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Preface

Mobile virtual network operator (MVNO) is a secondary operator that obtains
spectrum resources from the spectrum owner and provides its own wireless ser-
vices to a niche market. As of today, there are more than 600 MVNOs worldwide
and some of them are worth multi-billion US dollars. Many of them, however, face
a severe spectrum supply problem: under the current static spectrum licensing
policy, an MVNO cannot flexibly obtain spectrum resources to match the dynamic
changes of market demands. With the help of the cognitive radio technology, a
cognitive MVNO (or C-MVNO) is no longer stuck in a long-term leasing contract
with the spectrum owner, and can acquire spectrum dynamically in short-term
through both dynamic spectrum leasing and spectrum sensing.

This book provides an overview of C-MVNOs’ decisions under investment
flexibility, supply uncertainty, and market competition in cognitive radio net-
works. This is a new research area at the nexus of cognitive radio engineering and
microeconomics. Our focus is an operator’s joint spectrum investment and service
pricing decisions. Compared to dynamic spectrum leasing, spectrum sensing is
cheaper but would introduce supply uncertainty due to primary licensed users’
stochastic traffic. The readers will learn how to tradeoff the two flexible investment
choices under supply uncertainty. Furthermore, if there is more than one operator,
we present analysis of the competition among operators in obtaining spectrum and
pricing services to attract users.

The outline of this book is as follows. Chapter 1 explains why spectrum bands
are scarce but under-utilized, and how the cognitive radio technology and its
application (dynamic spectrum access) can resolve this paradox. Chapter 2 studies
the optimal investment and pricing decisions of a single C-MVNO under spectrum
supply uncertainty. Chapter 3 studies competitive C-MVNOs’ optimal investment
and pricing decisions, taking into account their heterogeneity in leasing costs and
users’ heterogeneity in wireless characteristics. Chapter 4 summarizes the main
results in this book.

We would like to thank the series editor, Prof. Xuemin (Sherman) Shen from
University of Waterloo, for encouraging us to prepare this monograph. We also
want to thank Prof. Martin B. H. Weiss from University of Pittsburgh for his
helpful comments from a very early stage of this line of work. Last but not least,
we want to thank members of the Network Communications and Economics Lab
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(NCEL) at the Chinese University of Hong Kong, for their constructive feedback
during the past several years.

The work described in this book was supported by grants from the Research
Grants Council of the Hong Kong Special Administrative Region, China (Project
No. CUHK 412710, CUHK 412511, and CityU 144209), and the research grants
from City University of Hong Kong (Project No. 7002517 and 7008116). It is also
partially supported by the SUTD-MIT International Design Center (IDC) Grant at
Singapore University of Technology and Design (Project No. IDSF1200106OH).
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author’s Ph.D. dissertation [5].

Singapore, 2013 Lingjie Duan
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Chapter 1
Overview

Abstract In this chapter, we will first explain the issues of the current static spectrum
licensing approach of spectrum management. This is the source of the spectrum usage
paradox: spectrum resource is scarce but much of it is severely under-utilized. This
motivates the study of cognitive radio technology and dynamic spectrum access.
Dynamic spectrum access aims to improve spectrum utilization through innovations
in technology, economics, and policies. We will introduce different types of dynamic
spectrum access, in particular, the dynamic exclusive use model and the hierarchical
access model. Finally, we will provide a brief overview of the related work.

1.1 Issues of Static Spectrum Licensing

Radio frequency spectrum is the critical resource to support wireless transmissions,
and only limited amount of spectrum can be efficiently used in wireless networks
(e.g., 300 MHz–3 GHz for cellular networks). In today’s wireless networks, frequency
spectrum is regulated by governmental agencies (e.g., FCC in U.S. and Ofcom in
U.K.) under the “command-and-control” spectrum management policy [1]. In such
a static spectrum licensing approach, spectrum is allocated to license holders (e.g.,
primary licensed network operators) over large geographical areas for years or even
decades. A primary network operator will use the licensed spectrum to exclusively
serve his own primary licensed users. As a result, secondary unlicensed users cannot
access the licensed bands due to lack of the proper licenses. Because of this, many
people believe that we are running out of usable spectrum. This belief is further
strengthened by operators’ expensive bids for extra usable spectrum bands [15].1

For example, in an European 3G spectrum auction for a merely 20 MHz spectrum
band, the bid reached multi-billion dollars; in U.S. there were nearly 20 billion dollars
netted for 700 MHz auction in 2008.

1 To become a license holder of certain spectrum band, one needs to wait till the next round of
spectrum auction organized by the governmental agency.

L. Duan et al., Cognitive Virtual Network Operator Games, 1
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2 1 Overview

Consider the increasing need of more spectrum to match users’ ever-increasing
data demands, one might wonder whether we are really close to the limit of spectrum
resource. However, field spectrum occupancy measurements suggested otherwise
[1, 2]. According to [1, 2], temporal and geographical variations in the utilization of
the licensed spectrum rang from 15 to 85 %, and a large portion of licensed spectrum
is severely under-utilized. A more recent measurement [3] shows that the overall
average spectrum utilization does not exceed 20 % in densely populated cities such
as Chicago and New York City. This paradox shows that the scarcity of spectrum
resource is a result of the existing static spectrum licensing. To resolve this paradox,
we need a more market-oriented and dynamic spectrum allocation approach.

1.2 Cognitive Radios and Dynamic Spectrum Access

1.2.1 Spectrum Opportunity and Cognitive Radios

Let us first understand the meaning of spectrum opportunity, which helps us to
understand the key idea of cognitive radio later on. As a primary licensed user has the
priority access right to the licensed spectrum, a spectrum band becomes a potential
opportunity for secondary users if it is not used by primary users (if such access
is allowed by the primary users) [15, 16]. For example, consider a secondary user
(represented by a secondary transmitter-receiver pair) coexisting with geographically
distributed primary users (primary transmitter-receiver pairs). The secondary user
can safely utilize a channel in the spectrum if his transmitter will not introduce
intolerant interference to primary receivers and his receiver does not suffer intolerant
interferences from primary transmitters. This spectrum opportunity is thus a local
definition, depending not only on the transmitter-receiver locations of the secondary
and primary users, but also on the primary users’ traffic activities.

Cognitive radio is the key technology for a secondary user to take advantage of
the spectrum opportunities in a dynamic approach. Cognitive radio is context-aware
intelligent radio that can change its transmission parameters according to the com-
munication environment in which it operates [17]. Though secondary users have no
spectrum licenses, they can share the licensed spectrum bands via additional func-
tionalities enabled by cognitive radios. To catch a spectrum opportunity, cognitive
radio enables a secondary party (i.e., secondary user or secondary operator repre-
senting the secondary users) to sense the varying radio environment and identify the
unused portion of spectrum at a specific time and location. It should be noted that
such a cognitive capacity is not limited to monitoring primary signals in spectrum
bands, but also involves detecting temporal and spatial variations in radio environ-
ment and avoiding interference to primary receivers [4]. Specifically, a secondary
party needs to carry out the following three tasks to dynamically detect and utilize
the unused spectrum (i.e., spectrum holes or white space) [4, 5]:
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Power
Frequency

Spectrum in use

Spectrum holes

Spectrum 
sensing

Time

Fig. 1.1 Spectrum sensing for temporarily unused portion of spectrum (revised based on [4])

• Spectrum sensing: the secondary party monitors the radio environment over three
domains at a particular location: primary signal power, frequency spectrum, and
time horizon as in Fig. 1.1.2 In this process, primary users are oblivious to the
presence of the secondary party, and the secondary party needs to estimate the
radio environment to avoid violating the usage rights of primary users [5, 24]

• Spectrum analysis: the secondary party then estimates the characteristics of the
sensed spectrum holes (e.g., channel-state information and channel capacity for
secondary use).

• Spectrum decision: the secondary party finally chooses the appropriate spectrum
band and start transmission by specifying the transmission mode, transmission
power, and data rate on the spectrum holes.

1.2.2 Three Typical Models in Dynamic Spectrum Access

Cognitive radio technology may fundamentally change many aspects of wireless
communication networks, and is the key to enable dynamic spectrum access. Dif-
ferent from the traditional static spectrum licensing approach, dynamic spectrum
access aims to achieve more efficient spectrum utilization by allowing the secondary
users to opportunistically share the resource with the primary users. The success of
dynamic spectrum access requires innovations in wireless engineering, economics,
and policy. As shown in Fig. 1.2, we can roughly categorize the dynamic spectrum
access into three models.

2 There are multiple types of spectrum sensing techniques, e.g., the traditional energy detection
which can be easily deployed, the cooperative detection to resolve hidden terminal problem, and
the interference-based detection to better manage interference at the primary receivers [4].



4 1 Overview

Dynamic Spectrum Access

Dynamic Exclusive Use Model

(Dynamic Spectrum Leasing Model)

Hierarchical Access ModelCommons Model

(Open Sharing Model)

Spectrum underlay Spectrum overlay

Fig. 1.2 Three categories of dynamic spectrum access as in [15]

1.2.2.1 Commons Model

The commons model is also referred to as the Open Sharing model. This model
does not differentiate primary users and secondary users, and allows open sharing of
spectrum among all users. One successful example is the industrial, scientific, and
medical (ISM) spectrum band, which supports the very successful WiFi technology.
However, without proper regulations, we will observe the “tragedy of commons” in
such a model. This is because a selfish user will simply transmit at its maximum
power to maximize his data rate in such a model. When everyone does this, the
interferences become severe and no users can efficiently communicate. To respond
to this challenge, researchers have proposed both centralized [7, 8] and distributed
sharing schemes [12–14] to efficiently manage the common spectrum resource.

1.2.2.2 Dynamic Exclusive Use Model

Recall that in the current static spectrum licensing approach, spectrum bands are
assigned to spectrum holders for exclusive use. On the contrary, dynamic exclusive
use model (or dynamic spectrum leasing) introduces flexibility in improving the spec-
trum utilization. This approach allows the license holder to trade his spectrum band
to another (usually unlicensed) party [20, 22, 24, 34, 90, 93]. For example, a primary
network operator allows secondary users to operate in his temporarily unused part of
spectrum in exchange of economic return (e.g., [22, 24]) or relay helps for inefficient
primary transmissions (e.g,. [34, 110, 111]). The dynamic spectrum leasing can be
short-term or even real-time (e.g., [35–37]), and can be at a similar time scale of
the spectrum sensing operation. Note that the spectrum trading is not mandatory,
and will only happen when the primary and secondary parties reach a win-win situ-
ation. As the exclusive holder of licensed spectrum, the primary party (operator or
user) has more market power than the secondary party, and can often decide which
collaboration scheme to propose. The main challenge for a primary party to properly
incentivize such collaboration is that he may not know about secondary users’ private
information (e.g., valuations of exchanged bandwidth, local channel conditions, and
local energy cost) and the collaboration scheme may need to be determined under
asymmetric information [110, 111].
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1.2.2.3 Hierarchical Access Model

The hierarchical access model allows a secondary party to opportunistically access
the spectrum without affecting the normal operation of the primary users. There
are two main approaches about primary and secondary users’ hierarchical access
structure: spectrum underlay [18, 19] and spectrum overlay [17, 42, 91]. The spectrum
underlay approach allow concurrent transmission of the secondary and primary users
in the same channel, but impose strict requirements on secondary users’ transmission
power so that they will not introduce intolerant interference to the primary users. One
good example is the ultra-wide-band (UWB) system, where secondary users spread
their transmission signals over a wide band and obtain high data rate in a short-range
with a very low transmission power density. As this approach assumes a worst case
where primary users always transmit, it does not need sophisticated detection scheme
for spectrum holes.

Different from spectrum underlay, the spectrum overlay approach does not impose
strict requirements on secondary users’ transmission power but requires the avoid-
ance of any possible collision with primary users’ activities. It allows secondary
users to exploit and detect temporal and spatial spectrum holes and opportunistically
access in a non-intrusive way.

1.3 Related Research

In the following two chapters, we will focus on both the dynamic spectrum leasing
model and the spectrum overlay approach of the hierarchical access model. We con-
sider a secondary network operator that is equipped with cognitive radios (becoming
cognitive network operator). It can flexibly obtain short-term spectrum resource by
dynamically leasing from the spectrum owner and/or sensing the spectrum holes for
usage. Both types of investment can be done at a short time scale, and the operator
can jointly optimize his investment and pricing schemes to match market changes
over time.

There is a growing interest in studying the investment and pricing decisions
of cognitive network operators recently. Several auction mechanisms have been
proposed to study the investment problems of cognitive network operators (e.g.,
[41, 43, 44]). Other recent results studied the pricing decisions of the cognitive net-
work operators who interact with a group of secondary users (e.g., [45–53]). [41]
considered users’ queueing delays and obtained most results through simulations.
[46] presented a recent survey on the spectrum sharing games of network operators
and cognitive radio networks. [47] studied the competition among multiple service
providers without modeling users’ wireless details. [48] considered a pricing compe-
tition game of two operators and adopted a simplified wireless model for the users.
[49] derived users’ demand functions based on the acceptance probability model
for the users. [50] explored demand functions based on both quality-sensitive and
price-sensitive buyer population models. [51] formulated the interaction between
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one primary user (monopolist) and multiple secondary users as a Stackelberg game.
The primary user uses some secondary users as relays and leases its bandwidth to
those relays to collect revenue. [52] studied a multiple-level spectrum market among
primary, secondary, and tertiary services where global information is not available.
[53] considered the short-term spectrum trading between multiple primary users and
multiple secondary users. The spectrum buying behaviors of secondary users are
modeled as an evolutionary game, while selling behaviors of primary users are mod-
eled as a noncooperative game. [49–53] obtained most interesting results through
simulations. There are only few papers (e.g., [37, 52–54]) that jointly considered
the spectrum investment and service pricing problem as Chaps. 2 and 3 (which are
also reported in our papers [71, 80, 90, 93]). Moreover, none of these work consid-
ered spectrum sensing as a choice of investment, where the useful spectrum amount
obtained through spectrum sensing is random due to primary licensed users’ sto-
chastic traffic. A key contribution of this book (in Chap. 2 and our papers [80, 93])
is to study impact of supply uncertainty due to spectrum sensing.

Our model of spectrum uncertainty in Chap. 2 is related to the random-yield model
in supply chain management (e.g., [55–57]). In these work, a supplier (similar to
the spectrum owner) provides a random output dependent of the order size of the
retailer (similar to the cognitive operator). The unique wireless aspects of our system,
however, make the analysis and insights very different.

http://dx.doi.org/10.1007/978-1-4614-8890-3_2
http://dx.doi.org/10.1007/978-1-4614-8890-3_3
http://dx.doi.org/10.1007/978-1-4614-8890-3_2
http://dx.doi.org/10.1007/978-1-4614-8890-3_2


Chapter 2
Secondary Spectrum Market Under Supply
Uncertainty

Abstract This chapter studies the optimal investment and pricing decisions of a
cognitive mobile virtual network operator (C-MVNO) under spectrum supply uncer-
tainty. Compared with a traditional MVNO who is often stuck in long-term spectrum
leasing contract, a C-MVNO can acquire spectrum dynamically in short-term by
both sensing the empty “spectrum holes” of licensed bands and dynamically leasing
from the spectrum owner. Compared to dynamic spectrum leasing, spectrum sens-
ing is typically cheaper, but the obtained useful spectrum amount is random due to
primary licensed users’ stochastic traffic. The C-MVNO needs to determine the opti-
mal amounts of spectrum sensing and leasing by evaluating the trade-off between
cost and uncertainty. The C-MVNO also needs to determine the optimal price to
sell the spectrum to the secondary unlicensed users, taking into account wireless
heterogeneity of users such as different maximum transmission power levels and
channel gains. We model and analyze the interactions between the C-MVNO and
secondary unlicensed users as a Stackelberg game, and show interesting properties
of the network equilibrium, including threshold structures of the optimal investment
and pricing decisions.

2.1 Background

This chapter considers a secondary operator who obtains spectrum resource via
both spectrum sensing for the spectrum overlay of hierarchical-access approach and
dynamic spectrum leasing approach. In this chapter, we study the operation of a
cognitive radio network that consists of a cognitive mobile virtual network operator
(C-MVNO) and a group of secondary unlicensed users. The word “virtual” refers
to the fact that the operator does not own the wireless spectrum bands or even the
physical network infrastructure [72]. The C-MVNO serves as the interface between

L. Duan et al., Cognitive Virtual Network Operator Games, 7
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4614-8890-3_2,
© The Author(s) 2013
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the primary operator and the secondary users which is similar to MVNO.1 The
word “cognitive” refers to the fact that the operator can obtain spectrum resource
through both spectrum sensing using the cognitive radio technology [15, 24] and
dynamic spectrum leasing from the primary operator [22, 24, 34]. The operator then
resells the obtained spectrum (bandwidth) to secondary users to maximize its profit.
The proposed model is a hybrid of the hierarchical-access and dynamic exclusive
use models. It is applicable in various network scenarios, such as achieving effi-
cient utilization of the TV spectrum in IEEE 802.22 standard [40]. This standard
suggests that the secondary system should operate on a point-to-multipoint basis,
i.e., the communications will happen between secondary base stations and secondary
customer-premises equipment. The base stations can be operated by one or several
C-MVNOs introduced in this chapter.

