

Advances in Real-Time Systems

Samarjit Chakraborty � Jörg Eberspächer
Editors

Advances in Real-Time
Systems

123

Editors
Samarjit Chakraborty
TU München
LS für RealzeitComputersysteme
Arcisstr. 21
80290 München
Germany
Samarjit.Chakraborty@rcs.ei.tum.de

Prof. Dr. Jörg Eberspächer
TU München
LS Kommunikationsnetze
Arcisstr. 21
80290 München
Germany
joerg.eberspaecher@tum.de

ISBN 978-3-642-24348-6 e-ISBN 978-3-642-24349-3
DOI 10.1007/978-3-642-24349-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011942997

Mathematics Subject Classification (2000): 01-01, 04-01, 11Axx, 26-01

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

To Georg Färber
on the occasion of his appointment as
Professor Emeritus at TU München after 34
illustrious years as the Head of the Lehrstuhl
für Realzeit-Computersysteme

Preface

This book is a tribute to Georg Färber on the occasion of his appointment as
Professor Emeritus at TU München after 34 years of service as the Head of the
Lehrstuhl für Realzeit-Computersysteme.

Georg Färber was born in 1940 and obtained his PhD in 1967 from TU
München. In an illustrious career, spanning over 40 years, Prof. Färber contributed
significantly to the area of real-time and embedded systems, in terms of both
education and research. His early research dealt with specification and design of
embedded systems and mapping of such specifications onto appropriate hardware
and software architectures. In particular, he was active in the area of computer-aided
process control, with a focus on distributed and fault-tolerant systems. Later, his
interests broadened into real-time capturing and interpretation of visual information,
especially in the context of robot vision. More recently, he has worked in the area of
cognitive automobiles, e.g., driver assistance systems and autonomous cars. Since a
number of years, Prof. Färber also took a keen interest in topics at the intersection
of engineering and medicine, in particular in those related to “e-health”.

In parallel to his research and teaching activities, Prof. Färber was a highly
successful entrepreneur. In 1969, along with his brother Eberhard Färber, he
founded PCS-Computersysteme GmbH. This company was once considered to be
among the most innovative IT companies in Munich and led to more than 20 other
spin-offs. Among other products, PCS developed the first UNIX Workstations in
Germany (named CADMUS), which were the only European alternatives to US-
based products for a long time. In 1986, Mannesmann/Kienzle became the majority
stakeholder of PCS, and Georg Färber provided the technical leadership during
1988-89, while on leave from TU München.

In addition to authoring one of the earliest books on real-time systems, Georg
Färber served as the editor of the journal “Information Technology” and is a member
of the Board of Trustees of the Fraunhofer-Institute for Information and Data
Processing (Fraunhofer IITB). He has also served in various – often advisory –
capacities at the DFG, the Max Planck Society, and in several other scientific and
industrial councils and German government agencies.

vii

viii Preface

Given Georg Färber’s remarkable achievements and his reputation, we invited a
number of well-known researchers to contribute a collection of chapters reflecting
the state of the art in the area of real-time systems. These chapters cover a
variety of topics spanning over automotive software and electronics, software timing
analysis, models for real-time systems, compilation of real-time programs, real-
time microkernels, and cyber-physical systems. We believe that this collection can
serve as a reference book for graduate-level courses. It will also be helpful to both
researchers in the academia and practitioners from the industry.

Munich, Germany Samarjit Chakraborty
Jörg Eberspächer

Contents

Part I Theoretical Foundations

1 System Behaviour Models with Discrete and Dense Time 3
Manfred Broy

2 Temporal Uncertainties in Cyber-Physical Systems . 27
Hermann Kopetz

3 Large-Scale Linear Computations with Dedicated
Real-Time Architectures . 41
Patrick Dewilde and Klaus Diepold

4 Interface-Based Design of Real-Time Systems . 83
Nikolay Stoimenov, Samarjit Chakraborty, and Lothar Thiele

5 The Logical Execution Time Paradigm . 103
Christoph M. Kirsch and Ana Sokolova

Part II Connecting Theory and Practice

6 Improving the Precision of WCET Analysis by Input
Constraints and Model-Derived Flow Constraints . 123
Reinhard Wilhelm, Philipp Lucas, Oleg Parshin, Lili Tan,
and Bjoern Wachter

7 Reconciling Compilation and Timing Analysis. 145
Heiko Falk, Peter Marwedel, and Paul Lokuciejewski

8 System Level Performance Analysis for Real-Time
Multi-Core and Network Architectures . 171
Jonas Rox, Mircea Negrean, Simon Schliecker,
and Rolf Ernst

ix

x Contents

9 Trustworthy Real-Time Systems . 191
Stefan M. Petters, Kevin Elphinstone, and Gernot Heiser

10 Predictably Flexible Real-Time Scheduling . 207
Gerhard Fohler

Part III Innovative Application Domains

11 Detailed Visual Recognition of Road Scenes for Guiding
Autonomous Vehicles . 225
Ernst D. Dickmanns

12 System Architecture for Future Driver Assistance Based
on Stereo Vision . 245
Thomas Wehking, Alexander Würz-Wessel,
and Wolfgang Rosenstiel

13 As Time Goes By: Research on L4-Based Real-Time Systems 257
Hermann Härtig and Michael Roitzsch

14 A Real-Time Capable Virtualized Information and
Communication Technology Infrastructure for
Automotive Systems . 275
S. Drössler, M. Eichhorn, S. Holzknecht, B. Müller-
Rathgeber, H. Rauchfuss, M. Zwick, E. Biebl, K. Diepold, J.
Eberspächer, A. Herkersdorf, W. Stechele, E. Steinbach, R.
Freymann, K.-E. Steinberg, and H.-U. Michel

15 Robot Basketball – A New Challenge for Real-Time Control 307
Georg Bätz, Kolja Kühnlenz, Dirk Wollherr, and Martin Buss

16 FlexRay Static Segment Scheduling . 323
Martin Lukasiewycz, Michael Glaß, Jürgen Teich, and Paul
Milbredt

17 Real-Time Knowledge for Cooperative Cognitive Automobiles 341
Christoph Stiller and Oliver Pink

Part I
Theoretical Foundations

Chapter 1
System Behaviour Models with Discrete
and Dense Time

Manfred Broy

1.1 Introduction and Motivation

The notion of system is present in many scientific disciplines. Biology speaks of
biological system. There are terms like economic system, ecological system, logical
system. The whole world can be understood as a dynamical system. Describing
systems, their structure and their dynamics by appropriate models is a major
goal of scientific disciplines. However, the different disciplines use quite different
notions, concepts, and models of systems. Mathematics, has developed differential
and integral theory over the centuries as one way of modelling and studying
systems in terms of mathematical models. Relevant system aspects are captured
by real valued variables that change dynamically and continuously depending
on the parameter of time. This way the system dynamics and the dependencies
between the system variables can be described by differential and integral equations.
The engineering discipline of modelling and designing systems applying these
mathematical modelling concepts is control theory.

Another way to capture and specify systems in terms of discrete events is logic.
Logic was developed originally as a branch of philosophy addressing the art and
science of reasoning. As a discipline, logic dates back to Aristotle, who established
its fundamental place in philosophy. Historically, logic was intended as a discipline
of capturing ways of thinking of human beings aiming at crisp lines of arguments.
Over the centuries, logic was further developed mainly as a basis for carrying
out proofs by formal logical deduction, leading to mathematical logic with its
foundations propositional logic and predicate logic in its many variations. With the
arrival of digital systems, logic became more and more also a technical discipline

M. Broy (�)
Institut für Informatik, Technische Universität München, 80290 München, Germany
e-mail: broy@in.tum.de

S. Chakraborty and J. Eberspächer (eds.), Advances in Real-Time Systems,
DOI 10.1007/978-3-642-24349-3 1, © Springer-Verlag Berlin Heidelberg 2012

3

4 M. Broy

for designing logical circuits and electronic devices. With software becoming more
significant in all kinds of information processing applications, more general forms of
logic were invented as the conceptual basis for engineering information processing
systems. For information processing systems, including embedded systems, many
different aspects are captured by various forms of logic both at the technical level
and the application domain level.

The logic of the behaviour of complex discrete event systems can be captured
by families of discrete events that are causally related with logically specified
properties.

In contrast to real-valued function based models of systems such as applied in
control theory, by logics we can capture better ways of arguing about systems.
When capturing requirements about systems such as in requirements engineering
in terms of natural language, a logical way of making requirements precise is
more appropriate than modelling behaviours by real time parameterized continuous
functions. On the other hand, when solving problems in control theory we finally
aim at mathematical descriptions of the system dynamics by differential and integral
equations.

In this paper we aim at a step integrating logical system views with system views
based on differential and integration calculus such as used in control theory. In
contrast to well-known approaches, where the step from a description of systems
by real valued functions into digital systems is performed using techniques of
discretization such as in numerical analysis, we are rather interested in the step
from a logical description of requirements to modelling of system behaviours
by continuous real valued functions and in a formal relationship between the
logical description of requirements and the real valued functions describing systems
dynamics.

We are aiming at systems that interact with their environment. Streams of data
for exchanging input and output capture this interaction. We consider both discrete
and continuous streams.

One way to describe interactive systems is state machines with input and output
also known as Mealy or Moore machines. These are machines, where in given states
input triggers transitions generating new states and output. I/O state machines define
computations, being infinite runs by their transitions. Given an initial state and an
infinite stream of input messages I/O machines produce infinite streams of states and
infinite streams of output messages. In so-called interface abstractions we forget
about the chain of states of computations and just keep the relation between the
input and output streams. This yields what we call an interface abstraction. Talking
only about interface properties we can formulate so-called interface assertions,
which describe logical relationships between the input and the output streams. They
specify the interface behaviour of I/O state machines.

In the following, we aim at techniques for modelling interfaces of discrete as well
as dense and continuous interactive systems. We define models of such systems and
discuss concepts how to specify, compose and relate them.

1 System Behaviour Models with Discrete and Dense Time 5

1.2 Hybrid Interactive Behaviours

The essential difference between a non-interactive and an interactive computation
lies in the way in which input is provided to the computing device before or
during the computation and how output is provided by the computing device to
its environment during or after the computation.

1.2.1 Streams, Channels, and Histories

In this section we briefly introduce the notions of stream, channel, and history.
Throughout this paper, we model interaction by message exchange over sequen-

tial communication media called channels. These message streams can be based
on discrete or dense time and may be discrete or – in the case of dense time –
continuous. In general, in an interactive computation, several communication
channels may participate. In our setting, a channel is simply an identifier for a
communication line. In the following, we distinguish input from output channels.
Throughout the paper, let I be a set of input channels, O be a set of output channels
and M be a set of messages.

A stream may be discrete or continuous. A stream has a data type that determines
the type of messages it carries. A stream can be finite or infinite.

1.2.1.1 Discrete Finite and Infinite Streams

Let M be a set of elements, called messages. We use the following notation (where
set NC is specified by NC D Nnf0g):
M� denotes the set of finite sequences, with elements of the set M, including the
empty sequence hi,
M1 denotes the set of infinite sequences with elements of the set M (that are
represented by the total mappings NC ! M).

By
M! D M� [M1

we denote the set of discrete untimed streams of elements of set M. Streams of
elements of set M are finite or infinite sequences of elements of set M.

The set of streams has a rich algebraic and topological structure. We make use of
only parts of this structure. We introduce concatenation ˆ as an operator on streams
written in infix notation:

O W M! � M! ! M!

On finite streams concatenation is defined as usual on finite sequences. For infinite
streams r, s: NC ! M and finite stream x 2 M� we define the result of concatenation
for infinite streams as follows:

6 M. Broy

sOx D s

sOr D s

hx1 : : : xniOhs1 : : :i D hx1 : : : xns1 : : :i

We may represent finite streams by total functions f1; : : :; tg ! M or also by partial
functions NC ! M and infinite streams by total functions NC ! M.

Streams are used to represent the flow of messages sent over a communication
channel during the lifetime of a system. Of course, in concrete physical systems this
communication takes place in a specific time frame. Hence, it is often convenient or
even essential to be able to refer to time. Moreover, with an explicit notion of time
the theory of feedback loops in networks of communicating components gets even
simpler (see [1]). Therefore we prefer to work with timed streams.

Streams represent histories of communications of data messages transmitted
within a time frame. Given a message set M of type T a uniformly discretely timed
stream is a function

s W NC ! M� i:e: s 2 .M�/1
Actually, given stream s 2 .M�/1 for every time interval t 2 NC the sequence
s(t) denotes the sequence of messages communicated in the time interval t in the
stream s. Let RC D ft 2 R W t � 0g be the set of positive real numbers. The basic
idea here is that s(t) represents the sequence of messages communicated in the real
time interval [.t � 1/ı W tı [where ı 2 RC is called the time granularity of the
stream s. A partial stream is given for t 2 N by a mapping

s W f1; : : : ; tg ! M� i:e: s 2 .M�/�

It represent a communication history till time step t. Throughout this paper we work
with a number of simple basic operators and notations for streams and timed streams
respectively that are briefly summarized below:

hi empty sequence or empty stream,
hmi one-element sequence containing m as its only element,
s.t t-th element of the stream s (which is a message in case s is an untimed

stream and a finite sequence of messages in case s is a timed stream),
#s length of a stream
s#t prefix of length t of the stream s (which is a sequence of messages of length

t, provided #s � t, in the case of an untimed stream and a sequence of t
sequences in case s is a discretely timed stream),

s " t the stream derived from s by deleting its first t elements (without the first t
sequences of s in the case of a discretely timed streams)

In a uniformly discretely timed stream s 2 .M�/1 it is specified in which time
intervals which sequences of messages are transmitted. The timing of the messages
within a time interval is not specified, however, only their order is observable.

1 System Behaviour Models with Discrete and Dense Time 7

1.2.1.2 Dense and Discrete Time Domains and Timed Streams

Every subset TD � RC is called a time domain. A time domain TD is called
discrete, if for every number t 2 RC the set

TDt D fx 2 TD W x < tg

is finite. Obviously, discrete time domains contain minimal elements.
A set S with a linear order � is called dense, if the following formula holds

8x; y 2 S W x < y) 9z 2 S W x < z < y

On R we choose the classical linear order �. If a nontrivial time domain TD is
discrete, it is certainly not dense. Vice versa, however, if a time domain is not dense,
it is not necessarily discrete.

Let M be a set of messages and TD be a time domain. A timed stream over time
domain TD is a total mapping

s W TD! M

TD is called the (time) domain of the stream s. We write dom(s) D TD. If TD is
discrete, then the stream s is called discrete, too. If TD is dense, then s is called
dense, too.

Stream s is called continuous, if TD is an interval in RC and M is a metric
space with distance function d such that s is a continuous function on the set TD in
Cauchy’s sense. More precisely s is continuous in t 2 RC if the following formula
holds:

8" 2 R; " > 0 W 9ı 2 R; ı > 0 W 8x’ 2 TD W jx � x’j < ı) d.s.x/; s.x’// < "

An interval based timed stream s is given by an interval [t: t’[with t, t’ 2 RC, t � t’,
and by the time domain TD � Œt: t’[where

s W Œt W t’Œ! M

is a partial function and TD is its domain. We write then interval(s) D [t: t’[and
dom(s)D TD. Note that for the partial functions we denote by interval(s) the set of
potential arguments for function s while dom(s)� [t: t’[defines the set of arguments
for which function s is defined.

A stream s is called permanent, if interval(s)D dom(s). Then s is a total function
on its interval(s).

A special case of a permanent stream s is one who is piecewise constant with
only a discrete set of “discontinuities”. Then we expect a discrete set of time points
(with t0 D 0):

fti W i 2 Ng

8 M. Broy

such that in each interval [ti W tiC1[the stream s is constant, i.e. s.t/ D d with some
d 2 T where T is the type of the stream s. A typical example is T D B where stream
s(t) signals whether a certain condition holds or does not at time t.

1.2.1.3 Operations on Timed Streams

For timed streams we define a couple of simple basic operators and notations that
are summarized below:

hi empty sequence or empty stream with dom.TD/ D Ø and interval.hi/D
Œ0 W 0ŒD Ø,

hm@ti one-message stream containing m as its only message at time t with
dom(hm@ti)D ftg,

#s number of messages in a stream (which is given by the cardinality
jdom(s)j)

s.j j-th element in the discrete stream s (which is uniquely determined
provided #s � j holds),

s#t prefix until time t of the stream s (which is also denoted by sjdom(s) \
[0: t[where by fjM denotes the restriction of a function f: D! R to the
set M � D of arguments),

s"t the stream derived from stream s by deleting its messages until time t
(which is sjdom(s)n(dom(s) \ [0: t[)) with domain dom(s)n(dom(s) \
[0: t[)and the interval interval(s)ninterval(s#t)

Let interval(s) D [0: t[; by s#t’ we get a stream for the interval [0: t’[and with
dom(s#t’) D dom(s) \ [0: t’[. By PTS we denote the set of partial timed streams.
Given time t 2 RC, we denote by PTS(t) the set of partial streams that are either
discrete with dom(s)� [0: t[or that are permanent with domain dom(s)D [0: t[.

Given times t, t’ 2 RC by PTS[t: t’[we denote the set of partial streams with
interval(s)D [t: t’[that are either discrete with dom(s)� [t: t’[or that are permanent
on their domain dom(s)D [t: t’[.

This way we get the universe of streams over a given universe of messages types.
A time shift of a timed stream s by the time u 2 RC yields stream sTMu defined

by the equations

interval.sTMu/ D ŒtC u W t’C uŒ (interval.s/ D Œt W t’Œ
dom.sTMu/ D ftC u W t 2 dom.s/g

and for t 2 dom(s) defined by the equation

.sTMu/.tC u/ D s.t/

Given a stream s with interval [t: t’[where t’ < 1 (otherwise sˆs’ D s) we define
concatenation of stream s with a stream s’ by the equation

1 System Behaviour Models with Discrete and Dense Time 9

interval.sOs’/ D Œt W t”Œ(interval.s’TMt’/ D Œt”’; t”Œ^interval.s/ D Œt W t’Œ
dom.sOs’/ D dom.s/[dom.s’TMt’/

and for t” 2 dom(sˆs’)

.sOs’/.t”/ D s.t”/(t” 2 dom.s/

.sOs’/.t”/ D .s’TMt’/.t”/(t” 2 dom.s’TMt’/

This generalizes the operations on discrete streams to operations on timed streams.

1.2.1.4 Time Deltas and Delta Transactions

For timed streams their time granularity is of major interest. A discrete stream s
has a guaranteed message distance ı if in each time interval of length ı at most one
message or event occurs. Formally

8t 2 RC W #.sjŒt W tC ıŒ / � 1

Here sj[t: t C ı[denotes the stream which is the result of restricting stream s (seen
as a mapping) to the set [t: tC ı[.

In a time interval of length ı a communication stream is given by a finite sequence
of messages, by a continuous function, by a discrete real time sequence, or a mixture
thereof.

1.2.2 Channels

Generally, several communication streams may appear in a system. To distinguish
and identify these streams we use channels. A channel is a named sequential
communication medium. In logical formulas about systems, a channel is simply
an identifier in a system that evaluates to a stream in every execution of the system.

Definition 1.1. Channel snapshot and channel history
Let C be a set of channels; given times t, t’ 2 RC [f1g with t < t’ a channel

snapshot is a mapping
x W C! PTSŒt W t‘Œ

such that x(c) 2 PTS[t: t‘[is a partial or total stream for each channel c 2 C.

A snapshot is called finite if t’ < 1. By
_

C [t: t’[the set of finite channel snapshots

for channel set C for times t, t’ is denoted. By
_

C the set of all channel snapshots for
channel set C is denoted.

10 M. Broy

A complete channel history is a mapping

x W C! PTSŒ0 W 1Œ

such that x(c) is a timed stream for each channel c 2 C.
)
C the set of complete

channel histories for channel set C. EC denotes the set of channel histories where all
channels carry uniformly discretely timed streams s 2 .M�/1. �

All operations and notations introduced for streams generalize in a straight-
forward way to channel histories applying them to the streams in the histories
elementwise.

For instance given a channel history

x W C! PTSŒ0 W 1Œ

by xj[t: t‘[we denote a snapshot

xjŒt W t‘ŒW C! PTSŒt W t‘Œ

where each stream x(c) for channels c 2 C is restricted to the interval [t: t‘[as
follows:

.xjŒt W t‘Œ /.c/ D x.c/jŒt W t‘Œ
The remaining operators generalize in analogy from streams to channel histories.

1.2.3 I/O-Behaviours: Interface Behaviours of Hybrid Systems

Let I be a set of typed input channels and O be a set of typed output channels.
Figure 1.1 gives an illustration of the system where the channels are represented
by arrows annotated with their names and their message types. In addition to the
message types that show which elements are communicated via the channels we
indicate which type of stream is associated with the channel – a discrete or a dense
one. We use the prefix Dsc to indicate that a stream is discrete and Prm to indicate
that it is permanent. For instance Dsc Bool is the type of a discrete stream of Boolean
values while Prm Bool is the type of a permanent stream of Boolean values. If no
prefix is used than nothing specific is assumed about the stream.

F x1 : T1

ym : Smxn : Tn

y1 : S1

. . .
. . .

Fig. 1.1 Hybrid system with
its channels

1 System Behaviour Models with Discrete and Dense Time 11

We represent hybrid system behaviours by functions:

F W)I ! }.
)
O/

that model input and output of interactive nondeterministic computations. F maps
every input history onto its set of output histories.

Definition 1.2. Causality
An I/O-behaviour F fulfils the property of causality if there exists some time

distance ı 2 R with ı � 0 such that the following formula holds for all histories

x; z 2)I , y 2)O, t 2 RC:

x#t D z#t) fy#tC ı W y 2 F.x/g D fy#tC ı W y 2 F.z/g

If the formula holds for ı D 0 then F is called causal and if it holds for some delay
ı > 0 then F is called strongly causal and also strongly ı causal. �

We assume for I/O-behaviours that they fulfil the law of strong ı causality
for some ı >0. Strong causality characterizes proper time flow and the fact that
computation takes time. It captures the principle that a reaction to input can happen
only after the input has been received. Since the output at time t is produced while
the input in step t is provided, the output in step t must depend at most on input
provided before time t.

A behaviour F is called deterministic if F(x) is a one element set for each input
history x. Such a behaviour is equivalent to a function

f W)I !)
O where F.x/ D ff.x/g

f represents a deterministic I/O-behaviour, provided that for some ı � 0 the ı
causality property holds. Then the following property is valid:

x#t D z#t) f.x/#tC ı D f.z/#tC ı

As for nondeterministic behaviours this causality property models proper time flow.

Definition 1.3. Realizability
An I/O-behaviour F is called (strongly) realizable, if there exists a (strongly)

causal total function
f W)I !)

O

such that we have:
8x 2)I W f.x/ 2 F.x/:

f is called a realization of F. By [F] we denote the set of all realizations of F. An
output history y 2 F.x/ is called realizable for an I/O-behaviour F with input x, if
there exists a realization f 2 ŒF� with y D f.x/. �

12 M. Broy

A ı causal function f:
)
I !)

O with ı > 0 provides a deterministic strategy to
calculate for every input history x a particular output history y D f.x/. The strategy
is called correct for input x and output y with respect to an I/O-behaviour F if
yD f.x/ 2 F.x/. According to strong ı causality the output y can be computed
inductively in an interactive computation. Only input x#t received till time t
determines the output till time tCı and, in particular, the output at time tC ı. In
fact, f essentially defines a deterministic “abstract” automaton with input and output
which is, in case of strong ı causality, actually a Moore machine. Strong ı causality
guarantees that for each time t the output produced after time t till time t C ı does
only depend on input received before time t.

Theorem 1.1. Full Realizability

Strongly ı causal functions f:
)
C !)

C always have unique fixpoints y D f.y/.

Proof. This is easily proved by an inductive construction of the fixpoint y D f.y/ as
follows. Since f is strongly causal output f.x/#ı does not depend on x at all. So we
define

y#ı D f.x/#ı

for arbitrarily chosen input x 2)C. Then history y is constructed inductively as
follows: given

y#iı

we define
y#.iC1/ı D f.x/#.iC1/ı

with arbitrary chosen input history x such that

x#iı D y#iı

Note again that then f.x/#.i C 1/ı does not depend on the choice of the history
x#.i C 1/ı due to strong ı causality of f. The construction yields history y such
that the fixpoint equation y D f.y/ holds. Moreover, since the construction yields a
unique result the fixpoint is unique. �

The construction indicates the existence of a computation strategy for the fixpoint
y of f.

Definition 1.4. Full Realizability
An I/O-behaviour F is called fully realizable, if it is realizable and if for all input

histories x 2)I
F.x/ D ff.x/ W f 2 ŒF�g

holds. Then also every output is realizable. �

Full realizability of a behaviour F guarantees that for all output histories y 2 F.x/
for some input x there is a strategy that computes this output history. In other words,
for each input history x each output history y 2 F.x/ is realizable.

1 System Behaviour Models with Discrete and Dense Time 13

1.2.4 Hybrid State Machines with Input and Output

In this section we introduce the concept of a hybrid state machine with input and
output via channels.

A hybrid state machine (�, ƒ/ with input and output communicated over a set I
of input channels and a set O of output channels is given by a state space †, which
represents a set of states, a set ƒ � † of initial states as well as a state transition
function

� W .† � _

I /! }.†� _

O/

For each state � 2 † and each valuation ˛ 2 _

I of the input channels in I by
sequences a snapshot we obtain by every pair .� 0; ˇ/ 2 �.�; ˛/ a successor state �’

and a valuation ˇ 2 _

O of the output channels consisting of the snapshot of messages
produced on the output channels by the state transition. Such state machines are a
generalization of Mealy machines (more precisely Mealy machines generalized to
infinite state spaces and infinite input/output alphabets).

A state machine (�, ƒ/ is called:

• Deterministic, if, for all states � 2 † and inputs ˛, both �.�; ˛/ and ƒ are sets
with at most one element.

• Total, if for all states � 2 † and all inputs ˛ the sets �.�; ˛/ and ƒ are not
empty; otherwise the machine (�,ƒ) is called partial,

• A (generalized) Moore machine, if the output of � always depends only on the
state and not on the current input of the machine. A Mealy machine is a Moore
machine iff the following equation holds for all input sequences ˛; ˛0 and output
sequences ˇ, and all states � :

.9� 0 2 † W .� 0; ˇ/ 2 �.�; ˛//, .9� 0 2 † W .� 0; ˇ/ 2 �.�; ˛0//

• Time based if the states � 2 † in the state space contain a time attribute denoted
by time(�/ 2 R such that for all .� 0; ˇ/ 2 �.�; ˛/ we have time(�) < time(� 0)

• A ı step timed state machine for ı 2 R with ı > 0 if (�, ƒ) is a time based
machine and if for all .� 0; ˇ/ 2 �.�; ˛/ where

time.�/ D jı and interval.˛/ D ŒjıW.jC1/ıŒ

we get
time.� 0/ D time.�/C ı and interval.ˇ/ D ŒjıW.jC1/ıŒ:

Hybrid state machines are a straightforward generalisation of Mealy machines.

14 M. Broy

1.2.5 Computations of State Machines

In this section we introduce the idea of computations for ı step timed state machines
with input and output.

Figure 1.2 shows a computation of a ı step timed state machine with input and
output. Actually a computation comprises three infinite streams:

• The infinite streams x of inputs: x1; x2; : : : 2
_

I

• The infinite streams y of outputs: y1; y2; : : : 2
_

O
• The infinite streams s of states: �0; �1; : : : 2 †
Note that every computation can be inductively generated given the input stream x1,
x2, x3, . . . and the initial state �0 2 ƒ by choosing step by step state �iC1 and output
yiC1 by the formula

.�iC1; yiC1/ 2 �.�i; xiC1/:

If the state machine is deterministic, then the computation is fully determined by the
initial state �0 and the input stream x.

Each input history x 2)I specifies a stream x1; x2; : : : 2
_

I of input snapshots by
(for all j 2 N)

xjC1 D xjŒjı W .jC 1/ıŒ
Given history x a computation of a state machine (�;ƒ) generates a sequence of
states

f�j W j 2 Ng
and a stream y1; y2; : : : 2

_

O of output snapshots where for all times j 2 N we have:

.�jC1; yjC1/ 2 �.�j; xjC1/ and �0 2 ƒ

This way every computation specifies an output history y 2)O that is uniquely
specified by

yjŒjı W .jC 1/ıŒD yjC1

The history y is then called an output of the computation of the state machine (�,
ƒ) for input x and initial state �0. We also say that the machine computes the output
history y for the input history x and the initial state �0. This way we can associate
an interface behaviour

x2 / y2x1 / y1 x3 / y3

σ0 σ1 σ2 σ3 ...

0 δ 2δ 3δ time

Fig. 1.2 Computation of a ı step timed I/O-machine

1 System Behaviour Models with Discrete and Dense Time 15

F.�;ƒ/ W
)
I ! }.

)
O/

with state machine (�, ƒ) defining F.�;ƒ/.x/ as the set of all histories that are
outputs of computations of machine (�, ƒ) for input history x. System behaviour
F.�;ƒ/ is called the interface abstraction of hybrid state machine (�, ƒ).

1.3 Logical Properties of the Interface Behaviour of Hybrid
Systems and State Machines

Traditionally temporal logic is used to formulate properties about state transition
systems that are represented by state machines. Usually in temporal logic state
machines without input and output are considered such that the formulas of temporal
logic specify properties for the infinite streams of states generated as computations
by these state machines. There are several variations of temporal logic including
so-called linear time temporal logic, which talks about the state traces of a state
machine and branching-time temporal logic, which considers trees of computations
defined by a state machine.

Since we are not mainly interested in states but rather in interface behaviour in
terms of input and output streams of computations, classical temporal logic seems
not the right choice for us. Moreover, temporal logic is limited in its expressive
power. Although we could introduce a version of temporal logic that talks about
input and output of computations, we prefer to talk about the interface behaviour in
terms of more general and more expressive interface assertions, given by predicates
that contain the channel identifiers of the syntactic interface of a system as identifiers
for streams. An interface assertion is a formula, which refers to the input and output
channels of the systems as variables for timed streams. This way we write logical
formulas that express properties of the input and output streams of hybrid systems.
These formulas are written in classical predicate logic using, in addition, a number
of basic operators for streams.

1.3.1 Events in Continuous Streams

A permanent continuous stream s is represented by a continuous function. The
values of the function define the valuation of an attribute of the system at any chosen
point in time. This defines for each time a kind of interface state. An event then can
be defined as “a significant change in state”.

With a continuous stream s we associate a certain (logical) event at time t if s
fulfils a particular property at time t. Simple examples would be that the continuous
stream s has reached a particular value at time t, or assumes a maximum or a
minimum at time t, or that its values in an interval around t lie in a certain range.

16 M. Broy

In full generality, an event e is a predicate

e W PTS � RC ! B

We say that an event occurs at time t in the hybrid stream s if e(s, t) holds. Events
provide a logical view onto hybrid streams. By definition there are lots of events.
Which events are of relevance for a system has to be determined depending on
the logics of the application. Typical examples would be “target speed reached”,
“temperature too high”, “speed too high” or “signal available”.

Actually an infinite number of events may occur in a given stream. Given a stream
s, a set of events E and a time t 2 RC the set

ft0 2 Œt W tC©ŒW 8e 2 E W e.s; t0/g

is called the (t, ")-footprint for an event set E on stream s. A (t, ")-footprint may
be discrete, dense or durable. Accordingly, we call an event durable, if it holds for
all time points in some interval, which means that its footprint is identical to the set
[t: tC "[.

An event e is called flickering at time t in stream s, if one of the following
formulas is valid:

(a) 8 © 2 RC; © > 0 W 9 t0, t00 2 �t; tC ©Œ W e.s; t0/ ^ :e.s; t00/
(b) 8 © 2 RC; © > 0 W 9 t0, t00 2 �t-©, tŒ \RC W e.s; t0/ ^ :e.s; t00/

In case (a) event e is called flickering after t, in case (b) flickering before t.
We say that an event is not Zeno, if it is never flickering. We say that for a stream

a an event e is

• Switched on at time t, if e(s, t) ^8© 2 RC; © > 0 W 9 t0 2 Œt � ©; tŒW :e.s; t0/
• Switched off at time t, if e(s, t) ^8© 2 RC; © > 0 W 9 t0 2 Œt; tC ©ŒW :e.s; t0/

and e is not flickering in s at time t.
Given event e, by :e we denote the complement event of e.
We call a set of events E "-discrete for a stream s if for a real number " 2 RC

all (t, ")-footprints for s and E contain at most one element. Then there is at most
one event from the event set E in every time interval of length ". In this case we can
associate a discrete stream of events with the continuous stream s.

We are interested in associating a timed discrete stream of events with each
hybrid stream to capture the event logics of histories. Given some time granularity
ı 2 RC we relate a discrete stream r 2 .E�/1 with each timed stream s 2 PTS
by

• Defining a set E of events
• Mapping the hybrid stream s to a discrete stream r D dis.s;E/ by a function

dis W PTS � E! .E�/1

1 System Behaviour Models with Discrete and Dense Time 17

The set E is called the set of logical observations. To define the set of events E we
assume a set of given events E0. Since the set E0 may not have discrete footprints
and may contain durable events for streams s 2 PTS we replace durable events e by
two events e˛ and e! , where durable event e is starting at time t, characterizing the
beginning and the end of the phase in which the event is durable by choosing and
specifying:

e˛.s; t/ Ddef 9© 2 RCnf0g W 8t0 2 RC \ Œt � © W tŒ W :e.s; t0/

^8t0 2 RC\�t W tC ©Œ W e.s; t0/
e!.s; t/ Ddef 9© 2 RCnf0g W 8t0 2 RC \ Œt � © W tŒ W e.s; t0/
^8t0 2 RC\�t W tC ©Œ W :e.s; t0/

This gives us a set of events E0 derived from E by replacing all durable events by the
shown two events. This approach does work only, however, if the stream s avoids
flickering and Zeno’s paradox.

To avoid Zeno’s paradox and generally flickering events we use a finite time
granularity ı > 0 and define the set of events E from E0 as follows. We replace
each event e 2 E0 by an event eE that is specified as follows. We make that sure we
debounce events such that every event in E0 can occur only once in each interval of
length ı. To do this we first assume a linear strict order <prio defining priorities on
the set of E0 specifying the importance of events. Based on these priorities we define
the event eprio for each event e

eprio.s; t/ D .e.s; t/ ^ :9d 2 E0; t0 2 RC \
�

t � 1
2
ı; tC 1

2
ı

�
W d.s; t0/ ^ e <prio d/

i.e., eprio (s, t) is an event with highest priority in the interval
�
t� 1

2
ı; tC 1

2
ı
�
. Now

we define the set of events
E D feprio W e 2 E0g

Given the set of events E we define a function

disE W PTS! .E�/1

as follows:

disE.s/.i/ D hi (:9e 2 E; t 2 Œiı W .iC 1/ıŒW e.s; t/
disE.s/.i/ D hei (9e 2 E; t 2 Œiı W .iC 1/ıŒW e.s; t/

Note that this definition is consistent since due to our construction every (t, ı)-
footprint carries at most one event.

The time distance ı determines the time granularity of the stream disE.s/. If a
finer or coarser time granularity is needed for disE.s/ the time granularity can be

18 M. Broy

time

s

low

min < s < high

sÕ = 0

high

Fig. 1.3 Continuous stream s and discrete and durable events

changed according to [1]. Then after deriving disE.s/ we may coarsen disE.s/ which
may lead to histories with more than one message in one time interval.

In principle, we may use the same construct to deal with durable events. Then
durable events e are replaced by a sequence of discrete events eE that are repeated
every ı-time step as long as event e lasts. This is called sampling and provides an
alternative to the approach treating durable events by introducing the event e˛ and
the event e! indicating the end of the durable event.

Fact 1.1. Associating discrete streams with hybrid streams
Let E0 be an arbitrary set of events and E be defined as above, then for every

stream s 2 PTS the set of events from E defines a discrete stream disE.s/ 2 .E�/1
of events in E.

Note that this form of associating discrete streams with continuous ones is
essentially different from the techniques of discretisation used in numerical analysis
or in control theory, where continuous functions are approximated by discrete step
functions, where the distances between the discrete time points are chosen fine
enough such that the functions are approximated precisely enough.

Figure 1.3 shows a continuous stream s and some examples of discrete and
durable events.

Given event sets for all channels in set C, we get this way a function

Dis W)C ! �!C

that maps histories of hybrid streams onto histories of discrete streams of events.

1 System Behaviour Models with Discrete and Dense Time 19

1.3.2 Assertions Specifying Hybrid Systems

To formulate properties about hybrid state machines with input and output we use
interface assertions that refer to streams communicated via the input and output
channels of the state machine. An interface assertion is a formula in predicate
logic that contains the input and output channels of the state machines as logical
identifiers for timed streams. The validity of such assertions for state machines is
described in the following.

We work with templates to specify systems very much along the lines of [2] as
demonstrated in the following example:

Example 1.1. Specification of hybrid systems
As a simple example we specify a hybrid system called Amplifier with a

permanent and a discrete input stream and a permanent output stream.
System Amplifier (ı: Real: ı > 0)

in v: Prm Real, c: Dsc Real
out r: Prm Real

8t 2 RC:
r.tC ı/ D lt.c; t/�v.t/
0 � t < ı) r.t/ D 0
where
8t 2 RC W
lt.c; t/ D c.max fs” 2 dom.c/ W s” � t � ıg/ (fs” 2 dom.c/ W s” �
t � ıg ¤ Ø
lt.c; t/ D 0(fs” 2 dom.c/ W s” � t� ıg D Ø

This example shows an amplifier that amplifies the permanent input on channel v
by the last actual value received on the discrete channel c and sends it as output on
channel r with a time delay ı.

As the example shows, we use a mixture of plain higher order predicate logic
and functional calculus. This leads to a specific logic that may be supported by
interactive theorem provers (see [3]). Another possibility is domain specific logical
calculi. Duration calculus (DC), for instance, is an interval logic for real-time
systems (see [4]).

1.4 Composition

So far we have introduced a mathematical model for systems. Systems can be
composed to larger systems by composition.

20 M. Broy

1.4.1 Composing Systems

In this chapter we study the composition of systems. We introduce the composition
operator for composing two systems. Systems are composed by parallel composition
with feedback following the approach of [2].

1.4.1.1 Composition of Systems in Terms of Their Interface Behaviour

The definition of composition of systems given by their interface behaviour reads as
follows:

Definition 1.5. Composition of systems
Given two interfaces F1 2 IFŒI1 I O1� and F2 2 IFŒI2 I O2�, with type

consistent channels and where O1 \ O2 D Ø, we define a composition for the
feedback channels C1 D O1 \ I2 and C2 D O2 \ I1 by the expression

F1˝ F2

The system F1 ˝ F2 2 IFŒI I O� is defined as follows (let C D I1 [O1 [I2 [O2,
where I D .I1nC2/ [.I2nC1/ and O D .O1nC1/ [.O2nC2/):

8x 2)I W .F1˝ F2/.x/ D fy 2)O W 9z 2)C W y D zjO
^x D zjI^ zjO1 2 F1.zjI1/ ^ zjO2 2 F2.zjI2/g

The channels in set C1[C2 are called internal for the composed system F1˝F2. �

The idea of the composition of systems as defined above is graphically illustrated
in Fig. 1.4.

In a composed system F1 ˝ F2, the channels in the channel sets C1 and C2 are
used for internal communication.

Given specifying assertions S1 and S2 for the systems F1 and F2, the specifying
assertion for F1 ˝ F2 is given by the assertion 9 C1, C2: S1 ^ S2, where internal
channels C1 and C2 are hidden by the existential quantifier.

I2 \C1

O2\C2C1

C2O1\C1

I1 \C2 F1 F2

F2

C1

C2

O1 \C1I1 \C2

I2 \C1

F1

O2\C2

Fig. 1.4 Composition F1 ˝ F2 (in two layouts)

1 System Behaviour Models with Discrete and Dense Time 21

Parallel composition of systems with disjoint sets of input channels and disjoint
sets of output channels is commutative and associative. The proof is straightforward.

The set of systems together with the introduced composition operators form an
algebra. The composition of systems (strongly causal stream processing functions)
yields systems.

Composition is a partial function on the set of all systems and the set of all
services. It is only defined if the syntactic interfaces fit together. Syntactic interfaces
fit together if there are no contradictions or conflicts in their channel names and
types.

1.4.1.2 Composition of Hybrid State Machines

Consider Moore machines Mk D .�k, ƒk/ with k D 1; 2:

�k W †k �
_

I k ! }.†k �
_

Ok/

We define the composed state machine (letO1 andO2 be disjoint; I D I1[I2;O D
O1 [O2)

� W † � _

I ! }.† � _

O/

as follows: the composed state is given by the set

† D †1 �†2
For x 2 I and (�1, �2/ 2 † we define the state transition function:

�..�1; �2/; x/ D f..�10; �20/; zjO/ W x D zjI^ 8k W .�k
0; zjOk/ D �k.�k; zjIk/g

This definition is based essentially on the fact that we consider Moore machines.
Note that for Mealy machines it is not guaranteed that appropriate histories z, as
used in the definition above, exist.

We write

� D �1jj�2

M D M1jjM2 D .�1jj�2;ƒ1 �ƒ2/

This way we get a composition for state machines that is compatible with the
composition of behaviours.

22 M. Broy

1.5 Refinement and Abstraction of Time

Going from continuous to discrete streams is an abstraction step. The function dis
maps a continuous and also a hybrid stream onto a discrete stream. The function
Dis extends this mapping to histories. In the following we study how to go from
discrete to continuous and also to hybrid behaviour in a refinement step based on
these functions.

Refinement of properties is a simple and basic notion. Given a behaviour

F W)I ! }.
)
O/

a behaviour
F0 W)I ! }.

)
O/

is called a property refinement if for all histories x 2)I we have

F’.x/ � F.x/

Then every output history of F’ is an output history of F.
Interaction refinement is the refinement notion for modelling development steps

between levels of abstraction. Interaction refinement allows us to change for a
component:

• The number and names of its input and output channels
• The types of the messages on its channels determining the granularity of the

messages.

An interaction refinement is described by a pair of two functions

A W)C 0 ! }. EC/ R W EC ! }.
)
C
0/

that relate the interaction on an abstract level (in our case discrete system models)
with the corresponding interaction on the more concrete level (in our case con-
tinuous or hybrid system models). This pair specifies a development step leading
from one level of abstraction to the next as illustrated by Fig. 1.5. Given an abstract

abstract level

concrete level

R A

.

.

. . .

. . .
Fig. 1.5 Communication
history refinement

1 System Behaviour Models with Discrete and Dense Time 23

history x 2 !C each history y 2 R.x/ denotes a concrete history representing abstract
history x. Calculating a representation for a given abstract history and then its
abstraction yields the original abstract history again. Using pipelining composition,
defined by

.RıA/.x/ D fz 2 A.y/ W y 2 R.x/g
this is expressed by the requirement:

RıA D Id

where Id denotes the identity relation. A is called the abstraction and R is called the
representation. R and A are called a refinement pair.

Interaction refinement allows us to refine components, given appropriate refine-
ment pairs for their input and output channels. The idea of an interaction refinement
is visualized in Fig. 1.6. Note that the components (boxes) AI and AO are no longer
definitional in the sense of specifications, but rather methodological, since they
relate two levels of abstraction. Nevertheless, we may specify them also by the
specification techniques introduced so far.

Given refinement pairs

AI W
)
I2 ! }. EI1/ RI W EI1 ! }.

)
I2/

AO W
)
O2 ! }. EO1/ RO W EO1 ! }.

)
O2/

for the input and output channels we are able to relate abstract to concrete channels
for the input and for the output. We call the I/O-behaviour

F’ W)I2 ! }.
)
O2/

an interaction refinement of the I/O-behaviour

F W EI1 ! }.EO1/

if the following proposition holds:

F’ıAO � AIıF simulation

This formula essentially expresses that the system F’ ı AO is a property refinement

of the system AIıF. Thus, for every “concrete” hybrid input history x’ 2)I2 every
concrete hybrid output history y’ 2 F’(x’) can be also obtained by translating the
concrete hybrid history x’ via abstraction AI onto an abstract discrete input history
x 2 AI.x’/ with an abstract discrete output history y 2 AO.y’/ for which y 2 F.x/
holds.

24 M. Broy

F

I2 O2

I1 O1

AI

. . .

. . .

AO

. . .

. . .

F’

abstract level

concrete level

. . .
. . .

. . .
. . .

Fig. 1.6 Interaction refinement

This construction is here applied to the case of discrete and continuous system
models by using the function Dis that maps continuous and hybrid histories
to discrete ones. Hence, a discrete behaviour F is called an abstraction of the
continuous or hybrid behaviour F’ if system F’ıDisO is a property refinement of

system DisI ı F. Thus, for every continuous or hybrid input history x’ 2)I2 every
discrete output y 2 F.DisI.x’// can also be obtained from the continuous or hybrid
output y’ 2 F’(x’) by translating the continuous or hybrid history x’ via DisI onto
a discrete input history x 2 DisI.x’/ such that there exists a discrete output history
y 2 F.x/ with y 2 DisO.y’/.

1.6 Concluding Remarks

The motivation for this work is twofold

1. Extending the approach of FOCUS (see [5]) to compositional hybrid models of
systems in terms of interfaces, architectures and state machines as a generalisa-
tion of discrete to continuous streams of communication, supporting also hybrid
models.

2. Defining refinement and abstraction relations between discrete and continuous
models.

This approach aims at a general modelling technique for cyber-physical systems
that can be combined with existing approaches to modelling hybrid systems such as
hybrid automata, differential dynamic logic for hybrid systems, control theory, and
duration calculus.

What we are particular aiming at is a formal basis for the translation of
informal requirements in natural language into formalized logical requirements, that
capture their logical contents and then further onto the specification of systems by
differential equations as typical for control theory. A simple example would be a
requirement from adaptive cruise control stating for instance “As soon as a distance
between the car and the object in front of it is less than the required safety distance

1 System Behaviour Models with Discrete and Dense Time 25

relative to the current speed the car is slowed down.” Such a requirement, which, by
the way, is safety critical, then can be translated into a discrete event formalization.
By defining appropriate concepts of discrete events for the continuous input and
output streams for the adaptive cruise control, we can even prove its correctness for
a hybrid system.

Acknowledgements It is a pleasure to thank David Trachtenherz and Radu Grosu for stimulating
discussions and helpful remarks on draft versions of the manuscript.

References

1. Broy M (2008) Relating time and causality in interactive distributed systems. Marktoberdorf
Summer School

2. Broy M, Stølen K (2001) Specification and development of interactive systems: Focus on
streams, interfaces, and refinement. Springer, Berlin

3. Platzer A (2008) Differential dynamic logic for hybrid systems. J Automated Reasoning 41(2),
143–189

4. Chaochen Z, Hoare CAR, Ravn PA (1991) A calculus of durations. Inform Process Lett 40(5),
269–276

5. Broy M (2006) A theory of system interaction: Components, interfaces, and services. In:
Goldin D, Smolka S, Wegner P (eds) The new paradigm. Springer, Berlin, pp 41–96

6. Henzinger TA (1996) The theory of hybrid automata. In: Proceedings of the 11th annual
symposium on logic in computer science (LICS), IEEE Computer Society Press, pp 278–292.
An extended version appeared in Verification of digital and hybrid systems (Inan MK, Kurshan
RP, eds), NATO ASI series F: Computer and systems sciences, vol 170, Springer, Berlin, 2000,
pp 265–292

7. Henzinger TA, Manna Z, Pnueli A (1993) Towards refining temporal specifications into hybrid
systems. In: Hybrid systems I, Lecture notes in computer science 736, Springer, Berlin,
pp 60–76

8. Alur R, Henzinger TA, Lafferriere G, Pappas GJ (2000) Discrete abstractions of hybrid
systems. Proc IEEE 88:971–984

9. Lee EA (2009) Computing needs time. Commun ACM 52(5), 70–79
10. Sifakis J, Tripakis S, Yovine S (2003) Building models of real-time systems from application

software. Proc IEEE (Special issue on modelling and design of embedded) 91(1), 100–111
11. Grosu R, Stauner Th., Broy M (1998) A modular visual model for hybrid systems. FTRTFT,

75–91

Chapter 2
Temporal Uncertainties in Cyber-Physical
Systems

Hermann Kopetz

2.1 Introduction

A Cyber-Physical System (CPS) consists of two interacting sub-systems, the
physical-subsystem(the P-system) and a (distributed) computer sub-system, (the
C-system) (Fig. 2.1). The C-system, consisting of interface nodes and computation
nodes that are interconnected by a real-time communication system, is a real-time
system, i.e. the correctness of its results depends on the delivery of the intended
values at the intended points in time. The behavior of the P-system is governed
by the respective laws of the physical world, while the behavior of the C-system
depends on programs executed on digital processors. We assume that the C-system
observes the events of the P-system (the P-events), builds a model of the P-system,
and acts on the P-system.

There is a fundamental difference in the model of time among the two system:
While the model of time in the P-system is dense and time changes in infinitesimal
steps, the model of time in the C-system is discrete and time changes abruptly in
discrete steps. Since most C-systems are distributed and it is impossible to perfectly
synchronize clocks in a distributed computer system, the finite synchronization error
of distributed clocks constrains the granularity of a reasonable discrete global time
base in the C-system [1].

The difference in the model of time of the P-system compared to the C-system
and the jitter of the communication system within the C-system lead to significant
phenomena concerning simultaneity, causality and determinism, the investigation of
which is the topic of this paper.

We will show that, due the different models of time in the P-system and the
C-system, it is impossible to recover the true sequence of events that happen close to

H. Kopetz (�)
TU Wien, Austria
e-mail: hk@vmars.tuwien.ac.at

S. Chakraborty and J. Eberspächer (eds.), Advances in Real-Time Systems,
DOI 10.1007/978-3-642-24349-3 2, © Springer-Verlag Berlin Heidelberg 2012

27

28 H. Kopetz

C-SystemP-System

Real
Time
Com.

System

Interface Node of
the C-System

Event in
the P System

l

j

k

Fig. 2.1 Example of a
cyber-physical system

each other in the P-system in the model of the P-system that is part of the C-System.
It may even happen that the temporal order of the events as they are perceived by
the C-system is in conflict with the true temporal order of P-events.

The topics analyzed in this paper are substantially different – although related
to – the problems of sampling a (continuous) controlled P-object by a discrete
C-system. In this case the duration of a sampling period will be orders of magnitude
larger than the precision of the clock synchronization. Consider the example of
a drive-by-wire automotive system: the sampling period may be 1 ms, while the
precision of the clocks may be 1�s. A jitter of the samplings instants of the order
10�3 of the sampling period of a distributed control system will be considered a
second order effect that – in most cases – can be neglected.

The rest of this paper is structured as follows. Section 2.2 elaborates on the
basic concepts that are used in this paper, such as node, time and message.
Section 2.3 introduces the concept of the observation uncertainty that arises because
of the synchronization error and the digitalization error of a discrete global time
in a distributed C-system. Section 2.4 is devoted to the temporal inconsistency
that is caused by the jitter of the communication system within the C-system.
Section 2.5 discusses the consequences of the temporal uncertainties on causality
and determinism. Based on the gained insights, Sect. 2.6 proposes some guidelines
for the design of cyber-physical systems. The paper terminates with a short note on
timeless systems and a conclusion in Sect. 2.7.

2.2 Basic Concepts

In this Section we elaborate on those concepts that must be clearly defined before
any analysis of distributed real-time systems can be performed.

2 Temporal Uncertainties in Cyber-Physical Systems 29

2.2.1 Node

A node is a hardware/software unit of the C-system that is aware of the progression
of time. A node accepts input messages, provides a useful service, maintains internal
state, and produces after some elapsed time output messages containing the results.
A node that provides an interface to the P-system is called an interface node.

We call a property consistent if all nodes of the C-system agree on the value
of this property. For example, if two interface nodes of the C-system observe and
timestamp the occurrence of a single P-event then the timestamps are consistent if
they have the same value. If the two timestamps for the same P-event are different
in two interface nodes of the C-system, the timestamps are inconsistent.

If properties in the C-system are inconsistent then the reasoning about the
behavior of the C-system is more complex, i.e., requires more mental effort [2].
Since we should avoid anything that increases the complexity of the C-system, the
consistency of properties of the C-system is of paramount importance.

2.2.2 Time

When we use the word time we mean physical time as defined in the international
standard of time TIA [3]. (In this paper, the words time and real-time are used
synonymously, since they refer to the same concept.) A cut of the timeline is called
an instant. The interval between two instants is called a duration. An occurrence at
an instant is called an event. We call an event that occurs in the P-system a P-even
and an event that occurs in the C-system a C-event.

We assume that every node j of a distributed computer system has its own local
digital clock cj . We generate a time-stamp of an event e observed by node j by
assigning the value of the state of clock cj immediately after the observation to
the event, generating its timestamp tsj .e/. We further assume that there exists an
omniscient observer with a perfect clock z that is impeccably synchronized with TIA
and has such a small (an infinitesimal small) granularity that second order effects
that are related to the granularity can be neglected.

Timestamps generated by different nodes can only be related to each other if
the respective clocks are synchronized to form a global notion of time. We call
the maximum difference of respective ticks of any two clocks of our ensemble of
synchronized clocks, as measured by the reference clock z, the precision of the
global time. We call the global time reasonable, if the granularity g of the global
time (i.e., the duration between two adjacent ticks of the global time) is longer than
the precision of the ensemble [1].

30 H. Kopetz

2.2.3 Message

A message is an atomic data structure that is formed in the C-system for the purpose
of transmitting data and control signals from a sending node at a given instant to
one or more receiving nodes that receive the message at a later instant. The message
concept does not make any assumption about (abstracts form) the physics of the
specific transport mechanism (e.g., wire-bound or wireless transmission) or about
the meaning of the bit-vector contained in the data field of the message. However,
the time it takes to transport a message from the sending node to the receiving node
is part of the control aspect of the message concept. A message that is intended to
arrive at its receiver(s) within a given time-interval is called a real-time message;
otherwise it is a non-real-time message. A real-time message is correct if it contains
the intended data in its data field and is sent and received at the intended time.

The message concept can be generalized to cover the interactions between
interface nodes of the C-system and the P-system. The flow of information within
the P-system can be modeled by messages within the P-system, which we call
hidden messages [1].

2.3 Observation Uncertainty

Even if the global time is reasonable, we cannot avoid that the observations of a
single P-event, performed by two different nodes of the C-system, differ by one tick.

Let us explain this phenomenon by the following Fig. 2.2, where we denote the
progress of the reference clock by the small marks on the uppermost line. Every
tenth tick of the reference clock is a global-time tick, denoted by the respective
number. Since the precision of the clocks in the nodes j, k and l in the following
figures is nine ticks, the reasonableness condition is met.

18

0 1 2 3 0 1 2 3

Node j

Node k

Node l

18 22

a b

Fig. 2.2 The effect of the digitalization error and synchronization error on the time-stamping of
events

2 Temporal Uncertainties in Cyber-Physical Systems 31

1

Node j

Node k

Node l

28 37

2 3 4 5 6 7 8

Fig. 2.3 Multiple observations of an event

In Fig. 2.2a the P-event 18 (i.e., an event that happens on the z-time-scale – top
of Fig. 2.2 – at instant18) is time-stamped by node j with the global time 2, by node
k with the global time 1 and by node l with the global time 1.

Given a reasonable global time, the real temporal order of two P-events can only
be recovered consistently in the C-system, if the time-stamps of these two events
differ by at least two global time ticks. This will always be the case if the events
occur at least three global time ticks apart. This minimum distance of events that
is required in order to be able to recover the temporal order of P-events by the C-
system is called the observation inaccuracy. This observation inaccuracy depends
on the precision of the clock synchronization in the C-system.

Let us now look at the scenario of Fig. 2.2b, where the global event 18 is observed
by node j, generating the timestamp tsj .18/ of 2 and event 22 is observed by
node l, generating the timestamp tsl .22/ of 1. Although event 18 happened in the
P-system before event 22, its time-stamp tsj .18/ in the C-system is larger than the
timestamp tsl .22/ of the later event 22. This implies that the perceived temporal
order of temporally close P-events in the C-system can differ from the real temporal
order of the events in the P-system. We cannot do better in the case the events in the
P system are quite close together.

Let us now analyze a scenario (Fig. 2.3) where a singe P-event is observed by
more than one C-node. P-event 28 happens at the z-time of 28 and is observed by
node l that assigns tsl .28/ D 2 to this P-event. Node l sends a message with this
observation to node k and node j. Node k and node j observe the same P-event
37. Node k timestamps this event tsk.37/ D 3, while node j timestamps this event
tsj .37/ D 4. Node k concludes that P-event 28 occurred before P-event 37, since
the difference of the timestamps is 2. Node j cannot order these two events, since the
difference of the timestamps is only 1. It follows that the two nodes j and k have
an inconsistent view about the temporal order of these two P-events.

In order to eliminate any inconsistency about the temporal order of P-events
within the C-system it is proposed that all C-nodes that observe a single P-event
must arrive at a common view as to which time-granule this P-event is assigned to.
In the example of Fig. 2.4, node j and node k must agree on whether they both assign
the time-stamp 3 or the timestamp 4 to event 37 (by the execution of an agreement
protocol). This is an arbitrary decision that is needed to maintain consistency within

32 H. Kopetz

C-System

l

j

P-System

Real
Time
Com.

System

m
Valve

Pressure
Sensor

Fig. 2.4 Simple monitoring
PCS

dmin

mj

ml

hidden

dmax

Time
Incorrect alarm

t1 t2 t3 t4

jl

Jitter of the Communication System

Fig. 2.5 The effect of Jitter
on the permanence of
messages

the C-system. Agreement is also needed in the value domain if the P-value of a
variable is an analog quantity, since the least significant bit in any analog-to-digital
conversion is an arbitrary value in the C-value of that variable.

2.4 Permanence of Messages

The temporal uncertainty caused by the jitter of the message communication system
in the C-system can be the source of an inconsistency in the C-system which can
result in severe system failures. The example in Figs. 2.4 and 2.5 are used to analyze
this inconsistency and introduce the concept of permanence of messages.

Let us analyze the simple monitoring system depicted in Fig. 2.4. A pressurized
vessel contains a pressure release valve controlled by node j and a pressure sensor
monitored by node l. The pressure in the vessel can drop for two reasons, either
the operator, connected to the man-machine interface at node m, sends a message
to node j to open the pressure release valve (expected pressure drop) or a defect
in the P-system, such as a rupture of a pipe, causes a pressure drop (unexpected
pressure drop). In case of an unexpected pressure drop node l should raise an alarm
and initiate an emergency shut-down procedure of the plant.

2 Temporal Uncertainties in Cyber-Physical Systems 33

The real-time message communication system in the C-system of Fig. 2.4 is
characterized by a maximum message delay of dmax and a minimum message delay
of dmin resulting in a jitter of dmax minus dmin as shown in Fig. 2.5.

Let us assume that the operator sends at instant t1 a message from node m to node
j and node l, commanding node j to open the pressure release valve and informing
node l that the following pressure drop is an expected pressure drop caused by the
opening of the pressure release valve by node j. Given the message mj arrives at
node j at instant t2 (after the minimum delay) node j will open the pressure release
valve at instant t2 and the consequent pressure drop will be relayed to node l by
a hidden message in the P-system, arriving at node l at instant t3. Since at this
instant, node l has not received the related message ml (which is still in transit
since the related message ml takes the maximum message delay of dmax/, node l
will assume at instant t3 an unexpected pressure drop and initiate the emergency
shutdown procedure. Later, at instant t4, node l will realize that is made a mistake –
but it is too late to undo the emergency shutdown. The jitter of the communication
system that has messed up the causality chain is at the source of the failure.

This example is a good illustration of the fundamental conflict between speed-
of-action and consistency. Let us call a message that is supposed to cause an action
in the P-system an action message. A node should delay an action on an action
message until after the action message has become permanent. An action message
becomes permanent, as soon as no other message that is related to this action
message is in transit any more. The set of related messages must be derived from
an application specific analysis. In the previous example, the information message
from node m to node l is related to the action message from node m to node j.

How long must node j wait, after the arrival of an action message, until the action
message becomes permanent? Let us assume that all related messages are sent at
the same instant. In the extreme case, if the message delay of the action message
mj is dmin, then the required wait duration is dmax minus dmin, i.e., the jitter of the
communication system (see Fig. 2.5). In the other extreme case, if the message delay
is dmax, then the wait duration is zero. However, node j can only decide on the basis
of its local information.

Given that node j has no knowledge about the send-time of an action message, it
must assume the worst case and always delay the action for the full jitter duration –
even in the case that the action message delay was already dmax (and the node
could have acted immediately after the receipt of the action message). Viewed
from our omniscient outside observer, the duration between the send time of the
action message and the instant when the receiver is sure that the action message
is permanent is .dmax C dmax � dmin/, i.e. dmin, plus two times the jitter of the
communication system.

In case the node has knowledge about the send-time of the message (e.g., a send-
timestamp is part of the action message) and a reasonable global time of granularity
g is available, then the wait duration is always until send-time C dmax C 2g, i.e.
dmin, plus the jitter of the communication system plus 2g. In the example of Fig. 2.5,
node j should have waited until t4 before executing the open-valve command. From
the above analysis we conclude that it is the jitter of the communication protocol

34 H. Kopetz

that determines to a significant degree the responsiveness of a distributed real-time
system.

The knowledge about the send time-stamp of an action message helps to reduce
the duration a receiver has to wait until he is sure that the message has become
permanent [1]. It follows that a C-system where all nodes have access to a global
time has a better response time characteristic than a C-system without a global
time base.

2.5 Causality and Determinism

It is the objective of many cyber-physical system to control the P-system by the
C-system in order to achieve a desired effect in the physical world. For this purpose,
a model of the behavior of the P-system is constructed within the C-system. This
model takes the C-timestamps of significant P-events as input. Because of the
observation uncertainty, the C-model of the P- system is not fully faithful. For
example, it is impossible to observe the simultaneity of P-events, no matter how fine
a granularity of the global time has been chosen. We cannot build a fully faithful
C-model of a P-system, because the models of time that are innate in each one of
these systems are different. What we can do is limit the effect of the observation
uncertainty by choosing an appropriate granularity of the global time base.

2.5.1 Causal Analysis of Events

In many scenarios (e.g., alarm analysis in a widely distributed electric power
distribution system) the identification of the causal sequence of events in the
P-system by the C-system is of importance. Consider, for example, the following
remark in the report about the US-Canada power blackout of August 14, 2003:
‘A valuable lesson from the August 14 blackout is the importance of having time-
synchronized system data recorders. The Task Force’s investigators labored over
thousands of data items to determine the sequence of events, much like putting
together small pieces of a very large puzzle. That process would have been
significantly faster and easier if there had been wider use of synchronized data
recording devices. [4], p. 162’.

Since there is a close relationship between causal order and temporal order, the
establishment of the correct temporal order of events is the starting point for any
causal analysis. Necessary (but not sufficient) for a causal dependence to exist is
that the cause-event has happened prior to the effect-event. If an event has happened
before or simultaneously to the effect-event, it cannot be the cause.

If the temporal distance between two events in the P-system is less than the
observation uncertainty then the correct (physical) temporal order of these events
cannot be established in the C-model of the P-system, due to the digitalization and

2 Temporal Uncertainties in Cyber-Physical Systems 35

synchronization error that are inherent parts of the timing in the C-system. The
observation granularity thus limits the causal analysis of the observed P-events.

The temporal uncertainty introduced by the jitter of the communication system
in the C-system can also mess up the causal analysis of events, as shown by the
example of Fig. 2.4. It is therefore necessary to delay an action until the action
message has become permanent.

2.5.2 State

In many C-models of a P-system the concept of state is introduced to capture the
effects of past behavior on future behavior. We follow the definition of Mesarovic
[5], p. 45.

The state enables the determination of a future output solely on the basis of
the future input and the state the system is in. In other word, the state enables a
“decoupling” of the past from the present and future. The state embodies all past
history of a system. Knowing the state “supplants” knowledge of the past.

. . . Apparently, for this role to be meaningful, the notion of past and future must
be relevant for the system considered. . .

The borderline between the past and the future is the event now. A consistent
distributed C-system-wide notion of state can only be introduced if all nodes have
an identical view about the event-set that exists before now.

What happens if a P-event and the event now have the same time-stamp, i.e. a
P-event and the event now happen simultaneously in the C-model? In this case, a rule
is introduced that says that the effect of the P-event on the state has to be processed
first such that the state at now includes the effect of the simultaneous P-event. Note
that the notion of state is an artificial construct in the C-model of the P-system to
capture the effects of the past on the future in a well-defined data structure. State in
its digital form does not exist in the P system.

2.5.3 Determinism

We call a system deterministic, if its time evolution can be predicted. For the
following reason determinism is a desirable property of C-system behavior:

1. Timeliness: Many C-system must carry out timely responses. The notion of
determinism subsumes predictable timing

2. Complexity reduction: Logical reasoning, i.e. modus ponens is based on a
deterministic relationship between cause and effect. The human mind is ill-
equipped to reason along probabilistic dependencies.

3. Testing: The testability of a C-system is improved, if the system will produce the
same outputs given it has been offered identical inputs [6].

36 H. Kopetz

4. Active Redundancy: The implementation of active redundancy requires a deter-
ministic behavior of the replicated nodes.

For our purpose, a more specific definition of determinism is derived from [7]: A
model behaves deterministically if and only if, given a full set of initial conditions
(the initial state) at the discrete time to, and a sequence of future timed inputs, then
the outputs and the system state at selected future instants are entailed.

Let us now investigate the following scenario: A P-system that is assumed to be
deterministic is interfaced with a C-system that is deterministic (the C-system must
obey the rule about the permanence of messages and contain no other mechanism
that causes indeterminism) to form a cyber-physical system (CPS). Is the behavior
of this CPS deterministic? As long as any two events in the P-system are further
apart than the observation uncertainty, the CPS behavior will be deterministic. If
events in the P-system are closer together than the observation uncertainty, then the
randomness of observations can cause a non- deterministic behavior of the CPS.
Two runs, starting at the same initial state of the P-system can evolve differently
in the C-system, due to the possible different event orderings perceived by the C-
system at the P-system/C-system interface.

Does this non-determinism of the CPS matter? Not really, since the reasons for
introducing determinism, as stated in the beginning of this section, relate to the
behavior of the C system and not to the behavior of the full CPS. To take the
argument further, with every physical system there is a finite assumption coverage
of less than one that the assumed deterministic model of the physical system (that
is the subject of our investigation) is a valid abstraction of the behavior of the real
physical system (Consider, e.g., quantum mechanic effects). Even if the physical
system behaves non-deterministically – and in many instances even the models of
physical system that we investigate will be non-deterministic, there is a strong case
for making the C-system behave deterministically. We definitely need the C-system
determinism if we intend to mask a failure of a C-system channel at the logical level
[8] by active redundancy, such as triple-modular redundancy (TMR).

2.6 Guidelines for System Design

The insights gained from the analysis in the previous sections lead to the following
design guidelines

2.6.1 Observation Uncertainty

Whenever we design a timing system for a Cyber-Physical System, we must start
with an analysis of the tolerable observation uncertainty in the given application
context. The tolerable observations uncertainty depends on the dynamics of the

2 Temporal Uncertainties in Cyber-Physical Systems 37

P-system. Depending on the intended task that the CPS is to perform, we must
decide on the minimal temporal distance of P-events, the temporal order of which
must be faithfully represented in the C-model of the P-system. P-events that are
closer together than this minimal distance will still be consistently temporally
ordered in the C-system, but this C-system temporal order might not be faithful. The
tolerable observation uncertainty determines the required precision of the global
time, i.e., the granularity of the global time must be better than one third of the
tolerable observation uncertainty.

2.6.2 Precision

The theory of clock-synchronization is well developed [1], such that the design of
the clock synchronization system is a straightforward engineering task. This design
depends on whether the P-system and the C-system are local or geographically
widely distributed.

In a local system, such as a car or an airplane, clocks can be synchronized via
a local area network. There are local communication protocols, such as TTP [9] or
Flexray [10] where clock synchronization is an integrated service of the protocol.
With these protocols a precision of better than a micro-second can be achieved. If
this protocol-inherent precision is not sufficient, a special synchronization protocol,
such as the standardized IEEE 1588 clock synchronization protocol [11]can be
deployed.

In a widely distributed system, such as the before-mentioned electric grid control
(see Sect. 2.5.1), external clock synchronization via the GPS service is the preferred
alternative, since the jitter of messages in a best-effort wide area network can be
significant. The GPS-time is precise to better than 1�s. The combination of external
and internal clock synchronization is the alternative of choice if local islands have
to be globally synchronized [12].

2.6.3 Permanence

Given a global time, every action message should contain a send-timestamp such
that a receiver can determine at what instant the message becomes permanent
without having to wait for the full jitter of the communication system. When
selecting a real-time communication protocol for the C-system, a protocol should
be selected that exhibits a small jitter. In real- time systems, a small jitter is more
important than a small average transmission delay. This is in contrast to non-real-
time protocols, where a small average transmission delay is aimed for.

38 H. Kopetz

2.6.4 Simultaneity

In order to maintain a consistent view of the events in the C-system, multiple
C-System observations of the same P-event must be consolidated by the execution of
agreement protocols in order to assign a single time-stamp to every single P-event.

The consistent handling of simultaneous C-events by all nodes of the C-system
warrants special attention. As mentioned before, simultaneity is a property of
C-events that is not necessarily a true property in the P-system. Nevertheless, all
C-nodes must have an identical view of simultaneity and must resolve simultaneity
in the same way. Extending the timestamp by assigning a unique natural number to
each node as a node-ID and appending this node-ID to the time-stamp of the P-event
can achieve this [13]. Simultaneous C-events can now be consistently temporally
ordered on the basis of the extended time-stamps.

2.6.5 Reintegration State

The robustness of a node can be considerably improved, if a node can recover
after the occurrence of a transient fault within a short recovery interval. For this
purpose it is necessary to specify during system design reintegration instants where
the relevant state of the node is contained in a declared data structure – we call it
the reintegration state of the node. In order to minimize the size of the reintegration
state, the application has to be carefully analyzed to find an instant, where the effects
of the past on the future are small and where all past activity that is relevant for the
future behavior is captured in the declared data structure. For example, in a cyclic
control system, the interval before the start of a new control cycle is a good candidate
for a reintergration instant. This reintegration instant should be visited periodically
with a period that is smaller than the tolerable recovery interval. The reintegration
state should be stored periodically in stable storage, such that after a fault a node
can be reset and be restarted with the most recently saved reintegration state.

2.6.6 A Note on Timeless Systems

What is the observation uncertainty of a distributed C-model in a CPS that does
not contain a global time, i.e. is timeless (or asynchronous)? The establishment of
the observation uncertainty in such a system requires a cumbersome analysis of all
involved communication jitters and middleware jitters. Since in an asynchronous
distributed system with a shared communication channel a critical instant, i.e., an
instant where all senders send simultaneously a message to the same receiver, cannot
be avoided, the jitter of the communication system in such a timeless system will
be significant. As long as a rigorous analysis of this observation uncertainty is not

2 Temporal Uncertainties in Cyber-Physical Systems 39

available, the faithfulness of the respective C-model remains an open question. Of
what utility is a model-based analysis of the causality of events in the P-system, if
the faithfulness of the corresponding C-model has not been established?

2.7 Conclusion

The different models of time in the physical subsystem, the P-system, and the
computation subsystem, the C-system, of a cyber-physical system cause a tem-
poral observation uncertainty at the P-system/C-system interface. This observation
uncertainty can be reduced, but not eliminated, by providing a more precise global
time-base. As a consequence of this observation uncertainty the temporal order
of events that occur close together in the P-system may not be properly reflected
in the C-system model of the P-system, limiting the causal analysis of P-event.
Furthermore, the jitter of the communication system within the C-system can cause
inconsistencies in the C-system state. These inconsistencies can be avoided, if an
action is delayed until the message is permanent. This delay can be reduced, if a
global time of appropriate precision is available. At the end of this paper, some
practical guidelines for the design of Cyber-Physical Systems have been given.

Acknowledgements This work was supported in part the EU Project GENESYS under project
number FP 7/213322. Many discussions within the project and the research group on distributed
real-time systems at the TU Vienna are warmly acknowledged.

References

1. Kopetz H (2011) Real-time systems–design principles for distributed embedded applications.
Second Edition. Springer Verlag, 2011

2. Kopetz H (2008) The complexity challenge in embedded system design. In ISORC 2008, IEEE
Press

3. Wikipedia (2008) International atomic time
4. Final Report on the August 14, 2003 Blackout in the United States and Canada, 2004
5. Mesarovic MD, Takahara Y (1989) Abstract systems theory. Lecture notes in control and

information science, vol 116. Springer, Berlin
6. Schütz W (1993) The testability of distributed real-time systems, vol ISBN 0–7923–9386–4,

Kluwer, Boston, MA, p 160
7. Hoefer C (2004) Causality and determinism: Tension, or outright conflict. Revista de Filosofia

29(2):99–225
8. Avizienis A (1982) The four-universe information system model for the study of fault

tolerance. In: Proceedings of the 12th FTCS symposium, IEEE Press, Los Angeles, 1982
9. Kopetz H, Gruensteidl G (1993) TTP – A time- triggered protocol for fault-tolerant real-

time systems. In: Proceedings of the 23rd IEEE international symposium on fault-tolerant
computing (FTCS-23), IEEE Press, Toulouse, France, 1993

10. Berwanger J et al (2001) FlexRay – the communication system for advanced automotive
control systems. In: SAE World Congress, SAE Press, Detroit, 2001, paper 2001001–0676

40 H. Kopetz

11. IEEE (2002) 1588 standard for a precision clock synchronization protocol for network
measurement and control systems

12. Kopetz H, Ademaj A, Hanslik A (2004) Integration of internal and external clock synchro-
nization by the combination of clock state and clock rate correction in fault tolerant distributed
systems. In: RTSS 04, IEEE Press, Lissabon, 2004

13. Lamport L (1978) Time, clocks, and the ordering of events. Comm. ACM b(7):558–565

Chapter 3
Large-Scale Linear Computations
with Dedicated Real-Time Architectures

Patrick Dewilde and Klaus Diepold

3.1 Introduction

Understanding the connection between algorithms and solvers for large scale
systems on the one hand, and appropriate architectures that execute them efficiently
on the other is key to the effective design of modern signal processing applications.
This trend has started with the emergence of digital media, large scale signal
processing for image coding and analysis, digital mobile telephony and digital
processing in medical imaging. In many cases dedicated, hardware or software
dominated methods on a single processor have been used, only in recent times more
generic methods based on general purpose array architectures, either dedicated to
media processing or for general computing have become realizable. Massive use of
parallelism becomes attractive and should, in the future, allow us to tackle large
scale problems in a streamlined fashion. It is no exaggeration to state that this
trend was started a long time ago when Georg Färber proposed parallel processing
schemes for signal processing and control using coprocessors on standard busses
and proceeded to prove his ideas in practice, thereby creating a company that set a
standard in the field [28] – he was clearly many decades ahead of the field!

In this contribution to this volume to honor the attainment of the status of
“Professor Emeritus” by Georg Färber, we review a number of what we consider
very attractive cases where the connection between algorithm and executing
architecture proves to be very effective. Luckily, these cases handle some of the
most important algorithms in numerical linear algebra. The resulting combination

K. Diepold (�)
Technische Universität München, Department of Electrical Engineering and Information
Technology
e-mail: kldi@tum.de

P. Dewilde
Technische Universität München, Institute for Advanced Study
e-mail: p.dewilde@me.com

S. Chakraborty and J. Eberspächer (eds.), Advances in Real-Time Systems,
DOI 10.1007/978-3-642-24349-3 3, © Springer-Verlag Berlin Heidelberg 2012

41

42 P. Dewilde and K. Diepold

algorithms-architectures brings the fields of signal processing and linear algebra
together, a dream that has been somewhat elusive over the years, because program-
ming paradigms and hardware design methods were not well adapted to each other.
Work has to be done, both at the side of the choice of algorithm and at the side of
the architectural design. Although we cannot go into the details of neither the most
sophisticated algorithms nor the details of the design methodology, we can easily
illustrate the principles. Essential is the combination of the choice of algorithm with
the architectural consequences, the designer handles algorithm and architecture at
the same time, to achieve a result in which both sides are optimally adapted on each
other.

An important issue in signal processing is numerical stability and robustness
of the algorithms used. The system designer should not deteriorate the numerical
properties of his problem by introducing computational steps that degrade the
conditioning and hence the quality of the computed results. The conditioning of
a problem is defined as a measure of the sensitivity of the result to variations of the
input data, or more precisely, how much errors in the input data are propagated to
the output by the implemented mathematical function.

Jacobi’s QR factorization is one of the numerical algorithms, which exhibits
very favorable numerical properties, which it combines with great opportunities
for parallelization [14]. The QR factorization sits at the core of solutions for many
important technical problems: the solution of linear equations, channel estimation
and signal identification in telecommunication, Kalman filtering (in the square root
version) and H-infinity control. It also represents a core function in an iterative loop
for computing eigenvalue and singular value decompositions (abbreviated as EVD
and SVD, respectively). Although the QR factorization is used a lot, often hidden
in embedded software, it is not as well known as it deserves. To honor Jacobi,
we start the paper with a description of the algorithm, and an account of its main
applications.

The matrices associated with real technical problems exhibit often special
structural properties. These properties are exploited by an alternative class of
algorithms for improved performance or for reduced computational complexity.
Foremost for large system solvers are the iterative algorithms used to handle e.g.
sparse matrices. We give an account of some of the major methods and the resulting
architectures. Structure also plays a role in direct solvers. A very important type
of structure is called “semi-separable” or “quasi-separable” (the terminology has
not stabilized.) Here, both direct and iterative methods play a role, we give a brief
account.

To connect algorithms to architectures, we make systematic use of “data flow
graphs”, sometimes called dependence or precedence graphs. These are actually
generalizations of the signal flow graphs classically used in the signal processing
literature. They have been adopted in commercial design packages [24] and give the
designer a convenient way to control the parallelization process without having to
resort to complicated and often wieldy design tools.

3 Large-Scale Linear Computations with Dedicated Real-Time Architectures 43

3.2 Algorithms and Architectures

3.2.1 Technical Applications of Numerical Linear Algebra

Solving linear systems of equations or computing a least squares solution for an
overdetermined system of equations belong to the most common computational
tasks in science and engineering. Engineered products and services are relying
on the capability of real-time systems to solve such problems fast, accurate and
in a robust way. Examples for this statement are Kalman-filtering [12], rake-
receivers in mobile communications [38], adaptive channel equalizers, adaptive
beamforming [34], in stereo vision systems [16], to name just a few. Another set of
applications using linear systems of equations originates from CAD tools and circuit
simulators [5], structural analysis using finite element methods or partial differential
equations [37].

Researchers in the domain of Numerical Linear Algebra have worked since the
dawn of the modern computer on devising effective numerical methods for solving
systems of equations of ever increasing dimension. Therefore, we suffer no shortage
of published results and practical implementations of system solvers, which are
readily available and widely used in terms of highly optimized software packages
such as the LINPACK, LaPACK or IMSL libraries, as well as in software packages
like Matlab, Mathematica, Octave, or Scilab.

3.2.2 Dense Matrices and Direct Algorithms

Direct solution schemes use factorizations of the coefficient matrix which allow to
map the original problem on a problem involving a triangular matrix. Examples are
the LU factorization T D L �U for a square coefficient matrix T and the lower and
upper triangular factors L and U , respectively. For a symmetric positive definite
coefficient matrix (prime indicates transpose) T D T 0; T > 0 we can compute the
Cholesky factorization T D R 0 � R, where R is upper triangular. Note that both
factorizations require pivoting schemes to achieve numerical stability [14]. Pivoting
is an effective method to improve numerics, but it destroys the regular data flow
because of additional control structures and branching.

Factorization algorithms, which are based on orthogonal elementary operations,
such as the QR decomposition, satisfy the need for numerically reliable compu-
tations without resorting to pivoting [14]. A solution strategy which computes
the QR-decomposition of the coefficient matrix using elementary Jacobi (Givens)
rotations has the added benefits to be amenable for parallelization on highly local
and regular architectures.

Solving dense systems of linear equations takes O.n3/ operations [14], where
n denotes the size of the coefficient matrix. This computational effort may be
overwhelming in case of large n. In many signal processing applications the

44 P. Dewilde and K. Diepold

matrices involved may have moderate values for n, for which the computational
burden may be challenging for real-time application, but they comprise “structure”,
that is, the matrices have only O.n/ parameters. The structure in the matrix allows
for solution algorithms, which require only O.n2/ operations. Typical examples for
such structured matrices are diagonal matrices or Toeplitz or Hankel matrices [22].

3.2.3 Square-Root and Array Algorithms

Real-time computer systems gain additional advantages in terms of numerical
robustness and reliability if the implemented algorithms operate directly on the
data of the coefficient matrix instead of setting up normal equations. Computing
the normal equation squares the condition number of the problem; this leads to a
dramatic loss in precision for the result, if the coefficient matrix is badly conditioned
and hence more sensitive to rounding errors and other imperfections of finite
word length computations. Algorithms which work directly on the data are often
referred to as “square-root algorithms”, because they avoid “squaring” the data when
determining the covariance matrices that come with approaches based on solving
the normal equation. The combination of “square-root” approaches and orthogonal
elementary transformations leads to a family of so-called “array” algorithms, which
exploit an elementary identity known as Schur-complements and which are highly
suitable for being mapped onto parallel computer architectures [23, 31].

3.2.4 Algorithms and Architectures

Applications running on real-time computer systems require that computations are
completed with a pre-determined deadline, that the results are computed in a reliable
way having an accuracy that is robust against perturbations and noise. Furthermore,
favorable algorithms shall provide a high level of locality and parallelism [27]. For
large scale real time architectures it would be very attractive to dispose of a generic
high level algorithm that at the same time solves major problems, and at the other
is amenable to real time realization, utilizing the available resources to a maximum.
The requirements one can put on such an algorithm are:

• Parametrizable: the algorithm should be able to handle problems of any size,
even though the available resources are limited.

• Numerically accurate: the algorithm should be numerically backward stable with
errors close to the conditioning of the problem.

• Parallelizable: there should be a natural way to partition the algorithm in chunks
that operate in parallel and can be mapped to the underlaying architecture.

• Localizable: both data transport and memory usage should be highly local, no
massive storage needed during the algorithm nor massive data transport or data
manipulation.

3 Large-Scale Linear Computations with Dedicated Real-Time Architectures 45

• Generic: the algorithm should be able to handle many if not most large scale
computations – much like multiplication and addition, which can handle most
numerical problems as well.

• Incremental: when additional data becomes available, the algorithm gracefully
adapts.

3.3 The QR Algorithm as a Generic Method

The algorithm for computing the QR factorization was originally proposed by Jacobi
and is an excellent candidate algorithm to satisfy the requirements list given in
the previous section. We start with a description of the algorithm, followed by
a methodology to derive attractive, real-time architectures for it. We stop at the
architectural level, but enough detail of the strategy will transpire to allow for
attractive, concrete realizations.

3.3.1 The QR Algorithm

The most attractive way to present QR is on a very common example. Suppose T
is a rectangular, tall matrix of dimension m � n, y a given vector of dimension
m and suppose we are interested in finding a vector u of dimension n such that
T u is as close as possible to y (we assume real arithmetic throughout. With slight
modifications complex arithmetic or even finite field calculations are possible as
well but beyond our present scope.) Numerical analysts call such a problem “solving
an overdetermined system”. It occurs in a situation where u is a set of unknown
parameters, row i of T consist of noisy data, which, when combined linearly with
u produce the measured result yi . The situation occurs very often in measurement
setups, where repeated experiments are done to reveal the unknown parameters,
or in telecommunication where transmitted signals have to be estimated from the
received signals (we omit the details). The most common measure of accuracy is
“least squares”, for a vector u with components ui we write

kuk2 D
vuut nX

iD1
jui j2 (3.1)

There may be more than one solution to the minimization of kT u � yk2, often one
is interested in the least squares, so one tries to solve

umin D argminwk.w D argminukT u � yk2/k2 (3.2)

46 P. Dewilde and K. Diepold

the actual minimum being the estimation error. The strategy is to perform a QR
decomposition of T . The matrix Q has to be an orthogonal matrix (a generalized
rotation), which keeps the norm of the vectors to which it is applied, whileR should
be an upper triangular matrix. Let Q 0 be the transpose of Q, then orthogonality
means Q 0Q D QQ 0 D I , Q 0 is actually the reverse rotation. Let us just assume
that Q and R can be found (see further), and let us apply Q 0 to y, to obtain
� D Q 0y, then we have QRu D y and hence Ru D Q 0y D �. R has the same
dimensions as T , meaning that it is a tall matrix. It is also upper triangular, meaning
that it has the form

R D
�
Ru

0

�
(3.3)

in which Ru is now n � n square and upper triangular. We find that the solution u
must minimize

k
� �

Ruu
0

�
� �

�
k2: (3.4)

If we partition � D
�
�1
�2

�
with �1 of dimension n, we see that the minimal solutions

must satisfy the square system Ruu D �1 and that �2 certainly contributes wholly to
the error, there is nothing we can do about it. IfRu is non-singular, i.e. if the original
system has a full row basis, then the solution will be unique, i.e. u D R�1u �1 and
the error will be k�2k2. If that is not the case, further analysis will be necessary,
but the dimension of the problem is reduced to n, the number of parameters, from
m, the number of measurements (usually much larger.) It may appear that the QR
factorization step is not sufficient, it has to be followed by a “back substitution” to
solve Ruu D �1, but this difficulty can be circumvented (see further). Here we want
to concentrate just on the QR step and its possible architectures.

3.3.2 The Basic Step: Jacobi Rotations

The elementary Jacobi matrix is a rotation over an angle � in the 2D plane (for
convenience we defineQ 0):

Q 0 D
�

cos � sin �
� sin � cos �

�
(3.5)

Let’s abbreviate to Q 0 D
�
c s

�s c
�

and apply the rotation to two row vectors:

�
c s

�s c
� �

a1 a2 � � � an
b1 b2 � � � bn

�
D

" q
a21 C b21 ca2 C sb2 � � �
0 �sa2 C cb2 � � �

#
(3.6)

3 Large-Scale Linear Computations with Dedicated Real-Time Architectures 47

which is achieved by choosing c D a1p
a21Cb21

, s D b1p
a21Cb21

(and hence automatically

tan � D b1
a1

). In this way one can treat the entries of the original matrix T row by
row and create all the zeros below the main diagonal. With a 4�3 matrix this works
as shown below. The only thing one must do is embed the 2� 2 rotation matrices in
the 4 � 4 schema, so that unaffected rows remain unchanged. We label the rotation
matrices with the indices of the rows they affect – we indicate affected entries after
each step with a ?:
2
664
� � �
� � �
� � �
� � �

3
775

Q 0

1;2�!

2
664
? ? ?

0 ? ?

� � �
� � �

3
775

Q 0

1;3�!

2
664
? ? ?

0 � �
0 ? ?

� � �

3
775

Q 0

1;4�!

2
664
? ? ?

0 � �
0 � �
0 ? ?

3
775

Q 0

2;3�!

2
664
� � �
0 ? ?

0 0 ?

0 � �

3
775

Q 0

2;4�!

2
664
� � �
0 ? ?

0 0 �
0 0 ?

3
775

(3.7)
and the final step is a Q 03;4 which annihilates the 4; 3 entry. In each of these
subsequent steps, the first operation determines the rotation matrix and then
applies it to all the entries in the respective rows, skipping the already computed
zero entries (which remain zero). The overall rotation matrix is then Q D
Q1;2Q1;3Q1;4Q2;3Q2;4Q3;4. In most cases it need not be put in memory (and if so
there are tricks.) It turns out that this algorithm leads to a very regular computational
schema, now known as the “Gentleman-Kung array”, which we discuss in the next
section.

The result of a QR factorization need not be in strict triangular form, the actual
more general form is called an i.e., echelon form. It may happen that in the course
of the algorithm, when the processor moves from one column to the next, an actual
sub-column of zeros is discovered. In that case no rotation is necessary and the
processor can move to the next sub-column, which again might be zero etc... until
a sub-column is reached with non zero elements. The result will then have the form
shown in Fig. 3.1. The QR algorithm compresses the row data of the matrix in the
North-East corner, leaving the norm of each relevant sub-column as leftmost non
zero element. There is a dual version, called the LQ algorithm that compresses the
columns in the South-West corner, and one can of course also construct versions for
the other corners (but these will not bring much additional information). One can
take care of the zero or kernel structure exemplified by the QR or LQ algorithms
by testing on zero inputs when Jacobi rotations are applied, this can be arranged
for automatically, we shall henceforth just assume that these provisions have been
taken.

