput is no longer ensured. The bandwidth utilization
approaches 92% in the case of the SM on-off controller (4.29) and 93% in the case
of the linear one [18]. The bandwidth usage degradation comes at a propitious trade-
off of reduced buffer space (buffer capacity is halved as compared to the fully robust
case analyzed in Test 1). The missed opportunities for transferring the data due to
empty buffer are shown in Fig. 4.24.
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The switching variable is shown in Fig. 4.25. The surface �(t) D 0 is attained
in finite time, and the system representative point remains on the surface for
subsequent time instants implying ideal sliding motion.

4.3 Chapter Summary

In this chapter, we analyzed the basic process of transferring data in a communi-
cation network. In the first part of the chapter, we set the basis for the analysis of
networking phenomena related to flow regulation in data transmission networks and
solved the problem of efficient rate control of the data stream in a single connection.
The controller, designed using the theory of SMC, ensures that packet losses are
eliminated and all of the available bandwidth is used for the transmission of data.
This is of particular importance for applications expecting low loss rate, such as
banking transactions, or stock exchange feeds. The controller performance was
compared with an outstanding linear controller developed for a similar network
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model [17], and it was shown that the nonlinear strategy presented in this work
can guarantee the maximum throughput with smaller buffer requirements yet with
a trade-off in the smoothness of rate transitions. The favorable properties of the
proposed SM controller are mainly attributed to the appropriate handling of the
effects of delay in the feedback loop by means of a state predictor included in
the switching function. As far as the theoretical background is considered, the
employed mechanism may be also analyzed in a broader context of the works on
SM observers and controllers for systems with delay, for instance [5, 21, 23, 24],
or the development of DT compensators for a general class of continuous-time
systems [19]. After all, as discussed in [20], all the stabilizing controllers for the
systems with delay should contain an observer-predictor structure. In its basic form,
the structure resembles the SP, which is used to provide an estimate of the rational
part of the controlled plant.

In the second part of the chapter, the problem of data flow control was extended
to a more general case of m flows sharing the (single) bottleneck link. It was
demonstrated that the features of the controller depend on the appropriate choice
of the switching function which should account for multiple delays in the feedback
path. The designed SM controller was shown to provide the maximum throughput
in the considered network with smaller buffer requirements than the very successful
SP-based strategy proposed in the past [18]. However, similarly as in the case of
single flow data transfer, this is achieved at the expense of more abrupt changes of
source transmission rate.

The primary drawback of the strategies described in this chapter (and the other
controllers developed within a similar framework such as [17] and [18]) is the
necessity of providing the information about the transfer rate to the data sources
continuously in time. In real networks, the feedback information about the current
condition of the transmission system is accessible at the sources only at discrete time
instants (e.g., in ATM networks at the instant of RM cell arrival and in TCP networks
upon the reception of an acknowledgement or timeout expiry). Therefore, in the
further part of this work, we direct our attention towards discrete-time (Chaps. 5 and
6) and sampled-data (Chap. 7) systems, which explicitly account for the discrete
nature of fundamental networking phenomena. However, it should be stressed that
fluid-flow models, the example of which is the class of systems considered in this
chapter, give a very good approximation of the essential network dynamics in many
traffic scenarios [8]. As shown in the past, they may be successfully applied in the
controller design for traffic regulation and serve as a good reference for studying
the macroscopic behavior of even complex communication systems.
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Chapter 5
Flow Control in a Single-Source
Discrete-Time System

In this chapter, we direct our attention to the design of flow control algorithms
for networks in which the feedback information about the current network state
is accessible for source rate adaptation at discrete time instants only. In this type of
networks, in addition to the effects of nonnegligible delay, the design procedures
need to explicitly account for the phenomena related to finite sampling rate. Hence,
in this chapter, both the modeling and the controller design are performed directly
in discrete-time domain.

In the presented modeling concept, the effects of input-output delay are ac-
counted for by appropriately augmenting the state space. In this way, we may
overcome the obstacle of DT which limits the application of many attractive control
techniques known to be efficient in systems without delay, for example, SMC, or
optimal control. In the extended state space, the networks are modeled as discrete-
time nth-order systems. Using the state-space representation, several flow control
algorithms are designed, each based on sound, control-theoretic foundations. Since
the work concentrates on robust control methods, the presented methodology resides
in the application of advanced, robust control technique – SMC. Because the key
issue in the design of SM controllers, especially in discrete-time domain [23], is
a proper choice of the sliding plane, we devote much attention to the selection of
the plane parameters. Several approaches are discussed, such as LQ optimization
or dead-beat control combined with a reaching law. Each control algorithm is
formulated in a closed form which is straightforward in software (or hardware)
implementation and allows for good operational efficiency. In addition, the closed-
form solution of the optimization problem enables us to conduct a detailed analytical
study of the system properties and prove them mathematically.

As it has already been discussed, the congestion control problem can be analyzed
from a single source-destination pair perspective, or taking into account the whole
set of active connections. Therefore, similarly as in Chap. 4, both the network
modeling and the controller design will be performed for either case separately.
However, due to numerous points that require considerable attention, we split the
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discussion to two chapters. This chapter comprises the fundamental concepts of
single-flow transmission, and Chap. 6 is entirely devoted to multisource topologies.

In this chapter, we study the phenomena accompanying the transmission of
data with the emphasis placed on a single flow. First, in Sect. 5.1, we analyze
the flow control problem in a network with constant delay and present a few
control algorithms. The first two control laws are obtained by solving the LQ
problem with different performance indices. The first one is obtained when the
entire state vector is considered in the optimization procedure, while in the latter
case, the derivation concentrates on the system output variable with extra weighting
coefficient introduced into the cost functional for tuning purposes. Since the optimal
control strategy may require large transmission rates in the initial phase of the
control process, in the subsequent part of Sect. 5.1, we analyze various methods
of constraining excessive input signal. We investigate three attractive techniques:
(1) application of a time-varying sliding plane, (2) design based on a reaching
law, and, finally, (3) a method incorporating a direct transmission rate limiter. We
discuss the design trade-offs and differences among the techniques with respect to
the efficiency of handling the flow of data and the tuning effort. Next, in Sect. 5.2,
we proceed towards a very important class of problems in communication networks
originating from latency variations. We present a consistent methodology for
modeling the effects caused by delay fluctuations in the feedback and data channels.
The developed methodology allows for an effective study of the phenomena related
to unknown, time-varying delay. It also enables the design of control strategies via
worst-case uncertainty approach. We propose two robust algorithms. The first one
combines the benefits of SM and LQ optimal control with a saturation element to
provide feasible rate allocations, whereas the second one uses a novel technique for
compensating the effects of delay variations by means of input rate measurements.

The analytical study is supplemented with extensive numerical tests reported at
the end of each section.

5.1 Flow Control in a Network with Constant Delay

In this section, we analyze the basic mechanisms of feedback information inter-
change in the networks in which the packet emission rate of data sources can be
adjusted only at discrete time instants. We present a modeling concept involving
an extended state space and derive a number of control algorithms for data flow
regulation in a single connection. We begin the analysis with the network where
the delay of the feedback information delivery remains constant during the whole
control process. Afterwards, in Sect. 5.2, we move to a more complex scenario,
where neither the delay in the feedback channel nor the latency in the data path can
be assumed invariable, or known a priori.

http://dx.doi.org/10.1007/978-1-4471-4147-1_6
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5.1.1 Network Model

We study the data flow process in a communication network in which packets and
feedback carriers follow a fixed route, established in the connection setup phase
preceding the actual transmission. If feedback carriers are served with priority over
data packets, then the delay in a flow following a fixed route can be assumed
constant and equal to its estimate determined at the connection setup. Such situation
takes place in certain connection-oriented networks, for example, ATM, where the
feedback information is delivered in special, priority-served control units (in ATM
networks, these were the RM cells). From now on, we will use the term “data
packet” or simply “packet” when referring to the piece of user data in the stream
generated by the source, and the term “control unit” when referring to the feedback
carrier, such as an RM cell in ATM, or an acknowledgment in TCP/IP networks.

We consider the flow of data in a single connection passing through a series of
nodes. One node offers the smallest transfer capabilities at the output link and is
considered the bottleneck for the connection. The purpose of the control algorithm
operating at the bottleneck node is to regulate intensity of the data stream generated
by the source in such a way that the node buffer is not overflowed with packets when
there is little bandwidth available at the output link. On the other hand, when there is
much bandwidth available for data transfer at the link, then we want to ensure that it
is not wasted due to slow incoming rate. The feedback mechanism for the input rate
regulation is provided by means of control units emitted periodically by the source.
These special units travel along the same path as data packets. However, unlike data
packets, they are not stored in the queues at the intermediate nodes. Instead, once
they appear at the node input link and the feedback information is incorporated,
they are immediately transferred at the output port. As soon as control units reach
destination, they are turned back to be retrieved at the origin and to be used for the
transfer speed adjustment round-trip time after they were generated. The presented
concept is illustrated in Fig. 5.1. Source S sends packets interleaved with control
units along the established data path to destination D. The path leads through nodes
1, 2, and 3. Control units are served with priority over data packets and are not
stored in the buffers at the nodes. Each node assigns rate for the source and records
it in the received control units. Node 2 calculates the smallest rate, and hence, it is
considered the bottleneck for the analyzed connection.

The schematic diagram of the connection is presented in Fig. 5.2. The source
sends packets at discrete time instants in the amounts determined by the controller
placed at the bottleneck node. The number of packets to be delivered by the source,
which is recorded as the feedback information in every control unit passing through
the node, will be denoted by u(kT), where T is the discretization period and k D 0,
1, 2, : : : . After forward delay, TF packets reach the bottleneck node and are served
according to the bandwidth availability at the output link. The remaining data
accumulates in the buffer. The packet queue length in the buffer, which at time
kT will be denoted as y(kT), and its demand value yD > 0, are used to calculate the
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Fig. 5.1 Data transmission and feedback interchange concept
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Fig. 5.2 Schematic diagram of single connection with constant round-trip time

current amount of data to be sent by the source u(kT). Once control units appear at
the end system, they are turned back to arrive at their origin with backward delay
TB after being processed by the bottleneck node. Since control units are not subject
to queuing delays, the round-trip time RTT D TF C TB D npT, where np is a positive
integer, remains constant for the duration of the connection. The RTT value does
not depend on the location of the bottleneck node on the data path. The forward and
backward delays may differ, but their sum constituting RTT remains unchanged,
always equal to npT.

The available bandwidth (the number of packets which may leave the bottleneck
node at each kT instant) is modeled as an a priori unknown, bounded function of
time d(kT)

0 � d .kT / � dmax: (5.1)

Notice that this definition of the available bandwidth is general enough to capture
any variations and traffic statistics typically analyzed in the considered problem.
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If there are packets ready for transmission in the buffer, then the bandwidth
actually consumed for data transfer h(kT) (the number of packets actually leaving
the node) will be equal to the available bandwidth. Otherwise, the output link is
underutilized and the exploited bandwidth matches the data arrival rate at the node.
Thus, we may write

0 � h .kT / � d .kT / � dmax: (5.2)

The rate of change of the queue length at any instant of time depends on the data
arrival speed and on the consumed bandwidth h(�). Consequently, the queue length
dynamics obeys the following simple retarded difference equation:

y Œ.k C 1/ T � D y .kT / C u .kT � RTT/ � h .kT / : (5.3)

We assume that before the connection is established there are no packets in the
buffer, i.e., y(kT) D 0 for k � 0. Then, for any kT � 0, the length of the queue at the
node may be expressed in the alternative form as

y .kT / D
k�1X
j D0

u .jT � RTT/ �
k�1X
j D0

h .jT /: (5.4)

Applying the definition RTT D npT, we can rewrite (5.4) as

y .kT / D
k�1X
j D0

u
�
jT � npT

� �
k�1X
j D0

h .jT / D
k�np�1X
j D�np

u .jT / �
k�1X
j D0

h .jT /: (5.5)

Assuming that the controller determines the initial rate at the time instant
kT D 0, the first packets arrive at the node at kT D RTT, and y(kT) D 0 for k � np.
Consequently, we get the following equation describing the evolution of packet
queue length:

y .kT / D
k�np�1X

j D0

u .jT / �
k�1X
j D0

h .jT /: (5.6)

This relation will be used in the analytical study later in this section.
The interaction among the key network variables defined in the presented model

is illustrated in Example 5.1.

Example 5.1. We analyze the flow of packets in a connection characterized by
round-trip time RTT D 7T. The sequence of events in the initial phase of the control
process is portrayed in Fig. 5.3, and the evolution of network variables u(�), y(�),
and h(�) is depicted in Fig. 5.4. Forward delay TF is assumed equal to 3T and
backward delay TB D 4T. Suppose the demand queue length yD is set as 9 packets
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Fig. 5.4 Network variables for (a) d(kT) � 0 and (b) d(kT) � 4 packets

and the controller assigns the rate in the following way: u(0) D 6 packets, u(T) D 3
packets, and u(kT) D 0 for k > 1. We consider two cases: (a) d(kT) � 0 and (b)
d(kT) � 4 packets per discretization period. In either case, the source acquires the
feedback information with delay TB D 4T and sends 6 packets at instant 4T and
3 packets at instant 5T. The packets arrive at the node at instants 7T and 8T,
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respectively. In scenario (a), there is no bandwidth available to relay the received
packets to the subsequent node on the data path. Therefore, the queue length
calculated according to (5.3) is determined as y(k � 7) D 0, y(8T) D 6 packets, and
y(k � 9) D 9 packets. The utilized bandwidth h(kT) D 0. In scenario (b), there is
positive bandwidth available for transferring the data. Consequently, the evolution of
the queue length follows a different pattern than in case (a). The first 6 packets arrive
at instant 7T, and since d(kT) D 4 packets, 4 packets are immediately transferred at
the output interface. The remaining 2 packets are stored in the buffer, constituting
the queue buildup y(8T) D 2 packets. Three more packets arrive at kT D 8T, and
4 packets are transferred at the node output interface. Consequently, according to
(5.3), y(9T) D y(8T) C u(T) – h(8T) D 2 C 3 – 4 D 1 packet. No further packets are
emitted by the source, thus y(10T) D y(9T) C u(2) – h(9T) D 1 C 0 � 1 D 0 packets,
and y(k > 10) D 0. The utilized bandwidth h(kT) takes on the following values:

• Zero for k < 7 – the buffer is initially empty, and RTT D 7T must elapse before
the first packets to arrive at the bottleneck node.

• Four packets at kT D 7T, i.e., 6 packets reach the node at instant 7T and 4 packets
are immediately transferred at the output interface according to the bandwidth
availability d(7T) D 4 packets.

• Four packets at kT D 8T, i.e., 6 packets are taken from the queue, and two more
packets are relayed directly from the pool of the incoming ones to fill up the
available bandwidth of 4 packets.

• One packet at kT D 9T – no packets arrive at the node, and only a single packet
remaining in the buffer is transmitted, which lowers the bandwidth utilization to
1 packet.

• Zero for k > 9 – there are no more packets on route, neither there are packets
assigned by the controller for the source to emit; in consequence, all the available
bandwidth for k > 9 will be wasted unless the controller allows the source to send
additional data.

As can be noticed from Fig. 5.4, in scenario (a), the queue length stays at the
demand level of 9 packets following the initial phase, whereas in the second case
(b), a further controller action will be required to bring the output variable to the
target value yD. This is due to the presence of positive available bandwidth, which
acts as an external disturbance to the integrating action of the controlled plant (the
node buffer). We will show further in the text (in Chap. 7) how to cope with the drift
of the output variable from the target value due to the presence of persistent positive
disturbance (by means of feed-forward bandwidth compensation).

In this chapter, we focus on maximizing the efficiency of data transfer in the
network modeled as stated above. For this purpose, we will propose a number of
control laws that guarantee the highest throughput despite the presence of delay and
unknown variable bandwidth.

The discussed network model can also be presented in the state space. The state-
space realization facilitates adaptation of formal design techniques, and therefore,
it is selected as a basis for the control law derivation described in detail in the next
section.

http://dx.doi.org/10.1007/978-1-4471-4147-1_7
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5.1.1.1 State-Space Representation

In order to proceed with a formal controller design, we describe the discrete-time
model of the considered network in the state space

x Œ.k C 1/ T � D Ax .kT / C bu .kT / C vh .kT / ;

y .kT / D qTx .kT / ; (5.7)

where x(kT) D [x1(kT) x2(kT) x3(kT) : : : xn(kT)]T is the state vector with
x1(kT) D y(kT) representing the bottleneck queue length at instant kT, and the
remaining state variables xj(kT) D u[(k � n C j � 1)T] for any j D 2, 3, : : : , n equal
to the delayed input signal u. A is n � n state matrix; b, v, and q are n � 1 vectors

A D

2
666664

1 1 0 : : : 0

0 0 1 : : : 0
:::

:::
:::

: : :
:::

0 0 0 : : : 1

0 0 0 : : : 0

3
777775

; b D

2
666664

0

0
:::

0

1

3
777775

; v D

2
666664

�1

0
:::

0

0

3
777775

; q D

2
666664

1

0
:::

0

0

3
777775

I (5.8)

and the system order n D RTT/T C 1 D np C 1. For convenience of the further
analysis, we can rewrite the model in the alternative form

8̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂:

x1 Œ.k C 1/ T � D x1 .kT / C x2 .kT / � h .kT / ;

x2 Œ.k C 1/ T � D x3 .kT / ;

x3 Œ.k C 1/ T � D x4 .kT / ;
:::

xn�1 Œ.k C 1/ T � D xn .kT / ;

xn Œ.k C 1/ T � D u .kT / ;

(5.9)

which clearly shows how the choice of the (extended) state space relates to the delay
in the feedback loop. The desired system state is defined as

xd D

2
666664

xd1

xd2

:::

xdn�1

xdn

3
777775

D

2
666664

xd1

0
:::

0

0

3
777775

; (5.10)

where xd1 D yD denotes the target value of the first state variable, i.e., the demand
queue length. By choosing the desired state vector as

xd D �
yD 0 0 : : : 0

�T
;
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we want the first state variable (the packet queue length) to reach the level yD and to
be kept at this level in the steady state. For this situation to take place, all the state
variables x2, x3, : : : , xn should be zero once x1(kT) becomes equal to yD, exactly as
dictated by (5.10).

In the next section, Eqs. (5.7)–(5.10) describing the system behavior and
interactions among the principal network variables (transmission rate, queue length,
and available bandwidth) will be used to develop a discrete-time SM flow control
strategy.

5.1.2 SM Controller with LQ Optimal Sliding Plane

In this section, a control-theoretic approach is employed to design a discrete-time
SM controller for the considered communication network. The emphasis is placed
on the selection of the sliding plane, which has a decisive impact on the performance
of the control process. We propose to apply dynamical optimization with quadratic
quality criterion to obtain the plane parameters. Actually, two approaches for the
selection of the plane parameters are considered, each focused on the minimization
of a different cost functional. In the first optimization task, the whole state vector
is taken into account in the control law derivation, while in the second one, we
concentrate on the output variable. In the second optimization task, an additional
weighting coefficient is introduced into the cost functional for tuning purposes. The
presented procedures concentrate on the solution of a matrix Riccati equation for the
considered nth-order discrete-time system. As the typical approaches for solving
Riccati equations are mainly suitable for numerical implementations and systems
with predefined dimensions (see, e.g., [1, 2, 6, 9, 16, 17, 20, 21]), an analytic
method is developed to get the desired plane coefficients. The proposed method
is based on iterative substitution of matrices obtained at the intermediate steps of
the derivation. The derivation ends when all the elements of the unknown matrix
in the Riccati equation can be expressed in terms of the system parameters. The
analytical solution of optimization problem allows us to formulate the control law
in a closed form and proceed with a successful proof of a number of its advantageous
properties.

5.1.2.1 Controller Design

Let us denote the closed-loop system error as e(kT) D xd � x(kT). We introduce a
sliding hyperplane described by the following equation:

s .kT / D cTe .kT / D 0; (5.11)
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where cT D [c1 c2 c3 : : : cn] is such a vector that cTb ¤ 0. The selection of this
vector will be analyzed further in this section. Substituting (5.7) into equation
cTe[(k C 1)T] D 0 with the disturbance h(kT) � 0, we get

cTe Œ.k C 1/ T � D cT fxd � x Œ.k C 1/ T �g D cT Œxd � Ax .kT / � bu .kT /� D 0;

(5.12)

which leads to the following feedback control law

u .kT / D �
cTb

��1
cT Œxd � Ax .kT /� : (5.13)

Using (5.8) and (5.10), we can rewrite (5.13) in the following form:

u .kT / D cn
�1

8<
:c1 ŒyD � x1 .kT /� �

nX
j D2

cj �1xj .kT /

9=
; : (5.14)

It is well known that properties of SM controllers are determined by an
appropriate choice of the sliding plane parameters c1, c2, : : : , cn. We present two
approaches to the selection of the elements of vector c so that SM control law,
optimal in the LQ sense, is obtained.

Case 1. The aim of the control action can be defined as bringing the current system
state to a desired one without excessive control effort. In alternative terms, we
may specify the control objective as reducing the closed-loop error to zero using
a reasonable data flow rate. Therefore, we seek for an optimal SM control uopt(kT),
which will minimize the quality criterion expressed by the quadratic cost functional

J.u/ D 1

2

1X
kD0

�
eT .kT / Qe .kT / C Ru2 .kT /

�
; (5.15)

where Qn � n is a symmetric positive semi-definite matrix and R is a positive constant
(note that in the considered system the input is a scalar). Choosing Q as identity
matrix In D diagf1, 1, : : : , 1g and R D 1, we get the following performance index:

J1.u/ D 1

2

1X
kD0

�
eT .kT / e .kT / C u2 .kT /

�
: (5.16)

Applying the standard framework for solving the LQ problems, described,
for example, in [30, ch. 8], to system (5.7)–(5.10), the optimal control uopt(kT)
minimizing criterion (5.16) can be presented as

uopt .kT / D �gx .kT / C r; (5.17)
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where

g D bTK
�
In C bbTK

��1
A;

r D bT
h
K
�
In C bbTK

��1
bbT � In

i
k;

k D �AT
h
K
�
In C bbTK

��1
bbT � In

i
k � xd; (5.18)

and symmetric matrix Kn � n, which is at least positive semidefinite K � 0, is
determined according to the following Riccati equation:

K D ATK
�
In C bbTK

��1
A C In: (5.19)

Note that the pair (A, b) is stabilizable. Indeed, the controllability matrix for the
considered system

Œb Ab : : : An�1b� D

2
6664

0 : : : 0 1

0 : : : 1 0
::: : :

:
0

:::

1 0 : : : 0

3
7775 (5.20)

is of full rank. Hence, the system is full state controllable, which implies stabiliz-
ability of the pair (A, b). On the other hand, since Q D In is positive definite, the pair
(A,

p
Q) D (A, In) is observable. Consequently, as the system is stabilizable (the pair

(A, b) stabilizable) and the state is observable by the performance index (the pair (A,p
Q) observable), then there exists a positive definite solution, K > 0, to algebraic

Riccati Eq. (5.19). For a more detailed discussion on seeking the solution to optimal
control problems, refer to [20, ch. 2], whereas notes on checking controllability and
observability can be found, for example, in [30, ch. 6].

The classical approaches to solving (5.19) suggested in the literature, for
example, [1, 20, 30], are mainly suitable for numerical calculations and systems with
predefined dimensions. However, in order to perform a detailed analytical study of
the system properties for arbitrary delay, it is desirable to find a closed-form expres-
sion for the developed control law. This requires analytical solution of the Riccati
equation of order n. The novel method proposed in this work involves iterative
substitution of K into the expression on the right-hand side of (5.19) and comparison
with its left-hand side so that at each step the number of independent variables kij,
where kij denotes the element in the ith row and jth column of K, is reduced.

We begin with the most general form of matrix K which can be presented as

K0 D

2
6664

k11 k12 : : : k1n

k12 k22 : : : k2n

:::
:::

: : :
:::

k1n k2n : : : knn

3
7775 : (5.21)
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In the first iteration, we place K0 directly in (5.19), and after substituting matrix
A and vector b as defined by (5.8), we seek for similarities between the elements kij

on either side of the equality sign in (5.19). In this way, we find the relations among
the first four elements in the upper left corner of K: k12 D k11 � 1 and k22 D k11 (note
that k21 D k12 since K is symmetric). Consequently, after the first analytical iteration,
we obtain the following form of K:

K1 D

2
666664

k11 k11 � 1 k13 : : : k1n

k11 � 1 k11 k23 : : : k2n

k13 k23 k33 : : : k3n

:::
:::

:::
: : :

:::

k1n k2n k3n : : : knn

3
777775

: (5.22)

Now, we substitute K1 given by (5.22) into the expression on the right-hand
side of (5.19) and compare with its left-hand side, which allows us to represent
the elements ki3 (i D 1, 2, 3) in terms of k11: k13 D k23 D k11 – 2 and k33 D k11. This
results in

K2 D

2
666666664

k11 k11 � 1 k11 � 2 k14 : : : k1n

k11 � 1 k11 k11 � 2 k24 : : : k2n

k11 � 2 k11 � 2 k11 k34 : : : k3n

k14 k24 k34 k44 : : : k4n

:::
:::

:::
:::

: : :
:::

k1n k2n k3n k4n : : : knn

3
777777775

: (5.23)

We repeat the substitutions until all the elements of K can be expressed as
functions of k11 and the system order n. The final closed-form expression for K,
given in terms of its first element k11 and the system order, is determined as

K D

2
666664

k11 k11 � 1 k11 � 2 : : : k11 � n C 1

k11 � 1 k11 k11 � 2 : : : k11 � n C 1

k11 � 2 k11 � 2 k11 : : : k11 � n C 1
:::

:::
:::

: : :
:::

k11 � n C 1 k11 � n C 1 k11 � n C 1 : : : k11

3
777775

: (5.24)

For matrix K given by (5.24), any k11 � n � 1 ensures that all the leading principal
minors and the determinant are positive, and in consequence, it guarantees that K is
positive definite. In order to determine k11, we substitute (5.24) into the expression
on the right-hand side of Eq. (5.19) and compare the first element in the upper left
corner of the obtained matrices. This yields

k11 D 2n � n2

.k11 C 1/
: (5.25)
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Equation (5.25) has two roots k�
11 D .2n�1�p

4n C 1/=2 and kC
11 D .2n�1Cp

4n C 1/=2. Only kC
11 > n�1 guarantees that K is positive definite and constitutes

the desired solution of (5.25). This concludes the solution of the Riccati equation in
the optimal control problem (5.16) with constraint (5.7) and (5.8).

Having found K, we may determine g D bTK(In C bbTK)–1A. Substituting (5.8)
and (5.24) into the first equation in set (5.18), we obtain

g D �
1 1 1 : : : 1

�
Œ1 � n=.k11 C 1/� : (5.26)

In a similar way, we calculate the elements of vector k D [k1 k2 k3 : : : kn]T . By
substituting K given by (5.24) into the last equation in set (5.18), we get

k D �
k1 k1 C yD k1 C 2yD : : : k1 C .n � 1/ yD

�T
; (5.27)

and, consequently,

k1 D �yDn
h
1 C .k11 � n C 1/�1

i
: (5.28)

From the second equation in set (5.18), we find r:

r D � Œk1 C .n � 1/ yD�

.k11 C 1/
: (5.29)

Substituting k1 given by (5.28) into (5.29), we get r D yD/(k11 � n C 1). Finally,
using (5.26), the control uopt(kT) can be presented in the following form:

uopt .kT / D �
�

1 � n

k11 C 1

� nX
j D1

xj .kT / C yD

k11 � n C 1
: (5.30)

Substituting k11 D .2n � 1 C p
4n C 1/=2 into (5.30), we obtain

uopt .kT / D �
�

1 � 2n

2n C 1 C p
4n C 1

� nX
j D1

xj .kT / C 2yDp
4n C 1 C 1

D �
p

4n C 1 � 1

2n

nX
j D1

xj .kT / C
�p

4n C 1 � 1
�

yD

2n
: (5.31)

Taking out the common term, we get

uopt .kT / D
p

4n C 1 � 1

2n

2
4yD � x1 .kT / �

nX
j D2

xj .kT /

3
5: (5.32)
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Introducing

�1 D
�p

4n C 1 � 1
�

2n
; (5.33)

we arrive at

uopt .kT / D �1

2
4yD � x1 .kT / �

nX
j D2

xj .kT /

3
5: (5.34)

If we compare this control law with SM controller (5.14), we get

c1

cn

D �1 and c1 D c2 D � � � D cn�2 D cn�1: (5.35)

Hence, the elements of vector c

cT D �
�1 �1 : : : �1 1

�
cn; (5.36)

and the LQ optimal SM control

u .kT / D �1

2
4yD � x1 .kT / �

nX
j D2

xj .kT /

3
5: (5.37)

This concludes solution of the first optimization problem.
The relation between the controller gain and the system order is shown in

Fig. 5.5. We can see from the plot that �1 monotonically decreases with the increase
of n, which means that the designed controller (5.37) faster reacts to the bandwidth
changes for the connections with smaller propagation delay. On the other hand, as
n ! 1, �1 approaches zero. This means that the controller based on performance
index (5.16) may provide sluggish response for long-distance connections. In the
second optimization problem stated below, we develop an enhanced control law
which can ensure good responsiveness to the changing networking conditions
irrespective of the delay range.

Remark 5.1. According to [30, ch. 8], the minimum value of the quality criterion
can be determined from J(uopt) D 0.5eT(0)Ke(0). Therefore, J1(uopt) equals

1

2

�
yD 0 : : : 0

�
2
6664

k11 k11 � 1 : : : k11 � n C 1

k11 � 1 k11 : : : k11 � n C 1
:::

:::
: : :

:::

k11 � n C 1 k11 � n C 1 : : : k11

3
7775

2
6664

yD

0
:::

0

3
7775 D 1

2
y2

Dk11:

(5.38)
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Fig. 5.5 Controller gain
�1 vs. system order n

Substituting k11 D kC
11 D .2n � 1 C p

4n C 1/=2 into (5.38), we get

J1

�
uopt

� D 1

4
y2

D

	
2n � 1 C p

4n C 1


: (5.39)

Case 2. More commonly in the optimization problems, instead of considering the
entire state vector, we analyze the situation when the minimum control effort is
required to bring the output (or the controlled variable) to its desired value [1, 18,
20]. Thus, here in Case 2, we propose an alternative approach to the selection
of the sliding plane parameters – by applying a different quality criterion. We
will show that the gain of the resulting control law is independent of delay, and
thus, the controller offers faster response to the changing networking conditions
than the control law obtained in Case 1. Similarly as in Case 1, we consider the
general quadratic cost functional (5.15) with input weight R D 1. However, the state
weighting matrix Q is chosen to reflect only the error at the output. We choose

Qn�n D wqqT D

2
6664

w 0 : : : 0

0 0 : : : 0
:::

:::
: : :

:::

0 0 : : : 0

3
7775 ; (5.40)

where w is a positive constant applied to adjust the influence of the controller
command and the output variable on the value of the quality criterion. Thus, we
consider the LQ optimal control problem with the following performance index:

J2.u/ D 1

2

1X
kD0

n
wŒyD � y .kT /�2 C u2 .kT /

o
: (5.41)

The optimal control uopt(kT) minimizing (5.41) can be presented as in (5.17).
Vector g and constant r are obtained from the formulas already specified in (5.18).
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However, in the case of criterion J2 applied in the modified optimization problem,
the last equation in set (5.18) needs to be changed to

k D �AT
h
K
�
In C bbTK

��1
bbT � In

i
k � wqyD (5.42)

and the Riccati equation to

K D ATK
�
In C bbTK

��1
A C wqqT: (5.43)

The pair (A, b) is stabilizable (see the derivation in (5.20)). The square root of Q
equals

�p
w 0 : : : 0

�
: (5.44)

Hence, the observability matrix for the pair (A,
p

Q),

2
6664

p
Qp

QA
:::p

QAn�1

3
7775 ; (5.45)

can be presented as a lower triangular matrix

2
66664

p
w 0 : : : 0

p
w

p
w 0

:::
:::

:::
: : : 0p

w
p

w : : :
p

w

3
77775 ; (5.46)

which has rank n. This implies that the pair (A,
p

Q) is fully observable. Conse-
quently, since (A, b) is stabilizable and (A,

p
Q) observable, there exists a positive

definite solution, K > 0, to algebraic Riccati equation (5.43).
Similarly as in Case 1, we begin solving (5.43) with the most general form of K

given by (5.21). In the first iteration, we obtain the relationship among the first four
elements in the upper left corner of K getting k12 D k22 D k11 � w. In matrix form,
this can be written as

K1 D

2
666664

k11 k11 � w k13 : : : k1n

k11 � w k11 � w k23 : : : k2n

k13 k23 k33 : : : k3n

:::
:::

:::
: : :

:::

k1n k2n k3n : : : knn

3
777775

: (5.47)



5.1 Flow Control in a Network with Constant Delay 103

Now, we substitute K1 given by (5.47) into the expression on the right-hand
side of (5.43) and compare with its left-hand side. This allows us to represent the
elements ki3 (i D 1, 2, 3) in terms of k11 as k13 D k23 D k33 D k11 � 2w. In matrix
form,

K2 D

2
666666664

k11 k11 � w k11 � 2w k14 : : : k1n

k11 � w k11 � w k11 � 2w k24 : : : k2n

k11 � 2w k11 � 2w k11 � 2w k34 : : : k3n

k14 k24 k34 k44 : : : k4n

:::
:::

:::
:::

: : :
:::

k1n k2n k3n k4n : : : knn

3
777777775

: (5.48)

We proceed with the substitutions until a general pattern is determined, i.e., until
all the elements of K can be expressed as functions of k11 and the system order n.
We get kij D k11 � (j � 1)w for j � i (the upper part of K) and kij D k11 � (i � 1)w for
j < i (the lower part of K). Thus, matrix K,

K D

2
666664

k11 k11 � w k11 � 2w : : : k11 � .n � 1/ w
k11 � w k11 � w k11 � 2w : : : k11 � .n � 1/ w
k11 � 2w k11 � 2w k11 � 2w : : : k11 � .n � 1/ w

:::
:::

:::
: : :

:::

k11 � .n � 1/ w k11 � .n � 1/ w k11 � .n � 1/ w : : : k11 � .n � 1/ w

3
777775

:

(5.49)

If we substitute (5.49) into the right-hand side of Eq. (5.43) and compare the first
element in the upper left corner of the matrices on either side of the equality sign,
we get the expression from which we can determine k11:

k11 D nw C 1 � Œk11 � .n � 1/ w C 1��1: (5.50)

Equation (5.50) has two roots

k1̇1 D
p

w
�
.2n � 1/

p
w ˙ p

w C 4
�

2
: (5.51)

Since det(K) D wn–1[k11 � (n � 1)w], only kC
11 � .n � 1/w guarantees that K is

positive definite. Consequently, we get matrix K (5.49) with k11 D kC
11 given by

(5.51). This concludes the solution of the Riccati equation.
Having found K, we evaluate g:

g D �
1 1 1 : : : 1

� n
1 � Œk11 � .n � 1/ w C 1��1

o
: (5.52)
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Vector k is determined by substituting matrix K given by (5.49) into (5.42). We
obtain

k D �
k1 k1 C wyD k1 C 2wyD : : : k1 C .n � 1/ wyD

�T
; (5.53)

where

k1 D �wyD

n
n C Œk11 � .n � 1/ w��1

o
: (5.54)

Then using the second equation from (5.18) and substituting (5.54), we calcu-
late r:

r D � k1 C .n � 1/ wyD

k11 � .n � 1/ w C 1
D wyD

k11 � .n � 1/ w
: (5.55)

Finally, using (5.52) and (5.55), the optimal control uopt(kT) can be presented in
the following way:

uopt .kT / D �
�

1 � 1

k11 � .n � 1/ w C 1

� nX
j D1

xj .kT / C wyD

k11 � .n � 1/ w
:

(5.56)

Substituting k11 D
p

wŒ.2n�1/
p

wCp
wC4�

2
; we arrive at

uopt .kT / D
p

w .w C 4/ � w

2

2
4yD � x1 .kT / �

nX
j D2

xj .kT /

3
5 : (5.57)

Introducing

�2 D
p

w .w C 4/ � w

2
; (5.58)

we obtain

uopt .kT / D �2

2
4yD � x1 .kT / �

nX
j D2

xj .kT /

3
5: (5.59)
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Comparing (5.59) with (5.14), we get

c1

cn

D �2 and c1 D c2 D � � � D cn�2 D cn�1; (5.60)

which in vector form can be written as

cT D �
�2 �2 : : : �2 1

�
cn: (5.61)

Therefore, the discrete-time SM control law (5.14) takes the following form:

u .kT / D �2

2
4yD � x1 .kT / �

nX
j D2

xj .kT /

3
5 : (5.62)

Notice that in contrast to result (5.33) obtained in the first optimization problem
(Case 1), the gain of controller (5.62), �2 D .

p
w.w C 4/�w/=2, does not depend on

the system order. This means that in contrast to the control law (5.37), the dynamics
of controller (5.62) is insensitive to the value of delay. As a result, the optimal
control law obtained by considering the modified, output-based quality criterion
(5.41), can provide equally fast response for both the local and long-distance flows.
This concludes the second optimization procedure.

For the sake of further analysis, the control laws obtained in Case 1 and 2 may be
more conveniently written using parameters of the original model (5.1)–(5.6). Let
� denote either �1 or �2. From (5.9), the state variables xj (j D 2, 3, : : : , n) may be
expressed in terms of the control signal generated at the previous n – 1 samples as

xj .kT / D u Œ.k � n C j � 1/ T � : (5.63)

Recall that we introduced the notation x1(kT) D y(kT). Then, since n D np C 1,
substituting (5.63) into either (5.37) or (5.62), we obtain

u .kT / D � fyD � y .kT / � u Œ.k � n C 1/ T � C � � � C u Œ.k � 1/ T �g

D �

8<
:yD � y .kT / �

n�1X
j D1

u Œ.k � j / T �

9=
;

D �

8<
:yD � y .kT / �

npX
j D1

u Œ.k � j / T �

9=
; : (5.64)
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Fig. 5.6 Controller gain �2

vs. weighting coefficient w

This completes the design of LQ optimal SM flow control algorithm for the
considered network.

Remark 5.2. When w ! 0, the influence of the error at the output on the value
of cost functional J2 decreases, and the controller gain �2 drops to zero. On the
other hand, when w ! 1, the term yD – y(kT) prevails. In this situation, the error
is to be reduced to zero as quickly as possible no matter the value of the controller
command, and the proposed controller becomes a dead-beat scheme with the gain
equal to one. The relation between �2 and the weighting coefficient w is illustrated
in Fig. 5.6.

Remark 5.3. The minimum value of quality criterion J2 D 0.5eT(0)KeT(0) is deter-
mined as 0:5y2

Dk11. Hence, substituting k11 D kC
11 given by (5.51), we get

J2

�
uopt

� D y2
D

4

hp
w .w C 4/ C w .2n � 1/

i
: (5.65)

Stability Analysis

A discrete-time system is asymptotically stable if all the roots of the characteristic
polynomial of its closed-loop state matrix Acl D [In – b(cTb)–1cT]A are located
within the unit circle on the z-plane. The roots of the polynomial

det .zIn � Acl/ D zn C cn�1 � cn

cn

zn�1 C cn�2 � cn�1

cn

zn�2 C � � � C c1 � c2

cn

z;

D zn C .� � 1/ zn�1 D zn�1 Œz � .1 � �/� ; (5.66)

where � is either �1 or �2, are located inside the unit circle if 0 < � < 2. Since for
every n and for every w both �1 and �2 satisfy the condition 0 < � � 1, the system is
asymptotically stable. Moreover, since irrespective of the value of n and w the roots
of (5.66) remain on the nonnegative real axis, no oscillations appear at the output.
By changing w from 0 to 1, the nonzero pole moves towards the origin of the
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z-plane, which results in faster convergence to the demand state. In the limit
case when w D 1, all the closed-loop poles are at the origin ensuring the fastest
achievable response of a linear controller in discrete-time systems offered by a
dead-beat scheme.

5.1.2.2 Properties of the Proposed Controller

At any time instant kT � 0, the amount of data to be delivered by the source
according to the command of the SM controller with LQ optimal sliding plane can
be rewritten in the following way:

u .kT / D �

2
4yD � y .kT / �

k�1X
j Dk�np

u .jT /

3
5; (5.67)

where controllers (5.37) and (5.62) obtained in Case 1 and 2, respectively, differ in
the choice of the gain constant � . Control law (5.37) assumes � D �1 D .

p
4n C 1�

1/=2n, whereas controller (5.62) uses � D �2 D .
p

w.w C 4/ � w/=2.
In the further part of this section, the properties of the developed control

algorithm (5.67) will be formulated as three theorems, and strictly proved. The
first theorem specifies the memory requirements for the buffer at the bottleneck
node which guarantee loss-free transmission. The second proposition imposes the
constraint on the demand queue length necessary to obtain full resource usage in
the network. Finally, the third theorem states that the transfer speed assigned to the
source is always nonnegative and bounded, which is a critical prerequisite in the
design of feasible network controllers.

Theorem 5.1. If controller (5.67) is applied to system (5.7)–(5.10), then the queue
length in the bottleneck node buffer is always upper-bounded, i.e.,

8
k�0

y .kT / � yD: (5.68)

Proof. The bottleneck node buffer is empty for any kT � RTT D npT. Hence, it
suffices to show that the proposition is satisfied for any k > np. Let us assume that
for some integer l > np, y(lT) � yD. We will demonstrate that the theorem is also true
for l C 1.

Substituting (5.6) into (5.67), we get

u .lT / D �

2
4yD �

l�np�1X
j D0

u .jT / C
l�1X
j D0

h .jT / �
l�1X

j Dl�np

u .jT /

3
5

D �

2
4yD �

l�1X
j D0

u .jT / C
l�1X
j D0

h .jT /

3
5: (5.69)
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Using (5.3), the queue length at the (l C 1)T time instant can be expressed as

y Œ.l C 1/ T � D y .lT / C u
��

l � np
�

T
� � h .lT / : (5.70)

Applying (5.6) and (5.69), we get

y Œ.l C 1/ T � D
l�np�1X

j D0

u .jT / �
l�1X
j D0

h .jT /

C �

2
4yD �

l�np�1X
j D0

u .jT /C
l�np�1X

j D0

h .jT /

3
5 � h .lT /

D .1 � �/

2
4l�np�1X

j D0

u .jT / �
l�1X
j D0

h .jT /

3
5

C �yD � �

l�1X
j Dl�np

h .jT / � h .lT /

D .1 � �/ y .lT / C �yD � �

l�1X
j Dl�np

h .jT / � h .lT / : (5.71)

After adding and subtracting yD, the term rearrangement in (5.71) leads to

y Œ.l C 1/ T � D yD � .1 � �/ ŒyD � y .lT /� � �

l�1X
j Dl�np

h .jT / � h .lT /: (5.72)

Since 0 < � � 1 and h(�) is always nonnegative, y[(l C 1)T] � yD. Thus, using the
principle of the mathematical induction, we conclude that the proposition is valid
for any time instant kT � 0. This ends the proof. ut

It comes from Theorem 5.1 that if for the considered VC the buffer of size yD

is assigned at the bottleneck node, then no data will be lost in the network as a
result of congestion. Apart from low loss rate, successful flow control strategies for
modern telecommunication systems are expected to achieve high level of resource
utilization. The proposition formulated below indicates how the demand queue
length should be selected so that the available bandwidth at the output link of
the bottleneck node will be always entirely consumed by the data stream in the
analyzed VC.
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Theorem 5.2. If controller (5.67) is applied to system (5.7)–(5.10), and the demand
queue length satisfies

yD > dmax
�
np C 1=�

�
; (5.73)

then for any k � np C 1, the queue length is strictly positive.

Proof. It follows from (5.6) and (5.71) that when yD is selected according to (5.73),
then y(k D np C 1) > 0. Let us assume that for some integer l > np C 1, the queue
length is positive. We shall demonstrate that y[(l C 1)T] is also greater than zero.
Since � 2 (0, 1], then from (5.71), we get

y Œ.l C 1/ T � D .1 � �/ y .lT / C �yD � �

l�1X
j Dl�np

h .jT / � h .lT /

� �yD � �

l�1X
j Dl�np

h .jT / � h .lT / : (5.74)

It follows from (5.2) that for any time instant kT, 0 � h(kT) � dmax. Using
assumption (5.73), we obtain

y Œ.l C 1/ T � � �
�
yD � dmax

�
np C 1=�

��
> 0: (5.75)

Since l was chosen arbitrarily (greater than np C 1), the proposition is valid for
any k � np C 1. This concludes the induction proof. ut

Any properly designed flow control algorithm should guarantee that the assigned
transmission rate is always nonnegative and bounded. The next theorem shows that
the rate established by the analyzed algorithm is indeed greater than or equal to zero
and that it is limited from above by a (precisely determined) finite value.

Theorem 5.3. If controller (5.67) is applied to system (5.7)–(5.10), then the
transmission rate generated by this controller is always nonnegative and bounded:

8
k�0

0 � u .kT / � max f�yD; dmaxg : (5.76)

Proof. For k D 0, we have u(0) D �yD, which means that since � > 0 and yD > 0 the
theorem holds at the initial time. Let us assume that (5.76) is true for some integer
l > 0. We will prove that the proposition is valid also for l C 1. Using (5.69), we can
present u[(l C 1)T] in the following way:
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u Œ.l C 1/ T � D �

2
4yD �

lX
j D0

u .jT / C
lX

j D0

h .jT /

3
5

D �

2
4yD �

l�1X
j D0

u .jT / C
l�1X
j D0

h .jT /

3
5 � � Œu .lT / � h .lT /�

D u .lT / � �u .lT / C �h .lT / D .1 � �/ u .lT / C �h .lT / :

(5.77)

Since � 2 (0, 1] and for any lT, 0 � h(lT) � dmax, then 0 � u[(l C 1)T] � max(�yD,
dmax). This ends the induction proof. ut

Theorems 5.1–5.3 define the most important properties of the designed control
strategy related to the communication system stability (nonnegative and bounded
control signal, and finite queue length) and the network resource utilization (strictly
positive queue length). In the remainder of Sect. 5.1.2, these features will be verified
in a series of simulation tests.

5.1.2.3 Simulation Results

The model for simulation tests has been constructed according to the description
given in Sect. 5.1.1. The network parameters are chosen in the following way:
discretization period T D 10 ms, round-trip time RTT D npT D 100 ms, and the
maximum available bandwidth dmax D 10 packets per period. Hence, the system
order n D np C 1 D 11. Two series of simulation tests are conducted. In Test 1, the
controller performance is verified in the situation when the available bandwidth
exhibits sudden changes of large amplitude. Such scenario reflects the most adverse
networking conditions and is well suited to corroborate the extreme signal values
indicated by the theorems stated in the previous section. In Test 2, in turn, the system
behavior is investigated in the presence of stochastic bandwidth variations, which
are typical for many real-life networking scenarios. In both tests, several simulations
are run for controller (5.67) with different gain settings. Its properties are compared
with the on-off controller (4.9) adapted for the case of finite sampling considered
here. The maximum rate for the on-off controller is set as umax D 11 packets > dmax.

Test 1. In the first simulation example, the operation of the designed SM controller
is verified in response to the available bandwidth depicted in Fig. 5.7.

The gain of the controller obtained in the first optimization procedure is set
according to (5.33) as �1 D .

p
4 � 10 C 1 � 1/=2 � 10 D 0:259. According to

the choice of the tuning coefficient, we may consider various gain settings for
the controller developed in the second optimization procedure. We will analyze
the controller performance for w D 1 with the gain calculated according to (5.58)
as 0.618. Notice that the gain �1 D 0.259 of the controller obtained in the first

http://dx.doi.org/10.1007/978-1-4471-4147-1_4
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Table 5.1 Controller parameters in Test 1

Controller Weighting factor w Controller gain �

Demand queue
length yD [packets]

Linear controller (5.67) 0.09 0.259 140 > 139
1 0.618 120 > 116

Nonlinear controller (4.9) – 1 111 > 110

optimization procedure corresponds to the case of w D 0.09 as analyzed in the
context of the second optimization problem. The demand queue length yD is adjusted
according to the guidelines stated in Theorem 5.2. The gain and yD settings are
summarized in Table 5.1. In addition, we run the test for the nonlinear control
law presented in Chap. 4 with yD adjusted according to (4.15) as 111 packets
>umaxnp D 11�10 D 110 packets. This value is also stated in Table 5.1.

The transmission rate generated by the controllers is illustrated in Figs. 5.8
and 5.9 and the resulting queue length in Fig. 5.10. It can be seen from the plots
in Figs. 5.8 and 5.9 that the rates generated by the linear controller (5.67) are
nonnegative and bounded as indicated by Theorem 5.3. For the nonlinear control
law (4.9), the established control signal is confined to the interval [0, umax] D [0,
11 packets]. In each case, the queue length does not increase beyond the demand
value and never drops to zero (for kT � (np C 1)T D 11T). This means that the buffer
capacity is not exceeded, and all of the available bandwidth is used for data transfer.
In consequence, the maximum throughput in the network is achieved. Moreover,
since the gain of linear controller depends on the weighting coefficient, the choice
of w influences the system dynamics. When w increases, the controller reacts faster
to the fluctuations of available bandwidth, and as w is reduced, responsiveness to
the changes drops. Furthermore, according to Theorems 5.1 and 5.2, the increase
of w allows for allocation of smaller buffers while preserving the benefits of loss-
free transmission. However, placing more impact on the output error elimination
(large w) incurs bigger values of the initial source transfer speed, which can be too
high for slow transmitters. Moreover, we can notice from the rate evolution in the
initial phase shown in Fig. 5.9 that with the increase of w the smoothness of rate
adjustments degrades, which is disadvantageous for the transmission consistency.
Therefore, for a majority of practical applications, the weighting factor w D 1 would

http://dx.doi.org/10.1007/978-1-4471-4147-1_4
http://dx.doi.org/10.1007/978-1-4471-4147-1_4
http://dx.doi.org/10.1007/978-1-4471-4147-1_4
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Fig. 5.8 Transmission rate linear controller a � D 0.259, b � D 0.618, c nonlinear controller
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Fig. 5.10 Queue length: linear controller a � D 0.259, b � D 0.618, c nonlinear controller

offer a fair trade-off between good system dynamics and smoothness of moderate
transmission rates. Notice that according to (5.58), setting w D 1 corresponds to
the gain � D .

p
5 � 1/=2. Consequently, the gain reciprocal (the system time

constant 1/� ) constitutes the golden ratio .
p

5C1/=2. We will refer to this dynamical
configuration as the “golden-ratio controller.”

Figure 5.11 shows the evolution of the sliding variable. Notice that in the case
of the controller with LQ optimal sliding plane (graphs a and b), s(�) immediately
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Fig. 5.11 Sliding variable: linear a � D 0.259, b � D 0.618; c nonlinear controller

decreases from its original value s(0) D �yD to a relatively narrow band s(�) 2 [0,
�cndmax D �dmax) and always remains in this band, which provides a clear evidence
of a properly established quasi-sliding motion in a discrete-time system. In the
case of the on-off controller (4.9), the reaching phase is extended over several
periods; however, once the system representative point approaches the vicinity of
the sliding plane s(�) D 0, it stays in the band around the plane for all subsequent
time. Comparing the plot in Fig. 5.11c with the one representing the sliding variable
for the continuous-time system presented in Fig. 4.6, we can notice high-frequency
switching around the plane, which occurs due to the finite sampling rate in discrete-
time systems.

We also compare the controllers with respect to performance indices J1 and J2.
Two tests are conducted: (i) with yD D 140 packets adjusted the same for all con-
trollers and (ii) with yD set according to the values listed in Table 5.1. Consequently,
in test (i), we verify the controller performance with the same control objective set
for all the algorithms (to stabilize y(�) at the level of 140 packets), while in test (ii),
we compare the indices for different control objectives (different values of yD for
each controller). The simulations are run in the absence of the disturbance, i.e., with
d(�) � 0. We summarize the results for cases (i) and (ii) appropriately in Tables 5.2
and 5.3. For the LQ optimal SM controller, the choices of w (listed as the column
headings in the second row) determine both the gain adjustment defined in Table 5.1
and J2 tuning as defined in (5.41). For the nonlinear controller, the value indicated
in the column heading reflects the value of w used to compute J2. As expected,
the controller with w D 0.09 achieves the smallest value of performance index J1

(in case (i)), as this setting corresponds to the optimal gain .
p

4n C 1 � 1/=2n with
respect to J1. However, this is no longer the case when a different control objective is
set for each controller (case (ii)). In such circumstances, the golden-ratio controller
with w D 1 achieves a smaller J1 value and outperforms the first controller (with
w D 0.09). This is due to much lower yD level which allows for substantial reduction
of the sum encountered in J1. It follows from the tables that index J2 grows as w
is increased. Therefore, we may expect larger control effort for more responsive
controllers. The nonlinear control law outperforms the optimal one in terms of J1

http://dx.doi.org/10.1007/978-1-4471-4147-1_4
http://dx.doi.org/10.1007/978-1-4471-4147-1_4
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Table 5.2 Performance
index for identical yD setting
(case (i))

LQ optimal controller Nonlinear controller

w 0.09 1 0.09 1

J1 135,770 157,680 154,503 154,503
J2 12,234 113,859 13,991 146,638

Table 5.3 Performance
index for minimum yD setting
(case (ii))

LQ optimal controller Nonlinear controller

w 0.09 1 0.09 1

J1 135,770 115,847 106,779 106,779
J2 12,234 83,649 19,338 100,123
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for w D 1 in test (i) and for each value of w in test (ii). However, it shows worse
performance in terms of index J2 when compared with the equivalent dynamical
setting of the LQ optimal controller.

Test 2. In the second scenario, we investigate the behavior of controller (5.67) in
the presence of highly variable stochastic bandwidth. Function d(kT) following the
normal distribution with mean d
 D 5 packets and standard deviation dı D 5 packets,
Dnorm(5, 5), is illustrated in Fig. 5.12. In the first two simulations (curves a) and b)
in the graphs), we apply the same controller parameters as in Test 1. However, since
the mean available bandwidth in the stochastic pattern significantly differs from the
maximum value, in the third simulation (curve c)), we adjust the demand queue
length according to (5.73) with dmax replaced by d
 D 5 packets. With the gain
0.618, we have yD D 60 > 58 packets in the third simulation run.

The generated transmission rates are depicted in Fig. 5.13 and the buffer
occupancy in Fig. 5.14. We can see from the graphs in Fig. 5.13 that function
u(kT) established by the controller is nonnegative and bounded, thus ensuring
feasible input rate adjustment at the data source. Moreover, one can notice that
by decreasing the gain, the favorable rate smoothening in the presence of high-
frequency bandwidth oscillations is obtained. Consequently, reduced responsiveness
gives the benefit of rate signal which has a better chance of being reproduced by the
source. Thus, the control fidelity in the actual system may be improved.
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Fig. 5.13 Transmission rate: a � D 0.259, b � D 0.618, c reduced yD, � D 0.618
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Fig. 5.14 Queue length: a � D 0.259, b � D 0.618, c reduced yD, � D 0.618

The plots in Fig. 5.14 demonstrate that for each parameter, setting the queue
length never grows beyond the demand value, which yields zero loss rate at the
bottleneck node. In cases (a) and (b), y(�) is strictly positive (following the initial
phase), which means that all of the available bandwidth is effectively utilized for the
data transfer. In case (c), though, the queue length occasionally drops to zero, and
certain part of the available bandwidth is left unused. Consequently, the obtained
buffer savings (from the reduced value of yD) come at the price of decreased
bandwidth utilization which drops to 87%. The lost opportunities for packet transfer
at the output interface due to empty buffer are shown in Fig. 5.15.

The evolution of the sliding variable is illustrated in Fig. 5.16. We can see from
the plots that the system representative point reaches the vicinity of the sliding plane
s(�) D 0 and stays in this vicinity for all subsequent time. Thus, the stability of
the sliding motion is ensured despite the presence of highly variable mismatched
disturbance d(�).

5.1.3 Methods for Constraining Excessive Initial Flow Rates

A possible drawback of the SM controller with LQ optimal sliding plane presented
in the previous section is the high initial flow rate that is required to quickly
bring the communication system into the region of full bandwidth utilization (and
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Fig. 5.16 Sliding variable: a � D 0.259, b � D 0.618, c reduced yD, � D 0.618

consequently maximum throughput). It is clear from the plots shown in Fig 5.9 that
with the increase in the controller gain (faster dynamics), the rate signal generated
by the control algorithm grows and can be difficult to follow by rate-constrained
sources. Therefore, it is desirable to throttle high input signals in the initial phase
of transmission while maintaining good responsiveness to the changes of network
state afterwards. Below, we present three methods for reducing excessive input
signals without downgrade in the response speed to bandwidth fluctuations. The first
method involves the use of a time-varying sliding plane, the second one is based on
the so-called reaching-law approach, and the third technique employs rate clamping
by means of a saturation element. The first method gives direct control over the
duration of the initial phase and indirect control over the maximum transmission
rate value. The other two approaches, in turn, place an explicit limitation on the
maximum input signal and implicitly regulate the duration of the initial phase.

5.1.3.1 Application of a Time-Varying Hyperplane

The fundamental objective of sliding-mode control is to steer the system in such a
way that its representative point is brought on the sliding surface (or to its close
vicinity) in each successive control period. The control algorithm presented in
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Sect. 5.1.2 uses a stationary plane, defined by s(kT) D 0 for all k. Such choice of the
sliding plane with the requirement that the controller brings the representative point
onto the plane in a minimal number of steps (in Sect. 5.1.2 assumed one period)
usually implies high input signal at the beginning of the control process. This is
due to the fact that significant control effort is required to cover the (large) initial
distance from the plane. To alleviate this problem, one can introduce a time-varying
plane which moves together with the system representative point towards the final,
time-invariant position. As the control action is supposed to keep the representative
point on the plane, and not to bring the point immediately onto the plane in its final
position, the control effort u(�) may be reduced. In what follows, we discuss the
selection of parameters of time-varying plane and the choice of plane dynamics so
that desired system performance can be achieved.

Controller Design

In order to avoid excessive input signal magnitude at the beginning of the control
process, we introduce a time-varying sliding hyperplane instead of the fixed one
as was considered so far in this chapter. The plane is constructed in such a way
that initially the system representative point belongs to the plane. Afterwards, the
plane advances monotonically towards the origin of the error state space and stops
moving after a predetermined time kVPT. Then, it remains fixed for the rest of the
control process. The controller should track the plane position and keep the system
representative point on the plane (or in its immediate vicinity) for all k. The design
procedure consists of two steps. First, we decide on the plane dynamics so that
smooth and stable movement to the plane final position is guaranteed. In order to
ensure that the system error is reduced to zero in finite time, the plane in its final
position needs to pass through the origin of the error state space. In the second step,
we choose parameters of the plane so that fast system response to the changes in
network state is ensured in the sliding phase.

Step 1. In this first part of the design, we choose the sliding plane dynamics. For
any k � 0, the moving plane can be described by the following equation:

s .kT / D cTe .kT / C f .kT / D 0; (5.78)

where cT D [c1 c2 c3 : : : cn] is such a vector that cTb ¤ 0, e(kT) D xd � x(kT)
denotes the system error, and f (kT) is an a priori known function describing the
plane advancement towards the final position cTe(kT) D 0. Function f (�) satisfies the
following conditions:

• f .0/ D �cTe.0/; (5.79)

• f .kT / is strictly monotonic in the interval Œ0; kVPT � ; (5.80)

•f .kT / D 0 for any k � kVP: (5.81)
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Equation (5.79) implies that at the initial time the system representative point
belongs to the sliding hyperplane (5.78). Conditions (5.80) and (5.81), in turn,
guarantee that the plane reaches the origin of the error state space in finite time,
kVPT, and it stops moving afterwards. Function f (�) and constant kVP are selected
in such a way that, on the one hand, the desired system dynamics is achieved, and
on the other hand, the controller is able to follow the plane advancement without
violating the transmission rate limitations. One possible definition of f (kT) is

f .kT / D fa .kT / D
(

� k�kVP
kVP

cTe.0/ for k D 0; 1; : : : ; kVP;

0 for k > kVPI (5.82)

which represents the movement towards the origin with constant velocity. Other
choices of f (kT) could be

f .kT / D fb .kT / D
(

.�1/�bC1
	

k�kVP
kVP


�b

cTe.0/ for k D 0; 1; : : : ; kVP;

0 for k > kVP;

�b 2 CC and �b > 1I (5.83)

or

f .kT / D fc .kT / D
�

Œ.k=kVP/�c � 1� cTe.0/ for k D 0; 1; : : : ; kVP;

0 for k > kVP;

�c 2 CC:

(5.84)

Equation (5.83) corresponds to the plane movement with constant inclination
and decreasing speed, and definition (5.84) reflects accelerated plane dynamics.
The example plots of function f (�) given by (5.82), (5.83), and (5.84) are shown in
Fig. 5.17, and the plane displacement in a hypothetical second-order system (x1, x2)
for each case is illustrated schematically in Fig. 5.18 (note that in the second-order
system the sliding hyperplane reduces to a line).

Although function f (�) can be selected in various ways, giving different properties
in the initial phase of the control process, the most attractive choice out of
possibilities (a)–(c) from the point of view of the transmission efficiency seems to
be the linear one (5.82). This is due to the fact that constant plane velocity adjusted
to maintain the maximum input signal will typically result in the largest permissible
transmission rate in the initial phase. As a consequence, the linear plane dynamics
will usually allow for a bigger number of packets to be sent at the beginning of
transmission than in the case of function fb(�) or fc(�). This result, in turn, provides
higher initial throughput and opens a possibility for completing the data transfer in
a shorter time interval. We discuss these issues in Example 5.2.

Example 5.2. Let us analyze rate assignments in the interval [0, kVPT] in the
presence of constraint umax D 8 packets per period. The controller tracks the position
of time-varying plane and attempts to keep the system representative point on the
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of function f (�)

plane for all time. For this purpose, it uses the information about the plane movement
contained in the a priori known function f (kT) and at each kth time instant
generates such control signal that the representative point is on the plane at instant
(k C 1)T. Consequently, the current control action depends on the next position of
the sliding hyperplane determined by f [(k C 1)T]. Constant kVP is selected so that
the maximum rate umax is never exceeded. We assume here kVP D 8. For the purpose
of exposition, it also assumed that the plane movement terminates within the first
round-trip time; i.e., it is assumed that kVP < np. In this way, the presence of the
available bandwidth does not interfere with rate calculations in the initial phase.
We study rate evolution for three choices of plane dynamics determined by the
shape of f (�): (a) constant plane velocity described by linear function (5.82), (b)
plane dynamics with a negative acceleration, and (c) plane dynamics with a positive
acceleration. The rate assignment in each case is illustrated in Fig. 5.19.

Linear function (a) and the one characterized by negative acceleration (b) result
in the maximum allowed rate assigned to the source at the instant kT D 0. In
case a), the plane dynamics is constant in the interval [0, kVPT], which means
that the maximum allowable rate can be maintained from 0 to (kVP – 1)T. The
decelerated plane movement (case b)) implies decreasing rate assignments in the
interval [0, kVPT). This is easily explained if we notice that a smaller magnitude of
the control signal is required to bring the system representative point onto the plane
when the plane position changes in smaller steps at successive time instants. The
plane dynamics characterized by positive acceleration, in turn, results in a growing
rate signal in the analyzed interval [0, kVPT) with the maximum of umax attained at
instant (kVP – 1)T. In this case, the plane displacement increases at each step, and the
control signal of growing magnitude is necessary to keep the representative point on
the plane. We may perceive this last case as chasing the plane which departs with
increasing velocity.