Compared with a traditional MVNO who only leases spectrum through long-term
contracts, a C-MVNO can dynamically adjust its sensing and leasing decisions to
match the changes of users’ demand at a short time scale. Moreover, sensing often
offers a cheaper way to obtain spectrum compared with leasing. The cost of sensing
mainly includes the sensing time and energy, and does not include explicit cost paid
to the primary operator. With a mature spectrum sensing technology, sensing cost
should be reasonable low (otherwise there is no point of using cognitive radio).
Spectrum leasing, however, involves direct negotiation with the primary operator.
When the primary operator determines the cost of leasing, it needs to calculate its
opportunity cost, i.e., how much revenue the spectrum can provide if the primary
operator provides services directly over it. It is reasonable to believe that the leasing
cost is more expensive than the sensing cost in most cases.2 Although sensing is
cheaper, the amount of spectrum obtained through sensing is often uncertain due to
the stochastic nature of primary users’ traffic. It is thus critical for a C-MVNO to
find the right balance between cost and uncertainty.

Our key results and contributions are summarized as follows. For simplicity,
we refer to the C-MVNO as “operator”, secondary users as “users”, and “dynamic
leasing” as “leasing”.

• A Stackelberg game model: We model and analyze the interactions between the
operator and the users in the spectrum market as a Stackelberg game. As the leader,
the operator makes the sensing, leasing, and pricing decisions sequentially. As the
followers, users then purchase bandwidth from the operator to maximize their
payoffs. By using backward induction, we prove the existence and uniqueness of
the equilibrium, and show how various system parameters (i.e., sensing and leasing

1 References [38, 39] show that it can be more efficient for the primary operator to hire an MVNO
as intermediary to retail its spectrum resource, as MVNO can have a better understanding of local
user population and users’ demand. MVNOs can partially share the network investment cost and
introduce new services as supplement to existing services provided by the primary operators [9].
Some regulators also wants primary operators to open their networks or resources to MVNOs such
that more competition is introduced into the market [10].
2 The analysis of this chapter also covers the case where sensing is more expensive than leasing,
which is a trivial case to study.
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costs, users’ transmission power and channel conditions) affect the equilibrium
behavior. Despite the complexity of the model, we are able to fully characterize
the unique equilibrium behaviors of the operator and users.

• Threshold structures of the optimal investment and pricing decisions: At the equi-
librium, the operator will sense the spectrum only if the sensing cost is cheaper
than a threshold. Furthermore, it will lease some spectrum only if the resource
obtained through sensing is below a threshold. Finally, the operator will charge
a constant price to the users if the total bandwidth obtained through sensing and
leasing does not exceed a threshold. The thresholds are easy to compute and the
corresponding decisions rules are easy to implement in practice.

• Fair and predictable QoS: The operator’s optimal pricing decision is indepen-
dent of the users’ wireless characteristics. Each user receives a payoff that is
proportional to its channel gain and transmission power, which leads to the same
signal-to-noise (SNR) for all users.

• Impact of spectrum sensing: We show that the availability of sensing always
increases the operator’s profit in the expected sense. The actual realization of
the profit at a particular time heavily depends on the spectrum sensing results.
Users always get better payoffs when the operator performs spectrum sensing.

Section 2.2 introduces the network model and problem formulation. In Sect. 2.3,
we analyze the game model through backward induction. We discuss various insights
obtained from the equilibrium analysis and present some numerical results in Sect.
2.4. In Sect. 2.5, we show the impact of spectrum sensing on both the operator and
users. In Sect. 2.6, we extend our work to the incomplete information case, where
the operator does not know about the distribution of sensing realization factor and
needs to learn over time. We conclude in Sect. 2.7 and outline some future research
directions.

2.2 Network Model

2.2.1 Background on Spectrum Sensing and Leasing

To illustrate the opportunity and trade-off of spectrum sensing and leasing, we con-
sider a primary operator who divides its licensed spectrum into two types:3

• Service Band: This band is reserved for serving the spectrum owner’s primary
users (PUs). Since the PUs’ traffic is stochastic, there will be some unused spec-
trum which changes dynamically. The operator can sense and utilize the unused
portions. There are no explicit communications between the primary operator and
the operator.

3 Our model of dynamic spectrum leasing in transference band falls into the “exclusive-use” model,
and spectrum sensing with opportunistic access falls into the “shared-use” model in [23]. Our model
is a general combination of these well known models in literature.



10 2 Secondary Spectrum Market Under Supply Uncertainty

• Transference Band: The primary operator temporarily does not use this band.
The operator can lease the bandwidth through explicit communications with the
primary operator. Since the transference band is not used for serving primary users,
there are no “spectrum holes” and there is no need for sensing in this band.

Due to the short-term property of both sensing and leasing, the operator needs to
make both the sensing and leasing decisions in each time slot.

The example in Fig. 2.1 demonstrates the dynamic opportunities for spectrum
sensing, the uncertainty of sensing outcome, and the impact of sensing or leasing
decisions. The primary operator’s entire band is divided into small 34 channels.4

• Time slot 1: PUs use channels 1–4 and 11–15. The operator is unaware of this and
senses channels 3–8. As a result, it obtains four unused channels (5–8). It leases
additional 9 channels (20–28) from the transference band.

• Time slot 2: PUs change their behavior and use channels 1–6. The operator senses
channels 5–14 and obtains eight unused channels (7–14). It leases additional five
channels (23–27) from the transference band.

The choice of time slot length depends on characteristics of the primary traffic. The
optimization of time slot length has been extensively studied in [58, 59, 105], where
secondary users maximize their overall access time under the constraint that primary
users should be sufficiently protected (e.g., the primary users’ outage probability is
below some threshold). In our simulations, we choose the length of time slot such that
the probability that primary users’ activities change within a time slot is very small.
This ensures that the outage probability due to secondary users’ access is tolerable
to primary users.

2.2.2 Notations and Assumptions

We consider a cognitive network with one operator and a set I = {1, . . . , I } of
users. The operator has the cognitive capability and can sense the unused spectrum.

Spectrum Owner’s Service Band Spectrum Owner’s Transference Band

Channels PUs’ Activity Band Operator’s Sensed Band Operator’s Leased Band

1t =

( )f HZ

2t =

1 2 3 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 19 2021 22 23 2425 26 27 28 29 30 31 32 33 34

Fig. 2.1 Operator’s investment in spectrum sensing and leasing

4 Channel 16 is the guard band between the service and transference bands.
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One way to realize this is to let the operator construct a sensor network that is
dedicated to sensing the radio environment in space and time [60]. The operator
will collect the sensing information from the sensor network and provide it to the
unlicensed users, or providing “sensing as service”. If the operator owns several base
stations, then each base station is responsible for collecting sensing information in
a certain geographical area. As mentioned in [60], there has been significant current
research efforts in the context of an European project SENDORA [61], which aims
at developing techniques based on sensor networks for supporting coexistence of
licensed and unlicensed wireless users in a same area. The users are equipped with
software defined radios and can tune to transmit in a wide range of frequencies as
instructed by the operator, but do not necessarily have the cognitive sensing capacity.5

Since the secondary users do not worry about sensing, they can spend most of their
time and energy on actual data transmissions. Such a network structure puts most of
the implementation complexity at the operator side and reduces the user equipment
complexity, and thus might be easier to implement in practice than a “full” cognitive
network.

The key notations of this chapter are listed in Table 2.1 with some explanations
as follows.

• Investment decisions Bs and Bl : the operator’s sensing and leasing bandwidths,
respectively.

Table 2.1 Key notations

Symbol Physical meaning

Bs Sensing bandwidth
Bl Leasing bandwidth
Cs Unit sensing cost
Cl Unit leasing cost
α ∈ [0, 1] Sensing realization factor
I = {1, · · · , I } Set of secondary users
π Unit price
wi User i’s bandwidth allocation
ri User i’s data rate
Pmax

i User i’s maximum transmission power
hi User i’s channel gain
n0 Noise power density
gi = Pmax

i hi /n0 User i’s wireless characteristic
SNRi = gi /wi User i’s SNR
G = ∑

i∈I gi Users’ aggregate wireless characteristics
R Operator’s profit

5 Even with the cognitive sensing capability, a secondary user may suffer from poor detection
performance such a high missed detection probability. The sensor network infrastructure established
by the operator can realize space diversity and reach good detection performance [30].
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• Sensing realization factor α: when the operator senses a total bandwidth of Bs

in a time slot, only a proportion of α ∈ [0, 1] is unused and can be used by the
operator. α is a random variable and depends on the primary users’ activities. With
perfect sensing results, users can use bandwidth up to Bsα without generating
interferences to the primary users. We first consider the case where the operator
already knows the distribution of α.6 We will relax this assumption in Sect. 2.6
and discuss how the operator learn α distribution over time.

• Cost parameters Cs and Cl : the operator’s fixed sensing and leasing costs per unit
bandwidth, respectively. Sensing cost Cs depends on the operator’s sensing tech-
nologies. We focus on the commonly used energy detection for sensing technology
[15]. To track and measure the energy of received signal, the operator needs to
use a bandpass filter to square the output signal and then integrate over a proper
observation interval. Thus the sensing cost only involves time and energy spent on
channel sampling and signal processing [11, 58]. Sensing over different channels
often needs to be done sequentially due to the potentially large number of channels
open to opportunistic spectrum access and the limited power/hardware capacity
of cognitive radios [66]. The larger sensing bandwidth and the more channels,
the longer time and higher energy it requires [67]. For simplicity, we assume that
total sensing cost is linear in the sensing bandwidth Bs . Leasing cost Cl is deter-
mined through the negotiation between the operator and the primary operator and
is assumed to be larger than Cs .7

• Pricing decision π : the operator’s choice of price per unit bandwidth to the users.

2.2.3 A Stackelberg Game

We consider a Stackelberg Game between the operator and the users as shown in
Fig. 2.2. The operator is the Stackelberg leader: it first decides the sensing amount Bs

in Stage I, then decides the leasing amount Bl in Stage II (based on the sensing result
Bsα), and then announces the price π to the users in Stage III (based on the total
supply Bsα + Bl ). Finally, the users choose their bandwidth demands to maximize
their individual payoffs in Stage IV.

We note that “sensing followed by leasing and pricing” is optimal for the operator
to maximize its profit. Assuming sensing (though unreliable) is cheaper than leasing,
the operator should observe sensing result first and then lease only if sensing does
not provide enough resource. If the operator determines sensing, leasing and pricing
simultaneously, then it is likely to “over-lease” expensive resource (compared with
“sensing followed by leasing”) to avoid having too little resource when α is small.

6 This is reasonable if the operator can extensively measure PUs’ activity patterns beforehand
[62, 63], and then approximate the α distribution accurately as in [64, 65].
7 If Cl is smaller than Cs , then the case becomes trivial as the operator will only lease spectrum. In
a more general model, the primary operator can choose the value of Cl to maximize its own profit.
We will study this model in our future work.
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Fig. 2.2 A Stackelberg game

realize available bandwidth Bsα 

Stage I: Operator determines sensing amount Bs

Stage II: Operator decides leasing amount Bl

Stage III: Operator announces price to marketp

Stage IV: End-users determine the demands for bandwidth from the operator

Also, simultaneously determination of price makes it harder to reach the market
equilibrium where supply equals demand.

We can also show that optimizing the leasing and pricing decisions sequentially
(as in our chapter) leads to the same profit if we optimize them simultaneously.

2.3 Backward Induction of the Four-Stage Game

The Stackelberg game falls into the class of dynamic game, and the common solution
concept is the Subgame Perfect Equilibrium (SPE, or simply as equilibrium in this
chapter). Note that the traditional Nash equilibrium investigates players’ simulta-
neous actions in static game, thus is not applicable to our dynamic model [68]. A
general technique for determining the SPE is the backward induction [69]. We will
start with Stage IV and analyze the users’ behaviors given the operator’s investment
and pricing decisions. Then we will look at Stage III and analyze how the operator
makes the pricing decision given investment decisions and the possible reactions of
the users in Stage IV. Finally we proceed to derive the operator’s optimal leasing
decision in Stage II and then the optimal sensing decision in Stage I. The backward
induction captures the sequential dependence of the decisions in four stages.

2.3.1 Spectrum Allocation in Stage IV

In Stage IV, end-users determine their bandwidth demands given the unit price π

announced by the operator in stage III. Each user can represent a transmitter–receiver
node pair in an ad hoc network, or a node that transmits to the operator’s base
station in an uplink scenario. We assume that users access the spectrum provided by
the operator through OFDM (Orthogonal frequency-division multiplexing) to avoid
mutual interferences.8 User i’s achievable rate (in nats) is:9

8 We focus on a single OFDMA cell case, where users transmit over orthogonal bands. The inter-
ference management across multiple cells is beyond the scope of this chapter.
9 We assume that the operator only provides bandwidth without restricting the application
types. This assumption has been commonly used in dynamic spectrum sharing literature, e.g.,
[34, 37, 47, 53].
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ri (wi ) = wi ln

(

1 + Pmax
i hi

n0wi

)

, (2.1)

where wi is the allocated bandwidth from the operator, Pmax
i is user i’s maximum

transmission power, n0 is the noise power per unit bandwidth, hi is user i’s channel
gain between user i’s transmitter to the operator’s secondary base station in an uplink
scenario. To obtain rate in (2.1), user i spreads its maximum transmission power
Pmax

k across the entire allocated bandwidth wi . To simplify the notation, we let
gi = Pmax

i hi/n0, thus gi/wi is the user i’s signal-to-noise ratio (SNR). Here we
focus on best-effort users who are interested in maximizing their data rates. Each
user only knows its local information (i.e., Pmax

i , hi , and n0) and does not know
anything about other users.

From a user’s point of view, it does not matter whether the bandwidth has been
obtained by the operator through spectrum sensing or dynamic leasing. Each unit of
allocated bandwidth is perfectly reliable for the user.

To obtain closed-form solutions, we first focus on the high SNR regime where
SNR � 1. This is motivated by the fact that users often have limited choices of
modulation and coding schemes, and thus may not be able to decode a transmission
if the SNR is below a threshold. In the high SNR regime, the rate in (2.1) can be
approximated as

ri (wi ) = wi ln

(
gi

wi

)

. (2.2)

Although the analytical solutions in Sect. 2.3 are derived based on (2.2), we empha-
size that all the major engineering insights remain true in the general SNR regime.
A formal proof is in Sect 2.4.

A user i’s payoff is a function of the allocated bandwidth wi and the price π ,

ui (π, wi ) = wi ln

(
gi

wi

)

− πwi , (2.3)

i.e., the difference between the data rate and the linear payment (πwi ). Payoff
ui (π, wi ) is concave in wi , and the unique bandwidth demand that maximizes the
payoff is

w∗
i (π) = arg max

wi ≥0
ui (π, wi ) = gi e

−(1+π), (2.4)

which is always positive, linear in gi , and decreasing in price π . Since gi is linear
in channel gain hi and transmission power Pmax

i , then a user with a better channel
condition or a larger transmission power has a larger demand.

Equation (2.4) shows that each user i achieves the same SNR:

SNRi = gi

w∗
i (π)

= e1+π .

but a different payoff that is linear in gi ,
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ui (π, w∗
i (π)) = gi e

−(1+π).

We denote users’ aggregate wireless characteristics as G = ∑
i∈I gi . The users’

total demand is ∑

i∈I

w∗
i (π) = Ge−(1+π). (2.5)

Next, we consider how the operator makes the investment (sensing and leasing)
and pricing decisions in Stages I-III based on the total demand in Eq. (2.5).10 In
particular, we will show that the operator will always choose a price in Stage III such
that the total demand (as a function of price) does not exceed the total supply.

2.3.2 Optimal Pricing Strategy in Stage III

We focus on the uplink transmissions in an infrastructure based secondary network
(like the one proposed in IEEE 802.22 standard), where the secondary users need to
communicate directly with the secondary base station (i.e., the operator). Similar as
today’s cellular network, a user needs to register with the operator when it enters and
leaves the network. Thus at any given time, the operator knows precisely how many
users are using the service. Equation (2.4) shows that each user’s demand depends on
the received power (i.e., the product of its transmission power and the channel gain)
at the secondary base station in the uplink cellular network. This can be measured at
the secondary base station when the user first registers with the operator. Thus the
operator knows the exact demand from the users as well as user population in our
model.