0 *

0 0 0 0

0 0 0 0 0 *

0 0

0 0 0 0 0 0 0 0

Fig. 3.1 Example of an echelon form. Elements indicated with a “?” are strictly positive. The QR
algorithm compresses the rows to the North-Eastern corner of the matrix and generates a basis for
the rows of the matrix

48 P. Dewilde and K. Diepold

3.3.3 The Gentleman-Kung Array

An important step for connecting the algorithmic information with potential archi-
tectures is the definition of a “dependence graph”, sometimes called a “sequencing
graph”. The graph exhibits operations as nodes and data transport as dependencies
between nodes. In the case of the QR algorithm just defined, we have two types
of operations: Type 1 consists in the computation of sine and cosine of an angle
given two values (say a and b) and the subsequent rotation of these two values top
a2 C b2 and 0, while the second operation just applies the rotation to subsequent

data on the same rows. The array is upper triangular, for each position .i; j / in
the upper part of the resulting matrix Ru there is one processor, the processors on
the diagonal are of the first type, while the others are of the second type. Angle
information is propagated along the rows, while the data is inputed, row by row,
along the columns. It gives a precise rendition of the operation-data dependencies
in the original algorithm. From the view of a compiler, the graph represents a
“Single Assignment Code (SAC)” rendition of the original algorithm, there is no
re-use neither of operations nor of memory elements. Actually, the local memory
in this representation is reduced to the end result, the ri;j of the final matrix, one
per processor, all other data is communicated either from the environment to the
area, or from one processor to the next. In this algorithm, some data can actually
be “broadcast”, namely the information about the angles (ci ; si), along the rows,
it might not be a bad idea to make special arrangements for this. The array shows
what the architecture designer has to know about the algorithm. If only the type
of the various data is specified and the operation in each node, he has enough
information to design the architecture – we describe briefly what the architecture
designer can do next in a further section, but before doing so we show how various
standard problems can be solved with the array or interesting extensions of it
(Fig. 3.2).

3.4 Architecture Design Strategies for Parallelization
of the QR Algorithm

Once a high level algorithm can be represented as a regular array, in which
nodes represent operations and arrows data transport, the issue arises how these
operations and data can best be mapped to an architecture consisting of actual
processors, memories, busses and control. In the following sections we shall see
that (extensions) of the Gentleman-Kung array succeeds in solving major problems
of linear algebra, estimation and control. These problems may have any dimension,
they are parametrized by their size, often indicated as n. It seems logical that
the most attractive type of concrete architecture to map to would be an array
itself, consisting of processing nodes that contain provisions for the necessary

3 Large-Scale Linear Computations with Dedicated Real-Time Architectures 49

Fig. 3.2 The
Gentleman-Kung or Jacobi
array. The squares represent
“vectorizing rotors”, they
compute the Jacobi angle
information from the data and
perform the first rotation, the
circle are “rotors”, they rotate
a two-dimensional vector
over the given angle

operations (in our case vectorization and rotation), local memory in each processor
for intermediate results, and an infrastructure surrounding the array, whose task it
is to provide the array with data and to collect results when they become available.
Such a processor array will typically have a small dimension, e.g. 3�3 to mention a
commercial size. So the issue becomes the mapping of an arbitrarily (parametrized)
SAC array onto potential, architecturally viable sizes. When the computational
array is regular, this assignment can be done in a regular fashion as well. As data
transport becomes a paramount issue in performance, it becomes important to use
local memory as much as possible. The architectural problem becomes in the first
place a problem of efficient memory usage, or, to put it more simply, to perform the
partitioning and mapping to resources of the original array in such a way that local
memory is fully used before data are sent to background memory. We can offer two
general partitioning strategies to achieve this feat, whose combination allows to first
exhaust local memory and then map well chosen remainder to background. They
have been called with various names in the literature, here we call them “LPGS”
and “LSGP” – for “Local Parallel Global Sequential” and “Local Sequential Global
Parallel” [20]. We suffice here to describe these two strategies, there are many more,
more detailed ones, but these would go beyond the scope of the present paper.

In each of the two strategies, the original array will first be “tesselated”, i.e.
decomposed in tiles. Although not strictly necessary, we shall assume our tiles to
be square, just to illustrate the methods. In a first approach, we have two choices:
either we choose the tiles so big that the total array of tiles actually equals the
processor array we envisage, and then we map each tile just to one processor, or

50 P. Dewilde and K. Diepold

Fig. 3.3 The “Local Sequential, Global Parallel” strategy: The array is partitioned in subarrays,
the partitions are mapped to the processor array

we take tiles so large that they are exactly isomorphic to the processor array. The
first strategy is LSGP – the operations within one tile will be executed sequentially
on one processor. As a consequence of this strategy, the intermediary data that is
produced by one operation either has to be mapped to local memory (if the operation
that shall use the data belongs to the same tile) or it has to be shoveled to background
memory (if the operation that shall use the data is in another tile). Clearly, LSGP
will use a lot of local memory and only be feasible if the size of the tiles are small
enough so that all local intermediary results can also be stored locally. The opposite
strategy is LPGS. Here the size of the tile would be chosen exactly equal to the
size of the processor array, and the only local storage needed is what was already
assigned to the individual nodes, all the rest goes to the background memory. The
two strategies are illustrated in Figs. 3.3 and 3.4 respect.

What could then be an optimal strategy? The solution is almost obvious: choose
tiles so big that LSGP is feasible on them, condensate the operations and then use
LPGS on the result – LSGP by choice followed by LPGS by necessity.

3.5 Solving Problems with a QR Array

3.5.1 One Pass Equation Solver: The Faddeev/Faddeeva Array

To obtain a direct, one pass solution for the system of linear equations Ty D u
using a modification of the Gentleman-Kung array, one just has to perform QR

3 Large-Scale Linear Computations with Dedicated Real-Time Architectures 51

Fig. 3.4 The “Local Parallel, Global Sequential” strategy: Tiles are mapped directly on the
processor array and executed sequentially

on the following, extended matrix (we use � 0 to indicate the transpose of a matrix,
namely T 0i;j WD Tj;i) [18]:

F WD
�
T 0 I 0
�u 0 0 1

�
(3.8)

Instead of having a tall matrix as in the original Gentleman-Kung array, we now
have a flat one, the only thing we must do is extend the algorithmic array with a
number of rotors to the right hand side. The dimensions have also increased, it is
now a processor array of dimensions .nC1/�.2nC1/, with only .nC1/ vectorizing
rotors on the main diagonal, but otherwise just a similar regular array as before, now
rectangular. TheQmatrix will now have dimensions .nC1/�.nC1/, and to amplify
this we partition it accordingly:

Q D
�
Q11 q12
q21 q22

�
(3.9)

In this representation, q12 is a tall vector of dimension n, q21 a flat vector of
dimension n and q22 just a scalar quantity. One can immediately verify that the
QR factorization of this matrix produces:

�
T 0 I 0
�u 0 0 1

�
D Q

�
R Q 011 q 021
0 y 0q22 q22

�
(3.10)

52 P. Dewilde and K. Diepold

in which R is some matrix (which we do not use further), and the result appears as
the pair .y 0q22; q22/. One interprets q22 as a normalizing factor, it is actually equal
to 1=

p
1C kyk2 flowing out of the array.

3.5.2 Channel and Signal Estimation in Telecommunications

The typical equation governing a telecommunication situation has the form

x D h 	 s C n: (3.11)

Herein x is the received signal, h represents the channel, s the signal to be
transmitted and n the noise. All these can be viewed as “signals”, in the most
current situation they are functions of time. “	” is convolution, it represents the
action of a channel on an input signal, convolution being typical for a linear,
time-invariant (LTI) situation wherein the output is the sum of similar responses
modulated by the signal and shifted according to their occurrence. The technical
situation is often pretty complicated, but from a numerical point of view, relating
original input sequences to the output, the overall model can be captured by two
equivalent equations:

1. The channel estimation model x D ShC n, in which

S D

2
6666664

s0
:::

: : :

sK�1 s0
: : :

:::

sK�1

3
7777775
; h D

2
64

h0
:::

hL�1

3
75 ; (3.12)

2. The signal estimation model x D Hs C n, in which

H D

2
6666664

h0
:::

: : :

hL�1 h0
: : :

:::

hL�1

3
7777775
; s D

2
64

s0
:::

sK�1

3
75 : (3.13)

s is now a sequence of original symbols that are being transmitted (we assume them
to be real numbers), h is the impulse response of the transmission medium and n
is the overall “noise” being added at each reception (the noise is a combination
of interferences and processing noise). The first situation is the “training” part, in
which we assume that s is known while h has to be estimated, the system is adapting

3 Large-Scale Linear Computations with Dedicated Real-Time Architectures 53

to the transmission situation by using a learning signal. In the second situation
knowledge about the channel is assumed and it is used to transmit information s
that has to be estimated.

Classical estimation theory provides a number of techniques, called “Best Linear
Unbiased Estimator – BLUE”, “Minimum Variance Unbiased Estimator – MVU”,
“Maximum Likelihood Estimator – MLE” and even Bayesian estimators, such as
the “Linear Minimum Mean Square Error Estimator – LMMSE”. Most popular
are BLUE and LMMSE, which we briefly pursue. In the case of the channel
estimator, assume the noise to have covariance �2I and the signal matrix S to be
sufficiently rich so as to have full row rank, then optimization theory shows that the
BLUE and least square estimators are given by

ĥ D .S 0S/�1S 0x: (3.14)

.S 0S/�1S 0 is the so called Moore-Penrose inverse of S . This is precisely the
situation we have described in the section on QR-factorization. Indeed, when
S D QR, then .S 0S/�1S 0 D R�1Q 0, we have called Q 0x D �1 and we find the
result ĥ D R�1�1 – exactly the algorithm presented earlier. There is also a one-pass
version, due to Jainandunsing and Deprettere [18].

The data situation is not much different. In the BLUE situation and with the white
noise assumption in force, the signal estimator becomes

ŝ D .H 0H/�1H 0x (3.15)

and a QR factorization of H will produce the result.
If a so-called Bayesian estimator is desired, then known covariance information

on the result has to be brought into play. The formulas get to be a little more
complicated, for example

ŝ D .H 0H C �2C�1s /H 0x (3.16)

for the data estimator (in which Cs is the assumed known covariance of s (this may
purely be belief data!). Also in this case the QR factorization is the way to go, as
H 0H D R 0R and H 0x D R 0�1 with �1 defined as before. Typically, the R matrix
will be much smaller than the H matrix, the former has the size of the data vector,
while the size of the latter is determined by the number of experiments.

3.5.3 The Kalman Filter

The Kalman estimation filter attempts to estimate the actual state of an unknown
discrete dynamical system, given noisy measurements of its output, for a general
introduction see Kailath [21], see also Kailath, Sayed and Hassibi [23], here we
give a brief account to connect up with the previous section on QR and the

54 P. Dewilde and K. Diepold

following section on structured matrices. The traditional set up makes a number
of assumptions, which we summarize.

3.5.3.1 Assumptions

1. We assume that we have a reasonably accurate model for the system whose state
evolution we try to estimate. Let xi be the evolving state at time point i – it
is a vector of dimension ıi . We further assume that the system is driven by an
unknown noisy, zero mean, vectorial input ui , whose second order statistical
properties we know (as in the BLUE, we work only with zero mean processes
and their variances). We assume the dynamical system to be linear and given by
three matrices fAi; Bi ; Ci g, which describe respectively the maps from state xi
to next state xiC1, from input ui to next state xiC1 and from state xi to output yi .
The latter is contaminated by zero mean, vectorial measurement noise 	i , whose
second order statistics we know also. The model has the form given by

�
xiC1 D Aixi C Biui
yi D Cixi C 	i (3.17)

A data flow diagram of the state evolution is shown in Fig. 3.5. The transition

matrix of this filter is defined as the matrix

�
Ai Bi
Ci 0

�
, it defines the map from all

inputs

�
xi
ui

�
to all outputs

�
xiC1
yi

�
.

2. Concerning the statistical properties of the driving process ui and the measure-
ment noise 	i , we need only to define the second order statistics (the first order
means is already assumed zero, and no further assumptions are made on the
higher orders). We always work on the space of relevant, zero means stochastic
variables, using “E” as the expectation operator. In the present summary, we
assume that ui and 	i are uncorrelated with each other and with any other uk ,
	k , k /Di , and that their covariances are given respectively by Euiu 0i D Qi and
E	i 	 0i D Ri , both non singular, positive definite matrices (this assumes that

xi+1

yi

Ai

Ci

ui

Bi

xi

ui

Fig. 3.5 The model filter

3 Large-Scale Linear Computations with Dedicated Real-Time Architectures 55

there is enough noise in the system), we assume again real matrices throughout,
otherwise one must use Hermitian transposition. On a space of scalar stochastic
variables with zero mean we define a (second order statistical) inner product as
.x; y/ D E.xy/. This can be extended to vectors by using outer products such as

Exy 0 D E

0
B@

2
64

u1
:::

um

3
75 �

y1 � � �yn
�
1
CA D

2
6664

Eu1y1 Eu1y2 � � � Eu1yn
Eu2y1 Eu2y2 � � � Eu2yn
:::

:::
: : :

:::

Eumy1 Eumy2 � � � Eumyn

3
7775 : (3.18)

3. We also assume that the process whose state is to be estimated starts at the time
point i D 0. The initial state x0 has known covariance Ex0xT0 D …0.

3.5.3.2 The Recursive Solution

We start with summarizing the classical solution, based on the “innovations model”
pioneered by Kailath e.a., see [21]. Let us assume that we have been able to
predict xi and attempt to predict xiC1. The least squares predictor x̂i is the one
that minimizes the prediction error ex;i D xi � x̂i in the covariance sense,
assuming linear dependence on the data (the same assumptions will hold for the
next predictor). The Wiener property asserts that x̂i is a linear combination of the
known data (in our case all the yk for k D 0 � � � i � 1) and that the error, also called
the state innovation, ei is orthogonal on all the known data so far. These properties
will of course be propagated to the next stage, given the (noise contaminated) new
information yi . It turns out that the only information needed from the past of the
process is precisely the estimated state x̂i , the new estimate being given by

x̂iC1 D Ai x̂i CKp;i .yi � Ci x̂i /: (3.19)

In this formula Kp;i denotes the “Kalman gain”, which has to be specified, and
which is given by

Kp;i D KiR
�1
e;i ; Re;i D Ri C CiPiC 0i ; Ki D AiPiC 0i : (3.20)

In these formulas, the covariances Pi D Eex;i eTx;i and Re;i are used, in view of the
formula for the latter, only Pi has to be updated to the next step, and is given by

PiC1 D AiPiA 0i C BiQiB
0
i �Kp;iRe;iK

0
p;i (3.21)

The covariance PiC1 is supposed to be positive definite for all values of i , a
constraint which may be violated at times because of numerical errors caused be
the subtraction in the formula. In the next paragraph we shall introduce the square
root version of the Kalman filter, which cannot create this type of numerically

56 P. Dewilde and K. Diepold

caused problems. So far we have only given summaries the known results, we give
a simple direct proof in the next paragraph. Starting values have to be determined
since this solution is recursive, and they are given by

x̂0 D 0; P0 D …0: (3.22)

Proof. We give a recursive proof based on the parameters of the model at time
point i . We assume recursively that the error ei D xi � x̂i at that time point is
orthogonal on the previously recorded data, and that the new estimate x̂iC1 is a linear
combination of the data recorded up to that point. We first relax the orthogonality
condition, and only ask eiC1 to be orthogonal on x̂i (a linear combination of already
recorded previous data) and yi , the newly recorded data at time point i . We show
that this estimator already produces an estimate that is orthogonal (of course in the
second order statistical sense) on all the previously recorded data. From our model
we know that xiC1 D Aixi C Biui . We next ask that x̂iC1 be a linear combination
of the known data x̂i and yi , i.e. there exist matrices Xi and Yi , to be determined,
such that

x̂iC1 D Xix̂i C Yiyi : (3.23)

Requesting second order statistical orthogonality of eiC1 on x̂i we obtain

E.xiC1 � x̂iC1/x̂ 0i D E.Aixi C Biui � Xix̂i � Yiyi /x̂ 0i D 0: (3.24)

We now observe that Eui x̂ 0i D 0 by assumption and that Ex̂i x̂ 0i D Exi x̂ 0i because
Eei x̂i D 0 through the recursive assertion. The previous equation then reduces to

.Ai � Xi � YiCi/E.xi x̂ 0i / D 0; (3.25)

which shall certainly be satisfied when Xi D Ai � YiCi .
Next we request orthogonality on the most recent data, i.e.

EeiC1y 0i D 0: (3.26)

In fact, we can ask a little less, by using the notion of “innovation”. The optimal
predictor for yi is simply ŷi D Ci x̂i , and its innovation, defined as ey;i D yi � ŷi ,
is ey;i D Ciei C 	i . We now just require that eiC1 is orthogonal on ey;i , as it is
already orthogonal on x̂i and EeiC1y 0i D EŒeiC1.x 0i C 0i C 	 0i � x̂ 0i C 0i)]. We now
obtain an expression for the innovation eiC1 in term of past innovations and the data
of section i

eiC1 D Aiei C Biui � .Ai � YiCi /x̂i � Yiyi D Aiei C Biui � Yiey;i ; (3.27)

which we now require to be orthogonal on ey;i . WithPi D Eei e 0i , we have Eei e 0y;i D
PiC

0
i and Eey;i e 0y;i D CiPiC 0i CRi . The orthogonality condition becomes therefore

3 Large-Scale Linear Computations with Dedicated Real-Time Architectures 57

Yi .Ri C CiPiC 0i / D AiPiA 0i : (3.28)

Hence the formulas given for the Kalman filter, after identifying Kp:i D Yi and
Re;i D Ri C CiPiC 0i (actually the covariance of ey;i .)

Concerning the propagation of the covariance of the innovation Pi , we rewrite
the formula for eiC1 as (reverting back to the notation in the previous paragraph)

eiC1 CKp;i ey;i D Aiei C Biui : (3.29)

Remarking that the terms of the left hand side are orthogonal to each other, and
those of the right hand side as well, we obtain the equality

PiC1 CKp;iRe;iK
0
p;i D AiPiA 0i C BiQiB

0
i ; (3.30)

which shows the propagation formula for the innovation covariance. �

Finally, when yk is some data collected at a time point k < i , we see that
EeiC1yTk D EŒ.Ai ei C Biui � Kp;i ŷi /y

0
k�. The recursion hypothesis states that

ei is orthogonal to all past collected data, in particular to yk . Hence we see that the
expression is equal to zero, after working out the individual terms.

3.5.3.3 The Square Root (LQ) Algorithm

The square root algorithm solves the Kalman estimation problem efficiently and in
a numerical stable way, avoiding the Riccati equation of the original formulation. It
computes an LQ factorization on the known data to produce the unknown data. An
LQ factorization is the dual of the QR factorization, rows are replaced by columns
and the order of the matrices inverted, but otherwise it is exactly the same and is
done on the same architecture. Not to overload the symbol “Q”, already defined as
a covariance, we call the orthogonal transformation matrix at step i , Ui , acting on a
so called pre-array and producing a post-array

"
CiP

1=2
i R

1=2
i 0

AiP
1=2
i 0 BiQ

1=2
i

#
Ui D

"
R
1=2
e;i 0 0

NKp;i P
1=2
iC1 0

#
: (3.31)

The square root algorithm gets it name because it does not handle the covariance
matricesPi andRe;i directly, but their so called square roots, actually their Cholesky
factors, where one writes, e.g.Pi D P1=2

i P
0=2
i assumingP1=2

i to be lower triangular,

and then P 0=2i is its upper triangular transpose (this notational convention is in the
benefit of reducing the number of symbols used, the exact mathematical square root
is actually not used in this context). The matrix on the left hand side is known
from the previous step, applying Ui reduces it to a lower triangular form and hence
defines all the matrices on the right hand side. Because of the assumptions on the

58 P. Dewilde and K. Diepold

xi+1

Ai

–Ci

yi

xi

ui

Kp,i

Re,i
–1/2

Fig. 3.6 The Kalman filter,
alias innovations filter

non singularity of Ri , Re;i shall also be a square matrix, the non-singularity of PiC1
is not directly visible from the equation and is in fact a more delicate affair, the
discussion of which we skip here.

The right hand side of the square root algorithm actually defines a new filter with
transition matrix "

Ai NKp;i

Ci R
1=2
e;i

#
(3.32)

One obtains the original formulas in the recursion just by squaring the square root
equations (multiplying to the right with the respective transposes). In particular this
yields AiPiA 0i D NKp;iR

0
e;i and hence

NKp;i D Kp;iR
1=2
e;i D KiR

�0=2
e;i (3.33)

(different versions of the Kalman gain). This form is called an outer filter, i.e. a
filter that has a causal inverse. The inverse can be found by arrow reversal (see
Fig. 3.6) and it can rightfully be called both the Kalman filter (as it produces x̂iC1)
and the (normalized) innovations filter, as it produces
i D R

�1=2
i .yi � Ci x̂i /, the

normalized innovation of yi given the preceding data summarized in x̂i .

3.5.4 Solving Symmetric Positive Definite Systems
with the Schur Algorithm

We consider the solution of a linear least-squares problem via the normal equation

T 0T u D T 0y;

where the coefficient matrix C D T 0T is a symmetric positive definite matrix. We
split up the symmetric matrix according to C D U CD C U 0 2 R

m�m, and define
the intermediate matrices

3 Large-Scale Linear Computations with Dedicated Real-Time Architectures 59

V D 1

2
.D C 2U C 1n/ ; W D 1

2
.D C 2U � 1n/

such that C can be represented as

C D V 0V �W 0W D
�
V

W

� 0
J

�
V

W

�
; J D

�
1n

�1n

�
:

The Schur-Cholesky algorithm, as presented in [19] and [17] solves this symmetric
linear system determines a J -orthogonal‚ satisfying

‚

�
V

W

�
D

�
R

0

�
; ‚ 0J‚ D J:

The matrix‚ being J -orthogonal results in the identity

�
V

W

� 0
‚ 0J‚

�
V

W

�
D

�
R

0

� 0
J

�
R

0

�
D V 0V �W 0W D R 0R;

where the matrix R is an upper triangular matrix, hence, a triangular factor of C .
If we complete this map by extending it to the orthogonal space we arrive at the full
equation

‚

�
V W 0
W V 0

�
D

�
R 0

0 L

�
; C D LL 0;

where L is supposed to be a lower triangular factor of C . Assuming that all neces-
sary matrices are invertible, then we can devise an expression for the transformation

‚ D
�
.R 0/�1V 0 �.R 0/�1W 0
�.L 0/�1W .L 0/�1V

�
: (3.34)

Similar to the approach for computing the QR decomposition using Jacobi rotations
(compare with Sect. 3.3.2) we can compute the overall transformation ‚ using
elementary J -orthogonal or hyperbolic rotations. The elementary hyperbolic matrix
is a rotation over an angle � in the 2D plane (for convenience we define H 0):

H 0 D
�
ch sh
�sh ch

�
; using

ch WD cosh �
sh WD sinh �

(3.35)

Let’s apply such a rotationH 0 to two row vectors such as

�
ch sh
�sh ch

� �
a1 a2 � � � an
b1 b2 � � � bn

�
D

" q
a21 � b21 cha2 C shb2 � � � chan C shbn
0 �sha2 C chb2 � � � �shan C chbn

#

(3.36)

60 P. Dewilde and K. Diepold

which is achieved by choosing

ch D a1q
a21 � b21

; sh D b1q
a21 � b21

;

and hence automatically tanh � D b1
a1

.
In this way one can treat the entries of the original matrix T row by row and

create all the zeros below the main diagonal. With a 3 � 3 matrix C this works as
shown below. The only thing one must do is embed the 2�2 rotation matrices in the
4 � 4 schema, so that unaffected rows remain unchanged. We label the hyperbolic
rotation matrices with the indices of the rows they affect

2
66666664

� � �
� �
�

� � �
� �
�

3
77777775

H 0

1;4�!

2
66666664

? ? ?

� �
�

0 ? ?

� �
�

3
77777775

H 0

2;5�!

2
66666664

� � �
? ?

�
0 � �
0 ?

�

3
77777775

H 0

3;6�!

2
66666664

� � �
� �
?

0 � �
0 �
0

3
77777775

H 0

2;4�! (3.37)

H 0

2;4�!

2
66666664

� � �
? ?

�
0 0 ?

0 �
0

3
77777775

H 0

3;5�!

2
66666664

� � �
� �
?

0 0 �
0 0

0

3
77777775

H 0

3;4�!

2
66666664

� � �
� �
?

0 0 0

0 0

0

3
77777775
D

2
66666664

r11 r12 r13
r22 r23

r33

0 0 0

0 0

0

3
77777775

(3.38)

The final step is a H 03;4 which annihilates the 4; 3 entry. In each of these subsequent
steps, the first operation determines the rotation matrix and then applies it to all
the entries in the respective rows, skipping the already computed zero entries
(which remain zero hence avoiding fill-ins). The overall J -orthogonal matrix
is then determined as the product of the elementary hyperbolic rotation ‚ D
H1;4H2;5H3;6H2;4H3;5H3;4. Note that rotation steps with non-overlapping row
indices can be carried out in parallel, i.e. the sequence of rotations H1;4, H2;5, and
H3;6 can be executed simultaneously on a dedicated processor array as well as the
rotationsH2;4 and H3;5.

After having computed the J -orthogonal matrix ‚ by a sequence of hyperbolic
rotations we can take the representation of the J -orthogonal transformation as given
in (3.34), and determine the effect of applying‚ to two tacked identity matrices, i.e.
we can compute

‚

�
1n

1n

�
D

�
.R 0/�1.V 0 �W 0/
.L 0/�1.V �W /

�
D

�
.R 0/�1
.L 0/�1

�
:

3 Large-Scale Linear Computations with Dedicated Real-Time Architectures 61

This expression shows that the process of elementary elimination steps implicitly
creates the inverses of the triangular factors of the matrix C . The symmetric
system of equation can be used in a straight forward manner with appropriate
back-substitution steps. However, back-substitution destroys the homogenous data
flow and is therefore not desirable for parallel processing hardware. Applying the
Fadeeva approach to this algorithm [17], similar to the approach used for the
QR solver, allows us to devise a purely feed forward algorithm that avoids all
back-substitution steps. This version of the algorithm is based on performing the
following two stages in an elimination process that employs hyperbolic rotations.
Stage 1 executes the elimination of the matrix W by hyperbolic rotations, as
explained previously creating the matrix‚1 according to

‚1

2
4 V 1n 0

W 1n 0

�b 0 0 1

3
5 D

2
4 R .R 0/�1 0

0 .L 0/�1 0
�b 0 0 1

3
5 :

Stage 2 of the elimination process annihilates the entries of the vector �b 0 while
creating the matrix ‚2

‚2

2
4 R .R 0/�1 0

0 .L 0/�1 0
�b 0 0 1

3
5 D

2
4

˜
R .

˜
R 0/�1 ?

0 .L 0/�1 0
0 ku 0 k

3
5 :

After both stages of elimination are completed, the solution vector k � u 0 can be read
off from the resulting array as well as scalar parameter k. Figure 3.7 depicts the
processing array to implement the Schur-Cholsky algorithm for solving symmetric
positive systems of equations in a highly parallel and regular way and without a
need to perform back-substitution [17].

3.6 Sparse Matrices and Iterative Algorithms

Large scale linear systems, which are characterized by a coefficient matrix of
enormous size are a topic of particular interest from a practical point of view.
Luckily, such matrices are mostly sparse, which means that only a small fraction
of the matrix entries are different from zero. Sparse matrices exhibit very large
values for n, but only O.n/ matrix entries are different from zero. The sparsity
allows the matrices to be stored with O.n/ memory locations [36]. This type
of matrices originate for example from finite-element computations, from solving
partial differential or Euler-Lagrange equations to name a few examples [36].
Applying standard matrix algebra does not preserve the sparsity pattern, that is, it
destroys the sparsity pattern when adding, multiplying and inverting sparse matrices.
For example, the inverse of a tri-band matrix is in general not a tri-band matrix, but

62 P. Dewilde and K. Diepold

Fig. 3.7 The array for the Schur-Cholesky algorithm

a full matrix. Similar statements hold if matrix factorizations and dense solvers are
applied to sparse matrices; elementary transformations tend to fill up the matrix by
creating fill-ins, i.e. by overwriting zero matrix entries with non-zero values [2,36].

Algorithms to efficiently solve systems of equations with a sparse coefficient
matrix use iterative approaches, which are using a sequence of matrix vector
multiplications of the form ukC1 D T � uk. This way, the sparsity pattern of the
coefficient matrix is preserved and the sequence of vectors uk converges, under
certain conditions to the solution vector u. Matrix-vector multiplication with a
sparse matrix T 2 R

m�n amounts to a computational load of O.mC n/ operations
and O.m C n/ memory requirement. Iterative schemes such as a Conjugate
Gradient algorithm require O.n/ iterations, resulting in an solution method with
a computational complexity of O.n2/ operations overall. For a comprehensive
coverage of iterative solution methods we refer the interested reader to [36].

3.6.1 Sparse Matrices in Motion Analysis

For many applications in the domain of computer vision or in the field of digital
video signal processing the task of estimating the apparent motion of objects or
pixels throughout a video sequence is a fundamental task. Motion estimation is
an expensive calculation, in particular when considering to deal with standard

3 Large-Scale Linear Computations with Dedicated Real-Time Architectures 63

definition resolution images (576 � 720 pixels per image) or moving on to even
handle High Definition resolutions (1; 080 � 1; 920 pixels per image) [8].

3.6.1.1 Optic Flow Constraint

We discuss how to compute the optical flow according to the approach proposed
by Horn & Schunck [35]. The brightness of a pixel at point .x; y/ in an image
plane at time t is denoted by I.x; y; t/. Let I.x; y; t/ and I.x; y; t C 1/ be two
successive images of a video sequence. Each image is comprised of a rectangular
lattice of N D m � n pixels. Optic flow computation is based on the assumption
that the brightness of a pixel remains constant in time and that all apparent variations
of the brightness throughout a video sequence are due to spatial displacements of
the pixels, which again are caused by motion of objects. We denote this brightness
conservation assumption as

dI

dt
D 0:

This equation is called the optical flow constraint. Using the chain rule for
differentiation the optic flow constraint is expanded into

@I

@x
� dx
dt
C @I

@y
� dy
dt
C @I

@t
D 0:

Using the shorthand notation vx D dx
dt

vy D dy

dt
; Ix D @I

@x
; Iy D @I

@y
; It D @I

@t
; the

optic flow constraint can be written as

Eof D Ix � vx C Iy � vy C It D 0: (3.39)

Equation (3.39) is only one equation for determining the two unknowns vx and vy ,
which denote the horizontal and the vertical component of the motion vector at each
pixel position. Hence the optical flow equation is an underdetermined system of
equation. Solving this equation in a least squares sense only produces the motion
vector component in direction of the strongest gradient for the texture. Therefore a
second constraint has to be found to regularize this ill-posed problem.

3.6.1.2 Smoothness Constraint

To overcome the underdetermined nature of the optic flow constraint, Horn &
Schunck introduced an additional smoothness constraint. Neighboring pixels of
an object in a video sequence are likely to move in a similar way. The motion
vectors vx and vy are varying spatially in a smooth way. Spatial discontinuities in the
motion vector field occur only at motion boundaries between objects, which move
in different directions and which are occluding each other. Therefore, the motion

64 P. Dewilde and K. Diepold

vector field to be computed is supposed to be spatially smooth. This smoothness
constraint can be formulated using the Laplacian of the motion vector field vx and vy

Esc D r2vx Cr2vy D @2vx
@x2
C @2vx
@y2
C @2vy
@x2
C @2vy
@y2

: (3.40)

The Laplacians of vx and vy can be calculated by the approximation

r2vx
 vx � vx and r2vy
 vy � vy:

The term vx;y � vx;y can be computed numerically as the difference between the
central pixel vx;y and a weighted average of the values in a 2-neighborhood of
the central pixel. The corresponding 2-dimensional convolution for performing this
filtering operation is given as

vx.x; y/ � vx.x; y/ D L.x; y/ 	 vx.x; y/

vy.x; y/ � vy.x; y/ D L.x; y/ 	 vx.x; y/;

where the convolution kernel L.x; y/ is given by a 2D-filtering mask, such as

L.x; y/ D
2
4 1=12 1=6 1=121=6 �1 1=6

1=12 1=6 1=12

3
5 : (3.41)

The Horn & Schunck approach uses the optic flow equation (3.39) along with
the smoothness constraint (3.40) to express the optic flow computation as the
optimization problem for the cost function

E2 D E2
of C ˛2 �E2

sc;

which needs to be minimized in terms of the motion vector Œvxvy�T . The parameter
˛ is a scalar regularization parameter, which controls the contribution of the
smoothness constraint (3.40). The optimization problem finally expands into the
equation

E2 D 	
Ixvx C Iyvy C It

2 C ˛2 	
.vx � vx/

2 C .vy � vy/
2

: (3.42)

Applying the calculus of variations to (3.42) results in the following two equations

I 2x vx C IxIyvy C IxIt � ˛2.vx � vx/ D 0
IxIyvx C I 2y vy C IyIt � ˛2.vy � vy/ D 0;

which need to be solved for the motion vector components vx.x; y/ and vy.x; y/.

3 Large-Scale Linear Computations with Dedicated Real-Time Architectures 65

3.6.1.3 Linear System of Equations

Based on (3.39), the optic flow equation for all pixels can be written as a matrix
equation [8]

�
Ix Iy

� �
�

vx
vy

�
D �It ; (3.43)

where Ix and Iy are diagonal matrices of size N � N and It is a vector of length
N . The x- and y-components of the motion vector field are given as the vectors vx
and vy , each with the dimension N . The effect of the convolution kernel L.x; y/
on the motion vector field can be represented by a constant and sparse N �N band
matrix L, which has Toeplitz structure. We will use the symbol C to denote the
negative Laplacian, i.e. C D �L. The specific banded structure of C is depicted in
Fig. 3.8,which can be symbolically denoted as

C D

2
6666666664

M U

U M U

U M U

U
: : :

: : :

: : :
: : : U

U M

3
7777777775
:

Fig. 3.8 Structure for the
Laplace operator

66 P. Dewilde and K. Diepold

0 5 10 15 20 25 30

0

5

10

15

20

25

30

nz = 232

0 5 10 15 20 25 30

0

5

10

15

20

25

30

nz = 232

a b

Fig. 3.9 Structure for original matrix (left) and re-ordered matrix (right)

The minimization of the cost function (3.42) for all pixels in the image leads to
the set of regularized linear equations,

�
˛2

�
C 0

0 C

�
C

�
Ix
Iy

�
� � Ix Iy

�� �
�

vx
vy

�
D

�
Ix
Iy

�
� It : (3.44)

The term in brackets of (3.44) represents a 2N � 2N band matrix, the structure of
which can be seen on the left hand side of Fig. 3.9. This structured matrix needs
to be solved efficiently for computing the motion vector fields vx and vy . We can
modify the structure of the matrix by re-ordering the variables and hence the matrix
entries. In the right hand side of Fig. 3.9 the resulting matrix structure is shown if the
variables vx and vy are re-ordered by interleaving them. Such a change of structure
for the matrix entries has influence on the efficiency of sparse linear system solvers
[2, 36].

Lucas and Kanade proposed an alternative scheme for computing optical flow
[29], which is better suitable for implementation on parallel processors such as a
Graphic Processor Unit (GPU) [10].

In [9] an approach is presented to solve the sparse linear system arising from
optical flow computations in an efficient way by exploiting the structure of the
matrix. This structure is called hierarchically semi-separable, a notion that will be
explained in more detail in Sect. 3.7.

3 Large-Scale Linear Computations with Dedicated Real-Time Architectures 67

3.6.2 Iterative Matrix Solvers

Iterative methods take an initial approximation of the solution vector and succes-
sively improve the solution by continued matrix vector multiplications until an
acceptable solution has been reached [2]. Since matrix-vector multiplications can
be computed efficiently for sparse matrices iterative matrix solvers are attractive.
However, iterative methods may have poor robustness and often are only applicable
for a rather narrow range of applications. With view to implementing such schemes
on real-time computer systems we need to understand the convergence properties of
iterative schemes, which strongly depend on the input data. Therefore it is difficult
to determine worst case deadlines for the iterations to be completed [2].

3.6.2.1 General Approach

Iterative algorithms do not explicitly compute the term T 0T , a term that appears in
the context of normal equation, but only propagate the effects and T 0 and T in a
factored form, and hence exploit the sparsity of the coefficient matrix T . This leads
to the following representation of the standard least-squares problem

T 0 � .T u � b/ D 0:

Stationary iterative methods for solving linear systems of equations run the iteration
of the form

M ukC1 D N uk C b; k D 1; 2; 3; : : : ;
where u0 is an initial approximation for the solution vector. In this context we have
the “splitting” of the positive definite matrix T 0T D M � N where M is assumed
to be non-singular. The matrix M should be chosen such, that solving the linear
system with coefficient matrixM is easy to do. Analyzing the equation

ukC1 D M�1N uk CM�1b D Guk C c; k D 1; 2; 3; : : : ;

reveals that the iterative scheme is convergent if the spectral radius of the matrix
G 2 R

m�m
�.G/ D max j�i .G/j; 1 � i � m

satisfies �.G/ < 1. Taking the additive splitting of the coefficient matrix as

T 0T D LCD C L 0; D � 0;

then we get the Jacobi method if we choose M D D, whereas the choice M D
LCD will lead us to the Gauss-Seidel iterative scheme. The Gauss-Seidel has better
convergence properties when compared with Jacobi-methods (one Gauss-Seidel

68 P. Dewilde and K. Diepold

iteration step corresponds to two Jacobi iterations). However, Jacobi-type methods
are better suited for parallel implementation [2].

For executing iterative matrix solvers on parallel computing architectures it is
essential to implement an efficient way of matrix vector multiplication. This is
possible only for a predetermined sparsity pattern. See [15] for a corresponding
array to execute iterative matrix solvers.

3.6.2.2 LSQR Algorithm

An attractive alternative to Jacobi- or Gauss-Seidel-iterations is the family of quasi-
iterative methods such as Conjugate Gradient techniques. One very interesting
algorithm from this family is Paige and Saunder’s LSQR algorithm for solving least
squares problems [32]. The LSQR technique combines matrix-vector multiplication
based steps (Lanczos and Arnoldi methods) with a QR decomposition step. The
starting point for LSQR is to compute the factorization

T D V
�
B

0

�
W 0; V 0V D 1m; W 0W D 1n;

where

B D Bn D

2
6666664

˛1
ˇ2 ˛2

ˇ3
: : :

: : : ˛n
ˇnC1

3
7777775
2 R

.nC1/�n

is a lower bi-diagonal matrix. The orthogonal matrices V D .v1; v2; : : : ; vm/ and
W D .w1;w2; : : : ;wn/ can be computed as a product of Householder reflections
or Jacobi rotations for the elimination of the matrix entries in T . However, this
process will destroy the sparsity pattern of the coefficient matrix. For the case of
sparse matrices, Golub and Kahan suggested an alternative procedure to compute
this factorization, which is based on a Lanczos process. This process is again using
matrix-vector multiplications to propagate vectors and to leave the coefficient matrix
T unchanged, hence preserving its sparsity pattern. The Lanczos process starts by
setting ˇ1w0 D 0 and ˛nC1wnC1 D 0. If we initialize the process with the vector
ˇ1v1 D u 2 R

m and ˛1w1 D T 0v1 then, for k D 1; 2; : : : the recurrence relations

ˇkC1vkC1 D Twk � ˛kvk; ˛kC1wkC1 D T 0vkC1 � ˇkC1wk;

continue to produce the sequence of vectors w1; v2;w2; : : : ; vmC1 and the corre-
sponding entries in the bi-diagonal matrix B . Note that the parameters ˛kC1 � 0

and ˇkC1 � 0 are determined such that kvkC1k2 D kwkC1k2 D 1. After k steps the
algorithm produces the matrices V D .v1; v2; : : : ; vk/ andW D .w1;w2; : : : ;wkC1/

3 Large-Scale Linear Computations with Dedicated Real-Time Architectures 69

as well as the bi-diagonal matrix Bk . We now can go for an approximate solution
vector uk 2 Kk lying in the Krylov subspace Kk D Kk.T

0T; T 0y/, where a Krylov
subspace is defined as Kk.T; u/ D span

�
u; T u; T 2u; : : : ; T k�1u

�
. Since in the

present case we have Kk D span.Wk/ it is possible to write uk D Wk k .
For computing the vector k we have to determine a solution of the least-square

problem
min
 k
kBk k � ˇ1e1k2:

The LSQR algorithm calculates this solution via the QR decomposition of Bk

QkBk D
�
Rk

0

�
; Qk.ˇ1e1/ D

�
fk

kC1

�
;

where Rk is upper bi-diagonal

Rk D

2
666664

�1 �1
�2 �2
: : :

: : :

�k�1 �k�1
�k

3
777775
2 R

k�k; fk D

2
666664

1
2
:::

k�1
k

3
777775
:

Notice the similarity of this approach with the algorithm described in Sect. 3.3.1.
The matrix Qk is computed as a product of Jacobi rotations parametrized to
eliminate the subdiagonal elements of Bk . The solution vector k and the residual
vector rkC1 can be determined from

Rk k D fk; rkC1 D Q 0k
�

0

kC1

�
:

The iterative solution uk is then computed via

uk D
	
WkR

�1
k

fk D Zkfk;

where the matrix Zk satisfies the lower triangular system R 0kZ 0k D V 0k such that
we can computed the column vectors .z1; z2; : : : ; zk/ by forward substitution. With
z0 D u0 D 0 the process proceeds as

zk D 1

�k
.wk � �kzk�1/ ; uk D uk�1 C kzk:

The LSQR algorithm produces the same sequence of intermediate solution vectors
uk as the Conjugate Gradient Least Squares algorithm [2]. The algorithm only
accesses the coefficient matrix T only to produce the matrix-vector products
Twk and T 0vk and exhibits preferable numerical properties, in particular for ill-
conditioned matrices T [32].

70 P. Dewilde and K. Diepold

3.6.2.3 Iterative Algorithms and Memory Bandwidth

An efficient design of an numerical algorithm strives to minimize the amount of
arithmetic operations along with the amount of memory space needed to store the
data. Besides those two important design criteria we have to consider the amount of
data that needs to be moved in and out of main memory during the execution of an
algorithm; this is denoted as memory bandwidth. Even a modern real-time computer
system may be challenged to provide excessive sustained memory bandwidth if it
executes an iterative matrix solver for very large and sparse matrices. The challenge
originates from iterating the solution vector, that is, from moving a potentially very
large vector in and out of main memory for each iteration as it will not fit into the
cache memory anymore.

For calculating a simple example we consider a problem where the solution
vector u has length n. Each vector entry is represented by a double precision
floating point number using a word length of B D 64 bits. We assume that the
iterative algorithm requires N iterations until convergence. Hence, the algorithm
needs to move n � N � B bits of data between the CPU and Memory. In a real-time
application such as in video signal processing (deconvolution, motion estimation,
scan conversion, etc.) the algorithm has to complete its calculations within a time
interval of T seconds, which leads to a required memory bandwidth of n�N �B

T
bits

per second. For a modern HDTV application (1; 920 � 1; 080 pixels per frame)
with a frame rate of 25 Hz, the necessary memory bandwidth amounts to over 41
GByte/s, if we assume that the computation for one system of equation converges
after N D 100 iterations. Even under these optimistic assumptions for the number
of iterations the memory bandwidth becomes the critical element [33].

If the real-time computer system employs modern Graphical Processing Units
(GPU), which offer high computational performance, this big amount of data needs
to be transported over a bus between CPU and GPU [3,26]. Hence, the data transport
becomes a bottleneck to achieve the required system performance. Furthermore, the
internal structure of a GPU, i.e. the shader does not support iterative computations
very well. Taking all this together leads us to reconsider the use of direct solution
methods for large scale systems as the pure operation count is not the most
restricting factor [10]. If there are direct solution methods, which can take advantage
of special structures in the coefficient matrix, such as sparsity, then this is beneficial.

3.7 Structure in Matrices

The classical QR algorithm on an n � n matrix T has computational complexity of
order O.n3/. Better computational complexity, at the cost of numerical stability,
is offered by “Strassens” method, but is certainly not advisable in the context
of embedded processing, where numerical complexity plays only a minor role as
compared to data transport and where good numerical properties are of paramount
importance. There is, however, another much more promising possibility, which

3 Large-Scale Linear Computations with Dedicated Real-Time Architectures 71

consists in exploiting intrinsic structure of the matrix. In the literature, many diverse
types of matrix structure have been considered, such as Toeplitz or Hankel, in
the present discussion we shall only consider the semi-separable or time-varying
structure as it connects up nicely with QR factorization and is very important from
an applications point of view. In our discussion on the Kalman filter, we were given
a model for the system to be considered. That meant that the overall covariance
matrix of the output data is not arbitrary, although the system parameters vary from
one time point to the next. As a result, the Kalman filter in its square root version
allowed state estimation on the basis not of the overall covariance data, but just
on the basis of properties local to each point in time. The computational complexity
was therefore determined, not by the size of the overall system, but by the dimension
of the local state representation (called ıi .)

The structure we encountered implicitly in the Kalman filter is known by various
terms, depending on the relevant literature, semi-separable systems, time-varying
systems or quasi-separable systems. They appeared for the first time in [13], where

it was shown that LU factorization of such a system would have O.nıi 3/ complexity
instead of O.n3/. Later this idea was generalized to QR and other factorizations
in [6]. We summarize the main results. It should be remarked that the complexity

of the method we shall describe can be considerably better than O.nıi 3/, actually

O.nıi 2/ when state space representations are judiciously chosen, but this topic goes
far beyond our present purpose.

To work comfortably with time-varying systems, we need the use of sequences
of indices and then indexed sequences. When M D Œmk�

1
kD�1 is a sequence of

indices, then each mk is either a positive integer or zero, and a corresponding
indexed sequence Œuk� 2 `M2 will be a sequence of vectors such that each uk has
dimensionmk and the overall sum

1X
kD�1

kukk2 (3.45)

is finite, the square root of which is then the quadratic norm of the sequence.
When mk D 0, then the corresponding entry just disappears (it is indicated as a
mere “place holder”). A regular n-dimensional finite vector can so be considered as
embedded in an infinite sequence, whereby the entries from �1 to zero and nC 1
to1 disappear, leaving just n entries indexed by 1 � � �n, corresponding e.g. to the
time points where they are fed into the system. On such sequences we may define
a generic shift operatorZ. It is also convenient to represent sequences in row form,
underlying the zero’th element for orientation purposes, taking transposes of the
original vectors if they are in column form. Hence:

Œ� � � ; u 0�2; u 0�1; u 00; u 01; u 02; � � � �Z D Œ� � � ; u 0�2; u 0�1; u 00; u 01; � � � � (3.46)

Z is then a unitary shift represented as a block upper unit matrix, whose inverse
Z 0 is then a lower matrix with first lower block diagonal consisting of unit matrices

72 P. Dewilde and K. Diepold

(notice that the indexing of the rows is shifted w.r. to the indexing of the columns.)
Typically we handle only finite sequences of vectors, but the embedding in infinite
ones allows us to apply delays as desired and not worry about the precise time
points. Similarly, we handle henceforth matrices in which the entries are matrices
themselves. For example, Ti;j is a block of dimensions mi � nj with Œmi � D M
and Œnj � D N , and, again, unnecessary indices are just placeholder, with the
corresponding block entries disappearing as well – also consisting of place holders
(interesting enough, MATLAB now allows for such matrices, the lack of which was
a major problem in previous versions. Place holders are very common in computer
science, here they make their entry in linear algebra).

In this convention we define a causal system by the set of equations

�
xiC1 D Aixi C Biui
yi D Cixi CDiui

(3.47)

very much as before, but now with a direct term Diui added to the output equation
(in the Kalman filter this term is zero, because the prediction is done strictly on

past values).

�
Ai Bi
Ci Di

�
is called the system transition matrix at time point i (Ai

being the state transition matrix). What is the corresponding input/output matrix T ?
As is tradition in system theory, we replace the local equations above with global
equations on the (embedded) sequences u D Œui �, y D Œyi � and x D Œxi �, and define
“global” block diagonal matrices A D diag.Ai /, B D diagBi , etc... to obtain

�
Zx D Ax C Bu
y D Cx CDu

(3.48)

and for the input–output matrix

T D D C CZ 0.I �AZ 0/�1B: (3.49)

This represents a block lower matrix in semi-separable form. A block upper matrix
would have a similar representation, now with Z replacing Z 0:

T D D C CZ.I �AZ/�1B (3.50)

Remark. it is not necessary to change to a row convention to make the theory work
as in [6]. Instead of definingZ as pushing forward on a row of data, we have defined
Z 0 as pushing forward on a column of data. Hence, Z 0 D Z�1 is the causal shift,
and a causal matrix is lower (block) triangular, rather than upper.

Such representations, often called realizations, produce in a nutshell the special
structure of an upper, semi-separable system. When T is block banded upper with
two bands, then A D 0 and B D I will do, the central band is represented by D

3 Large-Scale Linear Computations with Dedicated Real-Time Architectures 73

and the first off band by C . With a block three band, one can choose A D
�
0 0

I 0

�
,

C D �
C1 C2

�
and B D

�
I

0

�
, with Z WD

�
Z

Z

�
because the state splits in

two components. We find, indeed, Z.I � AZ/�1 WD
�
Z 0

Z2 Z

�
, and hence T D

D C C1Z C C2Z2. This principle can easily be extended to yield representations
for multi-band matrices or matrix polynomials in Z.

State space representations are not unique. The dimension chosen for xi at time
point i may be larger than necessary, in which case one would call the representation
“non minimal” – we shall not consider this case further. Assuming a minimal
representation, one could also introduce a non singular state transformation Ri at
each time point, defining a transformed state x̂i D R�1i xi . The transformed system
transition matrix now becomes

2
4 Âi B̂ i

Ĉ i Di

3
5 WD

2
4R�1iC1AiRi R�1iC1Bi

CiRi Di

3
5 : (3.51)

for a lower system, and a similar, dual representation for the upper.
Given a block upper matrix T , what is a minimal system representation for it?

This problem is known as the system realization problem, and was solved for the first
time by Kronecker (for representations of rational functions [25]), and then later by
various authors, for the semi-separable case, see [6] for a complete treatment. An
essential role in realization theory is played by the so called i th Hankel matrix Hi

defined as

Hi D

2
66664

:::
:::

: : :

Ti�1;iC1 Ti�1;iC2 � � �
Ti;iC1 Ti;iC2 � � �

3
77775 (3.52)

i.e. a right-upper corner matrix just right of the diagonal element Ti;i . It turns out
that any minimal factorization of each Hi yields a minimal realization, we have
indeed

Hi D

2
66666664

:::

Ci�2Ai�1Ai

Ci�1Ai

Ci

3
77777775

�
BiC1 AiC1BiC2 AiC1AiC2BiC3 � � �

�
(3.53)

74 P. Dewilde and K. Diepold

where, as explained before, entries may disappear when they reach the border of the
matrix e.g. This decomposition has an attractive physical meaning. We recognize

Oi D

2
6664

:::

Ci�2Ai�1Ai
Ci�1Ai
Ci

3
7775 (3.54)

as the i th observability operator, and

Ri D
�
BiC1 AiC1BiC2 AiC1AiC2BiC3 � � �

�
(3.55)

as the i th reachability operator – all these related to the (anti-causal) upper operator
we assumed. Ri maps inputs after the time point i to the state xi , while Oi maps
state xi to actual and outputs before index point i , giving its linear contribution to
them. The rows of Ri form a basis for the rows of Hi , while the columns of Oi

form a basis for the columns of Hi in a minimal representation. When e.g. the rows
are chosen as an orthonormal basis for all the Hi , then a realization will result for
which AiA 0i C BiB 0i D I for all i . We call a realization in which

�
Ai Bi

�
has this

property of being part of an orthogonal or unitary matrix, in input normal form.
It may seem laborious to find realizations for common systems. Luckily, this is

not the case. In many instances, realizations come with the physics of the problem.
Very common are, besides block banded matrices, so called smooth matrices [4],
in which the Hankel matrices have natural low-rank approximations, and ratios of
block banded matrices (which are in general full matrices), and, of course, systems
derived from linearly couples subsystems.

3.7.1 Solving Semi-Separable Systems with QR: The
URV Method

The goal of an URV factorization is a little more ambitious than the QR factorization
presented as the beginning. As we saw, the factorization only works well when T is
non-singular, otherwise we end up with an R factor that is not strictly triangular but
only upper and in so called “echelon” or staircase form. Clearly, row operations are
not sufficient. To remedy the situation, one also needs column operations that reduce
the staircase form to purely triangular. This is in a nutshell the URV factorization, in
which U is a set of columns of an orthogonal matrix, V a set of rows of another, and
R is strictly upper triangular and invertible. When T D URV and T is invertible,
then U and V will be unitary, and T �1 D V 0R�1U 0. However, when T is general,
then the solution of the least squares solution for y D T u is given by u D T �y with
T � D V 0R�1U 0 (the same would be true for y D uT , now with u D yV 0R�1U 0!)
T � is called the “Moore-Penrose inverse” of T .

3 Large-Scale Linear Computations with Dedicated Real-Time Architectures 75

The URV recursion would start with orthogonal operations on (block) columns,
transforming the mixed matrix T to the upper form – actually one may alternate
(block) column with (block) row operations to achieve a one pass solution. However,
the block column operations are completely independent from the row operations,
hence we can treat them first and then complete with row operations. We assume a
semi-separable representation for T where the lower and upper parts use different
state space realizations (all matrices shown are block diagonal and consisting
typically of blocks of low dimensions):

T D C`Z 0.I �A`Z 0/�1B` CD C CuZ.I � AuZ/
�1Bu (3.56)

This corresponds to a “model of computation” shown in Fig. 3.10. The URV
factorization starts with getting rid of the lower or anticausal part in T by post-
multiplication with a unitary matrix, like in the traditional LQ factorization, but

Au2
Cu2

Bu2
Du2

Au3
Cu3

Bu3
Du3

u1

u2

u3

un

y1

y2

y3

yn

Bu1
Du1

Cun

Dun

Al2

Cl2

Bl2

Al3

Cl3

Bl3

Cl1

Bln

Upper

Lower

Fig. 3.10 The semi-separable model of computation

76 P. Dewilde and K. Diepold

now working on the semi separable representation instead of on the original data.
If one takes the lower part in input normal form, i.e. Ĉ `Z

0.I � Â`Z 0/�1B̂` D
C`Z

0.I �A`Z 0/�1B` such that Â`Â 0̀C B̂`B̂
0̀ D I , then the realization for (upper)

V is given by

V

�
Â` B̂`

CV DV

�
(3.57)

where CV and DV are formed by unitary completion of the isometric
�
Â` B̂`

�
(for

an approach familiar to numerical analysts see [4].) V is a minimal causal unitary
operator, which pushes T to upper:

�
Tu 0

� WD T V can be checked to be upper (we
shall do so further on where we show the validity of the operation) and a realization
for Tu follows from the preceding as

Tu

2
4 Â 0̀ 0 C 0V

BuB̂
0̀ Au BuD

0
V

Ĉ `Â
0̀ CDB̂ 0̀ Cu Ĉ `Ĉ

0
V CDD 0V

3
5 : (3.58)

As expected, the new transition matrix combines lower and upper parts and has
become bigger, but Tu is now upper. Numerically, this step is executed as an LQ
factorization as follows. Let xk D Rkx̂k and let us assume we know Rk at step k,
then

�
A`;kRk B`;k

C`;kRk Dk

�
D

"
RkC1 0 0

Ĉ `;kÂ
0̀
;k CDkB̂

0̀
;k Ĉ `;kĈ

0
V;k CDkD

0
V;k 0

�
Â`;k B̂`;k

CV;k DV;k

�

(3.59)
The LQ factorization of the left handed matrix computes everything that is needed,
the transformation matrix, the data for the upper factor Tu and the new state
transition matrix RkC1, all in terms of the original data. Because we have not
assumed T to be invertible, we have to allow for an LQ factorization that produces
an echelon form rather than a strictly lower triangular form, and allows for a kernel
as well, represented by a block column of zeros.

The next step is what is called an inner/outer factorization on the upper operator
Tu to produce an upper and upper invertible operator To and an upper orthogonal
operator U such that Tu D UTo. The idea is to find an as large as possible upper
and orthogonal operatorU such thatU 0Tu is still upper – U 0 tries to push Tu back to
lower, when it does so as much as possible, an upper and upper invertible factor To
should result. There is a difficulty here that Tu might not be invertible, already in the
original QR case one may end up with an embeddedRu matrix. This difficulty is not
hard to surmount, but in order to avoid a too technical discussion, we just assume
invertibility at this point and we shall see that the procedure actually produces the
general formula needed. If the entries of Tu would be scalar, then we would already
have reached our goal. However, the operation of transforming T to a block upper
matrix Tu will destroy the scalar property of the entries, and the inverse of Tu may
now have a lower part, which will be captured by the inner operator U that we shall
now determine.

3 Large-Scale Linear Computations with Dedicated Real-Time Architectures 77

When Tu D UTo with U upper and orthogonal, then we also have To D U 0Tu.
Writing out the factorization in terms of the realization, and redefining for brevity
Tu WD D C CZ.I �AZ/�1B we obtain

To D
�
D 0U C B 0U .I �Z 0A 0U /�1Z 0C 0U

� �
D C CZ.I � AZ/�1B�

D D 0UD C B 0U .I �Z 0A 0U /�1Z 0C 0UD CD 0UCZ.I �AZ/�1B
CB 0U f.I �Z 0A 0U /�1Z 0C 0UCZ.I �AZ/�1gB

(3.60)

This expression has the form: “direct term” + “strictly lower term” + “strictly upper
term” + “mixed product”. The last term has what is called ’dichotomy’, what stands
between f�g can again be split in three terms:

.I �Z 0A 0U /�1Z 0C 0UCZ.I �AZ/�1 D .I �Z 0A 0U /�1Z 0A 0U Y C Y C YAZ.I �AZ/�1
(3.61)

with Y satisfying the “Lyapunov-Stein equation”

ZYZ 0 D C 0UC C A 0UYA (3.62)

or, with indices: YkC1 D C 0U;kCk CA 0U;kYkAk . The resulting strictly lower term has
to be annihilated, hence we requireC 0UDCA 0U YB D 0, in fact U should be chosen
maximal with respect to this property (beware: Y depends on U!) Once these two
equations are satisfied, the realization for To results as To D .D 0UD C B 0U YB/ C
.D 0UC CB 0U YA/Z.I �AZ/�1B – we see that To inheritsA andB from T and gets
new values for the other constituents Co andDo. Putting everything together in one
matrix equation and in a somewhat special order, we obtain

�
YB YA

D C

�
D

�
BU AU

DU CU

� �
Do Co

0 ZYZ 0
�
: (3.63)

Let us interpret this result without going into motivating theory (as in done in [4,6]).
We have a pure QR factorization of the left hand side. At stage k one must assume

knowledge of Yk, and then perform a regular QR factorization of

�
YkBk YkAk
Dk Ck

�
.

Do;k will be an invertible, upper triangular matrix, so its dimensions are fixed by the
row dimension of Yk . The remainder of the factorization produces Co;k and YkC1,
and, of course, the Q factor that gives a complete realization of Uk . What if T is
actually singular? It turns out that then the QR factorization will produce just an
upper staircase form with a number of zero rows. The precise result is

�
YkBk YkAk
Dk Ck

�
D

�
BU;k AU;k BW;k
DU;k CU;k DW;k

� 2
4Do;k Co;k

0 YkC1
0 0

3
5 ; (3.64)

78 P. Dewilde and K. Diepold

in which the extra columns represented byBW andDW define an isometric operator
W D DW C CWZ.I � AWZ/�1BW so that

Tu D
�
U W

� �
To
0

�
: (3.65)

In other words, W characterizes the row kernel of T .
Remarkably, the operations work on the rows of Tu in ascending index order,

just as the earlier factorization worked in ascending index order on the columns.
That means that the URV algorithm can be executed completely in ascending index
order. The reader may wonder at this point (1) how to start the recursion and (2)
whether the proposed algorithm is numerically stable. On the first point and with
our convention of empty matrices, there is no problem starting out at the upper
left corner of the matrix, both A1 and Y0 are just empty, the first QR is done on�
D1 C1

�
. In case the original system does not start at index 1, but has a system

part that runs from �1 onwards, then one must introduce knowledge of the initial
condition on Y . This is provided, e.g., by an analysis of the LTI system running
from �1 to 0 if that is indeed the case, see [7] for more details. On the matter
of numerical stability, we offer two remarks. First, propagating Yk is numerically
stable, one can show that a perturbation on any Yk will die out exponentially if the
propagating system is assumed exponentially stable. Second, one can show that the
transition matrix � of the inverse of the outer part will be exponentially stable as
well, when certain conditions on the original system are satisfied [6].

To obtain the Moore-Penrose inverse (or the actual inverse when T is invertible)
one only needs to specify the inverse of To, as the inverses of U and V are
already known (they are just U 0 and V 0 with primed realizations as well.) By
straightforward elimination, and with the knowledge that To is upper invertible, we
find with � D A � BD�1o Co,

T �1o D D�1o �D�1o CoZ.I ��Z/�1BD�1o : (3.66)

One does not need to compute these matrices, the inverse filter can easily be realized
directly on the realization of Tu by arrow reversal, as shown in Fig. 3.11.

uk
yk

xk

xk+1 xk+1

Ak
Ck

Bo,k Bo,k

Do,k

uk
yk

xk

Ak
−Ck

D−1
o,kin

state

next state

state

next state

out out in

Fig. 3.11 Realization of the inverse of an outer filter in terms of the original

3 Large-Scale Linear Computations with Dedicated Real-Time Architectures 79

With a bit of good will, one recognizes the square root algorithm for the Kalman
filter as a (very) special case of inner-outer factorization. Now, we actually have
the dual case, due to the fact that the anti-causal part first had to be eliminated,
forcing the inner-outer factorization on the rows rather than on the columns (we
would have found the exact same formula as for the Kalman filter, if we had started
with an upper matrix and then had done an outer-inner rather than an inner-outer
factorization). There is an alternative to the URV algorithm presented here, namely
working first on the rows and then on the columns, but that would necessitate a
descending rather than an ascending recursion.

3.8 Concluding Remarks

The interplay of signal processing applications, numerical linear algebra algorithms
and real-time computing architectures is a fascinating cross-road of interdisciplinary
research, which is under constant change due to technological progress in all
associated fields. Besides all the research aspects this is also an essential aspect
for designing engineering curricula – students need to learn about this interplay, to
command a good understanding of the associated domains. This understanding is
essential for them to successfully design real-time computer systems implementing
state of the art products in terms of highly integrated embedded systems.

We discussed the QR decomposition of a coefficient matrix as a versatile
computational tool that is central to many such algorithms because of its superior
numerical properties matching the requirements for implementation on parallel real-
time architectures. Besides its preferable properties, the QR decomposition provides
for an elegant computational framework that allows for an improved understanding
of many related concepts, including Kalman filtering and time-varying system
theory.

Many of the mentioned arguments and features of algorithms for solving linear
systems have been investigated and discussed in the context of algorithm specific
systolic VLSI arrays for signal processing applications [27]. Even though the hey-
days of systolic arrays are gone, the topics are still relevant, since programmable
Graphical Processing Units (GPU) are relevant parallel data processing targets
for implementing number crunching algorithms in real-time computer systems
[3, 10, 26].

Fragment shaders of programmable GPUs provide for a high performance
parallel computing platform, but algorithms have to be able to fully exploit the
performance offered by GPUs. Besides the costs for arithmetic operations and
static memory designers need to consider the cost associated with data transport
(memory bandwidth) as another important design criterium. Iterative matrix solvers
for large-scale sparse matrices are attractive for many large-scale computational
problems running on mainframe computers, however, for real-time applications
running on embedded systems it may in fact be more interesting to use other
algebraic means to exploit the structure of matrices. The advent of concepts to

80 P. Dewilde and K. Diepold

exploit the semi-separable or hierarchically semi-separable matrix structure holds
new promise for attacking large-scale computational problems using embedded real-
time computer systems.

References

1. Ahmed HM, Delosme J-M, Morf M (1982) Highly concurrent computing structures for matrix
arithmetic and signal processing. IEEE Comp 15(1):65–86

2. Björck A (1996) Numerical methods for least squares problems. SIAM, Philadelphia, PA
3. Bolz J, Farmer I, Grinspun E, Schröder P (2003) Sparse matrix solvers on the gpu: Conjugate

gradients and multigrid. In: SIGGRAPH 2003, ACM, New York, pp 917–924
4. Chandrasekaran S, Dewilde P, Gu M, Pals T, van der Veen A-J, Xia J (2002) A fast backward

stable solver for sequentially semi-separable matrices, volume HiPC202 of Lecture notes in
computer science, Springer, Berlin, pp 545–554

5. Dewilde P (1988) New algebraic methods for modelling large-scale integrated circuits. Int J
Circ Theory Appl 16(4):473–503

6. Dewilde P, van der Veen A-J (1998) Time-varying systems and computations. Kluwer,
Dordrecht

7. Dewilde P, van der Veen A-J (2000) Inner-outer factorization and the inversion of locally finite
systems of equations. Linear Algebra Appl 313:53–100

8. Dewilde P, Diepold K, Bamberger W (2004a) Optic flow computation and time-varying system
theory. In: Proceedings of the international symposium on mathematical theory of networks
and systems (MTNS). Katholieke Universiteit Leuven, Belgium

9. Dewilde P, Diepold K, Bamberger W (2004b) A semi-separable approach to a tridiagonal
hierarchy of matrices with applications to image analysis. In: Proceedings of the international
symposium on mathematical theory of networks and systems (MTNS). Katholieke Universiteit
Leuven, Belgium

10. Durkovic M, Zwick M, Obermeier F, Diepold K (2006) Performance of optical flow techniques
on graphics hardware. In: IEEE international conference on multimedia and expo (ICME)

11. Fadeeva VN (1959) Computational methods of linear algebra. Dover, New York
12. Gastona FMF, Irwina GW (1989) Systolic approach to square root information kalman

filtering. Int J Control 50(1):225–248
13. Gohberg I, Kailath T, Koltracht I (1985) Linear complexity algorithms for semiseparable

matrices. Integral Equations Operator Theory 8:780–804
14. Golub G, van Loan Ch (1989) Matrix computations. John Hopkins University Press, Baltimore,

MD
15. Götze J, Schwiegelshohn U (1988) Sparse matrix-vector multiplication on a systolic array. In:

International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol 4. IEEE,
pp 2061–2064

16. Hartley RI (1997) In defence of the 8-point algorithm. IEEE Trans Pattern Anal Machine Intell
19(6):580–593

17. Jainandunsing K, Deprettere EF (1989a) A new class of parallel algorithms for solving systems
of linear equations. SIAM J Scientific Comput 10(5):880–912

18. Jainandunsing K, Deprettere EdF (1989b) A new class of parallel algorithms for solving,
systems of linear equations. SIAM J Sct Stat Comput 10(5):880–912

19. Jean-Marc D, Ipsen Ilse C.F. (1986) Parallel solution of symmetric positive definite systems
with hyperbolic rotations. Linear Algebra Appl 77:75–111.

20. Jichun Bu, Deprettere F, Dewilde P (1990) A design methodology for fixed-size systolic arrays.
In: Proceedings of the international conference on application specific array processors

3 Large-Scale Linear Computations with Dedicated Real-Time Architectures 81

21. Kailath T (1981) Lectures on Wiener and Kalman Filtering. CISM Courses and Lectures No.
140, Springer, Wien, New York

22. Kailath T, Sayed A (1999) Fast reliable algorithms for matrices with structure. SIAM,
Philadelphia, PA

23. Kailath T, Sayed A, Hasibi B (2000) Linear esimtation. Prentice Hall, Upper Saddle River, NJ
24. Kienhuis B e.a. (2010) Hotspot parallelizer. Compaan Design. http://www.compaandesign.

com/technology/overview, visitied on Nov.14.2011.
25. Kronecker L (1890) Algebraische Reduction der schaaren bilinearer Formen. S.B. Akad.

Berlin, pp 663–776
26. Krüger J, Westermann R (2005) Linear algebra operators for gpu implementation of numerical

algorithms. In: SIGGRAPH 2005. ACM, New York
27. Kung SY (1988) VLSI array processors. Prentice Hall, Englewood Cliffs, NJ
28. Larsson D, Schinner e.a. P (1986) The CADMUS 9230 ICD Graphic Workstation 1, volume

The integrated design handbook, chapter 8, Delft University Press, Delft, pp 8.1–8.29
29. Lucas BD, Kanade T (1981) An iterative image registration technique with an application to

stereo vision. In: Proceedings of imaging understanding workshop, pp 121–130
30. Misraa M, Nassimib D, Prasannaa VK (1993) Efficient vlsi implementation of iterative

solutions to sparse linear systems. Parallel Comput 19(5):525–544
31. Nash JG, Hansen S (1988) Modified faddeeva algorithm for concurrent execution of linear

algebraic operations. IEEE Trans Comp 37(2):129–137
32. Paige ChC, Saunders MA (1982) LSQR: An algorithm for sparse linear equations and sparse

least squares. ACM Trans Math Softw 8:43–71
33. Polka LA, Kalyanam H, Hu G, Krishnamoorthy S (2007) Package technology to address the

memory bandwidth challenge for tera-scale computing. Intel Technol J 11(3):197–206
34. Proudler IK, McWhirter JG, Shepherd TJ (1991) Computationally efficient qr decomposition

approach to least squares adaptive filtering. IEE Proc F, Radar Signal Processing 138(4):
341–353

35. Schunck BG, Horn BKP (1981) Determining optical flow. Artif Intell 17(1-3):185–203
36. Saad Y (2003) Iterative methods for sparse linear systems. SIAM, Philadelphia, PA
37. Strang G (2007) Computational science and engineering. Wellesley-Cambridge Press,

Wellesley, MA
38. Tong L, van der Veen A-J, Dewilde P (2002) A new decorrelating rake receiver for long-

code wcdma. In: Proceedings 2002 conference on information sciences systems. Princeton
University, NJ

39. Vanderbril R, van Barel M, Mastronardi N (2008) Matrix computations and semi-separable
matrices. John Hopkins University Press, Baltimore, MD

http://www.compaandesign.com/technology/overview
http://www.compaandesign.com/technology/overview

Chapter 4
Interface-Based Design of Real-Time Systems

Nikolay Stoimenov, Samarjit Chakraborty, and Lothar Thiele

4.1 Introduction

Today most embedded systems consist of a collection of computation and com-
munication components that are supplied by different vendors and assembled by a
system manufacturer. Such a component-based design methodology is followed in
several domains such as automotive, avionics, and consumer electronics. The system
manufacturer responsible for component assembly has to take design decisions
(related to the choice of components and how they are to be connected, e.g.
using a bus or a network-on-chip) and perform system analysis. Such important
analysis is usually related to verifying that buffers in components never overflow or
underflow, end-to-end delays or worst-case traversal times (WCTTs) of data through
a component network fall within given deadlines, and others.

Typically performance analysis methods are used for the analysis of a
component-based real-time system design a posteriori. This means that a real-
time system is designed and dimensioned in a first step, and only after completion
of this first step, the performance analysis is applied to the system design in a second
step. The analysis result will then give an answer to the binary question whether the
system design that was developed in the first step meets all real-time requirements,
or not. A designer must then go back to the first step, change the design, and iterate
on the two steps until an appropriate system design is found.

N. Stoimenov
Computer Engineering and Networks Laboratory, ETH Zurich, 8092 Zurich, Switzerland
e-mail: stoimenov@tik.ee.ethz.ch

S. Chakraborty
Institute for Real-Time Computer Systems, TU Munich, 80290 Munich, Germany
e-mail: samarjit@tum.de

L. Thiele (�)
Computer Engineering and Networks Laboratory, ETH Zurich, 8092 Zurich, Switzerland
e-mail: thiele@tik.ee.ethz.ch

S. Chakraborty and J. Eberspächer (eds.), Advances in Real-Time Systems,
DOI 10.1007/978-3-642-24349-3 4, © Springer-Verlag Berlin Heidelberg 2012

83

84 N. Stoimenov et al.

Unlike this two-step approach is the idea of interface-based design described by
de Alfaro and Henzinger in [1, 2]. It proposes a holistic one-step approach toward
design and analysis of systems where components have interfaces, and a designer
can decide whether two components can be connected and work together based
only on the information exposed in their interfaces. Interface-based design avoids
modeling the internals of each component, which is often difficult because of the
complexity of the components and their proprietary nature.

In interface-based design, components are described by component interfaces.
A component interface models how a component can be used, which is in contrast
to an abstract component that models what a component does. Through input
assumptions, a component interface models the expectations that a component has
from the other components in the system and the environment. Through output
guarantees, a component interface tells the other components in the system and
the environment what they can expect from this component. The major goal of a
good component interface is then to provide only the appropriate information that
is sufficient to decide whether two or more components can work together properly.
In the context of component interfaces for real-time system performance analysis,
the term “properly” refers to questions like: Does the composed system satisfy all
requested real-time properties such as delay, buffer, and throughput constraints?

Consequently, in an interface-based real-time system design approach, the
compliance to real-time constraints is checked at composition time. That is, the
successful composition of a set of components and their interfaces to a complete
system design already guarantees the satisfaction of all real-time constraints, and
no further analysis steps are required. This leads to faster design processes and
partly removes the need for the classical binary search iteration approach to find
appropriate system designs.

Additionally, an interface-based real-time system design approach also benefits
from the properties of incremental design and independent implementability that
are elementary features of an interface-based design. The support for incremental
design ensures that component interfaces can be composed one-by-one into subsys-
tems in any order. And if at any step a component interface cannot be composed
with a subsystem, this already excludes the possibility that the complete system can
be composed successfully, and therefore can not work properly. Refinement on the
other hand is very similar to subtyping of classes in object-oriented programming.
A component interface can be refined by another component interface if it accepts
at least all inputs of the original interface and produces only a subset of the original
outputs. Fulfilling these constraints ensures that components with compatible
interfaces can be refined independently and still remain compatible, thus supporting
independent implementability.

In this chapter, we develop an interface algebra for verifying buffer overflow and
underflow constraints, and estimating worst-case traversal times in order to verify
their compliance with provided upper bounds, where the different components
exchange data through first-in first-out (FIFO) buffers. Such architectures are
common for streaming applications, e.g. audio/video processing and distributed

4 Interface-Based Design of Real-Time Systems 85

controllers where data flows from sensors to actuators while getting processed on
multiple processors. Our proposed interface algebra is based on Rate and Real-Time
Interfaces as proposed in [5, 9], respectively, and is motivated by the concept of
assume/guarantee interfaces from [1]. In particular, we cast the Real-Time Calculus
framework from [4,8] within the assume/guarantee interface setting. At a high level,
two interfaces are compatible when the guarantees associated with one of them
comply with the assumptions associated with the other. We describe how to compute
the assumptions and guarantees associated with interfaces based on a monotonicity
property. This result is then used to verify buffer underflow and overflow constraints,
compute the WCTT in a component network incrementally, and validate that it
complies to a given deadline. Our approach may be summarized in the following
three steps:

1. Define an abstract component that describes the real-time properties of a
concrete system hardware/software component. This involves defining proper
abstractions for component inputs and outputs, and internal component relations
that meaningfully relate abstract inputs to abstract outputs. Such components
can be composed together to create a system model, and together with a model
of the environment can be used to perform timing analysis. Several such abstract
components are described in Sect. 4.2.

2. To derive the interface of an abstract component, we need to define interface
variables as well as input and output predicates on these interface variables. In
Sect. 4.3 we describe how one can do this for the abstract components introduced
in Sect. 4.2.

3. Derive the internal interface relations that relate incoming guarantees and
assumptions to outgoing guarantees and assumptions of a component’s inter-
faces. This is also described in Sect. 4.3.

4.2 Timing Analysis of Component Networks

In this section, we describe a timing analysis framework in particular, for verifying
buffer overflow and underflow constraints and computing worst-case traversal times
for component networks. The framework is based on Real-Time Calculus [4, 8].
This calculus is an adaptation of Network Calculus [6] that was designed to
analyze communication networks. Here, we consider three basic types of abstract
components: Processing Element (PE), Playout Buffer (PB), and Earliest Deadline
First (EDF) component. Component models for greedy shapers, time division
multiple access, polling servers, and hierarchical scheduling are described in
[10–12]. In Sect. 4.3 we will lift this framework to an interface-based design setting.
First we need to introduce the basic models and abstractions that underlie Real-
Time Calculus before we describe the three basic abstract components that we
consider.

86 N. Stoimenov et al.

4.2.1 Basic Models

In the setting we study here, event streams are processed on a sequence of
components. An event or data stream described by the cumulative function R.t/
enters the input buffer of the component and is processed by the component
whose availability is described by the cumulative function C.t/. Formally, the
cumulative functions R.t/ 2 IR�0 and C.t/ 2 IR�0 for t � 0 denote the number
of events/data items that have been received or could be processed within the
time interval Œ0; t/, respectively. After being processed, events are emitted on the
component’s output, resulting in an outgoing event stream R 0.t/. The remaining
resources that were not consumed are available for use and are described by an
outgoing resource availability trace C 0.t/. The relations betweenR.t/, C.t/, R 0.t/
and C 0.t/ depend on the component’s processing semantics. For example, Greedy
Processing (GP) denotes that events are always processed when there are resources
available. Typically, the outgoing event stream R 0.t/ will not equal the incoming
event stream R.t/ as it may, for example, exhibit more or less jitter.

While cumulative functions such as R.t/ or C.t/ describe one concrete trace
of an event stream or a resource availability, variability characterization curves
(VCCs) capture all possible traces using upper and lower bounds on their timing
properties. The arrival and service curves from Network Calculus [6] are specific
instances of VCCs and are more expressive than traditional event stream models
such as the periodic, periodic with jitter, sporadic, etc. Arrival curves ˛l.�/ and
˛u.�/ denote the minimum and the maximum number of events that can arrive
in any time interval of length �, i.e. ˛l.t � s/ � R.t/ � R.s/ � ˛u.t � s/
for all t > s � 0. In addition, ˛l.0/ D ˛u.0/ D 0. We also denote the tuple
.˛l; ˛u/ with ˛. Service curves characterize the variability in the service provided
by a resource. The curves ˇl.�/ and ˇu.�/ denote the minimum and the maximum
number of events that can be processed within any time interval of length �, i.e.
ˇl.t � s/ � C.t/ � C.s/ � ˇu.t � s/ for all t > s � 0. In addition, ˇl.0/ D
ˇu.0/ D 0. We also denote the tuple .ˇl; ˇu/ with ˇ. An event stream modeled by
˛.�/ enters a component and is processed using the resource modeled as ˇl.�/.
The output is again an event stream ˛0.�/, and the remaining resource is expressed
as ˇ0l.�/. Note that the domain of the arrival and service curves are events, i.e.
they describe the number of arriving events and the capability to process a certain
number of events, respectively. The generalization towards physical quantities such
as processing cycles or communication bits can be done by means of workload
curves which is another instance of a VCC, for details refer to [7].

4.2.2 Processing Element

The PE component can be used to model a single processing element which pro-
cesses one input stream. However, it can also be composed with other components of

4 Interface-Based Design of Real-Time Systems 87

the same type, and model components processing more than one input stream using
a fixed priority (FP) scheduling. Consider a concrete GP component that is triggered
by the events of an incoming event stream. A fully preemptive task is instantiated at
every event arrival to process the incoming event, and active tasks are processed in a
FIFO order, while being restricted by the availability of resources. The completion
of each task execution results in the corresponding event being removed from the
input buffer and an event being emitted on the outgoing event stream.

Following results from Real-Time and Network Calculus [4, 6], such a com-
ponent can be modeled by an abstract component PE with the following internal
component relations1:

˛0u.�/ D .˛u ˛ ˇl/.�/; (4.1)

˛0l.�/ D .˛l ˝ ˇl/.�/; (4.2)

ˇ0l.�/ D sup
0����

˚
ˇl.�/� ˛u.�/

� WD RT .ˇl; ˛u/; (4.3)

and the backlog of the input buffer is bounded by:

sup
0����

˚
˛u.�/� ˇl.�/

�
:

If the available buffer space in the input buffer is constrained by bmax, the backlog
should never become bigger than the buffer size, i.e. we have a buffer overflow
constraint. In this case, we can obtain the following component-based constraint on
the admissible arrival and service curves:

˛u.�/ � ˇl.�/C bmax; 8� 2 IR�0: (4.4)

If the input arrival and service curves satisfy the above constraint, the backlog
will never be bigger than bmax. Before continuing with the computation of the
WCTT for a PE component, we need to define the following shift function:

r.˛; c;�/ D
�
˛.� � c/ if .� > c/ ^ .� 6D 0/
0 if .� � c/ _ .� D 0/ (4.5)

which simply shifts a given curve ˛.�/ by the amount c to “the right”.
The WCTT experienced by an event in the component, defined as its finishing

time minus its arrival time, can be computed as:

Del.˛u; ˇl/ WD sup
��0

˚
inff� � 0 W ˛u.�/ � ˇl.�C �/g� :

1See the Appendix at the end of the chapter for definitions of the operators ˝ and˛.

88 N. Stoimenov et al.

If all events of the input stream must be processed by a PE component within
a relative deadline D, then for the stream to be schedulable we must have that
Del.˛u; ˇl/ � D which can be written as:

ˇl.�/ � r.˛u;D;�/; 8� 2 IR�0:

The above inequality gives us an expression for the minimum service in component
PE that is required in order to meet a deadline constraint.

It is also possible to have systems with processing elements that process more
than one data stream. For this purpose, the remaining service output of a higher
priority PE component, computed with (4.3), can be connected to the service input
of a lower priority PE component. This way we can model an FP resource sharing
between PE components.

4.2.3 Playout Buffer

The PB component models a playout buffer. It receives data and stores it in a buffer
which is read at a constant (usually periodic) rate. The buffer has a maximum size
Bmax. We make the assumption that at the start of the system, there are already B0
initial data items in the playout buffer, e.g. due to a playback delay. Data items
in the playout buffer are removed at a constant rate. In particular, P.t/ data items
are removed within the time interval Œ0; t/. This behavior can be described by the
readout VCC �.�/ D .�l.�/; �u.�//, i.e. �l.t � s/ � P.t/� P.s/ � �u.t � s/ for
all t > s � 0. What needs to be guaranteed is that the playout buffer never overflows
or underflows. Following results from Real-Time and Rate Interfaces [5], for a PB
component with input and readout event streams characterized by the VCCs ˛ and
�, respectively, and B0 initial events, the playout buffer size B.t/ is constrained by
0 � B.t/ � Bmax at all times if the following constraints are satisfied:

˛l.�/ � �u.�/� B0; 8� 2 IR�0; (4.6)

˛u.�/ � �l.�/C Bmax � B0; 8� 2 IR�0: (4.7)

These are component-wise constraints that guarantee for a PB component to never
overflow or underflow.

The WCTT experienced by an event in the component can be computed as
Del.˛u; �l

� / where
�l
� .�/ D r.�l; �;�/ (4.8)

is the lower readout curve “shifted to the right” by the initial playback delay � � 0
necessary to accumulateB0 events. Similarly to a PE component, meeting a relative
deadline constraint ofD in a PB component would require for the input stream that
we have:

�l
� .�/ � r.˛u;D;�/; 8� 2 IR�0;

where r is the shift function defined in (4.5).

4 Interface-Based Design of Real-Time Systems 89

4.2.4 Earliest Deadline First Component

The EDF component is similar to the PE component but it models processing
of several data streams with a resource shared using the earliest deadline first
scheduling policy. This requires a new abstract component with different internal
relations [10]. Such a component processes N input event streams and emits N
output event streams. Each input event stream i , 1 � i � N , is associated with a
fully preemptive task which is activated repeatedly by incoming events. Each input
event stream i has an associated FIFO buffer with maximum size bi max where events
are backlogged. Tasks process the head events in these buffers and are scheduled in
an EDF order. Each task has a best-case execution time of BCETi , a worst-case
execution time WCETi , and a relative deadlineDi where 0 � BCETi �WCETi �
Di . The completion of a task execution results in the corresponding input event
being removed from the associated buffer and an output event being emitted on the
associated output event stream.

For an EDF component with a service curve ˇ and event streams characterized
by arrival curves ˛i , all tasks are processed within their deadlines if and only if:

ˇl.�/ �
NX
iD1

r.˛u
i ; Di ;�/; 8� 2 IR�0; (4.9)

using the shift function r from (4.5). The output streams can be characterized by
arrival curves computed for all streams i as:

˛0ui .�/ D r.˛u
i ;�.Di � BCETi /; �/; (4.10)

˛0li .�/ D r.˛l
i ; .Di � BCETi /; �/; (4.11)

and the number of events in input buffers do not exceed their capacity bi max if:

˛u
i .Di / � bi max; 8i: (4.12)

The EDF component schedulability condition (4.9) can be related to the demand
bound functions described by Baruah et al. in [3]. Given that this condition is
satisfied, the service curve provided to each stream can be modeled with a burst-
delay function as defined in [6] which is computed for each stream i as:

ˇl
Di
.�/ D

(
C1 if � > Di

0 otherwise
(4.13)

The WCTT experienced by an event from stream i can be computed as
Del.˛u

i ; ˇ
l
Di
/ which is upper bounded byDi .

90 N. Stoimenov et al.

4.2.5 Worst-Case Traversal Times of Component Networks

The worst-case traversal time for an event from an input stream which is processed
by a sequence of components can be computed as the sum of the worst-case traversal
times of the individual components. However, this would lead to a very pessimistic
and unrealistic result as it would assume that the worst-case traversal times occur
in all components for the same event. A better bound on the worst-case traversal
time can be achieved by considering a concatenation of the components. This is a
phenomenon known as “pay bursts only once” [6]. Following results from Network
Calculus, this leads to the following computation for the WCTT.

For an input event stream ˛ traversing a sequence of components which consists
of a set of PEs, a set of PBs, and a set of EDF components denoted as PE ; PB and
E DF , respectively, the worst-case traversal time that an event can experience can
be computed as Del.˛u; ˇPE ˝�PB˝ˇE DF / with ˇPE DN

c 2PE ˇ
l
c , �PB DN

c 2PB �l
� c , and ˇE DF DN

c 2E DF ˇl
Di c

, where ˇl
c is the service availability of

PE component c, �l
� c is the lower readout curve for PB component c as defined with

(4.8), and ˇl
Di c

is the service availability provided to the stream served with relative
deadline Di by EDF component c as defined with (4.13). A WCTT constraint on
the sequence of components Del.˛u; ˇPE ˝ �PB ˝ ˇE DF / � D can be written
as follows:

ˇPE ˝ �PB ˝ ˇE DF � r.˛u;D;�/; 8� 2 IR�0; (4.14)

using the shift function r from (4.5).

4.3 Interface Algebra

In this section, we develop an interface-based design approach which will allow
us by only inspecting the interfaces of two components to check whether WCTT
and buffer underflow/overflow constraints would be satisfied if the components are
composed together. The proposed interface algebra includes concepts from Real-
Time Calculus, Assume/Guarantee Interfaces [1], and constraint propagation.

In our setup each component has two disjoint sets of input and output ports
I and J . The actual input and output values of an abstract component are VCC
curves. A connection from output j of one component to the input i of some other
component will be denoted by .j; i/. The interface of a component makes certain
assumptions on I , which are specified using the predicate I .I /. Provided this
predicate is satisfied, the interface guarantees that the component works correctly
and its outputs will satisfy a predicate O.J /. Here, working correctly means that
the component satisfies all real-time constraints such as buffer underflow/overflow
or delay constraints [9].

In order to simplify the presentation, we introduce the complies to relation `
between two VCC curves a.�/ and b.�/ as follows:

4 Interface-Based Design of Real-Time Systems 91

a ` b D .8� W .al.�/ � b l.�// ^ .au.�/ � bu.�///:

In other words, a complies to b (a ` b) if for all values of � the interval
Œal.�/; au.�/� is enclosed by Œb l.�/; bu.�/�.

In the following, we will just use ˛ to denote the characterization of any VCC
that is an input or an output of an abstract component.