As a consequence of various choices of plane dynamics, the overall number
of packets permitted for sending into the network differs among the controllers
considered in cases (a), (b), and (c). In the analyzed example, the number of packets
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Fig. 5.19 Example rate function for different choice of f (�) (a) constant plane velocity (b) negative
acceleration (c) positive acceleration

allowed into the network amounts to 64 in case (a) and 36 in cases (b) and (c).
Notice also that from the point of view of the considered application (data transfer
in a communication network), the accelerated plane movement is the least attractive
solution. To see this fact, let us suppose that a user (the traffic destination) wants to
retrieve web page content from a server operating at the source. We assume that the
web page can be conveyed in 24 packets. Consequently, in the case of linear plane
movement (a), three periods suffice to transmit the page, the decelerated case (b)
requires four periods, whereas the accelerated plane movement prolongs the page
content retrieval to seven periods. This clearly shows why the plane displacement
with a constant velocity is favored over other choices of plane dynamics, (b) and
(c), for typical transmission scenarios in communication networks.

Once the plane dynamics has been determined, the next step in the design of a
flow rate controller is to select the elements of vector c, which defines the inclination
of the plane s(kT) D cTe(kT) D 0. The plane parameters can be chosen in various
ways as long as the condition cTb ¤ 0 is met. For instance, one could apply the
pole placement technique [11], or use LQ optimization, as it was considered in the
previous section. However, in this section, we try a different approach to the plane
design; namely, we choose the elements of vector c for a dead-beat scheme. In this
way, the highest responsiveness to changing networking conditions will be achieved.
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The problem of high control signal usually implied by dead-beat control in the initial
phase is tackled by adjusting the plane dynamics through function f (�). The selected
function f (�) ought to satisfy criteria (5.79)–(5.81).

Step 2. We intend to find such parameters of the plane which will ensure that
the error is eliminated in the minimal number of steps after a change in the
available bandwidth. Neglecting for the moment the effects of the disturbance, and
substituting (5.7) into the equation describing the sliding plane at instant (k C 1)T,

cTe Œ.k C 1/ T � C f Œ.k C 1/ T � D 0; (5.85)

we get

cT fxd � x Œ.k C 1/ T �g C f Œ.k C 1/ T �

D cT fxd � Ax .kT / � bu .kT /g C f Œ.k C 1/ T � D 0; (5.86)

which leads to

u .kT / D �
cTb

��1 ˚
cT Œxd � Ax .kT /� C f Œ.k C 1/ T �


: (5.87)

The characteristic polynomial of the closed-loop state matrix with this control
applied is determined as

det .zIn � Acl/ D zn C cn�1 � cn

cn

zn�1 C cn�2 � cn�1

cn

zn�2 C � � � C c1 � c2

cn

z:

(5.88)

Notice that the assumption cTb ¤ 0 with vector b defined as [0 0 0 : : : 1]T

(identity (5.8)) guarantees that cn ¤ 0, and relation (5.88) makes sense. For dead-
beat control, the characteristic polynomial needs to satisfy det(zIn � Acl) D zn. This
is achieved when, simultaneously,

cn�1 � cn D0;

cn�2 � cn�1 D0;

:::

c2 � c3 D0;

c1 � c2 D0;

(5.89)

which implies

cn D cn�1 D cn�2 D � � � D c3 D c2 D c1 (5.90)
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and vector describing parameters of the sliding plane

cT D �
1 1 1 : : : 1

�
cn: (5.91)

Using (5.91) in (5.87), we get the following control law:

u .kT / D yD � x1 .kT / �
nX

j D2

xj .kT / C f Œ.k C 1/ T �

cn

: (5.92)

Substituting x1(kT) D y(kT) and xj(kT) D u[(k � n C j � 1)T] for j D 2, 3, : : : , n, we
can rewrite (5.92) as

u .kT / D yD � y .kT / �
k�1X

j Dk�np

u .jT / C f Œ.k C 1/ T �

cn

: (5.93)

The amount of data the source is allowed to transmit in each review period is
calculated by the proposed nonlinear algorithm according to (5.93) and is accessible
at the source TB later. If we compare (5.93) with the LQ optimal controller (5.67),
we can notice a similar structure of both algorithms. The first two terms account for
the current error at the output, whereas the third term

Pk�1
j Dk�np

u .jT / accumulates
the information about the packets on route. Consequently, when the gain constant ”

is set equal to 1 in Eq. (5.67), both algorithms are equivalent for k � kVP � 1.
This concludes the design of the flow control algorithm for the considered

network. In the next section, we describe several important properties of the
obtained control law and substantiate each property with a formal proof.

Properties of the Proposed Controller

The properties of the designed nonlinear controller (5.93) will be stated in a lemma
and three theorems. The lemma specifies a relation between the control signal u(kT)
and the utilized bandwidth. Afterwards, the findings provided in the lemma are used
to prove other controller properties, stated in the theorems. The first theorem shows
that controller (5.93) always generates a nonnegative and bounded transmission
rate. The second proposition specifies the conditions that must be satisfied to
eliminate the risk of data loss (which could occur as a consequence of exceeding
the bottleneck node buffer capacity). Finally, the third theorem provides a condition
for full bandwidth utilization at the bottleneck link.

First, let us notice that

u.0/ D yD C f .T / =cn : (5.94)

Then, for k � 1, the control signal satisfies the relation given in the following lemma.
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Lemma 5.4. If controller (5.93) is applied to system (5.7)–(5.10) with function f(�)
satisfying conditions (5.79)–(5.81), then for any k � 1,

u .kT / D h Œ.k � 1/ T � C ff Œ.k C 1/ T � � f .kT /g =cn : (5.95)

Proof. Substituting (5.6) into (5.93) yields

u .kT / DyD � y .kT / �
k�1X

j Dk�np

u .jT / C f Œ.k C 1/ T � =cn

DyD �
k�np�1X

j D0

u .jT / C
k�1X
j D0

h .jT / �
k�1X

j Dk�np

u .jT / C f Œ.k C 1/ T � =cn

DyD �
k�1X
j D0

u .jT / C
k�1X
iD0

h .jT / C f Œ.k C 1/ T � =cn :
(5.96)

For k D 1, it follows immediately from (5.96) that

u.T / D yD � u.0/ C h.0/ C f .2T / =cn D h.0/ C Œf .2T / � f .T /� =cn ; (5.97)

which shows that (5.95) is indeed satisfied for k D 1. Let us assume that (5.95)
is true for all integers up to some l > 1. Using this assumption, from (5.96), the
transmission rate generated at instant (l C 1)T can be expressed as

u Œ.l C 1/ T � D yD �
lX

iD0

u .iT / C
lX

iD0

h .iT / C f Œ.l C 2/ T � =cn

D yD � u.0/ �
lX

iD1

u .iT / C
lX

iD0

h .iT / C f Œ.l C 2/ T � =cn

D �f .T /

cn

�
lX

iD1

h Œ.i � 1/ T � � 1

cn

lX
iD1

ff Œ.i C 1/ T � � f .iT /g

C
lX

iD0

h .iT / C f Œ.l C 2/ T � =cn

D h .lT / C ff Œ.l C 2/ T � � f Œ.l C 1/ T �g =cn : (5.98)

This ends the proof. ut
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Theorem 5.5. If controller (5.93) is applied to system (5.7)–(5.10) with function f(�)
satisfying conditions (5.79)–(5.81), then the transmission rate is always nonnegative
and bounded, i.e., for any k � 0,

0 � u .kT / � dmax C yD: (5.99)

Proof. Initially, the system representative point belongs to the sliding hyperplane,
and according to (5.79), f (0) D �cTe(0) D �cnyD. Since f (�) is assumed to be
strictly monotonic and f (kVPT) D 0, the identity f (0) D �cnyD implies that for any
k 2 [0; kVP), f (kT) and cn have opposite signs. Consequently, for any k � 0, the
following set of inequalities is satisfied:

�yD � 1

cn

f .kT / � 0; (5.100)

and 0 � 1

cn

ff Œ.k C 1/ T � � f .kT /g � yD: (5.101)

It follows from the algorithm definition that u(0) D yD C f (T)/cn. Hence, using
(5.100), we get u(0) � 0 and u(0) � yD � yD C dmax, which means that the theorem
is satisfied for k D 0. On the other hand, for any k > 0, u(kT) satisfies the relation
given in Lemma 5.4. Since for any k the utilized bandwidth h(kT) is nonnegative
and bounded from above by dmax, directly from (5.95) and (5.101), we obtain

0 � u .kT / D h Œ.k � 1/ T � C ff Œ.k C 1/ T � � f .kT /g =cn � dmax C yD:

(5.102)

This ends the proof. ut
The next theorem shows that when the source injects packets into the network

with the intensity regulated by the nonlinear control strategy (5.93), then the buffer
queue length remains finite.

Theorem 5.6. If controller (5.93) is applied to system (5.7)–(5.10) with function f(�)
satisfying conditions (5.79)–(5.81), then the queue length is always upper-bounded
by its demand value yD.

Proof. It follows from the system initial conditions that y(0) D 0. Since the control
process commences at kT D 0 (the first nonzero rate signal is issued at kT D 0),
due to the delay, the first packets arrive at the bottleneck node at kT D RTT D npT.
This means that according to (5.3), y(kT) D 0 for k � np, and it is sufficient to
demonstrate the proposition for k > np.
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Applying relation (5.6), we may present the queue length in the following form:

y .kT / D
k�np�1X

j D0

u .jT / �
k�1X
j D0

h .jT / D u .0/ C
k�np�1X

j D1

u .jT / �
k�1X
j D0

h .jT /

D yD C 1

cn

f .T / C
k�np�1X

j D1

u .jT / �
k�1X
j D0

h .jT /:
(5.103)

Using Lemma 5.4, we get

y .kT / � yD D 1

cn

f .T / C
k�np�1X

j D1

�
h Œ.j � 1/ T � C 1

cn

ff Œ.j C 1/ T �

�f .jT /g
�

�
k�1X
j D0

h .jT /

D
k�np�2X

j D0

h .jT / �
k�1X
j D0

h .jT / C 1

cn

8<
:

k�npX
j D1

f .jT / �
k�np�1X

j D1

f .jT /

9=
;

D �
k�1X

j Dk�np�1

h .jT / C 1

cn

f
��

k � np

�
T
�

:
(5.104)

Since function h(�) is always nonnegative, and 8k f (kT) and cn have opposite
signs, we conclude that y(kT) given by (5.104) never exceeds the demand value.
This ends the proof. ut
Theorem 5.7. If controller (5.93) is applied to system (5.7)–(5.10) with function
f(�) satisfying conditions (5.79)–(5.81), and the demand queue length satisfies the
following inequality:

yD > dmax
�
np C 1

�
; (5.105)

then for any k � kVP C np C 1, the queue length is strictly positive.

Proof. Notice that we deal with the time instants kT such that k � kVP C np C 1.
Consequently, in the considered time range function f (�) D 0. Since the utilized
bandwidth represented by function h(�) is nonnegative and upper-bounded by
dmax, we obtain from (5.106) the following estimate of the queue length for
k � kVP C np C 1:

y .kT / D yD �
k�1X

j Dk�np�1

h .jT / � yD � dmax
�
np C 1

�
: (5.106)
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Therefore, using assumption (5.105), we get y(kT) > 0 for all k � kVP C np C 1.
This completes the proof. ut

The fundamental properties of the presented strategy stated in the theorems have
been verified in a simulation scenario described in the following section.

Simulation Results

In order to facilitate the comparison with the other control algorithms described so
far in this work, parameters of the network model are set identical to those defined
in Sect. 5.1.2.3. Consequently, we select the discretization period T D 10 ms,
the round-trip time RTT D npT D 10T, and the maximum available bandwidth
dmax D 10 packets per period. We test performance of controller (5.93) with three
choices of the terminal condition for function f (�) given by (5.82): (i) kVP D 1, (ii)
kVP D 5, and (iii) kVP D 15. Notice that case (i) corresponds to a time-invariant plane
and reflects the operation of linear controller (5.67) with the gain set equal to 1, i.e.,
the dead-beat scheme for the analyzed network. The evolution of f (�) for cases (i)–
(iii) with cn D 1, and – cTe(0) D �cnyD D �112 packets, is illustrated in Fig. 5.20.

Two series of simulation tests are run: one for the bandwidth pattern illustrated
in Fig. 5.7 and another for the stochastic bandwidth Dnorm(mean, standard devia-
tion) D Dnorm (5, 5) depicted in Fig. 5.12.

Test 1. In order to guarantee full bandwidth usage, in the first series of simulations,
we set yD according to (5.105) as 112 > 110 packets. The results of the test for
the bandwidth from Fig. 5.7 are shown in Figs. 5.21, 5.22, and 5.23: the generated
transmission rate in Fig. 5.21, the packet queue length in Fig. 5.22, and the sliding
variable in Fig. 5.23. We can see from the plot in Fig. 5.21 that by extending the
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duration of the plane movement towards the final position (larger kVP), we obtain a
reduced initial rate value. For the fixed plane (marked as (i) kVP D 1 in the graph), the
initial rate value equals 112 packets, whereas in case (ii), k0 D 5, we get the initial
rate of 22.4 packets, and in case (iii), kVP D 15, we obtain 7.5 packets. Following
the primary phase of the control process, the curves overlap, and each controller
provides the fastest reaction to the available bandwidth changes provided by a dead-
beat scheme. The queue length evolution depicted in Fig. 5.22 demonstrates that the
buffer size set equal to the demand queue length yD D 112 packets is not exceeded,
which means that packet losses do not occur. Following the initial phase, the queue
length does not fall to zero, implying that all of the available bandwidth is used
for data transfer. Consequently, by applying the nonlinear control law with a time-
varying plane instead of the linear controller with a fixed one, we have similar
conditions for obtaining the maximum throughput, yet with a more realistic rate
assignment.
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Fig. 5.23 Sliding variable: (i) kVP D 1, (ii) kVP D 5, and (iii) kVP D 15

It follows from Fig. 5.23 that the sliding variable, which reflects the distance from
the sliding plane, is equal to zero in the case of the moving plane. This means that the
system representative point is maintained on the plane precisely as it was assumed in
the design. In the case of time-invariant plane (i), the initial large distance from the
plane passing through the origin of the error state space is required to be covered
in one period, which is the reason for high initial rate value. The three cases (i)–
(iii) become equivalent for k > 15, resulting in a stable quasi-sliding motion in a
discrete-time system perturbed by the mismatched exogenous signal d(�).
Test 2. In the second series of simulations, we verify the controller properties for
the stochastic bandwidth pattern Dnorm(5, 5) shown in Fig. 5.12. Since the mean
bandwidth is much lower than the maximum one, in the tests, we use dL D 5 packets
instead of dmax D 10 packets in formula (5.105) and adjust yD as 56 > 55 packets.
Consequently, the bandwidth may not always be entirely consumed by the stream
of packets, but the buffer capacity will be reduced. The results of the test are shown
in Figs. 5.24–5.27: the generated transmission rate in Fig. 5.24, the packet queue
length in Fig. 5.25, the lost opportunities for data transfer in Fig. 5.26, and the
sliding variable in Fig. 5.27.

Since the buffer is initially empty and the first packets arrive at the bottleneck
node at kT D npT D 10T, no data is transferred at the output interface for kT < 10T.
This means that the disturbance actually affects the system for k � 10, and in the
interval [0, 9], the response of the system to the stochastic bandwidth is similar
to the one considered in Test 1 and presented in Figs. 5.21, 5.22, and 5.23. The
discrepancy in numerical results occurs due to a different yD setting, assumed in
Test 2 to be equal 56 packets, which is half of the value considered in Test 1. The
initial rate in the case of the fixed plane (i) equals 56 packets, whereas for time-
varying plane, it amounts to 11.2 packets (case (ii)) and 3.7 packets (case (iii)),
respectively. The three controllers generate similar rate assignments in the time
following the initial period. The controllers respond immediately to bandwidth
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Fig. 5.27 Sliding variable: (i) kVP D 1, (ii) kVP D 5, and (iii) kVP D 15

variations. It follows from the queue length evolution presented in Fig. 5.25 that
the buffer is depleted on several occasions (y(kT) D 0), which yields decreased level
of bandwidth utilization 86% in cases (i) and (ii) and 84% in case (iii). The lost
opportunities for transferring the data depicted in Fig. 5.26 indicate differences
among the three controllers only for k < 25, which is the result of nonequal initial
rate assignment. The lowered bandwidth utilization in Test 2, as compared to the
case of the maximum throughput achieved in Test 1, is the effect of a trade-off
between the bandwidth usage and buffer capacity savings.

5.1.3.2 Application of a Reaching Law

We showed in the previous section that by applying a nonlinear SM controller with a
moving plane instead of the linear one with a fixed plane, we can obtain fast response
to the changing networking conditions without generating excessive control signals.
In this section, we will use an alternative method of SM controller design which
will result in a similar set of advantageous properties related to handling the flow
of data as controller (5.93) but will provide a direct control over the value of the
input signal in the initial phase. The design procedure presented below is based
on the so-called reaching-law approach [12]. In this approach, the sliding plane
is fixed during the whole control process. In order to account for a possibly high
initial magnitude of the control signal, it is no longer required to bring the system
representative point onto the plane (or in its close vicinity) in a single step. Instead,
the reaching phase is extended over several periods. In this way, large control effort
needed to immediately overcome a significant distance from the plane, as was the
case in Sect. 5.1.2, can be relieved. The controller employing the idea of reaching
law steers the system dynamics so that the representative point approaches the
plane by covering only a part of the initial distance from the plane in subsequent
time intervals. Consequently, a smaller control signal suffices to ensure the desired
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system trajectory. In what follows, we will demonstrate that the favorable properties
of the control strategies considered so far in this work can be achieved with a
properly engineered reaching law.

The Concept of Reaching Law

The idea of reaching law in discrete-time systems originating from the seminal work
of Gao et al. [12] is illustrated in Fig. 5.28 for the case of a hypothetical second-order
system. The sliding plane (line in the analyzed system) remains fixed in the entire
time span of the control process. The controller moves the system representative
point towards the plane in the prescribed way (reaching phase) and maintains the
point within a band around the plane afterwards (sliding phase). The way the point
is supposed to approach the plane in the reaching phase, and to be kept in the vicinity
of the plane in the sliding phase, is governed by reaching law. Mathematically, the
reaching law is expressed as a function of the distance of the system representative
point from the sliding plane. The law proposed by Gao et al. [12] brings the system
representative point into the band around the plane and, provided that conditions
given in [3] are satisfied, changes the point position from one side of the plane to
the other in each successive control interval. This results in a quasi-sliding motion
in the vicinity of the plane schematically sketched in Fig. 5.28.

The idea of Gao et al. proved inspiring for many researchers who proposed
different approaches for the design of reaching law (see [23] for an excellent review
of various solutions presented in a consistent framework). Two designs, developed
in [4, 15], seem particularly attractive from the point of view of the application
considered in this work. The idea introduced in [4], with a more efficient choice
of the switching function reported later in [15], is based on the observation that
moving the system representative point from one side of the plane to the other in
each successive interval requires larger control effort than using a strategy aimed at
keeping the point on the plane itself. This idea has been illustrated in Fig. 5.29.
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The situation shown in graph (a) in Fig. 5.29 reflects the case of a disturbance-
free system, whereas graph (b) illustrates the system behavior in the presence of
external perturbation. In the absence of disturbances, the improved reaching law
maintains the point on the plane. When a perturbation affects the system dynamics,
in turn, the system representative point may be pushed off the sliding plane, but
then it is directed onto the plane (and not to its other side) at a subsequent control
interval. Notice that since we are dealing with a discrete-time system, the corrective
action of the controller that will move the point back to the plane takes effect with
at least one period delay. Once the disturbance vanishes, the system representative
point remains on the plane in a quasi-sliding motion. The reaching laws [4, 15],
by avoiding the enforced switching at the boundaries of the band, give several
important benefits in the considered system over the law of Gao et al. [12]. First of
all, the magnitude of the control signal can be decreased since it takes less control
effort to move the system representative point onto the plane than to its other side – a
shorter distance needs to be covered in each step. Secondly, the degree of chattering
can be reduced. Finally, probably the most important advantage of moving the
representative point along the plane with regard to the application considered in this
monograph is that the changes of polarity of the control signal may be eliminated.
Indeed, if the disturbance is unipolar (assumes only nonpositive or only nonnegative
values), the system representative point always remains in a band on one side of the
plane only, as shown in Fig. 5.29b. This allows one to keep the network variables
(such as the transmission rate, or packet queue length) in the feasible region of
nonnegative values for all nonnegative bandwidth patterns 0 � d(�) � dmax. From the
control theory perspective, the discussed feature makes the system positive [19].

Controller Design

The dynamics of the controller with LQ optimal sliding plane developed in
Sect. 5.1.2 is adjusted through a tuning coefficient w. By increasing w, one can
obtain faster reaction to the changes in the available bandwidth and reduce the
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buffer capacity while maintaining the conditions of loss-free transmission. The price
to be paid for achieving good responsiveness is large input signal in the initial
phase required to quickly bring the system to the state of maximum efficiency
(and maximum throughput). In Sect. 5.1.3.1, we showed that by using a time-
varying plane with appropriately adjusted velocity and duration of the movement
phase (determined by constant kVP), one can achieve fast reaction to the bandwidth
fluctuations and at the same time limit excessive transmission rates. The extreme
value of the control signal generated by strategy (5.93) was adjusted indirectly by the
choice of kVP. In this section, we will use an alternative approach to SM controller
design, which results in a similar set of properties as the algorithm employing time-
varying plane (5.93) but gives direct control over the extreme value of the generated
transmission rate. The approach presented here employs the reaching law proposed
in [15].

We analyze the situation when the control signal is subject to the constraint

0 � u .kT / � umax; (5.107)

where umax > dmax. The reaching law proposed by Golo and Milosavljević [15] can
be synthesized in the following way:

s Œ.k C 1/ T � � s .kT / D �ˆ Œs .kT /� ; (5.108)

where

ˆ Œs .kT /� D min .js .kT /j ; ı/ sgn Œs .kT /� (5.109)

and ı > 0. Function sgn(�) is defined in the same way as in continuous-time domain,
i.e., for argument x, sgn(x) D �1 if x � 0, and sgn(x) D 1 for x > 0. With this law
applied, the system representative point is guaranteed to reach the hyperplane
cTe(kT) D 0 monotonically in a finite number of steps in a way determined by the
choice of coefficient ı. For the purpose of further analysis, we introduce an auxiliary
variable, sA(kT),

sA .kT / D s .kT / C fRL .kT / D cTe .kT / C fRL .kT / D 0; (5.110)

where the strictly monotonic function fRL(�), reflecting the distance from the plane
cTe(kT) D 0, is defined as

�
fRL Œ.k C 1/ T � D fRL .kT / C ı sgn Œs .kT /� for k < kRL; kRL 2 CC;

fRL Œ.k C 1/ T � D 0 for k � kRL:

(5.111)

The positive integer kRL in (5.111) corresponds to the duration of the reaching
phase. We assume that fRL(0) D �cTe(0) D �cnyD. Since fRL(�) is strictly monotonic,
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this assumption also implies that for any k 2 [0; kRL), fRL(�) and cn have opposite
signs. With such representation of the reaching law, we may conveniently split the
design procedure into two phases. First, the sliding plane parameters are selected
for a dead-beat controller, and afterwards, the reaching law is chosen to satisfy the
explicit input constraint (5.107).

Step 1. In the first part of the design, we choose vector c defining the orientation
of the sliding plane s(kT) D cTe(kT) D 0. We opt for the highest responsiveness
provided by dead-beat scheme. Thus, we want the closed-loop characteristic
polynomial det(zIn � Acl) to be equal to zn. Due to the similarity between the
representation of the reaching law given by (5.110) and the mathematical description
of time-varying plane (5.78), this design step can be conducted in a similar way, as
it was done in Sect. 5.1.3.1, Step 2. Consequently, on the basis of (5.85)–(5.93), we
get vector c

cT D �
1 1 1 : : : 1

�
cn;

and the control law

u .kT / D yD � y .kT / �
k�1X

j Dk�np

u .jT / C fRL Œ.k C 1/ T � =cn : (5.112)

Step 2. We need to select the parameter of the reaching law, ı > 0, such that the
resultant control signal will never exceed umax.

First, notice that u(0) D yD C fRL(T)/cn. For k � 1, the control signal satisfies the
relation defined in the following lemma.

Lemma 5.8. If controller (5.112) with function fRL(�) defined by (5.111) is applied
to system (5.7)–(5.10), then for any k � 1,

u .kT / D h Œ.k � 1/ T � C ffRL Œ.k C 1/ T � � fRL .kT /g =cn : (5.113)

Proof. Since fRL(�) is strictly monotonic and satisfies the same initial conditions as
it was assumed in (5.79), the lemma is true as a direct consequence of the reasoning
presented in (5.96)–(5.98). This concludes the proof of the lemma. ut

Using the definition of function fRL(�) (5.111), we can represent control law
(5.113) as

�
u .kT / D h Œ.k � 1/ T � C ı sgn Œs .kT /� =cn for k < kRL;

u .kT / D h Œ.k � 1/ T � for k � kRL:
(5.114)

It follows from (5.2) that 8k, 0 � h(kT) � dmax. Therefore, the control signal
given by (5.114) is nonnegative and bounded by dmax < umax for any k � kRL. Due
to the delay in the feedback loop, the first packets may arrive at the node no sooner
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than at kT D npT. Since the buffer is assumed to be empty before the control process
commences at kT D 0, then h(k < np) D 0. As a consequence, in order to ensure that
control signal (5.114) conforms to inequalities (5.107) for all k < kRL, parameter ı

should satisfy the following constraint:

�
ı � jcnj umax for 0 � k � np;

ı � jcnj .umax � dmax/ for k > np:
(5.115)

This ends selection of the reaching law and concludes the design procedure. The
obtained controller calculates the transmission rate from (5.112) with function fRL(�)
defined by (5.111) subject to constraint (5.115).

The analysis of the mathematical formulation of the designed reaching-law-
based algorithm (5.110)–(5.113) in comparison with the findings related to the
controller using a time-varying plane (5.93) indicates functional similarities of both
strategies. In fact, in the considered application, if we describe the movement of the
time-varying plane by (5.111) with the initial condition fRL(0) D �cTe(0), the two
approaches become equivalent. This is apparent if we consider the trajectory of the
system representative point sketched for a hypothetical second-order discrete-time
system in Fig. 5.30. The reaching law changes the position of the representative
point so that it approaches a fixed sliding plane (line in the example depicted in
Fig. 5.30). We can imagine that the plane is not fixed but moves from s(0) to
the final position passing through the origin of the error state space. Then, if the
control law is formulated so that it maintains the system representative point on
the moving plane, the point trajectory matches the one imposed by reaching law.
Consequently, in both cases, we obtain identical system dynamics. When comparing
the two approaches to SM controller design, it is also valuable to confront the most
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efficient function governing the movement of time-varying plane (5.82) with the one
implied by reaching law (5.111). It is done in Example 5.3.

Example 5.3. Let us analyze the rate assignments in the interval [0, k0T], where k0

is either kVP or kRL, for a data source constrained by the maximum rate umax D 8
packets per period. Let us assume the system initial state – cTe(0) D �35 packets.
This implies that the reaching phase should last for at least k0 D 5 periods. The
function describing the displacement of time-varying sliding plane (5.82) partitions
the distance from the plane final position (passing through the origin of the state
space) into segments of equal size, yielding the constant transmission rate of seven
packets per period. In contrast, function (5.111) defining the reaching law proposed
by Golo and Milosavljević [15] allows for the maximum rate in the first k0 – 1 steps
and covers the remaining distance from the final position of the plane in the last
period. The trajectory of the system representative point resulting from the execution
of the strategies being compared is illustrated in Fig. 5.31. The rate assignments are
shown in Fig. 5.32. Let us imagine a communication scenario in which a web page
consisting of 24 packets is to be retrieved from a server operating at the source.
The reaching-law-based controller allows us to transmit the page in three periods,
whereas the controller with time-varying plane described by (5.82) requires at least
four periods. This shows that in certain cases, the reaching-law-based controller
(5.112) may exploit the network capabilities in a more efficient way than the one
using time-varying plane (5.93).

Properties of the Proposed Controller

The properties of the proposed nonlinear controller developed using reaching-law
approach will be formulated as two theorems. The first one shows that the controller
does not cause buffer overflow. The second theorem, in turn, defines the minimum
value of the demand queue length (which also constitutes the lower bound of the
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buffer capacity) which will guarantee that the available bandwidth is entirely used
for data transfer.

Theorem 5.9. If controller (5.112) with function fRL(�) defined by (5.111) is applied
to system (5.7)–(5.10), then the queue length in the bottleneck node buffer is always
upper-bounded by its demand value yD.

Proof. The buffer at the bottleneck node is empty for any kT � RTT D npT. Hence,
it suffices to show that the proposition is satisfied for any k > np. Using Lemma 5.8,
the queue length given by (5.6) can be presented as (see also (5.106))

y .kT / D u.0/ C
k�np�1X

j D1

h Œ.j � 1/ T � �
k�1X
j D0

h .jT /

C
k�np�1X

j D1

ffRL Œ.j C 1/ T � � fRL .jT /g =cn

D yD �
k�1X

j Dk�np�1

h .jT / C fRL
��

k � np

�
T
�
=cn : (5.116)

Since the utilized bandwidth h(�) is always nonnegative, and for any k, f (kT) and
cn have opposite signs, y(kT) given by (5.116) never exceeds the demand value yD.
This ends the proof. ut
Theorem 5.10. If controller (5.112) with function fRL(�) defined by (5.111) is
applied to system (5.7)–(5.10), and the demand queue length satisfies the inequality
yD > dmax(np C 1), then for any k � kRL C np C 1, the queue length is strictly posi-
tive.
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Proof. It follows from (5.111) that for k > kRL function fRL(kT) D 0. Consequently,
for k � kRL, controller (5.112) becomes equivalent to control law (5.93), whose ac-
tion influences the packet queue length for k � kRL C np C 1. Since both controllers
incorporate the rate history in exactly the same way, then taking into account relation
(5.105), the proposition is valid as a direct consequence of Theorem 5.6. This
completes the proof. ut

The comparison of Theorems 5.9 and 5.10, defining the crucial properties of
the SM controller employing reaching law, with Theorems 5.5 and 5.6 formulated
for the one with time-varying plane, confirms the functional equivalence of both
solutions in the considered system. The principal difference between the two
strategies, apart from distinct conceptual foundations, relates to the method of
fulfilling constraint (5.107). The strategy developed using the idea of time-varying
plane attempts to satisfy this constraint by adjusting the duration of the plane
movement (reminiscent of the reaching phase). As a result, it gives indirect control
over the actual extreme rate value. Controller (5.112), on the other hand, allows for
explicit definition of the maximum permitted rate and provides implicit control over
the duration of the reaching phase.

The properties of the reaching-law-based strategy have been verified in a
simulation scenario discussed in the following section.

Simulation Results

Performance of nonlinear controller (5.112) is verified for the network model
described in Sect. 5.1.2. We leave the model parameters unchanged: discretization
period T D 10 ms, round-trip time RTT D npT D 10T, and the maximum available
bandwidth dmax D 10 packets per period. Similarly as before, we run two series of
simulation tests: one for the slowly varying bandwidth shown in Fig. 5.7 and another
for the stochastic pattern Dnorm(mean, standard deviation) D Dnorm(5 packets, 5
packets) illustrated in Fig. 5.12. In both tests, we assume the maximum allowed rate
umax D 15 packets > dmax. Parameter ı governing the reaching law is set according
to (5.115) as jcnjumax D 15 packets for 0 � k � 10, and jcnj(umax–dmax) D 15–10 D 5
packets for k > 10.

Test 1. In order to ensure that all of the available bandwidth is used for data transfer,
we set yD in the first series of simulations according to the guidelines provided by
Theorem 5.10 as 112 > 110 packets. The results of the simulation for the available
bandwidth depicted in Fig. 5.7 are given in Figs. 5.33–5.35: the transmission rate
established by the controller in Fig. 5.33, the buffer occupancy in Fig. 5.34, and
the sliding variable in Fig. 5.35. We can see from the plot in Fig. 5.33 that the
application of a properly tuned reaching law guarantees that the input rate constraint
is satisfied. The controller assigns the maximum rate of 15 packets in the first
7 periods, and 7 more packets in the last step (step 7) before going to zero at
kT D 8T when the reaching phase terminates. This is confirmed by the analysis of
the sliding variable presented in Fig. 5.35. It follows from this figure that s(kT),
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which constitutes a measure of the distance from the sliding plane, decreases from
the initial value s(0) D cTe(0) D 112 packets to zero in 8 steps. In the first 7 periods,
the distance diminishes at the rate of 15 packets per period, and in the last step before
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Fig. 5.36 Transmission rate

reaching the plane s(kT) D 0, the system representative point covers the remaining
difference of 7 packets. Consequently, the reaching phase terminates at kT D 8T and
the corresponding kRL D 8. Afterwards, the system is maintained in a stable quasi-
sliding motion. Indeed, despite the mismatched external disturbance d(�), the system
representative point never leaves the one-sided band of 10 packets from the plane.
Moreover, the buffer occupancy presented in Fig. 5.34 demonstrates that the queue
length never exceeds its demand value yD D 112 packets, which means that packet
losses are indeed eliminated. Furthermore, following the initial phase, the queue
length does not fall to zero, implying that all of the available bandwidth is used for
data transfer. These two observations indicate that the maximum throughput in the
analyzed communication system is achieved.

Test 2. In the second run of simulations, we verify the controller performance in the
presence of the stochastic bandwidth fluctuations Dnorm(5, 5) shown Fig. 5.12. Since
the mean bandwidth is much lower than the maximum one dmax, in the tests, we use
dL D 5 packets instead of dmax D 10 packets in the formula specified in Theorem
5.10 and adjust yD as 56 > 55 packets. As a consequence, we may expect lower
throughput than in Test 1 but at a propitious trade-off in buffer size. The test results
are illustrated in Figs. 5.36–5.38: the rate allocation in Fig. 5.36, the packet queue
length in Fig. 5.37, and the sliding variable in Fig. 5.38.

The controller allocates the maximum rate of 15 packets in the first three periods
(0–2) and 11 packets in period 3. Period 3 is the last one before the system
representative point meets the sliding plane (at instant kT D 4T) when the reaching
phase terminates. This is in agreement with the evolution of the sliding variable
depicted in Fig. 5.38. The value of s(kT) decreases from s(0) D cTe(0) D 56 packets
to zero in four steps. In the first three periods, the distance drops by 15 packets
per period, and in the last step before reaching the plane s(kT) D 0, the system
representative point advances by 11 packets. Therefore, the reaching phase indeed
ends at kT D 4T (kRL D 4). In the subsequent part of the transmission, the system
representative point never leaves the one-sided band of 10 packets from the plane,
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which demonstrates a properly established quasi-sliding motion in discrete-time
domain. If we analyze the queue length evolution presented in Fig. 5.37, we will
notice that y(kT) decreases to zero in several periods. This means that certain part of
the available bandwidth may be left unused. The numerical computations indicate
that bandwidth utilization degrades to 86% as compared with the results of Test 1.

The plot of function fRL(kT) resulting from the application of reaching law
(5.108) for the analyzed case of cn D 1 is depicted in Fig. 5.39. Curve (a) in this
figure was obtained in Test 1, whereas curve (b) represents fRL(kT) from Test 2.

5.1.3.3 Application of a Saturation Element

In the previous sections, we considered two methods for constraining excessive
input rate. The presented techniques, strongly related to the theory of sliding-
mode control, shape the trajectory of the system representative point so that
the control effort exerted in a single period can be reduced. The first technique
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employs a time-varying hyperplane instead of the typically considered fixed one
and appropriately adjusts the hyperplane dynamics in order to meet (indirectly)
the imposed input constraint. The second method uses a fixed hyperplane but
enforces behavior of the system in the reaching phase such that the representative
point approaches the plane in a prescribed manner according to the limitations
of the input signal. The first technique gives implicit control over the maximum
transmission rate value and explicit one over the duration of the reaching phase.
The second method, in turn, allows for direct control over the maximum permitted
transmission rate in the system and adapts the duration of the reaching phase
indirectly. In this section, we present another technique used to ensure that the
control signal never exceeds the specified upper bound. This method involves the
use of a saturation element, which clamps down any transmission rate generated
by the controller exceeding the specified upper limit. In this way, similarly as in
the reaching-law-based approach presented in the previous section, explicit control
over the maximum value of the control signal is provided. This direct approach
would probably be favored by telecommunications and software practitioners due
to the smallest intricacy at the implementation level. Moreover, it might prove more
tractable for control engineers not necessarily familiar with sophisticated, though
interesting, theory of discrete sliding-mode control.

Proposed Control Strategy

Similarly as in the previous section, we assume that the control signal is limited
from above by a finite value umax > 0, precisely as it was specified by inequalities
(5.109). The amount of data to be sent by the source at time kT is determined by the
controller according to the following formula:

u .kT / D min f! .kT / ; umaxg ; (5.117)
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where

! .kT / D yD � y .kT / �
k�1X

j Dk�np

u .jT /: (5.118)

In order to adequately respond to the changing networking conditions and to
ensure the maximum throughput when the available bandwidth d(kT) D dmax, it is
assumed that umax > dmax.

Properties of the Proposed Strategy

The feasibility conditions for any flow control algorithm developed for a data trans-
mission network require the source rate of sending packets into the network to be
finite and nonnegative. The first condition of a bounded rate for the analyzed control
algorithm is satisfied by definition (5.117). We will prove that the transmission rate
calculated according to (5.117) and (5.118) is always nonnegative so that the second
requirement is also fulfilled.

It follows directly from definition (5.117) that at any time instant kT � 0 the
generated transmission rate satisfies the following inequality:

u .kT / � ! .kT / : (5.119)

We show in the lemma formulated below that the rate u(kT) is indeed nonnegative
for any kT � 0.

Lemma 5.11. If controller (5.117) with function !(�) defined by (5.118) is applied
to system (5.7)–(5.10), then for any k � 0, the generated transmission rate is
nonnegative, i.e.,

8
k�0

u .kT / � 0: (5.120)

Proof. At the initial time, function !(0) D yD. Therefore, the flow rate
u(0) D minfyD, umaxg equals either yD or umax. Consequently, since both yD and
umax are assumed to be positive, inequality (5.120) is satisfied for k D 0. On the
other hand, at any time instant kT > 0, if the amount of data to be sent by the source
is umax, then the flow rate u(kT) is also strictly positive. Hence, in order to complete
the proof, it is only necessary to show that (5.120) is satisfied for any k > 0 when
u(kT) D !(kT). On the basis of (5.3), we can write the following relation for the
queue length at instant kT:

y .kT / D y Œ.k � 1/ T � C u
��

k � np � 1
�

T
� � h Œ.k � 1/ T � : (5.121)
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Since in the analyzed case u(kT) D !(kT) and the bottleneck queue length
satisfies (5.121), we obtain

u .kT / D ! .kT / D yD � y .kT / �
k�1X

j Dk�np

u .jT /

D yD � y Œ.k � 1/ T � � u
��

k � np �1
�

T
�C h Œ.k � 1/ T ��

k�1X
j Dk�np

u .jT /

D yD � y Œ.k � 1/ T � �
k�1X

j Dk�np�1

u .jT / C h Œ.k � 1/ T �

D yD � y Œ.k � 1/ T � �
k�2X

j Dk�np�1

u .jT / � u Œ.k � 1/ T � C h Œ.k � 1/ T �

D ! Œ.k � 1/ T � � u Œ.k � 1/ T � C h Œ.k � 1/ T � : (5.122)

Taking into account inequality (5.119) and the fact that the utilized bandwidth is
always nonnegative, we obtain

u .kT / � h Œ.k � 1/ T � � 0; (5.123)

which shows that inequality (5.120) indeed holds at any time instant kT > 0 when
u(kT) D !(kT). This conclusion ends the proof of the lemma. ut

It follows from the analysis presented above that the input constraint is
always satisfied; i.e., the presented algorithm guarantees that for any k � 0,
0 � u(kT) � umax.

In the further part of this section, we present three theorems stating important
properties of the proposed flow control scheme. The first one gives the condition
which must be satisfied in order to eliminate the risk of data loss as a consequence
of exceeding the bottleneck node buffer capacity. Afterwards, the second theorem
provides a sufficient condition for full bottleneck link bandwidth utilization. Finally,
a relation between the control signal u(kT) and the consumed bandwidth is
formulated in the third theorem.

Theorem 5.12. If controller (5.117) with function !(�) defined by (5.118) is applied
to system (5.7)–(5.10), then the queue length in the bottleneck node buffer is always
upper-bounded by its demand value.

Proof. As it has already been proved, data transmission rate u(�) is nonnegative at
any time instant kT. On the other hand, by the definition, u(kT) is smaller than or
equal to !(kT). Therefore, the following relation holds for any time kT � 0:
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yD � y .kT / �
k�1X

j Dk�np

u .jT / D ¨ .kT / � u .kT / � 0: (5.124)

Hence, the queue length satisfies

y .kT / � yD �
k�1X

j Dk�np

u .jT /: (5.125)

Again taking into account that u(kT) is always nonnegative, one concludes that
the queue length indeed never exceeds its demand value. This ends the proof of the
theorem. ut

Another desirable property of the analyzed system is full bottleneck link
bandwidth utilization. Since the bottleneck link bandwidth d(kT) is fully used if the
queue length y[(k C 1)T] is strictly greater than zero, then the next theorem specifies
a condition which guarantees that the queue length in our scheme is always strictly
positive.

Theorem 5.13. If controller (5.117) with function !(�) defined by (5.118) is applied
to system (5.7)–(5.10), the maximum rate umax > dmax, and the demand value of the
queue length yD satisfies the following inequality:

yD > umax
�
np C 1

�
; (5.126)

then for any k � np C 1, the queue length in the bottleneck node buffer is strictly
positive.

Proof. Let us introduce an auxiliary function '(�) defined for any instant kT as

' .kT / D y .kT / C
k�1X

j Dk�np

u .jT /: (5.127)

This function, reminiscent of (4.11) in continuous-time domain, represents the
sum of three quantities:

1. The number of packets currently waiting in the bottleneck buffer y(kT).
2. The number of “in-flight” packets, i.e., those which have already been sent by

the source but have not yet arrived at the bottleneck node.
3. The number of packets still required to be sent by the source (this is because the

controller has already sent a command signal to the source).

The sum
Pk�1

j Dk�np
u .jT / in (5.127) accounts for the overall number of packets

defined in 2 and 3. Substituting (5.6) into (5.127), one can express function '(kT) as

http://dx.doi.org/10.1007/978-1-4471-4147-1_4
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' .kT / D
k�np�1X

j D0

u .jT / �
k�1X
j D0

h .jT /C
k�1X

j Dk�np

u .jT /D
k�1X
j D0

u .jT /�
k�1X
j D0

h .jT /:

(5.128)

Hence, taking into account assumption (5.126), we have

'.0/ D 0 < yD � umax
�
np C 1

�
< yD � umax: (5.129)

Furthermore, if for some k the following inequality '(kT) < yD � umax is satisfied,
then

¨ .kT / D yD � y .kT / �
k�1X

j Dk�np

u .jT / D yD � ' .kT / > umax; (5.130)

which implies according to (5.117) that the transmission rate actually assigned
to the source u(kT) D umax. Consequently, since umax > dmax, we conclude that if
'(kT) < yD � umax, then function '(�) increases at least at the rate umax � dmax.
Moreover, since for any time kT < npT the consumed bandwidth h(kT) D 0, then
if '(kT) < yD � umax and condition (5.126) is satisfied, '(�) increases exactly at the
rate umax at each time instant kT D T, : : : , (np � 1)T reaching npumax at the time
npT. On the other hand, the consumed bandwidth for any time kT � npT satisfies
inequality h(kT) � dmax. This implies that '(�), which is the sum of packets waiting
in the buffer and those scheduled for arrival at the node in the next np periods, may
decrease at most at the rate dmax.

Further, we will show that function '(�) after reaching npumax never decreases
below this value; i.e., we will demonstrate that the following inequality holds for
any kT � npT:

' .kT / � npumax: (5.131)

In order to prove this statement, we will apply the principle of the mathematical
induction. Let us first check whether (5.131) holds for k D np C 1. If condition
(5.126) is satisfied, then '(npT) D npumax < yD � umax. This implies, according to
(5.130) and (5.117), that u(npT) D umax. Consequently, we have

'
��

np C 1
�

T
� D

npX
j D0

u .jT / �
npX

j D0

h .jT / D
np�1X
j D0

u .jT / �
np�1X
j D0

h .jT /

C u
�
npT

� � h
�
npT

� D '
�
npT

�C u
�
npT

� � h
�
npT

�
D npumax C umax � h

�
npT

� � npumax C umax � dmax > npumax;

(5.132)
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which shows that (5.131) is indeed true for k D np C 1. Now, let us assume that
(5.131) holds for some integer l > np C 1. We will show that this implies that (5.131)
is also satisfied for l C 1. For this purpose, we will consider the following two cases:
the first one when u(lT) D !(lT) and the second one when u(lT) D umax.

Case 1. When it occurs that u(lT) D !(lT), then taking into account the relation
!(lT) D yD � '(lT) and inequality umax > dmax, we obtain

' Œ.l C 1/ T � D ' .lT / C u .lT / � h .lT / D ' .lT / C ! .lT / � h .lT /

D ' .lT / C yD � ' .lT / � h .lT / D yD � h .lT /

� yD � dmax > yD � umax > npumax: (5.133)

Case 2. In the second situation, i.e., when u(lT) D umax, we can write

' Œ.l C 1/ T � D ' .lT / C u .lT / � h .lT / D ' .lT / C umax � h .lT /

� ' .lT / C umax � dmax > ' .lT / > npumax: (5.134)

Therefore, applying the principle of the mathematical induction, we conclude
that relation (5.131) actually holds for any time kT > npT.

Finally, taking into account relations (5.128) and (5.131) and the fact that the
flow rate generated by the analyzed controller is always upper-bounded by umax, for
any time kT > npT, we get

y .kT / D ' .kT / �
k�1X

j Dk�np

u .jT / > npumax � npumax D 0: (5.135)

This completes the proof. ut
Theorem 5.13 shows that by using strategy (5.117) with condition (5.126), one

can ensure full bottleneck link bandwidth utilization for any time kT > npT. Further,
in the next theorem, a relation between the flow rate and the consumed bandwidth
is stated and proved.

Theorem 5.14. If controller (5.117) with function !(�) defined by (5.118) is applied
to system (5.7)–(5.10), the demand queue length yD > umax and the maximum flow
rate umax > dmax, then there exists a nonnegative integer k! satisfying

k! <
yD � umax

umax � dmax
C 1; (5.136)

such that for any k > k! , the following relation holds:

u .kT / D h Œ.k � 1/ T � : (5.137)

Furthermore, when yD � umax, relation (5.137) is satisfied for any k � 1.
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Proof. First, we will consider the situation when the demand queue length is smaller
than or equal to the maximum allowed rate, i.e., the situation when the inequality
yD � umax holds. It will be shown that in such circumstances the following relation
is always satisfied:

8
k�0

! .kT / � umax; (5.138)

which from the algorithm definition (5.117) directly implies u(kT) D !(kT).
In order to prove that relation (5.138) is indeed satisfied for any time kT � 0,

we apply the principle of the mathematical induction. At the initial time,
!(0) D yD � umax. Therefore, inequality (5.138) holds for k D 0. Now, let us assume
that (5.138) is true for some integer l > 0, and we will show that it is also satisfied
for l C 1. Using equations (5.118) and (5.121), and taking into account the fact that
u(kT) D !(kT), we get

! Œ.l C 1/ T � D yD � y Œ.l C 1/ T � �
lX

j Dl�npC1

u .jT /

D yD � y .lT / � u
��

l � np

�
T
�C h .lT / �

lX
j Dl�npC1

u .jT /

D yD � y .lT / �
l�1X

j Dl�np

u .jT / � u .lT / C h .lT /

D ! .lT / � u .lT / C h .lT / : (5.139)

The utilized bandwidth h(�) never exceeds dmax. Since we assumed that
u(lT) D !(lT), we have

! Œ.l C 1/ T � D ! .lT / � u .lT / C h .lT / D h .lT / � dmax < umax; (5.140)

which ends the induction proof of inequality (5.138).
Since it follows from (5.138) that at any time instant kT � 0 the flow rate

u(kT) D !(kT), then using expression (5.122), for any k � 1, we obtain

u .kT / D ! Œ.k � 1/ T � � u Œ.k � 1/ T � C h Œ.k � 1/ T � D h Œ.k � 1/ T � : (5.141)

Equation 5.141 shows that if yD � umax, then (5.137) indeed holds for any positive
integer k.

Now, let us consider the complementary case, i.e., the situation when yD > umax.
In order to demonstrate relations (5.136) and (5.137), we will use the auxiliary
function '(�) defined by (5.127). On the basis of the argument presented in the proof
of Theorem 5.13, we know that if for some k the inequality '(kT) < yD � umax is
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satisfied, then it follows from equation (5.128) and the assumption umax > dmax that
function '(kT) increases at least at the rate umax – dmax. Thus, there exists such a
finite time instant k!T when the following condition

' .kT / � yD � umax (5.142)

is satisfied for the first time.
We will determine the latest instant when inequality (5.142) can be satisfied for

the first time. Since function '(kT) is smaller than the difference yD � umax until
k < k! , then

' Œ.k! � 1/ T � D
k!�2X
j D0

u .jT / �
k!�2X
j D0

h .jT / < yD � umax: (5.143)

Moreover, since the flow rate for any k < k! is equal to umax, then inequality
(5.143) can be rewritten as

.k! � 1/ umax �
k!�2X
j D0

h .jT / < yD � umax: (5.144)

Number k! in this equation is the biggest when for any time from 0 up to
(k! � 2)T, the consumed bandwidth is at its maximum dmax. Consequently, from
relation (5.144), we get the following inequality:

.k! � 1/ .umax � dmax/ < yD � umax; (5.145)

which gives the estimate of k! specified by relation (5.136).
We will now demonstrate that for any time kT > k!T, condition (5.142) is indeed

satisfied. For that purpose, we take into account some k > k! , and we consider two
cases: the first one when !(kT) � umax and the second one when !(kT) > umax.

Case 1. From the definition of functions !(�) and '(�) (relations (5.118) and (5.127),
respectively), if !(kT) � umax, then we have

! .kT / D yD � ' .kT / � umax: (5.146)

From this inequality, it can be easily noticed that condition (5.142) actually holds
for any k > k! .

Case 2. Now let us consider the second case, i.e., the situation when !(kT) > umax.
In this situation, in order to show that condition (5.142) holds for any k > k! , one can
apply the principle of the mathematical induction. We have already demonstrated
that there exists such a moment k!T when inequality (5.142) is satisfied. Now, let
us assume that for some instant lT > k!T the considered condition holds, and we
will show that this implies that the condition is also satisfied at the time instant
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(l C 1)T. Since in the analyzed case !(lT) > umax, then u(lT) D umax. Taking into
account equation (5.128) and inequality umax > dmax, we get

' Œ.l C 1/ T � D ' .lT / C u .lT / � h .lT / D ' .lT / C umax � h .lT /

� ' .lT / C umax � dmax � ' .lT / � yD � umax: (5.147)

Consequently, we may conclude that for any k > k! inequality (5.142) is always
satisfied.

Condition (5.142) implies that for any kT > k!T, !(kT) � umax and u(kT) D !(kT).
Therefore, it immediately follows from equation (5.122) that relation (5.137) is
indeed satisfied for any k > k! . This ends the proof. ut

Theorem 5.14 shows a direct relation between the rate generated by the algorithm
and the number of packets actually sent on the output interface of the bottleneck
node at the previous time instant. Moreover, if we compare strategy (5.119) with the
controllers presented in Sects. 5.1.3.1 and 5.1.3.2, we can notice that, in addition
to constraining high initial flow rate, all three algorithms guarantee that the packet
queue length in the bottleneck node buffer does not exceed the demand level yD (see
Theorems 5.5, 5.9, and 5.12). However, it comes from Theorems 5.6, 5.10, and 5.13
that the algorithms differ in the value of yD which is proved to ensure full bandwidth
utilization. The first two strategies, given by (5.93) and (5.112), are demonstrated
to achieve this goal with smaller yD value than controller (5.119). According to
the theorems, strategies (5.93) and (5.112) require y�

D > dmax.np C 1/, whereas
controller (5.119) demands y��

D > umax.np C 1/ which is bigger than y�
D since

umax > dmax. Consequently, controller (5.119) requires larger buffer capacity to be
reserved at the node to guarantee loss-free and maximally efficient data transfer.
The smaller buffer requirements of controllers (5.93) and (5.112) come at a price. It
follows from Theorems 5.6, 5.10, and 5.13 that the state of full bandwidth utilization
is guaranteed after longer time period since the beginning of the control process
(which starts at kT D 0). In the case of controller (5.119), the maximum efficiency
is ensured for k D k�� > np C 1, whereas in the case of controller (5.93), it
is guaranteed for k � kVP C np C 1 > k** and in the case of controller (5.112) for
k � kRL C np C 1 > k** (note that both kVP and kRL are larger than zero).

The properties of the nonlinear controller (5.119) are verified in a series of
simulation tests described in the remainder of this section.

Simulation Results

The simulations are run for the same network model which was considered
previously in this chapter, i.e., for the connection characterized by the delay
consisting of np D 10 periods, and a single bottleneck node on the data route
with bandwidth on the output interface limited by dmax D 10 packets per period.
Performance of controller (5.119), referred to as the saturating controller in the
simulation description, is compared with the other algorithms reported so far in
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Table 5.4 Demand queue
length selection in Test 1

Controller yD [packets]

Linear with LQ optimal plane 302 > 300
Nonlinear with time-varying plane 112 > 110
Nonlinear employing reaching law 112 > 110
Nonlinear with saturation element 167 > 165

this chapter, i.e., SM controller with LQ optimal sliding plane (5.67), nonlinear SM
controller with time-varying plane (5.93), and reaching-law-based SM controller
(5.112). It is assumed that either the channel constraints or the source limitations do
not permit transmission rate bigger than 15 packets per period. Hence, the maximum
rate which can be assigned by the algorithms is set as umax D 15 packets. Two series
of simulations are run for the bandwidth patterns illustrated in Figs. 5.7 and 5.12.
The results obtained in the first scenario are presented in section Test 1, and those
pertaining to the second scenario in the Test 2 part.

Test 1. First, we verify the controller performance in the presence of the available
bandwidth evolving according to the plot shown in Fig. 5.7. We choose parameters
of each controller so that (1) the rate assigned to the source does not exceed the
allowed maximum of 15 packets and (2) all of the available bandwidth is consumed
for data transfer. Consequently, the gain of the SM controller with time-invariant
LQ optimal plane (a) is selected as � D 0.049 and the demand queue length,
according to Theorem 5.2, as 302 > 300 packets. Notice that the gain selection
� D 0.049, according to (5.58), corresponds to the weighting factor w D 0.0026 used
in performance index (5.41). The duration of the plane movement for controller
(5.93) (curve b) in the graphs) is chosen as kVP D 8 and the demand queue length,
according to Theorem 5.7, as 112 > 110 packets. Parameter ı governing the reaching
law applied in controller (5.112) is set according to (5.115) as jcnjumax D 15 packets
for 0 � k � 10 and jcnj(umax � dmax) D 15 � 10 D 5 packets for k > 10. The demand
queue length for this algorithm is adjusted according to Theorem 5.10 as 112 > 110
packets. Finally, the saturation limit of controller (5.119) is set directly as umax D 15
packets. The demand queue length resulting in the maximally efficient bandwidth
usage for this controller is selected according to Theorem 5.13 as 167 > 165
packets. For convenience, yD (which also constitute the minimum buffer capacity
requirement) are grouped in Table 5.4.

The transmission rate established by the controllers is shown in Fig. 5.40 and
the buffer occupancy in Fig. 5.41. The plots depicted in Fig. 5.40 demonstrate that
the rate generated by the algorithms is indeed nonnegative and never exceeds 15
packets. We can also notice from these plots how each of the nonlinear controllers
(5.93), (5.112), and (5.119) outperforms the linear one (5.67) in the response speed
to bandwidth changes. The nonlinear controllers are also superior over the linear one
with respect to the buffer capacity requirements. It follows from the curves shown
in Fig. 5.40 that in each case the queue length does not grow beyond the demand
value given in Table 5.4, thus ensuring loss-free transmission. However, the largest
queue level results from the application of the linear scheme (5.67). The largest
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linear controller (5.67), b–d
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queue length also means that, on average, packets will need to wait for a longer
time interval in the buffer before being transmitted towards the destination. This
degrades the measure of quality of service represented by mean transfer latency.

We also compare the controllers with respect to performance index (5.41) (with
w D 0.0026) for a disturbance-free scenario d(kT) � 0. The numerical values shown
in Table 5.5 indicate that nonlinear controllers perform better than the optimal one
with respect to the considered quality criterion. This somewhat counterintuitive
observation comes from the fact that the considered nonlinear algorithms exert more
efficient control over the maximum rate value and provide better buffer size policy.
Indeed, it comes from Theorems 5.2, 5.7, 5.10, and 5.13 that when the considered
nonlinear control laws are applied to regulate the flow of data, the demand queue
length value can be reduced as compared with the linear controller, but still the
conditions of full bandwidth utilization are maintained.

Test 2. We can see from the results of Test 1 that all three nonlinear controllers
perform better than the LQ optimal one with respect to buffer capacity savings and
quadratic quality criterion. However, a possible drawback of all these nonlinear
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Table 5.5 Controller
comparison based on
performance index (5.41)

Controller J2

Linear with LQ optimal plane 3,600
Nonlinear with time-varying plane 1,018
Nonlinear employing reaching law 1,043
Nonlinear with saturation element 1,761
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Fig. 5.42 Transmission rate:
a linear controller (5.67) and
b nonlinear controller (5.119)

control schemes is propagating high-frequency bandwidth fluctuations into the
control signal which is thus more difficult to follow by the transmitters. In this
simulation scenario, we compare performance of the LQ optimal controller with
the nonlinear one incorporating a saturation element (note that all three nonlinear
controllers do not apply rate smoothening, and their response to highly variable
bandwidth is quite similar). Therefore, in the second scenario, we run the simu-
lations for the stochastic bandwidth pattern illustrated in Fig. 5.12. The controller
parameters are set exactly the same as in Test 1.

The transmission rate generated by the controllers is depicted in Fig. 5.42 and
the buffer occupancy in Fig. 5.43. The plots given in Fig. 5.42 show that the rate
generated by the algorithms is always confined to the interval [0, 15 packets]. The
linear controller provides a smoother control signal in response to the oscillating
bandwidth than the nonlinear one. In fact, in the case of the saturating controller, the
bandwidth variations are directly translated to the fluctuations of the transmission
rate, which is inconvenient since the assigned rate function is more difficult to
follow by the data source. Since the linear controller with LQ optimal sliding plane
can reduce the degree of oscillations, we conclude that from the point of view of
preserving the transmission consistency, it is a preferred solution over the fast-
responsive nonlinear controllers. The nonlinear controllers, however, are superior
to the linear one with respect to the buffer capacity requirements, as indicated in
Table 5.4. It can be seen from Fig. 5.43 that the queue length under the control
of the linear scheme is larger than the one resulting from the operation of the
saturating controller. Consequently, the linear controller is expected to provide
longer average packet transfer delay than the nonlinear strategy. However, in both
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cases, the queue length remains within the assigned buffer space and is positive.
Since we assumed in the simulations that the only source of packet drops in the
considered communication system is the congestion, a positive, finite queue length
implies that efficient, loss-free packet transfer is ensured.

5.2 Flow Control in a Network with Variable Delay

In the preceding discussion in this chapter, we considered the communication
system in which the delay in the feedback loop could be assumed constant.
This is well justified in situations where the feedback information is provided by
priority-served control units traveling along a fixed path through the network. The
transmission along a fixed path implies constant propagation delay. In turn, when
control units are not waiting in the node buffers interleaved with packets but are
transferred immediately at the output interfaces after the feedback information is
incorporated, then their queuing delay is zero. Therefore, when control units are
treated with priority over data packets and travel along a fixed route, then their
round-trip time, and consequently the delay in the feedback loop, can be considered
constant. In fact, the only situation when the queuing delay of control units would
be positive in the considered configuration is when the time for calculating and
writing the feedback information exceeds the discretization period. In such a case,
a control unit arriving at a node would meet the previous one in process by the
flow control algorithm. However, in order to keep the network overhead related to
the management traffic (the transfer of control units) low, in practical systems, the
interval between generating subsequent control units is set much bigger than their
processing time.

Unfortunately, in real networks, the delay in the feedback loop rarely remains
constant and equal to the nominal value known to the control algorithm. There are
at least two important factors which make the delay vary during the transmission.
First of all, the route is rarely fixed. Node and link failures, or path optimization
procedures, cause modifications in the routing (or switching) tables at the nodes.
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As the routing tables governing the path selection are dynamically adapted to the
current network topological state, the path taken by packets and feedback carriers
does not remain invariant. It may change during the transmission, usually implying
different propagation latencies at various stages of the control process. Secondly,
if the actual bottleneck for the connection manifests itself, at least temporarily,
at another node (not at the one where the flow control algorithm operates), then
packets will be subject to time-varying queuing delay imposed by that node. This
means that they will arrive at the controlling node with different delay than was
expected by the algorithm, posing a serious stability threat. Therefore, in order to
describe the network behavior in a more accurate way, and open possibility for
robustness improvements, delay variations should be explicitly accounted for both
in the network model, and in the controller design procedure.

In this section, we will extend the network model presented in Sect. 5.1 so
that it will adequately reflect the phenomena related to delay variations. Next, we
will propose two robust controllers which can drive the network into the state of
maximum throughput despite unknown latency fluctuations. The first algorithm
effectively combines the benefits of LQ optimal SM controller (5.67) with a
saturation element in the form of transmission rate limiter. The second robust
algorithm extends the idea of the first controller by additionally incorporating a
novel compensation mechanism, specifically designed for eliminating the adverse
effects of delay variations. We will show that with appropriately tuned controller
parameters, both algorithms are able to maintain fast system dynamics without
the risk of instability in the presence of arbitrary bandwidth and delay variation
patterns. Moreover, we will show that when it is possible to implement the proposed
compensation mechanism, the controller designed for the system with constant
delay will operate in the system with unknown, time-varying delay, as if the delay
was actually fixed.

5.2.1 Network Model

Similarly as in Sect. 5.1, we consider a single flow in the communication network
in which the transmission rate of the data source is determined by the controller
placed at a network node. The packets emitted by the source pass through a series of
nodes operating in the store-and-forward mode without the traffic prioritization to be
finally delivered to the destination. Since the position of the bottleneck may change
in the configuration considered in this section, in order to avoid the ambiguity, the
node at which the control algorithm operates will be termed the controlling node
(and not the bottleneck node as considered so far). The feedback information used
for rate adjustment is provided by the network to the sources by means of control
units (such as acknowledgments in TCP/IP-based networks, or RM cells in ATM).
Packets, as well as control units, experience delay as they pass through the nodes and
travel on the internode links. In contrast to the previously considered scenario, we no
longer expect the delay to remain constant during the transmission. In this section,
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it is assumed that the delay of packets and control units may exhibit fluctuations
affected by the current network state and selected transmission path, potentially
causing instability.