In Stage III, the operator determines the optimal pricing considering users’ total
demand (2.5), given the bandwidth supply Bsα+Bl obtained in Stage II. The operator
profit is

R(Bs, α, Bl , π) = min

(

π
∑

i∈I

w∗
i (π), π (Bl + Bsα)

)

− (BsCs + BlCl) , (2.6)

which is the difference between the revenue and total cost. The min operation denotes
the fact that the operator can only satisfy the demand up to its available supply. The
objective of Stage III is to find the optimal price π∗ (Bs, α, Bl) that maximizes the
profit, that is,

RI I I (Bs, α, Bl) = max
π≥0

R(Bs, α, Bl , π). (2.7)

The subscript “III” denotes the best profit in Stage III.

10 We assume that the operator knows the value of G through proper feedback mechanism from the
users.
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Since the bandwidths Bs and Bl are given in this stage, the total cost BsCs + BlCl

is already fixed. The only optimization is to choose the optimal price π to maximize
the revenue, i.e.,

max
π≥0

min

(

π
∑

i∈I

w∗
i (π), π (Bl + Bsα)

)

. (2.8)

The solution of problem (2.8) depends on the bandwidth investment in Stages
I and II. Let us define D(π) = π

∑
i∈I w∗

i (π) and S(π) = π(Bl + Bsα).
Figure 2.3 shows three possible relationships between these two terms, where S j (π)

(for j = 1, 2, 3) represents each of the three possible choices of S(π) depending on
the bandwidth Bl + Bsα:

• S1(π) (excessive supply): No intersection with D(π);
• S2(π) (excessive supply): intersect once with D(π) where D(π) has a non-

negative slope;
• S3(π) (conservative supply): intersect once with D(π) where D(π) has a negative

slope.

In the excessive supply regime, maxπ≥0 min (S(π), D(π)) = maxπ≥0 D(π), i.e.,
the max-min solution occurs at the maximum value of D(π) with π∗ = 1. In this
regime, the total supply is larger than the total demand at the best price choice. In the
conservative supply regime, the max-min solution occurs at the unique intersection
point of D(π) and S(π). The above observations lead to the following result.

Theorem 2.1. The optimal pricing decision and the corresponding optimal profit at
Stage III can be characterized by Table 2.2.

The proof of Theorem 2.1 is given in Appendix 2.8.1. Note that in the excessive
supply regime, some bandwidth is left unsold (i.e., S(π∗) > D(π∗)). This is because

Fig. 2.3 Different
intersection cases of D(π)

and S(π) 1( )S π 2( )S π

3( )S π

π
0 1

( )D π
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Table 2.2 Optimal pricing decision and profit in stage III

Total bandwidth obtained in
stages I & II

Optimal price π∗ (Bs , α, Bl ) Optimal profit RI I I (Bs , α, Bl )

Excessive supply regime:
Bl + Bsα ≥ Ge−2

π E S = 1 RE S
I I I (Bs , α, Bl ) = Ge−2 −

BsCs − BlCl

Conservative supply regime:
Bl + Bsα < Ge−2

πC S = ln
(

G
Bl +Bsα

)
− 1 RC S

I I I (Bs , α, Bl ) = (Bl + Bsα)

ln
(

G
Bl +Bsα

)
− Bs(α + Cs) −

Bl (1 + Cl )

the acquired bandwidth is too large, and selling all the bandwidth will lead to a very
low price that decreases the revenue (the product of price and sold bandwidth). The
profit can be apparently improved if the operator acquires less bandwidth in Stages
I and II. Later analysis in Stages II and I will show that the equilibrium of the game
must lie in the conservative supply regime if the sensing cost is non-negligible. In
the conservative supply regime, the optimal price still guarantees supply equal to
demand (i.e., market equilibrium).

2.3.3 Optimal Leasing Strategy in Stage II

In Stage II, the operator decides the optimal leasing amount Bl given the sensing
result Bsα:

RI I (Bs, α) = max
Bl≥0

RI I I (Bs, α, Bl). (2.9)

We decompose problem (2.9) into two subproblems based on the two supply regimes
in Table 2.2,

1. Choose Bl to reach the excessive supply regime in Stage III:

RE S
I I (Bs, α) = max

Bl≥max{Ge−2−Bsα,0} RE S
I I I (Bs, α, Bl). (2.10)

2. Choose Bl to reach the conservative supply regime in Stage III:

RC S
I I (Bs, α) = max

0≤Bl≤Ge−2−Bsα
RC S

I I I (Bs, α, Bl), (2.11)

To solve subproblems (2.10) and (2.11), we need to consider the bandwidth
obtained from sensing.

• Excessive Supply (Bsα > Ge−2): in this case, the feasible sets of both subproblems
(2.10) and (2.11) are empty. In fact, the bandwidth supply is already in the excessive
supply regime as defined in Table II, and it is optimal not to lease in Stage II.



18 2 Secondary Spectrum Market Under Supply Uncertainty

• Conservative Supply (Bsα ≤ Ge−2): first, we can show that the unique optimal
solution of subproblem (2.10) is B∗

l = Ge−2 − Bsα. This means that the optimal
objective value of subproblem (2.10) is no larger than that of subproblem (2.11),
and thus it is enough to consider subproblem (2.11) in the conservative supply
regime only.

Base on the above observations and some further analysis, we can show the
following:

Theorem 2.2. In Stage II, the optimal leasing decision and the corresponding opti-
mal profit are summarized in Table 2.3.

The proof of Theorem 2.2 is given in Appendix 2.8.2. Table 2.3 contains three
cases based on the value of Bsα: (CS1), (CS2), and (ES3). The first two cases involve
solving the subproblem (2.11) in the conservative supply regime, and the last one
corresponds to the excessive supply regime. Although the decisions in cases (CS2)
and (ES3) are the same (i.e., zero leasing amount), we still treat them separately since
the profit expressions are different.

It is clear that we have an optimal threshold leasing policy here: the operator
wants to achieve a total bandwidth equal to Ge−(2+Cl ) whenever possible. When the
bandwidth obtained through sensing is not enough, the operator will lease additional
bandwidth to reach the threshold; otherwise the operator will not lease.

2.3.4 Optimal Sensing Strategy in Stage I

In Stage I, the operator will decide the optimal sensing amount to maximize its
expected profit by taking the uncertainty of the sensing realization factor α into
account. The operator needs to solve the following problem

RI = max
Bs≥0

RI I (Bs) ,

Table 2.3 Optimal leasing decision and profit in stage II

Given sensing result Bsα

After Stage I
Optimal leasing amount B∗

l Optimal profit
RI I (Bs , α)

(CS1) Bsα ≤ Ge−(2+Cl ) BC S1
l = Ge−(2+Cl ) − Bsα RC S1

I I (Bs , α) =
Ge−(2+Cl ) +
Bs(αCl − Cs)

(CS2) Bsα ∈ (
Ge−(2+Cl ), Ge−2

]
BC S2

l = 0 RC S2
I I (Bs , α) =

Bsα ln
(

G
Bsα

)
−

Bs(α + Cs)

(ES3) Bsα > Ge−2 B E S3
l = 0 RE S3

I I (Bs , α) =
Ge−2 − BsCs
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where RI I (Bs) is obtained by taking the expectation of α over the profit functions
in Stage II (i.e., RC S1

I I (Bs, α), RC S2
I I (Bs, α), and RE S3

I I (Bs, α) in Table 2.3).
To obtain closed-form solutions, we assume that the sensing realization factor

α follows a uniform distribution in [0, 1]. In Sect. 2.4.1, we prove that the major
engineering insights also hold under any general distribution.

To avoid the trivial case where sensing is so cheap that it is optimal to sense a
huge amount of bandwidth, we further assume that the sensing cost is non-negligible
and is lower bounded by Cs ≥ (1 − e−2Cl )/4.

To derive function RI I (Bs), we will consider the following three intervals:

1. Case I: Bs ∈ [0, Ge−(2+Cl )]. In this case, we always have Bsα ≤ Ge−(2+Cl )

for any value α ∈ [0, 1], which corresponds to case (CS1) in Table 2.3. The
expected profit is

R1
I I (Bs) = Eα∈[0,1]

[
RC S1

I I (Bs, α)
]

= Ge−(2+Cl ) + Bs

(
Cl

2
− Cs

)

,

which is a linear function of Bs . If Cs > Cl/2, R1
I I (Bs) is linearly decreasing

in Bs ; if Cs < Cl/2, R1
I I (Bs) is linearly increasing in Bs .

2. Case II: Bs ∈ (
Ge−(2+Cl ), Ge−2

]
. Depending on the value of α, Bsα can be in

either case (CS1) or case (CS2) in Table 2.3. The expected profit is

R2
I I (Bs) =E

α∈
[

0, Ge−(2+Cl )

Bs

]
[

RC S1
I I (Bs, α)

]
+ E

α∈
[

Ge−(2+Cl )

Bs
,1

]
[

RC S2
I I (Bs, α)

]

= Bs

2
ln

(
G

Bs

)

− Bs

4
+ Bs

4

(
Ge−(2+Cl )

Bs

)2

− BsCs .

R2
I I (Bs) is a strictly concave function of Bs since its second-order derivative

∂2 R2
I I (Bs)

∂ B2
s

= 1

2Bs

⎡

⎣

(
Ge−(2+Cl )

Bs

)2

− 1

⎤

⎦ < 0

as Bs > Ge−(2+Cl ) in this case.
3. Case III: Bs ∈ (

Ge−2,∞)
. Depending on the value of α, Bsα can be any of the

three cases in Table 2.3. The expected profit is

R3
I I (Bs) =E

α∈
[

0, Ge−(2+Cl )

Bs

]
[

RC S1
I I (Bs , α)

]
+ E

α∈
[

Ge−(2+Cl )

Bs
, Ge−2

Bs

]
[

RC S2
I I (Bs , α)

]

+ E
α∈

[
Ge−2

Bs
,1

]
[

RE S3
I I (Bs , α)

]

=
(

G

e2

)2 e−2Cl − 1

4Bs
− BsCs + G

e2 .
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Because its first-order derivative

∂ R3
I I (Bs)

∂ Bs
=

(
Ge−2

Bs

)2
1 − e−2Cl

4
− Cs < 0,

as Bs > Ge−2 in this case, R3
I I (Bs) is decreasing in Bs and achieves its maximum

at Bs = Ge−2.

To summarize, the operator needs to maximize

RI I (Bs) =

⎧
⎪⎨

⎪⎩

R1
I I (Bs), if 0 ≤ Bs ≤ Ge−(2+Cl );

R2
I I (Bs), if Ge−(2+Cl ) < Bs ≤ Ge−2;

R3
I I (Bs), if Bs > Ge−2.

(2.12)

We can verify that Case II always achieves a higher optimal profit than Case III.
This means that the optimal sensing will only lead to either case (CS1) or case (CS2)
in Stage II, which corresponds to the conservative supply regime in Stage III. This
confirms our previous intuition that equilibrium is always in the conservative supply
regime under a non-negligible sensing cost, since some resource is wasted in the
excessive supply regime (see discussions in Sect. 2.3.2).

Table 2.4 shows that the sensing decision is made in the following two cost
regimes:

• High sensing cost regime (Cs > Cl/2): it is optimal not to sense. Intuitively, the
coefficient 1/2 is due to the uniform distribution assumption of α, i.e., on average
obtaining one unit of available bandwidth through sensing costs 2Cs .

• Low sensing cost regime (Cs ∈
[

1−e−2Cl

4 ,
Cl
2

]
): the optimal sensing amount BL∗

s

is the unique solution to the following equation:

∂ R2
I I (Bs)

∂ Bs
= 1

2
ln

(
1

Bs/G

)

− 3

4
− Cs −

(
e−(2+Cl )

2Bs/G

)2

= 0. (2.13)

The uniqueness of the solution is due to the strict concavity of R2
I I (Bs) over Bs .

We can further show that BL∗
s lies in the interval of

[
Ge−(2+Cl ), Ge−2

]
and is

linear in G. Finally, the operator’s optimal expected profit is

RL
I = BL∗

s

2
ln

(
G

BL∗
s

)

− BL∗
s

4
+ 1

4BL∗
s

(
G

e2+Cl

)2

− BL∗
s Cs . (2.14)

Based on these observations, we can show the following:

Theorem 2.3. In Stage I, the optimal sensing decision and the corresponding opti-
mal profit are summarized in Table 2.4. The optimal sensing amount B∗

l is linear
in G.
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Table 2.4 Choice of optimal sensing amount in stage I

Optimal sensing decision
B∗

s

Expected Profit RI

High sensing cost regime: Cs ≥ Cl/2 B∗
s = 0 RH

I = Ge−(2+Cl )

Low Sensing Cost Regime: Cs ∈[
(1 − e−2Cl )/4, Cl/2

] B∗
s = BL∗

s , solution to
Eq. (2.13)

RL
I in Eq. (2.14)

Fig. 2.4 Expected profit
in Stage II under different
sensing and leasing costs
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Figure 2.4 shows two possible cases for the function RI I (Bs). The vertical dashed
line represents Bs = e−(2+Cl ). For illustration purpose, we assume G = 1, Cl = 2,
and Cs = {0.8, 1.2}. When the sensing cost is large (i.e., Cs = 1.2 > Cl/2), RI I (Bs)

achieves its optimum at Bs = 0 and thus it is optimal not to sense. When the sensing
cost is small (i.e., Cs = 0.8 < Cl/2), RI I (Bs) achieves its optimum at Bs > e−(2+Cl )

and it is optimal to sense a positive amount of spectrum.

2.4 Equilibrium Summary and Numerical Results

Based on the discussions in Sect. 2.3, we summarize the operator’s equilibrium sens-
ing/leasing/pricing decisions and the equilibrium resource allocations to the users in
Table 2.5. These decisions can be directly computed by the operator in each time
slot without using any iterative algorithm.

Several interesting observations are as follows.

Observation 1 Both the optimal sensing amount B∗
s (either 0 or BL∗

s ) and leas-
ing amount B∗

l are linear in the users’ aggregate wireless characteristics G =∑
i∈I Pmax

i hi/n0.
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Table 2.5 The operator’s and users’ equilibrium behaviors

Sensing cost
regimes

High sensing
cost: Cs ≥ Cl

2

Low sensing cost: 1−e−2Cl

4 ≤ Cs ≤ Cl
2

Optimal sensing
amount B∗

s

0 BL∗
s ∈ [

Ge−(2+Cl ), Ge−2
]
, solution to Eq. (2.14)

Sensing realiza-
tion factor α

0 ≤ α ≤ 1 0 ≤ α ≤ Ge−(2+Cl )/BL∗
s α > Ge−(2+Cl )/BL∗

s

Optimal leasing
amount B∗

l

Ge−(2+Cl ) Ge−(2+Cl ) − BL∗
s α 0

Optimal price π∗ 1 + Cl 1 + Cl ln
(

G
BL∗

s α

)
− 1

Expected profit
RI

RH
I =

Ge−(2+Cl )

RL
I in Eq. (2.14) RL

I in Eq. (2.14)

User i’s SNR e(2+Cl ) e(2+Cl ) G
BL∗

s α

User i’s Payoff gi e−(2+Cl ) gi e−(2+Cl ) gi (BL∗
s α/G)

Fig. 2.5 Optimal sensing
amount B∗

s as a function of Cs
and Cl
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The linearity enables us to normalize optimal sensing and leasing decisions by
users’ aggregate wireless characteristics, and study the relationships between the
normalized optimal decisions and other system parameters as in Figs. 2.5 and 2.6.

Figure 2.5 shows how the normalized optimal sensing decision B∗
s /G changes

with the costs. For a given leasing cost Cl , the optimal sensing decision B∗
s decreases

as the sensing cost Cs becomes more expensive, and drops to zero when Cs ≥ Cl/2.
For a given sensing cost Cs , the optimal sensing decision B∗

s increases as the leasing
cost Cl becomes more expensive, in which case sensing becomes more attractive.
Note that the sensing decision B∗

s is the same in each time slot if the users’ population
and channel conditions do not change.

Figure 2.6 shows how the normalized optimal leasing decision B∗
l /G depends

on the costs Cl and Cs as well as the sensing realization factor α in the low sensing
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Fig. 2.6 Optimal leasing
amount B∗

l as a function of
Cs , Cl , and α
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cost regime (denoted by “L”). In all cases, a higher value α means more bandwidth
is obtained from sensing and there is a less need to lease. Fig. 2.6 confirms the
threshold structure of the optimal leasing decisions in Sect. 2.3.3, i.e., no leasing is
needed whenever the bandwidth obtained from sensing reaches a threshold. Com-
paring different curves, we can see that the operator chooses to lease more as leasing
becomes cheaper or sensing becomes more expensive. For high sensing cost regime,
the optimal leasing amount only depends on Cl and is independent of Cs and α,
and thus is not shown here. Note that the leasing decision B∗

l may change with the
sensing realization factor α, which depends on the burstiness of the primary user’s
stochastic traffic.

Observation 2 The optimal pricing decision π∗ in Stage III is independent of users’
aggregate wireless characteristics G.

Observation 2 is closely related to Observation 1. Since the total bandwidth is
linear in G, the “average” resource allocation per user is “constant” at the equilib-
rium. This implies that the price must be independent of the user population change,
otherwise the resource allocation to each individual user will change with the price
accordingly.