Following the introduced notation, for any VCC ˛, we can define the input and
output predicates for some component input i and output j as Ii .˛ i / D .˛ i ` ˛A

i /

and Oj .˛j / D .˛j ` ˛G
j /, respectively, where ˛A and ˛G are assume and guarantee

curves provided by the component interface.
We would like to have that if the input predicates of a component are all satisfied,

then it works correctly and all output predicates are satisfied. In other words the
condition

V
8i2I Ii .˛ i /)

V
8j2J Oj .˛j / must be satisfied by the interfaces of

all components.
If we now connect several components, we want to be able to check if the whole

system can work correctly by just checking whether their interfaces are compatible.
This can be done by testing whether the relation

V
8 .j;i/ Oj .˛j /)

V
8 .j;i/ Ii .˛ i /

is satisfiable. In other words, we must check if there exists some environment
in which the components can be composed. The relation is hence the weakest
precondition on the environment of the system.

We also need to propagate information about the predicates between the inter-
faces, see [9]. This way, we combine interface theory with constraint propagation,
which enables parameterized design of component-based systems. We propagate
the assume and guarantee curves of the input and output predicates through the
interfaces. Each interface connection would have both assume and guarantee curves
propagated in opposite directions as shown in Fig. 4.1. We connect the interfaces, i.e.
the corresponding guarantee and assume curves, as 8 .j; i/ W .˛G.i/ D ˛G.j //^
.˛A.j / D ˛A.i//.

1 2
α1

α1
A α4

Aα2
A = α3

A

α2
G = α3

G

α2 = α3 α4
3 4

1 2 3 4

abstract components

interfaces with constraint propagation

connection (2,3)

α1
G α4

G

Fig. 4.1 Relation between
input/output values of
abstract components and
assume/guarantee variables in
interfaces with constraint
propagation

92 N. Stoimenov et al.

Now, we can determine whether two abstract components are compatible by
checking the compatibility of their interfaces. Let us suppose that the assume and
guarantee variables of an interface of any component and their relation to the input
and output values of the corresponding abstract component satisfy that:

.8i 2 I W ˛i ` ˛G
i ` ˛A

i /) .8j 2 J W ˛j ` ˛G
j ` ˛A

j /; (4.15)

where the component has inputs I and outputs J . Then if for a network of
components, the relation ˛G

i ` ˛A
i is satisfied for all inputs i , we can conclude

that the system works correctly.
Now we need to develop the relations between guarantees and assumptions in

order to satisfy (4.15) for every component. We will first describe a general method
how these relations can be determined and then apply it to the abstract components
described in Sect. 4.2.

To this end, as we are dealing with stateless interfaces, I and J can be related by
a transfer function, e.g. J D F.I /. The actual function depends on the processing
semantics of the modeled component.

We need to define the concept of a monotone abstract component. Note that
the “complies to” relation ` has been generalized to tuples, i.e. .a i W i 2 I / `
.b i W i 2 I / equals 8i 2 I W a i ` b i .
Definition 4.1. An abstract component with a set of input and output ports, I and
J , respectively, and a transfer function F that maps input curves to output curves,
is monotone if ..ęi W i 2 I / ` .˛ i W i 2 I //) ..ęj W j 2 J / ` .˛j W j 2 J //
where .˛j W j 2 J / D F.˛ i W i 2 I / and .ęj W j 2 J / D F.ęi W i 2 I /.
In other words, if we replace the input curves of an abstract component with curves
that are compliant, then the new output curves are also compliant to the previous
ones. Note that all components described in Sect. 4.2 satisfy this monotonicity
condition, see for example the transfer functions (4.1), (4.2), (4.3), (4.10), and
(4.11).

The following theorem leads to a constructive way to compute the input assumes
and output guarantees from the given input guarantees and output assumes. We make
use of the individual components of the transfer function F , i.e. ˛j D Fj .˛ i W
i 2 I / for all j 2 J where I and J denote the input and output ports of the
corresponding abstract component, respectively. The theorem establishes that we
can simply determine the output guarantees using the components of a given transfer
function of an abstract component. For the input assumes we need to determine
inverses of the transfer function Fj with respect to at least one of its arguments.
All arguments of some Fj are determined by the input guarantees but one, say for
example ˛G

i� . This one we replace by ˛A
i� and try to determine this curve such that

the result of the transfer function still complies to the given output assumes. If we
choose the same i� for several components of the output function, then the resulting
˛A
i� needs to comply to all partial “inverses”.

4 Interface-Based Design of Real-Time Systems 93

Theorem 4.1. Given a monotone component with input ports I , output ports J ,
and a transfer function F that maps input curves to output curves, i.e. .˛j W j 2
J / D F.˛ i W i 2 I /.

Let us suppose that we determine the output guarantees using:

˛G
j D Fj .˛G

i W i 2 I /; 8j 2 J; (4.16)

and the input assumes are computed such that:

8j 2 J 9 i� 2 I W
�
Fj .˛

G
i W i 2 I /

ˇ̌̌
˛G
i�
 ˛A

i�

` ˛A
j

�
; (4.17)

where ˛G
i� ˛A

i� denotes that in the preceding term ˛G
i� is replaced by ˛A

i� .
Then (4.15) holds.

Proof. Let us assume that for all input ports i 2 I we have ˛i ` ˛G
i , see (4.15).

Using the monotonicity of F , we can now see that .8i 2 I W ˛i ` ˛G
i /) F.˛ i W

i 2 I / ` F.˛G
i W i 2 I /) .8j 2 J W ˛j ` ˛G

j /.
We still need to show that .8i 2 I W ˛G

i ` ˛A
i /) .8j 2 J W ˛G

j ` ˛A
j /

using the construction in (4.16). At first note that this expression is equivalent to

8j 2 J 9i� 2 I W
�
.˛G
i�
` ˛A

i�
/) .˛G

j ` ˛A
j /

. We also know that for any i� 2 I

we have .˛G
i� ` ˛A

i�/) ..˛G
i W i 2 I / ` .˛G

i W i 2 I / j˛G
i�
 ˛A

i�
/.

Because of the monotonicity of F we can derive that for any i� 2 I we have
.˛G
i� ` ˛A

i� /) .F.˛G
i W i 2 I / ` F.˛G

i W i 2 I / j˛G
i�
 ˛A

i�
/, and using (4.16) we

find 8j 2 J 9i� 2 I such that ..˛G
i� ` ˛A

i�/) .Fj .˛
G
i W i 2 I / ` Fj .˛

G
i W i 2

I / j˛G
i�
 ˛A

i�
/) .˛G

j ` ˛A
j //. ut

Next, we show how to compute the largest upper curve and smallest lower curve
for which the respective relations still hold. This leads to the weakest possible input
assumptions. We do this for the three types of components introduced in Sect. 4.2.

4.3.1 Processing Element

Now, using the relation between interface values, assumptions and guarantees in
(4.15), and following the results from Theorem 4.1, we can deduce that the equations
describing the output guarantees are equivalent to those for the abstract component,
i.e. (4.1) and (4.2), but instead of using values, we use interface guarantees.
Therefore, we have:

˛0uG
.�/ D .˛uG ˛ ˇlG/.�/;

˛0lG.�/ D .˛lG ˝ ˇlG/.�/:

94 N. Stoimenov et al.

In order to calculate the input assumptions of the PE abstract component, we need
to determine inverse relations corresponding to (4.1), (4.2), and (4.4). Following
results from Network Calculus [6], we can do this by determining the pseudo-
inverse functions which have the following definition f �1.x/ D infft W f .t/ � xg.

In order to guarantee that all relations hold if the input and output predicates
are satisfied, we then need to use the minimum (in case of the upper curves) or the
maximum (in case of the lower curves) of all the determined pseudo-inverses.

From the pseudo-inverses of (4.2), we get the inequalities ˛lA � ˛0lA ˛ ˇlG

and ˇlA � ˛0lA ˛ ˛lG. Here we use the duality relation between the ˛ and ˝
operators (see the Appendix). Similarly, from the pseudo-inverses of (4.1), we get
the inequalities ˇlA � ˛uG ˛ ˛0uA and ˛uA � ˇlG ˝ ˛0uA. Inverting the buffer
overflow constraint (4.4) is trivial and we get the inequalities ˛uA � ˇlGC bmax and
ˇlA � ˛uG � bmax.

If a PE component shares the service it receives with other lower priority
PE components, the remaining service is bounded by (4.3). In terms of output
guaranteed values, this can be expressed as ˇ0lG.�/ D RT .ˇlG; ˛uG/ where the
RT operator is defined in (4.3). In order to obtain the input assumptions of a
component using FP scheduling, we need to use the inverses of the RT operator
(see the Appendix).

After combining all inverses, the assumptions related to component PE can be
determined as follows:

˛uA D min
n
ˇlG ˝ ˛0uA

; ˇlG C bmax; RT
�˛ �

ˇ0lA; ˇlG
o
;

˛lA D ˛0lA ˛ ˇlG;

ˇlA D max
n
˛0lA ˛ ˛lG; ˛uG ˛ ˛0uA

; ˛uG � bmax; RT
�ˇ �

ˇ0lA; ˛uG
o
:(4.18)

The interface connections for two PE components are illustrated in Fig. 4.2a.

4.3.2 Playout Buffer

For a PB component, the relations are simpler. We only need to determine the inverse
relations for the buffer constraints (4.6) and (4.7), which directly yield the following
relations:

˛uA D �lG C Bmax � B0;
˛lA D �uG � B0;
�uA D ˛lG CB0;
�lA D ˛uG � .Bmax � B0/ : (4.19)

The interface connections for a single PB component are illustrated in Fig. 4.2b.

4 Interface-Based Design of Real-Time Systems 95

EDF
.

.

.

.

.

.

PE

PB

βG

αA

αG

ρG

β′ G
β′ A

βA βG βA

ρA

PE

αA
1

Π ′ G
1

Π ′ G

Π ′ A
1

Π ′ A

ΠG
1

ΠA
1

ΠG

ΠA

α ′ A
1

αG
1

αA
1

Π ′ G
1

Π ′ A
1

αG
1

αA
N

Π ′ G
N

Π ′ A
N

αG
N

αA
2

Π ′ G
2

Π ′ A
2

αG
2

α ′ G
1

ΠG
1

ΠA
1

α ′ A
1

α ′ G
1

ΠG
N

ΠA
N

α ′ A
N

α ′ G
N

ΠG
2

ΠA
2

α ′ A
2

α ′ G
2

a b c

Fig. 4.2 Interface models for: (a) two PE components processing two streams with FP scheduling,
(b) PB component, and (c) EDF component processing N streams

4.3.3 Earliest Deadline First Component

Similarly to the PE component, equations describing the output guarantees are again
equivalent to those for the abstract component, i.e. (4.10) and (4.11). They only need
to be expressed in terms of interface variables instead of values for all streams i :

˛0uG
i .�/ D r.˛uG

i ;�.Di � BCETi /; �/;

˛0lGi .�/ D r.˛lG
i ; .Di � BCETi /; �/;

using the definition of the shift function r in (4.5).
Similarly, for the resource and buffer constraints, (4.9) and (4.12), we obtain:

ˇlG.�/ �
NX
iD1

r.˛uG
i ; Di ;�/; 8� 2 IR�0;

˛uG
i .Di / � bi max; 8i:

Determining the input assumptions of the EDF component also involves finding
the pseudo-inverse functions of the relations. Finding the input assumptions for the
upper arrival curves involves inverting (4.9), (4.10), and (4.12). Again, we need
to compute the largest upper curves for which the relations still hold. Finding the

96 N. Stoimenov et al.

inverses and combing them, we find for all streams i :

˛uA
i .�/ D min

8̂
<̂
ˆ̂:
ˇlG.�CDi/�

NX
jD1
j¤i

r
�
˛uG
j ; .Dj �Di/;�

;

s
�
˛0uA
i ; .Di � BCETi /; �

; t.Di ; bi max; �/

)
;

using functions s.˛; c;�/ and t.d; b;�/ defined as:

s.˛; c;�/ D

8̂
<
:̂
˛.� � c/ if � > c

lim
!0f˛.
/g if 0 < � � c
0 if � D 0

t.d; b;�/ D

8̂
<
:̂
1 if � > d

b if 0 < � � d
0 if � D 0

Calculating the input assumption for the lower curve is much simpler as it
involves finding the smallest lower curve solution to the pseudo-inverse of (4.11)
or ˛lA

i .�/ � ˛0lAi .� C .Di � BCETi // for all i . Therefore, we can determine the
following assume interface function for the lower curve of each input data stream:

˛lA
i .�/ D r.˛0lAi ;�.Di � BCETi /; �/; 8i;

using the shift function r as defined in (4.5).
Similarly, for the assume of the lower service curve we invert (4.9) which yields

the inequality ˇlA.�/ � PN
iD1 r.˛uG

i ; Di ;�/. Therefore, the input assume for the
lower service curve of an EDF component can be determined as:

ˇlA.�/ D
NX
iD1

r.˛uG
i ; Di ;�/: (4.20)

The interface model for the EDF component is illustrated in Fig. 4.2c.

4.3.4 Worst-Case Traversal Time Interface

We develop an additional type of interface to alleviate design of systems with
WCTT constraints that can span a network of components. It is an interface-based
interpretation of the analytical computation of WCTTs with (4.14).

The “complies to” relation ` for this interface connection is defined as˘G.�/ `
˘A.�/ D .8� W ˘G.�/ � ˘A.�//, where ˘A expresses the minimum
service requested from all subsequent components such that the WCTT constraint

4 Interface-Based Design of Real-Time Systems 97

is satisfied, and ˘G expresses the minimum service guaranteed by all subsequent
components.

Computing the guarantee for a sequence of components follows directly
from (4.14) and can be done with ˘G D ˇG

PE ˝ �G
PB ˝ ˇG

E DF . Connecting a PE
component to the sequence would change the combined service to˘ 0G D ˇlG˝˘G

where ˇlG is the lower service guaranteed by the PE. Similarly, connecting a PB
component we would have ˘ 0G D �lG

� ˝˘G, where �l
� .�/ is the lower guaranteed

shifted readout curve as defined with (4.8). For an EDF component, we have
˘ 0G D ˇlG

Di
˝˘G where ˇlG

Di
is the service curve provided to the stream when

processed with a relative deadlineDi as defined in (4.13).
From (4.14), we can also compute the assume on the combined service of a

sequence of components as ˘A D r.˛uG;D;�/ which expresses the minimum
necessary service in order to meet a WCTT constraint of D for the input ˛uG.
Propagating the assume value through a sequence of components can be done for
the three types of components by inverting (4.14) as follows:

PE W ˘A D ˘ 0A˛ˇlG; PB W ˘A D ˘ 0A˛�lG
� ; EDF W ˘A D ˘ 0A˛ˇlG

Di
:

We can also compute component-wise constraints on the resources provided to
each component given the resource assumption from preceding components ˘ 0A,
and the resource guarantee from subsequent components ˘G. We can do this for
three types of components as follows:

PE W ˇlA � ˘ 0A˛˘G; PB W �lA
� � ˘ 0A˛˘G; EDF W ˇlA

Di
� ˘ 0A˛˘G:

The above constraints can be combined with the previously computed input assumes
for the resources of the three components with (4.18), (4.19), and (4.20). By doing
this, satisfying all interface relations of components composed in a sequence will
guarantee that the WCTT constraint on the sequence of components is satisfied
too. The WCTT interfaces for the PE, PB, and EDF components are shown in
Fig. 4.2a–c.

4.4 Illustrative Example

In this section we show how our proposed theory can be applied to an example
system shown in Fig. 4.3. It represents a typical distributed embedded system
for video-/signal-/media-processing. Communication is not modeled explicitly
however, this can be done by adding additional components if necessary.

Each PE, PB, and EDF component is considered to be an independent compo-
nent, and our objective is to connect them together to realize the architecture shown
in the figure. In order to decide whether two components can be connected together,
we would only inspect their interfaces. Two compatible interfaces implicitly

98 N. Stoimenov et al.

PB1

PB2

αA
LP

αG
LP

αA
HP

αG
HP

Π′Α

Π′G

CPU1

PE1

CPU2

PE2

CPU3

PE3

PE4

CPU4

EDF

?

βG
2 βA

2

βA
1βG

1
βG

3 βA
3 βA

4 ρG
1

ρG
2

ρA
1

ρA
2

βG
4

Fig. 4.3 Interface model of an example stream processing system

guarantee that the buffers inside their respective components will never overflow
or underflow, and in addition, the WCTT constraints are satisfied.

The main message in this section is an illustration of how the internal details of
a component (e.g. its buffer size, scheduling policy, processor frequency, deadline)
are reflected (or summarized) through its interfaces. We show that if these internal
details are changed then the component’s interfaces also change and two previously
compatible components may become incompatible (or vice versa).

Experimental Setup We consider the system illustrated in Fig. 4.3. It consists of
a multiprocessor platform with four CPUs. A distributed application is mapped
to the platform. It processes two data streams, a high priority one denoted as
HP, and a low priority one denoted as LP. The application consists of six tasks.
Streams are preprocessed by the tasks modeled with components PE1 and PE2
which are mapped separately to CPU1 and CPU2, respectively. Afterwards, they
are processed by components PE3 and PE4 which are mapped to CPU3. The tasks
share the resource using FP scheduling where stream HP is given higher priority.
Additionally, streams are processed by two tasks mapped to CPU4which they share
with the EDF policy. This is modeled with the EDF component. The fully processed
streams are written to playout buffers which are read by an I/O interface at a constant
rate. The buffers are modeled with components PB1 and PB2. For simplicity, the
communication is not modeled here. If necessary, it can be taken into account by
additional components in the model.

Data packets from the streams have bursty arrivals described with period p,
jitter j , and minimum inter-arrival distance d . For the HP stream the parameters
are p D 25, j D 40, d D 0:1 ms, and for LP stream they are p D 25, j D 30,
d D 0:1 ms. Each data packet from the two streams has a constant processing
demand of 1 cycle for all tasks. CPU1 is fully available with service availability
of 0.3 cycles/ms. For CPU2, CPU3, and CPU4, the respective service availabilities
are 0.3, 0.4, and 0.4 cycles/ms. Components PE3 and PE4 have internal buffer sizes
of 2 and 3 packets, respectively. These buffers should never overflow. The EDF

4 Interface-Based Design of Real-Time Systems 99

component schedules tasks processing streams HP and LP with relative deadlines of
8 and 10 ms, respectively, with both buffers being limited to 3 packets. These buffers
should also never overflow. Components PB1 and PB2 are read at a constant rate of
25 packets/ms. Both components have maximum buffer sizes of 8 data packets, and
initially they contain 4 data packets. Both buffers should not underflow and overflow.
Additionally, we have a WCTT constraint on the LP stream of 200 ms.

Results We consider three different scenarios of the system’s parameters. In each
of them, we check the compatibility of component PE1 with the partially designed
system when all other components are already connected. Compatibility is checked
by only inspecting the interface connection between PE1 and the system which is
marked with “?” in Fig. 4.3. Compatibility meaning that the output guarantee is fully
“enclosed” by the input assumption.

Case I The system is considered with the specified parameters. The components
turn out to be compatible. The interface connection is illustrated in Fig. 4.4a.
It shows that the guarantee on the output stream rate ˛G

PE1 expressed by PE1s
interface is compatible with the assumption on the input rate ˛A

PE3 expressed by
PE3s interface.

Case II The WCTT constraint on the LP stream is decreased to 192ms. This leads
to incompatibility between components PE1 and PE3 which reveals in the interface
connection as shown in Fig. 4.4b.

Case III The maximum buffer size of component PB2 is decreased to 5 packets
which leads to incompatibility as shown in Fig. 4.4c. This reveals how constraints
in component PB2 are propagated to multiple interfaces in the rest of the system in
order to guarantee their satisfaction.

In summary, we have shown through a concrete example how incremental
compatibility checking can be done using the proposed interfaces. Clearly, such
interfaces can also be used in a straightforward manner for resource dimensioning
and component-level design space exploration. Typical questions that one would
ask are: What is the minimum buffer size of a component such that its interface

0 50 100 150 0 50 100 150
0

5

10

0

5

10

0 50 100 150
0

5

10

Δ[ms] Δ[ms] Δ[ms]

da

ta
 p

ac
ke

ts

αG
PE1

αA
PE3

cba

Fig. 4.4 Interface connection between the output guarantee of component PE1 and the input
assumption of component PE3 shows: (a) compatibility, (b) incompatibility when WCTT for
stream LP is reduced to 192 ms, and (c) incompatibility when buffer of component PB2 is
decreased to 5 packets

100 N. Stoimenov et al.

is compatible with a partially existing design? What is the minimum processing
frequency such that the interface is still compatible? Or what are the feasible relative
deadlines in an EDF component? In this chapter, we are concerned with buffer
and WCTT constraints however, one can imagine developing similar interfaces for
power, energy, and temperature constraints.

4.5 Concluding Remarks

In this chapter we proposed an interface algebra for checking whether multiple
components of an embedded system may be composed together while satisfying
their buffer and worst-case traversal time (WCTT) constraints. The main advantage
of such an interface-based formulation is that component composition only requires
a compatibility checking of the interfaces of the components involved, without
having to compute the WCTT of the entire component network from scratch, each
time a new component is added or an existing component is modified. This has
a number of advantages. It significantly reduces design complexity, it does not
require components to expose the details of their internals, and it allows a correct-
by-construction design flow.

The interfaces studied here were purely functional in nature, i.e. they do not
contain any state information. This might be restrictive in a number of settings, e.g.
when the components implement complex protocols. As an example, the processing
rate of a component might depend on the “state” or the fill level of an internal buffer.
As a part of future work, we plan to extend our interface algebra to accommodate
such “stateful” components. This may be done by describing an automaton to
represent an interface, with language inclusion or equivalence to denote the notion
of compatibility between components.

Appendix

The min-plus algebra convolution˝ and deconvolution˛ operators are defined as:

.f ˝ g/.�/ D inf
0����ff .� � �/C g.�/g;

.f ˛ g/.�/ D sup
��0
ff .�C �/� g.�/g:

The duality between˝ and˛ states that: f ˛ g � h ” f � g ˝ h .
The inverses of the RT .ˇ; ˛/ are defined as:

˛ D RT �˛.ˇ0; ˇ/) ˇ0 � RT .ˇ; ˛/;
ˇ D RT �ˇ.ˇ0; ˛/) ˇ0 � RT .ˇ; ˛/;

4 Interface-Based Design of Real-Time Systems 101

with solutions:

RT�˛.ˇ0; ˇ/.�/ D ˇ.�C �/ � ˇ0.�C �/ for � D sup
˚
� W ˇ0.�C �/ D ˇ0.�/

�
;

RT�ˇ.ˇ0; ˛/.�/ D ˇ0.� � �/C ˛.� � �/ for � D sup
˚
� W ˇ0.� � �/ D ˇ0.�/

�
:

References

1. de Alfaro L, Henzinger TA (2001) Interface theories for component-based design. In:
Proceedings of the first international workshop on embedded software, EMSOFT ’01, Springer,
London, pp 148–165

2. de Alfaro L, Henzinger TA (2005) Interface-based design. In: Broy M, Gruenbauer J, Harel
D, Hoare C (eds) Engineering theories of software-intensive systems, NATO Science Series:
Mathematics, physics, and chemistry, vol 195. Springer, Berlin, pp 83–104

3. Baruah S, Chen D, Gorinsky S, Mok A (1999) Generalized multiframe tasks. Real-Time Syst
17(1):5–22

4. Chakraborty S, Künzli S, Thiele L (2003) A general framework for analysing system properties
in platform-based embedded system designs. In: Proceedings of the conference on design,
automation and test in Europe, vol 1. IEEE Computer Society, Washington, DC, pp 10,190–
10,195

5. Chakraborty S, Liu Y, Stoimenov N, Thiele L, Wandeler E (2006) Interface-based rate analysis
of embedded systems. In: Proceedings of the 27th IEEE international real-time systems
symposium, RTSS ’06, IEEE Computer Society, Washington, DC, pp 25–34

6. Le Boudec JY, Thiran P (2001) Network calculus: A theory of deterministic queuing systems
for the internet, LNCS, vol 2050. Springer, Berlin

7. Maxiaguine A, Künzli S, Thiele L (2004) Workload characterization model for tasks with
variable execution demand. In: Proceedings of the conference on design, automation and test
in Europe, vol 2. IEEE Computer Society, Washington, DC, pp 21,040–21,045

8. Thiele L, Chakraborty S, Naedele M (2000) Real-time calculus for scheduling hard real-
time systems. In: Circuits and Systems, 2000. Proceedings of the 2000 IEEE international
symposium on ISCAS 2000 Geneva, vol 4, pp 101–104 (2000)

9. Thiele L, Wandeler E, Stoimenov N (2006) Real-time interfaces for composing real-time
systems. In: Proceedings of the 6th ACM & IEEE international conference on embedded
software, EMSOFT ’06, ACM, New York, pp 34–43

10. Wandeler E, Thiele L (2006a) Interface-based design of real-time systems with hierarchical
scheduling. In: Proceedings of the 12th IEEE real-time and embedded technology and
applications symposium, RTAS ’06, IEEE Computer Society, Washington, DC, pp 243–252

11. Wandeler E, Thiele L (2006b) Optimal TDMA time slot and cycle length allocation for hard
real-time systems. In: Proceedings of the 2006 Asia and South Pacific design automation
conference, ASP-DAC ’06, IEEE Press, Piscataway, NJ, pp 479–484

12. Wandeler E, Maxiaguine A, Thiele L (2006) Performance analysis of greedy shapers in real-
time systems. In: Proceedings of the conference on design, automation and test in Europe:
Proceedings of the European Design and Automation Association, 3001 Leuven, Belgium,
pp 444–449

Chapter 5
The Logical Execution Time Paradigm

Christoph M. Kirsch and Ana Sokolova

Since its introduction in 2000 in the time-triggered programming language Giotto,
the Logical Execution Time (LET) paradigm has evolved from a highly contro-
versial idea to a well-understood principle of real-time programming. This chapter
provides an easy-to-read overview of LET programming languages and runtime
systems as well as some LET-inspired models of computation. The presentation is
intuitive, by example, citing the relevant literature including more formal treatment
of the material for reference.

5.1 LET Overview

Logical Execution Time (LET) is a real-time programming abstraction that was
introduced with the time-triggered programming language Giotto [23, 24, 27]. LET
abstracts from the actual execution time of a real-time program. LET determines
the time it takes from reading program input to writing program output regardless
of the time it takes to execute the program. LET is motivated by the observation that
the relevant behavior of real-time programs is determined by when input is read and
output is written and not when programs just execute any code.

Before the introduction of LET two other rather different real-time programming
abstractions had been around for quite some time that originated from two largely
disjoint communities: the Zero Execution Time (ZET) abstraction [31, 35] as the
foundation of synchronous reactive programming [18] and the Bounded Execution
Time (BET) abstraction [31,35] as the foundation of real-time scheduling theory [7].
Figure 5.1 shows the three abstractions.

C.M. Kirsch (�) � A. Sokolova
Department of Computer Sciences, University of Salzburg, Austria
e-mail: ck@cs.uni-salzburg.at; anas@cs.uni-salzburg.at

S. Chakraborty and J. Eberspächer (eds.), Advances in Real-Time Systems,
DOI 10.1007/978-3-642-24349-3 5, © Springer-Verlag Berlin Heidelberg 2012

103

104 C.M. Kirsch and A. Sokolova

Zero Execution Time
(ZET Model [18])

time time

Logical Execution Time
(LET Model [27])

Bounded Execution Time
(BET Model [7])

time

Fig. 5.1 Fundamental real-time programming abstractions [31, 35]

Similar to the LET abstraction, ZET also abstracts from the actual execution
time of a real-time program yet even more than LET. With ZET the execution time
of a program including reading input and writing output is assumed to be zero, or
equivalently, the execution platform of a program is assumed to be infinitely fast.
ZET is the key abstraction of synchronous reactive programming. ZET programs
are reactive, i.e., always react to input with some output, and synchronous, i.e., do
so in zero time. The execution of ZET programs is correct if the program always
writes output before new input becomes available. Establishing correctness typically
involves fixed-point analysis since ZET programs written in synchronous reactive
programming languages such as Lustre [19] and Esterel [5] may contain cyclic
dependencies.

Unlike the ZET and LET abstractions, BET does not abstract execution times but
instead bounds them using deadlines. Strictly speaking, BET is therefore a model for
temporal constraint programming rather than a programming abstraction. With BET
a real-time program has a deadline, which constrains correct program execution
to the instances when the program completes execution before or at the deadline.
In the BET model, an execution of the program is incorrect if the program does
not complete within the deadline, even if the program eventually completes with a
functionally correct result. Correct execution of concurrent real-time programs with
multiple, possibly different and recurring deadlines requires real-time scheduling.
Rate-monotonic (RM) and earliest-deadline-first (EDF) scheduling [36] are promi-
nent examples of scheduling strategies in the BET model.

LET is inspired by both the ZET abstraction and the BET model. LET program
execution is correct, i.e., time-safe [24,27], if the program reads input, in zero time,
then executes, and finally writes output, again in zero time, exactly when the LET
has elapsed since reading input. The end of the LET thus corresponds to a deadline
in the BET model but only for program execution without reading input and writing
output. In other words, if the program completes execution before the deadline,
writing output is delayed until the deadline, i.e., until the LET has elapsed. The
deadline is therefore not only an upper bound, like in the BET model, but also a
lower bound, at least, logically. In the LET model, using a faster machine does
therefore not result in (logically) faster program execution but only in decreased
machine utilization, which makes room for more concurrency. Conversely, more
concurrency on the same machine has no effect on input and output times as long as
the machine is sufficiently fast to accommodate all deadlines.

5 The Logical Execution Time Paradigm 105

5.1.1 Giotto

LET programs may be event- or time-triggered (or both) in the sense that the time
when input is read and thus when the LET begins is determined by the occurrence
of an event or the progress of time, respectively. Giotto programs, for example, are
time-triggered LET programs while xGiotto [16] programs may be both event- and
time-triggered LET programs, and even the LET itself in xGiotto programs may be
determined by events rather than time.

There are two key results on Giotto programs. Checking time safety of Giotto
programs is easy [25] and time-safe Giotto programs are time-deterministic
[24, 27], i.e., the relevant input and output (I/O) behavior of time-safe Giotto
programs does not change across varying hardware platforms and software
workloads. Time-safe execution of Giotto programs requires real-time scheduling,
similar to BET programs, but no fixed-point analysis, unlike ZET programs, since
reading input and writing output is cycle-free. Note that all real-time programming
paradigms have yet in common that they require some form of hardware-dependent,
worst-case execution time (WCET) analysis [14] for establishing correctness.

Giotto programs may specify multiple modes and mode switching logic but
can only be in one mode at a time during execution. Checking time safety of
Giotto programs is easy, i.e., fast, because time safety of the individual modes of
a Giotto program implies time safety of the whole program regardless of mode
switching [25]. The converse is not true since the mode switching logic may prevent
modes that are not time-safe from ever being executed. Checking time safety of
a mode is linear in the size of its description using a standard, utilization-based
schedulability test based on EDF.

LET programs may be distributed across multiple machines, just like ZET and
BET programs. However, the key difference is that LET, unlike ZET and BET, is
a natural, temporally robust placeholder not just for program execution but also for
program communication [29]. Distributing LET programs is thus easy, in particular,
onto architectures that provide time synchronization such as the Time-Triggered
Architecture (TTA) [34]. Even more importantly, the relevant behavior of a time-
safe, distributed version of a time-safe, non-distributed LET program is equivalent
to the relevant behavior of the non-distributed program.

However, Giotto has a scalability issue in the sense that each mode of a Giotto
program needs to specify the whole behavior of the program while being in that
mode. For example, if a Giotto programmer would like to maintain some behavior of
a mode when switching to another mode, both modes need to specify their common
behavior. In other words, a Giotto program is a flat, non-hierarchical description of
a real-time program. Giotto programs may therefore become large for non-trivial, in
particular distributed applications. Giotto programming by example is discussed in
more detail in Sect. 5.2.

106 C.M. Kirsch and A. Sokolova

5.1.2 Hierarchical Timing Language

The Hierarchical Timing Language (HTL) [15, 30] is a Giotto successor that aims
at improving succinctness while keeping time safety checking easy. Modes in HTL
are partial specifications of LET programs that may be hierarchical in the sense that
some modes may be abstract placeholders reserving computation time for refining,
more concrete modes that specify actual program behavior. Intuitively, a concrete
mode refines an abstract mode if the LETs in the concrete mode start later and end
earlier than the LETs in the abstract mode. The key result is that time safety of an
abstract HTL program implies time safety of any concrete HTL program that refines
the abstract program [15]. The converse is again not true. There may be time-safe
concrete HTL programs that refine abstract HTL programs that are not time-safe.
Note that checking refinement is easier than checking time safety [30].

Refinement in HTL enables modular real-time programming [30]. A time-safe
HTL program may be changed locally without the need for re-checking time
safety globally, with the exception of the top level of the program. Modifications
to the most abstract portion of an HTL program may require re-checking time
safety for the whole program. Since correctness of modifications below top level
can be checked fast, i.e., independently of the size of the whole program, HTL
programs may even be modified at runtime through a process called runtime
patching while preserving the real-time behavior of the unmodified parts [33].
Runtime patching is a semantically robust method for introducing flexibility into
real-time programming. An HTL programming example is discussed in more detail
in Sect. 5.2.

5.1.3 Model-Driven Development

LET programming is part of a larger, model-driven development (MDD) method-
ology [26] depicted in Fig. 5.2. LET programs may be modeled and validated in
a simulation environment such as Simulink [10] and then translated to executable
code. Here, the key idea is that LET model, program, and code are equivalent with
respect to their relevant real-time behavior [26]. Changes on one level have therefore
a well-understood effect on the other levels enabling compositional implementation
and validation with LET-based toolkits such as FTOS [6] and TDL [13]. LET-
oriented runtime systems are discussed next.

5.1.4 The Embedded Machine

LET code generators may target general purpose programming languages such as C
or virtual machines that have been specifically designed for LET semantics such as
the Embedded Machine [20,22], or E machine, for short, which is an interpreter for

5 The Logical Execution Time Paradigm 107

VBS [9]

Simulink [10]

Giotto [27] HTL [15]

LET-based Languages

Simulation Environments

LET-oriented Runtime Systems

E Machine [20]

Distributed Hardware

Implementation [30]

Validation [30]

TTA [34]

Fig. 5.2 Context of LET-based languages and LET-oriented runtime systems

E code. Similar to Giotto and HTL programs, time-safe E code is time-deterministic.
We also say that time-safe E code is time-portable [1, 3] to any platform for which
an E machine implementation exists. E code may also be executed on distributed
systems such as TTA by running an E machine on each host [29].

Checking time safety of arbitrary E code may be difficult but remains easy
for non-trivial classes of E code [21] such as E code generated from Giotto
and HTL [25]. Executing E code requires an E machine as well as an EDF-
scheduler. However, scheduling decisions may also be computed at compile time
and represented by Schedule-Carrying Code (SCC) [28], which is E code extended
by specific scheduling instructions. SCC is an executable witness of time safety.
Checking whether SCC is time-safe is in general easier than generating SCC. An
E machine extended for SCC support may therefore verify time safety prior to
execution and does not require an EDF-scheduler [32].

E code generated from a Giotto program requires pseudo-polynomial space in
the size of the program, i.e., the numerically represented program periods [25].
E code execution time is linear in the size of the program in this case. E code
generated from an HTL program may even be exponentially larger than the program
regardless of the periods because any hierarchy in the program is flattened prior to
code generation. Flattening can be avoided by targeting a hierarchical version of the
E machine [17]. The resulting E code requires then again only pseudo-polynomial
space in the size of the program and can be executed in linear time. The E machine
is discussed in more detail in Sect. 5.2.

108 C.M. Kirsch and A. Sokolova

5.1.5 Variable-Bandwidth Servers

Giotto and HTL are languages in which LET programs are constructed around the
notion of modes. However, a LET program may also be understood as a specification
of a set of concurrent processes where each process performs I/O as fast as possible,
i.e., logically in zero time, and then computes as predictable as possible, i.e.,
logically for a given amount of time, and then performs I/O again and so on. After
performing I/O the process may decide, based on the previous compution and the
new input, what to compute next, which is essentially another way of switching
modes. The logical execution time of each computation phase may also change as
long as it is determined by the process itself.

Variable-Bandwidth Servers (VBS) [9] may provide a natural scheduling plat-
form for executing concurrent processes specified by a LET program. A VBS
process is a sequence of actions. Each action is sequential code, which is executed in
temporal isolation of any other process in the system, i.e., lower and upper bounds
on the time to execute the action are solely determined by the invoking process.
The bounds may change from one action to the next to accommodate different types
of actions such as latency-oriented as-fast-as-possible I/O actions and throughput-
oriented yet as-predictable-as-possible computation actions. The bounds can be seen
as a generalization of LET from an exact logical value of duration to a realistic
interval of permitted values. Running LET programs on VBS remains to be a subject
of future work.

5.1.6 Models of Computation

Figure 5.3 shows a selection of LET-inspired models of computation. Exotasks [1,3]
implement a real-time scheduling framework in Java using the real-time garbage
collector Metronome [4] for real-time performance. The framework has been
instantiated to provide LET semantics in Java. A more general version called

Exotasks [1,3] Timed Multitasking [37]

Real-Time Java [4] Ptolemy [12]

LET-inspired Models of Computation

PTIDES [39]

Fig. 5.3 LET-inspired models of computation

5 The Logical Execution Time Paradigm 109

Flexotasks [2] provides even more freedom to implement and integrate temporal
and spatial isolation policies.

The key motivation of LET programming is to develop systems that maintain
their relevant real-time behavior across changing hardware platforms and software
workloads. However, requiring all program parts to follow the LET regime may be
unnecessarily restrictive. For example, program parts that are independent of I/O
behavior may be scheduled in a more flexible manner without loosing guarantees
on relevant behavior [11]. Timed multitasking [37] in Ptolemy [12] provides LET
guarantees relative to the occurrences of events, similar to the previously mentioned
xGiotto [16]. However, event scoping in xGiotto enables structured specification
of event handling policies such as implicit assumptions on interarrival times to
facilitate time safety analyses. Discrete-event models in PTIDES [39] provide
another model of computation that enforces LET but only at communication
boundaries, i.e., sensing, actuating, and other relevant I/O is performed at time
instants that are independent of execution order and speed.

5.2 LET Programming by Examples

5.2.1 Giotto

A Giotto program consists of a functionality part and a timing part. The functionality
part contains port, driver, and task declarations, which interface the Giotto program
to a functionality implementation, written in C, for example. For the examples
below, we show the timing part of a Giotto program.

5.2.1.1 Single-Mode Giotto Program

As a first example, we present a highly simplified version of the control program
for a model helicopter such as the JAviator [8]. Consider the helicopter in hover
modem. There are two tasks, both given in native code, possibly autogenerated from
Matlab/Simulink models [26]: the control task t1, and the navigation task t2. The
navigation task processes GPS input every 10 ms and provides the processed data to
the control task. The control task reads additional sensor data (not modeled here),
computes a control law, and writes the result to actuators (reduced here to a single
port). The control task is executed every 20 ms. The data communication requires
three drivers: a sensor driver ds , which provides the GPS data to the navigation
task; a connection driver di , which provides the result of the navigation task to
the control task; and an actuator driver da, which loads the result of the control
task into the actuator. The drivers may process the data in simple ways (such as
type conversion), as long as their WCETs are negligible. In general, since E code
execution is synchronous and can thus not be interrupted by other E code, we say

110 C.M. Kirsch and A. Sokolova

pc
t1

t2

da
pa

ps

ds

di

g

Fig. 5.4 The dataflow of the
example with two periodic
tasks [22]

that the WCET of an E code block (i.e., the sum of the WCETs of all drivers as well
as all E code instructions called in that block) is negligible if it is shorter than the
minimal time between any two events that can trigger the execution of E code. In
the case of the helicopter software, the WCETs of all E code blocks are at least one
order of magnitude shorter than 10 ms, which is the time between two consecutive
invocations of E code in this example.

There are two environment ports, namely, a clock pc and the GPS sensor ps; two
task ports, one for the result of each task; and three driver ports – the destinations
of the three drivers – including the actuator pa. Figure 5.4 shows the dataflow of the
program: we denote ports by bullets, tasks by rectangles, drivers by diamonds, and
triggers by circles. It therefore presents an abstract functional implementation of the
program. Here is a Giotto description of the program timing:

mode m./ period 20 f
actfreq 1 do pa.da/;
taskfreq 1 do t1.di /;
taskfreq 2 do t2.ds/;
g

The “actfreq 1” statement causes the actuator to be updated once every 20 ms;
the “taskfreq 2” statement causes the navigation task to be invoked twice every
20 ms; etc. Note that the LET of each task is specified by the ratio of the mode
period over the task frequency (20 ms for t1 and 10 ms for t2). Here is a simplified
version of the E code generated by the Giotto compiler:

a1: call.da/ a2: call.ds/
call.ds/ release.t2/
call.di / future.g; a1/
release.t1/
release.t2/
future.g; a2/

The E code consists of two blocks. The block at address a1 is executed at the
beginning of a period, say, at 0 ms: it calls the three drivers, which provide data
for the tasks and the actuator, then hands the two tasks to the scheduler, and finally
activates a trigger g with address a2. When the block finishes, the trigger queue of
the E machine contains the trigger g bound to address a2, and the ready queue of

5 The Logical Execution Time Paradigm 111

the scheduler contains two tasks, t1 and t2. Now the E machine relinquishes control,
only to wake up with the next input event that causes the trigger g to evaluate to
true. In the meantime, the scheduler takes over and assigns CPU time to the tasks in
the ready queue according to some scheduling scheme. When a task completes, the
scheduler removes it from the ready queue.

There are two kinds of input events, one for each environment port: clock ticks,
and changes in the value of the sensor ps . The implementation of the trigger g is part
of the functional code. In the example, the trigger g: p0c D pcC10 specifies that the
E code at address a2 will be executed after 10 clock ticks. Logically, the E machine
wakes up at every input event to evaluate the trigger, finds it to be false, until at
10 ms, the trigger is true. An efficient implementation, of course, wakes up the
E machine only when necessary, in this case at 10 ms. The trigger g is now removed
from the trigger queue and the associated a2 block is executed. It calls the sensor
driver, which updates a port read by task t2. There are two possible scenarios: the
earlier invocation of task t2 may already have completed, and is therefore no longer
in the ready queue when the a2 block is executed. In this case, the E code proceeds
to put another invocation of t2 into the ready queue, and to trigger the a1 block in
another 10 ms, at 20 ms. In this way, the entire process repeats every 20 ms. The
other scenario at 10 ms has the earlier invocation of task t2 still incomplete, i.e., in
the ready queue. In this case, the attempt by the sensor driver to overwrite a port
read by t2 causes a runtime exception, called time-safety violation. At 20 ms, the
end of the mode period, when ports read by both tasks t1 and t2 are updated and
ports written by both t1 and t2 are read (via the drivers), a time-safety violation
occurs unless both tasks have completed, i.e., the ready queue must be empty. In
other words, an execution of the program is time-safe if the scheduler ensures
the following: (1) each invocation of task t1 at 20nms, for n � 0, completes by
20nC20ms; (2) each invocation of task t2 at 20nms completes by 20nC10ms; and
(3) each invocation of task t2 at 20nC 10ms completes by 20nC 20ms. Therefore,
a necessary requirement for time safety is ı1 C 2ı2 < 20, where ı1 is the WCET of
task t1, and ı2 is the WCET of t2. If this requirement is satisfied, then a scheduler
that gives priority to t2 over t1 guarantees time safety. Figure 5.5 presents a time-safe
EDF schedule of the two-task Giotto example, with ı1 D 10ms and ı2 D 4ms.

The E code implements the Giotto program correctly only if it is time-safe:
during a time-safe execution, the navigation task is executed every 10 ms, the control
task every 20 ms, and the dataflow follows Fig. 5.4. Thus the Giotto compiler needs
to ensure time safety when producing E code. In order to ensure this, the compiler
needs to know the WCETs of all tasks and drivers (cf., for example, [14]), as well
as the scheduling scheme used by the operating system. With this information, time
safety for E code produced from Giotto can be checked [25]. However, for arbitrary
E code and platforms, WCET analysis and time-safety checking may be difficult,
and the programmer may have to rely on runtime exception handling, see [22] for
more details. At the other extreme, if the compiler is given control of the system
scheduler, it may synthesize a scheduling scheme that ensures time safety [28].

The time-safe executions of the E code example have an important property:
assuming the two tasks compute deterministic results, for given sensor values that

112 C.M. Kirsch and A. Sokolova

t2

t2

0 0 4 10 10 20

release(t1)

release(t2)

future(g,a2)

call(di)

call(ds)

future(g,a1)

release(t2)

0 ms 0 ms

Synchronous Scheduled Synchronous Scheduled

ms

a1 : call(da) a2 : call(ds)

t1 t1

14

10 ms

18

20 ms

10 ms

Fig. 5.5 Earliest-deadline-first (EDF) schedule of the two-task Giotto program (adapted
from [22])

are read at the input port ps at times 0, 10, 20, . . . ms, the actuator values that are
written at the output port pa at times 0, 20, 40, . . . ms are determined, i.e., indepen-
dent of the scheduling scheme. This is a consequence of the LET paradigm, because
each invocation of the control task t1 at 20nms operates on an argument provided by
the invocation of the navigation task t2 at 20n�10ms, whether or not the subsequent
invocation of t2, at 20nms, has completed before the control task obtains the
CPU. Time safety, therefore, ensures not only deterministic output timing, but also
deterministic output values; it guarantees predictable, reproducible real-time code.

5.2.1.2 Multiple-Mode Giotto Program

The helicopter may change mode, say, from hover to descend, and in doing so, apply
a different filter. In this case, the navigation task t2 needs to be replaced by another
task t 02. We show how to implement different modes of operation using Giotto and
the generated E code with control-flow instructions. Note that E code can also be
changed dynamically, at runtime, still guaranteeing determinism if no time-safety
violations occur. This capability enables the real-time programming of embedded
devices that upload code on demand, of code that migrates between hosts, and of
code patches [22].

Consider the following timing part of a Giotto program with two modes, ma

(representing the helicopter in hover mode) and mb (descend mode):

start ma f
mode ma./ period 20 f
actfreq 1 do pa.da/;
exitfreq 2 do mb.cb/;
taskfreq 1 do t1.di /;
taskfreq 2 do t2.ds/;
g

5 The Logical Execution Time Paradigm 113

mode mb./ period 20 f
actfreq 1 do pa.da/;
exitfreq 2 do ma.ca/;
taskfreq 1 do t1.di /;
taskfreq 2 do t 02.ds/;
g
g

The program begins by executing modema, which is equivalent to the (single) mode
m of the Giotto program from the previous subsection except for the mode switch
to modemb. A mode switch in Giotto has a frequency that determines at which rate
an exit condition is evaluated. The exit condition cb of mode ma is evaluated once
every 10 ms (the ratio of the period over the exit frequency). If cb evaluates to true,
then the program switches to mode mb , which is similar to mode ma except that
task t 02 replaces task t2. Task t 02 applies a different filter on the same ports as t2. The
mode switch back to ma evaluates the exit condition ca also once every 10 ms.

This example consists of two modes with equal periods. Programs with multiple
nodes of different periods are also possible in Giotto but mode switching is restricted
at the end of the node period, i.e., only exit frequency of 1 is allowed.

In order to express mode switching in E code, we use a conditional branch
instruction if.c; a/. The first argument c is a condition, which is a predicate on
some ports. The second argument a is an E code address. The if.c; a/ instruction
evaluates the condition c synchronously (i.e., in logical zero time), similar to driver
calls, and then either jumps to the E code at address a (if c evaluates to true), or
proceeds to the next instruction (if c evaluates to false). Here is the E code that
implements the above Giotto program:

a1: call.da/ a3: call.da/
if.cb; a03/ if.ca; a01/

a01: call.ds/ a03: call.ds/
call.di / call.di /
release.t1/ release.t1/
release.t2/ release.t 02/
future.g; a2/ future.g; a4/

a2: if.cb; a04/ a4: if.ca; a02/
a02: call.ds/ a04: call.ds/

release.t2/ release.t 02/
future.g; a1/ future.g; a3/

The two E code blocks in the left column implement mode ma; the two blocks on
the right implement mb. Just like in the single-mode example, the code is free of
deadlines and exception handlers for the three tasks, see [22] for more details on
exception handlers. Note that, no matter which conditional branches are taken, the

114 C.M. Kirsch and A. Sokolova

execution of any block terminates within a finite number of E code instructions, i.e.,
the code corresponding to a mode is finite and therefore the execution of each mode
instance is finite.

Generating E code, as in the above examples (with additional deadlines and
exception handlers) is the result of the first, platform-independent phase of the
Giotto compiler. The second, platform-dependent phase of the Giotto compiler
performs a time-safety check for the generated E code and a given platform.
For single-CPU platforms with WCET information and an EDF-based scheduling
scheme, and for the simple code generation strategy illustrated in the example,
the time-safety check is straightforward [25]. For distributed platforms, complex
scheduling schemes, or complex code generation strategies, this, of course, may
not be the case. The code generation strategy has to find the right balance between
E code and E machine annotations, see [22] for details. An extreme choice is to
generate E code that at all times maintains a singleton task set, which makes the
scheduler’s job trivial but E code generation difficult. The other extreme is to release
tasks as early as possible, with precedence annotations that allow the scheduler to
order task execution correctly. This moves all control over the timing of software
events from the code generator to the scheduler. In other words, the compiler faces
a trade-off between static (E machine) scheduling and dynamic (RTOS) scheduling.
The strategy used in the examples and implemented in the Giotto compiler chooses
a compromise that suggests itself for control applications. The generated code
releases tasks and imposes deadlines according to the “logical semantics” of the
Giotto source. To achieve controller stability and maximal performance, it is often
necessary to minimize the jitter on sensor readings and actuator updates. This is
accomplished by generating separate, time-triggered blocks of E code for calling
drivers that interact with the physical environment. In this way, the time-sensitive
parts of a program are executed separately [38], and for these parts, platform time is
statically matched, at the E code level, to environment time as closely as possible.
On the other hand, for the time-insensitive parts of a program, the scheduler is given
maximal flexibility.

5.2.2 Hierarchical Timing Language

In this section we present HTL on one example, the multi-mode control program for
a model helicopter of Sect. 5.2.1. In Giotto, the control task t1 is part of both modes,
since Giotto programs are flat. In contrast to that HTL, as the name suggests, allows
for hierarchical models.

An HTL program is built out of four building blocks: program, module, mode,
and task. A program is a set of concurrently running modules. A module consists
of a set of modes and some mode-switching logic between them. Like in Giotto,
each mode has a period and contains tasks. Unlike in Giotto, the periods of all tasks
in a mode are equal to the mode period. Also different from Giotto, some of the
tasks may be abstract tasks, schedulability placeholders for concrete tasks that may

5 The Logical Execution Time Paradigm 115

Task t2
′

Program P

Module M Module Mab

ca

cb

Mode m

Task t1

Mode ma

Task t2

Mode mb

Fig. 5.6 HTL program for the multi-mode helicopter control example

refine them. If a mode contains abstract tasks, then it also specifies a refinement
program which refines the abstract tasks. Moreover, another difference to Giotto is
that mode switching can only happen at the end of a mode (at a period instance).
This is not a restriction, since the otherwise richer structure of HTL provides the
same expressiveness, as we will see in the example of the multi-mode helicopter
control program. The HTL program for our example has two modules: the module
M contains a single mode with period 20 ms containing the concrete control task t1;
the moduleMab has two modes each with period 10 ms containing a single concrete
task (t2 and t 02, respectively). The program does not involve refinement since there
are no abstract modes and tasks. Figure 5.6 depicts a graphical representation of the
HTL program.

In HTL, input is read from and output is written to so-called communicators
which are periodic global variables. A value can be read from or written to a
communicator at period instances. Communicators have periods that divide the
periods of tasks using them. LET in HTL is therefore specified by the time interval
between the latest communicator period instance that a task reads, and the earliest
communicator period instance that a task writes to (for distributed programs this
needs to be slightly adjusted for modularity [30]). Tasks are linked to communicator
period instances via ports. In the example, each of the three drivers corresponds
to a communicator and the driver ports are the ports used for the link. Due
to the simplicity of the example, there is no need to mention the ports in the
code for the HTL program of Fig. 5.6. Here is a simplified version of the HTL
(pseudo) code:

program P f
comm da.20/; ds.10/; di .10/
module M f
mode m.20/ f
task t1 in .di ; 1/ out .da; 2/
g
g

116 C.M. Kirsch and A. Sokolova

module Mab f
start ma

if ma ^ cb then mb

if mb ^ ca then ma

mode ma.10/ f
task t2 in .ds; 1/ out .di ; 2/
g
mode mb.10/ f
task t 02 in .ds; 1/ out .di ; 2/
g
g
g

The mode switching rules are expressed with if-then statements. An instruc-
tion of the form in .d; i/ within a task instruction specifies that the task reads from
the i th period instance of communicator d within the task period. In particular,
i D 1 corresponds to the beginning of the task period. Similarly, an instruction
out .d; i/ specifies a communicator and its period instance when output is written.
HTL also allows for specifying task precedences within a mode since an input port
of a task may be linked to an output port of a preceding task, but our example does
not illustrate this (as there are not even multiple tasks per mode).

The example program does not involve refinement so far. Therefore, for time
safety one needs to check schedulability of all possible combinations of active
modes in a program, which in this case amounts to two combinations: (1) mode m
and modema, and (2) modem and mode mb. Since bothma and mb have the same

Task t1

Program P

Module M

Program PR

Module Mab
cb

ca

Module MA

Mode ma

Task t2

Mode mb

Task t2
′

Mode mA

Task tA

Mode m

Fig. 5.7 HTL program with refinement for the multi-mode helicopter control example

5 The Logical Execution Time Paradigm 117

timing (apart from the maybe different WCETs) and I/O behavior, they can be seen
as refining a single abstract mode mA, as in the program presented in Fig. 5.7.

The program still consists of two modules, the module M as before, and the
module MA containing a single abstract mode mA with period 10 ms and a single
abstract task tA (with input, output, and LET equal to the ones of t2 and t 02 and WCET
equal to the maximum of the WCETs of the two concrete tasks). The abstract mode
has an associated refinement program PR with a single moduleMab containing two
modes ma and mb as it was the case with the original module Mab. Both tasks, t2
and t 02 refine the abstract placeholder task tA. Refining tasks need to have same or
more LET, same or less WCET, and same or weaker task precedences [15,30]. Now
time safety is guaranteed if the tasks ofm andmA are schedulable, sincema andmb

both refine the abstract mode mA. Here is a simplified version of the HTL (pseudo)
code for the example including refinement:

program P f
comm da.20/; ds.10/; di .10/
module M f
mode m.20/ f
task t1 in .di ; 1/ out .da; 2/
g
g
module MA f
mode mA.10/ f
abstract task tA in .ds; 1/ out .di ; 2/
refinement program PR f
module M2 f
start ma

if ma ^ cb then mb

if mb ^ ca then ma

mode ma.10/ f
task t2 in .ds; 1/ out .di ; 2/
g
mode mb.10/ f
task t 02 in .ds; 1/ out .di ; 2/
g
g
g
g
g
g

For more details on HTL and its modular properties we refer the interested reader
to [30]. E code can be generated for HTL programs in a flat way, as for equivalent
Giotto programs, or in a hierarchical way. Details on HTL code generation can be
found in [17].

118 C.M. Kirsch and A. Sokolova

5.3 Conclusion

We have discussed the notion of logical execution time (LET) and provided an
overview of LET programming languages and runtime systems as well as some
LET-inspired models of computation. We have also highlighted the key features of
Giotto and its successor, the Hierarchical Timing Language (HTL), using program
examples. The purpose of the rather informal presentation is to encourage the
readers to study the LET paradigm further through original sources.

Acknowledgements The idea of logical execution time came up in 2000 in Thomas
A. Henzinger’s research group at UC Berkeley and has since been advanced by the hands of
many people. Our bibliography lists quite some, but probably not all for which we apologize.
We thank Eduardo R.B. Marques for his ongoing work on HTL and discussions related to it. The
writing of this chapter has been supported by the EU ArtistDesign Network of Excellence on
Embedded Systems Design and the Austrian Science Funds P18913-N15 and V00125.

References

1. Auerbach J, Bacon DF, Iercan D, Kirsch CM, Rajan VT, Röck H, Trummer R (2007) Java
takes flight: Time-portable real-time programming with exotasks. In: Proceedings of the ACM
SIGPLAN/SIGBED conference on languages, compilers, and tools for embedded systems
(LCTES). ACM, New York

2. Auerbach J, Bacon DF, Guerraoui R, Spring JH, Vitek J (2008) Flexible task graphs: A unified
restricted thread programming model for java. SIGPLAN Not 43:1–11

3. Auerbach J, Bacon DF, Iercan D, Kirsch CM, Rajan VT, Röck H, Trummer R (2009) Low-
latency time-portable real-time programming with Exotasks. ACM Trans Embedded Comput
Syst (TECS) 8(2):1–48

4. Bacon DF, Cheng P, Rajan VT (2003) A real-time garbage collector with low overhead
and consistent utilization. In: Proceedings of the symposium on principles of programming
languages (POPL), ACM, pp 285–298

5. Berry G (2000) The foundations of Esterel. In: Stirling C, Plotkin G, Tofte M (eds) Proof,
language and interaction: Essays in honour of Robin Milner. MIT, Cambridge, MA

6. Buckl C, Sojer D, Knoll A (2010) Ftos: Model-driven development of fault-tolerant automation
systems. In: Proceedings of the international conference on emerging techonologies and factory
automation (ETFA). IEEE

7. Buttazzo G (1997) Hard real-time computing systems: Predictable scheduling algorithms and
applications. Kluwer, Dordrecht

8. Craciunas SS, Kirsch CM, Röck H, Trummer R (2008) The JAviator: A high-payload quadrotor
UAV with high-level programming capabilities. In: Proceedings of the AIAA guidance,
navigation and control conference (GNC)

9. Craciunas SS, Kirsch CM, Payer H, Röck H, Sokolova A (2009) Programmable temporal
isolation through variable-bandwidth servers. In: Proceedings of the symposium on industrial
embedded systems (SIES). IEEE

10. Dabney J, Harmon T (2003) Mastering simulink. Prentice Hall, Englewood Cliffs, NJ
11. Derler P, Resmerita S (2010) Flexible static scheduling of software with logical execution time

constraints. In: Proceedings of the international conference on embedded systems and software
(ICESS). IEEE

5 The Logical Execution Time Paradigm 119

12. Eker J, Janneck JW, Lee EA, Liu J, Liu X, Ludvig J, Neuendorffer S, Sachs S, Xiong Y (2003)
Taming heterogeneity–the ptolemy approach. Proc IEEE 91(1):127–144

13. Farcas E, Pree W (2007) Hyperperiod bus scheduling and optimizations for tdl components. In:
Proceedings of the international conference on emerging technologies and factory automation
(ETFA). IEEE

14. Ferdinand C, Heckmann R, Langenbach M, Martin F, Schmidt M, Theiling H, Thesing S,
Wilhelm R (2001) Reliable and precise WCET determination for a real-life processor. In:
Proceedings of the international workshop on embedded software, vol 2211 of LNCS, Springer,
pp 469–485

15. Ghosal A, Henzinger TA, Iercan D, Kirsch CM, Sangiovanni-Vincentelli AL (2006) A
hierarchical coordination language for interacting real-time tasks. In: Proceedings of the
international conference on embedded software (EMSOFT), ACM

16. Ghosal A, Henzinger TA, Kirsch CM, Sanvido MAA (2004) Event-driven programming with
logical execution times. In: Proceedings of the international workshop on hybrid systems:
Computation and control (HSCC), vol 2993 of LNCS, Springer, pp 357–371

17. Ghosal A, Iercan D, Kirsch CM, Henzinger TA, Sangiovanni-Vincentelli A (2010) Separate
compilation of hierarchical real-time programs into linear-bounded embedded machine code.
Sci Comp Program doi:10.1016/j.scico.2010.06.004

18. Halbwachs N (1993) Synchronous programming of reactive systems. Kluwer, Dordrecht
19. Halbwachs N, Caspi P, Raymond P, Pilaud D (1991) The synchronous dataflow programming

language Lustre. Proc IEEE 79(9) 1305–1320
20. Henzinger TA, Kirsch CM (2002) The embedded machine: Predictable, portable real-time

code. In: Proceedings of the ACM SIGPLAN conference on programming language design
and implementation (PLDI), ACM, pp 315–326

21. Henzinger TA, Kirsch CM (2004) A typed assembly language for real-time programs.
In: Proceedings of the international conference on embedded software (EMSOFT), ACM,
pp 104–113

22. Henzinger TA, Kirsch CM (2007) The Embedded Machine: Predictable, portable real-time
code. ACM Trans Program Languages Syst (TOPLAS) 29(6):33–61

23. Henzinger TA, Horowitz B, Kirsch CM (2001a) Embedded control systems development with
Giotto. In: Proceedings of the ACM SIGPLAN workshop on languages, compilers, and tools
for embedded systems (LCTES). ACM

24. Henzinger TA, Horowitz B, Kirsch CM (2001b) Giotto: A time-triggered language for
embedded programming. In: Proceedings of the international workshop on embedded software
(EMSOFT), vol 2211 of LNCS, Springer, pp 166–184

25. Henzinger TA, Kirsch CM, Majumdar R, Matic S (2002) Time safety checking for embedded
programs. In: Proceedings of the international workshop on embedded software (EMSOFT),
vol 2491 of LNCS, Springer, pp 76–92

26. Henzinger TA, Kirsch CM, Sanvido MAA, Pree W (2003) From control models to real-time
code using Giotto. IEEE Contr Syst Mag (CSM) 23(1):50–64

27. Henzinger TA, Horowitz B, Kirsch CM (2003a) Giotto: A time-triggered language for
embedded programming. Proc IEEE 91(1):84–99

28. Henzinger TA, Kirsch CM, Matic S (2003b) Schedule-carrying code. In: Proceedings of the
international conference on embedded software (EMSOFT), vol 2855 of LNCS, Springer,
pp 241–256

29. Henzinger TA, Kirsch CM, Matic S (2005) Composable code generation for distributed Giotto.
In: Proceedings of the ACM SIGPLAN/SIGBED conference on languages, compilers, and
tools for embedded systems (LCTES), ACM

30. Henzinger TA, Kirsch CM, Marques ERB, Sokolova A (2009) Distributed, modular HTL. In:
Proceedings of the real-time systems symposium (RTSS), IEEE

31. Kirsch CM (2002) Principles of real-time programming. In: Proceedings of the international
workshop on embedded software (EMSOFT), vol 2491 of LNCS, Springer, pp 61–75

120 C.M. Kirsch and A. Sokolova

32. Kirsch CM, Sanvido MAA, Henzinger TA (2005) A programmable microkernel for real-time
systems. In: Proceedings of the ACM/USENIX conference on virtual execution environments
(VEE), ACM

33. Kirsch CM, Lopes L, Marques ERB (2008) Semantics-preserving and incremental runtime
patching of real-time programs. In: Proceedings of the workshop on adaptive and reconfig-
urable embedded systems (APRES)

34. Kopetz H (1997) Real-time systems design principles for distributed embedded applications.
Kluwer, Dordrecht

35. Lee I, Leung J, Son SH (eds) 2007 Handbook of real-time and embedded systems, The
evolution of real-time programming. CRC Press, Boca Raton, FL

36. Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in a hard real-time
environment. J ACM 20(1):46–61

37. Liu J, Lee EA (2003) Timed multitasking for real-time embedded software. IEEE Contr Syst
Mag (CSM) 23(1):65–75

38. Wirth N (1977) Towards a discipline of real-time programming. Comm ACM 20:577–583
39. Zhao Y, Liu J, Lee E.A (2007) A programming model for time-synchronized distributed real-

time systems. In: Proceedings of the real-time and embedded technology and applications
symposium (RTAS), IEEE, pp 259–268

Part II
Connecting Theory and Practice

Chapter 6
Improving the Precision of WCET Analysis
by Input Constraints and Model-Derived
Flow Constraints

Reinhard Wilhelm, Philipp Lucas, Oleg Parshin, Lili Tan,
and Björn Wachter

6.1 Introduction

6.1.1 Timing Analysis of Embedded Systems

Hard real-time embedded systems are subject to stringent timing constraints. The
proof of their satisfaction requires upper bounds on the worst-case execution time
(WCET) of tasks. This requires taking into account properties of the software, such
as potential control flow, loop bounds and maximal recursion depths, as well as of
the hardware, such as the state of caches or pipeline units. Therefore it is extremely
hard to derive sound upper bounds by measurement-based approaches [30].

Static timing analysis guarantees safe upper bounds on the WCET derived from
an over-approximation of the set of possible program executions. The derivation
of execution-time bounds for programs is a bottom-up process starting with the
determination of execution-time bounds for instructions and basic blocks. To bound
the execution time of instructions, which can vary depending on the execution
state of the execution platform, static analysis computes invariants about the set
of possible execution states at all program points. The execution times of basic
blocks are then combined into the overall WCET bound according to the control-
flow structure of the program, taking loop bounds and other feasibility constraints
into account.

Methods based on static analysis and the corresponding tools have proved
successful in industrial practice. They are in routine use in parts of the avionics and
the automotive domains [1, 39]. However, the embedded systems in these domains
have characteristics that can be exploited to further improve the precision of timing
analysis.

R. Wilhelm (�) � P. Lucas � O. Parshin � L. Tan � B. Wachter
Compiler Design Lab, Universität des Saarlandes, Saarbrücken, Germany
e-mail: wilhelm@uni-saarland.de; wilhelm@cs.uni-sb.de; phlucas@cs.uni-sb.de;
oleg@cs.uni-sb.de; lili@cs.uni-sb.de; bwachter@cs.uni-sb.de

S. Chakraborty and J. Eberspächer (eds.), Advances in Real-Time Systems,
DOI 10.1007/978-3-642-24349-3 6, © Springer-Verlag Berlin Heidelberg 2012

123

124 R. Wilhelm et al.

Embedded control software is often implemented as a task reading from inputs,
computing reactions to these inputs, thereby transforming its internal state, and
writing outputs. This task is periodically or sporadically invoked. Static timing
analysis is applied to determine a bound on the execution time for any task
invocation under all possible circumstances.

Besides the execution-time differences arising from different states of architec-
tural components, e.g., contents of caches or occupancy of execution units, another
variation appears at the level of the software, e.g., loop iteration bounds or input-
dependent control flow. In general, this concerns the control flow within the task.
A conservative analysis needs to take all paths through the control-flow graph into
account that it cannot safely exclude. Although there exist provisions to recognise
dead code or to derive mutually exclusive branches, the peculiarities of embedded
systems enable the analysis to work with a restricted and thus more precise view of
the possible control flow.

One such restriction is due to operating modes. Briefly speaking, an operating
mode defines a particular behaviour of the overall system and its constituting tasks.
For example, a task may reside in a startup-mode until the operating temperature
reaches a certain level and then work in normal operational mode. Thus, the
possible control flow is restricted in each mode and the task might have different
timing properties in these modes, which have to meet potentially different timing
constraints imposed upon it from the environment. An analysis not oblivious to
operating modes is able to provide several mode-specific WCET bounds, as opposed
to one conservative bound for all possible modes. Current timing analyses compute
a safe overall upper bound and do not on their own specialise this information.

Another restriction of the control flow can be derived by examining the models
from which code is synthesised. The high-level information available from the
model helps to analyse its development over time (inter-run analysis), whereas
timing analysis of a single task invocation (intra-run analysis) is confined to a safe
over-approximation of the set of states at invocation time. Such a high-level analysis
reveals logical relations between branching conditions, in particular when the highly
regular structures of automata (e.g., Stateflow) are used to model control logic. If a
dedicated analysis of automata finds out a constraint such as “If automaton A is in
state a1, then automatonB cannot be in state b2.”, this constrains the possible logical
relations of conditions in the surrounding part of the control system (e.g., Simulink):
automata states govern the control logic, after all. These relations translate into
knowledge about infeasible paths, again restricting the control-flow graph. Relations
which need inter-run analysis are out of the scope of traditional intra-run timing
analysis.

6.1.2 Overview of This Chapter

Conventional WCET analysis is neither aware of operating modes nor of the specific
characteristics of model-based code. In this work, we show

6 Improving the Precision of WCET Analysis 125

• What kind of information is useful
• How this information can be gathered and
• How it can be transferred to the timing analysis tool.

For operating-mode analysis, we propose a semi-automatic procedure which
heuristically identifies operating modes from C code. This entails not only the
various restrictions on the control flow, but also the predicates on input variables
giving rise to these paths. We lay out different ways of exploiting mode information
in timing analysis and explain how the mode-specific WCET bounds can be used in
scheduling.

To specifically improve the timing analysis of code synthesised from models,
we introduce techniques that leverage model information to derive infeasibility
constraints in the control-flow graph. To this end, we develop analyses at the model
level, which derive relations between branching conditions. This entails dedicated
analyses for different types of model subcomponents including Stateflow automata
and Simulink components.

We also show how to use results from one analysis in the other, exploiting
synergies to increase precision even further.

6.1.3 Contents of This Chapter

Section 6.2 provides the technical background on timing analysis. Sections 6.3
and 6.4 form the main part of this paper, explaining our work on improving the
WCET analysis of programs with operating modes and programs synthesised from
Simulink/ Stateflow. These sections flesh out the ideas and techniques mentioned in
Sect. 6.1.1. Section 6.5 explains differences and synergies between the approaches.
Section 6.6 gives an overview of related work, and Sect. 6.7 concludes the paper
and gives an outline on future work.

Parts of this work have been published in [26, 34].

6.2 Timing Analysis

Embedded systems nowadays employ modern high-performance processors with
features such as caches, pipelines, and speculation. The execution time of embedded
software therefore exhibits a significant variation depending on the hardware state.
For example, the execution time of an instruction that requires a memory access can
vary by at least two orders of magnitude depending on whether it results in a cache
hit. For that reason, timing analysis has to take the development of the system state
during the actual execution of the compiled program into account. External factors
such as input data and interference with other system parts (e.g., side-effects of other
tasks) introduce further variability. In general, the state space of input data, initial

126 R. Wilhelm et al.

state and effects from interference is too large to exhaustively explore all possible
executions to determine the exact worst-case execution time. Instead, the crux is
to represent all possible executions symbolically and in a compact way by abstract
interpretation, e.g., to statically predict cache contents [7]. By this process we derive
sound but precise bounds on the WCET. We now give an overview of static timing
analysis; for more about concepts and tools, see [40].

6.2.1 Timing Analysis Framework

Over the last several years, a more or less standard architecture for timing-analysis
tools has emerged [4,17,37] as depicted in Fig. 6.1. The architecture is divided into
the following phases:

Control-flow reconstruction [35] takes a binary executable to be analysed and
reconstructs the program control flow.

Value analysis [2, 31] computes an over-approximation of the set of possible
values in registers and memory locations by an interval analysis and/or congruence
analysis. This information is among others used for a precise data-cache analysis.

Binary
Executable

CFG Re-
construction

Control-
flow Graph

Loop Bound
Analysis

Value Analysis
Control-flow

Analysis

Annotated CFG

Basic Block
Timing Info

Micro-
architectural

Analysis

Global Bound
Analysis

Legend:

Data

Phase

Fig. 6.1 Standard architecture of timing analysis tools

6 Improving the Precision of WCET Analysis 127

Loop bound analysis [5,16] identifies loops in the program and tries to determine
bounds on the number of loop iterations, information indispensable to bound the
execution time.

Control-flow analysis [5, 32] narrows down the set of possible paths through the
program by eliminating infeasible paths or to determine correlations between
the number of executions of different blocks using the results of value analysis.
These constraints will tighten the obtained timing bounds.

Micro-architectural analysis [3, 8, 38] determines bounds on the execution time
of basic blocks for a specific processor. It takes architectural details such as the
pipeline, caches, and speculation into account.

Global bound analysis [25, 36] finally determines bounds on execution time for
the whole program. To this end, this phase uses the results of microarchitectural
analysis, namely upper bounds on the execution times of basic blocks, and results
from control-flow and loop bound analysis. Algorithmically, the analysis determines
a longest path through the control-flow graph of the program based on basic block
execution-time bounds. The control flow and loop bounds are expressed according
to implicit path enumeration in an integer linear program. The target function
computes an upper bound on a path’s execution time, and the optimal solution is
the WCET bound.

The commercially available tool aiT1 by AbsInt implements this architecture.
It is used in the aeronautics and automotive industries and has been successfully
used to determine precise bounds on execution times of real-time programs [8,9,18,
33, 39].

6.2.2 Annotations

There are different ways to adjust and improve the precision of timing analysis.
Here we focus on the control-flow graph (CFG), which guides the different analysis
phases. The CFG may contain paths that do not correspond to any possible execution
of the system, also called infeasible paths. Figure 6.2 shows an example program
with its control-flow graph. Although the fragment does not contain dead code,

long1 short1

long2 short2

Fig. 6.2 C code with
infeasible paths and its
control-flow graph. Only the
dashed blue path and the
dotted red path are feasible

1cf. http://www.absint.de/wcet.htm

http://www.absint.de/wcet.htm

128 R. Wilhelm et al.

only two of the four statically possible paths are feasible because of the correlation
between the branch conditions a>0 and a<=0. Without interpreting the branch
conditions, all four paths through the graph have to be considered, leading to an
over-approximation of the WCET.

Correlations between branch conditions as in the example can be used to exclude
certain infeasible paths, which improves tightness of timing analysis. In previous
work, these correlations have been discovered at different levels: directly from
the executable [32], in C code [15], or in Esterel specifications [20]. Technically,
these correlations can be used as additional constraints, so called flow constraints,
in the ILP formulation. Let l1; l2 and s1; s2 be the variables corresponding to
the execution counts of the blocks with the long/short calculations in Fig. 6.2,
respectively. The feasibility information would then be expressed by additional
constraints to the implicit path enumeration: l1 D s2 and s1 D l2.

Flow constraints will be used in two ways in this work. In the case of operating
modes, we specialise the timing analysis to certain paths by declaring control flow
paths as infeasible for a particular analysis and thereby derive different WCET
bounds for different sets of possible paths. In the case of Simulink analysis, we
compute additional constraints on the feasibility which cannot be derived as easily
as the ones in Fig. 6.2 without access to the model.

Another way of influencing the timing analysis is by starting at the value analysis
phase. The analysis needs to start with a superset of the initial values of registers
and memory locations. Although the values of initialised memory cells are known
at start-up time, these may change over time. Timing analysis has to work with an
over-approximation of all possible states at the task entry point during the execution
of the main loop.

Thus, annotations on the ranges of values in memory or registers are necessary
for safety of the analysis. But equally well, they can be employed to improve
precision. For example, if it is known that due to physical restrictions an input
variable will take on values only within a certain interval, this can be specified and
will influence all of the following parts of the timing analysis. For specialisation to
certain inputs such as those defining operating modes, starting by annotations at the
value analysis phase is also a natural way.

6.3 Input Constraints: Operating Mode Analysis

6.3.1 Motivation

In the most general sense, we speak of operating modes if a software can exhibit
different behaviour in different circumstances and if this behaviour is determined
at runtime. As a trivial example, consider a mode for normal operation and an
exceptional (error) mode which is triggered if a sensor fails. Because the sensor
failure status is not statically fixed, the same piece of software may enter both modes
during its running time. In this sense, a dynamic mode is defined by a constraint on

6 Improving the Precision of WCET Analysis 129

input variable valuations: If the variable denoting sensor input is in range Œ0;1/,
the software is in normal mode; if the variable has the value �1, the software is in
error mode. As such, mode-specific analysis is a kind of refinement of context: The
context of the mode-specific analysis is defined by the applicable set of possible
inputs.

This shows one usage for modes in timing analysis: Within a single task, different
pieces of code are executed depending on the operating mode. Mutual exclusivity
of modes translates into specific subsets of code executed per mode, and thus a
WCET analysis can give different mode-specific WCET bounds, in contrast to
a conservative overall bound; indeed, the maximal mode-specific bound on the
execution time may even be lower than the conservative overall one due to less
opportunities for loss of information arising from over-approximation.

This is useful and even necessary because tasks also may have different
timing requirements in different situations. Consider a task which controls the
fuel injection. Because it is triggered by the crankshaft sensor, the deadlines are
stricter at higher RPMs (revolutions per minute). If the task would uphold its
precise computation which meets the deadlines up until some RPM threshold, e.g.,
4,000, it would miss the deadlines above that threshold, so it has to switch to
a less computationally-demanding mode. If only one overall WCET bound were
considered, then the task would become formally unschedulable after 4,000 RPM,
which is not the case. Thus, the task has a WCET motivated mode distinction, and
this needs to be identified and used in the analysis to ensure success of schedulability
analysis.

Another use of modes for timing analysis comes from considering not solely
modes within a single task, but from the combined mode-specific behaviour of a
set of tasks. If one task needs to perform more computations in start-up mode (e.g.,
initialisation of some system), and the other one in run-time mode (e.g., monitoring
some parameters), then their overall WCETs are mutually exclusive. Combining
these WCETs would unnecessarily restrict schedulability analysis. Generally speak-
ing, the modes of the tasks are not occurring in arbitrary combinations, but form a
global mode determining the behaviour of the complete system. Figure 6.3 gives an
example of this usage of modes.

In this section, we report on work to semi-automatically identify modes which
are relevant for WCET analysis within a single task. The result of this identification
is a set of mutually disjoint ranges of the input variable valuations. Here, we confine
ourselves to the mode analysis and merely note that the results are of value to
scheduling tools and may be transferred to them [21].

6.3.2 Heuristical Mode Analysis

Deriving modes automatically is non-trivial. The main problem is that a static
analysis can only heuristically figure out mode candidates. Designers and engineers
of the software would naturally attribute certain modes to the system: Some

130 R. Wilhelm et al.

Fig. 6.3 Operating modes

pre-conditions for differing behaviour of a set of tasks are mutually exclusive, or
the behaviour of a single task is largely determined by a small number of state
variables. Examples for such modes are machine initialisation or sensor failure.

In the absence of explicit mode specifications, it might be unknown precisely
which conditions are sufficient for a mode or which are guaranteed to hold, and it is
up for interpretation what actually constitutes a mode. Thus, modes as known to the
system creators have to be approximated by an analysis of the system.

Because of this inherent fuzziness, a fully automated process cannot analytically
derive modes which precisely capture the notions of modes of all people involved.
What is a mode to one person is an arbitrary combination of input variables to
another one. But if the heuristics arrives at a mode which is useful but unknown to
the designers, i.e., a hidden mode that is neither present by design nor an obvious
artifact from the physical environment of the software, this improves knowledge
about the software and thereby is useful itself.

6.3.2.1 General Idea

Consider a parking assistant. If the vehicle speed is below a certain threshold,
ultrasonic sensors are evaluated to measure the distance to obstacles. Let the code
governing that be implemented by a conditional:

if(speed<THRESHOLD){
complicated_calculation();

} else {
return;

}

Heuristically, this is a candidate for a switch depending on an operating
mode, because it significantly influences the program’s computation. Guarding that
conditional is the value of the input variable speed: Value ranges .�1; t/ or
Œt;1/, where t is the value of a compile time constant THRESHOLD.

10

12
10 12Overall:

8

12

10

9

8 12Mode1:

10 9Mode2:

WCETs of two tasks:

Two tasks which cannot be scheduled together in a 20 ms slot.

Mode-specific analysis achieves schedulability in a 20 ms slot.

Combined WCETs:
a

b

6 Improving the Precision of WCET Analysis 131

A static analysis has to trace back this causality chain from the source code. Thus,
the rough idea of mode estimation is:

1. Find out which conditionals are likely to govern modes.
2. Find out which input variables control these conditionals.
3. Find out which valuations on the input variables give rise to the varying

evaluations of the conditional.

We briefly describe these general ideas in the following.

6.3.2.2 Mode Conditionals and Mode Variables

The question “When does a conditional govern a mode?” can be answered only
heuristically. Would one regard each and every conditional as signifying a mode, this
would lead to an absurd diversification of modes, where each feasible path through
the program corresponds to one mode. Thus, we need to establish a concept of
importance for conditionals.

We call mode-governing conditionals mode conditionals and the input variables
influencing their evaluation mode variables. Heuristics for mode conditionals
include, but are not limited to, the prediction of their impact on execution time, as
statically derived from the source code. (We shall explain later why source code
analysis is more useful than analysis of the binary.) This heuristics is not only
pragmatically motivated, but also serves well to approximate operating modes: It is
more likely that a conditional influencing a significant part of the program would
be regarded as signifying a mode than a conditional choosing among only slightly
different arithmetic instructions. The impact of a branch may be estimated simply
by examining the length of the statement sequence or by checking for the presence
of certain patterns or calls:

• The familiar implementation of a function body being guarded completely by an
if-statement would lead to a significant difference in implementation.

• Occasional loops are present in the implementation of lookup tables with binary
or linear search. The conditional execution of such structures also hints at mode-
dependent behaviour.

• External functions may be annotated by the user if they implement mode-
significant behaviour. For example, such functions may be those that commu-
nicate with external devices.

The approach can be summarised as checking for unbalanced branches. All in
all, basic blocks have certain weights, for example, corresponding roughly to the
execution time, and a conditional with highly unbalanced branches is regarded a
mode conditional.

Heuristics for mode variables involve:

• If a variable is used for control in largely disparate parts of the source code, this
hints to its use as a mode variable.

132 R. Wilhelm et al.

• Naming conventions may enforce special names for mode variables.
• User annotations can specifically identify mode variables.

In all cases, it is furthermore possible to exploit synergies with higher levels of
the tool chain. On one hand, conditionals which are already present in the high-
level models, such as explicit switch blocks, are more natural candidates for mode
conditionals than if statements arising as artifacts of the code generation process.
On the other hand, naming patterns can make the identification of state variables
easier, if one assumes that automata states are used to encode modes.

Determination of mode conditionals and mode variables is interweaved: Mode
conditionals lead to mode variables by backward slicing, and mode variables lead to
mode conditionals by forward slicing. Thus, an iteration of the slicing phases leads
to an extension and refinement of mode determination.

If we now disregard those conditionals which are no mode conditionals and
abstract them out of the control-flow graph, we arrive at the statically possible set of
significantly different paths through the reduced control-flow graph, and for each one
the set of mode variables determining whether it is taken. What remains to be done is
to cluster the paths into coarser modes, to determine which state of the environment
leads to which of those clusters and to pass this information to the timing analysis
tool.

6.3.2.3 Mode Determination

Let us consider a single path in the reduced control-flow graph. By backward
interpretation from the mode conditionals to their governing mode variables (in the
complete program), one can gain a specification of the valuations of these variables
giving rise to the one or the other choice (e.g., [14, 19]). Even in the absence of
perfectly precise information, both must and may information is useful: An under-
approximation of the input state, what we have considered before in our examples,
ensures that this valuation definitely gives rise to the behaviour as determined by
one path; an over-approximation ensures that at least some paths are not taken in
this state.

The use of approximations comes into play in particular in the optional post-
processing phase of clustering. Clustering can improve the usability of mode
analysis and help better distinguish those modes which are pertinent to the user
at hand. For usage in timing analysis, for example, not all modes have to be
treated differently: If their predicted WCETs do not differ significantly, they can
be handled together. To this end, the paths in the reduced program can be assigned
a variety of properties to be used for classification into modes. Such properties
include:

• The very control-flow choices defining the paths
• The read and write accesses to communication variables
• The static length, including presence of loops
• Calls to specified external functions

6 Improving the Precision of WCET Analysis 133

Fig. 6.4 Clustering

More properties corresponding to different heuristics can be added into this
framework. For a discussion of possible heuristics, see also [23].

To ensure that paths can be compared to each other, we need these properties to be
comparable. If the comparability is ascertained, the paths can be sorted into clusters
by a gravitational clustering algorithm (like nearest neighbour classification) [29].

For example, with only two linear dimensions, consider the situation in Fig. 6.4.
By visual inspection, three natural candidates for modes present themselves. A simi-
lar operation can be computed by regarding the points in the multidimensional space
as bodies gravitating to each other and setting the attraction across the dimensions
to allow the bodies to gravitate to certain points.

This approach has the benefit that sensitivity to certain properties can be changed
by fiddling with the gravitational constants. For example, if a certain conditional
is already known to be mode defining, then the clustering can be made to not let
paths which contain different control-flow choices at that point cluster at all; or
the sensitivity between path length and communication patterns can be adjusted
by balancing the respective constants. In this way, the importance of modes can
be established with respect to other criteria such as the communication fabric.
Furthermore, the clustering can also directly be used for sub-mode determination, by
running the clustering step again for the set of paths forming a mode with different
gravitational constants.

Deducing constraints on the input variables giving rise to the paths of a cluster
is more involved, however. Although it is reasonably easy to specify the clusters by
exhaustive enumeration of properties and property combinations, be it an under- or
an over-approximation, this is not likely to be a relevant information for the users.
Future research needs to investigate whether existing approaches yield sufficient
results in our setting.

6.3.3 Usage of Mode Information

With several modes identified, the WCETs specific to each mode need to be
computed. This is done with the help of annotations (Sect. 6.2.2). The obvious
way to do so is to conduct several timing analyses with the inputs specifically fixed
according to the modes – a costly process. A second possibility is to only solve
different ILPs for deriving the overall WCET bound from the results for the basic
blocks. In this way, flow constraints would be generated from the mode governing

134 R. Wilhelm et al.

conditionals. These two approaches thus enable a choice between precision and
speed.

Thirdly, trace partitioning [27] can be a means for implementing mode analysis
in another way. Partitioning according to a specific mode leads to a separate instance
of timing analysis for each mode. This yields not only a special execution time
bound for each mode, one also specialises the whole of the analysis to the mode from
that point on. If several mode conditionals are congenerous, trace partitioning takes
care of exploiting this similarity automatically. Mode analysis thus provides the split
points for trace partitioning and the information to exploit the different results.

The reader may now ask why the mode determination works on the source
code level whereas the exploitation uses binary analysis. It has been motivated in
Section 6.2 that accurate WCET analysis can be conducted only on the binary level
due to the paramount importance of considering the hardware state. Although in
principle mode determination could be performed on the same level, the benefits
would be negligible and could be dwarfed by the problems. We have already
established that the modes resulting from the analysis shall approximate the natural
notions of operating modes. Anything which is not expressible in terms of the source
code or the model is of very limited use to the programmers. For example, if a
mode arises purely because one branch of a conditional contains a memory access
modifying the cache in such a way that subsequently there is a larger amount of
cache misses, this mode is unlikely to be of any interest or use to the user of the tool.

We stress that confinement to source-level mode analysis cannot provide wrong
or worse timing analysis results; it might merely fail to achieve better WCET
estimates.

For the usage of mode information together with the analysis of synthesised code,
the reader is referred to Section 6.5, which explains synergies after the nomenclature
and the analysis for Simulink models have been explained.

6.4 Flow Constraints: Simulink/Stateflow Analysis

Today, embedded systems are predominantly developed using model-based design
tools such as Matlab Simulink/Stateflow. Current timing analysis tools analyse
compiled executables. Model information is not leveraged. We present initial results
with the exploitation of Simulink/Stateflow models showing that timing analysis
can benefit significantly from model information in terms of both automation and
precision.

6.4.1 Matlab Simulink/Stateflow and Generated Code

Simulink/Stateflow is a hierarchical modelling language for control software with
a sequential, imperative semantics. The underlying methodology is to design
control computation within Simulink and control logic within Stateflow. Simulink

6 Improving the Precision of WCET Analysis 135

offers building blocks for proportional, integral and differential (PID) control
computations and estimations, e.g., filters, look-up tables, and arithmetic operators.
Stateflow is an automata specification language that can be used to express
transitions between different system states. Blocks communicate with each other
via signals and receive external inputs from the environment. For deployment, code
generators generate production C code, in which the internal states of Stateflow
and Simulink blocks are encoded by state variables. Signals and internal inputs also
map to C variables. The standard code generators ensure that the implementation of
blocks can be traced in the source code.

Model information can already quite directly influence the timing analysis.
For example, for input variables which might change during execution, a volatile
annotation can be derived automatically, ensuring the safety of the analysis; variable
ranges also can be generated automatically [10]. Here, we concentrate on more
involved model analyses improving precision of timing analysis.

6.4.2 Problem Statement

We investigate where precision is lost due to infeasible paths. To this end, we focus
on typical patterns at the level of the model that lead to infeasible paths by analysing
the inter-run development of a model’s implementation. As an example, we consider
the fuel-rate controller which is a Simulink/Stateflow demo model that contains
typical features of embedded controllers. The controller estimates airflow rate, and
calculates the fuel injection rate based on PID control principle.