The transmission process in the network with variable delay is illustrated in
Fig. 5.44. The source sends packets at discrete instants of time kT, where T is the
discretization period and k D 0, 1, 2, : : : , in the amounts determined by the algorithm
operating at the controlling node. Packets travel through the network experiencing
variable queuing and propagation latency, and after forward delay TF(k), they appear
at the controlling node. Then, they are transferred at the node output interface
towards the destination in the amounts permitted by the bandwidth at the outgoing
link d(kT). The remaining packets are stored in the buffer where they wait for more
bandwidth to become available in subsequent time periods. The controller uses
the information about past rates and the indication of buffer occupancy y(kT) in
relation to the demand queue length yD to determine the current amount of data
u(kT) to be sent by the source. The information about the current rate is extracted at
the source from control units with backward delay TB(k) after being processed by
the controlling node. The time-varying round-trip time RTT(k) D TB(k) C TF(k) is
assumed to be a multiple of the discretization period, i.e., RTT(k) D np(k)T, where
np(k) and its nominal value Nnp are positive integers satisfying

.1 � ˇ/ Nnp � np.k/ � .1 C ˇ/ Nnp: (5.148)

Parameter ˇ 2 [0, 1) represents the tolerance of delay variation occurring, for
instance, due to variable queuing latency at the nodes on the data path or path
changes enforced by routing algorithm. The relative measure of variation tolerance
was chosen instead of the absolute one since in real networks the packets traveling
longer distances (and traversing more nodes) are potentially subject to bigger
absolute fluctuations. As a result of delay variations, certain assignments (reaching
the data source), as well as packets traveling along different paths, may appear out of
order and concurrently with other pieces which is not uncommon in today networks
[8, 29]. In such situation, it is assumed that all the assignments arriving at the source
(and packets reaching the node) in the same period are added to each other so that
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the congestion problem cannot be resolved by some accidental yet advantageous
control or input signal distortion. In this aspect, the proposed model can be regarded
more general than those presented in [33, 35], which assumed that the sequence of
the emitted packets and feedback carriers is preserved.

The available bandwidth, d(kT), and the utilized one, h(kT), are defined in
the same way as in Sect. 5.1.1, i.e., as the a priori unknown bounded functions
of discrete-time variable kT. The queue length y(kT) evolves according to the
intensity of the incoming, uR(kT) D u[kT � RTT(k)], and outgoing streams of
packets (represented in the model by function h(�)). In the situation when RTT is not
fixed during the transmission, the dynamics of the queue length y(�) can be defined
by means of the following equation:

y Œ.k C 1/ T � D y .kT / C u ŒkT � RTT.k/� � h .kT / : (5.149)

Therefore, for any kT � 0, the packet queue length at the controlling node may
be expressed as

y .kT / D
k�1X
j D0

u ŒjT � RTT.j /� �
k�1X
j D0

h .jT /: (5.150)

Applying the definition RTT(k) D np(k)T, we can rewrite (5.150) as

y .kT / D
k�1X
j D0

u
�
jT � np.j /T

� �
k�1X
j D0

h .jT /: (5.151)

Let us introduce a function

� .kT / D �C .kT / � �� .kT / ; (5.152)

where

�C .kT / D
X

j 2.0;ˇ Nnp�Wnp.kCj /�Nnp�j

u
��

k � Nnp C j
�

T
�

(5.153)

represents the sum of these surplus packets which arrive at the node by the time kT
and earlier than expected since their true latency experienced in the neighborhood
of kT is smaller than the nominal one. In other words, function �C(kT) accounts for
all the packets which in the system with constant delay would reach the node after
the time instant kT, but in the considered network with time-varying delay, they add
to the queue buildup by kT since their actual delay is smaller than the nominal one
NnpT . Similarly,



5.2 Flow Control in a Network with Variable Delay 159

Fig. 5.45 Components of function �(kT) (a) packets arrive at the node earlier than expected
(b) packets do not arrive on time due to excessive delay

�� .kT / D
X

j 2Œ0;ˇ Nnp�Wnp.k�j /> NnpCj

u
��

k � Nnp � j
�

T
�

(5.154)

denotes the sum of these packets which should have arrived at the node by the
time kT, but which cannot reach the node due to the delay greater than the nominal
one. Thus, ��(kT) accounts for all the packets which in the system with constant
delay would appear at the note by kT but in the network with time-varying latency
are excessively delayed and feed the queue at some time instant(s) afterwards. The
components of function �(�) are illustrated in Fig. 5.45.

If one assumes that the rate is bounded by some positive constant umax (which is
the case in any real network), then on the basis of (5.148), the following constraint
can be imposed on the values of �(�):

8
k�0

j� .kT /j � �max D umaxˇ Nnp: (5.155)

With this notation, we can rewrite formula (5.151) for the queue length at instant
kT in the following way:

y .kT / D
k�1X
j D0

u
�
jT � NnpT

�C � .kT / �
k�1X
j D0

h .jT /: (5.156)

Before the connection is established, there are no packets in the buffer, i.e., for
k < 0, y(kT) D 0. If we assume that the controller assigns the initial rate at the instant
kT D 0, then taking into account possible delay variations, the first packets arrive at
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the node no sooner than at kT D .1 � ˇ/ NnpT , and y(kT) D 0 for all k � .1 � ˇ/ Nnp .
Consequently,

y .kT / D
k�Nnp�1X
j D�Nnp

u .jT / C � .kT / �
k�1X
j D0

h .jT /

D
k�Nnp�1X

j D0

u .jT / C � .kT / �
k�1X
j D0

h .jT /: (5.157)

Formula (5.157) reflects the nominal system operation (packets arriving due to
the nominal delay RTT D NnpT ) affected by perturbation �(�) originating from
delay variations. The key point to realize in the assumed modeling concept is that it
suffices to analyze the influence of perturbation �(�) on the queue length only in the
neighborhood of kT defined by constraint (5.148). Because the summing operation
is commutative, any delay variation, as well as packet reordering, occurring in the
previous intervals (earlier than .k � 1 � ˇ Nnp/T ) is already accounted for by the first
sum in (5.157). Consequently, the packets arriving in the far past can be added as if
they had actually reached the node on time, and this will not alter the current queue
length.

5.2.1.1 State-Space Representation

The network model with time-varying delay can also be presented in the state space:

x Œ.k C 1/ T � D Ax .kT / C bu .kT / C v1h .kT / C v2� .kT / ;

y .kT / D qTx .kT / ; (5.158)

where x(kT) D [x1(kT) x2(kT) x3(kT), : : : , xn(kT)]T is the state vector with
x1(kT) D y(kT) representing the bottleneck queue length at instant kT, and the
remaining state variables xj(kT) D u[(k � n C j � 1)T] for any j D 2, 3, : : : , n equal
to the delayed input signal u(�), exactly as in the fixed delay scenario. The state
matrix An�n, input bn�1, and output qn�1 vectors are defined exactly as in (5.8).
Vectors v1 and v2 of size n � 1 are given as

v1 D

2
666664

�1

0
:::

0

0

3
777775

; and v2 D

2
666664

1

0
:::

0

0

3
777775

: (5.159)

The system order n D Nnp C 1, and the demand state vector xd D [yD 0 0 : : : 0]T.
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In the following sections, we will present two control laws for the network with
variable delay described by (5.158) and (5.159). We will also prove a number of the
controller advantageous properties related to regulating the flow of data.

5.2.2 SM Controller with Saturation

In this section, we present a control algorithm which will be demonstrated to provide
robustness with respect to uncertain, fluctuating delay in the considered network.
However, before we state the control law, we first elaborate on the adverse effects of
delay variations degrading the transmission consistency and discuss the importance
of taking appropriate measures to guarantee communication system stability. These
issues are addressed in Example 5.4.

Example 5.4. Let us study the rate allocation in a connection characterized by
the nominal round-trip time NnpT D 5T . We assume that the source transmission
rate is regulated according to control law (5.67) adjusted for a dead-beat scheme,
i.e., with the gain � D 1. The demand queue length yD is set equal to 10 packets.
Consequently, in this example, we analyze the rate allocation performed according
to the following equation:

u .kT / D yD � y .kT / �
k�1X

j Dk�Nnp

u .jT / D 10 � y .kT / �
k�1X

j Dk�5

u .jT /; (5.160)

where u(kT) specifies the number of packets to be sent by the source. For the purpose
of exposition, we assume that there is no bandwidth available at the node output
interface in the whole transmission process (d(�) � 0). If the delay in the feedback
loop is constant and perfectly known to the controller, algorithm (5.160) generates
the rate

u .kT / D
�

10 packets for kT D 0;

0 packets for kT > 0:

The source sends the initial amount of packets after backward propagation delay.
These packets arrive at the node at kT D 5T and are stored in the buffer for all time
afterwards since there is no bandwidth available to drain the queue. This means that
the queue length

y .kT / D
�

0 packets for kT � 5T;

10 packets for kT > 5T:
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Let us investigate the rate assignment performed by controller (5.160), and the
resultant queue length evolution, for the case of time-varying delay (5.148) with the
tolerance ˇ D 0.2. This means that the first packets sent according to the allocation
at kT D 0 may arrive at the node:

1. At kT D 5T, if the instantaneous delay matches the nominal one.
2. At kT D 4T, if the instantaneous delay is shorter than the nominal one.
3. At kT D 6T, if the instantaneous delay exceeds the nominal one.

Note that since the tolerance ˇ D 0.2, the delay range is specified as
4T � RTT(k) � 6T. As point 1 reflects the situation of a fixed and perfectly known
delay considered above, the main emphasis will be placed on the networking events
taking place in situations 2 and 3.

Case 1. First, we analyze the circumstances of the network latency matching the
nominal delay. If packets arrive at the node at kT D 5T, the controller operation
agrees with the actual network state. Thus, we have the rate allocation u(0) D 10
packets and u(kT) D 0 for k > 0. The resulting queue length y(kT) D 0 for k � 5
and y(kT) D 10 packets for k > 5, precisely as indicated above. The system is
asymptotically stable.

Case 2. When packets arrive with delay RTT(4) D 4T at instant kT D 4T, i.e., one
period earlier than expected, then from (5.149), we get

y .5T / D y .4T / C u Œ4T � RT T .4/� � h .4T /

D y .4T / C u.0/ � h .4T / D 0 C 10 � 0 D 10 packets:

However, the rate assignment at kT D 5T is not zero as in the case of transmission
with constant delay. This happens because even though the error at the output
yD � y(kT) vanishes from expression (5.160), the rate history

Pk�1
j Dk�5 u .jT / still

contains the packets assigned for the source at kT D 0. We get

u.0/ D 10 packets;

u .0 < kT < 5T / D 0;

u .5T / D yD � y .5T / �
4X

j D0

u .jT / D 10 � 10 � 10 D �10 packets:

Consequently, in the considered scenario, the packet arrival earlier than predicted
by the controller results in a negative rate value calculated at instant kT D 5T. This
is clearly not appropriate from the point of view of networking application since
a negative rate would imply retrieving from the network the packets which have
already been sent by the source towards the destination.
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Case 3. We consider the circumstances of a prolonged delay, i.e., the case when
packets arrive at kT D 6T instead of kT D 5T (one period after they were expected).
We get from (5.150)

y .kT � 6T / D 0:

This means that the rate assignment at kT D 6T cannot be zero, as in the case
of the network with constant delay. Note that the error at the output yD � y(kT) is
positive. However, the rate history

P6�1
j D1 u .jT / no longer encompasses the initial

assignment from kT D 0, and the history does not compensate the output error. We
have

u.0/ D 10 packets;

u .0 < kT < 6T / D 0;

u .6T / D yD � y .6T / �
6�1X
j D1

u .jT / D 10 � 0 � 0 D 10 packets:

The packets reaching the node at kT D 6T contribute to the queue buildup at
kT D 7T, which leads to the rate assignment performed according to (5.160) at
kT D 7T

u .7T / D yD � y .7T / �
7�1X
j D2

u .jT / D 10 � 10 � 10 D �10 packets:

Therefore, we obtain an inappropriate (negative) rate value. Moreover, a stability
threat arises since there are in-flight packets in the network due to the assignment
from kT D 6T, which will further disrupt the flow control process in the analyzed
connection.

The discussion presented in this example concludes with a simulation run for the
system with delay varying according to the periodic pattern shown in Fig. 5.46. The
values indicated in the graph reflect the actual delay experienced by the packets sent
according to the assignments generated at consecutive time instants. Consequently,
the value of delay shown in Fig. 5.46 at kT D 0 (4T) means that the packets sent due
to the assignment generated by the controller at kT D 0 will arrive at the node with 4
period delay at instant kT D 4T. In the test, we assume that the traffic in the network
is regulated by controller (5.160) operating on the basis of the nominal delay of 5T.
The rate assignments performed by the controller (with negative signals permitted
for the purpose of analysis) are depicted in Fig. 5.47, and the buffer occupancy
in Fig. 5.48. It is clear from the graphs that the controller, which guarantees very
efficient regulation properties in the communication system with fixed delay, is no
longer appropriate for the network with variable latency. In the analyzed scenario,
the system becomes unstable.
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Below, we propose a nonlinear control strategy which provides the desired
robustness to unknown delay variations.

5.2.2.1 Proposed Control Strategy

The controllers presented previously in this chapter were designed with the as-
sumption of perfect knowledge of delay that stayed unchanged during the whole
transmission process. However, as was analyzed in detail in Example 5.4, in the
situation when the true delay differs from the value used in the calculations, the
controllers developed for the nominal system may generate negative transmission
rates and even drive the system into instability. In order to ensure closed-loop
stability, and guarantee feasible rate assignments, we need to introduce structural
modifications into the basic algorithms discussed so far. We propose here to
combine the benefits of smooth response to the changing networking conditions
provided by SM controller with LQ optimal sliding plane (5.67) with the robustness
enhancement resulting from the application of a saturation element. Consequently,
the transmission rate in the network with time-varying delay is calculated from the
following algorithm:

u .kT / D
8<
:

0; if !� .kT / < 0;

!� .kT / ; if 0 � ¨� .kT / � umax;

umax; if ¨� .kT / > umax;

(5.161)

where umax > dmax, and function !� (�) is defined as

¨� .kT / D �

2
4yD � y .kT / �

k�1X
j Dk�Nnp

u .jT /

3
5 (5.162)

with the gain � 2 (0, 1]. Notice that this algorithm can be regarded as a modification
of the one given by (5.117) and (5.118) with function !� (�) replacing !(�) (the
two functions are identical for � D 1), and additional transmission rate constraint
introduced at the zero level. Thus, the rate assigned according to the robust control
law (5.161) and (5.162) is always limited to the interval [0, umax], which guarantees
feasible transmission rate allocation.

In the next section, we formulate important properties of control law (5.161) and
(5.162). The described properties are demonstrated analytically, and afterwards, the
algorithm performance is verified in numerical tests.

5.2.2.2 Properties of the Proposed Strategy

The properties of nonlinear controller (5.161) and (5.162) will be specified in two
theorems. The first proposition shows how to select the buffer capacity to always
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accommodate the entire packet queue and in this way eliminate losses originating
from congestion. The second theorem states that with the appropriately chosen
demand queue length, there are always some packets in the buffer, which implies
that all of the available bandwidth at the bottleneck link is used for data transfer.

Theorem 5.15. If controller (5.161) with function !� (�) defined by (5.162) is
applied to system (5.158) and (5.159), then the queue length in the bottleneck node
buffer is always upper-bounded, i.e., for any k � 0,

y .kT / � ymax D yD C umax C �max: (5.163)

Proof. It follows from the algorithm definition and the system initial conditions that
the buffer at the bottleneck node is empty for any k � .1 � ˇ/ Nnp . Consequently,
it is sufficient to show that the proposition holds for all k > .1 � ˇ/ Nnp . Let us
consider some integer l > .1 � ˇ/ Nnp and the value of function !� (�) at the time
instant lT. Two cases ought to be analyzed: the situation when !� (lT) � 0 and the
circumstances when !� (lT) < 0.

Case 1. We investigate the situation when !� (lT) � 0. Directly from the definition
of function !� (�), (5.162), we get

¨� .lT / D �

2
4yD � y .lT / �

l�1X
j Dl�Nnp

u .jT /

3
5 � 0; (5.164)

which leads to

y .lT / � yD �
l�1X

j Dl�Nnp

u .jT /: (5.165)

From the algorithm definition, in turn, it follows that u(�) is always nonnegative,
which implies y(lT) � yD. This ends the first part of the proof.

Case 2. In the second part of the proof, we analyze the situation when !� (lT) < 0.
First, we find the last instant l1T < lT when !� (�) was nonnegative. According to
(5.162), !� (0) D �yD > 0 since both � and yD are positive, and moment l1T indeed
exists. If !� (l1T) � 0, then, with analogy to (5.164) and (5.165), we have

!� .l1T / D �

2
4yD � y .l1T / �

l1�1X
j Dl1�Nnp

u .jT /

3
5 � 0 (5.166)

and

y .l1T / � yD �
l1�1X

j Dl1�Nnp

u .jT /: (5.167)
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The queue length at instant lT can be expressed relative to y(l1T) as

y .lT / D y .l1T / C
l�Nnp�1X

j Dl1�Nnp

u .jT / C � .lT / �
l�1X

j Dl1

h .jT /: (5.168)

Applying inequality (5.167), we get

y .lT / � yD �
l1�1X

j Dl1�Nnp

u .jT / C
l�Nnp�1X

j Dl1�Nnp

u .jT / C � .lT / �
l�1X

j Dl1

h .jT /

� yD C
l�Nnp�1X

j Dl1

u .jT / C � .lT / �
l�1X

j Dl1

h .jT /: (5.169)

The algorithm sets a nonzero rate for the last time before lT at instant l1T, and
this value could be as large as umax. Consequently, the sum

l�Nnp�1X
j Dl1

u .jT / D u .l1T / � umax: (5.170)

Since the utilized bandwidth is always nonnegative, then using the condition
�(lT) � �max, we obtain from (5.169) and (5.170) the following estimate of the queue
length at instant lT:

y .lT / �yD C u .l1T / C � .lT / �
l�1X

j Dl1

h .jT /

�yD C u .l1T / C � .lT / � 0 � yD C umax C �max: (5.171)

This concludes the second part of the reasoning and completes the proof. ut
Theorem 5.15 shows how to adjust the buffer size at the controlling node to

eliminate losses originating from congestion. This property is achieved irrespective
of bandwidth or delay variations, which need not be correlated with each other. In
the second theorem, presented below, we indicate how the demand queue length
should be selected in order to ensure full bandwidth utilization.

Theorem 5.16. If controller (5.161) with function !� (�) defined by (5.162) is
applied to system (5.158) and (5.159), and the demand queue length satisfies the
following inequality:

yD > umax
� Nnp C 1=�

�C dmax C �max; (5.172)
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then for any k � .1 C ˇ/ Nnp C nmax, where nmax D ymax/(umax � dmax), the queue
length is strictly positive.

Proof. The theorem assumption implies that we deal with time instants kT �
.1 C ˇ/ NnpT C nmaxT . Considering some integer l � .1 C ˇ/ Nnp C nmax and the
value of signal !� (�) at instant lT, we may distinguish two cases: the situation when
!� (lT) < umax and the circumstances when !� (lT) � umax.

Case 1. First, we consider the situation when !� (lT) < umax. From the definition of
function !� (�), we obtain

!� .lT / D �

2
4yD � y .lT / �

l�1X
j Dl�Nnp

u .jT /

3
5 < umax; (5.173)

which after the term rearrangement results in

y .lT / > yD � umax =� �
l�1X

j Dl�Nnp

u .jT /: (5.174)

The transmission rate generated according to (5.161) is always bounded by umax,
which implies

y .lT / > yD � umax =� � Nnpumax D yD � umax
� Nnp C 1=�

�
: (5.175)

Using assumption (5.172), we get y(lT) > 0, which concludes the first part of the
proof.

Case 2. In the second part of the proof, we investigate the situation when
!� (lT) � umax. First, we find the last moment l1T < lT when signal !� (�) was smaller
than umax. It comes from Theorem 5.15 that the queue length never exceeds the
value of ymax. Furthermore, from (5.2), we know that the consumed bandwidth
h(�) is limited by dmax. Thus, the maximum interval nmaxT during which the
controller may continuously generate the maximum transmission rate is determined
as nmaxT D Tymax/(umax � dmax), and instant l1T does exist. Moreover, from the
theorem assumptions, we get l1T � .1 C ˇ/ NnpT , which means that by the time
l1T the first packets reach the node, no matter the delay variation.

The value of !� (l1T) < umax. Consequently, following a similar reasoning as
presented in (5.173)–(5.175), we arrive at y(l1T) > 0 and

y .lT / > yD � umax

�
�

l1�1X
j Dl1�Nnp

u .jT / C
l�Nnp�1X

j Dl1�Nnp

u .jT / C � .lT / �
l�1X

j Dl1

h .jT /:

(5.176)
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After performing algebraic manipulations on the first two sums in (5.176), we get

y .lT / >yD � umax

�
C

l�1X
j Dl1

u .jT / �
l�1X

j Dl�Nnp

u .jT / C � .lT / �
l�1X

j Dl1

h .jT /

DyD � umax

�
C u .l1T / C

l�1X
j Dl1C1

u .jT /

�
l�1X

j Dl�Nnp

u .jT / C � .lT / �
l�1X

j Dl1

h .jT /: (5.177)

Recall that l1T was the last instant before lT when the controller calculated rate
smaller than umax. This rate could be as low as zero. Afterwards, the algorithm gener-
ates the maximum rate value, and the first sum in (5.177) reduces to umax(l � 1 � l1).
Since for any k, u(kT) � umax, the second sum is upper-bounded by umax Nnp . Thus,
we have

y .lT / > yD � umax

�
C 0 C umax .l � 1 � l1/ � umax Nnp C � .lT / �

l�1X
j Dl1

h .jT /:

(5.178)

Using the fact that �(�) � ��max and h(�) � dmax, we get a further estimate of the
queue length at instant lT

y .lT / > yD � umax =� C umax .l � 1 � l1/ � umax Nnp � �max � dmax .l � l1/ :

(5.179)

Using the theorem assumption (5.172), we obtain

y .lT / > umax
� Nnp C 1 =�

�C dmax C �max

� umax=� C umax .l � 1 � l1/ � umax Nnp � �max � dmax .l � l1/

D umax .l � 1 � l1/ � dmax .l � 1 � l1/ : (5.180)

Finally, since l > l1 and umax > dmax, we arrive at

y .lT / > .umax � dmax/ .l � 1 � l1/ � 0: (5.181)

This conclusion ends the proof. ut
In the remainder of this section, we will present the simulation results demon-

strating the properties of the designed robust control law (5.161) and (5.162).
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Fig. 5.49 Delay variations in Test 1

5.2.2.3 Simulation Results

We consider the flow control process in the connection characterized by the nominal
round-trip time NnpT D 10T D 100 ms. The true delay varies in a way unknown
to the controller in the range specified by ˇ D 0.3. We verify the performance of
controller (5.161) and (5.162) with the maximum transmission rate set as umax D 11
packets. This results in the estimate of the maximum perturbation �max calculated
according to (5.155) equal to umaxˇ Nnp D 33 packets. Similarly as in the previous
sections, two series of simulation tests are run: one series for the bandwidth
illustrated in Fig. 5.7 and another one for the stochastic pattern depicted in Fig. 5.12.
In each case, the maximum bandwidth dmax D 10 packets.

Test 1. In the first simulation scenario, we verify the controller performance in
response to the available bandwidth evolving according to the function depicted
in Fig. 5.7. The delay in the feedback loop is assumed to vary according to the
following equation:

RTT.k/ D ��
1 C ˇ sin

�
2�kT= Nnp

�� NnpT
˘
; (5.182)

where bxc denotes the integer part of x. The delay variations are illustrated in
Fig. 5.49. To facilitate the analysis, we present the delay in such a way that the
value shown in the plot at a particular time instant, say kT, corresponds to the actual
RTT of the assignment sent to the source by the controller at kT. Referring to the
graph, the packets from the assignments performed at 0, T, 2T, 3T, : : : , actually
arrive at the controlling node with delay 10T, 12T, 13T, 13T, : : : , at instants 10T,
13T, 15T, 16T, : : : , and so on. Several simulations are run for different dynamics
adjusted through the choice of the gain constant � . The demand queue length is set
according to the guidelines given in Theorem 5.16 so that full bandwidth utilization
is achieved. In order to ensure loss-free transmission, the buffer size is set equal
to the value indicated by Theorem 5.15. The actual parameters used in the test are
summarized in Table 5.6.
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Table 5.6 Controller parameters

Controller gain � Demand queue length yD [packets] Buffer size ymax [packets]

0.259 196 > 195 240
0.618 172 > 171 216
1 165 > 164 209
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Fig. 5.50 Generated transmission rate: (a) � D 0.259, (b) � D 0.618, and (c) � D 1

The test results are shown in Figs. 5.50–5.52: the transmission rate established
by the controller in Fig. 5.50, the incoming packet rate in Fig. 5.51, and the
resulting buffer queue length in Fig. 5.52. We can see from the graphs that the
controller quickly responds to the sudden changes in the available bandwidth, the
queue length does not increase beyond the buffer capacity, and it never drops to
zero after the initial phase. In consequence, packet losses are eliminated and the
maximum throughput is guaranteed. Moreover, even though the delay undergoes
large fluctuations (in the range of 30% from the nominal value) which severely
disrupts the packet incoming rate (see Fig. 5.51), the degree of oscillations in
the output variable (the queue length) is reduced. The plots in Fig. 5.50 indicate
that the system dynamics and the degree of oscillations depend on the choice
of the controller gain. As � increases, the controller reacts faster to the demand
changes, and as � is reduced, responsiveness drops. However, as can be learned from
Fig. 5.50, placing more impact on the output error elimination (large � ) amplifies
the oscillations in control signal resulting from delay variations. Therefore, in a
majority of practical settings in networks with variable delay, � should not exceed
0.618 which corresponds to the golden-ratio controller discussed in Sect. 5.1.2.

We can notice from Fig. 5.51 that because of time-varying delay, the packets from
certain assignments arrive concurrently with other pieces sent by the source. Such
situation may occur, for instance, if packets are directed along different routes when
traveling towards the controlling node. As a consequence, the packet incoming rate
may exceed the maximum value of the rate assigned by the controller umax D 11
packets, which typically leads to stability problems in the considered class of
systems. In other circumstances, the packets may arrive too early (or be excessively
delayed) leaving a gap in the incoming rate at the instant when they should appear
at the node if transfer with nominal delay could have been ensured. This poses
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Fig. 5.52 Queue length: (a) � D 0.259, (b) � D 0.618, and (c) � D 1

a threat of bandwidth underutilization. As shown in Theorems 5.15 and 5.16, the
presented controller (5.161) and (5.162) guarantees both the system stability and
full bandwidth utilization in the network with uncertain, variable delay.

Let us study the phenomena related to delay variations in detail for the dynamical
setting ” D 0.259 illustrated in Fig. 5.50. It follows from the plots that in the interval
[0, 15T] the controller assigns the rate of 11 packets. In the network with constant
delay NnpT D 10T , the packets from these assignments would appear at the node at
10T, 11T, 12T, : : : , 25T. However, because in the network analyzed here the delay
is assumed to vary according to the pattern shown in Fig. 5.49, the packets from the
initial assignments performed at

0 T 2T 3T 4T 5T 6T 7T 8T 9T 10T 11T 12T 13T 14T 15T

arrive with delay

10T 12T 13T 13T 12T 10T 8T 7T 7T 8T 10T 12T 13T 13T 12T 10T
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at instants

10T 13T 15T 16T 16T 15T 14T 14T 15T 17T 20T 23T 25T 26T 26T 25T.

Consequently, the packets from the assignments performed at 2T, 5T, and 8T
arrive concurrently at the node at kT D 15T, following the initial positive ripple
in delay. This results in the incoming rate of 33 packets at the instant kT D 15T.
Similarly, the packets from assignment 3 and 4 arrive at kT D 16T, resulting in the
incoming rate of 22 packets. Although it is predicted that 11 packets will arrive at
11T and 12T, due to the fluctuations of delay, no piece of the data stream generated
by the source reaches the node at these time instants. Thus, uR(11T) D uR(12T) D 0,
and a gap in the incoming rate is formed, which may lead to decreased bandwidth
utilization at the controlling node. The remaining events can be studied in a similar
way by analyzing the plots sketched in Figs. 5.50 and 5.51.

Test 2 In the second simulation scenario, we verify the controller performance in a
stochastic environment. The available bandwidth, illustrated in Fig. 5.12, is assumed
to follow the normal distribution with mean d
 D 5 packets and standard deviation
dı D 5 packets, Dnorm(5, 5). The delay in the feedback loop changes randomly
according to the normal distribution Dnorm(10T, 1.41T). It is depicted in Fig. 5.53,
which shows RTTs of the assignments placed by the controller in subsequent time
intervals. The controller parameters are set as in Test 1.

The results of the simulations are shown in Figs. 5.54–5.56: the transmission rate
generated by the algorithm in Fig. 5.54, the received packet number in Fig. 5.55,
and the buffer queue length in Fig. 5.56.

It follows from the graphs that the packet queue length remains finite in the
entire time range. This means that the system is stable in the Lyapunov sense,
and it remains robust to delay and bandwidth variations. However, the established
transmission rate depicted in Fig. 5.54 indicates increased amplitude of oscillations
as compared to the case of the system with constant delay illustrated in Fig. 5.13.
Moreover, the degree of oscillations grows with the increase in the controller
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dynamics, and the assigned rate can be difficult to reproduce by slowly responding
transmitters. The reason for the increased level of oscillations as compared to the
constant-delay case is the perturbed input signal shown in Fig. 5.55. The actual
input signal significantly differs from the function generated by the controller and
used to predict the number of in-flight packets in (5.162). However, note that the
queue length illustrated in Fig. 5.56 does not grow beyond the buffer capacity and
remains positive after the initial phase. Consequently, even though we deal with
both bandwidth and delay variations, the throughput is kept at the maximum.

The test results show that robustness to delay and bandwidth variations is
achieved by controller (5.161) and (5.162). However, in order to keep the
oscillations of the control signal reasonable, responsiveness to the changes of
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networking conditions needs to be reduced. In the next section, we will present a
mechanism to compensate for the adverse effects of delay variations which allows
for regenerating the control signal so that it is established as if the delay was
constant and equal to the estimate used by the controller.

5.2.3 Delay Variability Compensation

The traditional dead-time compensators (DTCs), such as the popular Smith predic-
tor (SP) [36], are vulnerable to plant modeling errors and imprecise delay estimates.
In the situations when delay cannot be determined accurately, exhibits unpredictable
variations, or is simply unknown and not accessible for measurement, the applica-
tion of a traditional DTC guarantees neither appropriate system performance nor
stability. Having noted these limitations, many researchers intended to either provide
modifications to the basic structure of typical SP-like compensators (see, e.g., the
overview given in [31]) or use alternative configurations and perform robustness
analysis for the model and delay mismatches [38]. With better modeling techniques
and application of robust control methods, inaccuracy of the plant model parameters
usually poses a smaller stability threat than uncertainty in delay. Indeed, as stated in
[24], in the delayed control of a stable plant, the SP guarantees the same robustness
level as the plant controller does for the delay-free process even in the case of
multiplicative or structured uncertainties. Therefore, it is of utmost importance to
study the effects of delay uncertainty in assessing the controller performance and
system stability. The solutions presented so far in the literature for the systems with
time-varying delay typically consider linear plants, or applications where some form
of delay estimation (or measurement) is available, for example, [5, 28, 37]. It is also
a common practice in the systems with uncertain delay to proceed with the design
for the most restrictive case of maximum expected time lag, thus sacrificing the
dynamics [7, 32–34]. In the subsequent part of this section, we present an alternative
method for eliminating the adverse effects of DT in systems with unknown and/or
time-varying delay. The method retains the conceptual simplicity of the traditional
DTCs, and it allows us to preserve good system dynamical properties. We will show
that the proposed compensation mechanism does not require throttling the controller
gain to dampen the oscillations of the generated transmission rate. As a result, the
primary drawback of the robust control scheme presented in the previous section,
(5.161) and (5.162), is eliminated.

Similarly as in the case of the traditional DTCs, the compensator proposed in
this work allows for carrying out the controller design as if there was no delay in the
feedback loop and the controller acted immediately on the plant. The idea presented
here is based on the observation that the actual performance limitation of the
traditional DTCs in the systems with unknown and/or variable delay is the mismatch
between the true input exerted on the plant and the one used by the predictor. One
way to solve this problem proposed in the literature [5, 28, 37], is to apply the
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control signal issued for the remote plant and to adapt the estimate of the true
delay to minimize the latency mismatch in the compensator structure. Unfortunately,
the delay measurement in many systems poses severe difficulties, leads to errors,
and may be impractical due to the required additional feedback mechanism, or
even impossible. A different and promising approach that could be used for DT
compensation in the systems with variable delay has been recently reported in [25]
(and analyzed in detail in [26] and [27]). It treats the difference between the delayed
and undelayed input as a network-induced disturbance and applies the concept of a
communication disturbance observer to generate the state prediction. In effect, the
observer extracts the true input exerted on the plant from the output measurements
and uses the filtered version of the reconstructed delayed input in the DTC. However,
this interesting approach suffers from several inconveniencies (also noted by the
authors of [27]): it is in principle restricted to linear plants, additional errors may
be introduced while passing the output through the inverse transfer function of
the plant, and performance (or even stability) may suffer from filter nonidealities.
Therefore, instead of the error-prone delay estimation, or input reconstruction from
the output, in this work, we propose to use a direct input measurement to improve
DT compensation mechanism in the systems with uncertain, time-varying delay.
This is clearly a feasible solution since, unlike the delay, the input acting on the
plant is usually available for measurement, and in certain cases, it can be even
used directly by the compensator without the necessity of a sensor mechanism.
In data transmission networks, for instance, the true delay between issuing the
control signal and experiencing the new input rate at the network node is not known
in advance by the controller situated at this node, but the number of incoming
packets at the node is measurable and can be used in a direct way by the DTC.
As another example, we may consider logistic applications, in which the latency in
order procurement tends to undergo significant, a priori unknown fluctuations, but
the input (the shipments arriving at a goods distribution center) is recorded online
by the inventory management system, thus being readily available for generating
new ordering decisions.

First, we will discuss the idea behind the proposed compensation mechanism and
illustrate its properties in a few examples. Then, we apply the proposed compensator
in the robust controller structure presented in Sect. 5.2.2. The properties of the
developed control scheme are discussed and proved analytically. Finally, the
controller performance is evaluated in a simulation scenario given in the last part
of Sect. 5.2.3.

5.2.3.1 Compensation Mechanism

The traditional method of DT compensation by means of the SP is illustrated in
Fig. 5.57, where r(�) is the reference signal, u(�) denotes the manipulated variable,
and y(�) is the system output. If DT is known and constant, the delayed control
action executed on a remote, stable plant described by transfer function P(s) can
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Fig. 5.57 Delay compensation by means of a conventional DTC

be simulated locally, and the predicted plant output can be used by the controller
K(s) as a local feedback. In this way, the latency is eliminated from the (outer)
feedback loop, and the controller design can be carried out as if there was no delay
between the controller and the plant. However, if the actual delay differs from
the one used by the DTC (the nominal one), then the closed-loop stability is no
longer ensured, and additional constraints on the controller dynamics need to be
imposed [22]. It is typical in such situations to consider the worst-case scenario of
the maximum possible delay and throttle the system dynamics accordingly, see, for
instance, the controller design and stability analysis conducted in [10], or [32], for
data transmission networks.

The new method of DT compensation based on delayed input measurement is
shown in Fig. 5.58. Configuration I is used for linear plants where the DTC in the
controller structure has already been designed and implemented for the case of a
known, constant delay. In such circumstances, the proposed method provides the
correction of the mismatch between the prediction of nominal system behavior (with
constant delay) and the actual one (with time-varying delay). Configuration II is
applied when there is no DTC in the plant controller structure, and/or the delay
is unknown. In that case, the compensator predicts the plant output as if it was
connected directly to the controller and waits for the delayed input measurement to
complete the inner loop.

In addition to providing efficient controller operation in the systems with un-
known, variable delay in terms of the tracking performance, the presented solution
also eliminates the adverse effects of delay variability on the signal established by
the controller. It is of great importance for systems where only a specified range of
control signal is allowed, and in cases where oscillations originating from delay
variations are not acceptable. For instance, in communication networks, a data
source cannot inject packets into the network at a negative rate (or with infinite
speed), so the signal issued by the controller must be nonnegative (and bounded).
Therefore, it is desirable to obtain the signal generated by the controller in a
system with variable delay as if this controller was operating in the system with
perfectly known, constant latency. As shown in the case studies analyzed below,
the alternative solution to DT compensation based on direct input measurements
demonstrates such property.
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Fig. 5.58 Proposed method of DTC by input measurement: I correcting compensator, II variable
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5.2.3.2 Case Studies

In this section, we verify the efficiency of the proposed method of delay variability
compensation in two case studies. For each scenario, we run three tests and display
both the control signal and the plant output. To form a basis for comparison, test
① is executed for the system with constant delay and a controller employing the
SP, or other method of delay compensation based on the nominal delay value.
We refer to this setting as the ideal case. In test ②, we show how the system
performance changes when delay varies in time in a way unpredictable to the
controller. The controller in test ② uses the same DTC as in test ①. Finally, in test ③,
we show how our DT compensation method improves the system performance in the
presence of unknown, variable delay. The configuration for each test is illustrated
in Fig. 5.59. Signal �(�) represents the disturbance acting on the input signal (in
addition to the perturbation originating from delay variations), and ũR(�) is the
perturbed input. Other quantities are exactly the same as defined in Fig. 5.57; i.e.,
u(�) is the manipulated variable, and y(�) is the system output. Since we are primarily
interested in studying the effects related to delay mismatches, we assume that the
model accurately describes the controlled process. However, we include in our study
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the effects of external disturbance �(�) altering the control signal. The loop delay
(�) is assumed to be subject to the following type of variation:

.t/ D n Œ1 C a sin .2�t =n /� ; (5.183)

where t is a continuous variable denoting time, n is the nominal delay, and  a

is a real number from the interval (�1, 1) which specifies the amplitude of delay
variations.

Example 5.5. In the first case study, we consider a linear third-order plant specified
by the transfer function P(s) D 1/s(s C 1)(s C 2). The remote plant is regulated by
the proportional controller K(s) D Kp with the SP used for DT compensation. The
purpose of the control action is to track the reference r(t) D 1(t) (unit step). The
external disturbance is absent; i.e., �(�) � 0.

In Fig. 5.60, we plot the signal generated by the controller for two values
of the gain (a) Kp D 1 and (b) Kp D 2; and in Fig. 5.61, we show the system
output. In the first test, the delay (t) D n D 5s, whereas in tests ② and ③,
(t) D 5[1 C 0.6sin(2 t/5)]. We can see from the graphs how the performance of the
SP degrades when the true delay differs from the nominal one and varies with time.
More importantly, when the delay exhibits variations, the conventional DTC cannot
prevent the system instability (for Kp D 2). However, when the correction of the
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Fig. 5.61 Output variable of the plant 1/s(s C 1)(s C 2) with proportional control: a Kp D 1, b
Kp D 2

input signal used by the predictor is applied ③ (configuration I from Fig. 5.58), the
stability is maintained and the output follows the baseline ①. The minor differences
between the two output signals y1(t) and y3(t) are due to the distortion of the delayed
control signal caused by latency variations which turns out to have the largest impact
on the plant behavior in the initial phase of the control process. Nevertheless, which
is clear from the graphs in Fig. 5.60, the input signal generated by the controller
employing the proposed DT compensation method in test ③ is nearly identical
to the one in the system with constant delay and the conventional DTC ①. This
is the primary reason for stability enhancement observed in the operation of the
proposed method. The analysis of the root locus drawn for the system without delay
in Fig. 5.62 indicates a crossing of the imaginary axis for Kp D 6. The evolution of
the control signal sketched for Kp D 6 shows that the SP ensures bounded-input
bounded-output (BIBO) stability for the system with constant delay ①, and our
method does the same for the case of unknown, time-varying DT ③. Consequently,
the proposed DT compensation technique eliminates stability threat caused by delay
variations in the considered case of regulating a remote third-order plant.

Example 5.6. In the second case study, we direct our attention to the control of
nonminimum phase systems, which tend to pose difficulties in providing efficient
control [13, 14]. We consider the plant P(s) D (1 � s)/(s C 1)(s C 2)(s C 3) regulated
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by the PI controller K(s) D 2(s C 1)/s. Similarly as in the previous scenario analyzed
in Example 5.5, the SP is used to compensate for the effects of delay. We set the
reference signal r(t) D 1(t) and run two simulations: in the first one (a), it is assumed
that no disturbance is present in the system, whereas in the second simulation (b),
we introduce a multiplicative input perturbation �(�) being a uniformly distributed
random number from the interval [�0.5, 1.5]. In Fig. 5.63, we plot the input
signal generated by the controller, and in Fig. 5.64, we show the system output.
In test ①, the delay is constant and equal to 5 s, whereas in tests ② and ③,
(t) D 5[1 C 0.6sin(2�t/5)].
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It is evident from the input and output evolution in Figs. 5.63 and 5.64 that
our method successfully combats the adverse effects caused by delay fluctuations.
Moreover, unlike the traditional DT compensation technique, the proposed method
reduces the plant sensitivity to the input signal perturbations �(�), which is a direct
consequence of the obtained control signal regeneration (compare curves ①b and
③b in Figs. 5.63 and 5.64).

5.2.3.3 Proposed Control Strategy

The control strategy presented here extends the robust controller described in
Sect. 5.2.2 by incorporating delay variability compensator shown in Fig. 5.58
(configuration I). The compensator, employing the measurements of the actual
incoming packet rate, allows us to keep good controller dynamics without producing
undesirable oscillations of the calculated transmission rate. This is in stark contrast
to the earlier proposals [7, 32–34] which imposed a trade-off between good
dynamics and system stability.

The transmission rate is generated by the controller according to the following
equation:

u .kT / D
8<
:

0; if !comp .kT / < 0;

!comp .kT / ; if 0 � !comp .kT / � umax;

umax; if !comp .kT / > umax;

(5.184)

where umax > dmax and function !comp(�) is defined as

!comp .kT / D �

8<
:yD � y .kT / �

k�1X
j Dk�Nnp

u .jT /

C "

k�1X
j D0

�
uR .jT / � u

�
jT � NnpT

��
9=
; : (5.185)

The structure of controller (5.184) and (5.185) is illustrated in Fig. 5.65. The
structure consists of three elements:

1. The LQ optimal SM controller given by (5.67), which operates using the nominal
delay in the feedback loop RTT D NnpT .

2. The delay variability compensator "
Pk�1

j D0

�
uR .jT / � u

�
jT � NnpT

��
.

3. The saturation element described by (5.184).

The operation of the compensator for the considered integrating plant (packet
buffer at the controlling node) may be interpreted as accumulating the information
about differences between the number of packets that actually arrived at the node
and those which were expected to arrive in each discrete-time interval. In software
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realization, this information can be stored as a single value in the node memory. The
influence of the compensation mechanism is adjusted through the tuning coefficient
" 2 [0, 1]. Setting " D 1 corresponds to the case of full compensation, and " D 0
reflects the case of the compensation turned-off. Note that with the compensator
absent (" D 0), the proposed controller reduces to the robust scheme (5.161) and
(5.162) analyzed in the previous section.

In the next section, we state the most important properties of the proposed control
law (5.184) and (5.185), and we prove them analytically.

5.2.3.4 Properties of the Proposed Strategy

The properties of the designed strategy will be formulated as two theorems. The first
one shows how to select the buffer capacity to always accommodate the entire packet
queue and in this way eliminate losses. The second theorem, on the other hand,
defines the minimum value of the demand queue length necessary to provide full
bandwidth utilization irrespective of the pattern of delay and bandwidth variations.
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Theorem 5.15. If controller (5.184) with function !comp(�) defined by (5.185) is
applied to system (5.158) and (5.159), then the queue length in the controlling node
buffer is always upper-bounded; i.e., for any k � 0,

y .kT / � ymax D yD C umax C .1 C "/ �max: (5.186)

Proof. Using (5.151), (5.156), and the definition of function �(�), the term com-
pensating the effects of delay variations in (5.185) can be reduced to the following
form:

k�1X
j D0

�
uR .jT / � u

�
jT � NnpT

�� D
k�1X
j D0

˚
u ŒjT � RT T .j /� � u

�
jT � NnpT

�

D
k�1X
j D0

� .jT / D � .kT / :
(5.187)

Hence, the correcting action of the compensator is to nullify the perturbation
originating from delay variations, �(kT), affecting the queue length y(kT). In
consequence, we may rewrite function !comp(�) as

!comp .kT / D �

2
4yD � y .kT / �

k�1X
j Dk�Nnp

u .jT / C "� .kT /

3
5 : (5.188)

It follows from the system initial conditions that the buffer at the controlling
node is empty for any k � .1 � ˇ/ Nnp . Consequently, it is sufficient to show that the
proposition holds for all k > .1�ˇ/ Nnp . Let us consider some integer l > .1�ˇ/ Nnp

and the value of !comp(�) at instant lT. Two cases ought to be analyzed: the situation
when !comp(lT) � 0 and the circumstances when !comp(lT) < 0.

Case 1. We address the case when !comp(lT) � 0. Directly from (5.188), we get

!comp .lT / D �

2
4yD � y .lT / �

l�1X
j Dl�Nnp

u .jT / C "� .lT /

3
5 � 0; (5.189)

which leads to

y .lT / � yD C "� .lT / �
l�1X

j Dl�Nnp

u .jT /: (5.190)

It follows from the algorithm definition that u(�) is always nonnegative; hence,

y .lT / � yD C "� .lT / : (5.191)
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Moreover, since �(lT) � �max, we obtain

y .lT / � yD C "�max < ymax; (5.192)

which ends the first part of the proof.

Case 2. In the second part of the proof, we analyze the situation when
!comp(lT) < 0. First, we find the last instant l1T < lT when !comp(�) was nonnegative.
According to (5.188), !comp(0) D �yD > 0, so the moment l1T indeed exists and the
value of y(l1T) satisfies an inequality similar to (5.190); i.e.,

y .l1T / � yD C "� .l1T / �
l1�1X

j Dl1�Nnp

u .jT /: (5.193)

The queue length at instant lT can be expressed relative to y(l1T) as follows:

y .lT / D y .l1T / C
l�Nnp�1X

j Dl1�Nnp

u .jT / C � .lT / �
l�1X

j Dl1

h .jT /; (5.194)

which after applying (5.193) leads to

y.lT / � yD C "� .l1T / �
l1�1X

j Dl1�Nnp

u .jT / C
l�Nnp�1X

j Dl1�Nnp

u .jT / C � .lT / �
l�1X

j Dl1

h.jT /

� yD C "� .l1T / C � .lT / C
l�Nnp�1X

j Dl1

u .jT / �
l�1X

j Dl1

h .jT /: (5.195)

The controller sets a nonzero transmission rate for the last time before lT
at instant l1T, and this value could be as large as umax. Consequently, the sumPl�Nnp�1

j Dl1
u .jT / D u .l1T / � umax. Since the utilized bandwidth is always

nonnegative, then using the condition �(lT) � �max we obtain from (5.195) the
following estimate of the queue length at instant lT:

y .lT / � yD C "� .l1T / C � .lT / C u .l1T / �
l�1X

j Dl1

h .jT /

� yD C "� .l1T / C � .lT / C u .l1T / � yD C .1 C "/ �max C umax D ymax:

(5.196)

This concludes the second part of the reasoning and completes the proof. ut
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Theorem 5.17 states that the packet queue length is finite and never exceeds
the level of ymax. This means that irrespective of bandwidth and delay variations,
the system output y(�) is bounded and the risk of losses is eliminated. The second
theorem, formulated below, shows that with the appropriately selected demand
queue length yD, we can make the queue length always strictly positive, which
guarantees full bandwidth utilization.

Theorem 5.18. If controller (5.184) with function !comp(�) defined by (5.185) is
applied to system (5.158) and (5.159) , and the demand queue length satisfies the
following inequality:

yD > umax
� Nnp C 1=�

�C dmax C .1 C "/ �max; (5.197)

then for any k � .1 C ˇ/ Nnp C nmax, where nmax D ymax/(umax � dmax), the queue
length is strictly positive.

Proof. The theorem assumption implies that we deal with time instants kT �
.1 C ˇ/ NnpT C nmaxT . Taking some integer l � .1 C ˇ/ Nnp C nmax and the value
of signal !comp(�) at instant lT, we need to consider two cases: the situation when
!comp(lT) < umax and the circumstances when !comp(lT) � umax.

Case 1. First, we analyze the situation when !comp(lT) < umax. From (5.188), we get

!comp .lT / D �

2
4yD � y .lT / �

l�1X
j Dl�Nnp

u .jT / C "� .lT /

3
5 < umax; (5.198)

which after the term rearrangement results in

y .lT / > yD � umax=� �
l�1X

j Dl�Nnp

u .jT / C "� .lT / : (5.199)

The transmission rate is always bounded by umax, which implies

y .lT / > yD � umax=� � umax Nnp C "� .lT /: (5.200)

Since �(�) � ��max, we get

y .lT / > yD � umax=� � umax Nnp � "�max D yD � umax
� Nnp C 1 =�

� � "�max:

(5.201)

Using assumption (5.197), we get y(lT) > 0, which concludes the first part of the
proof.
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Case 2. In the second part of the proof, we investigate the situation when
!comp(lT) � umax. First, we find the last moment l1T < lT when function !comp(�)
was smaller than umax. It comes from Theorem 5.17 that the queue length never
exceeds the value of ymax. Furthermore, from (5.2), we know that the consumed
bandwidth is limited by dmax. Thus, the maximum interval nmaxT during which the
controller may continuously generate the maximum transmission rate for the source
is determined as nmaxT D Tymax/(umax � dmax), and instant l1T does exist. Moreover,
from the theorem assumptions, we get l1T � .1 C ˇ/ NnpT , which means that by the
time l1T, the first packets reach the node, no matter the delay variation.

The value of !comp(l1T) < umax. Thus, following a similar reasoning as presented
in (5.198)–(5.201), we arrive at y(l1T) > 0 and

y .lT / > yD � umax

�
�

l1�1X
j Dl1�Nnp

u .jT/ C "� .l1T / C
l�Nnp�1X

j Dl1�Nnp

u .jT/

C � .lT / �
l�1X

j Dl1

h .jT/: (5.202)

After performing algebraic manipulations on the first two sums in (5.176), we get

y .lT / > yD � umax

�
C u .l1T / C

l�1X
j Dl1C1

u .jT/ �
l�1X

j Dl�Nnp

u .jT/

�
l�1X

j Dl1

h .jT / C "� .l1T / C � .lT / : (5.203)

Recall that l1T was the last instant before lT when the controller calculated rate
smaller than umax. This rate could be as low as zero. Afterwards, the algorithm
generates the maximum rate value, and the first sum in (5.177) reduces to umax(l – 1 –
l1). Since for any k, u(kT) � umax, the second sum is upper-bounded by umax D Nnp .
Thus, we have

y .lT / >yD � umax

�
C umax .l � 1 � l1/ �umax NnpC"� .l1T / C � .lT / �

l�1X
j Dl1

h .jT /:

(5.204)

Using the fact that �(�) � ��max and h(�) � dmax, we get the following estimate of
the queue length y(lT):

y .lT / > yD � umax=�Cumax .l � 1 � l1/ � umax Nnp � "�max � �max � dmax .l � l1/ :

(5.205)
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Table 5.7 Controller parameters

Controller gain � Demand queue length yD [packets] Buffer size ymax [packets]

0.259 230 > 228 273
0.618 205 > 204 238
1 200 > 197 233

Using the theorem assumption (5.197), we obtain

y .lT / > umax
� Nnp C 1 =�

�C dmax C .1 C "/ �max

� umax=� C umax .l � 1 � l1/ � umax Nnp � .1 C "/ �max � dmax .l � l1/

D umax .l � 1 � l1/ � dmax .l � 1 � l1/ : (5.206)

Finally, since l > l1 and umax > dmax, we arrive at y(lT) > 0. This conclusion ends
the proof. ut

In the next section, we present the results of simulations demonstrating the
properties of the proposed compensation mechanism implemented in controller
(5.184) and (5.185), improving the quality of data flow control in the network with
time-varying delay.

5.2.3.5 Simulation Results

The simulations are run for the connection characterized by the nominal delay
RTT D 10T D 100 ms. Similarly as in Sect. 5.2.2.3, the actual delay in the
feedback loop varies in a way unknown to the controller in the range specified by
ˇ D 0.3. The performance of controller (5.184) and (5.185) is verified for different
dynamical settings specified by the gain chosen as either 0.259, 0.618, or 0.916. In
each test, the maximum transmission rate is set as umax D 11 packets. We assume
that full compensation of delay variations is applied; i.e., " D 1 is set in (5.185).
Three series of simulation tests are run: two for the bandwidth illustrated in Fig. 5.7
and the third one for the stochastic pattern depicted in Fig. 5.12. In each case, the
maximum bandwidth dmax D 10 packets.

Test 1. In the first simulation scenario, we verify the controller performance in
response to the available bandwidth depicted in Fig. 5.7. The delay in the feedback
loop, illustrated in Fig. 5.49, is assumed to vary according to (5.182). We run a few
simulations for different gain settings of controller (5.184) and (5.185). In order to
obtain full bandwidth utilization, the demand queue length is selected in each test
according to (5.197), and the buffer capacity is adjusted according to (5.186) so that
loss-free transmission is ensured. Parameters used in the tests are summarized in
Table 5.7.
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The test results are illustrated in Figs. 5.66–5.68: the transmission rate estab-
lished by the proposed controller in Fig. 5.66, the incoming stream of packets
in Fig. 5.67, and the buffer queue length in Fig. 5.68. We can see from the
graphs that controller (5.184) and (5.185) quickly responds to the abrupt changes
of the available bandwidth, yet without undesirable oscillations disrupting the
performance of robust controller (5.161) and (5.162), analyzed in the previous
section for the identical network model (see Fig. 5.50). In fact, if we compare
the transmission rate generated by controller (5.184) and (5.185) with the one
established by the LQ optimal SM controller operating in the network with constant
delay depicted in Fig. 5.8, we can notice that the curves are very similar, differing
primarily in the initial phase. This clearly demonstrates the efficiency of the
proposed compensation mechanism, which eliminates the adverse effects of delay
variations from the rate signal established by the controller. We may say that the
variable DT compensator regenerates the input signal in network with unknown,
time-varying delay so that the established transmission rate evolves as if RTT was
fixed.

We can see from Fig. 5.68 that the queue length does not increase beyond the
buffer capacity specified in Table 5.7 and it does not fall to zero after the initial
phase. In consequence, packet losses are eliminated and the maximum throughput
is guaranteed. If we compare the buffer occupancy shown in Fig. 5.52, resulting
from the application of controller (5.161) and (5.162), with the one obtained by
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using controller (5.184) and (5.185) depicted in Fig. 5.68, we can see a similar
degree of oscillations which are caused by the disrupted incoming rate. The plots in
Figs. 5.52 and 5.68 also show that the price to pay for a smoother transmission rate
is the increased buffer capacity required to accommodate extra packets allowed for
transmission by the compensation mechanism. However, from the implementation
point of view, this trade-off is in favor of the compensation mechanism since with
a smoother transmission rate there is a bigger chance that the source will respond
correctly to the controller command.

Test 2. In the second simulation scenario, we test the controller robustness with
respect to an external, multiplicative perturbation acting in the input channel, �(�),
which alters the incoming packet rate in addition to delay variations. We assume that
the perturbation follows the normal distribution with mean equal to 1 and variance
0.05, which results in the values of �(�) 2 [0.4, 1.6]. When �(kT) > 1, we have
the situation of a nonconforming source (which transmits data at a rate greater
than the assigned one), and when �(kT) < 1, we deal with a saturated transmitter
(experiencing temporary data shortage), or losses on the forward path. We verify
the performance of controller (5.184) and (5.185) for the case of the compensation
turned-off (a), and with full compensation applied (b). The controller parameters
are set in the following way: the gain � D 0.618 (the golden-ratio controller), the
maximum rate umax D 11 packets, and the demand queue length (adjusted to the
value from Table 5.7 for the case of � D 0.618) yD D 205 packets. We run two series
of simulations: in the first test, we assume that RTT is constant and equal to the
value known to the controller, whereas in the second test, the delay varies according
to RTT.k/ D b10 � Œ1 C 0:3 sin.0:628k/�c. The rate generated by the controller is
shown in Fig. 5.69, the perturbed incoming rate in Fig. 5.70, and the packet queue
length in Fig. 5.71.

As one can see from the graphs in Fig. 5.69, the proposed DT compensator
not only mitigates the effects of delay variations but also eliminates the influence
of extra perturbation of the incoming packet stream from affecting the generated
transmission rate. The rate established by the controller in the fully compensated
case is smooth and nonoscillatory. Moreover, although the compensator cannot
prevent the external perturbation from altering the input signal (obviously, it cannot
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Fig. 5.73 Incoming rate: (a) � D 0.259, (b) � D 0.618, (c) � D 1

anticipate neither the exact form of source nonideality nor packet losses occurring
at some other node in the network), it improves the system robustness. It can be
seen from Figs. 5.70 and 5.71 that with comparable input perturbation, the queue
length in the case of the compensation applied is less oscillatory and always remains
within the assigned buffer space. This is not the case of the uncompensated system,
in which the packet losses occur due to buffer overflow in the network with variable
delay in the interval [137T, 181T].

Test 3. In the third simulation scenario, we test the controller performance in
a stochastic environment with the bandwidth following the normal distribution
with mean d
 D 5 packets and standard deviation dı D 5 packets, illustrated in
Fig. 5.12, and delay subject to random, normally distributed changes, Dnorm(10T,
1.41T). In the tests, we assume full delay variability compensation and set " D 1.
The remaining controller parameters are adjusted as in Test 1. They are listed in
Table 5.7.

The results of the simulations are illustrated in Figs. 5.72–5.74: the transmission
rate established by the algorithms in Fig. 5.72, the incoming packet rate in Fig. 5.73,
and the buffer occupancy in Fig. 5.74. The analysis of the plots from Fig. 5.72
shows that by decreasing the gain, one can reduce the oscillations of the generated
transmission rate caused by fluctuations of the available bandwidth. Moreover, the
queue length stays within the assigned buffer space in the whole simulation interval,
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which means that packet losses are eliminated. Despite the presence of both the
bandwidth and delay variations, the queue length does not drop to zero, which means
that all of the available bandwidth is efficiently used for data transfer.

5.3 Chapter Summary

In this chapter, we studied the flow control process in a single connection of a
data transmission network in which the feedback information about the current
transmission rate is provided at discrete-time instants only.

First, in Sect. 5.1, we analyzed phenomena related to handling the flow of data
in the network with constant delay in the feedback loop. We presented a number of
control strategies, each based on sound theoretical foundations of a robust control
method – SMC. Since in SMC a crucial design step is selection of an appropriate
sliding plane, we focused on choosing the plane parameters and its dynamics. First,
an optimization problem with quadratic performance index was stated and solved
analytically. The analytical solution of the optimization procedure allowed us to
represent the control law in a closed form, which can be intuitively interpreted as
adjusting the packet transmission rate in proportion to the free buffer space minus
the packets from the assignments performed in the last RTT. A simple form of the
obtained control law guarantees its straightforward implementation at the software
and hardware level. It also ensures operational efficiency (as the rate calculation
involves only a few additions and one multiplication). A possible drawback of the
proposed strategy is that in order to quickly bring the communication system into
the region of maximum throughput, it requires large input signal at the beginning
of the control process. In order to conform to the transmitter limitations and at the
same time maintain fast system dynamics, we proposed a number of solutions for
the network with transmission rate constraints. Three nonlinear controllers were
designed. The first one uses a time-varying sliding plane, providing an implicit
limitation on the value of the generated control signal and explicit control over the
duration of the initial phase. The second algorithm is based on the reaching-law
approach. It gives direct control over the maximum allowed transmission rate and
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indirect control over the duration of the initial phase. Finally, the third controller
employs a saturation element to clamp any control signal exceeding the explicit
maximum, giving indirect control over the time of the initial phase. The third control
law shows the most convenient form for the algorithmic, software or hardware,
implementation. All the designed controllers have been demonstrated to ensure the
communication system stability in the presence of unpredictable variations of the
available bandwidth. It has also been shown that with appropriately chosen buffer
capacity, the controllers guarantee that the bottleneck node is not overflowed with
packets, yet at the same time all of the available bandwidth is used to transmit the
users’ data. In this way, the maximum throughput in the network is achieved.

In Sect. 5.2, we analyzed a more complex network model in which the delay
in the feedback loop is no longer assumed to be constant. We considered the
situation of arbitrary (bounded) delay fluctuations, both in the feedback and data
channels, which are unknown to the controller. Two control laws were proposed.
They combine the advantageous smoothness of rate transitions offered by the SM
controller with LQ optimal sliding plane, and the robustness features provided
by the saturation element limiting the transmission rate to the feasible interval
[0, umax > 0]. In order to further enhance the controller robustness to delay variations
(and other disturbances affecting the incoming rate, such as unanticipated packet
losses on the forward path), the second controller employs a delay variability
compensator. The compensator utilizes the measurement of packet incoming rate
to prevent perturbations in the input channel from inciting oscillations in the control
signal. As a result, the transmission rate established by the controller is smooth and
evolves as if the controller operated in the network with fixed and perfectly known
delay. In consequence, the data source is assigned rate in a form which is easier
to reproduce. For both controllers, there was specified a set of conditions which
guarantee that despite unpredictable bandwidth and delay variations, the buffer
capacity at the controlling node is not exceeded and all of the available bandwidth is
used for data transfer. As a result, the maximum throughput in the communication
system is obtained.
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Chapter 6
Flow Control in a Multisource Discrete-Time
System

In Chap. 5, we analyzed the basic networking phenomena related to controlling
the flow of data in the network in which the feedback information about the
network state is accessible for input rate adaptation at discrete-time instants
only. We considered the problem of regulating the transmission rate in a single
connection. In this chapter, we study a more complex setting in which the controller
placed at the bottleneck node regulates the flow of data in multiple connections
originating at various sources. It is assumed that the controlled connections can
be characterized by different round-trip times, which is a typical situation in real
networks. Consequently, the model developed in Sect. 5.1 for the case of a single
flow needs to be extended to cover the case of simultaneous transmission rate control
in multiple connections.

The model for the multisource setting considered in this chapter is introduced
in Sect. 6.1. Then, we proceed with the controller design for different networking
scenarios. Similarly as in Chap. 5, the robust control method – SMC – is applied,
and we concentrate on the selection of an appropriate sliding plane to meet
various design objectives. We begin with the plane selection through dynamical
optimization employing a quadratic performance index. Since in the multisource
network the optimal solution may generate negative data flow rates, which is clearly
inappropriate as it would require retrieving from the network the data already sent by
the sources, a modified suboptimal controller, always generating nonnegative rates,
is designed. Similarly as in Sect. 5.1.2, the key point in the optimization procedure
is the analytical solution of matrix Riccati equation for an nth-order discrete-
time system. Asymptotic stability of the system with the designed controller
implemented, together with full bottleneck link utilization and data loss elimination
in the network, is demonstrated. In consequence, the proposed suboptimal control
law allows for the maximum throughput in the investigated communication system.
Moreover, since the transfer rates calculated for the sources are always nonnegative
and limited, the described strategy can be feasibly implemented in real networks.
Next, we analyze the methods of constraining the input signal. Three methods are
considered: the application of a time-varying sliding plane, the design employing
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a reaching law, and the use of a saturation element. All three nonlinear control
algorithms are shown to maintain the favorable properties of the LQ suboptimal SM
controller related to packet loss elimination and full bandwidth usage. In addition,
the transmission rate generated by the controllers is guaranteed to meet the input
constraints without throttling the system dynamics.

In Sect. 6.2, we release the assumption about the fixed latency in packet and
control unit delivery and design new algorithms for the system with uncertain, time-
varying delay. We propose two robust controllers that can provide the maximum
throughput in the network with unknown pattern of delay and bandwidth fluctu-
ations. The external disturbances need not be correlated with each other. For the
designed controllers, the most important properties related to handling the flow
of data are defined and strictly proved. Following the analytical discussion, the
described features are illustrated with numerous simulation examples presented for
convenience at the end of each section.