Observation 3 The optimal pricing decision π∗ in Stage III is non-increasing in α

in the low sensing cost regime.

First, in the low sensing cost regime where the sensing result is poor (i.e., α is
small as the third column in Table 2.5), the operator will lease additional resource
such that the total bandwidth reaches the threshold Ge−(2+Cl ). In this case, the price
is a constant and is independent of the value of α. Second, when the sensing result is
good (i.e., α is large as in the last column in Table 2.5), the total bandwidth is large
enough. In this case, as α increases, the amount of total bandwidth increases, and
the optimal price decreases to maximize the profit.
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Figure 2.7 shows how the optimal price changes with various costs and α in the
low sensing cost regime. It is clear that price is first a constant and then starts to
decrease when α is larger than a threshold. The threshold decreases in the optimal
sensing decision of BL∗

s : a smaller sensing cost or a higher leasing cost will lead to
a higher BL∗

s and thus a smaller threshold.
It is interesting to notice that the equilibrium price only changes in a time slot

where the sensing realization factor α is large. This means that although operator has
the freedom to change the price in every time slot, the actual variation of price is much
less frequent. This makes it easier to implement in practice. Figure 2.8 illustrates this
with different sensing costs and α realizations. In each time slot, a realization of
α distribution is drawn and we can derive equilibrium price from Table 2.5. The
left two subfigures correspond to the realizations of α and the corresponding prices
with Cs = 0.48 and Cl = 1. As the sensing cost Cs is quite high in this case,
the operator does not rely heavily on sensing. As a result, the variability of α (in
the upper subfigure) has very small impact on the equilibrium price (in the lower
subfigure). In fact, the price only changes in 11 out 50 time slots, and the maximum
amplitude variation is around 10 %. The right two figures correspond to the case
where Cs = 0.35 and Cl = 1. As sensing cost is cheaper in this case, the operator
senses more and the impact of α on price is larger. The price changes in 30 out of 50
time slots, and the variation in amplitude can be as large as 30 %.

Observation 4 The operator will sense the spectrum only if the sensing cost is lower
than a threshold. Also, tt will lease additional spectrum only if the spectrum obtained
through sensing is below a threshold. Furthermore, it will charge a constant price
to the users if the total bandwidth obtained through sensing and leasing does not
exceed a threshold.

Observation 5 Each user i obtains the same SNR independent of gi and a payoff
linear in gi .

Fig. 2.7 Optimal price π∗ as
a function of Cs , Cl , and α
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Fig. 2.8 Optimal price π∗ over time with different sensing costs and α realizations

Observation 5 shows that users obtains fair and predictable resource allocation at
the equilibrium. In fact, a user does not need to know anything about the total number
and payoffs of other users in the system. It can simply predict its QoS if it knows
the cost structure of the network (Cs and Cl ).11 Such property is highly desirable in
practice.

Finally, users achieve the same high SNR at the equilibrium. The SNR value is
either e(2+Cl ) or G/(BL∗

s α), both of which are larger than e2. This means that the
approximation ratio ln(SNRi )/ ln(1+SNRi ) > ln(e2)/ ln(1+e2) ≈ 94 %. The ratio
can even be close to one if the price π is high.

In Sects. 2.3.1 and 2.3.4, we made the high SNR regime approximation and the
uniform distribution assumption of α to obtain closed-form expressions. Next we
show that relaxing both assumptions will not change any of the major insights.

11 The analysis of the game, however, does not require the users to know Cs or Cl .
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2.4.1 Robustness of the Observations

Theorem 2.4. Observations 1-5 still hold under the general SNR regime (as in (2.1))
and any general distribution of α.

Proof We represent a user i’s payoff function in the general SNR regime,

ui (π, wi ) = wi ln

(

1 + gi

wi

)

− πwi . (2.15)

The optimal demand w∗
i (π) that maximizes (2.15) is w∗

i (π) = gi/Q(π), where

Q(π) is the unique positive solution to F(π, Q) := ln(1 + Q) − Q
1+Q − π = 0. We

find the inverse function of Q(π) to be π(Q) = ln(1 + Q) − Q
1+Q . By applying the

implicit function theorem, we can obtain the first-order derivative of function Q(π)

over π as

Q′(π) = − ∂ F(π, Q)/∂π

∂ F(π, Q)/∂ Q
= (1 + Q(π))2

Q(π)
, (2.16)

which is always positive. Hence, Q(π) is increasing in π .
User i’s optimal payoff is

ui (π, w∗
i (π)) = gi

Q(π)
[ln(1 + Q(π)) − π ]. (2.17)

As a result, a user’s optimal SNR equals gi/w∗
i (π) = Q(π) and is user-independent.

The total demand from all users equals G/Q(π), and the operator’s investment and
pricing problem is

R∗ = max
Bs≥0

Eα∈[0,1][max
Bl≥0

max
π≥0

(min

(

π
G

Q(π)
, π(Bl + Bsα)

)

− BsCs − BlCl)].
(2.18)

Define R̃∗ = R∗
G , B̃l = Bl

G , and B̃s = Bs
G . Then solving (2.18) is equivalent to solving

R̃∗ = max
B̃s≥0

Eα∈[0,1][max
B̃l≥0

max
π≥0

(min

(
π

Q(π)
, π(B̃l + B̃sα)

)

− B̃sCs − B̃lCl)].
(2.19)

In Problem (2.19), it is clear that the operator’s optimal decisions on leasing, sensing
and pricing do not depend on users’ aggregate wireless characteristics. This is true for
any continuous distribution of α. And a user’s optimal payoff in Eq. (2.17) is linear
in gi since Q(π) is independent of users’ wireless characteristics. This shows that
Observations 1, 2, and 5 hold for the general SNR regime and any general distribution
of α. We can also show that Observations 3 and 4 hold in the general case, with a
detailed proof in Appendix 2.8.3.
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2.5 The Impact of Spectrum Sensing Uncertainty

The key difference between our model and most existing literature e.g., [37, 41, 43,
47, 49, 50] is the possibility of obtaining resource through the cheaper but uncertain
approach of spectrum sensing. Here we will elaborate the impact of sensing on the
performances of operator and users by comparing with the baseline case where
sensing is not possible. Note that in the high sensing cost regime it is optimal not to
sense, as a result, the performance of the operator and users will be the same as the
baseline case. Hence we will focus on the low sensing cost regime in Table 2.5.

Observation 6 The operator’s optimal expected profit always benefits from the
availability of spectrum sensing in the low sensing cost regime.

Figure 2.9 illustrates the normalized optimal expected profit as a function of the
sensing cost. We assume leasing cost Cl = 2, and thus the low sensing cost regime
corresponds to the case where Cs ∈ [0.2, 1] in the figure. It is clear that sensing
achieves a better optimal expected profit in this regime. In fact, sensing leads to
250% increase in profit when Cs = 0.2. The benefit decreases as the sensing cost
becomes higher. When sensing becomes too expensive, the operator will choose not
to sense and thus achieve the same profit as in the baseline case.

Theorem 2.5. The operator’s realized profit (i.e., the profit for a given α) is a strictly
increasing function in α in the low sensing cost regime. Furthermore, there exists
a threshold αth ∈ (0, 1) such that the operator’s realized profit is larger than the
baseline approach if α > αth .

Proof As in Table 2.5, we have two cases in the low sensing cost regime:

• If α ≤ Ge−(2+Cl )/BL∗
s , then substituting BL∗

s into RC S1
I I (Bs, α) in Table 2.3 leads

to the realized profit

Fig. 2.9 Operator’s
normalized optimal expected
profit as a function of
Cs and Cl
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RC S1
I I (α) = Ge−(2+Cl ) − BL∗

s Cs + BL∗
s αCl ,

which is strictly and linearly increasing in α.
• If α ≥ Ge−(2+Cl )/BL∗

s , then substituting BL∗
s into RC S2

I I (Bs, α) in Table 2.3 leads
to the realized profit

RC S2
I I (α) = BL∗

s α

(

ln

(
G

BL∗
s α

)

− 1

)

− BL∗
s Cs .

Because the first-order derivative

∂ RC S2
I I (α)

∂α
= BL∗

s

(

ln

(
G

BL∗
s α

)

− 2

)

> 0,

as BL∗
s ≤ Ge−2, RC S2

I I (α) is strictly increasing in α.

We can also verify that RC S1
I I (α) = RC S2

I I (α) when α = Ge−(2+Cl )/BL∗
s . Therefore,

the realized profit is a continuous and strictly increasing function of α.
Next we prove the existence of threshold αth . First consider the extreme case

α = 0. Since the operator obtains no bandwidth through sensing but still incurs
some cost, the profit in this case is lower than the baseline case. Furthermore, we can
verify that RC S2

I I (1) > RH
I in Table 2.5, thus the realized profit at α = 1 is always

larger than the baseline case. Together with the continuity and strictly increasing
nature of the realized profit function, we have proven the existence of threshold of
αth .

Figure 2.10 shows the realized profit as a function of α for different costs. The
realized profit is increasing in α in both cases. The “crossing” feature of the two
increasing curves is because the optimal sensing B∗

s is larger under a cheaper sensing
cost (Cs = 0.5), which leads to larger realized profit loss (gain, respectively) when
α → 0 (α → 1, respectively). This shows the tradeoff between improvement of
expected profit and the large variability of the realized profit.

Theorem 2.6. Users always benefit from the availability of spectrum sensing in the
low sensing cost regime.

Proof In the baseline approach without sensing, the operator always charges the
price 1 + Cl . As shown in Table 2.5, the equilibrium price π∗ with sensing is always
no larger than 1 + Cl for any value of α. Since a user’s payoff is strictly decreasing
in price, the users always benefit from sensing.

Figure 2.11 shows how a user i’s normalized realized payoff u∗
i /gi changes with α.

The payoff linearly increases in α when α becomes larger than a threshold, in which
case the equilibrium price becomes lower than 1 + Cl . A smaller sensing cost Cs

leads to more aggressive sensing and thus more benefits to the users.
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Fig. 2.10 Operator’s normal-
ized optimal realized profit as
a function of α
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Fig. 2.11 User i’s normalized
optimal realized payoff as a
function of α

0 0.2 0.4 0.6 0.8 1
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Sensing Realization Factor α

N
or

m
al

iz
ed

 R
ea

liz
ed

 P
ay

of
f o

f U
se

r  
u i* (α

) 
/g

i

Cl =2, Cs=0.8

Cl =2, Cs=0.5

Cl =2, w./o. sensing

2.6 Learning the Distribution of Sensing Realization Factor α

Our previous analysis assumes that the operator knows the distribution of sensing
realization factor α beforehand. When such information is not available, the operator
can learn the distribution through machine learning [70]. Next we propose a machine
learning algorithm, where the operator uses the sensing realizations of previous time
slots to update the distribution of α.

Let us denote the probability density function (pdf) of α as f (α) over the support
of [0, 1]. Although f (α) is in general continuous, we can approximate it through a
proper discretization, i.e., representing the pdf by a probability mass function (pmf)
over N + 1 equally spaced values (with the first and last values equal to 0 and 1,
respectively).
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The overall learning process is divided into several learning rounds. Each learning
round consists of M time slots. In the kth learning round, the operator builds an
empirical distribution of the α distribution, an N + 1 long vector Recordk , based
on the observation of sensing results over the M time slots in this round. At the end
of the learning round, the operator updates the α distribution estimation Distrk+1
based on the current value of Distrk and Recordk . The machine learning algorithm
for updating the distribution of α is shown in Algorithm 1.

Algorithm 1 Machine Learning Algorithm
1: Initiates Distr1 by an arbitrary distribution at k = 1.
2: while k = 1 or Distrk �= Distrk−1 do
3: Compute B∗

s according to Distrk
4: Initialize the empirical distribution Recordk = (0, ..., 0) (with N + 1 entries)
5: for time slot m = 1 to M do
6: Senses the spectrum and records the α realization
7: Updates Recordk with the current α realization by adding one to the corresponding entry.

For example, if α = 0.36 and N = 100, then the operator increases the 37th entry of
Recordk by one.

8: Compute B∗
l and π∗ according to Tables 2.3 and 2.2 in the mth time slot

9: end for
10: Update Distrk+1 = β Distrk + (1 − β)

Recordk
M , where β ∈ [0, 1] is the discount factor

11: k := k + 1
12: end while

A proper choice of the learning round length M is important. If M is too large, then
the distribution update takes much time. If M is too small, then the operator needs
to frequently recompute its sensing decision according to the updated distribution in
each round. This increases the computation overhead.

2.6.1 Performance Evaluation of Machine Learning

We evaluate the performance of the proposed machine learning algorithm for
updating the α distribution. For the illustration purpose, we assume that α follows a
normal distribution with mean m = 0.5 and standard deviation δ = 0.15.12 Notice
that the proposed algorithm works for any distribution of α. The operator starts
with an initial “guess” Distr1 of uniform distribution. We assume N = 100 and
M = 5000 in the simulation.

Figure 2.12 shows the operator’s estimation of the distribution of α over multiple
learning rounds with β = 0.8. It is generated by following Algorithm 1, where at each
round the operator’s belief of α distribution is updated. The round 1 line corresponds
to the uniform distribution of Distr1. After 40 rounds, the operator obtains a pmf
that approximations the real normal distribution very well.

12 This choice of m and δ ensures that almost all α realizations fall into the feasible range [0, 1].
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Fig. 2.12 Operator’s learning
of the distribution of α over
learning rounds with β = 0.8
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Fig. 2.13 Operator’s adap-
tation of its sensing decision
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Figure 2.13 illustrates the impact of discount factor β on the convergence of
the sensing decision B∗

s . Both curves converge as the number of learning rounds
increases. When β is small (e.g., β = 0.5), the operator’s sensing decision converges
fast with many fluctuations. When β is large (e.g., β = 0.8), the operator’s sensing
decision converges slowly with less fluctuations. The operator needs to trade off
convergence speed and fluctuations by choosing the proper β.

In summary, using the proposed machine learning algorithm, the operator can
quickly learn the distribution of α, and can make good use of spectrum resource by
adapting its sensing decisions dynamically.
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2.7 Summary

This chapter represents some encouraging results towards understanding the new
business models, opportunities, and challenges of the emerging cognitive virtual
mobile network operators (C-MVNOs) under supply uncertainty. Here we focus
on studying the trade-off between the cost and uncertainty of spectrum investment
through sensing and leasing. We model the interactions between the operator and the
users by a Stackelberg game, which captures the wireless heterogeneity of users in
terms of maximum transmission power levels and channel gains.

We have discovered several interesting features of the game equilibrium. We show
that the operator’s optimal sensing, leasing, and pricing decisions follow nice thresh-
old structures. The availability of sensing always increases the operator’s expected
profit, despite that the realized profit in each time slot will have some variations
depending on the sensing result. Moreover, users always benefit in terms of payoffs
when sensing is performed by the operator.

Through the analytical and simulation study of an idealized model in this chapter,
we have obtained various interesting engineering and economical insights into the
operations of C-MVNOs. We hope that this chapter can contribute to the further
understanding of proper network architecture decisions and business models of future
cognitive radio systems.

2.8 Appendix

2.8.1 Proof of Theorem 2.1

Given the total bandwidth Bl +Bsα, the objective of Stage III is to solve the optimiza-
tion problem (2.8), i.e., maxπ≥0 min(D(π), S(π)). First, by examining the deriva-
tive of D(π), i.e., ∂ D(π)/∂π = (1 − π)Ge−(1+π), we can see that the continuous
function D(π) is increasing in π ∈ [0, 1] and decreasing in π ∈ [1,+∞], and D(π)

is maximized when π = 1. Since S(π) always increases in π and D(π) is concave
over π ∈ [0, 1], S(π) intersects with D(π) if and only if ∂ D(π)

∂π
>

∂S(π)
∂π

at π = 0,
i.e., Bl + Bsα < Ge−1.

Next we divide our discussion into the intersection case and the non-intersection
case:

1. Given Bl + Bsα ≤ Ge−1, S(π) intersects with D(π). By solving equation

S(π) = D(π) the intersection point is π = ln
(

G
Bl+Bsα

)
− 1. There are two

subcases:

• when Bl + Bsα ≤ Ge−2, S(π) intersects with D(π), and min(D(π), S(π)) is

maximized at the intersection point, i.e., π∗ = ln
(

G
Bl+Bsα

)
− 1. (See S3(π)

in Fig. 2.3.)
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• when Bl + Bsα ≥ Ge−2, S(π) intersects with D(π), and min(D(π), S(π))

is maximized at the maximum value of D(π), i.e., π∗ = 1. (See S2(π) in
Fig. 2.3.)

2. Given Bl + Bsα ≥ Ge−1, S(π) doesn’t intersect with D(π). Then min(D(π),

S(π)) is maximized at the maximum value of D(π), i.e., π∗ = 1. (See S1(π) in
Fig. 2.3.)