We analysed the controller with the aiTWCET Analyser. aiT produces a worst-
case path to explain the execution time bound it has computed. Without providing
flow constraints, the execution time is over-approximated and the computed worst-
case path is infeasible. The reason is that static timing analysis is not aware of
certain dependencies in the model. Internal states and signals received from the
environment are often in some logical relation, e.g., they exclude or imply each
other. Depending on the current state, signals, and their logical combinations,
different look-up tables or computations are triggered.

As discussed in Sect. 6.2, the timing analyser generally does not interpret
conditions. Hence it has to take the longer branch of a conditional, even if execution
history of the path does not admit so. As a result, the worst-case path resolves
branches spuriously: it “switches” between operating states where this is not
possible in an execution of the program.

We illustrate some typical spurious resolutions of conditions on the worst-
case path. Some resemble the infeasible-path example in Section 6.2.2, e.g., they
involve conditions like mode==LOW and mode==RICH. Other conditions are more
involved. For example, the condition O2_fail==0 && mode==LOW checks if
the oxygen sensor is operating correctly and the system is in LOW mode, while
condition pressure_fail==1 checks if the pressure sensor has failed. Due
to analysis of the control logic implemented in an Stateflow automaton, we can

136 R. Wilhelm et al.

derive that these seemingly unrelated conditions are, in fact, mutually exclusive:
The Stateflow automaton would not set mode to LOW if any sensor had sent a failure
signal. Such entailed relations need to be derived by analysing the model semantics.
In the source code or executable, dependencies are more implicit and even harder to
track than in the model.

In this example, we see how the role of modes in this section relates to the concept
of operating modes in Sect. 6.3. Mode analysis on C code might find out that
the different conditions are significant and might order them into different modes
according to the variable values, but could not derive how these conditions relate.
Only by interpretation of the possible transitions of the system become the relations
between the model states and thereby of the mode variables visible.

6.4.3 Deriving Flow Constraints

In the following, we show how to construct flow constraints from the model to
achieve a more precise timing analysis.

We aim at conditions that determine whether a piece of the model is executed.
These conditions on external inputs, and internal signals, e.g., states, guard signal
transformation and control computation. In Simulink/Stateflow, this is expressed
by conditional blocks, similar to conditionals in C, e.g., triggered and enabled
subsystems, guarded transitions in Stateflow and switch-blocks. We uniformly refer
to the conditions as trigger conditions.

6.4.3.1 Flow Constraints from Definition-Use Dependencies

We formulate flow constraints that relate a definition, e.g., a state variable, and uses
of that variable. Certain definitions always make a trigger condition false. Trivially,
a program execution cannot pass through such a condition and the branch guarded
by the trigger condition. This can be expressed by flow constraints. One example
for such constraints in the fuel-rate controller are signals that indicate a failure of a
sensor. These signals are set in a Stateflow block and are used in a Simulink block
to trigger the evaluation of a lookup table.

6.4.3.2 Flow Constraints from Correlations between Trigger Conditions

Relations between trigger conditions can be formulated as flow constraints,
e.g., independent, equivalence, implication, antivalence, and exhaustion can be
expressed. To be effective, entailed relations need to be considered. The analysis of
entailed relations requires information about deep semantic properties of Stateflow
and Simulink blocks. To this end, we anticipate that relational abstract domains
from static analysis may be helpful.

6 Improving the Precision of WCET Analysis 137

6.4.3.3 Significant Branches

Eliminating infeasible paths does not per se improve precision. For example,
if branches of conditionals have approximately the same execution time, there can
be little gain in precision by eliminating an infeasible path that takes the ‘wrong’
branch. Therefore, similarly to mode analysis on C code, we focus on significantly
unbalanced branches. For example, the invocations of look-up tables and state-
dependent discrete filters give rise to such branches. In general, determination of
infeasible paths pays off more in the Simulink part of a model than in Stateflow.

In contrast to the analysis in Section 6.3, however, here we are hindered by
the fact that the code generator adds an additional step between the model and
the eventually executed code. If an expensive block is used as an input of two
different switches, for example, the code generator may schedule the evaluation
of the block exactly once before the switches are evaluated. The flow constraints
becomes useless in this case. Thus, although the derivation of constraints on the
model is independent from the code generator, their applicability depends on its
peculiarities.

6.4.3.4 Experimental Results

Initial results with the fuel-rate controller are promising. For the fuel-rate controller,
we have formulated the flow constraints above according to the aiT timing
specification language. In the first stage, we considered flow constraints from
definition-use dependencies which reduced the execution time bound by 4%.
Adding both kinds of flow constraints yields an overall reduction by 19% and a
feasible worst-case path. If we give an execution-time bound for each internal mode,
we achieve a reduction between 20% and 48%. In future work, we will automate the
generation of flow constraints and apply our approach to industrial examples.

6.5 Comparison of the Approaches

Let us recapture the basic strengths and the differences between the approaches
presented in Sects. 6.3 and 6.4 and then point out possible synergies between them.
Figure 6.5 graphically illustrates the improvements of WCET analysis by both
approaches. The first case in Fig. 6.5 shows the WCET bound computed by a state-
of-the-art analysis without additional path or input constraints.

As can be seen in the second case, in the Simulink analysis, we strive to compute
a single, but more precise WCET bound, by exclusion of infeasible paths. In the
analysis of operating modes, we strive to compute a multitude of WCET bounds,
by specialisation to particular inputs. The third case in Fig. 6.5 shows this. Note
that it is possible for the operating mode analysis to compute a lower overall WCET
bound, but this cannot always be guaranteed.

138 R. Wilhelm et al.

Fig. 6.5 Comparison of mode analysis and Simulink analysis to improve WCET computations.
Dots on the time axes represent computed WCET bounds, the dashed line represents the single
overall WCET bound for reference

The fourth case shows a possible result after applying both approaches together.
Note the improved WCET bounds of every operating mode and also the absence
of the second mode: by using additional information extracted from the model
by the Simulink analysis the operation mode analysis can automatically exclude
some infeasible modes (e.g., using constraints on Stateflow automata). This is one
example of possible synergies between the approaches.

Another difference of the approaches needs to be stressed. Whereas the operating
mode analysis aims to compute meaningful operating modes, this need not be the
case in Simulink analysis: A flow constraint which arises from some arbitrary
restriction of states is fine, as long as it rules out certain infeasible paths.

The general overview of both approaches and the information flows are depicted
in Fig. 6.6. As we can see, the operating mode analysis can profit from the additional
information gained by the feasibility analysis: some modes could be excluded
because of infeasibility (the last example in Fig. 6.5); or some mode variable
candidates can be provided by model analysis, which works as a starting point for
mode determination. In the other direction, C code analysis can find out significantly
unbalanced branches. This enables the Simulink analysis to take the peculiarities of
the generated code into account, if that specialisation is so desired.

6.6 Related Work

6.6.1 Analysis of Synthesised Code

The approach presented here derives flow constraints from the model. Previous
work on flow constraints focused on the executable [32], or C level. In [20], the
authors consider timing analysis of code synthesised from Esterel. They identify
flow constraints to eliminate infeasible paths. The principal ideas concerning the
two kinds of flow constraints are related, however Esterel is significantly different
from Matlab Simulink/Stateflow. Hence rules to derive flow constraints differ
significantly.

[24] describes early work on timing analysis for Simulink models in general.
They do not consider the correlations arising from Stateflow, but add annotations

6 Improving the Precision of WCET Analysis 139

Model

Code Generation

Significant Branches
C Code

Mode AnalysisFeasibility Analysis Compilation

Mode Candidates

Input ConstraintsFlow Constraints Executable

Timing Analysis

WCET Data Phase

Legend:

Fig. 6.6 Overview of the two approaches. Dotted arrows denote synergies

for basic Simulink blocks. Model information such as loop bounds is passed to
the underlying timing analysis tool. The authors modified the code generator to
generate annotated C code which is then processed by a compiler based on GCC.
The mapping process ensures that the computed timing information can be attributed
to the model blocks. Resulting annotations such as bounds for simple counting loops
could be inferred automatically by modern analysis tools, however.

Integrations of aiT with ASCET and SCADE are described in [10, 11],
respectively. Apart from providing feedback about the behaviour of the generated
code to developers, the integration also improves precision by passing additional
information from the modelling tool to aiT. This concerns, e.g., variable ranges,
maximal depths of searches through tables or other loop bounds. [23] shows how to
pass information from ASCET-MD models to the timing analysis tool, providing,
e.g., information about the values of calibration parameters. They also consider
mode-dependent timing analysis (see below).

6.6.2 Operating Modes

Operating modes have been studied before in the literature, with differing foci
and differing definitions of what constitutes a mode. For a discussion of various
notions of modes, see [28]. Apart from a body of literature on specifying and using

140 R. Wilhelm et al.

operating modes, there are several papers concerned with derivation of task-level
modes.

[22, 23] fall into the intersection of mode analysis and model analysis: The
authors have developed a tool to semi-automatically derive operating modes
from ASCET-MD models. A mode is defined as a semantic context information
influencing software behaviour or performance; more concisely, “an interesting
set of states”, where the definition of “interesting” varies among the stakeholders.
Because of this, similar to our approach, various heuristics are employed to arrive at
important modes, taking properties such as syntactic patterns, naming conventions
and differences of measured execution times into account. The modes are then used
to visualise mode-dependent signal flow and also for mode-dependent timing and
schedulability analysis by specific annotations.

In [19], modes are derived from C code. The authors identify semantically
feasible paths and must-preconditions on input variables for these paths and consider
these different paths as modes for which different WCET bounds are calculated.
They do not attempt to filter according to the significance of conditionals or to
cluster the paths according to importance. Instead, modes are used to exploit the
call context information of functions. For simple processors where the execution
time of an instruction depends only on its operands, they also proceed to derive
symbolic expressions for mode-specific WCETs.

In [12], those invocations of a component which lead to similar execution times
are grouped into modes (clusters, in that paper’s terminology). Starting from one
cluster representing the complete input space and the overall BCET and WCET
bounds, clusters are subdivided in a blind search process, for as long as these
bounds are too different and the number of clusters is not too large. Due to the
(very costly) full W

BCET analyses performed during the search process for each
cluster candidate, the result is tied to a particular architecture. Furthermore, without
adequate heuristics guiding the search process, the usability of the resulting clusters
itself is unclear. In [6], the input space is divided in order to explicitly find the
worst-case input. This restricted setting allows for some optimisations in the search
process.

In [13], scenarios, which roughly correspond to our modes, are derived from C
code. To this end, the influence of an input variable on the WCET is estimated by
considering its uses in control-flow splits, similar to our unbalanced branches. For
input variables with large predicted influence on the WCET, multiple scenarios are
derived, each corresponding to particular valuations. These valuations are derived
by splitting the input space according to the relations in which that variable is used
in the source code. Then, the source code is instantiated for each scenario anew, and
the WCET estimation phase can proceed on each scenario’s reduced program.

Related to (dynamic) operating modes is the notion of static modes: Modes
which are fixed at creation time of the software as well as those that are fixed at
initialisation time, such as calibration parameters. In a program, these correspond
to parameterisation via preprocessor directives and source level constants, and to
initialisation of constants from constant memory in a start-up phase, respectively.

6 Improving the Precision of WCET Analysis 141

Both the identification of modes and their usage alluded to in this paper work
likewise for such static modes.

6.7 Conclusion

We have shown that the information about operating modes of embedded software
as well as available model information can be exploited to refine the way control
flow is used in the timing analysis of hard real-time systems. Automata as present in
model-based design and operating modes partition the control flow. Timing analysis
of the different parts of these partitions yields more precise results than an upper
bound computed over the whole unpartitioned control flow. The same information
can be used to eliminate infeasible paths, which could contribute to the over-
approximation of WCETs. The knowledge about restrictions of the control flow
is communicated to the timing-analysis tool in the form of annotations.

We are currently developing a method and a tool to semi-automatically identify
operating modes, which are not made explicit neither in models nor in hand-
written code. The flow constraints which are currently derived manually from
Simulink/Stateflow models will be derived automatically. The final goal is a highly
precise, mode-specific and model-aware timing analysis.

Acknowledgements The research leading to these results has received funding from the following
projects (in alphabetical order): The European Network of Excellence ArtistDesign, the Deutsche
Forschungsgemeinschaft in SFB/TR 14 AVACS, the ITEA 2 project number 06042 (ES PASS),
and the European Community’s Seventh Framework Programme FP7/2007-2013 under grant
agreement number 216008 (Predator).

References

1. Byhlin S, Ermedahl A, Gustafsson J, Lisper B (2005) Applying static WCET analysis to
automotive communication software. In: Proceedings of ECRTS, pp 249–258

2. Cousot P, Cousot R (1977) Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: Proceedings of POPL, pp 238–252,
DOI http://doi.acm.org/10.1145/512950.512973

3. Engblom J (2002) Processor pipelines and static worst-case execution time analysis. PhD
thesis, Uppsala University

4. Ermedahl A (2003) A modular tool architecture for worst-case execution time analysis. PhD
thesis, Uppsala University

5. Ermedahl A, Gustafsson J (1997) Deriving annotations for tight calculation of execution time.
In: Proceedings of Euro-Par, pp 1298–1307

6. Ermedahl A, Fredriksson J, Gustafsson J, Altenbernd P (2009) Deriving the worst-case
execution time input values. In: Proceedings of ECRTS, pp 45–54

7. Ferdinand C (1997) Cache behavior prediction for real-time systems. PhD Thesis, Universität
des Saarlandes

142 R. Wilhelm et al.

8. Ferdinand C, Wilhelm R (1999) Efficient and precise cache behavior prediction for real-time
systems. Real-Time Syst 17(2–3):131–181

9. Ferdinand C, Heckmann R, Langenbach M, Martin F, Schmidt M, Theiling H, Thesing S,
Wilhelm R (2001) Reliable and precise WCET determination for a real-life processor. In:
Proceedings of EMSOFT, LNCS, vol 2211, pp 469–485

10. Ferdinand C, Heckmann R, Wolff HJ, Renz C, Parshin O, Wilhelm R (2006) Towards model-
driven development of hard real-time systems. In: Proceedings of ASWSD, pp 145–160

11. Ferdinand C, Heckmann R, Sergent TL, Lopes D, Martin B, Fornari X, Martin F (2008)
Combining a high-level design tool for safety-critical systems with a tool for WCET analysis
on executables. In: Proceedings of ERTS

12. Fredriksson J, Nolte T, Ermedahl A, Nolin M (2007) Clustering worst-case execution times for
software components. In: Proceedings of WCET

13. Gheorghita SV, Stuijk S, Basten T, Corporaal H (2005) Automatic scenario detection for
improved WCET analysis. In: Proceedings of DAC, pp 101–104

14. Gupta N, Mathur AP, Sofia ML (1998) Automated test data generation using an iterative
relaxation method. In: Proceedings of SIGSOFT, pp 231–244

15. Gustafsson J, Ermedahl A, Lisper B (2005) Towards a flow analysis for embedded System C
programs. In: Proceedings of WORDS, pp 287–300

16. Healy C, Sjödin M, Rustagi V, Whalley D, van Engelen R (2000) Supporting timing analysis
by automatic bounding of loop iterations. J Real-Time Syst Vol. 18 (2/3) 129–156

17. Healy CA, Whalley DB, Harmon MG (1995) Integrating the Timing Analysis of Pipelining
and Instruction Caching. In: Proceedings of RTSS, pp 288–297

18. Heckmann R, Langenbach M, Thesing S, Wilhelm R (2003) The influence of processor
architecture on the design and the results of WCET tools. Proc RTS 91(7):1038–1054

19. Ji ML, Wang J, Li S, Qi ZC (2009) Automated worst-case execution time analysis based on
program modes. Comp J 52(5):530–544, online 2007

20. Ju L, Huynh BK, Roychoudhury A, Chakraborty S (2008) Performance debugging of Esterel
specifications. In: Proceedings of CODES/ISSS, pp 173–178

21. Kästner D, Wilhelm R, Heckmann R, Schlickling M, Pister M, Jersak M, Richter K,
Ferdinand C (2008) Timing validation of automotive software. In: Proceedings of ISOLA,
communications in computer and information science, vol 17, pp 93–107

22. Kim JE, Kapoor R, Herrmann M, Härdtlein J, Grzeschniok F, Lutz P (2008) Software behavior
description of real-time embedded systems in component based software development. In:
Proceedings of ISORC, pp 307–311

23. Kim JE, Rogalla O, Kramer S, Hamann A (2009) Extracting, specifying and predicting
software system properties in component based real-time embedded software development.
In: Proceedings of ICSE, pp 28–38

24. Kirner R, Lang R, Freiberger G, Puschner P (2002) Fully automatic worst-case execution time
analysis for Matlab/Simulink models. In: Proceedings of ECRTS, pp 31–40

25. Li YTS, Malik S (1995) Performance analysis of embedded software using implicit path
enumeration. In: Proceedings of DAC, pp 456–461

26. Lucas P, Parshin O, Wilhelm R (2009) Operating mode specific WCET analysis. In: Proceed-
ings of JRWRTC, pp 15–18

27. Mauborgne L, Rival X (2005) Trace partitioning in abstract interpretation based static
analyzers. In: Proceedings of ESOP, LNCS, vol 3444, pp 5–20

28. Pedro PSM (1999) Schedulability of mode changes in flexible real-time distributed systems.
PhD thesis, University of York

29. Ravi TV, Gowda KC (1999) Clustering of symbolic objects using gravitational approach. IEEE
Trans Syst, Man Cybernetics B 29(6):888–894

30. Reineke J (2008) Caches in WCET analysis. PhD thesis, Universität des Saarlandes
31. Sen R, Srikant YN (2007) Executable analysis using abstract interpretation with circular linear

progressions. In: Proceedings of MEMOCODE, pp 39–48
32. Stein I, Martin F (2007) Analysis of path exclusion at the machine code level. In: Proceedings

of WCET

6 Improving the Precision of WCET Analysis 143

33. Tan L (2009) The worst-case execution time tool challenge 2006. Int J Softw Tools Technol
Transfer (STTT) 11(2):133–152

34. Tan L, Wachter B, Lucas P, Wilhelm R (2009) Improving timing analysis for Matlab
Simulink/Stateflow. In: Proceedings of ACES-MB, pp 59–63

35. Theiling H (2002) Control flow graphs for real-time systems analysis. PhD thesis, Universität
des Saarlandes

36. Theiling H (2002) ILP-based interprocedural path analysis. In: Proceedings of EMSOFT,
Springer, LNCS, vol 2491, pp 349–363

37. Theiling H, Ferdinand C, Wilhelm R (2000) Fast and precise WCET prediction by separated
cache and path analyses. Real-Time Syst 18(2/3):157–179

38. Thesing S (2004) Safe and precise WCET determination by abstract interpretation of pipeline
models. PhD thesis, Universität des Saarlandes

39. Thesing S, Souyris J, Heckmann R, Randimbivololona F, Langenbach M, Wilhelm R,
Ferdinand C (2003) An abstract interpretation-based timing validation of hard real-time
avionics software systems. In: Proceedings of DSN, pp 625–632

40. Wilhelm R, Engblom J, Ermedahl A, Holsti N, Thesing S, Whalley D, Bernat G, Ferdinand
C, Heckmann R, Mueller F, Puaut I, Puschner P, Staschulat J, Stenström P (2008) The
determination of worst-case execution times – overview of methods and survey of tools. ACM
Trans Embedded Comput Syst (TECS) 7(3) pp. 36:1–36:53

Chapter 7
Reconciling Compilation and Timing Analysis

Heiko Falk, Peter Marwedel, and Paul Lokuciejewski

7.1 Why Should Compilers and Timing Analysis
Be Integrated?

According to forecasts such as a report published by the National Research Council
in the US [21], embedded devices will be a main application area of information
technology in the future. Therefore, we can observe an increased interest into
embedded systems. Funding of embedded systems research in Europe by the
European Community (see “Objective ICT-2009.3.4 Embedded Systems Design”
in [3]) is a clear indicator of this trend. Also, market statistics [12] demonstrate the
increasing market for certain embedded devices.

This leads to the question: is there some way of defining the term “embedded
system”? This would help us to separate the embedded market from the non-
embedded market. According to Marwedel [20], embedded systems are “infor-
mation processing systems embedded into a larger product.” Examples include
information processing systems in cars, trains, airplanes, and fabrication equipment.
A more recent definition is the result of the work performed by Edward A. Lee. He
wrote [14]: “Embedded software is software integrated with physical processes. The
technical problem is managing time and concurrency in computational systems.”
The first sentence defines the term “embedded software”, but can be easily extended
into a definition of the term “embedded system” by just replacing the term
“software” by “system”. This new definition stresses the link to physical systems
and time. Actually, to model time as a “first class citizen” is a key distinction
between embedded and non-embedded systems. According to Edward A. Lee, “The

H. Falk (�)
Institute of Embedded Systems/Real-Time Systems, Ulm University, D-89069 Ulm, Germany
e-mail: Heiko.Falk@uni-ulm.de

P. Marwedel � P. Lokuciejewski
Computer Science 12, TU Dortmund University, D-44221 Dortmund, Germany
e-mail: Peter.Marwedel@tu-dortmund.de; Paul.Lokuciejewski@tu-dortmund.de

S. Chakraborty and J. Eberspächer (eds.), Advances in Real-Time Systems,
DOI 10.1007/978-3-642-24349-3 7, © Springer-Verlag Berlin Heidelberg 2012

145

146 H. Falk et al.

lack of timing in the core abstraction (of computer science) is a flaw, from the
perspective of embedded software” [13]. Most embedded systems are indeed real-
time systems and most real-time systems are embedded. In the following, we will
only consider embedded systems that are also real-time systems, and call them
embedded real-time systems. The importance of the link to physics, including the
need to model time, also leads to the introduction of the term “cyber-physical
systems” [15]. We assume that the terms “cyber-physical systems” and “embedded
real-time systems” are equivalent.

How are embedded real-time systems designed? For embedded real-time sys-
tems, hardware and software are both important, but in this chapter we will just
consider software. How is embedded real-time software designed? Embedded real-
time software may be manually written or may be generated from some model
(for example some data flow model [4]). This software, typically written in some
imperative programming language such as C, is then compiled.

How is timing taken into account in this process? Typically, timing is not
considered before executable software is available. Once it is available, we can try
to derive a worst-case execution time (WCET). Towards this end, the software can
be executed on a real or simulated processor or it can be analyzed for its timing
behavior. Recently, powerful timing analyzers became available for this purpose [1].
In contrast to measurement-based WCET estimators, formal tools such as aiT derive
safe upper bounds on the execution times.

In an attempt to analyze the impact of using scratchpad memories (SPMs), we
connected such an analyzer to our experimental memory-aware optimizing compiler
encc [23]. Figure 7.1 shows the setup.

SPMs are small memories, which are mapped into the memory address space.
Due to their small size, the energy required per access as well as the access times
are smaller than for larger memories [2]. encc tries to take advantage of that by
mapping frequently used objects to the SPM, instead of mapping them to some
larger “main” memory. The mapping strategy is based on a knapsack-like model.
We compared software optimized in this way with software using caches. Caches

encc

ANSI-C
Program

Executable

Simulator
ARMulator

WCET
Analyzer aiT

SPM
Size

Observed
Execution Time

Worst-Case
Execution Time

Fig. 7.1 Computing
worst-case and observed
execution times after code
generation

7 Reconciling Compilation and Timing Analysis 147

are designed to improve the average-case execution time (ACET), but may be rather
slow in the worst case. In the worst case, a cache-based system may actually be
slower than a system without a memory hierarchy. We expected that a scratchpad
based system would have a much better worst case, if a compiler like encc was used
for an optimized mapping to the SPM. Therefore, we ran experiments using the
setup of Fig. 7.1. We compared the results for two different architectures:

• The first architecture is comprised of an ARM7 processor, a cache and a “main
memory”. Consistent with a real ARM7-based system, we assume that loads
require two cycles for reading the instruction, three cycles for processing, and two
cycles for fetching data from memory in the worst case. For store instructions,
we assume that, in the worst case, we need two cycles for reading the instruction,
two cycles of processing and two cycles for actually storing the results. For all
other instructions, we need two cycles for reading the instruction, and one cycle
of processing. Rather large numbers are the result of potential cache block (re)-
loadings. In the worst case, every access to the cache is a miss, resulting in a
(re)-loading of the cache block. This (re)-loading requires several cycles.

• The second architecture is comprised of an ARM7 processor, a scratchpad
memory and a “main memory”. Consistent with a real ARM7-based system, we
assume that loads require zero cycles for reading the instruction, three cycles
for processing, and two cycles for fetching data from memory in the worst case.
For store instructions, we assume that, in the worst case, we need zero cycles
for reading the instruction, two cycles of processing and zero cycles for actually
storing the results. For all other instructions, we need zero cycles for reading the
instruction, and one cycle of processing. The low overhead results from the fact
that instruction fetches are well integrated into the pipeline in this case.

Figure 7.2 shows the results for the G.721 benchmark [24]. We realize that,
for SPM-based systems (cf. Fig. 7.2a), worst-case and observed execution times
actually decrease with an increasing size of the SPM. For cache-based systems

Cache Size [Bytes]

WCET Simulation

0
500

1.000
1.500
2.000
2.500
3.000
3.500
4.000
4.500
5.000
5.500
6.000

0 64 128 256 512 1k 2k 4k 8k 0 64 128 256 512 1k 2k 4k 8k

Scratchpad Size [Bytes]

C
yc

le
s
[*
10
00
]

WCET Simulation

a b

Fig. 7.2 Impact of (a) scratchpads and (b) caches on worst-case and observed execution times

148 H. Falk et al.

(cf. Fig. 7.2b), the observed execution time decreases, but the worst-case execution
time stays at a rather high level. For small caches, it is even larger than for systems
without a cache. Rather large numbers can at least partially be attributed to using a
unified cache: this means that we have a single cache for both instructions and data,
and there may be conflicts between instructions and data.

The approach just described computes worst-case execution times after code
generation. Similar approaches are frequently used in code generation for embedded
real-time systems. These approaches use an iterative procedure:

• Specification of embedded software
• Generation of imperative code, e.g., C code
• Compilation of the code for the specific target architecture
• Computation of the WCET, either by using measured worst-case execution times

or by formally deriving a safe upper bound on the execution time
• If the derived execution times exceed the real-time constraint, the procedure must

be repeated with some changed imperative code or compiler options.

There are no clear rules for generating this changed code. Changes are frequently
based on intuition, rather than on clear rules. The number of iterations required may
be unknown. Therefore, we are calling this a trial-and-error-based development
of real-time code. Additional problems are resulting from the use of measured
execution times, as these do not provide safe upper bounds of execution times.
Therefore, timing constraints may be violated in the real application, while design-
time checks revealed no problem.

How can we avoid this trial-and-error-based development of real-time code?
Typically, time constraints for real-time code are known before compilation.
Iterations could be avoided if we used this knowledge already during compilation,
instead of checking time constraints after compilation. Such an approach opens
many opportunities. The compiler could already check if time constraints are met.
Going one step further, the compiler could already perform optimizations aiming
at a reduction of the worst-case execution time. Figure 7.3 compares the traditional
approach to use timing information in the software generation process.

ExecutableCode
Generation

WCET
Analyzer

Compiler

ANSI-C
Program

ANSI-C
Program

Executable
WCET

Analyzer
Compiler

a

b

Fig. 7.3 (a) Late WCET-checking (b) reconciled WCET analysis/compilation

7 Reconciling Compilation and Timing Analysis 149

In the traditional approach, WCET-checking takes place after compilation
(cf. Fig. 7.3a). In the proposed new approach (cf. Fig. 7.3b), WCET information
is already used during compilation to enable WCET-based optimizations. Actually,
this solves one problem which currently exists with compilers: compiler designers
are claiming to design optimizing compilers. However, optimizations need a cost
function. Without such a cost function, “optimizations” can at best be based on
guesses of the impact of “optimizations” on the code quality. Currently available
compilers can very easily use code size as a cost function. However, the execution
time, both in the form of an average-case execution time as well as in the form a
worst-case execution time, can hardly be predicted.

This is what we would like to change with our WCET-aware C Compiler WCC.
WCC uses an explicit worst-case execution time model of the target processor to
steer optimizations. How do we obtain such a worst-case execution time model? One
of the golden principles of computer science is to implement a certain functionality
only once. Execution time models – if available at all – are typically available in
the form of worst-case execution time analyzers. Therefore, instead of designing a
new timing model, we propose integrating an available worst-case execution time
analysis tool into a compiler optimizing worst-case execution times, and in this way
reconciling compilation and timing analysis.

The remainder of this chapter is structured as follows: Sect. 7.2 presents the
overall structure of our WCET-aware C Compiler WCC, followed by the description
of the particular challenges a compiler writer faces when developing WCET-
aware optimizations in Sect. 7.3. Sections 7.4–7.9 briefly highlight some of the
WCET-aware optimizations currently integrated into WCC: function inlining, loop
unrolling, loop unswitching, register allocation, scratchpad allocation and cache
partitioning. Finally, Sect. 7.10 summarizes this chapter and gives an outlook on
our future work.

7.2 Structure of the WCET-Aware C Compiler WCC

The WCET-aware C Compiler WCC [6] described in this chapter is an ANSI-C
compiler for the Infineon TriCore TC1796 processor which is heavily employed
in the automotive industry. WCC’s overall structure is depicted in Fig. 7.4. Those
stages of the compiler connected with solid arrows resemble a typical optimizing
compiler:

ICD-C: The ICD-C framework [10] is a compiler front-end providing a machine-
independent IR for C code. It features machine-independent code analyses and
optimizations. WCC uses ICD-C’s code selector interface to couple the front-end
with a tree-pattern matching based code selector for the TC1796 processor.

Code Selector: The code selector translates the source-level IR ICD-C to TriCore
assembly code. WCC’s tree grammar for the TC1796 consists of approx. 33,000
lines of CCC code resulting in the generation of highly efficient machine code.

150 H. Falk et al.

Conversion
LLIR2CRL

Conversion
CRL2LLIR

LLIR Code
Selector

aiT WCET
Analysis

ANSI-C
Sources &
Flow Facts

High-Level
ICD-C

Code
Generator

Low-Level
LLIR

Generated
CRL2

CRL2 &
WCET Est.

Flow Fact &
WCET-aware
Analyses &

Optimizations

Loop
Analyzer

Back-
Annotation

Memory
Hierarchy

Specification

WCET-
Optimized
Assembly

Linker
Script

Fig. 7.4 WCC compiler infrastructure

ICD-LLIR: ICD-LLIR [11] is a retargetable low-level IR for compiler back-
ends. It includes various fully retargetable assembly-level analyses and opti-
mizations. WCC’s TC1796 processor description for ICD-LLIR consists of
approx. 13,000 lines of CCC code, capturing all aspects of the complex TriCore
architecture.

Code Generator: The code generator finally emits valid assembly code from the
class structures of the TriCore ICD-LLIR within WCC’s back-end.

The key components turning WCC into a unique WCET-aware C compiler are
depicted with dashed arrows in Fig. 7.4. The following Sects. 7.2.1–7.2.5 describe
these modules in more detail. They deal with memory hierarchy specification,
WCC’s integration of WCET analysis, flow facts, loop bound analysis and back-
annotation of WCET data.

7.2.1 Specification of Memory Hierarchies

The performance of many systems is largely dominated by the memory subsystem.
Due to the large speed gap between slow memories and fast processors, execution
times of software widely depend on the memories. Obviously, static WCET
estimates also heavily depend on the memories. In the WCC compiler environment
described in this section, where the WCET analyzer is tightly integrated into the
compilation process, it is in the duty of the compiler to provide the WCET analyzer
with detailed information about the underlying memory hierarchy. For this reason,
WCC includes an infrastructure to specify memory hierarchies. Furthermore, WCC
uses this memory hierarchy infrastructure to do memory-aware optimization by
moving parts of a program’s code and data onto fast memories.

7 Reconciling Compilation and Timing Analysis 151

WCC’s memory hierarchy infrastructure is designed to be lightweight and to
only support WCET analysis and optimizations moving parts of a program across
memories. In a conventional code generation environment, this kind of memory
allocation is usually performed by the linker during the final step of generating a
binary executable. Thus, the information usually available only while linking needs
to be provided already to the WCC compiler itself. This is because it is up to WCC
in our setup to decide on a program’s memory layout, and no longer up to the linker.

WCC provides a simple text file interface to specify memory hierarchies.
Such a memory specification describes different regions of a processor’s physical
memory hierarchy. For each physical memory region, the following attributes can
be defined:

• The region’s base address and absolute length
• Access attributes like e.g., read, write, executable
• Memory access times, specified in processor cycles
• Assembly-level sections that are allowed to be mapped to a memory region.

For caches, various attributes like e.g., size, line size or associativity can be spec-
ified, too. Now that WCC is aware of the processor’s physical memories, program
fragments need to be moved to the present memories. For this purpose, assembly-
level sections serving as containers for code, data, constants etc. are attached to the
available physical memories. Memory allocation of program fragments is now done
in WCC’s back-end by assigning functions, basic blocks or data to these assembly-
level sections. The compiler’s infrastructure provides a convenient API to do such
memory assignments of code and data. Symbol tables allow to retrieve physical
memory addresses per function, basic block or data object.

Finally, the memory allocation decided by WCC must be respected by sub-
sequent linkage stages. The binary executable generated by WCC must exactly
match the memory layout decided by WCC. Since the executables are produced
outside WCC by an external linker, WCC automatically generates a GNU ld
compatible linker script and invokes the linker using this linker script. This way, the
binary executable is fully equivalent to the memory layout determined by WCC’s
optimizations.

7.2.2 Integration of Static WCET Analysis into the Compiler

Static WCET analysis takes place at the assembly/binary code level since processor-
specific information and machine code is unavailable at higher abstraction levels.
Thus, the WCET analyzer aiT is coupled to the WCC compiler in its back-end at
machine code level (cf. Fig. 7.4).

The WCET analyzer aiT uses its very own intermediate code representation (IR)
which is called CRL2. During WCET analysis, CRL2 serves as exchange format
storing the application under WCET analysis and all of aiT’s analysis results.
Since both ICD-LLIR and CRL2 are low-level IRs, a mutual translation of their

152 H. Falk et al.

control flow graphs (CFGs) is straightforward. The CFGs of both IRs consist of
functions. Each function is a list of basic blocks connected via edges. Basic blocks
in turn are a sequence of instructions. In both IRs, an instruction consists of several
operations executed in parallel by VLIW machines. Due to the analogy of both
LLIR and CRL2, it is basically sufficient to traverse the LLIR CFG and to generate
corresponding CRL2 components to construct an equivalent CRL2 CFG.

Moreover, physical memory addresses provided by WCC’s memory hierarchy
infrastructure (cf. Sect. 7.2.1) are exploited to construct the CRL2 CFG. Using
WCC’s memory hierarchy API, physical addresses for LLIR basic blocks are
determined and passed to aiT. In addition, branch targets of jump operations, which
are represented by symbolic block labels, are translated into physical addresses.

Using the conversion step from LLIR to CRL2, WCC produces a CRL2 file
representing the program for which WCET timing data is required. Fully transparent
to the compiler user, WCC invokes aiT on this CRL2 file. The compiler takes
control over the WCET analyzer and performs all required static WCET analyses.
As a consequence, the WCET analyzer is completely encapsulated within WCC.
The compiler user is unaware of the fact that timing analysis is performed in the
background.

After the transparent invocation of aiT, the results of the static WCET analysis
are imported back into the compiler. This is done by traversing the final CRL2 file
produced by aiT containing all valuable analysis data, extracting this WCET data
and attaching it back to the compiler’s ICD-LLIR IR. The following list gives an
overview about the WCET data made available within WCC this way [8]:

• WCET of the entire program, of each function, and each basic block
• Worst-case call frequency per function
• Worst-case execution frequency per basic block or CFG edge
• Execution feasibility of each CFG edge
• Safe approximation of register values
• Encountered I-cache misses per basic block.

7.2.3 Flow Fact Specification and Transformation

A program’s execution time (on a given hardware) is largely determined by its
control flow, i.e., the execution order of instructions or basic blocks, as modeled
by the CFG. Usually, constructs like e.g., loops or conditionals express control flow.
In general, static WCET analysis is undecidable since it is undecidable to compute
how many times a general loop iterates. Since loop iteration counts are crucial for a
precise WCET analysis, and since they can not be computed for arbitrary loops in
general, loop iteration counts need to be specified by the user of a WCET analyzer.

Besides loops known from high-level programming languages, any cycle in a
program’s CFG needs to be annotated manually by the user. These user-provided
annotations specifying the control flow are called flow facts. Flow facts describe

7 Reconciling Compilation and Timing Analysis 153

the set of possible execution paths of a program. To make WCET analysis feasible,
there must be enough flow facts to limit the execution count of every statement of a
program. User-provided flow facts should be specified inside the source code since
this way, only the code base needs to be maintained, and not the source codes plus
some external flow fact files which are potentially forgotten. The WCC compiler
fully supports source-level flow facts by means of ANSI-C pragmas.

Loop bound flow facts limit the iteration counts of regular loops. These are for-,
while-do- and do-while-loops of ANSI-C having a single entry point and a well-
defined termination condition. For such loops, loop bound flow facts allow to specify
the minimum and maximum iteration counts. For example, the following C code
snippet specifies that the shown loop body is executed 50–100 times:

Pragma("loopbound min 50 max 100")
for (i = 1; i <= maxIter; i++)

Array[i] = i * fact * KNOWN VALUE;

Allowing to provide a minimum and maximum loop iteration count enables
to annotate data-dependent loops as shown above. In order to annotate irregular
loops or recursions, WCC provides flow restriction flow facts allowing to relate
the execution frequency of one C statement with that of other statements. Flow
restrictions allow to specify linear dependencies between arbitrary positions in the
C source code. For instance, the following piece of code annotates a triangular loop:

Pragma("marker outermarker")
Statement A;

for (i = 0; i < 10; i++)
for (j = i; j < 10; j++)

Pragma("marker innermarker")
Statement B;

Pragma("flowrestriction 1*innermarker <= 55*outermarker");

The execution frequency of the code denoted as innermarker is at most 55
times larger than that of statement A labeled as outermarker for this example.

Due to the fact that source-level flow facts are highly desirable, there is a
semantic gap between the place where flow facts are specified (C code) and where
they are actually used for WCET analysis (assembly code). WCC is inherently
aware of this semantic gap and automatically transforms specified flow facts
whenever the compiler’s IRs are modified or optimized. All optimizations of WCC
are made fully flow-fact aware using built-in flow fact update techniques. They
ensure that always safe and precise flow facts are maintained, irrespective of how
and when the optimizations modify the intermediate code.

7.2.4 Polyhedral Loop Bound Analysis

Manual flow fact annotation as described in Sect. 7.2.3 becomes tedious and error-
prone even at the source code level if the program to be annotated is long and
complex. It becomes even infeasible if the program’s source code is automatically

154 H. Falk et al.

generated by some high-level specification tool like e.g., SCADE or Matlab. Manual
user intervention for flow fact annotation should be avoided. To relieve the user
form this burden and to establish a fully automated compiler framework for WCET
minimization, a static loop analyzer producing flow facts was integrated into WCC.

For loop bound analysis, possible values of the loop counter variable need
to be determined. However, it is infeasible to compute all actual values of loop
counters in an exact fashion for general loops. WCC’s loop analyzer bases on
abstract interpretation whose fundamental idea is to find a compromise between
analysis precision and analysis runtime. In the context of loop bound analysis, an
abstraction is achieved by representing values of loop counters as interval instead of
taking all possible concrete values into account. This abstraction results in a loss of
information during abstract interpretation, turning the loop bound analysis feasible.

The main drawback of abstract interpretation is that it performs an iterative fixed-
point analysis. This fixed-point iteration can consume a significant amount of time
for loops with large iteration counts. WCC’s loop bound analyzer combines abstract
interpretation with mechanisms avoiding this iterative behavior.

First, a standard technique called program slicing is applied to the body of the
currently analyzed loop. Usually, loop bodies mostly contain instructions not affect-
ing the calculation of the loop counter. Using program slicing, these instructions not
influencing neither the concrete nor the abstract semantic of the loop counter are
recognized to be meaningless for loop bound analysis and are not considered in the
following. This frequently results in loops with almost empty loop bodies.

Second, it is verified after program slicing whether the remaining relevant
instructions basically represent affine expressions over the loop counter variables.
If this precondition is met, these affine expressions are translated into a polyhedral
model where a polyhedron P is an N-dimensional geometrical object defined as a
set of linear inequations: P WD ˚

x 2 Z
N j Ax D a;Bx � b�

for A;B 2 Z
m�N and

a; b 2 Z
m and m 2 N. The problem of computing loop iteration counts is then

equivalent to computing the number of integer points in a polytope. To efficiently
count the integer points of polyhedra, Ehrhart polynomials are used within WCC.

Using this combination of program slicing and polyhedral models [17], WCC’s
loop analyzer is able to exactly compute loop bounds for very large numbers of
loops of standard benchmark suites. Furthermore, loop bound analysis within WCC
usually requires significantly less runtime than approaches solely based on abstract
interpretation. WCC’s loop analyzer has proven to be of superior quality – among
all tools participating in the WCET Tool Challenge 2008, it was the only one which
solved all flow fact related analysis problems [9].

7.2.5 Back-Annotation of WCET Data

The technical infrastructure of WCC described so far allows the effective WCET
minimization by optimizations applied at assembly/ICD-LLIR level where WCET
estimates provided by the WCET analyzer are imported and made accessible to

7 Reconciling Compilation and Timing Analysis 155

the compiler. In contrast, high-level WCET-aware optimizations taking place at the
source code / ICD-C level are not yet supported due to the lack of WCET timing
information at this abstraction level. However, high-level optimizations focusing on
function call and loop transformations exhibit a large potential for WCET reduction.
Thus, a worst-case timing model for ICD-C is highly desired. To transform WCET
timing data from assembly to the source code level, a bridge between both abstrac-
tion levels of the code is required. This is realized by WCC’s back-annotation.

In order to raise the abstraction level of the WCET timing model from assembly
to source code level, a connection between objects of the ICD-LLIR and ICD-C
IRs must be established. For coarse-grained objects such as assembly/C files and
functions, this is trivial since a 1:1 correlation exists.

Correlating fine-grained basic blocks is more complicated since a 1:1 mapping
does not always exist. By definition, a basic block is a code fragment with a single
entry and exit point where jumps can only occur at the block’s end. Function calls
implicitly modifying the control flow can be handled in two different ways. They
can either represent a basic block boundary, i.e., a new basic block begins after
a function call, or they are considered as regular statements/instructions that do
not explicitly modify the control flow. The former definition is used within ICD-
LLIR, while the latter is used for ICD-C blocks. Due to the varying definitions and
assembly-level optimizations modifying the basic block structure, the relationship
of basic blocks represents an n:m mapping in general. For example, one LLIR
basic block may correspond to m ICD-C basic blocks, or n LLIR basic blocks may
correspond to one ICD-C basic block.

Since WCC’s code selector is the interface between the source- and assembly-
level IRs, it is also the location where the determination of the relationship between
ICD-C and ICD-LLIR basic blocks as well as the establishment of corresponding
mappings is integrated. All WCC optimizations taking place at the ICD-LLIR level
are extended to automatically update all such mappings when modifying assembly-
level basic blocks. Using these mappings, the following WCET timing data (among
others) can be back-annotated from assembly to C level:

• WCET of the entire program, of each function, and each basic block
• Worst-case execution frequency per CFG edge
• Execution feasibility of each CFG edge
• Encountered I-cache misses per basic block
• Code size and amount of spill code per basic block.

To the best of our knowledge, WCC is the very first compiler framework
providing highly accurate WCET timing information within the compiler front-end.

7.3 Challenges Imposed to WCET-Aware Compilers

In typical complex programs, there usually exist several alternative execution paths
from a program’s entry point to an exit point where the program terminates. That
path among all these alternative paths within a program’s CFG having the maximal

156 H. Falk et al.

main

b

c

a d

10 Cyc.

50 Cyc.

80 Cyc.

65 Cyc.

120 Cyc.

a 10 Cyc.

50 Cyc.

40 Cyc.

65 Cyc.

120 Cyc.

main

b

c

a d

b

Fig. 7.5 (a) Original example CFG (b) example CFG after optimization of b

WCET is called the worst-case execution path (WCEP). Hence, the WCET of a pro-
gram is equal to the WCET of its WCEP. In the following, a path’s WCET will also
be called the path’s length. To minimize WCETs by a WCET-aware compiler, opti-
mizations must exclusively focus on those parts of a program lying on the WCEP.
Optimization of parts of the program aside the WCEP is ineffective since it does
not shorten the WCEP and thus does not reduce the WCET. Therefore, optimization
strategies for WCET minimization must have detailed knowledge about the WCEP.

A static WCET analyzer as used within WCC provides detailed information
about a program’s WCEP, but the sole knowledge of a WCEP is insufficient for
effective WCET minimization. Consider the CFG of a function main in Fig. 7.5a,
consisting of five basic blocks each of them having the indicated WCETs given in
clock cycles. Obviously, the longest path through this CFG is main, a, b, c. This
WCEP, highlighted with solid arrows in Fig. 7.5a, has a WCET of 205 cycles.

Assuming that some optimization is able to reduce b’s WCET from 80 down
to 40 cycles, the CFG shown in Fig. 7.5b results from this optimization. As can
be seen, the WCEP after optimization of b is main, d, c. This example shows
that the WCEP is very unstable during optimization – it can switch from one path
within the CFG to a completely different one in the course of optimizations. In
summary, a WCET-aware compiler is faced with the following challenges, turning
the development of WCET-aware optimizations into an even more demanding area
of research compared to traditional compiler optimization:

• During the entire optimization process, WCET-aware optimizations must have
detailed knowledge of the current WCEP at any point in time.

• Such optimizations must be aware of possible WCEP switches in the course of
an optimization and they thus have to recompute the WCEP whenever necessary.

The remainder of this chapter presents optimizations of the WCC compiler that
explicitly consider switching WCEPs and thus reduce WCETs successfully.

7.4 Machine Learning Based WCET-Aware Function
Inlining

Function inlining is a well-known transformation replacing a function call by the
body of the callee while storing the arguments in variables that correspond to

7 Reconciling Compilation and Timing Analysis 157

function parameters. Function inlining originally intends to reduce average-case
execution times (ACETs) for the following reasons:

• By copying the callee’s code into the caller, the calling overhead is reduced since
the function call and return instructions as well as parameter handling is removed.

• Removing calls and returns potentially yields a smoother pipeline behavior.
• Inlining potentially enables other compiler optimizations which are unable to do

global code analysis and transformation across several functions.

One of the main drawbacks of this optimization is the increased register pressure.
By inserting additional variables from the inlined function into the caller, possibly
more registers are required which may result in additional spill code degrading a
program’s performance. Furthermore, I-cache performance may be degraded due to
the increased code size and reduced spatial locality of memory accesses.

The evaluation of the impact of inlining on ACETs is challenging due to the
side-effects of the register allocator and the caches. This complicates the decision
whether a function should be inlined. Up to now, more or less simple compiler
heuristics try to predict if inlining of a given function will be beneficial or not. The
WCC compiler includes mechanisms for function inlining which, on the one hand,
focus on WCETs instead of ACETs. On the other hand, simple inlining heuristics
are replaced by sophisticated machine learning (ML) techniques [19].

ML techniques provide a flexible and adaptive way to automatically generate
compiler heuristics handling complex search spaces. Furthermore, such ML based
approaches often outperform hand-crafted heuristics. The application of inlining
poses a typical classification problem, i.e., one is interested in a classification rule
that decides if a particular function should be inlined or not for a particular call site.

WCC extracts numerous features from the program to be optimized to drive the
classification process for inlining. These include among others:

• Size of caller/callee
• WCET of the caller/callee
• Worst-case execution frequency per call site
• WCET of a callee for a particular call site, i.e., the product of the callee’s WCET

and the worst-case execution frequency of the call site
• Number of call sites of a callee lying on the current WCEP
• Whether a callee is called from only one call site
• Number of registers whose lifetimes span a call. Inlining of calls crossing a high

number of lifetimes increases the probability for spilling
• Maximal number of registers that are simultaneously live within a function.

These features are extracted by heavily using WCC’s infrastructure (cf.
Sect. 7.2). Using the tight integration of a timing analyzer into the compiler
back-end, all WCET- and WCEP-related features are collected. Features related
to liveness of registers are computed by a dedicated register pressure analyzer in
the compiler back-end. These assembly code-specific features are then propagated
to the ICD-C level via WCC’s back-annotation. All other features dealing with the
number and positions of call sites are directly computed at C code level within
ICD-C.

158 H. Falk et al.

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

ad
pc

m
_d

ec
od

er

ad
pc

m
_e

nc
od

er

bi
na

ry
se

ar
ch

co
m

pr
es

sd
ata

co
un

tn
eg

ati
ve cc

r
ed

n

ex
pin

t
fd

ct fri

g7
21

_e
nc

od
e

g7
23

_e
nc

od
e

h2
63

jfd
cti

nt

lcd
nu

m lm
s

lud
cm

p

m
at

m
ul

t
m

d5

m
inv

er

pr
im

e
qu

rt

se
ar

ch
mult

iar
ra

y

se
lec

t
sq

rt st

av
er

ag
e

R
el

a
tiv

e
W

C
E

T
 [%
]

Std. Inlining (50) Std. Inlining (100) ML-based Inlining

Fig. 7.6 Relative WCETs after different function inlining strategies

Hereafter, a random forests classifier integrated in the ML tool RapidMiner uses
these features at ICD-C level. The knowledge base of this classifier was generated
off-line by means of a training set of 41 realistic benchmarks. If the classifier
decided to inline a function at a particular call site, this optimization was applied
to WCC’s IR, followed by a WCET analysis of the resulting optimized program.
This way, all WCET-related data used by the classifier’s features is updated and
possible WCEP changes (cf. Sect. 7.3) are automatically captured.

Figure 7.6 shows the WCETs for several inlining strategies and 26 real-life
benchmarks. The first two bars per benchmark denote standard, WCET-unaware
heuristics inlining only functions with less than 50 and 100 expressions,
respectively. The third bar denotes the WCETs achieved by WCC’s novel ML-based
inlining which does not use any hard-coded size threshold. All results are given as a
percentage, with 100% corresponding to the benchmarks’ WCETs if no function
inlining is applied. All results are generated using WCC’s highest optimization
level -O3.

As can be seen, inlining of functions with less than 50 expressions only has
a marginal impact on the benchmarks’ WCETs. Only for very few benchmarks,
significant WCET reductions were achieved. For most benchmarks, WCETs did
not change after inlining. On average over all considered benchmarks, a WCET of
100.3% of the WCET without inlining was obtained. When inlining functions with
less than 100 expressions, the WCETs of 11 benchmarks increased significantly.
On average, this inlining strategy increases WCETs by 5.5%. Unlike these standard
inlining approaches, ML-based inlining never significantly increases WCETs in any
experiment. Instead, ML-based inlining outperforms both WCET-unaware strategies
by up to 11.4% on average over the entire benchmark set.

7.5 WCET-Aware Loop Unrolling Using Static Loop Analysis

In analogy to function inlining (cf. Sect. 7.4), loop unrolling is also a well-known
optimization requiring sophisticated control mechanisms. It replicates the body of
a loop a number of times and adjusts the loop control accordingly. The number of

7 Reconciling Compilation and Timing Analysis 159

replications is called the unrolling factor u and the original loop is often termed
rolled loop. If the loop iteration count of a rolled loop is not an integral multiple
of u, additional code must be generated to correctly handle left-over loop iterations.
The benefits of loop unrolling are similar to those of function inlining:

• Loop overhead, i.e., incrementing and testing of the loop counter, is reduced.
• Reducing jumps back to a loop’s entry might improve pipeline behavior.
• Unrolling makes instruction-level parallelism in loops explicit and thus poten-

tially enables other compiler optimizations.

The main drawbacks of unrolling are the inherent code size increases potentially
augmenting I-cache capacity misses, and additional spill code if the working set of
registers of an unrolled loop does no longer fit into a processor’s register file. Thus,
the central question of loop unrolling is which unrolling factor to use per loop. The
unrolling factor depends on several parameters, like e.g., the iteration count of a
loop, I-cache memory constraints and an approximation of spill code generation.

Due to lacking sophisticated loop analyses, most compilers only use a constant,
small unrolling factor (usually 2 or 4) which does not sufficiently exploit the opti-
mization potential. In contrast, WCC uses its integrated polyhedral loop analyzer
(cf. Sect. 7.2.4) which is extended to also support context-sensitive loop iteration
counts. In many real-life applications, loop bounds depend on function parameters,
i.e., the bounds are variable and depend on the context in which a function is called.
Simple loop analyzers only support purely constant loop bounds and thus cannot
handle such classes of loops. WCC’s loop analyzer uses parameterized polyhedra to
model loops depending on function parameters. Thus, this loop analyzer provides
many different iteration counts per single loop, depending on a loop’s contexts.

Within WCC, loop unrolling takes place at C code level in ICD-C. To circumvent
negative unrolling effects due to I-cache thrashing, each loop is translated into
assembly code. For assembly code, it is easy to determine the size of the loop header
and of its body in bytes. Using WCC’s back-annotation (cf. Sect. 7.2.5), this data
is shifted back to the C code level. By combining these code sizes with I-cache
related data from WCC’s memory hierarchy infrastructure (cf. Sect. 7.2.1), WCC’s
unrolling is able to estimate how large a loop unrolled by factor u will become at
assembly level so that increases of I-cache misses are avoided.

The possibly many iteration counts per loop provided by WCC’s loop analyzer
are finally used to estimate whether unrolling leads to the generation of additional
spill code during register allocation. For this purpose, a rolled loop L is virtually
unrolled by a factor u being equal to the smallest common prime factor (SCPF) of
all possible iteration counts of L. The resulting unrolled loop is denoted LSCPF. For
both L and LSCPF, assembly code is generated and the amount of spill code in both
loops is counted. If LSCPF contains more spill code than u times L’s amount of spill
code, unrolling led to the generation of additional spill code. Again, this spilling-
related data is back-annotated into WCC’s front-end. Likewise, WCC performs a
WCET analysis of each loop LSCPF and also back-annotates this WCET data.

160 H. Falk et al.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%
120%
130%

ad
pc

m
_d

ec
od

er

ad
pc

m
_e

nc
od

er

ad
pc

m
_g

72
1_

ve
rif

y

co
un

tn
eg

at
ive du

ff

ed
ge

_d
et

ec
t

fd
ct

fir
2d

im

ft_
16

_7
f

iir_
4_

64

iir_
biq

ua
d_

N_s
ec

tio
ns

jfd
cti

nt

lcd
nu

m lm
s

m
at

m
ult

m
inv

er

n_
co

m
ple

x_
up

da
te

s

ijn
da

el_
de

co
de

rr

ijn
da

el_
en

co
de

rr

av
er

ag
e

R
el

at
iv

e
W

C
E

T
 [%
]

Standard LU StandardLU + LA WCET-driven LU

Fig. 7.7 Relative WCETs after different loop unrolling strategies

By combining the available information about iteration counts, code sizes,
I-cache properties, spill code and WCETs, the final unrolling factor uLfinal is com-
puted for each loop L. Therefore, all innermost loops of a program are considered
as unrolling candidates which do not lead to increased spill code. Each unrolling
candidate is assigned a profit. The profit represents the expected WCET reduction
and code size increase when the loop is unrolled by factor uLfinal. Loops with larger
profits promise a higher benefit and are thus unrolled first as long as no additional
I-cache misses are expected. Loops with negative profit will likely have a negative
impact on the WCET and are thus excluded from unrolling [16].

Figure 7.7 shows the WCETs for different unrolling strategies and 19 real-life
benchmarks. The first bar per benchmark denotes a standard, WCET-unaware loop
unrolling (LU) as it can be found in many compilers nowadays. Unrolling is done
as long as the unrolled loop is not larger than 50 ANSI-C expressions. Furthermore,
only a simple, context-insensitive loop analysis is used here. The second bar
per benchmark combines the WCET-unaware standard LU with WCC’s context-
sensitive loop analyzer (LA). The third bar represents WCC’s WCET-aware LU,
including its context-sensitive LA. All results are given as a percentage, with 100%
corresponding to the benchmarks’ WCET if no unrolling is done. All results are
generated using WCC’s highest optimization level -O3 and assuming a 2 kB I-cache.

As can be seen, standard LU has minimal positive effects on WCETs. Only for
few benchmarks, significant WCET reductions were achieved. On average over all
benchmarks, standard LU reduces WCETs by less than 1%. Integrating WCC’s
sophisticated loop analysis into standard unrolling slightly improves the average
WCETs of all benchmarks by 2.9%. Notably improved results are achieved by the
proposed WCET-aware LU. WCET reductions of up to 39.5% were obtained. On
average, WCET-aware unrolling reduces WCETs by 18.3%.

7.6 Invariant Path Based WCET-Aware Loop Unswitching

As motivated in Sect. 7.3, WCET-aware optimizations must be aware of WCEP
switches in the course of an optimization, and they thus have to recompute

7 Reconciling Compilation and Timing Analysis 161

the WCEP whenever necessary. In the field of WCET-aware code optimization,
this requirement is usually met by pessimistically recomputing the WCEP after
each individual code modification. Thus, a time consuming WCET analysis is
performed after any code modification. However, this exhaustive WCEP update
is not necessary. In most situations, the WCEP provably remains stable during
optimization so that many WCEP recomputations can be saved. WCC’s concept
to model those sub-paths of the WCEP that always remain part of the WCEP
independent of any code modification is called the invariant path [18].

Only branches in a program’s CFG are places where the WCEP can possibly
switch (cf. Fig. 7.5). In usual high-level programming languages, such branches
are modeled by if-then- or if-else-statements. The challenge is now to classify each
if-then- and if-else-statement as being part of the invariant path or not.

Depending on the conditional expression of an if-then-statement, either the path
through the then-part is executed, or the mutually exclusive path bypassing the then-
part is taken. For such an if-then-statement, the WCEP either goes along the then-
part, or the then-part does not contribute to the WCET. In terms of the invariant path
paradigm, a WCEP traversing the then-part is also part of the invariant path since
a modification of the code in the then-part can not lead to path switching. This is
because the other feasible path of the if-then-statement does not contain any code
that might become the new WCEP.

For if-else-statements, a context-sensitive WCET analyzer may determine that
the WCEP traverses both the then- and else-part in different execution contexts. In
this situation, WCEP switches cannot emerge since it is known from static WCET
analysis that both parts always contribute to the program’s WCET. Thus, such an
if-else-statement can entirely be declared as part of the invariant path.

In two possible cases, WCET analysis may detect that one of the two paths
through the then- or else-part is infeasible – under all circumstances, the WCEP
traverses exactly one of the two mutually exclusive paths. The first case occurs if
static WCET analysis is able to compute that the condition of the if-else-statement
always evaluates to true or false, respectively. One of the two paths is never executed
and is thus dead code. This dead code along an infeasible path can be eliminated and
the remaining path is part of the invariant path. The second case occurs if the WCET
analyzer is unable to statically analyze the condition of the if-else-statement. In this
situation, it conservatively assumes that the longest of both alternative paths is the
WCEP which is always taken. This is the only situation where a WCEP path switch
can occur. Thus, these types of if-else-statements are not part of the invariant path.

Similar to inlining and unrolling, loop unswitching is a typical ACET optimiza-
tion where a trade-off between the execution time improvement and the resulting
code size increase must be taken into account. It shifts loop-invariant if- or if-else-
statements out of a loop at the cost of loop body duplications. For this reason, loop
unswitching can not be applied exhaustively if strict code size constraints must be
met. Rather, potential unswitching candidates should be evaluated beforehand, thus
enabling to unswitch only those loops leading to maximal runtime improvement
while keeping code size increases minimal. Since the way how loop unswitching is
made WCET-aware is very similar to the techniques already discussed in previous

162 H. Falk et al.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

R
el

at
iv

e
W

C
E

T
 [%
]

100%

300%

500%

700%

900%

1100%

1300%

1500%

tra
ns

up
p

wrb
m

p
blo

ck

m
ac

ro
blo

ck

av
er

ag
e

R
el

at
iv

e
O

pt
im

iz
at

io
n

R
un

tim
e
[%
] Unswitching w / o IP

Unswitching with IP

tra
ns

up
p

wrb
m

p
blo

ck

m
ac

ro
blo

ck

av
er

ag
e

Fig. 7.8 (a) Relative optimization runtimes (b) relative WCETs after unswitching

sections and heavily relies on back-annotation of WCET-related data from WCC’s
back-end into the ICD-C IR, the details of this optimization are omitted here. In
contrast to inlining and unrolling, WCET-aware loop unswitching uses the invariant
path to avoid superfluous WCEP updates.

An analysis of 42 real-life benchmarks revealed that between 85.4% and 88.8%
of the benchmarks’ total WCETs are contributed by pieces of code lying on the
invariant path. Thus, only less than 15% of the average benchmarks’ WCETs stem
from code where WCEP switches may occur.

To show the effectiveness of the invariant path paradigm, the optimization
runtimes of WCET-aware loop unswitching were measured for the most interesting
of these 42 real-life benchmarks, once with and once without exploiting invariant
path information. The 100% line of Fig. 7.8a corresponds to the optimization
time of standard loop unswitching without any WCET heuristics. WCET-aware
unswitching without using invariant paths took on average 872% more runtime than
standard unswitching. Exploiting invariant paths reduces runtimes down to 379%
which corresponds to a speed-up by a factor of 2.3.

Figure 7.8b shows the WCET reductions achieved by WCC’s loop unswitching.
Again, all results are given as a percentage, with 100% corresponding to the WCET
of the original benchmark code after dead code elimination. All results are generated
assuming an 8 kB I-cache. As can be seen, an average WCET reduction of 10.4%
was achieved for all benchmarks. The maximal WCET reduction of 17.3% was
achieved for the block benchmark. It contains seven loop-invariant if-then- or if-
else statements executed between 4 and 16 times in the worst case. By unswitching,
their execution frequencies could be reduced significantly.

7.7 WCET-Aware Register Allocation Based on Graph
Coloring

Among all compiler optimizations, register allocation is considered the most
important one. It intends to use a processor’s physical registers (PHREGs) most

7 Reconciling Compilation and Timing Analysis 163

efficiently to minimize slow main memory accesses. However, memory accesses
can not be totally avoided, since the amount of temporary variables (aka virtual
registers, VREGs) in a program place can exceed the number of available PHREGs.
In such a situation, spill code is inserted swapping a register out to memory and
back.

Currently, register allocators usually decide heuristically where to insert spill
code. Due to a lack of precise timing models, current compilers are unaware of the
impact of generated spill code on a program’s execution time. Thus, badly placed
spill code can have a dramatic impact on a program’s WCET.

The WCC compiler is the first one to include a WCET-aware graph coloring
register allocator. To design a WCET-aware register allocator, the worst-case
execution frequencies per CFG node need to be known. However, WCET analysis
can not be applied to the program P being input for register allocation to obtain this
data. This is because P is not executable since it uses VREGs instead of PHREGs.
WCET analysis needs executable and thus register-allocated code to take the mutual
influences of P and the processor hardware into account. Hence, there are cyclic
dependencies between register allocation and WCET analysis which need to be
broken.

Conventional register allocators try to keep as many VREGs in PHREGs as
possible, and to move a VREG to memory only if this is really necessary. The
traditional way of thinking thus assumes optimistically that all VREGs fit into the
physical register file and that only exceptionally, a VREG is allocated to memory.
However, this traditional approach is not applicable for a WCET-aware register
allocator. The intermediate code produced in the course of all the iterations of
traditional graph coloring is not executable and thus, no WCEP can be determined
(cf. Sect. 7.3).

For WCET-aware graph coloring, the opposite way of thinking is proposed here:
it is pessimistically assumed that all VREGs reside in memory. During register
allocation, VREGs are thus moved from memory to PHREGs. This approach has the
advantage that the intermediate code generated in the course of register allocation is
always executable so that WCEPs can be determined. WCC’s WCET-aware graph
coloring allocator bases on the following two key characteristics [5]:

• Due to its instability, the WCEP has to be recomputed regularly. Since it is
practically infeasible to recompute the WCEP after each individual spill decision,
WCEPs are recomputed after deciding on the allocation of one single basic block.

• For a given WCEP, that basic block b with the highest execution of spill code
in the worst case is chosen. All VREGs v of b are sorted by the number of
occurrences of v in b. This sorting order is passed to a standard graph coloring
allocator allocating b and spilling only those registers with least occurrences, if
necessary.

Figure 7.9 shows the WCETs for WCET-aware register allocation for 46 different
real-life benchmarks as a percentage of the WCET resulting from a traditional graph
coloring allocator spilling that node with the highest degree in the interference
graph. All results are generated using WCC’s highest optimization level -O3.

164 H. Falk et al.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

ad
pc

m
_v

er
ify

cjp
eg

_t
ra

ns
up

p

co
m

pr
es

s
cr

c

dij
ks

tra du
ff

ed
ge

_d
et

ec
t

ed
n

ep
ic

ex
pin

t
fd

ct

fft
_1

02
4

fft
_2

56 fir

fir
2d

im
gs

m

gs
m

_e
nc

od
e

h2
63

h2
64

de
c_

blo
ck

h2
64

de
c_

m
ac

ro

iir_
4_

64

iir_
biq

ua
d_

N

jfd
cti

nt

lat
nr

m
_3

2_
64

lm
sfi

r_
8_

1

lm
sfi

r_
32

_6
4 lpc

lud
cm

p

m
at

m
ult

m
at

rix
2_

fix
ed

m
at

rix
2_

flo
at

m
d5

m
inv

er

m
ult

_1
0_

10

m
ult

_4
_4

nd
es
pr

im
e

qm
f_

re
ce

ive

qm
f_

tra
ns

m
it

qu
rt

rijn
da

el_
en

c

se
lec

t
sh

a

sp
ec

tra
l

sta
rtu

p

v3
2_

be
nc

Ave
ra

ge

R
el

at
iv

e
W

C
E

T
 [%
]

Fig. 7.9 Relative WCETs after WCET-aware register allocation

WCC’s register allocator reduces the WCETs of all benchmarks considerably.
For qurt, a WCET reduction of 6.9% was achieved. For all other benchmarks,
even higher gains were observed. The largest gain in terms of WCET was achieved
for spectral where the WCET after WCET-aware register allocation amounts to
only 24.1% of the original WCET, leading to savings of 75.9%. On average over all
46 benchmarks, a total average WCET reduction of 31.2% was obtained.

7.8 WCET-Aware Scratchpad Memory Allocation

Many processors are equipped with software-controllable memories which are
tightly integrated into the CPU to achieve best possible performance. Such so-called
scratchpad memories (SPMs) are highly efficient and are therefore in general well-
suited for optimizations regarding energy consumption and execution times.

For WCET-centric optimizations, SPMs are ideal since the timing of such
memories is fully predictable – in contrast to caches (cf. Sect. 7.1). Within WCC,
scratchpads are exploited for WCET minimization by placing assorted parts of a
program into an SPM. This section describes an approach based on integer linear
programming (ILP) for moving parts of a program’s code onto scratchpads [7].

In order to move individual basic blocks of a program onto a scratchpad memory,
WCC’s ILP uses a binary decision variable xi per basic block bi . bi is moved onto
the scratchpad memory if xi is equal to 1. The overall goal of this ILP is to find an
assignment of values to the variables xi such that the resulting scratchpad allocation
leads to a global WCET minimization.

A scratchpad assignment is legal if the size of all basic blocks allocated to the
SPM does not exceed the scratchpad’s capacity. This is ensured by the following
capacity constraint:

Pn
iD1 xi 	 si � SSPM, where si denotes block bi ’s size in bytes.

In addition, other constraints need to be added modeling the structure of a
program’s CFG. The generation of these constraints starts with all those basic blocks
bi located in the innermost loops including no other loops inside them. For each such
block bi and each successor bsucc of bi in the CFG, a constraint is set up bounding

7 Reconciling Compilation and Timing Analysis 165

the WCET wi of bi : wi � wsucc costi;main mem � gaini 	 xi . This constraint states
that the WCET of bi has to be larger than that of any of the successors of bi , plus
the contribution of bi to the WCET itself with bi located in main memory, minus
the potential gain when moving bi from main memory onto the scratchpad memory.
This way, constraints for all blocks of the innermost loops can be set up.

For reducible loops L with a unique entry basic block bentry
L , the WCET of the

entire body of loopL is thus represented by the variable wentry
L , under the assumption

that L is executed exactly once. Since a loop executes its body several times in
general, the entire loop’s WCET is defined by: wL D wentry

L 	 Cmax
L where the

iteration count Cmax
L of loop L is taken from WCC’s flow facts (cf. Sect. 7.2.3).

Whenever an outer loop L0 includes an inner loop L, this inner loop L is treated
as a single CFG node with a WCET represented by the ILP variable wL as defined
above.

Analogously, the WCET of a program’s function F is represented within the ILP
by the variable wentry

F if basic block bentry
F is F ’s unique entry point. Whenever a

basic block bi calls some function F , variable wentry
F has to be added to wi in order

to model the interprocedural control flow correctly.
Finally, an entire C program’s WCET is represented in the ILP by the variable

wentry
main. In order to minimize a program’s WCET by the ILP, the following simple

objective function is used: wentry
mainÝ min.

Furthermore, the ILP formulation produced by the WCC compiler also takes
care of adjusted branch instructions making sure that a basic block located in main
memory can still branch to a successor placed onto the SPM, and vice versa.

Figure 7.10 shows the average WCETs for SPM allocation of program code for
73 different benchmarks and various scratchpad sizes. Since the TriCore’s SPM is
large enough to entirely hold all benchmarks, scratchpad sizes are artificially limited
here. Figure 7.10 uses SPM sizes relative to the total code size of the benchmarks.
Hence, the category “20%” shows the WCETs for a scratchpad size of 20% of a
benchmark’s code size. Once again, the 100% base line reflects the WCETs of all
benchmarks without using the SPM at all. All results are generated using WCC’s

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Relative SPM Size [%]

R
el

at
iv

e
W

C
E

T
 [%
]

Fig. 7.10 Relative WCETs after WCET-aware scratchpad allocation

166 H. Falk et al.

highest optimization level -O3 and assuming an access latency of 20 cycles for main
memory and of 1 cycle for the scratchpad.

On average over all 73 benchmarks, steadily decreasing WCETs were finally
obtained with increasing scratchpad sizes. Already for small SPMs, WCETs
decrease to 92.6% of the WCET without any SPM, corresponding to a WCET
reduction of 7.4%. For large SPMs storing the entire benchmark, average WCETs of
only 60% of the original WCET were obtained, leading to overall savings of 40%.

7.9 Cache Partitioning for Multi-Task Real-Time Systems

Caches are a source of unpredictability since it is very difficult to predict if a
memory access results in a cache hit or miss. In systems running multiple tasks
steered by a preemptive scheduler, it is even impossible to determine the cache
behavior since interrupt-driven schedulers lead to unknown points of time for
context switches. Furthermore, it is even unknown at which address the execution
of a preempted task continues, hence it is unknown which cache line is evicted
next. An unknown cache behavior forces a static WCET analyzer to conservatively
assume a cache miss for every memory access, thus implying a highly overestimated
system’s WCET.

Cache partitioning is a technique to make the I-cache behavior more predictable.
Each task of a system is assigned to a unique cache partition. The tasks in such a
system can only evict cache lines residing in the partition they are assigned to. As
a consequence, multiple tasks do not interfere with each other any longer w.r.t. the
cache during context switches. This allows to apply static WCET analyses for each
individual task of the system in isolation. The overall WCET of a multi-task system
using partitioned caches is then composed of the WCETs of the single tasks given a
certain partition size, plus the overhead required for scheduling including additional
time for context switches.

Cache partitioning can be realized in software without any modification of a
cache’s hardware. For this purpose, the code of each task has to be scattered over the
address space such that tasks are solely mapped to only those cache lines belonging
to the task. Thus, a task’s executable code is split into many chunks which are stored
in non-consecutive regions in main memory. To make sure that a task’s control flow
remains correct after splitting it into chunks, additional jump instructions between
these chunks must be inserted into the code. To generate non-contiguous chunks of
a task’s code, the linker needs to be provided with dedicated relocation information
for each task. Since WCC automatically generates linker scripts (cf. Sect. 7.2.1),
software-based cache partitioning is easy to realize in this compiler.

The remaining challenge consists of determining a partition size per task such
that a multi-task system’s overall WCET is minimized. In the following, preemptive
round robin scheduling of tasks is assumed and the period pi of each task ti 2
ft1; : : : ; tmg is known a priori. The length of the entire system’s hyper-period is
equal to the least common multiple of all tasks’ periods pi . The schedule count ci

7 Reconciling Compilation and Timing Analysis 167

then reflects the number of times, each task ti is executed within a single hyper-
period. Furthermore, possible cache partition sizes sj measured in bytes are given:
sj 2 fs1; : : : ; sng.

WCET-aware software based cache partitioning is modeled within WCC using
integer linear programming [22]. A binary decision variable xi;j is set to 1 iff task ti
is assigned to a partition of size sj . To ensure that a task is assigned to exactly one
partition, a constraint of the following shape is added for each task ti :

Pn
jD1 xi;jD1.

Another constraint in the ILP ensures that the amount of used cache partitions
does not exceed the I-cache’s total capacity S :

Pm
iD1

Pn
jD1 xi;j 	 sj � S .

It is assumed here that the WCET WCETi;j of each task ti if executed once using
a cache partition of each possible size sj is given. This is achieved by performing
a WCET analysis of each task for each partition size before generating the ILP
for software based cache partitioning. A task ti ’s WCET WCETi depending on the
partition size used by the task can thus be expressed as: WCETi D Pn

jD1 xi;j 	
WCETi;j .

The objective function of the ILP models the WCET of the entire task set for one
hyper-period. This overall WCET is defined as: WCET D Pm

iD1 ci 	 WCETi . The
ILP finally only has to minimize this variable: WCETÝ min.

Figure 7.11 shows the WCETs for WCET-aware cache partitioning and three
different benchmark suites. Since no multi-task benchmark suites currently exist,
randomly selected task sets from single-task benchmark suites were used. Fig-
ure 7.11 shows results for task sets consisting of 5, 10 and 15 tasks, respectively.
Each individual point in the figure’s curves denotes the average value over 100
randomly selected task sets of a certain size. Benchmarking was done for I-cache
sizes ranging from 256 bytes up to 16 kB. All results are given as a percentage, with
100% corresponding to the WCETs achieved by a standard heuristic that uses a
partition size per task which depends on the task’s code size relative to the code size
of the entire task set. All results are generated using WCC’s highest optimization
level -O3.

As can be seen, substantial WCET reductions of up to 36% were obtained. In
general, WCET savings are higher for small caches and lower for larger caches.

50%

60%

70%

80%

90%

100%

256 512 1024 2048 4096 8192 16384

Cache Size [Bytes]

256 512 1024 2048 4096 8192 16384

Cache Size [Bytes]

256 512 1024 2048 4096 8192 16384

Cache Size [Bytes]

DSPStone Floating Point

R
el

at
iv

e
W

C
E

T
 [%
]

5 Tasks
10 Tasks
15 Tasks

5 Tasks
10 Tasks
15 Tasks

5 Tasks
10 Tasks
15 Tasks

MRTC UTDSP

Fig. 7.11 Relative WCETs after cache partitioning for different benchmark suites

168 H. Falk et al.

For DSPstone, WCET reductions between 4% and 33% were achieved. For the
MRTC benchmarks, an almost linear correlation between WCET reductions and
cache sizes was observed, with maximal WCET savings of 34%. For the large
UTDSP benchmarks, WCET reductions of up to 36% were finally observed. In most
cases, larger task sets exhibit a higher optimization potential so that WCC’s cache
partitioning achieves higher WCET improvements as compared to smaller task sets.

7.10 Conclusions and Future Work

Real-time code needs to meet real-time constraints. Optimization potential is lost
if these time constraints are considered only after code has been generated. We
propose to reconcile compilers and timing analysis such that WCET information
can already be exploited during compiler optimizations. Up till now, not much
was known about the gains in terms of WCET which can be achieved in this
way. This chapter provides an overview over research work exploring the potential
of such integrated compilation and timing analysis. The chapter presents the
WCET-aware C Compiler WCC aiming at code optimization minimizing worst-
case execution times. WCET-aware optimization requires a complex compiler
infrastructure. The exploitation of memory hierarchies for WCET reduction requires
detailed information about memories, usually available only to the linker, inside the
compiler. Obviously, a tight integration of static WCET analyses into the compiler is
key for WCET-aware optimization. Since WCET analysis relies on flow facts, WCC
provides sophisticated mechanisms for source-level flow fact specification. Besides
manual flow fact specification by the user, WCC includes a highly performant loop
analyzer deriving flow facts automatically. A back-annotation module is finally
required to perform WCET-aware optimization at source code level.

On top of this infrastructure, the WCET-aware optimizations function inlining,
loop unrolling, loop unswitching, register allocation, scratchpad allocation and
cache partitioning are integrated into WCC. Each of them reduces the WCETs
of typical benchmarks between 6% and 40% on average, clearly showing the
performance of the entire WCC framework.

In the future, WCET-aware optimizations for multi-task and multi-core systems
will be integrated into WCC. Besides pure WCET-aware optimizations, we will
consider multi-objective optimizations to achieve trade-offs between real-time
constraints and other optimization criteria like e.g., energy dissipation.

Acknowledgements The authors would like to thank AbsInt Angewandte Informatik GmbH for
their support concerning WCET analysis using the aiT framework. The research leading to these
results has received funding from the European Community’s ArtistDesign Network of Excellence
and from the European Community’s Seventh Framework Programme FP7/2007-2013 under grant
agreement no. 216008 and from the German Research Foundation DFG under reference number
FA 1017/1-1.

7 Reconciling Compilation and Timing Analysis 169

References

1. AbsInt Angewandte Informatik GmbH: aiT: Worst-case execution time analyzers. http://www.
absint.com/ait (2012)

2. Banakar R, Steinke S, Lee BS, Balakrishnan M, Marwedel P (2002) Scratchpad memory:
A design alternative for cache on-chip memory in embedded systems. In: Proceedings of
the international symposium on hardware/software codesign (CODES), Estes Park, USA,
pp 73–78

3. Commission of the European Community: Updated Work Programme 2009 and Work Pro-
gramme 2010, ICT – Information and Communications Technologies. http://cordis.europa.eu/
fp7/ict (2009)

4. Edwards SA (2001) Dataflow languages. http://www.cs.columbia.edu/�sedwards/classes/
2001/w4995-02/presentations/dataflow.ppt (2001)

5. Falk H (2009) WCET-aware register allocation based on graph coloring. In: Proceedings of
the 46th design automation conference (DAC), San Francisco, pp 726–731

6. Falk H (2010) WCET-aware compilation. http://ls12-www.cs.tu-dortmund.de/research/
activities/wcc (2010)

7. Falk H, Kleinsorge JC (2009) Optimal static WCET-aware scratchpad allocation of program
code. In: Proceedings of the 46th design automation conference (DAC), San Francisco, pp
732–737

8. Falk H, Lokuciejewski P, Theiling H (2006) Design of a WCET-aware C compiler. In:
Proceedings of the 4th IEEE workshop on embedded systems for real-time multimedia
(ESTIMedia), Seoul, Korea, pp 121–126

9. Holsti N, Gustafsson J, Bernat G et al (2008) WCET tool challenge 2008: Report. In:
Proceedings of the 8th international workshop on worst-case execution time analysis (WCET).
Prague, Czech Republic

10. Informatik Centrum Dortmund e. V.: ICD-C Compiler framework. http://www.icd.de/es/icd-c
(2012)

11. Informatik Centrum Dortmund e. V.: ICD-LLIR Low-level intermediate representation. http://
www.icd.de/es/icd-llir (2012)

12. IT Facts: Home page. http://www.itfacts.biz (2012)
13. Lee EA (2005) Absolutely positively on time: What would it take? Embedded Syst Column,

IEEE Comp 38(7):85–87
14. Lee EA (2006) The future of embedded software. ARTEMIS conference, Graz, http://ptolemy.

eecs.berkeley.edu/presentations/06/FutureOfEmbeddedSoftware Lee Graz.ppt (2006)
15. Lee EA (2007) Computing foundations and practice for cyber-physical systems: A preliminary

report. Tech. Rep. UCB/EECS-2007-72, EECS Department, University of California, Berkeley
16. Lokuciejewski P, Marwedel P (2009) Combining worst-case timing models, loop unrolling, and

static loop analysis for WCET minimization. In: Proceedings of the 21st euromicro conference
on real-time systems (ECRTS), Dublin, Ireland, pp 35–44

17. Lokuciejewski P, Cordes D, Falk H, Marwedel P (2009a) A fast and precise static loop analysis
based on abstract interpretation, program slicing and polytope models. In: Proceedings of the
international symposium on code generation and optimization (CGO), Seattle, pp 136–146

18. Lokuciejewski P, Gedikli F, Marwedel P (2009b) Accelerating WCET-driven Optimizations by
the Invariant Path – a case study of loop unswitching. In: Proceedings of the 12th international
workshop on software & compilers for embedded systems (SCOPES), Nice, France, pp 11–20

19. Lokuciejewski P, Gedikli F, Marwedel P, Morik K (2009) Automatic WCET reduction by
machine learning based heuristics for function inlining. In: Proceedings of the 3rd workshop
on statistical and machine learning approaches to architectures and compilation (SMART),
Paphos, Cyprus, pp 1–15

20. Marwedel P (2011) Embedded system design. 2nd edition, Springer, Heidelberg
21. National Research Council (2001) Embedded, everywhere. National Academies Press

http://www.absint.com/ait
http://www.absint.com/ait
http://cordis.europa.eu/fp7/ict
http://cordis.europa.eu/fp7/ict
http://www.cs.columbia.edu/~sedwards/classes/2001/w4995-02/presentations/dataflow.ppt
http://www.cs.columbia.edu/~sedwards/classes/2001/w4995-02/presentations/dataflow.ppt
http://ls12-www.cs.tu-dortmund.de/research/activities/wcc
http://ls12-www.cs.tu-dortmund.de/research/activities/wcc
http://www.icd.de/es/icd-c
http://www.icd.de/es/icd-llir
http://www.icd.de/es/icd-llir
http://www.itfacts.biz
http://ptolemy.eecs.berkeley.edu/presentations/06/FutureOfEmbeddedSoftware_Lee_Graz.ppt
http://ptolemy.eecs.berkeley.edu/presentations/06/FutureOfEmbeddedSoftware_Lee_Graz.ppt

170 H. Falk et al.

22. Plazar S, Lokuciejewski P, Marwedel P (2009) WCET-aware software based cache partitioning
for multi-task real-time systems. In: Proceedings of the 9th international workshop on worst-
case execution time analysis (WCET), Dublin, Ireland, pp 78–88

23. Steinke S, Wehmeyer L, Lee BS, Marwedel P (2002) Assigning program and data objects to
scratchpad for energy reduction. In: Proceedings of design, automation and test in Europe
(DATE), Paris, France, pp 409–415

24. Wehmeyer L, Marwedel P (2005) Influence of memory hierarchies on predictability for time
constrained embedded software. In: Proceedings of design automation and test in Europe
(DATE), Munich, Germany, pp 600–605

Chapter 8
System Level Performance Analysis
for Real-Time Multi-Core and Network
Architectures

Jonas Rox, Mircea Negrean, Simon Schliecker, and Rolf Ernst

8.1 Introduction

Advances in chip design and communication technology allow the integration of
a growing number of functions in distributed embedded systems, ranging from
mobile phones through multimedia home platforms to automotive systems. The
resulting system complexity makes it a major challenge to build reliable systems, in
particular in the context of permanently decreasing time-to-market and production
costs. Embedded systems often have to also satisfy real-time requirements, which
makes performance verification necessary to exclude critical system failures.

These problems can especially be observed in automotive systems, in which the
number and complexity of electronic functions is rapidly increasing. Functions that
were introduced as innovations in luxury class cars become standard functions a
few years later. With this increase in functions, network topologies are continuously
evolving, be it by adding new segments and routing functionalities (gateways) or by
changing the protocol (e.g. from CAN to FlexRay). In addition, the semiconductor
industry has started offering multi-core solutions for automotive processors which
aim at providing new functionality by clustering previously distributed applications
into a single chip or to allow the parallelization of complex computations over
multiple cores, for example in high-performance domains such as engine control or
advanced driver assistance systems. Another source of complexity comes from the
supply chains that often contain several companies which design their individual
components based on requirement definitions from the OEMs. Clearly, systems’
integration has become a key challenge.

J. Rox (�) �M. Negrean � S. Schliecker � R. Ernst
Institute of Computer and Network Engineering, Technische Universität Braunschweig,
D-38106 Braunschweig, Germany
e-mail: rox@ida.ing.tu-bs.de; negrean@ida.ing.tu-bs.de; schliecker@ida.ing.tu-bs.de;
ernst@ida.ing.tu-bs.de

S. Chakraborty and J. Eberspächer (eds.), Advances in Real-Time Systems,
DOI 10.1007/978-3-642-24349-3 8, © Springer-Verlag Berlin Heidelberg 2012

171

172 J. Rox et al.

To ease the design of automotive systems in the future, the AUTOSAR part-
nership [1], an alliance of OEM manufacturers and Tier-1 automotive suppliers
with many associates, has established an industry standard for automotive E/E
architectures. AUTOSAR not only provides a new degree of flexibility giving new
opportunities for system optimization, but does also define a common formal model
used to describe automotive systems.

Such modeling standards can build the foundation for serious application of
formal methods, i.e. to investigate the timing and explore mapping options. Thus,
methods that have been suggested in research for some time, now become appli-
cable to actual productive environments. Different formal methods are available,
with simulation still being the method of choice for performance verification in
industrial designs today. But its applicability is limited when no executable code
or architecture is available. Furthermore, it fails to deliver robust guarantees, as
corner-case behavior is not covered. Instead, formal analysis has been introduced as
a modeling alternative to close these verification gaps. By computing conservative
performance bounds, formal analysis guarantees that the system’s performance
behavior during any execution scenario completely lies within these bounds. This is
especially important for critical real-time systems. Since it can cope with incomplete
data specification, formal analysis can be applied early in the design process. It is,
hence, suitable for early design space exploration and optimization.

In the past decade, several approaches to formal analysis have been proposed,
based on different system models. Each of these approaches has shown high model-
ing and analysis accuracy for specific application domains, but less applicability for
other application areas. Examples are holistic performance analysis [2, 3] and com-
positional performance analysis [4,5]. Despite its better ability to take global system
effects into account, the holistic performance analysis approach lacks flexibility due
to the need to adapt scheduling analysis to each potential system configuration. The
compositional performance analysis approach on the other hand, is less accurate
for system configurations requiring global system knowledge, but it offers higher
flexibility and scalability making it more appropriate for the analysis of typical het-
erogeneous industrial designs. However, to obtain valuable results, the underlying
analysis model used for compositional performance analysis must fit to the system
under verification. This makes the continuous development of extensions necessary
to adapt the used models to the system structures we find in industry today and in
the near future. In this chapter, we will highlight two recent extensions to an existing
formal performance analysis approach that cover the analysis of multi-core architec-
tures and the incorporation of modern communication stacks into system analysis.
First, we give a brief overview of existing compositional system level performance
analysis techniques for distributed systems and, then, briefly introduce the common
system model on which these methods rely, in Sect. 8.2. In Sect. 8.3 we identify the
shortcomings of the traditional analysis models with respect to capturing the timing
effects of the communication stack, as defined in AUTOSAR and we present an
appropriate extension to an existing analysis model to remedy these shortcomings.
In Sect. 8.4 we discuss performance analysis challenges which arise with the advent
of the multi-core components and elaborate on another extension of the existing

8 System Level Performance Analysis for Real-Time 173

analysis model dedicated to such architectures. Finally, in Sect. 8.5 we survey exper-
iments from academic and industrial use cases and afterwards we draw conclusions.

8.2 Compositional System Level Performance Analysis

The foundation for compositional system level performance were layed by Gresser
[6] in the group of Georg Frber, TU Munich. Tasks were defined as locally
analyzable entities connected via event streams. Event vectors were used to model
the task activations sequences. Events stream models suitable to capture the time
relation between events and local analysis coupled by such event stream models are
the key ingredients of compositional performance analysis today.

Gresser performed EDF scheduling analysis for tasks sets with periodic, jit-
ter and burst activations to demonstrate the efficiency of his model. From the
mathematical point of view, the stream representations are used to capture the
dependencies between the set of equations that describe the individual components
timing. Compared to the holistic approach, the compositional models are modularly
structured with respect to the architecture. This not only significantly helps the
designers to understand the complex dependencies in the system, but it also enables
a surprisingly simple solution.