6.1 Flow Control in a Network with Constant Delay

We consider the networking scenario in which multiple connections pass through the
bottleneck node and contend for the bandwidth available at its output connection.
We assume that the sources are persistent, meaning that they always have enough
data to send at the rate determined by the controller placed at the node. The node at
which the controller operates is assumed the bottleneck for the entire pool of flows
passing through its outgoing link. The flows served at the output link which are
not subject to the controller command (the uncontrolled flows) are treated as high-
priority traffic with variable intensity that constitutes an external disturbance in the
system. In this section, we assume that round-trip time of each regulated flow is
constant and known to the controller. For instance, it can be measured or estimated
in the connection setup phase.

The section is organized in the following way. First, the model of the wide-
area network introduced in Sect. 5.1.1 is extended for the multisource traffic
scenario considered in this chapter in Sect. 6.1.1. Afterwards, the system state-space
description is modified according to the changes in the network model, and new SM
control laws are designed based on formal control-theoretic methods. The properties
of each controller are proved analytically and substantiated with the results of
numerical tests.

6.1.1 Network Model

We analyze the situation of m data flows passing through the bottleneck node and its
output connection. The principles of feedback information exchange are identical to

http://dx.doi.org/10.1007/978-1-4471-4147-1_5
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Fig. 6.1 Network model – multiple virtual circuits

the ones described in Sect. 5.1.1. This means that each source periodically emits
control units, which travel through the network gathering the feedback information
from the nodes. It is assumed that control units are served on a priority basis,
i.e., they are not subject to packet queuing delays. Once the control units in each
connection reach the respective destination, they are turned back and appear at their
origin round-trip time after they were generated. As soon as control units arrive back
at the sources, the feedback information is extracted and the source transmission rate
is adjusted accordingly.

The model of the considered multisource network is illustrated in Fig. 6.1. The
sources send packets at discrete-time instants kT (T is the discretization period and
k D 0, 1, 2, : : : ) in the amounts determined by the controller placed at the bottleneck
node. After forward delayT

p
F , packets from source p (p D 1, 2, : : : , m) reach the

bottleneck node and are served according to the bandwidth availability at the output
link d(kT). The remaining data accumulates in the buffer. The packet queue length
in the buffer y(kT) and its demand value yD are used to calculate the current amount
of data u(kT) to be sent by the sources. The total amount u(kT) is distributed among
the connections according to the assumed resource allocation policy, for instance,
using the customer priority or fairness criteria. Consequently, at each time instant
kT, �p of the total rate is assigned to source p, where �p is a real number from the
interval [0, 1] such that

Pm
pD1 �p D 1. In the limit case, when �p D 1, the entire rate

is allocated to connection p, whereas �p D 0 implies no share of the total rate for this
flow. As a result, the functions of flow and fairness control are decoupled and can be
incorporated independently in the overall traffic regulation scheme (see, e.g., [7] for
the discussion of numerous benefits of such approach). Once the control units from
source p appear at the end system, they are turned back to arrive at their origin with
backward propagation delay T

p
B after being processed by the bottleneck node. The

source adapts its rate to the value read from the received control unit and transmits

up .kT/ D �pu
�
kT � T

p
B

�
(6.1)

http://dx.doi.org/10.1007/978-1-4471-4147-1_5
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packets in period [kT, (k C 1)T). Since control units are not subject to queuing
delays, RTTp D T

p
F C T

p
B D npT , where np is a positive integer, remains constant

for the duration of data transfer in connection p. Without losing generality, we
may order the flows according to the value of their RTT as in (4.22), which in
the considered discrete-time system with uniform sampling is equivalent to the
condition

n1 � n2 � � � � � nm�1 � nm: (6.2)

The case of variable discretization period will be covered in Chap. 7.
The available bandwidth at the node output interface d(kT) and the utilized

bandwidth h(kT) satisfy inequalities (5.2). The rate of change of the queue length
is related to the overall incoming rate and the utilized bandwidth by the following
equation

y Œ.k C 1/ T � D y .kT / C
mX

pD1

up

�
kT � T

p
F

� � h .kT / : (6.3)

Using identity (6.1), we get

up

�
kT � T

p
F

� D �pu
�
kT � T

p
F � T

p
B

� D �pu
�
kT � RTTp

�

and

y Œ.k C 1/ T � D y .kT / C
mX

pD1

�pu
�
kT � RTTp

� � h .kT / : (6.4)

We assume that initially the buffer is empty, i.e., y(0) D 0. Then, the packet queue
length at the node for any kT � 0 may be expressed as

y .kT / D
mX

pD1

k�1X
j D0

�pu
�
jT � RTTp

��
k�1X
j D0

h .jT /: (6.5)

Applying the definition RTTp D npT, we can rewrite (6.5) as

y .kT / D
mX

pD1

k�1X
j D0

�pu
�
jT � npT

� �
k�1X
j D0

h .jT /

D
mX

pD1

k�np�1X
j D�np

�pu .jT / �
k�1X
j D0

h .jT /: (6.6)

Therefore, if the control process commences at the time instant kT D 0 (the
first rate is assigned to the sources at kT D 0), the initial packets belonging

http://dx.doi.org/10.1007/978-1-4471-4147-1_4
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to connection p arrive at the node no sooner than at kT D npT. In consequence, we
may represent (6.6) as

y .kT / D
mX

pD1

k�np�1X
j D0

�pu .jT / �
k�1X
j D0

h .jT /: (6.7)

This formula will be applied in the analysis of the controller properties conducted
in a latter part of this chapter (Sect. 6.1.2).

6.1.1.1 State-Space Representation

Before we proceed with the formal controller design, it is convenient to represent
the network model (6.1)–(6.7) in the state space. Choosing state space (5.7), we get

x Œ.k C 1/ T � D Ax .kT / C bu .kT / C vh .kT / ;

y .kT / D qTx .kT / ;

where b, v, and q are defined by (5.8) and the system order n D nm C 1 D (RTTm/T)
C 1 depends on the discretization period T and the longest round-trip time in the
pool of connections passing through the node. In order to take into account the
traffic coming from multiple sources, the state matrix given in (5.8) for the case of
a single flow needs to be modified in the following way:

A D

2
666664

1 an�1 an�2 : : : a1

0 0 1 : : : 0
:::

:::
:::

: : :
:::

0 0 0 : : : 1

0 0 0 : : : 0

3
777775

: (6.8)

The elements in the first row of A,

aj D
X

pW RTTpDjT

�p; (6.9)

denote the share of connections with delay jT (j D 1, 2, : : : , nm) in the total trans-
mission rate allocated by the controller. Obviously, if no connection is characterized
by delay jT, then the corresponding share aj in the total rate equals zero. Taking into
account the condition

Pm
pD1 �p D 1, we have

n�1X
j D1

aj D 1: (6.10)
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With the state matrix given by (6.8), the system dynamics (5.7) can be presented
in the alternative form:
8̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂:

x1 Œ.k C 1/ T � D x1 .kT / C an�1x2 .kT / C � � � C a1xn .kT / � h .kT / ;

x2 Œ.k C 1/ T � D x3 .kT / ;

x3 Œ.k C 1/ T � D x4 .kT / ;
:::

xn�1 Œ.k C 1/ T � D xn .kT / ;

xn Œ.k C 1/ T � D u .kT / :

(6.11)

The desired system state is defined as xd D [yD 0 0 : : : 0]T, which means that the
control objective is to stabilize the queue length x1(kT) D y(kT) at the level yD. For
this to occur, all the remaining state variables x1, x2, : : : , xn, which represent the
incoming rate, should be equal to zero once x1(kT) D yD. It is evident from (6.11)
that vector x(kT) together with the interaction among the state variables specified by
matrix (6.8) provides a complete description of the network with multiple sources
specified by Eqs. (6.1)–(6.7). The way matrix A is constructed for different network
configurations is illustrated in Example 6.1.

Example 6.1. In order to see how a particular network configuration relates to the
state-space description, we need to analyze the structure of matrix A that defines the
interaction among the state variables. Recall that x1(kT) represents the queue length
at instant kT and xj(kT) D u[(k � n C j � 1)T] for any j D 2, : : : , n equals the delayed
input signal u(�).
Scenario 1. Let us first consider the situation in which two sources (m D 2)
compete for the bandwidth at the node output interface. The connections are char-
acterized by the delays RTT1 D 20 ms and RTT2 D 60 ms. With the discretization
period T D 20 ms, we get RTT1 D n1T D T, RTT2 D n2T D 3 T, and the system
order related to the flow with the longest delay n D n2 C 1 D 4. If the equal rate
partitioning �1 D �2 D 1/2 is applied, we get a1 D a3 D 1/2, a2 D 0, and matrix A,

A D

2
664

1 a3 a2 a1

0 0 1 0

0 0 0 1

0 0 0 0

3
775 D

2
664

1 0:5 0 0:5

0 0 1 0

0 0 0 1

0 0 0 0

3
775:

In the situation when the discretization period is reduced to T D 10 ms, we get
RTT1 D n1T D 2 T, RTT2 D n2T D 6 T, and the system order n D n2 C 1 D 7. With
the equal rate partitioning �1 D �2 D 1/2, we get a2 D a6 D 1/2, a1 D a3 D a4 D
a5 D 0, and matrix A,

http://dx.doi.org/10.1007/978-1-4471-4147-1_5
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A D

2
6666666664

1 a6 a5 a4 a3 a2 a1

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

3
7777777775

D

2
6666666664

1 0:5 0 0 0 0:5 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

3
7777777775

:

Scenario 2. In the second scenario, we consider the network with m D 7 connec-
tions passing through the bottleneck node. The connections are characterized by
the delays: RTT1 D 20 ms, RTT2 D 30 ms, RTT3 D RTT4 D RTT5 D 50 ms, and
RTT6 D RTT7 D 70 ms. Assuming the discretization period T D 10 ms, we get
n1 D 2, n2 D 3, n3 D n4 D n5 D 5, n6 D n7 D 7, and the system order n D n7 C 1 D 8.
If the equal rate partitioning �p D 1/m D 1/7 is applied (p D 1, 2, : : : , 7), we get
a2 D a3 D 1/7, a5 D 3/7, a7 D 2/7, a1 D a4 D a6 D 0, and the first row of A,

�
a1j

� D �
1 2=7 0 3=7 0 1=7 1=7 0

�
:

However, if a different rate allocation policy is applied, for example, the one
given by �1 D �3 D 0.25, �2 D �4 D �5 D �6 D �7 D 0.1, we get from (6.9)

a1 D
X

pWRTTpDT
�p D 0;

a2 D
X

pWRTTpD2T
�p D �1 D 0:25;

a3 D
X

pW RTTpD3T
�p D �2 D 0:1;

a4 D
X

pWRTTpD4T
�p D 0;

a5 D
X

pW RTTpD5T
�p D �3 C �4 C �5 D 0:45;

a6 D
X

pW RTTpD6T
�p D 0;

a7 D
X

pWRTTpD7T
�p D �6 C �7 D 0:2

and the first row of A,

�
a1j

� D �
1 0:2 0 0:45 0 0:1 0:25 0

�
:
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6.1.2 SM Controller with LQ Suboptimal Sliding Plane

In this section, we design a discrete-time SM controller for the multisource
communication network described above. The principles of LQ optimal control
are applied to get parameters of the sliding plane. Since the exact solution of
the LQ problem in the case of the network serving multiple connections with
different RTTs results in a controller generating negative transmission rates, we
propose a modified optimization procedure to get a suboptimal controller free of
this drawback. The closed-loop stability of the multisource system with the designed
suboptimal controller implemented is demonstrated, and the essential properties of
the proposed strategy are discussed and strictly proved.

6.1.2.1 Controller Design

The control law derivation presented in this section concentrates on the selection
of parameters of an appropriate sliding plane. Substituting (5.7) into equation
cTe[(k C 1)T] D 0, and performing algebraic manipulations (5.12), we get

u .kT / D �
cTb

��1
cT Œxd � Ax .kT /�:

Substituting vector quantities (5.8) and matrix A given by (6.8) into this equation,
we obtain the following feedback control law:

u .kT / D cn
�1

(
c1 ŒyD � x1 .kT / � an�1x2 .kT /�

�
nX

j D3

�
c1an�j C1 C cj �1

�
xj .kT /

)
: (6.12)

Similarly as in Sect. 5.1.2, we intend to find such parameters of the sliding plane
(described by vector c) that will allow for the minimum control effort in reducing
the system error to zero. For this purpose, we apply LQ optimization with tunable
quality criterion (5.41) and solve the Riccati equation stated in (5.43).

However, careful investigation of the elements of matrix K and vector g obtained
for the multisource scenario, confirmed by numerical computations, reveals a
serious drawback of the exact solution to the LQ optimal control problem, namely,
the controller generates negative transmission rates. To eliminate this deficiency
and make the scheme applicable for real networks, we appropriately modify
the optimization procedure introduced in Sect. 5.1.2 for the single-source case.
Notice that each coefficient a1, a2, : : : , an–1 is smaller than or equal to one.

http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
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Moreover, according to (6.10), if any aj equals one, then the remaining coefficients
are zero. Hence, in typical multisource networks, the majority of the products
aiaj 	 1, i, j 2 f1, 2, : : : , n � 1g and can be neglected in the calculations of the
elements of K performed according to (5.43). Applying this modification in the
solution procedure, instead of K, we will obtain a close approximation – OK. In the
further part of this section, it will be demonstrated that the proposed approximation
actually allows us to formulate an enhanced control law, which indeed guarantees
that the flow rates are always nonnegative and the packet queue length converges to
steady state without overshoots or oscillations.

Similarly as in the case of the single-flow control, we apply an iterative, analytical
procedure to solve the Riccati equation (5.43) and determine the elements of matrix
OK. We begin solving (5.43) with the most general form of OK,

OK0 D

2
66664

Ok11
Ok12 : : : Ok1n

Ok12
Ok22 : : : Ok2n

:::
:::

: : :
:::

Ok1n
Ok2n : : : Oknn

3
77775; (6.13)

which is placed directly in (5.43). After substituting matrix A given by (6.8)
and vector b as defined by (5.8), we look for similarities between the elements
Ok11; Ok12; : : : ; Oknn on either side of the equality sign of the resulting equation. In this
way, we find the relations among the first four elements in the upper left corner of
OK W Ok12 D an�1. Ok11 � w/ and Ok22 D a2

n�1. Ok11 � w/. Consequently, after the first
analytical iteration, we obtain the following form of OK:

OK1 D

2
66666664

Ok11 an�1

	 Ok11 � w

 Ok13 : : : Ok1n

an�1

	 Ok11 � w



a2
n�1

	 Ok11 � w

 Ok23 : : : Ok2n

Ok13
Ok23

Ok33 : : : Ok3n

:::
:::

:::
: : :

:::
Ok1n

Ok2n
Ok3n : : : Oknn

3
77777775

: (6.14)

Now we substitute OK1 given by (6.14) into the expression on the right-hand side
of (5.43) and compare with its left-hand side, which allows us to represent Oki3 (i D 1,

2, 3) in terms of Ok11 W Ok13 D P2
j D1 an�j

h Ok11 � .3 � j / w
i
, Ok23 D an�1

Ok13, and

Ok33 D .an�1 C an�2/ Ok13. This results in (for the sake of clarity, we present only the
upper part of the symmetric matrix OK)

http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
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OK2 D

2
66666666666664

Ok11 an�1

	 Ok11 � w

 2P

j D1

an�j

h Ok11 � .3 � j / w
i Ok14 : : : Ok1n

Ok12 a2
n�1

	 Ok11 � w



an�1

2P
j D1

an�j

h Ok11 � .3 � j / w
i Ok24 : : : Ok2n

Ok13
Ok23

2P
j D1

an�j �
2P

j D1

an�j

h Ok11 � .3 � j / w
i Ok34 : : : Ok3n

Ok14
Ok24

Ok34
Ok44 : : : Ok4n

:::
:::

:::
:::

: : :
:::

Ok1n
Ok2n

Ok3n
Ok4n : : : Oknn

3
77777777777775

:

(6.15)

We continue the iteration until all the elements of OK can be expressed as functions
of Ok11 and the system order n. The final form of OK, given in terms of its first element
Ok11 and the system order, is determined as

2
666666664

Ok11 an�1

	
Ok11 � w


 2P
j D1

an�j

h
Ok11 �

�
3 � j

�
w
i

: : :
n�1P
j D1

an�j

h
Ok11 �

�
n � j

�
w
i

Ok12 an�1
2
	

Ok11 � w



an�1

2P
j D1

an�j

h
Ok11 �

�
3 � j

�
w
i

: : : an�1

n�1P
j D1

an�j

h
Ok11 �

�
n � j

�
w
i

Ok13
Ok23

2P
j D1

an�j �

2P
j D1

an�j

h
Ok11 �

�
3 � j

�
w
i

: : :
2P

j D1

an�j �

n�1P
j D1

an�j

h
Ok11 �

�
n � j

�
w
i

:::
:::

:::
: : :

:::

Ok1n
Ok2n

Ok3n : : :
n�1P
j D1

an�j �

n�1P
j D1

an�j

h
Ok11 �

�
n � j

�
w
i

3
777777775

:

(6.16)

Notice that according to (6.10),
Pn�1

j D1 an�j D 1; and Oknn reduces toPn�1
j D1 an�j

h Ok11 � .n � j / w
i
. In order to complete the solution of the Riccati

equation, we need yet to determine Ok11. For this purpose, we substitute (6.16) for K
in the expression on the right-hand side of (5.43) and compare the first element in
the upper left corner of the obtained matrices. This comparison yields the following
equation:

Ok11 D 1 C w

0
@n�1X

j D1

jaj C 1

1
A �

0
@ Ok11 � w

n�1X
j D1

jaj C 1

1
A

�1

: (6.17)

Solving for Ok11, we arrive at

Ok1̇1 D
2
4w

0
@2

n�1X
j D1

jaj C 1

1
A˙

p
w .w C 4/

3
5
,

2: (6.18)

http://dx.doi.org/10.1007/978-1-4471-4147-1_5
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Out of the obtained roots, only OkC
11 guarantees that all the leading principal minors

and the determinant of OK are positive, and OK is positive definite, thus giving the
desired solution of (5.43).

Having found OK, we may determine Og D bT OK.In C bbT OK/�1A. Substituting
(6.16) into the first equation in set (5.18) with matrix A given by (6.8), we obtain

Og D
"

1 an�1 .an�1 C an�2/ : : :
n�1P
j D1

aj

#2641 �
0
@ Ok11 � w

n�1X
j D1

jaj C 1

1
A

�1
3
75:

(6.19)

Substituting OkC
11 and using the fact that

Pn�1
j D1 an�j D 1, we get

1 �
0
@ Ok11 � w

n�1X
j D1

jaj C 1

1
A

�1

D
	p

w .w C 4/ � w



2
(6.20)

and

Og D �
1 an�1 .an�1 C an�2/ : : : .an�1 C � � � C a2/ 1

�
	p

w .w C 4/ � w



2
:

(6.21)

Substituting (6.21) into (5.17), we arrive at

Ouopt .kT / D �Ogx .kT / C Or D ��3

2
4x1 .kT / C

nX
j D2

 
j �1X
iD1

an�i

!
xj .kT /

3
5C Or;

(6.22)

where

�3 D
	p

w .w C 4/ � w



2
: (6.23)

Comparing (6.22) with (6.12), we get Or D yDc1 =c2 and the elements of
vector c,

cT D �
�3 �3an�1 �3 .an�1 C an�2/ : : : �3 .an�1 C � � � C a2/ 1

�
cn: (6.24)

Consequently, the control law

u .kT / D �3

2
4yD � x1 .kT / �

nX
j D2

 
j �1X
iD1

an�i

!
xj .kT /

3
5: (6.25)

http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
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This concludes the solution of the optimization problem. Notice that the gain
constant of the obtained controller is identical to the gain of controller (5.60).
Comparing (6.25) with (5.60), we conclude that the suboptimal control law designed
for the general case of a multisource network is equivalent to the optimal one when
applied to the system with a single connection. Further in the text, we will use �

instead of �3 to denote the gain of controller (6.25).
Similarly as in (5.65), we substitute x1(kT) D y(kT) and the other state variables

expressed in terms of the control signal generated at the previous n � 1 samples,
xj(kT) D u[(k � n C j � 1)T] for j D 2, 3, : : : , n, and obtain

u .kT / D �

8<
:yD � y .kT / �

nX
j D2

 
j �1X
iD1

an�i

!
u Œ.k � n C j � 1/ T �

9=
; : (6.26)

Taking into account the relation aj D P
pWRTTpDjT �p , the discrete-time control

law (6.26) can be more conveniently presented in the following form:

u .kT / D �

2
4yD � y .kT / �

mX
pD1

�p

k�1X
j Dk�np

u .jT /

3
5: (6.27)

This completes the design of the flow control algorithm for the multisource traffic
scenario.

Stability Analysis

The system is asymptotically stable, if all the roots of the characteristic polynomial
of the closed-loop system state matrix Acl D ŒIn � b.cTb/�1cT�A are located within
the unit circle. The roots of the polynomial

det .zIn � Acl/ D zn C
�

a1c1

cn

C cn�1 � cn

cn

�
zn�1 C

�
a2c1

cn

C cn�2 � cn�1

cn

�

� zn�2 C � � � C
�

an�1c1

cn

� c2

cn

�
z

D zn C .� � 1/ zn�1 D zn�1 Œz � .1 � �/� (6.28)

are located inside the unit circle, if 0 < � < 2. Since for every w, � D .
p

w.w C 4/�
w/=2 is positive and not bigger than one, the system is stable and no oscillations
appear at the output. Indeed, if we change w from 0 to 1, the nonzero pole moves
from the point (1, 0i) towards the origin of the z-plane, yet it never leaves the

http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
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nonnegative part of the real axis implying oscillation-free performance. Moreover,
an increase of w results in faster convergence to the target state. In the limit
case when w D 1, all the closed-loop poles are at the origin ensuring the fastest
achievable response of a linear controller in discrete-time system – a dead-beat
scheme.

6.1.2.2 Properties of the Proposed Controller

The properties of the flow control algorithm (6.27) designed for the multisource
network will be formulated as three theorems. The first theorem defines the buffer
capacity at the bottleneck node, which is required to ensure loss-free transmission
irrespective of the actual bandwidth at the bottleneck node output link. The second
proposition indicates how the demand queue length should be selected to ensure the
total bandwidth usage. Finally, the third theorem states that the transmission rate
established by the controller is always guaranteed to be nonnegative and bounded.

Theorem 6.1. If controller (6.27) is applied to system (5.7) with matrix A defined
by (6.8), then the queue length is always upper-bounded by its demand value yD.

Proof. Due to the flow ordering RTT1 � RTT2 � � � � � RTTm, the first packets may
reach the node at kT D RTT1. Consequently, it follows from the assumed initial
conditions, y(0) D 0 and u(kT) D 0 for k < 0, that the bottleneck node buffer is empty
for any kT � RTT1 D n1T. Hence, it suffices to show that the proposition is satisfied
for any k � n1 C 1. Let us assume that for some integer l � n1 C 1, y(lT) � yD. We
will demonstrate that the theorem is also true for l C 1. Substituting (6.7) into (6.27),
we get

u .lT / D �

8<
:yD �

mX
pD1

�p

l�np�1X
j D0

u .jT / C
l�1X
j D0

h .jT / �
mX

pD1

�p

l�1X
j Dl�np

u .jT /

9=
;

D �

2
4yD �

mX
pD1

�p

l�1X
j D0

u .jT / C
l�1X
j D0

h .jT /

3
5:

(6.29)

Since
Pm

pD1 �p D 1, we can simplify (6.29) in the following way:

u .lT / D �

2
4yD �

l�1X
j D0

u .jT / C
l�1X
j D0

h .jT /

3
5: (6.30)

http://dx.doi.org/10.1007/978-1-4471-4147-1_5
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Using (6.4), the queue length at the (l C 1)T time instant can be expressed as

y Œ.l C 1/ T � D y .lT / C
mX

pD1

�pu
�
lT � npT

� � h .lT / : (6.31)

Substituting (6.30) for u(lT � npT), we get

y Œ.l C 1/ T � D y .lT / C
mX

pD1

�p�

2
4yD �

l�np�1X
j D0

u .jT / C
l�np�1X

j D0

h .jT /

3
5 � h .lT /

D y .lT / C �yD

mX
pD1

�pC �

mX
pD1

�p

2
4�

l�np�1X
j D0

u .jT / C
l�np�1X

j D0

h .jT /

3
5 � h .lT /:

(6.32)

Once again, since
Pm

pD1 �p D 1, we can rewrite (6.32) as

y Œ.l C 1/ T � D y .lT / C �yD � �

2
4 mX

pD1

�p

l�np�1X
j D0

u .jT / �
l�1X
j D0

h .jT /

3
5

� �

mX
pD1

�p

l�1X
j Dl�np

h .jT / � h .lT / : (6.33)

It follows from (6.7) that the term in the square brackets in (6.32) actually equals
y(lT). Consequently,

y Œ.l C 1/ T � D y .lT / C �yD � �y .lT / � �

mX
pD1

�p

l�1X
j Dl�np

h .jT / � h .lT /

D yD � yD C �yD C y .lT / � �y .lT / � �

mX
pD1

�p

l�1X
j Dl�np

h .jT / � h .lT /

D yD � .1 � �/ ŒyD � y .lT /� � �

mX
pD1

�p

l�1X
j Dl�np

h .jT / � h .lT / :

(6.34)

Since 0 < � � 1 and h(�) is always nonnegative, y[(l C 1)T] � yD. Therefore,
using the principle of the mathematical induction, we conclude that the theorem
is true for any time instant kT � 0. This ends the proof. ut

Theorem 6.1 states that the buffer of size yD suffices to ensure loss elimination
at the bottleneck node no matter the evolution of the available bandwidth. The
proposition formulated below indicates how yD should be selected in order to ensure
full bandwidth usage in the considered communication system.
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Theorem 6.2. If controller (6.27) is applied to system (5.7) with matrix A defined
by (6.8), and the demand queue length satisfies

yD > dmax

0
@ mX

pD1

�pnp C 1

�

1
A ; (6.35)

then for any k � nm C 1, the queue length is strictly positive.

Proof. It follows from (6.7), (6.34), and (6.35) that y(k D nm C 1) > 0. Let us
assume that for some integer l > nm C 1, the queue length is positive. We shall
demonstrate that y[(l C 1)T] is also greater than zero. Since � 2 (0, 1], then from
(6.34), we get

y Œ.l C 1/ T � D .1 � �/ y .lT / C �yD � �

mX
pD1

�p

l�1X
j Dl�np

h .jT / � h .lT /

� �yD � �

mX
pD1

�p

l�1X
j Dl�np

h .jT / � h .lT / : (6.36)

According to (5.2), the maximum buffer depletion rate equals dmax. Therefore,

y Œ.l C 1/ T � � �yD � �

mX
pD1

�p

l�1X
j Dl�np

dmax � dmax

D �

2
4yD � dmax

0
@ mX

pD1

�pnp C 1

�

1
A
3
5:

(6.37)

Consequently, from the theorem assumption (6.35), we get y[(l C 1)T] > 0, which
completes the induction proof. ut

For any flow control strategy to be feasibly applicable in real networks, the
generated transmission rate must be always nonnegative and limited. This property
of the proposed discrete-time control law is demonstrated in the next theorem.

Theorem 6.3. If controller (6.27) is applied to system (5.7) with matrix A defined
by (6.8), then the transmission rate generated by the controller satisfies inequalities
(5.77).

Proof. For k D 0, we have u(0) D �yD, and the theorem is true at the initial time.
For any integer l � 0, the transmission rate may be calculated from (6.30), which
is independent of the number of connections. Consequently, by repeating reasoning
(5.78), we get 0 � u(lT) � max(�yD, dmax). This ends the proof. ut

http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
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Remark 6.1. It follows from Theorems 6.1 and 6.2 that the buffer capacity which
needs to be reserved at the bottleneck node to guarantee loss-free and maximally
efficient data transfer depends on the average propagation delay of the controlled
connections and not their number. Therefore, since a common buffer is used for the
entire pool of flows, the proposed flow control algorithm ensures a scalable memory
allocation policy at the node even for a large number of connections served by the
network.

Remark 6.2. In the considered network, the amount of data generated by the
controller is allocated to the sources according to the choice of �p. Consequently,
the amount of data to be sent by each source is determined as �pu(�) which may
constitute a noninteger multiple of the packet length. In order to overcome this
problem, one can introduce vp.kT / D �

�pu.kT /
˘

, where bxc denotes the greatest
integer not exceeding x. Then, function (6.27) describing the controller operation is
modified in the following way:

u .kT / D �

2
4yD � y .kT / �

mX
pD1

k�1X
j Dk�np

vp .jT /

3
5: (6.38)

This modified strategy ensures that the amount of data sent by the sources is
always an integer multiple of the packet length. Moreover, if the lower limit of
the demand queue length yD, given by (6.35), is increased by m packets, then the
strategy still guarantees that following the initial period, there will always be enough
packets in the bottleneck node buffer to exploit all of the available bandwidth.
Consequently, if the buffer is assigned according to the guidelines of Theorem 6.1,
the maximum throughput will be achieved.

In the next section, the properties of the proposed control strategy, governing the
flow of data in multiple connections competing for the bandwidth at the bottleneck
link, will be illustrated in numerical tests.

6.1.2.3 Simulation Results

In order to verify the operation of the designed flow control algorithm (6.27), we run
several simulation tests for different networking scenarios and controller parameter
settings.

Test 1. In the first simulation example, we verify the performance of the designed
control law when the available bandwidth at the bottleneck link evolves as shown in
Fig. 6.2. One can notice that the bandwidth follows a similar pattern as in the case of
the single-source flow control considered in Chap. 5 (and illustrated Fig. 5.7) except
for an increased amplitude of variations. Consequently, in Test 1, we study the
algorithm behavior in the response to abrupt bandwidth changes, including the link
on-off transitions (occurring at instants 120T and 180T). The maximum available
bandwidth dmax is set as 100 packets in Test 1 and all the other tests discussed in
this section.

http://dx.doi.org/10.1007/300401_1_En_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
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Table 6.1 Controller parameters in Test 1

Controller
Weighting
factor w

Controller
gain �

Demand queue
length yD [packets]

Linear controller (6.27) 0.09 0.259 1,140 > 1,136
1 0.618 915 > 912

Nonlinear controller (4.29) – 1 830 > 825

We assume that four connections (m D 4) participate in the flow regulation
process. They are characterized by the following delays: RTT1 D 3T, RTT2 D 7T,
RTT3 D 8T, and RTT4 D 12T, where T D 10 ms represents the discretization
period. Hence, the system order n D n4 C 1 D 13. With equal rate allocation,
�1 D �2 D �3 D �4 D 1/m D 1/4, we get the first row of the state matrix:

�
a1j

� D �
1 0:25 0 0 0 0:25 0:25 0 0 0 0:25 0 0

�
:

Consequently, vector (6.24) describing the sliding plane used by controller (6.27)
is determined as

cT D �
� 0:25� 0:25� 0:25� 0:25� 0:5� 0:75� 0:75� 0:75� 0:75� � � 1

�
cn:

A number of simulations are run, each for a different value of the gain constant � .
The obtained results are compared with the ones obtained for the on-off controller
(4.29) adapted for the discrete-time system considered here. The demand queue
length yD for the linear controller (6.27) is adjusted according to the inequality
specified in Theorem 6.2. For controller (4.29), we assume umax D 110 packets
and set yD according to Theorem 4.4 as 830 packets. The gain and yD settings
are grouped in Table 6.1 (note that the switching action of the on-off controller
can be perceived as the transmission rate adjustment with an infinite gain). The
transmission rate generated by the controllers is shown in Figs. 6.3 and 6.4 (initial
phase), the buffer occupancy in Fig. 6.5, and the sliding variable in Fig. 6.6.

The plots in Fig. 6.3 clearly demonstrate that the transmission rate established
by controller (6.27) is always nonnegative and upper-bounded, exactly as stated
in Theorem 6.3. Moreover, the packet queue length in the bottleneck node buffer

http://dx.doi.org/10.1007/978-1-4471-4147-1_4
http://dx.doi.org/10.1007/978-1-4471-4147-1_4
http://dx.doi.org/10.1007/978-1-4471-4147-1_4
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depicted in Fig. 6.5 does not increase beyond the demand value and never drops
to zero (for k � n C 1 D 14), which ensures loss-free and maximally efficient data
transfer. We can also see from the plots in Fig. 6.3 that the choice of the weighting
coefficient influences the system dynamics in a similar way as discussed in Sect.
5.1.2. As w increases, the controller reacts faster to the fluctuations of the available
bandwidth, and as w is reduced, responsiveness to the changes drops. A bigger value
of w reduces the memory requirements (smaller buffer capacity suffices to maintain
the controller properties stated in the theorems), but at the same time, it results in
larger values of the control signal (bigger transmission rate) in the initial phase,

http://dx.doi.org/10.1007/978-1-4471-4147-1_5
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which may be difficult to follow by low-rate transmitters. Therefore, similarly as in
the case of a single flow, the weighting factor w D 1, which corresponds to the gain
� D 0.618, offers a fair trade-off between good system dynamics and smoothness of
moderate transfer speeds when multiple connections are controlled by the bottleneck
node simultaneously. Similarly as before, we will refer to this setting as the golden-
ratio controller. The nonlinear controller offers the fastest response to the changes
of networking conditions but produces highly oscillatory rate signal which can be
difficult to reproduce by the sources.

If we compare the output variable (the packet queue length) resulting from the
operation of the on-off controller in the single-source case illustrated in Fig. 5.10
with the one obtained for the multisource scenario analyzed here (Fig. 6.5), we
can notice a reduced degree of oscillations. The less oscillatory response in the
multisource network is the effect of smaller fluctuations in the cumulative packet
incoming rate. The amplitude of oscillations is reduced due to the discrepancy in
the connection RTTs. Consequently, if the packets delivered according to the umax

assignment distributed among the flows arrive at the node at different time instants
due to nonequal RTTs, the resulting incoming rate rarely exhibits the large on-off
transitions between 0 and 110 packets. However, even though the amplitude of
the incoming rate variations is decreased, their frequency increases, which is the
cause of small oscillations of the queue length even in the circumstances of constant
steady-state bandwidth.

Figure 6.6 shows the evolution of the sliding variable. In the case of the SM
controller with LQ optimal sliding plane applied (graphs a and b), the sliding
variable immediately decreases from its original value s(0) D �yD to a relatively
narrowband s(�) 2 [0, �cndmax D �dmax) and always remains in this band, which
constitutes a clear evidence of a properly established quasi-sliding motion [1, 2, 5]
in a discrete-time system. In the case of the on-off controller (4.29), the reaching
phase is extended over several periods. However, once the system representative
point approaches the vicinity of the sliding plane s(kT) D 0, it stays in the band
around the plane for all subsequent time. Comparing the plot in Fig. 6.6c with the
one representing the sliding variable for the continuous-time system shown in Fig.
4.18, we can notice oscillatory behavior caused by sampling with finite frequency
in discrete-time case analyzed here.

http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_4
http://dx.doi.org/10.1007/978-1-4471-4147-1_4
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Test 2. In the second simulation scenario, we investigate the performance
of controller (6.27) in the case of nonequal resource allocation. We use the
same network parameters as in Test 1 and apply the golden-ratio setting
� D 0.618. The following rate allocation policy is assumed: �1 D 0.35, �2 D 0.2,
�3 D 0.3, and �4 D 0.15, which results in a3 D 0.35, a7 D 0.2, a8 D 0.3, a12 D 0.15,
a1 D a2 D a4 D a5 D a6 D a9 D a10 D a11 D 0, and the first row of matrix A,

�
a1j

� D �
1 0:15 0 0 0 0:3 0:2 0 0 0 0:35 0 0

�
:

Hence, the vector describing parameters of the sliding plane is determined as

cT D �
� 0:15� 0:15� 0:15� 0:15� 0:45� 0:65� 0:65� 0:65� 0:65� � � 1

�
cn:

With such rate partitioning, the demand queue length calculated according to
Theorem 6.2 is set as 830 > 827 packets.

The test results are shown in Figs. 6.7–6.9: the transmission rate established by
the controller in Fig. 6.7, the rate allocated for the sources in Fig. 6.8, and the packet
queue length in the bottleneck node buffer in Fig. 6.9. For the sake of legibility, we
display the magnified view of the transmission rate curves with the values limited
to the range [0, 120 packets] in the case of the overall transmission rate established
by the controller and [0, 40 packets] in the case of individual rate allocations. The
limited value range concerns only the initial phase of transmission.

We can see from the plots that the overall transmission rate generated by
the controller is nonnegative and smoothly follows the bandwidth changes. The
individual flows receive the assumed fraction of the total rate, precisely as stated
above. The queue length does not exceed the demand value and remains positive for
kT � 14T. In consequence, the network operates at the maximum throughput.

Test 3. In the third simulation test, we compare the operation of the proposed
SM controller (6.27), obtained in a modified optimization procedure, with the
exact solution determined numerically by means of the Matlab built-in function for
discrete-time optimization dlqr. Parameters of the optimal controller are determined
as r D 0.77yD and
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g D �
0:77 0:19 0:19 0:19 0:19 0:35 0:52 0:51 0:51 0:43 0:52 0:46 0:44

�
:

We use the same model as in Test 1 and assume equal rate partitioning �p D 1/4
for p 2 f1, 2, 3, 4g. The gain of the suboptimal controller (6.27) is set as 0.618 and
the demand queue length read from Table 6.1 as 915 packets. For the sake of clarity,
we assume d(kT) � 0. The transmission rate established by the two controllers is
shown in Fig. 6.10 and the resulting queue length in Fig. 6.11.
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It can be seen from the graphs that the controller obtained as the exact solution
to the LQ optimal control problem (curve a in Fig. 6.10) exhibits overshoots and
oscillations. It is not suitable for application in the considered system since it
generates a negative transmission rate. Function u(�) generated by the suboptimal
strategy (curve b), in turn, although close to the exact solution, never falls below
zero. Moreover, the value of the quadratic quality criterion (5.41) obtained for the
suboptimal controller Jsubopt D 3.21�106 packets2 exceeds only by 3% the optimal
one Jopt D 3.11�106 packets2. Furthermore, when the proposed scheme is applied,
both the rate and the queue length curves exponentially converge to the steady-state
values without oscillations or overshoots. This is highly beneficial for enhancing the
quality of service in data transmission systems which favor smooth transfer rates and
small buffers over bursty traffic and large memory requirements.

Test 4. In this simulation, we evaluate the overall performance of the designed SM
controller (6.27) in a network supporting numerous flows. The purpose of the test is
to verify how the controller operates when the number of regulated connections
increases. Thus, we intend to test the scalability of the proposed flow control
strategy in multisource network implementation. We consider the situation when the
bottleneck node allocates the transmission rate for 20 connections, whose RTTs are
uniformly distributed between 50 and 240 ms. With � D 0.618, the demand queue
length necessary to guarantee full bandwidth utilization is adjusted to 1,615 > 1,612
packets. The transfer rate established by the controller is shown in Fig. 6.12 and
the buffer queue length in Fig. 6.13. For clarity, we limit the value range on the
transmission rate graph to the interval [0, 120 packets].

We can notice small perturbations in the transmission rate graph as compared
to the results obtained in Tests 1–3, which is attributed to the small additional
delay caused by finite processing time of numerous control units arriving at the
bottleneck node at the same moments of time (at multiples of the discretization
period). Despite the increased input load (20 data streams) and signaling overhead
(during the simulation interval of 3 s the node served 5,950 control units), the
investigated algorithm maintains its properties stated in Theorems 6.1–6.3. Indeed,

http://dx.doi.org/10.1007/978-1-4471-4147-1_5
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the transmission rate generated by the algorithm is nonnegative and bounded, and
the queue length remains within the assigned buffer space and does not drop to zero,
thus ensuring the maximum throughput.

Test 5. In the last simulation example considered in this section, we verify
performance of the designed controller (6.27) when the available bandwidth at
the bottleneck link exhibits high-frequency switching according to the stochastic
pattern shown in Fig. 6.14. Function d(�) used in the simulations follows the normal
distribution with mean d
 D 50 packets and standard deviation dı D 35 packets,
Dnorm(50, 35). We assume four flows and equal rate partitioning exactly as in Test 1.
The controller gain is selected as � D 0.618 (the golden-ratio setting) and two tests
are run for different yD levels. In the first simulation (curve a in the graphs), yD

is set exactly as specified in Table 6.1 – 915 packets – to make sure that all of
the available bandwidth is used for the data transfer. Since the mean available
bandwidth is much lower than the maximum one dmax D 100 packets, in the second
simulation (curve b in the graphs), the demand queue length is decreased to 460
packets (which corresponds to the value calculated according to (6.35) with dmax

replaced by d
 D 50 packets).

The principal system variables obtained in the test are illustrated in Figs. 6.15–
6.17: the transmission rate generated by the controller in Fig. 6.15, the buffer



220 6 Flow Control in a Multisource Discrete-Time System

0
0

40

80

120

50 100 150 200
Time instants [kT]

d(
kT

) 
[p

ac
ke

ts
]

250 300

Fig. 6.14 Available
bandwidth following normal
distribution Dnorm(5, 5)

0
0

40

80

120

50 100 150 200
Time instants [kT]

250 300

u(
kT

) 
[p

ac
ke

ts
]

a) yD = 915 packets

b) yD = 460 packets

Fig. 6.15 Transmission rate:
a yD D 915 packets and
b yD D 460 packets

occupancy in Fig. 6.15, and the sliding variable in Fig. 6.17. We can see from
the plots sketched in Fig. 6.15 (for better readability, the value range was limited
to [0, 120 packets]) that irrespective of the demand queue length setting, the
established transmission rate is nonnegative and upper-bounded. We can also notice
that bandwidth variations are attenuated (compare with Fig. 6.14), which is highly
favorable for improving the quality of service. Indeed, less oscillatory transfer rate
is favored by the network users, as it allows for avoiding the annoying short-term
pauses in the transmission, which may occur, for instance, during web page content
retrieval. In addition, a smoother control signal propagating to the sources has a
better chance of being reproduced exactly by the transmitters, which leads to better
control of the network behavior.

The queue length evolution depicted in Fig. 6.16 shows that y never exceeds
the demand value (in both cases a and b), which implies that the congestion does
not occur and no packets need to be dropped. If yD is chosen according to the
indications given in Theorem 6.2 – 915 packets – then following the initial phase,
y remains positive, which implies full usage of the available bandwidth. This is
no longer the case, when the demand queue length is reduced to 460 packets. In
that situation, certain opportunities for data transfer are wasted, and the overall
bandwidth utilization in the 3 s simulation interval decreases to approximately
91%. However, the average and the maximum queue length in scenario b are much
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lower than in scenario a. As a result, decreasing yD in the circumstances then
d
 is much smaller than dmax allows for significant buffer capacity savings (due
to smaller maximum queue length) and reduction of mean transfer delay (due to
smaller average queue length).

We can learn from Fig. 6.17 that the sliding variable decreases in one step from
its original value s(0) D �yD to the band ([0, �cndmax D �dmax < 100 packets) and
always remains in this band despite the presence of mismatched disturbance d.
Hence, stability of the sliding motion is ensured during the whole transmission.

6.1.3 Methods for Constraining Excessive Initial Flow Rates

We have shown so far in this work that by applying dynamical optimization (with
quadratic performance index) to obtain parameters of the sliding plane, we can
provide fast reaction to the changes of networking conditions with smoothly varying
transmission rates. However, the price that needs to be paid for good responsiveness
and high link utilization is large value of transmission speed in the initial phase
of the control process. Although in the case of controlling the rate of multiple
sources one can modify the allocation so that bigger rate values are assigned to
faster transmitters (by appropriate selection of �p coefficients), the limitation for
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the entire pool of connections may still be violated. Indeed, in the situation when
the overall source rate capabilities are close to the maximum available bandwidth,
the LQ optimal controller itself cannot guarantee both fast system dynamics and
bounded transmission rates in the initial phase. In order to throttle excessive
transfer speed and keep fast responsiveness, it is necessary to provide additional
mechanisms. In this section, we investigate the use of three different methods which
allow us to satisfy these partly contradictory objectives. The first method employs
a time-varying sliding plane rather than the fixed one considered in Sect. 6.1.2.
By appropriately adjusting the plane movement in the initial phase of the control
process, the transmission rate can be enforced to remain within the bounds imposed
by the system transfer capabilities. Afterwards, when the plane stops, the system
dynamics is determined by the choice of the plane parameters, selected, for example,
for LQ optimal or dead-beat scheme. The second investigated method employs a
reaching law, which governs the way the system representative point approaches
the (fixed) sliding plane. The reaching law and its parameters are chosen in such a
way that the transmission rate constraint is never violated. The method using time-
varying plane gives explicit control over the duration of the initial phase and implicit
one over the maximum value of the obtained transmission rate. The reaching-law
approach, in turn, allows one to impose a direct transmission speed constraint and
regulate the duration of the initial phase implicitly. The third approach explored in
this section uses a saturation element in the form of a transmission rate limiter to
enforce direct bound on the maximum transfer speed generated by the controller.
The third method, which gives implicit control over the duration of the initial
period, can be considered the one most closely related to the actual practices of
telecommunication software and hardware industry.

In the following sections, we describe the design procedures resulting in three
nonlinear control laws. The most important properties of the obtained controllers
relevant to controlling the flow of data in the network are then formulated and
strictly proved. The controller performance is compared in a detailed numerical
study presented after the analytical derivations.

6.1.3.1 Application of a Time-Varying Hyperplane

It has been shown in the previous section that by applying SM controller with
LQ suboptimal sliding plane in the network serving multiple flows, one can
eliminate packet losses and achieve full bandwidth utilization at the bottleneck
node. However, the proposed controller generates large transmission rate in the
initial phase of the control process which is required to quickly feed the bottleneck
node buffer with enough packets to keep the node outgoing link fully occupied with
sending the users’ data. From the perspective of SM controller design, the high
transmission rate at the beginning of the control process is the effect of enforcing
the system representative point to cover large initial distance from the sliding plane.
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Afterwards, in the sliding phase, the system representative point may leave the plane
due to the external mismatched disturbance d(�), but the control signal necessary to
bring it back onto the plane does not exceed the maximum available bandwidth dmax

(which is typically much smaller than the initial rate value). One way to cope with
high initial transfer rates is to apply time-varying plane instead of a fixed one which
will move together with the system representative point in each step towards the
final position. As the distance to be covered by the system representative point is
reduced, the value of the control signal can be decreased to the limits allowed by
the network transfer capabilities. In order to guarantee that the error is eliminated in
finite time, the sliding plane should be chosen for dead-beat response, and in its final
position, the plane should pass through the origin of the error state space. The rest of
this section is devoted to the plane parameter selection and the choice of movement
pattern so that desired system performance is achieved.

Controller Design

In order to reduce the excessive values of the controller command in the initial phase
of the control process, we introduce a time-varying sliding hyperplane instead of
the typically considered in the literature fixed one. The plane moves from the initial
position, selected so that the system representative point belongs to the plane at
kT D 0, towards the origin of the error state space with constant inclination. It stops
moving after a predetermined interval kVPT and remains fixed for the rest of data
transfer. The design procedure consists of two phases. First, the controller action
is chosen so that the system representative point is maintained on the plane as it
moves through the error state space. Consequently, based on the a priori known
plane displacement, at each instant kT, the controller generates a command which
brings the representative point onto the plane at instant (k C 1)T. In the second phase
of the controller design, we select the plane parameters so that appropriately fast
reaction to the changes of networking conditions is guaranteed.

Step 1. In this first part of the design, we decide on the sliding-plane dynamics. For
any integer k � 0, the time-varying plane moving with constant inclination towards
the final position cTe(kT) D 0 can be described by Equation (5.79). In order to ensure
monotonic plane advancement towards the final position, a priori known function
f (�) should satisfy conditions (5.80)–(5.82). These conditions can be summarized
below:

• Choose the starting value of function f (�) such that initially the system represen-
tative point belongs to the plane, i.e., f (0) D �cTe(0).

• Select the dynamics so that f (�) is strictly monotonic in the interval [0, kVPT].
• Keep f (kT) D 0 for any k � kVP, which implies that the final plane position is

maintained in the remaining part of the control process.

http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
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The examples of function f (�) given by (5.83), (5.84), and (5.85) are illustrated in
Fig. 5.17, and their influence on the transmission efficiency is discussed in Example
5.2. It follows from the discussion given in that example that the plane displacement
with constant velocity represented by (5.83) offers the highest transfer efficiency out
of the choices (5.83), (5.84), and (5.85).

The decision about the duration of the plane movement determined by constant
kVP has a major impact on the system dynamics in the initial phase of the control
process. With larger kVP one obtains longer duration of the initial phase, which
means that the plane will advance towards the final position in smaller steps.
Consequently, by choosing larger kVP, the control signal used to steer the system
representative point onto the plane can be reduced. As a result, by appropriately
selecting the duration of the plane movement, the input constraint can be met
without degrading fast response in the latter phase of the transmission. This
concludes the first step of the design.

In the second step of the design procedure, we will show how to choose
parameters of the sliding plane so that dead-beat response to the changes of
networking conditions is achieved.

Step 2. If we apply the system equation (5.7) in formula (5.79) describing the
sliding plane at instant (k C 1)T, we obtain discrete-time SM control law (5.88).
With matrix A given by (6.8), the closed-loop system state matrix with this control
applied, Acl D [In � b(cTb)�1cT]A, is determined as

2
66666666664

1 an�1 an�2 an�3 : : : a1

0 0 1 0 : : : 0

0 0 0 1 : : : 0
:::

:::
:::

:::
: : :

:::

0 0 0 0 : : : 1

� c1

cn

�an�1c1

cn

�an�2c1

cn

� c2

cn

�an�3c1

cn

� c3

cn

: : : �a1c1

cn

� cn�1

cn

3
77777777775

(6.39)

and its characteristic polynomial det(zIn � Acl) as

zn C
�

a1c1

cn
C cn�1 � cn

cn

�
zn�1 C � � � C

�
an�2c1

cn
C c2 � c3

cn

�
z2 C

�
an�1c1

cn
� c2

cn

�
z:

(6.40)

In order to obtain dead-beat controller, all the closed-loop poles should be at
the origin of the error state space. Using (6.40), the roots of the characteristic
equation det(zIn � Acl) D 0 (the closed-loop poles) are all zero, if the following set
of equations is satisfied:
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http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5


6.1 Flow Control in a Network with Constant Delay 225

a1c1

cn

C cn�1 � cn

cn

D 0;

a2c1

cn

C cn�2 � cn�1

cn

D 0;

:::

an�2c1

cn

C c2 � c3

cn

D 0;

an�1c1

cn

� c2

cn

D 0:

(6.41)

This set of equations is solved recursively. First, we determine c2 from the last
identity in (6.41):

c2 D an�1c1: (6.42)

Next, we substitute (6.42) into the equation an–2c1/cn C (c2 � c3)/cn D 0 to get c3

expressed in terms of the system parameters aj and the first element of vector c as

c3 D .an�2 C an�1/ c1: (6.43)

Having determined c3, we solve an–2c1/cn C (c3 � c4)/cn D 0 for c4, obtaining

c4 D .an�3 C an�2 C an�1/ c1: (6.44)

If we continue the substitutions, we get in the last step cn D c1. Consequently,
parameters c1, c2, : : : , cn are determined as

c1 D cn;

c2 D an�1cn;

cj D �
an�1 C an�2 C � � � C an�j C1

�
cn for j D 3; 4; : : : ; n: (6.45)

Finally, since
Pn�1

j D1 aj D 1, we can represent the vector describing the sliding
plane of a dead-beat controller in the following form:

cT D �
1 an�1 .an�1 C an�2/ : : : .an�1 C an�2 C � � � C a2/ 1

�
cn: (6.46)

Substituting (6.8) and (6.46) into (5.88), we get the control law

u .kT / D yD � x1 .kT / �
nX

j D2

 
j �1X
iD1

an�i

!
xj .kT / C 1

cn

f Œ.k C 1/ T �: (6.47)
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Similarly as in (6.26), we substitute x1(kT) D y(kT) and the other state variables
expressed in terms of the control signal generated in the previous n � 1 periods,
xj(kT) D u[(k � n C j � 1)T] for j D 2, 3, : : : , n, thus obtaining

u .kT / D yD � y .kT / �
nX

j D2

 
j �1X
iD1

an�i

!
u Œ.k � n C j � 1/ T � C 1

cn

f Œ.k C 1/ T �:

(6.48)

Finally, using the relation aj D P
pWRTTpDjT �p , this control law can be

rewritten as

u .kT / D yD � y .kT / �
mX

pD1

�p

k�1X
j Dk�np

u .jT / C 1

cn

f Œ.k C 1/ T �: (6.49)

This concludes the design of SM controller with time-varying sliding plane
for the considered multisource network. In the next section, we discuss several
important properties of the obtained control law and substantiate our findings with
formal proofs.

Properties of the Proposed Controller

The properties of the designed controller (6.49) will be given in a lemma and
three theorems. The lemma and the first theorem show that the proposed nonlinear
controller establishes the transmission rate which is always nonnegative and upper-
bounded. Thus, the proposed scheme can be feasibly implemented in the network.
The second theorem shows that the queue length in the bottleneck node buffer never
exceeds the demand value. This means that if the buffer of capacity equal to at
least yD is assigned at that node, then packet losses originating from congestion
will be eliminated. Finally, the third proposition specifies the minimum demand
queue length value which is necessary to guarantee full bandwidth utilization at the
bottleneck link.

We may notice that the transmission rate generated at the initial time kT D 0
equals

u.0/ D yD C f .T /=cn:

Afterwards, for k > 0, the control signal generated by the controller satisfies the
relation given in the following lemma.

Lemma 6.4. If controller (6.49) is applied to system (5.7) with matrix A defined by
(6.8), and function f(�) satisfies conditions (5.80)–(5.82), then for any k > 0,

u .kT / D h Œ.k � 1/ T � C ff Œ.k C 1/ T � � f .kT /g =cn: (6.50)
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Proof. Substituting (6.7) into (6.49), we get

u .kT / D yD � y .kT / �
mX

pD1

�p

k�1X
j Dk�np

u .jT / C f Œ.k C 1/ T � =cn

D yD �
mX

pD1

k�np�1X
j D0

�pu .jT / C
k�1X
j D0

h .jT /

�
mX

pD1

�p

k�1X
j Dk�np

u .jT / C f Œ.k C 1/ T � =cn

D yD �
mX

pD1

�p

k�1X
j D0

u .jT / C
k�1X
iD0

h .jT / C f Œ.k C 1/ T � =cn : (6.51)

Since the allocation policy satisfies the condition
Pm

pD1 �p D 1, formula (6.51)
may be reduced to the following expression:

u .kT / D yD �
k�1X
j D0

u .jT / C
k�1X
iD0

h .jT / C f Œ.k C 1/ T � =cn : (6.52)

Consequently, for k D 1 we get u.T / D h.0/ C Œf .2T / � f .T /� =cn . Taking
similar steps as in (5.99) the transmission rate generated at instant (l C 1)T is shown
to satisfy (6.50). This completes the induction proof. ut
Theorem 6.5. If controller (6.49) is applied to system (5.7) with matrix A defined
by (6.8), and function f(�) satisfies conditions (5.80)–(5.82), then the transmission
rate is always nonnegative and upper-bounded by yD C dmax.

Proof. At the initial time, the system representative point belongs to the moving
sliding plane, and, according to (5.80), f (0) D �cTe(0) D �cnyD. Since function
f (�) is assumed to be strictly monotonic reaching zero at kT D kVPT, the identity
f (0) D �cnyD implies that for any k 2 [0; kVP), f (kT) and cn have opposite signs.
Consequently, similarly as in the proof of Theorem 5.5, we can specify inequalities
for the multisource network considered here identical to (5.101) and (5.102). On
the other hand, it follows from the algorithm definition that u(0) D yD C f (T)/cn.
Hence, using (5.101), we get u(0) � 0 and u(0) � yD � yD C dmax, which means that
the theorem is satisfied for k D 0. For any k > 0, in turn, u(kT) satisfies the relation
given in Lemma 6.4. Repeating the algebraic manipulations given in the proof of
Theorem 5.5, we get from Lemma 6.4

0 � u .kT / D h Œ.k � 1/ T � C ff Œ.k C 1/ T � � f .kT /g =cn � dmax C yD:

This conclusion ends the proof of Theorem 6.5. ut
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Theorem 6.6. If controller (6.49) is applied to system (5.7) with matrix A defined
by (6.8), and function f(�) satisfies conditions (5.80)–(5.82), then the queue length is
always upper-bounded by its demand value yD.

Proof. It follows from the system initial conditions that the bottleneck node buffer
is empty at kT D 0. Since the first nonzero rate is issued at kT D 0, then because of
the feedback delay (ordered according to inequalities (6.2)), the first packets arrive
at the bottleneck node at kT D n1T. This implies that y(kT) D 0 for k � n1, and it
suffices to demonstrate that the theorem holds for all k > n1.

Using the fact that u(0) D yD C f (T)/cn and
Pm

pD1 �p D 1, we may present queue
length (6.7) in the following form:

y .kT / D
mX

pD1

�p

k�np�1X
j D0

u .jT / �
k�1X
j D0

h .jT /:

D u.0/ C
mX

pD1

�p

k�np�1X
j D1

u .jT / �
k�1X
j D0

h .jT /

D yD C 1

cn

f .T / C
mX

pD1

�p

k�np�1X
j D1

u .jT / �
k�1X
j D0

h .jT /: (6.53)

On the other hand, we get from Lemma 6.4 that

y .kT / D yD C 1

cn

f .T / C
mX

pD1

�p

k�np�1X
j D1

�
h Œ.j � 1/ T � C f Œ.j C 1/ T � � f .jT /

cn

�

�
k�1X
j D0

h .jT / D yD C
mX

pD1

�p

k�np�1X
j D1

h Œ.j � 1/ T � �
k�1X
j D0

h .jT /

C 1

cn

8<
:f .T / C

mX
pD1

�p

k�np�1X
j D1

ff Œ.j C 1/ T � � f .jT /g
9=
;

D yD C
mX

pD1

�p

k�np�2X
j D0

h .jT / �
mX

pD1

�p

k�1X
j D0

h .jT / C 1

cn

mX
pD1

�pf
��

k � np

�
T
�

D yD �
mX

pD1

�p

k�1X
j Dk�np�1

h .jT / C 1

cn

mX
pD1

�pf
��

k � np

�
T
�
: (6.54)

Since the utilized bandwidth h(�) is always nonnegative, and 8k, f (kT), and cn

have opposite signs, we may conclude that the queue length given by (6.54) never
exceeds the demand value yD. This ends the proof. ut
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Theorem 6.7. If controller (6.49) is applied to system (5.7) with matrix A defined
by (6.8), and function f(�) satisfies conditions (5.80)–(5.82), and the demand queue
length is selected according to the following inequality:

yD > dmax

0
@ mX

pD1

�pnp C 1

1
A; (6.55)

then for any k � kVP C nm C 1, the queue length is strictly positive.

Proof. Since we consider k � kVP C nm C 1, for all np, we have f [(k � np)T] D 0.
Consequently, since the utilized bandwidth represented by function h(�) is nonneg-
ative and upper-bounded by dmax, we get from (6.54) the following estimate of the
queue length for k � kVP C nm C 1:

y .kT / D yD �
mX

pD1

�p

k�1X
j Dk�np�1

h .jT / � yD � dmax

mX
pD1

�p

�
np C 1

�

D yD � dmax

0
@ mX

pD1

�pnp C 1

1
A: (6.56)

Therefore, using assumption (6.55), we get y(kT) > 0 for all k � kVP C nm C 1.
This completes the proof. ut

The fundamental properties of the presented strategy stated in the theorems have
been verified in a simulation scenario described in Sect. 6.1.3.4.

6.1.3.2 Application of a Reaching Law

In order to constrain high initial transmission rates, we may modify the procedure of
SM controller design to shape the way the system representative point approaches
a (fixed) sliding plane. Therefore, instead of influencing the plane dynamics, as
it was done in the previous section, the plane may be selected time invariant, yet
the reaching phase is extended over several periods. As the representative point is
required to cover a smaller distance from the plane in successive time intervals, the
control signal magnitude (and as a result the transmission rate value) is reduced. In
this way, we may ensure that the explicit input constraint (5.108), 0 � u(kT) � umax

where umax > dmax, is satisfied in the considered transmission system.
The way the system representative point approaches the sliding plane is governed

by reaching law. Following the discussion presented in Sect. 5.1.3.1, in order to
achieve high efficiency in transferring the users’ data, it is convenient to apply
the reaching law proposed by Golo and Milosavljević [6]. Further in the text,
we will show that with properly adjusted reaching-law parameters, the resulting
nonlinear SM controller can ensure zero loss rate and full bandwidth utilization in
the multisource network without violating the explicit input constraint (5.108).
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Controller Design

The reaching law proposed by Golo and Milosavljević [6] can be described by
means of Eqs. (5.109) and (5.110), repeated for convenience below in a synthetic
form:

s Œ.k C 1/ T � � s .kT / D � min .js .kT /j ; ı/ sgn Œs .kT /�: (6.57)

Function sgn(�) in (6.57) is defined as previously, i.e., sgn(x) D �1, if x � 0, and
sgn(x) D 1, for x > 0. With law (6.57) applied, the system representative point is
guaranteed to reach the hyperplane s(kT) D cTe(kT) D 0 monotonically in a finite
number of steps in a way determined by the choice of parameter ı > 0. We will
show later in this section how this parameter should be selected to obtain high
transmission efficiency in the analyzed multisource data transmission network.

Similarly as it was done in Sect. 5.1.3.1, we can present (6.57) in alternative way
(5.111), where strictly monotonic function fRL(�) is defined as

�
fRL Œ.k C 1/ T � D fRL .kT / C ı .kT / sgn Œs .kT /� for k < kRL; kRL 2 CC;

fRL Œ.k C 1/ T � D 0 for k � kRL:

(6.58)

Note that in contrast to the single-flow scenario analyzed in Sect. 5.1.3.1, here
we choose the reaching-law parameter ı(�) to be an explicit function of time rather
than a constant.

The controller design procedure is divided into two phases. First, the sliding-
plane parameters are selected for a dead-beat scheme, and afterwards, the reaching-
law parameter ı(�) is chosen to satisfy the input constraint 0 � u(kT) � umax.

Step 1. In the first part of the design, we choose the elements of vector c describing
the inclination of the sliding-plane s(kT) D cTe(kT) D 0 passing through the origin
of the error state space. If we opt for high responsiveness offered by a dead-
beat scheme, then the closed-loop characteristic polynomial det(zIn � Acl) in the
considered nth-order discrete-time system should be equal to zn. Following similar
steps as presented in (6.39)–(6.45), we arrive at vector c defined by (6.46) and the
control law

u .kT / D yD � y .kT / �
mX

pD1

�p

k�1X
j D k�np

u .jT / C 1

cn

fRL Œ.k C 1/ T �: (6.59)

Step 2. In the second part of the design, we elaborate on the choice of function
ı(�) such that the resulting control signal never exceeds umax. We assume that
fRL(0) D �cTe(0) D �cnyD. Since fRL(�) is strictly monotonic, this assumption also
implies that for any k 2 [0; kRL), fRL(�) and cn have opposite signs.

First, notice that since we assumed zero initial conditions, u(0) D yD C fRL(T)/cn.
Afterwards, for kT � T, the control signal satisfies the relation defined in the
following lemma.
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Lemma 6.8. If controller (6.59) is applied to system (5.7) with matrix A defined
by (6.8), and function fRL(�) is selected according to (6.58), then for any k � 1, the
generated transmission rate satisfies relation (5.114).