2.8.2 Proof of Theorem 2.2

Given the sensing result Bsα, the objective of Stage II is to solve the decomposed
two subproblems (2.10) and (2.11), and select the best one with better optimal
performance. Since RE S

I I I (Bs, α, Bl) in subproblem (2.10) is linearly decreasing in
Bl , its optimal solution always lies at the lower boundary of the feasible set (i.e.,
B∗

l = max{Ge−2 − Bsα, 0}). We compare the optimal profits of two subproblems
(i.e., RE S

I I (Bs, α) and RC S
I I (Bs, α)) for different sensing results:

1. Given Bsα > Ge−2, the obtained bandwidth after Stage I is already in excessive
supply regime. Thus it is optimal not to lease for subproblem (2.10) (i.e., B E S3

l =
0 of case (ES3) in Table 2.3).

2. Given 0 ≤ Bsα ≤ Ge−2, the optimal leasing decision for subproblem (2.11)
is B∗

l = Ge−2 − Bsα and we have RE S
I I I (Bs, α, Bl) = RC S

I I I (Bs, α, Bl) when
Bl = Ge−2 − Bsα, thus the optimal objective value of (2.10) is always no larger
than that of (2.11) and it is enough to consider the conservative supply regime
only. Since

∂2 RC S
I I I (Bs, α, Bl)

∂ B2
l

= − 1

Bl + Bsα
< 0,

RC S
I I I (Bs, α, Bl) is concave in 0 ≤ Bl ≤ Ge−2 − Bsα. Thus it is enough to

examine the first-order condition

∂ RC S
I I I (Bs, α, Bl)

∂ Bl
= ln

( G

Bl + Bsα

) − 2 − Cl = 0,

and the boundary condition 0 ≤ Bl ≤ Ge−2 − Bsα. This results in opti-
mal leasing decision B∗

l = max(Ge−(2+Cl ) − Bsα, 0) and leads to BC S1
l =

Ge−(2+Cl ) − Bsα and BC S2
l = 0 of cases (CS1) and (CS2) in Table 2.3.

By substituting BC S1
l and BC S2

l into RC S
I I I (Bs, α, Bl) in Table 2.2, we derive

the corresponding optimal profits RC S1
I I (Bs, α) and RC S2

I I (Bs, α) in Table 2.3.
RE S3

I I (Bs, α) can also be obtained by substituting B E S3
l into RE S

I I I (Bs, α, Bl).
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2.8.3 Supplementary Proof of Theorem 2.4

In this section, we prove that Observations 3 and 4 hold for the genera case (i.e., the
general SNR regime and a general distributions of α). We first show that Observation
4 holds for the general case.

2.8.3.1 Threshold Structure of Sensing

It is not difficult to show that if the sensing cost is much larger than the leasing
cost, the operator has no incentive to sense but will directly lease. Thus the threshold
structure on the sensing decision in Stage I still holds for the general case. We ignore
the details due to space limitations.

2.8.3.2 Threshold Structure of Leasing

Next we show the threshold
structure on leasing in Stage II also holds. Similar as in the proof of Theorem 2.1,

we define D(π) = π G
Q(π)

and S(π) = π(Bsα + Bl).

• We first show that D(π) is increasing when π ∈ [0, 0.468] and decreasing when
π ∈ [0.468,+∞). To see this, we take the first-order derivative of D(π) over π ,

D′(π) = 2Q(π)2 + Q(π) − (1 + Q(π))2 ln(1 + Q(π))

Q(π)3 ,

which is positive when Q(π) ∈ [0, 2.163) and negative when Q(π) ∈ [2.163, +∞).
Since Eq. (2.16) shows that Q(π) is increasing in π and π(Q) |Q=2.163= 0.468, as
a result D(π) is increasing in π ∈ [0, 0.468] and decreasing in π ∈ [0.468,+∞).
In other words, D(π) is maximized at π = 0.468.

• Next we derive the operator’s optimal pricing decision in Stage III. Figure 2.15
shows two possible intersection cases of S(π) and D(π). Bth1 is defined as the
total bandwidth obtained in Stages I and II (i.e., Bsα+Bl ) such that S(π) intersects
with D(π) at π = 0.468. Here is how the optimal pricing is determined:

– If Bsα + Bl ≥ Bth1 (e.g., S1(π) in Fig. 2.15), the optimal price is π∗ = 0.468.
The total supply is no smaller (and often exceeds) the total demand.

– If Bsα + Bl < Bth1 (e.g., S2(π) in Fig. 2.15), the optimal price occurs at
the unique intersection point of S(π) and D(π) (where D(π) has a negative
first-order derivative). The total supply equals total demand.

• Now we are ready to show the threshold structure of the leasing decision.

– If the sensing result from Stage I satisfies Bsα ≥ Bth1, then the operator will not
lease. This is because leasing will only increase the total cost without increasing
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Fig. 2.14 The relation
between the normalized total
bandwidth B/G and the
derivative of the revenue
D′(B/G)
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the revenue, since the optimal price is fixed at π∗ = 0.468 and thus revenue is
also fixed at D(π∗).

– Let us focus on the case where the sensing result from Stage I satisfies Bsα <

Bth1. Let us define B = Bsα + Bl , then we have B = G/Q(π) and π =
ln(1 + G/B) − G/(G + B). This enables us to rewrite D(π) as a function of
total resource B only,

D(B) = B

[

ln

(

1 + G

B

)

− G

G + B

]

.

The first-order derivative of D(B) is

D′(B) = ln

(

1 + 1

B/G

)

− 1

1 + B/G
− 1

(1 + B/G)2 , (2.20)

which denotes the increase of revenue D(B) due to unit increase in bandwidth B.
Since obtaining each unit bandwidth has a cost of Cl in Stage II, the operator
will only lease positive amount of bandwidth if and only if D′(Bsα) > Cl . To
facilitate the discussions, we will plot the function of D′(B/G) in Fig. 2.14, with
the understanding that D′(B/G) = D′(B)G. The intersection point of B/G =
0.462 in Fig. 2.14 corresponds to the point of π = 0.468 in Fig. 2.15. The
positive part of D′(B) on the left side of B/G = 0.462 in Fig. 2.14 corresponds
to the part of D(π) with a negative first-order derivative in Fig. 2.15.
For any value Cl , Fig. 2.14 shows that there exists a unique threshold Bth2(Cl)

such that D′(Bth2(Cl)/G) = Cl G, i.e., D′(Bth2(Cl)) = Cl . Then the optimal
leasing amount will be Bth2(Cl) − Bsα if the bandwidth obtained from sensing
Bsα is less than Bth2(Cl), otherwise it will be zero.
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Fig. 2.15 Different
intersection cases of S(π)

and D(π) in the general SNR
regime
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2.8.3.3 Threshold Structure of Pricing and Observation 3

Based on the proofs above, we show that Observation 3 also holds for the general
case as follows. Let us denote the optimal sensing decision as B∗

s , and consider two
sensing realizations α1 and α2 in time slots 1 and 2, respectively. Without loss of
generality, we assume that α1 < α2.

• If B∗
s α2 ≥ Bth1, then the optimal price in time slot 2 is π∗ = 0.468 (see

Fig. 2.15). The optimal price in time slot 1 is always no smaller than 0.468.
• If B∗

s α1 < B∗
s α2 < Bth1, then we need to consider three subcases:

– If B∗
s α1 < B∗

s α2 ≤ Bth2(Cl), then the operator will lease up to the threshold in
both time slots, i.e., B∗

l = Bth2(Cl)− B∗
s α1 in time slot 1 and B∗

l = Bth2(Cl)−
B∗

s α2 in time slot 2. Then optimal prices in both time slots are the same.
– If B∗

s α1 ≤ Bth2(Cl) < B∗
s α2, then the operator will lease B∗

l = Bth2(Cl)−B∗
s α1

in time slot 1 and will not lease in time slot 2. Thus the total bandwidth in time
slot 1 is smaller than that of time slot 2, and the optimal price in time slot 1 is
larger.

– If Bth2(Cl) ≤ B∗
s α1 < B∗

s α2, then the operator in both time slots will not lease
and total bandwidth in time slot 1 is smaller, and the optimal price in time slot
1 is larger.

To summarize, the optimal price π∗ in Stage III is non-increasing in α. And the
operator will charge a constant price (π∗ = 0.468) to the users as long as the total
bandwidth obtained through sensing and leasing does not exceed the threshold
Bth2(Cl).



Chapter 3
Secondary Spectrum Market Under Operator
Competition

Abstract This chapter presents a comprehensive analytical study of two competitive
secondary operators’ investment (i.e., spectrum leasing) and pricing strategies, taking
into account operators’ heterogeneity in leasing costs and users’ heterogeneity in
transmission power and channel conditions. We model the interactions between oper-
ators and users as a three-stage dynamic game, where operators simultaneously make
spectrum leasing decisions in Stage I, and pricing decisions in Stages II, and then
users make purchase decisions in Stage III. We show that both operators’ investment
and pricing equilibrium decisions process interesting threshold properties. Moreover,
two operators always choose the same equilibrium price despite their heterogene-
ity in leasing costs. Each user fairly achieves the same service quality in terms of
signal-to-noise-ratio (SNR) at the equilibrium, and the obtained predictable payoff
is linear in its transmission power and channel gain. We also the maximum loss of
total profit due to operators’ competition is no larger than 25 %. The users, however,
always benefit from operators’ competition in terms of their payoffs.

3.1 Background

Recall that in Chap. 2, we only study one secondary operator’s economic decisions
and our focus is how the supply uncertainty in spectrum sensing affect the operator’s
investment and pricing. However, as there are many operators in the global spectrum
market,1 some operators are competing for the same local market in terms of spectrum
acquisition and service pricing (e.g., Virgin Mobile USA and Simple Mobile compete
in the same California market).

In this chapter, we study the competition between secondary operators in spec-
trum acquisition and pricing to serve a common pool of secondary users. To abstract

1 Started from late 1990s, there are over 400 mobile virtual network operators owned by over 360
companies worldwide as of February 2009 [72]. According to Visiongain Report [6], the global
MVNO market will be worth $40.55 billion by 2016.

L. Duan et al., Cognitive Virtual Network Operator Games, 37
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the interactions among operators, we focus on two operator case (i.e., duopoly) and
will study multiple operator case (i.e., oligopoly) in our future work. As the operator
competition in the current spectrum market only focuses on spectrum leasing and
has not introduce spectrum sensing yet, we only consider the operators’ spectrum
leasing approach to acquire resource. The operators will dynamically lease spectrum
from primary operators, and then compete to sell the resource to the secondary users
to maximize their individual profits. We would like to understand how the operators
make the equilibrium investment (leasing) and pricing (selling) decisions, consid-
ering operators’ heterogeneity in leasing costs and wireless users’ heterogeneity in
transmission power and channel conditions.

We adopt a three-stage dynamic game model to study the (secondary) operators’
investment and pricing decisions as well as the interactions between the operators and
the (secondary) users. In Stage I, the two operators simultaneously lease spectrum
(bandwidth) from the primary operators with different leasing costs. In Stage II, the
two operators simultaneously announce their spectrum retail prices to the users. In
Stage III, each user determines how much resource to purchase from which operator.
Each operator wants to maximize its profit, which is the difference between the
revenue collected from its users and the cost paid to the primary operator.

Key results and contributions of this chapter include:

• An appropriate wireless spectrum sharing model: We assume that heteroge-
neous users share the spectrum using orthogonal frequency division multiplex-
ing (OFDM) technology. Then a user’s achievable rate and thus its spectrum
demand depend on its allocated bandwidth, maximum transmission power, and
channel condition. This model is more suitable to our problem than the generic
economic models used in related literature [37, 47, 49, 50]. It can also provide more
engineering insights on how different wireless network parameters in the spectrum
sharing model (e.g., users’ various wireless characteristics) impact the operators’
leasing and pricing decisions.

• Symmetric pricing structure: We show the two operators always choose the same
equilibrium price, even when they have different leasing costs and make different
investment decisions. Moreover, this price is independent of users’ transmission
powers and channel conditions.2

• Threshold structures of investment and pricing equilibrium: We show that both
operators’ investment and pricing equilibrium decisions process interesting thresh-
old properties. For example, when the two operators’ leasing costs are close, both
operators will lease positive spectrum. Otherwise, one operator will choose not
to lease and the other operator becomes the monopolist. For pricing, a positive
pure strategy equilibrium exists only when the total spectrum investment of both
operators is less than a threshold.

2 Such independency is good for the development of spectrum market, since a user does not need to
worry about how variations of user population and wireless characteristics change its performance
in spectrum trading.
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• Fair service quality achieved by users: We show that each user achieves the same
signal-to-noise (SNR) that is independent of the users’ population and wireless
characteristics.

• Impact of competition: We show that the operators’ competition leads to a maxi-
mum 25 % loss of their total profit compared with a coordinated case. The users,
however, always benefit from the operators’ competition by achieving better pay-
offs.

Next we briefly discuss the related literature. In Sect. 3.2, we describe the network
model and game formulation. In Sect. 3.3, we analyze the dynamic game through
backward induction and calculate the duopoly leasing/pricing equilibrium. We dis-
cuss various insights obtained from the equilibrium analysis in Sect. 3.4. In Sect. 3.6,
we show the impact of duopoly competition on the total operators’ profit and the
users’ payoffs. We conclude in Sect. 3.7 together with some future research direc-
tions.

3.2 Network and Game Model

We consider two operators (i, j ∈ {1, 2} and i �= j) and a set K = {1, . . . , K }
of users in an ad hoc network as shown in Fig. 3.1. The operators obtain wireless

Fig. 3.1 Network model
for the secondary network
operators

Secondary users (transmitter-receiver pairs) 

Spectrum 

owner  

Operator i Operator j

Investment 

(leasing bandwidth)

Pricing 

(selling bandwidth)

Spectrum 

owner
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spectrum from different primary operators with different leasing costs, and compete
to serve the same set K of users. Each user has a transmitter-receiver pair. We
assume that users are equipped with software defined radios and can transmit in
a wide range of frequencies as instructed by the operators, but do not have the
capability of spectrum sensing in cognitive radios.3 Such a network structure puts
most of the implementation complexity for dynamic spectrum leasing and allocation
on the operators, and thus is easier to implement than a “full” cognitive radio network
especially for a large number of users. A user may switch among different operators’
services (e.g. WiMAX, 3G) depending on operators’ prices. It is important to study
the competition among multiple operators as operators are normally not cooperative.

The interactions between the two operators and the users can be modeled as a three-
stage dynamic game, as shown in Fig. 3.2. Operators i and j first simultaneously
determine their leasing bandwidths in Stage I, and then simultaneously announce
the prices to the users in Stage II. Finally, each user chooses to purchase bandwidth
from only one operator to maximize its payoff in Stage III.

The key notations of the chapter are listed in Table 3.1. Some are explained as
follows.

• Leasing decisions Bi and B j : leasing bandwidths of operators i and j in Stage I,
respectively.

• Costs Ci and C j : the fixed positive leasing costs per unit bandwidth for operators
i and j , respectively. These costs are determined by the negotiation between the
operators and their own spectrum suppliers.

• Pricing decisions pi and p j : prices per unit bandwidth charged by operators i and
j to the users in Stage II, respectively.

• The User k’s demand wki or wkj : the bandwidth demand of a user k ∈ K from
operator i or j . A user can only purchase bandwidth from one operator.

Stage I: Operators determine leasing amountsBi and Bj (Section 3.3.3)

Stage II: Operators announce prices pi and pj to market (Section 3.3.2)

Stage III: End user determines its bandwidth demand from one operator (Section 3.3.1)

Fig. 3.2 Three-stage dynamic game: the duopoly’s leasing and pricing, and the users’ resource
allocation

3 Spectrum sensing is the most important functionality of cognitive radios, which enables users
to actively monitor the external radio environments to communicate efficiently without interfering
primary users. The capability of spectrum sensing includes comprehensive monitoring of frequency
spectrum, user behavior, and network state over time.
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Table 3.1 Key notations

Notations Physical meaning

Bi , B j Leasing bandwidths of operators i and j
Ci , C j Costs per unit bandwidth paid by operators i and j
pi , p j Prices per unit bandwidth announced by operators i and j
K = {1, . . . , K } Set of the users in the network
Pmax

k User k’s maximum transmission power
hk User k’s channel gain between its transceiver
n0 Noise power per unit bandwidth
gk = Pmax

k hk/n0 User k’s wireless characteristic
G = ∑

k∈K gk The users’ aggregate wireless characteristics
wki , wkj User k’s bandwidth demand from operator i or j
rk User k’s data rate
K P

i , K P
j Preferred user sets of operators i and j

Di , D j Preferred demands of operators i and j
K R

i , K R
j Realized user sets of operators i and j

Qi , Q j Realized demands of operators i and j
Ri , R j Revenues of operators i and j
πi , π j Profits of operators i and j
Tπ Total profit of both operators

3.2.1 Users’ and Operators’ Models

OFDM has been proposed as a promising physical layer choice for dynamic spectrum
sharing [81, 83]. We assume that the users share the spectrum using OFDM to avoid
mutual interferences. The main analysis in this chapter assumes that users are located
close-by, and thus no two users will transmit over the same channel (also called
subcarriers in the OFDM literatures [84, 85]). We also relax this assumption in our
online technical report [90] and show that our results can be extended to the case
with spectrum spatial reuse.