Note that the compositional analysis approach is conceived to be suitable also
for addressing systems that do not adhere to a composition strategy (as suggested in
[7] or [8]), i.e. where dependencies between components exist that make an isolated
component-based verification intractable. The event-model based analysis allows
to efficiently capture component inter-dependencies (for example due to the use of
shared resources), allowing the composition of the local analysis modules (i.e. local
timing analyses). The analysis composition then works by integrating different local
scheduling analysis techniques into an iterative system-level analysis (see Fig. 8.1).

The output event stream of a given component which is derived based on the
input event stream and the results of the local analysis, turns into an input event
stream of a connected component. Schedulability analysis can be seen as a flow-
analysis problem for event streams, and, in principle, can be iteratively solved using
event stream propagation. Following the same principle, two other compositional
approaches have emerged.

environment model

local
scheduling analysis

output traffic description

until convergence or
non-schedulability

input traffic description

Fig. 8.1 Compositional
system level performance
analysis loop

174 J. Rox et al.

Thiele et al. [9] defined a similar model, in which Gresser’s event vectors are
replaced with arrival curves. Furthermore, the processing capacity of the resources
has been modeled using service curves. The new performance analysis combines
the arrival and service curves to determine the timing behavior at component’s
outputs. The model was named Real-Time Calculus (RTC), due to its close relations
to Network Calculus [10].

Richter et al. [11] proposed a compositional analysis model based on event
model interfaces, called SymTA/S. The interfacing between the local components
is realized using a set of comprehensible standard event models. Event model
interfaces (EMIF) and event adaptation functions (EAF) are used to perform
transformations between event models. The analysis compositionality is realized by
combining local scheduling analysis techniques and event model propagation into a
system-level analysis loop as depicted in Fig. 8.1.

Since their first introduction, these approaches have been constantly extended.
For example, based on the event vectors introduced by Gresser, Albers et al. [12,13]
defined a new event model to describe arbitrary event arrivals in a very compact
way, by using a hierarchical parameterization. For RTC, as well as for SymTA/S,
there have also been numerous extensions, e.g. [14–17].

Despite their different way of actually implementing the analysis, the approaches
introduced above share a common underlying way of modeling a system and
capturing its properties:

� A software description, typically a set of tasks or a set of communication entities,
along with parameters such as priority, core execution time, etc. for tasks, and
time slots, frame length, etc. for communication

� An activation model for the primary stimulation of tasks and communication (e.g.
periodic), i.e. stimulation not depending on any other tasks in the system under
consideration, as well as the secondary stimulation of tasks and communications
(and vice versa) depending on other tasks along event-triggered paths

� For system-level approaches: a hardware description, typically a set of CPU
nodes, buses/networks, and connectivity and mapping information (tasks to CPU
nodes, communication to buses), along with parameters such as processing
power, scheduling strategy, protocol configuration, etc.

In the next sections, we take a closer look on two specific features of upcom-
ing automotive systems which make adaptations to the existing analysis model
mandatory to obtain valuable analysis results. We also discuss recently developed
corresponding extensions to compositional system level performance analysis.

8.3 Model Extension for Communication Stacks

The traditional compositional analysis models used by the formal approaches
introduced in the previous section, models bus communication by a simple com-
munication task that is directly activated by the sending task, and which directly

8 System Level Performance Analysis for Real-Time 175

T3

ECU2

T4

T1

ECU1

T2

Bus

C1

C2

Fig. 8.2 Traditional model

activates the receiving task. Figure 8.2 shows a simple example system that uses this
model for communication, where each output event streams of the sending tasks,
T1 and T 2, directly becomes the input event streams of the communication tasks
on the bus.

However, modern communication stacks employed in todays embedded control
units (ECU) make this abstraction inadequate. For instance, AUTOSAR defines a
detailed API for the communication stack [18], including several frame transmission
modes (direct, periodic, mixed, none) and signal transfer properties (triggered,
pending) with key influences on communication timing. Hence, the transmission
timing of messages over the bus doesn’t have to be directly connected to the output
behavior of the sending tasks anymore, but it may be completely independent of the
tasks output behavior, e.g. the sending of a message is triggered by a periodic timer.
It is even possible to send several output signals in one message.

8.3.1 Timing Implications of Modern Communication Layers

Figure 8.3 shows an adequate model accounting for the presence of communication
layers on the sending and receiving ECUs. Instead of directly triggering the message
transmission (activating the communication task), T1 and T 2write their output data,
called signals here, into a register provided by the communication layer, overwriting
previous output data. Each register is assigned a fixed position in a so called frame.
The communication layer triggers the sending of a frame (modeled by the execution
of the communication task C), which then transmits all register values assigned
to that frame. A frame can be of different types: periodic, direct or mixed. The
signals generated by the sending tasks can either be defined triggering or pending.
The sending of frames is triggered according to the following rules: When the frame
type is periodic, frames are just send periodically, not influenced by the signal output
timing of the sending tasks. If the frame type is direct, for each arrival of a triggering
signal, a frame is send. And finally a mixed frame is a combination of the two first
ones, so it is transmitted periodically and also whenever a triggering signal arrives.

When a frame is received by the communication layer of the receiving ECU, it
transmits the included data into registers, again overwriting the values stored there
previously. Either does the receiving task fetch the register value from time to time
or each time new data is written into the register, the process is activated, e.g. by an
interrupt.

176 J. Rox et al.

T3

ECU2

T4

T1

ECU1

T2

Bus

C

ES1

ES2

ESin,C

ESout,C

ES3

ES4

Fig. 8.3 Communication via
ComLayer

Hence, depending on the configuration, the activation timing of the communica-
tion task C in our analysis model, may or may not be influenced by the output event
streamsES1 andES2 of the tasks T1 and T 2. Some kind of join operation is needed
that, based on the communication layers configuration determines the activation
timing of the communication task. Since, it is also possible to map several signals
to the same frame, there isn’t necessarily a one-to-one relation between signal and
frame transmission, instead, each frame can contain one, several or no new signal.
This information must somehow be captured to enable the decomposition of the
previously merged streams on the receiving side to determine viable bounds for the
signal arrival times. All the described are not only permitted but actually used in
automotive software.

By using traditional event stream models like the ones proposed in [4, 6, 19] or
[12] these effects cannot be appropriately captured. Using event stream concate-
nations as presented in [20] or [5] the input event stream of the communication
task could be appropriately determined and described with the existing flat event
streams. But the individual timing of signal arrivals on the receiving side can
only be bounded by the timing of arriving frames. Using type rate curves [16] or
different execution modes [21], different execution modes of the communication
task could be considered, but the problem of decomposing the individual streams on
the receiving side still persists.

That means, to conservatively bound the maximum number of signal arrivals in
a given time interval when only flat event streams are used, it must be assumed that
every arriving frame contains a new signal. To conservatively bound the minimum
number of signal arrivals it must be assumed that none of the frames contains a
new signal, since no other information is available in the output event stream of the
communication task. Obviously, this can lead to large overestimation.

8.3.2 A Model for Composition and Decomposition of Event
Streams

To be able to cover the previously described hierarchical structure of the commu-
nication behavior, in [22] we introduced hierarchical event streams (HES) modeled
by a hierarchical event model (HEM). This HEM determines the timing of message
transmissions (activation timing of the communication task), captures the timing

8 System Level Performance Analysis for Real-Time 177

of the signals transmitted by this messages, and most importantly, defines how
effects on the message timing influences the timing of the transmitted signals. The
latter allows to derive the timing of the individual embedded signal streams when
unpacking the signals on the receiving side, giving much tighter timing bounds for
arrival timing of signals.

To avoid confusion here, we note that these hierarchical event streams do not
require or imply that the scheduling itself is hierarchical. Quite to the contrary,
the scheduling of frames on a CAN bus follows a single, non-hierarchical policy,
i.e. static priority non-preemptive. We have introduced hierarchical event models to
account for the multiplexing nature of the signals that are grouped into one frame
within the COM layer. We then use these hierarchical event streams within the
analysis of non-hierarchical scheduling using known techniques.

Figure 8.4 illustrates the structure of the hierarchical input event stream of the
communication task C resulting from the combination of the output streams of
tasks T1 and T 2 from the example depicted in Fig. 8.3. The general idea is, that
a hierarchical event stream has one outer representation in form of an event stream
and for each combined event stream it has one inner representation, also in form of
an event stream. The relation between the outer event stream and the inner event
streams depends on the hierarchical event stream constructor (HSC) that combines
the event streams.

The HSC not only allows to incorporate timing effects of the communication
layer, but also defines how the inner streams are affected if the timing characteristics
of the outer event stream are changed, e.g. due to scheduling on the bus. Each of
the involved event streams is defined by the functions ı�.n/ and ıC.n/ defining

Distances between all activations of C

Distances between activations of
C corresponding to transmissions

of a new signal from task 1

n

n

ESouter

ES ′1 ES ′2

d (n) d (n)

d (n) d + (n)

d − (n)

n

HSC

Distances between activations of
C corresponding to transmissions

of a new signal from task 2

2 3 4 5 6

2 3 4 5 6 2 3 4 5 6

Fig. 8.4 The hierarchical input event stream ESin;C (as denoted in Fig. 8.3)

178 J. Rox et al.

the minimum, respectively maximum distance between n consecutive events. The
events of a specific inner event stream model the timing of only those events
that are somehow associated with the corresponding input event stream that was
combined. Here, the outer event stream ESouter models the timing of all activations
of the communication task C the two inner event streams ES 01 and ES 02 model the
timing of only those activations of the communication task C that represent the
transmission of a new signal from the task T1, respectively task T 2. An important
feature of the HEM is that the local component analysis do not have to be adapted
in any way. If a task has a hierarchical input stream, for the local analysis of the
component this task is mapped on, the outer representation of its hierarchical input
stream is used as description for the tasks activation timing. Thus, the response
times can be obtained by using the same techniques as used for non-hierarchical
event streams, e.g. from the algebraic solution of the response time formulas using
the sliding window technique presented by Tindell [23].

The timing of message arrivals on the receiving side is modeled by the outer
event stream of the hierarchical output model of the communicational task, which
is obtained by traditional output model calculation as described in [15], based on
the outer stream of the hierarchical input model and the analysis results. The timing
of signal arrivals from a specific runnable is modeled by the corresponding inner
stream of the hierarchical output model of the communicational task. These streams
are obtained by applying so called update functions on the corresponding inner
streams of the hierarchical input stream. These update functions essentially adapt
the inner streams, taking into account the changes to the message timing, e.g. due
to scheduling effects.

This output calculation for hierarchical streams has been generalized in [24].
The key idea of the generalized procedure is to express the output model calculation
of an event stream as the composition of the two, so called, elementary functions
and � . Furthermore, for each of the elementary functions, the HSC defines a
corresponding update function to calculate the adapted inner streams: The function
B# and the function B� .

An important property of these update functions is that they change the inner
streams only by decreasing (increasing) the minimum (maximum) distance between
events and by enforcing a minimum separation between two consecutive events;
changes that can again be expressed using only # and � . Therefore, if one of
the inner streams is the outer stream of another hierarchical event stream, it is
assured that its HSC provides some update functions to propagate the changes to
its inner streams. This allows to handle streams with multiple hierarchical layers
in a uniform manner. Figure 8.5 depicts the hierarchical input and output streams
of the communication task C from the example shown in Fig. 8.3. On the left side
the hierarchical input stream, which consists of the outer event stream ESouter ,
modeling the timing of all activations of the task C and two inner event streams
ES

0

1 andES
0

2, modeling the timing of only those activations of the task C due to an
event originated form the task T1, respectively task T 2, is shown. The scheduling
analysis of the communication resource the task C is mapped on uses the outer
event stream as activating event stream of the task and delivers a corresponding

8 System Level Performance Analysis for Real-Time 179

n

n
ESouter

n n

n
ES 'outer

n

soJ

BsoBJ

ES '1 ES '2 ES ' '1 ES ' '2

ESin,C ESout,C

Bus

C

d (n) d (n)

d (n) d (n) d (n) d (n)

Fig. 8.5 From hierarchical input stream to hierarchical output stream

WCRT and a BCRT. To obtain the hierarchical output stream, first its outer stream
is calculated by applying the composition of the two elementary operations # and
� with the response time jitter and the minimum distance as parameters on the
outer stream of the hierarchical input stream. Then, the inner streams are adapted
accordingly with the composition of the update functions B# and B� which are
defined by the HSC that was previously used to merge the streams.

With the information available in the hierarchical stream at the output of the
communicational task, we are now able to determine the activation timing of the
individual receiving tasks T 3 and T 4 much more precisely. Each inner stream
directly bounds the timing of those message arrivals that contain a new signal
value from the corresponding sending task. So we can directly map these inner
streams to the input streams of the receiving tasks. This mapping is performed
by an hierarchical stream deconstructor (HSD) [24] which also allows to consider
additional effects, e.g. a delay of the communication layer of the receiving ECU.
It has been shown in [22], that when communication layers are considered in the
system performance analysis, the use of the above presented hierarchical event
streams can lead to significantly tighter bounds of the activation timing, especially
for the receiving tasks. This in turn leads to tighter performance estimations for
system characteristics including end-to-end deadlines.

8.4 Performance Estimation of Multi-Core Systems

The demand for powerful domain controllers in real-time embedded systems
encourages the introduction of multi-core processors. While these generally deliver
additional performance energy and cost efficiently, their application also introduces

180 J. Rox et al.

a new level of inter-core dependencies that was not previously observed in dis-
tributed systems. The use of physically shared hardware (such as the shared
memory) or synchronization via logical resources (i.e. semaphores) introduces
dependencies between task executions on different cores which may lead to hard-
to-find timing problems including missed deadlines that can make the entire system
fail [25,26]. Applying such components in reliable real-time systems, for example in
the automotive domain, requires careful investigation of the implications on system
timing.

8.4.1 Timing Implication of Multi-Core Components

Multi-core components provide a new dimension of scheduling freedom, as tasks
can now be assigned over time and over different processors. A multitude of
scheduling policies takes advantage of this freedom to achieve high utilization
under real-time guarantees [27]. For most, synchronization schemes are available
to support the use of shared resources [28]. The choice of the optimal scheduling
scheme highly depends on the actual set of tasks in the system, in particular their
number, local execution requirements, use of the shared resources, or inter-task data
dependencies [26]. Literature has shown that scheduling schemes are incomparable
in general, in the sense that different schemes provide optimal solutions for different
task sets (e.g. [29, 30]). Considering the automotive dedicated architectures, static
task partitioning is expected to first find its way into automotive multi-core real-time
systems [31], as the benefits of reusing existing applications, tools, and methods
outweighs the potential loss in efficiency. But also under the partitioned scheme,
a new look at system timing is required, as the use of shared resources introduces
previously unknown dependencies. This is illustrated in the following example.

Assume that a multi-core system has been statically partitioned into two task sets
on fixed priority preemptive operating systems as depicted in Fig. 8.6. The tasks
mapped on the two available processors make use of a common shared resource,
which we assume to be a memory in the following example.

Fig. 8.6 Dual-core system
with four tasks and a shared
resource

8 System Level Performance Analysis for Real-Time 181

t

Preemption

Memory

CPUa

CPUb

Execution StallingFig. 8.7 Conflicting accesses
among tasks mapped on
different processors

Under these assumptions, the worst case response time of a task mapped on any
of the processor cores (CPUa or CPUb in Fig. 8.6) is classically determined by the
task’s worst case execution time plus the maximum amount of time the task can be
kept from executing due to preemptions by higher priority tasks. Furthermore, when
a task performs accesses to shared resources it is additionally delayed (blocked)
when waiting for the required resources. When tasks mapped on the same processor,
as can be seen in Fig. 8.7 on CPUa, access the same remote memory, the finishing
time of the lower priority task increases, due to itself fetching data from the remote
memory, and due to the prolonged preemptions by the higher priority task (as in
the given example, its requests also stall the processor). Additionally, whenever the
memory is also used by a task on the other processor (CPUb in Fig. 8.7), the first
CPU can be stalled for a longer time, further increasing the task response times.
Moreover, because the execution of the low priority task is now stretched over
time, it may also suffer from additional preemptions by the high priority task. These
effects can add up and may lead to deadline violations.

This example shows that the task’s response times are influenced by the delay
caused by the use of shared resources. In the general case, this depends on the
amount of traffic imposed on the shared resources by e.g. other processors or
hardware units in the system. The respective local analysis of the other processors
however also requires the shared resource delay, which closes a cycle: The timing
interference in the system translates into a mutual dependency between the local
analyses of the different cores. To provide the reliable upper bound on the resource
access timing which is required in real-time systems, additional measures must be
taken.

Previous approaches addressing the use of shared memories rely on a bounded
influence between the processors during run-time e.g. by time division of the bus
schedule [32]. For priority-based arbitration, analytical methods are also available
[33]. For this, the amount of resource accesses per task activation need to be known,
as well as the number of task activations. The latter however can not trivially
be bounded in event driven multiprocessor systems where, for example, a task
activation is the result of a message produced on another processor.

The problem is aggravated when the shared resource is a memory, and accesses
to it are the result of local cache misses. In this case, timing of the memory accesses
is the highly dynamic and the joint scheduling will lead to competition for the
local cache lines. Apart from cache partitioning or locking [34], a solution to this

182 J. Rox et al.

problem is to rely on non-preemptable tasks segments [35], or to rely on results
from the research on single-processor worst case execution time analysis, in which
caches and cache-related preemption delays have already been investigated [36].
For logical protection of shared resources, i.e. the execution of exclusive critical
sections, a number of high-level protocols have been proposed [37, 38]. These
methods provided an arbitration scheme, possibly tailored towards a particular task
scheduler, and an analysis to calculate the upper bounds on the time before a lock
is granted. As opposed to single processor protocols (such as the priority ceiling
protocol [37]), the blocking time in multiprocessor setups usually depends on the
pattern of task activations.

This dependency is a major hurdle in a general multiprocessor shared resource
analysis. Given event-driven task activations and dynamic scheduling, the amount
of interfering task activations is unknown without a system level analysis, which
may only be done when every task’s resource usage is known — this again leads
to a cyclic problem dependency. Thus the problem can not be generally solved with
classical methods.

8.4.2 System-Level Performance Analysis in the Presence
of Multi-Core Systems

The previous section has highlighted the complex dependencies that arise in multi-
core setups through the common use of shared resources. Other than in traditional
system analysis, a component, such as a task or a processor, can not be verified
in isolation, because elementary properties are lost when the components are
integrated. In order to facilitate a structured design process that leads to reliable
multi-core systems, we have developed a methodology that allows to capture the
inter-core timing dependencies and calculate bounds on the task response times and
output event models even in the presence of dynamic scheduling and secondary
shared resources.

For modeling purposes, we adopt the concept of requesting tasks as in [39]. In
addition to the local execution, such a task performs operations during its execution,
whenever it requires access to a shared resource. The task issues a request and
may only continue execution after the request was e.g. transmitted over the bus,
processed on the remote component and transmitted back to the requesting source.
We differentiate between local scheduling and remote shared resource arbitration.

The key idea of the proposed general solution is to rely on the event model
propagation concept of the compositional analysis (as mentioned in Sect. 8.2), to
express not only the task activations but also the load imposed on the secondary
resources. This allows to separate the analysis into three major building-blocks
which will be part of the extended system-level analysis procedure as depicted in
Fig. 8.8 and discussed in what follows.

1. The derivation of bounds on the amount of shared resource operations.

8 System Level Performance Analysis for Real-Time 183

2. Shared resource
 access analysis

3. Extended response
 time analysis

1: Derivation of
 shared resource
 load

Shared Resource
Access Delay

input event models

per processor
(“local

scheduling
analysis”)

per shared resource arbiter

updated event models

Shared Resource
Request Bounds

B

Task Output Event Models h '

h ', h∼'

h∼'

h, h∼

(h'= h∧ h∼' = h∼´)?

Fig. 8.8 Refined analysis procedure for shared secondary resources

To be able to compute the possible interference on a shared resource, event
models on the maximum amount of requests issued by each task are required. By
considering the pattern of task activations and the distance between requests issued
by each task instance, the overall load imposed on the shared resource can be derived
for each task and all tasks on a processor.

The load imposed on the shared resource from a single processor is the
aggregation of the traffic inflicted by all concurrent task activations. This can be
expressed using the functions Q�C.�t/ and Q��.�t/ denoting the maximum and
minimum number of requests in any time interval of size �t . In Fig. 8.6, the traffic
to the shared resource is denoted with Q� to differentiate it from task activating event
models �.

For each individual task instance, the amount of issued requests can be bounded
by closely investigating the task’s internal control flow as discussed in [12, 40]. For
example, a task may fetch data each time it executes a for-loop that is repeated sev-
eral times. By multiplying the maximum number of loop iterations with the amount
of fetched data, a bound on the total number of memory accesses can be derived.

Depending on the actual system configuration, using solely the upper bound
on the number of shared resource requests per task instance may translate into
an assumed burst of requests that may not occur in practice, resulting in an
overestimated shared resource load. Improved shared resource loads can be obtained
by considering that there is a minimum execution time between successive requests.
Tasks scheduled on the same processor will then execute in alternation, which leads
to to a joint load as derived in [36].

184 J. Rox et al.

2. The computation of the shared resource access delay.
Furthermore, it is necessary to derive the latency for a set of requests to the

shared resource, given that the load imposed by other processors is bounded by
event models Q� as discussed above.

On the shared resource, coinciding requests are arbitrated according to a specific
policy, which leads to specific delays for each request. In order to conservatively
bound the worst-case shared resource delay one can rely on the derivation of the
aggregate busy time that represents the total time for which at least one of the task’s
requests is not finished [25]. A straight-forward solution to compute the aggregate
busy time is to sum the times during which any component in the system may
occupy the shared resource within a given time window. This load-based concept
is conservative for any work-conserving resource arbitration protocol (such as first-
come-first-served).

Considering more sophisticated arbitration policies requires refined aggregate
busy time calculation. For example the worst-case latency per transaction in a lock-
free database was investigated in [41], and the aggregate latency of multiple shared
resource operations under the lock-based Multiprocessor Priority Ceiling Protocol
(MPCP) [37] was investigated in [25]. Alternatively, the required parameters can
also be obtained from measurements (as proposed for memory accesses in [42]).

3. The inclusion of the aggregated shared resource delay in the worst-case
response time analysis of each task.

As a further building-block, the delay of accessing the shared resource needs
to be considered in the tasks’ local response time calculations. When the shared
resource is not immediately available, this may be treated differently by various
processor or operating system implementations. In the case of memory accesses
for example, many processors offer a multi-cycle operation that stalls the complete
processor until the transaction has been processed by the system [43]. Unfortunately,
such active waiting increases the processor load, possibly leading to infeasible
schedules. In multithreading cores, a set of hardware threads may allow to perform
a quick context switch to another thread that is ready, effectively keeping the
processor utilized [44]. While this behavior usually has a beneficial effect on the
average throughput of a system, multithreading demands for caution in priority
based systems with reactive or control applications. There, the worst case response
time of high priority tasks may even increase [39].

The classical response time calculations using the busy window approach, can
appropriately be extended to include the previously calculated aggregate busy time
of the resource accesses [25]. For priority based systems this can be again done by a
simple addition [39]. Note that the aggregate busy time of the requests is a function
of the size of the time window during which a task executes, i.e. a long execution
of a task can experience more interference on the shared resource than a short one.
Thus, the aggregate busy time needs to be calculated iteratively with the response
time in most setups.

The aggregate busy time model of resource delays allows a useful orthogonal-
ization of concerns, as now the timing of the shared resources, and its effect on the

8 System Level Performance Analysis for Real-Time 185

local response time can be investigated separately. This allows to apply specialized
analyses to either and, more importantly, to compose a multi-core system with
different scheduling policies, e.g. the resource arbitration protocol (and its analysis)
may be changed due to an update while the local scheduler (and its analysis) remains
unchanged.

The final building block of the extended analysis procedure is the derivation of
an updated output event model. Using the task’s overall timing behavior bounded
in the previous steps, one can derive the task’s output event model as explained in
Sect. 8.2.

All of these steps can be based on the current models of the event timing in
the systems provided by the iterative compositional analysis. As these are possibly
refined during the analysis procedure, both the analysis of the shared resource timing
and local scheduling have to repeated for all dependent resources. This procedure
may have to be repeated several times, until a change of a task activating event
model does not result in a change in the interference of a given task (illustrated in the
cycle of Fig. 8.8). As in the basic approach of Fig. 8.1 all considered event streams
become increasingly more generic with each analysis iteration, the procedure either
converges to a fixed-point, or the system can not be deemed schedulable.

This section has provided a method and details on the basic building blocks to
deliver real-time guarantees for systems comprising multi-core components. The
presented methods allow the application of heterogeneous processor scheduling and
resource arbitration policies in hard real-time systems by relying on the event stream
model to express not only the task activation pattern but also the resource accesses.

8.5 Comparisons and Applications

The previous sections have provided solutions for current challenges in performance
verification of embedded safety critical systems. We have highlighted the need to
extend existing performance models to map to the complex reality of modern sys-
tems. Additionally, two extensions have been presented to extend the applicability
of compositional performance analysis to cover hierarchical communication and
multi-core components with shared resources. This approach has been evaluated
and used in a various synthetic and real-world examples, some of which have been
published.

General comparisons with other approaches are always difficult due to their
diverging capabilities. An effort has been made in [45], where the compositional
analysis approaches SymTA/S and MPA, the holistic analysis with MAST, a timed
automata based analysis with Uppaal, and pure simulation have been compared with
means of simple examples that each approach is able to handle. As can be expected,
different accuracy is achieved for different scenarios. Only timed automata con-
sistently capture the exact behavior, but at the cost of high computational effort
even for the very small examples. SymTA/S captures all examples with pretty good

186 J. Rox et al.

accuracy at a very fast analysis time. A similar case study was conducted in [46] on
a multimedia system, essentially leading to the same observations.

These comparisons can only capture the common set of tool functionalities,
which leads to very simple system models. In practice, systems are far more
complex and typically show a diverse amount of modeling challenges, which have
been identified in [47]. Automotive systems in particular continue to consist of
heterogeneous components, with hierarchical layers of hardware, software, and
communication. To combine the strengths of different approaches, the compo-
sitional analyses allow to be cross-integrated, as has been done with MPA and
SymTA/S [48], or MPA and simulation [49]. This easy composability is key to tackle
complex real-world systems. While other approaches may also be extensible, the
composable structure greatly simplifies this process. For automotive systems, this
allows to integrate existing, specialized methods and tools for commercial libraries
(such as OSEK, CAN, FlexRay) and upcoming architectures (such as multi-core).

Besides the industrial use cases the framework has also been applied in research
case studies, such as on a hierarchical multiprocessor, multithreading setup [50].
Moreover, several experiments for synthetic systems have been published, which
have stressed the applicability in a number of challenging setups, e.g. considering
distributed systems [5], complex task interaction [24], or shared resource optimiza-
tion [51].

The extended system-level performance analysis procedure presented in Sect. 8.4
has been applied in a number of hypothetical multi-core setups. Different multicore
systems have been investigated by assuming different number of cores, tasks and
shared resources and different resource arbitration policies [26]. These experiments
have underlined the timing implication of multi-core components and have proven
the applicability of the proposed approach.

Compositional system-level performance analysis methods have shown to be
well suited to perform design space exploration and to investigate “what-if” scenar-
ios. For example, the methodology presented in [52] can be used to quickly explore
a great number of system configurations (e.g. different task mappings, priorities,
time wheel sizes) with optimization objectives such as minimizing the end-to-end
delay of critical paths or minimizing the overall buffer requirements. Moreover,
this allows to evaluate and optimize a system with respect to its robustness towards
unanticipated parameter changes, which can occur during the design process or also
after the system has been deployed [53].

8.6 Conclusion

It is now widely accepted that appropriate performance and timing analysis methods
is key to building reliable embedded systems. In the automotive domain, the advent
of standards, like AUTOSAR, creates a basic ground for the application of formal
performance methods in the industrial design process. The research community

8 System Level Performance Analysis for Real-Time 187

has already proposed several formal system-level performance analysis models and
methods.

We have identified two key limitations of the existing formal analysis solu-
tions introduced by modern communication structures and complex multi-core
components. For both we have discussed extensions to an existing system-level
performance analysis approach. These extensions allow reliable predictions of the
system performance, providing an important building-block for the design of future
safety-critical systems.

References

1. http://www.autosar.org, “Autosar partnership,” Internet.
2. Tindell K, Clark J (1994) Holistic schedulability analysis for distributed hard real-time

systems, Microproc Microprogram 40(2-3):117–134
3. Gutiérrez J, Garcı́a J, Harbour M (1997) On the schedulability analysis for distributed hard

real-time systems. Proceedings of the 9th euromicro workshop on real-time systems, Toledo,
Spain, pp 136–143

4. Chakraborty S, Künzli S, Thiele L (2003) A general framework for analysing system
properties in platform-based embedded system designs. Design, Automation and Test in
Europe Conference and Exhibition, pp 190–195

5. Henia R, Hamann A, Jersak M, Racu R, Richter K, Ernst R (2005) System Level Performance
Analysis – The SymTA/S Approach. IEE Proc Comput Digital Techniq 152(2):148–166

6. Gresser K (1993) An event model for deadline verification of hard real-time systems. In:
Proceedings of the 5th euromicro workshop on real-time systems, Oulu, Finland, pp 118–123

7. Bensalem S, Bozga M, Sifakis J, Nguyen T (2008) Compositional verification for component-
based systems and application. Automated Technol Verification Anal 5311:64–79

8. Puschner P, Schoeberl M (2008) On composable system timing, task timing, and WCET
analysis. In: Proceedings of the 8th international workshop on worst-case execution time
(WCET) analysis, Prague, Czech Republic

9. Thiele L, Chakraborty S, Naedele M (2000) Real-time calculus for scheduling hard real-time
systems. Circuits and Systems, 2000. Proceedings of the international symposium on ISCAS
2000, Geneva, vol 4, pp 101–104

10. Le Boudec J, Thiran P (2001) Network calculus: a theory of deterministic queuing systems for
the internet Springer-Verlag Berlin, Heidelberg ©2001

11. Richter K, Racu R, Ernst R (2003) Scheduling analysis integration for heterogeneous multipro-
cessor SoC. In: Proceedings of the 24th IEEE real-time systems symposium (RTSS), Cancun,
Mexico, December 2003

12. Albers K, Bodmann F, Slomka F (2006) Hierarchical event streams and event dependency
graphs: A new computational model for embedded real-time systems. In: Proceedings of
the 18th euromicro conference on real-time systems (ECRTS). IEEE Computer Society,
Washington, DC, pp 97–106

13. Albers K, Bodmann F, Slomka F (2008) Advanced hierarchical event-stream model. In:
Proceedings of the euromicro conference on real-time systems (ECRTS)

14. Henia R, Ernst R (2006) Improved offset-analysis using multiple timing-references. In:
Proceedings of the conference on design, automation and test in Europe: Proceedings, pp
450–455

15. Schliecker S, Ivers M, Staschulat J, Ernst R (2006) A framework for the busy time calculation
of multiple correlated events. In: Sixth International Worst Case Execution Time Wworkshop

188 J. Rox et al.

16. Maxiaguine A, Künzli S, Thiele L (2004) Workload characterization model for tasks with
variable execution demand. In: Proceedings of design automation and test in Europe, Paris,
France

17. Wandeler E, Maxiaguine A, Thiele L (2006) Performance analysis of greedy shapers in real-
time systems. In: Proceedings of the conference on design, automation and test in Europe:
Proceedings, pp 444–449

18. AUTOSAR (2006) Autosar specification of communication v. 2.0.1, autosar partnership
19. Richter K (2004) Compositional scheduling analysis using standard event models, Ph.D.

dissertation, Technical University of Braunschweig
20. Wandeler E (2006) Modular performance analysis and interface-based design of embedded

systems, Ph.D. dissertation, Swiss Federal Institute of Technology
21. Jersak M, Henia R, Ernst R (2004) Context-aware performance analysis for efficient embedded

system design. In: Proceeding of design automation and test in Europe
22. Rox J, Ernst R (2008) Modeling event stream hierarchies with hierarchical event models. In:

Proceedings of the design, automation and test in Europe (DATE 2008) Munich, Germany,
March 2008

23. Tindell KW, Burns A, Wellings AJ (1994) An extendible approach for analyzing fixed priority
hard real-time tasks, Real-Time Syst 6(2):133–151

24. Rox J, Ernst R (2008) Construction and deconstruction of hierarchical event streams with
multiple hierarchical layers. In: Proceedings of the euromicro conference on real-time systems
(ECRTS 2008), Prague, Czech Republic, July 2008

25. Schliecker S, Negrean M, Ernst R (2009) Response time analysis on multicore ECUs with
shared resources, IEEE Trans Industrial Inform 5(4):402–413

26. Negrean M, Schliecker S, Ernst R (2010) Timing implications of sharing resources in multicore
real-time automotive systems. In: SAE world congress. SAE International, Detroit, MI

27. Carpenter J, Funk S, Holman P, Srinivasan A, Anderson J, Baruah S (2003) A Categorization of
Real-time Multiprocessor Scheduling Problems and Algorithms. In Handbook of Scheduling:
Algorithms, Models, and Performance Analysis, Joseph Y-T Leung (ed). Chapman Hall/ CRC
Press. 2004.

28. Brandenburg B, John M, Aaron Leontyev H, James H (2008) Real-time synchronization on
multiprocessors: To block or not to block, to suspend or spin? Real-Time and Embedded
Technology and Applications Symposium, RTAS’08. IEEE, pp 342–353

29. Andersson B, Jonsson J (2000) Fixed-priority preemptive multiprocessor scheduling: to
partition or not to partition. Proceedings of the seventh international conference on real-time
systems and applications (RTCSA’00), p. 337

30. Baker T (2006) A comparison of global and partitioned EDF schedulability tests for multipro-
cessors. International Conference on Real-Time and Network Systems (RTSN), pp 119–130

31. AUTOSAR GbR, “AUTOSAR Release v4.0,” http://www.autosar.org/, January 2010
32. Rosen J, Andrei A, Eles P, Peng Z (2007) Bus access optimization for predictable imple-

mentation of real-time applications on multiprocessor systems-on-chip, Real-Time Systems
Symposium (RTSS 2007). 28th IEEE International, pp 49–60

33. Henriksson T, van der Wolf P, Jantsch A, Bruce A (2007) Network calculus applied to
verification of memory access performance in SoCs. Workshop on Embedded Systems for
Real-Time Multimedia, 2007

34. Puaut I, Decotigny D (2002) Low-complexity algorithms for static cache locking in multitask-
ing hard real-time systems. In: Proceedings of the 23rd IEEE real-time systems symposium
(RTSS). Citeseer, pp 114–123, 2002

35. Pellizzoni R, Caccamo M (2010) Impact of peripheral-processor interference on WCET
analysis of real-time embedded systems, IEEE Trans Comput 59(3):400–415

36. Schliecker S, Negrean M, Ernst R (2010) Bounding the shared resource load for the
performance analysis of multiprocessor systems. In: Proceedings of design, automation, and
test in Europe (DATE), Dresden, Germany, March 2010

37. Rajkumar R (1991) Synchronization in real-time systems: A priority inheritance approach.
Kluwer, Norwell, MA

8 System Level Performance Analysis for Real-Time 189

38. Devi U, Leontyev H, Anderson J (2006) Efficient synchronization under global edf scheduling
on multiprocessors. Proceedings of the 18th euromicro conference on real-time systems,
pp 75–84, 2006

39. Schliecker S, Ivers M, Ernst R (2006) Integrated analysis of communicating tasks in MPSoCs.
Proceedings of the 4th international conference on hardware/software codesign and system
synthesis (Codes-ISSS), pp 288–293, 2006

40. Schliecker S, Ivers M, Ernst R (2006) Memory access patterns for the analysis of MPSoCs,
Circuits and systems, 2006 IEEE North-East Workshop on, pp 249–252

41. Münnich A, Färber G (2000) Calculating worst-case execution times of transactions in
databases for event-driven, hard real-time embedded systems. In: IDEAS, 2000, pp 149–157

42. Stohr J, von Bulow A, Farber G (2005) Bounding worst-case access times in modern
multiprocessor systems, pp 189–198, July 2005

43. Segars S (1998) The ARM9 family-high performance microprocessors for embeddedapplica-
tions. Proceedings of the international conference on computer design: VLSI in computers and
processors, ICCD’98, pp 230–235, 1998

44. Adiletta M, Rosenbluth M, Bernstein D, Wolrich G, Wilkinson H (2002) The next generation
of Intel IXP Network Processors. Network Processors 6(3): 6–18

45. Perathoner S, Wandeler E, Thiele L, Hamann A, Schliecker S, Henia R, Racu R, Ernst R,
Harbour MG (2007) Influence of different system abstractions on the performance analysis of
distributed real-time systems. In Proceedings of the 7th ACM & IEEE international conference
on Embedded software (EMSOFT ’07). ACM, New York, NY, USA, pp. 193–202

46. Hendriks M, Verhoef M (2006) Timed automata based analysis of embedded system architec-
tures. Workshop on Parallel and Distributed Real-Time Systems, 2006

47. Racu R, Hamann A, Ernst R, Richter K (2007) Automotive software integration. In: Proceed-
ings of the 44th annual conference on design automation. ACM, New York, pp 545–550

48. Künzli S, Hamann A, Ernst R, Thiele L (2007) Combined approach to system level per-
formance analysis of embedded systems. Proceedings of the 5th IEEE/ACM international
conference on hardware/software codesign and system synthesis, pp 63–68, 2007

49. Künzli S, Poletti F, Benini L, Thiele L (2006) Combining simulation and formal methods for
system-level performance analysis. In: Proceedings of design, automation and test in Europe,
2006

50. Schliecker S, Negrean M, Nicolescu G, Paulin P, Ernst R (2008) Reliable performance analysis
of a multicore multithreaded system-on-chip. Proceedings of the 6th international conference
on hardware/software codesign and system synthesis (Codes-ISSS), 2008

51. Schliecker S, Hamann A, Racu R, Ernst R (2008) Formal methods for system level performance
analysis and optimization. In: Proceedings of the design verification conference (DVCON), San
Jose, CA

52. Hamann A, Jersak M, Richter K, Ernst R (2006) A framework for modular analysis and
exploration of heterogeneous embedded systems. Real-Time Syst J 33(1-3):101–137

53. Hamann A, Racu R, Ernst R (2006) A formal approach to robustness maximization of complex
heterogeneous embedded systems. In: Proceedings of the IEEE/ACM international conference
on HW/SW codesign and system synthesis (CODES-ISSS), Seoul, South Korea, October 2006

Chapter 9
Trustworthy Real-Time Systems

Stefan M. Petters, Kevin Elphinstone, and Gernot Heiser

9.1 Introduction

The market of embedded processors far surpasses the market of personal computers
and servers. While being more prolific than their desktop counterparts, the progress
in semiconductor technology has also brought unprecedented computing power to
embedded systems. On the back of these opportunities the complexity of embedded
applications is rising dramatically. Two typical examples are today’s smartphones
or cars. The amount of software contained in these devices is impressive, as for
example 100 million lines of code (LOC) in a modern high end car [7] in 2009,
while the Android operating system without applications weighs in at around 12
million LOC in 2010.

With the rising complexity there is also increased scope for problems leading to
system failure. While it is clear that a degree of functional correctness is required,
temporal behaviour must also be considered even in the absence of safety-critical
temporal requirements, as the utility of most systems is subject to degradation in
the presence of temporal failures. In this paper we consider a bug to be any kind
of design or implementation error. Aside from bugs, system failures may also be
triggered by deliberate attacks or transient errors. Examples of the latter are electro-
magnetic interference or single-event upsets induced by ionised particles in space.

S.M. Petters (�)
CISTER/ISEP, Polytechnic Institute of Porto, Portugal,
e-mail: smp@isep.ipp.pt

K. Elphinstone
NICTA and UNSW, Sydney, Australia
e-mail: kevine@cse.unsw.edu.au

Gernot Heiser
NICTA, UNSW and Open Kernel Labs, Sydney, Australia
e-mail: gernot@nicta.com.au

S. Chakraborty and J. Eberspächer (eds.), Advances in Real-Time Systems,
DOI 10.1007/978-3-642-24349-3 9, © Springer-Verlag Berlin Heidelberg 2012

191

192 S.M. Petters et al.

Another trend in embedded systems is towards mutable or open systems [14].
This ranges from upgrade facilities available in factory machinery, to tunable cars,
to downloadable extensions and games on personal digital assistants or mobile
phones. This post-deployment installation of applications not only increases the
attack surface for a device, it also implies that the set of active tasks cannot be
determined a-priori, which requires a dynamic approach to managing processor
time. Furthermore, not the entire task set of a system will have hard real-time
character, but some will be of best-effort or soft–real-time character. Such systems
are usually referred to as mixed-criticality systems and require that the system
components having real-time requirements be protected from those which have a
best-effort character.

In summary we perceive the following requirements for modern embedded
systems. Reliability and security are the central pillars of the increasing number
of complex embedded systems we surround ourselves with. This covers not only
the functional aspects, but also the temporal aspects of these systems. While not all
requirement lapses will lead to catastrophic consequences, issues like confidentiality
of personal and commercially sensitive data, as well as simple usability aspects,
motivate the construction of trustworthy systems beyond the traditional safety
domain. The lowest software layer or core needs to provide the basic mechanisms
for allowing secure, reliable and feature rich embedded systems to be built. While
the availability of such mechanisms alone is not sufficient to prevent unreliable
systems to be developed, it is a precondition for reliable systems.

The following sections will provide an overview of past research at the ERTOS
group at NICTA and the considerations which lead to this research agenda.

9.2 Comparison of Approaches

9.2.1 Real-Time Executives and Desktop Operating Systems

Currently two operating system (OS) paradigms dominate the embedded systems
market: classical real-time executives and (more recently) stripped-down versions of
desktop operating systems. The major advantage of real-time executives is their size.
They fit on small devices and consume minimal resources. A real-time executive can
usually be bypassed, as it is rarely used with memory protection enabled, even if that
is available on the given platform. This leaves the executive unprotected, and a bug
in an application may crash the entire system. Sometimes state is corrupted slowly,
and the offending instructions can be very hard to track down. As a consequence,
real-time executives are mostly deployed on classical single-purpose devices of low
to moderate complexity.

Stripped-down desktop operating systems have been introduced in embedded
systems some time ago, but have become more mainstream to handle more complex
embedded applications as well as harness the computational power available.

9 Trustworthy Real-Time Systems 193

This is driven by the realisation that embedded devices often take on tasks similar
to a desktop computer. Examples of such stripped-down operating systems are
embedded versions of Windows or Linux (such as Android). A major advantage
of such operating systems is that – unlike real-time executives – the kernel is to
some degree protected against misbehaving applications.

However, even a minimal configuration of Linux or Windows still features a
large code base, hundreds of thousands of lines, and dubious real-time performance.
While there are attempts to address real-time behaviour, such as the preempt-RT
[30] effort in Linux, these are highly dependent on (for Linux kernel code) unusual
coding standards, such as not disabling interrupts, which can be easily violated for
example by legacy drivers.

9.2.2 Trusted vs. Trustworthy

While many embedded systems are trusted to some degree to perform according
to their specification, it may be questioned whether these systems deserve the trust
placed in them. Recalls of cars for software updates or required reboots of mobile
phones indicate that there are indeed issues which need to be addressed.

Trustworthiness can be established in several ways, collectively referred to as
verification. Firstly functional correctness can be assured by performing exhaustive
testing. While this is possible for trivial examples, the approach fails for more
demanding code. Systematic code inspection helps to increase the confidence that
the code performs as expected, but as complexity increases, this also fails to provide
real assurance, as it is in general not practical to consider all interactions between
different parts of a complex system. The logical extension of systematic code
inspection is employing formal verification methods. Formal verification provides a
mathematical proof of correctness, but becomes infeasible beyond a few thousand
lines of code.

The poor scalability of thorough verification approaches requires a system that
is “small” (of limited conceptual complexity). A small system is not only easier
to verify, it is less likely to be faulty (or vulnerable) in the first place. However,
smallness is not necessarily required for the whole system, only the “critical” bits.
This is encapsulated in the concept of the trusted computing base (TCB) [28]. The
TCB is the collection of components and mechanisms in hardware, firmware, and
software that are critical to enforce the security policy of an entire computer system.
A bug in the TCB has the potential to undermine the security or safety of the whole
system.

The TCB contains, among others, all software executing in the hardware’s
privileged mode, this is generally referred to as the operating system kernel. In the
case of traditional microcontrollers that do not offer memory protection hardware,
or when employing a real-time executive which does not utilise memory protection,
all software is part of the TCB. In such a system of non-trivial size, security or safety
become practically impossible to assure.

194 S.M. Petters et al.

9.2.3 Minimising and Managing the TCB

To enable any meaningful verification, the size of the TCB needs to be minimised.
This requires minimising the OS kernel. The most practical way to minimize kernel
size is to restrict it to provide just basic mechanisms for securely managing the
hardware, and move all actual system services (including the implementation of
application-specific policies) into user-mode code. Such a minimised OS kernel is
called a microkernel [20].

Some non-kernel components of such a microkernel-based system are still part
of the TCB, despite executing without hardware privileges. However, they are now
themselves subject to kernel-mediated memory protection and forced to interact
via well-defined interfaces. This greatly aids their verification, as they can often
verified independently of the rest of the system. The kernel itself can be made small
enough that it is within reach of the most rigorous verification approaches. The
main prerequisites for using this approach is that the hardware provides memory
protection (in the form of a memory-management or memory-protection unit) and
dual-mode execution (the distinction between privileged and unprivileged modes).

Figure 9.1 provides a comparison of the three different approaches to system
structure. In systems built on top of traditional real-time executive, all code is part of
the TCB (indicated by the grey background) and as such are safety/security-critical.

A (stripped-down) desktop OS removes application code from the TCB, as the
OS is protected by hardware mechanisms. However, the OS itself is still large
(100,000s of lines of code) and infeasible to verify completely. In the microkernel-
based system, the TCB consists of the (much smaller) kernel plus whatever essential
services the critical system operations depend on, the total can be as small as 10,000
lines of code.

While a microkernel-based OS does not ensure that a system is well-designed,
it provides the basic mechanisms for building robust systems, by encapsulating
services into individual address spaces [15]. In general, the microkernel provides

Fig. 9.1 Comparison of approaches

9 Trustworthy Real-Time Systems 195

a good base for componentised systems, as envisaged by, for example, the Autosar
consortium. Finally it simplifies reasoning about fault isolation properties of the
system, and lends support for advanced features such as hot swapping and hot
upgrades.

Device drivers are an interesting case in point. Traditionally they are in the kernel
and therefore part of the TCB. In a microkernel-based system, they are user-mode
components and might be removed from the TCB. There are two reasons why even
user-mode drivers may be part of the TCB: Firstly, the correct operation of the
system may depend on the correct operation of the device (e.g. a safety-critical
actuator). Secondly, if the device is capable of direct memory access (DMA), it
could overwrite arbitrary memory, including the microkernel. The latter problem can
be avoided if the hardware platform features an input/output memory management
unit (IOMMU), which makes DMA subject to memory protection just as any other
memory access.

9.3 Design and Verification

When setting out to create a trustworthy operating system, a basic question is
which design approach to use. Traditionally two different approaches, representative
of different mindsets, have been pursued. In a bottom-up approach, depicted in
Fig. 9.2, expert programmers design and implement an operating system, which
will later be subject to verification by formal-methods experts. Given the expensive
nature of formal verification, it is performed as a last step after the system is
mature and thoroughly tested to ensure acceptable performance. Since expert kernel
programmers are not normally formal-verification experts, this likely leads to a
system which in the best case is not very amenable to proving the required properties
of the system, and in the worst case does not even expose the properties stipulated
in the initial requirements, or be practically intractable to formally reason about due
to complexity.

An alternative approach usually favoured by formal methods experts is to start
with a formal specification and high-level design to ensure the desired properties
will be achieved [16]. The design is then implemented by kernel programmers,
this approach is illustrated in Fig. 9.3. While ensuring that the implementation
does not impinge on the properties proved for the design is reasonably straight

Fig. 9.2 Expert programmer design flow

196 S.M. Petters et al.

Fig. 9.3 Formal methods centered design flow

Fig. 9.4 Iterative design approach

forward, the design decisions taken on such high abstraction levels likely result in
an operating system which might be correct, but exhibits unacceptable performance,
or is impractical for programmers build applications upon.

A third way, employed by NICTA, is to assemble a team of developers with
both formal methods and programming experts willing to at least partially learn the
respective expertise of their counterparts, and work together to achieve a provably
trustworthy high-performance operating system (Fig. 9.4). However, development
of expertise alone is not enough, as one must reconcile the different development
approaches of both groups. Additionally, the requirement of an iterative approach
to the design still exists. This has two implications. On the one hand it requires a
quick assessment of the performance impact of design decisions, on the other hand
it requires a low barrier to formally reasoning about the design, in order to ensure
optimisations aimed at improving performance still maintain the required formal
properties.

9 Trustworthy Real-Time Systems 197

Fig. 9.5 Kernel in the loop [11]

The team at NICTA has approached this problem by choosing Haskell as the
specification and design language [13]. Its functional style makes it amenable to
automatic translation into the input of an interactive theorem prover. It also forms
part of an executable specification which may be used to assess the performance
impact of design decisions by requiring a concrete implementation of data structures
and algorithms, and enables a much faster turn-around of the design of the API,
compared to implementing any specification change in a low-level programming
language like C.

With an executable specification, an operating system in-the-loop can be used to
assess the utility, usability and general performance of API design decisions without
resorting to the time-consuming implementation associated with bare hardware
prototypes. Figure 9.5 illustrates the approach taken at NICTA. A set of test
applications are be ported to the operating system. The applications themselves
execute on a simulator, which is modified such that it only directly simulates user-
mode (i.e. application) execution. Transitions to kernel mode (via system calls,
interrupts, and other exceptions) result in transfer of control to the Haskell model,
which replaces the kernel-mode portion of the simulator itself. The Haskell model
manipulates the user-level state such that to applications it appears that an operating
system running in kernel mode had serviced the exception.

The approach of running the specification also avoids ambiguities of an plain
English specification. Haskell is a functional programming language with well-
defined semantics, which enables automatic translation into an input usable by
theorem provers. This then provides the starting point for the verification effort.
This is eased by the fact that the theorem prover Isabelle/HOL [24] is based on
lambda calculus, which also forms the core of Haskell.

Some parts of the kernel, such as the exact scheduling algorithm, are left
underspecified in the NICTA work, to allow a later exploration of design choices.
Difficulties in the verification process can be addressed, if needed, by changes to
the kernel design or API. This flexibility proved to be of fundamental importance in
reducing the time to proceed through design iterations.

198 S.M. Petters et al.

Despite the common roots of Haskell and Isabelle/HOL, some restrictions were
required to facilitate the automatic translation. The executable model avoided the
use of lazy evaluation, unlimited recursion, and other problematic Haskell features.
Additionally, to support the later reimplementation of the production design in C,
the model also avoided use of garbage collection beyond automatic stack variables.
The interested reader is referred to relevant publications for further details [17, 18].

9.4 Security and Safety

Security comprises the aspects of confidentiality, integrity and availability; in a
particular application scenario some of these tend to be more important than others.
Safety is similar, except that confidentiality is not relevant but the (data) integrity
aspect is extended to functional correctness.

In many cases of embedded systems, security and safety requirements can
be fulfilled using isolation of components. Isolation can be used to prevent a
misbehaving application from bringing down another application, or prevent a
malicious application from intruding on private data or denying critical actions.

With respect to security and safety requirements, isolation relates to the spatial as
well as temporal domains. In the spatial domain it leads to address-space isolation
as the basic mechanism. Temporal isolation as it relates to scheduling is discussed
in Sect. 9.5. In this section examine temporal isolation in the context of avoidance
of denial-of-service attacks through carefully crafted system calls to, for example,
cause a very long running kernel operation and thus deny the other applications of
the service of the operating system.

Memory management needs to be carefully considered to avoid starvation of
this resource at runtime and consequent unbounded or long running system calls.
One challenge is that resources such as pages and threads not only require the
memory that is part of the user-visible resource, but additional memory for the in-
kernel metadata required for management of the resource. Implicit allocation of this
memory creates a potential exploit, by forcing the kernel to allocate large amounts
of memory for the metadata, which leads to the starvation of memory needed for
other tasks. One way to address the starvation issue is to avoid dynamic memory
allocation in kernel. In order to achieve this in the seL4 microkernel [12], seL4’s
design team promoted all metadata to explicitly allocated first-class objects. The
metadata is included in the object allocation process and is part of the memory for
the object, thus enabling direct control of memory consumption.

A further building block in providing spatial isolation is managing the authority
of object creation and authority transfer between applications. The seL4 kernel is
implemented as a capability-based system. Capabilities [10] are a tamper-proof
representation of the authority to access and/or modify certain data and invoke
kernel services. A capability, and thus the corresponding authority, can be passed
from application to application allowing concepts like shared memory or task
creation to be implemented.

9 Trustworthy Real-Time Systems 199

During bootstrapping, all free memory not used by the kernel is handed to
the first task as untyped memory (UM). Such UM may be subdivided, passed to
another application or cast into some other type (e.g. a thread-control block) via a
retype invocation. The capability, and thus authority to perform these operations,
comes with the UM. After invoking the retype method and creating an object of
different type, the invokee receives full authority over the object. When it passes the
capability to another task it may do so with reduced authority. The key observations
to note are that all kernel data structures are objects of a specific type; all typed
objects are allocated (via retype) using authority to UM, and UM is a finite resource.
Hence applications cannot exceed the memory footprint beyond the authority they
possess.

A typical system architecture based on the seL4 microkernel is depicted in
Fig. 9.6. The system is comprised of a sensitive application which needs to be
protected from unknown or untrusted convenience and legacy functions also running
on the same hardware. This might, for example, separate the security-critical
crypto-functionality and processing of unencrypted data from wireless networking
functionality, or the life-supporting functions in a medical device from the GUI
stack. Spatial isolation is assured between all parts of the system. However, trusted
services and drivers can be accessed from the untrusted subsystem through well-
defined and enforced interfaces. A potential use of a Linux server allows legacy or
comfort Linux applications to be deployed alongside critical applications without
porting to a new environment. Further information on seL4’s security mechanisms
can be found in the relevant publications [12, 17].

Fig. 9.6 seL4-based system architecture

200 S.M. Petters et al.

9.5 Temporal Isolation

The functional isolation and its verification discussed so far is instrumental to
building trustworthy embedded systems. This needs to be augmented by temporal
isolation, which we now look at in detail in the context of resource scheduling.

Most embedded operating systems in industrial use are either time-driven or
fixed-priority–driven. The time-driven approach provides isolation of different
applications at the cost of responsiveness. For example, OSEKTime [27] imple-
ments a table-driven scheduling approach that allows interrupt delivery only in one
slot of the schedule, and otherwise requires interrupts to be disabled. Ultimately this
leads to a potential latency of interrupt delivery of an entire scheduling frame. In
contrast, fixed-priority schedulers offer the flexibility of fast response time for high-
priority applications. However, fixed priority scheduling suffers from poor temporal
isolation, as there is no inherent contract about computation time available to an
application. Furthermore, relative urgency as well as importance of the application
have to be integrated into a single priority value.

For traditional tightly-integrated systems with a known task set, these limitations
were acceptable. However, the increasing integration of applications of different
and potentially unknown vendors, as well as legacy subsystems, into one device
highlights the issue of lack of temporal isolation.

Dependent on the circumstances temporal fault isolation may have different
goals. Obviously it should allow critical components to continue to operate correctly
in the presence of misbehaving component. It may also ease fault location by
avoiding knock-on effects which hide the source of a problem.

Another aspect of temporal isolation is that subsystem may have different
scheduling requirements. Best-effort type applications are traditionally scheduled
using a fairness-based scheduling scheme, while real-time systems require strict
guarantees and the implementation of which are often in juxtaposition to fairness.
However, modern embedded systems have often both types of scheduling needs,
leading to mixed-criticality systems with conflicting requirements [23].

A number of scheduling approaches have been proposed to address these
issues. Examples include sporadic servers [31], deferrable servers [32], or constant-
bandwidth servers [1]. In our discussion we will focus on the constant-bandwidth
server. Rather than assigning tasks priorities or specific time slots, tasks are assigned
a budget of execution time, which will be replenished periodically. This effectively
assigns tasks a certain share of the execution time. While the approach guarantees
the execution time budget to be available before the next replenishment, it does not
stipulate in which order unused budgets may be consumed, allowing a secondary
scheduling algorithm to be applied.

Depending on the criticality and the worst-case execution time (WCET) of the
task, different sizes of the budget can be chosen. For hard real-time applications,
budgets will essentially be dictated by the WCET of a task. For soft real-time
applications, budgets might be chosen to be less than the WCET but higher than the
average execution time. In this case, a slack-management approach, as described

9 Trustworthy Real-Time Systems 201

below, can use leftover budget to fulfill the needs of a task in most cases where
the execution time exceeds the assigned budget. Finally, best-effort tasks with a
long execution time and aperiodic inter-arrival may be assigned budgets and periods
which are a fraction of the needs of an individual job of a task. Such time slicing
in combination with slack management ensure fairness and progress among the
multiple best-effort tasks.

Research on scheduling performed at NICTA is based on earlier work by Brandt
et al. [6, 21]. A fundamental observation underlying their work is that neither a
fairness-based approach retrofitted with some real-time mechanisms, nor a real-time
scheduling approach with an emulated fairness layer will provide acceptable service
for both classes of application needs. Instead an integrated solution offering native
fairness and real-time guarantees is required.

In principle, Brandt’s proposal has many similarities with other approaches based
on bandwidth servers [2]. The distinguishing factors of this work are the detailed
consideration of temporal reconfiguration constraints, integration of an albeit simple
real-time analysis, and finally, effective dynamic slack management. Brandt’s work
uses earliest deadline first (EDF) [22] as the secondary scheduling algorithm. EDF
has been proven to be optimal for a set of independent non-blocking tasks. Besides
assuming independent deadlines of all tasks, deadlines were assumed to be equal to
the release periods of tasks, which was also used as replenishment period.

In the work of Brandt et al., the traditional scheduling approach is split into a
fundamental choice of how much bandwidth is allocated, and a dispatcher to decide
when. The former step is taken by the resource allocator, which is active in any mode
change of the system to recalculate available shares. The latter is performed by a
more traditional scheduler. However, the scheduler enforces the budget allocation
and manages unused budget, as well as overruns. Unused budget or slack can be
collected and passed to tasks in need of extra budget.

Different aspects of this slack management are discussed by Lin and Brandt
[21]. Slack can be passed around in the system under the presumption that slack
is scheduled with either the deadline of the task it was associated with, or a more
relaxed deadline. This property is required to ensure that the assumptions made in
the resource allocator regarding budget use are maintained. A very fundamental
corollary is the observation that a task exhausting its budget can be assigned the
budget of the next release, if the deadline of the tasks is adjusted such that it reflects
the deadline relative to this future release.

The core elements of this approach are depicted in Fig. 9.7. Application arrival or
departure in the system triggers a reconfiguration of the budget allocation. During
this stage, a real-time analysis is performed, and, after successful completion, the
task is provided with a budget and period and is added to the set of schedulable tasks.
The EDF scheduler assigns budgets and thus associates applications with enforced
timeouts. A slack manager integrated with the scheduler performs the collection and
assignment of slack.

We have extended the approach of the resource allocator to perform a demand-
bound–based schedulability test [3]. Fundamentally, these tests compute the worst-
case request for computation in a given interval. If the worst-case demand does

202 S.M. Petters et al.

Fig. 9.7 Separation of budget allocation and dispatch

not exceed what can be provided in the same interval, the schedulability test is
successful. An expressive event model, which describes the worst-case number of
releases of a task – including release jitter and bursty releases – underpins this
analysis.

Besides adding the capability to analyse bursty tasks, the resource allocator
may also allow for deadlines which are different from the minimum inter-arrival
times. This is relevant for rare, but highly important tasks, such as tasks responding
to exceptional external input. We have also investigated this approach for critical
sections, such as interrupt-service routines and critical sections in user-mode drivers
[26]. Further work exploits the explicit knowledge of slack to facilitate practical
dynamic voltage and frequency scaling in a real-time environment [19].

9.6 Worst-Case Execution-Time Analysis

The knowledge of the WCET is a fundamental building block for reliable real-
time systems. The resource allocator requires such values to perform an overall
schedulability analysis. The analysis of the WCET needs to be performed on all
parts of the system involved in the delivery of a timely service for soft and hard
real-time systems. This obviously covers the real-time applications, but also the
kernel and services involved in the process.

The fundamental steps of WCET analysis are depicted in Fig. 9.8. The code for
which the analysis is to be performed is firstly analysed for its control-flow structure
and operations performed along the nodes of that control-flow graph. In a second
step, the constraint and flow analysis aims at restricting the set of possible flows
through the program to those which are feasible. This is, for example, necessary
to provide bounds on the number of iterations of a loop or to identify nodes in
the control-flow graph which may be structurally executable, but are proven to be
mutually exclusive due to data dependencies.

In a third step, the execution time of individual nodes in the control-flow graph
are established. This may take into account restrictions developed in the flow
analysis, as for example, the identified mutual exclusivity of nodes may imply that

9 Trustworthy Real-Time Systems 203

Fig. 9.8 Principal steps of WCET analysis

certain hardware states are not possible when one of the nodes is entered, which
may avoid otherwise possible execution paths. Finally, the low-level timing results
are combined using the constraints provided by the flow analysis, e.g. to bound the
number of iterations for a given loop.

Academic research on WCET is mostly based on static analysis, which lends
itself well to the approach shown in Fig. 9.8. In contrast, analysis of safety-critical
systems in industry is largely performed using end-to-end measurements augmented
with safety margins. The latter approach works well for simple architectures
such as those employed by most 8- and 16-bit microcontrollers. It fails for more
complex processors, such as the widely-deployed ARM architecture, which features
instruction pipelining, branch prediction and multiple levels of cache.

Static WCET analysis on its own has significant limitations too. For one, it is
dependent on detailed hardware models, which are not available especially for the
more complex architectures. The complexities of modern architectures also mean
that the latency of many instructions is highly dependent on internal processor state,
which is frequently infeasible to model completely, forcing static analysis to adopt
a pessimistic view which leads to gross over-estimation of WCET, often by orders
of magnitude.

Fortunately, debugging interfaces available for modern processors can support
fine-grained execution tracing and latency measurement. This enables an approach
that measures the execution time of small sections of code and combines the
results for these to obtain an estimate of the WCET for the overall program
using techniques borrowed from static analysis. This approach works under two
assumptions: Firstly, the variation in execution time for a small section of code
without branches (i.e. a basic block) is small and able to be determined by
measurements, even if these are not exhaustive. Secondly, the dominant variation of
execution times is caused by the variability of executed paths through the program,
which is where static analysis helps [4, 8]. For high-end processors, cache analysis
is required to augment the measurements at the basic-block level.

In order to further refine the WCET analysis, it was performed not only on the
maximum execution time observed, but also on the distribution and thus providing
the frequency of observed execution times. Such execution-time profiles [25] can
be interpreted as probability distributions and subsequently used in performing a
probabilistic analysis [5].

204 S.M. Petters et al.

Compared to application code, WCET analysis of an operating-system kernel
presents extra challenges [9, 29], specifically in the structural and flow analysis
depicted in Fig. 9.8. Kernel code is highly (manually) optimised, and typically
includes parts written in assembly language for efficiency. The combination of
optimisation and assembly code means that the complexity of the structural analysis,
which is one of the fundamental steps in WCET analysis, becomes extremely
difficult to automate. Furthermore, OS code presents the challenge that a single point
of entry – an exception-handler address – vectors to many different code paths, such
as interrupt-service delivery, exception handling and a variety of system calls. This
affects structural as well as flow analysis.

Dealing with the challenges especially of system-call vectors would require a
substantial investment into the automatic translation of kernel code into a control-
flow graph. However, such a tool would likely be even more complex than a
complete hardware simulator, as it would need to consider a very large state space
of possible input values (in architected registers). Such a complex tool would be
almost impossible to get right, which undermines the point of determining WCET
as part of the for safety analysis of a system.

The (for now) preferred alternative is to rely heavily on programmer annotations.
While this scales poorly, it is acceptable in the case of a microkernel, owing to its
small size, relatively slow evolution (especially in the case of a formally-verified
kernel) and the fact that the structural and constraint analysis needs to be done only
once. In the case of seL4, there is additional benefit from the many invariants which
have been proved in the course of the formal verification. These can partially replace
manual annotations, and the existing verification framework makes it relatively easy
to add (and prove!) further invariants. In essence, the functional verification provides
(very precise) knowledge about properties of the code way beyond what is normally
available.

9.7 Conclusions

The rising complexity of embedded systems creates challenges in achieving
trustworthiness in security- or safety-critical deployments. We have provided on
overview of some of these challenges, and indicated ways of addressing them.
Recent work at NICTA is a substantial step towards overcoming these challenges,
with contributions in the areas of proofs of functional correctness of a microkernel,
isolation in resource management and scheduling, and analysis of worst-case
execution times.

While our aim has been to create a trustworthy foundation for embedded
software systems in the form of a formally-verified microkernel, this is only the
first step towards trustworthy systems. Given a precisely-specified, -behaved, and
-analysable operating system, the challenge becomes how to lift the guarantees of
the foundation to the level of whole systems. This includes systems composed of
software of varying degrees of trustworthiness that rely on the operating system

9 Trustworthy Real-Time Systems 205

to protect safety- or security-critical components from malfunctions introduced by
other components, which may make up the vast majority of the overall code base.
Our on-going research aims at developing frameworks, methodologies, and tools to
compose demonstrably trustworthy embedded systems from components of varying
criticality and trustworthiness.

Acknowledgements NICTA is funded by the Australian Government as represented by the
Department of Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program. This work was also supported by the
Portuguese Fundação para a Ciência e a Tecnologia (CISTER Research Unit – FCT UI 608).

References

1. Abeni L, Buttazzo G (1998) Integrating multimedia applications in hard real-time systems. In:
Proceedings of the 19th IEEE real-time systems symposium, IEEE Computer Science Press,
Madrid, Spain, pp 4–13

2. Abeni L, Lipari G, Buttazzo G (1999) Constant bandwidth vs. proportional share resource
allocation. In: Proceedings of the 5th IEEE international conference on multimedia computing
and systems, vol 2. IEEE Computer Science Press, Florence, Italy, pp 107–111

3. Albers K, Slomka F (2004) An event stream driven approximation for the analysis of real-
time systems. In: Proceedings of the 16th euromicro conference on real-time systems, IEEE
Computer Science Press, Catania, Italy

4. Bernat G, Colin A, Petters SM (2002) WCET analysis of probabilistic hard real–time systems.
In: Proceedings of the 24th IEEE real-time systems symposium, Austin, Texas, pp 279–288

5. Bernat G, Newby M, Burns A (2005) Probabilistic timing analysis: An approach using copulas.
J Embedded Comput 1(2):179–194

6. Brandt SA, Banachowski S, Lin C, Bisson T (2003) Dynamic integrated scheduling of hard
real-time, soft real-time and non-real-time processes. In: Proceedings of the 24th IEEE real-
time systems symposium, Cancun, Mexico

7. Charette RN (2009) This car runs on code. IEEE Spectrum 46(2), http://www.spectrum.ieee.
org/feb09/7649

8. Colin A, Petters SM (2003) Experimental evaluation of code properties for WCET analysis.
In: Proceedings of the 24th IEEE international real-time systems symposium, Cancun, Mexico

9. Colin A, Puaut I (2001) Worst case execution time analysis of the RTEMS real-time operating
system. In: Proceedings of the 13th euromicro conference on real-time systems, Delft,
Netherlands, pp 191–198

10. Dennis JB, Van Horn EC (1966) Programming semantics for multiprogrammed computations.
Communications ACM 9:143–155

11. Derrin P, Elphinstone K, Klein G, Cock D, Chakravarty MMT (2006) Running the manual: An
approach to high-assurance microkernel development. In: Proceedings of the ACM SIGPLAN
haskell workshop, Portland, OR

12. Elkaduwe D, Derrin P, Elphinstone K (2008) Kernel design for isolation and assurance of
physical memory. In: 1st workshop on isolation and integration in embedded systems, ACM
SIGOPS, Glasgow, UK, pp 35–40

13. Elphinstone K, Klein G, Derrin P, Roscoe T, Heiser G (2007) Towards a practical, verified
kernel. In: Proceedings of the 11th workshop on hot topics in operating systems, San Diego,
CA, pp 117–122

14. Heiser G (2009) Hypervisors for consumer electronics. In: Proceedings of the 6th IEEE
consumer communications and networking conference, Las Vegas, NV, pp 1–5

http://www.spectrum.ieee.org/feb09/7649
http://www.spectrum.ieee.org/feb09/7649

206 S.M. Petters et al.

15. Herder JN, Bos H, Gras B, Homburg P, Tanenbaum AS (2006) MINIX 3: A highly reliable,
self-repairing operating system. ACM Operating Syst Rev 40(3):80–89

16. Klein G (2009) Operating system verification – an overview. Sādhanā 34(1):27–69
17. Klein G, Derrin P, Elphinstone K (2009) Experience report: seL4 – formally verifying a high-

performance microkernel. In: Proceedings of the 14th international conference on functional
programming, ACM, Edinburgh, UK, pp 91–96

18. Klein G, Elphinstone K, Heiser G, Andronick J, Cock D, Derrin P, Elkaduwe D, Engelhardt
K, Kolanski R, Norrish M, Sewell T, Tuch H, Winwood S (2009) seL4: Formal verification of
an OS kernel. In: Proceedings of the 22nd ACM symposium on operating systems principles,
ACM, Big Sky, MT, pp 207–220

19. Lawitzky MP, Snowdon DC, Petters SM (2008) Integrating real time and power management in
a real system. In: Proceedings of the 4th workshop on operating system platforms for embedded
real-time applications, Prague, Czech Republic

20. Liedtke J (1995) On �-kernel construction. In: Proceedings of the 15th ACM symposium on
operating systems principles, Copper Mountain, CO, pp 237–250

21. Lin C, Brandt SA (2005) Improving soft real-time performance through better slack manage-
ment. In: Proceedings of the 26th IEEE real-time systems symposium, Miami, FL

22. Liu C, Layland J (1973) Scheduling algorithms for multiprogramming in a hard real-time
environment. J ACM 20:46–61

23. Lin C, Kaldewey T, Povzner A, Brandt SA (2006) Diverse soft real-time processing in an
integrated system. In: Proceedings of the 27th IEEE real-time systems symposium, IEEE
Computer Science Press, Rio de Janeiro, Brazil

24. Nipkow T, Paulson L, Wenzel M (2002) Isabelle/HOL – A proof assistant for higher-order
logic, Lecture notes in computer science, vol 2283. Springer

25. Petters SM (2007) Execution-time profiles. Technical report, NICTA, Sydney, Australia
26. Petters SM, Lawitzky M, Heffernan R, Elphinstone K (2009) Towards real multi-criticality

scheduling. In: Proceedings of the 15th IEEE conference on embedded and real-time comput-
ing and applications, Beijing, China, pp 155–164

27. Poledna S et al (2000) OSEKTime: a dependable real-time, fault-tolerant operating system and
communication layer as an enabling technology for by-wire applications. In: SAE 2000 world
congress, Detroit, MI, pp 51–70

28. Rushby J (1984) A trusted computing base for embedded systems. In: Proceedings of 7th
DoD/NBS computer security conference, pp 294–311

29. Singal M, Petters SM (2007) Issues in analysing L4 for its WCET. In: Proceedings of the 1st
international workshop on microkernels for embedded systems, NICTA, Sydney, Australia

30. Siro A, Emde C, Mc Guire N (2007) Assessment of the realtime preemption patches (rt-
preempt) and heir impact on the general purpose performance of the system. In: Proceedings
of 9th real-time Linux workshop, Linz, Austria

31. Stanovich M, Baker TP, Wang AI, Harbour MG (2010) Diverse soft real-time processing in an
integrated system. In: Proceedings of the 16th IEEE real-time and embedded technology and
applications symposium, IEEE Computer Science Press, Stockholm, Sweden

32. Strosnider JK, Lehoczky JP, Sha L (1995) The deferrable server algorithm for enhanced
aperiodic responsiveness in hard real-time environments. IEEE Trans Comp 44(1):179–194

Chapter 10
Predictably Flexible Real-Time Scheduling

Gerhard Fohler

Historically, real-time systems have been focussed on providing single, specific
solutions to single, specific applications, treating all activities with the same
methods, geared towards the most demanding scenarios. While the high cost of
such an approach is acceptable for applications with dramatic failure consequences
it is no longer justified in a growing number of new applications. In these, real-time
behavior is demanded only for parts of the systems, few faults can be tolerated.
Instead of strict real-time behavior for the entire system, these applications demand
“also real-time”, or some temporal control.

In this chapter, we analyze two fundamental activation paradigms for scheduling,
time and event triggered, which have been considered as having contradicting
assumptions, but each providing important attributes, i.e., determinism and flex-
ibility. We will present a scheduling method, which overcomes this traditional
all-or-nothing approach to provide a combination of both even for parts of the
system. Thus, the system can be designed such that appropriate methods can be
used for individual parts of the system. The design no longer has to select either
one paradigm or the other, with the respective advantages or disadvantages, but can
take the best selection independent of the paradigm.

10.1 Activation Paradigms

The discussion about event triggered vs. time triggered real-time systems has
been lively and going on for a while. This text does not wish to contribute to it,
rather present and analyze the concepts with respect to scheduling, as needed for
presentation. Examples of the discussion can be found in [3, 15, 19].

G. Fohler (�)
University of Kaiserslautern, Germany
e-mail: fohler@eit.uni-kl.de

S. Chakraborty and J. Eberspächer (eds.), Advances in Real-Time Systems,
DOI 10.1007/978-3-642-24349-3 10, © Springer-Verlag Berlin Heidelberg 2012

207

208 G. Fohler

10.1.1 Scheduling

This section introduces the two paradigms and discusses some scheduling relevant
properties and differences. One of the central choices in real-time systems design
is that of the activation paradigm, i.e., when are events recognized, who initiates
activities, when are these decisions taken? In conventional systems, the event
triggered approach is prevalent, in which occurrences of events initiate activities
in the system immediately. In time triggered systems, activities are initiated at
predefined points in time [15].

Time Triggered

We start with the time triggered approach, contrasting some properties already here
to those of event triggered. Initiating activities in the system with the progression of
time requires thorough, complete understanding of the system and the environment
it will operate in. Scheduling for TT is usually carried out via a scheduling
table, which lists tasks and their activation times. An offline algorithm1takes
complete information about the system activities, which reflect the knowledge
about anticipated environmental situations and requirements, and creates a single
table, representing a feasible solution to the given requirements. As the algorithm
is performed offline, fairly complex task sets can be handled, e.g., precedence
constraints, distribution and communication over networks, task allocation, mutual
exclusion, separation of tasks, etc. – e.g. [1, 5, 7, 9, 14, 18, 20] Should a feasible
solution not be found, retries are possible, e.g., by changing the parameterization
of the algorithm or the properties of the task set. At runtime, a very simple runtime
dispatcher executes the decisions represented in the table, i.e., which (portion of a)
task to execute next. Typically, a minimum granularity of time is assumed for the
invocations of the runtime scheduler, so called slots [16].

As a consequence, a number of advantages can be achieved from a scheduling
perspective:

• Determinism: Given the schedule represented in the table and a point in time,
it can be determined which task will execute in that slot. Note the difference to
predictability, which allows to predict properties of task sets, e.g., whether they
will meet their deadlines, but cannot determine exactly when tasks will execute.

• Constructive schedulability test: The scheduling table provides a “proof by
construction” that all timing constraints will be met. In contrast to a proof that
no timing constraints could be violated in any situation, an offline approach

1A number of terms have been used to describe scheduling methods which construct scheduling
tables offline, such as initially static, pre-runtime, offline scheduling. The term table driven appears
the most general.

10 Predictably Flexible Real-Time Scheduling 209

only needs to show that one situation exists, i.e., the scheduling table, in which
the timing constraints are met: instead of a “for all” proof, considering even
situations which may never occur during the runtime of a system, a “there exists
one” suffices. While, e.g., an explicit schedulability test needs to consider the
worst case blocking time of tasks involved in mutual exclusion, even when they
might never enter their critical sections at runtime together, offline scheduling,
can simply separate the critical sections in the scheduling table. Consequently,
pessimism in the schedulability test is reduced.

• Complex constraints: As scheduling is done before the system is deployed,
sufficient time for solving complex constraints is available, such as precedence,
distribution, etc. Still, at runtime, only the very simple table lookup suffices to
meet all constraints. Furthermore, most algorithms are based on search, which
provides for the simple inclusion of new constraints. In the event triggered case,
explicit schedulability tests need to be developed anew for additional constraints,
if that is possible at all.

• Runtime overhead: The very simple runtime scheduling, i.e., table lookup, incurs
very little overhead. Explicit tests can require significant overheads [21].

• Non temporal benefits such as simple fault tolerance, receiver based error
detection have been discussed in detail e.g., in [15].

On the downside, table driven scheduling reveals

• Inflexibility: Anything not completely known before runtime cannot be handled
by a pure offline approach.

• Pessimism: Many parameters, such as execution times, arrival times, have to be
based on worst case assumptions. As a consequence, a periodic world has to be
assumed. Pure offline approaches are unable to reclaim resources if worst cases
planned are not needed.

• Design effort: The cost and effort of obtaining complete knowledge may be
considered too high for non critical applications.

Event Triggered

In event triggered systems, events invoke an online scheduler, which takes a decision
based on a set of pre defined rules, e.g., represented as priorities. An offline schedu-
lability test can be used to show that, if a set of rules is applied to a given task set at
runtime, all tasks will meet their deadlines. Major representative lines of such algo-
rithms are based on fixed priorities, e.g, rate monotonic or dynamic priorities [17].

The advantages and disadvantages appear to almost mirror the ones of TT Sect.
10.1.2:

• Flexibility: As decisions are taking at runtime, not completely known activities
can be added easily.

• Widely used: Many commercial operating systems are based on priorities as well.

210 G. Fohler

• Simple constraints: As decisions are taken at runtime, only simple constraints can
be addressed, e.g., mutual exclusion. The necessary algorithms can be difficult
[21] or costly [2] to implement. Changes in requirements will necessitate new
algorithms and associated tests, which may not be available.

• Limited predictability: As opposed to the determinism of TT, ET schedulers can
predict certain properties of task sets, e.g., whether deadlines will be met, but not
determine exactly which activities will executing at specific points in time.

10.1.2 Levels of Determinism

We will now introduce levels of determinism to analyze the activation paradigms
and their scheduling.

In general, computers cannot provide absolute determinism, as there is inherent
uncertainty, e.g., due to different clock speeds, or physical properties of chips. We
will look at various levels of computation, meaningful temporal granularities, and
discuss the notion of temporal determinism for each, for use in comparison between
TT and ET scheduling next in Sect. 10.1.3.

Task Level

It is generally not possible to predict which instructions of a task are being processed
during the execution of a task. This information would also not be very helpful, as
we are not interested in timing constraints on such a low level. The meaningful gran-
ularity commonly assumed is the worst case execution time (wcet) of the entire task.

Thus, task level determinism can state that when a task is started at time t , and
we check again at time t C wcet , the task will have finished. Variations of finer
granularity, e.g., branches, etc., leading to variations of execution times can be safely
ignored from the task level point of view.

Slot Level

As described above, many TT systems assume slots as basic granularity for runtime
scheduling decisions, with the scheduling table assigning tasks to these slots. We

Fig. 10.1 Task level determinism

10 Predictably Flexible Real-Time Scheduling 211

Fig. 10.2 Slot level determinism

Fig. 10.3 Node level determinism

cannot say whether some instructions of a task will be processed in a slot as actual
execution times will vary.

The determinism on the slot level is that if all tasks are executed at times as
specified in the scheduling table (we look only at the slots) all temporal constraints
will be met. Given a point in time and the scheduling table it can be determined
which task has been assigned a slot.

Node Level

The relevant points at the node level are internode message transmissions; from the
outside it is not relevant which tasks are executing when – provided constraints are
met.

The determinism at the node level can seen as when an ingoing internode
message is received by the node, sufficient processing time according to the
schedule is waited, the resulting outgoing internode message will be sent in time
with the desired contents.

System Level

Relevant points on the system level are events in the environment and actions
performed. At this level, details about computations within the systems are not
relevant, as long as the constraints between events and actions in the environment
are met.

212 G. Fohler

10.1.3 TT and ET Scheduling Fundamentally Different?

Given the different assumptions, approaches, and properties, TT and ET scheduling
could be perceived as very different, or even opposing paradigms. We will take a
closer look.

The ET real-time scheduling process takes sets of tasks with timing constraints
and performs a test if these constraints can be met if a given algorithm is used at
runtime. The algorithm may take properties of tasks, notably priority or deadline, as
input, or determine them as directives, artifacts for the online scheduling algorithm.2

Thus, the process follows the steps: task set with timing constraints – schedu-
lability test and determination of rules (e.g., via directives priority or deadline) –
execution of rules by runtime scheduler – timing constraints met.

Looking closer, we can see that TT real-time scheduling works in the same way.
Instead of a definition of rules, e.g., “earliest deadline first”, the decisions on which
task to execute are represented in the scheduling table, “schedule next task as given
table”.

While TT scheduling has to assume a periodic world and ET provides flexibility
for tasks with not fully known parameters, e.g., aperiodic, the difference concerns
mostly runtime execution without guarantees. When offline guarantees are required,
task parameters have to be known offline: without worst case execution time, period
or maximum arrival frequency, offline guarantees cannot be given, independent of
the scheduling paradigm used.

Hence, we can conclude that the terms “offline” and “online” scheduling cannot
be seen as completely disjoint in general. Real-time scheduling demands offline
guarantees, which require assumptions about online behavior at design time. At
runtime, both offline and online execute according to some (explicitly or implicitly)
defined rules, which guarantee feasibility. Thus, both offline and online are based
on a substantial offline part. The question is then where to set the tradeoff between
determinism - all decisions offline - and flexibility - some decisions online .

Let us now look at how table driven and rule driven scheduling compare with
respect to the levels of determinism. We include best effort methods, as applied
in general purpose operating systems, as rule driven scheduling. Only statistical
predictions can be made for large data sets, not about individual tasks.

Figure 10.4 shows the expected result that best effort provides high flexibility,
with only statistical predictions; online real-time scheduling can provide some
flexibility, guarantee deadlines and node level determinism; table driven scheduling
with fixed time, i.e., the classic time triggered scheduling model, has no flexibility,
but slot level determinism. In the figure, the crossing point of the flexibility and
determinism lines lies within table driven scheduling, but not with fixed times -
it represents table driven scheduling, with some flexibility on the actual slot
scheduling. We will discuss this algorithm in the remainder of the chapter, and how
it can provide predictable flexibility. Section 10.4 presents an example algorithm.

2Then, the task properties, “priority” are separated from the importance of a task, “deadline” from
the timing constraint. Rather, they both serve only to direct the online scheduling algorithm to
execute the proper rules for schedulability.

10 Predictably Flexible Real-Time Scheduling 213

Fig. 10.4 Determinism vs. flexibility

10.1.4 Mixed Criticality Applications

Considering the different properties of ET and TT activation paradigms, as
described in Sect. 10.1, the selection of one becomes a central design decision.
It is considered an “either - or” decision, forcing designers to choose the advantages
of one method at the expense of the other’s. Demands outside the selected paradigm
need to be “squeezed in”, e.g., to suit periodic world requirements. The choice
has also system wide implications, as the same properties, in particular cost, apply
to all activities in the domain of the paradigm. Often, the highest level, e.g., of
determinism has to be chosen, affecting even activities with no such demands.

This was acceptable for the simplicity and uniformity of historic monolithic
approaches: single systems were executing single applications, a single paradigm
sufficed for a single class of demands.

In modern systems, such uniformity cannot longer be maintained. Rather,
systems exhibit a mix of activities and demands, mixed criticalities:

• Core system, which is essential for system survival with high demands for strict
temporal behavior, has to be safety critical and fault tolerant. These properties
have to be guaranteed and tested for the worst case. Possibly, certification is
required as well.

• Hard real-time applications demand guarantees of temporal correctness, but are
not part of the core system.

• Flexible real-time applications can tolerate the miss of some deadlines, exact
behavior is not completely known, or too costly too obtain.

214 G. Fohler

had real-time appl.

coresystem

deterministic

TT

flexible RT appl.

non RT appl.

predictable
high cost

Fig. 10.5 Mixed criticality applications – TT

had real-time appl.

flexible RT appl.

non RT appl.

ET

flexible
low price

coresystem

Fig. 10.6 Mixed criticality applications – ET

• Non real-time activities do not have temporal demands themselves, but must not
disturb the real-time activities, while their behavior cannot be known.

Let’s have a look at how pure TT or ET scheduling handle such mixed criticality
systems.

Pure TT (Fig. 10.5) can provide determinism for the core system and hard real-
time applications.

Some flexible real-time applications can be handled, but at high cost, e.g.,
due to transformation to fit the periodic model. Non real-time applications cannot
be handled at all. Thus, TT scheduling incurs high cost even for non critical
applications.

Pure ET (Fig. 10.6) deals well with flexible and non real-time applications, and
can handle some hard real-time applications well. Core system requirements cannot
be met. Thus, ET scheduling cannot provide for deterministic behavior of critical
activities.

In summary, neither of the pure scheduling paradigms can handle the mixed
criticality demands of modern system well; a combined approach is needed, which
will be the topic of the rest of the chapter.

10 Predictably Flexible Real-Time Scheduling 215

10.2 Combined TT – ET Scheduling Approach

The combined approach discussed here is based on table driven scheduling. Details
of the actual algorithm have been presented in e.g. [6,13]. Here, we give the rationale
and show how predictable flexibility can be achieved. A description is given in
Sect. 10.4.

10.2.1 Table Driven Scheduling Revisited

As described in Sect. 10.1.2, table driven scheduling can handle general, complex
constraints, as an offline scheduler is used. The resulting scheduling table describes
an execution sequence of tasks, such that the constraints are met, i.e., a proof by
construction. While a number of different schedules and tables could meet the
constraints, a single one has to be created by the offline scheduler, due to the table
lookup nature of the runtime dispatcher. Thus, slot level determinism is achieved at
the expense of flexibility.

Let us look at the example in Fig. 10.7. The system consists of two nodes, N0
and N1, which are connected via a networkNW . The input task set is a precedence
graph consisting of four tasks, A;B;C;D. A;B are allocated to node N0, C;D to
N1, a message is sent between B;C over the network. The precedence graph has
a deadline dl.PG/, bounding the time between start of A and completion D. The
resulting schedule meets these constraints.

We can see that the offline scheduler decided to leave some time between
the execution of B and the transmission of the message over the network. The
constraints would be met as well if B , or A as well, would be executed later. Thus,
to achieve slot level determinism, the execution of A;B is fixed, although other

Fig. 10.7 Example precedence graph and schedule

216 G. Fohler

times for their execution would be feasible as well. In fact, the transmission of the
message, as well as of C;D could be shifted to later points in time, while still
meeting the constraints.

Node level determinism can be achieved on N0, as long as B finishes before
the message is sent, on N1, if C does not start before the message is received,
and D completes before dl.PG/. Thus, the flexibility of the schedule can increase
significantly, while maintaining node level determinism.

10.2.2 Target Windows

Given timing constrains and scheduling table, we can perform flexibility analysis.
The result are limits on the execution of tasks, called target windows with earliest
start times and deadlines: if tasks execute within their target windows, all constraints
will be met. While meeting the original timing constraints in a distributed system is
NP hard, tasks now only have to execute locally, independently, within their target
windows to meet the constraints, which can be done with linear complexity, e.g.,
by earliest deadline first of fixed priority scheduling. Figure 10.8 shows the target
windows for the previous example.

10.3 Predictable Flexibility

Target windows can now be used to control the flexibility of task executions:

• Target windows after the above described flexibility analysis provide flexibility
while maintaining the original timing constraints and node level determinism.

• Setting target windows to the original task executions maintains the original
scheduling table, no flexibility, but slot level determinism

• Reducing target windows for individual tasks reduces their flexibility, e.g., for
jitter control.

Fig. 10.8 Example target windows

10 Predictably Flexible Real-Time Scheduling 217

hard real-time appl.

core system
deterministic

non RT appl.

flexible RT appl.

predictably
flexible

TT ET

Fig. 10.9 Mixed criticality applications with predictable flexibility

Thus, target windows allow for setting flexibility for tasks individually, providing
predictable flexibility. Slot level determinism as in the scheduling table can be set
for tasks deemed worth the cost, while others can execute flexibly, and all timing
constraints are met.