Proof. Since fRL(�) is strictly monotonic, and it satisfies conditions (5.80)–(5.82),
the lemma is true as a direct consequence of the reasoning presented in the proof of
Lemma 6.4. This completes the proof of Lemma 6.8. ut

Using (6.58), we can represent (5.114) in the following form:

�
u .kT / D h Œ.k � 1/ T � C ı .kT / sgnŒs .kT /� =cn for k < kRL;

u .kT / D h Œ.k � 1/ T � for k � kRL:
(6.60)

It follows from (5.2) that for any k, the utilized bandwidth 0 � h(kT) � dmax.
Therefore, the control signal specified by (6.60) is nonnegative and bounded by
dmax < umax for any k � kRL. Since the buffer at the bottleneck node is initially empty,
then, due to the delay, the first packets may be transferred at the node outgoing link
once they arrive at n1T, and h(k < n1) D 0. Afterwards, the utilized bandwidth h(�)
changes according to the value of the available bandwidth d(�) and the packet arrival
occurring in the order specified by the flow RTTs given by (6.2). Consequently,

h .k < n1/ D 0;

h .n1 � k < n2/ � min

8<
:umax

X
j �n1

aj ; dmax

9=
; ;

h .n2 � k < n3/ � min

8<
:umax

X
j �n2

aj ; dmax

9=
; ; : : : (6.61)

or more succinctly h.kT / D min
n
umax

P
j �k aj ; dmax

o
and hŒ.k � 1/T � �

min
n
umax

P
j <k aj ; dmax

o
. Therefore, in order to ensure that the condition

0 � u(kT) � umax is satisfied for all k < kRL, on the basis of (6.60), we conclude
that function ı(�) should obey the following constraint:

0 < ı .k < kRL/ � jcnj
2
4umax � min

0
@umax

X
j <k

aj ; dmax

1
A
3
5; (6.62)

which is calculated off-line using the information about the connections participat-
ing in the control process. This ends the design of the reaching law. The obtained
controller calculates the transmission rate from (6.59) with function fRL(�) defined
by (6.58) subject to constraint (6.62).
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One may notice structural similarities between the controller designed using
reaching-law approach (6.59) and the one employing time-varying sliding plane
(6.49). The principal difference lies in the choice of function f (�) that governs the
transmission rate allocation in the initial phase of the control process. According
to the analysis presented in Example 5.3 (which can be directly extended to the
multisource traffic scenario), selecting f (kT) as defined in (6.58) with ı.kT / D
jcnj

h
umax � min.umax

P
j <k aj ; dmax/

i
will typically result in a larger number of

packets sent in the initial phase of the control process than in the case of function
f (�) given by any of (5.83), (5.84), and (5.85).

Properties of the Proposed Controller

It follows directly from Lemma 6.8 that the feasibility constraint of nonnegative
transmission rates in the communication system regulated by controller (6.59) is
fulfilled. The other properties of the proposed nonlinear controller related to the
data transfer efficiency in the network will be formulated as two theorems. The
first proposition shows that buffer overflow never occurs and no packet needs to be
dropped due to possible bandwidth shortage at the outgoing link of the bottleneck
node. In the second theorem, we specify the minimum value of the demand queue
length which should be set in (6.59) to guarantee that the available bandwidth is
entirely used for data transfer.

Theorem 6.9. If controller (6.59) is applied to system (5.7) with matrix A defined
by (6.8), and function fRL(�) is selected according to (6.58), then the queue length is
always upper-bounded by its demand value yD.

Proof. The buffer at the bottleneck node is empty for any kT � RTT1 D n1T. Hence,
it suffices to show that the proposition is satisfied for any k > n1. Using Lemma 6.8,
the queue length in the bottleneck node buffer (6.7)

y .kT / D u.0/ C
mX

pD1

�p

k�np�1X
j D1

u .jT / �
k�1X
j D0

h .jT /

D u.0/ C
mX

pD1

�p

k�np�1X
j D1

h Œ.j � 1/ T � �
k�1X
j D0

h .jT /

C
mX

pD1

�p

k�np�1X
j D1

ffRL Œ.j C 1/ T � � fRL .jT /g
�

cn: (6.63)

Since u(0) D yD C fRL(T)/cn, we have

y .kT / D yD �
mX

pD1

�p

k�1X
j Dk�np�1

h .jT / C
mX

pD1

�pfRL
��

k � np

�
T
��

cn: (6.64)

http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5


6.1 Flow Control in a Network with Constant Delay 233

Moreover, since the utilized bandwidth h(�) is always nonnegative, and for each
k function f (kT) and parameter cn have opposite signs, y(kT) given by (6.64) never
exceeds the demand value yD. This ends the proof. ut
Theorem 6.10. If controller (6.59) is applied to system (5.7) with matrix A defined
by (6.8), and function fRL(�) is selected according to (6.58), and the demand queue
length according to (6.55), then for any k � kRL C nm C 1, the queue length is strictly
positive.

Proof. It follows from (6.58) that for k > kRL function fRL(kT) D 0. Consequently,
for k � kRL, controller (6.59) becomes equivalent to control law (6.49). Since both
controllers incorporate the rate history in exactly the same way, then taking into
account relation (6.55), the proposition is valid as a direct consequence of Theorem
6.7. This completes the proof. ut

If we compare the properties of controller (6.59) stated in Theorems 6.9 and
6.10 with the ones demonstrated for controller (6.49) given in Theorems 6.6 and
6.7, we can notice a similar set of conditions required to guarantee the maximum
throughput in the analyzed communication system. However, the described flow
control strategies differ in the way the input constraint is satisfied. In the case of
the controller with time-varying plane, this constraint is ensured by appropriately
adjusting the duration of the plane movement. Thus, the input constraint is satisfied
indirectly by manipulating the value of constant kVP. On the other hand, the
controller designed using the reaching-law approach allows for placing a direct
limitation on the maximum transmission rate value allowed by the network. In
the case of the reaching-law-based controller, the duration of the reaching phase
is controlled indirectly.

It should be noted that in order to ensure that the generated transmission rate
never exceeds the maximum allowed value umax, one can apply a direct rate limiter
in the form of a saturation element. This third, direct method, which can be applied
to limit excessive transmission rates without the need to throttle the controller
dynamics, is given a detailed consideration in the next section.

6.1.3.3 Application of a Saturation Element

One of the methods of constraining transmission rate to a predefined range,
favored by practitioners, is the application of a direct rate limiter. In software
(or hardware) implementation of this method, before the information about the
current transmission rate is incorporated in control units, the determined value
is truncated to a given interval. In this way, direct control is exerted over the
maximum transmission rate the sources will be permitted to use. From the control-
theoretic perspective, the described method introduces a saturation nonlinearity into
the controller operation.

http://dx.doi.org/10.1007/978-1-4471-4147-1_5
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Proposed Control Strategy

The transmission rate established by the algorithm at any time kT is determined
according to the following equation:

u .kT / D min f! .kT / ; umaxg ; (6.65)

where function !(kT) is defined as

! .kT / D yD � y .kT / �
mX

pD1

�p

k�1X
j Dk�np

u .jT / (6.66)

and umax > dmax is a positive constant denoting the maximum overall rate that can be
assigned for the sources contending for the bandwidth at the bottleneck node output
link.

Properties of the Proposed Strategy

In order to implement a congestion control algorithm in a data transmission network,
one must ensure that the established transmission rate is always nonnegative and
bounded so that the sources are not requested to inject packets into the network
at negative or infinite rate. It follows directly from (6.65) that the transfer speed
u(�) generated by the considered algorithm is upper-bounded by umax > 0. Definition
(6.65) also implies that for any time instant kT � 0, we have u(kT) � !(kT).
Consequently, for feasible network implementation we need to guarantee that
u(kT) � 0 is satisfied for any kT � 0. This is demonstrated in the following lemma.

Lemma 6.11. If controller (6.65) with function !(�) defined by (6.66) is applied
to system (5.7) with matrix A defined by (6.8), then for any kT � 0, the generated
transmission rate is nonnegative.

Proof. It follows from the assumed initial conditions

u .kT / D 0 for kT < 0;

y.0/ D 0;

that !(0) D yD. Therefore, since umax > 0 and yD > 0, then using (6.65), we may
estimate the flow rate value at the initial time as u(0) D minfyD, umaxg > 0. The
condition umax > 0 also implies that if at any time instant kT > 0 the maximum
transmission rate is established for the sources, then u(kT) > 0. Hence, what
remains to be shown is that u(kT) � 0 for any kT > 0 in the circumstances when
u(kT) D !(kT). Making use of (6.4), we can represent the queue length dynamics in
the following way:

http://dx.doi.org/10.1007/978-1-4471-4147-1_5
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y .kT / D y Œ.k � 1/ T � C
mX

pD1

�pu
��

k � np � 1
�

T
� � h Œ.k � 1/ T �: (6.67)

We analyze the situation when u(kT) D !(kT). Then, using (6.67), we can write

u .kT / D ! .kT / D yD � y .kT / �
mX

pD1

�p

k�1X
j Dk�np

u .jT /

D yD � y Œ.k � 1/ T � �
mX

pD1

�pu
��

k � np � 1
�

T
�

C h Œ.k � 1/ T � �
mX

pD1

�p

k�1X
j Dk�np

u .jT /

D yD � y Œ.k � 1/ T � �
mX

pD1

�p

k�1X
j Dk�np�1

u .jT / C h Œ.k � 1/ T �

D yD � y Œ.k � 1/ T � �
mX

pD1

�p

k�2X
j Dk�np�1

u .jT /

�
mX

pD1

�pu Œ.k � 1/ T � C h Œ.k � 1/ T �:

Note that the first three terms in the last line of the preceding equation combine
into ![(k � 1)T]. On the other hand, since the rate partitioning strategy satisfies the
condition

Pm
pD1 �p D 1, we have

mX
pD1

�pu Œ.k � 1/ T � D u Œ.k � 1/ T � (6.68)

and

u .kT / D ! Œ.k � 1/ T � � u Œ.k � 1/ T � C h Œ.k � 1/ T �: (6.69)

Taking into account the fact that for any time instant kT, u(kT) � !(kT), we get
![(k � 1)T] � u[(k � 1)T] � 0. Consequently, since the utilized bandwidth is always
nonnegative, we obtain u(kT) � h[(k � 1)T] � 0, which shows that u(kT) � 0 at any
time instant kT > 0 when u(kT) D !(kT). This conclusion ends the proof. ut

The preceding discussion shows that by applying the control strategy (6.65),
and (6.66), the explicit input constraint 0 � u(kT) � umax is always satisfied. In the
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further part of this section, we state properties of the described flow control
algorithm and prove them analytically. First, we show that the packet queue length
is upper-bounded, which means that if the corresponding buffer capacity is provided
at the bottleneck node, then packet losses related to congestion are eliminated.
Secondly, we specify the value of the demand queue length so that entire available
bandwidth at the output link of the bottleneck node is used for data transfer and
maximum throughput is achieved. Finally, we formulate a relation between the
utilized bandwidth h(�) and the established control signal u(�).
Theorem 6.12. If controller (6.65) with function !(�) defined by (6.66) is applied to
system (5.7) with matrix A defined by (6.8), then the queue length in the bottleneck
node buffer is always upper-bounded by its demand value yD.

Proof. It follows from Lemma 6.11 that the data transmission rate generated by
controller (6.65), and (6.66) is always nonnegative. We know from (6.65) that u(kT)
never exceeds !(kT). Therefore, for any time kT � 0, we can write

yD � y .kT / �
mX

pD1

�p

k�1X
j Dk�np

u .jT / D ! .kT / � u .kT / � 0: (6.70)

Consequently, the queue length at instant kT is subject to the following con-
straint:

y .kT / � yD �
mX

pD1

�p

k�1X
j Dk�np

u .jT /: (6.71)

Taking into account the inequality u(kT) � 0, we may conclude that the queue
length never exceeds yD. This ends the proof. ut

Theorem 6.12 states that the packet queue length will not grow beyond its
demand value yD, which means that arbitrarily small buffer (but equal at least to
yD) suffices to store all the intermediate packets before they are forwarded by the
bottleneck node towards destination. In this way, the packet losses due to lack of
bandwidth and the resulting buffer overflow are eliminated. However, by assigning
small values of the demand queue length, one may fail to ensure that the available
bandwidth is efficiently used for data transfer. Therefore, it is desirable to specify
conditions under which full bottleneck link bandwidth utilization is achieved. It
turns out that in the considered system, it suffices to manipulate a single controller
parameter – the demand queue length – to guarantee efficient bandwidth usage.
The minimum value of the demand queue length required to meet this important
objective is specified in the next theorem.

Theorem 6.13. If controller (6.65) with function !(�) defined by (6.66) is applied
to system (5.7) with matrix A defined by (6.8), the maximum rate umax > dmax, and
the demand value of the queue length yD satisfies the following inequality:

http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
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yD > umax

0
@ mX

pD1

�pnp C 1

1
A; (6.72)

then there exists a time instant k0T,

k0 <
yD � umax

umax � dmax
C 1; (6.73)

such that for any kT > k0T, the queue length in the bottleneck node buffer is strictly
positive.

Proof. Let us introduce an auxiliary function '(�) defined as

' .kT / D y .kT / C
mX

pD1

�p

k�1X
j Dk�np

u .jT /: (6.74)

Substituting (6.7) into (6.74), we can express function '(kT) as a sum of input
signals

' .kT / D y .kT / C
mX

pD1

�p

k�1X
j Dk�np

u .jT /

D
mX

pD1

k�np�1X
j D0

�pu .jT / �
k�1X
j D0

h .jT / C
mX

pD1

�p

k�1X
j Dk�np

u .jT /

D
mX

pD1

�p

k�1X
j D0

u .jT / �
k�1X
j D0

h .jT /: (6.75)

Since
Pm

pD1 �p D 1, we may simplify (6.75) in the following way:

' .kT / D
k�1X
j D0

u .jT / �
k�1X
j D0

h .jT /: (6.76)

Considering assumption (6.72), we get

'.0/ D 0 < yD � umax

0
@ mX

pD1

�pnp C 1

1
A < yD � umax: (6.77)
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Moreover, if for some k the following inequality '(kT) < yD � umax is satisfied,
then

! .kT / D yD � y .kT / �
mX

pD1

�p

k�1X
j Dk�np

u .jT / D yD � ' .kT / > umax; (6.78)

which implies u(kT) D umax. Consequently, since umax > dmax, we conclude that if
'(kT) < yD � umax, then function '(�) increases at least at the rate umax � dmax. Thus,
there exists such a finite time instant k0T, when the following condition

' .kT / � yD � umax (6.79)

is satisfied for the first time. Note that according to (6.76), the value of '(�) does not
depend on the number of sources. Consequently, the search for the latest time instant
when inequality (6.79) can be satisfied for the first time and that it is satisfied for
any kT > k0T proceeds as in the proof of Theorem 5.14. Using (6.79), one can see
from relation (6.74) and the theorem assumption (6.72) that for any time kT > k0T,

y .kT / � yD � umax �
mX

pD1

�pnpumax D yD � umax

0
@ mX

pD1

�pnp C 1

1
A > 0: (6.80)

This completes the proof. ut
Theorems 6.12 and 6.13 specify the conditions for achieving the maximum

throughput in the considered communication network, in which the data flow rate
of the sources is regulated by controller (6.65), and (6.66). In the next theorem,
a relation between the generated transmission rate and the utilized bandwidth is
formulated and strictly proved.

Theorem 6.14. If controller (6.65) with function !(�) defined by (6.66) is applied
to system (5.7) with matrix A defined by (6.8), the demand queue length yD > umax

and the maximum flow rate umax > dmax, then there exists a nonnegative integer k0

satisfying inequality (6.73) such that for any k > k0, the following relation holds

u .kT / D h Œ.k � 1/ T �: (6.81)

Furthermore, when yD � umax, relation (6.81) is satisfied for any k � 1.

Proof. First, we will consider the situation when inequality yD � umax holds. We
will demonstrate that in this case for any k � 0, we have !(kT) � umax, which using
definition (6.65) implies u(kT) D !(kT).

In order to prove that !(kT) � umax for any k � 0, we apply the principle of the
mathematical induction. At the beginning of the control process, !(0) D yD � umax.
Therefore, the considered inequality holds for k D 0. Let us assume that it is

http://dx.doi.org/10.1007/978-1-4471-4147-1_5
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true for some integer l > 0, and we will show that it is also satisfied for l C 1. Using
(6.66) and (6.67), and taking into account that u(kT) D !(kT), we get

! Œ.l C 1/ T � D ! .lT / � u .lT / C h .lT / D h .lT / � dmax < umax; (6.82)

which ends the induction proof. Since in the analyzed situation u(kT) D !(kT) for
any kT � 0, we get from (6.69) u(kT) D h[(k � 1)T]. This clearly shows that, if
inequality yD � umax is satisfied, then (6.81) indeed holds for any positive integer k.

Now, let us consider the situation when yD > umax. We know that if for some
k the inequality !(kT) < yD � umax is satisfied, then it follows from (6.74) and the
assumption umax > dmax that function !(�) increases at least at the rate umax � dmax.
Thus, there exists such a finite time instant k0T, when condition (6.79) is satisfied
for the first time and, as it has been proved, integer k0 satisfies inequality (6.73).
Condition (6.79) implies that for any kT > k0T, !(kT) D yD � '(kT) � umax and then
u(kT) D !(kT). Therefore, again, it immediately follows from (6.69) that relation
(6.81) is indeed satisfied for any k > k0. This conclusion ends the proof. ut

We analyzed three methods of constraining high control signals: the application
of a time-varying sliding plane, the use of a reaching law, and incorporating
saturation nonlinearity. In the remainder of this section, the properties of the de-
signed nonlinear controllers operating in the considered multisource communication
network are compared in a series of simulation tests.

6.1.3.4 Simulation Results

To illustrate the controller properties, we apply a similar discrete-time network
model as described in Sect. 6.1.2.3 with the discretization period set as T D 10 ms.
Four connections (m D 4) are assumed to contend for the bandwidth at the output
link of the bottleneck node. They are characterized by the delays: RTT1 D 3T,
RTT2 D 7T, RTT3 D 8T, and RTT4 D 12T. The controller is assumed to treat the
connections equally in the rate allocation. Therefore, the weights take the values:
�1 D �2 D �3 D �4 D 0.25, which leads to matrix A given by (6.8) with the first row
of the following form:

�
a1j

� D �
a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1

�
D �

1 0:25 0 0 0 0:25 0:25 0 0 0 0:25 0 0
�
:

The available bandwidth at the bottleneck link is limited by dmax D 100 packets
per period. It is also assumed that the biggest rate the controller may establish for
the connections cannot exceed umax D 150 packets.

We compare the three methods of constraining the transmission rate to the
interval [0, umax] presented in Sect. 6.1.3: the application of time-varying sliding
plane (controller (6.49)), reaching-law-based design (controller (6.59)), and the use
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of direct transmission rate limiter (controller (6.65)). In order to provide a baseline
for comparison, we also run the tests for the (linear) LQ suboptimal controller (6.27)
with the gain adjusted such that the rate does not exceed umax, i.e., the gain needs
to fulfill the inequality � � umax/yD. We run two series of simulations: one for the
piecewise constant bandwidth pattern with abrupt transitions illustrated in Fig. 6.2
and another series for the stochastic signal depicted in Fig. 6.14.

Test 1. We verify the controller performance in the case when the available
bandwidth at the bottleneck link evolves as shown in Fig. 6.2. The parameters
of each controller are chosen so that the overall transmission rate is limited by
umax D 150 packets. At the same time, it is desired to drive the network into the
state of maximum throughput that would be ensured irrespective of the actual
bandwidth variations (a priori unknown to the controllers). Consequently, the gain
of the LQ suboptimal controller (curve a in the graphs) is selected as � D 0.066,
and the demand queue length for this controller is adjusted according to Theorem
6.2 as 2,255 > 2,250 packets. The gain selection � D 0.066 corresponds to the
output weighting factor in the quadratic cost functional w D 0.0047 (refer to (6.23)).
Parameters of time-invariant LQ suboptimal plane (with cn D 1) are as follows:

cT D �
� 0:25� 0:25� 0:25� 0:25� 0:5� 0:75� 0:75� 0:75� 0:75� � � 1

�
:

In the case of controller (6.49) (curve b in the graphs), which employs a time-
varying sliding plane, we need to decide on both the plane dynamics and inclination
(determined by the parameters c1, : : : , cn). Parameters of the plane are selected for
a dead-beat scheme as

cT D �
1 0:25 0:25 0:25 0:25 0:5 0:75 0:75 0:75 0:75 1 1 1

�
: (6.83)

It is assumed that the plane moves with constant inclination towards the final
position cTe(kT) D 0. Note that in its final position, the plane passes through the
origin of the error state space and the controller is capable of reducing the error
to zero in finite time. The plane movement is described by a linear function fVP(�)
defined in the following way:

fVP .kT / D
(

� k�kVP
kVP

cTe.0/ D � k�kVP
kVP

yD for k D 0; 1; :::; kVPI
0 for k > kVPI

where the terminal condition is selected to ensure u(kT) � umax as kVP D 8. The
demand queue length is chosen according to Theorem 6.7 such that full bandwidth
usage is ensured. We set yD D 855 > 850 packets.

In the case of controller (6.59) designed using reaching-law approach, the key
point is an appropriate selection of parameter ı(�) that governs the way the system
representative point approaches the fixed sliding plane. To quickly bring the system
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Table 6.2 Demand queue
length selection

Controller yD [packets]

Linear with LQ suboptimal plane 2,255 > 2,250
Nonlinear with time-varying plane 855 > 850
Nonlinear employing reaching law 855 > 850
Nonlinear with saturation element 1,280 > 1,275

into the region of maximum throughput, we opt for the fastest point movement
towards the plane, and, once the plane is reached, we expect rapid error convergence
to zero. Therefore, we choose the plane parameters as in (6.83) and ı(�) as the
biggest value permitted by the input constraint at the right margin of inequality
(6.62). We select ı(�) according to

ı .k < kRL/ D umax � min

0
@umax

X
j <k

aj ; dmax

1
A

as

ı .0 � k < 4/ D umax � min .0; dmax/ D 150 � 0 D 150 packets;

ı .4 � k < 8/ D umax � min .umaxa3; dmax/ D 150 � 150 � 0:25 D 112:5 packets;

ı.8/ D umax � min Œumax .a3 C a7/ ; dmax� D 150 � 150 .0:25 C 0:25/

D 75 packets;

ı.9/ D umax � min Œumax .a3 C a7 C a8/ ; dmax�

D 150 � min .112:5; 100/ D 50 packets:

ı .9 < k < kRL/ D 50 packets:

The demand queue length for the reaching-law-based controller is chosen as
suggested by Theorem 6.10 at the level exceeding 850 packets. We select 855
packets.

The saturation limit of controller (6.65) is set directly as umax D 150 packets.
Then, the demand queue length resulting in the maximally efficient bandwidth usage
is chosen according to the guidelines of Theorem 6.13 as 1,280 > 1,275 packets.
For convenience, the reference values (which also constitute the minimum buffer
capacity required at the bottleneck node) are grouped in Table 6.2.

It is evident from the plots presented in Fig. 6.18 that the rate established by
each controller is nonnegative and never exceeds the upper bound of 150 packets,
precisely as permitted by the network. We can also see from these graphs that all
three nonlinear controllers (6.49), (6.59), and (6.65) provide faster reaction to the
bandwidth changes than the linear one (6.27). On the other hand, it follows from
Fig. 6.19 that each controller guarantees that the queue length does not grow beyond
the demand value given in Table 6.2. Consequently, the buffer assignment of yD
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Fig. 6.18 Transmission rate: a linear controller (6.27) and b–d nonlinear controllers (6.49), (6.59),
and (6.65)
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Fig. 6.19 Queue length:
a linear controller (6.27) and
b–d nonlinear controllers
(6.49), (6.59), and (6.65)

ensures loss-free transmission. We can also learn from the plots depicted in Fig. 6.19
that the nonlinear controllers impose smaller buffer capacity requirements than the
linear one while still ensuring loss-free and maximally efficient data transfer. The
larger average queue length in the case of the linear controller also leads to longer
time necessary for draining the queue. Thus, if the average session delay is of
major importance, the linear scheme will provide the worst quality of service in
the analyzed scenario with rate constraints.

The linear controller guarantees that the plane is attained in a single step, and,
afterwards, the system representative point is maintained in a direct vicinity of the
plane [0, �cndmax D �dmax D 6.6 packets). In the case of the nonlinear controllers,
with cn D 1, the band around the sliding plane extends to [0, 100 packets). Thus,
the faster reaction to the bandwidth changes provided by the nonlinear controllers
comes at a price of larger band in the sliding phase. The evolution of the sliding
variable in the initial phase is illustrated in Fig. 6.20.

It follows from the preceding discussion that the analyzed nonlinear controllers
offer faster dynamics and more efficient memory usage than the linear scheme. It
is instructive to compare the proposed controllers also with respect to the quadratic
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plane, and c reaching-law-based controller (6.59)

Table 6.3 Controller
comparison based on
performance index (5.41)

Controller J2 (�105)

Linear with LQ suboptimal plane 2.66
Nonlinear with time-varying plane 0.70
Nonlinear employing reaching law 0.72
Nonlinear with saturation element 1.32

quality criterion. In Table 6.3, we list the values of J2 (with w D 0.0047) obtained
for the disturbance-free case d(�) � 0. The analysis of the data given in Table 6.3
reveals that the nonlinear controllers perform better according to the quadratic
quality criterion than controller (6.27) (which attempts to minimize this criterion!).
This somewhat surprising result is easily explained if we compare the demand
queue length values given in Table 6.2. In the case of the nonlinear controllers, a
much smaller value suffices to ensure full bandwidth utilization while preserving the
input constraint than in the case of linear controller (6.27). Therefore, the designed
nonlinear controllers require less control effort to follow the reference value, and
the output tracking component yD � y(kT) in (5.41) is more quickly reduced to zero.

Test 2. In the second scenario, we compare performance of the LQ suboptimal
controller with the nonlinear one incorporating the saturation element in the
circumstances when the available bandwidth at the bottleneck link undergoes rapid
fluctuations (since the nonlinear controllers do not apply rate smoothening their
response to highly variable bandwidth is similar). Function d(�) following the normal
distribution with mean d
 D 50 packets and standard deviation dı D 35 packets is
depicted in Fig. 6.14. The controller parameters are adjusted as in Test 1.

The generated transmission rate is shown in Fig. 6.21 and the resulting packet
queue length in Fig. 6.22. We can see from the plots depicted in Fig. 6.21 that the
input constraint is satisfied. On the other hand, it follows from Fig. 6.22 that the
queue length never exceeds the buffer size limitations, which means that packet
losses are eliminated. The queue never drops to zero following the initial phase,
and, hence, the conditions of maximum throughput are achieved. The queue length
variations are similar between the analyzed controllers. However, the transmission
rate established by the nonlinear controller undergoes larger fluctuations than the

http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
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Table 6.4 Signal statistics

Controller

u(�) y(�)

 ı ı/
 
 ı ı/


Linear with LQ suboptimal plane 53 12 0.23 1,015 254 0.25
Nonlinear with saturation element 53 35 0.66 803 179 0.22


 mean [packets], ı standard deviation [packets], ı/
 coefficient of variation

one generated by linear controller, and thus, it is more difficult to follow by
the transmitters. The signal statistics summarized in Table 6.4 show that in the
case of the nonlinear controller, rapid bandwidth oscillations are translated to the
transmission rate. The LQ suboptimal control law provides both smaller standard
deviation and smaller coefficient of variation of the generated rate signal u(�).

6.1.4 Variable Source Number and Time-Varying Rate
Allocation

The control strategies considered so far in this chapter eliminate the risk of losing
data and guarantee the maximum available throughput in the network modeled as
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a discrete-time system with multiple input-output delays. However, these favorable
properties are demonstrated under the assumption that the rate distribution weights
and the overall number of flows are determined in the connection setup phase and
remain unchanged during the whole control process. In this section, we present an
enhanced version of the strategy introduced in Sect. 6.1.3.3 (proportional controller
with saturation), which explicitly takes into account time-varying rate allocation
patterns and variable source number.

6.1.4.1 Variable Rate Allocation

Let us consider the set of M connections, M D const, characterized by round-
trip times RTT1 D n1T, RTT2 D n2T, : : : , RTTM D nMT, where n1, n2, : : : , nM are
positive integers and T is the discretization period. Without loss of generality, we
may order these connections according to their RTTs in the following way:

0 < n1 � n2 � � � � � nM : (6.84)

Any of the connections characterized by (6.84) may send data through the
bottleneck node at some moment of time kT > 0. A particular connection is
considered active if the node takes it into account in the allocation of transmission
rate. The number of active connections at any time instant kT, denoted by m(kT),
satisfies the condition m(kT) � M. Note that here the number of active connections
is an explicit function of time m(�) rather than a constant as was considered so far in
this chapter.

Let us denote the fraction of the overall transmission rate allocated at instant
kT to connection p by �p(kT), where �p(kT) is a real number from the interval
[0,1] satisfying

P
pWactive �p .kT / � 1. Each active connection is allocated a positive

fraction of the overall transmission rate u(�). For instance, in the case of equal
rate distribution, we will have �p(kT) D 1/m(kT). In the circumstances, when
�p(kT) D 1, only one flow is active, while �p(kT) D 0 implies that the connection
characterized by delay npT is considered turned-off. Since for inactive connections
�p(kT) D 0, we may write

8
k�0

X
pWactive

�p .kT / D
MX

pD1

�p .kT / � 1: (6.85)

In the case of the controlling node being a single bottleneck for the considered
set of connections, we will have

PM
pD1 �p .kT / D 1, as the rate established by the

controller is the lowest one on the data route. In the multibottleneck scenario, in turn,
we will typically have

PM
pD1 �p .kT / < 1, as some connections may be throttled

at other points in the network, and the controlling node will be forced to allocate
smaller rate than the generated one for those connections.
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Scenario a) one connection with delay npT

Scenario b) two connections with delay n1T = n2T = npT

connection becomes inactive

connection 1 terminates

cummulative allocation profile l1 + l2

Time [kT]

Time [kT]

Time [kT]

Time [kT]

connection resumes

connection 2 starts

k1T k2T

k1T k2T

k1T k2T

k1T k2T

lp (kT)

l1 (kT)

l2 (kT)

Fig. 6.23 Allocation profile: a single connection with different source activity periods and b two
connections with the same delay and different activity periods

Note that the actual data origin of packet streams is of no importance from the
point of view of the rate allocation strategy represented by the set of functions
�p(�). The rate allocation function �p(�) is related only to the connections with
RTT equal to npT passing through the controlling node. Thus, if a connection
characterized by delay npT becomes temporarily inactive, say at k1T, and resumes
at some later time instant k2T > k1T, we have the allocation profile �p(k < k1) > 0,
�p(k1 � k < k2) D 0, and �p(k � k2) > 0. The same cumulative allocation profile is
obtained if one connection is terminated at k1T, and another connection is started at
k2T (possibly at a different source), provided that both connections experience the
same delay npT. This situation is illustrated in Fig. 6.23. Consequently, using the
described framework, one can represent arbitrary (feasible) rate allocation strategy
and arbitrary source activity pattern.

With the general, time-varying rate allocation policy described above, the queue
length dynamics is given by the following relation:
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y Œ.k C 1/ T � D y .kT / C
MX

pD1

�p

�
kT � RTTp

�
u
�
kT � RTTp

� � h .kT / :

(6.86)

Assuming the zero initial conditions, i.e., y(0) D 0 and 8p, �p(kT) D 0 for k < 0,
we get a closed-form expression for the queue length at arbitrary time instant kT:

y .kT / D
MX

pD1

k�1X
j D0

�p

�
jT � RTTp

�
u
�
jT � RTTp

� �
k�1X
j D0

h .jT /: (6.87)

After applying the definition RTTp D npT, relation (6.87) can be rewritten as

y .kT / D
MX

pD1

k�1X
j D0

�p

�
jT � npT

�
u
�
jT � npT

� �
k�1X
j D0

h .jT /

D
MX

pD1

k�np�1X
j D�np

�p .jT / u .jT / �
k�1X
j D0

h .jT /

D
MX

pD1

k�np�1X
j D0

�p .jT / u .jT / �
k�1X
j D0

h .jT /; (6.88)

which is convenient for the closed-loop property analysis conducted in a latter part
of this section.

6.1.4.2 Proposed Control Strategy

To control the flow of data in the network with variable resource allocation, we
propose to apply the proportional controller combined with saturation nonlinearity
which was presented in Sect. 6.1.3.3. However, here we add another limit to the
saturation element so that the rate is explicitly restricted to the interval [0, umax].

The overall transmission rate for the connections passing through the controlling
node is determined from the following relation:

u .kT / D

8̂
<̂
ˆ̂:

0; if !� .kT / < 0;

!� .kT / ; if 0 � !� .kT / � umax;

umax; if !� .kT / > umax;

(6.89)
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where umax > dmax, and function !�(�) is defined as

!� .kT / D �

2
4yD � y .kT / �

mX
pD1

k�1X
j Dk�np

�p .jT / u .jT /

3
5 (6.90)

and the gain � 2 (0, 1].
It follows directly from (6.89) that the proposed control algorithm satisfies the

input constraint 0 � u(kT) � umax. The controller properties related to handling the
flow of data in the considered network are discussed and strictly proved in the next
section.

6.1.4.3 Properties of the Proposed Strategy

All the controllers presented so far in this work guarantee lossless transmission and
good network efficiency when the protocol designer follows the rules of parameter
adjustment specified in the appropriate theorems. Below, we formulate a set of
conditions which allow the controller considered in this section to eliminate packet
losses (occurring due to congestion) and obtain full bandwidth utilization in the
situation when the rate distribution policy and number of active connections change
with time during the transmission.

Theorem 6.15. If controller (6.89) with function !�(�) defined by (6.90) is applied
to the system with variable resource allocation, then for any k � 0, the queue length
at the bottleneck node does not exceed ymax, where

ymax D yD C umax: (6.91)

Proof. It follows from the algorithm definition and the system initial conditions
that the buffer at the bottleneck node is empty for any k < n1. Consequently, it is
sufficient to show that the proposition holds for all k � n1. Let us consider some
integer l � n1 and the value of function !�(�) at time instant lT. Two cases ought to
be analyzed: the situation when !�(lT) � 0 and the circumstances when !�(lT) < 0.

Case 1. Investigating the case when !�(lT) � 0, we get from the definition of !�(�),

!� .lT / D �

2
4yD � y .lT / �

MX
pD1

l�1X
j Dl�np

�p .jT / u .jT /

3
5 � 0; (6.92)

that

y .lT / � yD �
MX

pD1

l�1X
j Dl�np

�p .jT / u .jT /: (6.93)
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On the other hand, it follows from (6.89) that u(�) is always nonnegative, which
implies y(lT) � yD. This ends the first part of the proof.

Case 2. In the second part of the proof, we analyze the situation when !�(lT) < 0.
First, we find the last instant l1T < lT when !�(�) was nonnegative. According to
(6.90) !�(0) D �yD > 0 since both � and yD are positive. This means that l1T indeed
exists. If !�(l1T) � 0, then, similarly as in (6.92) and (6.93), we obtain

y .l1T / � yD �
MX

pD1

l1�1X
j Dl1�np

�p .jT / u .jT /: (6.94)

The queue length at instant lT can be expressed relative to the queue length at
instant l1T in the following way:

y .lT / D y .l1T / C
MX

pD1

l�np�1X
j Dl1�np

�p .jT / u .jT / �
l�1X

j Dl1

h .jT /: (6.95)

Applying (6.94) and (6.95), we get

y .lT / � yD �
MX

pD1

l1�1X
j Dl1�np

�p .jT / u .jT / C
MX

pD1

l�np�1X
j Dl1�np

�p .jT / u .jT / �
l�1X

j Dl1

h .jT /

� yD C
MX

pD1

l�np�1X
j Dl1

�p .jT / u .jT / �
l�1X

j Dl1

h .jT /: (6.96)

The controller established a nonzero transmission rate u(�) for the pool of
active connections for the last time before lT at instant l1T, and this value, u(l1T),
could be as large as umax. Consequently, taking into account condition (6.85), we
can estimate the weighted sum in (6.96) as

MX
pD1

l�np�1X
j Dl1

�p .jT / u .jT / D u .l1T /

MX
pD1

�p .l1T / � u .l1T / � umax: (6.97)

Since the utilized bandwidth h(�) is always nonnegative, then using (6.97), we
obtain the following estimate of the queue length at instant lT

y .lT / � yD C u .l1T / � 0 � yD C umax: (6.98)

This concludes the second part of the reasoning and completes the proof. ut
Theorem 6.15 shows that if the flow of data in the pool of M connections is

governed by the proposed controller, then the queue length never exceeds the level
of ymax. Thus, irrespective of the source activity profile in the pool and assumed rate
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allocation policy conforming to (6.85), the buffer capacity equal to ymax suffices
to eliminate packet losses originating from congestion. In the next proposition,
we indicate how the demand queue length should be selected in order to ensure
y(�) > 0, which implies full bandwidth utilization in the considered data transmission
network.

Theorem 6.16. If controller (6.89) with function !�(�) defined by (6.90) is applied
to the system with variable resource allocation so that

PM
pD1 �p .kT / D 1, and the

demand queue length satisfies the following inequality:

yD > umax .n� C 1=�/ C dmax; (6.99)

where n� D max
k

PM
pD1

Pk�1
j Dk�np

�p .jT /, then for any k � nm C ymax/(umax � dmax),

the queue length is strictly positive.

Proof. Let us consider some integer l � nm C ymax/(umax � dmax) and the value of
signal !�(�) at instant lT. We need to analyze two cases: the situation when
!�(lT) < umax and the circumstances when !�(lT) � umax.

Case 1. First, we consider the situation when !�(lT) < umax. Directly from the
definition of function !�(�), we get

!� .lT / D �

2
4yD � y .lT / �

MX
pD1

l�1X
j Dl�np

�p .jT / u .jT /

3
5 < umax: (6.100)

Rearranging the terms in (6.100), we obtain

y .lT / > yD � umax =� �
MX

pD1

l�1X
j Dl�np

�p .jT / u .jT /: (6.101)

The overall transmission rate established according to (6.89) is upper-bounded
by umax, which implies that

y .lT / > yD � umax =� � umax

MX
pD1

l�1X
j Dl�np

�p .jT / � yD � umax .n� C 1=�/ :

(6.102)

Applying assumption (6.99), we get y(lT) > dmax > 0, which concludes the first
part of the proof.

Case 2. In the second part of the proof, we investigate the situation when
!�(lT) � umax. First, we find the last moment l1T before lT when signal !�(�) was
smaller than umax. We know from Theorem 6.15 that the queue length never exceeds
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the value of ymax. Moreover, the consumed bandwidth h(�) is limited by dmax. Thus,
the maximum interval during which the controller may continuously generate the
maximum transmission rate is determined as ymax/(umax � dmax), and instant l1T
does exist. Furthermore, from the theorem assumptions, we get l1 � nm, and, for any
instant kT,

PM
pD1 �p .kT / D 1. This means that by the time l1T, the first packets

from all the sources have already reached the node, no matter the value of delay and
the actual allocation pattern.

The value of !�(l1T) < umax. Consequently, following a similar reasoning as
presented in (6.100)–(6.102), we arrive at

y .l1T / > yD � umax =� �
MX

pD1

l1�1X
j Dl1�np

�p .jT / u .jT / > 0: (6.103)

If we apply (6.103) in (6.95), we may conclude that the queue length at instant
lT satisfies the following inequality:

y .lT / > yD � umax

�
�

MX
pD1

l1�1X
j Dl1�np

�p .jT / u .jT /

C
MX

pD1

l�np�1X
j Dl1�np

�p .jT / u .jT / �
l�1X

j Dl1

h .jT /: (6.104)

Working with the sums in (6.104) leads to

y .lT / > yD � umax

�
C

MX
pD1

l�1X
j Dl1

�p .jT / u .jT /

�
MX

pD1

l�1X
j Dl�np

�p .jT / u .jT / �
l�1X

j Dl1

h .jT /: (6.105)

Moment l1T was the last instant before lT when the controller calculated rate
smaller than umax. This rate could be as low as zero. Afterwards, the controller
generates the maximum rate value. Hence, since by the theorem assumptions for
any kT we have

PM
pD1 �p .kT / D 1, the first sum in (6.105) may be estimated in

the following way:

MX
pD1

l�1X
j Dl1

�p .jT / u .jT / D
l�1X

j Dl1

u .jT / D u .l1T / C
l�1X

j Dl1C1

u .jT / � umax .l � 1 � l1/ :

(6.106)
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Since for any integer l, u(lT) � umax, the second sum in (6.105)

umax

MX
pD1

l�1X
j Dl�np

�p .jT / � umaxn�: (6.107)

Therefore, applying (6.106) and (6.107) to (6.105), we obtain

y .lT / > yD � umax

�
C umax .l � 1 � l1/ � umaxn� �

l�1X
j Dl1

h .jT /: (6.108)

Since h(�) � dmax, we get the following estimate of the queue length at instant lT:

y .lT / > yD � umax =� C umax .l � 1 � l1/ � umaxn� � dmax .l � l1/ : (6.109)

Using the theorem assumption (6.99), we get

y .lT / > umax .n� C 1 =� / C dmax � umax =� C umax .l � 1 � l1/

� umaxn� � dmax .l � l1/ D umax .l � 1 � l1/ � dmax .l � 1 � l1/ :

(6.110)

Finally, since l > l1 and umax > dmax, we arrive at y(lT) > (umax � dmax)(l � 1 � l1)
� 0. This concludes the proof. ut
Remark 6.3. Let us notice that neither the number of connections, nor their RTTs,
can be determined a priori. Therefore, appropriate Call Admission Control (CAC)
procedures deciding whether to accept or reject a new connection should ensure
that condition (6.99) is satisfied. Also, the rate distribution function in the control
algorithm may assist in fulfilling (6.99) by allocating the weights in such a way that
for any k,

PM
pD1

Pk�1
j Dk�np

�p .jT / � n�. If condition (6.99) is not satisfied, then
it is no longer guaranteed that the queue length will be strictly positive, and part
of the available bandwidth may be left unused. However, violating condition (6.99)
does not lead to packet losses. If the buffer capacity is selected according to (6.91),
then the entire packet queue can be always stored in the buffer, and congestion is
avoided.

Performance of controller (6.89), regulating the flow of data in the considered
multisource network with variable resource allocation and connection number, is
illustrated in a simulation scenario described in the next section.

6.1.4.4 Simulation Results

We consider a data transmission network serving multiple flows with different
RTTs. In the analyzed network, the feedback information is accessible for rate
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Table 6.5 Rate allocation
profile – numerical data

Flow Allocation profile

p k < 100 100 � k < 200 k � 200

1 1/6 1/12 0
2 5/12 1/4 1/6
3 1/4 1/3 5/12
4 1/6 1/3 5/12
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Fig. 6.24 Rate allocation
profile – graphical
representation

adaptation at discrete-time instants only with the discretization period set as
T D 10 ms. We run two series of simulations for the available bandwidth illustrated
in Fig. 6.2. The applied pattern shows a few abrupt bandwidth transitions occurring
at instants 60T, 120T, 180T, and 240T. In the first simulation, we test performance
of the proposed controller (6.89) in the situation of variable resource allocation,
whereas in the second one, we focus on the issues related to time-varying number
of active connections. In each test, we assume the maximum available bandwidth
dmax D 100 packets and the maximum transmission rate determined by the controller
umax D 110 packets per discretization period. The controller gain is set as � D 0.618.

Test 1. In the first scenario, we verify the controller performance when the
distribution of the total rate among the flows changes during the transmission,
for instance, according to the max-min or proportional fairness criteria. The pool
of four flows (M D 4) passing through the controlling node is considered in the
rate allocation. The flows are characterized by the following RTTs: RTT1 D 3T,
RTT2 D 7T, RTT3 D 8T, and RTT4 D 12T. Depending on the individual limitations,
for example, occurring due to the congestion experienced at some node in the
network other than the one where the algorithm operates, the flows are assigned a
part of the overall rate as listed in Table 6.5. Notice that for k � 200, no assignment is
given to connection 1, which illustrates the situation of a flow being totally blocked
at some node in the network (or a source which has already finished transferring its
data). The allocation profiles are illustrated in Fig. 6.24.

We run two simulations. In the first one (curve a in the graphs), the demand queue
length is set on the basis of the estimate of n� computed as

PMD4
pD1 np =4 D 7:5 (i.e.,

using the initial number of flows and equal weights �p D 1/M D 1/4). In the second
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Table 6.6 Demand queue
length and buffer capacity
setting

Simulation
Demand queue length
yD [packets]

Buffer capacity ymax

[packets]

1 1,105 1,215
2 1,325 1,435
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Fig. 6.25 Queue length:
a yD D 1,105 packets and
b yD D 1,325 packets
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Fig. 6.26 Generated
transmission rate:
a yD D 1,105 packets and
b yD D 1,325 packets

simulation (curve b in the graphs), in turn, it is assumed that the exact value of
n� D 9.5 is known to the controller. Consequently, the demand queue length in the
first simulation is set according to (6.99) as yD D 1,105 > 1,103 packets and in the
second one as yD D 1,325 > 1,323 packets. The corresponding buffer sizes are set
according to Theorem 6.15 as 1,215 and 1,435 packets, respectively. The controller
parameter setting is summarized in Table 6.6.

The queue length evolution is shown in Fig. 6.25, the rate calculated by the
algorithm in Fig. 6.26, and the rate assigned for each connection in Fig. 6.27. It is
clear from the graphs in Fig. 6.25 that the buffer is not overflowed, which means that
no packet needs to be dropped. When the controller knows the precise value of n�,
the buffer is never entirely depleted (curve b) which implies that all of the available
bandwidth is consumed for the transmission of data. When the lower value is applied
(case a), then the queue length hits the zero level for a short period of time starting
at kT D 220T, which brings the risk of reduced bandwidth utilization – 98% of the
available bandwidth in the considered simulation interval is used efficiently for data
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Fig. 6.27 Rate allocated for connections 1–4 (yD D 1,325 packets)

transfer. The plots in Fig. 6.26 show that the transmission rate is nonnegative and
bounded and quickly follows the changes in the bandwidth trend. In turn, the curves
sketched in Fig. 6.27 demonstrate that the rates assigned for the sources follow the
assumed allocation pattern (illustrated in Fig. 6.24). Since the curves of the total rate
in cases a and b actually overlap except for the initial phase, we limit the display of
the individual source rate assignments to the case of correct n� estimate b.

Test 2. In the second scenario, we test performance of controller (6.89) in the
situation when the number of connections is not known a priori and changes with
time. We increase the pool of flows to M D 12 and assign to each connection a
different delay from the interval [4T, 15T]. The actual number of flows in the system
m(kT) evolves according to the plot depicted in Fig. 6.28. We can see from this
plot that initially eight connections pass through the bottleneck node; at k D 50,
four more connections join the system, whereas at k D 130, four (randomly chosen)
sources finish the transmission. Again, at k D 200, four more connections terminate
sending the data, and finally, at k D 250, four new flows appear in the network. The
controller assigns the rates in the max-min fair way. The demand queue length is set
as yD D 1,325 packets, which corresponds to n� D 9.5. The actual n� did not exceed
9.5 during the whole simulation interval, and the initial estimate proved sufficient
for ensuring full bandwidth utilization.
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The queue length is shown in Fig. 6.29 and the established transmission rate in
Fig. 6.30. As we can see from the graph in Fig. 6.29, the queue length does not
increase beyond the level of 1,435 packets, which is the buffer capacity assigned
according to Theorem 6.15, and does not drop to zero. This implies that losses
(occurring due to congestion) are completely eliminated and no bandwidth is
wasted. The transmission rate and the queue length follow the bandwidth changes.
We can also notice from Fig. 6.29 that the output variable experiences additional
decrease for k around 200 even though the available bandwidth remains constant
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in this interval. This is attributed to the change of the number of active flows and
the corresponding shift in the average delay. A similar observation applies to the
additional y(�) increase for k around 250 which is a consequence of four new flows
joining the system. However, the queue length quickly stabilizes at a steady-state
level with no oscillations following the overshoots.

6.2 Flow Control in a Network with Variable Delay

The route the packets follow in the network may not always be assumed fixed
during the transmission. The link and node failures, or the congestion occurring
in various areas of the network, typically lead to route alteration and propagation
latency changes. Also, the variable queuing delay in the buffers at the intermediate
nodes related to different bandwidth patterns and local networking conditions
influence the overall value of RTT of active connections. Consequently, in order to
accurately represent the network dynamics and provide robustness enhancements,
delay variations should typically be accounted for in the constructed network model
and in the controller design procedure.

In this section, we release the assumption about the constant delay in the
feedback loop and analyze the network in which both the propagation and queuing
latency may change during the transmission. We consider a multisource traffic
scenario with each flow subject to arbitrary and a priori unknown RTT fluctuations.
We begin with extending the model presented in Sect. 6.1 to the case of variable
delay in each of the data streams. Next, we propose two controllers providing
the necessary robustness to changing propagation and queuing latency. The first
controller combines the benefits of LQ dynamical optimization and saturation
nonlinearity to provide a smooth and nonnegative rate signal. The second scheme
employs extra delay variability compensator introduced in Sect. 5.2.3 to further
decrease the influence of the unknown RTT fluctuations on the quality of the control
process.

6.2.1 Network Model

We consider the multisource single-bottleneck communication scenario described
in Sect. 6.1. Similarly as in that section, we emphasize here the discrete nature
of crucial networking events that is related to the way the feedback information
is distributed in the system. Consequently, we analyze the networks in which the
feedback information used for the source rate adjustment is extracted from feedback
carriers, being acknowledgments (as in TCP/IP-based networks), or control units
emitted periodically by the sources (typical of certain connection-oriented solutions,
e.g., ATM). Packets, as well as feedback carriers, experience delay as they pass
through the nodes and travel on the internode links. Depending on the buffer

http://dx.doi.org/10.1007/978-1-4471-4147-1_5


258 6 Flow Control in a Multisource Discrete-Time System

Source 1

Source m

Saturating
integrator

Backward
delay T m

B(k)

Forward
delay T 1

F(k)

Backward
delay T 1

B(k)

Forward
delay T m

F(k)

Controller

yD l1

lm

um (kT)

d(kT)

y (kT) u (kT)

u1
R (kT)

um
R (kT)

u1 (kT)

+

+

–

Fig. 6.31 Network model – multiple virtual circuits with time-varying delay

occupancy at the nodes, they are subject to time-varying queuing delay. Similarly,
packets (and feedback carries) may be directed along different routes as they travel
through the network, which implies variable propagation delay of the subsequent
chunks of data streams. Therefore, in this section, we analyze the situation when
the overall latency fluctuates according to the network state and the selected
transmission path, potentially causing instability.

The model of the network serving multiple flows subject to time-varying delay
is illustrated in Fig. 6.31. Similarly as in Sect. 6.1, we assume that the sources send
packets at discrete-time instants kT, where T is the discretization period and k D 0, 1,
2, : : : , in the amounts up(kT) determined by the controller placed at the controlling
node on their path. After forward delay T

p
F .k/, the packets from source p (p D 1,

2, : : : , m) reach the node and are served according to the bandwidth availability
at the node output link d(kT). The remaining ones accumulate in the buffer. The
packet queue length in the buffer, y(kT), and its demand value yD, are used to
calculate the current amount of data u(kT) to be sent by the sources. The total
amount is distributed among the connections according to the assumed resource
allocation policy. This means that at each time instant kT, a part �p of the total rate
is assigned for source p. The rate allocation coefficients �p are real numbers from
the interval [0, 1] satisfying

Pm
pD1 �p D 1. The information about the current rate is

extracted at the sources from feedback carriers (acknowledgements or control units)
with backward delay T

p
B .k/ after leaving the bottleneck node. Note that here, in

contrast to case addressed in Sect. 6.1, both the forward and backward delays are
not constants but functions of time, which are typically unknown to the controller.
Consequently, in this part of the work, we need to account for the circumstances
when the actual amount of arriving packets up

R.kT / may differ from the value which
was predicted by the controller at the instant of rate allocation. In order to emphasize
the phenomena related to delay variations, we assume that the number of controlled
flows and the allocation profile do not change during the transmission. However,
that additional uncertainty can be treated in a similar way as in Sect. 6.1.4.
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The time-varying RTT,

RTTp.k/ D T
p

F .k/ C T
p

B .k/; (6.111)

is assumed to be a multiple of the discretization period, i.e., RTTp(k) D np(k)T,
where np(k) and its nominal value Nnp are positive integers satisfying the following
inequalities:

8
p

.1 � ˇ/ Nnp � np.k/ � .1 C ˇ/ Nnp: (6.112)

Parameter ˇ 2 [0, 1) represents the assumed tolerance of delay variations. Since
ˇ is chosen as a relative measure of delay deviation from the nominal value, the
delays in long-distance connections may experience larger absolute variations than
local flows, as is typically the case in real networks. Without loss of generality,
we may order the flows according to the nominal value of their round-trip time
RTTp D NnpT in the following way:

RTT1 � RTT2 � � � � � RTTm�1 � RTTm: (6.113)

As a result of delay variations, certain feedback information carriers reaching
the data sources may appear out of order and concurrently with carriers from other
periods. Similarly, the packets directed along different paths may arrive at the node
in the order different from the sending one (possibly together with the packets
sent according to other assignments). In such situation, we assume that all the rate
assignments retrieved from feedback carriers arriving at the sources (and packets
reaching the node) in the same period are added to each other so that the congestion
problem cannot be solved by some accidental yet advantageous control or input
signal distortion.

The available bandwidth d(kT) (the number of packets that may leave the
bottleneck node at instant kT) and the utilized bandwidth h(kT) (the number of
packets actually leaving the node at instant kT) are modeled as a priori unknown,
bounded functions of time, as before (relation (5.2)). The rate of change of the queue
length depends on the amount of arriving data and on the utilized bandwidth h(�),
i.e., we can write

y Œ.k C 1/ T � D y .kT / C
mX

pD1

up
R .kT / � h .kT / : (6.114)

Since the rate allocation assignment is realized with delay, up
R.kT / D �puŒkT �

RTTp.k/�. Thus, we can represent (6.114) as

y Œ.k C 1/ T � D y .kT / C
mX

pD1

�pu
�
kT � RTTp.k/

� � h .kT / : (6.115)

http://dx.doi.org/10.1007/978-1-4471-4147-1_5
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Assuming that the buffer is initially empty, i.e., y(0) D 0, and the first rates are
assigned at kT D 0, i.e., u(kT) D 0 for k < 0, the packet queue length at the node for
any k � 0 may be calculated from the following equation:

y .kT / D
mX

pD1

k�1X
j D0

�pu
�
jT � RTTp.j /

� �
k�1X
j D0

h .jT /: (6.116)

Let us introduce a function:

� .kT / D �C .kT / � �� .kT / ; (6.117)

where

�C .kT / D
mX

pD1

X
j 2.0;ˇ Nnp�Wnp.kCj /�Nnp�j

�pu
��

k � Nnp C j
�

T
�

(6.118)

represents the sum of these surplus packets which arrive at the node by the time kT
and earlier than expected since their true latency experienced in the neighborhood of
kT is smaller than the nominal one. Therefore, function �C(kT) accounts for all the
packets from all the sources which in the system with constant delay would reach the
node after kT, but in the considered network with variable delay they contribute to
the queue buildup by kT since their delay is smaller than the nominal one. Function
��(kT), in turn,

�� .kT / D
mX

pD1

X
j 2Œ0;ˇ Nnp�Wnp.k�j /> NnpCj

�pu
��

k � Nnp � j
�

T
�
; (6.119)

represents the sum of these packets which should have arrived at the node by the
time kT but which cannot reach it due to the (instantaneous) delay bigger than
the nominal one. Thus, ��(kT) accounts for all the packets from all the sources
which in the system with constant delay would appear at the node by kT but in
the network with time-varying latency are excessively delayed and contribute to
the queue buildup at some time instant (or instants) afterwards. The components of
function �(�) for the case of one flow are illustrated in Fig. 5.45.

Assuming that the rate is bounded by some positive constant umax (which is
the case in any real network), and using (6.112), the following constraint can be
formulated:

8
k�0

j� .kT /j � �max D umaxˇ

mX
pD1

�p Nnp: (6.120)

http://dx.doi.org/10.1007/978-1-4471-4147-1_5
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With this notation, we can present the formula for the queue length as

y .kT / D
mX

pD1

k�1X
j D0

�pu
�
jT � NnpT

�C � .kT / �
k�1X
j D0

h .jT /; (6.121)

which reflects the nominal system operation (packets arriving due to the nominal
delay) affected by perturbation �(�). Taking into account the initial conditions,
relation for y(kT) can be further rewritten as

y .kT / D
mX

pD1

k�Nnp�1X
j D�Nnp

�pu .jT / C � .kT / �
k�1X
j D0

h .jT /

D
mX

pD1

k�Nnp�1X
j D0

�pu .jT / C � .kT / �
k�1X
j D0

h .jT /: (6.122)

6.2.1.1 State-Space Representation

Denoting the share of connections with the nominal delay jT.j D 1; 2; : : : ; Nnm/ in
the total rate by aj D P

pW NnpT DjT �p , the network model with time-varying delay
can be presented in the state space similarly as in (5.159), i.e.,

x Œ.k C 1/ T � D Ax .kT / C bu .kT / C v1h .kT / C v2� .kT / ;

y .kT / D qT x .kT / ; (6.123)

where x(�) is the n � 1 state vector and u(�) is a scalar. The state matrix An�n, input
bn�1, output qn�1, and n � 1 disturbance vectors v1 and v2 are defined as

A D

2
666664

1 an�1 an�2 : : : a1

0 0 1 : : : 0
:::

:::
:::

: : :
:::

0 0 0 : : : 1

0 0 0 : : : 0

3
777775

; b D

2
666664

0

0
:::

0

1

3
777775

; q D

2
666664

1

0
:::

0

0

3
777775

; v1 D

2
666664

�1

0
:::

0

0

3
777775

; and v2 D

2
666664

1

0
:::

0

0

3
777775

:

(6.124)

The system order n D Nnm C 1 and the demand state vector xd D [yD 0 0 : : : 0]T.
Further in Sect. 6.2, we present two control algorithms for the multisource

network with variable delay (6.123) and (6.124). We formulate a number of prop-
erties of the proposed schemes, prove them analytically, and afterwards illustrate in
simulations.

http://dx.doi.org/10.1007/978-1-4471-4147-1_5
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Table 6.7 Connection delay
range

RTTp

Connection min nom max

1 3 T 4 T 5 T
2 3 T 5 T 7 T
3 4 T 6 T 8 T

6.2.2 SM Controller with Saturation

Before formulating the control law, we first discuss the detrimental effect the
delay variation may inflict on the performance of a data transmission network and
communication system stability. These issues are addressed in Example 6.2.

Example 6.2. Let us analyze the events taking place in the process of controlling
the flow of data in three connections (m D 3). We assume that the data streams in
the connections originate at different sources and are subject to different latencies.
The considered flows are characterized by the following nominal RTTs: RTT1 D
Nn1T D 4T , RTT2 D Nn2T D 5T , and RTT3 D Nn3T D 6T . Assuming the delay
tolerance ˇ D 0.4 (40% of a possible deviation from the nominal value), we get the
range of latencies listed in Table 6.7.

Let us assume that the source transmission rate is regulated according to
control law (6.27) adjusted for a dead-beat scheme, i.e., with the gain � D 1. The
demand queue length yD is set equal to 30 packets, and the allocation weights
�1 D �2 D �3 D 1/3. Consequently, the rate calculation is performed according to
the following equation:

u .kT / D yD � y .kT / �
3X

pD1

k�1X
j Dk�Nnp

1

3
u .jT /; (6.125)

where u(kT) represents the overall number of packets to be sent by the sources
determined at instant kT. To simplify the analysis, we assume that the available
bandwidth at the controlling node output interface d(�) � 0 during the transmission.
Hence, we will study the rate allocation and packet arrivals in the multisource
network subject to perturbation caused by delay variations only.

Scenario 1. First, we study the rate allocation in the circumstances of constant
delay perfectly matching the values used by the controller. Thus, from (6.125),
we get

u.0/ D yD D 30 packets;

u .1 < k � 4/ D 30 � 0 � 30 D 0:
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The packets sent by the sources according to the initial assignment arrive at
kT D 4 T (10 packets from source 1), kT D 5 T (10 packets from source 2), and
kT D 6 T (10 packets from source 3). The packets are stored in the buffer indefinitely
since by assumption there is no bandwidth available at the outgoing link. This means
that the queue length evolves as follows:

y .k < 5/ D 0;

y .5T / D 10 packets;

y .6T / D 20 packets;

y .7T / D 30 packets;

y .k > 7/ D 30 packets:

Note that the rate u(kT) D 0 for k > 0, since any decrease in the sum in (6.125) is
immediately compensated by an appropriate increase in the queue length y(kT).

Scenario 2. Let us investigate the situation when the delay of connections 1 and 3
is fixed and estimated correctly by the controller. However, the packets from source
2 arrive with delay different from the nominal one. We assume that RTT of the initial
assignment in flow 2 equals 4T. Hence, instead of arriving at kT D 5T, as expected
by the controller, the first packets sent by source 2 appear at the node one period
earlier. Thus, from (6.125), we get

u.0/ D yD D 30 packets;

u .1 < k � 4/ D 30 � 0 � 30 D 0:

However, the queue length

y .5T / D y .4T / C u1
R .4T / C u2

R .4T / D 0 C 10 C 10 D 20 packets;

which implies

u .5T / D yD � y .5T / �
2
4 5�1X

j D5�4

1

3
u .jT / C

5�1X
j D5�5

1

3
u .jT / C

5�1X
j D5�6

1

3
u .jT /

3
5

D yD � y .5T / �
�
0 C 1

3
u.0/ C 1

3
u.0/

�

D 30 � 20 � .10 C 10/ D �10 packets:

Thus, we obtain an infeasible (negative) rate value at the instant kT D 5 T.
Similarly, if the packets from source 2 arrive at kT D 6T, i.e., one period after

they are expected by the controller, we have the queue length evolution
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Fig. 6.32 Transmission rate

y .k < 5/ D 0;

y .5T / D 10 packets;

y .6T / D 10 packets;

y .7T / D 30 packets;

and the transmission rate

u.0/ D yD D 30 packets;

u .1 < k � 4/ D 30 � 0 � 30 D 0;

u .5T / D 30 � 10 � 20 D 0;

u .6T / D 30 � 10 � 10 D 10 packets;

u .7T / D 30 � 30 � 10 D �10 packets:

Thus, an infeasible assignment occurs at instant kT D 7T.
It follows from the presented analysis that an improper delay estimate in just a

single connection in the entire pool of flows may lead to infeasible rate assignments.
It may also cause stability problems as shown below in Scenario 3.

Scenario 3. The discussion in this example concludes with a simulation run for the
system with the delay of each flow set at the left margin of the range specified in
Table 6.7. In the test, we assume that the traffic intensity in the network is regulated
by controller (6.125), which uses the nominal RTT values.

The rate assignments made by the controller (with negative signals permitted
for the purpose of analysis) are depicted in Fig. 6.32 and the buffer occupancy
in Fig. 6.33. We can see from the plots that the investigated controller, which
exhibits excellent dynamical properties in the network with fixed delay, is no longer
appropriate for the system with latency mismatch. In the considered scenario, the
system becomes unstable.
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Example 6.2 clearly shows that even a minor delay mismatch may lead to infeasi-
ble rate allocation and stability problems. In the next section, we present a nonlinear
control strategy which provides the desired robustness to delay uncertainty.