If a user k ∈ K obtains bandwidth wki from operator i , then it achieves a data
rate (in nats) of [86]

rk(wki ) = wki ln

(

1 + Pmax
k hk

n0wki

)

, (3.1)

where Pmax
k is user k’s maximum transmission power, n0 is the noise power density,

hk is the channel gain between user k’s transmitter and receiver. The channel gain
hk is independent of the operator, as the operator only sells bandwidth and does not
provide a physical infrastructure.4 Here we assume that user k spreads its power
Pmax

k across the entire allocated bandwidth wki .

4 We also assume that the channel condition is independent of transmission frequencies, such as in
the current 802.11d/e standard [87] where the channels are formed by interleaving over the tones.
In other words, each user experiences a flat fading over the entire spectrum.
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To simplify later discussions, we let

gk = Pmax
k hk/n0,

thus gk/wki is the user k’s SNR. The rate in (3.1) is calculated based on the Shannon
capacity.

To obtain closed-form solutions, we first focus on the high SNR regime where
SNR � 1. This will be the case where a user has limited choices of modulation and
coding schemes, and thus can not decode a transmission if the SNR is below some
threshold. In the high SNR regime, the rate in (3.1) can be approximated as

rk(wki ) = wki ln

(
gk

wki

)

. (3.2)

Although the analytical solutions in Sect. 3.3 are derived based on (3.2), we will
show later in Sect. 3.5 that all major engineering insights remain unchanged in the
general SNR regime.

If a user k purchases bandwidth wki from operator i , it receives a payoff of

uk(pi , wki ) = wki ln

(
gk

wki

)

− pi wki , (3.3)

which is the difference between the data rate and the payment. The payment is
proportional to price pi announced by operator i . This linear pricing scheme has
been widely used in the literature [88, 89].

For an operator i , its profit is the difference between the revenue and the total
cost, i.e.,

πi (Bi , B j , pi , p j ) = pi Qi (Bi , B j , pi , p j ) − Bi Ci , (3.4)

where Qi (Bi , B j , pi , p j ) and Q j (Bi , B j , pi , p j ) are realized demands of operators
i and j . The concept of realized demand will be defined later in Definition 3.4.

3.3 Backward Induction of the Three-Stage Game

A common approach of analyzing dynamic game is backward induction to find the
subgame perfect equilibrium (SPE) [82]. Subgame perfect equilibrium (or simply,
equilibrium) represents a Nash equilibrium of every subgame of the original game.
In this chapter, we start with Stage III and analyze the users’ behaviors given the
operators’ investment and pricing decisions. Then we look at Stage II and analyze
how operators make the pricing decisions taking the users’ demands in Stage III into
consideration. Finally, we look at the operators’ leasing decisions in Stage I knowing
the results in Stages II and III. Throughout the chapter, we will use “bandwidth”,
“spectrum”, and “resource” interchangeably.
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In the following analysis, we only focus on pure strategy SPE and rule out mixed
SPE in the multi-stage game.5 Such a methodology has been widely used in the
literature [96, 97]. Following the definition in Ref. [96], we use conditionally SPE
to denote an SPE with pure strategies only, where the network’s pure strategies
constitute a Nash equilibrium in every subgame. The concept of conditionally SPE
is motivated by the concept of SPE but rules out mixed strategies. In Sect. 3.3.2, we
will show that a conditionally SPE will not include any investment decisions (Bi , B j )

in the medium investment regime in Stage I. Otherwise there is no pure strategy Nash
equilibrium for pricing in Stage II, and it will not be a conditionally SPE.6

Following very similar statements in Ref. [96], we list several reasons to focus on
conditionally SPE in this chapter without considering mixed strategies.

• First, we want to emphasize the result that a pure strategy pricing equilibrium may
not exist in Stage II, as this result highlights the very important Edgeworth para-
dox for the medium investment regime (which will be introduced in Sect. 3.3.2).
Such result reveals the special structure of our problem and leads to important
engineering insights for practical network design.

• Second, a standard criticism of mixed strategy equilibrium is that they impose very
large informational burdens on users [82]. If operators choose prices according to
mixed strategies, users need to consider price distributions (from which the final
prices will be drawn by operators) when they choose which operator to purchase
from. When the operators’ leasing costs change over time, the leasing amounts
and the corresponding mixed pricing strategies can also be time-varying. Given
all these complexities, it is unlikely that end users will have the computational
capacities and willingness to calculate the “equilibrium choices” in real spectrum
market. In other words, the analysis results when allowing mixed strategies may
not be very relevant for engineering practice.

• Third, two operators need to run the randomization procedure in the pricing stage of
each time slot if they adopt mixed pricing strategies. However, such randomization
over time may be too complicated to implement in practice in a short time scale
[94].

In the following analysis, we derive the conditionally SPE, which is also referred
to as equilibrium for simplicity.

3.3.1 Spectrum Allocation in Stage III

In Stage III, each user needs to make the following two decisions based on the prices
pi and p j announced by the operators in Stage II:

5 For interested readers, we have provided some preliminary analysis of mixed strategy SPE in
Ref. [90].
6 If we do not focus on the concept of conditionally SPE, there may be an SPE with mixed strategies.
For example, in the pricing subgame in Stage II, mixed pricing strategy Nash equilibrium can exist
in the medium investment regime, which is supported by our analysis in Ref. [90, 95].



44 3 Secondary Spectrum Market Under Operator Competition

1. Which operator to choose?
2. How much to purchase?

If a user k ∈ K obtains bandwidth wki from operator i , then its payoff uk(pi , wki )

is given in (3.3). Since this payoff is concave in wki , the unique demand that maxi-
mizes the payoff is

w∗
ki (pi ) = arg max

wki ≥0
uk(pi , wki ) = gke−(1+pi ). (3.5)

Demand w∗
ki (pi ) is always positive, linear in gk , and decreasing in price pi . Since gk

is linear in channel gain hk and transmission power Pmax
k , then a user with a better

channel condition or a larger transmission power has a larger demand. It is clear that
w∗

ki (pi ) is upper-bounded by gke−1 for any choice of price pi ≥ 0. In other words,
even if operator i announces a zero price, user k will not purchase infinite amount of
resource since it can not decode the transmission if SNRk = gk/wki is low.

Equation (3.5) shows that every user purchasing bandwidth from operator i obtains
the same SNR

SNRk = gk

w∗
ki (pi )

= e1+pi ,

and obtains a payoff linear in gk

uk(pi , w∗
ki (pi )) = gke−(1+pi ).

3.3.1.1 Which Operator to Choose?

Next we explain how each user decides which operator to purchase from. The fol-
lowing definitions help the discussions.

Definition 3.1 The Preferred User Set K P
i includes the users who prefer to pur-

chase from operator i .

Definition 3.2 The Preferred Demand Di is the total demand from users in the
preferred user set K P

i , i.e.,

Di (pi , p j ) =
∑

k∈K P
i (pi ,p j )

gke−(1+pi ). (3.6)

The notations in (3.6) imply that both set K P
i and demand Di only depend

on prices (pi , p j ) in Stage II and are independent of operators’ leasing decisions
(Bi , B j ) in Stage I. Such dependance can be discussed in two cases:

1. Different Prices (pi < p j ): every user k ∈ K prefers to purchase from operator
i since

uk(pi , w∗
ki (pi )) > uk(p j , w∗

k j (p j )).
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We have K P
i = K and K P

j = ∅, and

Di (pi , p j ) = Ge−(1+pi ) and D j (pi , p j ) = 0,

where G = ∑
k∈K gk represents the aggregate wireless characteristics of the

users. This notation will be used heavily later in the chapter.
2. Same Prices (pi = p j = p): every user k ∈ K is indifferent between the

operators and randomly chooses one with equal probability. In this case,

Di (p, p) = D j (p, p) = Ge−(1+p)/2.

Now let us discuss how much demand an operator can actually satisfy, which
depends on the bandwidth investment decisions (Bi , B j ) in Stage I. It is useful to
define the following terms.

Definition 3.3 The Realized User Set K R
i includes the users whose demands are

satisfied by operator i .

Definition 3.4 The Realized Demand Qi is the total demand of users in the Realized
User Set K R

i , i.e.,

Qi
(
Bi , B j , pi , p j

) =
∑

k∈K R
i (Bi ,B j ,pi ,p j)

gke−(1+pi ).

Notice that both K R
i and Qi depend on prices (pi , p j ) in Stage II and leas-

ing decisions (Bi , B j ) in Stage I. Calculating the Realized Demands also requires
considering two different pricing cases.

1. Different prices (pi < p j ): The Preferred Demands are Di (pi , p j ) = Ge−(1+pi )

and D j (pi , p j ) = 0.

• If Operator i has enough resource
(
i.e., Bi ≥ Di

(
pi , p j

))
: all Preferred

Demand will be satisfied by operator i . The Realized Demands are

Qi = min(Bi , Di (pi , p j )) = Ge−(1+pi ),

Q j = 0.

• If Operator i has limited resource
(
i.e., Bi < Di

(
pi , p j

))
: since operator

i cannot satisfy the Preferred Demand, some demand will be satisfied by
operator j if it has enough resource. Since the realized demand

Qi (Bi , B j , pi , p j ) = Bi =
∑

k∈K R
i

gke−(1+pi ),
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then
∑

k∈K R
i

gk = Bi e1+pi .7 The remaining users want to purchase

bandwidth from operator j with a total demand of G−Bi e1+pi

e1+p j
. Thus the Real-

ized Demands are

Qi = min(Bi , Di (pi , p j )) = Bi ,

Q j = min

(

B j ,
G − Bi e1+pi

e1+p j

)

.

2. Same prices (pi = p j = p): both operators will attract the same Preferred
Demand Ge−(1+p)/2. The Realized Demands are

Qi = min
(
Bi , Di (p, p) + max

(
D j (p, p) − B j , 0

))

= min

(

Bi ,
G

2e1+p
+ max

(
G

2e1+p
− B j , 0

))

,

Q j = min
(
B j , D j (p, p) + max (Di (p, p) − Bi , 0)

)

= min

(

B j ,
G

2e1+p
+ max

(
G

2e1+p
− Bi , 0

))

.

3.3.2 Operators’ Pricing Competition in Stage II

In Stage II, the two operators simultaneously determine their prices (pi , p j ) con-
sidering the users’ preferred demands in Stage III, given the investment decisions(
Bi , B j

)
in Stage I.

An operator i’s profit is defined earlier in (3.4). Since the payment Bi Ci is fixed
at this stage, operator i’s profit maximization problem is equivalent of maximization
of its revenue pi Qi . Note that users’ total demand Qi to operator i depends on the
received power of each user (product of its transmission power and channel gain). We
assume that an operator i knows users’ transmission powers and channel conditions.
This can be achieved similarly as in today’s cellular networks, where users need to
register with the operator when they enter the network and frequently feedback the
channel conditions. Thus we assume that an operator knows the user population and
user demand.

Game 1 (Pricing Game) The competition between the two operators in Stage II
can be modeled as the following game:

• Players: two operators i and j .

7 In this chapter, we consider a large number of users and each user is non-atomic (infinitesimal).
Thus an individual user’s demand is infinitesimal to an operator’s supply and we can claim equality
holds for Qi = Bi .
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• Strategy space: operator i can choose price pi from the feasible set Pi = [0,∞).
Similarly for operator j .

• Payoff function: operator i wants to maximize the revenue pi Qi (Bi , B j , pi , p j ).
Similarly for operator j .

At an equilibrium of the pricing game, (p∗
i , p∗

j ), each operator maximizes its
payoff assuming that the other operator chooses the equilibrium price, i.e.,

p∗
i = arg max

pi ∈Pi

pi Qi (Bi , B j , pi , p∗
j ), i = 1, 2, i �= j.

In other words, no operator wants to unilaterally change its pricing decision at an
equilibrium.

Next we will investigate the existence and uniqueness of the pricing equilibrium.
First, we show that it is sufficient to only consider symmetric pricing equilibrium for
Game 1.

Proposition 3.1 Assume both operators lease positive bandwidth in Stage I, i.e.,
min

(
Bi , B j

)
> 0. If pricing equilibrium exists, it must be symmetric p∗

i = p∗
j .

The proof of Proposition 3.1 is given in Ref. [90]. The intuition is that no operator
will announce a price higher than its competitor to avoid losing its Preferred Demand.
This property significantly simplifies the search for all possible equilibria.

Next we show that the symmetric pricing equilibrium is a function of (Bi , B j ) as
shown in Fig. 3.3.

Theorem 3.1 The equilibria of the pricing game are as follows.

• Low Investment Regime: (Bi + B j ≤ Ge−2 as in region (L) of Fig. 3.3): there
exists a unique nonzero pricing equilibrium

(L ): Unique nonzero equilibrium

(M1)-(M 3): No equilibrium

(H ): Unique zero equilibrium

iB

jB
0

( )L

( 1)M

( 2)M ( 3)M

( )H

exp( 1)G -

exp( 1)G -

exp( 2)G -

exp( 2)G -

Fig. 3.3 Pricing equilibrium types in different (Bi , B j )
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p∗
i (Bi , B j ) = p∗

j (Bi , B j ) = ln

(
G

Bi + B j

)

− 1. (3.7)

The operators’ profits in Stage II are

πI I, i (Bi , B j ) = Bi

(

ln

(
G

Bi + B j

)

− 1 − Ci

)

, (3.8)

πI I, j (Bi , B j ) = B j

(

ln

(
G

Bi + B j

)

− 1 − C j

)

. (3.9)

• Medium Investment Regime (Bi + B j > Ge−2 and min(Bi , B j ) < Ge−1 as in
regions (M1)–(M3) of Fig. 3.3): there is no pricing equilibrium.

• High Investment Regime (min(Bi , B j ) ≥ Ge−1 as in region (H) of Fig. 3.3):
there exists a unique zero pricing equilibrium

p∗
i (Bi , B j ) = p∗

j (Bi , B j ) = 0,

and the operators’ profits are negative for any positive values of Bi and B j .

Proof of Theorem 3.1 is given in Appendix 3.8.1. Intuitively, higher investments
in Stage I will lead to lower equilibrium prices in Stage II. Theorem 3.1 shows
that the only interesting case is the low investment regime where both operators’
total investment is no larger than Ge−2, in which case there exists a unique positive
symmetric pricing equilibrium. Notice that same prices at equilibrium do not imply
same profits, as the operators can have different costs (Ci and C j ) and thus can make
different investment decisions (Bi and B j ) as shown next.

Note that our equilibrium results in medium investment regime are consistent
with the well-known Edgeworth paradox [68] in economics. Edgeworth paradox
describes a situation where two players cannot reach a state of equilibrium with
pure strategies. Each operator faces capacity constraints when determining pricing
decisions in Stage II. The choice of both operators charging zero prices is not an
equilibrium in the medium investment regime, since at least one operator can raise
its price and obtain non-zero revenue. Nor is the case where one operator charges
less the other an equilibrium, since the lower price operator can profitably raise its
price towards the other. Nor is the case where both operators charge the same positive
price, since at least one operator can lower its price slightly and increase its profit.

The above non-equilibrium cases will not happen in the low investment regime
where operators have very limited resources. This is because that in the low invest-
ment regime no operator can satisfy the whole demand alone, and thus it is possible
for the two operators to share the market at the equilibrium.

Also, these non-equilibrium cases will not happen in the high investment regime,
where both operators have more resources than users’ total demand even the price is
zero. In this regime, we can ignore the resource constraints (similar to the Bertrand
competition) and the zero price equilibrium is the same as the Bertrand paradox [69].
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In the Bertrand paradox, either operator deviating from zero price cannot attract any
demand from its competitor who can already serve all users.

3.3.3 Operators’ Leasing Strategies in Stage I

In Stage I, the operators need to decide the leasing amounts (Bi , B j ) to maximize
their profits. Based on Theorem 3.1, we only need to consider the case where the
total bandwidth of both the operators is no larger than Ge−2. We emphasize that the
analysis of Stage I is not limited to the case of low investment regime; we actually
also consider the medium investment regime and the high investment regime. The
key observation is that an SPE will not include any investment decisions (Bi , B j ) in
the medium investment regime, as it will not lead to a pricing equilibrium in Stage II.
Moreover, any investment decisions in the high investment regime lead to zero oper-
ator revenues and are strictly dominated by any decisions in low investment regime.
After the above analysis, the operators only need to consider possible equlibria in
the low investment regime in Stage I.

Game 2 (Investment Game) The competition between the two operators in Stage
I can be modeled as the following game:

• Players: two operators i and j .
• Strategy space: the operators will choose (Bi , B j ) from the set B = {(Bi , B j ):

Bi + B j ≤ Ge−2}. Notice that the strategy space is coupled across the operators,
but the operators do not cooperate with each other.