10.3.1 Mixed Criticality Applications

Predictable flexibility can be used to schedule mixed criticality applications
described in 10.1.4 as follows:

• Core system: target windows set as originally in the scheduling table, providing
slot level determinism

• Hard real-time applications: either table driven with flexible target windows or
via ET scheduling on top

• Flexible real-time applications: via the combined offline/online approach
• Non real-time applications: together with the combined approach, which ensures

they do not interfere with feasibility of the guaranteed tasks.

Figure 10.9 illustrates the change compared to pure TT or ET as described in
Sect. 10.1.4.

10.3.2 Scheduling Overview

Figure 10.10 illustrates the steps involved for predictable flexibility.
First, we have the task set with original temporal constraints. Then, the offline

scheduler creates a scheduling table. This step is not tied to a specific offline
scheduler. Next, flexibility analysis as briefly described in Sect. 10.2 is performed
to obtain the target windows.

218 G. Fohler

Fig. 10.10 Scheduling overview for predictable flexibility

The target windows express the original timing constraints via earliest start times
and deadlines. As long as the offline scheduled tasks execute within their target
windows, other tasks can be included using ET methods and the original constraints
will be met. Thus, complexity is reduced significantly, compared to the original
scheduling problem. The reduction comes at the price of loosing optimality as the
scheduling table which forms the basis for flexibility analysis describes only a single
solution out of possibly many other feasible ones (10.1).

Task execution within target windows can be guaranteed by a variety of
algorithms: EDF based, as in slot shifting in Sect. 10.4, but also others, such as
FPS. For completeness, offline scheduling can be applied as well. Then a different
schedule from the original scheduling table will be executed, which can be used,
e.g., for incremental scheduling, when tasks should be added with only minimum
changes to an existing schedule.

Note that these scheduling steps can also be used to execute a schedule
maintaining original timing constraints with a different scheduling method than
originally anticipated. This provides more choice for designers, but also facilitates
porting of applications to different platforms and scheduling algorithms.

10.4 Slot Shifting

In this section, we briefly describe the slot shifting method as example for the
combined TT ET approach. It provides for the efficient handling and on-line
guarantee of aperiodic tasks on top of a distributed offline schedule with general task
constraints. Slot shifting extracts information about unused resources and leeway
in an offline schedule and uses this information to add tasks feasibly, i.e., without

10 Predictably Flexible Real-Time Scheduling 219

violating requirements on the already scheduled tasks. A detailed description can be
found in [6].

10.4.1 Off-Line Preparations

First, an off-line scheduler, e.g., [5] creates scheduling tables for the periodic tasks.
It allocates tasks to nodes and resolves precedence constraints by ordering task
executions.

Start-Times and Deadlines
The scheduling tables list fixed start- and end times of task executions, that are less
flexible than possible. The only assignments fixed by specification, however, are
first and last tasks in the precedence graph, and, as we assume message transmission
times to be fixed here,3 tasks sending or receiving inter-node messages. These are
the only fixed start-times and deadlines, all others are calculated recursively, as the
execution of all other tasks may vary within the precedence order, i.e., they can be
shifted.

Intervals and Spare Capacities
The deadlines of tasks are then sorted for each node and the schedule is divided into
a set of disjoint execution intervals for each node. Spare capacities are defined for
these intervals.

Each deadline calculated for a task defines the end of an interval Ii , end.Ii /.
Several tasks with the same deadline constitute one interval.

The spare capacities of an interval Ii are calculated as given in formula (10.1):

sc.Ii / D jIi j �
X
T2Ii

wcet.T /Cmin.sc.IiC1/; 0/ (10.1)

The length of Ii minus the sum of the activities assigned to it is the amount of idle
times in that interval. These have to be decreased by the amount “lent” to subsequent
intervals: Tasks may execute in intervals prior to the one they are assigned to. Then
they “borrow” spare capacity from the “earlier” interval.

10.4.2 On-Line Mechanisms

During system operation, the on-line scheduler is invoked after each slot. It checks
whether aperiodic tasks have arrived, performs the guarantee algorithm, and selects
a task for execution. This decision is then used to update the spare capacities. Finally
the scheduling decision is executed in the next slot.

3We apply the same mechanisms to the network as well, i.e., shifting messages, as detailed in [6].

220 G. Fohler

Guarantee Algorithm

Assume that an aperiodic task TA is tested for guarantee. We identify three parts of
the total spare capacities available:

• sc.Ic/t , the remaining spare capacity of the current interval,
•

P
sc.Ii /; c < i � l; end.Il / � dl.TA/ ^ end.IlC1/ > dl.TA/; sc.Ii / > 0,

the positive spare capacities of all full intervals between t and dl.TA/, and
• min.sc.IlC1/; d l.TA/ � start.IlC1//, the spare capacity of the last interval, or

the execution need of TA before its deadline in this interval, whichever is smaller.

If the sum of all three is larger or equal to than wcet.TA/, TA can be accommodated,
and therefore guaranteed. Upon guarantee of a task, the spare capacities are updated
to reflect the decrease in available resources. This guarantee algorithm is O.N/,
N being the number of intervals. It is shown in [5], that this acceptance test has
equivalent results – but with simpler run-time handling – as to the ones presented in
[4, 8], which are optimal for single processors.

On-Line Scheduling
On-line scheduling is performed locally on each node. If the spare capacities of the
current interval sc.Ic/ > 0, EDF is applied on the set of ready tasks. sc.Ic/ D 0

indicates that a guaranteed task has to be executed or else a deadline violation in
the task set will occur. Soft aperiodic tasks, i.e., without deadline, can be executed
immediately if sc.Ic/ > 0. After each scheduling decision, the spare capacities of
the affected intervals are updated.

10.5 Conclusion

In this chapter we have introduced predictable flexibility for real-time system
scheduling, which aims at combining time triggered and event triggered scheduling.
Instead of forcing designers to take a choice early on which effects system design,
predictable flexibility provides for selecting flexibility for individual activities in the
system. Thus it is suited for mixed criticality applications, which involve a range of
diverse requirements for different parts of the system.

We analyzed both TT and ET from a scheduling perspective, and with respect to
the level of determinism vs. flexibility they can provide. We argued for a combined
approach, which increases flexibility significantly over pure TT scheduling, while
still providing a level of determinism, albeit less strict than pure TT. As example for
such a combined approach, we reviewed slot shifting.

Acknowledgements The author wishes to thank the members of the research groups at TU
Vienna, Austria, University of Massachusetts at Amherst, USA, MDH, Sweden, and TU Kaiser-
slautern, Germany for their valuable contributions and discussions of the line of research. Special
thanks go to Damir Isovic for advancing the state of slot shifting and the many inspiration
discussions.

10 Predictably Flexible Real-Time Scheduling 221

References

1. Abdelzaher TF, Shin KG (1999) Combined task and message scheduling in distributed real-
time systems. IEEE Trans Parallel Distributed Syst

2. Björn B. Brandenburg, John M. Calandrino, Aaron Block, Hennadiy Leontyev, James
H. Anderson (2008) Real-time synchronization on multiprocessors: To block or not to block,
to suspend or spin? In: IEEE real-time and embedded technology and applications symposium,
pp 342–353

3. Burns A (2004) Programming real-time systems. In: ECRTS 04–16th euromicro conference
on real-time systems, Catania, Sicily

4. Chetto M, Chetto H (1989) Scheduling periodic and sporadic tasks in a real-time system. Inf
Proc Lett

5. Fohler G (1994) Flexibility in statically scheduled hard real-time systems. PhD thesis,
Technische Universität Wien, Austria, April 1994

6. Fohler G (1995) Joint scheduling of distributed complex periodic and hard aperiodic tasks in
statically scheduled systems. In: Proceedings of the 16th real-time systems ymposium, Pisa,
Italy

7. Fohler G, Ramamritham K (1997) Static scheduling of pipelined periodic tasks in distributed
real-time systems. In: Proceedings of the 8th euromicro workshop on real-time systems, June
1997

8. Garey MR, Johnson DS, Simons BB, Tarjan RE (1981) Scheduling unit-time tasks with
arbitrary release times and deadlines. IEEE Trans Soft Eng

9. Hou C-J, Shin KG (1992) Allocation of periodic task modules with precedence and deadline
constraints in distributed real-time systems. In: IEEE Proceedings of the 13th IEEE real-time
systems symposium, pp 146–155, December 1992

10. Isovic D, Fohler G (1998) Handling sporadic tasks in off-line scheduled distributed hard real-
time systems. In: Proceedings of the 10th euromicro onference on real-time systems, York,
UK, June 1998

11. Isovic D, Fohler G (1999) Handling sporadic tasks in statically scheduled distributed real-time
systems. In: Proceedings of the 10th euromicro conference on real-time systems, June 1999

12. Isovic D, Fohler G (2000) Efficient scheduling of sporadic, aperiodic, and periodic tasks with
complex constraints. In: Proceedings of the 21st IEEE real-time systems symposium, Walt
Disney World, Orlando, FL, November 2000

13. Isovic D, Fohler G (2009) Handling mixed sets of tasks in combined offline and online
scheduled real-time systems. Real-Time Syst J 43(3)

14. Jonsson J, Shin KG (1997) A parametrized branch-and-bound strategy for scheduling
precedence-constrained tasks on a multiprocessor system. In: ICPP, pp 158–165

15. Kopetz H (2011) Real-time systems – design principles for distributed embedded applications.
Springer, Berlin

16. Kopetz H, Fohler G, Grünsteidl G, Kantz H, Pospischil G, Puschner P, Reisinger J, Schlatter-
beck R, Schütz W, Vrchoticky A, Zainlinger R (1993) Real-time system development: The
programming model of mars. In: Proceedings of the international symposium on autonomous
decentralized systems, Kawasaki, Japan, March/April 1993

17. Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in hard real-time
environment. J ACM 20:1

18. Ramamritham K, Stankovic JA, Shiah P (1990) Efficient scheduling algorithms for real-time
multiprocessor systems. IEEE Trans Parallel Distributed Syst 2(1)

19. Verissimo P (2002) Fundamental questions in the et vs. tt debate? please look elsewhere. In:
Next-TTA workshop on ET-TT integration, Grenoble, France, October 2002

20. Šůcha P, Hanzálek Z (2004) Scheduling with start time realated deadlines. In: IEEE interna-
tional symposium on computer aided control systems design

21. Yodaiken V (1998) Rough notes on priority inheritance. Technical report, New Mexico Institut
of Mining, 1998

Part III
Innovative Application Domains

Chapter 11
Detailed Visual Recognition of Road Scenes
for Guiding Autonomous Vehicles

Ernst D. Dickmanns

11.1 Introduction

Almost a quarter of a century has passed by since road vehicle guidance at typical
speeds by machine vision has been demonstrated for the first time [1]. Due to the
high complexity of the vision task and to missing affordable mobile computing
power, application of visual perception in assistance systems for road vehicles has
been confined to single tasks like recognition of lanes or of some types of traffic
signs; for almost all premium cars these systems are offered as options on the market
today. Recently, combinations of radar and vision for (hybrid or advanced) Adaptive
Cruise Control (ACC) have been introduced in the market. A good survey on the
efforts to develop intelligent road vehicles may be obtained from the proceedings of
the yearly International Symposium ‘On Intelligent Vehicles’ [2].

In the early 1990s, when the basic capability of convoy driving by vision had
already been demonstrated in research vehicles [3], industry decided to use radar
for market introduction due to longer experience available, all-weather capability,
and lower overall costs. Missing direct road recognition with radar has been
compensated (partially) by tracking other vehicles on the same road further away.
Laser range finders (LRF) have also been tested in great varieties, e.g. [4–6].
Relative to radar LRF have the advantage of much better lateral resolution, however,
like vision it does not guarantee all-weather capabilities. A review of these types of
systems for perception of the environment may be found in [7]; laser systems are
limited in range and can be rather costly. One such system is the Velodyne LRF
that has been extensively used in the DARPA Urban Challenge in November 2007;
remember that in this contest the vehicles did not have to perceive lane markings,
traffic signs or negative obstacles but only “positive” obstacles sticking out of the
driveway, which was given by GPS-waypoints [8]. For this support scenario in a

E.D. Dickmanns (�)
UniBw Munich/LRT/TAS, D-85577 Neubiberg
e-mail: edd@dyna-vision.de

S. Chakraborty and J. Eberspächer (eds.), Advances in Real-Time Systems,
DOI 10.1007/978-3-642-24349-3 11, © Springer-Verlag Berlin Heidelberg 2012

225

226 E.D. Dickmanns

well known environment dense laser ranging is well suited; the knowledge base for
signal interpretation can be kept small compared to that needed for a powerful vision
system with good capabilities in object discrimination.

However, machine vision on a level similar to the human visual perception
system has quite a few advantages:

1. In multi-focal vision, lateral resolution can be an order of magnitude higher than
for affordable lasers (a fraction of a milliradian (�0.2 mrad) compared to 1.6
mrad horizontally, resp. 4.4 mrad vertically in the Velodyne system).

2. Different spectral ranges can be evaluated for easy understanding of complex
scenarios (color); in each color channel good intensity resolution is available.

3. Passive vision exploits light intensities naturally available, or it uses light also
needed for human vision (conventional head lights).

4. View fixation allows reducing motion blur for fast moving objects; even a set of
three cameras is small nowadays, needing not much power for gaze control.

5. Inertial feedback of data from a perturbed platform (vehicle) allows good
gaze stabilization under harsh environmental conditions (hardly affordable for
Velodyne-type systems).

6. Detection of candidates for negative obstacles (like a ditch in a grass surface)
can be achieved much earlier by intensity patterns than with stereo vision or
laser range finders due to self-occlusion of the ditch at larger distances and to
noise effects stemming from single herbs and straws in front of the ditch.

All these items indicate that technical vision is the way to go if systems with
performance levels coming closer to the human one are looked for. Computing
power needed is tremendous, but since the early 1980s a factor of about one million
(106) in performance of microprocessors of same size and power consumption
but lower costs has occurred. In the near future, multiple processors on a single
chip (like used in Graphic Processing Units (GPUs) or similar) will allow an
increase in computing power that can be run in automotive environments by
several orders of magnitude. So it seems to be the right time now to develop
high-performance technical vision systems for understanding dynamically changing
traffic scenes.

The type of vision system needed has been investigated in [9, 10]; a multi-focal
“vehicle eye” seems unavoidable if human-like performance levels are the goal. The
technical eye should have

(a) A large simultaneous field of view nearby (>�110ı).
(b) The capability of stereo vision (a few degrees laterally, range<�10m).
(c) The capability of color vision in medium ranges (<�100m).
(d) High resolution (�5 cm per pixel) in a small field of view (covering �30m

laterally at distances of �300m); this means 5 mm resolution at 30 m distance
which is sufficient for reading traffic signs.

(e) At least points (b) and (d) require active gaze control.

To achieve good real-time performance, recursive estimation with feedback of
prediction errors including spatio-temporal models for each object has shown to

11 Detailed Visual Recognition of Road Scenes for Guiding Autonomous Vehicles 227

be a very good approach [10,11] almost universally accepted by now. It is the merit
of G. Faerber to have initiated a DFG-“Transregio” on “Kognitive Automobile” in
the first half of this decade, that has the goal of developing this approach further with
additional knowledge and learning components. The software for “Expectation-
based, Multi-focal, Saccadic (EMS-) vision” developed at UniBwM [12, 13] has
been transferred to his Lab. at TUM and has become the starting point for the
common system architecture in project “Kognitive Automobile” [14].

In the present contribution, the basic idea underlying the 4-D approach is
developed one step further in concept: The visual interpretation processes monitor
their outcome and initiate adaptation not only of model parameters and states,
but they also can trigger switching of models and selecting other sets of features
by them selves. This requires a store of models as knowledge background and
criteria for assessing the actual quality of performance. The latter ones, of course,
are the histories of prediction errors in the perception – action loop running for
each object tracked. As long as the prediction errors are below a threshold for a
single object, the model applied and the measurement data are in resonance, and the
object as well as its motion is considered to be “understood”. If only occasional
discrepancies occur, trust in results of perception is reduced but the underlying
model need not be changed immediately; feature extraction can be adjusted in
this case.

If prediction errors increase in magnitude and/or in frequency and all feature sets
available have been tried, a new hypothesis (model) for the object has to be tried.
The history of this process is stored for later analysis and learning. The difficult and
challenging part is the selection of a new model based on experience accumulated
previously. The proposal here is to improve using combined sets of features for
making intelligent choices of models and their parameters, taking the overall
situation into account. Without the situational context, myriads of hypotheses could
be checked; it is the actual knowledge about the situation given that allows choosing
“reasonable” hypotheses for interpreting image sequences.

11.2 The Perception: Action Loop in Traffic Situations

Domain knowledge allows reducing the sets of objects likely to be encountered
in certain scenes. These objects have characteristic features, usually, that allow
their recognition when occurring in certain image regions under standard mapping
conditions. Gravity pulls all objects towards the road surface; road vehicles in
standard poses touch the ground with two to ten wheels that will be mapped as parts
of approximate rectangles respectively ellipses. Vehicles with more than two wheels
have an extended, almost planar area parallel to the ground at a relatively small
elevation above the ground that obscures the region underneath the vehicle, both in
sunshine and under overcast conditions; therefore, a dark spot below an assembly of
various other features is a good indicator for a vehicle ahead. Unfortunately, a truck
with a large cylindrical tank of round or elliptical cross-section above the axles,

228 E.D. Dickmanns

especially in combination with the sun standing low (in the morning or evening),
defies these characteristics; this case has to be checked separately depending on
time of day and weather conditions.

The road surface is the main area of reference when driving, especially when
other elements of standard roads can be recognized like lane markings, curbstones,
almost homogeneous road shoulders or guide rails; reflection poles with regular
spacing help recognizing road curvature, especially at low lighting conditions or
after snowfall. The road surface appears as a collection of shaded gray patches.
Due to changing aspect conditions with range and due to vertical curvature of
the road cross-section, even roads with homogeneously gray appearance under
orthonormal view will appear shaded in the image under other viewing condi-
tions; the same is true for other objects. Therefore, image areas with approx-
imately linear gray shading are chosen as easy to extract features for image
understanding.

But it is not a collection of features of one type that “induces” hypotheses of
certain objects; it is the combination of several features in certain arrangements
and moving in conjunction that trigger hypotheses for objects typical in the
situation given. Like in human perception, object hypotheses may be inferred
from a typical (sparse) collection of features before the full feature set is applied
for hypothesis verification. In road traffic, the presence of another vehicle may
be inferred from the dark spot underneath and a collection of edge- and corner
features above it; the lowest dark-to-bright edge in this collection allows estimating
range to the object under the assumption of a planar ground in front of the own
vehicle.

For distinguishing between a static obstacle and a vehicle, recognition of wheels
is an important step [15]; here one has to distinguish between several cases: Does the
vehicle appear under an oblique view (from left or right), or from straight behind
or ahead. From straight behind or ahead, wheels appear as a single pair of dark
rectangles at the outer sides underneath the vehicle body; in this case, features may
tend to be symmetrically distributed [16, 17]. Looked at from the side, symmetry
disappears and parts of two to three wheels (or up to six for a vehicle with more
than two axles) may be visible as sections of ellipses with eccentricity depending
on aspect angles. Whether a vehicle is moving or standing still has to be inferred
from two or more images of a sequence by measuring relative feature positions of
the vehicle and of some static features on or at the side of the road nearby (dashed
lane markings or a pole, a building, or a tree at the side). The length of a vehicle can
only be estimated under sufficiently oblique views; it has turned out that estimation
of the length of a horizontal diagonal is more stable than that of the orthogonal
values “width and length” under these conditions [18]. From right behind or in front,
only vehicle width can be estimated, from the side it is only vehicle length that can
be determined. These cases have to be treated separately, and their results have to
be fused in memory. Once estimation of vehicle size parameters has settled to stable
values, the state space for recursive estimation (including vehicle parameters) may
be reduced, and the corresponding features should then be used for improving range
estimation [19].

11 Detailed Visual Recognition of Road Scenes for Guiding Autonomous Vehicles 229

Lane markings carry information directly affecting behavior control: Solid lane
markings on one side indicate that leaving the lane in this direction is not allowed
under normal conditions; only dashed lane markings may be crossed. In case of a
solid and a dashed lane marking side by side, crossing is only allowed from the side
of the dashed markings. The width of the lane markings on multi-lane roads also
carries information: Standard widths (depending on the country) separate two lanes
while especially wide lane markings separate the driving area from the road shoulder
(wide parking stripe or small safety zone). These wide markings are of special
interest at entries and exits, and in regions where the number of lanes changes in
between. In these regions, also diagonally hashed areas may be seen that mark parts
of the road surfaces not available as lanes for standard driving.

Near crossings or entries/exits also arrows may be painted in the lanes indicating
into which direction the lane will be leading; sometimes two options will be
available from one lane containing arrows with two tips (straight ahead and turn-
off). At crossings, usually, the start of the intersection area is marked by a white line
orthogonal to the own lane markings; this line is only to be crossed when the vehicle
can leave the intersection area immediately. Otherwise it has to wait in front of this
line as in the case of a red or yellow traffic light.

Observation of all kinds of traffic signs (to the side of and above the road)
and remembering the actually valid regulation state is another important task for
a mature vision system [20]. Due to potential occlusion by other vehicles, the
own stile of driving and of attention control is affected, especially in multi-lane
traffic.

At a speed of �100 km=h a vehicle moves about 1 m per video cycle (from
frame to frame); with a visual range of about 30 m for good resolution in standard
images, a stationary object has appeared more than two dozen times in the video
sequence before the vehicle comes close to it. Feature flow in the image increases
with decreasing range, usually. Objects, all features of which move to one side in the
image sequence will be bypassed at the opposite side. Most dangerous are objects,
the feature flow of which goes to all sides of the image center when gaze direction
is right onto the object (dubbed “looming”); this will lead to a crash with the camera
if nothing is changed. The best reaction for evasion depends on the relation of
egomotion to object motion (for another vehicle).

Table 11.1 summarizes the essential items making up a situation when driving on
high-speed roads with unidirectional traffic; on other roads with oncoming traffic,
many of the items to be observed remain, but look-ahead distance has to be increased
since relative speed in neighboring lanes may increase even though speed in each
direction is limited, usually.

Most of the items listed in Table 11.1 can best be perceived by looking for
specific sets of features; beside edges, especially linearly shaded blobs and corners
or textured areas are of interest. Radar or laser range finding provides no or only
partial information of these features with less lateral resolution; multi-focal color
vision can provide many more features for object distinction if computing power
allows.

230 E.D. Dickmanns

T
ab

le
11

.1
It

em
s

an
d

pr
op

er
ti

es
de

sc
ri

bi
ng

a
tr

af
fic

si
tu

at
io

n

Fa
r

le
ft

L
ef

tn
ei

gh
bo

ri
ng

la
ne

O
w

n
la

ne
R

ig
ht

ne
ig

hb
or

in
g

la
ne

Fa
r

ri
gh

t

L
an

e
or

sh
ou

ld
er

,
pa

ra
-m

et
er

s;
tu

rn
-o

ff
la

ne
?

T
ra

ffi
c

si
gn

s?
gu

id
e

ra
il

s?
bu

il
di

ng
s

or
tr

ee
s

ne
ar

by
?

sh
ad

ow
s

A
va

il
ab

le
/n

ot
-;

la
ne

w
id

th
,l

an
e

co
nt

in
ue

s/
en

ds

T
ra

ffi
c

si
gn

s
ab

ov
e?

w
id

th
an

d
cu

rv
at

ur
e

pa
ra

m
et

er
s

A
va

il
ab

le
/n

ot
-;

la
ne

w
id

th
,l

an
e

co
nt

in
ue

s/
en

ds

L
an

e
or

sh
ou

ld
er

,
pa

ra
-m

et
er

s;
tu

rn
-o

ff
la

ne
?

T
ra

ffi
c

si
gn

s?
gu

id
e

ra
il

s?
bu

il
di

ng
s

or
tr

ee
s

ne
ar

by
?

sh
ad

ow
s

Se
co

nd
ve

hi
cl

e
ah

ea
d:

ra
ng

e,
ra

ng
e

ra
te

,
be

ar
in

g,
m

ot
io

n
st

at
e,

ac
ce

le
ra

ti
on

Se
co

nd
ve

hi
cl

e
ah

ea
d:

ra
ng

e,
ra

ng
e

ra
te

,
be

ar
in

g,
m

ot
io

n
st

at
e,

ac
ce

le
ra

ti
on

Se
co

nd
ve

hi
cl

e
ah

ea
d:

ra
ng

e,
ra

ng
e

ra
te

,
be

ar
in

g,
m

ot
io

n
st

at
e,

ac
ce

le
ra

ti
on

V
eh

ic
le

ah
ea

d:
ra

ng
e,

ra
ng

e
ra

te
,b

ea
ri

ng
,

la
ne

ru
nn

in
g,

-c
ha

ng
e,

lo
ng

.
ac

ce
le

ra
ti

on
br

ak
e

li
gh

ts
on

?

V
eh

ic
le

ah
ea

d:
ra

ng
e,

ra
ng

e
ra

te
,b

ea
ri

ng
,l

an
e

ru
nn

in
g/

-c
ha

ng
e,

lo
ng

.
ac

ce
le

ra
ti

on
br

ak
e

li
gh

ts
on

?

V
eh

ic
le

ah
ea

d:
ra

ng
e,

ra
ng

e
ra

te
,b

ea
ri

ng
,

la
ne

ru
nn

in
g,

-c
ha

ng
e,

lo
ng

.
ac

ce
le

ra
ti

on
br

ak
e

li
gh

ts
on

?
O

cc
up

ie
d

or
fr

ee
?

ty
pe

of
ve

hi
cl

e?
re

la
tiv

e
st

at
e?

ac
tu

al
be

ha
vi

or
?

ro
ad

su
rf

ac
e?

O
w

n
ve

hi
cl

e
(s

el
f)

sp
ee

d,
be

ha
vi

or
al

m
od

e
ru

nn
in

g,
ow

n
in

te
nt

io
ns

;
ro

ad
su

rf
ac

e
st

at
e,

li
gh

ti
ng

&
w

ea
th

er

O
cc

up
ie

d
or

fr
ee

?
ty

pe
of

ve
hi

cl
e?

re
la

tiv
e

st
at

e?
ac

tu
al

be
ha

vi
or

?
ro

ad
su

rf
ac

e?
R

an
ge

&
be

ar
in

g,
hi

gh
ra

ng
e

ra
te

?
ac

tu
al

be
ha

vi
or

?

V
eh

ic
le

s
be

hi
nd

:
ra

ng
e,

ra
ng

e
ra

te
,b

ea
ri

ng
,l

an
e

ru
nn

in
g/

-c
ha

ng
e

R
an

ge
&

be
ar

in
g,

hi
gh

ra
ng

e
ra

te
?

ac
tu

al
be

ha
vi

or
?

11 Detailed Visual Recognition of Road Scenes for Guiding Autonomous Vehicles 231

11.3 Expectation-Based, Multi-focal, Saccadic Vision

What is the best type of vision system for the tasks mentioned in the previous
section? Because of the relatively small increase in information from frame to
frame due to the high image frequency (25 or 33 1/3 Hz) relative to speed driven,
temporal integration of this information with the help of spatio-temporal models
and recursive estimation with prediction error feedback [11] has proven to be both
efficient and reliable. For a thorough evaluation including sensor fusion the reader
is referred to [10]; saccadic vision is detailed in [21–23]. Here only an integration
aspect with respect to the use of knowledge is added which may lead to improved
overall systems capable of learning.

Similar to a development just happening in the understanding of biological
systems [24], the 4-D approach and EMS-vision may be looked at as a method
trying to avoid quasi-static states and – knowledge representations. Measurement
data (including visual features) are used to bring the observation loop into resonance
with spatio-temporal models in the perception process by adapting parameters in
these models for a bunch of objects in the scene, including 3-D space, ego-motion,
and changing perspective projection. This is done by the “subject” (the vehicle
itself including sensors, data processors, background knowledge and actuators for
control of gaze and ego-motion) taking part in the overall process of mutual multi-
agent traffic control; the subject does have knowledge about own perceptual and
behavioral capabilities and the resulting “maneuvers” occurring in space over time
when applied [10]. These maneuvers constitute important knowledge elements in
dynamic scenes; it is tacitly assumed that the other agents on the road all do have
similar capabilities. Therefore, their behavior may be expected to some degree when
typical maneuver initiations are observed.

This allows attention control by shifting high-resolution imaging to regions of
special interest; saccades allow gaze shifts of tens of degrees within a fraction of a
second. During the saccades, all images may be blurred so that feature extraction
does not make sense, and the internal representation of the situation is derived from
the spatio-temporal models, as is routine in recursive estimation anyway.

When all tracking loops for the selected number of objects constituting the
situation show small prediction errors for their features, the scene is considered to
be understood. Newly appearing features or large prediction errors request special
attention: Either temporally limited noise effects or new objects entering the scene
may be the reason. This calls for more thorough feature analysis or for a gaze
shift leading to images with higher resolution in this region. Usually, in a dynamic
environment there will always be some regions and objects needing adaptation.
If this is only a small fraction of the overall scene, mission performance can be
continued; if the uncertain parts increase, maybe mission performance has to be
slowed down or even interrupted, and the vehicle has to stop in a safe manner to
reorient itself. These topics of visual system integration will not be detailed here; in
the rest of the chapter attention is focused on the extraction of sufficiently rich sets
of features for solving these tasks.

232 E.D. Dickmanns

11.4 Image Feature Extraction

In the development of machine vision, analysis had concentrated on snapshots
(single images) without bothering about delay times until results became available.
In real-time vision for active control of dynamic scenes (like road traffic), delay
times can be of paramount importance. Fortunately, in parallel to the experience
accumulated in the field of feature extraction, computing power of microprocessors
has increased to a level that unified feature extraction even from multi-focal images
in parallel becomes possible now.

A 25 Hz image evaluation rate (40 ms cycle time) is considered sufficient for
road vehicle guidance up to very high speeds; at 180 km/h (50 m/s) images are thus
taken every 2 m. In conventional (interleaved) video streams this means using single
video-fields (odd or even) only. With a multi-focal look-ahead range of�200m, 100
images can be evaluated until the vehicle reaches the location of first detection of
an object at the range limit. Assuming a pixel resolution of 0.1 mrad for the large
focal length of the “vehicle eye” means that one pixel maps 2 cm normal to gaze
direction. With 1,000 pixels in an image row, the area mapped in the image cone of
5:7ı is 20 m wide, sufficient for a bidirectional (two times) two-lane highway. Even
with a 2:1 reduction in resolution for smoothing there still would be three pixels on
a standard lane marking of width 12 cm.

Here, a new approach for unified feature extraction is presented that exploits
the smoothing 1–2–1-averaging (needed for the Sobel-gradient operator) also for
corner detection at every pixel. Keep in mind that with the carefully selected focal
lengths and the high image frequency (25 Hz), scale aspects for corner detection and
tracking play a minor role in a single image. High resolution and small time delays
are important here; the new method serves this purpose.

In a tri-focal system with 4:1 separation of focal lengths the (divergent two)
wide-angle cameras would have a field of view of about 60–90ı each. A divergence
angle of about one quarter of this value for the wide-angle cameras would allow
a simultaneous field of view of around 110ı and a stereo region of about 10–60ı,
of which only the central part may be analyzed. At 10 m range, pixel resolution of
the wide-angle cameras is �1:6 cm; this looks like a good compromise for coming
close to human visual capabilities. Keep in mind that with the tri-focal vehicle eye
all images are evaluated in parallel and should be interpreted in conjunction; so,
for traffic sign reading with color vision, the camera with medium focal length
(resolution �0:4mrad=pixel) has a resolution of �1 cm per pixel at 25 m range.
Sign reading is performed with fixation-type vision [10, 21].

11.4.1 The Feature Set Extracted in a Unified Approach

As justified in [10], the following set is extracted: In addition to edges with adjacent
average gray values, more precise regional gray-shadings (linearly shaded blobs

11 Detailed Visual Recognition of Road Scenes for Guiding Autonomous Vehicles 233

alleviating object recognition) and corners allowing 2-D tracking are of special
importance. In the long run, color vision should be included. Before linear shading
in one direction is applied, the region is tested whether planar shading is applicable
at all. For this purpose, initially, a four point test with neighboring pixels or in
adjacent rectangles with averaged intensity values has been performed [25, 10,
Sect. 5.3] that turned out to be extremely simple and efficient; three sums and
one compare to the threshold for planarity immediately lead to all four residues
of the least-squares planar fit in the region covered. It is interesting to note that
the Haar-wavelet Ixy used in [30] exactly represents this four-point planarity test.
If the threshold is exceeded, planarity no more is a good approximation for the local
intensity distribution, and the candidate region for linear shading has to be closed.
Linearly shaded 1-D regions in search direction thus are found between two such
locations with nonplanar intensity distribution.

On the other hand, corners characterized by stronger curvature of image intensity
in two orthogonal directions can only occur in image regions satisfying the
nonplanarity conditions. In typical traffic scenes, nonplanarity for a threshold value
of 1% of the total intensity range (256 in standard video) occurred in less than
20% of image locations tested with the 4-point planarity test; lifting the threshold
to 2% (typical for humans to notice differences without paying special attention,
see [10, Fig. 5.24]) reduces these image regions to less than 5%. That means that
the number of image locations where one should reasonably look for corners can
be reduced to 1/5 resp. 1/20 by this simple planarity test. By saving intermediate
values during gradient computation with the Sobel-operator, this 4-point planarity
test costs only one subtract- and compare operation, and it reduces the average
workload for corner feature extraction by about an order of magnitude. However,
this simple nonplanarity test also picks up an edge when its direction sufficiently
differs from the mask direction. These false candidates have to be removed in further
steps confined to the small number of image locations found.

With respect to scale effects in corner detection, three routes have been
considered:

1. The diagonal sums needed for the simple four-point planarity test directly invite
to forming the next (2 � 2) pyramid level by addition. To have the same center
for additional planarity tests on the next pyramid level, a 3 � 3 mask has to
be chosen; this allows two such tests, the “diagonal” and the “cross” test with
four pixels on the directions indicated by the name (see Fig. 11.1a). These tests
together cover an area of 6 � 6 original pixels. However, depending on the four
starting points possible for pyramid computation, different pixel values on the
next higher pyramid level will result in image sequences with slightly different
gaze angles from frame to frame as is quite natural from cameras onboard a
vehicle. Experience with systematic variations of the starting point in the same
image has shown that the number of corner candidates for a certain parameter set
may vary up to 20%; this has led to discarding this approach.

2. Since the results with 3 � 3 masks for detecting and affirming nonplanarity
have been promising, it was decided to start with these masks directly on the

234 E.D. Dickmanns

original pixel level and to compute results for 1-step shifts in row and column
direction. The central pixel is left out in the 4-point tests, but the difference
between the measured intensity of the central pixel and the average of the
four pixels used for the planarity test (“diagonal” or “cross”) yields another,
independent, nonplanarity test; it was dubbed “central deviation”-feature ©c4 and
is used for forming binary or ternary (1-bit or 2-bit) nonplanarity-images [26]
(see below).

Instead of looking at gradients and deriving expressions for curvature (as
second-order derivatives of the 2-D intensity function) from these, as is usually
done in a family of corner detectors (e.g. [27,28] and derivatives), here, curvature is
detected directly from the definition as deviation from a linear or planar reference.
Figure 11.1b shows the interpolation of three points by a second-order parabola; a
higher curvature C1D of the interpolated function is given only when the central
point I0 lies sufficiently off the straight line am between the two equidistant
neighboring points Im1 and Ip1. By straightforward interpolation of the intensity
function I.x/ D I0 C am � x C C1D=2 � x2 through the three points I0, Im1 and Ip1

the curvature parameter C1D is obtained as

C1D D .Im1 C Ip1 � 2 � I0/=d2: (11.1)

For the cross mask, the grid points can be chosen as the same smoothed elements
used for the Sobel gradient-operator as shown in Fig. 11.1c, both in row- (left)
and in column direction (right); it is interesting to note that the sum of both
one-dimensional curvature operators (without the division by d2/ yields eight
times the “central deviation” feature (difference between the average of the corner

n
 =

 2

m = 2

corner
pixel

cross pixel

CDiag

Diag

C
D

ia
g

,r
o

t

Diag, rot

1 2 3

4 5 6

7 8 9‘diagonal’
corner pixelcorner pixel

corner
pixel

cross pixel

cross
pixel

cross
pixelcenter

pixel

x0xm1 xp1

I0

Ip1

Im1

am

x

ap

d

2d

1

–2

1

1

–2

1

2

–4

2

1

2

1

1

2

1

–2

–4

–2

+

–8

2 2

2 2

Computation of 121-averaged 1-D
curvature parameters (parabolic fit)

2 x ‘central
deviation’
feature from
averaged
corner
pixels 3x3

=

sum

a b c

in row direction column direction

mrot = nrot = √2

Fig. 11.1 (a) Test mask 3� 3 with two pixel patterns (“diagonal” and “cross”) for planarity tests.
(b) Second order parabolic interpolation through three equidistant points (measured or smoothed)
in any cross-section yields slope am of the linear least squares fit equal to the tangent direction of
the interpolating parabola with curvature parameter C . (c) Use of Sobel-elements for computing
the curvature parameters (see Fig. 11.2); the sum yields (eight times) the “central deviation” feature
as initial planarity test

11 Detailed Visual Recognition of Road Scenes for Guiding Autonomous Vehicles 235

pixels of the 3 � 3 mask and the measured central pixel value, see Fig. 11.1c,
bottom). So this central deviation feature is a good candidate for the initial
nonplanarity test in the 3 � 3 mask. However, this “central deviation” feature
as (4-point plus 1) planarity test leaves out the actual intensity values in the
pixels left empty in Fig. 11.1c, bottom. If only the four elements of the Sobel-
operator in the boundary regions of the 3 � 3 mask are summed, they yield 16
times the average intensity IMeanB3 in this boundary region. The difference to the
measured central pixel yields another measure for a “boundary-central-deviation”
nonplanarity test.

Random tests with road scene images have shown that this (8-point) test very
closely yields about the same number of candidates for intensity-corners than
the test with the average of the four corners of the 3 � 3 mask. The high
evaluation frequency of 25 Hz under steadily changing conditions has led to
discarding the differences without detrimental consequences. Confining generation
of candidates for corner features to the small 3 � 3 region reduces workload for
candidate merger later on; by precise localization of the center of gravity (c:g:) of
candidates in a local region, the final corner position is determined. The measure
for fusing candidates into a c:g: is the sum of the squared residues of the planar
approximation.

In [26] the false alarms stemming from non-aligned edges have been reduced by
4-point planarity tests with rotated sets of masks in 5� 5 or 7� 7 regions. However,
it has turned out to be more efficient to directly test bidirectional curvature with the
scheme given above for only a few rotated masks by using orthonormal diagonals
in a 5-point scheme (next section).

Coming back to the point of scale effects in corner detection, in our multi-focal
approach this may be covered by performing the unified approach to feature detec-
tion on all multi-focal images in parallel and by crosschecking the results; active
attention control in real-time vision then has to resolve uncertainties remaining over
time. With a factor of 3–4 in spacing of focal lengths, a 3�3mask on the next higher
level (with less resolution) covers a square of 9–12 pixel side length on the lower
level. Therefore, 7�7masks on each level seem sufficiently large for approximately
equal spacing in scales with our multi-focal approach.

3. A completely independent approach for dealing with scale effects has been
pursued in [29]; computing an integrated image first and using the “SURF”-
approach [30] for detecting interest points, their detection and tracking at any
larger scale can be achieved efficiently with a fixed number of operations.
Exploiting the parallel computing capabilities of modern Graphic Processing
Units (GPUs), real-time performance up to 200 Hz has been demonstrated with
a single image sequence. The approach discussed in the next section combined
with this approach just cited may yield a good couple satisfying all requirements
for multi-focal real-time vision.

236 E.D. Dickmanns

11.4.2 Five-Point Planarity Tests

As in the 4-point test disregarding the central pixel, deviations from the best local
planar fit are taken as reference for curvature here too. In general, in a 3 � 3 mask
the best local planar approximation to the intensity function in the grid would have
to use all nine pixels in the mask for interpolation. However, this yields relatively
complex results needing many computational steps. Since curvature of the intensity
function around the center of the mask will be checked in two orthogonal directions,
five points (four corners and one center) are picked here for a least squares planar
fit; in the cross mask in Fig. 11.1a the three intensity values of the cross-sections
through the center are used for interpolating a second order parabolic function
exactly through these values as shown in Fig. 11.1b. Additional test directions in
wider regions (5 � 5 or 7 � 7) may be obtained as Fig. 11.2 shows; on the left (a),
two sets of masks are formed from pixel pairs in a 5� 5 field, while on the right (b)
they are chosen from a 7 � 7 field.

The 5-point test tends to pick corners by the convex side, while the 4-point test
without the central pixel in the 3 � 3 mask favors the concave side. Independent
of the number of pixels in the square masks for this test, only the corner-pixels
of the rotated mask and the central pixel are taken for determining a planar
approximation based on these five samples. Since the initial nonplanarity test is
based on a 3 � 3 local environment, the following tests only have to remove false
alarms from edges; for this purpose it is of advantage to choose (averaged) pixel
values further away from the center of the mask to reduce noise effects from
digitization.

Choosing orthogonal coordinate frames in direction of the diagonal and the
counter-diagonal of the mask applied, the formulation of the task is straightforward.
The planar model for five discrete points on the diagonals at distance d from
(respectively at) the origin is written

(j-3) (j-2) (j-1) (j) (j+1) (j+2) (j+3)

90°

0°

63.4°

9.5°

–50.2°

(i-3)

(i-2)

(i-1)

(i)

(i+1)

(i+2)

(i+3)

39.8°

–26.6°

1/2 1/2

1/2

1/2

2

99.5°

7x7 rotated sets of pixel pairs

a b
3x3 cross (121) & 5x5 rotated sets of pixel pairs

90°

0°

(i-2)

(i-1)

(i)

(i+1)

(i+2)

90°

0°

76°126.9° 36.9°

–1
4°

14
°1 2 1

1 2 1

–2 –2

53.1°104°

–3
6.

9°

(j-2) (j-1) (j) (j+1) (j+2)

–4

1 –2 1

1 –2 1

2 2–4

Fig. 11.2 Rotated mask sets from pixel pairs in 5 � 5 (left) and 7 � 7 local fields (right). In
subfigure (a) the initial curvature test with Sobel-elements is included, while in (b) the central
pixel smoothed in both directions with the same Sobel element is shown

11 Detailed Visual Recognition of Road Scenes for Guiding Autonomous Vehicles 237

I11M5D D I0 � aD � d C 0
I12M5CD D I0 C 0� aCD � d

IcM5 D I0 C 0C 0
I21M5CD D I0 C 0C aCD � d
I22M5D D I0 C aD � d C 0: (11.2)

Let the measured values (index �) from the image be I11�, I12�, Ic�, I21� and I22�.
Then the errors eij can be written:

2
666664

e11
e12
ec5

e21
e22

3
777775

D I11M5D � I11� D
D I12M5CD � I12� D
D IcM5 � Ic� D
D I21M5CD � I21� D
D I22M5D � I22� D

2
666664

1 �d 0

1 0 �d
1 0 0

1 0 Cd
1 Cd 0

3
777775

2
4 I0aD
aCD

3
5 �

2
666664

I11�
I12�
Ic�

I21�
I22�

3
777775

or e D A � p � I�: (11.3)

To minimize the sum of the squared errors, eT e shall be minimized by proper
selection of pT D ŒI0 aD aCD�. The necessary condition for an extreme value is
that the partial derivatives vanish; this leads to the solution via pseudo-inverse

p D .ATA/�1 � AT � I�: (11.4)

In a few steps the following results are obtained:

aD5 D .I22� � I11�/=.2d/I aCD5 D .I21� � I12�/=.2d/I
I0 D IMean5D .I11�C I12�C Ic�C I21�C I22�/=5D 0:8 � IMean4C 0:2 � Ic�:

(11.5)

The two residues on the diagonal and the counter-diagonal are each equal and are
dubbed ©D5 respectively ©CD5 here:

©D5 D 0:2 � .I12�C I21�C Ic�/ � 0:3 � .I11�C I22�/ D IMean5 � .I12�C I21�/=2;
©CD5 D 0:2 � .I11�C I22�C Ic�/ � 0:3 � .I12�C I21�/ D IMean5 � .I11�C I22�/=2:

(11.6)

The residue at the center of the mask is

"c5 D IMean5 � Ic� D 0:2 � IMean4 � 0:8 � Ic� D 0:8 � ©c4: (11.7)

238 E.D. Dickmanns

a b c

Fig. 11.3 Curvature test for eliminating false alarms from edges by parabolic second order data
fit on the diagonals. (a) left: Central pixel of 3 � 3 mask on an aligned corner: ratio of curvature
coefficientsD 0:5; (b) center: aligned edge: strong curvatures, ratioD 1. The rotated test (45ı) in
cross direction shows one curvature to be zero (gray curve with round dots); (c) right: The 3 � 3
mask just picks up the dark corner with 1 pixel: one curvature is zero

Two things are interesting to note: (1) that the central residue ©c5 of the 5-point
planar fit is 80% of the central deviation ©c4 in the 4-point fit, and (2) that the
difference between the two residue values "D5 and ©CD5 on the diagonals of the
5-point test (11.6) is always twice the residue value j©4j of the 4-point fit, i.e.
the difference between diagonal and counter-diagonal residues are the same

j©D5 � ©CD5j D j.I11� C I22�/ � .I12� C I21�/j=2 D 2 � j©4j: (11.8)

From (11.1), the curvature coefficients C for the diagonal and the counter-diagonal
of the 5-point test are

CD5 D .I11 C I22 � 2 � Ic�/=d
2I CCD5 D .I12 C I21 � 2 � Ic�/=d

2: (11.9)

For the ratio of both, the denominators cancel; the first sums of intensities are the
same as for the 4-point test, so that the computational load for determining the
curvature parameters is small. Figure 11.3 visualizes the results for three cases with
an ideal corner in alignment with the test mask used.

In case (a) at left the central pixel of the 3 � 3 mask covers the ideally hit
dark corner, while in case (c) at right the central pixel is on the level of the bright
convex side of the ideal corner, and the candidate is rejected. In the first case, both
curvatures are large (squared ratio CR2 D 0:25); this is accepted as a corner feature.
If the 3 � 3 mask covers the image corner with just one pixel (right), one curvature
parameter is zero; the position is not accepted as a corner. If one row or column in
the 3�3mask is at a different (but constant) intensity level than the rest of the mask
(also at a constant level, see (b) center), the 5-point test yields a curvature ratio of 1,
but this is due to the straight edge. Therefore, both the 4-point test (which eliminates
this case as candidate) and the 5-point test have to be passed; an alternative are more
5-point tests with rotated masks that have to be passed e.g. in cross direction (see
curves with gray round dots in (3b) or with sets from Fig. 11.2).

To re-use the elements of the Sobel-gradient operator, in a first step the 121-
smoothed pixels in the 3 � 3 cross mask are taken as shown in Figs. 11.1 and 11.2.
This quite naturally induces the idea “Why not start with one of these curvature tests

11 Detailed Visual Recognition of Road Scenes for Guiding Autonomous Vehicles 239

right from the beginning?” The second curvature test would then be in orthogonal
direction and also ask for a magnitude above a threshold. In environments with
predominating edge directions (horizontal/vertical in civil engineering), testing
these directions first eliminates most sources of false alarms from edges.

With less ideal orientations between mask direction and intensity patterns,
several rotation angles of test masks and corresponding curvature ratios CR2 are
necessary for separating false candidates from edges and real corner features.
Usually, in a small local environment several candidates are found around a real
corner in the images; these have to be fused for the single most likely corner
location.

11.4.3 Fusion of Local Corner Candidates

Since the nonlinearities (residues to the best local planar fit) have been selected as
measure of the curvature of the intensity function, it makes sense to fuse several
candidates in a small local environment by computing the center of gravity of the
sum of all residues squared; this conforms to using the traceN-values in the 4-point
nonplanarity test for the same purpose [26].

With (11.6) and (11.7) the following result can be obtained:

X
Residues2 D ©2c5 C 2 � ©2D5 C 2 � ©2CD5: (11.10)

This value is computed for the initial test with the 3 � 3 corner pixels. Fusion of
candidates is performed when the neighbor is less than Rcg pixels away in row or
column direction; values in the pixel range 1 � Rcg � 2:5 have shown good results
in connection with the 3� 3 initial mask. If the initial nonplanarity test is done with
larger masks, the fusion range Rcg has to be increased.

11.5 Experimental Results in Road Scene Recognition

Figure 11.4 shows a busy highway scene with at least seven vehicles easily
recognizable by a human observer. The center-deviation feature (lower part) marks
locations with stronger nonplanarity of the intensity function. A common gray
background (I D 175) shows close to planar regions. Where the central pixel is
much brighter than the average of the corner pixels in the 3�3 mask, white dots are
painted; similarly, where it is much darker, black dots are shown (binary coding).

From these white or black candidates the corner locations marked by triangles
in the top part of the figure are selected by four rotated orthogonal curvature
tests. For efficiency reasons they only ask for the ratio of curvatures in orthogonal
directions to exceed a lower threshold (0.4, or CR2 > 0:16); the absolute magnitude

240 E.D. Dickmanns

Fig. 11.4 Highway scene with candidates for corner features (white and black, bottom) selected
by the “center-deviation test” using the average of the four corner pixels of the 3�3mask (Fig. 11.3,
bottom, �14%). The orthogonal curvature cross-test reduces this number to �3:5%, the rotated
tests to�0:8%. After fusion of�260 local candidates, about 600 corner features are obtained (top,
region of special interest); they are marked by triangles

is no more checked. The corners detected mostly correspond to human visual
observation; only a few real corners are missed, like the lower left corner of the
left rectangle on the back side of the white truck ahead, and the corners of the faint
lane markings. To pick these up, the threshold values have to be lowered. Due to
temporally changing lighting conditions and to changing regions of special interest,
threshold adaptation should be performed continuously.

Figure 11.5 shows a case where corners of dashed lane markings have been
picked up. There are also many corner features on the truck in the right lane nearby
and in the textured regions of the environment (bushes and trees). With respect to the
truck far away in the right lane, the dark tires are very important features since they
allow range estimation in conjunction with the vertical curvature profile of the road;
by fusion of close regional candidates for corners (several white dots to a single
triangle) precision in recursive estimation is improved.

Another detail of importance in convoy driving is observing the stop and blink
lights of cars nearby. Figure 11.6 shows a case where the car between two trucks in
the right neighboring lane might want to change lane to the left into the lane of the
own vehicle carrying the camera. The figure left shows brake lights at both sides of
the rear window detected by corner features as off; the right-hand part of the figure
taken 1 s later shows them as bright (about 100 intensity steps higher than when not

11 Detailed Visual Recognition of Road Scenes for Guiding Autonomous Vehicles 241

Fig. 11.5 Tracking of dashed lane markings (right) and of two trucks in the right neighboring
lane. The zoomed region (left) shows fusion of candidates in a small local region (white dots) into
a single corner candidate (triangle)

activated). This is not a one-sided blinking light for lane change but the indication
that the vehicle is braking.

The sets of corner features on the car and on the truck at right allow precise
tracking of relative speed and position of these vehicles nearby. In this case the
reference is the left side of the large navigation sign extended down to the ground
(black dashed line); with the camera looking in the direction of the own lane, a
horizontal line orthogonal to the road direction is mapped into an image row (also
dashed black). A comparison (left vs. right subfigure) of the distances on rays
through the common vanishing point at infinity (not shown here) shows the distances
traveled by the vehicles: The truck ahead moved only a bit; the car closed in to this
truck and started braking, while the truck on the right moved into the image from

same stati-
onary navi-
gation sign

gap opened

brake lights off
int. = 147(l), 121(r)
(1 second earlier)

intensity = 237(l), 218 (r)
brake lights on

n
av

. s
ig

n

n
av

. s
ig

n

truck

has
passed

on right side
& occludes most

of the navigation signA l l v e h i c l e s a r e m o v i n g !

truck

= =

Fig. 11.6 Two frames 1 s apart in time; the camera stands still in a vehicle in the second lane.
The large navigation sign (top right) is a stationary reference for motion of vehicles (see text); of
special interest are the blink- and brake lights of the car. They are detected by corner features; their
activation changes image intensity by�100 steps (of 256): left: brake lights off; right: on

242 E.D. Dickmanns

Fig. 11.7 Busy road scene with feature sets extracted: Left: Central part (marked right) of original
(noise corrupted) image with corner features superimposed (triangles); right: edges and linearly
shaded blobs. All features in conjunction alleviate interpretation; large blobs are efficient for
recognition and tracking

the right side and occludes most of the navigation sign (hardly recognizable from
its features alone).

Figure 11.7 shows the characteristics of the blob-edge-corner features extracted
in the unified approach exploiting the smoothing properties of the 121-Sobel-
elements. Due to intermediate storage the image contained ugly digitization noise
(see top left). Despite this fact, satisfying feature extraction results have been
achieved. The two subfigures visualize the benefit obtained when all these features
are considered in conjunction during the deliberation process for associating
features with real-world objects. Especially for tracking in image sequences the
combination of larger blobs and corners is beneficial.

11.6 Conclusions

The smoothing properties of the 121-Sobel elements are exploited additionally in a
new direct scheme for testing the curvature properties of the image intensity function
in orthogonal directions in the same 3 � 3 mask. A threshold on the magnitude of
curvature eliminates 80–95% of all locations as candidates for corners (depending
on the threshold level); the second orthogonal test cuts the number of candidates
remaining to one half or even to one fourth. Thus, only a few percent of the image
remain as corner candidates. Stronger edges may yield false alarms; they have to
be eliminated by further tests. Performing the curvature tests in row and column
direction first, in road scenes with many edges in horizontal and vertical directions
due to reasonable civil engineering (and, of course, the gravity vector) eliminates
most false alarms from these edges right from the beginning. The remaining ones
have to be removed by the same orthogonal curvature tests in rotated masks; these
are selected in 5 � 5 or 7 � 7 pixel regions with the same center. For noise
reduction, pixel pairs in row and column direction are used; these pairs are needed

11 Detailed Visual Recognition of Road Scenes for Guiding Autonomous Vehicles 243

anyway for building the Sobel elements; storing these in vectors allows avoiding
2-D coordinates after the initial grasp from the image.

In 1-D regions between nonplanar locations linearly shaded segments are
assembled by a floating least squares fit; if the parameters obtained are within
thresholds on intensity and gradients these segments are merged laterally to planar
2-D blobs. All these features: blobs, edges and corners, are stored in densely packed
vectors, with a second vector set for efficient navigation [15].

Offline results as shown are very promising; real-time image sequence processing
is in preparation. This fine-scale scheme nicely complements a new method
favorable for larger scales that uses integrated images; for this scheme real-time
results (200 Hz for a single image sequence) have recently been published [29].

References

1. Dickmanns ED, Zapp A (1987) Autonomous high speed road vehicle guidance by computer
vision. 10th IFAC World Congr. Munich, Prepr, vol 4, pp 232-237

2. Masaki I (1992++) yearly International symposium on intelligent vehicles – Proceedings, in
later years appearing under IEEE – ITSC sponsorship

3. Thomanek F, Dickmanns D (1992) Obstacle d, tracking and state estimation for autonomous
road vehicle guidance. IEEE/RSJ international conference on intelligent robots and systems,
IROS, vol. II, Raleigh, pp 1399-1406

4. Fuerstenberg KC, Dietmayer KCJ, Willhoeft V (2002) Pedestrian recognition in urban traffic
using a vehicle based multilayer laser-scanner. IEEE intelligent vehicle symposium, Versaille

5. Wang CC, Thorpe C, Suppe A (2003) Ladar-based detection and tracking of moving objects
from a ground vehicle at high speeds. IEEE-symposium on intelligent vehicles (IV)

6. Fuerstenberg KC, Dietmayer KCJ (2004) Object tracking and classification for multiple
active safety and comfort applications using a multilayer laserscanner. IEEE-symposium on
intelligent vehicles, Parma, pp 807-812

7. von Holt V (2004) Integrale Multisensorielle Fahrumgebungserfassung nach dem 4D-Ansatz.
Dissertation, UniBwM, LRT

8. DARPA (2006) Urban challenge, route network definition file (RNDF) and mission data file
(MDF) formats, May 12

9. Dickmanns ED (1995) Road vehicle eyes for high precision navigation. In: Linkwitz et al (eds)
High precision navigation. Dümmler, Bonn, pp 329-336

10. Dickmanns ED (2007) Dynamic vision for perception and control of motion. Springer, London
11. Dickmanns ED (1987) 4-D dynamic scene analysis with integral spatio-temporal models. In:

Bolles R, Roth B (eds) Robotics research, 4th international symposium, MIT Press, Cambridge,
MA

12. Gregor R, Lützeler M, Pellkofer M, Siedersberger K-H, Dickmanns ED (2000) EMS-vision:
A perceptual system for autonomous vehicles. IEEE intelligent vehicle symposium, Dearborn,
pp 52–57

13. Gregor R, Dickmanns ED (2000) EMS-vision: Mission performance on road networks. IEEE
intelligent vehicle symposium, Dearborn, pp 140-145

14. Goebl M, Faerber G (2007) A real-time-capable hard- and software architecture for joint
image and knowledge processing in cognitive automobiles. Proceedings of the IEEE intelligent
vehicle symposium, IEEE-Press, p 734-740

15. Hofmann U (2004) Zur visuellen Umfeldwahrnehmung autonomer Fahrzeuge. Dissertation,
UniBw Munich, LRT

244 E.D. Dickmanns

16. Kuehnle A (1991) Symmetry-based recognition of vehicle rears. In: Pattern recognition letters,
vol 12. North-Holland, pp 249–258

17. Zielke T, Brauckmann M, von Seelen W (1993) Intensity and edge-based symmetry detection
with an application to car following. CGVIP: Image Understanding 58:177–190

18. Schmid M (1993) 3-D-Erkennung von Fahrzeugen in Echtzeit aus monokularen Bildfolgen.
Dissertation UniBw Munich, LRT Also: Fortschrittsberichte VDI Verlag, Reihe 10, Nr. 293

19. Thomanek F (1996) Visuelle Erkennung und Zustandsschätzung von mehreren Straßenfahrzeu-
gen zur autonomen Fahrzeugführung. Dissertation, UniBw Munich, LRT. Also: Fortschritts-
berichte VDI Verlag, Reihe 12, Nr. 272

20. Estable S, Schick J, Stein F, Janssen R, Ott R, Ritter W, Zheng YJ (1994) A real-time traffic sign
recognition system. In: Proceedings of the international symposium on intelligent vehicles’94,
Paris, pp 213–218

21. Schiehlen J (1995) Kameraplattformen fuer aktiv sehende Fahrzeuge. Dissertation, UniBw
Munich, LRT. Also: Fortschrittsberichte VDI Verlag, Reihe 8, Nr. 514

22. Lützeler M (2002) Fahrbahnerkennung zum Manövrieren auf Wegenetzen mit aktivem Sehen.
Dissertation, UniBw Munich, LRT

23. Pellkofer M (2003) Verhaltensentscheidung für autonome Fahrzeuge mit Blickrichtungs-
steuerung. Dissertation, UniBw Munich, LRT

24. Fuchs T (2008) Das Gehirn – ein Beziehungsorgan. Kohlhammer
25. Dickmanns ED (2006) Corner detection with minimal effort on multiple scales. Proceedings

of Vision Application (VISAPP), Setubal
26. Dickmanns ED (2008) Generalized Nonplanarity Features. UniBwM/LRT/TAS/TR 2008–08
27. Harris C, Stephens M (1988) A combined corner and edge detector. In: Alvey vision

conference, pp 147-151
28. Tomasi C, Kanade T (1991) Detection and tracking of point features. CMU, Tech. Rep. CMU-

CS-91–132, Pittsburgh, PA
29. Schweitzer M, Wuensche H-J (2009) Efficient keypoint matching for robot vision using GPUs.

In: Proceedings of the 5th IEEE workshop on embedded computer vision (ECVW), ICCV-
Kyoto

30. Bay H, Tuytelaars T, Gool LV (2006) Surf: Speeded up robust features. In: Proceedings of
ECCV

Chapter 12
System Architecture for Future Driver
Assistance Based on Stereo Vision

Thomas Wehking, Alexander Würz-Wessel,
and Wolfgang Rosenstiel

12.1 Introduction

The last two decades saw much research on computer vision in automotive
environments. Since a few years the first and second generation of vision based
driver assistance systems are available in luxury and middle-class vehicles. The
offered functionality is limited to comfort tasks like road sign recognition, night
view and lane keeping support. To develop more complex functions with a safety
aspect like pedestrian protection, the required measurement data has to be more
accurate. The scene depth information must be available and a robust model free
approach is preferable.

The answer could be a stereo vision system (3D) combined with the measurement
of optical flow (2D) tracked over time (1D) – so called 6D-stereo. In contrast to
a monocular approach the extracted information provides much more knowledge
about the surrounding of the vehicle. For this reason a possible architecture for real
time automotive applications is developed and presented in this work.

12.1.1 Motivation

Today‘s driver assistance systems will improve in performance in case of
more detailed and precise measurement data through 6D-stereo. The scenario

T. Wehking (�) � A. Würz-Wessel
Robert Bosch GmbH, 71229 Leonberg
e-mail: thomas.wehking@de.bosch.com; alexander.wuerz-wessel@de.bosch.com

W. Rosenstiel
Eberhard-Karls-University, 72076 Tübingen
e-mail: rosenstiel@informatik.uni-tuebingen.de

S. Chakraborty and J. Eberspächer (eds.), Advances in Real-Time Systems,
DOI 10.1007/978-3-642-24349-3 12, © Springer-Verlag Berlin Heidelberg 2012

245

246 T. Wehking et al.

characteristics of a pedestrian protection system make an approach like the
combination of stereo and optical flow indispensable. With this design it is possible
to realize a robust and model free application. To reach this goal there are many
challenges to overcome. One is, to implement the necessary algorithms within the
usually limited automotive hardware and software resources (e.g. memory capacity
and processing power). Due to this limitations the co-design between hardware and
software is very important. A real time implementation has to process the complete
analysis of an image pair within 40 milliseconds. This article describes the target
system and the developed architecture for a real time 6D-stereo system.

12.1.2 Overview

The article is structured as follows. In Sect. 12.2 the 6D-stereo system is explained
briefly. A short overview of the low- and high-level algorithms is given. Section 12.3
describes the system architecture in detail. System requirements are discussed and
the development platform is explained. A safety concept for critical applications
like emergency braking is presented. The result of the hardware/software co-design
process is explained. The article closes with a conclusion and a look forward to
further work.

12.2 6D-Stereo System

In the following subsections a brief overview of the 6D-stereo system is given.
Details are described in [4, 5].

6D-stereo is designed as a sensor, able to support many different functions. The
used measurement principles, explained in Sect. 12.2.1, generate a disparity map
and a motion field. Based on this raw data an object detection procedure extracts
obstacles in front of the vehicle – see Sect. 12.2.2. High level applications like
pedestrian protection and emergency braking use this information to realize its
functionality.

12.2.1 Measuring Base

The sensor configuration of an automotive stereo rig supports different approaches
to generate raw data. 6D-stereo uses two of them.

The first is a stereoscopic 3D reconstruction via the epipolar geometry [1]. The
correspondence problem between the two images is solved using the unique feature
approach of [4]. For each pixel a signature is generated out of a surrounding pixel
patch. All signatures are concentrated in one list per image. The comparison of

12 System Architecture for Future Driver Assistance Based on Stereo Vision 247

Fig. 12.1 Color coded stereo measurement in a typical road environment

Fig. 12.2 Flow measurement in the same scene like Fig. 12.1. The warmer the color the longer
the flow vector

both signature lists provides the depth information in form of a disparity map. An
example is shown in Fig. 12.1.

As a second principal component 6D-stereo uses the optical flow approach [2].
This motion field is induced by the ego-motion of the observer and any motion of
independently moving objects. As shown in Fig. 12.2 a crossing pedestrian induces
a flow dominant in horizontal direction. All other plotted measurements are static
points because of a static observer.

As seen, the two measurement principals need to solve the correspondence
problem in space and time. Due to the unique feature approach, the extracted
features are reusable for optical flow and stereo. This advantage allows an efficient
implementation.

12.2.2 Post Processing

The high-level algorithms are based on the stereo and optical flow information.
To extract raised objects and their attributes is the main task. There are several
algorithm modules needed to get this information. Clustering the stereo and flow
measurements is encapsulated in segmentation modules. Also necessary is an
estimation of the ego-motion, the compensation of it and a tracking of object
hypotheses. Figure 12.3 shows the object detection result for the same scene as

248 T. Wehking et al.

Fig. 12.3 Object detection via 6D-stereo. White boxes denote those objects tracked over time

in Figs. 12.1 and 12.2. The white boxed regions denote the tracked objects. Their
attributes include among others distance, dimensions and velocities.

Section 12.3 highlights the modular design of the post processing algorithms
including some results. The challenge is a co-design of hardware and software to
meet the requirement of real-time processing on embedded automotive qualified
hardware.

12.3 Architecture

This section introduces the architectural concept of 6D-stereo. A hierarchical soft-
ware structure is presented. The hardware/software co-design yields an optimized
partitioning of the algorithms for the selected target-system.

The first subsection broaches essential requirements. In Sect. 12.3.2 the target-
platform will be explained briefly. The part safety concept deals with the safeguard-
ing of such a hardware-platform. A partitioning of the needed software algorithms
is presented in the last subsection of this paragraph.

12.3.1 Requirements

Essential requirements of the stereo system, in particular the portability, real-time
and safety aspect, are listed below. They are fundamental for the architectural
design. Because of an other focus, the functionality, maintainability and usability
are not discussed here.

12.3.1.1 Portability

For development and further improvements of algorithmic parts a system like 6D-
stereo has to be manageable. The following requirements are indispensable for an
effective architecture:

12 System Architecture for Future Driver Assistance Based on Stereo Vision 249

• The exchangeability of each algorithm and small logic processing step has to be
guaranteed. That is possible in case of modularity and strict interfaces.

• Every logic unit should be established as a separate module. This makes sense till
a defined granularity. Interfaces generate a substantial overhead for each module.
The criteria to split an algorithm or not are explained in Sect. 12.3.4.

• Interaction between two software modules follows strict rules. Exact one inter-
face has to manage the data transfer to the next processing instance.

• The algorithms have to be independent from the target system. For example, the
realization of an obstacle detection algorithm has to use the same implementation
even if it is integrated on a personal computer or an electronic control unit. This
reduces the work load and the failure rate of the porting. Section 12.3.4 explains
the used software structure.

12.3.1.2 Real-time

For embedded systems the real-time requirement is very strict. The refresh rate
of 6D-stereo is 25 Hz, hence every 40 ms a new image pair with a resolution of
2�1,024�512 pixel and 2 MB data volume is taken. The complete process chain
has to keep this cycle time. For minimal response time and maximum effectiveness
of the assistance functionality it is important to fulfill this condition. To develop an
optimized architecture for the target system the co-design between hardware and
software is necessary. Algorithms which are in parts suitable for implementation in
hardware have to be split into separate modules.

12.3.1.3 Safety

An ambition of 6D-stereo is to provide safety applications like emergency braking.
The measuring base and the almost model free obstacle detection approach are a
good basis. But there has to be a concept how a system failure is detected and
handled. Section 12.3.3 discusses this requirement.

12.3.2 Development Platform

The platform which is used for the design process and implementation consists
of one field programmable gate array (FPGA) and one microcontroller. They are
connected via a peripheral component interconnect (PCI) interface. Such a setup
stands for a maximum of flexibility and supports efficient realizations. Without any
hardware support, a high-end consumer processor would be required. Thats not
possible in an automotive environment. Figure 12.4 shows a schematic overview
of the target.

250 T. Wehking et al.

Fig. 12.4 Architecture of the used electronic control unit (ECU)

12.3.2.1 FPGA

The used FPGA is a Xilinx Virtex 4 FX60. Each of its 25,280 slices covers two
registers and two look up tables. The two embedded Motorola PowerPC 405 cores
are not included in the architecture because of transparency and system complexity.
Four SDRAM modules, each with 16 MB, clocked with 123 MHz can read and
write 32 Bit words at an effective bandwidth of 1033 MB/s.

12.3.2.2 Microcontroller

A Freescale MPC5200 microcontroller handles the post processing. With its RISC
architecture and a floating-point-unit it accesses a 16 MB SDRAM module and a
flash memory. Separate caches for data and instruction – each 16 k – are installed.
At 396 MHz clock the microcontroller processes 32 Bit words.

12.3.2.3 PCI bus

The PCI connects the FPGA with the microcontroller. With a clock of 33 MHz and
32 Bit words the effective bandwidth of the PCI bus is 70 MB/s. Because of the low-
level image processing a fast data reduction is done through the FPGA program. So
the small bandwidth of PCI is no bottleneck.

12 System Architecture for Future Driver Assistance Based on Stereo Vision 251

12.3.3 Safety Concept

In case of safety critical applications, 6D-stereo must cope with unnoticed failures.
The following section presents briefly a concept for the architecture consisting of
FPGA and microcontroller.

12.3.3.1 FPGA

As seen in [3] FPGAs are sensitive against transient failures. One transient failure is
negligible, because of no temporal logic correlation between two processing cycles.
If the program code is affected, the failure is permanent till the next system reboot.
This means that the FPGA configuration must be tested against transient-permanent
and systematic failures.

To detect failures in the FPGA processing results, at the beginning and ending
of every image a test pattern is integrated. This pattern is processed with the same
algorithm like the current image. The correct results are stored in the microcontroller
memory and compared with the current result. Only in case of equality the test is
successful and the release is given to the safety controller (SCON). See Fig. 12.5 for
a schematic illustration.

12.3.3.2 Microcontroller

The post processing tasks of the microcontroller contains tasks with temporal
correlation. For this part, transient failures are not negligible. Permanent failures
are also fatal. Both must be detected solidly. A concept with comparator and two
different algorithm chains prevents false behavior. Two assumptions are required
for this comparator concept:

• Based on the same FPGA preprocessing it is possible to develop two sufficient
diverse algorithms for the complete post processing.

• Two diverse algorithms deliver not the same result on defective hardware.

Fig. 12.5 Safety concept with test pattern and comparator

252 T. Wehking et al.

With these assumptions, the comparison of the results of the two algorithms is
a single point of failure. Which situations are possible and how can we detect the
failure of the comparison:

• Permanent equality (stuck at 1)
For observation of the comparator a safety controller (SCON) is inserted. It tests
the comparator cyclic on correct functionality. In case of a false response, the
vehicle bus remains locked. The assistance functionality is not given, but the
system is safe.

• Permanent inequality (stuck at 0)
This is an uncritical case, because of the vehicle bus remains locked. The system
is passive but safe.

• Transient failure
Relating to the failure latency and the mechanical inertia, this is an insignificant
and uncritical case.

12.3.4 Software Structure and Partitioning

This section discusses the hierarchical software structure and the partitioning of the
algorithms needed for 6D-stereo.

12.3.4.1 Hierarchical software structure

In the development of a new driver assistance system there are two elementary
different steps. At first a feasibility study of an idea – mostly implemented on a
high-performance personal computer. At a next step the algorithms get optimized
for execution on the development platform. Each system uses an proprietary,
incompatible framework. Therefore we use a concept which simplifies this process.

Basic functionalities, interfaces, main algorithms and realizations in special
frameworks are strictly divided. Figure 12.6 shows the hierarchical software
structure as scheme. The left part displays a main algorithmic module which uses
basic video functionality, basic stereo functionality and needed interfaces. In the
block main algorithmic module the main logic of this module is implemented.
A realization in PC or ECU environment – see right part – bases on the same
algorithm components. So the essential logic is separated from the platform. The
same code is used for PC and ECU realization.

12.3.4.2 Partitioning

To fulfill the requirements of Sect. 12.3.1 the 6D-stereo algorithms had to be
partitioned. An iterative hardware/software co-design process was initiated to split

12 System Architecture for Future Driver Assistance Based on Stereo Vision 253

Fig. 12.6 Hierarchical structure of software modules

Fig. 12.7 Software module partitioning between FPGA and microcontroller

the tasks between FPGA and microcontroller. Parts which could be parallelised
are applicable for hardware implementation. Tasks which work mostly sequential
and need e.g. a floating point unit must run on the microcontroller. Figure 12.7
shows the resulting modules. For more detailed information on the algorithms
themselves see [5]. For prototypical implementation and the feasibility study of real-
time performance the safety concept is not integrated in the software partitioning.

The upper half of the chart in Fig. 12.7 denotes the modules to be implemented
by means of a hardware description language. They were realized with FPGA
resources. The dotted line symbolizes a dissociation between measurement program
and further algorithms based on the result. Microcontroller tasks are shown in the
lower half. The interfaces with its identifiers are listed below every module

254 T. Wehking et al.

12.3.4.3 Modules

• Vision EgoMo
The vehicles ego-motion estimation is split for efficient implementation into two
modules. Select ego flow is a FPGA task and preselects flow measurements.
Vision EgoMo takes these preselection via the CInputData interface and esti-
mates the ego-motion iteratively on the microcontroller. The result is presented
via the CEgomoStruct interface.

• CAN
Ego-motion and further vehicle information from inertial system sensors are
provided by the module CAN. They are available without any calculation
routines.

• EgoMerge
Both inputs from CCANData and CEgomoStruct were fused by EgoMerge.
A prioritization is given by the confidence of the input data. In case of
equal confidence the vision based ego-motion has higher priority because of
synchronisation relating to the current images and measurement data. The result
is sent via CEgomoStruct interface to following modules.

• 6D-map
The FPGA module 6D-map holds the information described in Sect. 12.2.1.
TMap is the used interface for this data.

• Stereo Segm
Based on 6D-map the stereo measurements are conditioned in the module

disparity histograms. A structure of THistogram2d is applied and Stereo Segm
called. An obstacle detection algorithm based on stereo information is imple-
mented. Including ego-motion and optical flow information, the object attributes
are calculated. The resulting object list is presented via the interface CObjData.

• 6D segmentation
Another obstacle detection algorithm is integrated completely in FPGA
resources. 6D segmentation contains a connected component labeling approach
based on optical flow and stereo disparity. The determined object information is
provided via CObjData.

• Tracking
To fuse the object information of Stereo Segm and 6D segmentation the module
Tracking is built in. A temporal history is integrated as well as unique identi-
fication, obstacle velocities and quality criterions. The final object list uses the
interface CObjData.

12.4 Conclusion

The presented work gives a brief description about the 6D-stereo concept in
Sect. 12.2. As one can see the measuring base established of stereo and optical
flow offers the potential for model free obstacle detection. That allows robust driver
assistance applications.

12 System Architecture for Future Driver Assistance Based on Stereo Vision 255

Main subject of this article is the architecture in Sect. 12.3. At first the archi-
tectural requirements portability, real-time and safety are discussed. With regard to
a prototypical implementation a development platform is presented. Section 12.3.3
illustrates a concept for safeguarding the hybrid system consisting of FPGA and
microcontroller. In the last subsection the partitioning of software algorithms is
described. Within a hardware/software co-design process the split of modules is
developed.

The described approach provides a good base for new driver assistance applica-
tions. Among others there are a robust obstacle detection, three-dimensional scene
information and a concept to follow the safety requirement. With this base an
emergency braking function is applicable. Furthermore existing functions like road
sign recognition profits by 6D-stereo, too. Information about distance and motion
of road signs could raise the robustness.

Future work on 6D-stereo will be concentrated on the ongoing integration of all
algorithm modules onto the development platform. Therefore the requirement of
real-time must be kept. In addition an extension of the confidence and robustness
validation of the detected obstacles is necessary. Furthermore prototypic driver
assistance systems should be realized.

References

1. Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, 2nd edn. Cambridge
University Press, Cambridge, p 237ff

2. Jähne B (2005) Digitale Bildverarbeitung, 6th edn. Springer, Berlin, p 423ff
3. Ken O’Neill (2004) Natürliche Strahlung verursacht Fehler in FPGA’s, elektronik industrie,

vol 11, pp 52–53
4. Lorei M, Würz-Wessel A, Heger T (2008) 6D-Stereo ein robuster und schneller Ansatz zur

Objektdetektion, VDI-Berichte 2038, pp 85–92
5. Wehking T, Würz-Wessel A, Rosenstiel W (2009) 6D-Stereo Video für moderne Fahrerassisten-

zsysteme. Workshop Fahrerassistenzsysteme, Löwenstein/Hößlinsülz, pp 20–28

Chapter 13
As Time Goes By: Research on L4-Based
Real-Time Systems

Hermann Härtig and Michael Roitzsch

13.1 Introduction

The ideas behind the L4 microkernel were born back in the mid-1990’s when Jochen
Liedtke reexamined the design of the earlier generation microkernels around Mach.
Trying to prove that a minimal kernel can still provide high system performance,
he developed first L3, then L4. The fundamental principle of his microkernels is
that a concept will only be allowed inside the kernel, if user-land implementations
would be unable to achieve the required functionality. This leads to truly minimalist
kernels supporting only address spaces, threads and interprocess communication.
These basic services are enough to run isolated user-level processes on top of L4.
Any additional functionality must be implemented as a server process. This includes
components like file systems, networking and even device drivers, all of which are
usually subsumed as an operating system personality.

13.1.1 Diverse Platform Requirements

Roughly at the same time, multimedia applications were pushing forward into
mainstream computing, because the required performance became increasingly
available to consumers. The characterising new requirement of those systems
was the coexistence of highly dynamic real-time and non-real-time workloads,
sharing computer cores, disks, video subsystems and networks. Previously, real-time
systems used to be dedicated, having the complete hardware for themselves. Now,
both real-time and non-real-time applications are running side by side, launched and
stopped at the user’s discretion. But although the requirements towards the system

H. Härtig (�) �M. Roitzsch
Technische Universität Dresden, Department of Computer Science, 01062 Dresden, Germany
e-mail: haertig@os.inf.tu-dresden.de; mroi@os.inf.tu-dresden.de

S. Chakraborty and J. Eberspächer (eds.), Advances in Real-Time Systems,
DOI 10.1007/978-3-642-24349-3 13, © Springer-Verlag Berlin Heidelberg 2012

257

258 H. Härtig and M. Roitzsch

changed, the basic architecture of the underlying operating systems stayed the same.
Instead, software vendors tried to solve the emerging problems in middleware.
We believe this approach is misleading, because no middleware can isolate real-
time from non-real-time tasks or reliably enforce resource guarantees for real-time
applications without proper core operating system support.

13.1.2 Resource Overprovisioning

Advancements in computer hardware achieved enormous performance improve-
ments by using caches to exploit the locality of the applications’ behavior. However,
those techniques are not necessarily useful for real-time systems, because they
tend to concentrate on improving the average case, whereas real-time applications
must consider the worst case. For the longest time, dedicated real-time systems had
been using less powerful, yet expensive specialized hardware to overcome this. On
standard computer hardware, these problems were traditionally dealt with either not
at all or by spending enormous amounts of resources. But all those overprovided
resources are usually wasted, because the average case behavior is much more
benign than the rare but devastating worst case situations, and this gap continues
to widen as technology progresses. We intend to solve this problem by dealing with
overload situations in ways other than the overprovisioning approach. With a task
model that makes the powerful commodity hardware analyzable, we can allocate
resources much closer to the average case.

13.1.3 Virtualisation

We do not want to explore our ideas just theoretically, but strive to build a system
usable on a daily basis. To this end, we have to support existing commodity software
without compromising on the real-time aspects of the system. One way to achieve
this is by designing a real-time kernel from the ground up and reimplementing the
interface of a commodity kernel in this system. This is the approach taken by the
QNX [10] real-time operating system. However, matching the personality of an
operating system by reimplementing it is expensive, because you are dealing with a
moving target.

Alternative to enhancing a real-time kernel with a commodity personality, you
can try to enhance a commodity kernel with real-time capabilities. This is the
approach taken by RTLinux [18], which runs the legacy kernel next to high
priority real-time processes on top of a small real-time executive. However, all
real-time tasks run along with the real-time executive in kernel mode. Thus, there
is no isolation between different real-time tasks, which weakens system security.
A subverted real-time task alone can potentially take over the entire system.

13 As Time Goes By: Research on L4-Based Real-Time Systems 259

The third alternative is to use two kernels in one system: a real-time kernel
controls the actual hardware and a commodity kernel serves existing software. This
is made possible by virtualisation technology. After being introduced by IBM in the
1960s, virtualization has experienced a renaissance in recent years. It has become a
major industry trend in the server context and is also popular on consumer desktops.
We believe virtualisation is a powerful complement for microkernels. Using L4 as
the basis for virtualization and as an advanced microkernel provides a best-of-both-
worlds combination.

13.1.4 Overview

We first present some design ideas for the whole system in Sect. 13.2. We then
discuss our resource management ideas to handle overload conditions. We illus-
trate the main concepts with the CPU resource in Sect. 13.3. We continue to
manage reservations for resources such as disk, network and graphics bandwidth
in Sect. 13.4. With those key building blocks in place, we bring in support for
commodity software using virtualisation in Sect. 13.5. We make sure the previously
discussed real-time guarantees are preserved. In Sect. 13.6, we conclude by tying all
the pieces together into a real-time component architecture that makes the research
results readily available for the software development process.

13.2 Designing the System

A major change in computer systems was the emerging coexistence of real-time and
non-real-time applications on the same machine. Today, a large variety of systems
has to support a diverse set of such use cases:

• Multimedia applications are used on the average desktop. These applications
have immediate real-time requirements, because frames need to be delivered to
the display at fixed time intervals. Although deadline misses are not catastrophic,
they diminish the user’s media experience because they will be visible as motion
judder or even frame drops.
At the same time, non-real-time components may be running next to the player
core. For example the media library and subscription management common to
today’s integrated client applications such as iTunes are clearly non-real-time
tasks.

• Off-the-shelf computers are used for sound applications like multitrack editing
and live recording of music instruments. Contrasting the media player scenario,
enforcing a lower bound on throughput is not the only requirement, but a low
latency is needed as well. Music artists can notice delay, if the sound from the
speakers is more than 10 ms behind the key hit on the keyboard.

260 H. Härtig and M. Roitzsch

But arranging the sound in the user interface into multiple tracks, choosing
instruments, tweaking the sound and managing media assets has no real-time
requirements.

• Mobile phones are being used increasingly for personal information man-
agement. Calendar and address book applications are running, as well as
sophisticated OpenGL games. Alongside, the phone still needs to handle the
GSM protocol in a timely manner and once a call is accepted, the speech encoder
needs to deliver data from the microphone to the mobile network within certain
bandwidth and latency bounds.

From these examples, we can observe that applications with real-time requirements
often have small, isolated real-time core functionality surrounded by a large and
complex non-real-time part. Current mainstream operating systems do not honor
this separation but treat both parts equally, often they are even co-located in the
same address space, so proper isolation of resource reservations is impossible. Con-
sequently, current systems have to overprovide resources so that the requirements
of the real-time part are satisfied even if it is treated as a best-effort task only.

A system better suited for such applications would provide reliable real-time
guarantees to some components while still providing support for the bulk of the
existing non-real-time applications. Such a dual personality is made possible by
a system with a real-time capable foundation and an environment for commodity
applications. Due to its open-source nature, we chose Linux as the commodity
environment, which we run virtualized on the Fiasco microkernel. Fiasco guarantees
response times and schedules according to a fixed priority regime. Next to the
Linux personality for non-real-time tasks, our system can thus provide a real-time
personality. Every basic resource such as CPU time and main memory is wrapped
by a manager which provides the resource to real-time and non-real-time system
components and applications. Using this manager, real-time components like a
filesystem can provide an interface with reservations and guarantees for real-time
applications and a best-effort interface for Linux. This whole architecture on top of
our Fiasco microkernel is codenamed the “Dresden Real-time Operating System”,
in short DROPS [7] (see Fig. 13.1).

Fig. 13.1 The DROPS
architecture [7]

13 As Time Goes By: Research on L4-Based Real-Time Systems 261

Other than RTLinux, our DROPS architecture allows for strong separation of
real-time tasks from each other and of real-time tasks from the kernel, because those
tasks all run in their own, isolated address space.

13.3 Probabilistic Scheduling

As the basic architecture of the system is now in place, it is time to consider resource
scheduling in real-time systems. The primary resource real-time system designers
focus on is CPU time, because it provides the basis for all subsequent resource
accesses. Scheduling the CPU is all about timeliness: Real-time applications provide
a deadline and require sufficient CPU time to finish their job before the deadline
is reached. The system scheduler must guarantee this property to all real-time
tasks it admitted to run. However, the key problem here is how to determine,
what “sufficient CPU time” means. Today’s hardware makes a lot of effort to
speedup applications in the average case by using caches to exploit locality in the
application’s behavior. Unfortunately, this widens the gap between the average case
and the worst case time consumption. In addition, a common real-time application in
desktop computing is video playback, which per se does not have a fixed execution
time per job (Fig. 13.2).

These two factors cause execution time distributions to have a long tail. If the
CPU resource was always allocated for the worst case, the system’s utilization
would be very low, because only few jobs can be admitted and large amounts of
resources would be wasted. But media applications are an example for a class of
real-time tasks that can tolerate occasional deadline misses, if this does not happen
too frequently. With this observation, we devised a system that can handle overload
predictably without dedicating enormous amounts of resources [4]. Our idea is
to allow a percentage of deadlines to be missed; applications can configure this
percentage as a quality level. Resource reservation is based on the distribution of the
execution time instead of just the worst case value. Competing approaches in this
area such as Imprecise Computation [12] and Statistic Rate Monotonic Scheduling
[1] are either based on deterministic duration of resource usage or cannot guarantee
a desired quality.

The task model of our Quality-Assuring Scheduling (QAS) allows each real-
time task to be split into mandatory and optional parts. The mandatory parts are
always guaranteed to be executed before their respective deadline, so worst case
reservation is performed. Of the optional parts, only the percentage requested by the
quality parameter is guaranteed to complete execution before the deadline. For these
parts, admission and reservation is performed using the distribution of the execution
time. Caused by the typical long tail of these distributions, even requested qualities
only slightly below 100 % cause considerably less resources to be reserved, which
greatly increases the overall utilization of the system. Although the scheduling
is probabilistic, the requested quality levels are matched quite accurately, as the
following table proves. The results in Table 13.1 were obtained for MPEG decoding

262 H. Härtig and M. Roitzsch

Fig. 13.2 Measured distribution of total decoding times per group of pictures [4]

Table 13.1 Requested quality, derived reservation time and measured quality of the optional
parts [4]

Requested Reservation time Achieved
quality for optional parts quality

0.95 55 ms 0.9506
0.90 53 ms 0.8588
0.80 47 ms 0.7875
0.70 39 ms 0.6740
0.60 32 ms 0.5804
0.40 23 ms 0.4063
0.20 9 ms 0.2451

with the I- and P-frames as mandatory parts and the B-frames as optional parts with
the given quality.

Unfortunately QAS’ applicability is limited because it only handles periodic
tasks with uniform and harmonic periods and the admission is expensive, especially
when the distributions are to be calculated with a high resolution. The model can
handle arbitrary periods as well, but then the admission cost is increased beyond
practical applicability. Therefore, the designated successor of QAS is QRMS,
the Quality-Rate-Monotonic Scheduling [5]. It simplifies QAS by assigning the

13 As Time Goes By: Research on L4-Based Real-Time Systems 263

Table 13.2 Requested and achieved quality of QAS and QRMS for a task system with three
concurrent tasks [5]

Requested Quality achieved Quality achieved
Quality with QAS with QRMS

0.70 0.7001 0.7024
0.50 0.5019 0.6742
0.7323 0.7326 0.7324

mandatory and optional parts a unified reservation time, which is regarded as
constant in the admission control. Thus, QRMS ignores situations where jobs do
not completely consume their reservation. QRMS is therefore more pessimistic than
QAS, but has a tremendously simpler admission even for arbitrary periods. The
results in Table 13.2 convince of the accuracy and feasibility of the model.

Another interesting property of both QAS and QRMS is that applications can be
notified when the optional parts overrun their deadline. This way, an application can
react, for example by reducing quality:

set_period(period);
reserve_time(mand_time, mand_priority);
reserve_time(opt_time, opt_priority);
do {

begin_period();
try {

do_something();
} catch {
exceeded:

adjust_quality();
}
next_reservation();
try {

do_something_else();
} catch {
exceeded:

discard_result();
}

} while (!end);
end_period();

With these unified admission and scheduling schemes, we can give probabilistic
guarantees for periodic real-time tasks. Considering the variation of execution times
allows us to admit far more applications and thus achieve better resource utilization
than in systems based on worst-case admission.