6.2.2.1 Proposed Control Strategy

So far in this chapter, we described several flow control algorithms which provide
prompt reaction to the changes of networking conditions and ensure closed-loop
stability for arbitrary known, constant delays. We demonstrated in Example 6.2 that
when the delay in the feedback loop is estimated by the controller incorrectly, or it
changes in a way unknown to the controller, the control scheme no longer operates
as desired. Even if the delay mismatch concerns a single flow, the controller
may generate infeasible rate assignments and in certain circumstances make the
considered communication system unstable. However, it is still possible to retain the
favorable properties of the controllers developed so far in this chapter, if appropriate
modifications are introduced to improve robustness. In what follows, the benefits
of smooth reaction to bandwidth fluctuations of the LQ optimal SM controller are
combined with a saturation nonlinearity to ensure feasible rate allocations in the
network with variable delay.

The following flow control algorithm is proposed for the flows exhibiting
uncertain fluctuations of delay. The overall transmission rate for the connections
passing through the controlling node is calculated as

u .kT / D
8<
:

0; if !� .kT / < 0;

!� .kT / ; if 0 � !� .kT / � umax;

umax; if !� .kT / > umax;

(6.126)

where umax > dmax, and function !� (�) is defined in the following way:

!� .kT / D �

2
4yD � y .kT / �

mX
pD1

�p

k�1X
j Dk�Nnp

u .jT /

3
5; (6.127)
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where the gain � 2 (0, 1]. As a result of introducing the transmission rate constraint
(6.126), the rate established by the proposed robust control law is confined to
the interval [0, umax]. In this fashion, a feasible transmission rate allocation is
ensured irrespective of the delay and bandwidth oscillations. It follows from the
derivations given in Sect. 6.1.4 that this type of controller also provides robustness
enhancements in the case of variable flow number and time-varying allocation
profile.

In a latter part of this section, it will be shown that the proposed control strategy
(6.126) guarantees that packet losses are eliminated and the maximum throughput in
the multisource network is achieved even though the delay experienced by packets
and feedback carriers varies with time.

6.2.2.2 Properties of the Proposed Strategy

The properties of controller (6.126) will be formulated as two theorems and strictly
proved. First, it will be demonstrated that the queue length is limited by a finite
value. Therefore, if the buffer capacity is selected to accommodate this maximum
number of packets, then the risk of losses related to congestion will be eliminated.
Secondly, it will be shown that with the appropriately chosen demand queue length,
there are always packets in the buffer to be relayed at the bottleneck link at
maximum speed determined by the available bandwidth. Thus, with the indicated
yD setting, full bandwidth utilization will be obtained.

Theorem 6.17. If controller (6.126) with function !� (�) defined by (6.127) is
applied to system (6.123) and (6.124), then for any k � 0, the queue length at the
bottleneck node does not exceed ymax D yD C umax C �max.

Proof. Taking into account the initial conditions and possible delay variation, the
first packets arrive at the node no sooner than at kT D .1 � ˇ/ Nn1T and y(kT) D 0
for all k � .1 � ˇ/ Nn1T . Consequently, it is sufficient to show that the proposition
holds for all kT > .1 � ˇ/ Nn1T . Let us consider some integer l > .1 � ˇ/ Nn1 and
the value of function !”(�) at time instant lT. Two cases ought to be analyzed: the
situation when !� (lT) � 0 and the circumstances when !� (lT) < 0.

Case 1. We investigate the situation when !� (lT) � 0. From the definition of
function !� (�), (6.127), we get

!� .lT / D �

2
4yD � y .lT / �

mX
pD1

�p

l�1X
j Dl�Nnp

u .jT /

3
5 � 0; (6.128)

which leads to

y .lT / � yD �
mX

pD1

�p

l�1X
j Dl�Nnp

u .jT /: (6.129)
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From the algorithm definition, in turn, it follows that u(�) is always nonnegative,
which implies y(lT) � yD. This completes the first part of the proof.

Case 2. In the second part of the proof, we analyze the situation when !� (lT) < 0.
First, we find the most recent instant l1T < lT when !� (�) was nonnegative.
According to (6.127), !� (0) D �yD > 0 since both � and yD are positive, which
means that moment l1T does exist. If !� (l1T) � 0, then, with analogy to (6.128)
and (6.129), we obtain

y .l1T / � yD �
mX

pD1

�p

l1�1X
j Dl1�Nnp

u .jT /: (6.130)

In the analyzed system, the queue length at instant lT can be expressed relative
to y(l1T) in the following way:

y .lT / D y .l1T / C
mX

pD1

�p

l�1X
j Dl1

u
�
jT � np.j /T

� �
l�1X

j Dl1

h .jT /: (6.131)

Using the concept of disturbance �(�), we may rewrite (6.131) as

y .lT / D y .l1T / C
mX

pD1

�p

l�Nnp�1X
j Dl1�Nnp

u .jT / C � .lT / �
l�1X

j Dl1

h .jT /: (6.132)

Consequently, the queue length at instant lT equals:

• the queue length at instant l1T, y(l1T),
• augmented by the sum of packets which arrive at the node in the interval (l1T,

lT] with the nominal delay,
Pm

pD1 �p

Pl�Nnp�1

j Dl1�Nnp
u .jT /, corrected by the effects

related to delay variations represented by function �(lT),
• decreased by the amount of served packets

Pl�1
j Dl1

h .jT /.

Applying inequality (6.130) to formula (6.132), we get

y .lT / � yD �
mX

pD1

�p

l1�1X
j Dl1�Nnp

u .jT / C
mX

pD1

�p

l�Nnp�1X
j Dl1�Nnp

u .jT / C � .lT / �
l�1X

j Dl1

h .jT /

� yD C
mX

pD1

�p

l�Nnp�1X
j Dl1

u .jT / C � .lT / �
l�1X

j Dl1

h .jT /: (6.133)
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The controller allocated a nonzero rate for the active connections for the last time
before lT at instant l1T, and this value could be as large as umax. Consequently, sincePm

pD1 �p D 1, the sum

mX
pD1

�p

l�Nnp�1X
j Dl1

u .jT / D
mX

pD1

�pu .l1T / D u .l1T / � umax: (6.134)

Since the utilized bandwidth h(�) is always nonnegative, then using the constraint
�(lT) � �max, from (6.133) and (6.134), we obtain the following estimate of the
queue length at instant lT:

y .lT / � yD C u .l1T / C � .lT / � 0 � yD C umax C �max: (6.135)

This concludes the second part of the reasoning and completes the proof. ut
It follows from Theorem 6.17 that if the buffer of capacity ymax D yD C umax

C �max is reserved at the controlling node, then no packet will need to be dropped
in the considered control scheme, and potential losses due to congestion are
eliminated. This is achieved even though neither the pattern nor statistics of the
actual bandwidth and delay variations are known. Only the estimate of the upper
bound of these quantities is required. In the second theorem, presented below,
we show how the demand queue length should be selected in order to ensure
full bandwidth utilization in the considered multisource network with time-varying
delay.

Theorem 6.18. If controller (6.126) with function !� (�) defined by (6.127) is
applied to system (6.123) and (6.124), and the demand queue length satisfies the
following inequality:

yD > umax

0
@ mX

pD1

�p Nnp C 1 =�

1
AC dmax C �max; (6.136)

then for any k � .1 C ˇ/ Nnm C nmax, where nmax D ymax =.umax � dmax/ , the queue
length is strictly positive.

Proof. The theorem assumption implies that we deal with time instants kT �
.1 C ˇ/ NnmT C nmaxT . Considering some integer l � .1 C ˇ/ Nnm C nmax and the
value of signal !� (�) at instant lT, we may discern two complementary cases: the
situation when !� (lT) < umax and the circumstances when !� (lT) � umax.

Case 1. First, we consider the situation when !� (lT) < umax. From the definition
of function !� (�), we obtain
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!� .lT / D �

2
4yD � y .lT / �

mX
pD1

�p

l�1X
j Dl�Nnp

u .jT /

3
5 < umax; (6.137)

which after the term rearrangement gives

y .lT / > yD � umax

�
�

mX
pD1

�p

l�1X
j Dl�Nnp

u .jT /: (6.138)

The transmission rate generated according to (6.126) is always bounded by umax,
which implies that

y .lT / > yD � umax

�
�

mX
pD1

�p Nnpumax: (6.139)

Therefore, using assumption (6.136), we get y(lT) > 0. This concludes the first
part of the proof.

Case 2. In the second part of the proof, we investigate the situation when
!� (lT) � umax. First, we find the most recent moment l1T < lT when signal !� (�)
was smaller than umax. It follows from Theorem 6.17 that the queue length never
exceeds the value of ymax. Furthermore, we know that the consumed bandwidth is
limited by dmax. Thus, the maximum interval nmaxT during which the controller may
continuously generate the maximum transmission rate is determined as nmaxT D
T ymax =.umax � dmax/ , and instant l1T does exist. Moreover, from the theorem
assumptions, we get l1T � .1 C ˇ/ NnmT , which means that by the time l1T, the
first packets from all the sources have already reached the node, no matter the delay
variation.

The value of !� (l1T) < umax. Consequently, following a reasoning similar to the
one presented in (6.137)–(6.139), we arrive at

y .l1T / > yD � umax

�
�

mX
pD1

�p

l1�1X
j Dl1�Nnp

u .jT / > 0: (6.140)

Thus, by referring to (6.132), the queue length at instant lT satisfies the inequality

y .lT / > yD � umax

�
�

mX
pD1

�p

l1�1X
j Dl1�Nnp

u .jT /

C
mX

pD1

�p

l�Nnp�1X
j Dl1�Nnp

u .jT / C � .lT / �
l�1X

j Dl1

h .jT /: (6.141)
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Working with the sums in (6.141) yields

y .lT / > yD � umax

�
C

mX
pD1

�p

l�1X
j Dl1

u .jT /

�
mX

pD1

�p

l�1X
j Dl�Nnp

u .jT / C � .lT / �
l�1X

j Dl1

h .jT /: (6.142)

Recall that l1T was the last instant before lT when the controller calculated rate
smaller than umax. This rate could be as low as zero. Afterwards, the algorithm
generates the maximum transmission rate, and since

Pm
pD1 �p D 1, the first sum in

(6.142),

mX
pD1

�p

l�1X
j Dl1

u .jT / D
l�1X

j Dl1

u .jT / D u .l1T / C
l�1X

j Dl1C1

u .jT / � umax .l � 1 � l1/ :

(6.143)

Since for any k, u(kT) � umax, the second sum is upper-bounded by
umax

Pm
pD1 �p Nnp . Therefore, we obtain

y .lT / > yD � umax

�
C umax .l � 1 � l1/ � umax

mX
pD1

�p Nnp C � .lT / �
l�1X

j Dl1

h .jT /:

(6.144)

Using the fact that �(�) � � �max and h(�) � dmax, we get the following estimate of
the queue length at instant lT:

y .lT / >yD � umax =� C umax .l � 1 � l1/ � umax

mX
pD1

�p Nnp � �max � dmax .l � l1/ :

(6.145)

Applying the theorem assumption (6.136), we obtain

y .lT / > umax

mX
pD1

�p Nnp C umax =� C dmax C �max � umax =� C umax .l � 1 � l1/

� umax

mX
pD1

�p Nnp � �max � dmax .l � l1/ D umax .l � 1 � l1/

� dmax .l � 1 � l1/ :
(6.146)
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Finally, since l > l1 and umax > dmax, we arrive at y(lT) > 0. This conclusion ends
the proof. ut
Remark 6.4. Note that function �(�) represents the cumulative surplus (or defi-
ciency) of packets arriving at the node. Consequently, the properties stated in
Theorems 6.17 and 6.18 will still be ensured if certain flows violate delay constraint
(6.112), provided that condition (6.120) is satisfied. The values indicated in the
theorems may also serve as guidelines for assessing the level of robustness if
the estimate of the maximum delay deviation is not accessible. In other words,
a particular value of yD and ymax gives indication how much the system can be
perturbed while still operating at the maximum throughput.

Remark 6.5. Even though the disturbance rejection cannot be obtained in the
considered network because the invariance property [4] does not hold for systems
with mismatched disturbances and systems with discrete-time control [11], a high
level of robustness is achieved. Indeed, as stated in Theorems 6.17 and 6.18, the
proposed strategy allows us to eliminate data losses and obtain full bandwidth
usage in the network even though we do not know the pattern of delay variations,
neither incorporate explicit disturbance measurement into the control law. The
system stability and reaching conditions are satisfied because the perturbations
are accounted for indirectly in the controller operation through the input historyPm

pD1 �p

Pk�1
j Dk�Nnp

u .jT / and measurement of the output variable y(kT).

In the remainder of this section, we will present simulation results demonstrating
the properties of robust control law (6.126) in the considered network with time-
varying delay.

6.2.2.3 Simulation Results

We analyze the networking phenomena related to transferring data in the network
with variable delay modeled according to the description given in Sect. 6.2.1. We
assume that four flows (m D 4) participate in the control process and compete for the
bandwidth at the outgoing link of the controlling node. The flows are characterized
by the following nominal RTTs (assumed known to the controller): RTT1 D 3T ,
RTT2 D 7T , RTT3 D 8T , and RTT4 D 12T , where the discretization period
T D 10 ms. The true delay varies in a way unknown to the control algorithm in
the range specified by ˇ D 1/3. We verify the performance of the proposed control
law (6.126) with the maximum transmission rate set as umax D 110 packets. With
equal rate partitioning, �1 D �2 D �3 D �4 D 1/4, the estimate of the maximum
perturbation �max calculated according to (6.120) amounts to umaxˇ

Pm
pD1 �p Nnp D

275 packets. A number of simulation tests are run for different bandwidth and RTT
variations. In each case, the maximum bandwidth equals 100 packets.
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Table 6.8 Controller parameters

Controller gain ”

Demand queue
length yD [packets]

Buffer size ymax

[packets]

0.259 1,630 > 1,625 2,015
0.618 1,380 > 1,378 1,765
1 1,315 > 1,310 1,700

Test 1. In the first simulation scenario, we verify the controller performance in
response to the available bandwidth evolving as depicted in Fig. 6.2. The delay in
the feedback loop of each flow p is assumed to vary according to the following
equation:

RTTp.k/ D ��
1 C ı sin

�
2�kT= Nnp

�� NnpT
˘

; (6.147)

where bxc denotes the integer part of x. We run simulations for different dynamical
settings adjusted through the gain constant � . The demand queue length is set
according to the guidelines of Theorem 6.18 to ensure full bandwidth utilization.
In order to guarantee loss-free transmission, the buffer capacity at the node is
assigned equal to the value indicated by Theorem 6.17. Parameters used in the test
are summarized in Table 6.8.

The rate established by the controller is shown in Fig. 6.34 and the packet
queue length in Fig. 6.35. It is apparent from the graphs in Fig. 6.35 that the
queue length does not exceed the assigned buffer capacity and remains positive
after the initial phase. This means that packet losses originating from congestion are
eliminated and, at the same time, all of the available bandwidth is used for serving
the data traffic. In consequence, the maximum throughput in the communication
system is achieved. Moreover, even though the delay undergoes severe fluctuations
(in the range of 33% from the nominal value), the degree of oscillations in the
output variable (the queue length) remains negligible during the whole transmission
process. Figures 6.34 and 6.35 indicate that with the increase in the controller gain,
one obtains faster reaction to the changes of networking conditions. However, in
the analyzed network with time-varying delay, better responsiveness comes at a
price of amplified oscillations in the control signal, which occur even when the
bandwidth reaches a constant steady-state value. Therefore, with the considered
scheme applied, � should not exceed 0.618, which corresponds to the weighting
factor in the quadratic performance index equal to 1. This setting (the golden-ratio
controller) reflects the case of equal penalization of the input signal and error at the
output and constitutes a reasonable balance between the desirable smoothness of
rate transitions and good responsiveness to the changing networking conditions.

Test 2. In the second simulation scenario, we test the controller performance in
a stochastic setting. We assume that the available bandwidth evolves as shown in
Fig. 6.14 (it follows the normal distribution with mean equal to 50 packets and
standard deviation 35 packets). In the test, the RTT for each assignment is selected
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Fig. 6.34 Generated transmission rate: a � D 0.259, b � D 0.618, and c � D 1

0 100
0

500

1000

1500

2000

0

500

1000

1500

2000

0

500

1000

1500

2000

200

a) γ = 0.259

Time instants [kT]

y(
kT

) 
[p

ac
ke

ts
]

0 100 200

b) γ = 0.618

Time instants [kT]
0 100 200

c) γ = 1

Time instants [kT]
300 300 300

Fig. 6.35 Queue length: a � D 0.259, b � D 0.618, and c � D 1

0 100
0

50

100

150

200

a) γ = 0.259

Time instants [kT]

u(
kT

) 
[p

ac
ke

ts
]

b) γ = 0.618 c) γ = 1

300 0 100
0

50

100

150

200
Time instants [kT]

300 0 100
0

50

100

150

200
Time instants [kT]

300

Fig. 6.36 Generated transmission rate: a � D 0.259, b � D 0.618, and c � D 1

as a random number from the interval [.1 � ˇ/ NnpT , .1 C ˇ/ NnpT ]. The controller
parameters are set as indicated in Table 6.8. The test results are shown in Figs. 6.36
and 6.37: the rate established by the controller in Fig. 6.36 and the packet queue
length in Fig. 6.37.

In the stochastic setting, the controller maintains its properties related to handling
the flow of data. The queue length illustrated in Fig. 6.37 remains within the
allocated buffer space, which implies that packet losses are eliminated. It remains
strictly positive after the initial phase. Therefore, full bandwidth usage is ensured
and the system operates with maximum efficiency. If we compare the plots in
Figs. 6.36 and 6.37 with the curves obtained for a similar network model with
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Fig. 6.37 Queue length: a � D 0.259, b � D 0.618, and c � D 1

constant delay presented in Figs. 6.21 and 6.22, we can notice a slightly increased
rate of oscillations both in the control and in the output signal when the delay
fluctuates. However, despite arbitrary bandwidth and delay variations, the system
remains stable in the Lyapunov sense.

Test 3. In the earlier proposals for solving the flow control problem formulated for
a similar network model with variable delay, for example, [3, 8–10], the essential
system properties, such as stability, were defined in relation to the maximum latency
experienced by the stream of packets. This brings the consequence of reducing
the controller responsiveness (to the changes of networking conditions) in order
to maintain stability if long delays are expected in the feedback loop. As a result, a
single long-distance flow sharing the output link of the controlling node with local
connections may throttle the entire system dynamics.

In the third simulation, we compare the operation of our scheme with one of
the outstanding earlier solutions – the PID controller presented in [3]. The pool of
connections considered in Tests 1 and 2 is augmented by the flow with the nominal
delay equal to 24T, i.e., the one which experiences two times bigger latency as
compared with the longest flow considered in those tests. With the uncertainty
ˇ D 1/3, the maximum expected RTT amounts to 32T. Since we are dealing with
increased delay, the bandwidth pattern (and the duration of the simulation) is
modified as shown in Fig. 6.38. For the clarity of exposition, we assume that both
controllers apply equal rate partitioning. With the gain � D 0.618, the demand queue
length yD is adjusted to 1,865 > 1,862 packets, precisely as dictated by Theorem
6.18.

The results of operation of the PID (curve a) and SM (curve b) controllers are
shown in Fig. 6.39. It is clear from the graphs that our scheme provides faster
reaction to the changes of networking conditions without rendering the closed-loop
system unstable. It also requires a smaller buffer to accommodate the entire packet
queue (thus eliminating losses) and to keep the throughput at the maximum.
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6.2.3 Delay Variability Compensation

In the previous section, we introduced a controller which provides robustness
to delay variations in the multisource data transmission network modeled as an
nth-order discrete-time system. The controller guarantees that the packet queue
length at the controlling node is finite. With appropriately adjusted demand queue
length, the controller also ensures that all of the available bandwidth at the node
output link is used efficiently for data transfer. These properties are achieved
despite arbitrary delay variations, including reordering and packet accumulation
from several intervals in one discretization period. In contrast to other solutions
reported in the past for a similar network model, robustness and stability provided
by the proposed scheme depend on the average RTT of the served connections and
not the maximum expected delay. In this way, the system dynamics (in particular
the response to bandwidth changes) can be improved. However, it follows from the
presented simulation example that by increasing the controller gain to boost the
dynamics, one may amplify the oscillations of the control signal. As a result, in
the case of more responsive controller configurations, the generated transmission
rate may be difficult to follow by data sources, and the quality of the entire control
process will degrade.
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In this section, we apply the method of compensating the adverse effects
of delay variations based on input rate measurements which was introduced in
Chap. 5. We demonstrate that the proposed technique can eliminate oscillations
caused by input distortion from the transmission rate signal established by the
controller. In consequence, fast dynamics is provided without rendering the closed-
loop system unstable. We also show that in the multisource network considered here,
the input rate measurement may be based solely on the aggregate incoming rate
values (without differentiating among the individual packet streams), thus ensuring
scalability in the case of numerous active connections.

6.2.3.1 Proposed Control Strategy

In order to improve the smoothness of control signal generated in the network
with time-varying RTTs, we modify the controller presented in Sect. 6.2.2 by
incorporating the delay variability compensator. Consequently, the transmission rate
is determined from the following equation:

u .kT / D
8<
:

0; if !comp .kT / < 0;

!comp .kT / ; if 0 � !comp .kT / � umax;

umax; if !comp .kT / > umax;

(6.148)

where umax > dmax and function !comp(�) is defined as

!comp .kT / D �

8<
:yD � y .kT / �

mX
pD1

�p

k�1X
j Dk�Nnp

u .jT / C "

k�1X
j D0

ŒuR .jT / � NuR .jT /�

9=
; :

(6.149)

The last sum in (6.149) represents the delay variability compensator in the
network with multiple connections. The operation of the compensator is based on
the measurements of the aggregate incoming rate uR .kT / D Pm

pD1 up
R .kT / and

comparison with the predicted incoming rate NuR .kT / D Pm
pD1 �pu

�
kT � RTTp

�
calculated from the rate history stored in the node memory. The compensator
structure is illustrated in Fig. 6.40. Note that implementation of the proposed
mechanism does not require intensity measurement of the individual flows. Since
only aggregate values are sufficient for DT compensation, scalability is ensured even
for large number of packet streams. The influence of the compensation mechanism
is adjusted through the tuning coefficient " 2 [0, 1]. Setting " D 1 corresponds to the
case of full compensation, and " D 0 reflects the case of the compensation turned-
off. Actually, with the compensator absent (" D 0), the presented scheme reduces to
controller (6.126) analyzed in the previous section.

http://dx.doi.org/10.1007/300401_1_En_5
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Fig. 6.40 Delay variability compensator in network with multiple connections

In the next section, we state the most important properties of the developed
controller (6.148), and we prove them analytically. We will show that by incor-
porating the proposed delay variability compensator (6.149), the presented scheme
can retain good system dynamics and high bandwidth utilization without the risk of
loosing stability. In fact, the closed-loop stability is ensured for any delay and any
bounded variation pattern satisfying condition (6.112).

6.2.3.2 Properties of the Proposed Strategy

The properties of the proposed control strategy are given in two theorems. The first
proposition demonstrates that the packet queue length in the controlling node buffer
is finite. The second one shows how the demand queue length should be selected to
ensure full bandwidth utilization.

Theorem 6.19. If controller (6.148) with function !comp(�) defined by (6.149) is
applied to system (6.123) and (6.124), then the queue length in the bottleneck node
buffer is always upper-bounded, i.e., for any k � 0,

y .kT / � ymax D yD C umax C .1 C "/ �max: (6.150)

Proof. Using (6.116), (6.121), and the definition of function �(�), we may notice
that the term compensating the effects of delay variations in (6.149) satisfies the
following relation:
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k�1X
j D0

ŒuR .jT / � NuR .jT /� D
k�1X
j D0

8<
:

mX
pD1

�pu
�
jT � RTTp.j /

� �
mX

pD1

�pu
�
jT � RTTp

�
9=
;

D
k�1X
j D0

� .jT / D � .kT / : (6.151)

Therefore, function !comp(�) can be rewritten as

'comp .kT / D �

2
4yD � y .kT / �

mX
pD1

�p

k�1X
j Dk�Nnp

u .jT / C "� .kT /

3
5: (6.152)

It follows from the system initial conditions that the buffer at the bottleneck node
is empty for any k � .1 � ˇ/ Nn1. Consequently, in order to prove the theorem, we
need to show that y(kT) � ymax for all k > .1 � ˇ/ Nn1. Let us consider some integer
l > .1�ˇ/ Nn1 and the value of !comp(�) at instant lT. Two cases ought to be analyzed:
the situation when !comp(lT) � 0 and the circumstances when !comp(lT) < 0.

Case 1. We investigate the case when !comp(lT) � 0. Directly from (6.152), we get

!comp .lT / D �

2
4yD � y .lT / �

mX
pD1

�p

l�1X
j Dl�Nnp

u .jT / C "� .lT /

3
5 � 0; (6.153)

which leads to

y .lT / � yD C "� .lT / �
mX

pD1

�p

l�1X
j Dl�Nnp

u .jT /: (6.154)

It follows from the algorithm definition that u(�) is always nonnegative,
which implies y(lT) � yD C "�(lT). Moreover, since �(lT) � �max, we obtain
y(lT) � yD C "�max < ymax, which ends the first part of the proof.

Case 2. In the second part of the proof, we analyze the situation when 'comp(lT) < 0.
First, we find the most recent instant l1T < lT when 'comp(�) was nonnegative.
According to (6.152), 'comp(0) D �yD > 0, so the moment l1T indeed exists and the
value of y(l1T) satisfies an inequality similar to (6.154), i.e.,

y .l1T / � yD C "� .l1T / �
mX

pD1

�p

l1�1X
j Dl1�Nnp

u .jT /: (6.155)

The queue length at instant lT can be expressed relative to y(l1T) as in (6.132),
which after applying (6.155) gives
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y .lT / � yD C "� .l1T / �
mX

pD1

�p

l1�1X
j Dl1�Nnp

u .jT /

C
mX

pD1

�p

l�Nnp�1X
j Dl1�Nnp

u .jT / C � .lT / �
l�1X

j Dl1

h .jT /: (6.156)

Performing algebraic manipulations on the sums in (6.156), we arrive at

y .lT / � yD C "� .l1T / C � .lT / C
mX

pD1

�p

l�Nnp�1X
j Dl1

u .jT / �
l�1X

j Dl1

h .jT /: (6.157)

The controller set a nonzero transmission rate for the last time before lT at
instant l1T, and this value could have been as large as umax. Consequently, the

sum
Pm

pD1 �p

Pl�Nnp�1

j Dl1
u .jT / D u .l1T / � umax. Since the utilized bandwidth is

always nonnegative, then using the fact that for arbitrary time �(�) � �max, we obtain
from (6.157) the following estimate of the queue length at instant lT:

y .lT / � yD C "� .l1T / C � .lT / C umax � 0

� yD C .1 C "/ �max C umax D ymax: (6.158)

This concludes the second part of the reasoning and completes the proof. ut
Theorem 6.19 shows that the packet queue length under the control of the

proposed strategy remains finite and never exceeds the level of ymax. This means that
if the buffer of capacity ymax is reserved at the controlling node, then irrespective of
bandwidth and delay variations, packet losses are eliminated. The second propo-
sition, given below, demonstrates that with appropriately selected demand queue
length yD, the queue length y(�) > 0, which guarantees full bandwidth utilization.

Theorem 6.20. If controller (6.148) with function !comp(�) defined by (6.149) is
applied to system (6.123) and (6.124), and the demand queue length satisfies the
following inequality:

yD > umax

0
@ mX

pD1

�p Nnp C 1

�

1
AC dmax C .1 C "/ �max; (6.159)

then for any k � .1 C ˇ/ Nnm C nmax, where nmax D ymax/(umax � dmax), the queue
length is strictly positive.
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Proof. The theorem assumption implies that we deal with time instants kT �
.1 C ˇ/ NnmT C nmaxT . Taking some integer l � .1 C ˇ/ Nnm C nmax and the value
of signal !comp(�) at instant lT, we need to consider two cases: the situation when
!comp(lT) < umax and the circumstances when !comp(lT) � umax.

Case 1. First, we analyze the case when !comp(lT) < umax. From (6.152), we obtain

!comp .lT / D �

2
4yD � y .lT / �

mX
pD1

�p

l�1X
j Dl�Nnp

u .jT / C "� .lT /

3
5 < umax;

(6.160)

which after the term rearrangement reduces to

y .lT / > yD � umax =� �
mX

pD1

�p

l�1X
j Dl�Nnp

u .jT / C "� .lT / : (6.161)

The transmission rate is always bounded by umax, which implies

y .lT / > yD � umax =� � umax

mX
pD1

�p Nnp C "� .lT / : (6.162)

Since �(�) � ��max, we get

y .lT / > yD � umax =� � umax

mX
pD1

�p Nnp � "�max: (6.163)

Using assumption (6.159), we get y(lT) > 0, which concludes the first part of the
proof.

Case 2. In the second part of the proof, we analyze the situation when
!comp(lT) � umax. First, we find the last moment l1T < lT when function !comp(�)
was smaller than umax. It comes from Theorem 6.19 that the queue length never
exceeds the value of ymax. Moreover, we know that the consumed bandwidth is
limited by dmax. Thus, the maximum interval nmaxT in which the controller may
continuously generate the maximum transmission rate for the sources is determined
as nmaxT D T ymax =.umax � dmax/ , and instant l1T does exist. Furthermore, from
the theorem assumptions we get l1T � .1 C ˇ/ NnmT , which means that by the time
l1T, the first packets reach the node no matter the delay variation in any of the flows.
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The value of !comp(l1T) < umax. Thus, following similar reasoning as presented
in (6.160)–(6.163), we arrive at y(l1T) > 0 and

y .lT / > yD � umax

�
�

mX
pD1

�p

l1�1X
j Dl1�Nnp

u .jT / C "� .l1T /

C
mX

pD1

�p

l�Nnp�1X
j Dl1�Nnp

u .jT / C � .lT / �
l�1X

j Dl1

h .jT /: (6.164)

Working with the sums in (6.164), we get

mX
pD1

�p

l�Nnp�1X
j Dl1�Nnp

u .jT / �
mX

pD1

�p

l1�1X
j Dl1�Nnp

u .jT / D
mX

pD1

�p

l�1X
j Dl1

u .jT /

�
mX

pD1

�p

l�1X
j Dl�Nnp

u .jT / D
l�1X

j Dl1

u .jT / �
mX

pD1

�p

l�1X
j Dl�Nnp

u .jT / (6.165)

Instant l1T was the last one before lT when the controller calculated rate smaller
than umax. This rate could be as low as zero. Afterwards, the controller generates
the maximum rate, and the first sum in (6.165) reduces to umax(l � 1 � l1). Since
for any k, u(kT) � umax, the second sum is upper-bounded by umax

Pm
pD1 �p Nnp .

Consequently, we obtain the following estimate of the queue length at instant lT:

y .lT / > yD � umax

�
C umax .l � 1 � l1/ � umax

mX
pD1

�p Nnp C "� .l1T /

C � .lT / �
l�1X

j Dl1

h .jT /: (6.166)

Using the fact that �(�) � ��max and h(�) � dmax, we get further estimate of y(lT):

y .lT / > yD � umax =� C umax .l � 1 � l1/ � umax

mX
pD1

�p Nnp

� "�max � �max � dmax .l � l1/ : (6.167)
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Finally, using the theorem assumption (6.159), we get

y .lT / >umax

mX
pD1

�p Nnp C umax =� C dmax C .1 C "/ �max � umax =�

C umax .l � 1 � l1/ � umax

mX
pD1

�p Nnp � .1 C "/ �max � dmax .l � l1/

D umax .l � 1 � l1/ � dmax .l � 1 � l1/ : (6.168)

Since l > l1 and umax > dmax, we arrive at y(lT) > (umax � dmax)(l � 1 � l1) � 0.
This conclusion ends the proof. ut

In the next section we present the results of simulations demonstrating the
properties of the proposed controller (6.148). In particular, we comment on the
control quality improvements originating from the application of delay variability
compensator.

6.2.3.3 Simulation Results

We assume that four flows (m D 4) pass through the bottleneck node and are subject
to the control action. The flows are characterized by the following nominal RTTs:
RTT1 D 3T , RTT2 D 7T , RTT3 D 8T , and RTT4 D 12T , where the discretization
period T D 10 ms. The actual delay in the feedback loop varies in a way unknown to
the controller in the range specified by ˇ D 1/3. Performance of controller (6.148) is
verified for different dynamical settings with the gain chosen as either 0.259, 0.618,
or 1. In each test, the maximum transmission rate is set as umax D 110 packets. Three
series of simulations are run: two for the bandwidth illustrated in Fig. 6.2 and one
for the stochastic pattern depicted in Fig. 6.14. In the simulations, it is assumed
that the rate is distributed evenly among the flows: �1 D �2 D �3 D �4 D 1/4, and
the maximum bandwidth is adjusted to dmax D 100 packets.

Test 1. In the first simulation scenario we verify the controller performance in
response to the available bandwidth depicted in Fig. 6.2. The delay is subject to
sinusoidal variations described by (6.147). We run several simulations for different
gain settings. In each simulation, full compensation of delay variations is applied,
i.e., " D 1. In order to guarantee that all of the available bandwidth is used efficiently,
the demand queue length is selected according to (6.159). The buffer capacity
is adjusted according to (6.150) so that loss-free transmission can be ensured.
Parameters used in the test are summarized in Table 6.9.

The test results are shown in Figs. 6.41–6.43: the transmission rate established
by the controller in Fig. 6.41, the incoming packet stream in Fig. 6.42, and the buffer
queue length in Fig. 6.43. We can see from the graphs that the proposed controller
quickly responds to the sudden changes of the available bandwidth. In contrast to
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Table 6.9 Controller
parameters Controller gain �

Demand queue length
yD [packets]

Buffer size ymax

[packets]

0.259 1,905 > 1,900 2,565
0.618 1,655 > 1,653 2,315
1 1,590 > 1,585 2,250
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Fig. 6.43 Queue length: a � D 0.259, b � D 0.618, and c � D 1

controller (6.126) analyzed in the previous section for the identical network model,
controller (6.148) does not allow the delay variations to disrupt the generated control
signal. This clearly demonstrates the efficiency of the proposed compensation
mechanism in protecting the rate signal from contamination by the effect of delay
changes. In fact, the applied DT compensator regenerates the input signal in the
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network with uncertain, time-varying delay as if RTTs were fixed and known to
the controller. On the other hand, it is clear from Fig. 6.43 that the queue length
does not increase beyond the buffer capacity specified in Table 6.9, and it does not
fall to zero following the initial phase. As a result, packet losses are eliminated and
maximum throughput is guaranteed. Comparing the queue length evolution depicted
in Fig. 6.35, which results from the application of controller (6.126), with the one
obtained here and given in Fig. 6.43, we can see a similar degree of oscillations
which are caused by the disrupted incoming rate. The proposed delay variability
compensator regenerates the control signal, but, obviously, it has no influence on
the pattern of RTT oscillations. As a result, it cannot guard the output variable y(�)
against the incoming rate perturbations caused by delay changes.

Test 2. In the second simulation scenario, the controller robustness is verified
against an external, multiplicative perturbation �(�) acting in the input channel. The
value of �(�) > 1 reflects the situation of nonconforming sources (which transmit
data at a rate greater than the assigned one), and when �(�) < 1, some transmitters
experience data shortage or are blocked due to multibottleneck congestion. There-
fore, in addition to delay variations, the incoming packet rate is subject to extra
unknown disturbance related to the distributed congestion and source nonideality.
We assume that function �(�) follows the normal distribution with mean equal to
1 and variance 0.05, which results in the values of �(�) in the range [0.4, 1.6].
Performance of controller (6.148) is verified for the case of the compensation
turned-off a and with full compensation applied b. The controller parameters are
set as follows: the gain � D 0.618, the maximum rate umax D 110 packets, and the
demand queue length yD D 1,655 packets (see Table 6.9). Two series of simulations
are conducted: in the first one, RTTs are assumed constant and equal to the value
known to the controller, whereas in the second test, the delay exhibits sinusoidal
oscillations (6.147).

The rate generated by the controller is shown in Fig. 6.44, the perturbed
incoming rate in Fig. 6.45, and the packet queue length in Fig. 6.46. The plots in
Fig. 6.44 demonstrate that the proposed DT compensator successfully counteracts
all the perturbations acting in the input channel. The rate established by the
controller in the fully compensated case is smooth and nonoscillatory. Moreover,
although the compensator cannot prevent the external perturbation from altering the
packet incoming rate (obviously, it can anticipate neither the exact form of source
nonidealities nor packet losses occurring at some other node in the network), it
improves the system robustness. It can be seen from Fig. 6.46 that the queue length
in the case of the compensation applied is less oscillatory and always remains within
the assigned buffer space.

Test 3. In the third simulation scenario, the controller performance is verified in a
stochastic setting with the bandwidth following the normal distribution with mean
d
 D 50 packets and standard deviation dı D 35 packets, illustrated in Fig. 6.14.
The delay is subject to uniform variations in the interval [.1�ˇ/ NnpT , .1Cˇ/ NnpT ].
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In the tests, full delay variability compensation is applied, i.e., " D 1. The controller
parameters are set exactly as in Test 1. Their values are listed in Table 6.9.

The test results are illustrated in Figs. 6.47–6.49: the transmission rate estab-
lished by the controller in Fig. 6.47, the incoming packet rate in Fig. 6.48, and the
buffer occupancy in Fig. 6.49. The analysis of the plots from Fig. 6.47 shows that
by decreasing the gain, one obtains less oscillatory control signal in response to
fluctuating bandwidth. Moreover, it follows from the plots shown in Fig. 6.49 that
the queue length always stays within the assigned buffer space, which means that
packet losses are eliminated. Following the initial phase, y(�) > 0, which implies full
bandwidth utilization and maximum throughput.
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6.3 Chapter Summary

In this chapter, we addressed the problem of data flow control in a communication
network serving multiple connections. We emphasized the need for explicit delay
treatment in the network modeling and control. In order to account for the discrete
nature of crucial networking events, such as transmission rate calculation by the
node and rate update at the data sources, both the modeling and the controller design
were conducted directly in discrete-time domain.

In Sect. 6.1, we focused on the fundamental control process of the network
serving multiple flows characterized by different, yet constant, RTTs. The network
was modeled as an nth-order discrete-time system. A number of control laws were
designed using the principles of discrete-time SMC. First, dynamical optimization
with quadratic performance index was applied to the unconstrained model to find the
sliding-plane parameters for a linear SM controller. It was noted that in the network
with flows characterized by different RTTs, the optimal solution generates negative
transmission rates, which is clearly infeasible. Therefore, a suboptimal controller
was developed in the modified optimization procedure. The modified LQ problem
was solved analytically, which allowed us to express the obtained control law in a
closed-form. A number of advantageous properties of the proposed controller were
formulated and proved. First of all, we showed that the transmission rate established
by the obtained control law is always nonnegative and bounded, thus being
feasible in network implementation. Secondly, it was demonstrated that the packet
queue length in the bottleneck node buffer remains finite, which leads to loss-free
transmission if the buffer capacity is selected according to the indicated queue length
bound. It was also shown that the queue length under the control of the presented
scheme is strictly positive. This condition implies that all of the available bandwidth
is efficiently consumed for data transfer, and, as a result, the maximum throughput
in the system is achieved. Next, the fundamental controller design was adapted
to the network with transmission rate limitations. Three methods of enforcing the
input to fit in the specified range were discussed: the application of a time-varying
sliding plane, reaching-law-based design, and the use of a saturation element. Each
method was demonstrated to ensure loss elimination and full bandwidth usage in
addition to satisfying the imposed input constraint. A significant advantage of the
proposed controllers is separation of the functions related to flow regulation from
fairness control. In the last part of Sect. 6.1, we analyzed network configuration
with arbitrary, time-varying rate allocation and variable connection number. We
showed that different fairness criteria can be incorporated in the overall control
scheme while maintaining high efficiency of data flow control, which is imperative
in modern networks.

In Sect. 6.2, we extended the model of the multisource network introduced in
Sect. 6.1 for the case of time-varying delays. The presented concept is shown to
be general enough to reflect any bounded latency fluctuations, including the issues
related to packet and feedback information carriers reordering. For the described
model, two robust control laws were proposed. Both laws combine the benefits
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of discrete-time SM controller with LQ suboptimal sliding plane and bounding
nonlinearity of the saturation element. The communication system under the control
of the proposed schemes is stable and transmits data with maximum efficiency.
Delay variations are shown to constitute a limitation for the first controller when one
attempts to increase the system dynamics. Thanks to the applied delay variability
compensator, the second controller is insensitive to distortions of the incoming rate
in the input channel and generates smooth control signal in any dynamical setting.
In consequence, the established transmission rate is easier to follow by the sources,
and the quality of network traffic control can be improved.

The rate calculation performed by each of the discussed controllers is based
on simple arithmetic (additions and multiplications) and logic (comparison with a
constant) operations. Thus, it can be efficiently implemented either at the software
or hardware level (e.g., with the use of shift registers and comparators).
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Chapter 7
Flow Control in Sampled Data Systems

For telecommunication operators, the cost of running a particular algorithm is an
important factor when deciding about its applicability in the supervised network.
Therefore, the business point of view will generally favor such control strategies
which allow for the explicit specification (or at least estimation) of the amount
of the exchanged feedback information in relation to the transferred users’ data.
In consequence, emitting feedback information carriers at regular time intervals
(which is assumed in traditional approaches for discrete-time network modeling,
e.g., [2–5]) is not cost efficient in the economical terms. Instead, one can send
a feedback information carrier every N data packets and, in this way, place a
direct limit on the extent of the transmitted management traffic with respect to
the profit generating transmission of the users’ data. Since this method relies
neither on continuous feedback information availability nor on maintaining the
synchronization of constant sampling period (which is a serious challenge in
multisource systems [1]), it is more scalable and requires less control effort than the
classical regulation schemes presented in the literature. However, sending a control
unit every N data packets, and not every T seconds, means that (after RTT) the
feedback information will be available for rate adaptation at the sources at irregular
time instants. Consequently, in order to maintain adequate system performance,
the variable, input-dependent sampling period should be explicitly accounted for
in the design of flow control algorithm. We will show, however, that the controllers
developed for the system with constant discretization period in Chaps. 5 and 6 can
be quite intuitively adapted for the case of variable sampling rate analyzed here.
Moreover, we will demonstrate that provided that certain additional constraints are
met, the new strategies maintain the favorable properties of constant-sampling-rate
controllers. In particular, the proposed schemes will be shown to eliminate packet
losses originating from unknown bandwidth variations and to ensure full bandwidth
usage.

The chapter is organized in the following way. First, in Sect. 7.1, the model of the
network with variable discretization period is described with the emphasis placed
on the principles of feedback information exchange. Afterwards, in Sect. 7.2, the
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fundamental control strategy obtained from the LQ optimization conducted in the
previous chapter is reformulated for the case of nonuniform sampling. Appropri-
ate conditions allowing loss-free transmission and full bandwidth utilization are
formulated and proved. The stable operation of the controller is guaranteed even
though the sources adapt their rate at irregular (input dependent) time instants. In
that section, also the robustness issues related to imprecise delay calculation are
addressed. It is demonstrated that the algorithm maintains its properties despite
possible mismatch between the real RTTs and those estimated by the controller in
the connection setup phase. Similarly as in Chaps. 5 and 6, the enhanced robustness
is achieved at the expense of increased buffer size. In Sect. 7.3, a modified strategy
employing bandwidth compensation is presented. It is shown that this strategy
with feed-forward component can assure insensitivity of the steady-state queue
length with respect to the available bandwidth. In consequence, the delay jitter
(delay variation of subsequent fragments of a data stream) is decreased, which
allows for QoS improvements in the communication system. As the delay jitter is
reduced, the network designed for serving best-effort traffic becomes also suitable
for the transfer of delay-sensitive multimedia streams. Finally, in Sect. 7.4, the
problem of maintaining high bandwidth utilization in the network with nonpersistent
data sources is addressed. The properties of the proposed strategies are verified
by simulation examples presented at the end of each section. Finally, the overall
concluding remarks are given in Sect. 7.5.

7.1 Network Model

The communication network considered in Chaps. 5 and 6 was modeled as a purely
discrete-time system. In real networks, however, the primary network variables,
such as the source rate or the buffer queue length, are measurable at any time instant
and thus are better described by functions continuous with respect to time. Never-
theless, the feedback information used to control the input rate remains accessible
at discrete time instants only. This, in principle, makes the input rate a sampled-
time signal with the values adapted at the instants of feedback information retrieval.
Consequently, the model of multisource single-bottleneck network presented in
Sect. 6.1.1 needs to be extended to reflect the real nature of signals describing the
primary network variables in a sampled data system.

Similarly as in the model introduced in the previous chapter, it is assumed
here that the feedback mechanism for the transfer rate adaptation of m data flows
passing through the bottleneck node is provided by means of feedback information
carriers – control units. Control units are generated by the sources, delivered to
the destinations with priority over data packets, and finally returned to the sources
with the feedback information incorporated. However, unlike the situation described
in Chap. 6, control units are emitted by the sources not every T but after sending
N data packets. Since control units are generated every N ordinary packets, the
time period between their arrivals at the sources depends on the emission rate

http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_6
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_6
http://dx.doi.org/10.1007/978-1-4471-4147-1_6
http://dx.doi.org/10.1007/978-1-4471-4147-1_6


7.1 Network Model 291

Source 1

Source m

Saturating
integrator

T 1
B

T 1
F

Rate allocation
& Sampling

Rate
calculation

Controller

yDy(t)

d(t)

u(t)

u1(t)
v1(t)

um(t)

vm(t)
T m

B

T m
F

+

+

–

Fig. 7.1 Network model – sampled data system with multiple virtual circuits

RTT earlier, which, in turn, changes according to the variations of the network
state, and makes the feedback asynchronous. To protect the communication system
from a management standstill in the case of transmission rate falling to zero, it is
assumed that each source probes the network at least every TC, where TC denotes
the maximum control interval.

The presented model is illustrated in Fig. 7.1. The fundamental quantities
indicated in the graph are similar to the ones already introduced in the previous
chapters. The primary difference is the modified feedback mechanism (control
units sent at irregular time instants), and the time reference changed from the
discrete variable kT to the continuous one t. For convenience, the description of the
plant dynamics is recalled below with the emphasis placed on the indicated model
changes.

With reference to Fig. 7.1, the flow control process in the analyzed network
goes through the following stages. Once a connection, say, p (p D 1, 2, : : : , m),
is accepted by the network, the corresponding source sends data at the rate up(t).
The packets belonging to the flow originating at source p reach the bottleneck node
with forward delay T

p
F and are transmitted towards the destination according to the

bandwidth availability at the node output link d(t). The remaining data accumulates
in the queue stored in the buffer allocated for the output link. The controller placed
at the bottleneck node compares the current queue length, which at time t will be
denoted as y(t), with its demand value yD, and calculates the aggregate transmission
rate u(t) for the sources. An appropriate part of the total rate, vp(t), is recorded as
the feedback information in every control unit belonging to flow p passing through
the node. Once the control units from source p appear at the destination, they are
turned back to arrive at their origin with backward delay T

p
B after being processed

by the bottleneck node. The source extracts information about the assigned flow
rate from the received control units and adjusts the transfer speed accordingly. Since
control units are not subject to the queuing delays as they are served with priority
over data packets, their round-trip time RTTp D T

p
F C T

p
B is assumed to remain
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constant for the duration of connection for each flow (the case of variable RTT may
be analyzed in a similar way as was presented in Sect. 6.2). It should be stressed that
the assumption about constant RTT concerns only the priority-served control units
and not the packets carrying data that are subject to the standard queuing delays in
the buffers along the established data route.

The available bandwidth at the output link of the bottleneck node, d(t), cannot be
determined a priori. It is only known that it does not exceed a maximum dmax. We
expect dmax to be greater than mN/TC to ensure that at least during certain periods
of time the individual sources will have a chance to transmit data at a rate greater
than N/TC (i.e., more than N packets in the maximum control interval). If at time
t there are enough packets ready for transmission in the bottleneck link buffer,
then the bandwidth actually consumed by all the sources, h(t), will be equal to
the available one. Otherwise, the output link is underutilized and the consumed
bandwidth matches the data arrival rate at the bottleneck node. Consequently,
similarly as in the previous chapters, we obtain the following relation involving
d(�) and h(�) at any time instant t:

0 � h.t/ � d.t/ � dmax:

The rate of source p is determined by the controller placed at the bottleneck node.
Let us denote by vp(t) the rate calculated by the controller and sent for source p at
the instant of a control unit passing through the node. Assuming that the sources
begin transmission at the time instant t D 0 at the rate established in the connection
setup phase, the following is true:

8
p

8
t<0

up.t/ D 0 and 8
p

8
t�0

up.t/ D vp

�
t � T

p
B

�
: (7.1)

Since signal vp(t) constitutes a vital part of the proposed control scheme, its
proper definition will be given together with the description of the flow regulation
strategy in the subsequent section.

The queue length at any instant of time depends on the data arrival speed and
on the consumed bandwidth h(�). Suppose that initially the bottleneck link buffer
is empty, i.e., y(0) D 0. Then, it follows from (7.1) that no packet arrives at the
bottleneck node before TF min D min

pD1;2;:::;m
.T

p
F /, and y(t) D 0 for any time instant t

smaller than or equal to TFmin. Afterwards, for any t > TFmin, the buffer queue length
may be calculated from the following equation:

y.t/ D
mX

pD1

tZ

T
p

F

up

�
� � T

p
F

�
d� �

tZ
0

h.�/d�: (7.2)

http://dx.doi.org/10.1007/978-1-4471-4147-1_6
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Fig. 7.2 Example source
rate profile

Let us denote by tp,k the kth moment of time (k D 1, 2, : : : ) when a control unit
carrying the feedback information for connection p arrives back at source p. Since
the sources adjust the transmission rate only when control units return with the
network feedback incorporated, then

8t2Œtp;kItp;kC1/ up.t/ D up

�
tp;k

� D vp

�
tp;k � T

p
B

� D const: (7.3)

It is assumed that the first piece to be transferred by any source is a control unit
so that the information about the current network state could be received at the data
origin as quickly as possible. As the sources begin transmission at the instant t D 0,
then for k D 1, we have tp,1 D RTTp. Furthermore, since control units are sent every
N data packets and not less frequently than the maximum control period TC one
after another, tp,k C 1 is specified by the relation

tp;kC1 D min
�
tp;k C 	p;k ; tp;k C TC

�
; (7.4)

where 	p,k can be determined from the following equation:

tp;kC	p;kZ
tp;k

up

�
� � RTTp

�
d£ D N : (7.5)

Definitions (7.4) and (7.5) make sense only for nonnegative rates up(t). Clearly,
any control algorithm should be constructed in such a way that this condition
is satisfied for every signal up(t). Otherwise, a negative up(t) would imply that
the packets already injected into the network should be extracted by the sources
before reaching the destination. Finally, it should be pointed out that Eqs. (7.4) and
(7.5) present the main novelty of the network model used in this chapter. These
two equations explicitly account for the time-varying, input-dependent sampling
period in the considered system. An example source rate profile when the feedback
information from the network is accessible at discrete, irregularly spaced time
instants is illustrated in Fig. 7.2.
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7.2 Principal Control Strategy

Modern telecommunication systems demand efficient resource usage. Therefore,
any control strategy to be applied in these systems should guarantee that:

(i) Data is not lost due to congestion, as this allows one to minimize the network
overhead corresponding to retransmissions.

(ii) There is always some data ready for transmission in the bottleneck link buffer
so that the bandwidth at that link is entirely utilized.

Further in this section, we formulate a nonlinear flow control strategy, which
ensures that these – partly contradictory – objectives are achieved even though
the feedback information used for rate adjustment at the sources is received
aperiodically. The proposed strategy combines the benefits of LQ optimal control
obtained in the previous chapter for the system with constant sampling and the
saturation element enhancing the robustness to parametric uncertainty.

7.2.1 Flow Control Strategy

The rate calculated by the controller, u(t), is determined from the relation given
below:

u.t/ D
8<
:

0; if !.t/ < 0;

!.t/; if 0 � !.t/ � umax;

umax; if !.t/ > umax;

(7.6)

where umax > 0 denotes the upper saturation limit (usually set equal to the link
capacity). Function !(t) is defined as

!.t/ D � ŒyD � y.t/ � �.t/� ; (7.7)

where � > 0 is the controller gain and yD > 0 is the demand queue length. The
component

�.t/ D
mX

pD1

tZ
t�RTTp

vp .�/ d� (7.8)

represents the in-flight data (the number of packets allowed to be transmitted by the
sources within the last RTT, but which yet not arrived at the bottleneck node due to
delay). It corresponds to the summation term in (6.27). Rate vp(t), sent and recorded

http://dx.doi.org/10.1007/978-1-4471-4147-1_6
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by the bottleneck node for source p at the instant of a control unit passing through
the node, is determined from the following equation:

vp.t/ D
�

0; for t < T
p

F ;

�pu
�
tp;k � T

p
B

�
; for t � T

p
F and t 2 �tp;k � T

p
B ; tp;kC1 � T

p
B

�
:

(7.9)

Therefore, initially, source p sends only control units (no data packets) until it
receives the information about the first nonzero rate at T

p
F C RTTp . Afterwards, it

delivers packets at the rate recorded by the controller at discrete-time instants tp;k �
T

p
B . This rate is determined according to (7.6)–(7.9) with the allocation strategy

satisfying the condition
Pm

pD1 �p D 1. Since the individual source rate is limited
by �pumax, the amount of the in-flight packets �(�) at any moment of time t will be
subject to the constraint

0 � �.t/ � umax

mX
pD1

�pRTTp D umaxRTT
; (7.10)

where RTT
 denotes the weighted mean RTT of the considered set of m connections
determined according to the rate allocation strategy represented by the coefficients
�1, �2, : : : , �m.

7.2.2 Properties of the Proposed Strategy

In this section, appropriate conditions that are necessary to fulfill design objectives
(i) and (ii) are formulated as two theorems. The first proposition indicates the
amount of memory which needs to be reserved at the bottleneck node for data stor-
age so that no packet is discarded irrespective of the available bandwidth changes.
The second theorem shows how the demand queue length should be selected to
guarantee full resource usage at the bottleneck link. Obviously, definitions (7.6) and
(7.9) ensure that the rate of the sources is always nonnegative and bounded, and the
fundamental applicability requirement of a data flow control algorithm is fulfilled.

Theorem 7.1. If the sources in the considered network transmit data according to
the conditions formulated in (7.1), (7.3), and (7.9), then for any t � 0, the queue
length at the bottleneck node does not exceed the value given by the following
inequality:

y.t/ � yD C umaxTC: (7.11)

Proof. First, notice that as a consequence of the source transfer speed adjustment
at discrete moments of time, the total arrival rate at the bottleneck node may also
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change only at discrete time instants, further denoted by  i (i D 1, 2, : : : ) with
1 D TFmin. The interval

˛i D iC1 � i ; (7.12)

between any two consecutive potential changes of the total incoming rate at the
bottleneck node is subject to the constraint 0 � ˛i � TC. The zero-length interval
reflects the case when modification of the transmission speed which occurred at two
or more sources influences the aggregate rate at the node at the same moment of
time, and the upper bound is the maximum control unit interarrival period. Note
that  i represents an instant of a possible change of the incoming rate. Since the
sources adapt the rate at discrete time instants only, the incoming rate is constant
between  i and  iC1.

The bottleneck link buffer is empty until 1 D TFmin. Therefore, y(t � 1) D 0 < yD

C umaxTC, and the proposition holds for any t � 1. Let us consider some i > 1 and
the queue length at a time instant from the interval [ i,  i C1). Denoting this instant
by t D  i C �, where � 2 [0, ˛i) with ˛i defined by (7.12), the queue length y(t) can
be expressed as the sum of three terms

y.t/ D y .i / C ˆ .i ; t / �
tZ

i

h .�/ d� D y .i / C ˆ .i ; i C �/ �
i C�Z
i

h .�/ d�:

(7.13)

The first element in (7.13) represents the queue length at instant  i. Function

ˆ .t1; t2/ D
mX

pD1

t2Z
t1

up

�
� � T

p
F

�
d� (7.14)

reflects the amount of data which arrived at the bottleneck node between time
instants t1 and t2, t2 � t1. Using (7.3) and (7.9), we can rewrite (7.14) as

ˆ .t1; t2/ D
mX

pD1

t2Z
t1

vp

�
� � RTTp

�
d� D

mX
pD1

t2�RTTpZ
t1�RTTp

vp .�/ d� � umax .t2 � t1/ :

(7.15)

Finally, the last term in (7.13) represents the amount of data actually transferred
at the bottleneck link between the instants  i and  i C �.

In order to analyze the queue length variations in the interval [ i,  iC1), we
need to examine the behavior of function !(�). We will consider two cases: first,
the situation when !( i) � 0, and, afterwards, the circumstances when !( i) < 0.
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Case 1. We analyze the situation when !( i) � 0. From the definition of function
!(�) (7.7), we get

! .i / D � ŒyD � y .i / � � .i /� � 0; (7.16)

which after the term rearrangement reduces to

y .i / � yD � � .i / : (7.17)

Applying (7.17) to (7.13), we obtain the following estimate of the queue length
at instant t D  i C �:

y .i C �/ � yD � � .i / C ˆ .i ; i C �/ �
i C�Z
i

h .�/ d� : (7.18)

Since the individual source rate is upper-bounded by �pumax and lower-bounded
by zero, the difference ˆ( i,  i C �) � �( i) can be evaluated as

ˆ .i ; i C �/ � � .i / � umax .i C � � i / � 0 D umax�: (7.19)

Substituting (7.19) into (7.18), we get

y .i C �/ � yD C umax� �
i C�Z
i

h .�/ d�: (7.20)

The utilized bandwidth, h(�), is always nonnegative; hence,

y .i C �/ � yD C umax�: (7.21)

Furthermore, since � is upper-bounded by TC, we get

y .i C �/ � yD C umaxTC; (7.22)

which ends the first part of the proof.

Case 2. Now, let us examine the situation when !( i) < 0. First, we find the last
moment t* <  i when signal !(�) was greater than or equal to zero. It should
be stressed at this point that since control unit emission at the sources and rate
generation at the bottleneck node are not synchronized, t* does not have to coincide
with any of time instants  i. According to (7.7) and (7.9),

! .t � TF min/ D � .yD � 0 � 0/ D �yD > 0: (7.23)
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In consequence, the first moment, when signal !(�) may attain a value smaller
than zero, is greater than TFmin, and instant t* actually exists. The value of !(t*)
satisfies the following inequality:

!
�
t�� D �

�
yD � y

�
t�� � �

�
t��� > 0; (7.24)

which after the term rearrangement leads to

y
�
t�� < yD � �

�
t�� : (7.25)

The queue length at a time instant t 2 [ i,  iC1) can be expressed as

y.t/ D y
�
t��C ˆ

�
t�; t

� �
tZ

t�

h .�/ d�: (7.26)

Substituting (7.25) for y(t*), we get

y.t/ < yD � �
�
t��C ˆ

�
t�; t

� �
tZ

t�

h .�/ d�: (7.27)

The term ˆ(t*, t) � �(t*) describes the difference between the number of packets
which arrived at the bottleneck node from t* to t and the number of packets still “in-
flight” at t*, i.e., those for which the sending rate has already been calculated and
which have not yet arrived at the bottleneck node due to the delay. From (7.10) and
(7.15), we obtain

ˆ
�
t�; t

� � �
�
t�� D

mX
pD1

t�RTTpZ
t��RTTp

vp .�/ d� �
mX

pD1

t�Z
t��RTTp

vp .�/ d�

D
mX

pD1

t�RTTpZ
t�

vp .�/ d� D
mX

pD1

tZ
t�

vp .�/ d� �
mX

pD1

tZ
t�RTTp

vp .�/ d�:

(7.28)

In consequence, the analyzed difference may be represented as

ˆ
�
t�; t

� � �
�
t�� D

mX
pD1

tZ
t�

vp .�/ d� � �.t/: (7.29)
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Fig. 7.3 Transmission rate assignment in the vicinity of t* – rate decrease

Since the transfer speed generated by the controller in the interval (t*, t] is equal
to zero, and the rate assignment can be delayed by TC (see Fig. 7.3), (7.29) can be
estimated as

ˆ
�
t�; t

� � �
�
t�� � umaxTC � 0 D umaxTC: (7.30)

Function h(�) is always nonnegative, so we can state that the queue length at
instant t given by (7.27) will be limited by the following value:

y.t/ < yD C ˆ
�
t�; t

� � �
�
t�� �

tZ
t�

h .�/ d�

� yD C ˆ
�
t�; t

� � �
�
t�� � yD C umaxTC: (7.31)

This concludes the proof. ut
Full link utilization, as formulated by (ii), requires the presence of sufficient

number of packets in the bottleneck node buffer at any instant of time. If the queue
length is greater than zero, then the total available bandwidth of the bottleneck link
is consumed. The theorem presented below shows how the demand queue length
should be selected to meet this objective and to ensure that the entire available
bandwidth at the output connection is used for data traffic.

Theorem 7.2. If the sources in the considered network transmit data according to
the conditions formulated in (7.1), (7.3), and (7.9), the maximum rate umax > dmax,
and the demand queue length satisfies the following inequality:

yD > umax
�
RTT
 C ��1 C TC

�
; (7.32)



300 7 Flow Control in Sampled Data Systems

then for any t > TFmax C TC C Tmax, where TF max D max
pD1;2;:::;m

.T
p

F / and

Tmax D .yD C umaxTC/ = .umax � dmax/ ; (7.33)

the queue length is always greater than zero.

Proof. The theorem assumption implies that we deal with time instants
t > TFmax C TC C Tmax > 1. Considering some i > 1 and the value of signal !(�)
at the moment of input rate modification at the bottleneck node  i, we may
distinguish two cases: the situation when !( i) < umax and the circumstances when
!( i) � umax.

Case 1. First, we consider the situation when !( i) < umax. Directly from the
definition of function !(�), we obtain

! .i / D � ŒyD � y .i / � � .i /� < umax; (7.34)

or

y .i / > yD � umax=� � � .i/ : (7.35)

According to (7.10), �( i) � umaxRTT
, which implies

y .i / > yD � umax=� � umaxRTT
: (7.36)

Using assumption (7.32), we obtain

y .i / > umax
�
RTT
 C ��1 C TC

� � umax=� � �max D umaxTC > 0: (7.37)

Let us examine the queue length at some time instant t D  i C �, as defined by
(7.13). The minimum rate which can be assigned to each source is zero; hence,
ˆ( i,  i C �) � 0. On the other hand, the maximum available bandwidth equals dmax,
which implies

R i C�

i
h .�/ d� � dmax�. Consequently, we get from (7.13)

y .i C �/ � y .i / C 0 � dmax�: (7.38)

Applying (7.37), and (7.38), we get

y.t/ > umaxTC � dmax�: (7.39)

Since umax > dmax and TC > �, we conclude that y(t) > 0, which completes the
first part of the proof.

Case 2. Now, let us study the situation when !( i) � umax. First, we find the last
moment t* <  i when signal !(�) was smaller than umax. It comes from Theorem
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7.1 that the queue length never exceeds the value of yD C umaxTC. Furthermore,
the packet depletion rate is limited by dmax. Thus, the maximum period of time
Tmax during which the controller may continuously set rate umax for the sources
is determined as Tmax D (yD C umaxTC)/(umax � dmax). Therefore, instant t* indeed
exists. Since t* is the last instant, when signal !(�) was smaller than umax and the
actual rate assignment could be delayed by not more than TC,

t� � i � .Tmax C TC/ : (7.40)

From the theorem assumption, it also comes that  i > TFmax C Tmax C TC, which
implies t* > TFmax. This means that by the time instant t*, the control units from all
the sources have already reached the bottleneck node, and all m flows are subject to
the control action (and rate updates at least every TC).