• Payoff function: the operators want to maximize their profits in (3.8) and (3.9),
respectively.

At an equilibrium of the investment game, (B∗
i , B∗

j ), each operator has maximized
its payoff assuming that the other operator chooses the equilibrium investment, i.e.,

B∗
i = arg max

0≤Bi ≤Ge−2−B∗
j

πI I,i (Bi , B∗
j ), i = 1, 2, i �= j.

To calculate the investment equilibria of Game 2, we can first calculate operator i’s
best response given operator j’s (not necessarily equilibrium) investment decision,
i.e.,

B∗
i (B j ) = arg max

0≤Bi ≤Ge−2−B j

πI I,i (Bi , B j ), i = 1, 2, i �= j.

By looking at operator i’s profit in (3.8), we can see that a larger investment decision
Bi will lead to a smaller price. The best choice of Bi will achieve the best tradeoff
between a large bandwidth and a small price.

After obtaining best investment responses of duopoly, we can then calculate the
investment equilibria, given different costs Ci and C j .
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1j iC C= +

( )L

1

10
iC

jC

( )HC

( )HI

( ')HI

1j iC C= −

(L ) : Infinitely many equilibria

(HC ) : Unique equilibrium

(HI )(HI’ ) : Unique equilibrium

Fig. 3.4 Leasing equilibrium types in different (Ci , C j )

Theorem 3.2 The duopoly investment (leasing) equilibria in Stage I are summarized
as follows.

• Low Costs Regime (0 < Ci + C j ≤ 1, as region (L) in Fig. 3.4): there exists
infinitely many investment equilibria characterized by

B∗
i = ρGe−2, B∗

j = (1 − ρ)Ge−2, (3.10)

where ρ can be any value that satisfies

C j ≤ ρ ≤ 1 − Ci . (3.11)

The operators’ profits are
π L

I,i = B∗
i (1 − Ci ),

π L
I, j = B∗

j (1 − C j ),

where “L” denotes the low costs regime.
• High Comparable Costs Regime (Ci + C j > 1 and |C j − Ci | ≤ 1, as region

(HC) in Fig. 3.4): there exists a unique investment equilibrium

B∗
i = (1 + C j − Ci )G

2
e− Ci +C j +3

2 , (3.12)

B∗
j = (1 + Ci − C j )G

2
e− Ci +C j +3

2 . (3.13)

The operators’ profits are
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π HC
I,i =

(
1 + C j − Ci

2

)2

Ge
−

( Ci +C j +3
2

)

,

π HC
I, j =

(
1 + Ci − C j

2

)2

Ge
−

( Ci +C j +3
2

)

,

where “HC” denotes the high comparable costs regime.
• High Incomparable Costs Regime (C j > 1 + Ci or Ci > 1 + C j , as regions

(H I ) and (H I ′) in Fig. 3.4): For the case of C j > 1 + Ci , there exists a unique
investment equilibrium with

B∗
i = Ge−(2+Ci ), B∗

j = 0,

i.e., operator i acts as the monopolist and operator j is out of the market. The
operators’ profits are

π H I
I,i = Ge−(2+Ci ), π H I

I, j = 0,

where “H I ” denotes the high incomparable costs. The case of Ci > 1 + C j can
be analyzed similarly.

The proof of Theorem 3.2 is given in Appendix 3.8.2. Let us further discuss the
properties of the investment equilibrium in three different costs regimes.

3.3.3.1 Low Costs Regime (0 < Ci + C j ≤ 1)

In this case, both the operators have very low costs. It is the best response for each
operator to lease as much as possible. However, since the strategy set in the Investment
Game is coupled across the operators (i.e., B = {(Bi , B j ) : Bi +B j ≤ Ge−2}), there
exist infinitely many ways for the operators to achieve the maximum total leasing
amount Ge−2. We can further identify the focal point, i.e., the equilibrium that the
operators will agree on without prior communications [82]. The details can be found
in our online technical report [90].

3.3.3.2 High Comparable Costs Regime (Ci + C j > 1 and |C j − Ci | ≤ 1)

First, the high costs discourage the operators from leasing aggressively, thus the total
investment is less than Ge−2. Second, the operators’ costs are comparable, and thus
the operator with the slightly lower cost does not have sufficient power to drive the
other operator out of the market.
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3.3.3.3 High Incomparable Costs Regime (C j > 1 + Ci or Ci > 1 + C j )

First, the costs are high and thus the total investment of two operators is less than
Ge−2. Second, the costs of the two operators are so different that the operator with
the much higher cost is driven out of the market. As a result, the remaining operator
thus acts as a monopolist.

3.4 Equilibrium Summary

Based on the discussions in Sect. 3.3, we summarize the equilibria of the three-
stage game in Table 3.2, which includes the operators’ investment decisions, pricing
decisions, and the resource allocation to the users. Without loss of generality, we
assume Ci ≤ C j in Table 3.2. The equilibrium for Ci > C j can be decribed similarly.

Several interesting observations are as follows.

Observation 7 The operators’ equilibrium investment decisions B∗
i and B∗

j are lin-
ear in the users’ aggregate wireless characteristics G

(= ∑
k∈K gk = ∑

k∈K Pmax
k hk/n0

)
.

This shows that the operators’ total investment increases with the user population,
users’ channel gains, and users’ transmission powers.

Observation 8 The symmetric equilibrium price p∗
i = p∗

j does not depend on users’
wireless characteristics.

Observations 7 and 8 are closely related. Since the total investment is linearly pro-
portional to the users’ aggregate characteristics, the “average” equilibrium resource
allocation per user is “constant” and does not depend on the user population. Since
resource allocation is determined by the price, this means that the price is also inde-
pendent of the user population and wireless characteristics.

Observation 9 The operators can determine different equilibrium leasing and pric-
ing decisions by observing some linear thresholds in Figs. 3.3 and 3.4.

For equilibrium investment decisions in Stage I, the feasible set of investment
costs can be divided into three regions by simple linear thresholds as in Fig. 3.4. As
leasing costs increase, operators invest less aggressively; as the leasing cost difference
increases, the operator with a lower cost gradually dominates the spectrum market.
For the equilibrium pricing decisions, the feasible set of leasing bandwidths is also
divided into three regions by simple linear thresholds as well. A meaningful pricing
equilibrium exists only when the total available bandwidth from the two operators
is no larger than a threshold (see Fig. 3.3).

Observation 10 Each user k’s equilibrium demand is positive, linear in its wireless
characteristic gk, and decreasing in the price. Each user k achieves the same SNR
independent of gk, and obtains a payoff linear in gk.
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Observation 10 shows that the users receive fair resource allocation and service
quality. Such allocation does not depend on the wireless characteristics of the other
users.

Observation 11 In the High Incomparable Costs Regime, users’ equilibrium SNR
increases with the costs Ci and C j , and the equilibrium payoffs decrease with the
costs.

As the costs Ci and C j increase, the pricing equilibrium (p∗
i = p∗

j ) increases to
compensate the loss of the operators’ profits due to increased costs. As a result, each
user will purchase less bandwidth from the operators. Since a user spreads its total
power across the entire allocated bandwidth, a smaller bandwidth means a higher
SNR but a smaller payoff. Finally, we observe that the users achieve a high SNR
at the equilibrium. The minimum equilibrium SNR that users achieve among the
three costs regime is e2. In this case, the ratio between the high SNR approximation
and Shannon capacity, ln(SNR)/ ln(1+SNR), is larger than 94 %. This validates our
assumption on the high SNR regime. The next section, on the other hand, shows that
most of the insights remain valid in the general SNR regime.

3.4.1 How Network Dynamics Affect Equilibrium Decisions

Our analysis so far has not considered network dynamics, as we have focused on a
single time slot where an operator knows users’ channel conditions through proper
feedback mechanisms. In this subsection, we will look at how the equilibrium results
in Table 3.2 change over multiple time slots with the network dynamics. Note that
operators still have the complete network information in each time slot. Users are
myopic in the sense that they do not take into account the effect of time-varying
network parameters on future prices when they determine bandwidth demand in the
current time slot.

First, we consider the case where the spectrum available for leasing changes
over time. Intuitively, when a primary operator faces a strong demand from its own
primary users, it will have less spectrum resource for the virtual operator and will set
a higher leasing cost. Here, we look at the case where operators’ leasing costs Ci and
C j change over time according to some Markov decision processes. We write two
costs as Ci (t) and C j (t) to emphasize their dependancies in time. For the illustration
purpose, we consider three possible values for both Ci (t) and C j (t): 0.4, 0.8, and 2,
and the transition probabilities (same for two operators) are shown in Fig. 3.5.

Figure 3.6 shows how costs Ci (t) and C j (t), equilibrium leasing decisions B∗
i

and B∗
j , and pricing decisions p∗

i and p∗
j change over time. Here we represent a

price N/A in Table 3.2 as a zero price. This means that whenever we see a zero
price in the figure, the corresponding operator does not participate in the game and
the other operator becomes the monopoly in the market. We observe that as an
operator’s leasing cost increases, its leasing amount decreases. The operator with a
lower cost will lease more and will become the monopolist if its cost is much lower
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Fig. 3.5 Transition matrix
of Ci (t) and C j (t) over time
slots
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than its competitor (i.e., with |C j (t) − Ci (t)| > 1 in the high incomparable costs
regime). In this case, its competitor decides not to lease. As costs increase, operators’
symmetric prices tend to increase to compensate the costs. When two costs are low
(with Ci (t) + C j (t) ≤ 1), both operators announce the same high price.

Second, we can consider the dynamics of users’ channel gains and their popu-
lation over time. Users’ channel gains may follow, for example, different Rayleigh
distributions. Also, there can be users departing or entering the network over different
time slots. As a result, users’ aggregate wireless characteristics G will change over
time. Table 3.2 has clearly shown that operators’ leasing amounts and profits will
change proportionally to G. But the equilibrium prices will not be affected, since
operators will balance their leasing amounts with users’ demands. For the sake of
space, we will not show additional plots for this case.
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Fig. 3.7 Pricing equilibrium
types in different (Bi , B j )
regions for general SNR
regime

3.5 Equilibrium Analysis Under General SNR Regime

In Sects. 3.3 and 3.4, we computed the equilibria of the three-stage game based on
the high SNR assumption in (3.2), and obtained five important observations (Obser-
vations 1–5). The high SNR assumption enables us to obtain closed-form solutions
of the equilibria analysis and clear engineering insights.

In this section, we further consider the more general SNR regime where a user’s
rate is computed according to (3.1) instead of (3.2). We will follow a similar back-
ward induction analysis, and extend Observations 7, 8, 10, 11, and pricing threshold
structure of Observation 9 to the general SNR regime.

We first examine the pricing equilibrium in Stage II.

Theorem 3.3 Define Bth : = 0.462G. The pricing equilibria in the general SNR
regime are as follows.

• Low Investment Regime (Bi + B j ≤ Bth as in region (L) of Fig. 3.7): there exists
a unique pricing equilibrium

p∗
i (Bi , B j ) = p∗

j (Bi , B j ) = ln

(

1 + G

Bi + B j

)

− G

Bi + B j + G
. (3.14)

The operators’ profits in Stage II are

πi (Bi , B j ) = Bi

[

ln

(

1 + G

Bi + B j

)

− G

Bi + B j + G
− Ci

]

, (3.15)

π j (Bi , B j ) = B j

[

ln

(

1 + G

Bi + B j

)

− G

Bi + B j + G
− C j

]

. (3.16)

• High Investment Regime (Bi + B j > Bth as in region (H) of Fig. 3.7): there is
no pricing equilibrium.
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Proof of Theorem 3.3 is given in Ref. [90]. This result is similar to Theorem 3.1
in the high SNR regime, and shows that the pricing equilibrium in the general SNR
regime still has a threshold structure in Observation 9.

Unlike Theorem 3.1, here we only have two investment regimes. The “high
investment regime” in Theorem 3.1 is gone, and the “medium investment regime”
in Theorem 3.1 corresponds to the high investment regime here. Intuitively, the high
SNR assumption in Sect. 3.3 requires each user to demand relatively small amount of
bandwidth to spread its transmission power efficiently, thus the users’ total demand
is not elastic to prices and is always upper-bounded by Ge−1 in Fig. 3.3. But in
the general SNR case, users’ demands are elastic to prices and is no longer upper-
bounded. Hence, we only have two regimes here. For more details, please refer to
Ref. [90].

Based on Theorem 3.3, we are ready to prove Observations 7, 8, 10, and 11 in the
general SNR regime.

Theorem 3.4 Observations 7, 8, 10, and 11 in Sect. 3.4 still hold for the general
SNR regime.

Proof of Theorem 3.4 is given in Ref. [90].

3.6 Impact of Operator Competition

We are interested in understanding the impact of operator competition on the opera-
tors’ profits and the users’ payoffs. As a benchmark, we will consider the coordinated
case where both operators jointly make the investment and pricing decisions to max-
imize their total profit. In this case, there does not exists competition between the two
operators. However, it is still a Stackelberg game between a single decision maker
(representing both operators) and the users. Then we will compare the equilibrium
of this Stackelberg game with that of the duopoly game as in Sect. 3.4.

3.6.1 Maximum Profit in the Coordinated Case

We analyze the coordinated case following a three stage model as shown in Fig. 3.8.
Compared with Fig. 3.2, the key difference here is that a single decision maker
makes the decisions for two operators in both Stages I and II. In other words, the two
operators coordinate with each other.

Again we use backward induction to analyze the three-stage game. The analysis
of Stage III in terms of the spectrum allocation among the users is the same as in
Sect. 3.3.1 (still assuming the high SNR regime), and we focus on Stages II and I.
Without loss of generality, we assume that Ci ≤ C j .

In Stage II, the decision maker maximizes the following total profit Tπ by deter-
mining prices pi and p j :
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Stage I: A decision maker determines leasing amounts Bi and B j

Stage II: The decision maker announces prices pi and p j to market

Stage III: Each end-user determines its bandwidth demand from one operator

Fig. 3.8 The three-stage Stackelberg game for the coordinated operators

Tπ (Bi , B j , pi , p j ) = πi (Bi , B j , pi , p j ) + π j (Bi , B j , pi , p j ),

where πi (Bi , B j , pi , p j ) is given in (3.4) and π j (Bi , B j , pi , p j ) can be obtained
similarly.

Theorem 3.5 In Stage II, the optimal pricing decisions for the coordinated operators
are as follows:

• If Bi > 0 and B j = 0, then operator i is the monopolist and announces a price

pco
i (Bi , 0) = ln

(
G

Bi

)

− 1. (3.17)

Similar result can be obtained if Bi = 0 and B j > 0.
• If min(Bi , B j ) > 0, then both operator i and j announce the same price

pco
i (Bi , B j ) = pco

j (Bi , B j ) = ln

(
G

Bi + B j

)

− 1.

Proof of Theorem 3.5 can be found in Ref. [90]. Theorem 3.5 shows that both
operators will act together as a monopolist in the pricing stage.

Now let us consider Stage I, where the decision maker determines the leasing
amounts Bi and B j to maximize the total profit:

max
Bi ,B j ≥0

Tπ (Bi , B j ) = max
Bi ,B j ≥0

Bi (pco
i (Bi , B j ) − Ci ) + B j (pco

j (Bi , B j ) − C j ),

(3.18)
where pco

i (Bi , B j ) and pco
j (Bi , B j ) are given in Theorem 3.5. In this case, operator

j will not lease (i.e., Bco
j = 0) as operator i can lease with a lower cost. Thus the

optimization problem in (3.18) degenerates to

max
Bi ≥0

Tπ (Bi ) = max
Bi ≥0

Bi (pco
i (Bi , 0) − Ci ).

This leads to the following result.
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Theorem 3.6 In Stage I, the optimal investment decisions for the coordinated
operators are

Bco
i (Ci , C j ) = Ge−(2+Ci ), Bco

j (Ci , C j ) = 0, (3.19)

and the total profit is
T co

π (Ci , C j ) = Ge−(2+Ci ).

3.6.2 Impact of Competition on Operators’ Profits

Let us compare the total profit obtained in the competitive duopoly case
(Theorem 3.2) and the coordinated case (Theorem 3.6).

3.6.2.1 Low Costs Regime (0 < Ci + C j ≤ 1)

First, the total equilibrium leasing amount in the duopoly case is B∗
i + B∗

j = Ge−2,

which is larger than the total leasing amount Ge−(2+Ci ) in the coordinated case. In
other words, operator competition leads to a more aggressive overall investment.
Second, the total profit at the duopoly equilibria is

T L
π (Ci , C j , ρ) = [ρ(1 − Ci ) + (1 − ρ)(1 − C j )]Ge−2,

where ρ can be any real value in the set of [C j , 1−Ci ]. Each choice of ρ corresponds
to an investment equilibrium and there are infinitely many equilibria in this case as
shown in Theorem 3.2. The minimum profit ratio between the duopoly case and the
coordinated case optimized over ρ is

TπR
L(Ci , C j ) � min

ρ∈[C j ,1−Ci ]
T L

π (Ci , C j , ρ)

T co
π (Ci , C j )

.