13.4 Resource Management

The previous chapter dealt with scheduling the CPU, but this is not the only
resource a real-time application might need. In our DROPS system architecture, all
resources used concurrently by multiple tasks must be encapsulated and scheduled

264 H. Härtig and M. Roitzsch

by a resource manager running as a server in user-land. In the following, the
design of such managers for resources like disk, network and graphics bandwidth is
presented.

13.4.1 Disk Requests

Disk usage in modern systems combines traditional best-effort file access with
storage and retrieval of real-time streams, such as audio and video data. Especially
the latter must meet deadlines for high-volume disk requests. For good overall
performance, the disk-request scheduler has to optimize the disk utilization as well.
This is challenging, because the construction of disk drives causes a poor ratio
of average and worst-case execution times. However, the same idea that has been
successfully applied to CPU scheduling as discussed in the previous section also
helps here: If an application can tolerate occasional deadline misses, probabilistic
service guarantees can substantially improve the disk utilization compared to
guarantees based on the worst case [16].

Thus, the basic idea is again to split real-time disk requests into mandatory and
optional requests and to assign a quality parameter to the optional requests, which
denotes the percentage of requests that must be completed. To optimize utilization,
requests should be scheduled with the SATF (shortest access time first) algorithm,
which is aware of the position of the drive’s head on the disk. However, this
scheduler does not know anything about deadlines. But instead of implementing
a new scheduler, we devised a method to decouple the scheduling of the disk
requests from the deadline and reservation enforcement [16]: The Dynamic Active
Subset (DAS) always includes all pending requests that can be executed in any
order without violating any deadline or reservation. This subset of disk requests is
recalculated after every request completion and if enough time is available, the set
even includes non-real-time requests to increase utilization. The SATF scheduler or
any other scheduler can be run on this set to pick the request to execute next without
having to know about deadlines.

With this technology, the disk request scheduler matches the desired quality
levels of the tasks (see Table 13.3).

Table 13.3 Requested and achieved quality for a disk (IBM Ultrastar 36Z15) loaded with five
concurrent streams [16]

Bandwidth Requested Achieved Achieved
quality quality bandwidth

640 KB/s 0.99 0.9973 638:54KB/s
2,560 KB/s 0.95 0.9798 2;509:12KB/s
1,280 KB/s 0.90 0.9444 1;209:36KB/s
640 KB/s 0.85 0.9004 576:44KB/s
1,280 KB/s 0.60 0.6705 858:65KB/s

13 As Time Goes By: Research on L4-Based Real-Time Systems 265

Fig. 13.3 Bandwidth that can be assigned to an optional stream [16]

Even quality levels only slightly below 100 % push the disk utilization close to
the peak best-effort bandwidth (see Fig. 13.3).

13.4.2 Ethernet Transmission Delays

With the deployment of switches, Ethernet as the most widely used commodity
network becomes interesting for real-time communication. Each port of a switch
provides its own collision domain, so collisions do not occur in a star topology
network. However, switches generally lack traffic policy features. Thus, if too many
Ethernet frames are being sent to a machine that does not receive them fast enough,
the switch will enqueue the frames internally, which causes transmission delays. If
the internal queueing storage of the switch is depleted, it will even drop frames.

A mathematical model of the network traffic can be used to predict the buffer fill
levels in the switch. If the nodes within the network cooperate, this model can be
used to parametrize a traffic shaper running on each node that keeps buffer lengths
and thus transmission delays within specified bounds [13].

The achievable delay bound (Table 13.4) mainly depends on the granularity of
the traffic shaping. This results in a trade-off between delay bound and CPU load
(Fig. 13.4).

Because all nodes on the network must cooperate to ensure the guaranteed delay
bounds, each node must run an instance of the traffic shaper. However, not all nodes
must run a real-time operating system. The shaping capabilities of the machines
influence the delay bound, but we successfully shared the network with Linux
machines while still observing predictable delays.

266 H. Härtig and M. Roitzsch

Table 13.4 Buffer bounds in the switch and transmission delay bounds [13]

Shaping Buffer Calculated Observed
interval bound max. delay max. delay

10 ms 111.8 KB 9,357�s 8,759�s
1 ms 15.7 KB 1,380�s 1,300�s
100�s 6.1 KB 582�s 438�s

Fig. 13.4 Delay bound/CPU load trade-off [13]

13.4.3 Screen Real Estate and Screen Updates

Today’s modern desktops feature a graphical user interface. Furthermore, modern
real-time applications like media players also feature a graphical output. This drives
the need for a real-time capable window manager that can provide guaranteed
redrawing rates for the real-time windows while providing best-effort services to
the remaining non-real-time windows and auxiliary operations such as the user
reordering windows. Therefore, the design goal of our DOpE (Desktop Operating
Environment) window server [3] was to multiplex the singleton resource of physical
screen real estate to client applications. For real-time clients, quality of service is
guaranteed even in overload situations, which can be caused by massive screen

13 As Time Goes By: Research on L4-Based Real-Time Systems 267

Fig. 13.5 Design of the
DOpE window server [3]

updates of non-real-time applications. DOpE can therefore sustain real-time client
windows running next to L4Linux and X11 on the same desktop.

The architecture of DOpE (Fig. 13.5) separates the client’s updates to the user
interface from the server updates of the representation on screen. The client and the
server share a description of the layout and content of the client’s user interface. This
allows the client to update the shared description without interference of the server
and then trigger a redraw operation. The server can then interpret the shared window
description and perform the necessary updates to the on-screen representation
independently of the client. Because the execution time of such a redraw is known
beforehand, the window server can guarantee previously negotiated refresh rates to
admitted real-time clients. A real-time client can subscribe to periodic notifications
of completed redraw operations. Updating the shared representation in a timely
manner is entirely the responsibility of the client.

This separation of cause and execution of redraw requests allows us to display
real-time graphics and windows of non-real-time clients seamlessly side by side.

13.4.4 Second-Level Cache

One easily overlooked resource used concurrently by real-time and non-real-time
tasks are CPU caches. They are an especially interesting resource for real-time
applications, because every task switch potentially disrupts cache working sets and
thus makes execution times unpredictable. To avoid this, the CPU caches should
be managed like all the other resources discussed above to isolate the real-time
tasks from cache interference by other tasks or the operating system. A well-
known solution for this problem is cache partitioning: portions of the cache are
dedicated exclusively to specific applications. For our system, we developed a cache
partitioning technique that operates without any hardware modifications [11].

A page size of 2p divides the cache in banks of 2p bytes, if the cache is direct-
mapped. The least significant p bits are used to index an element within such a
bank. Assuming a cache size of 2c , the next c � p bits in the address select the
cache bank. The remaining part of the address is compared against the tag. For
an n-way set-associative cache, a cache size of n2c and a bank size of n2p are to
be used. The division of the cache into banks also divides the main memory into
classes, whose physical page frames all fall into the same cache bank. Those classes
are called colors. Cache conflicts can only occur between page frames of the same

268 H. Härtig and M. Roitzsch

color, so such conflicts can be avoided between any two tasks, if both tasks use
disjoint colors. Since the L4 microkernel allows user level memory management,
the mapping of physical to virtual addresses can be controlled by a memory server
that assigns colors to tasks exclusively.

The problems with this approach are: Being based on the mapping of pages, it
can only be applied to physically-indexed caches and only with page granularity.
Additionally, if a certain percentage of the cache is to be dedicated to a task, the
same percentage of the main memory is implicitly reserved for that task as well. On
the other hand, the technique provides a way to close the gap between the average
case and the worst case execution time for real-time tasks. This greatly helps when
scheduling real-time tasks with hard deadlines, because less CPU resources need to
be reserved.

13.5 Virtualisation

To provide a container for non-real-time and commodity applications, we want to
reuse an existing operating system personality. This will ease splitting applications
into a real-time and a non-real-time part that can then be treated by the OS differ-
ently. Because of its availability in source code and its wide range of application
software, the operating system personality of choice is the POSIX personality of the
Linux kernel.

13.5.1 L4Linux

At the time the DROPS project was conceived, hardware support for virtualisation
was not available on the pervasive x86 architecture, so a software solution was
needed to co-host two operating systems personalities on one machine. As the Linux
kernel expects to run in CPU privileged mode, it has to be deprivileged to allow for
resource control. This is achieved by replacing privileged instructions with calls to
the virtualization layer, which can thus exercise control over the virtual machine.
This approach is called paravirtualization.

We use Fiasco as the basis for paravirtualization and address spaces as the
isolation primitive. Consequently, our port of Linux to L4 is called L4Linux [6]. To
be usable for commodity software, paravirtualization must be fast. A performance
decrease of a Linux application running on L4Linux instead of native Linux
is expected, so we used the AIM multiuser benchmark suite VII to quantify
the slowdown. The benchmark tests, how well multiuser systems perform under
different application loads. Figure 13.6 compares monolithic Linux with L4Linux.
To compare the performance of Linux on different microkernels, results for an
in-kernel and a user-level version of MkLinux, a port of Linux to the Mach

13 As Time Goes By: Research on L4-Based Real-Time Systems 269

AIM Suite-7 Benchmark

R
ea

l T
im

e

AIM imulated Load

Monolithic Linux

MkLinux (Kernel)
MkLinux (User)

L4Linux

1251007550250
0

1000

2000

3000

4000

5000

6000

7000

Fig. 13.6 Time per benchmark run depending on AIM load units [6]

microkernel, are also listed. The numbers in Fig. 13.6 were obtained in 1997 on
a 133 MHz Pentium.

Averaged over all loads, L4Linux is 2.2 % slower than native Linux. User-mode
MkLinux is on average 29 % slower than native Linux, the co-located in-kernel
version of MkLinux is 21% slower. This demonstrates that L4Linux performs
sufficiently close to native Linux, even under high load. Typical penalties range
from 2% to 10%. The comparison with MkLinux shows that the performance of
the underlying microkernel has a profound influence on the performance of the
applications.

One of the goals of our architecture was to ensure guarantees for the real-time
tasks even when they are running next to L4Linux. We confirmed the effectiveness
of our solution by measuring the actual periodicity of an L4 real-time tasks that
requests a 100 ms period from the system [8]. Running standalone on L4, the period
length deviates by about 1–7�s. With L4Linux running next to it, the real-time task
shows deviations of 24 ms, so the response times do increase compared to a real-
time task running standalone on L4, but the periodicity of 100 ms can be supported.
These results were obtained in 1998 on the original L4 implementation by Jochen
Liedtke and motivated the development of Fiasco as a real-time time microkernel to
improve the response times.

270 H. Härtig and M. Roitzsch

To further evaluate the real-time performance of our system, we wanted to
compare it against RTLinux. With our DROPS system using a separate address
space for each real-time task to increase fault-tolerance, a degradation of response
times is expected compared to RTLinux, which runs all real-time tasks as kernel-
level threads. To compare both systems, we developed the L4RTL library, which
implements the RTLinux API on DROPS and measured interrupt response times on
1.6 GHz Pentium 4 [14]. To actually get worst case behavior, we ensured that caches
and TLBs were always cold when an interrupt occurred. The measurements yield
a worst case latency of 24�s on RTLinux and 33�s on DROPS. This shows that
the cost of using address spaces for real-time tasks is not significantly larger than
uncertainties introduced by dirty caches or blocked interrupts, which designers of
real-time systems seem to accept readily.

We summarize that modifying Linux to run on top of our L4 microkernel Fiasco
allows a performance close to native Linux without compromising the real-time
properties of the system. Using separate address spaces for real-time tasks increases
the fault-tolerance and security of the system without a significant impact on
response times. This allows running real-time and non-real-time applications side
by side, which we believe to be a key feature for today’s computing requirements.
With the presented system architecture, we can also support tasks that want to use
both real-time and non-real-time services. Those hybrid tasks can communicate with
the L4Linux part and with the real-time resource managers.

13.5.2 Full Virtualization

The one downside to the L4Linux approach is its maintenance cost. L4Linux started
out based on Linux 2.0 and has since been adapted to new Linux versions as well as
new L4 systems. Even though the required adaptations to Linux are small, updating
to newer Linux versions calls for intimate knowledge on both the Linux kernel and
L4’s mechanisms. When hardware extensions for virtualization became available
on x86, running completely unmodified Linux on Fiasco appeared increasingly
interesting. Full virtualization, also called faithful virtualization, is a technique to
run entire operating systems with their user environment completely unmodified in
a virtual machine. The environment provided by full virtualization is designed to be
indistinguishable from real hardware with the exception of temporal behavior. We
therefore enhanced the Fiasco kernel to provide a new kernel abstraction: virtual
machines [15]. True to the microkernel philosophy, only the basic mechanism to
drive the virtualization hardware is included in the kernel, an addition of a mere 500
lines of code. The complex implementations of virtual devices is left to a userland
virtual machine monitor. Currently, this support infrastructure is still based on
L4Linux, but work on a native microkernel virtualization solution is well underway.
We can already run unmodified Linux on top of Fiasco on certain ARM platforms by
utilizing the ARM TrustZone hardware extension to implement full virtualization.

13 As Time Goes By: Research on L4-Based Real-Time Systems 271

To maintain our goal of running real-time applications next to commodity
software, we have to ensure that running full virtualization on Fiasco is not inhibitive
to the real-time guarantees. A study we performed shows that real-time latencies
are indeed affected by a virtual machine, but on a 2.2 GHz machine, the effect was
bounded to 5.73�s [17]. This is no problem for typical response-time requirements
in the millisecond magnitude.

One of the greatest obstacles to the adoption of microkernels is their lack
of a native execution environment for general purpose applications. This can be
overcome with virtualization. We have experimented with paravirtualization and
full virtualization and not only showed their usefulness on microkernels, but also
successfully demonstrated the undiminished real-time capabilities of the resulting
system. With full virtualization, such a system can even run unmodified Windows
combined with native L4 real-time applications.

13.6 Conclusion

With the Fiasco real-time L4 microkernel and the real-time enabled managers for
various system resource, the DROPS system described in the previous sections
provides all the building blocks for writing real-time applications. Legacy support
for running non-real-time software and real-time tasks side by side is provided by
virtualized Linux. The Quality Assuring Scheduling and Quality-Rate-Monotonic
Scheduling provide the mathematical foundation to handle overload situations.

13.6.1 Real-Time in Software Development

However, what is still missing is a comprehensive way to open this technology
to software developers. All the elegant solutions and advancements in real-time
systems research are of limited use, if they are not accessible to the engineers in
need. To this end, a joint team of members from our research group and from the
software technology group of our department developed the COMQUAD compo-
nent architecture. This architecture allows to specify non-functional properties like
quality levels and resource usage of a component implementation in the component
quality modelling language (CQML+). These properties are then used to derive
contracts between components which are translated by the component runtime
environment into resource reservations. Our real-time operating system and its
resource managers enforce these reservations at runtime. This way, a component-
based software development process was created, that supports adaptive real-time
systems from specification all the way to the running system [9].

272 H. Härtig and M. Roitzsch

13.6.2 Current State and Outlook

Most of the software discussed here is available for download under the terms of
the GNU General Public License. The resource managers are still prototypes, but
the foundation of the system is usable. A demo CD is available as well [2]. We
hope to spark a wider interest amongst operating system enthusiasts for design,
implementation and deployment of real-time systems on everyday computers. With
the knowledge we gained from the DROPS architecture, we are currently exploring
new ground in embedded systems, where requirements concerning security, real-
time and backward compatibility now appear combined in one handheld device,
which is additionally limited by its energy budget. We expect to present more
fascinating research results and we will always ensure that our systems are designed
to be useful beyond mere academic purposes.

Acknowledgements We want to thank all our colleagues at TU Dresden who participated
in the work presented. Most notably we thank Michael Hohmuth, Jean Wolter and Sebastian
Schönberg for their work on Fiasco and the initial L4Linux, Adam Lackorzynski for his constant
maintainership of L4Linux and his extensive work on system components, Norman Feske for his
work on the DOpE window server, Jork Löser for the real-time network theory and infrastructure,
Martin Pohlack and Lars Reuther for the real-time disk scheduler and Claude-Joachim Hamann for
his work on scheduling theory. We furthermore thank Ronald Aigner, Robert Baumgartl, Martin
Borriss, Frank Mehnert, Udo Steinberg, Michael Peter, Henning Schild and of course Jochen
Liedtke. We want to extend our thanks to our friends in the L4 community: the L4 groups in
Karlsruhe and in Sydney. Our work was supported by the DFG in SFB 358, by several grants from
Intel and by the European Union in the ROBIN and OpenTC projects.

References

1. Atlas A, Bestavros A (1998) Statistical rate monotonic scheduling. In: Proceedings of the IEEE
real-time systems symposium (RTSS), p 123

2. Demo CD (2006) URL http://demo.tudos.org/
3. Feske N, Härtig H (2003) Demonstration of DOpE – a window server for real-time and

embedded systems. In: 24th IEEE real-time systems symposium (RTSS), Cancun, Mexico,
pp 74–77

4. Hamann CJ, Löser J, Reuther L, Schönberg S, Wolter J, Härtig H (2001) Quality assuring
scheduling – deploying stochastic behavior to improve resource utilization. In: 22nd IEEE
real-time systems symposium (RTSS), London, UK

5. Hamann CJ, Roitzsch M, Reuther L, Wolter J, Härtig H (2007) Probabilistic admission
control to govern real-time systems under overload. In: Proceedings of the 19th euromicro
conference on real-time systems (ECRTS 07), Pisa, Italy, URL http://os.inf.tu-dresden.de/
papers ps/hamann07-qrms.pdf

6. Härtig H, Hohmuth M, Liedtke J, Schönberg S, Wolter J (1997) The performance of �-kernel-
based systems. In: Proceedings of the 16th ACM symposium on operating system principles
(SOSP), Saint-Malo, France, pp 66–77

7. Härtig H, Baumgartl R, Borriss M, Hamann CJ, Hohmuth M, Mehnert F, Reuther L,
Schönberg S, Wolter J (1998) DROPS: OS support for distributed multimedia applications.
In: Proceedings of the eighth ACM SIGOPS European workshop, Sintra, Portugal

http://demo.tudos.org/
http://os.inf.tu-dresden.de/papers_ps/hamann07-qrms.pdf
http://os.inf.tu-dresden.de/papers_ps/hamann07-qrms.pdf

13 As Time Goes By: Research on L4-Based Real-Time Systems 273

8. Härtig H, Hohmuth M, Wolter J (1998) Taming Linux. In: Proceedings of the 5th annual
Australasian conference on parallel and real-time systems (PART ’98), Adelaide, Australia

9. Härtig H, Zschaler S, Ronald MP, Aigner, Göbel S, Pohl C, Röttger S (2007) Enforceable
component-based realtime contracts: Supporting realtime properties from software develop-
ment to execution. Real-Time Syst 35(1):1–31

10. Hildebrand D (1992) An architectural overview of QNX. In: 1st USENIX workshop on micro-
kernels and other kernel architectures, Seattle, WA, pp 113–126

11. Liedtke J, Härtig H, Hohmuth M (1997) OS-controlled cache predictability for real-time
systems. In: Third IEEE real-time technology and applications symposium (RTAS), Montreal,
Canada, pp 213–223

12. Lin KJ, Natarajan S, Liu JWS (1987) Imprecise results: Utilizing partial computations in real-
time systems. In: Proceedings of the IEEE real-time system symposium (RTSS), San Jose, CA,
pp 210–217

13. Loeser J, Härtig H (2004) Low-latency hard real-time communication over switched ethernet.
In: Proceedings of the 16th euromicro conference on real-time systems (ECRTS), Catania,
Italy, pp 13–22

14. Mehnert F, Hohmuth M, Härtig H (2002) Cost and benefit of separate address spaces in
real-time operating systems. In: Proceedings of the 23rd IEEE real-time systems symposium
(RTSS), Austin, Texas, pp 124–133

15. Peter M, Schild H, Lackorzynski A, Warg A (2009) Virtual machines jailed: Virtualization in
systems with small trusted computing bases. In: VDTS ’09: Proceedings of the 1st EuroSys
workshop on virtualization technology for dependable systems, ACM, Nuremberg, Germany,
pp 18–23, DOI http://doi.acm.org/10.1145/1518684.1518688

16. Reuther L, Pohlack M (2003) Rotational-position-aware real-time disk scheduling using a
dynamic active subset (DAS). In: 24th IEEE real-time systems symposium (RTSS), Cancun,
Mexico, pp 374–385

17. Schild H, Lackorzynski A, Warg A (2009) Faithful virtualization on a real-time operating
system. In: Proceedings of the 11th real-time Linux workshop, Dresden, Germany

18. Yodaiken V, Barabanov M (1997) A real-time linux. In: Proceedings of the Linux appli-
cations development and deployment conference (USELINUX), The USENIX Association,
Anaheim, CA

Chapter 14
A Real-Time Capable Virtualized Information
and Communication Technology Infrastructure
for Automotive Systems

S. Drössler, M. Eichhorn, S. Holzknecht, B. Müller-Rathgeber, H. Rauchfuss,
M. Zwick, E. Biebl, K. Diepold, J. Eberspächer, A. Herkersdorf, W. Stechele,
E. Steinbach, R. Freymann, K.-E. Steinberg, and H.-U. Michel

14.1 Introduction

Embedded information technology (IT) is the dominating enabler for advanced
driver assistance systems and for the continued introduction of innovations in auto-
motive products. Today’s Car-IT architecture is characterized by a large number of
dedicated function electronic control units (ECUs) with relatively low-performance
microcontrollers and a heterogeneous set of low-capacity, automotive-specific
communication buses. Over the past decades, the approach to add one ECU per new
function has led to a complex, difficult to maintain and costly Car-IT infrastructure
(Fig. 14.1).

The following chapters address the potentials that arise from adapting structures
and technologies found in standard business IT environments towards automotive
requirements. High-performance multi-core processors allow the aggregation of
multiple conventional ECU functionalities into a single physical resource. Virtual-
ization technologies (e.g. Hypervisors) guarantee the secure separation of multiple
operating system domains running real-time and non real-time applications con-
currently on the same multi-processor system. Such a standard, high-performance
processing platform enables flexible post-sale upgrades and plug-&-play of mul-
timedia infotainment applications as well as dynamic migration of tasks between
different ECUs for fault-tolerance or CPU load balancing reasons. A multi-path
meshed Gigabit-Ethernet network with real-time and class of service enhance-
ments acts as a uniform “data highway” interconnecting ECUs, network I/Os,
data storage repositories and advanced, high data rate sensor modules like Lidar

A. Herkersdorf, (�) � S. Drössler �M. Eichhorn � S. Holzknecht � B. Müller-Rathgeber �
H. Rauchfuss �M. Zwick � E. Biebl � K. Diepold � J. Eberspächer �W. Stechele � E. Steinbach
Technische Universität München, Arcisstr. 21, D-80333 München, Germany
e-mail: herkersdorf@tum.de

R. Freymann � K.-E. Steinberg � H.-U. Michel
BMW Forschung und Technik GmbH

S. Chakraborty and J. Eberspächer (eds.), Advances in Real-Time Systems,
DOI 10.1007/978-3-642-24349-3 14, © Springer-Verlag Berlin Heidelberg 2012

275

276 S. Drössler et al.

Fig. 14.1 Electronic/electric
system of a car

or high definition video cameras. A high bit-rate, low latency communication
infrastructure is prerequisite for investigating qualitative differences between raw
and pre-processed sensor data transmission in sensor fusion applications. Equally
important as processing and communication technologies is the design process fol-
lowed during the development of Car-IT architectures. A platform-centric approach
with standard component interfaces is instrumental for maximizing design reuse,
shortening development times, achieving “right-first-time” designs, and cutting
down development expenses. System-level modeling and analytical / simulation-
based design space exploration tools support Car-IT architecture evaluation during
early phases of design.

Our vision of future Car-IT architectures consists of a cluster of homogeneous
powerful computing nodes with automotive-specific peripherals, interconnected
with a mesh of Ethernet-MAC-based communication links. Such a computing clus-
ter offers virtualized computation, communication, and storage resources, which are
extendable and upgradable. Hard real-time tasks may be implemented in protected
virtual domains, while soft real-time tasks may be implemented on best effort base,
such exploiting the full computational power of the computing nodes.

Failure-resilient system behavior can be achieved with modest overhead of
communication and computing resources. Breakdown of a communication link
could be solved by re-routing of communication channels. Upon breakdown of
a computing node, a task migration between CPUs could be triggered. While
safety relevant functions may be implemented in hot standby mode, non-safety
functions might be migrated in a degraded performance mode on other CPUs with
some available computing time. Such a trade-off between failure resilience and
implementation cost can be achieved.

Future Car-IT architectures might become an attractive target for virus attacks.
In order to cope with these attacks, protection mechanisms are needed to pre-
vent uncontrolled resource utilization between separated virtual Operating System
domains. A middleware layer, called Hypervisor, will support such protection
mechanisms, and simultaneously enable efficient utilization of computing resources.

The development of these future Car-IT architectures requires to solve some
key research challenges, including concurrent transmission of hard real-time and
soft real-time messages over common Ethernet-MAC-based communication links,

14 A Real-Time Capable Virtualized Information 277

concurrent computation of hard real-time and soft real-time tasks on a cluster
of multi-core processors, while efficiently solving conflicting memory and I/O
accesses on shared resources, strategies for dynamic reconfiguration of commu-
nication links and computing resources under real-time constraints, balancing of
redundant resources and failure resilience, as well as strategies for task migration
and application-specific degradation.

In order to exploit the described potentials of adapting standard business IT
technologies and design processes for Car-IT, a seamless migration path from
today’s status and tight cooperation between OEMs, Tier-1 and semiconductor
suppliers are a must. This transition, driven by German and European car industry,
could set a landmark in defining new industry standards how Car-IT will be
architected in the future.

14.2 Conceptual/Architectural Overview

We designed a new, flexible and future-proof concept for Car-IT architectures based
on the following four principles derived from best practice in standard business IT
environments:

Centralization: Centralization means consolidating applications and their com-
munication on a few central ECUs and a single communication network,
respectively.
Due to their increasing interaction, automotive functions need to be colocated.
This allows to reduce communication overhead and overall system complexity.
Furthermore, the automotive industry can participate on the soaring processing
performance of multi-core platforms being introduced for embedded systems.
The additional processing performance can be used to consolidate more functions
or enhance them with additional features.
As sensors/actuators components have to remain on their locations their tasks and
the actual processing on the centralized ECUs are connected by a communication
network providing sufficient bandwidth and the real-time guarantees.

Homogenization: Homogenization stands for using only a few standardized
components and interfaces for the Car-IT architecture.
To ease development and to utilize mass market effects the Car-IT architecture
should utilize all-purpose HW and SW components as much as possible.
Components like ECUs, communication network parts, etc. should be re-used
in different car and model variants.

Virtualization: Virtualization comprehends of abstracting and partitioning the
underlying HW and SW resources for the functions using them.
By virtualization of processing resources, communication and services, the
infrastructure is shared in a transparent and secured way between the different
functions. This allows flexible allocation and utilization of it.

278 S. Drössler et al.

Fig. 14.2 Car-IT architecture

Relocatability: Functions are not longer fixed to a certain ECU or communication
link, but can instead be (dynamically) relocated within the Car-IT architecture.
Enabled by central and homogeneous ECUs, a single communication network
and virtualization of resources, functions can be re-mapped easily. This allows
more degrees of freedom during design-time, but also re-partitioning during run-
time e.g, moving critical functions in case of a failure or switching to a more
power-efficient application distribution on the ECUs.

The resulting Car-IT architecture is depicted conceptually in Fig. 14.2. The
communication infrastructure is shared between the automotive applications and
provides virtual channels. For details regarding this aspect see Sect. 14.4. The
central ECUs are primarily providing an array of CPUs for the processing of
the applications. The HW resources are partitioned and shared by virtualization
(see Sect. 14.3). Communication infrastructure, ECUs and sensors/actuators are
managed by a middleware (see Sect. 14.5) allocating and scheduling the logical
resources of the virtualized and real-time capable infrastructure. Applications use
this infrastructure; this is exemplary described for infotainment (see Sect. 14.6) and
driving environment recognition (see Sect. 14.7).

14.3 Architectural Concepts for Automotive Control Units

Our concept and findings for automotive control units in the new Car-IT architecture
are detailed in the followings paragraphs.

14 A Real-Time Capable Virtualized Information 279

14.3.1 Overview

Future automotive control units will follow the general trend for embedded systems
and contain multi-core processors. This higher performance is needed as automotive
function from different car domains are more and more colocated due to their
increasing interactions and have higher processing requirements. As multiple func-
tions with different requirements regarding real-time, throughput or performance
are consolidated on one shared platform, an effective set-up with low overhead has
to be designed.

The Multiple Independent Levels of Security and Safety (MILS) architecture
[2] which is utilized in aviation and virtualization techniques in data centers and
desktop provide applicable solutions. On one platform several different domains can
be executed concurrently. The physical resources are abstracted by logical resources.
This provides a feature set required by the new Car-IT architecture. Domains can be
migrated easily as they are only running on logical resources; virtualization has low
overhead as no high level middleware is completely abstracting the underlying HW,
but only separating and partitioning it; different domains are supported including
legacy operating systems (OS).

With their increasing performance the number of ECUs will decrease and
they will be integrated only at certain locations in an automotive structure. This
results in no direct I/O connections to sensors/actuators by those ECUs i.e., the
sensors/actuators are interconnected via communication network with the ECUs.
The specific sensor/actuator tasks are performed on sensors/actuators components
and the actual processing for the applications is performed on the ECUs. Therefore,
the ECUs will not contain special or individual HW blocks, but rather a large array
of homogeneous CPUs for performing processing and a high-bit data rate network
interface.

14.3.2 Virtualization Set-Up

The set-up for virtualization of the automotive control unit resources is described in
Fig. 14.3.

Central component is the hypervisor also called Virtual Machine Monitor
(VMM). It has control over the whole HW resources and provides access to them
for virtual machines. This includes resource provisioning, scheduling, partitioning
and configuration. Examples for hypervisors are XEN [3] or KVM [15], but
there are also dedicated hypervisors for automotive and embedded systems e.g.,
OpenSynergy Coqos [12] or Wind River hypervisor [34].

Virtual machines provide run-time environments for applications. A domain can
contain anything from a general-purpose operating system with several applications
down to a single task with only rudimentary kernel functions. This includes
dynamically linked system and statically built system i.e., AUTOSAR [1]. There

280 S. Drössler et al.

Fig. 14.3 Virtualization with hypervisor

can be special domains providing shared HW access (so called driver domains) or
management interfaces to the hypervisor.

HW resources can be divided in three categories: processing units, memory and
I/O(-devices).

• CPUs for processing are assigned to virtual machines. They can either be
assigned exclusively or shared with other virtual domains in time slices.
A domain can have more than one CPU. Virtualization has to catch CPU
exceptions i.e., prevent the execution of not allowed instructions or conditions
and switch (fast) between domains.

• Memory pages are mapped to different domains. Virtualization provides trans-
parent access protection via page table shadowing and DMA remapping i.e.,
logical memory addresses are translated to the correct physical addresses without
involvement of the domains.

• I/O-devices can be directly assigned to virtual domains or shared between them.
Here, virtualization is responsible for the correct configuration of the devices and
interrupt remapping.

All those actions are either performed entirely in SW by the hypervisor or are
offloaded (partially) to HW with virtualization extensions e.g. for the Intel platform:
VT-x for CPUs, Extended Page Tables (EPT) for memory and VT-d for chipset and
I/O-devices [32].

14.3.3 Validation

We validated our concept for an automotive control unit with a prototype imple-
mentation (see Fig. 14.3). HW basis for this was an embedded board with an Intel

14 A Real-Time Capable Virtualized Information 281

Fig. 14.4 Prototype set-up for an automotive control unit

Core 2 Duo CPU – representing both the performance grade of coming systems
and a multicore set-up. An on-board Gigabit-Ethernet interface provided access to
the communication network. We used XEN as VMM and Linux as driver domain.
The driver domain also contained tasks for interaction and lifecycle management of
guest domains providing applications run-time environments. A set of exemplary
applications were deployed in three virtual machines. Two virtual machines were
based on Linux containing an infotainment application with video-transcoding, a
camera picture overlay processing and a soft real-time sensor data fusion. Those
applications consisted each of several tasks running. Within a third VM containing
Mini-OS – a simple embedded OS – a closed-loop control task was implemented
receiving data from a sensor, processing it and sending control information back to
an actuator over the network with a deadline and jitter of under 1 ms. All parts were
stripped down to form a minimized system (Fig. 14.4).

In tests were able to provide the general throughput and performance in the Linux
guest VMs for the infotainment and soft real-time applications and to meet the
(hard) real-time constraints for the closed-loop control task.

This was only possible after carefully crafting the scheduling parameters. As
the driver domain is in the critical path for network access to sensors/actuators,
the deadline has to be practically split between this driver domain and the actual
domain e.g., for the Mini-OS VM the period is 500�s and the time slice 300�s.
The schedule of the driver domain inherits from the guest VM with the hardest
requirements, here the Mini-OS domain. To reduce the requirements and the
overhead in the scheduler, HW should dedicated directly to time or performance
critical domains. This would take the driver domain out of the critical path, but it
requires additional or self-virtualizing HW [27].

14.4 Next Generation Automotive Communication Network

Due to the trend towards more centralized processing in future automotive systems,
the generation of information at the sensors and the processing will be more and
more physically separated. To satisfy new requirements from Homogenization,

282 S. Drössler et al.

Virtualization, Centralization and Relocatability, a new approach for the car-
internal communication network is needed to fulfill the following new challenges:

• Heterogeneous data, that means safety critical control data as well as convenience
streaming data, have to be transmitted over the same cable while guaranteeing
different service qualities.

• Centralisation leads to single-point-of-failures with increased probability of
severe breakdowns.

• Communication paths change over car life time since new functions and devices
are incorporated into existing systems.

• To control complexity and costs, well-known and proven IT-concepts and of-the-
shelf components have to be adopted for use in the vehicle.

We developed a universal event based communication system using standard
Ethernet physical layer and medium access technology in a star topology with
cascaded switching nodes. We enhanced it with real-time capabilities and resilience
features for the “mission-critical” automotive environment. Real-time means, for
every planned transfer, an upper bound of the communication delay between source
and sink can be specified. Fault tolerant means, with use of node disjoint paths
between source and sink, data loss is avoided in case of a link or node failure or
outage.

14.4.1 Requirements

Most of the transmitted messages can be classified into three categories: In category
1, messages are transmitted with cycle times of 100–200 ms, being typically control
messages from body electronics with a size smaller than 8 Bytes. Messages which
carry data from longitudinal dynamic control loops have to be transmitted every
20–50 ms. Whereas messages from lateral dynamic or chassis suspension control
loops are transmitted with very short cycle times ranging from 2.5–10 ms. Through
the physical behavior of a car [21] we know that the majority of the closed loops
lead to timing requirements within these ranges. In the future, we expect increasing
communication needs with 40–50 ms cycle times through new radar, lidar and
camera based driving assistance systems and with 1–2.5 ms for new intelligent
active suspensions and chassis with rising data rates.

So our system was designed to handle process data of 1 ms or 1 kHz control
loops and validated with a realistic communication pattern extracted from an actual
upper class car [24].

14.4.2 Real-Time Communication

The design is mostly using commercially available off-the-shelf hardware. It is
based on the IEEE 802.3 Ethernet standard and does not require special end devices.

14 A Real-Time Capable Virtualized Information 283

Fig. 14.5 Communication
switch

The building blocks of this real-time enhanced Ethernet switch is shown in Fig. 14.5.
With the help of a real-time capable scheduling system and partitioning, virtual
channels are switched and an overlay network is built abstracting the logical path
from the physical path.

We achieve this goal through separating the real-time connections into single
flows with guaranteed resources through the informations in the 802.11Q Quality of
Service Tag in the Ethernet Header. These virtual channels are, in a logical manner,
on top of the network that itself offers connectionless access to the resources.
Each flow has a defined path through the network, represented by a chain of edges
and nodes. And each flow has guaranteed communication capabilities defined by a
function f .LP max; TAmin/ where LP max is the maximum packet size and TAmin the
minimum packet inter-arrival time. With the help of this reservations and methods
of queuing theory [11], a worst case transmission delay can be specified [25].

In an event driven system [16], the real-time calculus is complex compared to
a time-triggered system, while allocation of the communication and processing
resources is the other way round. Due to the limitations and hardware modifications
mentioned above, the worst case transmission delay can be calculated analytically
for a standardized Ethernet solution. Our simulations show, that this calculation
delivers an upper bound for the transmission delay; the real delay is predominantly
much lower. It is well-known, that in an event-triggered system, there is always an
overestimation for the capacity of a communication network leading to a possible
utilization U << 1 [17, 19]. The remaining capacity is consumed by the rising
communication needs of audio, video and other information and communication
services. In our approach, the traffic is separated from the control loop traffic with
the help of a strict priority scheduling and a preemption mechanism to clear the
channel if a high priority message arrives.

To avoid that the precalculated worst case transmission delay time bounds are
violated when the flows exceed their agreed limits, a usage parameter control
instance is needed for monitoring every flow to ensure the real-time behaviour. In
our solution, we use a token bucket filter array centralized on the switches of the
core network.

284 S. Drössler et al.

Fig. 14.6 Communication management

14.4.3 Fault Tolerance

In a centralized environment, the severity of failures raises because more and more
functions are affected when a failure occurs. So a next generation architecture needs
fault tolerance in its design, to reach comparable service quality. We provide this
through a path-disjoint topology and dynamic rerouting for non-critical messages.

To achieve this, we build a distributed communication management system with
different layers shown in Fig. 14.6. Every switch has a programmable switching
fabric as transport plane. In the control plane of the switch, a small software
based demon probes the connected nodes either with “hello” messages or with
source address monitoring and generates a local view of the network topology. The
local results of the topology discovery of all switches are transferred to a central
management system which aggregates them to a global view of the whole topology.
The management system calculates edge- and node-disjoint shortest paths for every
critical data flow stored in the profile database and a shortest-path for all nodes.
This information is splitted into several local configurations that the switches use to
configure their switching fabric.

We separated the communication demand in three safety classes with different
resilience mechanisms. The first class, safety critical data , are transferred over
both paths in parallel (1+1 configuration), so even in case of errors no packet is
lost. For the second class, critical data, the path is switched to the precalculated
alternative path immediately after the error occurs. This results in more than one,
but a limited number, of lost packets because the outage need to be detected and the
changed topology information distributed to the switches. The management system
then calculates new shortest paths for the remaining data flows and updates the
configuration, leading to a short service outage of under 1 s for the third traffic

14 A Real-Time Capable Virtualized Information 285

class, the non-critical systems. If the management system is not accessible, only
the rerouting of non-critical data flows is affected and so this does not harm system
safety. Apart from that, the management system itself should also be designed to be
redundant.

14.4.4 Validation

To validate our approach, we use three ways: (i) an analytic verification, (ii) a
simulation and (iii) a test setup [23]. To achieve this, the communication patters
and traffic of a actual produced car was analyzed. This data serve as input values for
the validation process. Our analytic approach verifies the real-time constraints and
if the solution is feasible or any given boundaries are violated. A simulation with
realistic traffic patterns predicts the occurring delay and jitter. The test setup helps
to parameterize the models used in the simulation and in the analytical computation.
The result is a worst case transmission time for every critical data flow and the delay
distribution for every communication relation. The data can be used for certification
as well as for estimating the Quality-of-Service for audio- and videostreams.

The plot in Fig. 14.7 shows the calculated worst case transmission time in
nanoseconds for a vehicle with about 1,000 demand connections. With a Gigabit
Ethernet (GE) network, the maximum delay time is at 160�s. This means, that
the approach is suitable to replace the state of the art vehicular communication
architecture. Moreover, with its capacity reserves and functional capabilities, it

0

20000

40000

60000

80000

100000

120000

140000

160000

0 200 400 600 800 1000

W
C

T
D

 in
 n

s

demand connection

Fig. 14.7 Calculated worst case transmission time

286 S. Drössler et al.

is prepared to fulfill the requirements of next generation in-car communication
systems.

14.5 Basic Software Architecture

The basic software uses virtualization capabilities provided by the underlying
hardware and the communication network. It can be divided into a management
layer, that has a global view, and a computation unit specific layer, that has a
local view only. Additionally in this section, the influence of domain scheduling
is addressed as well as fault-tolerance and dynamic reconfiguration issues.

Figure 14.8 shows a coarse block diagram of the layers and views of the basic
software.

14.5.1 Basic Services

The software components of the system layer are located on every computation unit
and have no knowledge about the global system. The computation unit configuration
prepares a nominal local system state, informs the lifecycle manager about which

Fig. 14.8 Block diagram of basic software

14 A Real-Time Capable Virtualized Information 287

domains should be in which sate and sets specific metadata like scheduling
parameters, assigned memory, maximum allowed packet rate, etc. A local diagnosis
subsystem is implemented to observe the behavior of all virtual domains running on
top of the hypervisor. If an abnormal behavior, e.g. extraordinary cpu or memory
consumption, is detected it informs the global state diagnosis and may also initiate
minor local healing action like domain restart in case of non real-time domains.
The lifecycle manager is an executive instance, which is able to start, stop, pause
and resume virtual domains and applications running inside according to the input
form the computation unit configuration. It is also responsible to execute a domain
migration to another computation unit if requested by the global resource manager.
If an execution binary of a domain or an application is not locally available, it is
downloaded from a distributed software database.

In the management layer, all informations from the distributed computation units
are gathered. The global system manager is located on at least two computation units
for fault-tolerance reasons. There is only one manager active at the same time. If it
fails, a new manager is voted among the others to get active. The global system
diagnosis detects and classifies errors. Using the information from the resource
manager, a recovery strategy is planned. It then informs the local computation unit
managers of their new configuration. In Sect. 14.5.4, allocation strategies for non,
soft and hard real-time domains are presented.

Applications are running in virtual domains. There is an API for exchanging
internal state information, necessary for providing stateful dynamic reconfiguration.

14.5.2 Providing Fault-Tolerance

Real-time applications have a tight timing bound. We therefore use application
specific fault-tolerance mechanisms for real-time applications, and the services
provided by the basic software otherwise. The safety critical real-time applications
are implemented as a triple modular redundancy (TMR) system with cloned
domains (co-domains). If one domain repeatedly fails due to timing or value errors,
it is (1) prohibited to furtherly produce outputs (error/fault masking). In this state
there are still two co-domains active and operation can continue – as long as both
results are equal. In the meantime, the following steps are taken: (2) the global
diagnosis system is informed about the error, (3) a computation unit with enough
spare resources is identified to take over the co-domain, (4) the configuration is sent
to the chosen computation unit, (5) the local mechanisms of the basic software bring
up the co-domain in passive state, (6) the co-domain is synchronized to the active
ones, (7) the co-domain is set to active. At this point the real-time application has
regained full health status.

If in step (3) no computation unit with enough resources can be found, non and
soft real-time applications can be gracefully degraded. For every application, we
added meta information that contain the supported degradation modes and their
according processor, memory,. . . demand. We follow an approach to regain full

288 S. Drössler et al.

health status for the real-time applications as fast as possible: We set as much of
the non and soft real-time applications to the most degraded mode as necessary to
allocate the real-time domain. Then, we try to find an allocation where the degraded
applications (see e.g. Sect. 14.6.4) may be upgraded to full service or at least to a
less degraded mode.

14.5.3 Architecture Specific Real-Time Issues

There are some major architecture specific real-time issues that must be addressed.
In the following we focus on the two most important issues: data consistency and
real-time scheduling.

14.5.3.1 Providing Synchronous Data

In a distributed system, data consistency must be provided, esp. when different
computation units are used for a system-wide control application. For example, the
ESS (electronic stability system) reads wheelspeed and inertial sensors, calculates
if some action on the brakes is required and sends the nominal actuator position to
the four brakes; if these signals are not synchronized, the car may even get more
unstable instead of being stabilized. Future driver assistant systems will be more
sophisticated and a distributed control loop is conceivable. For the ESS that might
be four different control loops calculating the actuator values for the brakes.

Although we have our system synchronized via PTP, slight clock deviations, dif-
ferent scheduling decisions and different communication delay require an additional
effort to guarantee data consistency. We want to avoid a communication intensive
agreement protocol. Instead, a technique introduced by Poledna et. al. [26] called
timed messages is used. Every message, sensor value or actuator value is annotated
by a validity time and not an acquisition or origination time. The validity time
depends on network delay, domain scheduling strategy and clock deviation.

14.5.3.2 Influence of Domain Scheduling on Packet Processing

Using virtualization technologies in systems guaranteeing hard or firm real-time
constraints is challenging. On one hand there are safety relevant real-time appli-
cations, like control applications, with short execution times and tight deadlines
but generally low throughput demands. On the other hand soft or non real-time
applications, like video or telematic services, with high throughput demands but
less restrictive deadlines. In the present system, both domains are addressed.

Since hard real-time applications are activated by incoming packets, one has to
take a deeper look at the virtualized network processing of the computation units.
It turned out, that it is best to use a hybrid approach. Hardware support for virtual

14 A Real-Time Capable Virtualized Information 289

network interfaces (vNIC) shall be used for all non and soft real-time domains.
However, hard real-time domains communicate through the driver domain. With this
configuration, non or soft real-time packet processing does not interfere with hard
real-time packet processing. The other advantage is, that hard real-time domains do
not need to implement an Ethernet or even a TCP/IP stack but use a lightweight
standardized API1.

Using Ethernet, the driver domain is invoked three times for one control cycle –
assuming only one incoming sensor value and one outgoing value for the actuator:
first by the incoming packet, second by the outgoing packet and third by an
acknowledge signal from the NIC. Since the control applications have different
periods and different deadlines, what deadline should be assigned to the driver
domain in case of deadline scheduling? In case of using a fixed priority scheduling,
what priority to assign?

For fixed priority scheduling, the driver domain gets the highest priority. In case
of an incoming packet, there’s no knowledge about its (VLAN-)priority – which is
set according to the importance of the target domain – before it has been processed.
Because the driver domain handles incoming as well as outgoing packets at the same
time, there is no possibility of using priority inheritance strategies.

The reason for using deadline scheduling, i.e. earliest deadline first (EDF)
scheduling in this project, rather than fixed priority scheduling is that its potential
processor utilization is higher. Efficient feasibility testing depends on a proper
model. Figure 14.9 shows three demand bound functions dbf EDF

x .T; t/ resulting of
different modeling variants. The demand bound functions contain both invocations
of the driver domain and the invocation of the real-timedomain. ei and eN are
the worst case execution times for the real-timedomain and the driver domain
respectively. di and dN are their deadlines and pi gives the minimum interarrival
time of a packet for real-timedomain i , that we call the period of the real-
timedomain i . The phase ˚N is the shortest possible time between two invocations
of the driver domain: ˚N D min.di ; pi � .dN C di //.

Fig. 14.9 Demand bound
functions for one real-time
application including packet
processing

1In analogy to AUTOSAR [1], the real-time domains are equivalent to AUTOSAR Software
Components (SW-C). The API is the connection to the Virtual Functional Bus (VFB), or the
AUTOSAR Runtime Environment (RTE) respectively.

290 S. Drössler et al.

Using the density condition [20, 30], i.e. accumulating execution times eN for
both invocations of the driver domain and for the real-timedomain ei without phases,
results in dbf 1. An improvement can be achieved when ˚N is taken into account
[10] resulting in dbf 2. Best result gives dbf 3 which is based on the generalized
multiframe task model [5, 6, 22, 31] and the recurring real-timetask model [4, 7].

To check feasibility of a set of real-timeapplication � , dbf EDF.Ti ; t/ for all real-
time applications must be accumulated. The schedule is feasible, if at any time t �
dbf EDF.�; t/ holds, with dbf EDF.�; t/ D

P
8i dbf EDF.Ti ; t/.

14.5.4 Application Distribution

The before mentioned homogeneity of the computer cluster not only minimizes
costs due to a high amount of common parts, but also enables the dynamic migration
of tasks. If tasks can quickly be migrated from any ECU to another, then free
computational power of any ECU can be misused as a kind of ‘generic spare
ECU’ for ECUs that exhibit a failure. Compared to architectures that demand spare
hardware for every critical component, dynamic task migration appears to be a
promising way to reduce costs for spare hardware significantly.

Besides network traffic and power consumption [18], an optimization criterion
to migrate soft-realtime and non-realtime tasks is the maximization of application
throughput performance by placing applications on cores with respect to cache
performance. The remaining of this section discusses this optimization criterion.

To motivate the migration of tasks with respect to an optimization of overall
cache performance, we present Fig. 14.10a that shows the degradation of L2 cache

a b

Fig. 14.10 (a) Cache contention introduced to the milc SPEC benchmark when co-scheduled
with SPEC benchmarks astar, gcc, bzip2, gobmk and lbm respectively. (b) Simulation setup:
Application milc on core 0 is co-scheduled with either application astar, ... on core 1 in a separate
run

14 A Real-Time Capable Virtualized Information 291

Fig. 14.11 Cache contention introduced when co-scheduling applications

performance for the milc SPEC benchmark due to cache contention when co-
scheduled with SPEC benchmarks astar, gcc, bzip2, gobmk and lbm respectively
in a multi-core scenario according to Fig. 14.10b, as it has been simulated with
MCCCSim (Multi Core Cache Contention Simulator) [37]. 2

One can easily see that the L2 cache hitrate degradation of the milc SPEC
benchmark is maximized when co-scheduling milc with lbm and minimized when
co-scheduling milc with astar and gcc respectively. As a consequence, an appro-
priate choice of co-scheduled applications improves overall execution performance
significantly, as it has also been reported by [9].

Figure 14.11 shows how cache contention is depending on the placement of
applications in the proposed architecture: Applications that share (timesliced) the
same core (like app4, app5 and app6 in Fig. 14.11), also share the same L1 and
L2 cache. Therefore, any application’s cached data might be replaced by any other
application on the same core. However, the replacement of cached data only takes
effect at most once within a context switch.

Applications that reside on different cores, but on the same ECU and are co-
scheduled (such as app1 $ app4, app2 $ app5 or app3 $ app6 in Fig. 14.11)
share only the L2 cache, but not the L1 cache. However, although only the L2
cache is shared in this case, our simulation results depicted in Fig. 14.12 show
that performance degradation due to cache contention is generally worse, as the L2
cache is shared permanently during the whole timeslice execution. Therefore, such

2For a better understanding of our optimization concept, we assume an ECU architecture as
depicted in Fig. 14.10b: An ECU consists of several cores that all share a common L2 (level 2)
cache. Each core, however, has its own private L1 (level 1) cache that cannot be accessed by any
other core. Further, each core can only execute one single thread – a constraint that can be omitted
later on by a simple adaption of the proposed optimization scheme.

292 S. Drössler et al.

Fig. 14.12 Simulated accesstime when co-scheduling 1 ... 64 applications. In (a), each application
is executed on a separate core, so there are up to 64 cores for up to 64 applications. In (b), all 1
... 64 applications are executed on a single core using round robin scheduling. The mean memory
accesstimes shown are averaged values gathered by the MCCCSim simulator executing 10 SPEC
benchmarks. Although we simulated with very short timeslices of 2 ms resulting in many context
switches, the higher accesstime in (a) denotes greater effect of permanent L2 cache contention than
timesliced L1 and L2 cache sharing

co-scheduled applications (same timeslice, but different core) interfere at a much
higher degree than applications that reside on the same core. 3

To optimize application distribution for cache contention, a good method has to
be provided to predict cache contention. This method should be able to take some
program attributes as input and deliver an estimation of cache contention as a result.
This way, optimization methods, such as the particle swarm optimization (PSO)
[14] for example, can be applied to find optimal application distributions, as it has
similarly been done in [28, 36] for job scheduling.

In [38], we proposed setvectors as a high performance method to predict cache
behavior of standalone applications for phase classification [29]. In the following,
we will show by an example, that this method is also a suitable approach to predict
cache contention introduced by the combination of tasks.

In Fig. 14.13a we show simulation results of a typical prediction scenario for
real programs: We tested, if it would be better to co-schedule application Safari
with application gzip or with application gunzip.

To predict the optimal co-schedule for a given program interval, we calculate
the predictors p Safari, gzip and p Safari, gunzip according to or proposal in [38], subtract
p Safari, gunzip from p Safari, gzip and extract the sign of the result by the signum
operation. Averaging the results over several intervals, we determined a mean value

3Certainly, if a multicore processor also includes SMT (simultaneous multi threaded; named hyper-
threaded by Intel) cores, then cache contention is maximized on applications that run on such an
SMT core at the same time, as those applications then share the L1 and L2 cache permanently for
the duration of their timeslice.

14 A Real-Time Capable Virtualized Information 293

a

b

Fig. 14.13 (a) Prediction of Safari$ gzip and Safari$ gunzip co-scheduling. (b) Verification
of the effect of right co-scheduling

of about 0.70. This means that the setvector method predicts a co-schedule of Safari
and gunzip to be preferable over a co-schedule of Safari and gunzip for 84:79% of
the accounted intervals, as it can be seen from Fig. 14.13a.

Figure 14.13b verifies this prediction: If �tSafari, gzip summarizes the additional
accesstime introduced to both Safari and gzip due to cache contention, when co-
scheduled, and �tSafari, gunzip the additional accesstime introduced to Safari and
gunzip, then �tSafari, gzip � �tSafari, gunzip is positive, if the co-schedule Safari $
gunzip would be a better deal than the co-schedule Safari$ gzip with respect to
cache contention. Equivalently, if �tSafari, gzip � �tSafari, gunzip is negative, then the
co-schedule Safari$ gzip is preferable.

The arithmetic mean of sign.�tSafari, gzip � �tSafari, gunzip/ for a set of intervals
is therefore a measure for the amount of time each co-schedule is preferable.
Figure 14.13b shows that the co-schedule Safari $ gunzip is preferable over the
other co-schedule for 83:66% of the accounted intervals. The difference of the
means pictured in Fig. 14.13a and b shows a prediction error of 84:79%�83:66% <

1:2%, i.e., for the given intervals, the simulated accesstime introduced by cache
contention differs from the prediction by only 1:2%.

For the given set of intervals, Fig. 14.14 shows a basic error quantification on a
per interval basis: For 226 out of 1,677 intervals, the prediction from Fig. 14.13a
coincides with the simulated accesstimes depicted in Fig. 14.13b.

In this chapter, we presented a method that optimizes task deployment in
our IT Motive car-IT-Architecture for soft-realtime applications and showed its
effectiveness by a small example. In the next chapter, we introduce a new multi-
media architecture that can be integrated in our IT Motive car-IT-architecture.

294 S. Drössler et al.

a

b

Fig. 14.14 Basic error quantification: In (a), the error is shown on a per-interval basis, i.e. for each
interval, errori denotes whether the prediction matches the relation of the simulated accesstimes
for co-scheduling. A value of “0” declares a true prediction, “1” declares a false prediction. The
mean prediction error (errorpred) is calculated as number of wrong predictions divided by the total
number of predictions and is about 14%. In (b), the number of wrong predictions vs. the total
number of predictions shows a nearly linear characteristic

14.6 In-car Infotainment/Multimedia

Innovations in the area of in-vehicle infotainment/multimedia are typically driven
by developments in the home entertainment and consumer electronics industry.
Customers quickly get used to novel gadgets and applications and want to use
them also in their cars. Hence, infotainment and multimedia functionalities become
increasingly common in the automotive environment and keeping up with the
customer demand generates many challenges. With our proposed architecture
we are able to address many of these. Our concept offers the same four basic
properties (Homogenization, Virtualization, Centralization and Relocatability) in
the infotainment and multimedia domain.

14.6.1 Overview

Our infotainment/multimedia architecture builds on top of our car IT-infrastructure,
uses its hardware components, the error-robust communication network and in
general the mechanisms it provides. Also, it extends the hardware components by
input and output devices. Our approach leads to increased flexibility, expandability
and graceful degradation in the context of in-car infotainment and multimedia. The
proposed architecture is divided in three main blocks (Fig. 14.15).

The concept for the Human Machine Interface (HMI) (left side of Fig. 14.15
and Sect. 14.6.2) is exclusively based on web technologies. It consists of several
displays, one processing unit for the HMI and several controllers. The right-hand
side of Fig. 14.15, described in detail in Sect. 14.6.3, is a Service-Oriented Archi-
tecture (SOA) for the integration of nomadic devices and car internal applications

14 A Real-Time Capable Virtualized Information 295

Fig. 14.15 Overview of the proposed infotainment/multimedia architecture: The three main
building blocks are shown by means of an example network/setup

on Electronic Control Units (ECUs). In the figure some examples for SOA-based
nomadic devices (wired or wireless) and a placeholder for SOA-based internal
functions, e.g., a driver assistance camera are shown. In Sect. 14.6.4, the center
block of Fig. 14.15 is explained which addresses the lifecycle mismatch between
audio/video codecs and the car. In the middle of the figure a processing unit for
video/audio transcoding and, exemplarily, one video source are shown.

14.6.2 Human Machine Interface

For HMIs, it is state of the art to use a combination of hardware and highly
specialized software (think for example of a ticket vending machine). These systems
are difficult to extend by a new interface or function. However, in the home or car
environment, users want to integrate additional functions. Our approach offers the
flexibility to adaptively change the number of output units, input units and even
functions.

Web technologies form the basis of our architecture. All necessary data for the
generation of the HMI are collected on a web server and the HMI is displayed
in a web browser. This allows the centralized management of different HMIs,
like simplified versions for the elderly or a more sophisticated version with more
functionalities for expert users. Another advantage is the easy provisioning of
different “look and feels”. For the transmission of the generated HMI data, standard
web protocols are used, e.g., HTTP and HTML. Thus we reduce the data transfer
rate compared to a transmission of the HMI as a whole. We only assume that a web
browser is installed at the user interface. By using a web browser to render our HMI,
we can also access it from every PC. Also, we benefit from well tested software and
configurations that are widely deployed in the Internet.

296 S. Drössler et al.

The input units can be, for instance, mouse, touchscreen or specialized
controllers. If these are connected locally at the display, the input is directly
processed by the browser. If these are remotely connected, they are handled as
a service/ device (see Sect. 14.6.3), whose input is transmitted to the webserver and
forwarded to the corresponding displays.

An additional advantage of using web technologies is the possibility of using
SOA in our HMI. Functionality integration can, e.g., be achieved using web
services.

14.6.3 Service-Oriented Device Integration

Todays upper class vehicles have up to 70 distributed ECUs, which offer a variety
of different functionalities. The communication between all these autonomous units
has become a challenge, as traditional automotive communication networks (e.g.
CAN, MOST) are reaching their limits. This has initiated a gradual paradigm
shift, replacing the collection of domain-specific network technologies by a single
in-vehicle network, as proposed in our car IT-infrastructure. Flexibility is a key
requirement in this context. For the infotainment/multimedia domain it is therefore
necessary to investigate the use of distributed and dynamic control systems in
an in-vehicle IP network (Homogenization). For this purpose a SOA is adopted.
In a web technology-based HMI, Webservices (WS) are well suited to achieve
service integration and extensibility. However, Webservices offer no possibility for
announcement or discovery of the services. Hence, in our SOA a combination of
Universal Plug and Play (UPnP) and WS is used, since UPnP offers the missing
discovery and announcement mechanisms.

In our approach (Fig. 14.16), a gateway, which takes the information of the UPnP
service and generates a WS adaptation, is utilized. Additional SOA techniques can
be adapted in the same way. The information of the WS for finding, integrating and
connecting the services is stored in a database. Our HMI accesses this database and
offers services to the user in a convenient way.

With SOA we achieve a virtualisation layer for an easy integration of devices and
services. This layer is platform independent and hence, we can offer these services
to everyone in the car.

Fig. 14.16 Example for service integration in the HMI: A calendar service of a cellular phone
offers the UPnP interface and is integrated via a gateway as a Webservice in the HMI

14 A Real-Time Capable Virtualized Information 297

14.6.4 Transcoding

In order to be able to transfer multiple high quality audio and video streams in
the car without exceeding the transmission capacity, efficient data compression
is required. The number of available codecs for both video and audio is steadily
increasing. Introducing compressed audio and video requires the integration of the
corresponding codecs in the sender and/or receiver(s). Since, each compression
standard requires a different codec, this implies extra costs for the car manufacturer.
When comparing the compression standards’ short life cycle of about 2-5 years with
the car life cycle of around 10 years, it becomes obvious that frequent updating of
the compression formats is inevitable. The frequent codec updates in all sources and
sinks imply high costs and are therefore not desirable. The same issue occurs with
an embedded hardware solution for every source and sink.

An alternative solution is to use one particular codec as the output format of every
source. Hence, we can use a single standard inside the car that is valid throughout
the entire life cycle. The drawback of this approach, however, is that transcoding
units in every source, deviating from the standard codec, would be required. Hence,
in our approach the transcoding is performed by a central transcoding unit that is
easy to maintain and update.

In [8], we propose a transcoding unit where all compression standards are
integrated and are regularly updated. If necessary, the compressed audio and
video streams are processed by this unit. They are converted into the reference
compression format and thus homogenized. Hence, the codec upgrading effort is
reduced to only one unit and the production cost is decreased as well.

Another advantage of the centralized approach is that there is no transcoding
complexity in the source. All transcoding operations are performed by one node in
our IT-infrastructure. Although this leads to a single point of failure, integrating
a corresponding module in every source (e.g in a DVD player) would be very
expensive to implement. To deal with the fact of having a single point of failure, the
proposed IT-Motive in-car architecture (see in Sect. 14.5) includes a reconfiguration
mechanism. In case of a node failure, the transcoder software is relocated from the
corresponding processing unit to another one. In case of insufficient resources on
the new processing unit, a graceful degradation is possible. Rate and complexity
adaptation is achieved by reconfiguration (compare Sect. 14.5.2) of the transcoding
parameters. The relationship between the rate, complexity and quality for transcod-
ing of video from MPEG-2 to MPEG-4 is illustrated in Fig. 14.17. The transmission
rate is typically given in bits per second, the complexity in milliseconds per frame
and as quality the unitless metric peak signal-to-noise ratio (PSNR) is used. Every
surface represents one of three possible transcoding levels. In the first one, the
original discrete cosine transform (DCT) coefficients and motion vectors (MV) are
fully reused, in the second, only MVs are retained and in the third, full re-encoding
is performed (for more details see [8]). As can be seen from Fig. 14.17 it is possible
to adapt the used resources to the requirements in more than one way, either by
adjusting the parameters or by switching transcoding levels.

298 S. Drössler et al.

0 0
0 Rate

Complexity

Q
ua

lit
y

Re−encoded
Reuse of MV

Reuse of MV and DCT

Fig. 14.17 Qualitative view for three different transcoding levels. Transcoding is performed for
video from MPEG-2 to MPEG-4

Fig. 14.18 Screenshots of the HMI with a transcoded video overlay (BMW design): The left figure
shows the normal transcoding and the figure on the right shows the video after transcoding in the
degradation mode

In Fig. 14.18 screenshots of the HMI before and after a node failure are
shown. The left screenshot displays the transcoded video together with a realtime
application (driving assistance application). The right one displays the same appli-
cations, but after a relocation. In this case the transcoding application is moved
to the processing unit, where the assistance function is running. We can clearly
see a decreased quality for the video, but no negative influence on the realtime
application. This means that we can still use the function in its degraded version, as
compared to the state of the art error handling, which would imply the failure of the
function. The possibility of relocation further justifies implementing our transcoder
module in software and not in hardware.

Another solution would be to decode every format at the display. However, this
would require to implement the decoder scheme in software due to the updating
requirements for every new codec. This in turn would increase the costs of the
displays significantly compared to a solution that provides just the reference
standard decoder implemented in hardware.

14 A Real-Time Capable Virtualized Information 299

14.7 Sensor Architecture for Driving Environment
Recognition

Current car sensor architectures have a fixed association of software and hardware,
which means most of the signal processing is done within the used smart sensors and
their dedicated embedded systems. Changing any step of signal processing to adapt
to different situations is not possible. The processed sensor data is only accessible
for interconnected ECUs. So the sensors can mostly be used for just one single
function in one specific situation under optimum conditions (no malfunctions).
In a today’s sensor system, e.g. Bosch’s Adaptive Cruise Control[35], there are
five different ECUs involved and interconnected by CAN. In future, more and
more sensors for driving environment recognition will be used due to safety and
comfort enhancements. This leads to a highly complex integrated network, where
our architecture proposal simplifies this structure and enables new features in signal
processing and fault tolerance.

To meet the requirements of future driver assistance systems, the following
features have to be realised:

• Centralized processing of raw data
• Multi-use of sensors for different functions (cruise control, park distance control,

etc.)
• Possibility of data fusion with a wide variety of sensors
• Dynamic sensor reconfiguration for different situations (e.g. variable acquisition

areas)
• Sensor and assistance system fault management.

These characteristics are achieved by building the sensor architecture on top of
the proposed car IT-infrastructure. These features are described in the following
subsections.

14.7.1 Raw Data Processing

In current sensor architectures the captured data is mostly processed within the
sensor itself at microcontrollers, particularly at radar or lidar sensing. Working
on raw data in combination with strong central ECUs allows advanced signal
processing. Centralized CPU power is relatively cheap, so the envelope can be
pushed in processing raw data.

Because of the possibility to replace applications (e.g. a new driver assistance
function) an access to raw sensor data is needed for not having any quality loss
caused by dropping parts of the signal in a previous processing step. In addition
to that, some types of data fusion and the option of multi-use of sensors needs the
central availability of raw data to be free of limitations in signal processing.

300 S. Drössler et al.

14.7.2 Multi-use of Sensors

The availability of environment data for different functions, acquired from one
sensor, is aspired for different reasons. Up to now, nearly all customer functions
have their own sensors, e.g. a radar sensor for ACC, ultrasound sensors for parking
aids, video cameras for lane departure warning, etc. The need of data fusion for
robust environment recognition leads to more and more sensors, e.g. fusion of long
range and short range radar for ACC with traffic jam assist. In this examplary
configuration, two types of short range surroundings acquisition are used: radar and
ultrasound.

Making the surroundings data centrally available enables the operation of
advanced algorithms using data fusion for every application that can use it at a better
performance (additional information from extra sensors), compared to current car-
IT-architectures. In our case, the short range radar can be replaced by (adapted)
ultrasound sensors. A further alternative is the possibility to offer more customer
functions which use environment sensor data. Since the sensors are already available
for other functions, this could be done at low costs.

14.7.3 Data Fusion

Data fusion of any sensors will be an essential feature of prospective driving
environment recognition systems. This can be done best by central accumulation
and fusing of data. Due to this central data processing each step of the signal chain
can be made available not only to any other application but also to data fusion units
connected to further sensors. Thus, any combinations of fusion levels from early
until late data fusion are feasible.

14.7.4 Dynamic Reconfiguration

Depending on different driving situations, like highway or rather city rides, reconfig-
uring the environment sensing expands the area of application. E.g. an acquisition
angle of ˙4ı suffices for Adaptive Cruise Control on highways, whereas a ˙25ı
aperture angle is necessary for stop and go assists used in urban areas[33]. Switching
over between these two states for one sensor which has the ability to do so (for
instance lidar or purpose-built radar) enables additional functions at the previous
demand for only one sensor.

14.7.5 Fault Management

In case of a breakdown within our car-IT infrastructure which results in reduced
available calculating power and/or reduced available communication bandwidth, the

14 A Real-Time Capable Virtualized Information 301

original driver assistance application has to lower its demand for resources. This is
done by graceful degradation [13]. The possibilities for this purpose are:

• Data acquisition working at lower performance (lower angular resolution, lower
update rate, lower acquisition area, etc.)

• Modifying certain steps of the signal chain to consume less computing power
• Shifting parts of the signal chain into smart-sensors.

Accepting a lower overall function performance is a basic requirement for the
concept of graceful degradation. At this, the infrastructure management system tells
the affected application to go into degraded mode or rather activates an application
in degraded mode, shown under Sect. 14.5.2.

In our first option, the program tells the sensor-internal embedded processor to
reduce the amount of acquired data by changing one of the following points to
unload the ECU:

Resolution Resolution of captured angle, distance and other types of data
Acquisition area Dimension of (each) scanned section
Update rate Pictures per second. Can easily be changed e.g. at lidar sensors

(rotation rate of scan head)
Types of data There are different informations depending on type of sensor for

transmitting available: reflectivity amplitudes, target velocity,
angle, distance, current sensor configuration, etc.

Reducing the transmitted amount of data generally lowers the demand for
network bandwidth as well as computing power.

The second option to degrade gracefully is modifying certain steps of the signal
chain, shown in Fig. 14.19. Most potential for saving computing power, without
degrading badly the whole function, provides the tracking block. In most cases a
Kalman-Filter is used, which consumes a large part of the computing power used by
the entire signal chain because of the necessary matrix-multiplications. Replacing a
Kalman based tracker by an Alpha-Filter is an effective option to reduce the demand
for resources. In a simulation of a two dimensional object tracking, the calculation
time over 1,000 steps of random state changes (object motions) is 3.79 times better
if an Alpha-Filter is used instead of a Kalman-Filter. The standard deviation of
the prediction error is 1.35 times worse, which is an acceptable factor for graceful
degradation.

Doing some (pre-)processing of captured raw data within the sensor is the third
way to degrade gracefully. This makes the sensors work partly similar to current
ones like Boschs ACC. Some preprocessing of data up to a nearly complete signal
processing (of course at a lower performance) is done within the sensor and the

Pre−
processing

Clustering
Object−

recognition
Assistance
Function

Sensor Tracking

Fig. 14.19 Signal chain of a typical driving environment recognition system

302 S. Drössler et al.

Degraded Mode

Normal mode

Pre−
processing

Clustering Object−
recognition

Assistance
Function

Assistance
Function

Object−
recognition

Clustering
Pre−

processing
Sensor Tracking

Sensor Tracking

Fig. 14.20 Graceful Degradation by lowering the acquired data amount (hatched arrow) and
shifting the first part of the signal chain (raw data preprocessing and clustering) into the smart
sensor; dashed line framings corresponds to sensor, ECU and actuator

resulting data is transmitted to the electronic control unit. There, the remaining
parts of the signal chain are processed, e.g. a brake- or accelerate-decision could be
made with low calculation power. In Fig. 14.20 an example of this kind of graceful
degradation is shown.

The width of the arrows corresponds to the network load. Shifting the prepro-
cessing into the smart sensor results in a reduced demand for network bandwidth
and a reduced demand for computing power. In this case, advanced algorithms that
need raw data cannot work any more.

In principle any part of the signal chain can be shifted into the sensor to keep
the function running under difficult conditions like a breakdown of more than one
central ECU. Because of the poor performance compared to a classic ECU this can
be done only with a massive degradation of the driver assistance system.

This degrading option by using ECU-external computing power can only be done
at accepting a lower overall performance of the driver assistance system, the power
of the embedded system is not sufficient to replace the whole signal chain with the
previous preferences. Increasing the microcontroller performance for being able to
this would not make sense because of high costs due to needless redundancy.

If a sensor fails, depending on system configuration we have other possibilities. If
the assistance system uses more than one sensor (multi-use), the data fusion quality
drops. If there is only one sensor, the last way to keep this function running is using

14 A Real-Time Capable Virtualized Information 303

mostly equivalent data from other sensors covering almost the same area, accepting
improper configuration (angular resolution etc.).

14.7.6 Sensor Architecture Implementation

The aforementioned characteristics are achieved in our novel driving environment
recognition sensor architecture, see Fig. 14.21.

By our definition, actuators can be everything that uses processed data, e.g.
an information display or the engine control. The used sensors are smart-sensors
with an embedded system for the configuration of the physical sensor (like angular
resolution, update rate and acquisition area) and optional internal data processing.
The built-in microcontroller is used for dynamic reconfiguration and sensor fault
management/graceful degradation.

Normally, raw data is transmitted to the active ECU, processed and passed to
actuators. The availability of environment data for all functions can be guaranteed
by an optional real-time database. Storing of already processed data to be accessed
by further functions is possible, too.

Fig. 14.21 Sensor architecture overview

304 S. Drössler et al.

In graceful degradation mode, the demand for calculation power on the active
ECU consumed by driving environment recognition can be driven down, depending
on available resources, till only passing through processed data to the actuators.

14.8 Summary

Motivated by high complexity, hard maintainability and high cost of today’s Car-IT
infrastructure, investigations for a future Car-IT infrastructure were presented,
based on the following principles: Centralization of heterogeneous infrastructure,
i.e. from up to 100 ECUs today down to a few high performance ECUs and
a centralized communication network; Homogenization towards few standardized
components and interfaces in order to benefit from the evolution of consumer
and communications electronics; Virtualization of computing and communication
resources in order to use them more flexibly; Relocation, i.e. functions are not
statically mapped on ECUs, but might be dynamically relocated within the Car-IT
infrastructure; and last but not least fault tolerance, i.e. error detection and error
mitigation.

Special attention has been on the requirements of three different service classes
supported concurrently on one common Car-IT infrastructure. These service classes
comprise of hard real-time applications, e.g. closed control loops with 1 ms response
time as for chassis control applications, soft real-time applications, e.g. video
codecs for 25 frames per second or Lidar sensor data processing, and non real-time
applications with best effort service.

Investigations include case studies on the virtualization of multicore ECUs with
basic software layers and cache optimization strategies, communication network
topologies and protocols, as well as two application studies from infotainment
and sensor data processing domains. Throughout all investigations, the guideline
was on exploiting the principles of centralization, homogenization, virtualization,
relocation, and fault tolerance, while concurrently supporting real-time and non real-
time applications.

Virtualization of multicore ECUs is based on a hypervisor for the management
of CPU cores, memory resources and I/O devices. A prototype implementation
was validated for an infotainment application, including video transcoding and
camera picture overlay, a soft real-time sensor data fusion application, and hard
real-time control loops running concurrently on two virtualized CPU cores with
XEN hypervisor and both Linux and Windows domains, demonstrating to meet the
required performance and real-time constraints.

The communication network was designed to support both real-time and best
effort services, as well as fault tolerance, using commercially available off-the-shelf
hardware. The communication traffic was separated into three safety classes with
different resilience mechanisms, i.e. safety critical data is transmitted on redundant
paths, critical data is switched to precalculated alternative paths in case errors were

14 A Real-Time Capable Virtualized Information 305

detected, for non-critical data new paths are calculated online whenever errors occur.
These mechanisms were validated analytically, by simulation and by a test setup.

On top of the virtualized CPU cores and the communication network, basic
software services account for local configuration and diagnosis, as well as for
global error detection and mitigation strategies. Safety critical real-time applications
might be implemented using triple module redundancy, while non and soft real-time
applications might be gracefully degraded. We investigated basic software services
with a focus on data consistency, real-time scheduling, dynamic task migration, and
cache performance, taking into account Autosar compatibility.

References

1. (2008) AUTOSAR (R3.1) Specification
2. Alves-foss J, Harrison WS, Oman P, Taylor C (2006) The mils architecture for high-assurance

embedded systems. Int J Embedded Syst 2:239–247
3. Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neugebauer R, Pratt I, Warfield

A (2003) Xen and the art of virtualization. In: SOSP ’03: Proceedings of the nineteenth ACM
symposium on Operating systems principles, ACM, New York, pp 164–177, DOI http://doi.
acm.org/10.1145/945445.945462

4. Baruah S (1998) A general model for recurring real-time tasks. In: Real-Time Systems
Symposium, 1998. Proceedings., The 19th IEEE, pp 114–122

5. Baruah S, Chen D, Gorinsky S, Mok A (1999) Generalized multiframe tasks. Real-Time Syst
17:5–22

6. Baruah S, Chen D, Mok A (1999) Static-priority scheduling of multiframe tasks. In: Real-Time
Systems. Proceedings of the 11th Euromicro Conference on, 1999, pp 38–45

7. Baruah SK (2003) Dynamic- and static-priority scheduling of recurring real-time tasks. Real-
Time Syst 24(1):93–128

8. Eichhorn M, Schmid M, Steinbach E (2008) A realtime streaming architecture for
in-car multimedia: Design guidelines and prototypical implementation. In: IEEE International
Conference on Vehicular Electronics and Safety. ICVES 2008, pp 157–162

9. Fedorova A (2006) Operating system scheduling for chip multithreaded processors. Ph.D.
thesis, Harvard University, Cambridge, MA

10. Gresser K (1993) Echtzeitnachweis ereignisgesteuerter realzeitsysteme. PhD thesis, Technis-
che Universität München

11. Gross D, Harris C (1985) Fundamentals of queueing theory . Wiley, New York
12. Hergenhan A, Heiser G (2008) Operating systems technology for converged ECUs. In: 6th

Embedded Security in Cars Conference (escar), ISITS, Hamburg, Germany
13. Holzknecht S, Biebl EM, Michel HU (2009) Graceful degradation for driver assis-

tance systems. In: Advanced microsystems for automotive applications, Springer, Berlin,
pp 255–265

14. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE International Conference
on Neural Networks, Perth, WA, Australia, vol. 4, pp. 1942–1948

15. Kivity A (2007) kvm: The linux virtual machine monitor. In: OLS ’07: The 2007 Ottawa Linux
Symposium, pp 225–230

16. Kopetz H (1991) Event-triggered versus time-triggered real-time systems. In: Proceedings of
the international workshop on operating systems of the 90s and Beyond, Springer, London,
UK, pp 87–101

17. Lehoczky J, Sha L (1986) Performance of real-time bus scheduling algorithms. Proceedings
of the 1986 ACM SIGMETRICS joint international conference on Computer performance
modelling, measurement and evaluation pp 44–53

306 S. Drössler et al.

18. Liu C (2005) Exploiting multi-threaded application characteristics to optimize performance
and power of chip-multiprocessors. Ph.D. thesis, The Pennsylvania State University

19. Liu C, Layland J (1973) Scheduling algorithms for multiprogramming in a hard-real-time
environment. J ACM (JACM) 20(1):46–61

20. Liu JW (2000) Real-time systems. Prentice Hall, Englewood Cliffs, NJ
21. Mitschke M, Wallentowitz H (2004) Dynamik der Kraftfahrzeuge. Springer Berlin, Heidelberg,

New York
22. Mok A, Chen D (1996) A multiframe model for real-time tasks. In: Real-time systems

symposium, 17th IEEE, pp 22–29
23. Mueller-Rathgeber B, Rauchfuss H (2008) A cosimulation framework for a distributed system

of systems. In: IEEE 68th vehicular technology conference, VTC 2008-Fall, pp 1–5
24. Mueller-Rathgeber B, Eichhorn M, Michel H (2008) A unified Car-IT communication-

architecture: Design guidelines and prototypical implementation. In: 2008 IEEE intelligent
vehicles symposium (IV08), pp 709–714

25. Mueller-Rathgeber B, Eichhorn M, Michel H (2008) A unified Car-IT communication-
architecture: Network switch design guidelines. In: IEEE international conference on vehicular
electronics and safety (ICVES), 2008, pp 16–21

26. Poledna S, Burns A, Wellings A, Barrett P (2000) Replica determinism and flexible scheduling
in hard real-time dependable systems. IEEE Trans Comp 49(2):100–111

27. Rauchfuss H, Wild T, Herkersdorf A (2010) A network interface card architecture for I/O
virtualization in embedded systems. In: Second Workshop on I/O Virtualization (WIOV’10)

28. Salman A, Ahmand I, Al-Madani S (2002) Particle swarm optimization for task assignment
problem. In: Elsevier (ed) Microprocessors and microsystems, Elsevier, Amsterdam, Nether-
lands, vol. 26, pp 363–371

29. Sherwood T, Perelman E, Hamerly G, Sair S, Calder B (2003) Discovering and exploiting
program phases. IEEE Micro: Micro’s top ricks from computer architecture conferences

30. Stankovic JA, Spuri M, Ramamritham K, Buttazzo GC (1998) Deadline scheduling for real-
time systems: EDF and related algorithms. Kluwer, Dordrecht

31. Takada H, Sakamura K (1997) Schedulability of generalized multiframe task sets under static
priority assignment. In: Proceedings – fourth international workshop on real-time computing
systems and applications, pp 80–86

32. Uhlig R, Neiger G, Rodgers D, Santoni AL, Martins FC, Anderson AV, Bennett SM, Kgi
A, Leung FH, Smith L (2005) Intel virtualization technology. Computer 38:48–56, DOI http:
//doi.ieeecomputersociety.org/10.1109/MC.2005.163

33. Wenger J (2005) Automotive radar – status and perspectives. In: Conference procceedings,
compound semiconductor integrated circuit symposium, vol 29, pp 21–24

34. Wind River (2009) White paper: Wind river hypervisor, http://www.windriver.com/announces/
hypervisor/

35. Winner H et al (2002) Adaptive Fahrgeschindigkeitsregelung ACC. Robert Bosch, GmbH
36. Xia W, Wu Z (2005) A hybrid particle swarm optimization approach for the job-shop

scheduling problem. Computers & Industrial Engineering, Elsevier, Amsterdam, Netherlands,
48(2): 409–425.

37. Zwick M, Durkovic M, Obermeier F, Bamberger W, K D (2009) Mcccsim - a highly con-
figurable multi core cache contention simulator. Tech. rep., Technische Universität München,
https://mediatum2.ub.tum.de/doc/802638/802638.pdf

38. Zwick M, Durkovic M, Obermeier F, K D (2009) Setvectors for memory phase classification.
In: International conference on computer science and its applications (ICCSA’09)

http://www.windriver.com/announces/hypervisor/
http://www.windriver.com/announces/hypervisor/

Chapter 15
Robot Basketball – A New Challenge
for Real-Time Control

Georg Bätz, Kolja Kühnlenz, Dirk Wollherr, and Martin Buss

15.1 Introduction

Most of the industrial robots nowadays still employ strategies that neglect or
minimize the effects of task dynamics. This simplifies task planning and reduces
the required sensor capacities. In order to gain maximum performance with such
an approach, these robotic systems are typically highly specialized and offer little
flexibility. The potential areas of application for robots, however, gradually extend
beyond the classical industrial settings in large scale enterprises. The envisioned
range of use includes small-scale enterprises and households. This trend requires the
development of efficient and flexible systems with advanced cognitive capabilities,
such as perception, action, learning, or planning. The main research direction of
the robotic basketball project is the development of advanced sensory and motor
skills for robotic manipulators. With these skills, it is possible to actively use the
dynamics of a given task. The paradigm of dynamic manipulation offers three
potential benefits: first, the execution time of tasks can be reduced. Second, simpler
gripper structures can be used. Third, the dexterity of the robotic system can be
increased. In accordance with Mason, we refer the term dynamic manipulation to
methods which actively use the task dynamics instead of merely tolerating them [1].
Manipulation techniques can be classified by the elements which are needed for
a complete description. As depicted in Table 15.1, four classes of manipulation

G. Bätz, (�) � D. Wollherr � K. Kühnlenz �M. Buss
Institute of Automatic Control Engineering, Technische Universität München,
D-80290 München, Germany
e-mail: georg.baetz@tum.de,mb@tum.de

D. Wollherr � K. Kühnlenz
Institute for Advanced Study, Technische Universität München, D-80290 München, Germany
e-mail: koku@tum.de; dw@tum.de

S. Chakraborty and J. Eberspächer (eds.), Advances in Real-Time Systems,
DOI 10.1007/978-3-642-24349-3 15, © Springer-Verlag Berlin Heidelberg 2012

307

308 G. Bätz et al.

Table 15.1 Taxonomy of manipulation by elements needed for analysis [1]

Class Kinematic Static Quasi-static Dynamic
manipulation manipulation manipulation manipulation

Kinematics X X X X
Static forces - X X X
Quasi-static forces - - X X
Acceleration forces - - - X

are commonly distinguished. Compared to conventional manipulation, dynamic
manipulation allows new motion paradigms such as throwing, catching, or batting.

For nonprehensile dynamic manipulation, the idea is to perform manipulation
tasks without applying force or form closure grasps. Relative motion between end
effector and object is actively employed and the object can perform a broader class
of motions as compared to a static grasp.

The robot basketball project aims at providing a thorough control framework for
dynamic manipulation. Such a framework facilitates the use of dynamic manipula-
tion and hence provides new motion paradigms for robotic manipulation. In order
to reach this goal, the project has the following objectives:

• Action planning for dynamic manipulation with special emphasis on sensor
uncertainties.

• Investigation of nonprehensile dynamic manipulation and comparison of this
methodology with conventional manipulation.

• Integrated hardware and control design. The concept of intrinsic compliance is
used to minimize impact forces and to maximize peak output power.

• Engaging human robot interaction through a dynamic and flexible, and hence
more natural, robot behavior.

• Environment modeling and creation of an object library providing geometrical
(e.g. shape) and dynamic (e.g. mass, inertia matrix, stiffness) object properties.

This chapter summarizes the first steps towards reaching these objectives: first,
an overview on related work in dynamic manipulation and environment per-
ception is provided (Sect. 15.2). Second, an extensive control architecture for
dynamic manipulation tasks based on multimodal sensor information is presented
(Sect. 15.3). Third, the chapter outlines a method of object tracking and trajectory
prediction with high frame rates (Sect. 15.3.1). Fourth, the optimal planning of robot
actions is discussed (Sect. 15.3.2). Fifth, the proposed control design approach is
experimentally validated for two dynamic manipulation tasks (Sect. 15.4).

15.2 Related Work

Dynamic Manipulation: robots with dynamic skills have been studied in various
research works. Hodgins and Raibert were among the first and investigated dynamic

15 Robot Basketball – A New Challenge for Real-Time Control 309

locomotion primitives such as hopping for robots [2]. With respect to manipulation,
dynamic dexterity was first addressed by Mason and Lynch [1]. Following this idea,
Huang investigated impulsive manipulation [3].

In addition, many works focused on specific dynamic manipulation tasks: the
control of rhythmic tasks, for instance, has been a very active research area over
the last two decades. These tasks are commonly summarized with the term juggling
[4–6]. Bühler et al. coined this term for tasks that require interaction with one or
multiple objects that would otherwise fall freely in the earths gravitational field [4].
The continuous motion of the actuator is used to control the continuous motion of
the object through an intermittent contact. Bühler et al. proposed and experimentally
verified the mirror algorithm to control the classic juggling task [7]. Schaal and
Atkeson presented an open-loop sinusoidal actuation to obtain stable fixed points
in the juggling task [5]. In their experimental setup, they used a one-joint robot
with pantograph linkage to maintain a horizontal paddle orientation. Shiokata et al.
discussed the strategy of dynamic holding and presented robotic dribbling with a
ping-pong ball and a multi-fingered hand in [8]. Robotic throwing tasks were also
investigated by several researchers: Kato and coworkers planned throwing motions
and presented experimental results for a two DOF robot and an object with mass
0.01 kg [9]. Katsumata et al. discussed the throwing task with an underactuated
two DOF robotic manipulator [10]. Considering more complex robotic structures,
Lombai and Szederkenyi followed an offline approach to optimize throwing trajec-
tories for a six DOF robot [11]. Senoo used a four DOF manipulator and a robotic
hand to generate throwing trajectories for a tennis ball [12]. They proposed a rolling
sequence of the ball on the hand in order to increase the release velocity. The task
of robotic ball catching has also been studied by various researchers: Hove and
Slotine presented three-dimensional catching with a four DOF manipulator [13].
Frese and Bäuml discussed kinematically optimal catching with a seven DOF robot
and a robotic hand [14, 15]. Riley and Atkeson investigated ball catching with a
humanoid robot using a baseball glove to catch [16].

Environment Perception: the approach of dynamic manipulation relaxes the
requirements for the manipulator hardware. In return, an increased effort for
motion/action planning is required. For effective task planning and execution, a
detailed environment perception is preliminary. In order to obtain detailed and
robust information, it is crucial to rely on different sensor modalities. Here,
visual feedback from cameras is the most important source of information. High-
speed vision improves control performance in vision-based control due to higher
frame rates and lower latencies. Recent progress in sensors, bus systems and
semiconductor technology has led to a few works on vision with more than 30 Hz
frame rate during the last decade: Ishikawa et al. have developed high-speed vision
systems with various resolutions and fast low-level image processing functions
integrated on customized processing hardware allowing frame rates of up to 1 kHz.
These vision systems were applied to various dynamic vision-based manipulation
tasks, e.g. ball dribbling with multi-fingered hands, ball catching, ball batting, or
regrasping [8, 17–19]. Various works in the field of visual servo control with higher
frame rates than common 30 Hz NTSC exist, e.g. [20,21]. Other works in high-speed

310 G. Bätz et al.

vision in robotics are concerned with navigation and motion estimation issues,
e.g. [22, 23].