The value of !(t*) satisfies the inequality given below:

!
�
t�� D �

�
yD � y

�
t��� �

�
t��� < umax: (7.41)

Following a similar reasoning as presented in (7.34)–(7.37), we arrive at

y
�
t�� > yD � umax=� � �

�
t�� > umaxTC > 0: (7.42)

The queue length at any time instant t 2 [ i,  i C 1) may be expressed as in (7.26).
Applying (7.42) to (7.26), we get

y.t/ > umaxTC C ˆ
�
t�; t

� �
tZ

t�

h .�/ d�: (7.43)

Recall that t* was the last instant before t when the controller calculated rate
smaller than umax. This rate could be as low as zero. Afterwards, the algorithm
generates the maximum rate. Since control units appear at discrete time instants,
the transfer speed assignment can be delayed but not more than by TC (see Fig. 7.4).
Thus, the amount of the incoming data ˆ(�) in the interval (t*, t] will satisfy the
following inequality:

ˆ
�
t�; t

� � 0 � TC C umax
�
t � t� � TC

� D umax
�
t � t� � TC

�
(7.44)

and the queue length given by (7.43) can be estimated as

y.t/ > umaxTC C umax
�
t � t� � TC

� �
tZ

t�

h .�/ d� D umax
�
t � t�� �

tZ
t�

h .�/ d� :

(7.45)
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Fig. 7.4 Transmission rate assignment in the vicinity of t* – rate increase

For any t, the utilized bandwidth h(t) � dmax, and

y.t/ > umax
�
t � t�� � dmax

�
t � t�� : (7.46)

According to the assumption umax > dmax and the fact that t > t*, we may
state that

y.t/ > .umax � dmax/
�
t � t�� > 0: (7.47)

This ends the proof of Theorem 7.2. ut
Remark 7.1. The demand queue length necessary to ensure full bandwidth uti-
lization (7.32) and the buffer size required to eliminate losses (7.11) are specified
following the worst-case disturbance scenario. If the node is faced by a stochastic
bandwidth with mean d
 much lower than dmax, then instead of the maximum values
of the transmission rate umax and the control unit interarrival period TC smaller
quantities may be used in (7.11) and (7.32). For instance, one may use d
 in place
of dmax, and mN/d
 instead of TC (if TC > mN/d
). Then, the maximum throughput
will not be guaranteed at all times, yet substantial buffer capacity savings can be
obtained while maintaining the bandwidth utilization close to maximum.

7.2.3 Simulation Results

First, the model of wide area network with irregular period of feedback information
availability is constructed according to the description provided in Sect. 7.1.
Similarly as in the previous chapter, four connections (m D 4) are selected to
participate in the flow regulation process. They are characterized by the same
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Table 7.1 Connection RTTs Connection Delay [ms]

p T
p

F T
p

F RTTp

1 10 20 30
2 25 45 70
3 30 50 80
4 50 70 120
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Fig. 7.5 Available
bandwidth

RTTs repeated for convenience in Table 7.1. The overall transfer rate determined
by the controller is distributed evenly among the flows. Hence, the weights
�1 D �2 D �3 D �4 D 1/m D 1/4.

Parameters of the feedback information exchange are adjusted according to the
guidelines of the ATM/ABR standard – the chief example of the network with
input-dependent sampling. Consequently, in the considered model, each source
sends a control unit every N D 32 equal-size data pieces but not less frequently
than every TC D 100 ms. The maximum available bandwidth dmax is set as 10,000
packets/s, and the upper bound of the overall source rate umax is adjusted to
11,000 packets/s D 1.1dmax. The bandwidth actually available for the controlled
connections at the bottleneck node d(�) follows the pattern shown in Fig. 7.5.

It follows from the derivation presented in Chap. 6 that the optimal gain for the
purely discrete-time system with constant discretization period TD10 ms and wD1
equals 0.618 (the golden-ratio controller). For the sampled data system with variable
discretization period, instead of T, we use the theoretical average sampling rate,

Tavg D .TC C mN=umax/ =2 D .0:100 C 4 � 32=11; 000/ =2 D 0:056s; (7.48)

and set the gain � D 0.618/Tavg D 11.036 s�1. Consequently, in order to fulfill the
requirements imposed by Theorem 7.2, the demand queue length yD is chosen as
2,930 packets > umax(RTT
 C ��1 C TC) D 11,000�(0.075C1/11.036C 0.1)D2,922
packets.

Function !(�) and the overall rate calculated by the controller are illustrated
in Figs. 7.6 and 7.7, respectively. Although signal !(�) drops below zero in the
interval [1.52 s, 1.80 s], the rate established by the controller, presented in Fig. 7.7,
is always nonnegative and limited, as required for the applicability purposes in
communication systems.

http://dx.doi.org/10.1007/978-1-4471-4147-1_6
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Fig. 7.8 Buffer occupancy

The queue length resulting from the operation of the designed controller is
shown in Fig. 7.8. As we can see, the value of y(�) never exceeds the level of
yD C umaxTC D 4,030 packets and does not drop to zero. These two properties imply
no buffer overflow and full bottleneck link utilization.

In Fig. 7.9, we show transmission rate of the sources. We can see from the graphs
that each transmitter p, p 2 f1, 2, 3, 4g, starts sending packets at RTTp. Afterwards,
if the rate is high (e.g., in the interval [0.8 s, 1.3 s] or [2.0 s, 2.4 s]), control units are
emitted more frequently and the rate is adjusted at shorter time intervals. If, on the
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Fig. 7.9 Transmission rate of the sources

other hand, the rate diminishes, the resulting sampling period grows, and the transfer
speed is adapted at longer time intervals. This can be observed between 0.5 and 0.7 s,
and between 1.4 and 1.9 s. It is also clear from the plots in Fig. 7.9 that the control
unit emission and rate adjustment at various sources are not synchronized with each
other. Each transmitter has its own packet counter (and TC timer) and sends control
units every N D 32 data packets (and at least every TC D 100 ms) according to (7.4)
and (7.5). Hence, the control unit emission in one flow is only indirectly related
to the phenomena occurring in other flows sharing the resources of the bottleneck
node. Despite significant variations in the sampling rate, the favorable properties of
the applied control scheme (no losses and full bandwidth utilization) are achieved,
as demonstrated in the theorems.

7.3 Robustness Issues

The properties of the controller presented in the previous section were demonstrated
under the assumption that RTTs of the established connections are known exactly
at the bottleneck node. However, in real networks, the measurement of delay in the
connection setup phase is prone to errors, and parameters of the network model used
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by the controller cannot always be determined with good accuracy. The mismatch
between the real and estimated delay may also occur if two or more control units
belonging to different flows arrive at the node at the same moment of time. Then,
only one of them can be forwarded immediately, and RTT of other flows increases.
Therefore, in this section, we study how possible differences between the true delays
in the network and those used by the controller for rate calculation, further denoted
by RTTp , may influence the flow regulation process.

7.3.1 Flow Control Strategy

Equations (7.6) and (7.9), formulated for the principal control strategy, remain valid.
However, in order to take into account the discrepancies in delay parameter values,
the definition of function !(�) stated in (7.7) needs to be updated in the following
way:

!.t/ D N!.t/ D �
�
yD � y.t/ � �.t/

�
; (7.49)

where, similarly as in (7.7), � > 0 is the controller gain and yD > 0 is the demand
queue length. The component representing the in-flight data,

�.t/ D
mX

pD1

tZ

t�RTTp

vp .�/ d� ; (7.50)

where RTTp > 0 represents the round-trip time of flow p measured by the controller
in the connection setup phase, is subject to the constraint

0 � �.t/ � umaxRTT
: (7.51)

Symbol RTT
 in (7.51) denotes the mean estimated RTT of the considered set of
m connections. When the overall flow rate generated by the controller is distributed
among the flows according to the policy determined by the coefficients �1,�2, : : : ,
�m, then RTT
 D Pm

pD1 �pRTTp.

7.3.2 Properties of the Proposed Strategy

Theorems 7.1 and 7.2, which were formulated for the strategy described in Sect. 7.2,
no longer hold. Still though, we can modify the requirements for buffer space
allocation so that the desirable algorithm properties, specified by (i) and (ii), will
be preserved.
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Theorem 7.3. If the sources in the considered network transmit data according to
the conditions formulated in (7.1), (7.3), and (7.9), with signal !.�/ , N!.�/ defined
by (7.49), then the queue length at the bottleneck node is always upper-bounded,
i.e., for any t � 0,

y.t/ � yD C umaxTC C �max; (7.52)

where

�max D umax

X
pWRTTp>RTTp

�p

�
RTTp � RTTp

�
: (7.53)

Proof. No packet arrives at the bottleneck node before t D 1 D TFmin. Hence,
taking into account the initial conditions, y(t � 1) D 0 < yD C umaxTC C �max, and
the proposition is satisfied for any t � 1. Let us consider the value of signal N!.�/ at
instant  i for some i > 1. Two situations need to be analyzed: the first occurs when
N!.i / � 0 and the other when N!.i / < 0.

Case 1. Investigating the case

N! .i / D �
�
yD � y .i / � � .i/

� � 0 (7.54)

leads to the inequality

y .i / � yD � � .i / � yD: (7.55)

Applying (7.55) to (7.13), we get the following estimate of the queue length in
the bottleneck node buffer at some time instant t 2 [ i,  iC1):

y .t D i C �/ � yD C ˆ .i ; i C �/ �
i C�Z
i

h .�/ d�; (7.56)

where � 2 [0, ˛i) with ˛i defined by (7.12). According to (7.15), ˆ( i,
 i C �) � umax�. On the other hand, h(�) � 0, which implies

y.t/ � yD C umax� � 0 � yD C umaxTC C �max: (7.57)

This ends the first part of the proof.

Case 2. Now, let us examine the circumstances, when N!.i /< 0. First, we seek the
last instant t* <  i when signal N!.�/ was nonnegative. Since N!(t � TFmin) D �yD > 0,
the first moment, when N!.�/ may attain a value smaller than zero, is greater than
TFmin. The value of N!.t�/ satisfies the following inequality:

N! �t�� D �
�
yD � y

�
t�� � �

�
t��� � 0: (7.58)
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Thus, after the term rearrangement, we obtain y.t�/ � yD � �.t�/. Using this
inequality in formula (7.26) describing the queue length at any time instant t 2 [ i,
 iC1), we get

y.t/ � yD � �
�
t��C ˆ

�
t�; t

� �
tZ

t�

h .�/ d�: (7.59)

Let us define a function �(t)

�.t/ D
mX

pD1

t�RTTpZ
t�RTTp

vp .�/ d� : (7.60)

It is bounded by the following inequalities:

�.t/ � umax

X
pWRTTp<RTTp

�p

�
RTTp � RTTp

� D ��min; (7.61)

�.t/ � umax

X
pWRTTp>RTTp

�p

�
RTTp � RTTp

� D �max; (7.62)

where �min and �max are nonnegative real numbers. With this notation, we get

�.t/ D
mX

pD1

tZ

t�RTTp

vp .�/ d� D
mX

pD1

tZ
t�RTTp

vp .�/ d� �
mX

pD1

t�RTTpZ
t�RTTp

vp .�/ d�

D�.t/ � �.t/: (7.63)

Substituting (7.63) into (7.59), we obtain the following estimate of the packet
queue length at instant t:

y.t/ � yD � �
�
t��C �

�
t��C ˆ

�
t�; t

� �
tZ

t�

h .�/ d� : (7.64)

Following a similar reasoning as presented in (7.27)–(7.31), we get
y(t) � yD C umaxTC C �(t*), and, using (7.62), y(t) � yD C umaxTC C �max. This
ends the proof. ut

The next theorem shows that if the bottleneck node buffer is selected properly,
then all of the bandwidth available at the bottleneck link will be consumed even
though the delays are determined by the controller with limited accuracy.
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Theorem 7.4. If the sources in the considered network transmit data according to
the conditions formulated in (7.1), (7.3), and (7.9), signal !.�/ , N!.�/ is defined
by (7.49), the maximum rate umax > dmax, and the demand value of the queue length
satisfies the following inequality:

yD > umax
�
RTT
 C ��1 C TC

�C �min; (7.65)

where �min is given by (7.61), then for any t > TFmax C TC C Tmax, where
Tmax D (yD C umaxTC C �max)/(umax � dmax), the queue length is strictly positive.

Proof. The theorem assumption implies that we deal with time instants
t > TFmax C TC C Tmax > 1. Let us consider some i > 1 and the value of N!.�/ at the
corresponding time instant  i. Similarly as in the proof of Theorem 7.2, we analyze
two cases: the first is when N!.i / < umax and the second one when N!.i / � umax.

Case 1. We begin with the situation when N!.i / < umax. Then,

N! .i / D �
�
yD � y .i / � � .i /

�
< umax; (7.66)

and according to (7.63), �.t/ D �.t/ � �.t/. Therefore, after the term rearrange-
ment in (7.66), we get

y .i / > yD � umax=� � N� .i / D yD � umax=� � � .i / C � .i / : (7.67)

Since for any time instant t, �(t) � umaxRTT
 and �(t) � � �min (definition
(7.61)), then

y .i / > yD � umax=� � umaxRTT
 � �min: (7.68)

From the theorem assumption (7.65), we get y( i) > umaxTC. Applying this
inequality to formula (7.13) describing the queue length at the time instant t D  i C �

2 [ i,  iC1), we obtain

y .i C �/ > umaxTC C ˆ .i ; i C �/ �
i C�Z
i

h .�/ d�: (7.69)

The minimum incoming flow rate ˆ(�) equals zero. The utilized bandwidth, in
turn, can be as large as dmax < umax. Since � < TC,

y .i C �/ > umaxTC � dmax� > 0; (7.70)

which completes the first part of the proof.

Case 2. In the second part of the proof, we investigate the circumstances
when N!.i / � umax. First, we find the last moment t* <  i when signal
N!.�/ was smaller than umax. Theorem 7.3 implies that the queue length never
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exceeds the value of yD C umaxTC C �max despite possible lack of precision in
RTTs estimation performed by the controller. On the other hand, the packet
depletion rate is limited by dmax. Thus, the maximum period of time Tmax,
during which the controller may continuously set rate umax for the sources, is
estimated as Tmax D (yD C umaxTC C �max)/(umax � dmax), and instant t* indeed
exists. Since t* is the last instant, when signal N!.�/ was smaller than umax,
and the actual rate assignment could be delayed by not more than TC,
then t* �  i � (Tmax C TC). From the theorem assumption, it also comes that
t* > TFmax C Tmax C TC � (Tmax C TC) D TFmax, which means that by t* all the
sources delivered at least one control unit to the node, and are subject to the
control action with sampling at least every TC. The value of N!.t�/ satisfies the
inequality given below:

N! �t�� D �
�
yD � y

�
t��� �

�
t��� < umax: (7.71)

Using (7.63), we can rewrite (7.71) as

y
�
t�� > yD � umax=� � �

�
t��C �

�
t�� : (7.72)

Following a similar reasoning as presented in (7.67) and (7.68), we arrive at
y(t*) > umaxTC, which is applied to formula (7.26) describing the queue length
at some time instant t 2 [ i,  iC1). Taking analogous steps to those already
considered in the proof of Theorem 7.2, namely, (7.43)–(7.47), we can estimate y(t)
as y(t) > umax(t � t*) � dmax(t � t*). The assumption umax > dmax and the fact that
t > t* imply y(t) > 0. This ends the proof of Theorem 7.4. ut

Theorems 7.3 and 7.4 show how to select the buffer capacity in the bottleneck
node to fulfill design goals (i) – zero loss rate, and (ii) – full resource usage, in
the situation when the propagation latency of the controlled flows is estimated with
limited accuracy. Note that the true delay value is not known at the bottleneck node.
Therefore, the values given in �min and �max should be treated as an indication of
the maximum delay deviation that can be tolerated without downgrading the system
performance. The increase of the required memory in the error-prone environment
relative to the maximum queue length in the ideal case specified by (7.11),

.�min C �max/ = .yD C umaxTC/ � 100%; (7.73)

constitutes a quantitative measure of the acceptable degree of delay uncertainty.
One should also notice a similarity between the conditions for maintaining the
maximum throughput specified in Theorems 7.3 and 7.4, and the ones formulated
for the uncertain system with time-varying delay in Sect. 6.2.2. In fact, any delay
variation within the limits permitted by �min and �max will not violate the stability
of the system with aperiodic sampling analyzed in this chapter. The enhancements
originating from the incoming rate measurements discussed in Sect. 6.2.3 in the
context of fixed sampling rate apply also to the systems with variable discretization
period investigated in this chapter.

http://dx.doi.org/10.1007/978-1-4471-4147-1_6
http://dx.doi.org/10.1007/978-1-4471-4147-1_6
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7.3.3 Simulation Results

In the tests of the controller robustness, the network model from Sect. 7.2.3 is
applied. For the sake of comparison, all the parameters used in simulations in
Sect. 7.2.3 remain unchanged. This time, however, it is assumed that the controller
determines the RTTs of the regulated flows with decreased accuracy. Thus, the
real delays are the same as in the previous test, but the latencies estimated by the
controller are modified as follows: RTT1 D 21 ms, RTT2 D 86 ms, RTT3 D 98 ms,
and RTT4 D 150 ms. Hence, the buffer space extensions �min D 176 packets
and �max D 25 packets. In order to provide full bottleneck node bandwidth usage,
the demand queue length is adjusted to the value of 3,100 > 3,098 packets. The
resulting u(t) and y(t) functions are illustrated in Figs. 7.10 and 7.11 (curve a).
Notice that the algorithm preserves its favorable features, i.e., the queue length
does not grow beyond the level of 4,225 packets (calculated from (7.52)) and y(t) is
strictly positive. This incurs no data loss in the examined system and full bandwidth
utilization.

For the sake of comparison, we present in Figs. 7.10 and 7.11 (curve b) the plots
of the transmission rate and queue length obtained for the ideal case, i.e., when the
controller determines the delays accurately (�min D 0 and �max D 0). It is clear from
the graphs that in order to take into account imperfections in latency estimation and,



312 7 Flow Control in Sampled Data Systems

at the same time, keep the throughput at the maximum, the buffer space needs to be
increased. However, despite large differences in the delay estimates (in the range of
22–30% from the actual values), the required buffer extension (7.73) amounts only
to (25 C 176)/4,030.100%
 5%.

7.4 Feed-Forward Bandwidth Compensation

With the growing popularity of multimedia services in recent years (video and audio
streaming, interactive telephony, etc.), much stress has been placed on enhancing the
QoS of data transmission in the traditionally best-effort delivery networks. For this
type of traffic, the variation of data transfer latency becomes a critical parameter. The
delay variation, or delay jitter, originates mainly from different queuing times for
the subsequent chunks of data stream at the nodes. Therefore, the control strategies
regulating the flow of delay-sensitive, multimedia traffic should attempt to minimize
the packet queue length fluctuations. Further in this chapter, a new controller is
defined, which not only prevents data losses and ensures full resource usage but
also decreases the steady-state queue length changes caused by variations of the
available bandwidth. The mechanism employed to reduce the queue length drift
from the target value in the presence of persistent positive bandwidth is based on
the measurements of the utilized bandwidth. The applied feed-forward disturbance
compensation allows for eliminating the error at the output and thus decreases the
queuing time differences for subsequent packets. Consequently, the delay jitter is
reduced.

7.4.1 Flow Control Strategy

The overall transmission rate established by the controller, u(t), is distributed among
the flows according to (7.9), and it is subject to the constraint specified in (7.6),
i.e., 0 � u(t) � umax. In order to reduce the queue length sensitivity to the available
bandwidth, a different function needs to be applied in place of !(�). The following
modification is proposed:

!.t/ D !FF.t/ D �
�
yD � y.t/ � �.t/ C "h.t/RTT


�
: (7.74)

The last term in Eq. (7.74) represents the feed-forward bandwidth compensation,
which is used to throttle queue length fluctuations. The influence of the compensa-
tion on the system dynamics is tuned by a nonnegative real constant ". When " D 0,
no compensation is applied, and as " rises, the significance of the feed-forward term
increases. Symbol RTT
 represents the mean RTT of the flows defined in (7.10). For
the purpose of exposition, it is assumed in the property derivation that the controller
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has exact knowledge of the true propagation delays in the network. The presented
results extend in a straightforward way to the uncertain delay case using the methods
discussed in Sect. 7.3.

7.4.2 Properties of the Proposed Strategy

We begin our analysis with specifying the conditions that will guarantee no data
loss and full bandwidth utilization in the considered network. These conditions are
given in the following two theorems.

Theorem 7.5. If the sources in the considered network transmit data according to
the conditions formulated in (7.1), (7.3), and (7.9), with function !.�/ , !FF .�/
determined by (7.74), then for any t � 0, the queue length at the bottleneck node
does not exceed the value given below:

y.t/ � yD C umaxTC C "dmaxRTT
: (7.75)

Proof. No packets arrive at the bottleneck node before TFmin. Similarly as in the
analysis conducted earlier in this chapter (the proof of Theorem 7.1), for i D 1
and 1 D TFmin, we can write y(1) D 0 < yD C umaxTC C "dmaxRTT
. Thus, the
proposition is valid for any moment of time t � TFmin.

Let us consider some i > 1 and the value of signal !FF(�) at a time instant
 i representing a possible change in the packet incoming rate at the node. Two
cases need to be considered: the situation when !FF( i) � 0 and the other when
!FF( i) < 0.

Case 1. Investigating the circumstances when !FF( i) � 0, we get

!FF ./ D �
�
yD � y .i / � � .i / C "h .i / RTT


� � 0; (7.76)

which after the term rearrangement becomes

y .i / � yD � � .i / C "h .i / RTT
: (7.77)

Since �( i) � 0 and h( i) � dmax,

y .i / � yD � 0 C "h .i / RTT
 � yD C "dmaxRTT
: (7.78)

Applying (7.78) to (7.13), we get the following estimate of the queue length in
the bottleneck node buffer at some time instant t D  i C � 2 [ i,  iC1):

y .i C �/ � yD C "dmaxRTT
 C ˆ .i ; i C �/ �
i C�Z
i

h .�/ d�: (7.79)
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According to (7.15), ˆ( i,  i C �) � umax�. Consequently, since the utilized
bandwidth is always nonnegative and � < TC,

y .i C �/ � yD C "dmaxRTT
 C umax� � 0 D yD C "dmaxRTT
 C umaxTC;

(7.80)

which completes the first part of the proof.

Case 2. Now, let us examine the situation when !FF( i) < 0. First, we find the last
moment t* <  i, when signal !FF(�) was greater than zero. Indeed, such an instant
exists since

!FF .t � TF min/ D � .yD � 0 � 0 C 0/ D �yD > 0: (7.81)

Notice also that the first moment when function !FF(�) may attain a negative
value is greater than TFmin, and all the flows are subject to the control action
and transmission rate updates at least every TC. The value of !FF(t*) satisfies the
following inequality:

!FF
�
t�� D �

�
yD � y

�
t�� � �

�
t��C "h

�
t��RTT


�
> 0: (7.82)

Consequently,

y
�
t�� < yD C "h

�
t��RTT
 � �

�
t�� : (7.83)

The expression for the queue length at a time instant t 2 [ i,  iC1) is identical to
(7.26). Therefore, applying (7.83) to (7.26) results in

y.t/ < yD C "h
�
t��RTT
 � �

�
t��C ˆ

�
t�; t

� �
tZ

t�

h .�/ d�: (7.84)

According to (7.30), the difference between the number of the incoming packets
in the interval (t*, t] and the number of the predicted in-flight packets at instant t*,
ˆ(t*, t) � �(t*), does not exceed umaxTC. Therefore, since for any t, the utilized
bandwidth is subject to the constraint 0 � h(t) � dmax, we get

y.t/ < yD C "dmaxRTT
 C umaxTC: (7.85)

This completes the proof. ut
Theorem 7.6. If the sources in the considered network transmit data according
to the conditions formulated in (7.1), (7.3), and (7.9), together with function
!.�/ , !FF.�/ defined by (7.74), the maximum rate umax > dmax and the de-
mand queue length satisfies inequality (7.32), then for any t > TFmax C TC C Tmax,
where Tmax D (yD C umaxTC C "dmaxRTT
)/(umax � dmax), the queue length is always
greater than zero.
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Proof. The assumptions of Theorem 7.6 match those of Theorem 7.2. Since the
utilized bandwidth is always nonnegative, and the rate history is taken into account
in (7.74) in the same way as in (7.7), the proposition holds as a consequence of
Theorem 7.2. This concludes the proof. ut
Remark 7.2. The steady-state queue length yss, i.e., the queue length, when the
available bandwidth dss > 0 is constant, can be expressed in the following way:

yss D yD � dss=� � .1 � "/ dssRTT
: (7.86)

When

" D 1 C �
�RTT


��1
; (7.87)

then the steady-state queue length yss D yD, which implies complete insensitivity
of yss to the available bandwidth at the bottleneck link. As the influence of dss on
the queue length diminishes, the delay jitter for the data transferred in a stream is
reduced. This helps achieve better QoS in the network and enables provision of a
broad class of services related to video and audio streaming.

In the next section, the discussed properties will be verified in a simulation
scenario.

7.4.3 Simulation Results

Parameters used in the simulations are adjusted to the values introduced in
Sect. 7.2.3. It is assumed that the controller possesses precise knowledge of
the delays for the regulated connections, i.e., RTT1 D 30 ms, RTT2 D 70 ms,
RTT3 D 80 ms, and RTT4 D 120 ms. This time, however, the rate estimation function
is replaced by that defined in (7.74). The feed-forward tuning coefficient is set
according to (7.87) as

" D 1 C �
�RTT


��1 D 1 C .11:036 � 0:075/�1 D 2:208: (7.88)

The demand queue length, selected according to Theorem 7.6, is adjusted to
2,930 packets. Consequently, in order to eliminate the risk of losses in the network,
the buffer of 5,686 packets should be reserved at the bottleneck node to store the
incoming data, as stated in Theorem 7.5. The rate established by the controller is
illustrated in Fig. 7.12 and the queue length in Fig. 7.13. The y(t) evolution presented
in Fig. 7.13 (curve a) shows that the buffer capacity is not exceeded, which means
that packets are never dropped. The queue length is positive for t > 0.01 s, and,
hence, all of the available bandwidth at the output link of the node is used for data
transfer. If we compare the obtained plot with the curve from Fig. 7.9, we can notice
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that when the feed-forward term is introduced in rate computations, y(t) approaches
the level of yD D 2,930 packets in the steady state, i.e., in the intervals [0.5 s, 0.6 s],
[0.9 s, 1.2 s], and [2.6 s, 3.0 s]. We can also see from the plot shown in Fig. 7.13 that
in the interval [1.3 s, 1.8 s], the queue length is constant and close to 3,600 > 2,930
packets. This is a consequence of small bandwidth in the indicated interval, which
does not allow the packets to leave the buffer and to stabilize the queue length at
the demand value. Once the available bandwidth grows at 1.8 s, the queue length
changes, ultimately approaching 2,930 packets in the steady state.

As the controller gain is increased, one may expect faster convergence to the
steady state and, according to (7.32) and (7.75), also smaller buffer capacity
requirements. In order to verify this statement, we repeat the test for the on-off
controller (4.7) (with �(t) replaced by !FF(t)), which can be interpreted as the
proportional controller with saturation and infinite gain. The demand queue length
is adjusted as 1,930 packets, which corresponds to the value calculated from (7.32)
with � D 1. Curve b in the figures reflects the behavior of the on-off scheme. The
queue length obtained from the operation of this controller is indeed smaller than
in the case of the proportional one. This allows us to decrease the packet waiting
time in the queue and allocate smaller buffers. However, the reduced buffer size and
smaller queuing time come at a price of nonsmooth rate transitions and oscillations
at the output. If one compares the queue length evolution in the case of continuous
feedback delivery illustrated in Fig. 4.16 with the one plotted in Fig. 7.13, one can

http://dx.doi.org/10.1007/978-1-4471-4147-1_4
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notice small-amplitude oscillations in y(t) in the case of finite, nonuniform sampling
rate. However, even though the performance slightly degrades, the management
overhead is reduced as fewer feedback carriers need to be transmitted along the data
traffic (which is of vital importance in the circumstances of insufficient bandwidth).

Simulation results presented in this section demonstrate that using a feed-forward
term in the rate calculation allows one to decrease the queue length sensitivity to the
available bandwidth at the bottleneck link, which is traditionally obtained with PI
controllers. PI schemes, however, tend to introduce overshoots and oscillations of
the queue length, which should be avoided to keep the throughput variations low.
We can see no oscillations in the plot in Fig. 7.13 representing the operation of the
proportional controller with saturation (curve a), which further helps in reducing
the delay jitter. This makes the presented controller a better candidate for enhancing
QoS than the on-off scheme (curve b) or the PI one.

7.5 Nonpersistent Sources

The control strategies presented so far in this chapter assume that the lower bound
of the assigned rate is fixed at the zero level, leaving only the upper saturation limit
flexible for the tuning purposes. Similarly, the network model assumes the minimum
available bandwidth at the bottleneck link to be equal to zero. However, this is not
always the case in real networks as the link configuration may allow some capacity
to be always accessible for serving the data traffic. Therefore, in this section, a more
general situation will be analyzed, i.e., the circumstances when the bandwidth may
change from some dmin to an upper bound dmax, and either of the controller rate
saturation limits can be adjusted according to the existing system resources (e.g.,
link transfer capacity and node memory).

Once the modeling extension is introduced, we will move on to the key issue
considered in this section, which concerns nonpersistent nature of data sources.
Notice that the controllers described so far in this chapter guarantee achieving the
maximum throughput in the communication system only if the sources send data
exactly at the rate determined by the controller. In real networks, however, the
sources cannot always follow the controller command and may emit packets at a
rate lower than the one assigned by the algorithm due to instantaneous or permanent
transfer limitations. This may happen, for instance, if the source temporarily stops
sending the controlled traffic (e.g., a file transferred in the background) in order to
deliver an e-mail or a high-priority business report. The smaller transmission rate
of the sources may also result from the congestion occurring at some other node on
the data path (which is a situation that cannot be anticipated at the moment of rate
assignment at the controlling node). Therefore, in this section, the nonideal behavior
of data sources is explicitly taken into account in the controller performance
analysis. Also appropriate conditions for obtaining full bandwidth utilization are
specified and strictly proved.
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7.5.1 Model Extensions

The network model considered in this section is similar to the one introduced
in Sect. 7.1. However, in order to study the phenomena related to the existence
of nonpersistent data sources (and distributed congestion problem) in the context
of maintaining high throughput, certain modifications need to be introduced. The
necessary model changes are indicated below.

First of all, it is assumed that the node configuration allows for reserving
certain part of the bottleneck link capacity to be always accessible by the flows.
Consequently, here, we consider the situation when d(�) is lower-bounded by a
positive real constant dmin instead of zero. Similarly as was analyzed before,
the available bandwidth is limited from above by a positive constant dmax � dmin

(dmax D dmin reflects the case of constant bandwidth). Thus, for any time instant t,
the function representing bandwidth variations satisfies the following inequalities:

0 < dmin � d.t/ � dmax: (7.89)

The sources attempt to adjust the packet transmission rate to the value determined
by the algorithm implemented at the bottleneck node. However, they cannot always
obey the controller command due to transfer limitations. Therefore, since the
sources begin the transmission at the time t D 0, the rate of source p, up(t), can
be expressed as (compare with (7.1))

8
p

8
t<0

up .t/ D 0 and 8
p

8
t�0

up .t/ D fp .t/ vp

�
t � T

p
B

�
; (7.90)

where function fp(t), representing the transfer limitations of source p, is subject to
the constraint

0 < fmin � fp.t/ � 1; (7.91)

for some fmin 2 (0, 1]. Although the sources cannot always transmit data at the
rate established by the controller, it is assumed that in order to provide basic
responsiveness to the changing networking conditions, up(t) cannot be lower than
the minimum rate �pumin, where 0 < umin � dmin, so that control unit emission and
rate adaptation occurs at least every

TC D N= min
pD1;2;:::;m

�
�pumin

�
: (7.92)

Consequently, the fixed constraint on the control unit emission interval defined
in (7.4) is replaced with the implicit condition (7.92) related to the minimum level
of network transfer guarantee umin.
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7.5.2 Flow Control Strategy

The following control strategy is proposed to regulate the flow of data in the
network with nonpersistent sources modeled according to the description provided
in Sect. 7.5.1. The overall transmission rate generated by the controller, u(t), is
distributed among the flows according to (7.9). The overall rate is subject to the
following constraint:

u.t/ D
8<
:

umin; if !.t/ < umin;

!.t/; if umin � !.t/ � umax;

umax; if !.t/ > umax;

(7.93)

where umin and umax denote the limits of possible flow rate values and
0 < umin < umax. Function !(t) is given by (7.7), i.e.,

!.t/ D � ŒyD � y.t/ � �.t/� D �

2
64yD � y.t/ �

mX
pD1

tZ
t�RTTp

vp .�/ d�

3
75 ;

and rate vp(�), sent and recorded by the node for source p at the instant of a control
unit passing through the node, is determined from the following equation:

vp.t/ D
8<
:

0; for t < �T
p

B ;

�pumin; for � T
p

B � t < T
p

F ;

�pu
�
tp;k � T

p
B

�
; for t � T

p
F and t 2 �tp;k � T

p
B ; tp;kC1 � T

p
B

�
:

(7.94)

Therefore, initially (in the [0, RTTp) interval), source p sends data at the
minimum rate �pumin. Afterwards, it is allowed to deliver packets at the rate
determined by the controller at discrete-time instants tp;k �T

p
B according to relations

(7.7) and (7.93). Let us recall that tp,k is the kth moment of time when a control unit
belonging to flow p brings the feedback information to source p.

Using (7.93) and (7.94), the term representing the in-flight data in (7.7) is subject
to the constraint

uminRTT
 � �.t/ � umaxRTT
; (7.95)

where RTT
 D Pm
pD1 �pRTTp denotes the mean RTT of the flows passing through

the bottleneck link. Moreover, it is assumed that in order for the network to be able
to transport the users’ data at least at the minimum rate, umin should not exceed
dmin. On the other hand, to make it possible to always exploit all of the available
bandwidth, it is expected that umax � dmax. Therefore, since the utilized bandwidth
is limited by either the available bandwidth or the incoming flow rate (when the
queue length is zero), for any t � 0, h(t) satisfies the following inequalities:

0 < umin � h.t/ � dmax � umax: (7.96)
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Next, appropriate conditions allowing us to achieve loss elimination and full
available bandwidth usage will be formulated and proved analytically with the
explicit consideration of the nonpersistent nature of data sources.

7.5.3 Properties of the Proposed Strategy

From the implementation point of view of any flow control algorithm, it is necessary
to specify the buffer space that needs to be assigned at the controlling node in
order to store all the incoming packets before they are further relayed to the
subsequent node. The proposition formulated below defines the buffer size required
to accommodate the maximum packet queue length.

Theorem 7.7. If strategy (7.93) and (7.94) is applied to control the flow of data in
the considered network, then for any t � 0, the queue length at the bottleneck node
is upper-bounded by ymax, where

ymax D yD � umin
�
RTT
 C ��1

�C .umax � umin/ TC: (7.97)

Proof. The rate of source p is adjusted at tp,k time instants. The effect of these
modifications influences the total arrival rate at the controlling node with forward
delay at instants  i, where i D 1, 2, 3, : : : and 1 D TFmin.

The bottleneck node buffer is empty until the first packets arrive at t D 1 D TFmin.
In consequence, the theorem holds for any t � TFmin. Let us consider some i > 1
and a moment of time t > TFmin belonging to the interval [ i,  iC1). The queue
length y(t D  i C �), where � 2 [0, ˛i) with ˛i defined in (7.12), can be expressed
as in (7.13). Taking into account the rate limitations specified in (7.93), and the
assumption that up(t) cannot be lower than the minimum rate �pumin, function ˆ( i,
 i C �), representing the amount of the data arriving at the node between  i and
 i C �,

ˆ .i ; i C �/ D
mX

pD1

i C �Z
i

up

�
� � T

p
F

�
d� D

mX
pD1

i C�Z
i

fp

�
� � T

p
F

�
vp

�
� � RTTp

�
d�;

(7.98)

is subject to the following constraint:

umin� � ˆ .i ; i C �/ � umax�: (7.99)

The lower bound of ˆ(�,�) reflects the most congested network state, i.e., the
situation when the transmission rate is forced to umin. The upper limit, in turn, is
expected in the situation when all the sources follow exactly the controller command
(for every p, function fp(�) � 1), which was to transmit at the maximum rate umax.
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In order to analyze the queue length variations in the interval [ i,  iC1),
we examine the behavior of function !(�). Two complementary cases will be
considered: first, the situation when !( i) � umin, and afterwards, the circumstances
when !( i) < umin.

Case 1. In the worst case, we analyze the situation when !( i) � umin. From the
definition of function !(�), we get

! .i / D � ŒyD � y .i / � � .i/� � umin; (7.100)

which after the term rearrangement reduces to

y .i / � yD � umin=� � � .i/ : (7.101)

Substituting (7.101) for y( i) in (7.13) results in

y .i C �/ � yD � umin=� � � .i / C ˆ .i ; i C �/ �
i C�Z
i

h .�/ d�: (7.102)

The biggest amount of data arrives at the node if all the sources are able to follow
the controller command exactly, i.e., if for every p, function fp(�) equals one. Then,
the formula for the incoming data (7.98) reduces to

ˆ .i ; i C �/ D
mX

pD1

i C��RTTpZ
i �RTTp

vp .�/ d�; (7.103)

and the difference ˆ( i,  i C �) � �( i) in (7.102) can be evaluated as

ˆ .i ; i C �/ � � .i / D
mX

pD1

i C��RTTpZ
i

vp .�/ d� : (7.104)

Since up(t) � �pumax, we get ˆ( i,  i C �) � �( i) � umax(� � RTT
). According
to (7.96), the utilized bandwidth h(t) � umin. Therefore, since � is upper-bounded by
TC and umax is greater than umin, we may estimate the buffer queue length as

y .i C �/ � yD � umin=� C umax
�
TC � RTT


� � uminTC

D yD � umin
�
RTT
 C ��1

�C .umax � umin/
�
TC � RTT


�
< ymax;

(7.105)

which ends the first part of the proof.
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Fig. 7.14 Transmission rate assignment in the vicinity of t* – rate decrease

Case 2. Now, let us examine the situation when !( i) < umin. We begin with finding
the last moment t* <  i when signal !(�) was greater than umin. From the algorithm
definition, we get

! .t � �TB max/ D � .yD � 0 � 0/ > umax > umin; (7.106)

where TB max D max
pD1;2;:::;m

.T
p

B /. For t 2 (�TBmax, TFmin), signal !(�) decreases with

time and, at the upper limit of this interval, has a value greater than umin, i.e.,
!(TFmin) > umin. This means that moment t* actually exists and that t* > TFmin. Since
!(t*) > umin, we have !(t*) D �[yD � y(t*) � �(t*)] > umin, which implies

y
�
t�� < yD � umin=� � �

�
t�� : (7.107)

The queue length at a time instant t 2 [ i,  iC1) can be expressed as in (7.26).
Substituting (7.107) into (7.26), we obtain

y.t/ < yD � umin=� � �
�
t��C ˆ

�
t�; t

� �
tZ

t�

h .�/ d� : (7.108)

The difference between the maximum number of packets arriving at the node
between t* and t and the estimated amount of the in-flight packets, ˆ(t*, t) � �(t*),
can be expressed as in (7.28). It is clear from (7.95) that

Pm
pD1

R t

t�RTTp
vp.�/d� �

uminRTT
. Moreover, since we consider the case when the transfer speed generated
by the controller in the interval (t*, t] is equal to umin, and its assignment can be
delayed by TC (see Fig. 7.14), we have
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mX
pD1

tZ
t�

vp .�/ d� � umaxTC C umin
�
t � t� � TC

�
: (7.109)

Therefore, the difference ˆ(t*, t) � �(t*) can be estimated as

ˆ
�
t�; t

� � �
�
t�� � umaxTC C umin

�
t � t� � TC

�� uminRTT
: (7.110)

Since the value of function h(�) does not drop below umin, using (7.110), we get

y.t/ < yD � umin
�
RTT
 C ��1

�C .umax � umin/ TC D ymax: (7.111)

This concludes the proof. ut
Full link utilization is guaranteed by the presence of data packets in the

bottleneck node buffer at any instant of time. Since the sources may deliver fewer
packets than expected by the controller, an appropriate condition ensuring full
resource usage must be specified. The theorem presented below shows how the
demand queue length yD should be selected so that entire bandwidth at the output
connection is utilized for data transfer.

Theorem 7.8. If strategy (7.93) and (7.94) is applied to control the flow of data in
the considered network, fminumax > dmax, and the demand value of the queue length
satisfies the following inequality:

yD > umax
�
RTT
 C ��1

�C .fminumax � umin/ TC; (7.112)

then for any t > TFmax C TC C Tmax, where Tmax D ymax/(fminumax � dmax), the queue
length is always greater than zero.

Proof. The theorem assumption implies that we deal with time instants
t > TFmax C TC C Tmax > 1. Considering some i > 1 and !( i), we may distinguish
two cases: the situation when !( i) < umax and the circumstances when
!( i) � umax.

Case 1. First, we consider the situation when !( i) < umax. Taking simi-
lar steps as in the proof of Theorem 7.2, namely, (7.34)–(7.36), we get
y( i) > yD � umax(RTT
 C ��1). Inequality (7.112) and the fact that fmin

umax > dmax � umin allow us to further estimate the queue length at instant  i as

y .i / > yD � umax
�
RTT
 C ��1

�
> umax

�
RTT
 C ��1

�C .fmin umax � umin/ TC � umax
�
RTT
 C ��1

�
D .fmin umax � umin/ TC > 0: (7.113)
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Applying (7.113) to formula (7.13) for the queue length at a time instant t 2 [ i,
 iC1), we obtain

y .t D i C �/ > .fmin umax � umin/ TC C ˆ .i ; i C �/ �
i C�Z
i

h .�/ d�: (7.114)

The minimum incoming rate equals umin. From (7.99), we get ˆ( i,
 i C �) � umin�. The utilized bandwidth, in turn, can be as high as dmax < fminumax.
Therefore,

y .i C �/ > .fmin umax � umin/ TC C umin� � dmax�

D .fmin umax � umin/ TC � .dmax � umin/ �

� .fmin umax � umin/ .TC � �/ : (7.115)

Since TC > �, y( i C �) > 0, which completes the first part of the proof.

Case 2. Now, let us investigate the situation when !( i) � umax. We look for the
last moment t* <  i when signal !(�) was smaller than umax. Note that according
to Theorem 7.7, the queue length never exceeds ymax. The buffer is never depleted
faster than at rate dmax. On the other hand, in the situation when the assigned rate
equals umax, the incoming rate at the node (after taking into account the transfer
limitations of the sources) will not be lower than fminumax. Thus, in order to preserve
the buffer space indicated in Theorem 7.7, the controller may continuously set
the biggest rate umax for the maximum period Tmax D ymax/(fminumax � dmax), and
instant t* actually exists. Since t* was the last instant, when !(�) was smaller than
umax, and the time separation between any two consecutive aggregate input rate
modifications does not exceed TC, we conclude that t* �  i � (Tmax C TC). With
analogy to (7.113), we obtain

y
�
t�� > yD � umax=� � umax RTT
 > .fmin umax � umin/ TC > 0: (7.116)

The queue length at some time instant t 2 [ i,  iC1) may be expressed as in
(7.26). Then, applying (7.116) to (7.26), we get

y.t/ > .fminumax � umin/ TC C ˆ
�
t�; t

� �
tZ

t�

h .�/ d�: (7.117)

Recall that t* was the last instant before t, when the controller calculated rate
smaller than umax. This rate can be as low as umin. Afterwards, the algorithm sets the
maximum rate value. Since control units appear at discrete time instants, the rate
assignment can be delayed, yet not more than by TC (see Fig. 7.15). Moreover, due
to the source transfer limitations, the incoming rate at the node (although predicted
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to be at the maximum) may be as low as fmin umax. Thus, the amount of the incoming
data ˆ(�,�) will satisfy the following estimate:

ˆ
�
t�; t

� � uminTC C fmin umax
�
t � t� � TC

�
: (7.118)

For any t, the utilized bandwidth h(t) � dmax, and
R t

t� h.�/d� � dmax .t � t�/.
Therefore, after substituting (7.118) into (7.117), we arrive at

y.t/ > .fmin umax � umin/ TC C uminTC C fmin umax
�
t � t� � TC

� � dmax
�
t � t��

D .fmin umax � dmax/
�
t � t�� :

(7.119)

The theorem assumptions imply fminumax > dmax. Consequently, since t > t*, we
get y(t) > 0. This ends the proof. ut

Theorems 7.7 and 7.8 define the buffer space which needs to be allocated for
packet storage at the bottleneck node to guarantee the maximum throughput in
the system despite possible shortage of the incoming data. In the next section,
the performance of the developed flow control algorithm in the network with
nonpersistent sources will be illustrated in simulation tests.

7.5.4 Simulation Results

The structure of the network model used in the simulations is identical to the
one introduced in Sect. 7.2.3, i.e., four connections characterized by the delays:
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RTT1 D 30 ms, RTT2 D 60 ms, RTT3 D 60 ms, and RTT4 D 90 ms, pass through the
bottleneck node. Similarly as in that section, we assume that each source sends a
control unit every N D 32 packets.

The minimum available bandwidth dmin is adjusted to 1,280 packets/s and
the maximum dmax to 10,000 packets/s. Function d(�) used in the simulations
is illustrated in Fig. 7.16. Comparing the bandwidth patterns from Figs. 7.5
and 7.16, we can notice that they differ only in interval [1.2 s, 1.8 s]. The
function shown in Fig. 7.5 is equal to zero in this interval, while d(�) from
Fig. 7.16 does not fall below the minimum of 1,280 packets/s. The lower bound
of the overall source rate was set as umin D dmin D 1,280 packets/s, and the upper
bound umax as 14,300 > dmax/fmin D 10,000/0.7 packets/s. This means that under
the applied equal rate distribution, each source emits a control unit at least every
TC D mN/umin D 4�32/1,280D 0.1 s. For the sake of comparison with the results
presented earlier in this chapter, the controller gain � is adjusted to 11.036 s�1.
Finally, in order to ensure full resource usage, the demand queue length calculated
according to (7.112) is set as 3,245 > 3,241 packets.

The rate determined by the controller is depicted in Fig. 7.17, the buffer
occupancy in Fig. 7.18, and the transmission rate of the sources in Fig. 7.19.

As we can see from the graph in Fig. 7.18, the queue length never exceeds the
value of 4,335 packets (the maximum calculated according to (7.97)) and does not
drop to zero. These two properties imply no buffer overflow and full bottleneck
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Fig. 7.19 Transmission rate of the sources: a assigned, b actual transfer speed

link utilization. The rates assigned for the sources (curve a) and the true transfer
speeds of each transmitter (curve b) are shown in Fig. 7.19. It is clear from the plots
that the sources cannot always deliver data at the rate established by the controller
(the actual rate can be as low as 70% of the assigned one). Despite significant rate
limitations experienced by the transmitters, the proposed strategy guarantees the
maximum throughput in the network.
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7.6 Chapter Summary

In this chapter, the flow control problem was addressed in the context of data
transmission networks in which the feedback information about the current network
state is provided irregularly in time. The networks were modeled as sampled data
systems with variable, input-dependent sampling rate. A number of scenarios were
considered, and appropriate control algorithms were developed for each case. The
presented strategies ensure no data loss and full resource utilization in the analyzed
multisource system even though the feedback information necessary for transfer
speed adjustment is accessible at irregularly spaced time periods.

In Sect. 7.2, the network model was presented. Next, in Sect. 7.2, the fundamental
control law for the system with aperiodic feedback was introduced, and its properties
discussed. In Sect. 7.3, the robustness issues were investigated, and it was shown
that the designed control strategy operates properly despite possible mismatch
occurring between the real propagation delays and those estimated by the controller.
Afterwards, in Sect. 7.4, a modified flow regulation scheme was proposed. The
controller with an extra feed-forward term incorporated not only maintains the
favorable features of the principal strategy but also helps reduce the queue length
drift from the target value caused by positive available bandwidth. Thus, as the
queuing time of the subsequent parts of data stream is unified, the delay jitter
decreases, and the QoS with respect to delay-sensitive traffic may be improved.
This facilitates handling the increasingly popular services related to multimedia
transmission in the traditionally best-effort delivery networks. Finally, in Sect. 7.5,
the situation when data sources cannot always obey the controller command and
transmit data at a rate lower than the assigned one was investigated. It was
shown that with appropriately modified algorithm parameters (the demand queue
length and the rate upper saturation limit), the described control strategy continues
achieving the maximum throughput in the communication system. Since the reduced
rates may result from the source itself, or may be caused by the congestion occurring
elsewhere in the network (and not at the node where the controller operates),
the proposed algorithm may efficiently coexist with other, possibly different flow
regulation schemes. The described control schemes need neither constant nor time-
synchronized exchange of the feedback information. As a result, they are more
scalable in the multisource network implementation than the similar schemes
requiring continuous or periodic (with fixed sampling rate) feedback information
delivery.
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Chapter 8
Discrete Sliding-Mode Congestion Control
in TCP Networks

Before introducing the proposal of Van Jacobson [9], the TCP/IP-based networks
suffered from severe congestion problems. The bursts of traffic intensity frequently
led to a network breakdown called the congestion collapse, and the resulting
throughput degradation by several orders of magnitude. The Jacobson’s algorithm,
implemented at the connection end points, ensured the basic control mechanism
used to regulate the amount of data injected into the network. According to this
algorithm, the transfer rate of a TCP source (or more specifically the window size)
is increased until the congestion is detected at some link in the network. Initially,
the window size at the source is enlarged by the number of packets acknowledged
by the receiver. It is called the slow-start, or exponential-growth phase, and is used
to quickly capture enough bandwidth to transmit the user’s data at a sufficiently fast
rate. When a certain threshold value is reached, ssthresh, the window size continues
to grow, but at a slower rate. In this phase, called the congestion avoidance, the
window is enlarged by one packet every RTT. The transmitter tries to reduce the
risk of link buffer overflow at the remote node(s), and the window size increases
approximately linearly in time. Usually, the bulk of the user’s data is transmitted in
this phase (see, e.g., the analysis performed in [19]).

The source rate cannot grow indefinitely. It increases until the maximum window
size is reached, or the congestion is detected. When a packet is lost, and as a
consequence the timer during which the acknowledgment for this packet should
be received expires, the source infers that the congestion is taking place at some
point in the network. In such case, the transmitter window size is reset to the initial
value and the congestion avoidance threshold ssthresh is reduced. Afterwards, the
slow-start and congestion avoidance phases repeat with the new ssthresh value. As
a result of adopting this basic control mechanism, the transfer rate of a TCP source
goes through the periods of additive increase (congestion avoidance phase) and
multiplicative decrease (upon detection of packet loss). The fundamental TCP flow
regulation scheme constitutes an implicit feedback control system. The sources test
the network transfer capabilities until the congestion state is reached, and throttle
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the input rate according to the observations of the stream of acknowledgements
obtained from the receiver. No direct action from the network is required to regulate
the flow of data.

In time, the fundamental TCP flow control algorithm was augmented by a num-
ber of advantageous enhancements. The researchers proposed the use of different
recovery schemes (e.g., TCP NewReno, SACK [3]), and other than the packet loss
indications of congestion (e.g., TCP Vegas [2] applies RTT measurements to infer
the current network state). It has also soon become apparent that the TCP flow
control may benefit from additional mechanisms implemented closer to the place
where the congestion actually occurs – at the network nodes [5]. By monitoring
the queue length, the network node can detect the incipient congestion in a faster
and more accurate way than the remote sources. Then, preemptive measures can be
taken to throttle the incoming rate before the actual loss of packets takes place. This
is the idea behind various AQM algorithms, which take appropriate actions to reduce
the risk of congestion on the basis of the observed node state (buffer occupancy,
queuing delay, link utilization, etc.). For instance, when the packet queue length in
the output link buffer reaches certain value, then the node may selectively discard
incoming packets to prevent further input rate increase. Instead of dropping packets
according to an AQM scheme, the node can also signal the incipient congestion
by marking appropriate bits in the packet headers. The receiver incorporates the
congestion information read from the marked bits in the acknowledgments sent
for the source. Upon the reception of a marked packet, the source reduces its
window size, thus increasing the chance of avoiding packet loss at the bottleneck
node. By applying an AQM scheme, and providing an explicit information about
their state, the network nodes can actively participate in data flow control. In
consequence, the packet losses and queuing delay can be significantly reduced.
Typically, a single bit is used for the signaling purposes – the ECN bit in the TCP
header. The network-assisted explicit congestion notification, promoted by S. Floyd
[4], enforces minimum implementation effort in the existing TCP infrastructure. It
requires only a modification in the way the end points interpret the ECN bit. Due
to the vulnerability of the single-bit explicit congestion control (well studied in the
context of ATM networks), various researchers also advocate the use of two bits [21]
or multibit fields [10, 20] for achieving better accuracy and faster convergence rates
in data flow control. The serious drawback of the multibit congestion notification
is the necessity of making appropriate changes to the existing transfer solutions.
However, in order to circumvent the implementation burden of introducing new
protocols for multibit congestion notification, one can recur to marking single bits
in multiple packets, for example, using the technique highlighted in [8]. For the
discussion on the single- and multibit congestion notification, and relations between
ATM/ABR and TCP marking schemes, one may refer to a recent publication by
Almeida and Belo [1].

In this chapter, we address the problem of efficient data flow control in a TCP/IP
network with routers supporting AQM. The network is treated as a feedback system
in which the information about the current networking conditions is assumed to
be relayed to the sources by means of the ECN bit in the TCP header. First, we
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briefly discuss the choice of the modeling framework. Then, the selected nonlinear
model is treated in greater detail with the emphasis placed on the feedback nature of
TCP/AQM transmission system. Following the description of the model structure,
we proceed with the linearization and discretization of the associated dynamical
equations. Two choices of system configuration are considered. In the first one, the
influence of state delay is neglected, whereas in the second one, the information
about both the input and state delay in the system is preserved. Consequently,
two distinct discrete-time system representations are obtained, and two separate
design procedures are conducted. In the control law derivation, the formal approach
of discrete-time SM control is applied. As a result, two feedback control laws
are developed, each specifying a particular marking scheme to be implemented
in the network routers supporting AQM. The controllers are tested in a series of
simulations and compared with the classical TCP/AQM marking schemes. The
result of the numerical investigation is reported in the last part of the chapter.

8.1 Nonlinear TCP Dynamics

The importance of communication networks incited much research work on the
existing, frequently heuristic data transfer solutions and underlying technologies.
The key to the successful development of new types of networks and new protocols
is good understanding of the already employed techniques. This goal seems to
be best achieved by studying the protocol mathematical representation. However,
due to the complexity of the Internet and the multitude of technologies involved,
it is doubtful that a single framework could cover all the relevant aspects of data
transfer in a consistent way. It is not surprising then that looking at the networking
phenomena from different perspectives, the researchers in the past created quite
distinct models describing the network dynamics. Among the outstanding proposals,
one should certainly mention the utility-optimization approach of Kelly et al. [11,
12], studied in detail in the context of TCP/IP networks, for example, by Low et al.
[15], the delay-based model of Mascolo [16], and the DiffServ framework, analyzed,
for example, by Pitsillides et al. [18]. However, one of the most widely accepted
models of the TCP dynamics was presented by Misra et al. in [17]. It was developed
through a stochastic, fluid-flow analysis of packet traffic in the TCP networks with
the emphasis placed on the dominant phase of the TCP data transfer – the congestion
avoidance phase. In the conducted analysis, the authors took into account the key
regulatory mechanisms provided by the TCP protocol and the network-assisted
control enhancements implemented in the routers supporting AQM. Typically, in
the investigation of the TCP dynamical characteristics, a simplified version of that
model is applied, which ignores the TCP timeout mechanism.

According to [17], the mathematical description of the essential TCP dynamics
(with the timeout effects neglected) can be represented by the pair of coupled,
nonlinear differential equations:
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PW .t/ D 1

R.t/
� ˇW.t/

W Œt � R.t/�

R Œt � R.t/�
p Œt � R.t/� ; (8.1)

Pq.t/ D
(

N.t/
W.t/

R.t/
� C.t/; q.t/ > 0;

max
n
0; N.t/

W.t/

R.t/
� C.t/

o
; q.t/ D 0;

(8.2)

where:

• W(�) is the expected window size (packets).
• q(�) is the expected packet queue length (packets); the notion of expected value

in W(�) and q(�) refers to ensemble averaging.
• C(�) is the time-varying bandwidth utilized by the controlled flows (packets/s).
• R(t) D Tp C q(t)/C(t) is the flow RTT which consists of two major terms –

the propagation delay Tp that is usually assumed constant (the assumption is
particularly well justified when the transfer route does not change during the
exchange of data) and the time-varying queuing delay q(t)/C(t).

• ˇ is the window decrease parameter.
• p(�) is the probability of packet mark (or drop).
• N(�) is the load factor (the number of TCP connections contributing to the queue

buildup in the output link buffer).

All the terms, R(�), W(�), C(�), N(�), p(�), and q(�), in (8.1) and (8.2) are varying
functions of time. Moreover, W(�), C(�), q(�), and p(�) take only nonnegative,
bounded values. The window size of a TCP source, W(�), is limited to the interval
[0, Wmax], where Wmax > 0 denotes the maximum window size, the packet queue
length q(�) 2 [0, Bsize], where Bsize > 0 is the link buffer capacity, and the packet
marking probability is subject to the fundamental constraint p(�) 2 [0, 1]. The
available bandwidth, C(�)2 [0, Cmax], constitutes the part of the overall link capacity
Cmax which is not consumed by the uncontrolled flows (e.g., inelastic traffic, or
high priority transmission). The time-varying function C(�) also captures the link
capacity fluctuations in the wireless environment (occurring, for instance, due to the
fading and shadowing phenomena). Note that in the wireless networks, the channel
bit rate (and thus the bandwidth available for data transfer) is adjusted according to
the signal strength and bit error rate and typically undergoes changes even during a
short-lived transmission.

The dynamics of the TCP flow control process represented by (8.1) and (8.2) is
illustrated in a block diagram form in Fig. 8.1. The first equation in the analyzed set
reflects the TCP window size adjustment according to the indications obtained from
the network (the TCP window control structure in the graph shown in Fig. 8.1).
The first term on the right-hand side in this equation, 1/R(�), corresponds to the
window additive increase part of the TCP mechanism, i.e., to increase the window
size by one packet every RTT. The second term on the right-hand side in (8.1),
ˇW(�), models the window multiplicative decrease mechanism. The window size
is decreased by ˇ for packets marked with probability p(�) arriving with intensity
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Fig. 8.1 TCP nonlinear dynamics

W(�)/R(�). The window decrease parameter ˇ is usually taken to be equal to 1/2,
although as pointed out in [19], a more precise value for the continuous-time
approximation of the TCP behavior suggests the value of ln(2) [13], or 2/3 [14]. The
second equation in the considered set, (8.2), models the bottleneck queue length
variations in the presence of the aggregated flow from N(�) connections and the
time-varying bandwidth at the outgoing link. Consequently, the queue length is
increased according to the incoming traffic intensity W(�)/R(�) of N(�) flows, and
it is decreased when the available bandwidth C(�) > 0. For more insights on the TCP
behavior described by (8.1) and (8.2), one can refer to [6, 7, 19].

In the next two sections, we investigate two distinct choices of small-signal lin-
earization of the set of nonlinear equations (8.1) and (8.2) with the information about
the delay retained. For each case, we discretize the linearized system dynamics and
derive a discrete-time flow controller. The obtained controllers determine the packet
marking rate at the network nodes supporting AQM.

8.2 System with Input Delay

By choosing the set of parameters subject to linearization, different approximations
of system (8.1) and (8.2) can be obtained. The discussion provided so far in
this monograph clearly indicates the benefits of explicit consideration of delay,
which should be accounted for both in the system modeling and the controller
design. Therefore, in contrast to the majority of earlier SM control proposals in
the field (see Sect. 2.5 for a related discussion), while performing the linearization
procedure, we intend to retain the information about the delay present in the
system description. First, we analyze the system subject to the input delay only. We
perform the linearization, discretize the obtained small-signal system model, and
represent the discretized model in the state space. Next, we design a discrete-time
controller to be implemented as a marking scheme in the router AQM procedures.

http://dx.doi.org/10.1007/978-1-4471-4147-1_2
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A more complex configuration with both the input and state delay information
preserved is considered in Sect. 8.3. In either of these two cases, we do not
assume the bandwidth to be constant and incorporate C(�) variations explicitly in the
linearization procedure. We also explicitly account for the effects of finite sampling
rate, which is unavoidable in the practical network realization. This is in contrast to
the majority of feedback controller designs for TCP/AQM networks which assume
either constant bandwidth, continuous feedback information delivery, or neglect the
influence of network latency.

8.2.1 Discrete-Time Network Model

In this section, we develop a discrete-time model reflecting the TCP behavior in
the neighborhood of an equilibrium point. First, the linearization procedure of
the nonlinear system equations (8.1) and (8.2) is performed. Next, the linearized
system is discretized, and the relevant state-space description is provided. The
model developed in this section incorporates the information related to the input
delay only. The discussion of a more sophisticated case of the input and state delay
information preserved will be covered in Sect. 8.3.

8.2.1.1 Linearization

Let us consider W(�) and q(�) in (8.1) and (8.2) as the state variables. The system
is driven by two inputs: p(�) – the controller command – and C(�) – the exogenous
signal of unknown form treated as a disturbance. Function q(�) is selected as the
system output. The operating point is specified by the quadruple (W0, q0, p0, C0) so
that

PW D 0 and Pq D 0
ˇ̌
.W;q;p;C /D.W0;q0;p0;C0/

: (8.3)

Hence, equating the left-hand sides of (8.1) and (8.2) to zero, one obtains at the
operating point (W0, q0, p0, C0) the following set of relations:

ˇp0W 2
0 D 1;NW0 D C0R0; and R0 D Tp C q0=C0; (8.4)

where R0 is the equilibrium RTT. For the network parameters N and Tp, the set of
feasible operating points is defined as

�.N;Tp/ D f.W0; q0; p0; C0/ W W0 2 .0;Wmax/ ; q0 2 .0; Bsize/ ;

p0 2 .0;1/ ; C0 2 .0; Cmax/ and .8:4/ is satisfiedg :
(8.5)
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We assume that RTT is constant at the equilibrium point and ignore the nested
dependence of the time-delay argument t � R(t) on the queue length and the avail-
able bandwidth (see [15] for the relevant discussion). Thus, we set t � R(t) � t � R0

in the linearization procedure. Taking N and Tp as constants, and neglecting the state
delay (according to [6], this is a reasonable assumption when W(�) � 1), we obtain
the simplified system dynamics

PW .t/ D 1

Tp C q.t/=C.t/
� ˇW 2.t/

Tp C q.t/=C.t/
p .t � R0/ ; (8.6)

Pq.t/ D NW.t/

Tp C q.t/=C.t/
� C.t/: (8.7)

Let us analyze the small-signal deviations of the state and input variables from
their operating point:

ıW.t/ , W.t/ � W0; ıq.t/ , q.t/ � q0; ıp.t/ , p.t/ � p0; ıC.t/ , C.t/ � C0:

(8.8)

Defining the right-hand sides of (8.6) and (8.7) by

f .W; q; pR; C / , 1

Tp C q=C
� ˇW 2

Tp C q=C
pR; (8.9)

g .W; q; C / , NW

Tp C q=C
� C; (8.10)

where pR(t),p(t � R0), and taking the partial derivatives of f (�) and g(�) at the
operating point, we obtain

@f

@C
D q

C 2

1 � ˇW 2pR�
Tp C q=C

�2
ˇ̌̌
ˇ̌
.W0;q0;p0;C0/

D 0;

@f

@W
D� 2ˇW pR

Tp C q=C

ˇ̌̌
ˇ
.W0;q0;p0;C0/

D � 2

R0W0

D � 2N

R2
0C0

;

@f

@pR

D� ˇW 2

Tp C q=C

ˇ̌
ˇ̌
.W0;q0;p0;C0/

D �ˇR0C
2
0

N 2
;

@f

@q
D ˇW 2pR � 1

C
�
Tp C q=C

�2
ˇ̌̌
ˇ̌
.W0;q0;p0;C0/

D 0; (8.11)
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Fig. 8.2 Dynamics of deviation system with input delay

and

@g

@C
D q

C 2

NW�
Tp C q=C

�2 � 1

ˇ̌
ˇ̌̌
.W0;q0;p0;C0/

D q0

C0R0

� 1 D R0 � Tp

R0

� 1 D � Tp

R0

;

@g

@W
D N

Tp C q=C

ˇ̌
ˇ̌
.W0;q0;p0;C0/

D N

R0

;

@g

@q
D� NW

C
�
Tp C q=C

�2
ˇ̌̌
ˇ̌
.W0;q0;p0;C0/

D � 1

R0

:
(8.12)

Consequently, the deviation dynamics can be expressed as

ı PW .t/ D � 2N

R2
0C0

ıW.t/ � ˇR0C 2
0

N 2
ıp .t � R0/ ; (8.13)

ı Pq.t/ D � 1

R0

ıq.t/ C N

R0

ıW.t/ � Tp

R0

ıC.t/: (8.14)

The deviation system dynamics is illustrated in a block diagram form in Fig. 8.2.
Since R0, C0, and N are all positive quantities, the open-loop poles, �2N=R2

0C0 and
�1/R0, lie in the left-half plane, and the open-loop system is locally asymptotically
stable. Further remarks on the stability of the considered system can be found in [6]
and [7].