Since T L
π (Ci , C j , ρ) is increasing in ρ, the minimum profit ratio is achieved at

ρ∗ = C j .

This means
TπR

L(Ci , C j ) = [C j (1 − Ci ) + (1 − C j )
2]eCi . (3.20)

Although (3.20) is a non-convex function of Ci and C j , we can numerically compute
the minimum value over all possible values of costs in this regime

min
(Ci ,C j ):0<Ci +C j ≤1

TπR
L(Ci , C j ) = lim

ε→0
TπR

L(ε, 0.5 + ε) = 0.75.
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This means that the total profit achieved at the duopoly equilibrium is at least 75 % of
the total profit achieved in the coordinated case under any choice of cost parameters
in the Low Costs Regime.

3.6.2.2 High Comparable Costs Regime (Ci + C j > 1 and C j − Ci ≤ 1)

First, the total duopoly equilibrium leasing amount is B∗
i + B∗

j = Ge
−

( Ci +C j +3
2

)

which is greater than Ge−(2+Ci ) of the coordinated case. Again, competition leads
to a more aggressive overall investment. Second, the total profit of duopoly is

T HC
π (Ci , C j ) = 1 + (C j − Ci )

2

2
Ge− Ci +C j +3

2 .

And the profit ratio is

TπR
HC (Ci , C j ) � T HC

π (Ci , C j )

T co
π (Ci , C j )

= 1 + (C j − Ci )
2

2
e

1−(C j −Ci )
2 ,

which is a function of the cost difference C j −Ci . Let us write it asTπRHC (C j −Ci ).
We can show that it is a convex function and achieves its minimum at

min
(Ci ,C j ):Ci +C j >1,0≤C j −Ci ≤1

TπR
HC (C j − Ci ) = TπR

HC (2 − √
3) = 0.773.

3.6.2.3 High Incomparable Costs Regime (C j − Ci > 1)

In this case, only one operator leases a positive amount at the duopoly equilibrium
and achieves the same profit as in the coordinated case. The profit ratio is 1.

We summarize the above results as follows.

Theorem 3.7 (Operators’ Profit Loss). Comparing with the coordinated case, the
operator competition leads to a maximum total profit loss of 25 % in the low costs
regime.

Since low leasing costs lead to aggressive leasing decisions and thus intensive
competitions among operators, it is not surprising to see that the maximum profit
loss happens in the low cost regime. For detailed discussions on the relationship
between the profit loss and the costs, see our online technical report [90].
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3.6.3 Impact of Competition on Users’ Payoffs

Theorem 3.8 Comparing with the coordinated case, users obtain same or higher
payoffs under the operators’ competition.

By substituting (3.19) into (3.17), we obtain the optimal price in the coordinated
case as 1 + Ci . This means that user k’s payoff equals to gke−(2+Ci ) in all three
costs regimes. According to Table 3.2, users in the duopoly competition case have
the same payoffs as in coordinated case in the high incomparable costs regime. The
payoffs are larger in the other two costs regimes with the competitor competition.
The intuition is that operator competition in those two regimes leads to aggressive
investments, which results in lower prices and higher user payoffs.

3.7 Summary

Dynamic spectrum leasing enables the secondary network operators to quickly obtain
the unused resources from the primary operaotr and provide flexible services to
secondary end-users. This chapter studies the competition between two secondary
operators and examines the operators’ equilibrium investment and pricing decisions
as well as the users’ corresponding achieved service quality and payoffs.

We model the economic interactions between the operators and the users as a
three-stage dynamic game. Our appropriate OFDM-based spectrum sharing model
captures the wireless heterogeneity of the users in terms of maximum transmission
power levels and channel gains. The two operators engage in investment and pricing
competitions with asymmetric costs. We have discovered several interesting fea-
tures of the game’s equilibria. For example, the operators can determine different
equilibrium leasing and pricing decisions by observing some linear thresholds. We
also study the impact of operator competition on operators’ total profit loss and the
users’ payoff increases. Compared with the coordinated case where the two operators
cooperate to maximize their total profit, we show that at the maximum profit loss
due to competition is no larger than 25 %. We also show that the users always benefit
from competition by achieving the same or better payoffs. Although we have focused
on the high SNR regime when obtaining closed-form solutions, we show that most
engineering insights summarized in Sect. 3.4 still hold in the general SNR regime.
Due to the page limit, more detailed discussions and all proofs can be found in our
paper [90].
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3.8 Appendix

3.8.1 Proof of Theorem 3.1

Assume, without loss of generality, that Bi ≤ B j . Based on Proposition 3.1,
in the following analysis we examine all possible (Bi , B j ) regions labeled (a)–(f)
in Fig. 3.9, and check if there exists a symmetric pricing equilibrium (i.e., p∗

i = p∗
j )

in each region.

(a) If B j ≥ Bi ≥ Ge−1, both the operators have adequate bandwidths to cover
the total preferred demand which reaches its maximum Ge−1 at zero price.

• if p∗
i = p∗

j > 0, then operator i attracts and realizes half of the total
preferred demand. But when operator i slightly decreases its price, it attracts
and realizes the total preferred demand, and thus doubles its revenue.

• if p∗
i = p∗

j = 0, any operator can not attract or realize any preferred demand
by unilaterally deviating from (increasing) its price.

Hence, p∗
i = p∗

j = 0 is the unique equilibrium in region (a).

(b–c) If Bi ≤ Ge−2 < Ge−1 ≤ B j or Ge−2 < Bi < Ge−1 ≤ B j , operator j has
adequate bandwidth while operator i only has limited bandwidth.

• if p∗
i = p∗

j > 0, then operator j will slightly reduce its price to attract and
realize the total preferred demand.

• if p∗
i = p∗

j = 0, then operator j will increase its price and still have positive
realized demand. This is because operator i does not have enough supply
to satisfy the total preferred demand.

Hence, there doesn’t exist an equilibrium in regions (b–c).
(d–e) If Ge−2 ≤ Bi ≤ B j < Ge−1 or Bi ≤ Ge−2 ≤ B j < Ge−1, we have

shown in the proof of Proposition 3.1 that possible pricing equilibrium will

Fig. 3.9 Different (Bi , B j )
regions
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not exceed 1. We find possible pricing equilibrium given operator j’s leasing
amount.

• if p∗
i = p∗

j > ln
(

G
B j

)
− 1, then operator j has enough bandwidth to cover

the total preferred demand and it will slightly decrease its price to attract a
larger preferred demand.

• if p∗
i = p∗

j ≤ ln
(

G
B j

)
− 1, then the operator j has limited bandwidth and

it will make decision depending on operator i’s supply.
– if Bi ≤ Ge−(1+p∗

j )/2, then the operator j will slightly decrease its price if
Bi + B j > Ge−(1+p∗

j ), or increase its price to 1 if Bi + B j ≤ Ge−(1+p∗
j ).

– if Bi > Ge−(1+p∗
j )/2, then the operator j will slightly reduce its price.

Hence, there doesn’t exist a pricing equilibrium in regions (d–e).
(f) If Bi ≤ B j ≤ Ge−2, we will first show that total supply equals total preferred

demand at any possible equilibrium (i.e., p∗
i = p∗

j = ln
(

G
Bi +B j

)
− 1).

• Suppose that at an equilibrium p∗
i = p∗

j < ln
(

G
Bi +B j

)
− 1 and thus the

total supply is less than the total preferred demand. Then operator j will
slightly increase its price without changing much its realized demand, and
thus receive a greater revenue.

• Suppose that at an equilibrium p∗
i = p∗

j ≥ ln
(

G
Bi +B j

)
− 1 and thus the

total supply is greater than the total preferred demand. Thus we have B j >

Ge−(1+p∗
j )/2. Operator j will slightly reduce its price to attract much more

preferred demand and receive a greater revenue.

Thus we have p∗
i = p∗

j = ln
(

G
Bi +B j

)
− 1 at any possible equilibrium. Then

we check if such (p∗
i , p∗

j ) is an equilibrium for the following two cases.

• If Bi + B j > Ge−2, then we have p∗
i = p∗

j < 1. Since operator j already
has its individual supply equal to its realized demand, then operator i acts
as a monopolist serving its own users in the monopolist’s high investment
regime in the proof of Proposition 3.1. Then operator i will increase its price
to 1.

• If Bi + B j ≤ Ge−2, then we have p∗
i = p∗

j ≥ 1. Each operator acts as a
monopolist serving its own users in the monopolist’s low investment regime
in the proof of Proposition 3.1. And it’s optimal for each operator to stick
with its current price.

Thus there exists a unique pricing equilibrium p∗
i = p∗

j = ln
(

G
Bi +B j

)
− 1

for the low investment regime Bi + B j ≤ Ge−2 in region ( f ).

The same results can be extended to symmetric regions (a′)–( f ′) in Fig. 3.9. �
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Fig. 3.10 Different (Ci , C j )
regions
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3.8.2 Proof of Theorem 3.2

The best investment response of operator i is summarized in Table 3.3 with detailed
proof in Ref. [90]. An investment equilibrium (B∗

i , B∗
j ) corresponds to a fixed

iteration point of two functions B∗
i (B j ) and B∗

j (Bi ). In the following analysis, we
examine all possible costs (Ci , C j ) regions labeled (I)–(III) in Fig. 3.10, and check
if there exists any equilibrium in each region.

(I) If Ci ≤ 1 and C j ≤ 1, both the operators are in low individual cost regime.

• If B∗
i ≥ C j Ge−2 and B∗

j ≥ Ci Ge−2, there exist infinitely many investment

equilibria characterized by (3.10) and (3.11). Since B∗
i ≥ C j Ge−2 and B∗

j ≥
Ci Ge−2, Ci + C j ≤ 1 is further required for existence of equilibria.

• If B∗
i < C j Ge−2 and B∗

j ≥ Ci Ge−2, then by solving equations B∗
i (B∗

j ) =
Ge−2 − B∗

j , and

Table 3.3 Best Investment Response B∗
i (B j ) of Operator i in Stage I

Response B∗
i (B j ) Low individual cost

0 < Ci ≤ 1
High individual cost Ci > 1

Small competitor’s decision
B j < Ci Ge−2

The solution to
∂πI I,i (Bi , B j )/∂ Bi = 0

N/A

Large competitor’s decision
B j ≥ Ci Ge−2

Ge−2 − B j N/A

Small competitor’s decision
B j < Ge−(1+Ci )

N/A The solution to
∂πI I,i (Bi , B j )/∂ Bi = 0

Large competitor’s decision
B j ≥ Ge−(1+Ci )

N/A 0
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∂πI I, j (Bi , B j )

∂ B j
|Bi =B∗

i ,B j =B∗
j
= 0,

we have B∗
i = C j Ge−2 and B∗

j = (1 − C j )Ge−2. But the value of B∗
i is not

smaller than C j Ge−2.
• If B∗

i ≥ C j Ge−2 and B∗
j < Ci Ge−2, we can also show that there does not

exist any equilibrium in this case by a similar argument as above.
• If B∗

i < C j Ge−2 and B∗
j < Ci Ge−2, then by solving equations

∂πI I,i (Bi , B j )

∂ Bi
|Bi =B∗

i ,B j =B∗
j
= 0,

∂πI I, j (Bi , B j )

∂ B j
|Bi =B∗

i ,B j =B∗
j
= 0,

we have B∗
i in (3.12) and B∗

j in (3.13). And Ci + C j > 1 is further required
for existence of this equilibrium.

Hence, in region (I), there exist infinitely many equilibria satisfying (3.10) and
(3.11) when Ci + C j ≤ 1, and there exists a unique equilibrium satisfying
(3.12) and (3.13) when Ci + C j > 1.

(II) If Ci > 1 and 0 < C j ≤ 1, operator i is in high individual cost regime and
operator j is in low individual cost regime.

• If B∗
i ≥ C j Ge−2 and B∗

j ≥ Ge−(1+Ci ), then we have B∗
i = 0 and B∗

j = Ge−2.

But the value of B∗
i is not greater than C j Ge−2.

• If B∗
i ≥ C j Ge−2 and B∗

j < Ge−(1+Ci ), then by solving equations B∗
j (B∗

i ) =
Ge−2 − B∗

i , and
∂πI I,i (Bi , B j )

∂ Bi
|Bi =B∗

i ,B j =B∗
j
= 0,

we have B∗
i = (1 − Ci )Ge−2 and B∗

j = Ci Ge−2. But the value of B∗
j is not

less than Ge−(1+Ci ).
• If B∗

i < C j Ge−2 and B∗
j ≥ Ge−(1+Ci ), then by solving equations B∗

i (B∗
j ) =

0, and
∂πI I, j (Bi , B j )

∂ B j
|Bi =B∗

i ,B j =B∗
j
= 0,

we have B∗
i = 0 and B∗

j = Ge−(2+C j ). And Ci > 1 + C j is further required
for existence of this equilibrium.

• B∗
i < C j Ge−2 and B∗

j < Ge−(1+Ci ), then by solving equations

∂πI I,i (Bi , B j )

∂ Bi
|Bi =B∗

i ,B j =B∗
j
= 0,
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∂πI I, j (Bi , B j )

∂ B j
|Bi =B∗

i ,B j =B∗
j
= 0,

we have B∗
i in (3.12) and B∗

j in (3.13). And Ci ≤ 1 + C j is further required
for existence of this equilibrium.

Hence, in region (II), there exists a unique investment equilibrium (B∗
i , B∗

j )
satisfying (3.12) and (3.13) when Ci ≤ 1 + C j , and there exists a unique
equilibrium satisfying B∗

i = 0 and B∗
j = Ge−(2+C j ) when Ci > 1 + C j .

(III) If Ci > 1 and C j > 1, then both the operators are in high individual cost
regime.

• If B∗
i < Ge−(1+C j ) and B∗

j < Ge−(1+Ci ), then by solving equations

∂πI I,i (Bi , B j )

∂ Bi
|Bi =B∗

i ,B j =B∗
j
= 0,

∂πI I, j (Bi , B j )

∂ B j
|Bi =B∗

i ,B j =B∗
j
= 0,

we have B∗
i in (3.12) and B∗

j in (3.13). And Ci − 1 < C j < Ci + 1 is further
required for existence of this equilibrium.

• If B∗
i < Ge−(1+C j ) and B∗

j ≥ Ge−(1+Ci ), then by solving equations
B∗

i (B∗
j ) = 0, and

∂π j (Bi , B j )

∂ B j
|Bi =B∗

i ,B j =B∗
j
= 0,

we have B∗
i = 0 and B∗

j = Ge−(2+C j ). And C j ≤ Ci − 1 is further required
for existence of this equilibrium.

• If B∗
i ≥ Ge−(1+C j ) and B∗

j < Ge−(1+Ci ), then we can similarly show that

there exists a unique equilibrium B∗
i = Ge−(2+Ci ) and B∗

j = 0 only when
C j ≥ Ci + 1.

• If B∗
i ≥ Ge−(1+C j ) and B∗

j ≥ Ge−(1+Ci ), then we have B∗
i = 0 and B∗

j = 0.

However, the value of B∗
i is not greater than Ge−(1+C j ).

Hence, in region (III), there exists a unique equilibrium satisfying (3.12) and
(3.13) when Ci −1 < C j < Ci +1; there exists a unique equilibrium satisfying
B∗

i = 0 and B∗
j = Ge−(2+C j ) when C j ≤ Ci − 1; and there exists a unique

equilibrium with B∗
i = Ge−(2+Ci ) and B∗

j = 0 when C j ≥ Ci + 1. The same
results can be extended to symmetric region (II′) in Fig. 3.10. �



Chapter 4
Conclusion

This book provides an overview of cognitive mobile virtual network operators’
decisions under investment flexibility, supply uncertainty, and market competition in
cognitive radio networks. This is a new research area at the nexus of cognitive radio
engineering and microeconomics. We propose two flexible approaches, i.e., spec-
trum sensing and dynamic spectrum leasing, to resolve the inflexible supply problem
for the virtual operators who are traditionally stuck in long-term leasing contracts
with spectrum owners. Our focus is the virtual operator’s joint spectrum investment
and service pricing decisions at a short time scale. Despite the investment flexibil-
ity, spectrum sensing would introduce supply uncertainty due to primary licensed
users’ stochastic traffic. Thus we examine how to tradeoff the two flexible invest-
ment approaches under supply uncertainty. Our results show that spectrum sensing
can significantly increase a virtual operator’s expected profit (up to 25 %), although
the realized profit in one time slot may decrease due to the availability of spectrum
sensing. When there are more than one operator, we analyze the operators’s compe-
tition in both spectrum acquisition and service pricing to attract local users. We show
that secondary users would benefit from the operator competition, and the market
regulator should advocate such competition (e.g., by lowing the entry barrier for the
wireless market).
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