Besides visual feedback, the knowledge of contact forces and torques is particu-
larly crucial for the interaction with the environment. To this end, robotic systems
are typically equipped with force/torque sensors at the wrist. For dynamic manip-
ulation tasks, however, the problem arises that the inertial forces/torques of the
end effector have a non-negligible effect on the measurements of the wrist sensor.
This problem has been addressed by several researchers: dynamic force sensing
for high-speed robot manipulation was first investigated by Uchiyama et al. [24].
The developed observer design was restricted to pose and F/T measurements. In
the presented results, the complexity of the problem was reduced by considering
a planar scenario with two translational and one rotational DOF. Garcia et al.
investigated a sensor fusion approach for dynamic force/torque estimation [25, 26].
In addition to pose and F/T measurements, an inertial sensor was used. In the EKF-
based observer design, the environment forces and torques were not considered
and the estimation error was utilized to obtain a contact F/T estimator with low-
pass properties. Considering the nonlinear process model for the torques, it seems
problematic to use the estimation error of such an observer to determine the
environment torques. In addition, the use of Euler angles for the tool orientation
appears critical because of the well-known issues with representation singularities.

15.3 Control Design

The overall control framework is shown in Fig. 15.1. Here, q are the joint angles

and xM D
�
pT
M oTM

�T
the position and orientation (in quaternion notation) of

the end effector. The subscripts a and d denote actual and desired quantities.

Robot &
Environment

Dynamic
F /T Observer

Object
Tracking &
Trajectory
Prediction

Robot
Action

Planning

Motion &
 Interaction

Control

Control Structure

visual information

xO,(t+Δt)

ẋO,(t+Δt)
τ

FS,MS

F
ˆ
E, M

ˆ
E

q

xM,a

xM,d

FE,d

ME,d

xM,a

ẍM,a

ẋM,d

ẍM,d

Fig. 15.1 Overall control structure consisting of four main elements: robot action planning,
dynamic F/T observer, object tracking & trajectory prediction, and motion & interaction control

15 Robot Basketball – A New Challenge for Real-Time Control 311

F S and M S denote the measured forces and torques, whereas F E and ME are the
environment forces/torques. The predicted trajectories of the manipulated object are
labeled xO;.tC�t/. The control structure consists of four main elements: dynamic
force/torque observer, object tracking and trajectory prediction, robot motion
planning, and motion/interaction control. In the first module, the environment forces
and torques are estimated based on the measurements of a force/torque and an
acceleration sensor, see [27]. The second module realizes object tracking with high
frame rates (appr. 150 Hz) and predicts future object trajectories, see Sect. 15.3.1.
The motion planning and task-specific robot trajectory generation is performed in
the third module, see Sect. 15.3.2. For the interaction with the environment, a hybrid
force/position control in operational space is used. Here, the dynamic F/T observer
is needed to provide reliable estimates of the contact forces during dynamic motions.

15.3.1 High-Speed Vision

The vision module contains two elements: object tracking and trajectory prediction,
compare Fig. 15.2. In the following, tracking and trajectory prediction of a spherical
object is described.

15.3.1.1 Object Tracking Module

The tracking algorithm assumes that color and shape information of the tracked
object are available. First, a Gaussian smoothing filter is applied to the image in
RGB-format. Then, the image is converted into the HSV color space. The HSV
space consists of the three channels hue (H), saturation (S), and value (V) and the
object is extracted based on the information in the H and V channel. For the hue
channel, a look-up table is used containing the color information of the tracked
object. For the value channel, a threshold value is set to exclude darker regions
of the image from the analysis. This is helpful since the darker regions do not
provide reliable color information. Combining the two images with an and operation
results in a binary image. In the next step, an opening operation is performed on
the binary image in order to filter out speckles, not related edges, and noise in the
image [28]. The opening includes an elementary erosion operation followed by an
dilation operation, both using a 3 � 3 pixel circle as structural element. Finally, by

Robot
Action

Planning
Object Tracking Trajectory Prediction

raw image
xO ,(t+Δt)

ẋO
,(t+Δt)

xO(t)

Fig. 15.2 Block diagram of the vision module

312 G. Bätz et al.

Gaussian
smoothing filter

Conversion
RGB -> HSV

raw image Opening operation
3x3 circle erosion
3x3 circle dilation

Detect center
(x,y)

Look-up table

Threshold

H

V

p
O
(t)

Fig. 15.3 Object tracking module: block diagram of the image processing

computing the first order moment of the image, the geometric center of the object
is obtained. A block diagram with the processing steps of the tracking algorithm is
depicted in Fig. 15.3. In order to increase the tracking frequency and to reduce the
latency, a moving window search method is used: once the object is detected in the
full size image (1280 � 1024 pixel), the search area is reduced to a 180 � 180 pixel
window. The position of the window is determined by a linear position prediction
and tracking is performed with approximately 150 Hz. If the object is lost, e.g. due
to occlusion, the search algorithm is again applied to the full-size image.

15.3.1.2 Trajectory Prediction Module

The input for the module is the object position pO.t/ tracked by the camera system.
The following two paragraphs describe the trajectory prediction of the object’s
trajectory for a free-flight phase and for an impact event. Again, a spherical object
is considered.

Free-flight: first, the module determines whether the object is in free-flight. This
can be realized in various ways: one approach is to check whether the vertical object
acceleration matches the gravitational acceleration for a certain period of time. If
that is the case, one can assume that the object is in free-flight. The drawback of this
method is that the acceleration aO.t/ of the object has to be determined. However,
if only position information is available, noisy and hence imprecise acceleration
estimates impede this approach. Hence, a different approach is used in this work:
a free-flight phase is detected when the objects position is outside the workspace
of the two robots and the human (which has to be pre-specified). The prediction of
the objects trajectory is realized with a recursive least squares fitting method for a
sample period�Ts. The trajectory for free-flight is given by

pŒk� D

2
64

pxŒk�
pyŒk�

pzŒk� � 0:5gt2Œk�

3
75 D

2
4px;0 vx;0
py;0 vy;0
pz;0 vz;0

3
5 �

1

tŒk�

�
(15.1)

where g denotes the gravitational acceleration. This results in the recursive least
squares estimates for the parameters

15 Robot Basketball – A New Challenge for Real-Time Control 313

Omi ŒkC1� D Omi Œk� C hŒk�

�
NpiŒkC1� �RT

ŒkC1� Omi Œk�

(15.2)

where NpiŒkC1� is the measured i -coordinate of the object and

Omi Œk� D
�
pi;0Œk� vi;0Œk�

�T
i 2 fx; y; zg ; RŒkC1� D

�
1 tŒkC1�

�T
(15.3)

hŒk� D ˘ Œk�RŒkC1�
1CRT

ŒkC1�˘ Œk�RŒkC1�
; ˘ ŒkC1� D ˘ Œk� � hŒk�R

T
ŒkC1�˘ Œk�:

With the estimates for the initial state of the object, the future object trajectory
xO.t C�t/, PxO.t C�t/ is predicted.

Impacts: for some tasks, e.g. the dribbling task, it is desirable to predict
object trajectories that include impact events in addition to free-flight phases. The
prediction model is based on the following assumptions: first, the angle of impact
with respect to the normal direction is smaller than 30ı. In this case, no sliding
occurs at the contact point, see [29,30]. Second, rotational velocities of the object are
negligible. With these assumptions, the objects tangential velocity after the impact
is approximated as

vCt;O

mOr

2
O

JO CmOr
2
O

v�t;O (15.4)

where JO denotes the moment of inertia,mO the mass, and rO the radius of the ball.
Inserting the expression for a spherical shell, JO D 2

3
mOr

2
O , in (15.4) leads to a

proportionality constant cr;t D 0:6 for the horizontal velocities before and after the
impact. The translational object velocity after the ground impact is hence defined as

vCO D
�
cr;t cr;t �cr

�T
v�O (15.5)

where cr is the coefficient of restitution for the ground impact.
The models for the free-flight phase and the impact event provide the possibility

to predict the future object trajectory and use it for the robot action planning.

15.3.2 Robot Action Planning

The term action planning refers to the planning of desired motion (xM;d , PxM;d ,
RxM;d) and/or desired force and torque (F E;d , ME;d) trajectories. For dynamic
manipulation tasks, the action planning has to be performed online based on the
provided sensor feedback. The inputs are the actual end effector pose (xM;a), the
predicted object trajectory (xO;.tC�t/, PxO;.tC�t/), and the estimated forces/torques
exchanged with the environment (OF E , OME). The overall goal is to find motions
that fulfill the desired optimization criteria and that are dynamically feasible. In

314 G. Bätz et al.

this context, dynamically feasible means that the resulting hybrid state trajectory
can be realized with a control input u and does not exceed hardware limitations.
The following subsection presents the constraints that need to be considered in the
planning stage. It also discusses selection criteria that can be used to optimize the
trajectory of the hybrid system.

15.3.2.1 Constraints

Two types of constraints are distinguished: two-sided equality constraints in the
form ce.�/ D 0 and one-sided inequality constraints ci .�/ � 0. The former are
used to specify positions, velocities, and accelerations at certain points in time. The
latter consider hardware limitations such as maximum manipulator acceleration or
joint limits.

15.3.2.2 Optimization Criteria

The following paragraphs outline selection criteria wi for the optimal trajectory
planning. Based on these selection criteria, task-specific cost functions

J.� ;w1; : : : ;wn/ (15.6)

are defined. The optimization problem is given by

min
�2� J.� ;w1; : : : ;wn/

with � D f� 2 R
n; c i .�/ � 0; ce.�/ D 0g (15.7)

� D Œa1; : : : ; an� :

The parameter set � defines the trajectory and thus also the corresponding joint
angles q. Consequently, the selection criteria wi .�/ can be formulated either as
function of � or q.

(a) Distance from joint limits: the distance from mechanical joint limits imposes
constraints on the trajectory planning. However, it can also be utilized as an
optimization criteria which ensures that the manipulator stays within preferred or
feasible regions of its workspace.

wj .q/ D
nY
iD1

wj;i .qi ; qi;min; qi;max/ (15.8)

where q 2 R
n is the vector of joint angles and wj;i corresponds to the joint limit

measure for the i-th joint.

15 Robot Basketball – A New Challenge for Real-Time Control 315

y[m]

z[
m

]

x=0.45 m

−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4–0.4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) w
d
 for x=0.45 m

y[m]
z[

m
]

x=0.50 m

−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4–0.4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) w
d
 for x=0.50 m

y[m]

z[
m

]

x=0.55 m

−0.3−0.2−0.1 0
0

0.1 0.2 0.3 0.4–0.4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.3

0.2

0.1

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) w
d
 for x=0.55 m

Fig. 15.4 Normalized dynamic manipulability measure wd for different yz-planes: (a) x = 0.45 m,
(b) x = 0.50 m, (c) x = 0.55 m

(b) Dynamic manipulability measure: a global measure for the manipulation
ability has been proposed by Yoshikawa [31]. The measure quantifies the ability for
arbitrarily changing position and orientation of the end effector in a given posture.
The main drawback of this concept is the fact that it is a kinematic measure ignoring
the arm dynamics. Hence, it is not suitable for planning dynamic motions. This
shortcoming is addressed by the dynamic manipulability measure wd introduced
in [32]. The scalar measure is defined as

wd .q/ D 1

wd;max

r
det

�
J .q/

	
BT .q/B.q/

�1
J T .q/

(15.9)

where J .q/ 2 R
6�n is the manipulator Jacobian and B.q/ 2 R

n�n is the inertia
matrix of the manipulator. The scaling factor wd;max is used to normalize the
measure. Figure 15.4 exemplarily shows the dynamic manipulability measure of
the six DOF industrial robot used in this work for different yz-planes and a constant
end effector orientation. The reference coordinate system is located in the robot base
with the z-direction pointing vertically upwards.

(c) Object orientation: in accordance with the distance from mechanical joint
limits, the object orientation can be regarded as both a constraint and an optimization
criteria. For a specific object, there might exist a range of admissible contact points.
Preferences within this range can be considered with a selection criteria wo.q;oO/,
where oO denotes the orientation of the object.

(d) Energy consumption: finally, the energy consumption of the system is another
criteria for the evaluation of planned trajectories. It can be approximated by

wu.�/ D
�
�

Z te

ts

u.t/T u.t/dt
��1

; (15.10)

316 G. Bätz et al.

where � is a constant scaling factor and Œte; ts� denotes the duration of the task
execution.

15.3.2.3 Optimization Method

In order to generate near-optimal trajectories in limited time, the optimization
method combines offline and online decisions. The method considers tasks that
include a free-flight phase. This is a common feature for many dynamic manipu-
lation tasks, the two best-known examples are catching and throwing. In a first step,
equally spaced grid points are defined in the robot workspace, compare Fig. 15.5.
For each grid point, the values of the optimization criteria wj and wd are determined
by averaging the measures for different end effector orientations at that point. For the
14 DOF manipulator, the redundancy has been resolved so that distinct values can be
assigned to each grid point. These values are stored in look-up tables. In the second
step, motion trajectories are preplanned. Here, the initial state of the manipulator
for a given task is assumed to be fixed. The trajectories are generated using
fifth-order polynomials which coefficients are determined by position, velocity,
and acceleration constraints at initial and final time. The resulting trajectories are
checked for dynamic feasibility and their costs are determined based on a linear
combination of wu, wd , and wj . Again, each grid point is assigned a distinct value
by averaging the costs for different final states and the costs are stored in a look-up
table. The third step of the optimization is performed online: the module determines
where the desired or predicted free-flight trajectory of the object intersects the
workspace of the robot, compare Fig. 15.5. For this part of the free-flight trajectory,
the nearest neighbors in the offline computed look-up tables are determined and
the ten points with the lowest costs are considered as candidate points. For each of
these points, the module generates trajectories using fifth-order polynomials. Based
on the desired/predicted free-flight trajectory of the object, the coefficients of the
polynomials are determined by the task-specific position, velocity, and acceleration
constraints at initial and final time. The resulting trajectories of the candidate points
are checked for workspace and acceleration constraints violations. Together with
the overall task goal, these motion trajectories then determine force trajectories for
remaining task directions.

15.3.2.4 Trajectory Generation

In the following, trajectory generation based on the presented selection criteria
is exemplarily studied. Circular plates are used as end effector for the robotic
manipulators. For the trajectory generation, the following assumptions are made:

A1 Air resistance and rotational ball velocity are negligible.
A2 Impacts between ball and end effector are instantaneous inelastic collisions

described by the coefficient of restitution cr .

15 Robot Basketball – A New Challenge for Real-Time Control 317

predicted / desired object trajectory xO (t)

workspace boundary

candidate points

initial pose xM (t0)

grid points

Fig. 15.5 Illustration of the optimization approach

A3 For an inelastic collisions, the angle of incidence is equal to the angle of
reflexion.

Task 1 – Dual-Handed Throwing: the two-handed throwing of spherical objects
with a basic force-closure grasp is considered. Hence, the object’s orientation and
its rotational velocity are neglected. The state of the system is then given by

x D
h

xTM;1 xTM;2 pT
B PxTM;1 PxTM;2 vTB

iT 2 R
32 (15.11)

with xM;i D
h
pT
M;i oTM;i

iT 2 R
7 and PxM;i D

h
vTM;i !T

M;i

iT 2 R
6. A schematic

of the of the dual-handed throwing task is depicted in Fig. 15.6. As first subtask, a
grasping motion is executed if a stationary ball position within the robots workspace
is tracked. The grasping is realized by force closure, applying a desired normal force
on the contact surface. The imposed constraint for the normal force Fn is

jjmB.aB;max C g/jj � Fr D �sFn; (15.12)

Object

End effector 1
End effector 2

Fig. 15.6 Schematic of the dual-handed throwing with a force closure grasp

318 G. Bätz et al.

where �s is the static friction coefficient. For the two manipulators, the throwing
trajectories in the directions tangential to the contact surfaces are planned based on
the optimization method presented in Sect. 15.3.2.3. For the direction normal to the
contact surfaces, the desired grasping force is specified.

Task 2 – Ball Dribbling: for this task, a compliant end effector design is used.
The compliance is realized with a spring element that allows a temporary energy
storage. During contact, the compliance is in series between the actuator and the
ball, decoupling the actuator inertia from the end effector. Therefore, the velocity
and acceleration requirements on the actuator are relaxed. Details on the mechanical
design of the end effector and the trajectory planning are given in [33].

15.4 Experimental Results

For the experiments, a 6 DOF industrial robot and a 14 DOF dual-arm manipulator
are used. The robots are equipped with either six DOF force/torque sensors or twelve
DOF force/torque and acceleration sensors from JR3 that are located at the wrist.
Circular plates are used as end effectors. The plates are attached to robot either
through a rigid connection or through an elastic coupling which allows relative
motion between plate and robot.

15.4.1 Task 1 – Dual-Handed Throwing

In order to evaluate the throwing strategy, a basketball was placed stationary in
the workspace of an anthropomorphic dual-arm robot with 14 DOF. The robot

Fig. 15.7 Dual-handed throwing – experimental snapshots: motion sequence from 0 to 1 s

15 Robot Basketball – A New Challenge for Real-Time Control 319

Fig. 15.8 Dribbling with a compliant actuator – experimental snapshots: autonomous task
initialization and first dribbling cycle (sequence from 0 to 2.16 s)

then grasped the ball with a force closure grasp. The trajectory planning for the
task was detailed in Sect. 15.3.2.4. Experimental snapshots of ball throwing with
the dual-arm manipulator are depicted in Fig. 15.7. With the current manipulator
hardware, the throwing distance is limited: for target points which are further away
than 3 m from the robot base, all generated trajectories violate dynamic constraints
(e.g. maximum end effector acceleration). However, for target points within this
range the trajectory generation finds feasible solutions. During task execution, the
dynamic force sensing is used to apply a constant grasping force and to maintain the
contact between the ball and the two end effectors.

15.4.2 Task 2 – Ball Dribbling

The dribbling task is either initialized by the robot or the human operator. In the
former case, which was used for the presented experiments, the ball is initially at rest
on the plate and then dropped by the robot to start the dribbling cycle. Figure 15.8
illustrates this autonomous initialization. In the latter case, the task is triggered when
the ball is dropped into a specified area of the robot workspace. The coefficient of
restitution of the ball was experimentally determined to be cr D 0:84. During the
dribbling cycle, the ball position is tracked by the vision system. The compliant end
effector design allows for a continuous-time control phase and relaxes the actuator
requirements. A snapshot sequence of the initialization and the first dribbling
cycle is depicted in Fig. 15.8. Currently, the performance is mainly limited by the
following aspect: in the simulation, it was assumed that there is no energy loss
in the elastic actuator. For the real actuator however, friction forces during spring
compression/elongation cause energy dissipation. This, in turn, leads to a reduced
amount of energy storage in the spring and energy transfer to the ball, see [33].

320 G. Bätz et al.

15.5 Conclusion

This chapter introduced robotic basketball as a new challenge for real-time control
and as a demonstration scenario for dynamic object manipulation. A control
framework was presented that addresses the challenges related to environment
perception, action planning, and motion control. Two of these challenges were
discussed: first, a method for object tracking with high frame rates (appr. 150 Hz)
was detailed. In addition to the tracking algorithm, the subsection discussed the
trajectory prediction for spherical objects during free-flight phases and impact
events. Second, a method for online motion planning was detailed which generates
trajectories based on different selection criteria: distance from mechanical joint
limits, dynamic manipulability measure, and energy consumption. Task-specific
trajectory planning was shown for two-handed ball throwing. Together with a
motion & interaction control and a dynamic force/torque observer, the two modules
were integrated in a thorough control architecture for dynamic object manipulation.
To validate the overall control design, first experimental results were reported and
two dynamic manipulation tasks were considered: ball throwing and dribbling. It
was demonstrated that dynamic dexterity can be realized with simple end effector
structures. The trade-off for the reduced hardware requirements is an increased
effort in motion planning, modeling, and environment perception. With these
results in mind, dynamic manipulation is not understood to replace conventional
manipulation. However, it will extend the capabilities and dexterity of robotic
systems in many situations and thus broaden the areas of application, especially
with regards to human-robot collaboration.

Acknowledgements The authors would like to thank Xihua Lu, Uwe Mettin, Kwang-Kyu
Lee, Thomas Schau, Lorenz Kniep, Alexander Schmidts, and Haiyan Wu for their valuable
contributions. The first author gratefully thanks the German National Academic Foundation for
their support.

References

1. Mason M, Lynch K (1993) Dynamic manipulation. In: Proceedings of the IEEE/RSJ interna-
tional conference on intelligent robots and systems (IROS), pp 152–159, 1993

2. Hodgins J, Raibert M (1990) Biped gymnastics. Int J Robot Res 9:115–128
3. Huang W(1997) Impulsive manipulation. PhD thesis, Carnegie Mellon University
4. Bühler M, Koditschek D, Kindlmann P (1988) A one degree of freedom juggler in a two degree

of freedom environment. In: Proceedings of the IEEE international workshop on intelligent
robots, pp 91–97, 1988

5. Schaal S, Atkeson CG (1993) Open loop stable control strategies for robot juggling. In:
Proceedings of the IEEE international conference on robotics and automation (ICRA), pp
913–918, 1993

6. Ronsse R, Lefevre P, Sepulchre R (2005) Timing feedback control of a rhythmic system.
In: Proceedings of the IEEE conference on decision and control and the European control
conference (CDC-ECC), pp 6146–6151, 2005

15 Robot Basketball – A New Challenge for Real-Time Control 321

7. Bühler M, Koditschek D, Kindlmann P (1994) Planning and control of robotic juggling and
catching tasks. Int J Robot Res 13(2):101–118

8. Shiokata D, Namiki A, Ishikawa M (2005) Robot dribbling using a high-speed multifingered
hand and a high-speed vision system. In: Proceedings of the IEEE/RSJ international conference
on intelligent robots and systems (IROS), pp 2097–2102, 2005

9. Kato N, Matsuda K, Nakamura T (1996) Adaptive control for a throwing motion of a 2 dof
robot. In: Proceedings of the international workshop on advanced motion control, pp 203–207,
1996

10. Katsumata S, Ichinose S, Shoji T, Nakaura S, Sampei M (2009) Throwing motion control based
on output zeroing utilizing 2-link underactuated arm. In: Proceedings of the American control
conference (ACC), pp 3057–3064, 2009

11. Lombai F, Szederkenyi G (2009) Throwing motion generation using nonlinear optimization on
a 6-degree-of-freedom robot manipulator. In: Proceedings of the IEEE international conference
on mechatronics, pp 1–6

12. Senoo T, Namiki A, Ishikawa M (2008) High-speed throwing motion based on kinetic chain
approach. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and
systems (IROS), pp 3206–3211, 2008

13. Hove B, Slotine J-J (1991) Experiments in robotic catching. In: Proceedings of the American
control conference (ACC), pp 380–386, 1991

14. Frese U, Bäuml B, Haidacher S, Schreiber G, Schäfer I, Hähnle M, Hirzinger G (2001) Off-the-
shelf vision for a robotic ball catcher. In: Proceedings of the IEEE/RSJ international conference
on intelligent robots and systems (IROS), pp 1623–1629, 2001

15. Bäuml B, Wimböck T, Hirzinger G (2010) Kinematically optimal catching a flying ball with
a hand-arm-system. In: Proceedings of the IEEE/RSJ international conference on intelligent
robots and systems (IROS), pp 2592–2599, 2010

16. Riley M, Atkeson C (2002) Robot catching: Towards engaging human-humanoid interaction.
Autonomous Robots 12(1):119–128

17. Imai Y, Namiki A, Hashimoto K, Ishikawa M (2004) Dynamic active catching using a
high-speed multifingered hand and a high-speed vision system. In: Proceedings of the IEEE
international conference on robotics and automation (ICRA), pp 1849–1854, 2004

18. Senoo T, Namiki A, Ishikawa M (2006) Ball control in high-speed batting motion using hybrid
trajectory generator. In: Proceedings of the IEEE International conference on robotics and
automation (ICRA), pp 1762–1767, 2006

19. Furukawa N, Namiki A, Taku S, Ishikawa M (2006) Dynamic regrasping using a high-speed
multifingered hand and a high-speed vision system. In: Proceedings of the IEEE international
Conference on robotics and automation (ICRA), pp 181–187, 2006

20. Namiki A, Hashimoto K, Ishikawa M (2004) A hierarchical control architecture for high-speed
visual servoing. Int J Robot Res 22:873–888

21. Gangloff JA, de Mathelin MF (2003) High-speed visual servoing of a 6-d.o.f. manipulator
using multivariable control. Adv Robot 17(10):993–1021

22. Gemeiner P, Vincze M (2005) Motion and structure estimation from vision and inertial sensor
data with high speed cmos camera. In: Proceedings of the IEEE international conference on
robotics and automation (ICRA), pp 1853–1858, 2005

23. Zhang T, Liu X, Kühnlenz K, Buss M (2009) Visual odometry for the autonomous city explorer.
In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems
(IROS), pp 3513–3518, 2009

24. Uchiyama M, Kitagaki K (1989) Dynamic force sensing for high-speed robot manipulation
using kalman filtering techniques. In: Proceedings of the IEEE international conference on
decision and control (CDC), pp 2147–2152, 1989

25. Garcia J, Robertsson A, Ortega J, Johansson R (2006) Generalized contact force estimator
for a robot manipulator. In: Proceedings of the IEEE international conference on robotics and
automation (ICRA), pp 4019–4024, 2006

26. Garcia J, Robertsson A, Ortega J, Johansson R (2008) Sensor fusion for compliant robot motion
control. IEEE Trans Robot 24(2):430–441

322 G. Bätz et al.

27. Bätz G, Scheint M, Wollherr D (2011) Towards dynamic manipulation for humanoid robots:
Experiments and design aspects. Int J Humanoid Robots (accepted)

28. Haralick RM, Shapiro LG (2002) Computer and Robot Vision. Addison-Wesley, Reading, MA
29. Domenech A (2005) A classical experiment revisited: The bounce of balls and superballs in

three dimensions. Am J Phys 1:28–36
30. Cross R (2002) Grip-slip behavior of a bouncing ball. Am J Phys 11:1093–1102
31. Yoshikawa T (1993) Analysis and control of robot manipulators with redundancy. In: Proceed-

ings of the international symposium on robotics research, pp 735–747, 1983
32. Yoshikawa T (1985) Dynamic manipulability of robot manipulators. In: Proceedings of the

IEEE international conference on robotics and automation (ICRA), pp 1033–1038
33. Bätz G, Mettin U, Scheint M, Wollherr D, Shiriaev A (2010) Ball dribbling with an

underactuated continuous-time control phase: Theory & experiments. In: Proceedings of the
IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 2890–2895

Chapter 16
FlexRay Static Segment Scheduling

Martin Lukasiewycz, Michael Glaß, Jürgen Teich, and Paul Milbredt

16.1 Introduction

The FlexRay protocol was introduced by an international consortium including
several car manufacturers to cope with growing real-time requirements of advanced
driver assistance functions and safety functions in the automotive domain. The
FlexRay protocol offers a static and dynamic segment with a high data rate of
10 Mbit/s. While the event-triggered dynamic segment is used mainly for diagnosis,
maintenance, and calibration data, the time-triggered static segment might be used
for critical data with strict real-time requirements. In addition to standard linear
bus and star topologies, the FlexRay bus allows hybrid topologies including a dual
channel mode to increase the reliability. However, in contrast to the prevailing
CAN bus [4] in the automotive domain, the configuration of the FlexRay bus is
significantly more complex: It requires a large set of parameters and a predefined
schedule. This chapter introduces a scheduling concept for the static segment of the
FlexRay based on the transformation to a two-dimensional bin packing problem.

M. Lukasiewycz (�)
TU Munich, Germany
e-mail: martin.lukasiewycz@rcs.ei.tum.de

M. Glaß and J. Teich
University of Erlangen-Nuremberg, Germany
e-mail: michael.glass@cs.fau.de; juergen.teich@cs.fau.de

P. Milbredt
AUDI AG, Germany
e-mail: paul.milbredt@audi.de

S. Chakraborty and J. Eberspächer (eds.), Advances in Real-Time Systems,
DOI 10.1007/978-3-642-24349-3 16, © Springer-Verlag Berlin Heidelberg 2012

323

324 M. Lukasiewycz et al.

16.1.1 FlexRay Protocol

The FlexRay communication is organized in cycles, as illustrated in Fig. 16.1. Since
each frame has exactly 6 cycle count bits, the cycles are numerated from 0 to 63
and subsequently start over with 0 again. Each cycle is divided into four segments
of configurable duration:

1. The static segment enabling a guaranteed real-time transmission of critical data
2. The dynamic segment (optional) for low-priority and event-triggered data
3. The symbol window (optional) used to transmit special symbols and
4. The network idle time used to perform a clock synchronization.

The focus of this chapter is put on new techniques for scheduling the static segment.
The static segment is made up of n equally sized slots where each one is uniquely
assigned to one node (or none). One node, however, may occupy more than one
slot. Each slot consists of a header and trailer segment and a payload segment that
is statically configured to carry between 0 and 254 bytes. By a predefined schedule,
each slot is filled with the communication data of the applications. As illustrated in
Fig. 16.1, the FlexRay protocol uses a Time Division Multiple Access (TDMA) to
multiplex the communication into different slots.

Figure 16.2 gives an overview of data transmission on the FlexRay bus in the
automotive domain. The basic unit are the signals, e.g., physical data like the
vehicle speed. The signals are packed to messages which are measured in bytes
as the basic unit. The messages are packed to frames. Since all participants of
a FlexRay bus are aware of the current cycle number, the cycle is used for a
second multiplexing dimension as suggested in the AUTomotive Open System
ARchitecture (AUTOSAR) FlexRay Interface Specification [1]. A slot may contain
different frames for specific cycles. Here, exactly one (or no) frame is transmitted
in a slot at one specific cycle to increase the utilization of the bus. Finally, the slots
are added to the schedule.

CC0 (Communication Cycle) CC1 ··· CC63

Dynamic
Segment

Symbol
Window

Network
Idle Time

Static Segment

Static
Slot 1

Static
Slot 2

···
Static
Slot n

Fig. 16.1 The FlexRay communication protocol consisting of 64 communication cycles with a
detailed illustration of the static segment

16 FlexRay Static Segment Scheduling 325

signal

message

frame

slot

schedule
Fig. 16.2 Overview and
terminology regarding the
data transmission on the
FlexRay bus in the
automotive domain

In the work at hand, it is assumed that the basic communication units are
messages, thus, the signals are already packed into messages. This is a common
scenario, since messages are predefined by Electronic Control Unit (ECU) and
gateway packing strategies. Thus, the goal is to pack messages into slots implicitly
defining the frame packing. Note that a two-step approach where messages are first
packed to frames and frames to slots might lead to suboptimal solutions with respect
to the number of required slots.

16.1.2 Scheduling Requirements

In real-world implementations of the FlexRay bus, the periodic and safety-critical
data is scheduled on the static time-triggered segment while the dynamic segment
is mainly used for maintenance and diagnosis data [3, 17]. Though, in the first
generation of the FlexRay bus in series-production vehicles, the static segment is
not used at the full capacity [17], it is projected that the data volume on FlexRay
buses will increase significantly in the future. Therefore, a schedule optimization
that minimizes the number of used slots is necessary to allow a high flexibility for
incremental schedule changes1 and for future automotive networks with a higher
data volume. Hence, an efficient schedule optimization of the static segment is the
key to the success of the FlexRay bus.

The configuration of the FlexRay bus is defined by a large set of parameters.
In particular, these parameters allow a configuration of the number and size of the
slots in the static segment. Nevertheless, these values are mostly predefined by the
manufacturer guided by existing data. For instance, the duration of a communication
cycle is usually 5 ms due to the periods of the messages in the present automotive
networks that are predominantly a multiple of 5ms. For each message that is routed
on the FlexRay bus, a fixed size in bytes is given and the minimal repetition is

1Incremental changes are common in the automotive area to decrease the testing exposure.

326 M. Lukasiewycz et al.

deduced from the period of the communication cycle and its own period, cf. [8].
In order to efficiently improve the tunable FlexRay parameters, fast scheduling
techniques are necessary to allow for an effective parameter exploration.

16.1.3 AUTOSAR Interface Specification

As suggested in the AUTOSAR FlexRay Interface Specification [1] that is currently
applied in all series-production vehicles, cycle multiplexing is used to increase the
utilization of the FlexRay bus. An example of this cycle multiplexing for a single slot
is illustrated in Fig. 16.3. The cycle multiplexing of messages is defined by the base
cycle and the cycle repetition: The base cycle defines the offset in cycles for the first
occurrence of the respective message. The cycle repetition denotes the frequency
of a message among the communication cycles. The value of the cycle repetition is
always a power of two 2n; n 2 f0; : : : ; 6g to allow a periodic occurrence in the 64
cycles. Thus, for a given base cycle b and repetition r , a message is existent in each
communication cycle CCi with

i D .b C r � n/%64 with n 2 N0. (16.1)

Here, % is the modulo operation. An example of scheduling three messages m0,
m1, and m2 is given in Fig. 16.3. The base cycle values are 0 for m0, 0 for m1,
and 3 for m2. The repetition values are 1 for m0, 2 for m1, and 4 for m2. Given
a common duration of a single communication cycle of 5 ms, the message m0 is
sent each cycle with a period of 5 ms, the message m1 each second cycle with a
period of 10 ms, and the message m2 each fourth cycle with a period of 20 ms.
The cycle multiplexing technique maximizes the utilization of the static segment in
compliance with the high requirements for reliability and robustness and, therefore,
is integrated into real-world automotive implementations of the FlexRay bus based
on the AUTOSAR specification.

16.2 Related Work

The FlexRay specification [7] is under development by the FlexRay Consortium
including BMW, Daimler, General Motors, and Volkswagen. Currently, the series-
production vehicles using FlexRay are the BMW X5, X6 and 7 series [2] and the
Audi A8 [10]. All these series-production vehicles are compliant with the FlexRay
AUTOSAR Interface Specification [1]. Thus, this AUTOSAR specification is the
de-facto industrial standard for the software specification of the FlexRay nodes.

Recent papers cover diverse FlexRay related topics. An introduction of the
FlexRay protocol and the operating mode in real-world automotive systems is pre-
sented in [1,3,20]. In [16], a timing and performance analysis of FlexRay embedded

16 FlexRay Static Segment Scheduling 327

0

1

2

3

64

C
C

i
(C

om
m

un
ic

at
io

n
cy

cl
e)

m1

(a) Cycle multiplexing of three messages into
a single slot in the context of the 64 communication cycles.

0 1 2 3 4 5

0

1

2

3

63

W−1

C
C

i
(C

om
m

un
ic

at
io

n
cy

cl
e)

Payload in bytes

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · · · · ·

· · ·

· · ·

· · ·

·
 ·

·

·
 ·

·

(b) Cycle multiplexing of three messages into
a single slot in a two-dimensional representation.

m0

m0

m0

m0

m0

m1

m2

m2

m0

m0

m0

m0

m0 m2

m2

m1

m1

Fig. 16.3 FlexRay cycle multiplexing of a single static slot. In order to achieve a high utilization,
cycle multiplexing allows each slot to have an individual message scheduling in each communica-
tion cycle

systems is given, mostly focused on the dynamic segment. The determination and
optimization of FlexRay schedules for the dynamic segment is discussed in [15].
The work in [11] presents a scheme for the acknowledgment and retransmission of
data that is implemented on top of an existing FlexRay schedule in order to increase
the reliability of FlexRay-based applications.

An approach that optimizes the static segment with a Genetic Algorithm (GA)
is proposed in [6]. The approach in [21] introduces an Integer Linear Programming
(ILP) approach for a proposed custom software architecture. In [24], the authors

328 M. Lukasiewycz et al.

present a Mixed Integer Linear Programming (MILP) approach for scheduling
of messages and tasks in a synchronous architecture. However, these papers do
not consider the AUTOSAR [1] software specification for the FlexRay bus and
are, therefore, not applicable to solve current FlexRay scheduling problems in the
automotive domain. Moreover, in the case of the exact ILP and MILP approaches,
the scalability might form an obstacle for the applicability since the relevant papers
only present relatively small case studies.

A recent work on scheduling the static segment is given in [8] that considers
the optimization of the schedule with respect to cycle multiplexing. However, a
predefined frame packing as described in [18, 19] is assumed. This approach is
rather restrictive since a two-level packing of signals to messages and messages
to frames as provided by AUTOSAR is common in the automotive domain. In
contrast, the work at hand enables the scheduling of the messages directly into slots
including the frame packing. Available tools for solving the scheduling problem
are TTX PLAN [22] based on a heuristic approach and DAVINCI NETWORK

DESIGNER FLEXRAY [23], a graphical user interface that only allows to build
schedules manually. The scheduling algorithm of TTX PLAN is not published, but
the experimental results in this work give evidence of an inferior behavior of TTX
PLAN regarding runtime and quality of results.

One of the main contributions of the work at hand is a transformation scheme for
the FlexRay scheduling problem into a special two-dimensional bin packing prob-
lem and its efficient solution. The general two-dimensional bin packing problem has
been researched thoroughly, a brief summary is presented in [12]. Since an exact
solution based on ILP results in a huge number of variables, cf. [5], heuristics are
usually favored for unconstrained problems. However, in the presence of constraints
like the level [13] or guillotine packing [17], an ILP can be formulated and solved
efficiently. To the best of our knowledge, the special two-dimensional bin packing
problem with individual level constraints, as presented in the work at hand, has not
been topic of any research so far.

16.3 Schedule Optimization

The optimization flow as proposed in this work is illustrated in Fig. 16.4. The
main goal is to minimize the number of used slots in order to maximize the
utilization of the bus. Unused slots are still part of the final schedule, but these slots
can be assigned to any ECU if the schedule is extended incrementally in further
development. Moreover, a fast scheduling approach is advantageous, e.g., for the
exploration of specific bus parameters.

First, the transformation of the original slot packing problem into a special bin
packing problem is performed using the proposed transformation scheme. The bin
packing is carried out in order to minimize the number of allocated slots. The work
at hand introduces a fast heuristic and an exact ILP approach for this special bin
packing problem. Finally, the transformation is inverted to convert the solution of

16 FlexRay Static Segment Scheduling 329

Requirements

Transformation (Slot Packing → Bin Packing)

Bin Packing (Minimize Allocated Slots)

Transformation (Bin Packing → Slot Packing)

Schedule

Fig. 16.4 Schedule
optimization flow

the bin packing to a feasible FlexRay schedule. Since each slot is assigned to at most
one ECU, the scheduling for each ECU is done independently and the slots are put
together in the final schedule.

16.3.1 Problem Transformation

This section describes a one-to-one transformation between the slot packing
problem that arises from the FlexRay cycle multiplexing and a special form of a
two-dimensional bin packing problem. Since each slot corresponds to one bin, the
transformation is presented for a single slot to a single bin and vice versa.

First, the general conditions for a feasible FlexRay slot packing are introduced:
Each slot is defined by the payload size W (without the reserved load for the
AUTOSAR specific update bits) and the number of cycles H which is 64 for the
FlexRay bus. The set of messages is denotedM .
Each message m 2M is defined by the following two values:

• wm 2 N - byte-length with wm � W .
• rm 2 f2njn 2 f0; : : : ; 6gg - repetitions in the powers of two, defining the step-size

for the multiplexing over the cycles. It holds that rm � H .

For a feasible slot packing, two values for each message have to be determined:

• xm 2 N0 - the offset in bytes on the x-axis.
• bm 2 N0 - the base cycle that defines the offset on the y-axis. It holds that bm< rm.

A message is not allowed to exceed the slot (xm C wm � W) and no intersection
between two messages is possible. The task of the transformation of the slot packing
into a bin packing is to convert each message into a rectangular element and
determine its position such that each feasible slot packing results in a feasible bin
packing and vice versa. The bin size is the same as the slot size with the width
W and height H . Also the position on the x-axis xm and the width wm for each
element m correspond to the position and width of the message in the slot packing.

330 M. Lukasiewycz et al.

Therefore, the main task is to find a transformation that obtains the following two
values for each element m:

• ym 2 N0 - the offset on the y-axis.
• hm 2 N0 - the height of an element.

The transformation for the height hm is related to the repetition rm:

hm D H
rm

(16.2)

rm D H
hm

(16.3)

Thus, the height of an element equals the number of appearances of the correspond-
ing message in the H cycles.

Given bm < rm, it follows that in the bin packing problem, the position ym is
restricted to rm individual levels, depending on the height of the element. It holds
that the level of an element lm D ym=hm has to be in N0. This arises from the
fact that two messages with the same repetition but different base cycles will never
intersect each other. The same holds for elements of the same height but different
levels.

Consider the following transformation function t W N0 �N! N0:

t.x; y/ D

8̂̂
<
ˆ̂:
0; x D 0
t. x
2
;
y

2
/; x is even

t. x�1
2
;
y

2
/C y

2
; x is odd

(16.4)

with
y 2 f2njn 2 N0g (16.5)

0 � x < y and x 2 N0 (16.6)

It holds:
t.t.x; y/; y/ D x and t.x; y/ D t�1.x; y/ (16.7)

The transformation function t directly transforms the level of an element lm to the
base bm and vice versa, such that the following holds:

lm D t.bm; rm/ and bm D t.lm; rm/ (16.8)

and, thus,
ym D lm � hm D t.bm; rm/ � Hrm (16.9)

and
bm D t. ymhm ; rm/ D t.

ym
hm
; H
hm
/. (16.10)

Thus, a transformation from the slot packing problem to a bin packing problem
with individual level constraints based on the height of the elements is done

16 FlexRay Static Segment Scheduling 331

C
om

m
un

ic
at

io
n

cy
cl

e
Payload in bytes

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

m1

m0

m1

(a) Slot

y

x
0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

(b) Bin

m4

m2

m1 m3

m5m0

m1 m2

m0

m1

m0

m1

m0

m2

m3

m5

m4

Fig. 16.5 Example of a transformation from a slot packing problem (a) to a bin packing problem
(b) and vice versa

by applying (16.2) and (16.9) for each message. For the opposite direction, the
transformation is performed by (16.3) and(16.10) for each element. An example
for the transformation of a single slot is given in Fig. 16.5. A detailed proof for the
correctness of this transformation is given in the following.

Theorem 16.1. Two elements in the generated bin packing intersect if and only
if the corresponding messages in the slot packing problem are conflicting, i.e.,
intersecting.

Proof. For the x-transformation, this is trivial since the x-position and width w of
the messages or elements, respectively, are identical. Thus, this has to be solved for
the y-transformation as given by (16.2), (16.3), (16.9), and (16.10).

The function t.x; y/ from (16.4) performs a bitwise flip operation of the value
x given in Little-endian encoding on its log2 y bits. This satisfies the properties of
function t in (16.7) under the assumptions in (16.5) and (16.6).
Two elements in a bin intersect if

:..ym C hm � y Qm/ _ .ym � y Qm C h Qm// (16.11)

or by applying De Morgan’s law

.ym C hm > y Qm/ ^ .ym < y Qm C h Qm/. (16.12)

Applying (16.2) to (16.12) results in

ym � y Qm > �H
rm

and ym � y Qm > H

r Qm
. (16.13)

332 M. Lukasiewycz et al.

A further transformation with (16.9) results in the following equations:

rm � t.b Qm; r Qm/ < r Qm � .t.bm; rm/C 1/ (16.14)

r Qm � t.bm; rm/ < rm � .t.b Qm; r Qm/C 1/ (16.15)

If (16.14) and (16.15) are both satisfied, the two elements are intersecting. On
the other hand, if either (16.14) or (16.15) is violated, the two elements are not
intersecting.

()) If the slot packing for two messagesm and Qm is conflicting, the correspond-
ing elements in the bin packing intersect:

Without loss of generality, it is assumed that rm � r Qm. Two messages are
conflicting in the slot packing if

9n 2 N0 W bm C rm � n D b Qm. (16.16)

This means, that the log2 rm least significant bits of bm and b Qm are equal and, thus,

t.b Qm; r Qm/ D r Qm
rm
.t.bm; rm/C a/ (16.17)

holds with
0 � a � 1 � rm

r Qm
< 1. (16.18)

Here, a is the potential remainder by applying a shift of log2
r

Qm

rm
bits. The upper

bound 1 holds due to the problem-specific constraint rm � 1 and the given
assumption r Qm � rm.

Equation (16.17) is transformed to the following two equations:

rm � t.b Qm; r Qm/ D r Qm � .t.bm; rm/C a/ (16.19)

r Qm � t.bm; rm/ D rm � .t.b Qm; r Qm/� a � r Qm

rm
/ (16.20)

Given (16.19) with a < 1, (16.14) holds. At the same time, (16.15) holds due to
(16.20) and a � 0. Thus, the elements intersect as required.

(() If the slot packing for two messages m and Qm is not conflicting, the
corresponding elements in the bin packing do not intersect:

Without loss of generality, it is assumed that rm � r Qm. Two messages are not
conflicting in the slot packing if

8n 2 N0 W bm C rm � n ¤ b Qm. (16.21)

This means, that the log2 rm least significant bits of bm and b Qm are not equal and,
thus, either

16 FlexRay Static Segment Scheduling 333

t.b Qm; r Qm/ � r Qm
rm
.t.bm; rm/� 1C a/ (16.22)

or
t.b Qm; r Qm/ � r Qm

rm
.t.bm; rm/C 1C a/ (16.23)

hold, both with a in the bounds from (16.18). From (16.22) it follows

r Qm � t.bm; rm/ � rm � . r Qm

rm
.1 � a/C t.b Qm; r Qm// (16.24)

that violates (16.15) due to r
Qm

rm
.1 � a/ � 1 that holds since a � 1 � rm

r
Qm

as stated in
(16.18). Equation (16.23) equals

rm � t.b Qm; r Qm/ � r Qm � .t.bm; rm/C 1C a/ (16.25)

that violates (16.14) due to a � 0. Thus, either (16.14) or (16.15) is violated and the
elements do not intersect as required.

This proves (16.2) and (16.9). Equation (16.3) holds due to (16.2) and (16.10)
holds due to (16.9) with the inverse properties of the t function given in (16.7).

16.3.2 Bin Packing

The task of a two-dimensional bin packing problem is to pack rectangular elements
of different sizes defined by an individual width w and height h into a minimal
number of rectangular bins without any intersection. Each bin has the fixed length
W and height H . The transformation of the slot packing into a special two-
dimensional bin packing problem determines a rectangular element m with the
width wm and height hm for each message m 2 M . The width of the bin equals
the payload of a slot W and the height is the number of cycles which is 64 for
FlexRay.

In contrast to the common two-dimensional bin packing, the transformed
problem from the previous section contains two constraints:

1. Each elementm 2 M has a height hm that is a power of two, i.e., 2n with n 2 N0

and the bin height is at least the maximal height of all elements.
2. Each element m 2 M can be placed everywhere on the x-axis but only on a

multiple of its height on the y-axis, i.e., ym D l � hm with the level l 2 f0; : : : ;
H
hm
� 1g.

This section introduces two optimization approaches for this specially constrained
two-dimensional bin packing problem. The first approach is a fast greedy heuristic,
the second is an efficient encoding as an ILP that allows to find the optimal
solution.

334 M. Lukasiewycz et al.

16.3.2.1 Fast Greedy Heuristic

The presented bin packing problem can be solved by a fast greedy heuristic com-
parable to the approach presented in [17]. This heuristic is outlined in Algorithm 1.

Algorithm 1 Fast greedy heuristic for bin packing
1: S D fg //set of bins
2: for m 2M do
3: for s 2 S do
4: if place.m; s/ then
5: continue with next m
6: end if
7: end for
8: create new s and add it to S
9: place.m; s/

10: end for

The algorithm starts with an empty set of bins S . Each elementm 2M is tried to
be placed subsequently in a bin s 2 S . Here, the function place.m; s/ is problem
dependent and returns true if the placing is successful, and false otherwise. If an
element is not placed in any of the allocated bins in S , a new bin s is allocated,
added to S , and the element m is placed into this new empty bin.

Applied to the proposed special bin packing problem, the order of M influences
the quality of the results. The elements inM are ordered first by their height hm such
that high elements are ordered to the front. The second criterion for the ordering of
elements of the same height is the width wm such that wide elements are ordered to
the front. The function place.m; s/ tries to place each elementm the most left void
space in the bin s considering the individual level constraints of the proposed bin
packing problem. This strategy tends to avoid the waste of void space of the bins.
The complexity of this heuristic is polynomial.

16.3.2.2 Integer Linear Programming

Basic ILP. Solving a general two-dimensional bin packing problem with an ILP
results in a high number of variables and constraints [5, 13]. However, the fact that
each element has a height of a power of two and can only be placed on levels
depending on its height can be exploited to deduce a compact and efficient ILP
formulation with relatively few variables and constraints. The ILP formulation relies
on the following binary variables:

• ms;l - elementm is placed at level l in bin s
• s - bin s is allocated (used)

16 FlexRay Static Segment Scheduling 335

The ILP is formulated as follows:

min
X
s2S

s (16.26)

8 m 2M W
X
s2S

H
hm
�1X

lD0
ms;l D 1 (16.27)

8 s 2 S; fy D 0; : : : ;H � 1g W
X
m2M

wm �ms;
j y

hm

k � W (16.28)

8 m 2M; s 2 S; fl D 0; : : : ; H
hm
� 1g W s �ms;l � 0 (16.29)

The objective function (16.26) of the ILP minimizes the number of allocated bins.
Here, the set S has to contain a minimal number of bins that are necessary to solve
the problem. This number is deduced from the presented fast heuristic approach.
The constraints (16.27) state that each element m is placed in exactly one bin s at
the specific level l . By adding the widths of the elements and restricting this sum
by the width of a bin, the constraints (16.28) ensure that the size of each bin is not
exceeded. The constraints (16.29) state that a bin s has to be allocated if at least one
elementm is placed in it.

Solving this ILP provides a bin s and level l for each element m (exactly one
variable ms;l is true). Placing the elements starting from the highest element to the
most left void space in the bin s at the level l results in a feasible solution of the bin
packing problem. This holds since the individual level constraints induce that each
element that is sorted to the most left void space has at most one contact element on
its left, see Fig. 16.5(b). Thus, the constraints (16.28) are sufficient to determine a
feasible bin packing.

Though this is a very efficient ILP encoding in terms of the number of variables,
one has to keep in mind that the complexity of an ILP is exponential in general.
Moreover, in contrast to the heuristic approach, the presented ILP cannot be used
incrementally, i.e., an already allocated bin cannot be filled with additional elements
without moving the old elements.

Enhanced ILP. The stated ILP can be further improved by reducing the search
space by applying domain-specific knowledge. First, the set of S is reduced by one
bin, simplifying the ILP by omitting several variables and constraints. In case there
exists no feasible solution of this simplified ILP, there also exists no feasible bin
packing for jS j � 1 bins and, thus, the reference solution obtained by the heuristic
is already optimal.

Furthermore, a lower bound for the objective is deduced by domain-specific
knowledge to improve the runtime of the ILP. This lower bound is calculated as
follows:

lb.M/ D
P

m2M wm � hm
W �H . (16.30)

336 M. Lukasiewycz et al.

The additional constraint X
s2S

s � dlb.M/e (16.31)

sets the lower bound for the objective function. This constraint improves the runtime
of the ILP: If the optimal solution is reached and equals the lower bound, the
optimization process terminates immediately.

Regarding the problem of bin packing, a so-called symmetry breaking is applica-
ble to reduce the search space. Consider the following one dimensional bin packing
example: Given two elements m1 and m2 and two bins s1 and s2, there exist four
possible distributions of the elements to the bins:

1. m1;m2 in s1
2. m1 in s1 andm2 in s2
3. m1;m2 in s2
4. m1 in s2 andm2 in s1

Since all bins have the same size and their order is negligible, there exists a
symmetry between s1 and s2 regarding (1),(3) and (2),(4): Either (1) or (3) state
that both elements are in the same bin, and correspondingly (2) or (4) state the both
elements are in different bins. If the elementm2 is prohibited to be packed to bin s2,
(2) and (3) become invalid and the symmetry is broken. Thus, the search space is
effectively reduced.

In order to generalize the symmetry breaking for the presented ILP formulation
for the two-dimensional bin packing problem, two order functions for the elements
and bins are used:

o W S ! N (16.32)

o W M ! N (16.33)

These functions assign to each element and bin, respectively, a unique integer value
starting from 1 to jM j and jS j, respectively. Given these functions, the symmetry
breaking between bins is performed by adding the following constraints to the ILP
formulation:

8m 2M; s; s0 2 S.s ¤ s0/; l D f0; : : : ; H
hm
� 1g

with o.m/ D o.s0/; o.s0/ < o.s/ W ms;l D 0 (16.34)

This ensures that an element is not allowed to be placed in a bin with a higher order.
Additionally, the two-dimensional bin packing leads to a possible horizontal

symmetry through the middle of each bin. The symmetry breaking inside a bin is
performed by adding the following constraints:

8m 2 M; s 2 S; l D f0; : : : ;
l

H
2�hm � 1

m
g

with o.m/ D o.s/ W ms;l D 0 (16.35)

16 FlexRay Static Segment Scheduling 337

This ensures that all elements with the same order value as the order value of a bin
can only be placed in the lower half of this bin. Note that each symmetry breaking
effectively accelerates the ILP solving without excluding optimal solutions.

16.4 Case Study

A real-world example consisting of a FlexRay bus with 8 ECUs and an overall
number of 220 messages is carried out as a case study to show the applicability of
the proposed methods. The distribution of the sizes and periods of the messages is
illustrated in Fig. 16.6. The messages are highly heterogeneous in terms of their
period and size. The parameters of the FlexRay bus are predefined such that the
static segment consists of 62 slots with each slot carrying a payload of 42 bytes.
Effectively, only 41 bytes are used since one byte is reserved for the update bits. The
duration of the communication cycle is 5 ms. The experiments were carried out on
an Intel Pentium 4 3:20GHz machine with 512MB RAM. The ILP solver for the bin
packing was the CPLEX solver in the version 10.5 [9]. Currently, the only available
automatic scheduling approach compliant with the AUTOSAR specification is the
commercial tool TTX PLAN [22]. For the introduced case study, a reference solution
obtained by TTX PLAN is available.

The time for the transformation into a bin packing problem and vice versa might
be omitted since it is negligibly small (less than 1 ms). The results for the case
study are given in Table 16.1. The runtimes for the heuristic and ILP approach for
the case study is a fraction of a second. The row ILP* in Table 16.1 shows the
results that were obtained by the ILP approach without the presented enhancements.

1 2 3 4 5 6 8 9 10 13 15 20 32

10%

20%

30%

0%

R
at

io

(a) Distribution of the message sizes in bytes.

5 10 20 40 80 160 320

10%

20%

30%

0%

R
at

io

(b) Distribution of the message periods in milliseconds.

Fig. 16.6 Distributions for message sizes and periods of the real-world case study

338 M. Lukasiewycz et al.

Table 16.1 Results for the case study

Method runtime [s] slots

Heuristic 0.065 27
ILP* (CPLEX) 25.7 27
ILP (CPLEX) 0.080 27
TTX Plan 360 29

Here, the runtime is significantly higher with 25:7 s. In fact, the ILP enhancements
are always advantageous since there arises no additional overhead. The heuristic
and ILP approach both deliver solutions with 27 allocated slots. Moreover, the ILP
approach proves that 27 allocated slots is the optimal solution.

The proposed algorithms were compared to a result obtained by the commercial
available scheduling tool TTX PLAN [22] that is based on an undisclosed heuristic
approach with a prospected polynomial scalability of the runtime. While the
commercial tool returns a schedule with 29 allocated slots, the heuristic and
the ILP improve this value by two slots, which is significant for a real-world
application. These results show that the commercial tool delivers an inferior result
in a comparatively large amount of time, in particular, in 6 min. The runtime of the
commercial tool TTX PLAN and the presented approaches differs by four orders
of magnitude. Since scheduling is typically just one of several tasks in a complete
design flow, this enables a Design Space Exploration (DSE) [14] with reasonable
runtimes using the proposed algorithms.

16.5 Summary

This chapter presented a scheduling optimization scheme for the static segment of
the FlexRay bus in compliance with the AUTOSAR specification. First, the problem
is transformed into a special two-dimensional bin packing problem using a proposed
one-to-one transformation scheme. This constrained bin packing problem is solved
either with a presented heuristic approach, delivering good results in a relatively
small amount of time, or an introduced efficient ILP approach that delivers the
optimal solution. The results of the case study show that the heuristic and ILP
approach are superior to a commercial tool in runtime and quality. The scalability
analysis studies the applicability of the proposed methods.

References

1. AUTOSAR: Specification of the FlexRay Interface Version 3.0.2 (2008). URL Http://www.
autosar.org

2. Berwanger J, Peteratzinger M, Schedl A (2008) FlexRay startet durch. FlexRay-Bordnetz
für Fahrdynamik und Fahrerassistenzsysteme (in German). In: Elektronik Automotive:

Http://www.autosar.org
Http://www.autosar.org

16 FlexRay Static Segment Scheduling 339

Sonderausgabe 7er BMW. Available at URL http://www.elektroniknet.de/home/automotive/
bmw-7/flexray-startet-durch/

3. Broy J, Müller-Glaser KD (2007) The impact of time-triggered communication in automotive
embedded systems. In: Proceedings of the international symposium on industrial embedded
systems (SIES 2007), pp 353–356

4. CAN: Controller Area Network. URL Http://www.can.bosch.com/
5. Christofides N, Hadjiconstantinou E (1995) An exact algorithm for orthogonal 2-D cutting

problems using guillotine cuts. Euro J Operat Res 83(1):21–38
6. Ding S, Murakami N, Tomiyama H, Takada H (2005) A GA-based scheduling method for

flexRay systems. In: Proceedings of the international conference on embedded software
(EMSOFT 2005), pp 110–113

7. FlexRay Consortium: FlexRay Communications Systems – Protocol Specification Version 2.1
Rev. A. 2005 URL Http://www.flexray.com

8. Grenier M, Havet L, Navet N (2008) Configuring the communication on flexRay: The case
of the static segment. In: Proceedings of the 4th European congress on embedded real time
software (ERTS 2008) (2008)

9. ILOG: CPLEX. URL Http://www.ilog.com/products/cplex/, Version 10.5
10. Kötz J, Poledna S (2008) Making flexRay a reality in a premium car. In: Proceedings of the

society of automotive engineers international 2008 (SAE 2008)
11. Li W, Di Natale M, Zheng W, Giusto P, Sangiovanni-Vincentelli A, Seshia S (2009)

Optimizations of an application-level protocol for enhanced dependability in flexRay. In:
Proceedings of the conference on design, automation and test in Europe (DATE 2009), pp
1076–1081

12. Lodi A, Martello S, Vigo D (2002) Recent advances on two-dimensional bin packing problems.
Discrete Appl Math 123(1-3):379–396

13. Lodi A, Martello S, Vigo D (2004) Models and bounds for two-dimensional level packing
problems. J Combinatorial Opt 8(3):363–379

14. Lukasiewycz M, Glaß M, Milbredt P, Teich J (2009) FlexRay schedule optimization of
the static segment. In: Proceedings of the 7th IEEE/ACM international conference on
hardware/software codesign and system synthesis (CODES+ISSS 2009), pp 363–372

15. Pop T, Pop P, Eles P, Peng Z (2007) Bus access optimisation for FlexRay-based distributed
embedded systems. In: Proceedings of the conference on design, automation and test in Europe
(DATE 2007), pp 51–56

16. Pop T, Pop P, Eles P, Peng Z, Andrei A (2006) Timing analysis of the FlexRay communication
protocol. In: Proceedings of the 18th euromicro conference on real-time systems (ERTS 2006),
pp 203–216

17. Puchinger J, Raidl GR (2007) Models and algorithms for three-stage two-dimensional bin
packing. Euro J Operat Res 127(3):1304–1327

18. Saket R, Navet N (2006) Frame packing algorithms for automotive applications. J Embedded
Comput 2(1):93–102

19. Sandstrom K, Norstom C, Ahlmark M (2000) Frame packing in real-time communication.
In: Proceedings of the seventh international conference on real-time computing systems and
applications (RTCSA 2000), pp 399–403

20. Schedl A (2007) Goals and architecture of FlexRay at BMW. In: Slides presented at the Vector
FlexRay Symposium (2007). Available at URL https://www.vector-worldwide.com/

21. Schmidt K, Guran Schmidt E (2009) Message scheduling for the FlexRay protocol: The static
segment. IEEE Trans Vehicular Technol 58(5):2170–2179

22. TTTech: TTX Plan. URL Http://www.tttech-automotive.de/
23. Vector: DaVinci Network Designer FlexRay. URL Http://www.vector.com/
24. Zeng H, Zheng W, Di Natale M, Ghosal A, Giusto P, Sangiovanni-Vincentelli A (2009)

Scheduling the FlexRay bus using optimization techniques. In: Proceedings of the 46th
conference on design automation (DAC 2009), pp 874–877

http://www.elektroniknet.de/home/automotive/bmw-7/flexray-startet-durch/
http://www.elektroniknet.de/home/automotive/bmw-7/flexray-startet-durch/
Http://www.can.bosch.com/
Http://www.flexray.com
Http://www.ilog.com/products/cplex/
https://www.vector-worldwide.com/
Http://www.tttech-automotive.de/
Http://www.vector.com/

Chapter 17
Real-Time Knowledge for Cooperative Cognitive
Automobiles

Christoph Stiller and Oliver Pink

17.1 Real-Time Requirements in Automotive Applications

We are currently witnessing a rapid growth in the number of sensors in our
automobiles. Accompanied by a trend towards higher data rate, storage capabilities,
and processing power per sensor it seems safe to state that the role of information
acquisition and processing is of increasing importance to the automotive domain.
While radar, lidar, and video sensors were only introduced to selected upper class
automobiles around the turn of the millennium,1 such sensors are readily available
for medium sized vehicles by now and are expected to become standard in any
vehicle in the not so far future. Combined with vehicular communication systems it
is expected that this trend will not only show quantitative effects on driving comfort,
but in the long term will provide a totally new quality of traffic operation including
concerted navigation for safe, comfortable, and efficient driving.

We define cognitive automobiles as automobiles that carry on-board sensors
to acquire and process information about their traffic environment and are able
to decide and conduct appropriate actions based on that information. Cognitive
automobiles may provide support to human drivers through information, warning
or sharing the control task between drivers and the vehicle, or in the long term,

1The European Automotive industry introduced radar sensors in the Mercedes-Benz S-Class and
in Jaguar’s XKR for Adaptive Cruise Control in 1999, followed by BMW’s 7-series in early 2000.

C. Stiller (�)
Institute of Measurement and Control Systems, Karlsruhe Institute of Technology, 76131
Karlsruhe, Germany
e-mail: stiller@kit.edu

O. Pink
Institute of Measurement and Control Systems, Karlsruhe Institute of Technology, 76131
Karlsruhe, Germany
e-mail: pink@kit.edu

S. Chakraborty and J. Eberspächer (eds.), Advances in Real-Time Systems,
DOI 10.1007/978-3-642-24349-3 17, © Springer-Verlag Berlin Heidelberg 2012

341

342 C. Stiller and O. Pink

max.
decel-
eration

full
braking

cognition:
information processing

perception,
decision

fundamental reaction time

0, 8

initiate
muscular

action

m
ove foot on

brake pedal

setting
time

0, 2

foot on
brake pedal

elasticities

res-
ponse
time

begin of
deceleration

ramp up
time

max. braking
force

time [sec]

brake pressure

fixation of
object

gaze,
correcting
saccades

gaze,
attention

0, 5

dangerous
object enters
peripheral field
of view

increasing
braking
pressure

Fig. 17.1 Exemplaric reaction of a human driver in an immanent collision situation

autonomously decide for automatic vehicle control that does not require any human
intervention.

The potential of cognitive automobiles to traffic safety may be illustrated at the
example of a typical reaction of a human driver in an immanent collision situation
as depicted in Fig. 17.1. After a new object enters the peripheral field of view, the
human needs about 0.5 s to direct the gaze towards it, i.e. to direct the foveal sight
onto it. About another 0.8 s are needed for the cognition process, i.e. to recognize the
danger and to decide for a braking manoeuvre. Muscular action is initiated to move
the foot from the accelerator to the brake pedal. Finally elasticities and slackness
have to be compensated for before the vehicle finally begins deceleration. A typical
time from presence of the object to full deceleration may be 1.9 s. Even when this
duration is somewhat reduced when the object has been visually tracked before
becoming a threat, this figure clearly reveals the potential to reduce the deceleration
time through cognitive automobiles. In the European Union’s e-Safety Report the
authors project a reduction of fatal accidents by 50% through a gain of 0.5 s in
critical situations [1].

While human drivers do definitely not belong to the class of real time systems,
cognitive automobiles may reach such properties. Figure 17.2 sketches the above
braking manoeuvre by a cognitive automobile. With a 360ı surround view all
objects in the field of view are permanently monitored and tracked, which typically
happens far before entering a human’s field of view. Furthermore, vehicular
communication allows for telematic awareness, i.e. automobiles get information
about other traffic participants that are not yet visible at all. The cognition process in
machine vision can be speed up through usage of more processing power yielding
time frames that go below 0.1 s. Muscular motion is completely avoided and

17 Real-Time Knowledge for Cooperative Cognitive Automobiles 343

max.
decel-

eration

full
brakingtelematic awareness

danger
sets in

initiate
braking

elasticities

res-
ponse
time

begin
deceleration

increasing
braking
pressure

ramp up
time

max. braking
force

time [sec]

brake pressure

permanent
communication

with other traffic
participants and

with infrastructure

cooperate with
vehicles that are

not in field of view
yet

permanent
fixation and

tracking of all
objects in field

of view

object enters
field of view

cognition
0.1

Fig. 17.2 Potential reaction of a cognitive automobile in an immanent collision situation,
cf. Fig. 17.1

elasticities and slackness may be reduced through preconditioning of the braking
system. In total, cognitive automobiles may react up to 1.5 s faster than a human
which would reduce the vast majority of accidents.

While in the long term cognitive automobiles are expected to react safer
and faster than human drivers, the basic decision modules may resemble human
behaviour to a large extent. Figure 17.3 depicts a psychological model for human
behaviour (cf. [11]) which may be related to a decision concept applied in automated
driving as depicted in Fig. 17.4, e.g. [7, 10]. At the lowest level of skill-based
behaviour, features are extracted from the scene via human senses or automotive
sensors, respectively. These are implicitly mapped to appropriate action without
requiring a conscious decision. An example for such a task is given by lane keeping
on a highway. In technical systems, stabilization is achieved by low level controllers.
At the intermediate level of rule-based behaviour, feature patterns are recognized
and associated to previously known situations. Then a sequence of behaviour is
recalled that has led to a successful result in related situations. In a technical
system, tactical decisions may also follow predefined rules. On the knowledge-based
behaviour level a conscious decision process takes place. Alternative behavioural
options are established and a planning process predicts the result of each option.
Finally, the option is chosen whose predicted result maximizes some quality
measure. In a technical system, such strategic decisions are often conducted by
optimizing over millions of alternative trajectories [7, 14]. It is worthwhile noting
that the notion of real-time for decision making in autonomous automobiles does
not generally refer to time periods in the range of some milliseconds. Such reaction
times are required for some stabilization tasks as well as for some tactical decisions

344 C. Stiller and O. Pink

information decision
predictive
planning

navigation

recognition association rules guidance

knowledge based behaviour

rule based behaviour

feature
extraction

signal-reactive
skills

stabilization

skill based behaviour

sensor
information

subcortical
information

motoric
action

Fig. 17.3 Model for human driving behaviour

5 - 1000
msec

up to
several
10 sec

up to
few hrs

planning horizon

strategic level:
e.g.: route planning

tactical level:
dynamic trajectory planning

e.g.: passing manoeuvre

reactive level:
stabilisation,
driving skills

e.g.: lane keeping

mission planner

manoeuvre planner

controller

driving task module

Fig. 17.4 Automated driving decision levels

in unexpected emergency situations. However, typical decisions on a tactical level
evolve from perceiving a scene over a longer period in time that is in the range
of a second or more. The final decision for an emergency manoeuvre may then be
triggered when the trajectory of some traffic participants enters a safety margin.
Finally, on a strategic level, driving decisions may be updated at very low rates.

17 Real-Time Knowledge for Cooperative Cognitive Automobiles 345

25 m
30 km / h

S2

P2

P3

S1

P1

S3

P1
follows

P3

vehicle lane forward

bicycle
lane

Fig. 17.5 Metric, symbolic,
and conceptual knowledge for
cognitive automobiles

17.2 Knowledge Representation for Automobiles

The knowledge basis for any decision is the perception of the actual situation. As
illustrated in Fig. 17.5, driving – whether by a human or a cognitive machine –
involves knowledge representation in various forms. Metric knowledge, such as the
lane geometry and the position or velocity of other traffic participants is required to
keep the vehicle on the lane at a safe distance to others. Symbolic knowledge, e.g.
classifying lanes as either “vehicle lane forward”, “vehicle lane rearward”, “bicyle
lane”, “walkway”, etc. is needed to conform with basic rules. Finally, conceptual
knowledge, e.g. specifying a relationship between other traffic participants allows
to anticipate the expected evolution of the scene to drive foresightedly.

The Transregional Collaborative Research Centre 28 “Cognitive Automobiles,”
has focused on systematic and interdisciplinary research in this field. Founded in
January 2006, partners from Karlsruher Institut für Technologie, Fraunhofer Institut
IOSB Karlsruhe, Technische Universität München, and Universität der Bundeswehr
München have investigated methods for machine cognition of mobile systems as
the basis for automated machine behaviour [13, 15]. The partners have not only
conducted analytic research accompanied by closed-loop simulations, but have
also integrated their findings into experimental autonomous vehicles. These have
successfully participated in international competitions such as the Grand and Urban
Challenge [6, 7, 10].

17.3 Cooperative Automobiles

Cognitive automobiles shall exchange their knowledge on the traffic scene with
another and negotiate cooperative behaviour. Through broader and more reliable
information, cooperativity among automobiles enhances traffic safety and traffic
flow at the same time.

Figure 17.6 depicts a mixed traffic scenario with cognitive automobiles as well
as automobiles that are neither equipped with any sensors nor with vehicular

346 C. Stiller and O. Pink

!

Fig. 17.6 Cooperative cognitive automobiles in mixed traffic

communication devices. Cognitive automobiles are equipped with video, lidar, or
radar sensors and a communication device that allows the exchange of information
with the infrastructure or with other vehicles. Sensor data analysis is performed to
gather an instantiated model of the real world. Metric, symbolic, and conceptual
information is used as a basis to continuously decide for appropriate driving
commands. When the traffic scenario involves several cognitive automobiles, they
communicate their knowledge and driving intentions one to another. Furthermore
the automobiles may negotiate coordinated driving trajectories that are beneficial to
the community of traffic participants. Simple examples for cooperative driving are
coordinated trajectories at intersections or coordinated lane change manoeuvres.

17.3.1 Cooperative Perception

As indicated in Fig. 17.6 cooperative perception extends the field of view for each
automobile to the union set of the individual fields of view. This extension is termed
a telematic horizon. It provides information about the traffic scene long ahead, in
blind spots, and in areas that may be occluded for some of the automobiles.

As depicted in Fig. 17.7, cooperative perception involves several stages that
must be considered to access timing and uncertainties of information that is
communicated from other vehicles. Let vehicle C’ observe an obstacle in its

17 Real-Time Knowledge for Cooperative Cognitive Automobiles 347

Y‘

Y

C

X

R, t
C‘

X‘

obstacle

Fig. 17.7 An obstacle observed by C’ is communicated to C via coordinate transformation R; t

coordinate frame at time t 0 and at position2 X0 D .X 0; Y 0; Z0/T . The position
uncertainty is expressed by the covariance ˙X0 . This information is transmitted to
vehicle C within a communication time tc . This vehicle processes this information
within time tp . Processing includes coordinate transformation of the position to
ego-coordinates X D .X; Y;Z/T . This transformation requires knowledge on the
relative pose of C’ wrt C expressed through the rotations ! D .!X ; !Y ; !Z/

T

about the X�, Y�, and Z�axis, and the translation t D .tX ; tY ; tZ/T , respectively.
Let their uncertainties be denoted by ˙! and ˙t and let all uncertainty vectors be
mutually uncorrelated. The coordinate transform yields the position estimate in the
ego coordinate system

X D RX0 C t ; (17.1)

where R D R.!/ denotes the rotation matrix associated with !. This information
is available at time

t D t 0 C tc C tp : (17.2)

Furthermore, the uncertainties in obstacle position and relative pose accumulate to

˙X D R˙X0RT C ŒX0��˙!ŒX0�T� C˙t (17.3)

with ŒX0�� D
0
@ 0 �Z0 Y 0
Z0 0 �X 0
�Y 0 X 0 0

1
A :

2For the sake of simplicity, we restrict our consideration to a position estimate. Extension to other
information like orientation or velocity is straightforward.

348 C. Stiller and O. Pink

In practice, the second term may become dominant for distant objects. As infor-
mation communicated from other vehicles may thus be deteriorated by additional
time delay and pose uncertainty, the information that is selected for communication
and the reference frame for this information must be carefully chosen. In particular,
geo-referencing of information may significantly improve on this situation [8, 16].

17.3.2 Cooperative Behaviour

Based on all available sensor information, an autonomous vehicle has to assess the
situation and determine a list of possible actions, from which an optimal manoeuvre
is chosen based on a given set of quality criteria, such as e.g. collision avoidance,
travel time, or fuel consumption. Beyond the exchange of sensor data cooperative
vehicles will exchange information about this intended manoeuvre and last not
least may negotiate possible alternative behaviours with another. Driving negotiated
trajectories is termed cooperative behaviour and generally yields improved safety
and traffic flow for all participants [13].

A possible way to implement cooperative behaviour in a convoy driving scenario
is to exchange a prioritized list of planned vehicle trajectories and/or the current
vehicle state, such as

• Accelerating, decelerating, constant speed
• Merging, intersection approach, lane change, vehicle following
• Convoy driving as lead/following vehicle.

Consideration of this information in vehicle control improves on the safety and flow
of the complete convoy.

Another example for cooperative behaviour generation is illustrated in Fig. 17.8.
Let us assume the yellow vehicle has three alternative trajectories, of which, given
only the vehicle’s own sensor data, a lane change to the right would be the best
alternative. However, this would conflict with the intended merge manoeuvre of
the blue vehicle coming from the lower left side. If the two vehicles are able to
communicate their intended trajectories and possible alternatives, they can negotiate
a behaviour which is acceptable for both vehicles: The yellow vehicle stays on the
left lane and the blue vehicle merges into the right lane.

According to the decision levels in Fig. 17.4, cooperative negotiation of vehicle
behaviour is typically performed on the tactical layer, which requires significantly
lower data rates than an information exchange on sensor level. This reduces
communication bandwidth and permits higher latencies and therefore reduces the
required quality of service (QoS) of vehicle-to-vehicle communication [9].

On the other hand, a lower QoS and consequently reduced reliability requires
additional concepts to ensure safe vehicle behaviour. This includes a reactive system
for collision avoidance by emergency braking or escape manoeuvres that solely
relies on on-board sensor data of the vehicle. The minimum safety distances for

17 Real-Time Knowledge for Cooperative Cognitive Automobiles 349

Fig. 17.8 Example scenario for cooperative behaviour

cooperative driving are therefore limited by the perception update rates and bus
latencies as introduced in Sect. 17.1.

17.4 Hardware and Software Architecture

Following the considerations from the previous sections, real-time requirements in
cognitive automobiles are dependent on the respective decision level and range
from several milliseconds for the reactive level up to few hours for strategic
mission planning. This induces different limitations for the hardware and software
framework for a cognitive automobile. While the reactive level, e.g. vehicle control
and low-level collision avoidance is mainly influenced by the sensor data processing
time and sensor update rates, the update cycles of higher-level modules such as
route planning or scene understanding are mainly limited by the available computing
performance.

The large difference in update rates requires a modular software design for
perception and decision making which is closely related to the decision levels in
Fig. 17.4. Lower-level decision levels such as collision avoidance should only rely
on low-level perception, e.g. an occupancy grid, which can be computed at high
update rates, while higher-level decision modules can make use of more complex
environmental representations.

On the behavioural side, the software architecture should allow lower-level
modules to override the output of higher-level modules, i.e. short-term collision
avoidance has priority over mission planning and path planning over a prolonged
period. An example for such a software architecture is given in Fig. 17.9.

Depending on the task of a software module, real-time capability is limited by
different hardware constraints, e.g.

• Available computing power
• Available communication bandwidth
• Sensor update cycles.

Lower-level systems such as vehicle control are mainly influenced by the
communication bandwidths and resulting bus latencies whereas low data rates of

350 C. Stiller and O. Pink

Situation assessment

Objec trecognition
and tracking

Obstacle detection
and state estimation

Feature extraction
and sensor fusion

Sensors Actuators

Vehicle control

Path planning and
obstacle avoidance

Manoeuvre planning

Mission planning

Perception Action Planning horizon

Upto
few

hours

5-1000
msec

Strategic
level

Tactical
level

Reactive
level

Fig. 17.9 Hierarchical software architecture for cooperative cognitive automobiles

the required sensors allow for high update rates. Higher-level tasks such as scene
understanding on the other hand are mainly limited by the available computing
power, while bus latencies and sensor update cycles are small compared to the
processing time of these tasks. Especially for systems that make use of sensors with
high data rates such as image processing, all three limitations have to be taken into
account: Typical processing times, sensor update cycles and bus latencies lie all in
the same order of magnitude. To obtain an overall image processing time of 0.1 s
as discussed in Sect. 17.1, a good combination of image resolution, communication
bandwidth and computing power has to be chosen.

To keep the inter-process communication overhead low and to gain optimal
use of the available computing power, a centralized hardware architecture is
advantageous, where computing time is distributed among all processes while
real-time requirements especially of the lower-level tasks are guaranteed. In such
a centralized system, all sensor information is available to all modules at any
time. Furthermore, a centralized system offers high bandwidths for inter-process
communication.

17.5 Experimental Cognitive Automobiles

Within the Karlsruhe-Munich Transregional Collaborative Research Centre 28
’Cognitive Automobiles,’ researchers from several disciplines are working on the
different challenges on the way to a cognitive automobile. The experimental
validation of the findings requires a unified hardware and software framework for

17 Real-Time Knowledge for Cooperative Cognitive Automobiles 351

main computer

stereo cameras 1

stereo cameras 2

2D lidar

1D lidar (front + rear)

rear view camera ECU

DGPS / INS odometer

vehicle CAN actuators

v2v

Fig. 17.10 Experimental hardware setup for cooperative cognitive automobiles

all partner institutions [4, 17]. Integrating the solutions of different research groups
into one experimental platform requires simple and well-defined interfaces of the
different modules.

Based on the hardware architecture depicted in Fig. 17.10, a total of six
experimental cognitive automobiles were set up within the collaborative research
center [5, 12, 15].

To ensure real-time requirements and low latencies, vehicle control is performed
on a dedicated dSpace AutoBox which directly communicates with the actuators
over the vehicle CAN. All other perception and planning modules as well as sensor
data acquisition are performed by a single multicore multiprocessor computer sys-
tem which delivers sufficient computing power to host all processes and at the same
time provides low latencies and high bandwidth for inter-process communication.

The hardware architecture is complemented with a real-time capable software
architecture as depicted in Fig. 17.11. Its central element is a real-time database for
information exchange (KogMo-RTDB [3, 4]). It allows parallel operation of real-
time processes and non-real-time processes at any update rate. As all inter-process
communication is performed via the database, all modules have a centralized view
on all available information at every time. The different driving and perception tasks

352 C. Stiller and O. Pink

Situation assessment

Object recognition
and tracking

Obstacle detection
and state estimation

Feature extraction
and sensor fusion

Sensors Actuators

Path planning and
obstacle avoidance

Manoeuvre planning

Mission planning

ECU

Real-Time
Database

• Hard real-time
• Time referenced
• Low delay
• Transparent access
• System watchdog

Fig. 17.11 Software architecture for cooperative cognitive automobiles with centralized real-time
database KogMo-RTDB [4]

run in separate processes according to the decision levels and can read and write
information from the real-time database at any update rate.

For temporal consistency, all information in the database is labeled with a time-
stamp that indicates the time when the data was recorded. This allows higher-level
processes with a particularly long computing time to relate their output to the point
in time when the underlying sensor data was valid.

The concept of a data-centered real-time database with consistent timestamp
indexing enables a straightforward extension to distributed systems or car-to-car
communication [3]. For a distributed system, additional latencies have to be taken
into account, whereas car-to-car communication requires additional considerations
on quality-of-service [9].

The centralized database design has other advantages such as easy integration of
e.g. recording and playback functionality or a process watchdog, as it was included
in Team AnnieWAY’s software framework. This team’s entry to the 2007 DARPA
Urban Challenge – a competition of autonomous vehicles – successfully reached the
finals where it competed safe and accident-free [7].

The different behaviour levels are implemented as follows:

• Mission Planning is performed by an A*/D* search of the optimal route in a
given graph representation of the road network. In general, mission planning is
performed only once when a new target position is defined or if the vehicle has
to diverge from the planned route, e.g. due to a road blockade.

• Manoeuvre Planning is implemented as a concurrent hierarchical state machine
(CHSM) [2], where every possible driving behaviour, e.g. driving or intersection

17 Real-Time Knowledge for Cooperative Cognitive Automobiles 353

Fig. 17.12 Overview of the concurrent hierarchical state machine used to model traffic situations
and behaviour

handling, is defined by a state which itself can have several substates, e.g.
lane keeping or lane changing. A UML chart of the state machine is shown in
Fig. 17.12. Output of the manoeuvre planning is the desired vehicle trajectory
for approximately the next 10 s.

• As outlined in Sect. 17.4, the paths generated by the manoeuvre planning layer
may be overridden by a reactive layer [6] for obstacle avoidance.

Figure 17.13 shows an example for a knowledge representation in a urban
scene. It is composed of different perception layers that include the lane geometry,
a static obstacle map, and tracked moving obstacles obtained from 2D lidar data.
This example illustrates the idea of multiple perception layers that fulfill different
real-time requirements: While the static occupancy grid is suitable for collision
avoidance at low speed, higher-level behaviour generation such as handling the
right-of-way or merging into moving traffic also requires a higher-level obstacle
representation. On the other hand, detection and tracking of moving obstacles
comes at a significantly higher computational cost as the generation of a static
obstacle map.

17.6 Summary and Conclusions

Cooperative cognitive automobiles acquire and process information about their
traffic environment using on-board sensors. This information serves as a decision
basis to conduct appropriate driving actions. Time plays a crucial role in safe
driving. Not only will a gain in time for decision of only half a second yield

354 C. Stiller and O. Pink

Fig. 17.13 Tracking of dynamic objects with occupancy grid map and linear Kalman Filter. Left:
High resolution lidar data. Right: Tracked vehicles on segmented grid map [7]

a significant reduction of traffic fatalities, but real-time capabilities are the key
to smooth vehicle control and enhanced traffic flow. It is argued that cognitive
automobiles may save reaction time in a typical braking manoeuvre by as much
as 1.5 s. We have discussed real-time requirements in automotive applications and
have classified perception and action into strategic, tactical, and reactive levels.
While reaction times may be as low as a few milliseconds on the reactive layer,
tactical decisions are typically conducted in the range of a second, and strategic
decisions may be allowed even longer periods of time. The exchange of information
between vehicles opens potential for another dimension of traffic operation, namely
cooperativity. Cooperative cognitive vehicles will exchange information on the per-
ceived traffic scene and their intended trajectories. Negotiations among automobiles
will yield concerted navigation with unprecedented safety, comfort, and efficiency.
Clearly, driving on concerted trajectories will pose even higher importance on
real-time capabilities. Preliminary experimental vehicles have been constructed
in the Karlsruhe-Munich TCRC Cognitive Automobiles and have successfully
demonstrated first automated driving manoeuvres.

Acknowledgements The authors gratefully acknowledge the fruitful collaboration of the partners
from Karlsruhe Institute of Technology, Technische Universität München and Universität der
Bundeswehr München within the Transregional Collaborative Research Centre 28 Cognitive
Automobiles. Special thanks are directed to Georg Färber, one of the initiators, founders and
member of the executive board of the Centre. The authors gratefully acknowledge support of the
TCRC by the Deutsche Forschungsgemeinschaft (German Research Foundation).

References

1. European Union (2010) E-Safety.
http://www.ec.europa.eu/information society/activities/esafety

http://www.ec.europa.eu/information_society/activities/esafety

17 Real-Time Knowledge for Cooperative Cognitive Automobiles 355

2. Gindele T, Jagszent D, Pitzer B, Dillmann R (2008) Design of the planner of Team
AnnieWAY’s autonomous vehicle used in the DARPA Urban Challenge 2007. In: Proceedings
of the IEEE intelligent vehicles symposium, pp 1131–1136

3. Goebl M (2009) Eine realzeitfähige Architektur zur Integration kognitiver Funktionen. Disser-
tation, Technische Universität München, München

4. Goebl M, Färber G (2007) A real-time-capable hard- and software architecture for joint image
and knowledge processing in cognitive automobiles. In: Proceedings of the IEEE intelligent
vehicles symposium, Istanbul, Turkey, pp 734–739

5. Goebl M, Althoff M, Buss M, Färber G, Hecker F, Heißing B, Kraus S, Nagel R, Puente
León F, Rattei F, Russ M, Schweitzer M, Thuy M, Wang C, Wuensche H (2008) Design
and capabilities of the Munich cognitive automobile. In: Proceedings of the IEEE intelligent
vehicles symposium, Eindhoven, the Netherlands, pp 1101–1107

6. Hundelshausen F, Himmelsbach M, Hecker F, Mueller A, Wuensche HJ (2008) Driving with
tentacles: Integral structures for sensing and motion. J Field Robot 25(9):640–673

7. Kammel S, Ziegler J, Pitzer B, Werling M, Gindele T, Jagzent D, Schröder J, Thuy M, Goebl
M, von Hundelshausen F, Pink O, Frese C, Stiller C (2008) Team AnnieWAY’s autonomous
system for the 2007 DARPA Urban Challenge. J Field Robot 25(9):615–639

8. Kämpchen N, Clauss M, Guenter Y, Schreier RM, Stiegeler M, Tischler K, Dietmayer K,
Grossmann HP, Kabza H, Neumann H, Rothermel AL, Stiller C (2005) Vernetzte Fahrzeug-
Umfelderfassung für zukünftige Fahrerassistenzsysteme. In: Maurer M, Stiller C (eds) Pro-
ceedings of the workshop Fahrerassistenzsysteme, Freundeskreis Mess- und Regelungstechnik
Karlsruhe e.V., Walting, Altmühltal, pp 139–150

9. Nagel R, Eichler S, Eberspächer J (2007) Intelligent wireless communication for future
autonomous and cognitive automobiles. In: Proceedings of the IEEE intelligent vehicles
symposium, Istanbul, Turkey, pp 716–721

10. Özgüner Ü, Stiller C, Redmill K (2007) Systems for safety and autonomous behavior in cars:
The DARPA grand challenge experience. IEEE Proc 95(2):1–16

11. Rasmussen J (1983) Skills, rules, and knowledge; signals, signs, and symbols, and other
distinctions in human performance models. IEEE Trans Syst, Man, Cybernetics SMC-
13(3):257–266

12. Schröder J, Gindele T, Jagszent D, Dillmann R (2008) Path planning for cognitive vehicles. In:
Proceedings of the IEEE intelligent vehicles symposium, Eindhoven, Holland, pp 1119–1124

13. Stiller C, Färber G, Kammel S (2007) Cooperative cognitive automobiles. In: Proceedings of
the IEEE intelligent vehicles symposium, Istanbul, Turkey, pp 215–220

14. Stiller C, Kammel S, Dang T, Duchow C, Hummel B (2007) Autonome Fahrzeugführung
durchs Gelände – ION im Grand Challenge. at – Automatisierungstechnik 55(6):290–297

15. Thuy M, Althoff M, Buss M, Diepold K, Eberspächer J, Färber G, Goebl M, Heißing B, Kraus
S, Nagel R, Naous Y, Obermeier F, Puente León F, Rattei F, Wang C, Schweitzer M, Wünsche H
(2008) Kognitive Automobile – Neue Konzepte und Ideen des Sonderforschungsbereiches/TR-
28. In: 3. Tagung Aktive Sicherheit durch Fahrerassistenz, Garching bei München

16. Tischler K, Hummel B (2005) Enhanced environmental perception by inter-vehicle data
exchange. In: IEEE intelligent vehicles symposium, Las Vegas, USA

17. Werling M, Goebl M, Pink O, Stiller C (2008) A hardware and software framework for
cognitive automobiles. In: Proceedings of the IEEE intelligent vehicles symposium 2008,
Eindhoven, Niederlande, pp 1080–1085

	Advances in Real-Time Systems
	Preface
	Contents
	Part I Theoretical Foundations
	Part II Connecting Theory and Practice
	Part III Innovative Application Domains