8.2 System with Input Delay 339

8.2.1.2 Discretization

Before proceeding with the discretization of system (8.13) and (8.14), let us first
write it in the state-space form

Pxc.t/ D Acxc.t/ C bcıp .t � R0/ C dcıC.t/;

y.t/ D qc
Txc.t/; (8.15)

where xc(t) D [ıq(t) ıW(t)]T is the state vector, Ac is 2 � 2 state matrix, and bc, dc,
and qc are 2 � 1 vectors:

Ac D

2
6664

� 1

R0

N

R0

0 � 2N

R2
0C0

3
7775 ; bc D

2
4 0

�ˇR0C
2
0

N 2

3
5; dc D

2
4� Tp

R0

0

3
5 ; qc D

�
1

0

�
:

(8.16)

We assume that the system is sampled with period T, and R0 constitutes an integer
multiple of T, i.e., R0 D n0T, where n0 > 0. Using the inverse Laplace transform
method, we obtain for C0R0 ¤ 2N the following discrete-time form of the state
matrix Ad D eAcT D L �1fsI � Acgjt D T as

Ad D
�

a11 a12

a21 a22

�
D

2
6666664

e
�

T

R0
C0N R0

C0R0 � 2N

0
B@e

�
2NT

R2
0C0 � e

�
T

R0

1
CA

0 e
�

2NT

R2
0C0

3
7777775

: (8.17)

The discrete-time representation of the input and disturbance vectors is obtained

from bd D
	R T

0 eAc� d�



bc and dd D
	R T

0 eAc� d�



dc. Since Ac is nonsingular, we

may apply simplified formulas to calculate bd and dd: bd D A�1
c

�
eAcT � I2

�
bc and

dd D A�1
c

�
eAcT � I2

�
dc, where I2 is 2 � 2 identity matrix. Thus, we get

bd D
�

b1

b2

�
D ˇ

2
6666664

C 4
0 R4

0

2N 2.C0R0 � 2N /
e

�
2NT

R2
0C0 � C 3

0 R3
0

N.C0R0 � 2N /
e

�
T

R0 � C 3
0 R3

0

2N 2

C 3
0 R3

0

2N 3
e

�
2NT

R2
0C0 � C 3

0 R3
0

2N 3

3
7777775

;

(8.18)
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and

dd D
�

d1

d2

�
D
�

Tp Œexp .�T=R0/ � 1�

0

�
: (8.19)

The output vector in discrete-time system qd D qc.
In the special case C0R0 D 2N, we obtain

Ad D

2
66664

e
�

T

R0
NT

R0

e
�

T

R0

0 e
�

T

R0

3
77775 ; bd D 4ˇN

2
666664

�
1 C T

R0

�
e

�
T

R0 � 1

e
�

T

R0 � 1

3
777775

; (8.20)

dd given by (8.19), and qd D qc.

8.2.1.3 State-Space Representation

In order to explicitly consider the influence of input delay, for convenience of the
controller derivation, the discrete-time system (8.17)–(8.19) is represented in the
extended state space

x Œ.k C 1/ T � D Ax .kT / C bu .kT / C dd .kT / ;

y .kT / D qTx .kT / ; (8.21)

where:

• u(kT) D ıp(kT) denotes the controller command, i.e., the deviation of the packet
marking probability from the equilibrium value p0 at instant kT.

• d(kT) D ıC(kT) represents the deviation of the available bandwidth from its
equilibrium value C0 at instant kT.

• x(kT) D [x1(kT) x2(kT) : : : xn(kT)]T is the state vector with:

– x1(kT) D y(kT) D ıq(kT) representing the difference between the packet queue
length and its equilibrium value q0 at instant kT

– x2(kT) D ıW(kT) the current difference between the window size and its
equilibrium value W0

– The remaining state variables

xi .kT / D ıpŒk � n C i � 1/T � (8.22)

for i D 3, : : : , n representing the controller command history.

• A is n � n state matrix, b, d, and q are n � 1 input, disturbance, and output vectors,
respectively,
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A D

2
66666666664

a11 a12 b1 0 : : : 0

0 a22 b2 0 : : : 0

0 0 0 1 : : : 0
:::

:::
:::

:::
: : :

:::

0 0 0 0 : : : 1

0 0 0 0 : : : 0

3
77777777775

; b D

2
666666664

0

0

0
:::

0

1

3
777777775

; d D

2
666666664

d1

0

0
:::

0

0

3
777777775

; q D

2
666666664

1

0

0
:::

0

0

3
777777775

;

(8.23)

and the system order n D n0 C 2 D (R0/T) C 2 depends on the discretization
period and RTT of the flows. Note that since R0 > 0, the system is at least of
order 3. The coefficients a11, a12, a22, b1, and b2 are taken from (8.17), and (8.18)
if C0R0 ¤ 2N, and from (8.20) otherwise. The constant d1 is determined from
(8.19).

The deviation dynamics should be kept in the vicinity of the equilibrium point.
Hence, the desired state vector in the analyzed case is the origin of the deviation
state space

xd D �
0 0 0 : : : 0

�T
:

8.2.2 Flow Control Strategy

The purpose of the control action can be formulated as to reach a desired operating
point (for instance, to drive the queue length to a set-point level) and to maintain
the system dynamics near the given operating point despite modeling inaccuracies,
parameter variations, and external disturbances. In particular, in the presence of
bandwidth (or link capacity) variations, and the fluctuating number of connections,
the instantaneous queue length drift from the equilibrium value should not cause
buffer overflow. On the other hand, a bandwidth surge or load change should not
lead to depleting the buffer, as it usually implies decreased utilization of the network
resources.

8.2.2.1 Sliding-Mode Controller Design

Let us introduce the sliding hyperplane described by the following equation:

s .kT / D cT Œxd � x .kT /� D �cTx .kT / D 0; (8.24)

where for the feasibility purposes the vector describing the plane parameters,

cT D �
c1 c2 c3 : : : cn�1 cn

�
; (8.25)
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should be chosen such that cTb ¤ 0. The selection of this vector will be analyzed
further in this section. Substituting (8.21) into the equation cTx[(k C 1)T] D 0 (with
d(�) � 0), we get

cTx Œ.k C 1/ T � D cT ŒAx .kT / C bu .kT /� D 0; (8.26)

which leads to the following feedback control law:

u .kT / D ��cTb
��1

cTAx .kT / : (8.27)

Applying (8.23), we can rewrite (8.27) in the following form

u .kT / D � cn
�1 Œa11c1x1 .kT / C .a12c1 C a22c2/ x2 .kT /�

� cn
�1

2
4.b1c1 C b2c2/ x3 .kT / C

nX
j D4

cj �1xj .kT /

3
5 :

(8.28)

Since the properties of SM controllers are mainly determined by an appropriate
choice of the sliding plane parameters, we devote the rest of this section to the
selection of a suitable vector c for controller (8.28).

8.2.2.2 Dead-Beat Controller

As discussed in the previous chapters, a good control scheme for data transmission
networks should provide appropriately fast responsiveness to the changes of net-
working conditions. Therefore, parameters of the sliding plane will be selected so
that a dead-beat controller for the deviation dynamics (8.21)–(8.23) is obtained.

For dead-beat control, all the poles of the closed-loop state matrix should be
at the origin. The closed-loop state matrix Acl D [In � b(cTb)�1cT ]A with control
(8.28) applied is determined as

Acl D

2
6666666664

a11 a12 b1 0 : : : 0

0 a22 b2 0 : : : 0

0 0 0 1 : : : 0
:::

:::
:::

:::
: : :

:::

0 0 0 0 : : : 1

�a11c1

cn

�a12c1 C a22c2

cn

�b1c1 C b2c2

cn

� c3

cn

: : : �cn�1

cn

3
7777777775

; (8.29)
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and its characteristic polynomial det(zIn � Acl) as

zn C cn�1 � .a11 C a22/ cn

cn

zn�1 C a11 .a22cn � cn�1/ � a22cn�1 C cn�2

cn

zn�2 C � � �

� � � C a11 .a22c5 � c4/ � a22c4 C c3

cn

z3 C a11 .a22c4 � c3/ � a22c3 C b1c1 C b2c2

cn

z2

C a11 .a22c3 � b2c2/ C a12b2c1 � a22b1c1

cn

z: (8.30)

Therefore, the roots of the characteristic equation det(zIn � Acl) D 0 (the closed-
loop poles) are all zero, if the following set of conditions is satisfied:

cn�1 � .a11 C a22/ cn D 0;

a11 .a22cn � cn�1/ � a22cn�1 C cn�2 D 0;

:::

a11 .a22c5 � c4/ � a22c4 C c3 D 0;

a11 .a22c4 � c3/ � a22c3 C b1c1 C b2c2 D 0;

a11 .a22c3 � b2c2/ C a12b2c1 � a22b1c1 D 0: (8.31)

Equation set (8.31) is solved recursively. First, we determine cn � 1 from the first
equation in (8.31):

cn�1 D .a11 C a22/ cn: (8.32)

Next, we substitute cn � 1 given by (8.32) into the second equation in (8.31). In
this way, cn � 2 may be expressed in terms of the system parameters and the last
element of vector c. We get

cn�2 D cn

�
a2

11 C a11a22 C a2
22

�
: (8.33)

Having determined cn � 1 and cn � 2, we solve for cn � 3, obtaining

cn�3 D cn

�
a3

11 C a2
11a22 C a11a

2
22 C a3

22

� D cn

3X
j D0

a
3�j
11 a

j
22: (8.34)

If one continues the substitutions, the following relation may be observed:

cn�j D cn

	
a

j
11 C a

j �1
11 a22 C � � � C a11a2

22 C a
j
22




D cn

jX
iD0

a
j �i
11 ai

22; for j D 1; : : : ; n � 3: (8.35)
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And the last two elements of vector c are determined as

c2 D
 

cn

n�2X
iD0

an�2�i
11 ai

22 � b1c1

!
=b2;

c1 D cnan�1
11 = .a11b1 C a12b2 � a22b1/ : (8.36)

Substituting (8.35) and (8.36) into (8.28), we obtain

cn
�1

2
4.b1c1 C b2c2/ x3 .kT / C

nX
j D4

cj �1xj .kT /

3
5

D
2
4
 

b1c1 C cn

n�2X
iD0

an�2�i
11 ai

22 � b1c1

!
x3 .kT / C

nX
j D4

0
@n�j C1X

iD0

a
n�j C1�i
11 ai

22

1
A xj .kT /

3
5

D
nX

j D3

0
@n�j C1X

iD0

a
n�j C1�i
11 ai

22

1
A xj .kT /; (8.37)

and after applying (8.22), the sum reduces to

nX
j D3

0
@n�j C1X

iD0

a
n�j C1�i
11 ai

22

1
A ıp Œ.k � n C j � 1/ T �D

k�1X
j Dk�n0

0
@k�jX

iD0

a
k�j �i
11 ai

22

1
A ıp .jT /:

(8.38)

Consequently, using x1(kT) D ıq(kT), x2(kT) D ıW(kT), and (8.38) in (8.28),
we get the following closed-form expression for dead-beat control law for the
considered system:

u .kT / D ıp .kT / D �g1ıq .kT / � g2ıW .kT /

�
k�1X

j Dk�n0

0
@k�jX

iD0

a
k�j �i
11 ai

22

1
A ıp .jT /; (8.39)

where

g1D an
11

a11b1 C a12b2 � a22b1

;g2D .a12b2 � a22b1/ an�1
11

b2 .a11b1 C a12b2 � a22b1/
C a22

b2

n�2X
iD0

an�2�i
11 ai

22:

(8.40)
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Dead-beat marking scheme
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1 1–i a22

i

i=0Σ

dq(kT ) dp(kT ) p(kT )

dW(kT)W (kT)

Fig. 8.3 Dead-beat controller for system with input delay

Equation (8.39) represents a fixed-gain variable-state feedback control law. In
order to determine the current packet marking rate ıp(kT), the controller uses the
measurement of the instantaneous queue length ıq(kT), the window size estimate
(obtained from observing the packet incoming rate) ıW(kT), and the marking
rate history recorded within the last RTT. Since all the controller parameters can
be computed off-line, good operational efficiency in the node implementation is
ensured. The structure of the designed dead-beat controller is illustrated in Fig. 8.3.

8.2.2.3 Modified Control Law

The developed dead-beat scheme provides fast reaction to the changes of networking
conditions. However, when the system departs from the desired operating point, for
instance, due to bandwidth variations, the controller performance degrades. This is
mainly attributed to the changes in the round-trip time R(t) D Tp C q(t)/C(t), which
in the case of large C(�) variations may significantly depart from the operating-
point value R0. As analyzed in Sects. 5.2 and 6.2, when the delay differs from the
nominal value taken into account in the design procedure, the dead-beat controller
performance degrades, leading even to instability. Also, in the case of the system
analyzed in this chapter, the modeling inaccuracy and high-frequency parasitics will
adversely influence the operation of dead-beat control law in the actual network
implementation. Nevertheless, as it was indicated in Sect. 5.2.2, the controller
robustness can be enhanced by introducing a scaling factor in the sliding plane.
By incorporating the factor � 2 [0, 1] into the sliding hyperplane (8.25), we obtain
the vector of plane parameters

cT D �
�c1 �c2 �c3 : : : �cn�1 cn

�
; (8.41)

http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_6
http://dx.doi.org/10.1007/978-1-4471-4147-1_5
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g
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Fig. 8.4 Proportional controller for system with input delay

where c1, c2, : : : , cn � 1 are given by (8.35) and (8.36). Using (8.41) in (8.27), we
arrive at the proportional control law

ıp .kT / D ��

2
4g1ıq .kT / C g2ıW .kT / C

k�1X
j Dk�n0

0
@k�jX

iD0

a
k�j �i
11 ai

22

1
A ıp .jT /

3
5

(8.42)

with g1 and g2 given by (8.40). The new controller eliminates error at the output
slower than the dead-beat scheme, but it is less fragile to inconsistencies in the
system modeling and changes in the operating conditions.

The block diagram of the proportional controller is illustrated in Fig. 8.4. As we
can see from the graph, the dead-beat structure is modified by adding a gain element
to the primary signal path. The remaining elements and their configuration remain
the same as depicted in Fig. 8.3. In particular, the structure responsible for delay
compensation is preserved.

8.3 System with Input and State Delay

In the linearization procedure conducted in the previous section, an explicit
consideration was given to the latency in the control signal path – the input delay
influencing the effect of packet marking rate p[t � R(t)]. The state delay affecting
the changes in the window size W[t � R(t)] and the queue length q[t � R(t)] was
neglected. In this section, we extend the ideas presented so far in this chapter to
the system with the information about both the input and state delay retained in the
system model. The linearization procedure leads to more complex coupled differen-
tial equations in the model description, which call for more sophisticated controller
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design procedures. We show, however, that with an appropriate selection of the
discrete-time state space, the controller derivation yields a similar structure as
obtained in Sect. 8.2.

8.3.1 Discrete-Time Network Model

We begin with linearizing the system equations (8.1) and (8.2), which represent the
fundamental TCP dynamics (in the congestion avoidance phase). Contrary to the
procedure presented in the previous section, here the information about the state
delay in addition to the input latency is retained.

8.3.1.1 Linearization

We assume that RTT is constant at the equilibrium point and ignore the dependence
of the time-delay argument t � R(t) on the queue length, setting t � R(t) � t � R0 in
the linearization procedure. Taking N and Tp as constants, and explicitly considering
the delay in W(�), q(�), and C(�), we obtain the system dynamics in the following
form:

PW .t/ D 1

Tp C q.t/=C.t/
� ˇW.t/W .t � R0/

Tp C q .t � R0/ =C .t � R0/
p .t � R0/ ; (8.43)

Pq.t/ D N W.t/

Tp C q.t/=C.t/
� C.t/: (8.44)

Next, we analyze small-signal deviations (8.8) of the state and input variables
from their operating point values. Defining the right-hand sides of (8.43) and
(8.44) by

f .W; WR; q; qR; pR; C; CR/ , 1

Tp C q=C
� ˇW WR

Tp C qR=CR

pR; (8.45)

g .W; q; C / , N W

Tp C q=C
� C; (8.46)

where

WR.t/ , W .t�R0/ ; qR.t/ , q .t�R0/ ; pR.t/ , p .t�R0/ ; CR.t/ , C .t�R0/ ;

(8.47)
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and taking the partial derivatives at the operating point, we obtain

@f

@C
D q

C 2

1�
Tp C q=C

�2
ˇ̌
ˇ̌
ˇ
.W0;q0;p0;C0/

D C0

�
R0 � Tp

�
C 2

0 R2
0

D R0 � Tp

R2
0C0

;

@f

@CR

D � ˇW WRpRqR

C 2
R

�
Tp C qR=CR

�2
ˇ̌̌
ˇ̌
.W0;q0;p0;C0/

D � q0

C 2
0

1�
Tp C q0=C0

�2 D �R0 � Tp

R2
0C0

;

@f

@W
D � ˇWRpR

qR=CR C Tp

ˇ̌
ˇ̌
.C0;W0;p0;q0/

D � ˇW0�
q0=C0 C Tp

� 1

ˇW 2
0

D � 1

R0W0

D � N

R2
0C0

;

@f

@WR

D @f

@W
;

@f

@pR

D � ˇW WR

qR=CR C Tp

ˇ̌̌
ˇ
.C0;W0;p0;q0/

D �ˇW 2
0

R0

D �ˇR2
0C 2

0 =N 2

R0

D �ˇR0C
2
0

N 2
;

@f

@q
D � 1

C
�
q=C C Tp

�2
ˇ̌̌
ˇ̌
.C0;W0;p0;q0/

D � 1

C0R2
0

;

@f

@qR

D ˇW WRpR

CR

�
qR=CR C Tp

�2
ˇ̌
ˇ̌̌
.C0;W0;p0;q0/

D 1

C0R
2
0

;
(8.48)

and

@g

@C
D q

C 2

N W�
Tp C q=C

�2 � 1

ˇ̌
ˇ̌
ˇ
.W0;q0;p0;C0/

D C0

�
R0 � Tp

�
C0R0

C 2
0 R2

0

� 1 D � Tp

R0

;

@g

@W
D N

Tp C q=C

ˇ̌
ˇ̌
.W0;q0;p0;C0/

D N

R0

;

@g

@q
D � N W

C
�
Tp C q=C

�2
ˇ̌
ˇ̌̌
.W0;q0;p0;C0/

D �C0R0

C0R
2
0

D � 1

R0

:
(8.49)

Consequently, the deviation dynamics can be expressed by

ı PW .t/ D � N

R2
0C0

ŒıW.t/ C ıW .t � R0/� � 1

R2
0C0

Œıq.t/ � ıq .t � R0/�

� ˇR0C 2
0

N 2
ıp .t � R0/ C R0 � Tp

R2
0C0

ŒıC.t/ � ıC .t � R0/� ; (8.50)

ı Pq.t/ D � 1

R0

ıq.t/ C N

R0

ıW.t/ � Tp

R0

ıC.t/: (8.51)
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TCP window control

Packet queue dynamics
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Fig. 8.5 Dynamics of deviation system with input and state delay

The deviation system dynamics in a block diagram form is illustrated in Fig. 8.5.
The open-loop stability, taking into account the high-frequency parasitics and
coupling effects, can be analyzed following the ideas presented in [7].

8.3.1.2 Discretization

In order to obtain a convenient state-space description, we need to use a first-
order approximation in the discretization procedure. Assuming sufficiently small
sampling period T, and RTT being a multiple of T, i.e., R0 D n0T, where n0 is a
positive integer, we obtain the following discrete-time representation of (8.50):

ıW Œ.k C 1/ T � D
 

1 � NT

R2
0C0

!
ıW .kT / � NT

R2
0C0

ıW Œ.k � n0/ T �

� T

R2
0C0

ıq .kT / C T

R2
0C0

ıq Œ.k � n0/ T � � ˇR0C 2
0 T

N 2
ıp Œ.k � n0/ T �

C
�
R0 � Tp

�
T

R2
0C0

ıC .kT / �
�
R0 � Tp

�
T

R2
0C0

ıC Œ.k � n0/ T � : (8.52)
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Similarly, the first-order discrete-time approximation of (8.51) is determined as

ıq Œ.k C 1/ T � D
�

1 � T

R0

�
ıq .kT / C NT

R0

ıW .kT / � TpT

R0

ıC .kT / : (8.53)

8.3.1.3 State-Space Representation

In order to efficiently conduct the controller design procedure using formal ap-
proach, the discrete-time system (8.52) and (8.53) is represented in the state space.
Similarly as in the previous section, the choice of the state variables reflects the
influence of delay on the system dynamics. Here, the particular selection of elements
of the state vector and their interactions explicitly accounts for the effects of latency
in the input channel (ıp, ıC) and in the system state (ıq, ıW). The overall state
equations are given by (8.21), where:

• x(kT) D [x1(kT) x2(kT) : : : xn(kT)]T is the state vector with:

– x1(kT) D y(kT) D ıq(kT) representing the difference between the packet queue
length and its equilibrium value q0 at instant kT,

– x2(kT) D ıW(kT) the current difference between the window size and its
equilibrium value W0,

– the remaining state variables

xi .kT / D an1ıq Œ.k � n C i � 1/ T � C an2ıW Œ.k � n C i � 1/ T �

C bnıp Œ.k � n C i � 1/ T � C dnıC Œ.k � n C i � 1/ T � (8.54)

for i D 3, : : : , n representing the state and input signal history.

• A is n � n state matrix, b, d, and q are n � 1 input, disturbance, and output vectors,

A D

2
666666664

a11 a12 0 0 : : : 0

a21 a22 1 0 : : : 0

0 0 0 1 : : : 0
:::

:::
:::

:::
: : :

:::

0 0 0 0 : : : 1

an1 an2 0 0 : : : 0

3
777777775

; b D

2
666666664

0

0

0
:::

0

bn

3
777777775

; d D

2
666666664

d1

0

0
:::

0

dn

3
777777775

; q D

2
666666664

1

0

0
:::

0

0

3
777777775

; (8.55)

where

a11 D1 � T=R0; a12 D NT=R0;

a21 D � T=.R2
0C0/; a22 D 1 � NT=.R2

0C0/;

an1 DT=.R2
0C0/; an2 D �NT=.R2

0C0/;

bn D � ˇR0C 2
0 T=N 2;

d1 D � TpT=R0; dn D � �R0 � Tp

�
T=
�
R2

0C0

�
; (8.56)
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and the system order n D n0 C 2 D (R0/T) C 2 depends on the discretization
period T and the nominal RTT of the flows R0. Since R0 > 0, the system is at
least of order 3. The desired system state is defined as xd D [0 0 0 : : : 0]T so that
the deviation dynamics is kept in the vicinity of the equilibrium point.

8.3.2 Flow Control Strategy

We wish to get a controller which will drive the system to a desired operating point,
and maintain the state in the vicinity of that point despite modeling inaccuracies and
the presence of disturbances (bandwidth and load factor fluctuations). The controller
should quickly react to the changes of networking conditions and avoid overshoots
and oscillations if possible. The design procedure follows similar steps as discussed
in Sect. 8.2.2. First, the sliding hyperplane is introduced, and a general form of the
control law is provided. Then, the closed-loop characteristic polynomial is analyzed,
and parameters of the plane are selected so that all the closed-loop poles are at
the origin. In this way, a dead-beat control law is obtained. Finally, the designed
dead-beat controller is modified to improve robustness with respect to parametric
uncertainties and external perturbations.

8.3.2.1 Sliding-Mode Controller Design

We introduce a sliding hyperplane described by the equation s(kT) D �cTx(kT) D 0,
where the vector describing the plane parameters (8.25) is chosen such that cTb ¤ 0.
Substituting (8.21) into the equation cTx[(k C 1)T] D 0, we arrive at

u .kT / D ��cTb
��1

cTAx .kT / :

Applying (8.55), we can rewrite this equation in the following form:

u .kT / D �.bncn/�1

�
2
4.a11c1 C a21c2 C an1cn/ x1.kT / C .a12c1 C a22c2 C an2cn/ x2.kT / C

nX
jD3

cj�1xj .kT /

3
5:

(8.57)

Next, we show how parameters of the sliding plane should be selected so that a
dead-beat controller is obtained.
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8.3.2.2 Dead-Beat Controller

Dead-beat control requires all the poles of the closed-loop state matrix to be placed
at the origin. The closed-loop state matrix Acl D [In � b(cTb)�1cT]A with control
(8.57) applied is determined as

Acl D

2
6666666664

a11 a12 0 0 : : : 0

a21 a22 1 0 : : : 0

0 0 0 1 : : : 0
:::

:::
:::

:::
: : :

:::

0 0 0 0 : : : 1

�a11c1 C a21c2

cn

�a12c1 C a22c2

cn

� c2

cn

� c3

cn

: : : �cn�1

cn

3
7777777775

;

and its characteristic polynomial det(zIn � Acl) as

znC cn�1 � .a11 C a22/ cn

cn

zn�1 C a11 .a22cn � cn�1/ � a12a21cn � a22cn�1 C cn�2

cn

zn�2 C � � �

� � � C a11 .a22c4 � c3/ � a12a21c4 � a22c3 C c2

cn

z2 C a11 .a22c3 � c2/ C a12 .c1 � a21c3/

cn

z:

Denoting the first principal minor of A by

M1 D
ˇ̌
ˇ̌a11 a12

a21 a22

ˇ̌
ˇ̌ D a11a22 � a12a21; (8.58)

the characteristic polynomial may be presented in a more compact form as

zn C cn�1 � .a11 C a22/ cn

cn

zn�1 C M1cn � .a11 C a22/ cn�1 C cn�2

cn

zn�2 C � � �

� � � C M1c4 � .a11 C a22/ c3 C c2

cn

z2 C M1c3 � a11c2 C a12c1

cn

z: (8.59)

For dead-beat control, det(zIn � Ac) should be equal to zn, which is satisfied when
the following set of conditions is simultaneously satisfied:

cn�1 � .a11 C a22/ cn D 0;

M1cn � .a11 C a22/ cn�1 C cn�2 D 0;

:::

M1c4 � .a11 C a22/ c3 C c2 D 0;

M1c3 � a11c2 C a12c1 D 0: (8.60)
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Set (8.60) is solved by recursion. First, we substitute cn � 1 D (a11 C a22)cn in the
second equation in the set, and obtain cn � 2 as a function of cn. Then, we use the
outcome of this operation to determine cn � 3 from the third equation. Continuing
with the substitutions, the following result is obtained:

cn�1 D .a11 C a22/ cn;

cn�2 D cn

h
�M1 C .a11 C a22/2

i
;

cn�3 D cn .a11 C a22/
h
�2M1 C .a11 C a22/

2
i

;

cn�4 D cn

h
M 2

1 � 3M1.a11 C a22/2 C .a11 C a22/4
i

;

cn�5 D cn .a11 C a22/
h
3M 2

1 � 4M1.a11 C a22/2 C .a11 C a22/4
i

;

cn�6 D cn

h
�M 3

1 C 6M 2
1 .a11 C a22/2 � 5M1.a11 C a22/4 C .a11 C a22/6

i
;

::: (8.61)

Note that the coefficients in the powers of M1 in subsequent rows in (8.61) form
the diagonal elements of Pascal’s triangle. Hence, for j D 2, : : : , n � 1, we may write

cn�j D

8̂
<̂
ˆ̂:

cn .a11 C a22/
pD.j �1/=2P

iD0

�
j � p C i

j � p � 1 � i

�
.�M1/p�i .a11 C a22/2i

; for cn�1; cn�3; : : :

cn

pDj=2P
iD0

�
j � p C i

j � p � i

�
.�M1/p�i .a11 C a22/2i

; for cn�2; cn�4; : : :

(8.62)

Finally, c1 is determined from the last equation in set (8.60) as

c1 D .a11c2 � M1c3/ =a12: (8.63)

Applying (8.54) to the last term in (8.57), we obtain

.bncn/�1

nX
j D3

cj �1xj .kT / D
nX

j D3

gj xj .kT /

D
k�1X

j Dk�n0

gj �kCn0C3 Œan1ıq .jT / C an2ıW .jT / C bnıp .jT / C dnıC .jT /�:

(8.64)
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Fig. 8.6 Dead-beat controller for system with input and state delay

Consequently, using x1(kT) D ıq(kT), x2(kT) D ıW(kT), and (8.64), we can
represent the dead-beat control law in the following form:

u .kT / D ıp .kT / D �g1ıq .kT / � g2ıW .kT / �
k�1X

j Dk�n0

gj �kCn0C3 Œan1ıq .jT /

Can2ıW .jT / C bnıp .jT / C dnıC .jT /� ; (8.65)

where

g1 D a11c1 C a21c2 C an1cn

bncn

; g2 D a12c1 C a22c2 C an2cn

bncn

; gj D cj �1

bncn

for j � 3:

(8.66)

Similarly as (8.39), equation (8.65) represents a fixed-gain variable-state feed-
back control law. All the controller coefficients can be computed off-line, which
guarantees good operational efficiency. In order to establish the current packet
marking rate ıp(kT), the controller uses the measurement of the instantaneous queue
length ıq(kT) and the window size estimate ıW(kT). However, in contrast to the
input-delay-aware (IDA) controller (8.39), the state-delay-aware (SDA) one (8.65)
uses the past values of the queue length, window size, and bandwidth measurement
in addition to the marking rate history recorded within the last RTT. The structure
of the designed dead-beat controller is illustrated in Fig. 8.6.

8.3.2.3 Modified Control Law

The additional measurements used by the SDA controller (8.65) allow for de-
termining a more exact marking rate value when the state remains in close
neighborhood of the operating point. However, once the system departs from the



8.4 Simulation Results 355

d qkT ) d p(kT )
g

d W(kT )

d C(kT )

g1

g2

g3

an2

an1

dn

++

++ ++

++

+ ––+

++

gn–1

gn

bn

z−1

z−1

z−1

Fig. 8.7 Proportional controller for system with input and state delay

desired operating point, especially, when RTT undergoes substantial change, then
these extra, noisy measurements may lead to decreased performance in terms of
overshoots and oscillations, as compared to controller (8.39). Nevertheless, the
controller robustness can be enhanced using a similar technique as discussed in
the modified IDA controller (8.39). Consequently, in order to improve the controller
performance in the presence of increased bandwidth variations, one may incorporate
a scaling factor, � 2 [0, 1], into the sliding plane as in (8.41). Then, after employing
the modified plane (8.41) in (8.57), one obtains a proportional control law

u .kT / D ıp .kT / D �� Œg1ıq .kT / C g2ıW .kT /�

� �

k�1X
j Dk�n0

gj �kCn0C3 Œan1ıq .jT / C an2ıW .jT / C bnıp .jT / C dnıC .jT /�

(8.67)

with gj given by (8.66).
The block diagram of the proportional controller is illustrated in Fig. 8.7.

Similarly as in the case of IDA controller, the dead-beat SDA scheme is changed by
introducing additional gain element in the main signal path. The remaining elements
and their configuration are depicted in Fig. 8.6. In particular, the delay compensator
structure is retained.

8.4 Simulation Results

In this section, we test the performance of the designed discrete-time controllers
regulating the flow of data in a TCP/IP network. The controllers are implemented as
AQM packet marking schemes in routers to provide network-assisted flow control.
The feedback information is conveyed to the sources by means of ECN bits.
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Table 8.1 System
parameters

Parameter Value

N 50
ˇ 0.5
Tp 0.2 s
R0 0.5 s
T 0.1 s
q0 100 packets
Bsize 200 packets
C0 333.333 packets/s
Cmax 550 packets/s
W0 3.333 packets
Wmax 20 packets
p0 0.18

8.4.1 System Parameters

We assume N D 50 TCP Reno sources passing through the router supporting AQM.
The packet marking scheme is implemented in the router software according to
(8.39) for the IDA controller, and according to (8.65) for the SDA controller.
The propagation delay in the network Tp D 0.2 s. The nominal packet queue
length is assumed q0 D 100 packets, and the nominal link capacity C0 D 333.333
packets/s which corresponds to 1.333 Mb/s with mean packet size of 500 bytes.
Hence, the nominal round-trip time R0 D Tp C q0/C0 D 0.2 C 100/333.333D 0.5 s.
With the sampling period T D 0.1 s, we get R0 D n0T D 5T, and the system order
n D n0 C 2 D 7. Consequently, with ˇ D 0.5, the window size and marking rate at
the operating point

W0 D C0R0=N D 333:333 � 0:5=50 D 3:333 packets;

p0 D 1=
�
ˇW 2

0

� D 1=
�
0:5 � 3:3332

� D 0:18: (8.68)

The maximum window size Wmax is assumed equal to 20 packets, the link
capacity is set as Cmax D 550 packets/s, and the buffer size as Bsize D 200 packets.
The key system parameters are grouped in Table 8.1.

8.4.2 Controller Parameters

In the test, we verify performance of the designed dead-beat and proportional
controllers and compare their operation with the classical RED and PI-AQM
algorithms.

Applying the values listed in Table 8.1, we get the following sliding plane
parameters for dead-beat controller (8.39):

cT D ��0:035 �2:431 2:653 2:485 2:183 1:706 1
�
:
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Table 8.2 RED parameters Parameter Value

pmax 0.1
minth 80 packets
maxth 150 packets
˛ 0.0001
LRED 0.0014
K 0.033
!g 0.12 rad/s

With this plane applied, the controller calculates the packet marking rate as
p(kT) D p0 C ıp(kT), where ıp(kT) is obtained from (8.39) and (8.40) as

ıp .kT / D � 0:028ıq .kT / � 2:456ıW .kT / C 1:706ıp Œ.k � 1/ T �

C 2:183ıp Œ.k � 2/ T � C 2:485ıp Œ.k � 3/ T � C 2:653ıp Œ.k � 4/ T �

C 2:721ıp Œ.k � 5/ T � :

On the other hand, the sliding plane for controller (8.65) is determined as

cT D �
0:017 2:897 2:811 2:609 2:264 1:740 1

�
;

and the gain vector (8.66) as

gT D Œgj �1�7 D �
0:010 2:550 2:608 2:530 2:348 2:037 1:566

�
:

The gain constant of proportional controllers (8.42) and (8.67) is set as � D 0.04.
For the RED controller, we assume the following parameter values: minth

and maxth in the packet marking profile are set as 80 packets and 150 packets,
respectively, which corresponds to the queuing delay in the range 0.24–0.45 s, pmax

is adjusted as 0.1, and the averaging weight as ˛ D 0.0001. Hence, the AQM-RED
controller gain LRED D pmax/(maxth � minth) D 0.0014 and the low-pass filter pole
K D �ln(1 � ˛)�C0 D 0.033 (see [6]). The RED unity-gain crossover frequency is
determined as !g D 0.1minf2N=R2

0C0, 1/R0g D 0.12 rad/s. Parameters set in the
tests are grouped in Table 8.2.

The transfer function of PI controller used for TCP/AQM flow regulation [7],

CPI.s/ D KPI
s=z C 1

s
; (8.69)

is parameterized by the position of zero z, and the controller gain KPI. According to
[7], z D 2N=R2

0C0, which in our case results in z D 1.2. The gain constant KPI is
determined from

KPI D !gz

ˇ̌̌
ˇj!g C 1=R0

C 2
0 =2N

ˇ̌̌
ˇ ; (8.70)
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Table 8.3 PI controller
parameters

Parameter Value

z 1.2
(a) KPI 0.003
(b) KPI 6.552 � 10�4

where !g is the unity-gain crossover frequency (for the PI controller). In the tests,
two KPI settings are applied: the first value a, as suggested in [7], is calculated for !g

equal ten times the RED crossover frequency, i.e., KPI D 0.003, and the second value
b is adjusted to obtain increased robustness as KPI D 6.552�10�4 (it corresponds
to the crossover frequency !g D 0.3 rad/s). The applied parameters are listed in
Table 8.3.

8.4.3 Test Results

A number of simulation scenarios are considered whose results are discussed in
sections Test 1 and Test 2. In section Test 1, the controller set-point tracking
capabilities are evaluated. It is verified if the controllers are able to stabilize the
queue length at level q0, and what are the transient characteristics. In particular, the
controllers are compared with respect to the level of overshoots and oscillations. All
the simulations in Test 1 are conducted in the disturbance-free environment. Next,
in section Test 2, we verify the controller robustness to (unpredictable) bandwidth
fluctuations and uncertain, variable number of TCP sessions participating in the flow
control process.

Test 1. We assume that initially the buffer is empty, i.e., q(0) D 0, and test the
controller ability to reach the queue length set-point value of q0 D 100 packets.
The number of TCP connections N(�) and the available bandwidth C(�) are assumed
constant, equal to their nominal values N and C0 given in Table 8.1.

The buffer occupancy resulting from the operation of the designed controllers is
shown in Fig. 8.8 – curve a represents the dead-beat schemes (both input- and state-
delay-aware controllers), whereas curve b reflects the queue length evolution in the
system regulated by proportional controllers (8.42) and (8.67). For comparison, in
Fig. 8.9, we illustrate the simulation results obtained for the RED and PI marking
schemes. We can see from the graphs that each controller allows the buffer to be
filled with data, and the nominal queue length is reached with similar rise times.
It is also apparent from the figures that all the controllers generate an overshoot
and, with the exception of RED, oscillations. The developed controllers provide
faster convergence of the queue length to the set-point value than the classical
RED and PI schemes. However, the dead-beat controllers exhibit small-amplitude
oscillations around the set-point level also in steady state. This is attributed to high-
frequency switching of the control signal in the interval [0, 1] which is caused by
high sensitivity of dead-beat control to modeling inaccuracies. The proportional
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controllers never enter the (input) saturation region, thus providing smoother unit-
step response. It is also clear from the plots presented in the figure that the designed
SDA controllers ensure faster convergence of the queue length to the set-point value
with smaller overshoot and reduced oscillations than the IDA ones. The steady-state
queue length is achieved after 8 and 6 nominal RTTs in the case of proportional
controllers (8.42) and (8.67), respectively, after 9 in the case of the RED marking
scheme, and after 20 (setting a) and 19 (setting b) nominal RTTs in the case of the
PI controller. The best set-point tracking is demonstrated by the SDA proportional
controller. It generates small overshoot (similar to the RED scheme) and provides
the shortest settling time. The worst performance, in turn, is demonstrated by the PI
controller in setting a. The PI controller a generates unacceptably large overshoot
(which in a perturbed environment may lead to buffer overflow) and very slowly
decaying oscillations of large amplitude.

Test 8.2. The objective of the second series of simulations is to verify the controller
robustness to changes in the available bandwidth and network load. In the graphs
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which follow, curve a represents the operation of controller (8.42), curve b the
operation of controller (8.67), both with the gain setting � D 0.04, curve c reflects
the action of the RED marking scheme, and curve d represents the test results of the
PI controller with KPI adjusted as 6.552�10�4 (improved robustness setting).

Scenario 2.1. First, we test the controllers in the presence of bandwidth fluctuations
illustrated in Fig. 8.10. The pattern presented in the graph reflects abrupt changes of
large amplitude in the range of 60% from the nominal value of 333.333 packets/s.
The system is assumed to be in equilibrium until t D 1 s when a rise in the available
bandwidth is experienced according to the C(�) evolution depicted in Fig. 8.10. In
the first simulation, the number of connections is assumed constant and equal to the
nominal value N(t) D 50 TCP sessions.

The results of the simulations are illustrated in Figs. 8.11–8.14: the buffer
occupancy in Fig. 8.11, the aggregate flow RTT in Fig. 8.12, the packet marking
probability in Fig. 8.13, and the aggregate flow window size in Fig. 8.14.

We can see from the plots in Fig. 8.11 that despite large bandwidth differences
from the nominal value, the queue length remains within the assigned buffer space
and is positive. This implies that packet losses are avoided, and all of the available
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bandwidth is efficiently used for data transfer. The designed SM controllers quickly
follow the trend in the bandwidth variations. They provide smaller queue length drift
from the nominal value than the RED and PI controllers. Although, in contrast to
the PI scheme, the queue length converges to the level different from the operating
point, the overall RTT follows a similar, yet less oscillatory, pattern as in the case
of the PI controller (see Fig. 8.12). This means that the designed SM controllers
ensure the same delay for subsequent packets in a data stream in periods of constant
bandwidth even though the bandwidth actually available for data transfer differs
from the nominal value C0. Note also in Fig. 8.11 that once C(�) returns to C0

(at t D 40 s), the output variable q(�) and the round-trip time R(�) rapidly converge
to their equilibrium values. In this situation, RED and PI controllers exhibit slower
convergence rate, with additional overshoot generated by the PI scheme.

It follows from Figs. 8.13 and 8.14 that packet marking rate remains in the linear
range (0, 1) and window size does not grow excessively towards the maximum
of 20 packets. The slowest reaction to the bandwidth variations is demonstrated
by the RED controller, and the PI one generates the largest discrepancy of p(�)
and W(�) from equilibrium. The designed SM controllers quickly bring signals p(�)
and W(�) to new steady-state values (with a small overshoot and rapidly decaying
oscillations), which are retained until further bandwidth change. Once C(�) returns
to the level C0, the packet marking rate a and b is quickly brought back to p0 D 0.18
and the window size to W0 D 3.333 packets.

Scenario 2.2. Similar observations as in Scenario 2.1 can be made when the
number of TCP sessions varies with time. The results of the second series of
simulations when C(�) D C0 D const, and N(�) progresses according to the pattern
illustrated in Fig. 8.15, are shown in Figs. 8.16–8.19. Again, the designed SM
controllers demonstrate higher degree of robustness than the classical schemes. The
queue length shown in Fig. 8.16, similarly as RTT shown in Fig. 8.17, quickly
converges to steady-state level without overshoots or oscillations after sudden,
significant changes in the TCP load.

In addition to the excellent queue-length stabilization, the SDA controller also
provides smooth, oscillation-free evolution of the packet marking rate and minute
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oscillations in the window size, as depicted in Figs. 8.18 and 8.19, respectively
(the curves obtained from the IDA controller show small-amplitude, decaying
oscillations both in p(�) and W(�)). The RED and PI schemes are more sensitive to the
changes of the number of active connections than the SM controllers. In particular,
the PI controller generates large overshoot both in p(�) and W(�) profile.

Scenario 2.3. In the third simulation scenario, we test the controller performance
when both the link capacity and the network load vary with time. The C(�) evolves
as depicted in Fig. 8.10, and the number of active connections changes according
to the pattern shown in Fig. 8.15. The plots in Fig. 8.20 indicate that the queue
length resulting from the application of SM controllers is positive and never exceeds
the level of 200 packets. Consequently, the buffer is not overflowed, and the entire
available bandwidth is used for transmission of data. The SM controllers quickly
follow the capacity and load variations, maintaining constant values between the
changes of networking conditions. The SDA controller provides slightly smaller
queue length drift from the equilibrium value of 100 packets than the IDA one. The
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RED controller is less robust than the SM ones to C(�) and N(�) fluctuations, whose
combined effect leads to packet losses in the interval [20 s, 23 s], and decreased
bandwidth utilization in the interval [35 s, 41 s]. The PI marking scheme maintains
the queue length in the interval (0, 200 packets), but it exhibits overshoots and fails
to converge to steady state between the changes of networking conditions due to
long settling time. This also affects RTT, which in the case of the PI controller
exhibits variations in nearly the entire simulation interval.

We can see from Figs. 8.22 and 8.23 that packet marking rate established by all
the controllers always remains in the linear range (0, 1). The window size is kept
below the maximum of 20 packets. Similarly as in the first scenario, the slowest
reaction to bandwidth variations is demonstrated by the RED controller, and the PI
one generates the largest overshoot in p(�) and W(�). In the case of the SM and RED
controllers, the window size remains in the interval (2 packets, 4 packets) without
large fluctuations, which helps in reducing the traffic burstiness. An important
observation which follows from Figs. 8.20–8.23 is that once the perturbations vanish
(C(�) and N(�) return to their equilibrium values), the SM controllers immediately
bring the system back to the desired operating point. This is not the case for the
classical schemes, which require much longer time to reach equilibrium.

Scenario 2.4. The fourth scenario deals with assessing the controller performance
in a stochastic setting. Due to the noisy channel and the presence of uncon-
trolled traffic, C(�) may exhibit high-frequency oscillations. In the test, we assume
that the available bandwidth follows the normal distribution with mean equal to
C0 D 333.333 packets/s and standard deviation 100 packets/s. Similarly, a large
number of short-lived flows may cause frequent variations of the TCP load. In
the simulation, we assume that the number of connections follows the normal
distribution with mean equal to N D 50, and standard deviation 10. The actual C(�)
and N(�) applied in the test are illustrated in Fig. 8.24. We can see from the plots
that the available bandwidth varies in the range 80–550 packets/s, and the number
of active TCP sessions in the range 25–70.
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and d PI controller

The results of the simulation are depicted in Figs. 8.25–8.28: the buffer occu-
pancy in Fig. 8.25, the flow RTT in Fig. 8.26, the packet marking rate in Fig. 8.27,
and the window size in Fig. 8.28. The presented plots demonstrate that the closed-
loop stability is maintained despite highly variable perturbations affecting the flow
control process. The packet queue length evolves similarly for all the controllers
and is positive during the whole simulation interval which implies full bandwidth
usage. Moreover, the buffer is not overflowed, which implies that no packet needs
to be rejected by the router, and the maximum throughput is ensured.

The low-pass nature of RED originating from the queue averaging filter (see the
discussion in [6] and [7]) is clearly visible in Fig. 8.27, which depicts the marking
rate established by the controllers. The p(�) signal generated by other controllers
is affected by perturbations, with the smallest degree of oscillations shown by the
proportional SDA one. Despite the apparent differences in the controller command,
the output variable (the packet queue length) evolves similarly in the case of all four
controllers – it fluctuates with nonincreasing amplitude around the set-point value
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of 100 packets. This shows that the external disturbances have major influence on
the instantaneous queue length and the average is due to the properly established
control signal with mean equal to the equilibrium value p0 D 0.18.

8.5 Chapter Summary

In this chapter, we addressed the problem of data flow control in TCP networks in
which the routers support AQM. Using the popular model describing the TCP con-
gestion avoidance behavior [17], a few control algorithms were developed. Applying
different linearization assumptions, two models approximating the nonlinear TCP
dynamics around equilibrium point were obtained. The presented approach differs
from the typical ones discussed in the literature in three primary aspects. First of
all, explicit consideration is given to the effects related to finite sampling rate, and
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the controller derivation is conducted directly in discrete-time domain. Secondly,
various kinds of network latency are included in the model representation with novel
state-space representation. Finally, in contrast to the majority of previous solutions,
the effects related to link capacity variations, which occur, for instance, due to the
presence of uncontrolled traffic, or bit rate changes in the wireless environments, are
directly considered in the system modeling and controller derivation. As a result, the
designed controllers are more robust to the bandwidth variations than the classical
AQM schemes proposed before.

In the first model, the information about the state delay was neglected, leaving
only the input delay for explicit consideration. The obtained small-signal system
representation was discretized and written in a state-space form. Extending the
concepts discussed in Chaps. 5 and 6, the state variables were chosen so that
the information about the input signal history could be preserved. The state-space
system description was employed in the formal controller derivation. We applied
the approach based on discrete-time SM control with the sliding plane selected for
a dead-beat scheme. In this way, an input-delay-aware discrete-time SM controller
was obtained. Next, a more sophisticated linearization procedure was considered
so that, in addition to the input delay, also the information about the state delay
could be explicitly incorporated in the control law derivation. The linear model was
discretized and represented in the extended state space. The state variables were
chosen in a special way so that the history of input and state variables could be
preserved. The discrete-time state-space model was applied in the formal procedure
of SM controller design. Again, the sliding plane was selected for a dead-beat
scheme. The resulting control laws were provided in a closed-form with a constant
gain vector precomputable ahead of the actual control process.

In order to improve the controller robustness, the structure of dead-beat con-
trollers was modified by introducing a gain element used to perform scaling of
the input signal. The improved, proportional controllers ensure high robustness to
modeling uncertainty and external perturbations (such as capacity, or load varia-
tions), while maintaining much of the excellent dynamics of dead-beat schemes.
The robustness was shown to be preserved even for a significant drift of the capacity,
number of connections, and RTT from their equilibrium values (which were used for
the controller derivation). Since all the controller parameters can be calculated off-
line, good operational efficiency in the network node implementation is guaranteed.

As demonstrated in extensive numerical studies, the designed SM controllers
outperform the classical solutions, RED and PI packet marking schemes, both in the
queue length set-point tracking, and in the resistance to disturbances and modeling
inaccuracies. A possible drawback of the developed delay-aware controllers is that
for persistent disturbance other than the nominal one, the queue length differs
from the equilibrium value. However, this drawback, which originates from the
predictor-like controller structure, can be leveraged by introducing extra feed-
forward disturbance compensation following the lines discussed in Sect. 7.4. An
important point to notice in the operation of the presented controllers is that when
the perturbations vanish (C(�) and N(�) return to their equilibrium values), the system
state quickly reaches equilibrium, with the convergence rate several times faster than
in the case of the classical AQM control techniques.

http://dx.doi.org/10.1007/978-1-4471-4147-1_5
http://dx.doi.org/10.1007/978-1-4471-4147-1_6
http://dx.doi.org/10.1007/978-1-4471-4147-1_7
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The results presented in this chapter may be further extended by incorporating a
formal control-theoretic analysis of the system dynamics. For example, a valuable
extension would be to establish the global stability bounds for different ranges of
network parameter variation (as it was done in Chaps. 4, 5, 6, and 7). A closer look
at the parameters of dead-beat and LQ optimal controllers presented in Chaps. 5
and 6 suggests that the proportional controller proposed in this chapter might result
in the LQ optimal one for the linearized TCP dynamics. Therefore, another research
direction would be to conduct the optimization procedure and verify whether the
proportional controllers truly optimize the small-signal system dynamics in the LQ
sense.
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Chapter 9
Summary and Conclusions

Watching how ubiquitous communication networks have become in recent years,
there is no question about their importance for social life and modern economy.
They provide means of information sharing and data exchange basically anywhere,
anytime. However, the numerous advantages of being able to quickly communicate
thoughts and ideas over large distances, and gain access to remote resources, can
only be achieved if the communication system is administered in a proper way.
A major impact on the condition of a network is attributed to the mechanisms
of control. They should allow efficient resource sharing according to the set of
constraints specified for a given network (such as the channel capacity). More
importantly, however, the implemented control methods should provide appropriate
reaction to the dynamically changing networking conditions. In this way, one may
avoid bottlenecks, loss of data, and guarantee adequate service level.

This monograph was devoted to the problem of efficient data flow control in
communication networks. We looked at the network as a dynamical system and
addressed the traffic regulation problem from the control-theoretic perspective.
From this point of view, the transport of data in the network can be perceived as
a dynamical process with delay, subject to disturbances. Therefore, the primary
attention in this work was directed to the effects of nonnegligible latency on the
control system performance. We considered the traffic regulation problem in the
context of a single-connection aggregated flow and in the case of multiple flows
characterized by different delays controlled simultaneously. Depending on the level
of details one would like to incorporate in the system description, the network can be
modeled as continuous-time, discrete-time, or a sampled-data system. We covered
all three cases: fluid-flow traffic approximation in continuous-time domain, discrete-
time process with constant sampling period, and sampled-data system with variable
discretization period. In the presented framework, one should notice in particular the
novel state-space representation of network dynamics. In the adopted state space,
the effects related to delay are projected into a set of state variables recording
the delayed signal history. In addition to efficient modeling of the fundamental
networking phenomena, such as storing packets in the node buffers, we showed
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how, in a consistent way, one can introduce more advanced characteristics of the
data flow process. We indicated how one can analyze and express mathematically
the effects related to bandwidth fluctuations, delay variations, packet reordering,
source nonidealities, rate saturation, multiple bottlenecks, etc.

For each model, and each traffic scenario, a control algorithm was designed using
formal, control-theoretic approach. Since high level of robustness is of paramount
importance in the considered class of uncertain, perturbed systems, we applied the
robust control method – sliding-mode control. In order to address the issues related
to delay, a particular attention was given to the crucial step in the SM controller
design, which is selection of the sliding plane. We proposed several useful choices
of switching functions and sliding hyperplanes, such as the ones selected for dead-
beat or LQ optimal control. In each case, the hyperplane (or the switching function)
explicitly incorporates delay compensating features. As a result, the obtained
controllers retain stability for arbitrary delays. A simple form of the designed
control algorithms allows for detailed analytical study of the communication system
properties. In each scenario, a set of conditions was formulated and strictly proved,
showing how to avoid the congestion and, at the same time, ensure full bandwidth
utilization and maximum throughput. These favorable properties are achieved with
the proposed controllers implemented despite no prior knowledge on the nature of
the bandwidth, or delay variations, which are treated as external disturbances in the
system.

The presented methodology of modeling discrete time-delay systems, and the
controller design using the principles of SMC and dynamical optimization [1–3, 6],
can be effectively applied to other systems with nonnegligible latency. For example,
the described methodology can be used to create regulation schemes for such
important classes of problems as optimization of logistic processes, or remote plant
control in networked control systems. Recently, the methodology described in this
monograph has been employed in the modeling and control of the goods flow
process in supply chain [4, 5, 7–9]. We considered both the traditional inventory
systems [4, 5, 7], which can be modeled as integrators with delay, and the processes
with deteriorating goods [8, 9], which are typically represented as first-order
systems with nonnegligible latency.
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Appendix

In the Appendix, we discuss the tools applied for model validation and performing
tests of the designed control algorithms.

In the control society, probably the most widespread tool used to verify control
system designs is Matlab-Simulink. It allows for scalable modeling of interactions
even in complex dynamical systems through the reuse of basic blocks and con-
nectors (e.g., delays, integrators, and summers) and built-in library functions (e.g.,
routines for obtaining numerical solutions to Riccati equations). The simulation
engine of Matlab-Simulink provides sufficient mathematical fidelity to handle high
signal dynamics and to check the system stability and exactness of the boundary
conditions. These characteristics make Simulink a baseline testing facility in the
design of control systems prior to assembling the actual devices and constructing
physical prototypes. However, certain phenomena associated with the application
considered in this work – traffic flow regulation in communication networks – such
as finite information processing time, simultaneous reception of multiple control
units, packet reordering, etc., are difficult to emulate in Simulink. Therefore, in
addition to the mathematical tools such as Matlab-Simulink, the telecommunication
society would typically verify the performance of new protocols in discrete event
simulators, such as ns2 [1] or OPNET Modeler [2]. The discrete event simulators
concentrate on the aspects related to the actual packet handling in a data transfer
system. In effect, they create a virtual environment that attempts to mimic the
behavior of the real network. Unfortunately, the added complexity associated
with the specifics of a particular transmission technology (and the applied testing
framework) may lead to unintended side effects and bigger computational errors.
As a result, the analysis of the algorithm principal properties and validation of the
boundary cases may become obscure and inconclusive.

In order to enable detailed, accurate study of signal evolution in the analyzed
transmission system, the numerical results presented in this monograph were mostly
obtained from appropriate models constructed in Matlab-Simulink. However,
the simulation under more strenuous networking conditions when issues related
to finite processing time and computational imperfections introduce stochastic
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per-turbations, such as multiple flow control scenario reported in Sect. 6.1.2, Test
4, was performed in ns2. For this purpose, the ns2 framework has been extended to
incorporate the proposed control algorithms and the principles of data and signaling
traffic interchange. The ns2 modules developed in CCC, detailed installation
instructions, and sample Tcl (Tool Command Language) scripts for ns2 are available
online at the following address:

http://www.zsk.p.lodz.pl/~ignaciuk/research/SMCC/book/SMC_com_netw.htm

In addition, the web page gives access to sample Simulink models to experiment
with. The models are prepared with basic graphical user interface for easy parameter
adjustment. On the indicated web page, one may also find extra figures and
simulation results illustrating the algorithm performance when tested in Matlab-
Simulink in comparison with the data obtained from ns2.
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Milosavljević, Č., 134, 137, 229, 230
Misra, V., 333
Model uncertainty, 51, 53–55
Multi-input system, 51
Multirate sampling, 56

N
Nash, J., 28
Network model, 6, 24, 26, 32, 35, 36, 62–64,

73–76, 89–95, 127, 139, 151, 156–161,
189, 194, 198–203, 244, 257–262,
273–275, 283, 287, 289–293, 305, 311,
317, 318, 325, 328, 336–341

Nonpersistent source, 31, 290, 317–327

O
Order reduction, 53

P
Pan, Z., 28
PD controller, 25
Performance index, 6, 29, 56, 96, 97, 101, 113,

114, 152–154, 193, 197, 221, 243, 272,
287

Persistent source, 62, 198
Phase plane, 51
Phase trajectory, 48
PI controller, 34, 181, 357–368
PID controller, 31, 34, 274



Index 381

Pietrabissa, A., 30
Pitsillides, A., 32, 333
Proportional controller, 30, 179, 245, 247, 316,

317, 346, 355, 357–359, 369, 370

Q
Quality of service (QoS), 1, 2, 5, 7, 13, 15, 29,

32, 153, 218, 220, 242, 290, 312, 315,
317, 328

Quet, P.F., 30, 35

R
Ramamurthy, B., 25
Random early detection (RED), 35, 356–369
Rate allocation, 21, 22, 88, 141, 161, 162, 165,

203, 213, 216, 232, 239, 245–247, 253,
258, 259, 262, 265, 266, 287, 295

Reaching law, 87, 131–142, 152, 154, 193,
198, 222, 229–233, 239, 241, 243, 287

Reaching law approach, 52, 116, 131, 137,
143, 193–194, 222, 232, 233, 240

Reaching phase, 51, 54, 113, 131, 132, 137,
139, 141, 143, 229, 233

RED. See Random early detection (RED)
Ren, T., 31
Representative point, 49–51, 54–56, 65, 84,

113, 115–119, 125, 129, 131–134, 136,
137, 141, 142, 222–224, 227, 229, 230,
240, 242

Robustness, 2, 12, 13, 16, 20, 29, 35, 36, 45,
51, 54, 56, 61, 156, 161, 165, 174, 175,
190, 192, 194, 257, 265, 266, 271, 275,
284, 290, 294, 305–312, 328, 345, 351,
355, 358–360, 362, 369, 374

Rohrs, ChE., 26

S
Sampling period, 56, 289, 305, 349, 356, 373
Sampling rate, 6, 37, 87, 113, 289, 303, 305,

310, 328, 368
Saturation, 10, 30, 31, 34, 88, 116, 152,

161–175, 233, 239, 241, 245, 247, 257,
262–275, 294, 316, 317, 328, 359, 374

Saturation element, 88, 116, 142–156, 165,
182, 194, 198, 222, 233–239, 241, 243,
244, 247, 287, 288, 294

Saturation nonlinearity, 233, 239, 247, 265
Sichitiu, M.L., 30
Sliding hypersurface, 54

Sliding line, 50, 51
Sliding mode control (SMC), 6, 10, 36, 45–57,

116, 143, 341–342
Sliding mode system, 36, 45, 51
Sliding mode technique, 45
Sliding phase, 81, 117, 132, 223, 242
Sliding plane, 6, 80, 87, 88, 95–117, 122, 123,

129, 131–133, 135–137, 140, 141, 152,
154, 165, 193, 194, 197, 204–224, 226,
227, 229, 230, 232, 239, 240, 242, 287,
288, 342, 345, 351, 355–357, 369, 374

Sliding plane parameters, 96, 101, 135, 287,
342

Sliding surface, 36, 56, 70, 116
Sliding variable, 70, 112, 113, 115, 116, 129,

131, 139–142, 213, 215, 220, 221, 243
SMC See Sliding mode control (SMC)
Smith predictor (SP), 6, 34, 35, 69, 80, 85, 175,

176, 178–181
Smith, O.J.M., 34, 175
SP. See Smith predictor (SP)
Srikant, R., 28
Stability

asymptotic, 27, 31, 36, 37, 197
Lyapunov, 46, 52, 71, 81

State variables, 46, 49, 51, 56, 94, 95, 105, 160,
202, 208, 226, 336, 340, 350, 369, 373

State vector, 46, 55, 56, 88, 94, 95, 101, 160,
261, 339–341, 352

Switching function, 6, 61, 65, 70, 71, 74, 81,
82, 85, 132, 374

Switching hypersurface, 51
Switching variable, 53–55, 70, 73, 74, 76, 80,

81, 84

T
Talluri, J., 32
Tan, L., 33
Tarraf, A.A., 32
TCP. See Transmission Control Protocol

(TCP)
Time delay, 29, 31, 34, 36, 53, 337, 347, 374
Time-varying delay, 10, 30, 31, 88, 156, 158,

160, 162, 165, 171, 175–177, 188, 189,
258, 261, 271, 272, 287, 310

Time-varying sliding plane, 88, 116, 137, 193,
197, 222, 226, 232, 239, 240

Transmission Control Protocol (TCP), 2, 7, 17,
26, 34–36, 85, 89, 156, 257, 331–370

Twisting controller, 48



382 Index

U
Ünal, H.U., 30
Uncertainty

matched, 36, 51, 53
mismatched, 36
model, 45, 51, 53–55, 369

V
Variable delay, 155–193, 257–286
Variable sampling rate, 289

Variable structure control (VSC), 48, 49
Variable structure systems (VSS), 6, 45–49, 56

X
Xia, Y., 35

Z
Zhang, N., 36
Zhao, Y., 27
Zheng, X., 32


	Congestion Control in Data Transmission Networks
	Preface
	Acknowledgments
	Contents
	Abbreviations
	List of Symbols
	Chapter 1: Introduction
	Chapter 2: Congestion Control in Data Transmission Networks: Historical Perspective
	Chapter 3: Fundamentals of Sliding-Mode Controller Design
	Chapter 4: Flow Control in Continuous-Time Systems
	Chapter 5: Flow Control in a Single-Source Discrete-Time System
	Chapter 6: Flow Control in a Multisource Discrete-Time System
	Chapter 7: Flow Control in Sampled Data Systems
	Chapter 8: Discrete Sliding-Mode Congestion Control in TCP Networks
	Chapter 9: Summary and Conclusions
	Appendix
	Index



